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ABSTRACT

GENERALIZED FINITE ELEMENT NIETHOD

FOR ELECTROMAGNETIC ANALYSIS

By

Chuan Lu

The generalized finite element method (GFEM), first introduced by Babuska, is

a partition of unity-based solver for scalar partial differential equations (PDEs). To

date, they have been applied extensively to the solution of elliptic and parabolic

PDEs. This technique is a generalization of a host of well known methods for

solving PDEs, specially the classical finite element method(FEM), element free

galerkin(EFG), hp clouds, etc. The main goal of this dissertation is for developing

a similar methodology for vector electromagnetic problems. Developing a solution

to these problems necessitates addressing the following problems: (i) The vector

nature of the problem and the different continuity requirements on each component

imply that basis functions developed should share similar characteristics; (ii) The

basis functions have to be able to represent divergence free electromagnetic fields

(in a source free region). (iii) Development of appropriate boundary conditions to

truncate the computational domain is necessary. (iv) High condition number of the

resulting system also plagues GFEM solver, as it does other high order solvers. So-

lution to these problems, and the developments of the GFEM solver is presented

here for both time and frequency domains. In any case, the h- and p- convergence

Of the method is presented.
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CHAPTER 1

INTRODUCTION

Computational electromagnetics has grown over the last few decades, in terms of

both development of the underlying tools and application to the design of practical

systems. Typical methods of analysis are either based on integral equation or dif-

ferential equation. As is well known, method of moment(MOM) and other integral

equation—based method is expensive in terms of both memory and CPU-time. Aug-

menting this with fast multiple method(FMM) has considerably alleviated the cost.

In differential equation based methods, the most popular are the finite difference

time domain(FDTD) and finite element method(FEM).

The state of art of FEM tools [1] for electromagnetic analysis has grown by leaps

and bounds over the past few decades. Classical methods require an underlying

tesselation on which basis functions are defined. These basis functions are based

on a span of polynomials, have finite support, and obey conditions at inter-element

boundaries. For instance, Figure 1.1 shows the discretization of elliptical computa-

tion domain. Here, the edge of the meshes coincide with each other and they also

coincide with the boundary of the computation domain as well.

 

Figure 1.1. Meshes for FEM

In classical FEM, the basis function is interpolatory. FEM solvers using this



basis have found widespread applications in solving problem in mechanical injury,

stress strain, vibration analysis, heat transfer, etc [2, 3]. In the electromagnetics,

early application Of FEM did focus on directly using these space of functions [4, 5].

However, it was discovered that these basis functions do result in spurious modes as

some conditions in the E and H are not satisfied. Furthermore, it is not possible to

readily impose the boundary conditions.

Fortunately, vector basis function, e.g. edge element vector developed in 19803

[6, 7] is free of all the previous shortcomings. The zero order basis function is

divergence free, as its tangential component is continuous across the edge Of the

mesh. In homogeneous domain, the normal component Of the basis function is not

continuous across the edge of the mesh, but the continuity of the normal component

of numerical solution is enforced by the variation formula of the vector wave equation.

High order vector basis function are defined in two ways: hierarchical [8] and

interpolatory [9]. Both have continuous tangential component cross the edge of

the mesh, but they are not divergence free. Until now, high order basis functions

have been continually refined [10, 11]. Likewise, basis functions that can be used

in a h, p—convergence setting have been presented and applied to several engineering

problems. Indeed, in a series of excellent papers, it has been shown that it is possible

to have true h, p—convergence [12, 13].

But there are some limitation of classical FEM, that may prove to be a bottleneck.

First, it requires a simplical structure. The edge of the mesh has to coincide with each

other and the edge of the mesh has to coincide with the boundary of the computation

domain as well. Having good quality meshes is also necessary for accuracy of the

FEM solver. Both properties make mesh generation laborious and time consuming.

When millions of unknowns are needed, time required for mesh generation might

be over 90% of total CPU time. Developing h,p—convergence meshes or analyzing

time varying phenomena that requires re—meshing at every time instant can be even

more laborious. Another handicap of classical FEM is that the ansatz space used



to approximate the local behavior is a span of polynomials. It implies that solving

problems in non-Lipschitzian domain is difficult. This is due to the fact that the

field or its derivative are singular at the geometric singularity. This can not be

simulated well by a span of polynomials even in dense meshes. If analytic local

behavior is known, then it might be possible to use functions other than polynomials

to approximate local behavior.

Those limitations result from the inter-element continuity requirements. The

polynomial basis functions can enforce the requirements by its conforming property.

There are still a variety Of methods to realize it with non-polynomial basis. One

is proposed by [14, 15]. Around the geometric singularity, there are one layer of

meshes supporting the singular basis functions. Those basis functions are conformal

to the neighboring regular elements. In this approach, the size of such meshes has

to be almost one wavelength. Another category of totally different methods, hybrid

methods, can construct the local function space in each mesh separately based on

the physical analysis of the solution and enforce the inter element continuity require-

ments by additional constraints [16, 17]. In [16], lagrange multiplier is introduced

to enforce it. This results in a larger linear system cause of the addition unknowns

related to the multipliers. Stability consideration also links the number of unknowns

related to basis functions and the number of unknowns related to multipliers.

In this dissertation, I will introduce a new method that is free of the men-

tioned shortcoming. This method will be referred to as the generalized finite ele-

ment method(GFEM)[18]. Comparing this method with regular FEM and hybrid

methods, regular FEM enforces inter element continuity requirements by conformal

finite elements but lacks the capability of physics of the problem. Hybrid methods

have the freedom of choosing local approximation but additional constraints between

elements are necessary. In one of hybrid methods, the function space for multiplier

has to be defined carefully. GFEM shares both of the above advantages, e.g. any

function space can be chosen to fit for the prior knowledge with conformal elements



enforcing the inter elements continuity requirements intrinsically which is free of

above drawbacks.

GFEM belongs to the category of meshless methods [19]. The starting point of

Meshless method is smooth particle hydrodynamics (SPH) method by Lucy in 1977

[20], The objective of meshless method is to eliminate the mesh generation proce-

dure by constructing the approximation around the nodes. After that, the rate of

publication about this topic was very modest until about the 19903. In 1992, Nay-

roles [21] used the moving least square (MLS) approximations in a Galerkin method

and called his method diffuse element method (DEM). Two years later, Belytschko

[22] redefined and modified this method, and called it element free galerking(EFG).

In 1996, there was a leap forward in the development of meshless methods with the

introduction of GFEM by Babuska and Melenk [18, 23]. This method is based on

partition of unity ftmction and propose to a very powerful extension of the EFG

approximation. In the same year, Duarte and Oden [24] extend the concept of par-

tition of unity function to the MLS shape function and called it hp-cloud method.

With this improvement, the EFG method based on MLS can be regarded as special

instance of GFEM.

While meshless methods are well developed in some research area such as me-

chanical engineer, civil engineer, etc, they are largely used to solve scalar equation

and usually solve the elliptic or parabolic PDEs. More specifically, it is used for

specialized application such as crack propagation, etc [25]. The application of this

technique to solving problems in electromagnetics has not been extensive. Prin-

cipally (this is not a complete list), research has been conducted by [26—37]. The

work in this area by Shanker and his colleagues revolved around developing meshless

methods for solving the diffusion equation in both the frequency and time domain as

applied to non-destructive evaluation [27—29]. The basis functions used in this analy—

sis relied on the element free galerkin method (EFG) [19]. The method, particularly

its scalar implementation, has been gaining a foothold in the research landscape



insofar as application to magnetic field analysis. Recently, they have explored the

viability of suitably modifying the EFG method to enable the analysis of vector

fields [31] and have deve10ped meshless-PMLS to enable the analysis of open region

problems [38] within the context of the EFG method. However, while the EFG

method can be thought of as a subset of GFEM, it does not lend itself readily to

hp—adaptivity, whereas this is inherent in other GFEM methods.

The above solvers are developed for the scalar differential equation. As was men-

tioned earlier, extending this to the vector differential equation that are encountered

in EM results in spurious modes. These modes can be readily identified by studying

the eigenfunction of same Operator for defined geometry. Two kinds of modes can

be distinguished. One is divergence free and another has high divergence value. The

latter non physical modes plagued EM simulation and is known as spurious modes.

The main reason of spurious problem is that the scalar FEM can not impose the

divergence free criteria and satisfy the continuity requirements intrinsically. In clas-

sical FEM, several ways have been suggested for years to remove the spurious modes

in FEM such as penalizing the divergence [39, 40] or using divergence free criteria to

reduce 1/3 of dependent unknowns in three dimension[41—43]. The introduction of

Whitney basis function, that is divergence free and tangentially continuous, provided

the method to overcome this deficiency.

It follows from the above discussion that the vector GFEM solver should satisfy

the following criteria:

The basis function developed should be able to approximate the field which

is (i)divergence free (ii)satisfying all the continuity requirements on the material

interface.

Except for the spurious problem, another problem is to impose essential boundary

condition in GFEM solver when it’s trivial in classical FEM. It also results in the

difficulties to implement the boundary integral techniques with EFIE formula.

Another problem that plagues GFEM, as it does any higher order method is the



condition number Of the resulting system. Indeed, this is more of a problem here as

opposed to classical FEM as the space of basis functions is not interpolatory.

Tsukerman [35] tried to develop the vector basis function which can be used in

a GFEM solver, but he did not demonstrate the convergence of the GFEM solver

and the basis function can not handle inhomogeneous domain.

The objective of this dissertation is to develop vector GFEM method for EM

analysis. The new method should be able to simulate the vector fields with high

order accuracy. The principal goals of this research are as follows:

0 Develop a scheme for implementing GFEM for the Helmholtz equation.

0 When solving closed domain problem, an adaptation of Nitsche’s method is

developed for implementing the Dirichlet boundary condition. When solving

open domain problem, the hybrid GFEM-BI method for domain truncation is

developed.

0 Develop vector basis function to approximate the divergence free field in ho-

mogeneous domain and prove bounds on their convergence.

0 Develop basis functions for inhomogeneous domain that will enable the sat-

isfaction of boundary conditions across flat and curved material interfaces.

These conditions will be on the tangential components of the fields and their

normal derivatives, and the normal component Of the fields and their nor-

mal derivatives. We will mathematically prove the accuracy of the proposed

method and demonstrate the convergence of the method for two dimension

and three dimension.

0 Develop a preconditioning scheme tO solve the ill—conditioned system resulting

from the high order system, and derive error bound and cost Of this scheme.

0 Develop time domain GFEM solver and prove and demonstrate the conver-

gence of this method.



o Propose high order time stepping schemes based on approximate prolate

spheroidal wave (APSW) and analyze the stability of the high order time

stepping scheme. Demonstrate the convergence of the proposed scheme.

This dissertation is organized as followings: in the chapter 2, basic framework of

GFEM method is introduced. The techniques for imposing different boundary con-

ditions for both Open domain and closed domain are elucidated. In chapter 3, vector

GFEM method is developed for homogeneous domain and piecewise homogeneous

domain with flat and curved material interface. The convergence of the solver will

be proved and demonstrated in both two dimension and three dimension problems.

A preconditioning scheme is also introduced in the same chapter with error bound

and running cost provided. In chapter 4, high order time stepping schemes are pro-

posed and demonstrated in two dimension and three dimension. Stability of high

order time stepping schemes are analyzed. Finally, in chapter 5, a surmnary of the

work and area for future research are collected.



CHAPTER 2

SCALAR GENERALIZED FINITE ELEMENT METHOD

2.1 Introduction

Intuitively, GFEM solver works as follows: the domain being considered is parti-

tioned into a union of patches or a “partition of unity,” and on these patches, the

local approximation is constructed using a span of ftmctions [44]. Thus, the repre-

sentation of the ftmction is achieved via two functions; one that is defined on the

partitions of unity and the other on each of the patches. The basis functions describ-

ing the unknowns inherits the higher order nature of approximation from the local

basis functions and the smoothness Of the functions defined on the partition of unity.

As with classical FEM, using a span of different local approximations in different

regions is also possible. Thus, GFEM retains several features Of classical FEM, pro-

vides additional flexibility in terms of functions that are used and obfuscates the

need for a simplical partition of the domain.

The mathematical foundation of GFEM has been laid out in great detail [18, 23,

45], and it has been shown that h—, p- and hp-adaptivity is easily achieved. Likewise,

the efficacy of using a space of harmonic functions as local approximants have been

demonstrated [45]. Nevertheless, when some meshless solver has been developed for

solving the diffusion equation in both the frequency and time domain as applied to

non-destructive evaluation [27-29], it does not lend itself readily to hp—adaptivity.

Proper understanding of the sources of error and the means through which one

may control them is important. We have found that in most of the implementation,

reason that the convergence is not of the same order of the underlying scheme is

largely due to the improper imposition of boundary conditions. Proper imposition

of boundary conditions within a meshless scheme is challenging. Unlike classical

FEM, the space Of approximation functions are not interpolatory. This poses severe



challenges in imposing Dirichlet boundary conditions. More specifically, one cannot

use the Lagrange multiplier technique as the approximation spaces have to obey

the inf-sup condition, and it is not always possible to construct such spaces for

meshless methods. This deficiency is directly linked to the difficulty in truncating

the computational domain using boundary integrals. This is due to two facts; (i)

to solve the hybrid problem, one typically defines an auxiliary set of basis functions

and unknowns to represent the tangential components of the fields [1]. It implies

from the above discussion [46] that these basis functions, together with those used in

the interior, should satisfy the inf-sup (Babuska-Brezzi) condition, and (ii) there are

practical situations wherein one uses a first kind Fredholrn integral equation as the

boundary is not closed. In these cases, the BI enforces a Dirichlet type condition.

Thus, the principal content of this chapter is four fold:

1. A scheme for implementing GFEM for the Helmholtz equation is presented.

2. An adaptation of Nitsche’s method for implementing the Dirichlet boundary

condition is developed.

3. Hybrid GFEM-BI technique for domain truncation for both open and closed

domains is presented.

4. Methodology wherein local boundary conditions can be integrated with

GFEM-more specifically, the perfectly matched layer (PML), is presented.

The development of this technique is a by-product of the need to have an ad-

ditional modality of validating the results obtained by the GFEM-BI scheme.

The rationale for embarking upon this specific problem is as follows: (a) This

approach presented in this chapter (basis functions/means to impose boundary con-

ditions, etc) can readily used for solution of quasi-static electromagnetic phenomena

and scalar wave equations; (b) It permits us to work out several mathematical and

numerical hurdles—the principal being the application Of Dirichlet boundary condi-
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tion and the accurate evaluation of integrals; (c) it is equally important to under-

stand the manner in which boundary integral based techniques can be hybridized

with this scheme. The advantage of hybridizing GFEM with BI is readily appar-

ent; it imposes an exact boundary condition for open domain problems, and the

computational cost can be amortized using recent advances in the integral equation

technolog, namely the fast multipole method or a host of FFT-based schemes.

This chapter proceeds along the following lines; in the next section, we formulate

the problem in detail. Here, we introduce the concepts of GFEM, discretization of

the domain, basis functions, methods for integration, and methods for implementing

various boundary condition. The last includes different types of boundary integral

techniques and a local absorbing boundary condition. Next, we demonstrate the

accuracy and convergence of the GFEM and GFEM-BI via a series of analytical

comparisons. We shall also demonstrate the accuracy of this scheme by comparing

the results obtained against those obtained by truncating the domain using a PML

as an absorbing boundary condition. Finally, we will demonstrate the advantages of

GFEM solver by scattering analysis with geometric singularity.

2.2 Basic framework of GFEM solver

2.2.1 Formula of basis function

Consider a multiply connected domain (2 whose interior boundaries are denoted by

60:: I‘ = U,- I‘i. It is assumed that this domain is embedded in a domain 96 and

its exterior boundary Fe is defined as Fe := (Te 0 5—). Interior to the domain {2, the

function u(r) satisfies

(v- [a(r)V] + w27(r)) um = All

3,- {u(r)} = 9,;(r) for r E F,- (2-1)

Be {u(r)} = 960‘) for r E Iwe
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In the above equations, it is assumed that r 6 Rd, 88 and B,- are differential op—

erators, and gz-(r) is the function that is imposed on Pi. Here, d = 2,3, and a(r)

and 7(r) are material parameters. The function of interest, u(r), is used to denote

the 2 component of either the electric or magnetic field. The rationale of defining

Fe explicitly is to impose appr0priate boundary conditions that enable the analysis

of scattering problems. The parameters a(r) and ,6 (r) can stand for either the per-

mittivity or permeability, depending on the variable that u(r) represents. Solution

to this problem using the standard finite element method requires an underlying

tesselation on which basis functions are defined. These basis functions are based

on a span of polynomials, have finite support, and Obey‘conditions at inter-element

boundaries. For instance, Whitney elements that are typically used in computational

electromagnetics satisfy either tangential or normal continuity across inter-element

boundaries. Higher order basis functions based on these elements have also been

presented and have been continually refined [10, 11]. Likewise, basis functions that

can be used in a h, p-convergence setting have been presented and applied to several

engineering problems. Indeed, in a series of excellent papers, it has been shown that

it is possible to have true hp—adaptivity [12, 13]. On the other hand, meshless meth-

ods attach a patch or volumina to each point whose union forms an open covering of

the domain. The local shape functions are constructed within each domain. Several

different flavors of these methods exists [23]. In this dissertation we will base our

development on the generalized finite element method (GFEM) [23].

Our presentation of the fundamentals of basis functions is a repetition of those

in [45, 47]. GFEM is based on a set of N nodes located at r,- in the vicinity of the

, domain 9 such that {1'13 6 Rd : L; 6 9,2' = 1, - - - ,N}. Associated with each of these

nodes is a patch or volumina denoted by $2,; of size h,- such that Q C Cg := U,- Q,-

and Q,- = {r 6 Rd: ||r — rill S hi} C Rd. Specifically, a patch 52,- is defined as

(2.,- = ®g=1 522(k), ng) = {1"(k) 6 IR,| r106) — TU“) IS hgk)}. Figure 2.1 describes

such a construction. Typically, there are no restrictions on the shape of the domain.
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TO a large extent, these are chosen depending on the underlying basis functions.

 
Patches

Figure 2.1. Construction of the computational domain.

Associated with each patch are basis functions that will be used for Galerkin

testing and source. The basis function is a product Of two functions, if),- (r) and

v,- (r): functions w,- (r) form a partition of unity subordinate to the cover (22;, and a

space of functions v,- (r) E span {222710)} that are local to the domain Qi-

The global approximation of the variable is then a space of functions denoted

by Vi(r) = ¢i(r)vz- (r). The basic theory of the GFEM method using this space of

functions was originally developed by Babuska and Melenk [45] and is summarized

below. Note that the definitions listed below are key to some of the proposed tasks.

Definition 2.1 :

Let Q 6 Rd be an open set, and let Q; be an open cover of Q satisfying a point-

wise overlap condition

3M 6 N Vr e 0 card {ilr e 522'} _<_ M (2.2)
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Definition 2.2 :

Let {'l/Jz} be a Lipchitz partition of unity subordinate to the cover {92-} satisfying

the following conditions: (i) sappwi) C Q,- for all i; (ii) 2;: 1b,- 5 1 on 9; (iii)

iWillLoo<Rd) S Coo; and (iv) [iVl/liHLoomd) S CV/diam(wi). Here Coo and

CV are two constants. Then {2b,} is called an (M, COO,CV) partition of unity

subordinate to {Qil- The partition of unity is said to be of degree k if 1b; 6 Ck(le).

The covering sets Q,- are called patches.

Assume that the space of functions V(r) = span {viz-vi} is given. Let the function

nap := Zi 1/12’112' 6 V C H162) be an approximation to u(r). The upper bounds on

the error in the function and its gradient have been derived in [45].

The choice of the functions viz-(r) and ’Ui(r) can vary from patch to patch, and

is usually dictated by the geometry of the problem. More specifically, the functions

vi(r) can theoretically be modified to include logarithmic singularities. However, the

first step Of implementing this method is the construction of the patches Q,- of size

h,- that form the Open cover for the domain. In general, we allow hi , for j = 1,- - - ,d

to be different in each dimension. In this dissertation, we have restricted ourselves

to rectangular domains. As the patches 9,- are to be used in a Galerkin scheme, it

is necessary for Uz- Q,- 3 Q. In other words, for any r E 52 there exists at least one

patch (2,; that contains r. The following steps is utilized to realize it [47]:

o N nodes are chosen randomly in the computation domain and h,- is chosen

initially as the size of the ith patch. With circle-shaped patch, the h,- can be

the radius Of the circle; with rectangle-shaped patch, h,- can be half Of the side

length.

0 Much more denser testing points are uniformly distributed in the computation

domain. The testing points has to be at least 10d times denser than the nodes.

Each testing point should be covered by at least one patch. If any testing point
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is not covered by one patch, then look for the node which is closest to it. Then

increasing the size of the patch hj to make jth patch covers that testing point.

c When each testing point can be covered by at least one patch, true patch size

hi can be derived as h;- = ah;- where a > 1. Number a is used to assure

the enough overlapping between the patches so that the smoothness of the

partition of unity function 11),; can be maintained.

This will ensure that for r E (2 there exists at least one patch such that r E (2;.

Next, the partition of unity functions 11),; are defined in each 52;. By definition,

2,; ill-(r) = l V r 6 52,-. To construct these functions, we use a localized version of

Shepard’s method [48] that relies on defining a function W,- (r) with respect to each

characteristic point r,- 6 S22- such that Wi(r) = 0 \7’r 6 8522'. In other words, these

functions are different from zero only for r E 52,-. Several choices for these func-

tions exist; the most common are B-splines of different orders, Gaussian, regularized

Lagrangians, etc. The choice of the functions W,- depends on shape of the patch.

In this dissertation, we restrict ourselves to rectangular domains, and therefore, to

B-splines of different orders. Then in d-dimensions we construct a ftmction W2: (r)

using a tensor product of l-D functions; i.e., W;(r) = H?:1W((r — r[)/(h[)).

Next, the functions 1b,- (r) are defined by v),- (r) =—- (“SUD/(2391,60,- Wk (1')), wherein

C,- := {9i 6 Cfllfli fl (2; 7e 0}. Here defined partition of unity function 1,0;- (r) sat-

isfy the criteria 2,- r/Jz-(r) = 1Vr. Figure 2.2 shows a one dimension example of the

partition of unity function. As is evident from the figure, patches overlap with each

other, and there is one partition of unity function in each patch. The summation of

all partition Of unity functions in one patch equals one at any point. We can also

create the partition of unity function based on MLS functions [49], when high or-

der basis functions are used, the error of Shepard and MLS functions are almost the

same though MLS functions are much more complicated in terms of formulation [49].

The partition of unity functions are consistent to first order and higher order
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Figure 2.2. One dimensional partition of unity function.

approximations are Obtained by defining higher order local ftmctions, vi(r). As

mentioned in [45], local approximating functions can be chosen such that they bet-

ter capture the local behavior of the current. However, in this chapter, we have re-

stricted our choices to Legendre polynomials of order P. Thus, in any domain S2,- the

functions vz-(r) = span {H521 fpa) ((r“) - rl’))/(h§”)) ] where pit) = 0. - -- .10.

Figure 2.3 shows a one dimension example of the construction of the scalar basis

function. The three local approximation functions are chosen as 0th, 13t and 2nd

order Legendre polynomials. Basis ftmctions, tlvi(r)v]"(r), decay to zero at the edge

of the patch, which assure the continuity of the numerical solution. Since there is

no restriction on the choice of the basis functions, they can be chosen such that

they best approximate the local physics. For instance, around the smooth geometry

plane wave can be chosen as local approximation, around the geometric singularity

eigenfunction of the singular structure can be used, etc.

It is well known that bilinear form of the differential equation (4.1) on H1(f2) is

.A(u,w) = (f, w) ‘v’ (u and w) E H1(f2) (2.3a)

A(u,w) = ~(aVu,Vw) + w2('yu,w) (2.3b)

where (~, -) denotes the standard imier product in L262). It is apparent that we
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Figure 2.3. Construction of one dimensional Basis function.

have not yet incorporated the boundary conditions; the means by which various

boundary conditions are incorporated into the variational form will be dealt with

exhaustively in Section 2.3. Using the definitions of basis functions elaborated upon

thusfar, u(r) can be now approximated as u(r) = 2971,19, where N is the total

degrees of freedom. Using Galerkin method, the discrete version of this bilinear form

can be written as

A (ummm) = A (mafia-v3”) (2.4a)

(swim) = (ivy-22;") (24b)

Above equations (2.3) indicate that the Val-m, need to be evaluated. Here we use
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Figure 2.4. Subdivision of the domain Of integration based on piecewise weight

function Wi.

the following formula to evaluate it:

V117" =V(1/Iz'v?)

 

 

 

W.

=V( 2 on)

Zakec‘, Wk ’

_VWi aneo, Wk’vf‘ - Wi aneo, Vka? (25)

(2919607; Wk)2

Wi
+ an

29,360,]: Wk 2

Note, that the equations (2.4) indicate that the interaction between any two domains

form block matrices. However, what is crucial in the process is the evaluation of the

inner products; this will be dealt with next.

2.2.2 Evaluation of inner products

The basis functions I/z-(r) that were introduced earlier are piecewise rational func-

tions. This is immediately apparent when one examines the construction of ibi(r);

a different number of functions W;(r) may contribute to 1b;(r) at different location.

This implies that the quadrature rules must be such that they respect these dis-
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Figure 2.5. Subdivision of D];- based on the number of patches at different location.

continuities. To overcome these deficiencies, we have followed a method similar to

the one proposed by Schweitzer [50]. Here the domain of integration is subdivided

into smaller domains where the integrand can be represented as a product two ra-

tional functions. Note that the integrands comprise of products of both t/jz-(r)v]n(r)

and their derivatives. To illustrate the decomposition Of the domain, consider two

patches (22- and (23' that overlap; the domain of overlap is denoted by Cij := (2,- (K2,.

Further assume that in each domain, the weight functions Wi(r) and Wj (r) are

polynomials of degree I. Then in (2;, the function W;(r) is piecewise rational in

(l + 1)d—domains. As the function viz-(r) is a combination of both Wi(r) and Wj (r)

for r E (2;, we can partition the intersection Cij into Ci]: = Un Dznj disjoint subcells

as in Figure 2.4, and w,- (r) is piecewise rational in each subcell. The process becomes

more involved when more than two patches overlap. Such a scenario is illustrated

in Figure 2.5. Assume Eijk := (27- fl (2j 0 (2k denotes the domain of intersection of

these three domains. It follows that Um F316 Q Un 0]}- denotes the union of do-

mains wherein the function tbi(r) is piecewise continuous. Recursive identification

of domains where the function tb.,-(r) is piecewise rational ensures the appropriate
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Figure 2.6. Integration in the sub—patch E];- that overlaps with boundary Of com-

putation domain I‘.

construction of quadrature rules.

The above procedure works well for intersection between two domains Cij : =

(2,- 0(2j C (2. However, if F dissects C7; -, then it can no longer be considered a union

of rectangular domains; see Figure 2.6. As before, assume that Cij 2 Un DE}, and

in each D];- the functions w, and 1b]: are rational functions. The cells D];- are be

partitioned into two sets; those that are fully contained within (2 and those that

intersect I‘. For the former, we shall use the standard quadrature rules; the latter

can be be evaluated through adaptive quadrature. In this chapter, we have restricted

ourselves to boundaries that are circular. The geometric choice permits the division

into rectangular domains and curvilinear triangles as shown in Figure 2.6. As before,

we use standard quadrature rules in the rectangles, and coordinate transformation

and higher order integration in the triangles [1]. Thus, the prescribed procedure

enables higher order evaluation of all the inner products in the variational form.

Here is the brief explanation of the higher order integration in the curvilinear

triangle. As shown in Figure 2.7, a curvilinear triangle in my-domain can be mapped
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Figure 2.7. Geometry transform

to a regular triangle in fry-plane. Transform functions

it =$(€,n) (2.6)

y =y(£.n)

are known. So to the related two points (xp,yp) and (Epfllp) in cry-plane and {77-

plane. Given the definition of Jacobian matrix of the transform

8.1: 3

m: 3%
35 d

and [J] is Jacobian, then

utrp, yp) =U(€p, rip)

new/p) =iJl“1 ~ «an,» (28)

drdy =|J|d§dn

2.3 Imposing boundary conditions

It is evident from the above exposition, that (i) the basis functions V; are NOT in-

terpolatory; (ii) (2 C Un supp {Vn}. These two facts make imposition of boundary
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conditions more difficult than those for classical h, p convergence FEM methods.

In this section, we will discuss the imposition of both the Nuemann and Dirich-

let boundary conditions, as well as the truncation of the domain using boundary

integrals.

2.3.1 Neumann Boundary Condition:

First, consider the differential equation in (2.1) with B,- {u(r)} = a-un = an-Vu(r) =

gn(r) Vr E I‘. Here, n denotes the outward pointing normal from the domain (2.

This boundary condition implies that the bilinear form is to be modified as

An, w) = (f, w) — [P dI‘gn(r)'w(r) (2.9)

From the above, it is apparent that it is sufficient for the trial and basis functions

to be in H1((2). There are no additional constraints, and the basis do not have

to satisfy the boundary conditions. Hence, incorporation of Neumann boundary

condition is no different than that in classical FEM.

2.3.2 Dirichlet Boundary Condition:

Next, assume that B; {u(r)} = u(r) = g(r) Vr e I‘, i.e., Dirichlet boundary condition

explicitly imposes the values of u(r) on the boundary of the domain. Alternatively,

the problem may be cast as follows: “find u(r) E H1((2) such that u(r) = g(r) V r E

I‘” and the bilinear form for w E H1((2)

A(u,w) = — [P dra<r>w(r)%z- Vu(r) + (raw) (2.10)

This statement is not very different from that posed for standard FEM albeit with

a couple Of differences: in classical FEM (1) w 6 H6 ((2) which implies that the

integral over the boundary vanishes; (ii) the basis functions are interpolatory. Hence,

imposing the boundary conditions is tantamount to modifying the linear system. In

GFEM, both the trial and test function do not satisfy either of these properties.
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Thus, imposing Dirichlet boundary conditions is not as straightforward. This has

been a topic of considerable discussion [51].

Several Methods attempted are introduced here. (i) to hybridize meshless meth-

ods with classical FEM; (ii) use a penalty function method; (iii) use a Lagrange

multiplier technique, and (iv) use Nitsche’s method. Of the four methods, we have

chosen to use Nitsche’s method to impose the boundary condition. While we shall

discuss this method detail, we shall also dwell briefly on other three as it will shed

light on the constraints on imposing a global boundary condition.

When hybridizing meshless methods with classical FEM, FEM meshes is gener-

ated around the boundary. When far away from the boundary, EFG basis functions

are constructed. On the interface of two basis functions, FEM basis are as usual and

in meshless methods, shape functions take care of the consistency of the approxima-

tion.

The formulation using penalty function is stated as: u(r) E H1((2), find the

solution to

Ah(u,w) = fh V20 6 VN (2.11s)

Ah(u,w) = — (aVu,Vw) +fl/I‘dl‘ aw (2.11b)

j: = , (11‘ 2.11h (fw)+fi/P gw < c)

This method has two advantages. The dimension of the final system is not increased,

the system is symmetric and positive definite. But the Dirichlet is imposed weakly

and results in ill-conditioned matrix system.

Solving the problem using Lagrange multipliers involves finding a solution

(a, A) E H((2) x H*1/2(I‘). The formulation can than be stated as follows: given
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u(r) E H1((2) and A E H—1/2(I‘) find the solution to

Aha, my, p) = 5, v (w and a) 6 111(9) x H-1/2(r) (2.12a)

Ah = — (aVa, Vw) + (.22 (711,10) + (A,w) + (u, I.) (2.12b)

fh = (f, w) + (gnu) (2-126)

Solution to the discrete version of this equation in the GFEM setting is not trivial. It

is well-known that for this problem to converge, it is necessary for both the interior

and multiplier spaces to fulfill the Babuska—Brezzi condition. The Babuska-Brezzi

condition can be expressed as:

(V-u,A)
I72f

uEH1(Q)HUHH-1(Q)II’\IIAEH“1/2(I‘)

 

Sup S y > 0 (2.13)

H’1/2(I‘)

while it’s easy to find A when using classical FEM, but it is difficult to design such

multiplier space that satisfies this condition [52—54], especially for the space of ba—

sis functions being considered here. Moreover, Lagrange multiplier based techniques

lead to indefinite systems. An alternative to this could be a stabilized-Lagrange mul-

tiplier technique [55]. However, in what follows, we use the Nitsche’s technique for

imposing the Dirichlet boundary condition. This method is related to the stabilized

Largrange multiplier technique with two advantages: (i) it is relatively straightfor-

ward tO implement in a numerical scheme, and (ii) one does not need to define an

additional space of functions in H’1/2(I‘). The method proceeds as follows: find
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an approximate solution such that u(r) 6 VN C H1((2) such that

Ah(u,w) =.7-'h Vw E VN (2.14a)

Ah(u,tv) = — (aVu, V'w) + w2 (ya, to) +/de1‘ aun - Vw (2.14b)

+/ drr awn-Va —[3/ da: aw (2.14c)

F F

fh = (f, w) +./I“ dragn-Vw — B/Pdl‘ gw (2.14d)

where B is chosen such that it guarantees coercivity. Rigorous estimates exist for 6

[50]. As is also apparent from the above equations, the resulting system is symmetric.

2.3.3 Global Radiation Boundary Condition:

The above exposition has a significant impact on the development of a global bound-

ary condition. In standard FEM—BI expositions [1], one defines equivalent currents

on Fe, and uses the radiation boundary integral to impose either the electric field

or the magnetic field or a combination of both. The equivalent current are of both

the electric and magnetic types. As u(r) represents one field (either the electric or

magnetic field), either the magnetic or electric currents can be easily obtained. One

typically prescribes basis ftmctions for all r 6 Fe to represent currents. However,

from our preceding discussion it is apparent that basis functions prescribed on R;

have to belong to H‘1/2(I‘e), and these functions together with those used in the

interior have to satisfy the Babuska-Brezzi condition. While such a space can be

easily developed in the case of standard tesselation, it is perhaps not possible for

GFEM. Therefore, prescribing additional unknowns on the boundary is ruled out.

The method that we use for hybridizing will depend on whether Fe = 8(2 or I}; C 80.

In the former case, the domain of integration encloses a volmne, and in the latter, it

is open. When the domain is closed, it is sufficient to prescribe conditions such that

the solution is unique; i.e., one does not excite the interior resonance modes. While

this is a solved problem, it is implementing this condition within the context of
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GFEM that causes problems. If Fe C 69, then imposing conditions is considerably

more challenging, as imposing the BI is similar to prescribing a. Dirichlet boundary

condition. This is challenging on two counts; (i) the basis ftmctions V,- are NOT

interpolatory; (ii) (2 C Un supp {Vn}. Therefore, techniques that were used earlier

to overcome this problem [1] need to be modified to impose the boundary condition.
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Figure 2.8. (3.) Definition of geometry for imposing the boundary integral; (b)

Definition of the geometry for application of the PML.

Our formulation proceeds as follows: Assume that just inside the boundary, one

can define another surface I‘s that completely encloses all the inhomogeneities in

(2; see Figure 2.8(a). For the purposes of discussion, assume that u(r) refers to the
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electric field. Then Vr 6 Fe,

v(r) = amen) + r: {u(r)} (2.153.)

anus) = anuincm + 1c {u(r)} (2.15b)

£ {u(r)} := — [I‘ dI‘s (6n1u(r')g(r,r') — u(r’)6n;g(r,r')) (2.150)

c {u(r)} := [F dI‘s (an,u(r’)ang(r, r’) — u(r’)g,(r, r’)) (2.15s)

where an, and an are used to denote the normal derivatives with respect to the

primed and unprimed coordinates, respectively, t = —a x 2, and ui"c(r) denotes

the incident field. Denoting r = r — r' where r E R2, the Green’s functions may be

written as g(r,r') = fngflclrl) and gt(r,r’) = k2(t % t’)g(r,r’) +f’ % (VVg(r,r’)) -t

where t and f’ are the tangent vectors at r and r’, respectively. These equations are

essentially derived from surface equivalence theorems (or Huygen’s principle). Note,

the surfaces Fe and F3 can be arbitrarily close to each other; however, if they are very

close to each other, the integral operators in (2.15) may be singular/hyper-singular,

and one should evaluate these with care. Techniques for doing so are similar to those

prescribed in [56]. Next, to incorporate the global boundary condition within the

differential equation solver, one needs to specify the differential operator Be {u(r)} in

(4.1). The simplest is to specify that Be {u(r)} = u(r) = nine“) +£ {u(r)} Vr 6 Fe.

This is, of course, a Dirichlet type boundary condition, and has to be incorporated
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using Nitsche’s method; more specifically by implementing the following

Ah(u,w) =55}, Viv E VN (2.16a)

Ah(u,w) = — (aVu,Vw) + w2 (yu,w) + [Pdl‘ craft - Vw + [Pdl‘ awn - Va

(2.16b)

— H A dI‘ aw — Adl‘afi {u(r)} a - Vw + fl/Pdl‘wfi {u(r)}

f}, =(f, w) + / draui’wa - Vw — ef (11‘ umcw (2-16c)
I‘ 1‘

Alternatively, one can specify Be {u(r)} = 6nu(r) = anuinca) + IC {u(r)} Vr 6 Fe.

As before, this is the Neumann type boundary condition, and can be incorporated by

appropriately modifying the variational formulation. However, it is well known that

both global boundary conditions do not yield unique solutions at all frequencies.

These frequencies correspond to the null spaces of the appropriate operators [1].

Among the several methods prescribed [1] to overcome this deficiency, one is to

combine the two Operators; i.e., use a combined field formulation. Thus, the method

proceeds as follows: find an approximate solution u(r) E H1((2) such that

Ah(u,w) = E, Vw e H1((2) (2.173.)

Ah(u, w) = — (aVa,Vw) + w2 (yaw) —jk/I‘ dI‘w(r)n(r)+ (2.17b)

f1“ dF w(r) [jkfi {u(r)} + IC {u(r)}] (2.17c)

a = (Lw) — [Fe dI‘w(r) [jkumc(r) + anumcm] (217d)

In the above exposition, we have essentially focused on imposing the boundary

condition at Fe. As in (2.1), another condition might need to be imposed in the

interior boundaries. However, as is apparent, the bilinear form for imposing these

conditions may be derived trivially using material presented thusfar. Evaluation of

the integrals over the boundary may be carried out using several different methods.
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In our implementation, we proceed as follows: The domain Of integration (either F3

or I}; can be partitioned into a union of subdomains over with the basis function

is piecewise smooth. Then over each such subdomain, we use a Gauss-Legendre

quadrature. While this is not truly optimal and one may construct better quadrature

rules, we did Obtain convergent results.

2.3.4 Local Radiation Boundary Condition:

Our interest in implementing the local boundary condition is purely to develop

another measure of validating the results obtained using global boundary condition.

As we will show, the results Obtained using GFEM-BI converge exponentially to

analytical solutions. However, as these solutions are available only for canonical

problems, it is of interest to know that the fields obtained using the afore-developed

scheme and those obtained using a local boundary condition agree with each other.

There is a. wealth of local boundary conditions that are available [1, 57]. Here we

implement a perfectly matched layer (PML) within GFEM. The literature on PML

is extensive, and our goal is to present a rudimentary development that can be used

as a validation modality. The approach that we use to implement this relies on the

stretched coordinate system first introduced in [58]. Using this technique results in

a slight change in a(r) in that it becomes a tensor of rank 2, i.e., 5(r) = agaij (r).

The quantity ”7(r) and the non-zero elements of c’r(r) are

  
81(1‘) 02 (r) = 820)

0110') = 0‘0 82(1')
31(1‘)

(2.18)

’i'(r) = 7081(r)82(r)

where r = (2:1, 2:2), 00 and 70 are appropriate constants when all stretching param-

eters are one, and

31m = 1 wig—:1) s2<r> = 1 4335?? (2.19)
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In these equations, 31 and 32 are stretching coordinates, and ”ii (r) denotes the

conductivity tensor of the domain. As is apparent, this tensor is chosen to be

diagonal. The domain of application of the PML is denoted using (2pML = (20 —(2,:,

where the rectangular domains (20 and (2,- are defined as (20 = 18% x 92% and (2,- =

2:] x 25%; see Figure 2.8(b). The conductivity profiles are chosen to be zero inside the

l";- and vary quadratically in the direction of the outward normal to the boundary F3.

011 is nonzero in domain (—0.5x§, —0.5x]) x (—0.5z§,0.5x§) and (anion?) x

(-0.5$g,0.5x%), 022 is nonzero in domain (—0.5x%,0.5:r¥) x (—0.5x3, —0.5:r%) and

(—0.5:r%, 0.53%) x (0.53512, 0.5%). Finally, the computational domain is truncated by

imposing the condition

a - Vus + jkcos(6a)us = 0 (2.20)

on F0. Here, 60 denotes the angle of perfect absorption and is chosen to be 9a = g

in our simulation. Note that in this formulation, the unknown is scattered field us.

With these changes, the bilinear form may now be written as

Ah(u3,w) = .7}, Viv E VN (2.21a)

Ah(n8,w) = — (6: - Vu3,Vw) + w2 (:yus,w) — jkcos(da)/Fdl‘ usw (2.21b)

fh = (f,'w) __ (aVZuinc,w) _ “J2 (Miriam) (2210)

2.4 Numerical experiments

In what follows, we shall present a series of numerical experiments that will serve

to demonstrate the accuracy and convergence of the method presented herein. In

all examples presented below, we have chosen d = 2 merely for demonstration pur-

poses, and extension to d = 3 will be exploited in the next chapter. First, we shall

demonstrate h, p convergence for problems wherein either the Dirichlet or Neumann

boundary conditions are specified. Next, we shall demonstrate similar convergence

for our hybrid GFEM-BI scheme and also demonstrate that our scheme is free from
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corruption due to interior resonance modes. In these examples, global boundary

conditions are used to truncate the computational domain, and Dirichlet boundary

conditions are imposed in the interior of the domain. After that, we present a set

of results that analyze electrically large problems, and compare these against ei-

ther analytical results or against GFEM augmented with local boundary truncation

schemes. Finally, we will analyze the scattering from PEC wedge with mode-based

GFEM solver. While meshless methods offer a host of advantages, one significant

hurdle/unsolved problem is the conditioning of the resultant linear system as the or-

der of the basis function increases. This is an issue when we are trying to demonstrate

h, p convergence. In these cases, we resort to an singular value decomposition(SVD)-

based solver. However, in the analysis of electrically large Objects, wherein we are

satisfied with an error in the Lg-norm = 1e-4, we use a non-stationary iterative

solver like TFQMR [59] with block preconditioners.

In the next two examples, we demonstrate h, p convergence of this method when

imposing either the Neumann or the Dirichlet boundary condition. The domain

of analysis of both problems are the same and defined as follows: the domain of

interest (2 = (0,1)2, and the boundary r = u? r,- where {r1 : r e 0 x (0,1)},

{F2:r€ (0,1) x 1}, {F3zr e 1 x (0,1)}, and {F436 (0,1) x 0}.

In the first example, the Neumann boundary conditions are imposed on all four

walls. More specifically, B,- {u(r)} = 6nu(r)lvrepi = gi(r). Denoting r = ($1,352),

gi(r) = 0, —2.97c0s(4a:1), 3.0272sin(3:r2),3cos(4:I:1), for i = 1,--- .4. The above

boundary conditions permit analytical solution of the (2.1). In this experiment,

uniformly distributed nodes and rectangular patches are used. The size of each patch

is 1.5 times the distance between the nodes. The weight functions W;- (r) is a product

rooftops, and the approximation is a tensor product of Legendre polynomials. Two

sets of results are shown. First, we demonstrate the error between analytical and

numerical solutions in Figure 2.9 for h = 0.11A and p = 4. We also demonstrate h, p

convergence in Figure 2.10. As is evident from the graphs, the results are excellent.
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Figure 2.9. Error in the L2 norm of the numerical and analytical solutions of the

PDE with the Neumann boundary condition.
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Figure 2.10. h, p convergence of the numerical scheme applied to the solution of a

PDE with Neumann boundary conditions.



 

Figure 2.11. Error in the L2 norm of the numerical and analytical solutions of the

PDE with the Dirichlet boundary condition.
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Figure 2.12. h, p convergence of the numerical scheme applied to the solution of a

PDE with Dirichlet boundary condition.



 

 

 

 

 

 

 

 

 

       

. . p=1 p=2 p=3 p=4

igrcigpal h=1/4 0.0244 5.49e-4 2.61e—6 9.67e-9

TE h=1/6 0.0151 1.07e-4 2.42e—7 3.84e-10

First8 h.=1/4 0.087 8.44e-3 1.62e4 3.02e-6

modes h.=1/6 0.0533 1.67e-3 1.58e—5 1.05e—7

Principal 5:1/4 0.0567 3.78e-4 3.10e—6 7.79e—9

TM Mode h=1/6 0.0285 8.14e-5 2.59e—7 3.20e-10

First8 h=1/4 0.1557 0.0142 3.20e—3 1.99e—5

Modes h=1/6 0.1122 5.27e-3 1.85e-4 2.28e-6
  

Table 2.1. Error of eigenvalues in rectangular waveguide

Next, the Dirichlet boundary condition is imposed on all four walls. More

specifically, B,- {u(r)} = “(flit/ref,- = gi(r). Denoting r = (151,122), g,- (r) =

sin(3a:2),0.1411cos(4:r1),—0.65365in(3:rg),0, for i = 1, - - . .4. All the parameters

used in the computation are the same as those used for imposing the Neumann

boundary condition. Again, the Figure 2.11 plots the relative value of the error in

the entire computational domain when using h = 0.11A and p = 4. Also, the errors

for different values for h and p are shown in Figure 2.12. It is evident that Nitsche’s

method for imposing the boundary conditions shows excellent convergence.

Next, we compute the eigenmodes in a rectangular waveguide. The dimensions of

the waveguide are chosen to be 1m x 1m. The convergence data (error in L2 norm)

for both TE3 and TMz modes are presented in the Table 2.1. As is evident from this

data, the results obtained converge rapidly with increasing order and refinement.

Next, we compute the eigenmodes in a circular waveguide. The radius of circle

is chosen to be 1m. Table 2.2 show the error of eigenvalues for both TE" and TMZ

modes. Again, the results Obtained converge rapidly with increasing h and p.

Then, we compute the eigenmodes in a coaxial waveguide. The radius of in-

ner and outer circles are chosen to be 0.5m and 1m. The error of eigenvalues are

presented in the Table 2.3. The results is excellent.

Next, we examine the accuracy Of imposing the boundary integral to truncate
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. . p = 1 p = 2 p = 3 p = 4

magma h = 1/4 00191 4.43e—4 2.19e—6 6.09e-7

TE h = 1/6 0.0127 9.14e-5 5.726—7 4.208—7

First 5 h = 1/4 0.1137 0.0157 1.208—3 3.269—5

modes h = 1/6 0.0817 4.52e—3 1.12e—4 2.11e-6

Principal h = 1/4 0.0677 9.478-4 9978-6 5849-7

TM Mode h = 1/6 0.0351 2.1484 4.568-7 4.42e-7

First 5 h = 1/4 0.175 0.291 0.040 2.123-4

Modes h = 1/6 0.131 0.090 4.21e—4 7.41e—6   
Table 2.2. Error of eigenvalues in circular waveguide

 

 

 

 

 

 

 

 

 

       

. . p=1 p=2 p=3 p=4

11:42:29“ h=1/4 0.0311 2.91e—3 3.09e-4 3.69e—5

TE h=1/6 0.0205 5.61e—4 2.98e-5 1.26e-6

First5 h=1/4 0.1062 0.0307 5.35e—3 8.31e-4

modes h=1/6 0.693 0.0101 7.10e-4 5.51e—5

Principal h=1/4 0.2137 0.0103 2.41e-3 2.23e—5

TM Mode h=1/6 0.1369 2.96e—3 2.73e—4 6.36e-7

First5 h=1/4 0.2169 0.0402 8.64e—3 1.91e—3

Modes h=1/6 0.1529 0.0165 2.23e—3 1.31e—4
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Table 2.3. Error of eigenvalues in coaxial waveguide
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Figure 2.13. h, p convergence Of GFEM—BI (CFIE)

the domain. To do so we analyze scattering from a perfect electrically conducting

(PEC) cylinder with radius 0.1A and the truncation boundary is placed 0.1A away

from the surface. Given the configuration of the problem, we need to apply the

BI (CFIE) (2.17a) and Dirichlet boundary condition on the truncation boundary

1“; and the inner boundary, respectively. We compare these results against that

Obtained analytically to obtain the h,p convergence graphs in Figure 2.13. As is

evident, the scheme presented in this chapter demonstrates the anticipated conver-

gence characteristics. The next, we analyze scattering from a PEC cylinder over a

range of frequencies. The outer boundary is truncated using the EFIE specified in

(2.16a), and the inner boundary is truncated using a Dirichlet boundary condition.

We know that truncating the outer boundary with the EFIE would lead to unique

values for all values of [to except those that correspond to interior resonance modes

of a cylinder with a PEC wall at the outer boundary. Thus, to satisfy ourselves that
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this is indeed the case, and to show that the variational form that imposes the EFIE

formulation presented in this chapter is valid (note: EFIE is imposed using Nitsche’s

method), we analyze scattering from a cylinder over a range ka varying from 2.0 to

8.0 in steps of 0.05. Additionally, values of Ira that are within three digits of the

resonance frequencies corresponding to TM7' modes of the cylinder whose radius

corresponds to that of Fe are chosen. In total, we ran this simulation for a total of

128 frequency points. In all cases, h = 0.1A and p = 3. Figure 2.14 compares the

error in the field values within the computational domain to analytical data. As is

expected, Figure 2.14 shows the results obtained are accurate except at resonance

frequencies. So, the next challenge is to ensure that our results are free of corruption

by spurious modes. Again, we analyze scattering from a PEC cylinder over a range

of frequencies with combined boundary integral formula. It is apparent from Figure

2.15 that the error is fairly constant over the entire band of frequencies. It should be

noted that in all the cases mentioned thus far, we are quoting the error in the field

values at a sufiicient dense set of samples inside the computational domain. These

error are NOT in the echo width data, as they tend to be significantly smaller.

Next, we demonstrate the applicability of this technique to various scattering

problems. In all three examples described, the incident plane wave propagates along

the it direction and is polarized along 2. First, scattering from a cylinder of radius

2.7A is analyzed. The source boundary F3 and fictitious boundary F8 are at 2.85A

and 3.0A, respectively, and h = 0.11A and p = 3. The analytical and numerical data

of electric field on fictitious boundary and echo width (EW) are compared in Figure

2.16. As is evident from these graphs, the results are excellent. Next, scattering

from dielectric-coated PEC cylinder is analyzed. The radius of the PEC cylinder is

2.82A, and the thickness of the dielectric coating is 0.06A. The relative permittivity

of dielectric is 2.0. The source boundary F3 and fictitious boundary Fe are at 2.94A

and 3.0A, respectively, where A is the free space wavelength and h = 0.12A and

p = 3. The analytical and numerical data Of the electric field on fictitious boundary
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and echo width (EW) are compared in Figure 2.17. As is evident from these graphs,

the results are excellent. Finally, we analyze scattering from a coated cylinder that

is considerably larger. The radius of cylinder PEC and dielectric coating are 3.76A

and 3.84A, respectively. The source boundary F3 and fictitious boundary I}; are

at 3.92A and 4.0A, respectively. As before, A is the free—space wavelength, 5,- = 2,

h = 0.15A and p = 3. Our discretization in this case is considerably coarser, however,

as is evident from Figure 2.18 (a,b), both the fields on the fictitious surface and the

echo-width agree very well with the analytical data.

In the next example, we compare the results obtained using GFEM-BI with those

obtained by analyzing the same object using GFEM-PML. As is well known, the

principal advantage of the boundary integral is that realized by a reduced compu-

tational domain. This, of course, implies that the cost of application of the BI can

be reduced to something that scales almost linearly with the number of unknowns

on the boundary. This is indeed possible by augmenting the BI with acceleration

techniques, notably by the fast multipole technique [60]. The object that we choose

for simulation is a L-shaped dielectric scatterer. The length and width of each arm

is 1A and 0.3A, respectively, and the arms are oriented along the :i: and 3} directions.

The truncation boundary Fe for the BI is conformal to the scatterer and is at a

distance of 0.25A away from the scatterer. When employing the PML, the scatterer

is embedded in an rectangular domain of size (2,; = 5.4 x 5.4A2, and the thickness

of the PML is 0.95A. In both simulations, h = 0.08A and p = 3, and the relative

dielectric constant er 2 2. The incident field is 2 polarized and propagates along

It = —1/\/2 (:i: + 3}). Figure 2.19(a,b) show the fields Obtained by both methods. As

is evident, they are identical to each other. Indeed, the relative error in the field

values at a set of points in the domain is 2.3e—3, indicating that both techniques

compare very well with each other.
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Figure 2.16. Comparison between numerical and analytical data obtained for scat-

tering from a perfectly conducting cylinder of radius 2.7 A: (a) the electric field at

Fe; (b) Echo-width of the cylinder.
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Figure 2.19. Comparison of data obtained for scattering from an L—shaped object

using GFEM-BI and GFEM-PML.
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Figure 2.20. Geometric description of the wedge

Until now, the basis functions used in all the examples have been based on

tensor products of polynomials. The power of GFEM, however, is the ability to

include analytical behavior, if known, into the approximation space. To test this

idea, To test this idea, we analyze scattering from a wedge. The analytical response

of this structure is well known [61]. Indeed, [15] developed singular basis functions

that can be incorporated into the function space of the classical FEM methods (see

references therein for other approaches to constructing singular functions). In what

follows, we will explicitly incorporate the known functional behavior. Consider a

two dimensional wedge with angle 3;. that is located in a rectangular computational

domain (2 = (—1.0, 1.0) x (—1.0,1.0). The tip of the wedge coincides with the origin

of the computational domain and one side lies in the y = 0 plane. A field that is

polarized along the 2 and propagating along I: = —0.9659:t — 0.25883) is incident

upon the wedge, and the wavenumber k0 = 3; this geometric configuration is shown

in Figure 3.7.
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(c) Graph of error based on eigen function

Figure 2.21. Analytical result and graph of error for scalar wedge problem
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Figure 2.22. Error plot Of scalar wedge problem

It can be easily shown that the fields are given by

 

 

471'E' . . .
E2 :2” —0a ngJv(kp)szn[v(ain + 7r — a)]szn[v(¢ + 7r — a)] ( )

v
2.22

2 mm, m = 1, 2, ' ' '

21r — (1

Modes Jv(kp)sin[v(¢ + 7r — (1)] are used as scalar local approximating function. The

infinite extent of the wedge is simulated by imposing analytical solutions for the

infinite wedge as Dirichlet boundary conditions. The relative error is computed using

L2 norm of error in the electric field at 100 x 100 sample points that are uniformly

distributed along :2: and 3) direction. In this example, tensor product of polynomials

are also used as local approximating function for the purpose of comparison. Figure

2.22 show the efficiency of new basis function. From those figures, we can find

that traditional basis function creat largest error at the tip of the wedge, it also

happens when we use traditional FEM method. But with new basis function, the
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Figure 2.23. Error of FEM and GFEM solver

error aroung the tip of the wedge is reduced efficiently. Figure 2.21 show the relative

error with respect to the number of unknowns. Obviously, error with new basis

function convergence much faster than those with tradition basis functions.

Finally, we compare the error of scattering from wedge by GFEM solver and

FEM solver. The parameters of the problem are mentioned following. The angle of

wedge a is chosen as g, gr and 172 respectively and the angle of incident field am

is zero in all three cases. The relative error is computed by L2 norm of error of

E—field at 100 x 100 sample points which are uniformly distributed along x and y

direction separately. Figure 2.23 shows the relative error Of E field by GFEM and

FEM solver with respect to the number of unknowns when the angle of wedge is

changing. In GFEM, the number of modes in each patch is fixed to 6. We can see

that the result of GFEM is much better than FEM. Figure 2.24, Figure 2.25 are

error graph of FEM and GFEM. Fr0m Figure 2.24, The error in FEM around the
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Figure 2.24. Error plot of FEM solver

tip of the wedge is much larger than the error at other place, at the same time, it

doesn’t happen in GFEM. The number of unknowns for FEM and GFEM is 1307

and 648 respectively. The angle a in both cases are 27%.
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Figure 2.25. Error plot of GFEM solver



CHAPTER 3

VECTOR GENERALIZED FINITE ELEMENT METHOD

3. 1 Introduction

While GFEM has been used for a range of problems [22, 44] , it has not seen adap-

tation to address vector problem in high frequency electromagnetics. While some

papers exist on application of a variation of GFEM to quasi-static problems whose

governing equation is posed in terms of potentials, they do not address a fundamen-

tal difficulty: The boundary condition of the fields on the material interface require

that their tangential component be continuous, their normal component be discon-

tinuous and the normal derivatives of the tangential conditions be discontinuous as

well. Achieving all of this using functions that are continuous across boundaries is

almost impossible. Aside from this difficulty, it is also important for the divergence

of the fields be zero (either in a strong or a weak sense). The latter was the principal

motivating factor behind the development of vector basis functions [1] in classical

FEM. As an aside, we note that this is not the first attempt at extending GFEM

to analyze vector electromagnetics problems. That honor belongs to Tsukerman

[32—37]. His treatment of the vector problem is largely inspired by that used in

classical FEM. In Chapter V of [35], vector basis function is defined as szp where

w is barycentric coordinates, e. g. nodal basis flmction in FEM and shape function

in GFEM, and v is polynomials. Though in FEM framework, this basis function

coincide with the interpolatory high order edge element, in GFEM solver, Vip equals

zero in the region where there is only one patch as is this basis fimction. Except

for this problem, he created basis functions that have zero divergence. But they

cannot handle discontinuities in the constitutive parameters. Furthermore, he did

not demonstrate the convergence characteristics of his scheme and only solved one

eigenvalue problem by one patch where the shape of patch coincides with the shape
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of waveguide.

Another problem that bothers GFEM, as it also does any higher order solver

is the condition number of the resulting system. Indeed, this is more of a problem

here as opposed to classical FEM as the space of basis functions in GFEM is not

interpolatory.

The objective of this chapter is to extend GFEM to address vector electromag-

netics problems in both two and three dimensions. The principal contribution of

this paper is three-fold:

1. We will develop two classes of vector basis functions for homogeneous domain

and prove bounds on their convergence and the error bounds of linear operator.

2. We will develop basis functions that will enable the satisfaction of bound-

ary conditions across interfaces. These conditions will be on the tangential

components of the fields and their normal derivatives, and the normal compo-

nent of the fields. In this chapter we restrict ourselves to planar and curved

boundaries.

3. We will demonstrate h and p convergence of the proposed scheme for both

Dirichlet and Neumann boundary conditions in two and three dimensional

problems. We shall also demonstrate the accuracy of this scheme for computing

eigenvalue for cavities, waveguides, and partially filled cavities.

4. We will demonstrate the inclusion of analytic behavior in the basis function

space and the resulting improvements in convergence of fields. Our convergence

studies will be restricted to near-field calculations.

5. We will propose a SVD-based preconditioner to reduced the condition number

of the resulting system. The cost and error bound of the preconditioner will

be derived. The reduced condition number and maintained accuracy will be

demonstrated.
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This chapter proceeds along the following lines; in the next three sections, we

will introduce the construction of vector GFEM solver for homogeneous domain,

piecewise homogeneous domain with planar interface and piecewise homogeneous

with curved interface respectively. The accuracy and convergence of the GFEM

solver will be demonstrated. In the last section, the SVD-based preconditioner will

be introduced.

3.2 GFEM solver for homogeneous domain

3.2.1 Statement of the Problem

Consider a domain 9 whose boundary is denoted by 89 := 1" = U2 Fi- It is assumed

that this domain is embedded in a domain He and its exterior boundary Fe is defined

as Fe := 98 0 Q. Interior to the domain 9, the function u(r) satisfies

(v x [——1—VX] — w2’7(r)) u(r) = f(r)
u(r)

32' {u(r)} = gi(r) for r 6 Pi

(3.1)

In these equation 11 is used to denote either the electric or the magnetic field, a(r)

and 7(r) are position dependent constants, B,- are differential operators, and gi(r)

is the fimction that is imposed on Pi- In the above equation, it is assumed that

r 6 Rd where d = 2, 3. Solution to this problem for any imposed field f(r) can be

obtained using classical vector FEM. This scheme requires tesselation of the under-

lying domain, and specifying an approximation space [1]. The approximation space

is such that it satisfies the de—Rham map, and are based on a space of polynomials.

The question that we intend posing is the development of a possible technique that

permits development of scheme that does not rely on classical tesselation, permits

the use of different kinds of basis functions in different regions of the domain 93.

As directly implementation of the scalar GFEM solver will results in the spurious

problem, spurious-free vector GFEM solver need to be developed.

51



 

 

  
 

Figure 3.1. Patch cross the material interface

3.2.2 Basis functions

First, we examine the constraints that we need to impose on vector basis function.

These condition emerge from Maxwell’s equations and they are: (i) in a source free

region, the field is divergence free, and (ii) at the interface between two media,

the tangential component of the field is continuous and the normal component is

discontinuous, and (iii) the normal derivatives of the tangential components are

discontinuous as well. As we shall demonstrate in the Section 3.3.3, satisfaction of

the last constraint is crucial achieving h— and p— convergence. Next, we will prove

those constraints for vector function space.

Theorem 3.1 Figure 3.1 shows a patch with a material interface cross it. The

constitutive parameters are 61 and 62 which are difl’erent from each other. Tangential

and normal directions on the interface are defined as t and a respectively. f1 and f2

are vector local approximation in each region. The criteria of the local approximation
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function can be described as followings:

flt = f2t

fln if f2n

(9ng, 74 6,292, 1: 1,2,3...

aim aé «tan 1: 2.3...

V - f1: 0

(3.2)

V-f2=0

Proof: If electric field in both homogeneous domain is denoted by El and E2

then

V- E1 = 0

V-E2=0 (3-3)

E1t=E2t

The above properties of the field require the following properties of the vector local

approximation

f1t=f2t

V'f1=0 (3.4)

V- f2 = 0

From the condition

€1Ein = €2Ezn (3 5)

€17é€2

It’s easy to derive the criteria

hr; 75 fm (3-6)



We also can obtain the criteria

(9nf1n = V'fl — Vt ' fit

= V . r2 — v, - {2, (3-7)

= a'nf2n

While the above criteria is important to construct high order vector local approxi-

mation, it’s not independent.

When proving the following criteria, we can provide one simple example. As

the field has the following discontinuities, the local approximation should share the

same properties.

55,11, 7e 6,215, l: 1, 2,3...

(3.8)

6th s aim l= 2.3..-

In what follows, we start with defining basis functions in homogeneous domains

and then proceed to extend this for domains that contain inhomogeneities. We

shall also derive error bounds when using this span of functions. It is well known

that a vector function can be expressed using a set of three wave functions that are

typically denoted using L(r), M(r) and N(r) [57, 62]. These function are expressed

using L<r> = v [g(r)], M(r) = v x [amt-)1, and N(r) = I/nv x v x [we],

where (M(r) for q = l, m, n satisfy the Helmholz equation with wave number n, and

6 is a pilot vector. In a source free region, functions M(r) and N(r) are sufficient

to represent the fields everywhere in the region. These fact sets the stage for the

development of vector basis function for GFEM.

Assume that in any volumina ¢q(r) z dap(r) = span {Vi’q} for i = 1, n

where the subscript ap denotes an approximation to the continuous function and



V,- = w(r)vz-(r). It follows that one can envision, two different basis fimction:

113110 e V1 = span {w(r)V X [62)gm], /)(r)V X V X [6222f’l} and u2p E V2 =

span {V X [oz/)(rfirgfl ,V X V X [cw’z(r)vif.” From the definition of these ap-

proximations, it follows that for the approximation to be of order p, the highest

order of the function of’11,: should be of order p + 1 whereas vhf should be of order

p + 2. In this paper, these functions are chosen depending on the problem being

analyzed. The definition of these basis functions also dictates that 1131, has zero

divergence where as ucllp does not. To visualize these functions better, we plot two

h,p
dimensional local approximation function V X [évi m]withc along the z direction

(or along the direction of invariance). These plots are displayed in the Figure 3.2,

and as is evident from these figures, different modes approximate curls to different

degrees.

When evaluating the terms V X u and V ' u for the first basis function, the

following formula is implemented.

 

  

 

 

V X 117-1 =V X vn

z ZQkECi Wk z

W- W-

=V( z ) X v" + z VX vn

ZQkECz' Wk ZQkECz' Wk 3 9

_iVW aneo, Wk- Wi ZZZ-0,50 VWk X v“ ( ' )

(29,60, W1.) 2

W,-

+ V X v?

Zakec, Wk
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(g) Homogeneous 21 mode

Figure 3.2. Vector plots of homogeneous local approximation function v,-



 

Wi n
v.

ZQkEC' Wk 2

w,- w-
V- v? + V( i ) -v"-2

ziszEC Wk: ZQkECz' Wk 2 (3°10)

VWi anec, Wk - Wi anec, VWk n
= 'V'

(ZQkECZ' Wk)2 z

V-u?=V—(

  

 

In the above formula, v? denotes vector local approximation from

the first kind of basis function 1161,], and belong to the function space

span {V X [6v:1m] V X V X [62v515]}. The above formula indicates that

only v? and V X V,- are necessary to implement the bilinear form of the equation.

Next, we derive error bounds for each of these approximating span of functions as

applied to vector electromagnetic problems.

3.2.3 Error bound

3.2.3.0.] Error bounds of basis functions: The global accuracy of the finite

element method depends on the local accuracy of the approximation to the solution.

Thus, predicting the local error bound yields the global error bound of the solver.

In what follows, we derive error bounds for both types of approximations presented

earlier: ucllp and ugp

Theorem 3.2 If

“11), ”L00 3000(9)

MW 0,”Loom S diamm?)

lleKim-vlf516)] .<,

“V X V X [($71 — ’0sz:6)clllL2(QflQ.:1§662(‘i
,h,p)

EMEN VrEQ ca.rd{i|rEQ,-}SM
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Then the error is bounded by

1/2

lL2 <\/2_ll/—ICOO 261(iflhp)+Ze2(i,,)hp (3.12)

 

Hu- nap

where Coo and CV are constant. 61 and 62 are bounds of error of local approximating

function in each patch.

Proof:

1

u — “GPHL2(Q)

= [V X (quc) + V X V X (¢n5)l — 27% [V X (”2315) + V x V X (02:96)]
i

= 2qu (1m— itie1>1+zuvxvx(an—vim
2

  
2

    142(9)

$2

  
swim«we»

  L262)

:21),- [V X V X “(fin “ v2}? 6)]
.

L262)

<2M: «1v- [V X ((¢m vim} 0)] ”Manna

+21%:

i

52MC§O E H(i, h, p) + 53(1, an]

i

2

+2

    

  

  2” [V x V X ({‘m‘ Lib: all “L2(nnn,)

(3.13)
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Theorem 3.3 If

”V? ”L00 5 000(9)

”Wt Loom) 5 diaZYQl‘)

hp

Ham—

 

  

  L2(909i)<_

”V x [(qu— vihm)cC]‘|L2:an;<) — 62(i,h,p)

3M 6 N Vr E Q card{i | r 6 Oz} 5 M

then the error is bounded by

2 1/2

CV
<¢§T 202%(ihp)+zm§1(i.,hp) (3.15)

 ll“'“gplL2

where Coo and CV are constant, and 61 and 62 are error of local approximating ~

  

    

functions .

Proof:

_ 2 2

2

h A

= w [xi-(Wu a]
i 112(5))

2

   
= Z [2‘7 X (W -v§f;fi}é) - ({2m 22%} ) X W]

3

52M: *in X ({qu ‘ villi} ‘3) “:mnfli)

+2MZH({¢m— off; (3W2
Lfinnno

 L2(a) (3.16)

  

  

 <2M 030 e ih e (i,h

2“ p) +diam(2VQh)2:-:1( 17)]
2
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From the above equations, it appears that the space 113p does not converge with

decreasing h. However, it should be noted that 61 scales proportional to h. This

implies that the rate convergence of this approximation w.r.t. both h and p is similar

to that of 11,111,. Note, using the above proof it can be shown that the basis functions

proposed by Tsukerman will exhibit convergence characteristics similar to 1131,. The

principal deficiency of ugp is the fact that it cannot be easily extended to satisfy

boundary conditions of fields across material interfaces whereas 11,111, can be readily

modified.

3.2.3.0.2 Error bound of bilinear Operator: Next, we will show the error

bound of the bilinear operator. As preliminary, we will assume the error bound of

the following terms. If

I

”vongme) S $52—12)

VX “(hm-’02m)c‘32-
]IIL2(QnQ)S 61(23hm)

V x v x [(05” will’71:) &] 2(iahm) (3-17)

  
wl‘

 
L00 5 000(9)

”L2(nnn,)<—

VXVX l(¢m"”zhm)cClllL2(nnn,-)Se3(i’h’p)

VXVXVX[(¢n—ui,’:)c] €403,147)  ”L2(ann,)<—

EJMEN VrEQ card{i|rEQi} SM
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Then the error of V X ucllp is bounded by

“V X 11 — V X ucllpllL2

g \ffifl; {5%(2', h,p) + 6303 Ml} 0520 (3.18)

2 1CV 2

+ Z {63(i, h,p) + 63(i,hapl}M]

where Coo and CV are constant. 61, and 62 are bounds of error of local approxima-

tion flmction in each patch. 53, and 64 are error bounds of curl of local approximation

function in each patch. If the order of scalar function grim and on are p+ l and p+2,

then we can approximate the function 61, 62, E3 and 64 as

61(23haP) ~0(hp)

6203 h, 10) ~0(hp)

63(i,h,p)~0(hp_1) (319)

64(2. h,p) wow—1)

diammf) ~O(h)

then

llVXu—qucllp

  

L2 ~ 0(hP—1) (3-20)
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Proof:

“V x u — V X uclw 312(9)

=uv x [Z n- (V X ({¢m - vlfiélllj

+v x $101 (V X V X ({CD" ”hpc D] llL261)

V x [2102' (V X ({2m ‘ ”gill (9)]
_ .

L262)

V. [EW:/x (an—v2-ram]
2

 

 

_<_2

 

 

 

  

2

+2

    

L262)

S4

  

2(vxvx({¢m-v£tt}é))

 

L262)

2

+4 ZVX({¢m— 1},-fl} C)><V¢z'

 

 

132(9)

+4 Zo, (VXVXVX ({on—ug’rf}é))

i

2

2

  132(0)

  
+4 ZVXVX ({on—vzf}é) XVTL'z'

'i

54M: 952' (V x V X (”m—”252} 0)) |:2(onn-)

+4MZHVX ({gbm— uh’p} C)XV’(,)Z' 2

LWQHQ)

+4MZHW (V X V x V X W" ”zhp}”ll/32mm)

  

L26?)

  

 

 

  

+41W:ZHVXVX({¢n- if: C)XVU7§2
L2(Qflfli)

. . 2 2 2 __.__0234M 2: {ega h,p) + 64(z,h,p)} coo + Z {61(i,h.,P) + 62(i,h=p)} _ V h 2
i i diammi)

(3.21)
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If we also have

”V X ViHL2(QnQi) S 65(i9h3p)

(3.22)

. < a h,
llvz.”L2(Qan.) — 56(3. P)

Then the error of the linear operator is bounded by

1 1 2
”(V X uap)-(V xv)+uap-v— (V X 11) - (V xv) —u-v”L2(m

1/2 (3.23)

S {8M 2: f1(i,h,p)65(i,h.19) + 4MC'goZ f2(i, h,P)€6(ia h,P)}

i i

where

2 2 2 2 2 0%

f1(i, h,p) = {6303 hip) + 640': MM} 000 + {61(iahapl + 62(3) h,p)}m

i

f2(i, h,p) =e%(z'. h,p) + 63(2. h,p)

(3.24)

If we assume that

€50} h,p) ~0(1/h) (3 25)

56(iahrP) ~00)

Then

N(qucllp)-(VXV)+U$,p°V—(VXU)'(VXV)—U'V||L2(m

1/2

3 {8M2 f1 (2‘, h, p)e5(i, h, p) + 4221030 2: f2(i, h, p)€5(i, h, 19)} (326)

Z 2

N (90,094))
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Proof:

“(VX“ital-(V><Vztl+uclrp'Vi—(VXU)'(VXVil-U'Vi

5 H (v x {“‘l‘P ‘ “ll ° W x Vi) _ (“‘11P _ “) William

32

+2

52

  

  

  

(116111, — u) - (V X Vi) :26»

(“gm " ‘1) 'Vi 22(9)

V X {uclzp - u}l|:2(9) “V X Vil|i2(g)

2
1 _ . 2

nap ullL2(Q) “VZHL2(Q)

_<_8M 2 {53(2, h, p) + 63a, h, p)} 03,

i

02

+ Z {6%, hp) + 63(2', h,p)} —V—2 55(2, (W)

i

+

diamm?)

4MC§OZ [5%, h, p) + 63(2. h.p)] €60,114?)

i

  

2

L26?)

(3.27)

3.2.4 Imposition of boundary conditions and the resulting bilinear form

As is evident from the preceding discussion, the basis functions are not interpolatory,

nor do the domains conform to the boundary. While this fact does not affect the

imposition of the Neumann boundary condition, imposition of the Dirichlet bound-

ary conditions are not as simple as those for classical FEM. Methods that have been

used to impose this condition included augmenting GFEM with classical methods

at the boundary or using a Lagrange multiplier. Both these method are not stable

as they do not satisfy the Babuska-Brezzi condition [52—54]. It can be shown that

stable results may be obtained using either stabilized Lagrange multiplier technique

or the Nitsche’s method. We have used the latter with success for solving the scalar
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Helmholtz equation as have others [55, 63]. In this paper, this technique is extended

to vector electromagnetic fields. Thus, given (3.1) with

u(r) X it = gd(r) for r E Pd

ft X (V X u(r)) = gn1(r) for r E Fn (3.28)

u(r) - n = gng (r) for r 6 I‘n

where I‘ = I‘d U I}, we need to find an approximation uap(r) E Vn C H (VX,Q).

It can be shown that the bilinear form for solving this problem may be written as

Ah(u,w) = fh(w) Vw E Vn

1 2
.A u,w =/dQ—VXu-wa—w/dfl ru-wh( ) Q 00') Q 7()

+fi1/Pddl‘(an)o(wxn)+a/PddI‘(V'u)(V'w)

1 . l .
+/Pdd1'~m(uxn).(vxw)+/PddI‘—J(—IT)—(wxn).(qu)

+fi2/F dI‘(u-n)(w-n)

fh(w)=/Qde-w+/Fddl‘ 8%?)gd-(wa)+,81/Pd dPgd-(wxn)

1

+ dP—g -w+,6 / dI‘ w-n
An 01(1‘) n1 2 Pn 9n2( )

(3.29)

In the above equation, ,81 is a constant that imposes the Dirichlet boundary condition

using the Nitsche’s method and makes the overall system coercive. The means

estimate the value of ,81 follows those derived by [50]. The quantities associated

with a and ,82 are regularization terms. We have found that these are not necessary

when using approximation functions of the type ugp but make the convergence

curves smoother when used with approximation functions of the type ucllp.



3.2.5 Numerical experiments

In what follows, we shall present a series of numerical experiments that will serve

to demonstrate the accuracy and convergence of the vector GFEM presented in this

chapter. At first will focus on convergence issues related to problems in homogeneous

domains. Then we shall demonstrate the versatility and convergence properties

of this teclmique by studying scattering from a wedge using non-polynomial basis

functions. In some of these numerical experiments we will demonstrate the relative

convergence of both nip and ugp.

First, consider a homogeneous rectangular computation domain, where the solu-

tion to the vector wave equation is assumed to be

u(x,y) = 1.32 cos(1.76.r) cos(1.32y)§: + 1.76 sin(1.76r) sin(1.32y)g} (3.30)

in the domain 52 = (0,1)2 with boundary I‘U21I‘2- where H] : r E O X (0,1)},

{1‘2er (0,1) X 1}, {P3 : r €1x(0,1)}, {F4er(O,1)x 0}.

This field is imposed on I‘ as either a Neumann or Dirichlet boundary condition.

The problem is then posed as (3.1). Given the geometry of the problem and the

nature of solution, the approximation to the field in Q can be written as ucllp =

span {1,1},- (r)V X [(31152] }. In this experiment, all nodes are distributed uniformly,

and rectangular patches are used. The size of each patch is chosen to be 1.5 times

the distance between the nodes. Unless otherwise mentioned, all examples in this

chapter are built in a similar manner. The weight functions Wi(r) is a tensor

product rooftops, and the local approximation function 1},-M(r) and vim (r) are tensor

product of Legendre polynomials. Figure 3.3(a) shows the h, p convergence of GFEM

when the Neumann boundary value problem is solved. Figure 3.3(b) shows h, p

convergence for the Dirichlet boundary value problem. In the figures, the L2 norm

of relative error is evaluated at uniformly distributed 100 X 100 sample points. As

is apparent, the technique shows excellent convergence.
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Next, we solve the same problem for both boundary conditions. However, the

approximation space will be 11,211, = span {V X [ct/2, (r)v?£1] }.All other parameters

(size of the meshes, distribution of the nodes) are identical to those used earlier. As

is evident from Figure 3.4, the error decrease with decrease in h and increase in p.
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Next, we examine the accuracy of three dimensional vector basis function in

homogeneous computation domain. The computational domain is Q = (0,1)3 and

it is also assumed that the field behavior in the domain is governed by

u(x, y) = —19 * cos(0.94x) sin(1.26y) sin(1.57z):i:

—17 * sin(0.94.r) cos(1.26y) sin(1.57z)3’) (331)

+25 * sin(0.94:2:) sin(1.26y) cos(1.57z)2

It is apparent from the above equations that both functions M(r) and N(r) are

necessary to represent the field. Consequently, the function space chosen is 11,111, =

span {¢,(r)v X [évi’m] ,z/Jz-(r)V X V X [612237,] }. Again, all the parameters used

in the computation are the same as those in 2D problems and are only extended to

3D. The L2 norm of relative error is evaluated at 5 X 5 X 5 uniformly distributed

sample points. Figure 3.5 shows the h and p convergence of those vector basis.

The above results demonstrate h and p convergence, but the anticipated rate

of convergence th is not achieved. This said, it is worthwhile to note that the

theoretical convergence rate is obtained from dispersion analysis and is appropriate

for analyzing convergence of far fields as in RCS. But, the examples shown involve

near field quantities. To illustrate convergence, we again consider a homogeneous

domain (2 = (0,1)3. It is assumed that the field behavior in the domain is given

by u(sc,y) = exp{—j0.9425z}g}. All other parameters, viz., distribution of nodes,

overlap, etc, are identical to those used earlier and as before the L2 error norm is

evaluated at 5 X 5 X 5 uniformly distributed sample points. The convergence data

is shown in Figure 3.6, and as is evident from this figure, the convergence for p = 2

follows the predicted behavior. However, the curves for p = 1 are a shade worse.
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. . p = 1 p = 2 p = 3

ifgfiilpal h = 1/4 0.0616 2.88e—4 2.826—6

TE h = 1/6 0.0297 6.178—5 2.42e—7

First 8 h = 1/4 0.1629 3.99e-3 1.65e-4

modes h = 1/6 0.0743 8.74e-4 1.21e-5

Principal h = 1/4 0.0182 2.756—4 1.14e—6

TM Mode h =1/6 9.93e—3 4.506-5 1.08e-7

First 8 h = 1/4 0.1674 0.0349 5.83e-4

Modes h = 1/6 0.0992 5.27e-3 1.12e—4
 

Table 3.1. Error in eigenvalues computed using ucllp

 

 

 

 

 

 

 

 

 

      

. . p = 1 p = 2 p = 3

333:1’31 h = 1/4 0.0206 1.17e—4 1.3297

TE h = 1/6 8.888-3 3.766-5 4.528-9

First 8 h = 1/4 0.0697 1.3le—3 1.07e—5

modes h = 1/6 0.0263 3.81e-4 7.066—7

Principal h = 1/4 7.13e—3 1.62e4 6.82e-8

TM Mode h = 1/6 3.76e-3 3.66e—5 7.04e-9

First 8 h = 1/4 0.1878 5.82e—3 3.97e-5

Modes h = 176 0.0420 1.89e-3 1.14e-5
 

 

 
Table 3.2. Error in eigenvalues computed using ugp

Next, we compute the eigenmodes in a rectangular waveguide. The dimensions

of the waveguide are chosen to be 1m X 1m. The convergence data (error in L2

norm) for both TEz and TMz modes are presented in the Table 3.1 and Table 3.2.

The basis functions used in these experiments are for both ucllp and 1131,. As is

evident from this data, the results obtained converge rapidly with increasing order

and refinement. Furthermore, results obtained using basis functions of type ugp

converge faster than those obtained using u(llp.

Until now, the basis functions used in all the examples have been based on

tensor products of polynomials. Here, we recomputer the scattering from a wedge
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Figure 3.7. Geometric description of the wedge

in the last chapter. The problem can be solved as vector problem when magnetic

field H(r) is computed. In what follows, we will explicitly incorporate the known

functional behavior. Consider a two dimensional wedge with angle gr that is located

in a rectangular computational domain {2 = (—1.0,0.5) X (—0.7, 0.3). The tip of

the wedge coincides with the origin of the computational domain and one side lies

in the y = 0 plane. A field that is polarized along the 2 and propagating along

I} = —0.9659:i: — 0.25883? is incident upon the wedge, and the wavenumber k0 = 3;

this geometric configuration is shown in Figure 3.7. It can be easily shown that the

fields are given by

H(r) =V X E(r)

47rE0
 

 

__ 'U ' . _ ' ' _E. 37, _ a g] Jv<kp)smiv<am + 7r a)]sm[v(<o + 7r all (3.32)

'0: mm m=1,2,---

27r — a

To solve this problem using GFEM, we use Jv(kp)sin[v(¢ + 7r — (1)] to create

the function space vi,m- The infinite extent of the wedge is simulated by imposing

analytical solutions for the infinite wedge as Dirichlet boundary conditions. The
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relative error is computed using L2 norm of error in the electric field at 100 X 100

sample points that are uniformly distributed along :2: and 3) direction. Figure 3.8,

Figure 3.9 shows the analytical solution and the graph of error when the number of

patches is 12 X 9 and the number of modes in one patch is 7. From this figure, it

is apparent that this scheme captures the field behavior extremely well at all points

in the computational domain, and as is to be expected, the results are excellent at

the tip. Graph of error shows that the overall error in the domain is dominated

by that on the boundary. Finally, Figure 3.10 shows the relative error with respect

to the number of unknowns, where m is the number of modes used for the local

approximation in one patch.
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(b) Error in the a“: component

Figure 3.8. Analytical result for scattering from a. wedge and error plot for y com-

ponnet
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(b) Error in the 6 component

Figure 3.9. Analytical result for scattering from a wedge and error plot for y com-

ponent
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3.3 GFEM solver for piecewise homogeneous domain with flat interface

3.3.1 Basis function

The basis functions defined earlier are continuous as are its derivatives. While these

basis functions are ideal for modeling fields in a homogeneous domains, it is appar-

ent that these are far from satisfactory when the domain comprises of a material

discontinuity. Ideally, the approximation space should consist of functions whose

normal components are discontinuous and whose normal derivatives of the tangen-

tial components are discontinuous as well. To address this problem, consider a

domain 9,- = Q: U Qi— and I"? = 852:" F1 89; . The dielectric properties in 93: are

assumed to be different as shown in Figure 3.11. In what follows, 1" is assumed to

be planar, the unit normal vector to this boundary is denoted by C, and the bound-

ary is defined by the plane I‘ = (03;. Assume that the local approximation func-

tions, {V X (Cvsz’mp), V X V X ((027%)} are augmented by two functions f+(r)

and r; (r) with supp {rpm} = of and supp {fi (r)} = o; . Next, we derive the

characteristics of these functions Vr E Fit.

Prior to doing so, we define the following: r = p + (i, V = Vp + 8C6 and

f?(r)= 2pfa+ (fl-CE for a = :l:. Operations on these functions are defined as:

Tk(r) = 6f (rage) — fi;(r)) Vk = 1,2,...

N00) = g(r) — 1,; (r) (333)

Nk(1‘) = 8? (fit-(r) — f,2(r)) Vic = 2,3, - .-

Using these definitions, the conditions that the local approximation functions fi
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Figure 3.11. Interface of two media

(and the fields) must satisfy are

T0(r)lVreI‘;t == 0 (3.34a)

Tk(r)|VreF:.t # 0 k = 1,2, - .. ,p —1 (3.34b)

N0(r)lVreI‘;.t ¢ 0 (3.34c)

Nk(r)|vrerii # 0 k = 2,3, . u ,p — 1 (3.34d)

V . ff (r) = 0 (3.34e)

Note, the partition of unity 0'2,- is continuous across the interface of two media.

Therefore if the local approximation functions satisfy the boundary requirements

exactly, then the basis functions will also satisfy those requirements exactly.

Next, the additional local approximation function may now be defined in a man-
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ner similar to that used earlier.

f,-+(r) =V >< (v3£(p,é)€) + v x V x (113370.05)

=Vp >< (vflmxfi) + Vp x Vp x (223370.05) 1' E 9-3

+6 x v, x (€6,123,36, o)

f,(r)—— vp x (1233,6610 + V, x vp x [66— 616,336. (0)]

+C X Vp X (56,112,733 (p, C0)) r E Q;

(3.35)

It can be verified from the above definition of local approximation functions that

. h, “

the functions Vp X Vp X (vi,:(p, C)C) and Vp X Vp X [C(C— C0)6Cv£;,p(p, C0)] are

normal to the interface, and functions Vp X (02’m(p,C)C), Vp X (02-;n(p,CO)C),

C X Vp X (56,213,,p(p, C)) and C X Vp X (66,223"(p, C0)) are tangential to the

th
interface. It also follows that to obtain a p order approximation, the functions

h,p
v,”mpand v27fshould be of order p + 1 and p + 2, respectively. Next, we use these

definitions ofnfz-ifi) to verify that they satisfy the conditions (3.34). Substituting

these functions into (3.33) and evaluating these Vr 6 F23, one obtains

Tk<p,<e)= [636,3 (r) — 6331",}; 6)] |C=C0

=vpx (693223,3,(p,<o))+c‘xvp >< ((833312;336.61))

N06, <0) = [136) — 13.; 6)] | C:<0

=vp x V, x (1233(0, (0)6) -c‘ (336)

Nap, <0) = [831332 - 8313-2] I,=CO

v, x v, x (gagegjpr) e > 1

0 k = 1

It is apparent from the above equation that the functions Tk(r), NO(r) and Nk(r)

are all not equal to zero. Thus, the additional local approximation functions defined
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in (3.35) has discontinuities in (i) its normal component and (ii) normal derivatives

of its normal and tangential components. Also,

v . r,+ =v - v x (2,333.05) +V - V x V x (2233206)
2 ’ (3.37a)

=0

and

v - f; =v - V, x (v33;(p,co)é) + V - V, x Vp >< [C(C — (364223312, (0)]

+V - {C X Vp >< (53(12233711, (0))}

:0 + V, x W x (€6,223;3(p,<o)) — C ° (W x Vp >< (Cacv333(p,Co))]

=0

_ (3.37b)

Thus, these basis functions, together with the basis functions “clip presented in Sub-

section 3.2.2, satisfy all the criteria laid out in (3.34). This is pictorially depicted

in Figure 3.12. Here vector plots of fi are displayed for a patch that straddles the

material interface for different orders. From these figures, it is apparent that the

tangential components of the span of approximation functions are continuous across

the interface whereas the normal components of the span of approximation func—

tions are discontinuous. In some figures, the approximation function in Q— is zero,

but that does not effect the discontinuity created at the interface. Consequently,

the basis function space V162) is augmented by the functions 23,-(rm.i and denoted

by film). It can be easily verified that the function space film) c H (Vx,o).

The method presented here, defining additional functions, is one way that can be

used to impose appropriate conditions on the fields. It is also conceivable to define

these jumps via other means. For instance, representing discontinuities using surface

integrals along the boundary or appropriately defining the vector potential L.
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(d) Inhomogeneous 11 mode(c) Inhomogeneous 10 mode
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(f) Inhomogeneous 20 mode(e) Inhomogeneous 12 mode
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Figure 3.12. Vector plots of inhomogeneous local approximation function v,-
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3.3.2 Proof of the completeness of the vector basis function

In what follows, we present an alternative proof that the proposed basis functions

are complete. Assume that the field in domain 52+ and domain (2" , shown in Figure

3.11, are u+ (r) and u- (r), respectively. Two fields are independent of each other

except for the continuity of the tangential components of u(r) and V X u(r) at the

interface. To prove completeness, we redefine the fields in the domain 9 = (2+ U0“.

To this end, let ut (r) denote the field for r 6 Q, and ur(r) = u+ (r) — ut(r) for

r 6 (2+. The fields in 52+ and 9" can be rewritten as

u+(r) = ut(r) + u7~(r) r E 9+

u(r) = (3.38)

u-(r) = ut(r) r E Q—

where fields ut(r) and ur(r) are assumed to be smooth as are their derivatives.

They are independent of each other, and ur(r) and V X ur (r) have zero tangential

components at the interface. Because u(r) is divergence free, we can express it as:

ut(r) =V X (1720+ V X V X (Até)

(3.39)

ur(r) =V x (FTC) + V X V X (ATC)

where Ft, FT, A, and A, are independent quantities with constraints Fr(C0) = 0

and 64A,.(C0) = O. The constraints are from the fact that the tangential compo-

nents of ur (r) and V X ur(r) are zero at the interface. Imposing a requirements,

that any approximation to this function be pth order, the basis functions (or local

approximation functions) should be able to approximate F, and F, to p + 1 order

and approximate At and Ar to p + 2 order.

Next, we will demonstrate that this requirement can be satisfied by the basis

functions defined in this paper. Let fo (r), fi(r) be the local approximation func-

tions that represent the field locally. In the patch across the interface, we approx-

imate the fields by approximation function in homogeneous domain and additional
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approximation function that creates the discontinuity satisfying constraints at the

interface. Then, the functions for homogeneous domain and inhomogeneous domain

is denoted by f0 in whole domain and fi in 0*, respectively. More specifically:

f0(1‘) =V X (Um,0(r)C) + V X V X (1172,0005)

f+(r) =V x (22m,a(r)é) + v x v x (2n,a(r>o

,— (r) =vp x (2mm, Cox“) + vp x Vp x [(c - (0)6,vn,a(p,<o)é] (3.40)

+5 >< Vp >< [act'n,a(P,C0)C]

A

2v x (,,m:a(p, (0)0 + V x V x [(C — (0)04vn,a(p,Co)C]

where we omit the superscript h and p and subscript i and add subscript 0 and a

for homogeneous basis and additional basis for brevity. Obviously ”Um,02 vmfl are

p + 1 order and vn,02 'Un,a are p + 2 order. Let Fr,app, Ft,app2 Ar,app and Atflpp

be local approximation to Fr, Ft, Ar and At. Compared with (3.38), the local

approximation can be written as:

Ft,app =vm,0(l‘) + ”Um,a(Pa C0)

Fr,app =’Um,a(r) — ’Um,a(02 CO) (3.41)

At,app =vn,0(r) + (C — (0)3gvn,a(p, C0)

Ar,app =Un,a (r) — (C _ (0)3(vn,a(P2 (0)

Obviously, Ftfipp and Fr,app can approximate Ft and F,- to p +1 order, and Atflpp

and Ar,app can approximate At and A, to p + 2 order. Constraints Fr(C0) = 0 and

BCAT(C0) = 0 can also be satisfied. Therefore the basis functions are complete to

order p.

3.3.3 Numerical experiments

In the next series of examples, we consider problems wherein the medium is piecewise

homogeneous. We will examine both boundary value and eigenvalue problems. First,
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consider a 2D inhomogeneous domain. The computational domain is defined by

Q = 0+ + {2" with (2+ = (0,1) x (05,1) and S)— = (0,1) X (0,05). The relative

permittivity in (2+ and {2‘ are chosen to be 5r = 1, 3, respectively. The fields are as

follows: Vr 6 (2+ the electric field is E = (-:i: — J39)exp{—j [V355 — (3] —1/2)]}, and

‘v’r E Q“ the electric field is E = 1/\/3(—\/3:i:— y“)exp{—j[\/3:r— 3(y—1/2)]}. Using

this data, we derive the apprOpriate Dirichlet and Neumann boundary conditions

that are to be imposed.

The basis functions used belong to V(Q). These basis functions create a dis-

continuity in the normal component and the normal derivatives of the tangential

component. A tensor product of Legendre polynomials is used as a generating func-

tion, the L2 norm of relative error is evaluated at uniformly distributed 100 X 100

sample points. This is depicted in Figure 3.13, and as is readily apparent, the

method shows h, p—convergence when either the Dirichlet or Neumann boundary

condition is used.

Next, we examine the performance of these basis function when applied to a 3D

problem. The computational domain is defined by Q = {2+ +9" with 9+ = (O, 1) X

(0, 1) X (0.5, 1) and f2- = (0, 1) X (0, 1) X (0, 0.5). The relative permittivity in 52+ and

(2" are chosen to be e,» = 1, 3, respectively. The fields imposed are as follows: Vr 6

9+ the electric field is E = g)exp{—j[\/3:r—(z—0.5)]}—3)0.5ezrp{—j[J3m+(z—O.5)]},

and Vr e {2— the electric field is E = g0.5exp{—j\/3[a: — x/Z’Kz — O.5)]}. This data

is used to impose the Dirichlet boundary conditions. Figure 3.14 demonstrates the

h and p convergence. These results are obtained by sampling the fields at 5 X 5 X 5

points in domain and computing the L2 error norm. As is apparent, the results are

excellent.
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Figure 3.14. Convergence graphs for 3D inhomogeneous vector Dirichlet BVPs

Next, we compute the eigenmodes in a brick cavity. The computational domain

is defined by n = {2+ + n- with mm, 1) x (0,0.1) x (0.5, 1) and o- = (0,1) x

(0, 0.1) X (0, 0.5). The relative permittivity in {2+ and 52‘ are chosen to be 5,- = 1, 2.

This numerical experiment is identical to the one designed in [64] to validate the

classical vector FEM code. The convergence data (error in L2 norm) for eigenmodes

are presented in Table 3.3. As is evident from this data, the results obtained converge

rapidly with increasing order and refinement.

3.4 GFEM solver for piecewise homogeneous domain with curved inter-

face

3.4.1 Basis function

Until now, the vector GFEM solver has been developed for homogeneous domain

and piecewise homogeneous domain with flat material interface. When solving large
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p=2 p=3

. . h=1/2 6.2e-4 1.8e-5

magma h=1/4 2.0e-4 9.1e-6

h=1/6 5.6e-5 6.1e—6

. h=1/2 0.019 1.7e-3

2:31:36 h=1/4 4.9e-3 7.3e-4

h=1/6 1.8e-3 3.7e—4
 

 
Table 3.3. Error in eigenvalues computed using 113,,

problem such as antenna design, air plane design and so on, the curved material in-

terface should be analyzed. When high order accuracy of solution is required, high

order accuracy in both basis functions and geometry description are necessary. In

classic FEM, there are two ways to obtain satisfactory geometry description. First,

we can descritize the regular mesh fine enough to describe the geometry, but it limit

the geometry description to first order accuracy. Second, we can utilize the high

order mesh based on the geometry transform which realize the high order accuracy

of the geometry description, but the property of vector basis function, especially the

divergence free property, is spoiled. Those drawbacks come from the continuity re-

quirments of basis function space on the edge of the mesh in classic FEM. In GFEM,

as the continuity requirement of the basis function can be realized only by the parti-

tion of unity function, we have more freedom in constructing the local approximation

function on the material interface. More specifically, the construction of the basis

function needn’t depend on the geometric transformation. This property makes it

possible to obtain high order accuracy of geometry transform and divergence-free

vector basis function together. In this section, we will propose a GFEM solver to

deal with the curved material interface and demonstrate the convergence of those

basis functions.

Figure 3.15 show a patch 9,- on the curved interface. The constitutive parameters

are different on two side. The tangential direction and normal direction to the
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Figure 3.15. Figure of patch on the curved structure

   

interface are denoted by f and 7‘1 on the interface. If the fields in both homogeneous

domain is denoted by E1 and E2, then on the interface, those fields should satisfy

the following criteria:

Etl = Et2

Enl 73 En2

BnEti 73 anEtZ (3-42)

BnEnl 73 BnEnz

V-E=0

The above criteria show that the tangential component of the field are continuous

and the normal component of the field are discontinuous. The normal directives of

both tangential and normal components are discontinuous as well. The fields are

divergence free in both homogeneous domain. As the vector basis function for homo-

geneous domain is continuous everywhere, the additional vector local approximation

fimction fadd should be defined in the patch to create the appropriate discontinu—
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ities. The additional function fadd is not necessary to be defined on both sides of

the interface, we can just define fadd in one side such as (21 in Figure 3.15. Then

the criteria for the fadd are the following:

f,=0

fn 7'é 0

anft 75 0 (3.43)

anfn ¢ 0

V-f=0

That means, continuous component of the fields result in the zero component of

fadd on the interface, discontinuous component of the fields result in the nonzero

component of fadd- The addition function fadd is also divergence free. The last

criteria is very important to get the high order approximation of the divergence free

field.

The most straightforward way is to construct the addition functions based on

geometry transform. By doing so, the curvilinear structure 91 is transformed to

a regular structure. After defining the additional basis function in that structure.

we transform it back to the original structure. Unfortunately, we found that when

the additional function satisfies all the continuity requirements on the interface, it’s

not divergence free. In GFEM, as mentioned before, the continuity requirements of

the basis function on the edge of the patch can be realized only by the partition of

unity function. That means the construction of the addition function fadd can only

depend on material interface. Next, the construction of the addition function will

be introduced in detail.

We defined the local transverse and longitudinal coordinate as p and 2, then the

material interface can be defined as 20 = P(p) Vp 6 Pp. I‘p denotes the projection

of the interface in patch 0,- on the p plane, and we can define the fadd at any place in
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Figure 3.16. Local coordinate of patch on the curved structure

the domain 1",, X (— inf, P(p)) as shown in Figure 3.16. The fadd can be formulated

using

v =V X (pmé) +V X V X (457,2)

f(p, 2) =V(p, 2) — [V(p, P(p)) — fi(V(p, P(p)) - 32)] (344)

+ 2Vp- [V(p, P(p)) — fi(V(p, P(p)) - fi)](z - P(p))

where the it represents the unit vector normal to the interface. This vector can be

expressed mathematically by ft = 2‘: — VpP(p). Scalar function aim and qbn can be

any function. For pth order accuracy, function pm and (1),, should be of order p + 1

and p+2. The basis function defined above can satisfy all the criteria, including the

divergence-free criteria. Figure 3.17 shows 2D examples of the addition function. In

these figures, tangential component of the addition function is zero on the interface,

and the normal component is nonzero.
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curved interface

Figure 3.17. Vector plots of inhomogeneous local approximation function v,- for

(g) Inhomogeneous 21 mode (h) Inhomogeneous 22 mode
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The zero tangential component and nonzero normal component of the fadd is

proved mathematically as follows:

fi(p, P(p)) =Vt(Pa P(p)) - [Vt(PiP(P)) - 0]

+ [2 - (2 - 3073le - [V(p. P(p)) - fi(V(p, P(p)) - fi)l(P(p) - P(p))

=0

fn(p, P(p)) =Vn(p,P(p)) - [Vn(PiP(P)) - 1“1(V(10,P(10)) - 1%)]

+ (5 - WV,» - [V(p, P(p)) - 7"Iii/(p, P(p)) -7‘2)l(P(p) - P(p))

=fi(V(p, P(p)) - 32-)

750

(3.45)

The following is the proof of divergence free property of fadd-

V - fn(p, P(p)) =V - V(p, 2)

- (V(p, P(p)) - 32)]
(3.46)

+ Vp - [V(p, P(p)) - rib/(p. P(p)) 232)]

=0

The functions introduced herein demonstrate means to develop additional basis

function for curved surface. For completeness, we first introduce basis function

developed with geometry transformation. A curvilinear structure in cry-domain can

be mapped to a regular structure in Cn—plane. Transform functions are

3: =$(€,n) (3 47)

y =y(€,n)
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Figure 3.18. Geometric transform

Then Jacobian matrix is defined as:

6:1: 6

[n= 333% an)
6x 2],:

35 n

and L] | is Jacobian. If we use u and ii to represent the vector function in curvilinear

structure and regular structure, then we can construct the addition function in

curvilinear structure by the following transform formula:

11 =[J]"1ii

an)

VXHfl§UFVXfi

This formula can be easily extended to three dimension.

In both of the above two methods, the material interface is described by some

sample points on the interface. Locations of other point on the interface is computed

by interpolation of those sample points with Lagrange polynomials as interpolatory

functions.
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3.4.2 Numerical Experiments

Next, several numerical results will be shown to demonstrate the accuracy of this vec-

tor GFEM solver. First, we shall demonstrate the convergence of the local approxi-

mation function. Next we shall demonstrate the convergence of the basis function.

Finally, one large two dimension problem will be used to demonstrate the feasibility

of this solver. At first, convergence of the local approximation will be demonstrated.

Figure 3.19 shows one patch on the curved interface, the curved interface is a seg—

ment of the circle with radius 0.48/\ and cross the center of the rectangle which can

be described as x2 + (y + 3)2 = 32 with I: = 27r5i:. The rectangular computation

domain is (—0.5,0.5) X (-0.5,0.5). The analytical results in the patch is the total

fields when a TE plane wave propagating to the dielectric coated PEC cylinder with

radius of the PEC 0.24/\. The patch is on the boundary of the dielectric coating

with the side of the patch parallel to the line between the center of the patch and the

center of the PEC. When we change the size of the patch, we keep the center of the

patch on a fixed point on the boundary of dielectric coating. The relative L2 error

is computed on the 100 X 100 sample points uniformly distributed on the patches.

The additional scalar function is chosen as tensor product of Legendre polynomials.

The Figure 3.20 show the error based on both of two methods introduced above.

The dashed line show the error of local function based on geometry transformation.

From the figure we can find that when the order of the function is high, the accuracy

of the approximation is spoiled by the geometric transform. This results shows the

importance of divergence-free criteria in creating the additional fimction. The solid

line show the additional function based on [3.44]. It shows the h— p- convergence of

the additional function. The error is excellent
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Figure 3.19. Figure of patch on the curved structure
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Next figure shows different errors when the center of the PEC circle is moving

around the patch, e.g., in Figure 3.21 the a is changing from 0 to 27r. In this case, the

size of the PEC and dielectric coating are the same with before. The center of the

patch is still on one point of the dielectric coating’s boundary. In this experiment,

the size of the patch is 0.05). and p = 3, The relative L2 error is computed on the

100 X 100 sample points uniformly distributed on the patches. The Figure 3.22 show

that the error is always smaller than 10-5.

Next, we will demonstrate the convergence of the vector GFEM solver in a simple

problem. As shown in Figure 3.23, there is a dielectric coated PEC with the radius of

the PEC and dielectric as 0.06) and 0.13/\. The computation domain is bounded by

two circles with radius 0.095A and 0.16A. Relative permittivity of dielectric coating

is 2. Dielectric boundary condition is imposed. Incident field is a TB plane wave and

propagates along —:f: direction. The L2 error is computed on the 100 X 100 sample

points uniformly distributed in the domain. The Figure 3.24 shows the convergence

of the basis function. The fields with h = 0.055A and p = 4 are also shown in

the Figure 3.25,Figure 3.26. Figures show the analytical result and error of Ep and

E45 respectively. As the L3,, is normal to the interface, it is discontinuous on the

interface, when E, is continuous on the interface. The figure demonstrates that

property and shows that the error is small and distributed uniformly throughout

the computational domain and is not restricted to the surface.
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Figure 3.21. Figure of rotated curved structure
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Figure 3.22. Error with different curved surface
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Figure 3.23. Geometric description of dielectric-coated PEC cylinder
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Figure 3.25. Analytical and numerical result of p component of the field
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(8) Analytical result for E¢
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Figure 3.26. Analytical and numerical result of ()3 component of the field
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Last, a 2D large problem will be analyzed. As shown in Figure 3.27, there is also

a dielectric coated PEC with the radius of the PEC and dielectric coating as 2.7/\

and 2.85A. The relative permittivity of dielectric coating is 2. The computation

domain is truncated by a circle with radius 3.0A. The incident field is TE plane

wave propagating along —:E direction. Dirichlet boundary condition is imposed on

the boundary. The distance h between the neighboring nodes is 0.43/\, the order

p = 4, numerical results are computed on two circles inside and out of the interface

and close to it with radius 2.82/\ and 2.88/L The results are shown in the Figure

3.28, Figure 3.29. Results show that the approximation is excellent and the relative

error is 2 X 10‘3.

 

Figure 3.27. Figure of patch on the curved structure
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Figure 3.28. Analytical and numerical result of large 2D inhomogeneous problem in

the interface
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Figure 3.29. Analytical and numerical result of large 2D inhomogeneous problem

out of the interface
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3.5 Overcoming linear dependence and condition number issues

Another problem that plagues GFEM, as it does any higher order method is the

condition number of the resulting system. Indeed, this is more of a problem here as

opposed to classical FEM as the space of basis functions is not interpolatory. The

vector basis functions in ith patch ¢i(r)V X [6215132] and erlv X V x {59?}?
] m

not orthogonal. In fact, they may even be dependent on each other. Consequently,

a good starting point to obtain a handle on the condition number is to redefine

basis functions in each patch so that they are orthogonal to each other. To this end,

we compute a symmetric matrix of inner product of basis functions {S}z in the ith

patch as defined by

{le'z' = [a Miss-{S}? (3.50)
2

where {S},- is a vector whose elements are all basis functions that are defined in

the ith’ patch. Representing the singular value decomposition of the above matrix

as {L},;,- = UzTDiUz- where U, is an orthogonal matrix, and D,- is a diagonal

matrix that contains the singular values. We can then redefine the basis functions

as {S}; = U,-{S},-. It is apparent from this redefinition that the inner product

of any two basis in the domain (2,- are orthogonal. The basis functions related to

small singular values in D,- are dropped. These basis functions can be readily used

in all the quantities derived earlier and has been found to considerably reduce the

condition number of the resulting system. More specifically, consider the bilinear

form Ah(u, w) = .77), (w) in (3.29). Using the span of basis functions defined earlier,

one can rewrite (3.29) as a matrix equation of the form Zj [Alij {x}j = {f}z where

a {x},- is a vector of unknowns coefficients of basis functions in Qj, sub-matrix

[A],j = Ah(u,w) for uap E Q, and w E (2,, and the corresponding right hand

side, {f}, = Fh(w). It follows that given the redefinition of basis functions, one can

alternatively redefine the vector of unknown coefficients as {x},- = [Uh-{x}, Using



these definitions, matrix equation arising from the inner product can be written as

[Aijl =[UlilAl’ijl1Jlgw

{fli =lUlt'fflz'

(3.51)

It is apparent from the preceding description that the SVD-based preconditioner is

developed on a patch by patch basis. This implies that the number of operations

scales as proportional to the number of patches in the domain. For instance, in a

2D problem, if there are N patches and pth order basis functions are being used,

then the total cost of performing the SVD scales as 0(Np6) and imposing required

transformations scales as 0(Np4). This cost is derived using the fact that the

matrices used in the transformation are block diagonal and not full. Given that

p = 0(1), the overall operation is typically proportional to the number of patches

used in the domain. Thus, it is not very expensive to retrofit existing codes with

this preconditioner and, in this case, considerably reduces the cost.

The error bound of the new set of basis functions can be obtained. Assuming

that the threshold of singular value in [D]m, used to remove the dependent basis

functions, is defined as ed. The approximated field can be represented by two set

of basis functions as nap = 2k akS)c = Zj chj. In each patch, we have {a}?w =

{c}?[U],- where {a},- and {c},- are vectors representing the coefficients of original

basis functions and reformatted basis functions in ith patch respectively. In all

N reformatted basis functions, we assume that N1 of them are accounted with

the singular values larger than ed, then rest N2 =-- N - N1 of them are those

which singular values are smaller than ed which are removed as dependent basis

functions. Number dz- denotes the singular value related to the basis function Si-

For convenience, we assume that the first N1 basis functions has singular value

larger than ed. Constant cmam represents the largest coefficient of reformatted basis
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functions. The error bound can be derived as follows:

 

   

N1

ll“ — fiapllLZm) = u - Zcisz'

2:] L262)

N ~ N ~

= u - (Z ciSz' - Z 6282')

N ~ N ~

= u - CiSz' + Z Gist

i=1 [9(9) i=N1+1 Lgm) (352)

N

g “u — nap” +. Z 102' “Silleml

z=N1+

N

s llu-uapllem) + z ova;
i=N1+1

5 ll“ _ uaPHL2(Q) + NZOmanx/Ed

Next, several results will be shown to demonstrate the efficacy of this SVD-based

preconditioner. Figure 3.30 shows the condition number of the final system with

different order of basis functions and different threshold ed. Figure 3.30 shows that

when the order of basis function increases, the condition number of the original

matrix (ed = 0) increases very fast, but with different threshold, the condition

number increases slowly. Figure 3.31 shows the error of the solver with different

threshold of preconditioner. It demonstrates that the errors are almost unchanged

while the condition number of the system is reduced significantly. Figure 3.32 shows

the condition number of the system with order of basis fimctions changing from 1

to 10. With different threshold, the condition number slowly increases.
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CHAPTER 4

TIME DOMAIN GENERALIZED FINITE ELEMENT METHOD

4.1 Introduction

Transient analysis techniques that are based on differential equation based tech-

niques have been popular, but this is largely due to finite difference time domain

technique [65]. However, recent work in time domain finite element methods (TD—

FEM) [1] has revived some of the interest in further development of this direction of

research [66—68]. Recent developments in this area are truly exciting as they offer a

viable and efficient alternative to FDTD. They inherently offer some advantages: (i)

they conform to the object and (ii) it is possible to use higher order basis fimctions.

An apparent disadvantage seems to be the fact that a straightforward approach im-

plementation of TDFEM seems to be the cost required to obtain the solution at

each time step. A novel approach to solving this problem was proposed in [1], and

other recently developed methods permit more efficient time stepping.

The generalized finite element methods (GFEM) provide an intriguing analy-

sis methodology, in that, it is a general framework for differential equation based

analysis and permits the use of non-polynomial space of basis functions. Further-

more, the basis function space does not rely on an underlying mesh. This said, the

enthusiasm has to be tempered largely due to the fact that while the potential of

this method is considerable, progress still needs to be made to realize the kind of

efficiency and flexibility that current day finite elements possess. The aim of this

chapter is two-fold; (1) methods for time domain analysis using generalized finite

element; and (ii) analysis that is easily portable to standard finite elements as well.

Some of the inspiration for this work is drawn from our earlier work on time domain

integral equations [69].

Classical TDFEM typically employs either central difference or the Newmark
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method for time stepping; the latter is unconditionally stable, and both are accurate

to second order. However, an alternative to these methods, is exploiting the fact

that in any of these solver, we seek a response to a bandlimited source. This implies

that one can exploit this to create both an alternative matching scheme, and well as

a more efficient iterative scheme. Thus, the principal contributions of this chapter

are as follows: (i) we will develop a time domain generalized finite element solver

and prove/demonstrate convergence; (ii) we introduce a marching scheme based on

approximate prolate spheroidal wave (APSW) functions and analyze stability; (iii)

other marching schemes are analyzed for stability within the context of the TGFEM

is provided; (iv) higher order convergence (time and space) is demonstrated. This

chapter is organized as follows: Next, we will propose two high order time stepping

schemes with error analysis. Then the stability analysis of the high order time

stepping schemes will be provided. After that, we will propose one iterative solver.

Finally, we will demonstrate the accuracy and stability of the technique with a host

of numerical examples

4.2 Formulation for Time domain GFEM solver

4.2.1 Discretization of time domain wave function

Consider a domain 9,- whose boundary is denoted by 69 z: I‘ = U2 Pi- The electric

(or the magnetic) field by u(r, t) satisfies the equation

 

2
r

(V X [fiVx] + 7(P)% + 36);) u(r,t) = _8f(at,t)

B,- {u(r,t)} = gi(r, t) for r E F,-

(4.1)

where f(r, t) denotes the electric (or magnetic) source that is bandlimited to an

angular frequency wmax and is approximately quiescent for t < 0. In the above

equations it is assumed that r 6 Rd for d = 2, 3, B, are differential operators, and

gi(r,t) is the function that is imposed on I}. In what follows, we will describe the
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manner in which solution to these equations may be obtained via the GFEM.

As is done in all discrete solution to PDEs, the function is represented in terms

of space time basis functions of form

Nt N3

u(nt) = Z Z ujnm —jAt)sn(r) (4.2)

j=1n=1

where Nt and N3 represent the number of temporal and spatial unknowns, T(t) and

Sn (r) are the temporal and spatial basis functions, At is the time step size, and ujn

are the unknown coefficients need to be determined. The spatial basis functions are

formulated in terms of GFEM space.

Next, we address the temporal basis functions or equivalently time stepping

approachas. Three different types of time stepping approaches are investigated: (i)

backward Lagrange; (ii) Newmark, and (iii) those resulting from using approximate

prolate spheroidal wave (APSW) functions. As an aside, all time stepping schemes

can be mapped into equivalent temporal basis functions. In what follows, we will use

time stepping and temporal basis functions interchangeably. The APSW functions

used here are those introduced by [70] and have been used extensively in the solution

to time domain integral equations [69]:

 

T0) = Sin(meaxt) Sin [(1)/(“71%)2 — I] (4.3)
meaxt Slnh(a)\/(Nzfi)2 — 1

 

 

In time domain, APSW function can be used as interpolatory function to the uniform

time step size. x is oversampling factor such that the sampling frequency ws =

xwmag; and At = r/ws. APSW function also has compact support. p is the half-

width of the prolate, and T(t) = 0 for |t| > (Np +1/2)At. a = «Np(x — 1)/X is the

time bandwidth product. The error of approximation based on the APSW function
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can be represented as

N

lf(t)— Z f(kAt)T(t—kAt)Is

kz—N

 32,73,101) ~ 0(e-NpflX-D/X) (4.4)

This fimction is band-limited to wmax Figure 4.1 shows the APSW function in time

and frequency domain. While these functions are bandlimited and approximately

time-limited, they do not satisfy the march condition, i.e., they do not results in

causal system that would enable a marching-on—in-time process. Means to overcome

this have been prescribed [69], and will be summarized in the next subsection.

Lagrange polynomials can also be used as high order temporal function. Follow-

ing definition shows that it can also be used as the interpolatory function in time

domain.

(t — At)(t — 2At) - - - (t — pAt)

MN)"

 T(t) = (4.5)

But when order p is increased, the function is getting more and more oscillatory,

e.g. the function is not band-limited. This makes the final system unstable. This

property will be shown in the result section.
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APSW function in time domain

L2 1 . I 

0.8 *- .

0.6 ~
.

0.4 ~ -

0.2 r
-

VVV Vv -

-02 . 1 .

'—2 —1 o 1 2

‘ 1:10-10

    
 

(a) APSW function in time domain

APSW function in frequency domain

1.5 I I T f l I T I I
 

 

  

  
 

0.5 ~ ~

0

_05 1 1 1 1 1 1 1 1 1

-5 -4 -3 -2 -1 O 1 2 3 4 5

a) 9
x10

(b) APSW' function in frequency domain

Figure 4.1. APSW function in time and frequency domain
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4.2.2 Causal system for time domain wave equation

Finally, to derive the MOT system, we will use the approximation space defined

earlier in (4.1). It will be assumed that the boundary condition on different portions

of are defined to be either of the Dirichlet or Newmann type, i.e., [V x u(r, t)] x f1 =

g1(r, t) and it - u(r,t) = g2(r, t) are imposed on 1},, u(r,t) x 11(r) = g3(r,t) is

imposed on I‘d. Using Gelerkin testing in space results in the following bilinear

form:

Ah(u, (Sm(r), t)) = fh

.Ah(u, (Sm(r),t)) = [fidna(lr_)(V x Sm(r)) - (V x u(r,t))

62u

+ [a d97(1')3m(r)'a§(rat)

Bu

+ [a d9fi(r)sm(r) . Eat)

+ Cl f9 dQ(V - Sm(r))(V . u(r,t))

1 .

+ [I‘d drm(v X Sm(r)) ' (Ll(l‘,t) X Ti)

+f dF-l—(S (r) x n) - (V X u(r t))

pd u(r) m ’ (4.6)

+ C2/P dF(Sm(r) - f2.)(u(r, t) -fz)

+ 03 [I‘d dF(Sm(r) x 7‘7.) - (u(r, t) x 6.))

f}, = — Ldflsmh) - %(r, t) + A” dI‘Sm(r) - g1 (r, t)

+ c2 fr dI‘92(r, t)(sm(r) ~71)

1
.

+ I‘d drag-$3030 ' [V X Sm“) X n]

+ C3 Ad ng3(r,t) ~ (Sm(r) x fr)

where cl, c2 and C3 are constants to include penalty terms and additional bound-

ary condition respectively (we have shown in [71] that while these terms are not
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absolutely necessary for h—, p— convergence, the convergence is smoother if these

conditions are imposed).

Substituting (4.2) to (4.6) and using point testing in time, results in an MOT

equations. For different time stepping schemes (equivalently temporal different basis

functions), these equations may be written as 232- 1 Zin—j = Vi- In this equa-
K

tion, [13]” = ujn, [Vilm = fmltzti: and Z,- = Altzti, 51 + 52 + 1 is the number

of time steps included in the temporal support of the time basis function. When

using backward Lagrange or Newmark time stepping schemes, the resulting system

of equations is causal, e.g. 1:1 = 0. This is not the case when using APSW flmc-

tions. The solution to this problem maybe obtained using an extrapolation scheme

prescribed by either [69] or [72] to make the MOT system causal. More specifically,

extrapolation coefficients kg, is applied to approximate the unknown vector 123..j

Wlth j < 0 based on the Nsamp solved VBCtOT IZ-j With j Z 0 and Nsamp S 52 +1.

0

3+1) = Z hglj+q (4-7)

(1:1 "Nsamp

I

Explicit expression for the matrices can be easily obtained. As is evident from the

above exposition, these equations can be used in a stepwise manner to obtain the

fields for all time. Next, the error bound of the time domain GFEM solver will be

analyzed.

4.2.3 Error bound of Time domain GFEM solver

The error bound of this time domain solver can be analyzed. We assume f(:13) and

9(1) are approximation of linear operators f (.73) and g(r). Given the error of the

approximation

f(I) =f($) + 6(f (17))

9(33) =90?) + 60105))

(4.8)
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Then the error of approximation of operator f (g(r)) is

f(g(:v)) =f(g(x) + eats)»

=7<§7<x>> + f(e<g(x>))

=f(9(:c)) + e(f(§(:v)) + f(e(g(rc))))

=f(9(x>) + 0(e(f(§(:v)))) + 0(e(g(:c))) (4.9)

=f(§1(rr)) + 0(e(f(g(x)) + e(g(z>))) + 0(e(g(a:)))

=f(g(a:)) + 0(e(f(g(rc)))) + mew») + 0(e(f(e(g(x)))))

zi(§(fiv)) + 0(6(f(9(-’II)))) + 0(e(9($)))

The difference between both sides of z is small when e(g(:c)) << 9(1) and

e(f(33)) << f(x). The theorem shows that the error of two operators can be ap-

proximated by the summation of the error of two operators. So in (4.6), errors of

the .Ah and f), are

e(.Ah) =0(e(V X u)) + 0(e(u)) + 0(e(V - u)) + 0(e(u X 71)) + 0(e(u - 71))

2

meagre)» +o<e<§,—f(t») +0(e(f(t))) (4-10>

e(f'h) =0(e(u)) + 0(e(u ~ 71.)) + 0(e(u X 71)) + 0(e(V X n x 71))

In [73], the order of the error of GFEM basis functions 0(e(u)) is the same as

error of local approximation function. In the above formulas, 0(e(u)), 0(e(u - 71)),

0(e(u X 71)) have the same order accuracy and 0(e(V x u x 71)), 0(e(V X u)) and

0(e(V - u)) are one order lower.

In time domain, magi—22m»), magic)», O(e(f(t))) are used to represent

the error of the numerical approximation of the time domain operators. The follows

are the errors of different time stepping schemes:
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Backward Difference:

mag-m») =0(At)

magi-fa)» =0<At>

0(e(f(t))) =0

Forward Difference:

0(e(-;i2f(t))) =0<At)

mag-fa)» =0<At>

0(e(f(t))) =0

Central Difference:

magic») =0((At)2)

magic») =0((At)1)

0(e(f(t))) =0

p—order Lagrange polynomials interpolation:

gent)» =0<<At>P-1)

Megan» =0<<Atm

O(e(

0(e(m») =0<<(At>P+1)>

(4.11)

(4.12)

(4.13)

(4.14)

Approximate prolate spheroidal wave(APSW) functions with width parameter
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AT

mag,—2:177»)0(A—12e—“2N/w0“)

0020;}ft())) =0(Aite—"2N/woet) (4.15)

owe») =0(e-“2N/“’0At>

4.3 Analysis of stability

The analysis of stability is a very important issue in this time—marching scheme.

The criteria of stability in discrete signal system is utilized in this paper to analyze

whether and when the system is stable. The bilinear form equation (4.6) can be

expressed as:

[Sl{u(ts)} + [Ql{ii(te)} = f(te) (4.16)

where (1' — 1)At < t3 _<_ z'At and the current time can be represented as t; = 1At+t’.

Approximating the time domain result by temporal basis function T(t) where T(t) =

O for |t| > (N + %)At, the equation can be discretized further as:

i+N i+N

Z [Slflle(-J'At+ts)+ Z [Ql{1}jT(-jAt+ts)={V(ts)} (4-17)

jzi—N j=1'—N

With extrapolation algorithm in (4.7), this equation can be rewritten as:

Z (lslflljaj—HN + lQllllij—HN) = {V(ts)} (4-18)

j=1'—N

where

T((N —1‘)At+t’)

<71 2 (2' = 0,. .. ,N — Nsamp) (4.19)

T((N — 1))At + t’) + 22-_N+1T((N — j)At + 11071;];

(i- =N+1—Nsampa---:N)

119



T((N —1')At + t’)

51 = (7' = 0,... N — :Nsamp) . (4.20)

T((N — 1')At + t’) + 2].];_N+1 T((N — j)At + t’)h;.:11‘[

(2=N+1—N3amp,...,N)

The period time At should be extracted from (’12- and 5;, so by stretching the temporal

.. .. I

function T(t) = T(th) and using t’ = i—t, The following equation with normalized

form is obtained:

Ease” (lg—12p {1}...)- = {we} (4.21)

where

T((N—1H?)

i=0,...,N—N

11,-: ~ ( 2N famp) ~ ,N (4.22)

T((N—n+t’)+Zj=N+1T((N—j)+t’)h;_N

(i=N+1—Nsamp,...,N)

T((N — 1') + i’)

1),: .. (1:0,,... Nstamp) ~ , (4.23)

T((N ) + t’) 22-511“ T((N -j> + mil,

(1=N+l—Nsamp,...,N)

The z-transform of the left side of the above equation result in the equation:

 {2(131a1+ [2132)we1): (4.24)

_Z__1N__=—0 bizi —-1

___,(1}, =<At> [Q] [3111},- (4.25)
Ego“i‘2
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i=0 i=1 i=2 i=3 i=4 i=5 i=6

4 bi -6.0le—5 1.04e-3 -8.93e—3 -0.973 3.964 -4.976 1.994

Nsamp = az- 0.0 0.0 0.0 0.0 0.0 0.0 1.0

5 b2: 1.0-6.01e-5 1.04e-3 0.912 -4.658 9.489 -8.660 2.915          
Table 4.1. The coefficients of characteristic equation

It’s easy to find that —(Z;§:O bizi)/ (23,-1:0 aZ-zi) is the eigenvalue of matrix

(At)2[Q]_1[S] and written as A, then

N

2(1),- + 1a,)zz = 0 (4.26)

i=0

The condition of stability for the above system, or called the A-system, is that

all the roots of equation (4.26) are in the unit circle. If there is a number

Amaa; when VA 6 [0,Amam], all roots of z are in the unit circle, e.g. A—system

is stable, then the time stepping scheme is conditionally stable with the criteria

At < (/(Amax)/(p([Q]‘1[S])). Analysis of the stability by characteristic equa-

 

tion (4.26) w.r.t 2: can be transferred to the characteristic equation w.r.t. 111 using

2 = [1%, where the stability criteria is that all roots of 10 should lies at the left side

of the complex plane. Then Routh criteria can be utilized to analyze the stability

of the system.

An experiment will be presented to demonstrate the feasibility of the above

scheme. In the experiment, APSW function is chosen as temporal basis function

with testing point t’ = 0, the parameter chosen is At = 2.33 X 107113, Nsamp = 4,

N = 6. The coefficients of characteristic equation is shown in the Table 4.1. When

/\ 6 [0,100], Figure 4.2 shows the stability of A-system based on both Rough criteria

and the numerical solution of A-system. When Rough criteria is implemented, value

1 shows that the A-system is unstable and value 0 represents that the system is
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stable. It shows that VA 6 [0, 100], the A-system is stable. The appropriate At can

be chosen to make the approach stable. In the same figure, with different A, the

largest amplitude of roots of z in Figure 4.2 is computed by intrinsic subroutine in

Matlab. From the figure, we can see that they match with each other. Another

experiment is also presented with Nsump = 5 and all other parameter unchanged.

The coefficients of characteristic equation is also shown in the table. From the Figure

4.3, We can obtain the conclusion that there is no Amag; can be chosen so that

VA 6 [0, Amax], the system is stable. So the time-marching system is unconditioned

unstable. Figure 4.4 and Figure 4.5 show the same results with smaller region of A

which make the details of the figures around the origin clearer.

4.4 Iterative Solver

The main bottleneck in using TD(G)FEM as opposed to FDTD is the fact that the

resulting systems are not explicit. This problem is exacerbated if the basis functions

are higher order. One way to overcome this problem in TDFEM is to develop basis

function that are orthogonal in each subdomain [1]. While this approach is efficient,

it does sacrifice higher order spatial convergence. Using a SVD approach to define

orthogonal basis functions in TDGFEM permits higher order convergence. Another

fact that can be exploited is the fact that the signals analyzed are bandlimited. This

implies that one can make use of extrapolation schemes described earlier, but within

the iterative scheme. We shall dwell on the latter in a little more detail.
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At any instant of time ti, the MOT system of equations can be written as

[Z]0{I},- = {V}. It follows from the above arguments that {I},- can be estimated in

terms of {I}, forj =1'— Neg; —1,...,i— 1. Next, the matrix [Z]0 can be subdivided

into submatrices [Z]0,mn where the subscript {mn} indicates an interaction between

the mth and nth patch. In terms of sub-matrices, the iteration can be rewritten

as [Z]mm{I},- = {V},- — an[Z]mn{I}i where {I}; is an extrapolated estimate of

{I},-. This provides the first step of the iterative solver. One can build upon this to

provide the next guess, and so on. This iterative process is rapidly convergent for

an L2 error norm of 10‘s. It is not as robust for lower error requirements.

4.5 Numerical Experiments

In what follows, we shall present a series of numerical experiments that will serve to

demonstrate the accuracy and stability of the time domain GFEM presented in this

paper. These fall into three classes: First, we will focus on the stability issue when

different boundary conditions are imposed in homogeneous domain. Second, we will

demonstrate h—, p— convergence of spatial basis functions. Then, the convergence of

TDGFEM for different temporal schemes in two— or three-dimensions, homogeneous

or inhomogeneous domain is demonstrated. Finally, we will shows the results of

TDGFEM with iterative solver.

First, consider a homogeneous rectangular computational domain 11 = (0,1)2

with boundary F = U? Pi where {F1 : r E 0 X (0,1)}, {F2 : r 6 (0,1) x 1},

{P3 : r E 1 X (0,1)}, {F4 : r 6 (0,1) X 0}. In this domain, it is assumed that the

electric field is of the form

50—510
 E(r, 1) = g2(1+ )/728:I:p{—(t + iicflfl/TZ} (4.27)

where 2:0 = 5.5 and 7' = 3.15x10‘93. The solution to (4.1) is solved by imposing the

analytical solution as either Neumann, Dirichlet or Impedance boundary condition.
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In this experiment, all nodes are distributed uniformly, and rectangular patches are

used. The size of each patch is chosen to be 1.5 times the distance between the nodes.

The weight functions Wi(r) is a tensor product rooftops, and the local approxima—

tion function 1},-M(r) and vi,n(r) are tensor product of Legendre polynomials. The

parameters of spatial basis functions are h = 0.38A and p = 3. APSW functions are

used for as temporal basis. The half width of prolate function Np and the number of

sample points for extrapolation Nsamp are 6 and 4, respectively. The time step size

is At = 2.33 X 10—115. Linear equation is solved by SVD techniques. Figure 4.6,

Figure 4.7, Figure 4.8 shows analytical and numerical results at location (0.44, 0.44)

with Dirichlet boundary condition, Neumann boundary condition and impedance

bormdary condition. From these figures, we can see when Dirichlet boundary condi-

tion and Neumann boundary condition are imposed, the solutions are corrupted by

interior resonance modes. As is expected, unique solutions are obtained when using

the impedance boundary condition.

Next, we will demonstrate the h— and p— convergence of spatial basis functions

in time domain GFEM solver. In this experiment, the rectangular computation

domain and other parameters about meshes (size of the meshes, distribution of the

nodes) are exactly the same with the last example, so as the electric field solution

of the time domain wave equation. Impedance boundary condition is imposed.

When temporal basis functions are the same APSW functions with those in the

last example, spatial basis functions are changing with h = 0.76A, 0.38A,0.25A and

p = 1, 2. Temporal basis functions and time step size are identical to those used

earlier. The total number of time steps is 6000. The results are L2 norm of relative

error evaluated at uniformly distributed 10 x 10 sample points at all 6000 time steps.

Linear equation is solved by SVD techniques, too. Figure 4.9 demonstrates the h-,

p- convergence of the spatial basis functions.
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Figure 4.7. Analytical and numerical result with Neumarm BC

Neumann BC is imposed.
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In the next series of examples, we will demonstrate the convergence of differ-

ent temporal schemes in two- or threedimension, homogeneous or inhomogeneous

domain. Three kinds of temporal schemes are tested: scheme based on APSW func-

tions, scheme based on lagrange polynomials and Newmark scheme. First, in 2D

homogeneous domain, the electric field solution of the time domain wave equation,

the computation domain and parameters for the mesh constructor are the same as

in the last example, the spatial basis flmctions are also defined in the same way with

h = 0.38A and p = 3. Impedance boundary condition is imposed. When APSW

functions are used as temporal basis functions, the half width is varied from 3 to

6 and the number of sample points for extrapolation Nsamp = 4. When Lagrange

polynomials are used, the order changed from 3 to 4, and Newmark -)6 method is

used, 6 is chosen as 0.4, 0.6, 0.8. The time step size is At = 2.33 x 10’113. The re-

sults are L2 norm of relative error evaluated at uniformly distributed 10 X 10 sample
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points at all 6000 time steps. Figure 4.10 shows the errors of all three schemes. F10m

the figure, we can see the error is reduced with the increasing of the Lagrange poly-

nomials’ order and the half width of the APSW functions. The errors of Newmark

13 method are almost the same with different 3. When we increase the number of

sample points for extrapolation Nsamp beyond 4, the system is unstable. This un-

like what is observed in time domain integral equation. This is the principal reason

for the lack of convergence of this scheme.

Next, we will demonstrate the similar thing in 2D inhomogeneous media. Con-

sider a 2D inhomogeneous domain, the computational domain is defined by Q =

11+ + $1- with 11+: (0,1) x (0.5, 1) and 9—: (0,1) x (0,05). The relative permi-

tivity in 9+ and Q- are chosen to be 57 = 1, 3, respectively. The fields are as follows:

Vr 6 52"“ the electric field is E(r, t) = :i:{2(t + y—jgflflrzexfl-(t + 3:6-y—Q)2/7'2] +

2R(t — (y—CO.5) + y1yO)/T2ezp[— (t— (y—C.05)+ y1y0)2/72]}, and Vr E Q" the elec-

tric field is E(r, t) = 1&2T(t2+ y;cQ._‘/§+ —C—Q)/T2exp[—(t +wfi+MPH]

where R: 1i%’1r__1+-—2—f,,yo—_ 5.5 and r—_ 3.15 x 1093. The solution to (4.1)

is solved byimposing the analytical solution as impedance boundary condition. The

  

mesh parameters (size of the meshes, distribution of the nodes), the basis functions

in spatial domain and temporal basis in time domain are identical to those in the

last example. The results are L2 norm of relative error evaluated at uniformly dis-

tributed 10t1'mele sample points at all 6000 time steps. Figure 4.11 shows that the

result is similar to those obtained in two dimension homogeneous simulation.
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Next, we will demonstrate the similar thing in 3D homogeneous domain. Con-

sider a homogeneous computation domain 0+ = (0,1) x (0,1) x (0,1). In this

domain, it is assumed that the electric field is of the form E(r,t) = Q2(t +

#Q)/T2€1L‘p{—(t + EZ—xQP/TZ} where :60 = 5.5 and 7' = 3.15 x 10-93. All other

parameters, viz., distribution of nodes, overlap, definition of spacial basis functions

and temporal basis functions, time step size, etc, are identical to those used earlier

and just extend to 3D case. and the L2 error norm is evaluated at 5 x 5 x 5 uni-

formly distributed sample points. The results shown in Figure 4.12 demonstrate the

convergence of TDGFEM solver in 3D.

Next, we will demonstrate the feasibility of the solver in 3D inhomogeneous

domain. Consider a inhomogeneous computation domain (2 = 9+ + 9" with 52+ =

(0,1) x (0,1) x (0.5, 1) and Q" = (O, 1) x (0,1) x (0,05). The relative permittivity

in (2+ and {2" are chosen to be 61- = 1,3, respectively. In this domain, it is assumed

that the electric field is of the form E(r, t) = 3}{2(t+Z—_Ezfl)/r2exp[— (t+z—_c—zQ)2/72]+

2R(t— (Z105) + 2120)/T28$p[—(t- (z?)'5) +2220)2/r2]}, and Vr E (2" the electric

field is E(r, t) = @2T(t+ #fi+5%0)/T2exp[—(t+§:co—‘§\/3+y—Tz0)2/r2] where

1-—,/§ _ _ —9 -
R: 1——3+\/—, T— -1—3+2\/—, 20: 5.5 andT—3.15x 10 3. All other parameters, VlZ.,

  

distribution of nodas, overlap, definition of spatial basis fimctions and temporal basis

functions, time step size, etc, are identical to those used earlier and as before the

L2 error norm is evaluated at 5 x 5 x 5 uniformly distributed sample points. The

results shown in Figure 4.13 also demonstrate the convergence of TDGFEM solver

in 3D piecewise homogeneous domain.
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Next, we will demonstrate the feasibility of the time domain solver for scattering

from PEC sphere. The radius of the PEC is 0.45 and the open domain is truncated by

a concentric sphere with radius 0.65. In this domain, it is assumed that the incident

electric field is of the form E(r, t) = g2(t + Egfl)/T2erp{—(t + i—c—xQV/rz} where

100 = 7.5 and T = 2.57 x 10—93. The solution is solved by imposing the analytical

total electric field as Dirichlet boundary condition. The parameters of spatial basis

are h = 0.57A and p = 3. The time step size is At = 9.52 x 10—113. All other

parameters, viz., distribution of nodes, overlap, definition of spatial basis functions

and temporal basis functions, etc, are identical to those used earlier. The L2 error

norm is evaluated at 13 x 13 x 13 uniformly distributed sample points. The relative

error is 1.1e—2. ?? shows analytical and numerical results at location (0.3, 0.3, 0.3).

As shown, the result is good.

Next, iterative solver is implemented in the time domain GFEM solver. Consid-

ering a homogeneous rectangular computational domain 9 = (0,1)2 with boundary

1‘ = ugh“,- where {r1 ; r e 0 x (0,1)}, {r2 : r 6 (0,1) x 1}, {r3 : r e 1 x (0,1)},

{F4 : r 6 (0,1) x 0}. In this domain, it is assumed that the electric field is of the

form

E(r,t) = y2(t + m—Zl‘gflrzerM—(t + 2299/72} (4.28)

where 11:0 = 5.5 and r = 3.15 x10‘93. The solution to (4.1) is solved by imposing the

analytical solution as Neumann boundary condition. In this experiment, as before,

all nodes are distributed uniformly, and rectangular patches are used. The size of

each patch is chosen to be 1.5 times the distance between the nodes. The weight

functions W, (r) is a tensor product rooftops, and the local approximation function

”zym (r) and vi=n(r) are tensor product of Legendre polynomials. The parameters

of spatial basis fimctions are h = 0.38A and p = 3. APSW functions are used for

as temporal basis. The half width of prolate function p and the number of sample

points for extrapolation Nsamp are 6 and 4, respectively. The time step size is
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At = 2.33 x 10‘113. Iterative solver is used and

llZlolllg " {WI < 1e—8 (4.29)

|{V}|

 

is used as the ending criteria of the iterative solver. Figure 4.14 show the numerical

results with relative error 1.4—3. Figure 4.15 show the number of iterative steps

in each time step. From the figure we can see that at the first few time steps, the

numbers of iterative steps are large and then decrease as expected. For the first few

time steps, the error of initial guess is large. When the initial guess is getting more

and more accurate, the number of iterative steps decreases.
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CHAPTER 5

CONCLUSION AND AREAS FOR FUTURE WORK

Generalized finite element method (FEM) is a generalization of the classical finite

element method. As a partition of unity-based solver, GFEM solver simplifies mesh

generalization and enlarges the local approximation function space. At the same

time, it maintains the h—, p— and hp— convergence in the computation domain.

Vector GFEM solver can be developed in inhomogeneous domain to simulate the

field which is divergence free and satisfy the continuity requirements on the material

interface. This research has proved the convergence of the solver mathematically and

demonstrated it in two dimension and three dimension simulations. We can solve

wave equation with every boundary conditions encountered in the EM simulation

for close domain and open domain. We also have developed an extension of GFEM

solver to simulate the transient field. SVD-based preconditioner is utilized to solver

the problem of the high condition number of the linear system when the high order

numerical solver is utilized.

A summary of most important contributions in this research follows:

0 Implementation of Nitsche’s method to impose the essential boundary condi-

tion in GFEM solver. Convergence of the scalar and vector GFEM solver with

this method is demonstrated in both 2D and 3D simulation.

0 Development of the first hybrid GFEM-BI technique that enables the trun-

cation of the computational domain, and demonstrated its h, p convergence

properties. We have specified the manner in which different types of boundary

integrals may be incorporated into the simulations. Validating the proposed

technique for scattering from more complex shapes necessitated the develop-

ment of GFEM-PML techniques.
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0 Development of an extension of CFEM to enable application to vector electro-

magnetic problems in piecewise homogeneous domain with smoothly curved

interface. Basis functions can simulate the divergence free field which satisfy

all the continuity requirements on the material interface. The convergence of

this spurious-free solver is proved mathematically and demonstrated in 2D and

3D simulation.

0 Application of GFEM solver to the problem where the geometry has singular-

ity. The eigenfunction of the singular structure is used in local approximation.

The advantage of GFEM solver is demonstrated compared with classical FEM

solver.

0 Development of time domain GFEM method for solving time domain differ-

ential equations. The method uses different kinds of high order time stepping

scheme including Approximate prolate spheroidal wave functions. The ac-

curacy of the solver is demonstrated in EM simulation in both 2D and 3D,

homogeneous and inhomogeneous domain.

0 Stability analysis of general high order time stepping solver are proposed and

demonstrated with APSW-based time stepping schemes.

0 Development of the svd-based preconditioner to high order numerical solver.

The error bound and cost of this method is derived. We demonstrated that

when the condition of the resulting system is improved dramatically, the ac-

curacy of the solver are almost the same.

It also found that GFEM solver has the following advantage/disadvantage com-

pared with classical FEM solver

Advantage:

o The mesh generation of GFEM is simpler than the classical FEM. The nodes’s

location and patches’s size and shape can be chosen randomly. The edge of
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patch is not necessary to conformal to the boundary of computation domain.

0 A broader class of functions can be implemented to simulate the field in GFEM.

When the same accuracy is required, GFEM solver results in smaller linear

system. When simulating the fields, regular basis function in classic FEM is

not as efficient as special basis functions in GFEM such as the eigenfunction-

based basis function around the geometric singularity and the planewave-based

basis function in a very smooth region. Though in FEM, singular basis function

is also developed around the geometric singularity, there is limitation in the

size of the mesh of singular basis function.

Disadvantage:

0 It’s more expensive to integrate the basis function and its derivative in GFEM

when evaluating the matrix elements. Compared with the analytical integra-

tion in FEM, numerical integration in GFEM results in an additional burden.

But the burden can be elevated when the nodes are distributed uniformly with

the same shape and size of patches.

0 Implementation of geometry information is more expensive in GFEM. In FEM,

implementation of information of mesh is straightforward. In GFEM, more

procedure is necessary to utilize the mesh information to GFEM solver.

Until now, vector GFEM solver has been developed for electromagnetic simula-

tion with simple structure. Application of the technology to realistic problem implies

the further research along the following which is necessary:

0 Planewave—based basis function is much more efficient than the polynomials in

the region where fields are smooth which has been demonstrated by two dimen-

sion homogeneous results. Augmenting the function space within planewave

may be practical.
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0 When vector GFEM solver for curved material interface has been developed

and demonstrated in 2D problem. Convergence of this solver should also be

demonstrated in 3D.

0 Vector GFEM solver has been developed for piecewise homogeneous domain

with smooth curved material interface. Considering the material interface with

geometric singularity such as vertex or edge, appropriate local approximation

function has not been developed. This is a challenging problem. Based on the

continuity requirements, the additional function for this material interface can

be constructed as the eigenfimction of PEC with the same structure.

0 Given meshes that describes the structure of the electromagnetic problem, the

geometric information easily utilized by GFEM solver should be extracted from

the mesh information. Those information should be able to be implemented

by GFEM solver automatically.

0 High order integration in the computation domain, e.g. volume integration,

and on the boundary, e.g. surface integration, need to be implemented for

high order solver. The quadrature rules of such integration can be derived by

geometric transformation.
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