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ABSTRACT

ASYMPTOTIC NEAR-TO—FAR-ZONE TRANSFORMATION FOR

PERIODIC CONFORMAL ANTENNAS EMBEDDED IN

CANONICAL STRUCTURES

By

Jorge M. Villa-Giron

Conformal antennas are important to the aerospace community because of their

aerodynamic characteristics and their versatility for electronic scanning. Computa-

tional electromagnetic methods such as the Finite Element-Boundary Integral method

have been used extensively to obtain estimations of radiation and scattering perfor-

mance of antennas on planar, elliptical and prolate spheroid surfaces. Typically, in

formulating these methods, either an infinite structure approximation or reciprocity

has been used to accomplish the near-to-far-zone transformation. At times, the need

for such transformation has been ignored all-together. In cases where a Green’s

function-that enforced cylinder boundary conditions—was used, calculations of the

far-zone field in the paraxial region were inaccurate. Several researchers have been

working in obtaining integral solutions that overcome the problems in the paraxial

and shadow zone using GTD and UTD techniques.

In this dissertation, an asymptotic periodic dyadic Green’s function will be de—

rived. A different asymptotic approximation for the periodic Green’s function will be

used to accomplish the near-to—far-zone transformation. This results will be validated

by testing expression for large radii against similar results for planar structures.
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CHAPTER 1

INTRODUCTION

The interest in developing antennas that can be mounted on structures with a convex

surface such as airplanes, automobiles, cell phones, or laptops in mobile communica-

tion systems, has increased significantly over the past few decades. These types of

antennas are known as conformal antennas. Consequently, studies to understand ra-

diation of these antennas in the presence of mounting platform has increased as well.

The analysis of these antennas is critical as the performance “in situ” is very differ-

ent from that of a stand alone structure. These antennas offer several advantages; a

potential listing is given next. Conformal antennas can help the aerodynamics of the

structure on which it is mounted and reduces its cost and weight [1]. Arrays of these

antennas permit faster electronic scan than a traditional mechanical scan. Compared

to mechanically scanned arrays, small aerodynamic drag and less space occupancy

are advantages of conformal arrays [2, 3].

Canonical shapes such as cylinders and prolate spheroids are acceptable approxi-

mations to surface that the antennas are typically mounted up on, and can be used

to model structures with singly and doubly surfaces, respectively [4, 5]. One analytic

solution to fields due to sources radiating in the presence of canonical shapes exist.

Computational electromagnetic methods have also been used to obtain an approxi-

mate solution to the problem [6, 7]. These techniques have only been efficient when

analyzing electrically small structures, or arrays with small number of elements [8, 9].

This thesis proceeds along the following lines: Different methods for analyzing

high frequencies methods will be presented in the reminder of this chapter. The

Geometric Theory of Diffraction (GTD) is a technique that finds a solution for high

frequencies [10]. A complete derivation of the GTD method for a circular cylinder,



developed by Keller [10], will be expanded in Section 1.2.

The canonical and asymptotic Green’s function for a circular cylinder was obtained

and its procedure is described in Chapter 2. After this, the function was modified to

increase efficiency at high frequencies on the surface of the cylinder and also in the

far field zone using Watson’s technique [11]. Finally the resultant integral equation

is evaluated by the method of steepest descent. It is important to mention the final

expression is not valid in the paraxial zone [12, 13, 14, 15], when the observation angle

is close to the surface but far away from the source (6 = 0 or 6 = 7r and R > 10A).

Chapter 3 contains the derivation of a modified modal solution. Validation of this

solution against the exact modal solution for an infinite circular cylinder of a small

radius (a = 0.0”) is shown. A comparison between the steepest descent solution and

the modified modal solution for the infinite circular cylinder of big radius (a = 10A)

is presented. A new asymptotic solution for an elliptical cylinder is derived, based

in Keller’s method and using the modified modal solution for a circular cylinder

matching the GTD approximation constants. Conclusions and future work will be

presented in Chapter 4.

1 . 1 Literature Review

Modeling conformal antennas is a challenge. Not only it is necessary to model the

antenna “per se” but the platform that it is mounted upon as well. Several approx-

imate methods have been proposed to analyze these antennas, and these depend of

its platform and the behavior of the antenna. The first studies assumed, that the

antenna was mounted on an infinite circular cylinder [16]. The fields were expressed

in terms of infinite Fourier series of the form 2m Cm cos(m¢), with Cm as a func-

tion of the radius, p (in cylindrical coordinates). Wait and Kahana [17] obtained the

radiation pattern for circumferential half-wave slots with ka 2 2, 3, 5, and for differ—

ent elevation angles. Similar results were obtained by Bailin [18] for large circular





cylinders. The solutions are obtained in terms of harmonic series using integer order

Bessel functions. This solution is poorly convergent for large arguments of the Bessel

functions (when ka >> 1).

Watson [19] developed a method for large values of ka, where he transformed the

poor converging harmonic series into a contour integral, deforming the integration

path for capturing individual terms poles which represent creeping waves. This new

contour integral is expressed in the form of infinite but rapid convergent series. The

problem with Watson’s method is that it can be only used for some canonical shapes.

For a slotted cylinder antenna, the residue series proposed by Watson is highly con-

vergent in the direction away from the slot; known as the deep or shadow region.

However, better results were obtained for the region forward to the slot, or the illu—

minated region, when using physical and geometrical optics [20, 21]. These methods,

by Watson, assumes that there are no surface currents in the deep or shadow region

and also approximate the induced current in the illuminated region by the current

that would be induced on the local tangent plane. While good results were obtained

at the illuminated region, incorrect results were obtained from the shadow and the

transition region, which is the boundary between the shadow and illuminated region.

With the assumption that fields propagate along rays Keller developed the Geomet-

rical Theory of Diffraction (GTD) [10]. This theory includes the effects of diffraction

which are not considered in the geometrical optics.

Diffraction happens when an incident ray is tangential to a convex surface, or

when it hits edges, or vertices of boundary surfaces, creating new rays called diffracted

rays, see Figure 1.1. The total field, defined in the geometrical optics, is a sum of

the incident and reflected rays. A diffraction coefficient can also be obtained and

used to obtain the diffracted ray by multiplying the incident ray with the diffraction

coefficient [10, 22]. This coefficient depends on the type of structure or material the

ray is hitting upon or traveling on, for instance, in Figure 1.1, r’ is the surface ray
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Figure 1.1. Diffraction of surface rays

vector launched at the source point, r,- for i = 1, 2, 3... are the shed rays and ft is the

unit vector normal to the surface at the diffraction points. Laws for geometrical optics

were modified and extended at the new GTD. The generalized Fermat’s principle is

one of them. The modified principle says the least time path is the same minimum

distance path. It emphasizes that a surface-diffracted ray between two points is

a curve where the optical length is stationary among all curves between the same

points having an are on the boundary surface [10]. The optical length then defined as

the product of the geometrical distance and the refractive index (assuming a constant

refractive index).

An extension in the GTD was made by Pathak et al. [23] and he called this

new method Uniform GTD (UTD) [24]. This method introduces a new term, dyadic

torsion factor [25]. This includes the torsional surface rays that may be excited by

apertures and monopoles. All the ray fields are expressed in terms of Fock func-

tions improving the solution in the transition region including the boundary with the

shadow region, where the GTD failed [26], and reducing it geometric optics in the lit

0r illuminated region.

The incremental fields, dEm(r|r’) and de(r]r') are excited by the aperture.

These surface fields travel along the surface. The path they follow is known as the

geodesic or shortest path of propagation. It is described by a partial differential

equation theory for rays on surfaces for homogeneous medium, fulfilling the extended



Fermat’s principle [10]. The dyadic torsion factor, TF(r|r’), proposed by Pathak,

relationes the incremental fields, alEm(r|r’) and de(r|r'), where F is either E or H

depending of the problem being solved, and the differential magnetic current M by

[23]

- . — "1:3

15mm -TF(r|r')Dfe JdF ’=(rlr) 47, S
 (1.1)

where dF(r|r’) is either dEm(r|r’) or de(r|r'), k is the wave number, the geodesic

path between the source and the observation point is described by s. The surface ray

divergence factor, Df, represents the change in the width of the surface ray strip, and

is given by

84140

PC Cit/1

 Df= (1.2)

The term dilio is the angle between the surface rays adjacent to the central surface

ray from r’ to r. dw is the angle between the backward tangent rays to the adjacent

rays at the observation point, r. The distance between re and r is called the tangent

(or geodesic) radius of curvature of the geodesic circle at r [25].

The dyadic torsion factor, T(r|r’), was introduced because the field on the surface

is not just the surface ray field between the source and the observation point. It is

a function of the launching of the surface ray field at the source, the variation of the

surface ray field from r’ to r, and its attachment to the surface. All these additional

effects are modeled by the dyadic torsion factor, T(r|r’) and is defined as:

T(r|r’) = T1 ff, + Tgff), + T3ffi/ + T4fif" + T560, + T6011, + T7711? + Tgfzf)’ + Tg'ftfil (1.3)

where 73. is unit vector normal to the surface at any point, f a tangential unit vector

to the surface, and f) as the cross product between f and 73., named the binormal unit

vector. For a differential magnetic current that is tangential to the convex surface,



(1.3) reduces to

fimh=nfi+nW+nw+QW+RMHrma (M)

as dM(r) - 7’7. 2 0.

1.2 Asymptotic Solution for the Electromagnetic Fields due to an Aper-

ture on a Circular Cylinder using UTD

Next, a method to find the field produced by a magnetic current due to an aperture

on an uniformly circular cylinder is presented. The problem that we will attempt to

solve is to find the electromagnetic field produced by an aperture in the convex surface

of an infinite circular cylinder. It is to assumed the external medium is free space.

The problem is shown in Figure 1.2. It is known that the tangential component of the

  

\ ffic __

V1

au=axdE V

C»E§ [afi

Surface

VWV

Figure 1.2. Infinite circular cylinder with an aperture source M

electric field E, is zero everywhere on the cylinder surface except at the aperture. The

tangential component of E on the aperture S, can be expressed in terms of differential

magnetic current M as in (1.5). It is assumed that this current is known and is given



dM(r’) = Ea(r’) x mm (1.5)

Here, (IA is an element of area in the aperture, Ea(r’) represents the electric field at a

point r’ inside the aperture. Electric and magnetic fields can be found at some point r

outside the surface then integrating the incremental fields dEm(r|r’) and de(r|r’),

over the aperture as in 1.7.

Em(r)=//dEm(r]r') (1.6)

Sa

Hm(r) =//de(r]r’) (1.7)

So.

This equations is evaluated using UTD to find the field. Figure 1.3 shows how

the differential magnetic current dM, together with the tangent plane at this point,

divides the area in two regions. These regions are the shadow and the illuminated

regions, with a transition region separating them. UTD’s expression for electric field

is obtained for both, shadow and illuminated regions, and also provides a smooth

transition between the shadow and the illuminated region. In the next three subsec-

tions, the procedure to obtain expressions for the fields in each region is explained.

Illuminated Region

Transition

Region

Shadow

Region

 

Figure 1.3. Shadow, transition and illuminated regions adjacent to a magnetic dipole

on a perfectly conducting , convex surface



1.3 Electromagnetic Fields in the Shadow and Transition Region

The electric fields in the shadow region are expressed in terms of rays. These rays

are excited by the magnetic current source (1M, and they propagate along the surface

from the lit or illuminated region into the deep or shadow region. The surface ray

has associated an amplitude A(s) and a phase ¢(8) which varies with space, and can

be expressed as

a(s) = A(s) exp[j(q§0 — 155)] exp(jwt) (1.8)

The principle of conservation of energy, applied to a narrow band is used to de-

termine A(s) along the surface [27]. Due to the diffraction, the surface ray sheds

energy as they move, meaning that surface ray diffracts tangentially, decaying as it

travels in the direction of propagation [23]. Figure 1.1 depicts this effect. The energy

is proportional to A(s) and to the cross section area at s. For this case it would be

just the width 10(5) of the band, as in Figure 1.4. The energy between two points

inside the strip is

As

/m

Figure 1.4. Strip formed by surface rays

A2(s + As)w(s + As) — A2(s)w(s) = —2a(s)A2(s)w(s)As (1.9)

The energy lost, due to shedding is described by the factor 2a(s). It can be shown

that the derivative of A(s) is





d

dslz42(s)w(s)l ——- —2a<s)[.42(s)w(s)] (1.10)

Integrating with respect to s from 30 to s

 

 

MW) dl42( '> (’)I 8x S If) 8 = _2 3, d3,

/ IAQ<s'>w<s'>J / a‘ ’
A2(80)w(80) SO

A2(s)w(s> 3 , ,
:> In A2(80)1U(80)] —280 0(5 MS

———> A(s) = A(30) %:%)-exp -—/a(s’)d3’ (1.11)

30

Suppressing the time dependence and solving it at 3 equal to 50 results in

14(50) = a(80) emf-flee - ksoll (11?)

Substituting (1.12) in (1.11)

 A(s) = 0(80) eXI)(-j(¢o — a,» 1(3)) exp — / a<s’>ds’ (1.13)

30



Using (1.13) and (1.8), it can be shown that

 a(s)=a<so)exp<-1(¢o—kso)) ’“(So’exp -/a<s'>ds’ expWO—ks»
111(3) 30

111(30) 3
=> a(s) = a(sO)

 exp(—jk(s—so))exp -—/a(s')ds’

30

111(5)

(1.14)

The width of the strip can be written in terms of arc length, Aw(s) = (177(3). The

arc length is determined by the distance 3 and the angle, (11/10, formed by the surface

rays as in

8

d)"
a(s)=a(sO)\/%. fiexp —jks—/a(s’)ds’ (1.15)

30

The dependence of the above expression on 30 is assumed by writing lim0 (1(30), /s =

80—)

C’. Using C" in (1.15) it is obtained

(1.16)

 

The proportional constant CI represents the strength of the source. The next step is

to associate a direction to the surface ray and to relate it directly with the current

source. Because this method should work for any shape, the canonical coordinate

systems already defined cannot be used at this moment. The coordinate system that

is used here is composed by an unit vector ft that is normal to the surface at any point,

a tangential unit vector to the surface f that points to the direction of propagation

of the surface ray, as it is shown in Figure 1.5. To complete the set of our coordinate

10



system, we must define an unit vector perpendicular both to ft and also to f. This

unit vector is known as the binormal unit vector, and it is defined as b = A x it

As before, 6, 15,71 represent the observation point and f)’, f’,ft’ the source point. The

source (1M is expressed in terms of the new coordinate system as follows

dM =13’(i/-d1x1)+£’(£’.d1v1) (1.17)

From the analysis of canonical problems, it is found that the source current excites an

 

Figure 1.5. Coordinate system of a surface diffracted ray.

infinite number of modes for the normal component of field and another set of infinite

modes for the tangential component of the field. Those sets are independent of each

other, and they satisfy the different boundary condition. This definition allows us to

define C" in terms of the boundary condition for a single mode, as shown in (1.18).

(3;, = CLS‘S(30) [13’ - M + i’ - M] (1.18)

Here, Lg’s denotes the launching coefficient, and it depends on the boundary condi-



tion it satisfies and on mode. The constant C does not depend of the mode or the

boundary condition. This constant is used to fix the final expression with the one

obtained from the canonical problem.

The normal component of the electric field, ft - dE, has to satisfy the Newmann

boundary condition, and is

S

- . d.)

it. dEp = CLg(so) [b’ - dM + tI - leI] II—cffy—O exp —jks — /ag(s’)ds’ (1.19)

0

where Ep is the contribution of a single p mode of the total electric field E. The

tangential component of the electric field (3 - dE, that is also perpendicular to the

surface ray trajectory, f, is obtained by satisfying the Dirichlet boundary condition

as in (1.20).

d s

f)- dEp = CLI‘SXSO) 13,-(1M +13, - dM] “Bigexp —jks —/01]3,(s')dsI (1.20)

0

It is obvious that this component vanishes on the surface; however, this term is

important to calculate the electric field outside the surface. The total electric field

on any point r on the surface due to a source point r’ is written as

alE(r|r’) = fidEn(r|r') +13dEd(r|r’) (1.21)

With (1.21), dB is calculated for any given point on the surface, and using GTD

dB is calculated for points outside the surface.

Keller [10] developed the GTD and shows that the wavefront of a surface diffracted

field in any point r3 outside the surface, can be represented in terms of other wavefront

diffracted field at some point r0. This is presented in Figure 1.6. The relation between

12



wavefronts is given by

 

pdpd -
dE(r3]r’) ~dE(ro|r’) d 1 2d e—Jkso (1.22)

(p1 + sax/22 + so)
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Figure 1.6. Diffracted Wave front

By moving the reference point ro to the diffraction point r, Pathak [2] relates

dE(rs|r’) directly to the source dIVI. As shown in Figure 1.6 and Figure 1.7, when

ro —> r, p611 —-> 0, p51 —> pc and so —> s, the following expression is obtained

lim (/p‘11dE(ro|r’) ~ dE(r|r')D(r) (1.23)

p‘f->0

where D(r) is the attachment coefficient when the field is shedding or escaping from

the surface object or it is defined as the diffraction coefficient when the field is tan-

gentially hitting the surface object. This is due to the reciprocity, which states a

source M located at 1" produces a field in ro equal to the field at ro when the source

is place at ro. The coefficient D(r) depends on two factors: the nature of the field

13



     

   

l'c

Source

\l' _,.

Surface Ray

Strip

Figure 1.7. Spread of a surface diffracted ray

and the infinitesimal area around the object. Equation (1.23) can be rewritten as

lim (/p‘ide(ro|rl) ~ dM(r’) -T(r|r') (1.24)

[ff—+0

replacing (1.24) into (1.22)

dE(r3]r’) ~ L(r|r’) __pc_ 18—ij (1.25)

3(90 + 3)

where L(r|r’) is a linear transfer function, and it is defined as

L(r|r’) ~ dM(r') .T'(r|r’) (1.26)

T(r]r’) is the dyadic transfer function and using (1.19), (1.20), (1.21), (1.23), (1.24),

14



and (1.26) can be written as

d /'

TiJ-(rlr’) ~ CZLp(rI)Dp(r) —’*’—0exp —jksD — / ap(s’)ds’ (1.27)
1) d7)

where i and j are the f, f). and 6 components defined before for source and observation

points. Equation (1.25) can be expressed in terms of the source point leI and the

dyadic transfer function that relates the physical phenomenons from the diffracted

point to the source point as

dE(r3|r’) ~ dM(r’)-T(r|r’) Eff?) 63—ij (1.28)

The attachment coefficient Dp(r), the attenuation constant ap(s’), and the con—

stant C are obtained by comparing (1.28) to the asymptotic solution of canonical

problems. The asymptotic series expansion demonstrates a highly convergence when

the observation point is in the shadow region, and just few terms are normally needed

to obtain an acceptable accuracy. However, as the observation point moves to the

boundary between the transition and the shadow region more terms will be needed

to obtain the same accuracy. This problem is solved by changing the series repre-

sentation using Fock integral representation [28], which describes creeping waves, as

the observation point moves from the shadow to the transition region. The dyadic

transfer function on ( 1.28) can be written for the TEt case as

T(r]r’) = C [Ta(r’)H5’fz + Tb(r’)Sf'f) + Tc(r')Hl3’I3 + Td(r')Sf’f1]

1

(11110 p9(r) 6 —jks

V d0 ng(r’)I e D (129)

The torsion factor Tk(r’) for k = a,b,c,d, H and S are all related to the hard

 

and soft boundary conditions and satisfy the Robin boundary condition for the TEt

15



case. Pathak et al. [23] found that a circular cylinder Ta(r’) and Tb(r’) are equal

to 1, Td(r’) is equal to zero and TC(r’) = sin 2a’/a sin2 0/. Pathak also obtained the

surface radius of curvature pg(r’) = a/ sin2 0/ for a circular cylinder.

In this Chapter, we have obtained semianalytic methods that can be used for

analyzing sources near canonical prefect electrical conducting objects. In the next

chapters, we derive dyadic Green’s functions that may be integrated within differential

equation solvers
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CHAPTER 2

ELECTROMAGNETIC FIELDS IN TERMS OF GREEN’8

FUNCTIONS

Unique electric or magnetic fields at any observation point are obtained by solving a

second-order differential equation subject to specific boundary conditions. As said in

Chapter 1, the usual solution for this type of problem is an infinite series, but these

ones usually converge slowly. For that reason, a closed form solution would be useful.

A Green’s function is a solution of the partial differential equation when using a

unit source as the driving function subject to appropriate boundary condition [29].

The solution for the partial differential equation with the actual forcing function, is

then given by the convolution of the Green’s function with the actual forcing function.

Hence, the Green’s function serves as the transfer function of the system.

In this chapter, we explain the manner in which a closed form integral equation

that relates the magnetic field due to an aperture on a circular cylinder may be

obtained, using a dyadic Green’s function. The electromagnetic field, is governed by

the vector wave equation (2.1), the boundary conditions at the surface of the cylinder

and the radiation condition.

VxVxF—%F=0 on

where the vector field F can be either E or H. The dyadic Green’s function G must

solve the same differential equation, but using a unit source as a driving function, as

shown in (2.2)

v x V x E — 1.36 = I6(r — r’) (2.2)

multiplying (2.1) by G and (2.2) by F, subtracting the results and grouping the terms,

17



it gives the differential equation (2.3)

F-(VXVxG)—(VxVxF)-G=F-I6(r—r’) (2.3)

using the identity (2.4)

Vx(AxB)=B-(VXA)—A-(VXB)

B-(VxA)=Vx(A><B)-A~(V><B) (2.4)

with A = V x G and B = F for the first term in the left hand side of (2.3) and using

A = V x F and B = G for the second term, produces

V-VxGxF—V-VXFxG=F~I6(r—r’) (2.5)

Using A x B = —B X A and grouping terms, (2.5) becomes

—V-[FxV><G+VxeG]=F-I6(r—r’) (2.6)

(2.6) is the integrated over the volume exterior to the surface (the region in which

fields are sought)

—/J V-[FxVxG+VxFxG]dV=[V//F-I6(r—r’)dV (2-7)

and using the divergence theorem, (2.7) is converted in (2.8)

—flfi-[FXVXG+VxeG]dS=—F(r’) (2.8)

S

If F is H, using Faraday’s Law for a source free region (V x H = jweoE), (2.8) can
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be written as

H(r’)=fl'ftxH-VdeS+jweo#fiXE-Gd5 (2.9)

S S

Because the cylinder is a perfect electric conductor (PEC), the Green’s function is

chosen such that the normal derivative V X G is equal to zero (satisfying the Newman

boundary condition) on the surface of the cylinder. Then, the first integral is zero.

Also, as the tangential component of the electric field, ft x E, on the PEG surface

is zero, the only region the integral can be non zero is at the aperture. For these

reasons, (2.9) reduce to

H(r’) = jwco #71 x E - G (15' (2.10)

Sa

where Se is the aperture on the cylinder surface. Due to symmetry of the Green’s

function, (2.10) can be written as in

H(r) = j'wcoflfi x E(r') -G(r’ I r) dS’ (2.11)

Sa

interchanging source and observation points. To relate the dyadic Green’s function

to the torsion factor of Chapter 1, it is recognized that by replacing dF(r) by dH(r)

in (1.1) and with M = ft x E as the magnetic source on the surface, the relation

between the dyadic torsion factor and the dyadic Green’s function is defined as

<T(r, I r) = C(r’ | r) (2.12)
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2.1 Derivation of Green’s Functions

To relate and derive the relations of the dyadic Green’s function, we should start in-

troducing the concept of dyadic electric and magnetic field and rewriting the Maxwell

equation in terms of these fields. First, there are three orthogonal current distribu-

tions, Ji, with (2' = 1, 2, 3) which produce three sets of harmonically oscillating fields

in the same environment and at the same frequency. In this way, we would have fields

such as E, and H,- [29]. However, if the coordinates :13, y, z are replaced by 231,222,133,

the magnetic and electric fields could be written in the dyadic form

3 3

F: 2:17,]- (2.13)

3:1' i=1

where F could be either E or H. The dyadic electric field can be represented or called

the electric dyadic Green’s function

E = 68 (2.14)

whereas the magnetic dyadic Green’s function is given as

jwuoH = Gm (2.15)

Normalizing the current moment, it is found that

jwpoj = I6(R — R’) (2.16)

Maxwell’s equations can be rewritten in terms of the new notation as:

V x GeaRlR’) = EmomIR’) (2.17)

20



v x E,,,0(R|R’) = I6(R — R’) + k2—éeO(RIRl) (2.18)

_ 1 _

v . Geo(R|R’) = 32V - [16(R — R’)] (2.19)

V EmaRlR’) = 0 (2.20)

The subscript zero is used to indicate that only the free-space radiation boundary

condition is enforced. The dyadic magnetic Green’s function, Gmo, may be decom-

mo, such thatposed into two terms, €3an and G

_+.. —_

GmO = G'rn.OU(p _ pl) "I" G'mOUmI ‘— p) (2'21)

This is because GmO has a singularity at p = p, where again p’ denotes the source

radius. The unit step functions for cylindrical coordinates are defined as

1, if p > p’

U<p — p’) = (2.22)

0, if p < ,0,

1, if p’ > p

U01' - p) = (223)

0, if p’ < p

Taking curl is applied to (2.21), results in

_ ——+ —_

V X Gmfl = V X IGmOU(p _ pl) + GmOUU), _ 10)] (2'24)

Applying the identity (2.25)

Vx(aB)=anB—BXVa (2.25)
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on (2.24) and using A x B = --B x A, yields

__ —-+
“—

VXG-mo = (VxG...0>U<p—p’>+VU(p—p')x6250

+ (v x 57716)U(p’— p) + VUlp’ — p) x 6.7.0 (2.26)

Evaluating the divergence of the step functions, we have

 _,_.QL_7 “BK ~8U_~ _/
VU(p [0—100 pa¢+za, p5(p p) (53-27)

. —1 .

VUlp’-p)=p5(-1(p—p))3p( p) l—Tlpflp—p') (228)

Substituting (2.27) and (2.28) on (2.26), results in

__ ._.__+_ A _

v x on,0 -_= (v x Gmo)U(p — p’) + pd(p — p’) x 9.7;,

+ (V X C;10)U(PI - p) - r360) - p') X @7710

= (v x stomp — p’) + (v x mat/(12’ — p)

+ 13662 - p’) x (53.0 — 5.7.0) (2.29)

Using the boundary condition for a magnetic field )6 x (Hg-,0 — E1210) = E, in terms

of the dyadic functions, substituting (2.15) and (2.16), we have

72 X (Gfi-IO — 6;;2‘0) = i36(l‘ — I") (2.30)

where I; is the surface idem factor and 6 (r — r’) is the surface delta function. Con-

verting (2.30) to cylindrical coordinates, 75. = p“ and 6(r — r') = 6(6) — (b’)6(z — 2').

Substituting Is by I — {if}, yields

. —+ -—— — . .

p X (GINO — GmO) = (I — PP)6(¢ - ¢,)6(3 ‘ 2,) (2-31)
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h-‘Iultiplying both sides of (2.31) by 6(p -— p’)

- - —+ —

{Riff} ‘— 10,) X (GmO '— Gm())= (1 "— pp)6(p_ plé)(¢_ Cblé)(Z _ 2,) (2'32)

and substituting (2.32) into (2.29), yields

v x mm = (v x agar/(p — p’) + (v x 6,7,0)U(p’ — ,0) +

(I-p/3)6(p- #5)((P— W(3- Z') (2-33)

Using (2.18) in (2.33), we have

Mp - p’)5(¢ — 2W»? — 2’) + legit—60 = (V x 6;,0)U(p — p’) +

(I - (3x3)6(p- 9’5) (45- W(Z - 2') + (V X Gall/(H - p) (2-34)

and simplifying (2.34), the expression for the electric dyadic Green’s function for free

space can be written as

GeaRIR’): [(V x Gimp — p’) + (v x G;.0>U<p’ —p> -226<R— R’)l (2.35)

>
-

c
i
o
l
l
]
H

An expression for Geo(R|R') in terms of eigenfunctions must be found, but we will

not do this directly. First, Gmo(R|R')i will be written in terms of eigenfunctions,

and then, the expression will replace Gmo(R]R')i in (2.35). To do this, the curl is

applied to (2.18), obtaining:

v x v x G,,,o(R|R’) = v x [I6(R -— R’)] + 1.3V x 6,0(Rla’) (2.36)
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and using (2.17) in (2.36), we obtain

V x V x Emoann’) — kgfimomjn’) = V x [I6(R — R’)] (2.37)

Equation (2.37) shows that Gmo(R]R’) is also a solution for the dyadic wave equa-

tion. For this reason, a solution for Gmo(R]R’) could be found in terms of eigen-

functions. The eigenfunctions will be formed on vector wave functions [30]. These

functions are a set of eigenfunctions that can be found using scalar wave functions, cpl

and (p2 as the generation functions. In this work, two kinds of vector wave functions

will be used: M and N. These two, in addition to L, were introduced by Hansen [30].

To construct M, it is assumed that (pl is a solution for the scalar Helmholtz equation

V2e1+ (62901 = 0 (2.38)

and that there is a function F such that

F=wami am)

where 13 is the pilot vector. It can be verified that F satisfies the vector wave equation.

VxVxF—k2F=0 (2.40)

Using (2.39) in (2.40), and factorizing the curl in the equation:

Vxwaxeam—HVerFAi an)

VXWxwam%t%mkfl an)
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using the identity (2.43)

VxVxA=V(V-A)—V2A

in (2.42) results in

V x IV<V - m) — V299115 — We] = 0

Using V - (aB) = aVB + BVa in (2.44) simplified it as

V X [WWV '13 +15 A $01) — V2<PII3 - 16290113] = 0

Because V - 15 = 0, (2.45) reduces to

V x [Va A m) — V2212 - 627212] = 0

and again to

V x l—ng — 624912] = 0

Factorizing —p from (2.47), it is obtained

V x [(V2m — 6221231 = 0

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

If (,01 is a solution for the Helmholtz equation (2.38), then (2.48) is zero, which

means that F is a solution for the vector wave equation (2.39). One set of vector

eigenfunctions is given by

M: V X (90113)

25
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The other set of vector eigenfunctions is given by

NlexVXWfi) am)
Q

Using (2.50) in the vector wave equation (2.40) and factorizing, it is obtained

1 . 1 -
V x V x [EV x V x (8219)] — k2[EV x V x (8211)] = 0

1

=> V x V x [EV x V x (99213) — 16,9213] = 0 (2.51)

Using identity (2.43) with (2.51), it becomes

1 . . .

V X V X I;(V(V - 9021)) - V2902P) - W214 = 0 (2.52)

applying V - (aB) = aVB + BVa to (2.52), it becomes

1 . . . .

V X V X IE(V(992V ' P + PV¢2I - V2902?) - (69021)] = 0 (53-53)

with V ~13 = 0, (2.53) reduces to

l

k.

1

=> V X V X I—EV2902I3 - W213i = 0

V X V X I (WW2 - V2902?) - W273] = 0

:Vxprgw%s—Hmn==o QM)

As before, if 992 is a solution for the Helmholtz equation (2.38), then (2.54) is zero,

which means that N is also a solution for the vector wave equation. If 991 = 4,22, M

can be written in terms of N by placing (2.49) in (2.50)

1

N=kV x M (2.55)
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This can be shown by a rather simple development. The vector wave equation in

terms of M is expressed as

VxVxM—k2M=O (2.56)

Finally, substituting (2.55) into (2.56)

IN x N — k2M = 0 (2.57)

and so

V x N = kM (2.58)

To find an expression for Gmo(R|R’) in terms of vector wave equations, only the

first two vector wave functions, M and N, called the solenoidal vector wave functions

are necessary. Conversely, if we want to find an expression for Geo(R]R'), the three

vector wave functions, M, N and L will be necessary. For convenience, Gmo(RIR’)

is first derived, then Geo(R]R') is represented in terms of Gmo(R|R’). To expand

Gmo in terms of the solenoidal vector wave functions, it is convenient to follow the

Ohm—Rayleigh method. The method is explained in [31] on page 179, or in a more

applied way by [29], renamed as the Gm method. Basically, it says that a source

function, V x [I6(R — R’)], can be written in an expansion by simply finding the

appropriate vector wave functions that enforces the boundary condition.

V x [I6(R — R’)] = /dl.~,, [de Z [N(lcz)A(kz) + M(lcz)B(kz)] (2.59)

0 —oc 71:0
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Integrating the scalar product between N’(—k.z) and (2.59) over the entire volume,

// N’(—kz) - V x [I6(R — R’)]dV =

[41:12:46.2 // N’<<—-Icz> 1N<kz>A(a M(z)B(kz)ldV (2.60)
7120

and using the orthogonal properties for M(kz) and N(kz) proposed by [29] in page

150, A(kz) and B063) are obtained as

 A k _ M’ —k,. 2.61( 2) 47,2; ( ) ( )

2 50 I
B I.» - —-——N —k 2.62( .) 47121 (- z) ( )

The source function can this be represented as

 
kalef"’kz) + MszlNl("kz))l

00 00

V x [15((R— R’1:07:1kp /dch :24;

_w 2:0

(2.63)

Then Gmo is written as a function of the terms obtained in (2.63). Furthermore, the

integral with respect to kp can be eliminated. This is because our problem involves

an infinite cylinder [29]. Then function, Gmo is expressed as

I

'1» 0‘? 00
_:t

_]a

GmO(RIR,) = Er— / dkz 2

_m :—

[N(2)(kz)M’(—kz) + M(2)(kz)N’(—k;)] , ifp > p’

[N(A~.z)M’<2>(—kz) + MeaN’l’k—ka] . ifp < p’

(2.64)

H

where the superscript “(2) means that the vector wave equation is in terms of second
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kind Hankel functions. Taking the curl of 67:10 and 5,7,0 we obtain

—jk 00 0° 1

V X G77+10(RIR’) = 87 / dkz Z 3

—oo nz—oo P

{\7 x N(2)(k)M’—( 712) +V x M(2)(kZ)N'(—kz)} , p > p’ (2.65)

VxG (R|R’)=Zd1~’—" i0: 1
7710 8—71“ 2 (5—2

n=—00 P

{VxNikaM’W—kawxM<kz)N’(let-.1} , p<p’ (2.66)

replacing (2.55) and (2.58) in (2.65), the following is obtained

—-8jk2

V x G,,_’:_o(R|R)=
 

  .12

—oo n=—oo kl)

{M<’>(kz)M’<—kz)+N<2><62)N’(—kz>}dkz. p>p’ (2.67)

Using identical steps as before, replacing (2.55) and (2.58) in (2.66), it can be ex-

pressed as

V X G7770(RIR’_)_ -—:28j/ Z k—le

—OO 71:

{MeaMW—ka+N<kz>N’<2> (—k.>}dkz , p<p’ (2.68)
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Using (2.67) and (2.68) in (2.35), the field expression is obtained

-1' 00 00 1

GeomlR’) = _ki,_,s,33(11 R’) +8— /dkzW: 7.3
—— 7)

"OO

[N(2)(kz)M’(—k)+

+[NaaM’l’M—k.)

(2.69)

Finally, to obtain the second-kind dyadic Green’s function, Geo, the scattering su-

perposition method can be used [29]. A scattered wave term has to be added to

the free-space dyadic Green’s function previously obtained, as we see in the following

equation

Ee2(R|R’) = a720(RIR') + E23(RIR') (2-70)

This scattered wave term, G83, must satisfy the boundary condition for the specific

problem, where p x V x G62 = 0 at p = a on the cylinder surface. The Neumann

boundary condition can only be satisfied if the vector wave functions from the observa-

tion point are the same as those used in Geo for p < p’, M’I2)(—kz) and N'(2)(—kz).

The radiation condition of outgoing waves can be satisfied also by M(2)(kz) and

N(2)073) from the observation point. The expression for CBS is then deduced from

the expression of Geo as in

-j DC 00 1

G2szIR/)=8—7r / dkz Z F2

7)

{77,1142~><e>M’W—r.)+b.,N<2><k.)N’<2>(—k.)} , p>p’ (2.71)

The coefficients (1,, and b" are found by making G82 satisfying the Neumann boundary
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condition at the cylinder surface

,3 x V x [M + a,-,M(2) + N + b.,,N(2)]p=a = 0’ (2.72)

Next, to obtain the vector wave function, the scalar wave function

WP: 95. Z) = Jnfkalejn¢€jkzz (273)

is used [32]. Using (2.73) into (2.49), which defines one of the two groups of solenoidal

vector wave functions, with pilot vector 13 = 2, the vector wave function M is obtained

M __: V x (;J7)(kpp)ej”¢ejkzz)

 

_. livfifiga

p04” 0/)

= —— —k (75 2.74

(1,,p33” ” (kpp) ( ’

For convenience, we define .17 = kpp, and rewrite (2.74) as

  

 

 

 

_ kp 8(Jn(:r)ej"9’ejk~”z) . ,. 6(J7-L(:r)ej"¢ejkzz) ~

M — — , , P—fvp Cb

:1: 06’) 0:17

2 J'nkpJn(x)€jn¢ejk;zfi_ A:paJn.($)ejn¢ejkzz(/3

CL‘ 81:

-. , , J (:13) . 8.171(1)
= k 3,145 sz/v ___" 2.75pe e [ ]71 :7: p— 01:———-¢ ] ( )

Using (2.58) with N = 115V x M, we obtain M, as

1 - nJ (-). 3_J_n(1‘)N = __ k. jmpjjk I: '1
kOV x [ pe ( [j .7:—p— ('31:—qb ]

BJ (.r]

_ kP jnq)ejkz z «0171(33)~ 15 71"»(1’) A 712.1,),(1‘); 182: {117 ;— A—e A; 0——p—nz———¢+— 2————a——..

A: ..

_____ A_P€jn<beejk; z [:A,zazl‘+(~1)fi_nkzxilnfl7)¢_ kanfl’fi] (2.76)

,0 .L
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We define M’(—kz), M(2)(I\iz), N’(—kz), and N(2)(kz) from 2.75 and 2.76 as

 

  

 

. . j I 7 .

M’(—k;) = kpe—J'M’Ie—szz’ —j71£’f(—jc—)p'—a—Jfl(—$2(pf (2.77)

J: 8.1:

, , <2) <2) .
M(2)(kz) : kpcjng’oejkzz j‘an (5E)/3_aH77 (xlqb (2.78)

2: 83:

I kp _- C), __ A~ I

N(—k,,) — —e 3” c J ~Z

k0

, BJ 17’ A J,:7:’ ~ A

[—sz S], )p’—n7.~z "2E, )¢-kan(LL‘,)Z, (2.79)

(2) kP Yup 'k z
N (k) —eJ e7 7'

A70

. (2) (2)
. 0H. 7, H ~ 2 .
[ij—Ja—Eflp-nkz ”I(x)¢—-ka,(l)(:r)z (2.80)

Finally, substituting (2.77), (2.78), (2.79) and (2.78) into (2.72), we can find an and

 

bn

a _ —J,.,
,7 _ 2

HRH?)

_af

1777 = _—87 (2.81)

(2)
6H7} ('7

where ”y = kpa. The complete expression for G25 is obtained by substituting (2.81)
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into (2.71)

—8J

M<2>(1-)MI<2>(1,)+_LYN<2>(7.,)N'<2>(_1~,)] . p>p’

(2.82)

Evaluating (2.82) and (2.69) in (2.70), and expressing 3H? (,)/8’)’ as Hn(2),(7) yields

the expression for the electric dyadic Green’s function of the second kind for a perfect

conducting circular cylinder

 

 

 
 

1 0° - 00_
'n' , —.k;.-Z—

G62(p,¢,2]pl,¢l,2’) = W 71—2006] (,0 / (111726 J

' —oo

—j-n.H.‘.”(x> in 1:. 2H’é”<a- . kzkaffz)($) ,

(2) , +‘(Zfi) H12) p" " ’ -2 1(2) Z
7$Hn (’7) (7:) VKOHn (’7)

(<2) ,. 2 -. .- <2) .
+ Hn(2)(:r)_ (2::zi2in7122(1) (15¢; + nkzkpfizzzf-T) 9(:27

V'Hn (A) 07 $Hf1(2))('7_] 7:143an ('1’)

772A78Hff2’h) 124))

where5=<p-q§’and2=z—z.

2.2 Approximation of Green’s Function On-Surface

As it was said in Section 2.1, (2.83) represents the dyadic Green’s function as a series

of eigenfunction. In this section, G28 will be specialized for the case where both the

observation and source points are on the surface. Then, :17 would also be equal to

kpp and p = a, where a is the cylinder radius. Also, using the boundary condition,
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the radial components of €62 will not be necessary and can be suppressed in (2.83).

Using those conditions, the dyadic Green’s function on the surface can be written as

 

   
 

00

Ge2(p.¢ zla 7’ 2’) 262::e222 / d7.72—3222

noo=— —oo

1H____(_7)H',,(2_(n__kz)2_11;1__,nkzka,(,2)() <52,

7 H596) ’“02 72+73H35’27’H

71k21(12)ka . __ 117(3)”) MI

7276371,?) ((3)) 245’ 7VIZ—DY ————H,(2)(7) zz (2.84)

Equation (2.84) is exact for any cylinder radius. However, for cylinder of large

radius, (2.84) is very slowly convergent. The Hankel function of large order has to

be computed to obtain a reasonable approximation. This order is approximately 2ka

series terms to obtain a good accuracy. To solve this, and to avoid the time consump-

tion by evaluating computationally the Hankel function, the Watson transform is used

[33, 34]. Watson showed that an infinite series of the form E? f(71)e'jmr could be

represented by a complex integral of the form fc(f(17) / sin(v7f)o)(dv. If we assume that

f(v) vanishes at -00 and co the integral can be rewritten as f01+C2 (f(v)/ sin(v7r))dv.

He also proposed that this integral may be evaluated if the residues at each pole are

taken. The surface of the cylinder is part of the shadow region. Watson showed

that in this zone, few terms are needed to obtain an accurate and highly conver-

gent expression [34]. Physically, this method of pole residues represents the creeping

waves, which are launched by the surface ray when it is travelling in the direction of

propagation. The original Watson transform is the first part of (2.85), but it can be
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modified to be used with the series that we have in (2.84) as follows,

 

2j Z “me—fin” = fo1+c2 sifiEZLflU

0° . -— . J '7‘)
gj Z f(n)ejn¢e-er = / Mm,

—oo c
1+02 sin(v7r)

 

m .4‘.‘ .

. —. . . , JL¢ Jvfl'

2j E N708]we_Jnflejmr = / f(L)€ e dv

--00 61+62
sin(v7r)

oc ' _

, 7745+") _ _1_ f(v)€JUI¢+") ,
_ZOO f(n.)e 3 — 23, c1+C2 sin(v7r) dv (2.80) 

where Cl and 02 comprise the closed path of the integration contour, see Figure 2.1

[34]. The 22’ component of (2.84) represents the 2 component of the surface field

produced by the :2 component of the magnetic dipole source. Taking this component

 

 

 

 

lm(v)

L AC1 jo A LC

[,7 V V r\\

K s s s s s e e > 7' Re(v)

7% : -jo : Jr

02

 
Figure 2.1. Watson transform integration contour 0 formed by paths c1 and c2
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.,, 1 x — °° 7.. . 7-,. 77.9%
G25 = -— 2 Z €JI1'¢/dk26_] :9.ij (2.86)

(27") n=—oo -00 akO Hn (’7)

and applying the Watson transform obtained in (2.85) with f(v) = H52)(7)/H1/;(2)(7)

and cl from —00 -—j0 to 00 -j0 and 62 from oo+ja to 00 —ja, we have the following

 
 

 
 

 

result.

00 _

G22 _ 1 l P *jkzzdk ejv(¢+7r)H2(J )(A/)

2 " (2)22 (77-26 Z 7(2)
-00 'o W, sm<mr>Hv (7)

oo oo—ja 2

= 1 l / p e—Jl‘zzdl, / €3v<¢+fllH§ )(7)d
,, 2 .2 7 2

(2 ) 2—oo “Ito —oc—j0 sm(v7r)Hv( )(7)

‘00“ .-,- 2

/ 6JL(¢+W)H'(’)I7)dv (2 87)
.- , ’(2) A '

(”+30 s1n(t7r)H ( )

Mapping V to —z/ in the third integral of (2.87), and inverting the integration limits,

with H(_2,L),("/) = e—jmrngz) and Hfiiny) = e—jmrHLQ), (2.87) may be rewritten as

 
1 ' 00 I»

Z J 5p —k~2

G Z = — / ———6 J ~ d7.-
62 (27f)22 aka Z

—-00

oo— '0 oo—ja
/] er(5+W)HI(J2) (,7) dv _ / e—jv(a+7r)e_jv7er(}2)(7)

_ a 3111(mr)H,IJI2)(~) —sin(v7r)e—jv7rH,,,(2)(’y)

 
 

do

I

 

 

—oc ] —-OO—j0

oo- o ' , —' _ ' . " 21 j 00 kp -1“: J [631((D+7r) +6 ]L(¢+7r)] H18 )(7)

= — ——8 J ’~' dk (it) (2.88)

(27f)2 2 (11:2 - ’(2)
-00 'o -00-]. sm<mr>Hv ('7)

To simplify (2.88), the Poisson’s sum formula (2.89) can be used, where l is the

number of times that the creeping wave encircles the cylinder. This equation varies

depending on which path is chosen. In this case, the path Cl was chosen, when a < 0.
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The procedure to obtain (2.89) is presented in [34] on p. 334. Using

ejmr

 

OC

— axe—12’” (2.89)

M)
sin(mr) _

the term ejv7r can be factorized in (2.88) as

 

 

 

 

 

 

~~ 1 j lip _‘k

G“ = - —— J zzdk

C2 (27r)22 (11.786

—00

00— eij [63v(5+7r)+e ]v((.b+7r)] H(2) A

/ sin(v7r) V H/(2)( ) dU (2.90)

—oo—ja v '7

Replacing (2.89) with (2.90), it is express as

1 ' 00 7.
(:32: l / ie—jkzidk

82 (27r)22 (7/98 2

—00

OH“ 00 _ [ejv(5+vr>+e—jv<7¢+vr)] 11.32)”)

/ 2j 25mm 7(2) d”
—OO—jo’ (=0 H'v (AI)

00

= —1 fie-jkzzdk

(2702—00 (1kg

00 oo—ja (e—jv(2l7r+$+27r)+ejv($—217r)) H52)(7)

Z/ . [(2) (1v

[:0 _OO—JO Hv (’7')

(2.91)

is obtained for large radius cylinders. The orders of 1 larger than zero are negligible

as the magnitude of the creeping wave, after a complete encirclement, has decayed
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enough to ignore them. Taking the lowest term of l, the (2.91) is simplified as

  —1 0C ‘ mi)!» foo—j” Iefiwm)”IDEWPI”)
e ”’ C (117 (2.92)

(27?)2 aka —oo—j0' H1],(2)(“/)

For the last Hankel functions, we can use the expansion for Hankel function with a

large argument, in terms of Fock-type Airy functions as [8],

H3297) ~ 7mg”) (2.93) 

705(7)

m2 (f7?

where 1772(7) as the Fock-type Airy functions of the second kind. Using the notation

1152(7) ~ —7 (2.94)

of Fock [28], the quantity T is related to m as

T = 1(1/ — '7) (2.95)

m

Substituting (2.93) and (2.94) into (2.92), and with v = 'ITLT + ”y [33], we find that

dv = de and (2.92) can be expressed as

}

oo oo—ja —jv(<p+27r) jug) 492(7)

G22 _ —1 / kp—e—jkzzdk / (6 +6 Jmfi

62 (2702 (71% I“ . 10“")

—oo -oc—7a 2%

dv 
 

 
 

OO— '0. _ . —’ . —,

1 00 k0 _‘jk-7'E 1k J (6 ]v(¢+27r) + GJUCD) Ill/12(7) d
: (2W)2 We “ ( z u), (7') m U

-OC I '0 —oo——ja 2

(2.96)
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Considering only the short path term, ej11¢, (2.96) can be written as

  

  

oc . —
1 k , . _ -_7(m‘r+kpa)d>

0:; = 2 / ie—szzdkz/e , w2(T)m(m)dT

(21r) aka 102(7)

1 00 2k -jmr'c3 —jkpa6

= 2 / T-Tpe—jkzzdkz/ e 6, w2(T)dT (2.97)
(27r) 00 also 1‘ 102(7)

_ 1

Expressing above equation in polar coordinates,

k2 = k0 sina

kp = 1:0 cosa

a5 = scosé

E = ssiné

[3 = m5 (2.98)

Simplifying this resulting expressions. Here, 3 is the geodesic distance, and 5 is the

angle subtended by the geodesic curve from the azimuthal plane of the cylinder at
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the source point. Substituting (2.98) in (2.97) the final expression is given by

  

 

1 00 2k jflT

~-y TN. 7 _,‘ . 7 _'. 7 8— ’l.’ 7'

G3 = 2 / 2% fire Jkpa‘l’dkz/——,L2( )dT

’ (27f) akO 102(7')

00

= 1 f)m0/90 C050 e—jLOSina(ssin(5) e—jkocosa(scosd)dk

(27r)2 01:2

—00

If;—e—Jfi‘ruW2
d7.

11/2 (T)

I‘1

2

: Fifi/Wee—jA.Osiria(ssin6) e—jkocosa(9cos6)k0cosada

Ca

/€_JBTU'2(T)
——7—————d7’

w2(7)

1

1 ,‘2 :2 , .‘ ‘ —jfiT )

z _7 / me—Ji.oscos<a—6>da/ 14292,, (299)

(27r) 0. “12(7)

01
1

/jB ejfiqum

4—;F/————dT (2.100)

 
~ 1 m2 cos2a 471' “k .

G2“ : __ __ 3 —_7 ‘03 cos(a—6)d 2101

62 (2,7,2 / a «fly/(we a < >

9505
The remaining dyadic terms are given by G62 , GS; and G;z<b

2.3 Approximation of Green’s Function in the Far Zone

We start again with the expression for the expanded form of the electric dyadic

Green’s function of the second kind for an infinite PEC circular cylinder (2.83). In
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this case, only the source point will be on the cylinder surface at p = a. In contrast

with the on-surface case presented in Section 2.2, the observation point can be in any

point outside the surface including at an infinite distance from the cylinder. Because

of this, x = kpp where a < p < 00. For this case, (2.83) must be written as

 G'p,( ¢,z|a,(b, z) 1)2 Z ejmfiZ: dkz63—sz2

712—00

 

 

 
 

—jnH(2ar)<)+j_n (2)2Hfl:l<:) -Q, _j kzkaé’lem

$511792) ('7) 72 k0 H52)(7) 7k8H52)(7)_

H32)(x) _ 1kg 2 115,2)(19 M, nkzka£2)(:r) ,A,

+ (2) k «2) f + «2) q”
7H7; (7) 07 an (7) 7$k3Hn Ml

. (2) 2 (2)
n-kzkan (~73) 293/__1_ (fig) Hn (517) 221 (2.102)

2k2H'(2)() 7 k0 nglh)

As noted in Section 2.2, this expression slowly converges for the case where the

parameter kpp is large. Later, asymptotic expression will be derived similar to the

surface case. To evaluated this Greens’s function in the far—zone the Hankel function

and its spectral derivative are approximated as

  

. 2

pgmooH’QM’u~—2H£)<x> (2.103)

(2)
lim H” 1: ~ lim . (2.104)

p—+oc a: p—m erpf=
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Substituting those in (2.102), it is written as

 

 

 

I I 1 00 (3an 00 —jk E n ’92 2 H782)(37) "I

G(p,(b,zla,¢,z) = (2702 "goo _[O (1sz 7—2’ (m) Hg2)( ) 10¢)

_ kzka£2)($) -. _ JHT(12)($) 6043/

7112,1152) (7) 7Hr(12)(7) 1

72112111(”(7) 7 k0 H530)

Using

H£2)(1:) ~ «fie—flanged (2.100)

factorizing it from the numerator on (2.105), and rewriting (2.105) grouping terms in

function of the source points, we obtain

G,(p,¢zla¢>’, z’) =(72r2——)2 Z «2an

 

 

 

n=—oo

00

/ dkze_jkzzl{ lez2 [:zp,. _ 22]?<5,

_ 1607211790) k0

+ 1 [14.3% 1th,] ,- }9303’ejn§e—j(kpp+kzz)
— Z __ I

koaHH’mo) "0 k0 711.82% > WWW
(2.107)

Replacing [Esp — $73.3] with 0 in (2.107), and expressing it in terms of d\ adic com-

ponents resulting in

00#71006]:ejn(¢>+g) [Gwéay + 69262’ + 0005‘;le
(2.108)
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where

 

OO . / -7r .

szZ 6321 k "3(kpp+kzzl

0‘9 f e n 2 6 (11;; (2.109)G =
2 ‘

e (kpa)2k0H,ll(2)(kpa) V 27rka
—00

 

62 =
dkz (2.110)

—00

 

CO . I ~7r .

_- Jk z :1 -J(kpp+kzz)
<b¢_ / ( Jle z 6] 8 (2.111)G62 __00 kpaH£2)(kpa) [Tr/6N) dkz

Each dyadic component can be evaluated using the method of steepest descent. This

method is used to calculate complex integrals with large parameters; in our case with

kpp large. This method works due to the fact that we can deform the contour of

integration and the result will not change provided this function is analytic. We first

need to find critical points of the integral. Then for those points, a path must be

identified and finally, we must deform the contour to follow the paths [35]. We start

from the canonical steepest descent integral which is given by:

SDP

where 10' is the large parameter and SDP is the contour that contains the saddle

points. After applying the method, we will obtain a first order approximation of the

form

, /2W'F(k§)eflg(k§)ejw

1

ng”(k§)|2

 G(kz) ~ (2.113)

with kg as the saddle-point and 112 as the angle between the saddle-point and the

intersection with the contour. For convenience, we change the parameters in (2.109)

from cylindrical coordinates to spherical coordinates as

kp = 1:0 sin(6), p = Rsin(6), z = Rcos(6) (2.114)
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where 6 is the angle between the z axis and the observation point in the far-zone.

Taking e—j(k/’p+kzz) from (2.109), replacing p and z from (2.114), and comparing

this term with the canonical steepest descent integral, we can write it as

€—j(kpRsin(6)+k;Rcos(6)) = e—jR(kpsin(6)+kz cos(9)) = 61290:) (2,115)

with k = R. Using k2 = kg + k3, we can substitute it on

g(ky) = ——j(kp sin(6) + k2 cos(9)) (2.116)
A!

to obtain

9(a) = —j(,/I.~g — k3 5111(0) + kz cos(0)) (2.117)

The saddle—point is obtained by setting the g%(,%2|kz=k§ = 0. Thus,

 
l k~ ——k~ ' 6

(iii “) = —j __~_s1_n_(_) + cos(6) (2.118)

'Z (1% ~13)?

Therefore, when Egg?) = 0, the value found for k2 is a saddle—point, kg";

——-k3 ' 0
—j AM+COS(8) = 0

03—12.)?

1

kf 3111(6) = (1.2 — 1.2)? c0s(9)
4. 0 4

kg tan(9) = (k8 -— kg)?

(1.3)? = k8 cos(6)2

kg = k0 cos(6) (2.119)

44



then function g”(k;) and g(kz) can be evaluated at the saddle-point k2 2 kg 2

k0 cos(l9) as

 

 

ll ’63

9 (k3) = jSin(9) 2 2 3

(1.0 — k0 c052(6))2

k2

= jsin(6) O 3

13(1— c082(0))2

j
= 2.120

kg si112(6) ( )

2 2 2 1
g(kg) = —j[(k0 —k0 cos (6))?sin(9) +k0 cos(6)cos(9)]

= —- j(k3[sin2(6) + cos2(9)l

= —jk0 (2.121)

It follows that the function F(k~) would be written as
Q

 

 

 

 

jkzzl if, .

F003) = e [(233] ”I” (2.122)

with kp = ksin(19)

jk0c0s(6)z’ JET; . 6

1705;) = e [(2) 6 "CO“ ) (2.123)

(ksin(9)a)2Hn (ksin(6)a)sin(6)\/27rkli’

Substituting equations (2.123), (2.121) and (2.120) into (2.113) resulting in

. J :0
27f GJI‘O 005(0)4 6121',” 005(9) 6R(—jk0)€jw

06¢ (k sin(6)a)2H;,(2)(k sin(6)a)sin(6)\/27rkR (2 124)

82 N - 1 '

2

0mm
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.' _ 71'
“11h T/J — II

6310 cos(9)z’ej {£82 gem-11:0,. (308(0) . MO

(k sin(6)a)2H7,1(2) (k sin(6)a)m

 00>

662 N

je-ijO cos(0)ejk0 cos(6)z’ 71

[{(ka 5111(0))? H.152)(ksin(6)a)

 (2.125)

We follow the same procedure for (2.110). New, g(kz)S and g”(kz)s are the same as

in (2.109), F(kz) is given by

 

 

 

 

 

jkzz’equ'

F003) = e [(2) (2.120)

(koa)2k0H.n (kpa), /2'71"ka

and

'k cos(0)z’ 'n

170.8) — e] 0 6121 (2127)'2 _ .

(koa)2k0H;,(2) (kpa) , /27rkpp

Replacing (2.113), we obtain:

. J -H , ,

J27? «Si/~000Mb €13 eR(-Jl’0)ew

G 2 (k()a)2H,, (ksin(6)a)sin(0)\/27rkR

62 ~ . 1

—-%— 2

leosin (6)l

- ,_ijO _jkO cos(l9)z’

3" Rck ,(2) 1 (2.128)

(a) Hn (ksin(0)a)

Finally for (2.111), g(kg) and g"(kg) are the same as in (2.109) and (2.110). F(kz) is

._ ° jkzZ/ejgf

F(kz) = ’6 (2.129)

(kpa)H,’f2) (kpa) , /27rk‘p/)

 

and
.7r

_jejko cos(0)z’ej 3

(ka sin(6))H,/l(2) (ka sin(t9)) sin(6) 277/013

 Fug) = (2.130)
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There for, it can be verified that

 

 

- ”k 6 .~.’ 3'" , ,

«‘27. (7):] 0”“ l e 7‘ em—akmeyw
C33 (ka 5111(0))Hn‘") (k sin(9)a) 3111(0) 22ka

782 N . 1

R—12—— 2

l k0 sin (6)|

e—ijOejko cos(0)z’ 1

 

. . (2.131)

R(ka sm(6)) Hff2)(ksin(6)a)

Summarizing, the three components of 623 after applying the steepest decent method

can be written as

r . -. . I -, . 7r

9d) 6—1R’1‘0j2kcos(6)e]k0905(9)2
0° neJn(<P+g)

  

  

  

G
.

(2.132)
62 (COR (27r)2(kasm(9))2 ”goo Hg,(2)(ka sin(0))

0.. ejn<5+3lGe2~ M (270% Z [(2) . (2.133)
0 nz—oo Hn (kas1n(9))

92¢ e—ijO 211‘erk005(9)2’ 00 ejn($+g)
(2.134)

62 N RkO (2n)2(kasin(6)) 71;“, H.,’,(2)(kasin(9))

Equations (2.132), (2.133) and (2.134) can be written into separate sums using

23000 [7(7) = 2900 F(",") + 28° 17(7) -— F(0). Doing that for (2.132), substitut-

ing 72. by —n in the first summation and changing its intervals, the following equation
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is obtained

06¢ e‘ijO j2kO cos(6)ejk COS(6)Z,

82 2013 (2702021 3111(0))?

i i
71677238

33135
00 nej115

8ng

 

 

 — 0
n=_oo Hi,(2)(kasin(0)) nzo 215221251110»

e‘ijO j2k0 cos(6)ejk C°S(6)ZI

kOR (27r)2(ka sin(6))2

0° _ —jn.5 if"; 00 3716 -n.

2 7:2) 6. + Z [(3)6 J_ (2.135)

71.20 H_n (ka 8111(0)) n=0 Hn (ka sm(6))

 

 

 

Using the transform HI? (7) = e‘jwnH.;,(2)(7) for analytic functions [36] and sub-

stituting it in (2.135), we have

G995 ~ e—ijO j2kO cos(6)ejk C°S(6)Z,

e2 kOR (27r)2(kasin(6))2

[ 00 —ne‘jn$e—jn§ 00 nejnaj" J

n

+

:0 e‘jflnH.,’1(2)(kasin(6)) 72:0 Hg,(2)(ka sin(6))

 

 

 

e—ijO 32,150 cos(l9)ejk COS(9)ZI

kOR (27r)2(ka sin(9))2

[i njn(—e_jn$) +§ 713-718an J

7120 H;1(2)(ka sin(6)) 72:0 H;z(2)(ka sin((9))

 

 

 

(2.136)
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Factorizing the summation in (2.136) and applying the Euler’s identity, (2.136) can

be simplified as

  

e2 koR (271’)2(kasin(9))2 2 2j

0905 e—ijO j2k0 008(9)ejk cos(6)z’ [ 00 ”341(6an — 64715)] 3];

n=0 Hileucasinw»

 
 ~ e_ij0 (‘4)1‘30 008(9lejkCOS(6)z, [00 njn sin(n5)

[COR (27)2(ka.sin(0))2
n=0 H112) (kasin(6))

(2.137)

We can use the same procedure in (2.133) to obtain

e—ijO j2ejk cos(6)z’

1:012 (27020

i 6.771% ej"a
00 ej "'2 ejna

1

+2
n=_oo H32)(kasin(0)) ”:0 H152) (ka 5111(0)) _ H’(2)(ka 5111(0))

 

92

G62

   

   

 

0

e—ijO erjk COS(0)z’ 00 jn(ejn6 _ 8—3713)?- _
1 1

kOR (2”)2‘1 =0 H52)(ka sin(6)) 2 H6(2)(ka sin(6))
d

(2.138)

The last term in (2.138) can be introduced to the summation by introducing the term

an (called the Neumann’s constant [37]) when 5n = 1 for n = 0 and En = 2 for n # 0

as

62:

082 N

  

e—ijO j2€jkcos(0)z' [ 00
enj” cos(n$)

2.139

kg}? (27r)2a ”2:0 H52)(ka sin(0))] ( )

49



The process for obtaining 032$ in (2.133) is exactly the same as the one for G25

  

—ij0 - jkcos(6)z’ 00 -n _—
Gq§¢ 8 211.08 [ 5n] (303014)) ] (2140)

62 "’ (COR (2w)2kasin(0) ”:0 H£2)(kasin(9))

At this point, an asymptotic approximation for the electric dyadic Green’s function

is found when the observation point is far way from the origin. However, this ap—

proximation works for circular cylinders with an electrically small diameter. For a

large radius of curvature, this approximation converges poorly. As it was mentioned

in Section 2.2, to obtain a good convergence, the order of the Hankel function has

to be bigger than kpp (77. >> 2kpp). As in Section 2.2, Watson transform has to be

derived for this specific case, and is done as follows

 

1+c2 sin(v7r)

2j Z f(n)e—jn7r _____ A f(’U) d’U

0° .— . 'v5
2jZf(n)eJ"¢e”3m = / M611,

12.02 sin(mr)

 

 

00
- — -v37r

E : 71$ —— 'mr 7137f _ f(v)e]v¢ej T

2] _Oof(n)e] 6 J e3 T — [61+c2 sin(v7r) dv

0° . — '1) 5+3”)

”(3+0 _ i f(v)eJ ( 7
200: f(n)e7 2 _ 2j €1+C2 8mm) d0 (2.141)

Simplifying (2.133) and replacing ka sin(9) by 'y, we obtain

e—ijO jk sin(9)ejk C°S(9)zl 00 Him—(5+ %)

~ 2 2
Rko 271' 7 n=—oo Hf] )(7)

 

0G62 .3 (2.142)

 

Apply Watson transform in (2.142), with f(v) = 1
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  6:

062 N

. .
,' — 3w

e-JRkojksin(6)eJkCOS(9lzl 1 / BJMHT) (2.143)
Bk 2,. 7 . I 2

0 2” , 3W, sm<mr>HJ )m

Expanding the integrals, changing z/ to —1/ in the third integral of (2.143), it may be

rewritten as

  

   

   

a ksinre)ejkcos<9>z’ was)

682 4 2 / [(2) dv

7r 7 Cl+c2 sin(v7r)Hv ('7)

ksin(6)€jkcos(6l)z’ 00—30 ejv($+§27£) —OO+J0 ejv(a+2’27l)

"’ 4737 f - «2) d“ f - ,(2) d”
—oo—_7a SlIl(’U7T)Hv (7) oo+ja 5111(1)”)111) (’7')

ksin(6)ejkcos(6)z’ 00—30 ejv($+3§£) —OO—]0 e—jv(<—b+§j:)

N 4737 / . 1(2) dv+ / . [(2) d”
-—oo—]a sm(v7r)Hv (7) oo—ja s1n(—v7r)H_v (7)

(2.144)
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Replacing H52) 7' = e—ijl/P), and sin -v7r with -—sin mr and inverting the
v

integration limits in (2144) we have

 

  

   

  

gz k sin(0)ejk (305(9):,

G62 471’2

’7

W mm) 0...... 644544)

/ ‘ [(2) d'U- / - —'v7r ’(2) dv
—OO—]0' s1n(v7r)HU (7) —oo—ja —s1n(v7r)e J HU (7)

ksin(6)ejkcos(9)zl 00-30 ejv($+§271) 00—30 e-J'v(5+§)

—oo—]0 Sln(v7r)Hv (’7) —OO—j0' Sln(U7T)Hv (7)

ksin(9)ejkcos(9)z’ 00—30 ejv(5+§2K)+B—jv($+g)

N 4 2 f [(2) do (2.145)

7r 7 _Oc_j0 sin(v7r)HU (7)

Following the same procedure as in Section 2.2, using the Poisson sum, we need to

factorize the term ejmr in (2.145). Thus results in

  

 

- OO— '0 _ jv(6+7r) _jv(5+37r)

9;; ksin(6)le~'COS(9)Z
’ J ejmr (8 7 + e 7

052 47r27‘ / sin('v7r) Hl(2)( , (£2146)

—OO—j0’
v 7)

For path Cl when 0 < 0, the Poisson sum that it is used is

ejmr
oo .

= 2' ~92sz
2.147

Sin(v7r) J 1;) e
( l
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Replacing (2.147) in (2.146), and just retaining the lowest term of 1, (2.146) is sim-

plified as

  

  

 
 

._' - 7r _ —+37r

9 ksin(9)ejkC05(9)Z, 00 J0 00 ‘ (611)“) ?)+8 JLW 7))

a 5 23-26-2211”r a
6 4n27 42)

-OO—j0' [=0 H1) (7)

jksin(9)ejkcos(6)zl 00 oc—Ja ( -Jv(2l7r <15 gl+e (21w+¢+ ))

N l 2712) Z ’(2) dv
[ZO—OO—ja Ht) (7)

(2.148)

_. _ , __7r ’_+_37r

6 jksi11(9)ejl‘7005(6)zl 00 JO" (6 JL( (15 2) +6 JUN? 7))

08:2: ~ 27r2 [(2) dv (2.149)

7 —OO—j0 H?) (7)

With (D1 = —5— 35 and (1)2 2 15+ 3?- and substituting H1}2)7() bv (2. 94) [8], we have

. OO-jO’ _. _ .

jksin(6)echos(0)2’ (6 ”(1’1 + e ”32)
  

  

2:

d,

062 27:27 . IL” (7') 1,

—-k Si11(9)ejkcos(9)3, 00—30 7712 (e_jvq)1 + 6—.70‘I’2)

’” 7/ , ch) (2150)

27"” . fiwgtr)
-oo-]0

(IA

With 7' = $0) — 7))and m—— ()f3 [33], we can find that d1) = 771117, replacing it in

(2.150) yields

  

. .‘ . . ,l 3 —jv<I>1 —jv<I>2
—kSlIl 6 (3]A’C05(9)~ m (e + e

025 ~ ( ) / dT

  

271'”) 1" filaéfr)

1

-—k Si11(9)ejk (305(9):, (€_jvq)1 + €_jv(p2)

~ ‘ 4 f , I dT (2.151)

471' \/7_rw2(T)
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This can be manipulated further to yield

  

 

   

G ~ ——ksin(6)ejkcos(0)zl (e—j(m'r+7')<I>1 + e—j(mT+7)<I>2)

" ~ (17'

62 47r / fill/2(7)

I‘1

. .- 'k cos 9 z, — 'mflI) — 'mfll’

N 4‘ b111(9)€] ( ) 6—J7‘I’1L ——eJ, 1dr + e‘jlq’Q— _6J, 2dr

4. «Fl 152(7) fin 42(7)

(2.152)

In (2.98), it is defined that ,13 _—.—. mo, substituting m<I>L2 by 512, we have

_ . - jkcos(0)z’ —jfil'r —jfi T

6'25 N 1‘81“”)? e—J7‘1’1_1_ e d, + e—J'7<P2_1_ ‘3 I 2 d,

471' fin (7') J7? “12(7)

I‘1

(2.153)

We can express (2.153) in terms of the complex conjugate far-zone hard Fock function

g<ul(;3)* that is given by

-J'fird

g<ul(3)* __]T/u,—(——Tu6 (2.154)

Where “ =1: ” denotes complex conjugation, noting that 1L”1(7')* 2 105(7), and u is the

function order, which for our case is zero. Equation (2.153) can be expressed as

I

 

 

~ —k{." 6 ljkCOS(9)Z .,
'A

c‘éé ~ in“ if. [6"V‘plg‘0)('m<1>1>* + 6‘] "1’29(°)<m‘1’2)*l

_ ‘7 ‘. 9 ijcos(9)z’ 2 .HN As1n( 1: Z 6—3 (@I’g(0)(ni(1>p)* (2.155)

7r

p=1
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Now, we will follow the same procedure with the GS; component. We need to simplify

(2.134) and replace ka sin(9) by 7 to yield

e—jRA?()k06jkcos(6)z’ 00 (yd—4+3)

 

  

 

  

0‘” ~ (2.156)
62 4 2 2

R10 2W 7 'n=—00 H51 )(7)

Applying the Watson transform results in

. . - — 37r

—]RL70 k ’]A7COS(9)Z, 1 e]U(¢+—2—)

Gig) ~ ‘3 Rk ()6 2 2 T f (2) (2.157)

0 7T 7 Jc1+02 sin(v7r)HU (7)

Expanding the integrals, changing 1/ to —V, (2.157) may be rewritten as:

464) kg3'1: eos(9)z' pug—5+?)

G62 ~ j47r27 / - (2) (11)
01+02 s1n(er)Hv (7)

kejkeos(6)zl (DO—'70 6.774543%!) —OO+JU ejv(5+§271)

-00-” sm<mr>Hv ('1) OCH, sm<mr>Hv (7')

kejkcos(6)z’ oc—ja 3”) —oo—j0 e’jUfC—b+§27:)

J W 7 oo—ja sin(mr)Hv (7') sin(—v7r)H_v(7)
oc—jor

  

(2.158)
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o ,-
-

We replace Hg.) 7' = 6—1 NH?) and sin —v7r with —sin mr , and invert the inte-
U

gration limits in (2.158) to yield

oo—ja

 
 

  

 

W9 kejk cos(19)z’ ewe—M3275) 00-]0 e—jv(5+§275)

Ge2 "’ “*7— / (2) d”— / . (2) d“
J4” 7 -OO-]O' sin(mr)Hv (7) —oo—ja —sin(v7r)e_Jv7THv (7)

kejkeos(6)z’ oc—ja eJ'v(?¢3+3§£) oo—ja e—jv(5+§)

~ T / _. (2) dv+ / . (2) dv

J —C>O-_]0 s1n('er)Hv (7) —oo-ja sm(mr)Hv (7)

kejkcos(6)z' 00—” ”($333) + e-Jv($+%)

J ’ 7 sm(v7r)Hv (7)
—oc—j0

Following the same procedure as in Section 2.2, applying the Poisson sum, we need

to factorize the term ejmT in (2.159) to get

, 00.35 (6.145%) + e—Jv(?6+34£))
G546 kejkcos(6)z / ejmr

~ _ dv (2.160)
62 ' 2 ‘ '} 2347 7 s1n(17r) H1) )(7)

—oo—j0

Replacing (2.147) in (2.160), and just leaving the lowest term ofl (2.160) is simplified

 

as

__l

' _+7T
_a’“+37r

4' keik008<9lz' 00 N 00 7 (63M ”+12 ”M 7))

G(,; N T
/ QjZe—fl WT (2) div

(e-jv(2lvr—5—g) + e—jv(217r+—Q§+3275))

 

 

kejkcos(0)z' 00 foo—jg

~ —‘————— d1)

2 - 2

27f 7 1:0 "'00-'30 Hz) )(“I’)

(2.161)

.. ‘ y, 00—30 (3 Jvf 5—? + e 3145+?)
m.) kejkcos(6)2

G(,? N 2’2 (2) dv (2.162)

A 7 --OC-j0‘ HI) (’7')
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With (131: —¢- 72r_ and (D2—— (5+3; and substituting H(2)(7) by (2.93)[8], we have:

kejkcos(6)z' 00—10 (ca—jmpl +e—jv<I>2)

 

 

(45¢
6'82 2727 jw (T: dv

—oo-ja Jmfi

kejkcos(0)z’ oo—ja m (6"ij1 + e—jv‘b2)

~ ——,—— / d5 (2.163)
J2??? _ 751020)

—OO—jd

1

With 7' = %(v - 7) and m = ($3 [33] we find that do = de, and replace it in

(2.163) to give

 

  

  

 

. , I 2 —jv<I>1 —jv<I>2)
G¢¢ kegkcos(0)z / m (e + e d»,-

82 .1247 7771020)

1‘ 1

m2kejk cos(6)z’ (e—jmpl + e_jvq)2)

~ , / d7" (2.164)

32717 771020")

F1

This equation can then be simplified as

¢¢ m2k€jk COS(0)Z, (e_j(m7-+7)(p1 + e—j(m'T+fiY)q)2)

G d

6? 12m / fiwze) T
F1

2 . 75003 0 z’ mT<I> m'7'<I>

N We? 9 4741; e,___1d,+e—m>21 /e___, 2
J27W fin W20) \/— 102(Tld

(2.165)
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In (2.98), we defined that )8 = mg), substituting m<I>1,2 by 7312, we have

  

2. 'kco:02’ 3T —" T

a? N m (”8], SHe--J'7<1’1__F/e__2__1;(flfl1dT+e-J7<P2-1_ ‘3 332 0),

32717 [111 102(7)

(2.166)

We can express (2.166) in terms of the complex conjugate far-zone soft Fock function

f(u) (,3)* given by

BTdT
(u) = _j_ Tue3

f (3)* f/'EF_ (2167)

Having w1(T)* = w2(T) and u is the function order, which for our case is zero, (2.166)

can be expressed as:

 

 

 

 

  

2 jk cos(9)z’ . ,

06532 m (“3. [e—J’Y‘I’lf(0)(mq)1)* + e—JW‘I’2f(0)(mq)2)*]

e J2T7

m2kejk cos(O

~ —j7‘I’p( * 2.1flm )2}: e f0)(m<1>p) ( 68)

Next, Watson transform can be used to accelerate the computation of Ge995. Replacing

\ ka sin(6’) by 7 simplifies (2.132) as

(M 6—312“) jkcos(t9)ejk cos(0)z’ 00 nejn(a+2r)
G ~ 2 2 ———-——————— (2.169)

2. v N... Hm

Applying, Watson transform but with f (n) = [(3) (2.169) can be written as

Hn (’7) .

. . - _ 3,

005 6—3Rk0 jk coS(6)CJk “35(9):, 1 veflw'f—Qi)

Ge2 N k 2 2 f ,(2) (2.170)

R 0 2” "r J sin<mr>Hv (7')
C1+C2
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Expanding the integrals, changing l/ to —1/, (2.170) yields

  

' '
' _ 31

Orb e—ijO kcos(9)e~7kcos(6)z, ver(¢+_2£)

G62 N
d'U

   

. 2-2 . I 2
RAD 47f / 01+02 s1n(mr)Hv( )(7)

kc08(9)ejkcos(9)zl OO-JU vejv(5+§27£) —OO+JU veijl'QQE)

"’ 42272 / H<2> d“ f . 1(2) d”
_OO_,.,, sin<mr>H <1) OOH, sm<vvr>Hv (1)

oo—jo —oo—ja

kcos(9)ejkcos(6)z, / vej“(5+§2’l) d / _ve—Jv('d3+§2"£)

Sln )

4,2,2 . (W)1,52)” sin(—UJT)H’_(12))(7)

dv
   

—oo—ja oo—ja

(2.171)

We replace Hfii)(7) = e’jMHLQ) and sin(—v7r) with —sin(mr), and invert the

integration limits in (2.171)

I

06¢ kcos(0)ejk 005(6)}:
 

  

   

  

e2 ~ 47,272

00—]0' vejv(g+§27_r_) 00—30 _ve—jv(5+§275)

/ ' [(2) dv_ ./ —'v7r ’(2) dv
—oo—jor Sin(er)Hv ('7) -—oo—ja —sm(v7r)e 3 H0 (7)

kcos(9)ejkcos(6 —] 22er(45+?) oo—flo ve_jv($+2)

"’ 4W22:1” (2) 0“” f . 2(2) 0’”
ja sin(v7r)Hv ('7) —oo—]a SlIl(U7T)Hv (7)

kCOS(6)ejkcos(0)z’ 00—30 vejv(5+§275) _ ve—jv(5+1§)

N 2 2 f [(2) dv (2.172)

47f 7 _Oo_j0 sin(v7r)Hv (7)
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As in the two other components, we factorize the term 63mr to apply the Poisson sum

and obtain

  

— . ' —+7T _ ' —+ :3.”

606 —kcos(6)ejl\'-COS(9)Z, 00 J0 ejmr v (ejvw 12) " e va 7))

G62 N 4W2»)? / sin(er) ’(2) do
—oo—j0 Hv (’7')

(2.173)

Replacing (2.147) in (2.173), and just leaving lowest term of I, (2.173) is simplified as

I oo—ja

  

- —+7r _- _+31r

6d) -kcos(9)ejkCOS(9)3 . 00 —j2lmrv(ejv(¢ 2) —8 WW 7))

082 N 4N2AQ / 2.7 :5 dv

’ - [=0
—oo—]0

v (e—jv(217r—$—g) _ e—jv(217r+$+§271))

d‘v
  

—jktcOS(9)ejkC05(6)Z, 0C foo—j“

2 ,2 . I 2

2” 2 1:0 20-20 H‘ ’m
(2.174)

—' —'v—_—7T
_' "+37r

(71¢ —jkcos(6)ejk‘30
5(9)2’ 0C 30 v(e 3“ it 7)—e 30W 7

062 N

  

2W272 H/(2) (7)

—oo—j0

With (121 = _5 — g and (D2 = 5+ 327: and substituting H;(2)(7) by (2.94)[8], we have

I 00—.70 ”U (6—1].qu _ e—jv‘bl)

  
49¢) jk cos(0)ejkcos(0)z

G 2 2 2 I d”

6 2w , .wqm
_OO-JU mE 7r

  

,-. . oo—ja 2,, —jv<I>2 _ —jv<I)1
k. . . 6 Jltcos(9)z’ m L (e e )

N “M )8 / dv (2.176)

27772 fiwéfi)

—oo—ja
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Using '0 = 7717' + 7 and do = de, (2.176) simplifies to

  

 

6¢ k cos(fi)ejk cos(6)z’ 7713(7717' + ’7) («E—j‘bfimT'l’l) + e—j<I>1(m7'+7))

G82 N 2 / I (17

27w «5702(7)

P 1

(2.177)

Expanding (2.177), we have

6d) k C08(9)2:jk2cos(6)z,

Ge N

—— 'mT‘D — ' <I>

e—j7@2_m:§_1___2d7 _ e-J’7‘I’1_1_ LEW—1d,
I I

w2(7) «1‘1 w2(7’)

+ m3‘7 ej7q’2_QWT—ejm‘r‘I’z————dT — e_j7q’1_/ejmTq)1dT

fi fi

(2.178)

Equation (2.178) can be expressed in terms of the first and second order, 11 = 1 and

u = 2, complex conjugate far-zone soft Fock function 9(1‘)(B)*. Replacing m3 by it,

results in

 

- I

g kcos 6 ejkcos(())z my _ - , _ -N ,
06? N ( )2“? {_2_ [e J’V‘I’2]g(1)(m(p2)* _6 J Iq)1]g(1)(Tn(I)1)*]

+ 127. [6-2722g(0)(m<1>2)* —e—J'2‘1’1 9(0)(m<1)1)*]} (2.179)

Simplifying (2.179), we have
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k , (9 jkcos(6)z’ 2 . , "Gig) N C05< >84” Z(_1)Pe—J7(DP [9(0)(7n<1>p)* + ‘Z£EQ(1)(771<I>I))*

72:1

 

(2.180)

This is the remaining component of our asymptotic solution. The expressions for

G25, G2; and Gig work very well at azimuth. Although, as the elevation angle

6 changes from g to O the accuracy and convergence decreases significatively. An

alternative solution for this problem is proposed in the next chapter.
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CHAPTER 3

MODIFIED MODAL SOLUTION FOR THE DYADIC GREEN’S

FUNCTION

In this Chapter, the analytic modal solution, and the steepest descent solution are

studied and discussed in detail for a magnetic source on 3. PEG circular cylinder for

observation points far away from the source point (7" —- 7'") >> 10A. The exact dyadic

)
Green’s function of the second kind, Egg , for the infinite PEC circular cylinder will

be the starting point of the analysis. The $43, component of 5:22) would be the

focus of this work, because the axial singularities that are presented when using the

steepest descent method becoming indeterminate when evaluated at the vertical axis.

In Section 3.1, an efficient way of implementing the modal solution is obtained using

the integration around the branch cuts. These will be related to using an steepest

descent path approximation to evaluate this integral. The convergence of the exact

and the modified modal solution will be studied in this Chapter. Plots of the relative

error between the solutions will be also shown.

63



3.1 Exact Modal and Asymptotic Solutions

The dyadic Green’s function of the second kind for a infinite PEC circular cylinder

of radius a, was obtained for a magnetic source was obtained as

 
 

 
 
 

 
 

00 _ 00

G(22)(p,qb,z|a, (15, z) — ——2—n;oo ejnd)/ dkze—jsz

-J'nH(2(2))(kpp) + In (1.22)};11%p) Mkzka’(2)(kpp> ,2,

kpakppHn2)puc(1) (WV k0 H;,:—2_—)(Icpa kaakgHH’Q) (kpa)_

Hn2)(kp/J) "’9 H512)(kpp "kzkanm (kfp) ~ ‘al

+ (a ‘62) m< m
kpaHn (kpa) 0 pa (kpp)Hn (kpa)¢ kpa(kpp)k2Hn(2) (kpaa_)

 

(2) H(2)
nkzkan (lip/9) z __ (ka) zz

+l< >li ’“P”fig—0)”H’flwl }kpa)2k(2)Hn(2)k(kpa

(3.1)

As stated earlier this exact modal solution is very difficult to evaluate when the

radius of the cylinder is electrically large (ka >> 1) and when the observation pomt

is far away from the source point. The (7395’ component of the Green’s functlon 1S

 Z (2W5Z dk63kZf(kz,kp) (3.2)

n=—oo

G¢¢(p,¢,z|a,¢’,zl)= (271'1)2

where f (k2, kp) is written as

  

’2( ) 2 (2)
H” k kz H k A A

f(kZa 1910): (22()kppp) _ (kn—kg) n limpp) $925, (33)

kpaHn (kpa) 0 p (kplen (kpa)

As shown if Figure 3.1, the integral on the real axis of the (26’ component is verv

difficult to evaluate, because as the integral being evaluated the complex argument

(jkzé) of the exponential part become very oscillatory. As shown in Chapter 2 the
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A jkzi

‘kO

 

  

Figure 3.1. Complex 15;; plane

steepest descent method could be implemented, but it was shown, this method has

convergence problems near to the paraxial zone due to the branch point singularities in

15;. Instead of fixing the steepest descent problem, this solution will try to deform the

contour of integration. The first problem is to close the correct contour of integration.

The radiation condition in the 2 and the p” direction must be satisfied. Expressing

k; as a complex number, 19;; = kzr + jkzi, with kzr as the real part and km; the

imaginary part, the plane wave with propagation constant Is; in the 2 direction can

be expressed as

8—].sz = e—j(kzr+jkzi)5

= e—jkz'rlz—Zl)ekzi(Z—z’) (3.4)

As seen in Figure 3.2, if (z — z’) > 0 the contour of integration must be closed in the

lower half plane, represented by a dashed line. In this way, kzi will take only negative

I

values and attenuation of ekzz’(z_z ) will be guaranteed. For (2 — 2') < 0 the upper

half plane is chosen. The two branch points of the integrand (kp = :t‘flcg — kg) at
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    s ’

Figure 3.2. Contour of integration dictated by the radiation condition

It; 2 :tlco, indicated us the two possible Riemann surfaces kz could be at, during the

contour of integration. Therefore, the contour of integration must be chosen in such

a manner that the inverse transform of (3.2) exists. According to Cauchy theorem,

closing the contour of integration as in Figure 3.2, the original integration in the k;

plane could be changed by two integrals, one around the branch cut, and the other

one closing the contour at infinity as

oo

/ €_jkzzf(kz,kp)dkz : _ / e—jkfiflkzakpmkz _ [fa—jkzzfljkz’ kp)dkz

—OO Coo Cb

(3.5)

As it is shown in Figure 3.3, we have different options for setting the branch cut

of A3,) = iflkg — kg; however, the proper Riemman sheet is the one that leads to

satisfaction of the radiation condition for large values of p for each part of the contour

of integration. Also, the correct topology of the branch cut chosen guarantees the

contribution of f goes to zero [34]. In order to chose the appropriated Riemman

Coo
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Figure 3.3. Definition of the Branch Cut

sheet, the kp component can be expressed in polar coordinates

. _ 2 .2Ip _ sad/to — A,

= ij\/kz—kO\/kz+k0

.¢++¢—

—_— :tj\/r+r“ng—T_2

+ . _

. (,9 +99

2 :tVr‘W‘efl Q +%] (3.6)

 

Looking at Figure 3.4, it seem that r+ and 1“ represent the magnitude contribution

of the branch cut singularities —k0 and k0, respectively, as well as, 90+ and cp—

contribute to the phase for a given point on the contour of integration around the

branch cut. Taking the first case, when the contour of integration is coming from

j00 down to a value close to zero, and evaluating the angle contribution for different

points using (3.6), as shown in Figure 3.4(a), the phase for kp is calculated as 27r

which means the points are located at the first Riemman sheet. Looking at Figure

3.4(b), and following the same procedure, it is found out the lap phase for this case is
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7r selecting the second Riemman sheet.
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Figure 3.4. Integration around the Branch Cut

ekziEkazivfiljdkzz‘ + / e‘jkzI'EIIHzr,—a)dkzr

0

\
O

/ e—jkfifwz, 19,0)de =

0,, oo

0 00

+/ e—szr3f(kzr,a)dkzr + [ekzi§f(jkz,,—H)jdkz,+ e"9k25f(kz,kp)dkz

—k0 0 o

(3.7)
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Vthre a = “1:3 - k3,, ,3 = ”198+ 15%, f is the integral around the branch cut

(9

singularity. When evaluating the integral around the branch out singularity, the

small argument approximation for the Hankel function could be used, and it can

be shown that at the limit closed to the singularity, the contribution of the integral

vanishes. Thus,

0C

/ e—J'WHII, IpIdIz = few —HI - f(jkziIB)lIdkzi

Cb 0

-’\‘0

+ / e‘jkz-r-Z— [f(kzr, Cl) _ f(kzr, —Q)] (1sz (3.8)

0

o, - - - (2) —j7r _ej'mr ’2( ) —j7r _ jmr ’(1)
Usmb the identlties H7, (Ce )2 Hn1 )(g) and H7, ((6 ) — e Hn (g)

from [38] we obtain

ayw

OC

/e_1sz(kzakpdkz —e*zz/ wUkzia midkzi

Cb 0

—’~‘0

0

+ C—jkerl/I(kzr ,a')dkzr (3.9)

I I

, . __ -Hn(1)(w) Hn(2)(7p)

’I’aH-n. (Ia) I'aHn (Ia)

 

. 2 (1) Hf?)(nu) MIFJI'I—IZML (3.10)
I; , ’1

ma“ ”I'PHn( )(Ia) "I’pH‘nQ)(Ia)

Substituting H.,(,.1)(§)-— In(§ ) +an(<) and H783“) = Jn(§) — an(§) over (3.3),

evaluation the contour integral, and after some mathematical manipulation, the 09,305
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can be written as in (3.11), with III(kz, 7) shown in 3.12.

—II30

G¢2(p,I,zIa,I’,z’I = ——1)—2 Z eW / dkzr2j€_jkzr2¢(kzraa)
Tl——OO 0

00

+ fdkzi2ek2iz'w(jkziafi) (3-11)

0

J’(Ip)Yn(Ia)- HUI/mafia).I, kg, =

M 7) 70 (Jn('I’)20 + Yn(70)2)

_ (_nkz )2 Jn(7p)YI€(Ia) - Yn(’Ip)JI'I(Ia)

kma 70(J1’z(70)2 + YI’I(Ia)2)

 

 (3.12)

The infinite and finite integrals in expression (3.11) converge more rapidly for

increasing 2 as well as the index n. However, for cylinder with large radius, the mod—

ified modal solution converges relatively slower with respect to the steepest descent

solution.

3.2 Numerical Results and Discussions

In this Subsection, the convergence of the exact modal solution (EMS) and the modi-

fied modal solution (MMS) will be studied for a circular cylinder of radius a = 0.05A.

After proving a good agreement between the EMS and the MMS, we will compare

the steepest decent solution with the MMS for an infinite circular cylinder with large

radius (a = 10A). Values of the magnitude for different indexes n, from 1 — 7, for

EMS and MMS are shown in Figure 3.5, showing the convergence of the magnitude

for the (Mo’ components represented by (3.2) and (3.11).

Three observation points where analyzed for R = 100A. The first case when

6 = 900 is seen in Figure 3.5(a) where EMS and MMS start converging at n = 3.

Figure 3.5(b) with 6 = 450 and Figure 3.5(c) with 9 = 00 have a similar behavior to

70



 

 

 

  
 

 

 

  
 

0.70996 A I; A

0.70994- »---.__-.._--_.___+___,

0.70992 - .

OJ

'3 0.70990 - .

t:

C00.70988 I

(U

2 0.70986

070904

070932: .

0 70990 ‘ . - . .

1 2 3 4 5 6 7

Index n

(a) 0 = 900

.3

x 10

G)

"U

3

r:

C

U)

(U

2

7. I ' 1 l l

1 2 3 4 5 6 7

Index n

(b) 9 = 450

Figure 3.5

71



-3

x 10
 

   

2.” . . a

l\ -—o—— EMS

2.58- \ —*— MMS I

a)

g 2.56» .

a:

c

3’ 2.54»

E

2.52-

D

2.: L A 1 A .

1 2 3 4 5 6 7

Index n

(c) I9 = 0°

Figure 3.5. Magnitude convergence for exact modal solution and modified modal

solution

the previous Figure 3.5(a) where the solution converges for indexes of n greater than

2, which was expected because the size of the cylinder and wave number 77. >> 219a.

The small error on Figure 3.5(a) is explained by the following: The second integral

term in (3.11)that goes form 0 to 00 and involves an attenuation factor represented

by 619223. As 6 —I 900, 2 gets closer to z’, E ——> 0, and the attenuation factor goes to

1, therefore the integral will not be attenuated fast enough and errors introduced by

$01922, B) will have more impact in the final solution. Figure 3.6 shows phase values

for different index of EMS and MMS that converges when n > 2 and different values

of I9 = 00,450, 900. As seen MMS and EMS show good agreement in magnitude as

well in phase.

Figure 3.7 shows values of magnitude and relative error when n = 3, R = 50A and

00 < 6 < 900. Figure 3.7(b) presents the relative error. As seen the error is very small

in order of 10—6 and does not show a big variation along the scan. This is because
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Figure 3.6. Phase convergence for exact modal solution and modified modal solution

the radius of the circular cylinder is small enough to obtain a reasonable answer with

both solutions and the observation point is not far away from the source. Figure 3.8

shows the same results as Figure 3.7 but when R = 100A. Comparing Figure 3.7(b)

with Figure 3.8(b) it is noticed a maximum error occurs when 6 = 90°; this is because

1/1(j kzi, fl) is composed by Bessel functions, which arguments are proportional to kpp

and at 6 = 90° p 2 R = 100A thus making it a large argument.

Figure 3.9 presents values of the phase for EMS and MMS and relative errors

between them when n = 3 and R = 50A. As seen in Figure 3.9(b) the behavior of

the relative error for the phase is similar to the relative error of the magnitude. It is

an error of a very small order, 10—5, and it remains constant though 0° < 6 < 90°.

The results when R = 100A can be seen in Figure 3.10. For Figure 3.10(b) the error

increases near 6 = 0° and 6 = 90°. The error when 6 = 0° is produced as a result

of high oscillations within the first integral of (3.11). Those oscillations exist because

when 6 = 0°, 2' becomes a big oscillatory argument for e'ijTE. The second error,
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when 6 = 90° is caused by the same issues as the magnitude relative error, which was

discussed for Figure 3.8(b).

Numerical calculations, for different values of R and 6, have been executed to

obtain the convergence of the magnitude and phase for both, the steepest descent

solution, (SPD), and the modified modal solution and only the most important re-

sults have been shown here. The 0303’ component of the dyadic Green’s function was

computed for 6 = 005729380, 6 == 46.10219° and 6 = 89.42706° for a cylinder of ra-

dio a = /\ and R = 100.0049A. Comparing Figure 3.11 and Figure 3.12, it is noticed

the fast convergence and likeliness of the magnitude and phase when the observation

angle 6 9: 90°. For 6 2 45° we can see a good agrement of the magnitude and phase.

As shown in Figure 3.11(a) and Figure 3.12(a), SPD values do not agree with values

obtained using the modal solution (6 ~ 0°). Near the paraxial zone, the axial sin-

gularities show up, the difference in the magnitudes is bigger and the convergence in

the SPD method is not as good as the convergence using the modified modal solu-

tion. The lack of convergence of the SPD and the disagreement between the solutions

increases because as we get closer to the 6 = 0 or 6 = 7r in the 10,; plane, saddle

point in the a plane is getting near to or = g or (Ir 2 :23, we have the branch cut

singularities represented at these points.

Figure 3.13 and Figure 3.14 contain values of magnitude and its relative error for

R = A and R = 100A respectively. Both figures were obtained with index n = 10

and 0° < 6 < 90°. Comparing Figure 3.13(b) and Figure 3.14(b) it can be seen that

both figures present very high errors when 6 = 0°. The order of the error decreases

as the distance from the observation point to the paraxial zone increases. The same

behavior is observed on Figure 3.15 and Figure 3.16 where the values of the phase

and its relative error for both SDP and MMS are shown.
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3.3 Singly Surface Periodic Structure in :2

Many applications require the analysis of periodic antennas over structures such as

infinite plates [39] and circular cylinders [40]. Looking at Figure 3.17, it can be stated

that computationally, it is more efficient to analyze a single unit cell containing infor-

mation about the periodicity of the structure than simulating the complete periodic

structure. The periodic Green’s functions have been the focus of many studies similar

to the previous [41, 42, 43].

In this section, the development of a periodic Green’s function that relates the

field produced by magnetic currents due to periodic antennas in 2 over the surface of

an infinite circular cylinder will be explained. The periodic phased array of antennas

must be expressed in terms of one unit cell and the fields produced by it will be

expressed in terms of Floquet modes. The infinite array of magnetic current sources

is written in terms of a singular magnetic current term as

, 27717!’ ‘jkz 277m

L ) = M(p~=a,¢',2’)e T (3-13)
 

M(p=a,¢’,

where L is the distance between array elements in the 2 direction, and the field due

to this infinite periodic magnetic currents is expressed as

me = 11060 m; fiwM0- G(re2r’elrl‘Jk’T ds’ (3.14)

o‘lnSa

Periodic Green’s functions are a common approach to attack these problems, the

periodic infinite array can be translated as part of the Green’s function such that

CO

—
—

. 2772.71' _ 7‘, 277m

GP62(p1 05,2la, $22,)
= Z G62(Pa¢32la,¢l,zl-

L )6 3 2T

TTlZ—OO

(3.15)
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in this way (3.14) is re-written in the following known way

H(r) = jweo flM(r’)-§P82(r’|r)ds’ (3.16)

Sa

and the periodic dyadic Green’s function of the second kind for a infinite PEC circular

cylinder of radius a is

00

_2 —'~_-'k 2m1‘r

$320.3zla a 9) _,_Z Z W / a... We 3 2T

2m=—oo nz—oo “‘00

—jnHl.°)(kpp> jn k_z))2H,',<2(k,.p) ,-,_, kzkallzleppfl

(2) + 1. 2 k [(2) °° J [(2) p2
kpakppHn (kpa) (pa) 0 Hn (kpa) kpakan (kpar

«0
H7. (ka) nk 2 H°l<kpp) nkzkaflkpp)

+ 0) kka He) °°+ 249 m
kpaHn (kpa) 0 p (kpp)Hn (kpa) kpa(kpp)k0Hn (kpa)‘

nkzkatzkkpp) L k_p 2H£°lwpp>

m) 2 "k k @) zz
(kpa)2kan (kpa) pa 0 Hn (kpa)

 
 

 

 

 

(3.17)

Using Poisson summation formula [34]

oo oo
1 ' 293

2 7e” T = 2 5(1— pT) (3.18)

with t = kz and T = L we have

00 oo
1 _ - .~2m7r

X |__ Lle WT : Z 50;; +pL) (3.19)

m=— 192—00
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using (3.19) into (3.17)

G(2)2,,’(p,¢z|a¢, 2) —Z ejn¢deze—jkzz E 6(kz+mL)

2n=—oo m=—oo

-J'nH(2)(kpp) + 2'72(2)(§3)2nHHln.(2)(kp10) -955. kzkarl2(2)(k/)P) -,/

. (2). (ka)2 1501,42) 2 2 . .2 (<2). 2"

2)
+ H152)(kpp) _anz>2 H73 (kpp) 06+ nkzka£2)(kpp) ,3,

kpaH,(,2)(kpa) ‘Okpa (kpp)H,’,(2)(kpa) kpa(kpp)k2Hl(2)(kpa)d

+ nkzka£2l<kpp> 2&,__1_ (a) 10.26pm 2,,

(kpa)2kgH,’,(2)(kpa) kpa ’90 Hfilmapa)

  

 
 

(3.20)

Solving the integrand of (3.20), the periodic Green’s function is not a spectral solution

anymore and it becomes a modal solution with eigenvalues dictated by the periodicity

of the array elements as seen

 
Gg32(pa¢1zla Q5]: ZI) [1)2 ”200 ej7l¢ 2 eij2

m=-oo

{[ -—jnHl.2)(kmpp) + jn(:19)11,52)(kmpp>[fiq3,
  

kmpakmppHfi2)(kmpa) (kmp(1)2 k0 H32)(kmpa)

  

2 2

, mLkmpHfif )(kmpp) [3;]- nmLkmpH£)(kmpp) (2);,

2 n2 "

+ H32)(kmpp> (ML)? H520mp0) (5,3,

kmpaHfimepa) .Okmpa (kmpplflri2)(kmpa)

2 2

2 ' 2

(kmpa)2k8H,’,( )(kmpa) imp“ ’20 Hf] )(kmpa)

  

  

(3.21)

where kmp = 138 - (mL)2. The next step is the efficient implementation of this
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periodic Green’s function. This is a very Changeling problem because the summation

of Floquet modes usually converges very slowly, and this is left for future works.
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Figure 3.17. Singly surface periodic structure in 2
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CHAPTER 4

CONCLUSIONS AND FUTURE WORK

A modified modal solution for obtaining the field due to magnetic currents as an

aperture on an infinite circular cylinder was obtained. Validation of this solution was

made by comparing the MMS with the exact modal solution for the same problem.

The agreement between both methods, as expected, was very good for cylinders with

small radius (a < 0.01/\) and the distance between the source and the observation

points no larger than 50A, obtaining a relative error between the solution around order

of 10-6. For distances grater than 50)\ the relative error between them increases due

to convergence problems with the exact modal solution, specifically at 6 = 90°.

A deep analysis of the steepest descent solution was made concluding that the

solution was not accurate for the paraxial zone due to axial singularities in the .152

plane, omitted when the saddle point technique was implemented. Those axial sin-

gularities where detected to Show up when the angle 0 of the observation point was

close to 00 and 1800.

The MMS was found to be a good solution to over come the lack of accuracy around

the paraxial zone for circular cylinders of larger radius (a. = A). It was demonstrated

this solution provides the same accuracy as the steepest descent solution near the

azimuth region 350 < 9 < 1350. For angles smaller or greater than those, the

steepest descent method fails converging to an accurate solution. Although steepest

descent remains faster converging at the azimuth zone, the MMS provides a smooth

transition between the paraxial region and the azimuth region.

Although MMS was found for an infinite circular cylinder, this solution can be

expanded for an infinite elliptical cylinder by multiplying the MMS with the specific

torsion factor and radius of curvature for an elliptical cylinder. These coefficients
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could be found by using UTD.

As a future work, a FE—BI code could be implemented using the lV'IMS as bounci-

ary integral for truncating the computational domain, this code can be validated by

using analytic solutions for the radar cross section of an antenna embedded in an

infinite circular or elliptical cylinder. Diffraction and attenuation coefficients for pro-

late spheroids can be found to expand this solution for arbitrary shapes with doubly

surface.

Additionally, a periodic Green’s function that relates the field produced by mag-

netic currents due to periodic array antennas on 2 and over the surface of an infinite

circular cylinder was obtained using Floquet’s theorem and the Poisson summation

equation. The efficient implementation of this solution is left for future works.
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