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ABSTRACT

ESSAYS ON THE ECONOMICS OF LIVESTOCK DISEASE MANAGEMENT:

ON-FARM BIOSECURITY ADOPTION,

ASYMMETRIC INFORMATION IN POLICY DESIGN, AND

DECENTRALIZED BIOECONOMIC DYNAMICS

By

Benjamin M. Gramig

Livestock disease management involves both private and public resources and takes place

in an environment of uncertainty. An econometric procedure to estimate disease control

functions that will inform herd-level decision making is proposed and demonstrated to

shed light on the determinants of health management practice adoption. An incentive

compatible, government provided indemnity for private livestock assets culled in

response to an outbreak of contagious disease when the government is constrained by

hidden action and hidden information is characterized and compared with status quo

indemnities. A bioeconomic model with feedbacks between disease and behavioral

strategies is constructed to evaluate the nature of strategic effects between private

decision makers in a decentralized setting when government policies are a source of

externalities.
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Introduction

The outbreak of disease in domestic livestock herds is an economic and potential

human health risk that involves both the government and individual livestock producers.

Because livestock diseases impose significant costs on society (Bennett 1992, 2003;

Bennett, Christiansen and Clifton-Hadley 1999; Bennett and ijelaar 2005; Buhr, et al.

1993; Chi, et al. 2002; National Research Council 2005), there is a need to understand

management aspects of these problems. It is useful to understand both optimal public

(centralized) management in response to a disease outbreak (Kobayashi, et al. 2007a, b;

Mahul and Durand 2000; Mahul and Gohin 1999), and the decentralized behavioral and

disease responses to common policy initiatives (Hennessy 2005, 2007; Hennessy, Roosen

and Jensen 2005).

Economic justifications for public intervention in disease control include

extemalities, public good aspects of disease problems, coordination failures, information

failures, and income distribution considerations (Ramsay, Philip and Riethmuller). The

potential of a disease outbreak to pose a large economic cost depends on many factors

including trade laws and the nature of the disease (i.e., infectiousness). For infectious

diseases of public concern, policies range from bounties for infected livestock to required

herd depopulation and farm decontamination; for diseases without international trade

implications disease management may be a purely private endeavor.

The United States Department of Agriculture’s Animal and Plant Health

Inspection Service (APHIS) provides inspection and quarantine services to prevent the

introduction of disease across national borders and also coordinates response to disease

outbreaks that originate from within the country. Border measures that protect against



incursion of disease are provided to protect the safety of the American food production

system and to prevent infection of the domestic livestock industry. Diseases not endemic

to or currently present in the US. are typically not accounted for in everyday farm-level

biosecurity measures because their risk of occurrence is viewed as exogenous to

individual farm-level decision making. However, it should be noted that private health

management measures taken with production diseases (as distinct from those of

international concern) in mind may provide social benefits in the event of outbreak of an

exotic or highly contagious disease by lowering disease transmission rates or preventing

spread altogether, as well as keeping the farm prevalence rate of tolerable endemic

diseases low overall. For these reasons, the government reasonably takes an interest in

aggregate private investments in biosecurity in a more general sense.

Livestock disease management is an inherently dynamic process that involves

feedbacks between disease ecology and private behavioral decisions. Throughout this

dissertation I focus on two common decisions that livestock managers must make: a

livestock manager must sequentially decide whether or not to invest in biosecurity as a

preventive measure and whether or not to report infection to government authorities in

the event that a disease outbreak occurs. The decision to report infection may or may not

arise depending on the uncertain disease outcome, but at some point everyone faces the

biosecurity decision. Because it is unclear in advance whether or not livestock will be

exposed to infection, private investment in biosecurity represents a definite investment of

resources in exchange for an uncertain future benefit (own herd protection).

Biosecurity may not fully protect one’s own herd, and, moreover, losses due to

increased regulatory stringency may also arise as a result of a neighbor’s herd becoming



infected — even in the absence of infection in one’s own herd. This is because all herds

within infected regions may be affected by costly regulatory actions taken by animal

health authorities to eradicate infection. Such regulatory-induced extemalities are a

common feature of livestock disease problems. For instance, all farms in the bovine

tuberculosis (bTB) infected region in Michigan’s Lower Peninsula — regardless of

infection status — incur private costs as a result of dealing with government testing,

movement restrictions and stringent testing rules for trade in live animals that go

uncompensated by the government.

It is important to note that from the government’s perspective individuals have

private information about the preventive biosecurity measures in place on their farms—

hidden actions—prior to outbreak (ex ante), and following an outbreak (ex past) they

possess private information—hidden information—about the disease status of their herd.

Once uncertainty about the occurrence of an outbreak is resolved, regardless of the ex

ante actions taken by producers, disclosure of disease status (as opposed to discovery by

another party through transmission, slaughter, or testing) is required for timely

government response to limit the spread of infectious disease and eradicate it. The length

of time between outbreak and discovery is very important in determining the duration and

severity of epidemic (UN-FAO). For these reasons, creating an incentive structure that

results in reporting of disease status is of great interest for a social planner.

This dissertation consists of three essays which each address particular elements

of livestock health management behavior and disease risks in order to fill distinct gaps in

the scientific literature and provide insights for policy design. The essays progress from

a static farm-level analysis of a single private decision, to the design of government



policy in the presence of asymmetric information when private decisions are two-

dimensional, to a jointly-determined dynamic system with extemalities and two-

dimensional private decision making.

The first essay considers the farm-level focus on production diseases and the

decision to adopt individual biosecurity practices on the basis of private benefits and

costs (even though social benefits may be provided as discussed above). An empirical

procedure is proposed to inform private herd health decision making and analyze the

determinants of biosecurity adoption behavior by accounting for preventive spillovers

(positive input extemalities) in the management of production diseases. The second

essay is concerned with the optimal design of government provided indemnities when the

regulator cannot observe preventive behavior or the infection status of individuals in the

population. The centerpiece of this essay is the use of a single policy instrument to

structure incentives so that private biosecurity and reporting actions are compatible with

policy objectives when the disease of concern is responded to by mandatory culling of

private herds. The final essay is the most complex of the three and accounts for dynamic

feedbacks between behavioral choices and disease risks. A bioeconomic model of

decentralized private decision making is constructed to examine the nature of strategic

effects associated with biosecurity and reporting behavior when government disease

eradication programs result in cross-farm extemalities.



Essay One

ECONOMIC ANALYSIS OF LIVESTOCK HEALTH MANAGEMENT

DECISIONS

Introduction

Livestock disease health management decisions are made weighing the costs of illness,

prevention and control. These decisions are informed by the research of animal

scientists, veterinarians and epidemiologists that quantifies the production effects of

disease, identifies the individual management practices that are associated with the

occurrence of specific diseases, and provides recommendations for prevention of disease.

Private economic decisions about adoption of disease management practices utilize this

information in tandem with associated market prices and the impact of the management

practices on infection level.

We examine adoption of disease prevention and management actions taken by

livestock managers for endemic production diseases.l Our research objectives are

twofold: (1) estimate disease prevalence as a function of farm practices and

characteristics and (2) analyze the determinants of health management practice adoption.2

To address our first objective we adopt the fractional logit model as a statistical method

 

' We define production diseases as those endemic to the US national herd which pose no

potential for international trade sanctions because they are neither highly contagious nor

threatening to human health. We assume that exotic or foreign animal diseases are not

taken into account in daily decision making by farm managers because the government

provides border controls to prevent entry of exotic diseases and pays indemnities in the

event that outbreak of such diseases occurs and animals are culled from private herds to

control the spread of infection and eradicate the disease.

2 The former topic is best targeted at the veterinary health sciences, while the latter is

very economic in nature. The two objectives are tackled simultaneously in a single essay,

though it is felt that the exposition may be improved by addressing them on an individual

basis.



that directly estimates herd prevalence. We find that a fractional response model

provides more useful information for disease management decision making than standard

logistic regression performed at the herd-level, which is common in veterinary

epidemiological studies. Estimated herd prevalence allows for the comparison of costs

and benefits of undertaking disease management practices when information about the

production effect of disease is known.

In the second stage, we use the results from the first stage, which provide an

estimate of the marginal effect of adopting a management practice on the herd prevalence

of disease, to create a new variable that is the estimated cost of damages from disease

suffered as a result of not adopting the management practice. This new variable becomes

an explanatory variable in an adoption equation which is estimated using the familiar

binary outcome logit model. An adoption equation is estimated in this way for each

practice found to have a negative, statistically significant association with herd

prevalence in the first stage regression. The empirical method is demonstrated utilizing

the US. Department of Agriculture’s (USDA) National Animal Health Monitoring

System (NAHMS) survey of dairy farms in 1996. Specifically, we examine the adoption

of management practices related to bovine leukosis virus (BLV).

After addressing the motivation for our two research objectives in detail and the

methods proposed to address each in the next two sections, an empirical application of

the proposed methods using herd-level data on a single disease and farm management

practices on dairy farms in the United States is presented. The article concludes with a

discussion of empirical results and possible extensions to this analysis using the full

scope of data that may be available to the researcher.



Considerations for Herd-level Disease Management

Information about the association between disease and particular management

practices often comes from veterinary epidemiological studies which refer to those

practices found to be positively associated with disease as “risk factors” for infection.

Two factors are of critical importance in evaluating the usefulness of statistical estimates

from veterinary epidemiology for economic decision making: the level at which disease

data are collected and how the disease outcome is represented. First, consider that studies

in the animal health literature present estimates based on either individual animal data or

herd-level data, which can affect the usefulness of estimates from the study for economic

analysis. Second, the disease outcome that is studied determines the form that the

dependent variable takes in the statistical model adopted. The two types of dependent

variables that may represent the disease outcome of interest are binary and fractional. A

binary disease outcome variable is the standard in the veterinary epidemiology literature

and takes the form ye {0,1} where y = ldenotes that the animal or herd is infected. A

fractional disease outcome variable, ye [0,1], falls in the unit interval, is interpreted as the

within herd prevalence of disease, and is considered only for the case of herd-level data.

Because the binary response model is the “workhorse” in the epidemiology literature we

discuss its usefulness for economic analysis first and then compare it to the fractional

response model using herd-level data.

Statistical analysis of veterinary epidemiological data to identify risk factors for

infection almost uniformly uses logistic regression and reports odds-ratios for individual

explanatory variables (management practices and demographics), which may be either

binary indicators or continuous variables (see most any general or veterinary



epidemiology text, such as Kahn and Sempos (1989) or Petrie and Watson (1999)).

Odds-ratios from binary response models indicate the odds of infection (a binary

outcome) when the covariate is present (if represented by a dummy variable) or when the

level of the covariate is increased (if represented by a continuous variable) relative to

when it is not. This interpretation is helpful for small probability events like the

occurrence of a rare disease and explains in part why management practices found to lead

to greater odds of infection are referred to by epidemiologists as “risk factors”. In a

statistical sense, when the probability of infection is very low (less than around 0.1) the

difference between relative risk and the interpretation of the odds-ratio is negligible

(Gould 2000). Odds-ratios from logistic regression are commonly reported by

epidemiologists because of their usefulness in describing associations for a variety of

sampling designs (Martin, Meek and Willeberg 1987; Selvin 1991) and because odds-

ratios for individual parameters are insensitive to the levels of other explanatory variables

(Gould 2000).

Applied econometricians tend to find marginal effects—interpreted as the

estimated increase in the probability of infection associated with a marginal change in the

explanatory variable—more intuitively palatable than odds-ratios. This is why partial

effects are normally reported when logistically distributed errors are assumed in micro-

econometric binary response models instead of the exponentiated parameter estimates

reported by epidemiologists. As we find below in our empirical example, the odds-ratio

(OR) reported by itself may suggest that undertaking a particular practice relative to some

alternative cuts in half, as given by OR=0.5, the likelihood of herd infection in a binary

response model, but the corresponding marginal effect (ME) on the probability of



infection represented by that odds-ratio may only be a several percentage point reduction,

as given by ME=-0.05. For economic purposes, the interpretation of the odds-ratio alone

is not unlike considering the statistical significance of a parameter estimate in isolation of

the practical or economic significance of the estimate. Viewed in isolation, a highly

significant odds-ratio may suggest either a large relative reduction or increase in

likelihood of infection while the associated estimate of the change in probability may be

quite small. Because of the potential for divergence between the interpretation of ORs

and MES, odds-ratios are not particularly helpful in evaluating the economic tradeoffs

between adopting competing disease management practices unless the disease in question

cannot be tolerated in the herd at any level (e. g., foot and mouth or bovine spongiform

encephalopathy). Because individual herd disease management decisions revolve around

production diseases rather than mandatory eradication programs, relying solely on odds-

ratios to evaluate resource allocation is akin to minimizing the losses from infection,

irrespective of costs.

Thus far we have only considered how results from binary response models are

reported, in general, but it is just as important to consider the nature of the dependent

variable because this affects the economic usefulness of the estimated coefficients.

Binary response models may be estimated for individual or herd-level data. For the

individual animal case, the dependent variable takes the form y,e {0,1 } where i indexes

individual animals, y,- =1 for an infected animal and 0 otherwise. The binary response

model takes the familiar form

(1) E(yi l X)= P(yi =1|X)=G(XB),



where x is a vector of explanatory variables inclusive of disease management practices,

[3 is a vector of coefficients, and 0 < G(z) <1. The function G(z) is usually a CDF and

maps the index 143 into the response probability (Wooldridge 2002). In most

epidemiological applications G(z) is the CDF for the standard logistic distribution, where

G(z) = exp(z)/[1+exp(z)]. From individual animal data the estimated probability )3,- for a

given it can be multiplied by the number of animals in the herd to get an estimated within

herd disease prevalence. A comparison of the estimated prevalence when a practice is

undertaken relative to when it is not can be used to evaluate the expected profit and

decide whether it is worthwhile to adopt the management practice.

For the case of herd-level disease data the binary dependent variable takes the

form yhe {0,1 } and is identical to (1) except for the nature of the dependent variable. The

binary response model then becomes

(2) HM IX) = P(yh =1! X) = 0045),

where h indexes the herd or farm such that yh is the herd infection status and indicates

that one or more animals on the farm is infected when yh =1. Because 52,, is the predicted

probability that a herd is infected, this estimate cannot be used to arrive at a predicted

within herd prevalence and there is no information provided by the herd-level binary

response model that allows economic decision makers to evaluate the relative cost of

different management practices.

As an alternative to the familiar binary response model already discussed,

consider that herd-level disease can be expressed as a fractional value of the form

y}{ 6 [0,1] , where h again indexes herds. The super-scriptfdistinguishes this fractional

10



response variable from the herd-level binary response variable in (2), and the fractional

response model takes the form,

(3) E<y,{ I x) = Gar).

Fractional response variables3 are of particular interest for herd-level livestock disease

management because it is costly to draw and test blood samples from every animal on a

farm (as is required for individual animal disease data discussed in the context of binary

response models above), and for food animals this typically only occurs in a research

setting. Most practical on-farm disease diagnostic programs rely on serological tests

from a subset of the herd chosen based on the sensitivity and specificity (Kahn and

Sempos, 1989) of a particular diagnostic test in order to achieve a desired level of

statistical confidence about the estimated within herd prevalence rate. Surveys like those

conducted for the USDA’s NAHMS are designed to achieve national disease prevalence

estimates and rely on this type of sampling within private herds. Serological surveys of

wild animals are conducted based on similar principles where sampling may occur at a

higher level of aggregation than the “herd”, such as a wildlife management unit. Because

we are interested in estimating the conditional expected within herd prevalence for

 

3 Fractional response variables are frequently encountered by agricultural economists.

Examples of fractional or proportion values of interest to agricultural economists include

the share of land devoted to the production of a particular crop, the proportion of

cultivated land where a particular management practice is in use (e.g., reduced tillage,

split nitrogen application, integrated pest management), the proportion of land in a

county, township, or other jurisdiction devoted to a particular use (e. g., agricultural,

commercial, residential, protected natural area), and the disease prevalence rate in a

livestock herd or flock. A researcher studying such topics is generally interested in

inference that allows for the identification of the determinants of crop selection,

management practice or technology adoption rates, land use patterns, or rate of infection,

respectively. To this end, statistical methods that allow the researcher to estimate the

conditional expected fractional outcome of interest are desirable for empirical analysis of

public policy and individual decision making.

11

 



alternative disease management practices in order to be able to aid economic decision

making, a statistical method like fractional logit regression (Papke and Wooldridge 1996;

Wooldridge 2002) that allows the researcher to directly estimate the conditional

fractional outcome of interest with a relatively limited number of assumptions is

indispensable.4

Fractional logit regression (Papke and Wooldridge 1996) is a quasi-maximum

likelihood method (QML) based on the work of Gourieroux , Montfort and Trognon

(1984) and McCullagh and Nelder (1989). Fractional logit utilizes the Bernoulli log-

likelihood function

H f f
(4) L03) = Z {yh ln[G(xtl)]+(1-y;, >Inn —G<xr)1}

11:1

for sample size H, which is well defined for 0 < G(z) < 1. This log-likelihood function is

identical to that used in standard ML estimation of binary response index models except

that y,{ is continuous over the unit interval. Because equation (4) is a member of the

linear exponential family of distributions, the QML estimator (QMLE) Ii is consistent for

[i when (3) holds regardless of the true conditional distribution of y; (Gourieroux,

Monfort and Trognon 1984). This is a desirable characteristic of QMLEs in general

because yhf could be discrete, continuous, or some combination of the two over its range

(Papke and Wooldridge 1996).

 

4 Papke and Wooldridge (1996) and Mullahy (1998 and 2005) discuss in detail competing

models for fractional dependent variables and we do not consider this material in any

detail here except to note some of the general strengths of fractional logit over competing

models after introducing the model briefly.

12

 



Fractional logit regression improves upon alternative econometric methods for

fractional response variables by ensuring that the conditional expected outcome lies in the

unit interval, handling observations at the boundaries of the unit interval without

“arbitrary adjustment” (which is required for methods like OLS using the log-odds

transformation as discussed in Wooldridge (2002, p.662)), and directly estimating the

desired fractional response.

Estimation of Disease Management Adaption Decision

Our second research objective is to shed some light on the decision to adopt or not

adopt disease reducing practices identified by the kinds of analyses discussed in the

previous section. In this way, the estimation of the marginal effect on herd prevalence

from adopting an individual practice is the first of two stages in an econometric

procedure to investigate what influences private herd manager decisions to adopt

particular practices. Because an adoption decision is inherently binary, we consider the

choice of each practice within a binary response modeling framework where the binary

dependent variable of interest is x“, 6 {0,1 }where practice k is identified as having a

significant negative association with herd prevalence in the first stage and h indexes

private herds. The binary response model then is given by

(5) E(th I Z) = P(th =1ll)= 0(213),

where z is a vector of demographic variables that control for heterogeneity across herds

and, consistent with the conceptual framework of Mclnemey, Howe and Schepers (1992),

includes variables for the cost of output losses from avoidable infection and the cost of

undertaking practice k for the herd. The cost of output losses is a function of the

13



estimated marginal effect on within herd prevalence of adopting practice xkh from the first

stage, and the control expenditure is the estimated cost of adopting practice xkh. More

specifically, we hypothesize that when the cost of production losses from infection

associated with the marginal change in prevalence attributed to the adoption of practice k

are considered as an explanatory variable, the estimated coefficient will be positive in

sign while a negative relationship is expected between adoption and the control cost

variable in the second stage estimation.

Livestock managers may very well adopt biosecurity and disease management

practices that are not found to have a significant association with any individual disease

in a cross-sectional data set. Thus far we have only considered adoption of those

practices identified as having such an association in the first stage estimation because

without this information we cannot estimate the cost of infection associated with an

individual practice. While this information is required in order to control for the cost of

output losses avoided when investigating the determinants of adoption for individual

practices, herd demographic variables and the cost of control expenditures are still logical

explanatory variables that may be available to the researcher. We now provide an

application of the proposed two-stage econometric procedure using a cross-sectional

dataset with herd-level observations to compare the use of the fractional logit method and

standard logistic regression in the first stage and examine the findings with respect to

adoption behavior in the second stage.

14

 



Implementing the Two-Stage Estimation Procedure

Data for our empirical application come from the 1996 National Animal Health

Monitoring System (NAHMS) survey of dairy cattle conducted by the US. Department

of Agriculture’s National Agricultural Statistics Service and Animal and Plant Health

Inspection Service. Among the objectives that motivate the NAHMS survey is the

estimation of prevalence for a given disease and species at the level of the national herd.

Survey data include extensive farm-level behavioral information such as animal

inventory and operational characteristics, health management and biosecurity practices,

feeding and manure management practices, and livestock morbidity, mortality and culling

details. The details of the NAHMS survey design are enumerated elsewhere (Ott,

Johnson and Wells 2003). Statistical analysis must take the survey’s complex random

stratified sampling procedure into account for correct statistical inference when working

with NAHMS data (Dargatz and Hill 1996).5 We account for survey design effects

throughout the statistical analysis that follows.

To demonstrate our proposed two-stage estimation procedure we focus on the

production disease bovine leukosis virus, also referred to as bovine leukemia or enzootic

bovine leucosis, which has previously been studied both in veterinary epidemiology

(DiGiacomo, Darlington and Evermann 1985; DiGiacomo et al. 1986; Heald et al. 1992;

Rhodes et al. 2003) and economic decision making studies (Chi et al. 2002a; Chi et al.

2002b; Ott, Johnson and Wells 2003; Pelzer 1997; Rhodes, Pelzer and Johnson 2003).

Bovine leukosis virus (BLV) is a retrovirus that primarily affects lymphoid tissue of beef

and dairy cattle and causes malignant lymphoma and lymphosarcoma (LS), although

 

5 References on the statistical issues associated with complex survey designs are Lee and

Forthofer (2006) and Lohr (1999).
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leukemia is not a common finding, occurring in only 2-5% of BLV infected cows (Kirk

2000). BLV is horizontally transferred within blood lymphocytes, but it is uncertain

whether or not it is transmitted vertically in utero. Economic losses to dairy farmers

associated with BLV result from reduced milk production, increased replacement costs,

and increased veterinary costs (Pelzer 1997). Because it is transmissible, the only way to

eliminate losses from a herd is to cull all infected animals and routinely test new animals

introduced to the herd to ensure the farm remains BLV free. Pelzer (1997) and Rhodes,

et al. (2003) have pointed out the important difference between the economic effect of

clinical LS and subclinical level infection (BLV seropositive status). Our data examine

BLV seropositive animals (those found to have antibodies to BLV in their blood), for

which one estimate found that “a basic BLV control program may be economically

beneficial in herds in which the prevalence of BLV infection is (greater than or equal to)

12.5%” (Rhodes, Pelzer and Johnson 2003).

We proceed by demonstrating how our two-stage econometric estimation

procedure can be used to estimate the effect of individual management practices on

livestock disease prevalence levels for a herd and how this information can be used with

the estimated cost of illness from production losses to evaluate how the economic

damages from infection associated with individual practices influence practice adoption

behavior. We utilized the Stata® statistical package (Stata Version 8.0 2003) to

implement the first stage using standard logistic regression and fractional logistic

regression. The fractional logit method (Papke and Wooldridge 1996) was implemented

using the generalized linear model command which allows the analyst to directly predict

herd prevalence and account for survey design when calculating standard errors.
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First Stage: Disease Control Function Estimation

The first stage in the estimation procedure identified those management practice

variables that have a statistically significant effect on the herd-level dependent variable.

The 1996 NAHMS dairy dataset includes many more variables than those discussed in

this analysis. Because we were interested in a comparison of the fractional response

model and the standard binary response model used in epidemiological studies to identify

risk factors for infection, we followed a backwards stepwise procedure that is common in

the veterinary literature (e.g., Heald, et al., 1992; Johnson-Ifearulundu and Kancene,

1998) to eliminate those management variables from our first stage regression that were

insignificant before the final estimation of the impact of individual risk factors for

infection on the herd-level disease outcome. Only the management variables that

survived stepwise elimination and regional dummies intended to capture spatial

heterogeneity were included in the first stage estimation results reported here. The

second stage estimation of the adoption equations include a cost variable which is

described in detail below and uses the results from the first stage estimation along with

farm demographic variables in the NAHMS data which are taken to be measures of

productivity. Continuous and binary variables in the 1996 NAHMS dairy survey that are

used in our two—stage estimation are reported with summary statistics in Table 1.1. The

summary statistics indicate that mean individual within herd prevalence was 40% and

that 88% (not reported in Table 1.1) of all dairy herds had at least one seropositive cow.

There was a strong statistically significant difference between positive and negative herds
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only for the variables herd size, herd prevalence, and both “safe” and “unsafe” dehoming

methods (also not reported).

First stage estimation results from both the fractional response and the binary

response models are reported in Table 1.2 for comparison of the information provided by

the two models. Recall that the key difference between the two models is the nature of

the dependent variable. The fractional logit (flogit) model uses the herd prevalence

y-hf 6 [0,1] and directly estimates the fractional response associated with each

explanatory variable. The binary dependent variable yhe {0,1} in the standard logit

model uses a latent variable approach where yh = l[y;; = x8 + 8 > 0] and l[o] is an

indicator function that equals one when its argument is true; the dependent variable takes

on a value of 1 for any herd prevalence greater than zero, yh = 1[y}: > 0] =1 , and 0

otherwise, yh =1[y;; = 0] = 0. We discuss the two models in turn because they are

fundamentally different and to contrast the nature of the information provided by the

models to decision makers.

The only regional dummy found to be significant in the flogit model was the

southeast indicator and it was associated with 16.8% higher BLV prevalence relative to

the Midwest (the control region). The herd size variable indicates that an additional

hundred animals in the herd increases the expected BLV prevalence by 0.6%, while an

additional thousand pounds of milk produced per animal per year on average is

associated with a 1% reduction in expected prevalence. Binary management practices
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that survived backward stepwise elimination prior to the first stage estimation were

generally found to be significant in the flogit model.

Dehoming practices were combined into three categories based on practices

suggested to minimize the spread of infection (“safe”), practices most likely to contribute

to the spread of infection (“unsafe”), and not dehoming in order to better facilitate the

comparison of recommended and discouraged practices in subsequent regression

analysis. The use of caustic paste (to prevent the growth of horns before development) or

electric dehoming was significant and found to be associated with an 8.6% reduction in

predicted BLV prevalence compared to the discouraged practices of either saw or gouge

dehoming. Not dehoming dairy cows was not found to affect herd BLV prevalence in a

significantly different way than the use of unsafe dehoming methods. This result is

consistent with veterinary studies that have identified electric dehoming as reducing the

likelihood of BLV infection (DiGiacomo, Darlington and Evermann 1985; DiGiacomo, et

al. 1986). Saw and gouge dehoming, though not recommended practices, were observed

on 426 farms in our sample compared with 524 farms adopting a safe dehoming method.

We identified farms using “clean injection methods” as those that either use a new

needle for every animal (single-use) or sterilize needles after each use in the NAHMS

data. For the same reasons that “safe” dehoming practices are recommended, using such

injection practices is generally recommended and may be of particular importance for

BLV which is transmitted via blood lymphocytes. The flogit model finds a strong

significant relationship between clean injection practices and BLV prevalence for both

heifers (less than 24 months, never bred) and cows, but with negative and positive signs,

respectively. One possible explanation of the difference in sign is the fact that dairy
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cattle normally receive vaccinations as a preventive health measure at a young age (when

designated as heifers in the survey), but injections administered later in their life (when

designated a cow in the survey) are less common and may be administered because of

other illness or because the cow was introduced to the herd from an off—farm source.

This may be a plausible explanation for the finding that clean injection practices used on

cows were associated with 16.4% higher within herd prevalence and the adoption of

clean injection practices for heifers was associated with a 13% lower estimated

prevalence than on farms where these practices were not adopted.

The predicted prevalence from the flogit model when all variables were evaluated

at their means was 39.8% (compared to the observed mean prevalence of 40% in Table

1.1) and when both BLV reducing practices were undertaken the predicted mean herd

prevalence was 23.9% (all other variables evaluated at their means) compared with

44.7% when BLV reducing practices were not undertaken.

The first stage binary response model, while modeling a related outcome, is

fundamentally different from the flogit model because of the nature of the dependent

variable already discussed. This said, the comparison of estimation results from the two

models (Table 1.2) in isolation of our underlying objective of informing economic

decision making does not make sense because these are not “competing models” in the

usual sense encountered in applied econometric research. Rather, we compare the two

models in order to point out the difference in the information provided to decision

makers.

The southeast regional dummy is found to be significantly associated with 8.5%

higher probability that one or more animals in the herd are infected in the herd-level
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binary response model. The odds-ratio associated with this marginal effect indicates that

herds from the southeast are nearly seven times more likely to be BLV seropositive than

midwest herds. This finding demonstrates one point made above in the discussion about

odds-ratios for binary herd-level disease data. Viewing the odds-ratio alone finds that

herds in the southeast are multiple times more likely to be infected than those in the

midwest, but the associated marginal effect on binary herd infection status indicates that

this only translates into an eight point difference in the predicted probability that a herd is

seropositive.

As in the flogit model, herd size and average annual milk production are found to

be significant in the logit model. One hundred additional cows or an additional thousand

pounds of average annual milk production are predicted to be associated with 2.4%

higher and 0.6% lower probability that a herd is infected, respectively.

The biggest difference between the information provided to decision makers by

the two models comes from examining the variables for dehoming and injection

practices. The binary response model found only one of the four practice dummy

variables to be significant, while three were highly significant in the fractional response

model. Even though the magnitude of the estimated effect on herd prevalence of

injection practice variables found to be significant in the flogit model exceeds that of

dehoming practice dummies, these practices are not even significant in the logit model.

The odds-ratio for safe dehoming suggests that farms that adopt the practice are half as

likely to be infected relative to those who adopt unsafe methods. The binary response

model predicted that the probability a herd was infected when all variables were

evaluated at their means was 90.6% (compared to 89.1% of sampled herds being infected,
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mentioned above). When both BLV reducing practices are undertaken (all other

variables evaluated at their means) the logit model predicts a probability of infection

equal to 90.3% compared with 92.6% when BLV reducing practices are not undertaken.

This difference in the estimated probability that one or more animals are infected

conditional on adoption does not allow a farm manager to calculate the expected change

in the cost of infection associated with the practice unless the baseline probability of

infection for the farm is known; this is information that is considered to he rarely

available to farm managers in practice.

Information of this kind provided to a decision maker is very different than the

estimated change in prevalence indicated by the flogit model (-20.8% mentioned above).

When the difference in disease prevalence indicated by the flogit model has profitability

implications, it is helpful information to have, even in the absence of information about

the baseline level of infection, in deciding which management practices to undertake.

Conversely, the information about livestock management practices provided by standard

logistic regression (adopting the practices identified in the first stage reduces the

probability that one or more animals in the herd are infected by 2.3%) provides no such

information to guide managerial decisions because the difference in probability that the

herd is infected cannot be monetized into an expected cost or benefit of undertaking the

practices for comparison with cost of undertaking the practices.

Another issue to consider is that if we have information about within herd

prevalence and not just binary herd infection status, adopting a binary response model—

even if marginal effects are reported with odds-ratios—ignores some of the information

available to the researcher which is valuable for economic decision making purposes.
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Because of this we only use the first stage estimation results from the fractional response

model in estimating the adoption equations in stage two.

Second Stage: Estimation of Adoption Equations

In the second stage we incorporated prevalence information from the estimated

flogit model into an analysis of management practice adoption. We used an empirical

estimate from the veterinary literature based on the 1996 NAHMS dairy survey data to

construct variables that represent the cost of infection avoided (the dollar value of output

losses, not taking into account the cost of adopting the practice) by adopting BLV

reducing management practices identified in the first stage fractional logit regression.

Ott, Johnson and Wells (2003) estimated that a 1% increase in BLV prevalence costs

$1.28 per cow/year in terms of the impact on the average value of production that results

from reduced milk output, lost calves, and net replacement costs. A separate study based

on experimental data from a research herd appearing in a different journal and using a

different approach arrived at an identical estimate of the cost of subclinical BLV

infection (Rhodes, Pelzer and Johnson, 2003). Using separate estimates of the marginal

effect on herd BLV prevalence of adopting a safe dehoming method and using clean

injection practices for heifers, we constructed a variable that represented the estimated

cost of BLV avoided by adopting each individual practice for every farm in the sample.

To create a cost variable for each BLV reducing practice, the herd-specific marginal

effect from the first stage was calculated for binary management practice k according to

(Wooldridge 2002, p.458-459)
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MEk,h =

(6) G(,BO +x1fl1+xzflz +...+xk +...+xK_1,8K_1+xK,6K +8h)-

G(flo +x1161 +X2fl2 +~-+Xk—1flk—1 +Xk+1flk+1---+XK—1flK—1+XKflK +812)

and multiplied by the product of the total number of cattle on the Operation and the $1.28

per cow/year/percentage point BLV prevalence estimate from the veterinary literature for

each practice. Two adoption equations could then be estimated in the second stage, one

for each BLV reducing practice, relating adoption of a practice to the costs avoided.

Adoption equations were estimated for each practice using standard logistic

regression because of the binary nature of practice adoption (Table 1.3). The binary

response adoption model takes the form P(xkh =1 I z) = P(x,i:h > 0) = G(z[i) and the

associated latent variable and indicator function are given by xkh = 1[x]:h = zfl + u > 0]

where z is a vector of explanatory variables for practice k in herd h.6 Explanatory

variables included the estimated economic damages from BLV that were avoided by

adopting the practice indicated by the dependent variable, farm demographic variables for

region, average annual milk production, production cost per hundred-weight, and a

constant. The variable for economic damages avoided was marginally significant in the

safe dehoming method adoption equation (p=0.074) and suggests that an additional

hundred dollars of damage avoided increases the probability of adoption by 9.8%. This

indicates that the cost of damages avoided appears to have an economically significant

 

6 In addressing the adoption of biosecurity and health management practices it is possible

that there are econometric problems that arise as result of the two stage estimation

procedure. There is an estimated regressor in the adoption equation which is known to be

a potential problem, but was unavoidable because of a lack of available information about

private costs in the data. Second, there may be simultaneity between adoption and the

conditional prevalence of disease we estimate due to correlation in the error structure of

the two equations we estimate in sequence.
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impact on practice adoption in the 1996 NAHMS dairy sample. This result is consistent

with estimates from the veterinary literature that suggest mean losses from subclinical

BLV infection for a 100 cow herd with 50% prevalence is in the neighborhood of $6,400

compared to the predicted mean annual cost of a basic BLV control program of $1,765

(Rhodes, Pelzer and Johnson, 2003). The insignificance of damages in the clean injection

equation, however, goes against economic logic; especially when you consider that the

marginal effect on within herd prevalence in the disease control function is 4.4% greater

for the injection practice than for the safe dehoming method.

There are at least two potential reasons for our finding that damages do not have a

statistically significant influence on adoption of a “clean” injection practice for heifers

despite the incongruence with economic intuition. The first is that dairy farmers may not

have had information about costs of control relative to economic losses from subclinical

BLV infection. This implicitly assumes that if farmers had this information it would

have influenced their actions in an economically significant way, which is intuitively

appealing but remains an empirical question. The second is that, given farmers did have

information about the potential losses from BLV when making an adoption decision,

opportunity costs of management, labor, and capital outweighed the disease costs. This

includes other practices that are perceived to yield preventive spillovers to multiple

diseases.

Among the set of regional dummy variables, only the west and northeast regions

were found to be more than marginally significant and are positively associated with the

adoption of clean injection practices for heifers and “safe” dehoming methods,
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respectively.7 The only other variable that significantly contributed to the adoption of

either BLV reducing practice was average annual milk production.

Goodness of fit measures for the two adoption equations favor the dehoming

equation over the clean injection practice equation. The “safe” dehoming equation

correctly predicted adoption for 62% of the sample overall compared to the best naive

prediction possible (that all farms adopt) which only resulted in 53% correctly predicted

overall. The heifer clean injection equation had a higher percentage of observations

correctly predicted overall but does no better at predicting adoption than a researcher who

naively guesses that all operations will choose not to adopt. While there was nothing

particularly remarkable about the predictive power of the latter equation, the former

seemed to do a pretty good job on the basis of this simple metric.

Conclusions

This paper presented a method for analysis (1) of herd-level livestock health data

that provides managers with information to improve resource allocation across individual

management practices and (2) the determinants of disease management practice adoption.

 

7 One explanation for the magnitude and direction associated with being from the

northeast region on adoption of a safe dehoming method is the presence in New York of

the only voluntary state BLV eradication program that the authors are aware of in the

United States. There are 268 observations in the sample from the northeastern region

states that rank among the top 20 dairy producing states (NY, VT, and PA) and 149 of

these 268 observations are from New York, the only state with a publicly funded BLV

eradication program. While we have no information to indicate if any of the sampled

farms participated in the eradication program, at the time of the survey this program

provided limited funds for serological testing, technical assistance in the form of disease

eradication and control plan development for participating operations, and among the

four baseline practices that all eradication program participants are expected to undertake

are electric dehoming and single-use sterile, disposable needles (Brunner, et al. 1997).

26



We proposed a two-stage estimation procedure designed to achieve both objectives in

sequence and demonstrated the proposed procedure in an empirical application.

When data are collected at the herd-level and the focus of analysis is a non-

epidemic disease, the information provided to livestock managers by the fractional logit

method was found to be superior to standard logistic regression commonly used in the

analysis of herd-level livestock epidemiological data. Using herd-level data on bovine

leukosis virus (BLV) from a cross-sectional survey of the top 20 dairy producing states, it

was demonstrated that the management practices identified by the two models as having

a significant negative effect on the dependent variable differ considerably and that these

differences are relevant for economic decision making. The fractional logit model

provides decision makers with information about the marginal effect of individual health

management and biosecurity practices on the estimated prevalence of disease in their

herd, while standard logistic regression provides estimates of the marginal change in the

probability that one or more animals in a herd is infected when a particular practice in

undertaken. There appears to be potentially valuable information contained in the

fractional dependent variable herd prevalence that is ignored if such data are treated as a

binary outcome in statistical analysis.

In the first stage of our estimation we consider that livestock managers must

allocate resources across individual practices associated with production and find that the

kind of information provided by the fractional logit model is particularly helpful.

Standard logistic regression remains indispensable for analysis of highly contagious

diseases, diseases with human health implications, and others that are the focus of

international trade sanctions and cannot be tolerated at any level in a national herd. The
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information content of standard logistic regression results for management of production

diseases, however, is not viewed as being particularly helpful to economic decision

makers. The use of an econometric method capable of directly estimating the fractional

response of interest provides managers with information that can be used to weigh the

benefits and costs of individual practices that is not provided by binary response models

commonly used to analyze herd-level data in veterinary epidemiology.

In a second stage regression we use the information from the fractional logit

model to estimate adoption equations for practices found to be statistically and practically

significant in the first stage regression. The estimated cost of damages from BLV

infection avoided by adopting the practices identified in the first stage was calculated for

each farm in the sample, and was found to be insignificant in explaining heifer clean

injection practice adoption and marginally significant in explaining safe dehoming

practice adoption. The estimated economic damages from BLV associated with not

adopting a particular management practice might be expected to be significant from the

standpoint of economic intuition and we find this to be the case for one of the two BLV

reducing practices identified in the first stage. This estimated effect is also economically

significant for the adoption of a safe dehoming method, contributing to the probability of

practice adoption in a meaningful way.

We cannot make any statements about the second of our hypotheses abdut the

insignificance of economic damages avoided because we only consider a single disease in

our empirical application. Of particular interest is the role that preventive spillovers to

other diseases may play in the adoption of individual management practices. The

NAHMS data (in certain years and for certain species) include serological tests for
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multiple diseases and work to quantify preventive spillovers and the role of those

spillovers in disease management and biosecurity practice adoption is underway (Gramig

and Wolf 2007).

The fractional logit method has not previously been used to analyze herd-level

livestock disease data and seems to be a promising analytical tool when compared to

standard logistic regression, which has been used almost exclusively in empirical

veterinary studies of livestock disease management. This econometric technique is likely

to be useful to agricultural economists dealing with a variety of other fractional

dependent variables.
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Table 1.2. Stage I Estimation Results from Fractional (flogit) and Binary (logit) Response

 

 

 

 

 

 

 

 

 

 

 

   

Models

flogit: E(y|x), ye [0, 1] logit: E(y|x), ye { 0,1 }

Variable Coefficient Odds-Ratio

[Marginal Effecta] [Marginal Effecta]

West 0.0405 053*

[0.009] [-0.067]

0.6814“ 6.99*

somhea“ [0168“] [0.085***]

0. 1029 0.95

Nonhea” [0.024] [-0003]

Herd size 0.0275*** 1.32***

(hundreds of cows) [0006* * * ] [0.024* * *]

Average Annual Milk Production -0.042* * * 0.92 *

(thousands of pounds) [-0.010** *] [-0.006*]

Safe dehoming method -0.3647* * * 0.52* *

(caustic paste or electric dehomer) [—0.086***] [-0.056**]

. -0. 1 l 1 1 0.50

N" dehommg [-0.026] [0.076]

Clean injection methods- -0.5 829* * * l .42

Heifers [—0.130* * *] [0.026]

Clean injection methods- 0.6668* "‘ * 1 .12

Cows [0. 164* * *] [0.009]

Intercept coefficient 0.373 3 .23 7* * *

R-squared 0.0708 0.0526

 

Notes: n=980; Standard errors calculated using the delta method, account for complex

survey design

Asterisk denotes level of statistical significance: * 10%, ”5%, ***51%

a Q I O

Margrnal effects evaluated at mean for continuous varrables and 0 to 1 change for

dummies
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Table 1.3. Stage II Estimation of Determinants of BLV Reducing Management Practice

 

 

 

 

 

 

 

 

 

 

  

Adoption

Safe Dehorning Method Clean Injection of

. Heifers

Variable Coefficient Coefficient

[Marginal Effecta] [Marginal Effecta]

Total damages from BLV 0_0400* -0.0660

Avoided if adopt practice ($100) [0098*13] [-0004]

. 0.3746* l.l346**
West region * * *

[0.093 ] [0.100 ]

S h . -0.2452 1.14

out east region [@059] [0095]

Northeast reglon [0'132***] [0.033]

Avg Annual Milk Production 0.1674* * a: 0.0613

(thousands of pounds) [0.041 * * * ] [0.004]

Cost per CWT 0.0069 0.0379

($ per hundred pounds milk) [0.001] [0.002]

Intercept -3.4481* ** 43191 ***

F-statistic for overall significance 1027* * * 109* * *

% Yes correctly predicted 61.6 0

% No correctly predicted 62.3 100

% Overall correctly predicted 61.9 92.1

 

Notes: n=980; Standard errors calculated using the delta method, account for complex

survey design

Asterisk denotes level of statistical significance: *10%, * *5%, * **<l %

a . . .

Marginal effects evaluated at mean for continuous varlables and 0 to 1 change for

dummies

b p-value = 0.074
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Essay Two

LIVESTOCK DISEASE INDEMNITY DESIGN WHEN MORAL HAZARD IS

FOLLOWED BY ADVERSE SELECTION

Introduction

The outbreak of disease in domestic livestock herds is an economic and potential human

health risk that involves both the government and individual livestock producers.

Economic justifications for public intervention in disease control include extemalities,

public good aspects, coordination failures, information failures, and income distribution

considerations (Ramsay, Philip and Riethmuller). The potential to pose a large economic

cost depends on many factors including trade laws and level of infectiousness. Public

policies range from bounties for infected livestock to required herd depopulation and

farm decontamination. The United States Department of Agriculture's Animal and Plant

Health Inspection Service (APHIS) provides inspection and quarantine services to

prevent the introduction of disease across national borders and also coordinates response

to disease outbreaks from within the country. Border measures that protect against

incursion of disease are provided to protect the safety of the American food production

system and to prevent infection of the domestic livestock industry.

Diseases that are highly contagious or have human health implications are often

the target of government eradication programs. When livestock is taken by the

government for public health or economic reasons, the Fifth Amendment of the US

Constitution specifies that private property taken for public use must receive just

compensation. This compensation takes the form of indemnity payments. The current

federal compensation level is defined by the Animal Health Protection Act, Subtitle E of
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the Farm Security and Rural Investment Act of 2002 which states that compensation shall

be based on the fair market value, as determined by the Secretary of Agriculture, adjusted

for any other compensation received for that event (i.e., disaster payments or perhaps

even private market insurance). States may also offer compensation in the form of

indemnities.

This paper focuses on the structure of indemnity payments, which are currently

the primary form of compensation by the government, as the key mechanism to provide

incentives to farmers in order to achieve policy objectives. Existing indemnity payments

represent an implicit insurance policy for all livestock producers with respect to the

diseases where they are applicable, but are really more akin to ad hoc disaster payments

commonly made to farmers because of the lack of risk classification and underwriting

involved. Indeed, these payments do not have the desirable risk pooling properties

associated with insurance; there are no premiums based on the risk represented by an

insured as part of a portfolio of policies and all taxpayers fund the indemnities.

Government-provided indemnities should be designed with careful attention to the

private incentives they create and the public objectives of livestock disease risk

management. It is clear that providing adequate incentives to biosecure and report has

been an issue of concern within public agencies responsible for livestock disease

outbreak response (Ott 2006). It is our intent to address this problem in a rigorous,

systematic fashion to ensure incentive compatibility between the government and private

decision makers.

Previous economic research dealing with livestock disease (e.g., Kuchler and

Hamm; Mahul and Gohin; Bicknell, Wilen and Howitt; Horan and Wolf; Hennessy) has

37



also ignored incentive compatibility, at least in the presence of asymmetric information.8

The current paper uses a principal-agent model to examine incentive compatibility in the

presence of information asymmetry between the government and individual farmers.9

The nature of the information asymmetry is depicted in Figure 2.1. Individuals have

private information about preventive biosecurity measures they adopt on their farms prior

to outbreak (ex ante), and following outbreak (ex past) they possess private information

about the disease status of their herd. We investigate the role of incentives in individual

producer behavior that influences the occurrence, duration and magnitude of a disease

epidemic. Our focus is on farm level biosecurity choices and reporting of disease status

as the two primary areas of concern for the government. The government can set

indemnity rules in an effort to influence private incentives in order to achieve the stated

government objective that all farms invest in biosecurity and all infected farms report

infection (Ott 2006).

After setting up our model of farmer decision-making in the following two

sections, we first address the ex post problem because once uncertainty about the

occurrence of an outbreak is resolved, regardless of the ex ante actions taken by

producers, reporting of disease status (as opposed to discovery by another party through

transmission, slaughter, or testing) is required for timely government response to limit the

 

8 Prior economic research in this area has examined producer response to prices in

conjunction with a government bounty program for scrapies in the US. (Kuchler and

Hamm), optimal actions to contain Foot and Mouth Disease outbreak in France (Mahul

and Gohin), the effect of government programs to eradicate disease on prevalence level

and private control efforts in New Zealand (Bicknell, Wilen and Howitt), the dynamics of

optimally controlling infection from a disease which is transmitted between wildlife and

livestock (Horan and Wolf), and behavioral incentives when there is endemic disease in a

decentralized setting (Hennessy 2007).

9 A less formal discussion of these issues may be found in Gramig et al. (2006).
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spread of infectious disease and eradicate it. The length of time between outbreak and

discovery is very important in determining the cost, duration, and severity of epidemic

(UN-FAO). For these reasons, an incentive structure that results in reporting of any

infection is of great interest for a social planner. Second, we investigate the design of ex

ante incentives for biosecurity investment together with ex post truthful disclosure. The

characteristics of an incentive compatibile indemnity rule are derived for the case of a

risk averse agent (the farmer) and a risk neutral principal (government agency). A

comparison of the relative size of optimal indemnities and constrained efficient ones that

are second best under information asymmetry follows. Implications of the theoretical

model results for public policy and market insurance design are considered and

conclusions are offered.

A Dynamic Model of On-Farm Decision Making

We develop a dynamic capital valuation model of the livestock enterprise fashioned after

that of Hennessy (2007), who adapts the efficiency wage model of Shapiro and Stiglitz

(1984) to the problem of livestock disease management. Our farmer decision model

departs from Hennessy (2007) by (i) introducing risk aversion on the part of a single

farmer (only briefly addressed by Shapiro and Stiglitz), and (ii) considering biosecurity

and disease reporting decisions. A diagram of the decision-making process described

below is provided in Figure 2.2. The farmer is risk averse with an instantaneous utility

function U(0)), where U’>0, U"<0. Wealth, 0), is contingent on the disease state and

farmer choices in our model.
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The farmer will be in one of two disease states at any given point in time:

susceptible (non-infected) or infected. In the susceptible state (0:0, where 0 e [0,1] is a

random variable denoting the within-herd disease prevalence rate) farmers must choose

their biosecurity effort investment level, b. Biosecurity reduces the probability of

transitioning to the infected state, P51(b), such that 6 P51(b)/6b50. Biosecurity also

reduces the expected magnitude of a disease outbreak, should one occur. The conditional

probability density function of 0 is denoted g(0lb), such that G(0|b) is the twice

continuously differentiable conditional cumulative distribution function with

60(01b)/6b20 V b. The conditions imposed on the distribution of prevalence mean that G

satisfies first-order stochastic dominance in the sense that the cumulative density for a

given level of infection is non-decreasing (the desirable outcome) in biosecurity.lo

The farmer has a baseline profit flow when disease-free, gross of any biosecurity

investment, denoted by 7:0. An investment in biosecurity involves both initial capital

investments and the variable cost of ongoing management. In our model such

investments are, for the sake of tractability, treated as having a single variable cost w per

unit time and are incurred only in the susceptible state because once infected there is no

incentive to invest in biosecurity. The utility of wealth in the susceptible state can

therefore be expressed as

(l) U5=U(7r0—-bw).

 

'0 Because disease is a “bad”, higher outcomes of the random variable are less desirable

and so what we normally refer to as the “dominated” distribution is relatively more

attractive for our application. For b0< b1, G(0|b1)2G(0|b0) for all b, where the inequality

is strict for at least one value of b.
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In the infected state, the farmer must decide whether or not to report infection.

Disease reporting is modeled as a mixed strategy, denoted r. Reporting results in

government testing, verification of infection, and culling of infected animals to eradicate

the disease. The farmer is compensated for any culled animals with a government

transfer denoted by 1(0). Culling results in two types of losses for the farmer—a loss of

asset value M0) associated with the livestock itself and consequential losses from

business interruption x(0). Business interruption losses may vary widely depending on

the characteristics of the individual Operation affected and possibly disease

characteristics. For instance, the presence or absence of breeding stock or having high

fixed costs associated with a specific capital asset (e.g., a dairy or egg laying operation)

could contribute to the magnitude of business interruption losses. Reporting disease

ensures that infected farms return to the susceptible state such that the transition

probability from infected to susceptible when you report is equal to one. The farmer’s

instantaneous utility when he/she reports is given by Uf (no - 21(9) — 1(6) + r(6)).

Not reporting disease means that the farmer’s instantaneous expected utility is

determined by two distinct probabilistic outcomes. Government disease surveillance

activities detect non-reported infection with exogenous probability q and fail to detect

non-reported infection with probability (l-q). H Detection leads to government culling of

infected animals, compensation by government transfer 1(0) (as occurs under reporting),

and the farmer is fined an amountffor not reporting. In contrast, private culling of

infecteds when non-reported disease is not detected by the government means that

‘

I 1 Government disease surveillance is modeled as being exogenous to reflect the fact that

ongoing surveillance activities prior to reporting or discovery of outbreak are conducted

based on prior budgetary commitments independent of a given disease outbreak
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government compensation is not forthcoming and culled animals are assumed to be sold

at salvage value 0(0). Whether infection is discovered by the government or not, all

farms that do not report incur asset value losses and associated consequential losses (as

occurs under reporting).

Government culling is followed by a certain transition to the susceptible state, as

is the case when farms report disease. However, private culling may not be as effective

and only results in transition to the susceptible state with probability h<1. This means

that the expected instantaneous utility from not reporting is given by

qUIC (no — 1(6) — 1(6) + 7(6) — f) + (1 — q)U;VC (no — 2(6) — 1(6) + 0(0)). The overall

expected utility of wealth in the infected state, conditional on the current level of

infection, can therefore be expressed as

U] = rUIRbrO — 2(6) — 1(0) + r(e))+

(2) qUICOro - 4(6) — 1(6)+ r(6) —f)+
(1 — r)

(l — q)U}VC (60 — 4(6) - 1(6) + 6(6))

Equations (1) and (2) are individual components of a farm’s inter-temporal decision-

making process. In the next section we incorporate state transition probabilities to derive

the system of equations that represents the full scope of the farmer’s dynamic problem.

Fundamental Asset Equations

Define V5 to be the expected lifetime utility of the decision maker in the susceptible state.

Using the continuous time discount rate p, we can define st to be the “time value” of

the livestock asset when susceptible (Hennessy, p.702). Similarly, let V] be the expected
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lifetime utility in the infected state. This notation gives rise to the “fundamental asset

equations” (Shapiro and Stiglitz, p.436) 12,13

(3) PVS = Us(b)+ PSI(b)(Ee[V1] - VS),

(4) PVI = U1 (r,r(6’),f,6’) + P15 (rXVS - V1),

where

U1 (r. r(6), f, 6) = )0}? (4.1.46). 6)+ (1 — r)qu,C (4.x, r(6),f,6)+ (1 — q)U}VC (4, z. a(6)6)l

and P15 (r) = r + (l — r)[q + h(1— q)]. The time value of the susceptible livestock asset in

(3) equals the sum of the instantaneous utility in the susceptible state, Us(b), and the

expected capital loss if the disease state changes from susceptible to infected,

PSI(bXEg[V1] — VS ). Because the post-transition level of infection is unknown to farm

managers in the susceptible state, the expected capital loss associated with this state

transition is a function of the expectation of the lifetime stream of utility in the infected

state with respect to the level of disease prevalence, 0.

Similarly, the time value of the infected livestock asset in (4) equals the sum of

the expected instantaneous utility in the infected state, U} (r, r(6?),f,61), and the expected

capital gain from transitioning to the susceptible state PIS (rXVS — V1). The expectations

 

'2 Equations (3) and (4) below are provided in explicit form in Appendix B.l for the

interested reader.

'3 Equations (3) and (4) are derived following Shapiro and Stiglitz (1984, p.436).

Focusing on V5, we examine expected lifetime utility when decisions are made over small

intervals of size [0.)]: (3a) VS = US (b): + (1 — pt)[PSI (b)tEg[V1] + (l — PS, (b)t)VS ].

Note that (l-pt) z e'p’. Equation (3) is obtained by solving (3a) for V5 and evaluating it

as t—->0. Equation (4) is derived similarly. An implicit assumption in this formulation is

that farm businesses are “infinitely lived entities”, as is assumed in Hennessy (2007,

p.702) and Shapiro and Stiglitz (1984, p.435).
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Operator is not needed in (4) because the infected farmer is assumed to know his/her

current level Of infection.

Equations (3) and (4) may be solved as a system to get

Uslb)+PSI(b)EelVIl and
5 V b,E V = a() S( 911D p+PSI(b)

US (b)+ PSI (6)561V1 1]
U1 (rrr(9)»f’9)+P15(r[ p+PSI(b)

(6) V1(b.r,r(6),fi9r EelV1D= p, 1315. (r)

Equation (5) shows the lifetime expected utility from being in the susceptible state to be

an annuity value. If there was no chance of transitioning to the infected state (i.e., P5] =

0), then lifetime utility when susceptible equals the annuity value US/p (i.e., Us is

received into perpetuity). When there is a chance of becoming infected (i.e., PSI > O), the

annuity value changes in two ways: (i) a risk premium, P51, is added to the risk-free rate

p to yield a risk-adjusted discount rate that has the'effect of reducing the annuity value

associated with the susceptible state to US/(PJ’PSI); (ii) we must account for the expected

annuity value that accrues in the infected state, E9 [V1]/(p+PSI ), weighted by the

probability of transitioning to that state.

Equation (6) illustrates a similar valuation of the expected flow from the capital

asset, though conditioned on starting in the infected state and accounting for the

probability of transitioning to the susceptible state. Note that the term in brackets in

equation (6) represents V5(b,Eg [V1]), as derived in equation (5). If there were no chance
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of transitioning to the susceptible state (i.e., P15 = 0), then lifetime utility equals the

annuity value U1/p if U; were received in perpetuity. As with equation (5), because there

is a chance of returning to the susceptible state (i.e., P15 > 0), the discounted stream of

benefits takes this into account via the risk-adjusted discount rate (p+P15) and the

transition probability-weighted annuity value that accrues in the susceptible state, PISVS

(6,56 [V1]).

Expressions (5) and (6) are not in reduced form since they both have expected

lifetime utility from infection, E9 [VII» on the right hand side (RHS). To eliminate E9

[V1] from the RHS, take the expectation of both sides of (6) with respect to 0, isolate

E9 [V1] and substitute the expression back into (5) and (6). The resulting implicit

functions are

US (6X6 + PIS (r))+ PSI(b)E6[U1]
7 V b, , = d

( ) S( r f) plp+PIS(r)+P51(b)) an

V1(b,r,r(6),f,6)=

(8) U1(r,T(9),f,9)+ P15(r{US (
bXp + P1509)?“ PSI (MEBIUIIJ.

,0(P + PIS (r) + PSI (b))

p + PIS (r)

Note that the expression in square brackets in (8) is equal to (7).

The general form of these equations is similar to the comparable equations

derived in Hennessy (2007, p.702-703). However, the specific formulations are more

complicated than in Hennessy (2007, p.702). The level of complexity is greater because
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(i) his model includes a single binary action while we account for two separate

continuous choices selected by the farmer, and (ii) we focus on the asymmetric

information problem and the design of indemnification policy which involves business

interruption and consequential losses along with government disease surveillance not

treated in the earlier work.

The Indemnity Design Problem

We use the asset value equations to solve the overarching problem of indemnity

design that achieves public objectives for private biosecurity investment and disease

reporting behavior. In practice, we normally think of indemnification in connection with

private insurance or government-subsidized risk management programs like crop and

flood insurance. Even though indemnities are required when takings occur in response to

a livestock disease outbreak, indemnities are also intended to serve a risk management

function by providing incentives to report infectious disease and invest in biosecurity that

prevents outbreak and may limit disease spread (Ott 2007). For these reasons, we

concern ourselves with the design of an indemnification scheme that achieves

government risk management objectives and address whether or not required

compensation for takings are in conflict with stated risk management objectives in the

presence of information asymmetry. Recall that our proposed payment structure pays

one amount, t(0), to an infected farmer who reports, and a lesser amount, 1(0) —f(which

may be negative), to an infected farmer who does not report and is caught. As we

describe in detail below, our proposed indemnity structure uses government transfers 1(0)

46



to address ex ante moral hazard (biosecurity actions) and finesfto address ex post

adverse selection (disease reporting)

The reporting problem is addressed by imposing a fine in response to a given

reporting strategy, r: #0 when 0=0 or when 0>0 and the farmer’s strategy is r=1 ; 1‘50

otherwise when the farmer is caught. This structure, which involves one value offfor

each action— reporting or not, given 0>0 — is intended to address the adverse selection

problem. This is analogous to how adverse selection problems, commonly encountered in

the literature (Rothschild and Stiglitz, 1976) and arising in practice, have been addressed.

We use fines to mimic a “menu of contracts” which induces the agent to reveal private

information. In the next section, we propose a method for setting the fine so that it

achieves the desired reporting behavior.

The moral hazard problem is addressed by setting the transfer, 1(0). Here the

government’s transfer to the farmer is based on 0, which is observed (verified as a result

of testing) after infection is discovered or reported. The transfer influences the farmer’s

incentives to take biosecurity actions because the likelihood of becoming infected is

influenced by b. We might therefore expect a lower marginal payment for larger

infection rates. This would mimic the risk sharing property of deductibles or co-pays

commonly used to address moral hazard problems in the principal-agent literature

(Laffont and Martimort, 2002), the crop insurance literature (Chambers, 1989), and the

broader insurance literature (Arrow, 1963; Raviv, 1979).

In the presence of both adverse selection and moral hazard, some combination of

the instruments used to address both types of information problems individually can be

expected to induce the desired biosecurity investment and reporting behaviors from the
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agent in the current application. However, to simplify the exposition, we discuss the

different components of the indemnity rule (1(0) andf) individually. We proceed by

addressing each of the two parts of the information problem in reverse chronological

order. That is, we propose a way to solve for the indemnification scheme that will (i)

lead the farmer to report any infected animals to the government, thereby revealing

his/her hidden information, and (ii) create incentives for positive investment in

biosecurity, thereby solving the hidden action problem.

The Adverse Selection Problem—Reporting

Reporting is assumed to be socially desirable (all other things equal) because early

detection of infection limits the duration of a disease outbreak event and has been found

to be the most important factor in minimizing total economic damages from a livestock

disease epidemic (UN-FAO). The govemment’s objective is to set fines in such a way

that reporting of suspected disease always occurs. The farmer is the agent in our

Principal-Agent framework and we assume he/she chooses a reporting strategy, re [0, l ],

to maximize his/her discounted utility stream in the infected state, given by (8). This

means that the marginal incentive to report (positive, negative or zero) is given by the

sign of 6V1 (b,r,1(l9), f,6)/ fir and the Kuhn-Tucker conditions imply the optimal

private reporting strategy.

The principal wants to set the fine so that the agent always finds reporting to be

privately optimal. The difficulty is that the marginal incentives to report will differ

depending on both b and 0, each of which are unobservable to the principal. The

principal must therefore set a single fine such that the agent finds it optimal to report

regardless of the values of b and 0. Specifically, the fine is set so that reporting occurs
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even when the marginal incentives to report are at their minimum value, given by the

expression

[6V1(b,r,1(6), mail
(9) A(f)= mini: lim

6r
Vb,0 r—>1

Choosingfsuch that A(f)20 for all values of b and 0 ensures that the farmer always has a

non-negative marginal incentive to report. That is, as long as the agent, when operating

at the margin, is indifferent between increasing and decreasing his/her reporting strategy,

then the farmer will have a positive incentive to report for any value of 0>O. This

concept is depicted graphically in Figure 2.3. '4 Here b is taken as given and the dashed

curve indicates that the farmer will not have a positive incentive to report disease for all

* II!

levels of 0 whenf-=0. We denote byf the fixed fine that achieves A(f )=0 and ensures

a non-negative marginal incentive to report over the range of 0.

We have introduced fines because prompt reporting yields social benefits and is

outside the scope of constitutionally required compensation for takings. We now turn to

the design of government transfers to indemnify farmers whose animals are culled by the

government, in order to provide incentives to private decision makers to make

investments in biosecurity.

The Moral Hazard Problem—Biosecurity Investment

1]:

Given thatf ensures reporting, we now turn to the govemment’s problem of

designing transfer payments, 1(0), that provide incentives for biosecurity investment. As

 

'4 Figure 2.3 does not reflect the shape of any particular functional form for V1, rather it

is provided to shore up the intuition associated with the proposed method for setting fines

so that reporting occurs.
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indicated above in relation to deductibles or co—pays used to address moral hazard

problems, some amount of risk sharing between the government and the farmer will be

necessary to solve the hidden action problem. This can be seen very easily by a quick

comparison of the instantaneous utility of wealth in the susceptible state and in the

infected state (when r = 1) for the special case in which the farmer is fully indemnified

against all losses: 1(6) = 2(6) + 1(6). In this case, utility when infected reduces to

U(no) which is not dependent on biosecurity and is strictly greater than utility when

susceptible if there is any positive investment in biosecurity U(710 — bw). In this

situation, it is not clear why anyone would biosecure and it suggests that farmers will

need to bear some share of the risk of disease related losses in order for there to be an

incentive to invest in biosecurity. The question we turn to now is how the government

should structure indemnities to facilitate risk sharing in a constrained-efficient manner.

Assume the government takes into account the private net benefits of livestock

a

production, V3(b,l,f ), and the expected social cost of government transfers and disease

1

surveillance, K jr(6)g(6 | b)d6 + m(q) , where m(q) represents disease surveillance

0

costs and K>O represents the constant marginal cost of diverting funds to this program,

which may include transactions costs (Alston and Hurd 1990),'5 The government’s

Objective function in setting transfers to induce biosecurity effort may be written as

 

'5 Because ours is a model of a single agent we do not account for market or social

benefits associated with private livestock production, but this model could be extended to

a multi-agent setting which would realistically consider such broader social benefits or

costs.
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l

(9) max VS [b,l, f* ) — K [1(6)g(6|b)a'6 + m(q) s.t. b e arg max VS[b,l, f* j,

7(6),]? 0 b

where the use of finef‘ drives r to l, the agent’s unobservable choice of biosecurity

effort constrains the principal, and “argmax” denotes the set of arguments that maximize

the objective function that follows.

Denote a(b) = (p + PIS )/(p(p + PIS + PS] )) and

,6(b) = P5] /(p(p + PIS + PS] )), which are the risk-adjusted discount factors associated

with the outcomes US and U[R . Then we can write equation (7), evaluated at r=l and

f,as

l

(10) Vs(b,l,f*) =Uslb)a(b)+fllb)[U1R(1,r(6’),9)g(9Ib)d9-

0

Equation (10) is the focus of farmer decision making in the susceptible state where the

agent optimizes to select a biosecurity investment 6 which is constrained to be b, the

government’s desired level of investment, without loss of generality by the revelation

principle (Myerson 1979; Dasgupta, Hammond and Maskin 1979). The regulator

chooses 2(0) to maximize farmer utility while taking into account the cost of indemnities,

monitoring, and response to outbreak required to implement the chosen disease risk

management policy. The agent’s first-order condition (FOC) with respect to b implies

the optimal private choice and we substitute the agent’s FOC for the constraint in

equation (9), using the notation introduced in equation (10), so that (9) can be re-written

as
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max U3(b)a(b)+,6(b)jU,(11(6) 6)g6|b)d6 K ljr(6)(g(t16]1))al6+m()

(6)b O

(11) st. U§(b)a(b)+US(b)aOb()+

lilfl'(b)Uf(1,r(6),6)+6(b)Uf(lrr(6),6’)gb(6Ib)]g(6|b)de=0
0

 

The approach of substituting the farmer’s FOC in for the constraint is called the first-

order approach (FOA), e.g., Spence and Zeckhauser (1971), Ross (1973), Harris and

Raviv (1979), Holmstrom (1979), Mirrlees (1975), Rogerson (1985). The F0A is valid

as a general solution method for (9) when the convexity of the distribution function

condition (CDFC) and the monotone likelihood ratio condition (MLRC) are satisfied

(Mirrlees 1975, Rogerson 1985). We assume both of these conditions are satisfied in

what follows. The CDFC is satisfied by 620(61 cyan2 2 0. The conditional pdfof

disease satisfies the MLRC if 8b (6 l b)/ g(6 | b) is non-increasing in 0 (Milgrom 1981).16

Whitt (1980) has proven that the MLRC implies FOSD, and is therefore a slightly

stronger condition than FOSD.

Because it may be hard to garner intuition from gb (6 | b)/ g(6 | b) , Milgrom

(1981) provides an alternative explanation of the relevance of the MLRC in terms of the

government’s ability to infer the agent’s hidden actions from the observation of 0. He

describes the MLRC in terms of a principal who has a prior over the agent’s choice of b,

observes the level of disease realized, and then updates her prior to calculate a posterior

on the biosecurity effort choice. Denote the posterior probability distribution of b given

 

'6 Milgrom (1981) finds the term should be non-decreasing in 0, but in his model the

action has the opposite effect on the distribution as our action b. Accordingly, the sign is

reversed here.
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observed outcome 0 by F(bl0). Using Milgrom’s (1981) results, the nature of disease is

such that the MLRC is equivalent to 60 s 61 => F(b I 61 ) 2 F(b | 60) Vb , where 00 is a

more favorable signal than 0] that the agent exerted the desired level of biosecurity

effort. '7 The importance of the assumptions about the nature of the MLRC will become

clearer when the conditions for divergence from the first-best indemnity and the

implications of the model for indemnity design are considered below.

Using the FOA, the Lagrangian for the government’s problem is

l 1

4 = Us (b)a(b)+ 6(b)]Uf (1,r(6).6)g(6 l b)d6 — K[ ]r(6)g(6 l b)66 + m(q)

0 O

(12) U’s (b)a(b)+ Us (b)a'(b)+

l

”‘ [a(r)uf(trte).e)+6(b)uf(1.r(e),e)£b—(fi’—'-”—)]g(etthe
0 g(6 l b)

where p is the shadow value of the constraint. The existence of the constraint, due to the

farmer’s freedom to make their own biosecurity decision, renders this a second-best

problem. In Appendix 82 we illustrate that u>0 because the government would like the

farmer to increase his investment in biosecurity given the optimal indemnity payment.

That is, the optimal indemnity here is only second-best due to the information problem; a

first-best indemnity could be used to attain greater welfare in the absence of information

asymmetry (in which case [1 would optimally vanish). Holmstrom (1979) also finds such

a result.

 

‘7 It should be noted that the interpretation of the MLRC in the current context of a

malady is different than the examples most often found in the literature because lower

realized values of the random variable prevalence represent the desirable outcome,

whereas in the typical wage contract examme higher values of the random variable output

are desirable and signal greater effort.
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Following Holmstrom (1979), pointwise optimization with respect to 2(0) yields

the following necessary condition, which must hold for all 0

  

R
6Uf(l,r(6),6) 6U, (1,1(6),0)[flb,b+() [3(1))g_b___(6lb)]

\ _ =_

(13) W” tit-(6) K )1 61(6) (6|b)

Condition (1 3) implicitly defines 158(0), the second-best indemnity as a function of 0.

The following adjoint equation is also necessary

l

g; = Us(b)a(b)+ Us(b)a+—x ]r(6)gb (6 l b)d6
0

l

(14) [[6'(b)Uf(1,r(6),6)+6(b)Uf(1,r(6) 6)fig? '13)]s(6lb)d6+

0

[U1'9 (b)a(b)+ 2(119(1))6'(b)+ Us(b)a"(b)+
.

1
6t {(0}?(1,1(6),6Xfl~(b)g(6 | b)+ 2fl'(b)gb (g I b)+ 609191)}; (9 | b4)“

.0

 

II

C

  
J

Using the agent’s FOC and recognizing that the final term in (14) can be written as

g(szS (bJ, f* ) / 6‘sz , condition (14) reduces to

l

(15) x[r(6)gb(6 | b)d6 = #[62V5(b,l,f*j/6b2).

0

Condition (15) determines 11 while the constraint in (l 1) determines b.

How do second-best indemnity payments compare to first-best payments? First-

best payments arise when there are no constraints on the government’s problem — that is,

the regulator is neither constrained by the farmer’s first order condition nor is truthful

disclosure an issue, so that there is neither an ex post adverse selection nor an ex ante

moral hazard problem. In this case, condition (13) reduces to
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\6Uf(1,r(6),6) __

’ 61(6) _ _ ’

 

(16) [3(1)

*

implicitly defining the first-best indemnity payment 1 (0). Comparing condition (16)

with condition (13), we find that the following must hold

(i)ZTSB(6)<z
'*(6)

gb(91b)+,3'
(b)<
 

 

g(6lb) 6(b)

. SB ... gb(9lb) [1"(6)
(l7) (11).r (6)>r (6) g(6lb) + ,6(b) >0.

Condition (1 7) indicates that farmers receive information rents, relative to the first-best

case, under the conditions defined by (l 7ii), while the government reduces payments

below the first-best level under the conditions defined by (171') (the conditions are

described in detail below). The resulting payment level depends on the realized value of

0, which the government views as evidence of the farmer’s unobservable biosecurity

effort. Holmstrom (p.79) points out that the term gb / g is simply the derivative of the

maximum likelihood function ln[g(0|b)], when b is taken as an unknown variable, and

suggests that g,, / g measures how strongly one is inclined to infer from 0 that the agent

did not undertake the assumed action. The second-best solution is dependent on the

distribution of 0 and its relationship to b. The deviation from perfect risk sharing implies

that the farmer (agent) must carry extra responsibility for the disease outcome, as was

discussed in terms of instantaneous utility of wealth above. We present the mathematical

conditions that facilitate the result summarized in (17) along with a description of the

intuition behind the relative magnitude of first- and second-best indemnities under the

different circumstances.
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It follows from the definition of ,6(b) that ,6’(b)/ ,6(b) < 0. The overall sign of

gb (6 | b)/ g(6 | b)+ fl'(b)/ ,6(b) is therefore determined by both the sign and magnitude of

II: I!

the term g, / g. Define the single level of infection at which 188(0)=r (0) as 0 , such

:1: wk , . SB

that gb(6 lb)/g(6 lbj+ ,6(b)/)6(b)=0. Thls means that r (6)<r*(6) for

6 > 6* , and 153(6) > r * (6) for 6 < 6*. How small is 6* ? It should be small enough

a * o

to infer that a sufficient investment in biosecurity has been made. In particular, 6 IS

smaller than the value of 0, denoted 6 , at which gb (6): 0. This point in the

distribution is of interest because for 6 < 6 the marginal benefit of biosecurity, in terms

of reducing the cumulative density of prevalence, is increasing. '3 A smaller 0 yields even

larger marginal benefits of biosecurity.

By structuring indemnities according to (l 7), the government provides very

strong incentives for a farmer to make a significant investment in biosecurity. If the

government observes 6 > 6 it will pay farmers for culled animals at a lower rate than it

would if it could observe biosecurity actions directly; this is because a relatively high

level of infection suggests a small likelihood of private biosecurity effort. Even for

observed levels of infection 6* < 6 < 6 , the level of effort inferred by the government is

still sufficiently low that the farmer cannot extract any information rents from the

government. Only if the level of observed infection falls below the critical value 0* will

 

'8 A point which might correspond with 6 on a hypothetical second-best indemnity

schedule is depicted in Figure 4, which we discuss below.
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the government be convinced that the agent has invested in biosecurity at a high enough

level to give up information rents to the farmer.

The relationship between the prevalence level and size of indemnities is also of

great interest. To evaluate the slope of rSB(0), differentiate condition (13) with respect to

0 to get

6(ga(6lb)/g(6lb))

U ' a6

“8) "(6):”'(6)+Z'(6)+i—U"i(l [sb(6lb)+6'(b)]]'

 

 

+ [1

g(91 6) 6(6)

The first two RHS terms are positive and equal the slope of the first-best indemnity r (0)

(since n=0 in the first-best case). The third term arises in the second-best case, and the

I

sign of this term depends on the value of 0. In the third RHS term, i—EUT'] >0 for a risk

averse agent, the numerator is negative by the MLRC, and the sign of the denominator is

gb (6 l b) + 6(b)

g(6lb) 6(b)

 determined by the sign of y =[ Jand the relative magnitude of terms,

which for a given b depends on 0.

1]:

Several different possibilities for the shape of 158(0) relative to that of r (0) are

*

depicted in Figure 2.4. For very low levels of 0, rSB(0)> r (0). The second—best

indemnity may be initially increasing or decreasing based on the sign of equation (18).

This is because y>0 for low values of 0, making the third RHS term in (18) negative and

the sign of 1'(6) ambiguous. The negative third term means the slope of 188(0) is

*

initially less than the slope of r (0), so that these curves eventually intersect and become
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equal at 6*. When 0> 6* , then y<0 and the denominator of the third RHS term is of

ambiguous sign. Denote 6 (with 6> 6*) to be the value of 0 such that the denominator

of the third RHS term vanishes; the slope of the second-best indemnity goes to ~00 and

there is a discontinuity in the graph of 153(0). This means the slope of 153(0) becomes

negative prior to 6. If 6 <1 , this suggests that for any observed prevalence 6* < 6 < 6 ,

the second-best indemnity should be paid at a level below the first-best level to maintain

the appropriate incentives to invest in b.'9

While it is mathematically possible for the slope of the second best indemnity

function to be positive and/or negative over the range of 0, an indemnity schedule that is

monotonically decreasing in the prevalence level like TiSB (6) would provide the

strongest incentives for biosecurity. 20 In such cases the information rents paid to the

 

19 It should be noted that for 6 > 6 the slope of the second-best indemnity is expected to

be +00 as you approach 6 from the right. This suggests that it is possible that the first-

and second-best indemnities cross again at another point 6 > 6 , but it does not seem

likely that an information reward would be optimal at high levels of 0. Moreover,

whether or not 6 falls within the unit interval is unknown.

20 For 6 < 6 , the mathematical condition required for a monotonically decreasing second-

best indemnity schedule like the one depicted by 153(6) in Figure 4 is

# 6(gbl6’ I b)/ g(9 I b))l

U’ 66
)1'(6)+x'(9)< _9»

(1+6?)

 

I. This condition may be reasonable in

practice because xi’(6)+ [(6) is likely a very small positive quantity at lower values of

6. Alternatively, the condition that gives rise to the increasing segments of 1‘ng and 1393
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c * o o

farmer would be strictly decreasing with prevalence up untll 6 = 6 . Beyond thls pOlnt,

the reduction in payments relative to the first-best case would be increasing. Biosecurity

incentives would seem to be weaker under the curves labeled 1593 and 1598 , which seem

contrary to the government’s objective.

The extent to which observed prevalence is a good signal of actual preventive bio-

securlty effort 1S clearly lmportant for implementing the 1ndemnlty schedule, 1S (0). It is

conceivable that for diseases that are extremely contagious (i.e., Foot and Mouth Disease,

Highly Pathogenic Avian Influenza, Exotic Newcastle’s Disease, or Classical Swine

Fever) an individual’s herd could become infected regardless of the extent of biosecurity

measures taken ex ante. For this reason, a “one size fits all” policy that only pays

indemnities on the basis of observed prevalence levels is likely to be problematic in

practice.

This does not preclude a disease-specific indemnification rule which would pay

*

farmers 153(0) for all but the most infectious diseases and pay them according to 1 (0)

during outbreaks of highly contagious diseases (where observed prevalence is not a good

signal of effort). Indemnifying farmers in this disease-specific manner does not diminish

i]:

reporting incentives because of the use off ; also, if low prevalence levels are verified

when responding to an outbreak involving such pernicious diseases, this could be treated

 

#6(gb(6lb)/g(6lb))

U' 66

- U" (1+ #7)

 

 
over the relevant range of 0 is ,1'(6)+ [’(6) > for that

 

range of 0.
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as an even stronger signal that the farmer made a significant investment in biosecurity

*

and such behavior should be rewarded by paying 153(0)> r (0). The World Organization

for Animal Health (Office International des Epizooties or OIE) maintains a list of

diseases that must be reported to the international community. The OIE’s list of

reportable diseases (formerly called “List A” diseases) could serve to determine which

diseases should be associated with such a disease-specific indemnification rule—that is,

*

diseases on the list are compensated on the basis of r (0) (with information rents if low

. . . . . . SB

prevalence lS verlfied) and all other dlsease losses are 1ndemn1fied accordlng to r (0).

An indemnification rule similar to that implemented in Belgium and the Netherlands

seems to match the suggested indemnity from our model (Horst, deVos, Tomassen, and

Stelwagen). This indemnification rule is briefly discussed below.

Implications for Public Policy and Market Insurance Design

Our model uses two distinct mechanisms to provide incentives for biosecurity and

truthful disclosure: (i) indemnities to achieve desired levels of biosecurity, and (ii)

optimal fines that induce disclosure of disease status (alternatively, these mechanisms can

be viewed as a differential indemnity schedule based on whether an infected farmer

reports or not). By using two distinct policy instruments, individually designed with each

information problem in mind, it is possible to create clear incentives for farmers to

behave in a manner that is consistent with government risk management objectives.

Status qua indemnification for livestock disease losses by USDA has paid

producers on the basis of “compensation value” equal to “fair market value assuming

disease-free status” (Ott 2006, p.72). This amount is necessarily greater than the true
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market value of diseased animals culled by the government and is intended to create

incentives for reporting. The government has also recognized that unless farmers face

some uncompensated losses as a result of outbreak they cannot be expected to take

preventive biosecurity measures and thus does not compensate farmers for consequential

losses when issuing indemnities. Animal health authorities have relied on a single

mechanism—indemnities—to facilitate both ex ante biosecurity effort and ex post

reporting. By using a single mechanism to induce biosecurity and reporting

simultaneously, the incentives for each individual private action are not clear.

Direct comparison of the relative magnitude of status quo indemnities and the

second-best indemnities implied by our analysis is not possible, but the major difference

is the shape of the indemnity schedules implied by the different policies. Status quo

policy suggests the indemnity schedule is strictly increasing in 6(just like the first-best

an

indemnity, 2' (6), depicted in Figure 2.4), while the second-best indemnity implied by

condition (17) is strictly declining over a range of 6. It is not at all clear how the

incentives created by the status quo policy facilitate the government’s joint objectives.

An upward sloping indemnity schedule, in the absence of any penalty for not reporting,

may actually create incentivesfor infection when you consider that the status quo has

sought to use indemnities based on the disease-free fair market value of livestock as a

means of resolving the ex post adverse selection problem.

In an effort to induce early reporting, Belgium and the Netherlands no longer

compensate producers for dead animals and only partially compensate them for diseased

stock (Horst, deVos, Tomassen, and Stelwagen). This approach shares some important

elements with our second-best indemnities. First, while there is not an explicit fine for
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not reporting, there is a penalty to waiting to report since dead animals fetch no payment.

This feature can help to achieve incentive compatibility with reduced or eliminated

monitoring costs. Second, the partial compensation for only diseased animals shifts some

of the risk to farmers, as do our payments. An indemnity plan that does not shift risk in

this fashion may actually create incentives for infection, which could be one problem

associated with status quo US. policy.

The discussion of incentive compatibility applies not only to public policy but

also to the development of private insurance for livestock disease protection. If private

coverage is available to farmers, the incentives provided by livestock insurance contracts

could potentially be in competition with the objectives of policy while satisfying the

individual objectives of producers (i.e., income smoothing as risk management). Careful

consideration in the design of private market coverage for livestock disease losses is

required in order to ensure that public policy and private risk management products are

jointly incentive compatible. Also, design of public policy should take into account the

role that private coverage could play in achieving public policy objectives and how

government decisions may hinder or bolster private markets for insurance. If this is not

the case then the constrained efficient result analyzed here will not be achievable.
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Appendix B

Appendix B.l

Based on equations (1) and (2) and incorporating transition probabilities with the

expected lifetime utility notation introduced in the text, equations (3) and (4),

respectively, are written in explicit form as

(3’) st = Us (60 -bw) + Ps1(b)lE6[V1]- Vsl and

pV, = {111R (710 — /1(6)— 1(6) + r(6))+ (VS — V1)) +

(4’) ([11)? (no — 1(6) — 1(6) + r(6) — f)+ (Vs — 1(1)] +
(l — r)

(1 —q)[U}VC(rro -/1(0)-z(6)+0(9))+h(Vs 4(1)]

Appendix 82

The first order condition associated with the farmer’s problem is given by the constraint

to problem (10), or

95.: U§(b)a(b)+ Us (b)a’(b)+
60

(3.2.1) 1

. R + R T 8170916) =
O 6(b)U,(1,r(6).6) 6(b)U,(1. (6).6)g(6lb)]s(6lb)d6 0

This is an optimal response to the indemnity payment, 2(0); however, the indemnity

payment is only second-best because the regulator is constrained by the farmer’s

response. If the regulator were not constrained, then for a first-best outcome it would

have the farmer choose addltlonal blosecurlty, such that 26% < 0. Generallze condltlon

(82-1) to be
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(8.2-2)fl < c ,

6b

:1:

where c is a constant. c=0 for the farmer’s problem, while c=c <0 for the first-best

outcome. Using this notation, the Lagrangian can be re-written as

1

1=US(b)a(b)+,6(b)1[UR(,,)11(6)6g()(6|b)d6—K[[1(6)g(6|b)d6+m(q)]

0 0

(82-3) Us(b)a(b)+Us(b)a'(b)+

“’16b)U, (1 r(6) 6)+6(b)U, (1 (6)6)-—(—;(g‘13) (61b)d6—c

61 O O O I I 0

Clearly, — = —12 < 0 smce an 1ncrease 1n c when c=0 lmplles a decrease 1n welfare

c
c=0

*

as the solution moves farther away from the first-best outcome c <0. Hence, p>0.
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Essay Three

JOINTLY-DETERMINED LIVESTOCK DISEASE DYNAMICS AND

DECENTRALIZED ECONOMIC BEHAVIOR

Introduction

Endemic livestock diseases impose significant costs on society (Bennett 1992, 2003;

Bennett, Christiansen and Clifton-Hadley 1999; Bennett and ijelaar 2005; Buhr, et al.

1993; Chi, et al. 2002; National Research Council 2005), prompting a need to understand

management aspects of these problems. It is useful to understand both optimal public

(centralized) management in response to a disease outbreak (Kobayashi, et al. 2007a, b;

Mahul and Durand 2000; Mahul and Gohin 1999), and the decentralized behavioral and

disease responses to common policy initiatives (Hennessy 2005, 2007; Hennessy, Roosen

and Jensen 2005).

Our focus in this paper is on decentralized outcomes. The majority of prior

economic research in this area focuses on behavioral outcomes, holding disease risks

stationary (i.e., possibly a function of human choices but not reflective of the underlying

epidemiological dynamics; Hennessy 2005, 2007). Prior economic work has also

generally failed to account for cross-farm extemalities, though Hennessy (2005, 2007)

are exceptions. Analogously, the majority of prior veterinary and epidemiological

research focuses on how disease dynamics are affected by government intervention, such

as herd depopulation, without considering producer behavioral responses. In this paper,

we consider the joint-detenrlination of disease and behavioral dynamics across farms, in a

decentralized setting.

Livestock disease management is an inherently dynamic process that involves
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feedbacks between disease ecology and private behavioral decisions. We consider the

impact of these feedbacks while focusing on two common decisions that livestock

managers must make: a livestock manager must sequentially decide whether or not to

invest in biosecurity as a preventive measure and whether or not to report infection to

government authorities in the event that a disease outbreak occurs. The decision to report

infection may or may not arise depending on the uncertain disease outcome, but at some

point everyone faces the biosecurity decision. Because it is unclear in advance whether

or not livestock will be exposed to infection, investment in biosecurity represents a

definite investment of resources in exchange for an uncertain future benefit (own herd

protection). But biosecurity may not fully protect one’s own herd, and, moreover, losses

due to increased regulatory stringency may also arise as a result of a neighbor’s herd

becoming infected —- even in the absence of infection in one’s own herd. This is because

all herds within infected regions may be affected by costly regulatory actions taken by

animal health authorities to eradicate infection. Such regulatory-induced extemalities are

a common feature of livestock disease problems. For instance, all farms in the bovine

tuberculosis (bTB) infected region in Michigan’s Lower Peninsula — regardless of

infection status — incur private costs as a result of dealing with government testing,

movement restrictions and stringent testing rules for trade in live animals that go

uncompensated by the government.

Our paper builds in particular on the work of Hennessy (2005, 2007), who also

accounts for cross-farm spillovers. Hennessy (2005) constructs a topological model to

analyze how disease extemalities across farms in different spatial arrangements influence

biosecurity decisions. In that model, biosecurity investments exhibit strategic
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complementarities with respect to entry of a disease and strategic substitution with

respect to spread of an already-introduced infection. Hennessy (2007) specifies a

relationship between disease risk and biosecurity investment within a production region

such that disease risks are endogenous and biosecurity is a strategic substitute, and

derives a number of general implications about the long-run equilibrium. In both cases,

the disease risks are not based on an epidemiological model and therefore the relation

between disease risks and biosecurity is stationary. Also, group-level impacts of

government regulations are not modeled explicitly. Our model extends this previous

work in two principal ways. First, we account for the jointly determined nature of

disease and economic outcomes in a fully dynamic bioeconomic model, with endogenous

and non-stationary disease risks. Second, we characterize distinct static and inter-

temporal strategic effects that arise when government response to infection gives rise to

extemalities.

We proceed with an analytical model of disease dynamics and then integrate

economic behavior into this model. We then present simulation results to illustrate the

tradeoffs arising in a joint system, and we contrast these results with those arising from a

non-joint system. We conclude with a discussion of the general implications of this

research, identifying additional research needs in this area.

Livestock Disease Dynamics

A metapopulation disease model (Levins 1969) is adopted to model cross-farm livestock

disease dynamics. In this framework, individual farms (and not the individual animals on

each farm) are the primary unit of interest. The farms are dispersed across space, and
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disease transmission occurs according to a simple susceptible-infected (S-I) model of

disease (Mangel (2006) provides a gentle introduction to disease models from theoretical

biology). Each farm can be in one of three states at any point in time, indexed byj:

susceptible (non-infected,j=5), infected (i=1), or empty (i=E). As we detail below, the

rate at which farms transition between disease states depends on farmer decisions to

invest in biosecurity (in the S state) or report infection to animal health authorities (in the

I state), government disease surveillance effort (to discover non-reporters), and the rate at

which the government allows repopulation of empty farms.

Define n to be the fixed number of homogeneous farms in a region, with s farms

being susceptible, i farms being infected, and e farms being empty.l The number of

susceptible farms changes over time according to

(l) s'=6e—b,60(s/n)i—(l—b),61(s/n)i.

The number of susceptible farms grows when empty farms are repopulated at the rate a

(the first right-hand-side (RHS) term in (1)), and s is reduced by transitions to the

infected state as represented by the remaining terms. New infections occur at different

rates based on whether or not farms invest in biosecurity. The proportion of farms that

biosecure at time t is denoted by b. For these farms, the disease transmission parameter is

,69 , and ,69 s/n represents the expected number ofnew infections generated by each

infected individual.2 For farms that do not biosecure, the disease transmission parameter

 

' Strictly speaking, our “production region” considers the area encompassed by a disease

surveillance zone established by a government authority to control the spread of infection

and within which all farms will be subject to inspections and possible quarantine,

depending on the disease in question.

2 This type of transmission is known asfrequency-dependent because the expected

number of new infections depends on the proportion or frequency of susceptible farms
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is 61 > 69: farms that biosecure face a lower risk of infection than farms that do not.

The change in the number of infected farms over time is

(2) i=b60(s/n)i+(l—b)61(s/n)i—ri—(l—r)qi.

The first two terms denote newly infected farms, as in (l). The last two terms represent

depopulation of infected farms. Depopulation occurs when a farm reports infection,

which is the strategy adopted by a proportion of farms r, or when the government

discovers the infection, at a rate q, on the (l -r) proportion of infected farms that did not

initially report it.3 Finally, all transitions between disease states in (1)-(2) are balanced

by changes in the number of empty (depopulated) farms given by

(3) é=ri+(l—r)qi—£e.

The dynamic system can be rewritten in terms of proportions of farms in each

state (Hess 1990; McCallum and Dobson 2004). Define S=s/n as the proportion of

susceptible farms, I=i/n as the proportion of infected farms, and E=e/n as the proportion

of empty farms. Upon making this transformation, equations (1)-(3) can be rewritten as

(la) S = £E—b6oSI—(l—b)6lSI,

 

(McCallum, Barlow, and Hone 2001 ). The most common alternative to frequency-

dependent transmission is density-dependent transmission or what is referred to as the

“mass action model” in the disease ecology literature, where the likelihood of contact

between all farms is the same. Because it seems reasonable that all herds do not have an

equal probability of coming into contact with one another and that the probability of

contact is increasing (decreasing) in the proportion of farms that are infected

(susceptible), we model disease transmission as being a frequency-dependent process.

McCallum, Barlow and Hone (2001) and Begon, et al. (2002) discuss different ways that

pathogen transmission can be modeled and how to judge which method is appropriate for

a given application.

3 A disease model that tracks within-patch dynamics (that is, where the animal is the

primary unit) would be needed to consider a policy response that culls only individual

infected animals (“test-and-slaughter” policy) and not entire herds.
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(2a) 1': b6OSI+(1 -b)61SI —rI-(l —r)qI,

(3a) E=rI+(l-—r)qI—6E.

Typical metapopulation models of disease transmission treat b and r in (1)-(3) as

exogenous parameters and typically compare steady state dynamics over a range of initial

values for the disease state variables and other parameters. In contrast, we take b and r to

be endogenous. Next we develop the behavioral dynamics that govern the economic

strategies b and r, which are made in response to current disease risks. In turn, the

economic choices b and r endogenously affect infection dynamics in our joint model. In

this way, we account for dynamic feedbacks between the economic and disease systems.

A Dynamic Model of Farmer Behavioral Choices

Farmers make decisions about whether to invest in biosecurity and whether to report

infection based on their current disease state. Denote individual farmer z’s (z= l ,. . .,n)

biosecurity and reporting strategies as b2 and r2, respectively. These are mixed strategies

that may be interpreted as the proportion of the time that an individual chooses each of

these binary actions. The distributions of mixed strategies in the population are denoted

as b and r, which are analytically equivalent to the proportion of individuals in the

population who choose biosecurity and reporting. The individual strategies b2 and r2 are

treated as being distinct from the strategies b and r prior to equilibrium; in equilibrium,

we will have bz=b and rz=r due to the assumption of homogeneous farms.

The farm decision model follows that of Hennessy (2007), which is based on

Shapiro and Stiglitz (1984). In this framework, a farm in a given disease state receives an
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expected flow of income associated with its current disease state, taking into account the

possibility that it will transition to a new disease state at some point in the future. Denote

farm z’s baseline level of profit in each period in which the farm operates (i.e.,j¢E) by tr,

with baseline profits being zero during the empty state. These profits are gross of any

expected biosecurity investment costs, wbz (where w is the cost of biosecurity), private

losses from infection, 5, and regulatory costs, 621-. szk represents the rate at which farm 2

transitions from state j to state k. Both sz and szk may be influenced by farm 2’s and

others’ strategies. These terms are specified in greater detail below.

Denote sz to be the expected lifetime income (or utility) of the zth farmer who is

currently in statej. Assuming a discount rate of p, thefundamental asset equations for

susceptible, infected, and empty farms are, respectively4

(4) szs = (I - wbz - GzS + st1 [V21 - stl

(5) PVzI=”_5‘GZI+PZIEleE-Vzll

(6) szE = -GzE + PzEsles - VzEl

Equation (4) is the “time value of the asset” in the susceptible state, which equals the sum

of the “instantaneous income per unit time” conditional on being susceptible, rr-wbz-GzS,

and the “expected capital loss that would arise were the state to change” (Hennessy 2007,

 

4 The asset equations are derived following Shapiro and Stiglitz (1984). Focusing on the

case ofj=S as an example, we take V5 and V; as given and examine expected lifetime

utility over a small time interval [0, t]:

(46) V25 =17: — wbz -st11+(l — polPZSIerl + (I — st10st1

Note that (l-pt) z e_p t. Equation (4) is obtained by solving (4a) for V5 and evaluating it

as t—rO.
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p.702) from susceptible to infected, P25[[ sz- V25]. Equations (5) and (6) have analogous

interpretations. Equations (4)-(6) can be solved simultaneously for V25 , V21 , and V2E

as functions of the behavioral strategies, the states of the world, and model parameters.

Now consider the szk terms. P251 is the transition rate to the infected state,

which can be obtained from equation (1) as P251 = bz601 + (l — bz )611 .5 Similarly, the

transition rate from the infected to the empty state is PzIE = rz +(1— rz )q. Finally, the

transition rate from the empty state to the susceptible state is PZES = 8 .

Three types of regulatory costs may arise in various states of the world. First is a

per unit “penalty”, x, based on the number of new infections in the region,

[b60 + (1 - b)61 ]SI , and imposed on all operating (non-empty) farms. Hence the total

expected penalty for each farm is [b60 + (1 — b)61 ]SIx . This group penalty can be

thought of as the private economic cost of government sanctions that affect all operations.

For instance, all farms in the non-bTB free area in Michigan—regardless of infection

status—incur private costs as a result of dealing with government testing, movement

restrictions and stringent testing rules for trade in live animals that go uncompensated by

the government. The penalty intensifies progressively as more new farms become

infected and is gradually reduced (to a level that is effectively zero) when the number of

new infections is reduced, reflecting the fact that government responses tend to be

commensurate with the nature of the disease event. For endemic diseases that regularly

 

5 Note that while farmers are forward-looking and P251 is state-dependent, we do not

suppose that individual farms have perfect foresight about states that are beyond their

own control. Instead, farmers (naively) assume the current state of the world will persist.

This is a common assumption in decentralized models of resource use (Clark 1990).
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occur with low frequency in the population, there may be almost no government

intervention unless the number ofnew infections is increasing so rapidly as to indicate

potential economic disruptions or a coming epidemic.

The second type of penalty is imposed only on infected farms that report. Farms

that self-report infection are penalized at the rate f, wherefis a net cost incurred after

govemment-provided indemnification. Reported infection in our model results in herd

depopulation, resulting in an asset loss ofA. The government may provide some level of

indemnification for these losses. In the United States, the status quo federal policy is to

indemnify producers based on the disease-free fair market value of animals. Specifically,

indemnities are paid to livestock owners whose herds are depopulated—regardless of

whether reporting occurred or not—to compensate for the legal taking that has occurred

under the US. Constitution and to encourage reporting (Ott 2006). Currently, all

indemnification is “. . .equal to fair market value assuming disease-free status” and this is

intended to reduce “claims by livestock owners. . .that they didn’t receive full value for

their animals” (Ott 2006, p.72). Suppose indemnities are paid as depopulation occurs in

the infected state. If they are paid at the rate A, thenfrepresents transaction costs

associated with government intervention and business interruption.6 If indemnities are

paid at a rate less than A (or not at all), thenfreflects these additional losses.

The third type of penalty is incurred by infected farms that do not report and are

discovered, at rate q. These farms are penalized at the rate g>f The transaction costs of

dealing with animal health authorities are larger under the non-reporting case, and this is

 

6 Technically, fixed costs associated with business interruption would arise in the empty

state. Without loss, we economize on notation by accounting for the discounted value of

these costs at the time of reporting in the infected state. We make similar assumptions

with respect to the cost g, defined below.

80



reflected by the larger value of g. The larger penalty under the non-reporting case

provides some incentives to report, but may not guarantee reporting if farm losses 5 and

the expected cost of being caught, (1-r)qg, are insufficiently large relative tofl Given

these types of penalties, the state-dependent regulatory costs are written as G2E = O , and

(7) 025 = [6.30 + (1 -b)fll 151x

(8) 021 = [660 +0- 1061151x + rzf + (1 - rz )qg -

Given the model specification, we can derive V28 (bz , b,rz , I,S) ,

V21 (bz ,b,rz,I,S) , and V2E (bz ,b,rz , I,S) and use these to determine Optimal levels of

biosecurity and reporting. As indicated above, a farm’s biosecurity and reporting

decisions are made at each point in time based on the farm’s current disease state. The

biosecurity decision is only made by susceptible farms because, once infected or emptied,

biosecurity investment yields no private benefits. The decision of whether or not to

report infection to animal health authorities is only made by infected farms, whereas

susceptible and empty farms face no such decision.

Consider the biosecurity decision. The marginal return to biosecurity for a

representative farm at an individual point in time is given by 6V2S /6bz and the optimal

biosecurity strategy b; (b,rz ,I,S) is the solution to 6st / 6bz = 0. However, there is

no closed-form solution.7 Numerical evaluation of VzS (bz ,b,rz , I,S) suggests that it is

monotonic and approximately linear in bz for a wide range of feasible values of b, r2, 1, S,

 

7 If there was, then biosecurity investment dynamics would be derived from taking the

time derivative of b; (b,rz ,I,S). Without a closed form solution, it is impossible to

derive analytically the behavioral dynamics given by dbz/dt, and any dynamic analysis

based on numerical methods is complicated significantly.
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and model parameters. We therefore develop an approximation of VzS . Using a linear

combination ofthe known endpoints V21; (b,rz , 1,5) = VzS lbz =1: V25 (1,b,rz , 1,5) and

VZIgB (b,rZ,I,S) = VzS lbz :0: V25 (0,b,rz,I,S), we approximate V35 at each point in

time according to I725 = b2 Vzg. + (l — bz )Vzlng . We then use replicator dynamics to

model inter-temporal changes in behavior.

An analogous approach is used to model the reporting decision. As this decision

is made in the infected state, we approximate V2] by 172] = rz V21; + (l — rz )VzlyR , where

V21; (bz,b,1,S) = V21 [,2 =1: VZ,(bz,b,1,1,S) and

V21)” (bz,b,l,S) = V21 [,2 =0: V21(bz,b,O,I,S).

Biosecurity Dynamics and Strategic Effects

We now focus on the biosecurity decision and introduce replicator dynamics (Fudenberg

and Levine 1998 ; Rice 2004; Weibull 1995) to describe the change in the aggregate

frequency of biosecurity adoption, b. In a symmetric equilibrium of bz = b (Rice 2004),

b increases when the expected lifetime income from adopting the pure strategy b=1

exceeds the average expected lifetime income associated with the current distribution of

biosecurity strategies

6 B — ~
(9) Z = a[VS -VS] :> b =ab(1—b)[VSB —V§VB],

where 01>0 is a speed of adjustment parameter. Equation of motion (9) indicates that

frequency of biosecurity adoption is increasing (decreasing) when the expected lifetime
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utility from always investing in biosecurity exceeds (is less than) the expected lifetime

utility from never investing in biosecurity. From the definition of 1725 , the term

VB VNB
S — S equals the marginal value of an individual’s biosecurity strategy,

(‘3st / abz, in a symmetric equilibrium. Accordingly, from (9) the sign of b is

determined by the sign of this marginal value.

Consider the b = 0 isocline, which implicitly defines the equilibrium proportion

of farms that invest in biosecurity, conditional on the current values of other state

variables. Three values of b potentially satisfy b = 0: b=0, b=l, and

* B NB _ . . . i. . .

b (S,I,r) 3 VS — VS —- 0. The equlllbrlum b 1S of partlcular lmportance, as

movement away from b. determines the sign of VS]? — VSNB and therefore the sign of b

in this neighborhood and also the stability of the various equilibria. Specifically, we are

interested in the sign of 6W? — VbyB )/6b in the neighborhood of b*.

Given that the term VS? — VSVB equals the marginal value of an individual’s

_VNB
biosecurity strategy, the derivative 6(VSB )/ 6b represents how an individual’ 5

marginal benefits from biosecurity, _ . . , are impacted by an increase in aggregate

biosecurity adoption, b:

621725 _ 6(81725 whz)-

6b26b 6b

B NB)

a(st st _()6+6)(6+77)x62-677512081 60)2 >0

ab 1(flo)x(fll)

 

(10)
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where 77 = q(1- r2) + rz > 0 and ZCBk) = —6i7616k + (77p + p2)(p + e + 16k )}< 0 (for k

=0,l). The positive derivative in (10) indicates that an individual has greater incentives

to adOpt biosecurity when it is being adopted more by others in the region — a behavioral

externality. Specifically, biosecurity investments are strategic complements when x>0,

and biosecurity is neither a strategic complement nor a strategic substitute when x=0.

The strategic complement property means that VS? — VSNB > 0 for b>bi and

:1:

VS? — VéVB < 0 for b<b .8 The Opposite would hold if b was a strategic substitute

(though this case does not arise in our current specification). If b is neither a strategic

complement nor substitute (x=0), then the term VSB — VSNB does not depend on b and,

other things equal, there are only two potential equilibria; b=l or b=0.

The dynamics for the case of strategic complementarity are depicted in one

dimension in Figure 3.1, holding I, S, and r fixed. Arrows denote the direction of

:1:

behavioral dynamics for a given value of b relative to b (ceterus paribus). In Figure

1]:
III

3.1a, b e (0,1) is unstable, while b=0 and b=1 are both locally stable. While b

represents a point of indifference between biosecuring and not (i.e., VSB — V‘SNB = 0 ), it

is also a critical point at which the marginal incentives to biosecure change (all else

:1:

equal). Starting at b , if one person were to adopt just a little more biosecurity, then this

increases the marginal value of biosecurity for everyone else, triggering others to increase

 

8 The case of strategic substitutes could arise if farms undertake biosecurity actions to

prevent infections from leaving their farm. Farmers will not generally make such

investments if the primary benefits accrue to others, at least in the absence of government

programs to create incentives for this.
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their investment in biosecurity. This process snowballs until everyone is an adopter. The

r]:

opposite occurs if, starting at b , one farmer were to adopt just a little less biosecurity—

the marginal value would decrease for everyone and aggregate investment would

III

diminish until no one invests. In Figures 3.lb and 3.1c, b lies outside the unit interval

and is therefore not a feasible steady state, but remains relevant for determining the

stability properties of the other equilibria; b=l is globally unstable and b=0 is globally

stable in Figure 3.1b; b=0 is globally unstable and b=l is globally stable in Figure 3.1c.

Analogous figures could be drawn to illustrate strategic substitution by drawing

*

all arrows in opposite directions such that b in Figure 3.1a is stable—if one farmer were

to adopt just a little less (more) biosecurity, the marginal value of biosecuring increases

(decreases) for everyone and aggregate investment would increase (decrease) until the

equilibrium is re-established. This is consistent with conjectures made about the nature

of “out-of-equilibrium dynamic adjustment” in Hennessy (2007, Figure 1, p.704) where

biosecurity actions are strategic substitutes. Finally, if b is neither a strategic

complement nor substitute (x=0), then the sign of VS? — V55VB is fixed for a given I, S,

and r, and b will increase or decrease accordingly until b=l or b=0.

So far in our analysis of biosecurity dynamics, as in previous analyses (Hennessy

2005, 2007), we have held I, S, and r fixed as we have discussed the stability properties.

Hence the probability of becoming infected is a stationary function of b. We found that

the system always moves to a comer for the case of strategic complementarities (which

are present in our model when x>0), and also for the case of no behavioral extemalities

(x=0). The case of strategic complementarities is of particular interest because policy
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makers seek to maintain incentives for adoption of biosecurity (and reporting). In the

context of the myopic model with I and r (and thus state transition rates) held fixed,

policies that shift b‘ to a value less than zero, so that b=l is globally stable (Figure 3.10),

are consistent with stated government objectives.

But I, S, and r are not fixed in the joint dynamic system. This means the

probability of becoming infected is non-stationary, and so assuming stationarity to derive

policy implications may lead to erroneous insights. It is important to consider the

interconnectedness of disease and behavioral dynamics. We focus in particular on

changes in I (and not in S, as S and I are generally inversely related), as this directly

affects the likelihood of infection and, in turn, the marginal incentives to biosecure. This

latter effect is given by

_ _ B NB

(11) 6(6st/6bz)=62st =5<st-st >>(,

61 6bz61 61 < ’

 

which is too complicated to report and analytically ambiguous in sign. As I changes the

III

incentives to invest are altered and this affects the critical value b and thus the basins of

attraction to the equilibria b=0 and b=1. Numerical evaluation of the sign of (1 1)

suggests that 62172S /(6b261) > 0 for “low” values of I, so that an increase (decrease) in I

results in a greater (reduced) incentive to invest in biosecurity. In particular, the

incentives to invest are low when the risk of infection is low, and so it may be difficult to

encourage sufficient, sustained investments to eradicate the disease. Numerical

evaluation of (l 1) also suggests that for “high” values of I the effect of increased

infection on the marginal return to biosecurity is 6217S /(6bz 61) < 0 , which means that
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an increase (decrease) in I implies there is a reduced (greater) incentive to invest in

biosecurity. The intuition behind this result is that once the prevalence of infection

reaches a certain level, the cost of direct (i.e., the group penalty) and indirect (i.e., via

transition probabilities to unfavorable economic states) behavioral extemalities becomes

such that the cost of further biosecurity investments exceeds the marginal benefits.

When we consider feedbacks between disease and behavioral dynamics the path

of economic choices over time is found to exhibit much more complex behavior than

suggested by analyses that treat I as fixed. While the usual static analysis of strategic

effects given by (10) indicates that biosecurity investments are strategic complements, the

joint dynamic system reveals that there are inter-temporal behavioral effects not

previously identified in the literature. Because of the inter-temporal relationship between

b and I and given that the marginal effect of disease prevalence on the marginal incentive

to invest in biosecurity operates in different directions based on the level of I (which is

changing over time), we find that aggregate investments in biosecurity in earlier periods

are inter-temporal substitutes for investments in later periods when prevalence is “low”,

while prior period aggregate investments in biosecurity are inter-temporal complements

to investments in later periods when prevalence is “high”.9 To avoid confusion, however,

we use the term behavioral extemalities to refer to the familiar strategic effects

represented in equation (10), and we use the term infection extemalities to refer to the

 

9 Hennessy (2005, 2007) modeled biosecurity investments as being strategic substitutes

for spreading diseases. The reason for this assumption was not clearly articulated, but it

might stem from the stationary disease risks in his models — that is, the lack of infection

dynamics. One important way (possibly the only way) a neighbor’s biosecurity actions

can substitute for one’s own is if the neighbor’s actions first prevent infection on his

farm, which in turn prevents infection spreading to one’s own farm. When infection

dynamics are not modeled explicitly, then the inter-temporal nature of these two

processes cannot be distinguished.
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inter-temporal effects represented in equation (11).

Finally, consider the case of no strategic effects (x=0). Holding 1, S, and r fixed,

*

equation (9) suggests there is no interior steady state b . But when I, S, and r are allowed

to change, then it is possible for these values to stabilize at levels such that

VS? — VSNB = 0 . If and when this occurs, b = O and b will stabilize at whatever interior

value achieves the steady state.

Reporting Dynamics

Now consider reporting dynamics, assuming a symmetric equilibrium with rz = r. The

replicator dynamics for reporting are defined analogously to those for biosecurity and

produce an analogous result: frequency of reporting is increasing (decreasing) when the

expected lifetime utility from reporting exceeds (is less than) the expected lifetime utility

from never reporting,

(12) E=erIR —I711=> r' =rr(1—r)[V,R -—V,NR1,

where 7>0 is a speed of adjustment parameter. As with the biosecurity case, the term

VR_VNR
I I equals the marginal value of an individual’s reporting strategy, 672I /6rz ,

in a symmetric equilibrium. Hence, the sign of r is determined by the sign of this

marginal value. But in contrast to the behavioral extemalities influencing biosecurity

dynamics, there are no reporting extemalities because others’ reporting actions r do not

influence farm z’s expected asset value (i.e., 617:, /6r = O ).

Because there are no reporting extemalities, there is no interior equilibrium for r.

Rather, when r e (0,1) , reporting is either always increasing or decreasing over time
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depending on the relative magnitude of asset values given by the sign of 617, /6r_.. That

is, the direction of the reporting dynamics is determined solely by the condition

VIR (b,1,I,S) — VINR (b,0,I,S) > (<)0 :> r' > (<)0.

Numerical Simulations and Model Comparisons

We now develop a numerical example to simulate the model described above, which we

refer to as thejoint model. We also simulate two other models to illustrate how the joint

model differs from prior work, and to highlight the importance of including feedbacks

between the disease and behavioral models. We define an S-I-only model that treats

economic choices as fixed parameters, and we define a behavior-only model that treats

infection probabilities (szk) as fixed parameters. In each model, the simulation begins at

the same initial values for all state variables. In the joint model, all behavioral and

disease variables are updated endogenously according to equations (1a)-(3a), (9), and

(12). With this structure, there are feedbacks between economic choices b and r and

disease states S, I, and E. In the S-I-only model, economic choices b and r are fixed

parameters (i.e., b = r = 0) while disease states are governed by equations of motion (la)-

(3a). In the behavior-only model, S and I are fixed parameters (i.e., I = S = E =0) while

the rate of change in biosecurity investment and reporting are governed by equations of

motion (9) and (12), respectively.

Besides shedding light on the results of traditional approaches that treat either

behavior or disease risks as fixed, comparisons across the three models for different

values ofx also helps to illustrate the role of the strategic effects. In the absence of
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behavioral extemalities (x=0), (XV: — VSNB )/ 6b = 0 so that biosecurity investments are

neither strategic complements nor strategic substitutes. Also, there are no infection

extemalities in either the behavior-only model (in which I is fixed, so as not to affect

behavior) or the S-I-only model (in which b is fixed, so as not to be influenced by

changes in 1). Infection extemalities do arise in the joint model, as changes in I affect the

marginal incentive to invest in biosecurity in each period.

Table 3.1 lists variable descriptions and the baseline parameterization used in all

numerical simulations in order to facilitate comparison of results across models given the

same starting values. The initial values for the behavioral variables in the baseline case

were selected so that farms are equally likely to invest in biosecurity (report infection)

and not invest (not report). The starting values for the disease states reflect a situation

where infection in a region has risen to a level where government chooses to intervene to

limit losses from the endemic disease.

The long run (steady state) results that emerge for each model are illustrated in

Figure 3.2. State variables are listed on the vertical axis and the results for each (in terms

of proportions of farms) are represented as bars. In the S-I-only and behavior-only

models, solid bars denote variables that are endogenous and striped bars denote variables

that are treated as fixed parameters.

In the S-I-only model, farms invest (do not invest) in biosecurity and report (do

not report) infection with constant, equal probability. The steady state is reached very

quickly, with endemic infection on about one-third of farms and less than half of farms

being susceptible. High rates of infection in the long run are due to the lack of behavioral

response to infection risks. Also note that about one-fourth of farms are depopulated in
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the steady state as a result of the high level of infection that persists through the region.

This seems like a rather unlikely outcome when depopulation is used to respond to

discovered or reported infection for diseases that may become endemic to regions of the

US.

In the behavior-only model, the steady state consists of maximum biosecurity

investment and reporting rates (b = r =1 in Figure 3.2), due to the constant high rate of

infection that does not respond to behavioral choices. The steady state is reached even

faster than in the S-I-only model, also via a direct approach path.

Results of the joint model differ notably from both the S-I-only and behavior-only

models. The first difference arises in the steady state results because the joint model

accounts for feedbacks, which allows disease and behavioral outcomes to respond over

time. In the steady state, nearly all patches are non-infected (S=0.95), with very low

endemic infection and an equally low proportion of empty farms (I=E=0.025). This

contrasts markedly with the proportions of infected and empty farms in the behavior-only

and S-I-only models. Biosecurity (b=0.72) is at an intermediate level in the steady state:

it is less than in the behavior-only model because infection risks (a function of I) are

reduced as a result of prior biosecurity investments, reducing later incentives to invest;

biosecurity is greater than in the S-I-only model because in the joint model farmers can

respond to disease risks by increasing their level of investment. Reporting strategies

(r=1) are the same as in the behavior-only model, and greater than in the S-I-only model

so as to reduce the expected fine from getting caught in a non-reporting, infected state.

The second difference between the joint model and the other two models, due to

infection extemalities in the joint model, lies in the approach path to the steady state.
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Specifically, the approach path for each state variable in the joint model (i) exhibits

dampened oscillations (Figures 3.3 and 3.4a), unlike the other two models, and (ii) takes

a much longer time to reach the steady state relative to the other two models, which

approach their equilibrium levels quickly without any overshooting (not pictured). The

oscillations result from the inter-temporal feedbacks between disease states and economic

behavior: the response of infection dynamics to changes in behavior and the infection

extemalities present in the behavioral dynamics (expression (11)). In particular, the sign

of(11) is positive in our simulation due to sustained low levels of endemic disease. This

indicates that the marginal incentives to invest (divest) in biosecurity are increasing

(decreasing) when I is increasing (decreasing). Thus, when I rises (falls) to a certain

level, b rises (falls) in the population (as in the blown-up section of Figure 3.3). For

instance, suppose b was rising in response to increased infection. In turn, these greater

biosecurity levels reduce the force of infection and there is a decline in I . If the

investments change the sign of I , then the magnitude of b will also begin to fall and

could eventually change signs. The result is a series of oscillations until a steady state is

reached. The process of overshooting the steady state greatly prolongs the period of

adjustment before the system settles down.

Now consider altering the baseline scenario by setting x>0. This group-penalty

scenario allows us to evaluate the effect of behavioral extemalities on system dynamics

in the different models. Because behaviors are fixed in the S-I-only model, there is no

change in this model relative to the baseline parameterization. We also find that

introducing behavioral extemalities has an unnoticeable effect in the behavior-only model

(not pictured); b and r both move to one very quickly. The effect of introducing
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behavioral extemalities (for example, x=4 in Figure 3.4b) does however have significant

effects on dynamic outcomes in the joint model. In particular, by introducing strategic

complementarities within periods, the jointly-deterrnined dynamic system no longer

reaches a steady state: overshooting persists indefinitely. Strategic complementarities

exacerbate the volatility of the system sufficiently that the system no longer settles down.

In contrast to the dampened oscillations observed in the baseline parameterization with

no extemalities (Figure 3.4a), biosecurity investment and disease states fluctuate

erratically following a path consistent with dynamic chaos over a bounded range of

values for each individual state.

Further sensitivity analysis (increasing x to 10) indicates that (i) the range over

which disease (not pictured) and biosecurity strategy states fluctuate chaotically is

increasing in x (compare Figure 3.4c to Figure 3.4b), and (ii) the strategic

complementarities are increasing in response to changes in I (i.e.,

[(6%ng — VbyB )/ 6b) / 61 > O ), or equivalently that the infection extemalities (or the

inter-temporal complementarities) are increasing in response to changes in b. In

particular, this second effect implies that the speeds of adjustment of both b and I are

increased, and this can be seen by the increased frequency of oscillations over the same

length of time in Figure 3.4c relative to Figure 3.4b. The overall effect on the joint

system of increased group costs x associated with government response to infection is to

increase the variance of disease and behavioral outcomes over time.

Discussion and Conclusion

There are four main implications of this research. First, when we account for feedbacks
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in jointly-determined dynamic systems, it can yield insights not captured by myopic

models of disease or economic behavior. Such insights include the distinction between

behavioral and infection extemalities and the expectation that it may be difficult to

achieve an eradication objective without adjusting government actions over time. For

instance, the need for a shift in policy to achieve eradication has been suggested for the

bTB problem in New Zealand (Livingstone, et al. 2006), which has had a similar

experience to that in Michigan. The US experience with scrapie eradication in sheep

provides one example of a (bounty) program that had to adapt over time in order to

eventually achieve eradication (Kuchler and Hamm 2000).

Second, by jointly modeling disease and behavioral dynamics the endogeneity of

infection risk is captured. When we account for feedbacks in co-deterrnined systems, the

influence of economic choices on infection risks is taken into account and transition rates

between economic states are non—stationary, affecting the inter-temporal tradeoffs that

arise. The notion of endogenous risk may also be instructive in thinking about

government response to widespread infection in the presence of extemalities.

Third, if economic damages from disease are assumed to be convex, then the

finding of greater variation in endemic disease levels from our simulations can be

expected to result in greater sustained average costs associated with disease in the region

affected. It is important to note that the origin of these costs in our model lies in the

structure of government disease control and indemnification policies because movement

restrictions impose costs on all farmers in a region but only infected farms that are

depopulated to control disease are compensated for their losses. This is an element

common to standing disease eradication programs as well as government response to
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foreign animal disease outbreaks with the potential to have market-level impacts.

The final implication of this research is the critical need for data necessary to

parameterize models of this kind to analyze specific cases, as has been done in social

planner oriented models, like those developed for Foot-and-Mouth disease in the US

(Kobayashi, et al. 2007a,b) and France (Mahul and Durand 2000; Mahul and Gohin

1999). When data are available for a particular disease and geographical area, it may

even be possible to integrate disease epidemiology with decentralized strategic

interactions to better inform models of optimal allocation of public resources to respond

to an epidemic. In developing our numerical simulations we were made aware of the

general lack of empirical estimates of inter-herd disease transmission coefficients and

longitudinal data on livestock disease prevalence trends or farmer behavior necessary to

parameterize such a model. Without such data available, it will remain impossible to

evaluate the performance ofjoint disease ecology-economic models which is necessary in

order for such models to be of greatest use for policy making or economic decision

making purposes.

95



Appendix C

Table 3.1. Baseline Modeling Parameters for the S-I, Behavioral, and Joint Model

Simulations

Parameter or

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Description State Variable Value

Underlying disease transmission coefficient applicable when BO 0.25

invest in biosecurity

Disease transmission coefficient applicable when do not B1 3.1

invest in biosecuritL

Probability infection is discovered when don't report to Q 0.5

animal health authorities

7! 100

Instantaneous income flow at each point in time

W 10

Cost of biosecurity

6 40

Cost of infection

Per unit “penalty” imposed on all farms based on the change X 0

in overall infection

F 40

Cost of reporting infection

Cost of getting caught not having reported infection (with G 80

probability q)

p 0.05

Discount rate

Speed of adjustment parameter in the biosecurity strategy or 0.5

replicator dynamics

Speed of adjustment parameter in the reporting strategy 7 0.5

replicator dynamics

Reporting strategy on farm z, aggregate reporting rate in the r(0) 0.5

population

Biosecurity investment strategy on farm 2, aggregate rate of b(0) 0.5

investment

[(0) 0.4

Infected proportion farms

E(0) 0.3

Empty proportion farms; Eo=r010+(l-r0)10q

8(0) 0.3

Susceptible proportion farms

8 1.0

Transition rate from empty (depopulated) to susceptible
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Figure 3.1. One-Dimensional Illustration of Strategic Complementarities in Biosecurity

b, When S, I, and r Are Held Fixed: (a) b=0,l are both stable equilibria; (b) b=0 is the

only stable equilibrium; (c) b=1 is the only stable equilibrium.
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Figure 3.4. Time Paths for Biosecurity Strategy, b(t), Under Joint Model: (a) No

behavioral extemalities (x=0); (b) “Small” behavioral extemalities (x=4); (0) “Large’

behavioral extemalities (x=10)
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