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ABSTRACT

GENERALIZED FINITE ELEMENT METHOD
FOR ELECTROMAGNETIC ANALYSIS
By
Chuan Lu

The generalized finite element method (GFEM), first introduced by Babuska, is
a partition of unity-based solver for scalar partial differential equations (PDEs). To
date, they have been applied extensively to the solution of elliptic and parabolic
PDEs. This technique is a generalization of a host of well known methods for
solving PDEs, specially the classical finite element method(FEM), element free
galerkin(EFG), hp clouds, etc. The main goal of this dissertation is for developing
a similar methodology for vector electromagnetic problems. Developing a solution
to these problems necessitates addressing the following problems: (i) The vector
nature of the problem and the different continuity requirements on each component
imply that basis functions developed should share similar characteristics; (ii) The
basis functions have to be able to represent divergence free electromagnetic fields
(in a source free region). (iii) Development of appropriate boundary conditions to
truncate the computational domain is necessary. (iv) High condition number of the
resulting system also plagues GFEM solver, as it does other high order solvers. So-
lution to these problems, and the developments of the GFEM solver is presented
here for both time and frequency domains. In any case, the h- and p- convergence

of the method is presented.
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CHAPTER 1

INTRODUCTION

Computational electromagnetics has grown over the last few decades, in terms of
both development of the underlying tools and application to the design of practical
systems. Typical methods of analysis are either based on integral equation or dif-
ferential equation. As is well known, method of moment(MOM) and other integral
equation-based method is expensive in terms of both memory and CPU-time. Aug-
menting this with fast multiple method(FMM) has considerably alleviated the cost.
In differential equation based methods, the most popular are the finite difference
time domain(FDTD) and finite element method(FEM).

The state of art of FEM tools [1] for electromagnetic analysis has grown by leaps
and bounds over the past few decades. Classical methods require an underlying
tesselation on which basis functions are defined. These basis functions are based
on a span of polynomials, have finite support, and obey conditions at inter-element
boundaries. For instance, Figure 1.1 shows the discretization of elliptical computa-
tion domain. Here, the edge of the meshes coincide with each other and they also

coincide with the boundary of the computation domain as well.

Figure 1.1. Meshes for FEM

In classical FEM, the basis function is interpolatory. FEM solvers using this



basis have found widespread applications in solving problem in mechanical injury,
stress strain, vibration analysis, heat transfer, etc [2, 3]. In the electromagnetics,
early application of FEM did focus on directly using these space of functions [4, 5].
However, it was discovered that these basis functions do result in spurious modes as
some conditions in the E and H are not satisfied. Furthermore, it is not possible to
readily impose the boundary conditions.

Fortunately, vector basis function, e.g. edge element vector developed in 1980s
[6, 7] is free of all the previous shortcomings. The zero order basis function is
divergence free, as its tangential component is continuous across the edge of the
mesh. In homogeneous domain, the normal component of the basis function is not
continuous across the edge of the mesh, but the continuity of the normal component
of numerical solution is enforced by the variation formula of the vector wave equation.

High order vector basis function are defined in two ways: hierarchical [8] and
interpolatory [9]. Both have continuous tangential component cross the edge of
the mesh, but they are not divergence free. Until now, high order basis functions
have been continually refined [10, 11]. Likewise, basis functions that can be used
in a h, p-convergence setting have been presented and applied to several engineering
problems. Indeed, in a series of excellent papers, it has been shown that it is possible
to have true h, p-convergence [12, 13].

But there are some limitation of classical FEM, that may prove to be a bottleneck.
First, it requires a simplical structure. The edge of the mesh has to coincide with each
other and the edge of the mesh has to coincide with the boundary of the computation
domain as well. Having good quality meshes is also necessary for accuracy of the
FEM solver. Both properties make mesh generation laborious and time consuming.
When millions of unknowns are needed, time required for mesh generation might
be over 90% of total CPU time. Developing h,p-convergence meshes or analyzing
time varying phenomena that requires re-meshing at every time instant can be even

more laborious. Another handicap of classical FEM is that the ansatz space used



to approximate the local behavior is a span of polynomials. It implies that solving
problems in non-Lipschitzian domain is difficult. This is due to the fact that the
field or its derivative are singular at the geometric singularity. This can not be
simulated well by a span of polynomials even in dense meshes. If analytic local
behavior is known, then it might be possible to use functions other than polynomials
to approximate local behavior.

Those limitations result from the inter-element continuity requirements. The
polynomial basis functions can enforce the requirements by its conforming property.
There are still a variety of methods to realize it with non-polynomial basis. One
is proposed by [14, 15]. Around the geometric singularity, there are one layer of
meshes supporting the singular basis functions. Those basis functions are conformal
to the neighboring regular elements. In this approach, the size of such meshes has
to be almost one wavelength. Another category of totally different methods, hybrid
methods, can construct the local function space in each mesh separately based on
the physical analysis of the solution and enforce the inter element continuity require-
ments by additional constraints [16, 17]. In [16], lagrange multiplier is introduced
to enforce it. This results in a larger linear system cause of the addition unknowns
related to the multipliers. Stability consideration also links the number of unknowns
related to basis functions and the number of unknowns related to multipliers.

In this dissertation, I will introduce a new method that is free of the men-
tioned shortcoming. This method will be referred to as the generalized finite ele-
ment method(GFEM)[18]. Comparing this method with regular FEM and hybrid
methods, regular FEM enforces inter element continuity requirements by conformal
finite elements but lacks the capability of physics of the problem. Hybrid methods
have the freedom of choosing local approximation but additional constraints between
elements are necessary. In one of hybrid methods, the function space for multiplier
has to be defined carefully. GFEM shares both of the above advantages, e.g. any

function space can be chosen to fit for the prior knowledge with conformal elements



enforcing the inter elements continuity requirements intrinsically which is free of
above drawbacks.

GFEM belongs to the category of meshless methods [19]. The starting point of
Meshless method is smooth particle hydrodynamics (SPH) method by Lucy in 1977
[20], The objective of meshless method is to eliminate the mesh generation proce-
dure by constructing the approximation around the nodes. After that, the rate of
publication about this topic was very modest until about the 1990s. In 1992, Nay-
roles [21] used the moving least square (MLS) approximations in a Galerkin method
and called his method diffuse element method (DEM). Two years later, Belytschko
[22] redefined and modified this method, and called it element free galerking(EFG).
In 1996, there was a leap forward in the development of meshless methods with the
introduction of GFEM by Babuska and Melenk [18, 23]. This method is based on
partition of unity function and propose to a very powerful extension of the EFG
approximation. In the same year, Duarte and Oden [24] extend the concept of par-
tition of unity function to the MLS shape function and called it hp-cloud method.
With this improvement, the EFG method based on MLS can be regarded as special
instance of GFEM.

While meshless methods are well developed in some research area such as me-
chanical engineer, civil engineer, etc, they are largely used to solve scalar equation
and usually solve the elliptic or parabolic PDEs. More specifically, it is used for
specialized application such as crack propagation, etc [25]. The application of this
technique to solving problems in electromagnetics has not been extensive. Prin-
cipally (this is not a complete list), research has been conducted by [26-37]. The
work in this area by Shanker and his colleagues revolved around developing meshless
methods for solving the diffusion equation in both the frequency and time domain as
applied to non-destructive evaluation [27-29]. The basis functions used in this analy-
sis relied on the element free galerkin method (EFG) [19]. The method, particularly

its scalar implementation, has been gaining a foothold in the research landscape



insofar as application to magnetic field analysis. Recently, they have explored the
viability of suitably modifying the EFG method to enable the analysis of vector
fields [31] and have developed meshless-PMLs to enable the analysis of open region
problems [38] within the context of the EFG method. However, while the EFG
method can be thought of as a subset of GFEM, it does not lend itself readily to
hp-adaptivity, whereas this is inherent in other GFEM methods.

The above solvers are developed for the scalar differential equation. As was men-
tioned earlier, extending this to the vector differential equation that are encountered
in EM results in spurious modes. These modes can be readily identified by studying
the eigenfunction of same operator for defined geometry. Two kinds of modes can
be distinguished. One is divergence free and another has high divergence value. The
latter non physical modes plagued EM simulation and is known as spurious modes.
The main reason of spurious problem is that the scalar FEM can not impose the
divergence free criteria and satisfy the continuity requirements intrinsically. In clas-
sical FEM, several ways have been suggested for years to remove the spurious modes
in FEM such as penalizing the divergence [39, 40] or using divergence free criteria to
reduce 1/3 of dependent unknowns in three dimension[41-43]. The introduction of
Whitney basis function, that is divergence free and tangentially continuous, provided
the method to overcome this deficiency.

It follows from the above discussion that the vector GFEM solver should satisfy
the following criteria:

The basis function developed should be able to approximate the field which
is (i)divergence free (ii)satisfying all the continuity requirements on the material
interface.

Except for the spurious problem, another problem is to impose essential boundary
condition in GFEM solver when it’s trivial in classical FEM. It also results in the
difficulties to implement the boundary integral techniques with EFIE formula.

Another problem that plagues GFEM, as it does any higher order method is the



condition number of the resulting system. Indeed, this is more of a problem here as
opposed to classical FEM as the space of basis functions is not interpolatory.
Tsukerman [35] tried to develop the vector basis function which can be used in
a GFEM solver, but he did not demonstrate the convergence of the GFEM solver
and the basis function can not handle inhomogeneous domain.
The objective of this dissertation is to develop vector GFEM method for EM
analysis. The new method should be able to simulate the vector fields with high

order accuracy. The principal goals of this research are as follows:
e Develop a scheme for implementing GFEM for the Helmholtz equation.

e When solving closed domain problem, an adaptation of Nitsche’s method is
developed for implementing the Dirichlet boundary condition. When solving
open domain problem, the hybrid GFEM-BI method for domain truncation is

developed.

e Develop vector basis function to approximate the divergence free field in ho-

mogeneous domain and prove bounds on their convergence.

e Develop basis functions for inhomogeneous domain that will enable the sat-
isfaction of boundary conditions across flat and curved material interfaces.
These conditions will be on the tangential components of the fields and their
normal derivatives, and the normal component of the fields and their nor-
mal derivatives. We will mathematically prove the accuracy of the proposed
method and demonstrate the convergence of the method for two dimension

and three dimension.

e Develop a preconditioning scheme to solve the ill-conditioned system resulting

from the high order system, and derive error bound and cost of this scheme.

e Develop time domain GFEM solver and prove and demonstrate the conver-

gence of this method.



e Propose high order time stepping schemes based on approximate prolate
spheroidal wave (APSW) and analyze the stability of the high order time

stepping scheme. Demonstrate the convergence of the proposed scheme.

This dissertation is organized as followings: in the chapter 2, basic framework of
GFEM method is introduced. The techniques for imposing different boundary con-
ditions for both open domain and closed domain are elucidated. In chapter 3, vector
GFEM method is developed for homogeneous domain and piecewise homogeneous
domain with flat and curved material interface. The convergence of the solver will
be proved and demonstrated in both two dimension and three dimension problems.
A preconditioning scheme is also introduced in the same chapter with error bound
and running cost provided. In chapter 4, high order time stepping schemes are pro-
posed and demonstrated in two dimension and three dimension. Stability of high
order time stepping schemes are analyzed. Finally, in chapter 5, a summary of the

work and area for future research are collected.



CHAPTER 2

SCALAR GENERALIZED FINITE ELEMENT METHOD

2.1 Introduction

Intuitively, GFEM solver works as follows: the domain being considered is parti-
tioned into a union of patches or a “partition of unity,” and on these patches, the
local approximation is constructed using a span of functions [44]. Thus, the repre-
sentation of the function is achieved via two functions; one that is defined on the
partitions of unity and the other on each of the patches. The basis functions describ-
ing the unknowns inherits the higher order nature of approximation from the local
basis functions and the smoothness of the functions defined on the partition of unity.
As with classical FEM, using a span of different local approximations in different
regions is also possible. Thus, GFEM retains several features of classical FEM, pro-
vides additional flexibility in terms of functions that are used and obfuscates the
need for a simplical partition of the domain.

The mathematical foundation of GFEM has been laid out in great detail [18, 23,
45], and it has been shown that h-, p- and hp-adaptivity is easily achieved. Likewise,
the efficacy of using a space of harmonic functions as local approximants have been
demonstrated [45]. Nevertheless, wﬁen some meshless solver has been developed for
solving the diffusion equation in both the frequency and time domain as applied to
non-destructive evaluation [27-29], it does not lend itself readily to hp—adaptivity.

Proper understanding of the sources of error and the means through which one
may control them is important. We have found that in most of the implementation,
reason that the convergence is not of the same order of the underlying scheme is
largely due to the improper imposition of boundary conditions. Proper imposition
of boundary conditions within a meshless scheme is challenging. Unlike classical

FEM, the space of approximation functions are not interpolatory. This poses severe



challenges in imposing Dirichlet boundary conditions. More specifically, one cannot
use the Lagrange multiplier technique as the approximation spaces have to obey
the inf-sup condition, and it is not always possible to construct such spaces for
meshless methods. This deficiency is directly linked to the difficulty in truncating
the computational domain using boundary integrals. This is due to two facts; (i)
to solve the hybrid problem, one typically defines an auxiliary set of basis functions
and unknowns to represent the tangential components of the fields [1]. It implies
from the above discussion [46] that these basis functions, together with those used in
the interior, should satisfy the inf-sup (Babuska-Brezzi) condition, and (ii) there are
practical situations wherein one uses a first kind Fredholm integral equation as the
boundary is not closed. In these cases, the BI enforces a Dirichlet type condition.

Thus, the principal content of this chapter is four fold:
1. A scheme for implementing GFEM for the Helmholtz equation is presented.

2. An adaptation of Nitsche’s method for implementing the Dirichlet boundary

condition is developed.

3. Hybrid GFEM-BI technique for domain truncation for both open and closed

domains is presented.

4. Methodology wherein local boundary conditions can be integrated with
GFEM-more specifically, the perfectly matched layer (PML), is presented.
The development of this technique is a by-product of the need to have an ad-
ditional modality of validating the results obtained by the GFEM-BI scheme.

The rationale for embarking upon this specific problem is as follows: (a) This
approach presented in this chapter (basis functions/means to impose boundary con-
ditions, etc) can readily used for solution of quasi-static electromagnetic phenomena
and scalar wave equations; (b) It permits us to work out several mathematical and

numerical hurdles-the principal being the application of Dirichlet boundary condi-
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tion and the accurate evaluation of integrals; (c) it is equally important to under-
stand the manner in which boundary integral based techniques can be hybridized
with this scheme. The advantage of hybridizing GFEM with BI is readily appar-
ent; it imposes an exact boundary condition for open domain problems, and the
computational cost can be amortized using recent advances in the integral equation
technology, namely the fast multipole method or a host of FFT-based schemes.
This chapter proceeds along the following lines; in the next section, we formulate
the problem in detail. Here, we introduce the concepts of GFEM, discretization of
the domain, basis functions, methods for integration, and methods for implementing
various boundary condition. The last includes different types of boundary integral
techniques and a local absorbing boundary condition. Next, we demonstrate the
accuracy and convergence of the GFEM and GFEM-BI via a series of analytical
comparisons. We shall also demonstrate the accuracy of this scheme by comparing
the results obtained against those obtained by truncating the domain using a PML
as an absorbing boundary condition. Finally, we will demonstrate the advantages of

GFEM solver by scattering analysis with geometric singularity.

2.2 Basic framework of GFEM solver

2.2.1 Formula of basis function

Consider a multiply connected domain 2 whose interior boundaries are denoted by
oQ:=T = J; T;. It is assumed that this domain is embedded in a domain Qe and
its exterior boundary T¢ is defined as I'e:= Q¢ N Q. Interior to the domain Q, the

function u(r) satisfies

(V- [ar) 9] +w?1@)) ulr) = £x)
B; {u(r)} = g;(r) forreT; (2.1)

Be{u(r)} = ge(r) forr e Te

10



In the above equations, it is assumed that r € ]Rd, Be and B; are differential op-
erators, and g;(r) is the function that is imposed on I';. Here, d = 2,3, and a(r)
and 7(r) are material parameters. The function of interest, u(r), is used to denote
the z component of either the electric or magnetic field. The rationale of defining
[e explicitly is to impose appropriate boundary conditions that enable the analysis
of scattering problems. The parameters a(r) and 3(r) can stand for either the per-
mittivity or permeability, depending on the variable that u(r) represents. Solution
to this problem using the standard finite element method requires an underlying
tesselation on which basis functions are defined. These basis functions are based
on a span of polynomials, have finite support, and obey conditions at inter-element
boundaries. For instance, Whitney elements that are typically used in computational
electromagnetics satisfy either tangential or normal continuity across inter-element
boundaries. Higher order basis functions based on these elements have also been
presented and have been continually refined [10, 11]. Likewise, basis functions that
can be used in a h, p-convergence setting have been presented and applied to several
engineering problems. Indeed, in a series of excellent papers, it has been shown that
it is possible to have true hp-adaptivity [12, 13]. On the other hand, meshless meth-
ods attach a patch or volumina to each point whose union forms an open covering of
the domain. The local shape functions are constructed within each domain. Several
different flavors of these methods exists {23]. In this dissertation we will base our
development on the generalized finite element method (GFEM) [23].

Our presentation of the fundamentals of basis functions is a repetition of those
in [45, 47]. GFEM is based on a set of N nodes located at r; in the vicinity of the
 domain 2 such that {r,- eRY: r;cQi=1--- N } Associated with each of these
nodes is a patch or volumina denoted by Q; of size h; such that Q C Cq:= ;9
and Q; = {r eRY: [Ir — ;]| < h,-} 3 Specifically, a patch €, is defined as
Q= ®‘,§=1 ng), ng) = {r(k) €R,| rtgk) — (k) < hgk)}. Figure 2.1 describes

such a construction. Typically, there are no restrictions on the shape of the domain.
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To a large extent, these are chosen depending on the underlying basis functions.

Domain
° e o\
[ ]
[ J
o ° °
L | o 5 p4
et L,
[
Patches

Figure 2.1. Construction of the computational domain.

Associated with each patch are basis functions that will be used for Galerkin
testing and source. The basis function is a product of two functions, ¥;(r) and
v;(r): functions ¥;(r) form a partition of unity subordinate to the cover €2;, and a
space of functions v;(r) € span {v["(r)} that are local to the domain €;.

The global approximation of the variable is then a space of functions denoted
by V;(r) = ¥;(r)v;(r). The basic theory of the GFEM method using this space of
functions was originally developed by Babuska and Melenk [45] and is summarized

below. Note that the definitions listed below are key to some of the proposed tasks.

Definition 2.1 :
Let Q € R? be an open set, and let Q; be an open cover of Q satisfying a point-

wise overlap condition

IM eNVreQecard{ilre ;} <M (2.2)
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Definition 2.2 :

Let {v;} be a Lipchitz partition of unity subordinate to the cover {§;} satisfying
the following conditions: (i) supp(y;) C Q; for all i; (i1) > ;¢; = 1 on Q; (iit)
16ill oo gy < Cooi and () 1V9ill oo gy < Cy/diam(uws). Here Coo and
Cy are two constants. Then {y;} is called an (M,Cwxo,Cy) partition of unity
subordinate to {Q;}. The partition of unity is said to be of degree k if ¢; € ck(RrY).

The covering sets §); are called patches.

Assume that the space of functions V(r) = span {;v;} is given. Let the function
Uap =) ;Yv; EV CH 1(Q) be an approximation to u(r). The upper bounds on
the error in the function and its gradient have been derived in [45].

The choice of the functions );(r) and v;(r) can vary from patch to patch, and
is usually dictated by the geometry of the problem. More specifically, the functions
v;(r) can theoretically be modified to include logarithmic singularities. However, the
first step of implementing this method is the construction of the patches Q; of size
h; that form the open cover for the domain. In general, we allow hg yforj=1,---,d
to be different in each dimension. In this dissertation, we have restricted ourselves
to rectangular domains. As the patches §2; are to be used in a Galerkin scheme, it
is necessary for |J; Q; O Q. In other words, for any r € Q there exists at least one

patch €2, that contains r. The following steps is utilized to realize it [47]:

e N nodes are chosen randomly in the computation domain and fz, is chosen
initially as the size of the ith patch. With circle-shaped patch, the fz,- can be
the radius of the circle; with rectangle-shaped patch, ili can be half of the side
length.

e Much more denser testing points are uniformly distributed in the computation
domain. The testing points has to be at least 104 times denser than the nodes.

Each testing point should be covered by at least one patch. If any testing point

13



is not covered by one patch, then look for the node which is closest to it. Then

th

increasing the size of the patch ﬁj to make j*'* patch covers that testing point.

e When each testing point can be covered by at least one patch, true patch size
h; can be derived as h; = QFLL' where a > 1. Number a is used to assure
the enough overlapping between the patches so that the smoothness of the

partition of unity function v; can be maintained.

This will ensure that for r € Q2 there exists at least one patch such that r € ;.
Next, the partition of unity functions 1; are defined in each ;. By definition,
Yivi(r) =1V re Q. Toconstruct these functions, we use a localized version of
Shepard’s method [48] that relies on defining a function W;(r) with respect to each
characteristic point r; € §; such that W;(r) = 0 Vr € 0Q;. In other words, these
functions are different from zero only for r € §2;. Several choices for these func-
tions exist; the most common are B-splines of different orders, Gaussian, regularized
Lagrangians, etc. The choice of the functions W; depends on shape of the patch.
In this dissertation, we restrict ourselves to rectangular domains, and therefore, to
B-splines of different orders. Then in d-dimensions we construct a function Wj(r)
using a tensor product of 1-D functions; i.e., Wj(r) = Hlew ((r— ré)/(hg)).
Next, the functions ¥;(r) are defined by ¥;(r) = (W;(r))/(3>_q e W, (r)), wherein
Cii= {9 € CaluN®; # 0}. Here defined partition of unity function (r) sat-
isfy the criteria ) ; ¢;(r) = 1Vr. Figure 2.2 shows a one dimension example of the
partition of unity function. As is evident from the figure, patches overlap with each
other, and there is one partition of unity function in each patch. The summation of
all partition of unity functions in one patch equals one at any point. We can also
create the partition of unity function based on MLS functions [49], when high or-
der basis functions are used, the error of Shepard and MLS functions are almost the
same though MLS functions are much more complicated in terms of formulation[49).

The partition of unity functions are consistent to first order and higher order
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Figure 2.2. One dimensional partition of unity function.

approximations are obtained by defining higher order local functions, v;(r). As
mentioned in [45], local approximating functions can be chosen such that they bet-
ter capture the local behavior of the current. However, in this chapter, we have re-
stricted our choices to Legendre polynomials of order P. Thus, in any domain §2; the
functions v;(r) = span {I'Iil=1 70 ((r(’) —r") /(h§”)) } where p(l) = 0,--- , P.

Figure 2.3 shows a one dimension example of the construction of the scalar basis
function. The three local approximation functions are chosen as oth, 15t and 2nd
order Legendre polynomials. Basis functions, 4;(r)v["(r), decay to zero at the edge
of the patch, which assure the continuity of the numerical solution. Since there is
no restriction on the choice of the basis functions, they can be chosen such that
they best approximate the local physics. For instance, around the smooth geometry
plane wave can be chosen as local approximation, around the geometric singularity
eigenfunction of the singular structure can be used, etc.

It is well known that bilinear form of the differential equation (4.1) on H1(Q) is

A(u,w) = (f,w) ¥ (u and w) € H(Q) (2.32)

A(u,w) = —(aVu,Vw) + wz(’yu,'w) (2.3b)

where (-,-) denotes the standard inner product in L2(Q). It is apparent that we
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Figure 2.3. Construction of one dimensional Basis function.

have not yet incorporated the boundary conditions; the means by which various
boundary conditions are incorporated into the variational form will be dealt with
exhaustively in Section 2.3. Using the definitions of basis functions elaborated upon
thusfar, u(r) can be now approximated as u(r) = Efv I,V;, where N is the total
degrees of freedom. Using Galerkin method, the discrete version of this bilinear form

can be written as

A (ui,n:'wj,m) =A (lliiv?,t,/)jv?) (2.4a)

(fwjm) = (£,0507) (2.4b)

Above equations (2.3) indicate that the Vu; , need to be evaluated. Here we use
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Figure 2.4. Subdivision of the domain of integration based on piecewise weight
function W;.

the following formula to evaluate it:

Vuit =V(y;v})

W.
=V(_____L__vfl)
20,ec; W
_sz' aneci Wiol = W; Zﬂkeci VWil (2.5)
(Xa,ec; Wr)*
Wi
+ =V
ZQkECi W

Note, that the equations (2.4) indicate that the interaction between any two domains
form block matrices. However, what is crucial in the process is the evaluation of the

inner products; this will be dealt with next.
2.2.2 Evaluation of inner products

The basis functions Vj(r) that were introduced earlier are piecewise rational func-
tions. This is immediately apparent when one examines the construction of ;(r);
a different number of functions W;(r) may contribute to ¢;(r) at different location.

This implies that the quadrature rules must be such that they respect these dis-
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Figure 2.5. Subdivision of D;‘j based on the number of patches at different location.

continuities. To overcome these deficiencies, we have followed a method similar to
the one proposed by Schweitzer [50]. Here the domain of integration is subdivided
into smaller domains where the integrand can be represented as a product two ra-
tional functions. Note that the integrands comprise of products of both ;(r)v["(r)
and their derivatives. To illustrate the decomposition of the domain, consider two
patches ; and §2; that overlap; the domain of overlap is denoted by C;;:= Q; N§;.
Further assume that in each domain, the weight functions W;(r) and W;(r) are
polynomials of degree I. Then in €, the function W;(r) is piecewise rational in
1+ l)d—domajns. As the function ¢;(r) is a combination of both W;(r) and Wj(r)
for r € Q;, we can partition the intersection C;; into Cy; = U, D?j disjoint subcells
as in Figure 2.4, and v;(r) is piecewise rational in each subcell. The process becomes
more involved when more than two patches overlap. Such a scenario is illustrated
in Figure 2.5. Assume Ej i := Q; NQ; N denotes the domain of intersection of
these three domains. It follows that |J,, Fg‘k C Un Dg‘j denotes the union of do-

mains wherein the function ;(r) is piecewise continuous. Recursive identification

of domains where the function ;(r) is piecewise rational ensures the appropriate
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j

Figure 2.6. Integration in the sub-patch Eznj that overlaps with boundary of com-
putation domain I'.

construction of quadrature rules.

The above procedure works well for intersection between two domains Cj;:=
;NG C 2. However, if I dissects C;;, then it can no longer be considered a union
of rectangular domains; see Figure 2.6. As before, assume that Cij =Up Dg‘j, and
in each D?j the functions ¢; and t; are rational functions. The cells Dz’-‘j are be
partitioned into two sets; those that are fully contained within 2 and those that
intersect I'. For the former, we shall use the standard quadrature rules; the latter
can be be evaluated through adaptive quadrature. In this chapter, we have restricted
ourselves to boundaries that are circular. The geometric choice permits the division
into rectangular domains and curvilinear triangles as shown in Figure 2.6. As before,
we use standard quadrature rules in the rectangles, and coordinate transformation
and higher order integration in the triangles [1]. Thus, the prescribed procedure
enables higher order evaluation of all the inner products in the variational form.

Here is the brief explanation of the higher order integration in the curvilinear

triangle. As shown in Figure 2.7, a curvilinear triangle in zy-domain can be mapped
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Figure 2.7. Geometry transform

to a regular triangle in £7n-plane. Transform functions

z =z(£,m) 26)

y =y, mn)

are known. So to the related two points (zp,yp) and ({p,7p) in zy-plane and {7-

plane. Given the definition of Jacobian matrix of the transform

oz
g = % o 2.7)

and |J| is Jacobian, then

u(p, yp) =u(ép, mp)
u(zp,yp) =[] - u(ép, mp) (238)
dzdy =|J|dédn
2.3 Imposing boundary conditions

It is evident from the above exposition, that (i) the basis functions V; are NOT in-

terpolatory; (ii) @ C U, supp {Vn}. These two facts make imposition of boundary
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conditions more difficult than those for classical h,p convergence FEM methods.
In this section, we will discuss the imposition of both the Nuemann and Dirich-
let boundary conditions, as well as the truncation of the domain using boundary
integrals.

2.3.1 Neumann Boundary Condition:

First, consider the differential equation in (2.1) with B; {u(r)} = aun = af-Vu(r) =
gn(r) Vr € T'. Here, 2 denotes the outward pointing normal from the domain Q.

This boundary condition implies that the bilinear form is to be modified as

A, w) = (f,w) - /F dTgn ()w(r) (2.9)

From the above, it is apparent that it is sufficient for the trial and basis functions
to be in H1(). There are no additional constraints, and the basis do not have
to satisfy the boundary conditions. Hence, incorporation of Neumann boundary
condition is no different than that in classical FEM.

2.3.2 Dirichlet Boundary Condition:

Next, assume that B; {u(r)} = u(r) = g(r) Vr € I, i.e., Dirichlet boundary condition
explicitly imposes the values of u(r) on the boundary of the domain. Alternatively,

the problem may be cast as follows: “find u(r) € H1(Q) such that u(r) = g(r) Vr €
I and the bilinear form for w € H1(Q)

Alu,w) = / dla(r)w(r)n - Vu(r) + (f,w) (2.10)

This statement is not very different from that posed for standard FEM albeit with
a couple of differences: in classical FEM (1) w € H&(Q) which implies that the
integral over the boundary vanishes; (ii) the basis functions are interpolatory. Hence,
imposing the boundary conditions is tantamount to modifying the linear system. In

GFEM, both the trial and test function do not satisfy either of these properties.
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Thus, imposing Dirichlet boundary conditions is not as straightforward. This has
been a topic of considerable discussion [51].

Several Methods attempted are introduced here. (i) to hybridize meshless meth-
ods with classical FEM; (ii) use a penalty function method; (iii) use a Lagrange
multiplier technique, and (iv) use Nitsche’s method. Of the four methods, we have
chosen to use Nitsche’s method to impose the boundary condition. While we shall
discuss this method detail, we shall also dwell briefly on other three as it will shed
light on the constraints on imposing a global boundary condition.

When hybridizing meshless methods with classical FEM, FEM meshes is gener-
ated around the boundary. When far away from the boundary, EFG basis functions
are constructed. On the interface of two basis functions, FEM basis are as usual and
in meshless methods, shape functions take care of the consistency of the approxima-
tion.

The formulation using penalty function is stated as: u(r) € H1(Q), find the

solution to

Ap(u,w) = Fp Yw € Vi (2.11a)
Ap(u,w) = — (aVu, Vw) +ﬂAdP uw (2.11b)
Fp=(f,w) +B/Pd1" guw (2.11¢)

This method has two advantages. The dimension of the final system is not increased,
the system is symmetric and positive definite. But the Dirichlet is imposed weakly
and results in ill-conditioned matrix system.

Solving the problem using Lagrange multipliers involves finding a solution

(u,A) € H (Q) x H=1/ 2(I'). The formulation can than be stated as follows: given
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u(r) € H}(Q) and X € H'1/2(F) find the solution to

Ap(u, \sw, p) = Fp V (w and p) € HI(Q) X H—1/2(F) (2.12a)
Ap = — (aVu, Vo) + w? (yu, w) + (A, w) + (u, ) (2.12b)
Fp=(f,w) +{g. 1) (2.12¢)

Solution to the discrete version of this equation in the GFEM setting is not trivial. It
is well-known that for this problem to converge, it is necessary for both the interior
and multiplier spaces to fulfill the Babuska-Brezzi condition. The Babuska-Brezzi

condition can be expressed as:

(V-u,)

I
nf ) ||U||H1(Q)”)‘“H—1/2(F)

reH-1/2(0) PucHl (@

<v>0 (2.13)

while it’s easy to find A when using classical FEM, but it is difficult to design such
multiplier space that satisfies this condition [52-54], especially for the space of ba-
sis functions being considered here. Moreover, Lagrange multiplier based techniques
lead to indefinite systems. An alternative to this could be a stabilized-Lagrange mul-
tiplier technique [55]. However, in what follows, we use the Nitsche’s technique for
imposing the Dirichlet boundary condition. This method is related to the stabilized
Largrange multiplier technique with two advantages: (i) it is relatively straightfor-
ward to implement in a numerical scheme, and (ii) one does not need to define an

additional space of functions in H -1/ 2(I‘). The method proceeds as follows: find
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an approximate solution such that u(r) € Vy C H 1(Q) such that

Ap(u,w) =Fp Yw € Vy (2.14a)
Ap(u,w) = — (aVu, Vu) + w? (yu, w) + /I‘ dl’ aun - Vw (2.14b)
+/ dz awfz-Vu—ﬁ/ dr uw (2.14¢)

r T
Fp=(fw) +/I‘ dzagn - Vw —ﬁ/;\dI‘ quw (2.144d)

where 3 is chosen such that it guarantees coercivity. Rigorous estimates exist for 3

[50]. As is also apparent from the above equations, the resulting system is symmetric.
2.3.3 Global Radiation Boundary Condition:

The above exposition has a significant impact on the development of a global bound-
ary condition. In standard FEM-BI expositions [1], one defines equivalent currents
on I'e, and uses the radiation boundary integral to impose either the electric field
or the magnetic field or a combination of both. The equivalent current are of both
the electric and magnetic types. As u(r) represents one field (either the electric or
magnetic field), either the magnetic or electric currents can be easily obtained. One
typically prescribes basis functions for all r € I'e to represent currents. However,
from our preceding discussion it is apparent that basis functions prescribed on I'e
have to belong to H -1/ 2(Te), and these functions together with those used in the
interior have to satisfy the Babuska-Brezzi condition. While such a space can be
easily developed in the case of standard tesselation, it is perhaps not possible for
GFEM. Therefore, prescribing additional unknowns on the boundary is ruled out.
The method that we use for hybridizing will depend on whether I'e = 0Q or e C 952
In the former case, the domain of integration encloses a volume, and in the latter, it
is open. When the domain is closed, it is sufficient to prescribe conditions such that
the solution is unique; i.e., one does not excite the interior resonance modes. While

this is a solved problem, it is implementing this condition within the context of
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GFEM that causes problems. If I'e C 9, then imposing conditions is considerably
more challenging, as imposing the BI is similar to prescribing a Dirichlet boundary
condition. This is challenging on two counts; (i) the basis functions V; are NOT
interpolatory; (i) @ C U, supp {Va}. Therefore, techniques that were used earlier

to overcome this problem [1] need to be modified to impose the boundary condition.

0.5x2
0.5x}
XZ
X

—05x
-05x

~(Q.5x%-0.5% 0.5x1} 0.5x

(a) Boundary Integral do- (b) PML domain description

main description

Figure 2.8. (a) Definition of geometry for imposing the boundary integral; (b)
Definition of the geometry for application of the PML.

Our formulation proceeds as follows: Assume that just inside the boundary, one
can define another surface I's that completely encloses all the inhomogeneities in

; see Figure 2.8(a). For the purposes of discussion, assume that u(r) refers to the
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electric field. Then Vr € T,

u(r) = u'™e(r) + £ {u(r)} (2.15a)
Anu(r) = Bnut™C(r) + K {u(r)} (2.15b)
£{u(r)} = — /F dTs (8,yu(e")g(r, ') - u(t')3,yg(r,x")) (2.15¢)
K{u(r)}:= /; dl's (an,u(r')ang(r, r') —u(r) g (r, r')) (2.15d)

where an, and O, are used to denote the normal derivatives with respect to the
primed and unprimed coordinates, respectively, £ = —f x 2, and u*"°(r) denotes
the incident field. Denoting r =r —r’ where r € R2, the Green’s functions may be
written as g(r,r’) = %Hg(klﬂ) and g;(r,r') = k2(f - ')g(r,r') + ' - (VVg(r,1)) -
where £ and #’ are the tangent vectors at r and r’, respectively. These equations are
essentially derived from surface equivalence theorems (or Huygen'’s principle). Note,
the surfaces I'e and I's can be arbitrarily close to each other; however, if they are very
close to each other, the integral operators in (2.15) may be singular /hyper-singular,
and one should evaluate these with care. Techniques for doing so are similar to those
prescribed in [56]. Next, to incorporate the global boundary condition within the
differential equation solver, one needs to specify the differential operator Be {u(r)} in
(4.1). The simplest is to specify that Be {u(r)} = u(r) = u™¢(r)+L {u(r)} Vr € Te.

This is, of course, a Dirichlet type boundary condition, and has to be incorporated
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using Nitsche’s method; more specifically by implementing the following

Ap(u,w) =Fp Yw € Viy (2.16a)
Ap(u,w) = — (aVu, V) +w? (vu,w) + ‘/PdI‘ oun - Vw + /FdI‘ awn - Vu
(2.16b)
_B /P dr ww — /F dCal {u(r)} -V + 8 /P dTwC {u(r)}

Fp, =(f,w) + / dLau'™, - Vw — 8 / dl 4" (2.16¢)
T r

Alternatively, one can specify Be {u(r)} = 8pu(r) = dpui™(r) + K {u(r)} Vr € Te.
As before, this is the Neumann type boundary condition, and can be incorporated by
appropriately modifying the variational formulation. However, it is well known that
both global boundary conditions do not yield unique solutions at all frequencies.
These frequencies correspond to the null spaces of the appropriate operators [1].
Among the several methods prescribed [1] to overcome this deficiency, one is to
combine the two operators; i.e., use a combined field formulation. Thus, the method

proceeds as follows: find an approximate solution u(r) € H1(Q) such that

Ap(u,w) = Fp, Vw € HL(Q) (2.172)
Ap(u,w) = — (aVy,Vw) + w? (yu,w) —jk:/F dl'w(r)u(r)+ (2.17b)
‘/I“ dl w(r) [jkL {u(r)} + K {u(r)}] (2.17¢)
Fo=(fw)- | | dru(e) [ () + i) (2.174)

In the above exposition, we have essentially focused on imposing the boundary
condition at I'e. As in (2.1), another condition might need to be imposed in the
interior boundaries. However, as is apparent, the bilinear form for imposing these
conditions may be derived trivially using material presented thusfar. Evaluation of

the integrals over the boundary may be carried out using several different methods.
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In our implementation, we proceed as follows: The domain of integration (either I'g
or e can be partitioned into a union of subdomains over with the basis function
is piecewise smooﬁh. Then over each such subdomain, we use a Gauss-Legendre
quadrature. While this is not truly optimal and one may construct better quadrature

rules, we did obtain convergent results.
2.3.4 Local Radiation Boundary Condition:

Our interest in implementing the local boundary condition is purely to develop
another measure of validating the results obtained using global boundary condition.
As we will show, the results obtained using GFEM-BI converge exponentially to
analytical solutions. However, as these solutions are available only for canonical
problems, it is of interest to know that the fields obtained using the afore-developed
scheme and those obtained using a local boundary condition agree with each other.
There is a wealth of local boundary conditions that are available [1, 57). Here we
implement a perfectly matched layer (PML) within GFEM. The literature on PML
is extensive, and our goal is to present a rudimentary development that can be used
as a validation modality. The approach that we use to implement this relies on the
stretched coordinate system first introduced in [58]. Using this technique results in
a slight change in c(r) in that it becomes a tensor of rank 2, i.e., a(r) = apay;(r).

The quantity 4(r) and the non-zero elements of a(r) are

s2(r)
s1(r) (2.18)

51(r)
s9(r)

F(r) = vps1(r)sa(r)

a11(r) = g a(r) =a

where r = (z1,29), o and 7 are appropriate constants when all stretching param-

eters are one, and

s1() =1 —j"lj—gl) s2(r) = 1 —j"zj—? (2.19)
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In these equations, s1 and s are stretching coordinates, and o;;(r) denotes the
conductivity tensor of the domain. As is apparent, this tensor is chosen to be
diagonal. The domain of application of the PML is denoted using 2ppsz, = Qp—5;,

where the rectangular domains €2y and 2; are defined as {2y = x% X :v% and ; =

x% X a:%; see Figure 2.8(b). The conductivity profiles are chosen to be zero inside the
I’; and vary quadratically in the direction of the outward normal to the boundary I’;.
011 is nonzero in domain (—0.5:1:%, —0.5:1:{) X (—0.5:1:%,0.5:1:%) and (0.5x%,0.5z%) X
(—0.5:1:%,0.53:%), 099 is nonzero in domain (—O.Sx%,O.Sx%) X (—O.Sx%, —0.53:%) and
(—0.5:1:%, O.Sx%) X (0.5:1:%, 0.51:%). Finally, the computational domain is truncated by
imposing the condition

A - Vu® + jkcos(fg)u’ = 0 (2.20)

on I'y. Here, 6, denotes the angle of perfect absorption and is chosen to be g = %
in our simulation. Note that in this formulation, the unknown is scattered field u5.

With these changes, the bilinear form may now be written as

Ap(u?,w) = Fp, Vw € Vy (2.21a)

Ap(®,w) = — (a- Vu®, Vo) + w? (Fu°,v) —jkcos(Oa)/FdP wSw  (2.21b)

Fp = (f,w)— (aVzuinc,w) — w? (’yuinc,w) (2.21c)

2.4 Numerical experiments

In what follows, we shall present a series of numerical experiments that will serve
to demonstrate the accuracy and convergence of the method presented herein. In
all examples presented below, we have chosen d = 2 merely for demonstration pur-
poses, and extension to d = 3 will be exploited in the next chapter. First, we shall
demonstrate h, p convergence for problems wherein either the Dirichlet or Neumann
boundary conditions are specified. Next, we shall demonstrate similar convergence

for our hybrid GFEM-BI scheme and also demonstrate that our scheme is free from
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corruption due to interior resonance modes. In these examples, global boundary
conditions are used to truncate the computational domain, and Dirichlet boundary
conditions are imposed in the interior of the domain. After that, we present a set
of results that analyze electrically large problems, and compare these against ei-
ther analytical results or against GFEM augmented with local boundary truncation
schemes. Finally, we will analyze the scattering from PEC wedge with mode-based
GFEM solver. While meshless methods offer a host of advantages, one significant
hurdle/unsolved problem is the conditioning of the resultant linear system as the or-
der of the basis function increases. This is an issue when we are trying to demonstrate
h, p convergence. In these cases, we resort to an singular value decomposition(SVD)-
based solver. However, in the analysis of electrically large objects, wherein we are
satisfied with an error in the Ly-norm = le-4, we use a non-stationary iterative
solver like TFQMR [59] with block preconditioners.

In the next two examples, we demonstrate h,p convergence of this method when
imposing either the Neumann or the Dirichlet boundary condition. The domain
of analysis of both problems are the same and defined as follows: the domain of
interest © = (0,1)2, and the boundary T' = Uf I'; where {I'; : r € 0 x (0,1)},
{To:re(0,1) x1},{T'3:re1x(0,1)},and {T'y: r € (0,1) x 0}.

In the first example, the Neumann boundary conditions are imposed on all four
walls. More specifically, B; {u(r)} = dnu(r) lvrer‘i = g;(r). Denoting r = (z1,19),
9;(r) = 0,-2.97cos(4z1), 3.0272sin(3z3), 3cos(4zq), for i = 1,--- .4. The above
boundary conditions permit analytical solution of the (2.1). In this experiment,
uniformly distributed nodes and rectangular patches are used. The size of each patch
is 1.5 times the distance between the nodes. The weight functions W;(r) is a product
rooftops, and the approximation is a tensor product of Legendre polynomials. Two
sets of results are shown. First, we demonstrate the error between analytical and
numerical solutions in Figure 2.9 for A = 0.11) and p = 4. We also demonstrate h,p

convergence in Figure 2.10. As is evident from the graphs, the results are excellent.
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Figure 2.9. Error in the Ly norm of the numerical and analytical solutions of the
PDE with the Neumann boundary condition.
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Figure 2.10. h,p convergence of the numerical scheme applied to the solution of a
PDE with Neumann boundary conditions.



Figure 2.11. Error in the Lo norm of the numerical and analytical solutions of the
PDE with the Dirichlet boundary condition.
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Figure 2.12. h,p convergence of the numerical scheme applied to the solution of a
PDE with Dirichlet boundary condition.



o p=1|p=2| p=3 p=4
11:;:(‘1‘:1"’1 h=1/4 00244 | 5.49¢4 | 2.61e-6 | 9.676-9
TE h=1/6 00151 | 1.07e4 | 2.42e-7 | 3.84e-10
First 8 |h=1/4] 0.087 | 8.44e3 | 1.626-4 | 3.02¢-6
modes | h=1/6|0.0533 [ 1.67e-3 | 1.58¢-5 | 1.05e-7
Principal| h = 1/4 | 0.0567 | 3.78¢-4 | 3.106-6 | 7.79%-9
Ty Mode  [A=1/6[0.0285 | 814e5 | 2507 | 3.20e-10
First 8 | h=1/4 | 0.1557 | 0.0142 | 3.20e-3 | 1.99e-5
Modes |k =1/6|0.1122 | 5.27e-3 | 1.85e-4 | 2.280-6

Table 2.1. Error of eigenvalues in rectangular waveguide

Next, the Dirichlet boundary condition is immposed on all four walls. More

(z1,22), gi(r) =
sin(3z3),0.1411 cos(4z; ), —0.6536 sin(3z9),0, for i = 1,--- .4. All the parameters

specifically, B; {u(r)} = “(r)"v’reI‘i = g;(r). Denoting r =

used in the computation are the same as those used for imposing the Neumann
boundary condition. Again, the Figure 2.11 plots the relative value of the error in
the entire computational domain when using h = 0.11\ and p = 4. Also, the errors
for different values for h and p are shown in Figure 2.12. It is evident that Nitsche’s
method for imposing the boundary conditions shows excellent convergence.

Next, we compute the eigenmodes in a rectangular waveguide. The dimensions of
the waveguide are chosen to be 1Im x 1m. The convergence data (error in L? norm)
for both TE? and TM? modes are presented in the Table 2.1. As is evident from this
data, the results obtained converge rapidly with increasing order and refinement.

Next, we compute the eigenmodes in a circular waveguide. The radius of circle
is chosen to be 1m. Table 2.2 show the error of eigenvalues for both TE?* and TM?
modes. Again, the results obtained converge rapidly with increasing h and p.

Then, we compute the eigenmodes in a coaxial waveguide. The radius of in-
ner and outer circles are chosen to be 0.5m and 1m. The error of eigenvalues are
presented in the Table 2.3. The results is excellent.

Next, we examine the accuracy of imposing the boundary integral to truncate
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.. p=1|p=2 | p=3 | p=4
f;;gi‘pal h=1/4 | 0.0191 | 4.43e-4 | 2.19¢-6 | 6.096-7

TE h=1/6{0.0127 | 9.14e-5 | 5.72e-7 | 4.20e-7
First 5 | h=1/4[0.1137 | 0.0157 | 1.20e-3 | 3.26e-5
modes | h=1/6|0.0817 | 4.52e-3 | 1.12e-4 | 2.11e-6
Principal| h =1/4 | 0.0677 | 9.47e-4 | 9.97e-6 | 5.84e-7

™ Mode h=1/610.0351 | 2.14e-4 | 4.56e-7 | 4.42¢-7
First 5 [ h=1/4] 0.175 | 0.291 0.040 | 2.12¢-4
Modes |h=1/6] 0.131 | 0.090 |4.21e-4 | 7.41e-6

Table 2.2. Error of eigenvalues in circular waveguide

- p=1|p=2 | p=3 | p=4
g{c‘)‘(‘l‘:p”“ R =174 [0.0311 | 2.91e3 | 3.000.4 | 3.60e:5
TE R =1/6 | 0.0205 | 5.61e:4 | 2.98¢5 | 1.2666
First 5 | h=1/4 [ 0.1062 | 0.0307 | 5.356.3 | 8.31e-4
modes | h=1/6| 0.693 | 0.0101 | 7.10e-4 | 5.51e-5
Principal| & = 1/4 | 0.2137 | 0.0103 | 24163 | 2.236-5
oyl Mode [ R=1/6 [ 0.1369 | 2.9663 | 2.73-4 | 6,367
First 5 | h = 1/4 ] 0.2169 | 0.0402 | 8.6403 | 1.01e-3
Modes | =1/6]0.1529 | 0.0165 | 2.2363 | 1.31e-4
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Table 2.3. Error of eigenvalues in coaxial waveguide
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Figure 2.13. h,p convergence of GFEM-BI (CFIE)

the domain. To do so we analyze scattering from a perfect electrically conducting
(PEC) cylinder with radius 0.1\ and the truncation boundary is placed 0.1\ away
from the surface. Given the configuration of the problem, we need to apply the
BI (CFIE) (2.17a) and Dirichlet boundary condition on the truncation boundary
e and the inner boundary, respectively. We compare these results against that
obtained analytically to obtain the h,p convergence graphs in Figure 2.13. As is
evident, the scheme presented in this chapter demonstrates the anticipated conver-
gence characteristics. The next, we analyze scattering from a PEC cylinder over a
range of frequencies. The outer boundary is truncated using the EFIE specified in
(2.16a), and the inner boundary is truncated using a Dirichlet boundary condition.
We know that truncating the outer boundary with the EFIE would lead to unique
values for all values of ka except those that correspond to interior resonance modes

of a cylinder with a PEC wall at the outer boundary. Thus, to satisfy ourselves that
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this is indeed the case, and to show that the variational form that imposes the EFIE
formulation presented in this chapter is valid (note: EFIE is imposed using Nitsche’s
method), we analyze scattering from a cylinder over a range ka varying from 2.0 to
8.0 in steps of 0.05. Additionally, values of ka that are within three digits of the
resonance frequencies corresponding to TM#? modes of the cylinder whose radius
corresponds to that of I'e are chosen. In total, we ran this simulation for a total of
128 frequency points. In all cases, h = 0.1\ and p = 3. Figure 2.14 compares the
error in the field values within the computational domain to analytical data. As is
expected, Figure 2.14 shows the results obtained are accurate except at resonance
frequencies. So, the next challenge is to ensure that our results are free of corruption
by spurious modes. Again, we analyze scattering from a PEC cylinder over a range
of frequencies with combined boundary integral formula. It is apparent from Figure
2.15 that the error is fairly constant over the entire band of frequencies. It should be
noted that in all the cases mentioned thus far, we are quoting the error in the field
values at a sufficient dense set of samples inside the computational domain. These
error are NOT in the echo width data, as they tend to be significantly smaller.
Next, we demonstrate the applicability of this technique to various scattering
problems. In all three examples described, the incident plane wave propagates along
the Z direction and is polarized along 2. First, scattering from a cylinder of radius
2.7\ is analyzed. The source boundary I's and fictitious boundary I'e are at 2.85\
and 3.0, respectively, and A = 0.11X and p = 3. The analytical and numerical data
of electric field on fictitious boundary and echo width (EW) are compared in Figure
2.16. As is evident from these graphs, the results are excellent. Next, scattering
from dielectric-coated PEC cylinder is analyzed. The radius of the PEC cylinder is
2.82), and the thickness of the dielectric coating is 0.06)A. The relative permittivity
of dielectric is 2.0. The source boundary I's and fictitious boundary I'e are at 2.94)
and 3.0), respectively, where A is the free space wavelength and h = 0.12\ and

p = 3. The analytical and numerical data of the electric field on fictitious boundary
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and echo width (EW) are compared in Figure 2.17. As is evident from these graphs,
the results are excellent. Finally, we analyze scattering from a coated cylinder that
is considerably larger. The radius of cylinder PEC and dielectric coating are 3.76
and 3.84), respectively. The source boundary I's and fictitious boundary I'e are
at 3.92) and 4.0), respectively. As before, A is the free-space wavelength, e, = 2,
h = 0.15) and p = 3. Our discretization in this case is considerably coarser, however,
as is evident from Figure 2.18 (a,b), both the fields on the fictitious surface and the
echo-width agree very well with the analytical data.

In the next example, we compare the results obtained using GFEM-BI with those
obtained by analyzing the same object using GFEM-PML. As is well known, the
principal advantage of the boundary integral is that realized by a reduced compu-
tational domain. This, of course, implies that the cost of application of the BI can
be reduced to something that scales almost linearly with the number of unknowns
on the boundary. This is indeed possible by augmenting the BI with acceleration
techniques, notably by the fast multipole technique [60]. The object that we choose
for simulation is a L-shaped dielectric scatterer. The length and width of each arm
is 1) and 0.3), respectively, and the arms are oriented along the £ and ¢ directions.
The truncation boundary I'e for the BI is conformal to the scatterer and is at a
distance of 0.25)\ away from the scatterer. When employing the PML, the scatterer
is embedded in an rectangular domain of size §2; = 5.4 x 5.4)2, and the thickness
of the PML is 0.95). In both simulations, h = 0.08\ and p = 3, and the relative
dielectric constant € = 2. The incident field is Z polarized and propagates along
k= —1/v2 (& + §). Figure 2.19(a,b) show the fields obtained by both methods. As
is evident, they are identical to each other. Indeed, the relative error in the field
values at a set of points in the domain is 2.3e-3, indicating that both techniques

compare very well with each other.
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Figure 2.16. Comparison between numerical and analytical data obtained for scat-
tering from a perfectly conducting cylinder of radius 2.7 A: (a) the electric field at
Te; (b) Echo-width of the cylinder.
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Figure 2.17. Comparison between numerical and analytical data obtained for scat-

tering from the coated perfectly conducting cylinder if radius 2.88 X: (a) the electric
field at I'e; (b) Echo-width of the cylinder.
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tering from a coated perfectly conducting cylinder of radius 3.84 A: (a) the electric
field at Te; (b) Echo-width.
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Figure 2.19. Comparison of data obtained for scattering from an L-shaped object
using GFEM-BI and GFEM-PML.
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Figure 2.20. Geometric description of the wedge

Until now, the basis functions used in all the examples have been based on
tensor products of polynomials. The power of GFEM, however, is the ability to
include analytical behavior, if known, into the approximation space. To test this
idea, To test this idea, we analyze scattering from a wedge. The analytical response
of this structure is well known [61]. Indeed, [15] developed singular basis functions
that can be incorporated into the function space of the classical FEM methods (see
references therein for other approaches to constructing singular functions). In what
follows, we will explicitly incorporate the known functional behavior. Consider a
two dimensional wedge with angle % that is located in a rectangular computational
domain 2 = (—1.0,1.0) x (—1.0,1.0). The tip of the wedge coincides with the origin
of the computational domain and one side lies in the y = 0 plane. A field that is
polarized along the Z and propagating along k = —0.9659% — 0.2588y is incident
upon the wedge, and the wavenumber kg = 3; this geometric configuration is shown

in Figure 3.7.
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(a) Analytical solution
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(c) Graph of error based on eigen function

Figure 2.21. Analytical result and graph of error for scalar wedge problem
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Figure 2.22. Error plot of scalar wedge problem

It can be easily shown that the fields are given by

4m Ey . . ‘
E; = _(:1 > ¥ Julkp)sinfv(an + 7 — a)]sinfv(g + 7 — a)] o
’ 2.22
__mnm 12
2r — a

Modes Jy (kp)sin[v(¢ + 7 — a)] are used as scalar local approximating function. The
infinite extent of the wedge is simulated by imposing analytical solutions for the
infinite wedge as Dirichlet boundary conditions. The relative error is computed using
L2 norm of error in the electric field at 100 x 100 sample points that are uniformly
distributed along Z and gy direction. In this example, tensor product of polynomials
are also used as local approximating function for the purpose of comparison. Figure
2.22 show the efficiency of new basis function. From those figures, we can find
that traditional basis function creat largest error at the tip of the wedge, it also

happens when we use traditional FEM method. But with new basis function, the
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Figure 2.23. Error of FEM and GFEM solver

error aroung the tip of the wedge is reduced efficiently. Figure 2.21 show the relative
error with respect to the number of unknowns. Obviously, error with new basis
function convergence much faster than those with tradition basis functions.
Finally, we compare the error of scattering from wedge by GFEM solver and
FEM solver. The parameters of the problem are mentioned following. The angle of
wedge o is chosen as §, & and {i respectively and the angle of incident field oy,
is zero in all three cases. The relative error is computed by L2 norm of error of
F-field at 100 x 100 sample points which are uniformly distributed along x and y
direction separately. Figure 2.23 shows the relative error of E field by GFEM and
FEM solver with respect to the number of unknowns when the angle of wedge is
changing. In GFEM, the number of modes in each patch is fixed to 6. We can see
that the result of GFEM is much better than FEM. Figure 2.24, Figure 2.25 are
error graph of FEM and GFEM. From Figure 2.24, The error in FEM around the
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Figure 2.24. Error plot of FEM solver

tip of the wedge is much larger than the error at other place, at the same time, it
doesn’t happen in GFEM. The number of unknowns for FEM and GFEM is 1307

and 648 respectively. The angle a in both cases are .

47



Figure 2.25. Error plot of GFEM solver
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CHAPTER 3

VECTOR GENERALIZED FINITE ELEMENT METHOD

3.1 Introduction

While GFEM has been used for a range of problems [22, 44] , it has not seen adap-
tation to address vector problem in high frequency electromagnetics. While some
papers exist on application of a variation of GFEM to quasi-static problems whose
governing equation is posed in terms of potentials, they do not address a fundamen-
tal difficulty: The boundary condition of the fields on the material interface require
that their tangential component be continuous, their normal component be discon-
tinuous and the normal derivatives of the tangential conditions be discontinuous as
well. Achieving all of this using functions that are continuous across boundaries is
almost impossible. Aside from this difficulty, it is also important for the divergence
of the fields be zero (either in a strong or a weak sense). The latter was the principal
motivating factor behind the development of vector basis functions [1] in classical
FEM. As an aside, we note that this is not the first attempt at extending GFEM
to analyze vector electromagnetics problems. That honor belongs to Tsukerman
[32-37]. His treatment of the vector problem is largely inspired by that used in
classical FEM. In Chapter V of [35], vector basis function is defined as vV where
¥ is barycentric coordinates, e.g. nodal basis function in FEM and shape function
in GFEM, and v is polynomials. Though in FEM framework, this basis function
coincide with the interpolatory high order edge element, in GFEM solver, Vi equals
zero in the region where there is only one patch as is this basis function. Except
for this problem, he created basis functions that have zero divergence. But they
cannot handle discontinuities in the constitutive parameters. Furthermore, he did
not demonstrate the convergence characteristics of his scheme and only solved one

eigenvalue problem by one patch where the shape of patch coincides with the shape
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of waveguide.

Another problem that bothers GFEM, as it also does any higher order solver
is the condition number of the resulting system. Indeed, this is more of a problem
here as opposed to classical FEM as the space of basis functions in GFEM is not
interpolatory.

The objective of this chapter is to extend GFEM to address vector electromag-
netics problems in both two and three dimensions. The principal contribution of

this paper is three-fold:

1. We will develop two classes of vector basis functions for homogeneous domain

and prove bounds on their convergence and the error bounds of linear operator.

2. We will develop basis functions that will enable the satisfaction of bound-
ary conditions across interfaces. These conditions will be on the tangential
components of the fields and their normal derivatives, and the normal compo-
nent of the fields. In this chapter we restrict ourselves to planar and curved

boundaries.

3. We will demonstrate h and p convergence of the proposed scheme for both
Dirichlet and Neumann boundary conditions in two and three dimensional
problems. We shall also demonstrate the accuracy of this scheme for computing

eigenvalue for cavities, waveguides, and partially filled cavities.

4. We will demonstrate the inclusion of analytic behavior in the basis function
space and the resulting improvements in convergence of fields. Our convergence

studies will be restricted to near-field calculations.

5. We will propose a SVD-based preconditioner to reduced the condition number
of the resulting system. The cost and error bound of the preconditioner will
be derived. The reduced condition number and maintained accuracy will be

demonstrated.
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This chapter proceeds along the following lines; in the next three sections, we
will introduce the construction of vector GFEM solver for homogeneous domain,
piecewise homogeneous domain with planar interface and piecewise homogeneous
with curved interface respectively. The accuracy and convergence of the GFEM
solver will be demonstrated. In the last section, the SVD-based preconditioner will

be introduced.

3.2 GFEM solver for homogeneous domain

3.2.1 Statement of the Problem

Consider a domain 2 whose boundary is denoted by 0Q :=T = |J; T';. It is assumed
that this domain is embedded in a domain Qe and its exterior boundary I'e is defined
as e := Qe N Q. Interior to the domain Q, the function u(r) satisfies
(v y [——I—Vx] _ wz'y(r)) u(r) = £(r)
afr)
B;{u(r)} = g;(r) forreT;

(3.1)

In these equation u is used to denote either the electric or the magnetic field, a(r)
and ~(r) are position dependent constants, B; are differential operators, and g;(r)
is the function that is imposed on I';. In the above equation, it is assumed that
r € RY where d = 2,3. Solution to this problem for any imposed field f(r) can be
obtained using classical vector FEM. This scheme requires tesselation of the under-
lying domain, and specifying an approximation space [1]. The approximation space
is such that it satisfies the de-Rham map, and are based on a space of polynomials.
The question that we intend posing is the development of a possible technique that
permits development of scheme that does not rely on classical tesselation, permits
the use of different kinds of basis functions in different regions of the domain 2.
As directly implementation of the scalar GFEM solver will results in the spurious

problem, spurious-free vector GFEM solver need to be developed.
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Figure 3.1. Patch cross the material interface

3.2.2 Basis functions

First, we examine the constraints that we need to impose on vector basis function.
These condition emerge from Maxwell’s equations and they are: (i) in a source free
region, the field is divergence free, and (ii) at the interface between two media,
the tangential component of the field is continuous and the normal component is
discontinuous, and (iii) the normal derivatives of the tangential components are
discontinuous as well. As we shall demonstrate in the Section 3.3.3, satisfaction of
the last constraint is crucial achieving h— and p— convergence. Next, we will prove

those constraints for vector function space.

Theorem 3.1 Figure 8.1 shows a patch with a material interface cross it. The
constitutive parameters are €1 and €9 which are different from each other. Tangential
and normal directions on the interface are defined ast and 7 respectively. f; and fo

are vector local approzimation in each region. The criteria of the local approrimation
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function can be described as followings:

fre = for

fin # fon
Ohf1t # Oty
O fin # O fon
V-f1=0

V-fo=0

1=1,2,3..

[=23..

(3.2)

Proof: If electric field in both homogeneous domain is denoted by E; and Eq

then

V-E; =0
V-Ey=0
Eyt=Ey

(3.3)

The above properties of the field require the following properties of the vector local

approximation

From the condition

It’s easy to derive the criteria

f1p = for
V-fi =
V-fo=0

€1E1p = €9E9p

€1 # €2

fln # fon

(3.4)

(3.5)



We also can obtain the criteria

Onfin =V 11 — V¢ Iy
=V-fy— V- foy (3.7)

= aTzf2n

While the above criteria is important to construct high order vector local approxi-
mation, it’s not independent.

When proving the following criteria, we can provide one simple example. As
the field has the following discontinuities, the local approximation should share the

same properties.

Bhfyy #0hfy 1=1,2,3..

(3.8)
O fin # O fon  1=23..

In what follows, we start with defining basis functions in homogeneous domains
and then proceed to extend this for domains that contain inhomogeneities. We
shall also derive error bounds when using this span of functions. It is well known
that a vector function can be expressed using a set of three wave functions that are
typically denoted using L(r), M(r) and N(r) [57, 62]. These function are expressed
using L(r) = V [¢;(r)], M(r) = V x [é¢m(r)], and N(r) = 1/kV x V x [¢¢n(r)],
where ¢q(r) for ¢ = I, m,n satisfy the Helmholz equation with wave number &, and
¢ is a pilot vector. In a source free region, functions M(r) and N(r) are sufficient
to represent the fields everywhere in the region. These fact sets the stage for the
development of vector basis function for GFEM.

Assume that in any volumina ¢4(r) = @gp(r) = span {Vi,q} for i = 1,n

where the subscript ap denotes an approximation to the continuous function and



V; = ¥(r)y(r). It follows that one can envision, two different basis function:
u},p e VI = span {w(r)V X [cv:l’rﬁ ,W(r)V x V x [cvz;f]}, and ugp e V2 =
span{V X [éz/;(r)vz;ﬁ] ,V xV x [&z;’)(r)vz;f } From the definition of these ap-
proximations, it follows that for the approximation to be of order p, the highest
order of the function v:l;g should be of order p + 1 whereas vh’;f should be of order
p + 2. In this paper, these functions are chosen depending on the problem being
analyzed. The definition of these basis functions also dictates that u?lp has zero
divergence where as u},p does not. To visualize these functions better, we plot two

h,p

dimensional local approximation function V x [évz ]w1th ¢ along the 2 direction

(or along the direction of invariance). These plots are displayed in the Figure 3.2,
and as is evident from these figures, different modes approximate curls to different
degrees.

When evaluating the terms V x u and V - u for the first basis function, the

following formula is implemented.

W; n

V xul! =V x (m——2——v1)
¢ ZQkECi Wk ’
W; W;
=V(— ) X VI eV x VI
Yoec; Wkt Yagec; Wk ! 1o
VWi apec; Wk - Wi anec YWe  on (39)
(ZQkEC Wk) :
Wi V x v

EleC Wk

ot
(&7
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AVAN un =V - (__z_.vn)
¢ EQkGC' Wk :
W; W,
etV VI 4 V() VD
20 eC; We 2opec; Wkt (3.10)
VWi aec; Wk = Wi o ec; VWi y

(Caec; Wi Z

In the above formula, v? denotes vector local approximation from
the first kind of basis function u}lp and belong to the function space
span {V X [évz m] V xV x [ :l;f]} The above formula indicates that
only v? and V x vi are necessary to implement the bilinear form of the equation.
Next, we derive error bounds for each of these approximating span of functions as

applied to vector electromagnetic problems.
3.2.3 Error bound

3.2.3.0.1 Error bounds of basis functions: The global accuracy of the finite
element method depends on the local accuracy of the approximation to the solution.
Thus, predicting the local error bound yields the global error bound of the solver.
In what follows, we derive error bounds for both types of approximations presented

earlier: u}lp and ugp

Theorem 3.2 If

d)’h”LOO < Coo(@)

vy? ”LOO(Q) = E&%

VX [(¢m ” ) ”|L2(Qﬂﬂ ) S€alihp) (3.11)
VXV x (60 - vid) e ]HL2(9an) < (i hup)

M eN VreQ card{i|reQ;} <M
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Then the error is bounded by
1/2

”u _ u}m“L2 < V2MCoo Ze%(i, h,p) + Ze%(z’,h,p) (3.12)
1 ?

where Coo and Cyy are constant. €1 and €9 are bounds of error of local approzimating

function in each patch.

Proof:

1
v “aP”L2(Q)

= [V % (@md) +V x V x (620)] = 3 w; [V x (v:22) +V x v x (s]2¢)

i

2

=[S [7x (fom -t + S [T 7 ({on-oL2))]

L2(Q)
2

<2

S [ (om-o12}4)

L2(@)
2

+2

Zwi [V x V x ({qbn vzhrf c)]
t L2()

<2MZH% [V x ({om - i) )1“22(909)
+2MZ ¥ [V XV x ({¢" ’“h p} )]”L2(Qﬂﬂ)
1

<2MC% Y [ hp) + (i, hup)]
i

(3.13)
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Theorem 3.3 If

Wh
¢} o0 < Conte)

5 «_Cv
Vv ”LOO(Q) B dz'am(Qh)
; 3.14
ém — zm||L2 @ney S a6mp) 319

VX [(°°m - ”z‘,m) C] ”Lz(gnﬂi) < ey(i,h,p)

IMeN VreQ card{i|reQ} <M

then the error is bounded by

1/2

“u “ap” 9 < VoM choe% (i, h,p) +Z e%(i,h,p) (3.15)

where Coo and Cy are constant, and € and € are error of local approzimating

functions .

Proof:

2
u- “GPHL2(Q)

_ [ < ({om = v} ) = ({em—uih ) x Vo
<2MZ“%VX ({¢m } )”L2 @nNe;)

> (LB

2

L2(Q)  (3.16)

<2M COOZG2 i.h,p) +



From the above equations, it appears that the space u?,,, does not converge with
decreasing h. However, it should be noted that €; scales proportional to h. This
implies that the rate convergence of this approximation w.r.t. both A and p is similar
to that of u}lp. Note, using the above proof it can be shown that the basis functions
proposed by Tsukerman will exhibit convergence characteristics similar to ugp. The
principal deficiency of u?,p is the fact that it cannot be easily extended to satisfy
boundary conditions of fields across material interfaces whereas u,llp can be readily

modified.

3.2.3.0.2 Error bound of bilinear operator: Next, we will show the error
bound of the bilinear operator. As preliminary, we will assume the error bound of
the following terms. If

¥ < Coo(q)

h Cy
v <V _
o ||L°° ) diam(Q}-’)

Vx[@m_” )]”ﬂmna)—q“hm

VXVXK%_” )Hh%ﬁmﬁ_ e2(i, k) (317)

VXVX[@m"%m)”h%mun 3t h7)

VxVxVx[(%—tlf) ] €4(i, h, p)

|h%nnn)—
IMeN VreQ card{i|re Y} <M
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