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ABSTRACT

BUILDING RELIABLE APPLICATIONS IN

OVERLAY NETWORKS

By

Xz'aomez' Liu

Overlay networks become increasingly popular due to the many benefits they can

provide: easy deployment, self-organization, scalability, and robustness. However,

some features of overlay networks such as openness, lack of admission control, and

lack of membership management. make it challenging to provide high quality and

reliable overlay services. In this thesis, the requirements of reliable services including

service availability, data/content authenticity, and user safety, are addressed. The

problems that hinder the fulfillment of these requirements in overlay networks are

identified. The solutions for solving these problems and building reliable overlay

applications are presented.

Two problems that hinder the fulfillment of service availability are identified. The

first ‘one is the cut vertices that exist in the overlay topology. This is a common

challenge for overlay applications. Cut vertices are topological “critical” nodes whose

failure can disconnect the network and harm service availability of the overlay appli-

cations. Connection adjacent matrix (CAM), a fully distributed mechanism that can

be applied in different overlay applications, is proposed to detect and neutralize the

cut vertices. CAM can accurately locate and neutralize cut vertices, as well as offload



the traffic of cut vertices.

The second problem that hinders service availability is the response loss problem

that prevents the peer-to—peer (P2P) file sharing systems from providing reliable

response return service. Three techniques are proposed to overcome the problem

and provide reliable response return services. With limited traffic overhead, all three

techniques reduce response loss rate by more than 65% and are fully distributed.

These techniques are also designed to be simple enough to deploy in existing P2P

systems.

In order to enhance data. authenticity, an investigation is deployed on the storage

and spread of trust values in the P2P reputation system. A hierarchical reputation

management system (hiREP) is proposed to guarantee the reliability of the service

content so that the users can trust the content provided by the overlay application.

hiREP adopts a hierarchical structure, with an onion based communication mech-

anism and a public key distribution system that requires no third party certificate

authority. hiREP can effectively evaluate the trust values and efficiently manage the

storage and the delivery of trust values.

In order to increase user safety, the mutual anonymity in overlay multicast systems

is investigated. The anonymity in an overlay multicast system helps make the system

a safer place for the participating users. This thesis defines the requirements of the

anonymous multicast system, and proposes a mutual anonymous multicast (MAM)

protocol that includes the design of a unicast mutual anonymity protocol, and con-

struction and optimization of an anonymous multicast tree. MAM is self organized

and completely distributed.

Among the identified problems and proposed solutions, cut vertex is a common

issue in the overlay topology and CAM can be applied in different categories of ap-

plications, while each of other solutions can be applied in a certain category of appli-

cations.
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CHAPTER 1

Introduction

The rapid development of con'ununication and computing technology makes it possible

for applications to run on end nodes. These end nodes compose overlay networks,

which are built on top of the underlying physical networks that include many other

end nodes, routers, and servers. Overlay networks become increasingly popular and

have drawn much attention from research communities due to their support to a

large variety of the Internet applications, such as peer-to—peer (P2P) file sharing

system [7, 9, 11, 100, 119], overlay multicast [19, 20, 28, 32, 33, 34], and overlay

routing [18, 78, 91, 92]. These applications enjoy the many benefits provided by

overlay networks including high flexibility, easy deployment, self-organization, load

balancing, scalability, and rapid improving computing capacity of end systems.

1.1 Research Background: Overlay Networks

Loosely speaking, any network that is on top of other networks can be called an

overlay network. The Internet started out as an “overlay” running on top of the public

switched telecommunication network (PSTN) [35]. Over time, the Internet evolved

into the principle platform for the global public communication infrastructure, and is

spawning its own collection of “overlay” networks that are running on top of it [35].



Overlay networks today are generally referred to as application overlays, which are

located in the application layer of the OSI network layer model. This thesis focuses on

the application overlays, which are composed by the end nodes. The terms of overlay,

overlay network, and application overlay are used interchangeably in the remainder

of the thesis to refer to application overlays composed by end nodes.

Overlay networks are composed of overlay nodes and overlay links. They interface

with users and construct a user level network topology on top of an existing net—

work infrastructure. An example of the overlay network structure is shown in Figure

1.1. The overlay network uses a subset of end nodes and links of its underlying net-

works. These end nodes also function as the overlay nodes in the overlay network.

The overlay links can be viewed as paths including one or multiple physical links in

the physical networks. Compared with the underlying physical networks, there is no

specific “router” in an overlay network. Instead, traffic is forwarded from one overlay

node to another directly via the overlay link between these two nodes. At the un-

derlying physical network, the traffic that travels along an overlay link between two

overlay nodes follows the actual physical links that form that overlay link.

Overlay networks provide many benefits that render the fast development of the

applications. Applications atop of overlay networks are running on the end nodes

instead of centralized servers. This removes the needs to obtain the administration

permission for deploying the applications. In addition, it is not necessary to consider

the requirement from underlying routers in the deployment of overlay applications,

since the underlying network infrastructure is transparent. to overlay networks. As a

result, the scale of overlay networks has increased rapidly in recent years. For example,

the scale of peer-to—peer systems has been increased from thousands of nodes in 2000

to millions of nodes now [6].

Overlay networks add new dimensions to the Internet's usability. For instance,

the inability of the Internet to support multicast is patent. With the emergence of



 
Figure 1.1. The overlay network and its underlying network

the overlay networks, multicast services on overlay networks have been proposed and

implemented, which fulfills the demand of a variety of applications such as video

conferencing, Internet—based education, NASA TV, software updates, etc. [19, 28,

27, 33, 34, 72, 95, 105, 111, 32].

Overlay networks distribute the cost of running the applications across the nodes

in the system and utilize the resource of end nodes. For instance, file sharing peer—to-

peer systems distribute the main cost of sharing - bandwidth and storage- across all

peers in the system. By distributing the system operational cost across the end nodes

in the system, overlay networks are able to provide support for services otherwise

provided by the expensive centralized servers. The system can thus scale without

using many expensive servers.

 



1.2 Motivation and Challenges

Composed by end nodes exclusively, overlay networks are self-organized and decen-

tralized. Nodes in the system connect with each other based on local knowledge. This

removes the need for central servers to collect the network information and organize

the nodes in the system. It also makes overlay networks robust to the single point

of failure and avoid traffic bottlenecks caused by the servers. On the other hand,

the inherent feature of end nodes and the way they connect with each other create

challenges for the reliability of the overlay applications.

A reliable application should meet the following requirements: first and most

important, the availability of the application itself should be guaranteed. This is

applied to all overlay applications. Since many overlay applications provide content

service including video, voice, and data to their users, the authenticity of the service

content should be guaranteed to meet the expectation of users. In other words, the

service provided by the overlay applications should be trustworthy. Moreover, user

safety should be provided to make the users feel safe and comfortable to use the

applications.

1.2.1 Service Availability

The basic and essential requirement. for the reliability is to guarantee the availability

of the service. The service provided by the application should be always available for

the users, even when the network failure occurs. In other words, the service should be

“fault tolerant” for the network failures. The requirement of availability is challenged

in the overlay networks by the dynamics and the self-organization of the end nodes.

Since the overlay is loosely connected by the self-organized end nodes, there is

no centralized management in the overlay to control the network topology. The end

nodes choose neighbors they connect with either randomly or via some locally defined



 
(a) A distribution tree of (b) Outgoing streaming dis-

overlay live streaming rupted when nodes leave the

system

Figure 1.2. Node transience in the overlay live streaming

algorithms. This makes the presence of topological “critical” nodes in the networks

unavoidable. An example of this is the high-degree nodes that connect with a large

amount of other nodes in the system. S. Saroiu et al. [90] show a small amount

of high-degree nodes can efficiently “shatter” the overlay network, which makes the

network highly vulnerable in the face of well-constructed, targeted attacks.

Compared with servers, the end systems that compose an overlay network are

unreliable. They come and go very frequently [79, 90, 93]. For instance, previous

studies show that a peer’s lifetime in the P2P system varies from less than 10 minutes

in Fast'I‘rack [90, 93] to 60 minutes in Gnutella and Napster. As a result, overlay

networks are highly dynamic.

The dynamics of the system caused by the end nodes may lead to data/traffic loss

and the interruption of the service for the users. This makes the system “unreliable”

and induces extra cost to recover the loss data or resume the interrupted service. For

example, the node transience may cause the loss of stream packets and downgrade the

quality of the overlay in the multicast overlay live streaming [79]. Figure 1.2 shows

the stream disruption caused by the node transience. The multicast tree for the live

streaming with the source node A is shown in Figure 1.2(a). When node D leaves the



system, its downstream nodes G, H, and I are disconnected. As a result, they will

experience streaming disruption before they are reconnected to the streaming tree.

This is shown in Figure 1.2(b).

1.2.2 Authenticity and Service Content Reliability

The requirement of authenticity is about the service content including voice, images,

and data provided by the applications. The service provided by the application should

be trustworthy for the users. For instance, in the file sharing systems or the content

distributing systems, the system should guarantee the authentication of the data it

provides to its users. The fulfillment of this requirement of the reliability is challenged

by the open feature of overlay networks: devoid of admission and membership control.

There is no admission control in overlay networks. Anyone can freely join or leave

the system. This open feature of overlay networks invites the malicious behavior

of the attackers. For instance, malicious nodes may return invalid responses to the

search request sent out by the users in the P2P file sharing system or provide fake

files in the file downloading process. The music industry has utilized this feature to

prevent illegal downloading of copyrighted music. A large amount of “polluted” data

have been injected into popular Internet file sharing systems such as KaZaA, and are

claimed as popular song copies. It is expected that the experience of being “polluted”

during the downloading process will discourage users from downloading songs from

these systems. This suggests that attackers can behave in a similar way to distribute

malfunctioning data including trojan horses or virus. Attackers can also issue DDOS

attacks in the system by issuing large amounts of fake search requests.

Devoid of centralized servers, there is generally very limited or no membership

management in the overlay networks, which makes it hard to keep an effective node

identification system in the overlay networks to identify each node with a unique and

fixed node “ID”. As a result, it is difficult to build an effective trust mechanism,



which generally requires that each member in the system has a relative fixed and

unique identification that can be used to keep track of the reputation of the member

in overlay networks. The lack of the fixed node “ID” also makes it possible for a node

to do things in the name of other nodes. The attackers are thus able to launch attacks

with multiple identifications, also known as the sybil attack [40]. In addition, the lack

of “real” node IDs and the open feature of the overlay networks make it difficult to

identify and track the trace of attackers when attacks are launched in the system.

1.2.3 User Safety and Other Considerations

Besides guaranteeing the availability and trustworthy content of the service, a reliable

overlay application should also protect the information of the users who use the

system. Their private information or any other information that they do not want

to share should be hidden from others. Devoid of admission control and membership

management, anyone can join the system and may track the information of the system

as well as other users. In order to protect the user information, user anonymity should

be provided for the overlay applications. This is especially important for some critical

services such as milit ary and emergency applications, where strategic information and

critical updates need to be hidden from external observers. User anonymity can also

promote censorship resistance, freedom of speech without the fear of persecution, and

privacy protection.

We summarize the requirements of reliability and the features of the overlay net.—

works that create challenges on these requirements in Table 1.1. Table 1.1 shows

that the successful implementation of reliable overlay applications need overcome the

challenges brought by the overlay features such as the randomness of end nodes in

forming overlay topology, high dynamics, lack of admission control and membership

management. At the same time, reliable applications should bear the performance

requirement of the existing system. The fulfillment of one requirement of reliabil-



Table 1.1. Reliability Requirements and Challenges

 

Reliability require-

ment

Overlay features that

create challenges

Required applica-

tions/users
 

 

Service availability Randomness in forming

dy-

namics of end systems

overlay topology;

All overlay applications

 

Content. authenticity Devoid of

control and membership

devoid of

admission

management;

central servers

Applications provide

content service

 

User

safety(anonymity)

Devoid of

control and membership

admission Critical

Applications or

applications;

users

    
management. that need to hide in-

formation from third

parties
 

ity should not hinder the fulfillment of another requirement of the reliability in the

overlay application.

The usage of overlay networks comes with a. price in the network performance

due to the inefficient topology and the demand on processing the messages in the

application level by the overlay nodes. Many efforts have been made to improve the

performance and reduce the operating cost of the overlay networks. Therefore, the

reliable applications constructed in this context should not cause large extra cost in

the overlay network.

In practice, one requirement of the reliability in the system may conflict with

another requirement of the reliability. For instance, constructing reputation systems

is a common methodology to help guarantee the reliability of the service content.

However, reputation systems need the information of individual nodes to generate

and evaluate the “trust” of each node. This conflicts with the requirement for the

user safety, which tries to protect. the information of the individual node.



1.3 Solutions and Contributions

In order to improve reliability of overlay applications, we identify the specific problems

that hinder overlay applications from meeting the requirements of reliability: service

availability, data. authenticity, and user safety. Problems in building reliable overlay

applications can be divided into two categories. The first category of problems are

the problems that exist in all overlay applications. The solution for such problems

are thus a universal solution that can be applied for all overlay applications. Another

category of problems are problems that are caused by the requirement./operation of a

certain type of overlay applications. The solutions for this category of problems will

thus benefit that type of applications.

For the first category of problem, we investigate the cut vertices in the overlay

topology, which exist in different overlay applications and hinder the service availabil—

ity of the applications. We propose the connection adjacent matrix (CAM) algorithm

to neutralize the cut vertices and optimize the overlay topology [67]. CAM is a

universal solution that enhance service availability of different types of the overlay

applications. For the second category of problems, we first identify the response loss

problem that also hinders service availability. The response loss problem is caused

by the dynamics of P2P file sharing systems. A series of reliable response return

mechanisms are proposed to resolve the response loss problem and improve service

availability [63, 64]. We then investigate the issues in the P2P reputation system

to improve data authenticity. We propose a hierarchical reputation (hiREP) system

to effectively store and spread the trust values in the P2P reputation system [65].

hiREP helps improve the authenticity and content reliability of the files shared among

the users. Further more, we explore the anonymity requirements in the overlay mul-

ticast system as an effort on improving user safety. We define the mutual anonymity

in the overlay multicast and propose a mutual anonymous multicast (MAM) system

to protect the user information and provide the user safety [109, 110].



1.3.1 CAM: Improve Service Availability by Removing Cut

Vertices in the Overlay Topology

Overlay nodes are highly self—organized. They make connections either with some

randomly selected nodes or via locally defined algorithms. In both cases, there is no

centralized control to manage the network topology and thus it is hard to avoid of

the presence of topological “critical” nodes. Compared with common nodes, their

failures are more likely to lead to network failures and harm service availability.

In order to improve service availability, it is important to identify and “remove”

the critical nodes in the overlay topology. We investigate one category of “critical”

nodes: cut vertices. Cut vertices are the nodes that will disconnect the network

when they leave. In Figure 1.3(a), node F and G are cut vertices. The network is

disconnected when the cut vertices leave the system. This is shown in Figure 1.3(b):

Node E is disconnected from other nodes in the system when node F leaves; Node

H and J are disconnected with other nodes when node G leaves.

In order to limit the presence of cut vertices, we propose CAM algorithm to

detect and neutralize the cut vertices [67]. Traditional methods of detecting cut

vertices are centralized and cannot be used in large scaled overlay networks, which

are highly dynamic as well. CAM is a fully distributed mechanism that detects the

cut vertices before they fail and neutralizes them into normal overlay nodes. CAM

not only minimizes the possibility of network decomposition on the cut vertex failure

but also offioads the traffic that is handled by the cut vertices. Instead of collecting

the overall network topology information, CAM renders each node in the system send

out messages to its neighbors and collect local/partial topology information of the

nearby nodes. Based on the received information, CAM constructs CAM graphs and

figures out whether a node is a cut vertex or not. If the node is a cut vertex, CAM

will proactively neutralize the node into a non-cut vertex.
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(b) Network is disconnected when cut vertices are gone

Figure 1.3. Overlay cut vertices that disconnect the network
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1.3.2 Reliable Response Return Mechanisms to Improve Ser-

vice Availability in P2P File Sharing Systems

The dynamics of end systems causes the response loss problem and hinders service

availability in the unstructured P2P file sharing system, which is most commonly

used in today’s Internet. [30, 63, 69, 70, 64]. In an unstructured P2P file sharing

system, file locating is generally based on the flooding search mechanism: each node

makes duplicate copies of a. request it receives and then broadcasts to all its directly

connected neighbors except the one that delivered the incoming request. If the node

has the requested file, it sends a response back to the requestor along the incoming

path of the request. Since the response return process in a P2P system is not flooding

based, a response will be lost if any one node or link in the corresponding incoming

path fails. Since file locating (and the returned responses) is an important service

provided by unstructured P2P file sharing systems, the loss of responses downgrades

service availability of the systems.

Figure 1.4 shows response loss problem in the P2P file sharing system. In Figure

1.4(a), requestor A broadcasts its request for files to the system. Upon receiving

the request, responders send responses back to requestor following the path that the

request is delivered to the responders. This is shown in Figure 1.4(b): Response 1

via path I ——> F —> B —> A and Response 2 via path K ——> H —> D —> A. In Figure

1.4(c), node B leaves the system and as a result, response 1 is lost.

We investigate the response loss problem in the unstructured P2P system and

our investigation shows that the response loss rate can be as high as 35% due to

the high dynamics of the system. Three mechanisms are proposed to improve the

availability in P2P overlay file sharing systems by solving the response loss problem

induced by the end system: redundant response delivery (RRD), adaptive response

delivery (ARD), and extended adaptive response delivery (e-ARD) [63, 64]. All

three techniques handle the response loss problem regardless of node failure or node
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departure. In RRD, the responder proactively sends back duplicate copies of the

same response via different paths to avoid response loss. In ARD, peers in a response

path automatically choose alternative paths in case of node failure or departure. The

e—ARD mechanism extends the ARD mechanism with the introduction of backup

response delivery agents (bRDA) to avoid response loss in P2P systems with limited

or no broadcasting searching mechanisms.

1.3.3 hiREP: Enhance Data Authenticity in P2P Systems

The open feature of peer-to—peer system invites the spread of the malfunctioning data.

Additional reputation systems are thus constructed to guarantee data authenticity.

In a reputation system, each node is associated with a trust value, which is computed

based on its performance in the system. Devoid of the centralized control, it is chal-

lenging to store and spread trust values securely and efficiently in the P2P reputation

systems. Previously proposed P2P reputation systems adopt flooding based polling

mechanisms for trust value requesting process, which need to inquire into each node

in the system [36, 96]. The polling mechanisms create heavy traffic, do not guarantee

voter anonymity, and make it hard for peers to filter out the fake trust values.

In order to construct an effective and efficient P2P reputation system and pro-

vide “content reliability” to users, the hiREP system adopts a hierarchical, low cost

method to store and distribute the trust values [65]. hiREP focuses on constructing

a trusted reputation agent group for each node to handle the trust value information.

Instead of managing the trust values by centralized servers or each individual node,

each node keeps a group of reputation agents that it trusts to store and manage the

trust values. Note here a reputation agent can be trusted by multiple nodes. A node

only inquires of its trusted reputation agents the trust information. The onion routing

is adopted for the communication between a peer and its trusted agents to protect the

information of the nodes. At. the same time, each node is assigned a unique nodeID
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together with the usage of public key systems to provide authenticity of the votes for

the trust value information.

1.3.4 MAM: Provide User Safety in Overlay Multicast Sys-

terns

Besides service availability and data authenticity, we extend our study in building

reliable overlay applications to user safety. We investigate the anonymity issue in the

overlay multicast. We define the mutual anonymity to reflect the unique requirements

of implementing anonymity and protecting user information effectively in the overlay

multicast system. Compared with unicast, anonymity in multicast needs to provide

not only sender and receiver anonymity, but also the group anonymity. In addition,

the information of a sender needs to be protected from a group of receivers instead of

one receiver. The information of a receiver needs to be protected from other receivers

besides sender. In order to guarantee user safety, MAM is proposed to provide mutual

anonymity including the anonymity of the sender, the receiver, the group and the

multicast tree [109, 110]. MAM protocol adopts the design of a unicast mutual

anonymity protocol, as well as the construction and optimization of an anonymous

multicast tree. MAM is self organized and completely distributed.

We summarize the solutions presented in this thesis in Table 1.2. All solutions

help to build reliable overlay applications via enhancing the different aspects of the

reliability. CAM and response reliable return mechanisms of RRD, ARD, and e-

ARD help to enhance service availability. hi-REP contributes to the authenticity of

the service content and makes the P2P file sharing systems more trustworthy. MAM

provides user safety by implementing mutual anonymity in overlay multicast systems.

CAM optimizes the overlay topology and is a universal solution that can be applied in

different categories of overlay applications. Each of the other solutions can be applied

to a certain type of applications.
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Table 1.2. Solutions in Building Reliable Overlay Applications

 

 

 

 

 

 

    

Solutions Problem or is- Enhancement in re- Overlay applica-

sues addressed liability tions applied

CAM Cut vertex Service availability All overlay applica-

tions

RRD, ARD, Response return Service availability P2P file sharing

and e-ARD loss system

hiREP Trust value man- Content authenticity P2P file sharing

agement system

l\«'IAM Mutual User safety Overlay multicast

anonymity

 

1.3.5 Contributions

The contributions of this thesis are as follows:

 

1. Address the challenges for building reliable overlay applications. Identify both

the common problem and problems that exist in certain types of overlay appli-

cations: the cut vertices in overlay topology, the response loss problem in P2P

overlay file sharing systems, the effective management of overlay P2P reputa-

tion systems, and the mutual anonymity in overlay multicast. The thesis also

investigates the influence of these problems on overlay applications.

. Propose solutions for the challenges and problems on building reliable overlay

applications. These solutions helps improve the reliability of overlay applica-

tions in the following aspects: CAM works as a universal solution to enhance

service availability for different overlay applications by detecting and neutraliz-

ing the critical nodes of cut vertices. The RRD, ARD, and eARD mechanisms

are proposed to alleviate the response loss problem and improve service availabil-

ity (the number of returned responses) for the P2P file sharing system. hiREP

is introduced as an effective reputation management system to address data

authenticity of P2P overlay file sharing systems and help provide trustworthy
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service content. MAM is proposed to implement the mutual anonymity in over-

lay multicast, which protects user safety (the user information and membership

information) of the overlay multicast groups.

3. Model the different overlay applications, including the unstructured P2P file

sharing system, the P2P reputation system, and the overlay multicast system.

Deploy extended simulations based both on real world traces and overlay ap-

plication models to evaluate the effectiveness and performance of the proposed

approaches.

1 .4 Thesis Organization

The remainder of this thesis is organized as follows. A literature review of related

work is presented in Chapter 2. In Chapter 3, we present the CAM algorithm and

the proof of its correctness. Chapter 3 also includes the trace driven simulation that

investigates the influence of the cut vertices as well as the effectiveness of CAM based

on the real world traces.

Chapter 4 defines and discusses the response loss problem. It then introduces

the RRD, ARD, and eARD mechanisms that are proposed to increase the reliability

of P2P overlay file sharing system by reducing the response loss. The chapter also

provides simulations to evaluate the performance of the three techniques, as well as

a thorough discussion on the pros and cons of the three mechanisms.

hiREP is discussed in Chapter 5, starting with the introduction of a general model

of the P2P reputation system. The major components, the reputation agent commu—

nity, the nodeID and the public key system, as well as how they work together to

construct an efficient and effective reputation system, are then introduced. The effec-

tiveness of hiREP is then checked under different attack models and by simulations

on top of a large-scale P2P network model.
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Chapter 6 discusses the mutual anonymity in the overlay multicast system and

presents the solution MAM. The requirements for the mutual anonymity in the overlay

multicast system are discussed and defined. The protocol design of MAM is intro-

duced in detail. The chapter also includes the analysis of the cost and the network

connection latency, as well as the the anonymous degree under different attack models

for the overlay multicast system with MAM. A simulation to evaluate the performance

of MAM based on the model of overlay multicast system is also provided.

Chapter 7 concludes the thesis and discusses the future direction in building reli-

able applications in overlay networks.
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CHAPTER 2

Related Work

This chapter includes a literature review of the research studies that are related with

the proposed solutions on building reliable overlay applications. The first two sec-

tions reviews the studies related to our solutions for improving service availability:

The next section discusses the research studies on optimizing overlay topology that

related to cut vertex and CAM. Section 2.2 presents the related work for the solu-

tions of the reliable response return system, which enhance service availability in the

highly dynamic P2P systems. Section 2.3 checks the related work on the reputation

mechanisms, which ensure data authenticity and help overlay applications to provide

trustworthy service content. The related work on user anonymity that protects user

safety of the overlay multicast applications is listed in Section 2.4.

2.1 Topology Optimization of the Overlay Net-

works

Devoid of centralized servers and administration, overlay networks use ad hoc methods

to construct their topology: overlay nodes connect with each other either randomly

or based on local algorithms without the knowledge of overall network information.
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This makes it inevitable the appearance of topological “critical node”. As we men-

tioned in Section 1.2, the failure of these topological “critical” nodes can cause the

network failure and hinder service availability of overlay applications. Therefore, op-

timizing overlay topology by reducing the number of the topological “critical” nodes

can improve service availability for overlay applications.

One category of topological “critical node” is cut vertex. Cut vertex is an im-

portant concept that has been introduced in graph theory and studied extensively.

Existing algorithms used to detect cut vertices in graph theory need to collect overall

topology information of the network and construct a depth first search (DFS) tree

including all network nodes. One category of such algorithms detect cut vertices by

checking the sub-tree of each node in the DPS tree [24]. These algorithms are gen-

erally composed of the following operations. First, construct a DFS tree from any

node. Then, for each node v in the DPS tree except the root, check the neighbors

that v’s descendants connect with. If none of the neighbors of v’s descendants is v’s

ancestor, v is a cut vertex. The root is a cut vertex if and only if it has more than

one neighbor.

Another approach is to group the graph nodes into several bi—connected compo-

nents [24]. A bi-connected component is a component that cannot be disconnected

by deleting any vertex in it. For any two vertices in a bi-connected component, there

exist at least two disjointed paths between them. All edge vertices that connect any

two bi-connected components are thus cut vertices. In the algorithms that adopt the

second approach, distinguishing disjointed paths and constructing the bi—connected

components require traversal across the network. For instance, Sharir’s algorithm of

finding the bi-connected components needs to build a DFS tree involving all nodes in

the graph [24].

Both categories of the traditional cut vertex detection require the global topology

information of the network. Nevertheless, it is extremely difficult, if not impossible,
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to obtain such topology information in today’s large scale, fully decentralized, and

self-governing overlay network systems.

Besides cut vertices, high degree nodes can also be “critical” with respect to

network topology. P. Keyani et al. [55] proposed a. mechanism to modify the P2P

overlay network topology to reduce the number of high degree nodes. Compared with

cut vertices, the detection of high degree nodes is trivial. Therefore, the authors

adopted a reactive methodology. They proposed to detect the external attack by

monitoring the rates at which the first and second degree neighbors of the end nodes

leave the system. When the failure rate of seconder degree neighbors is 50% higher

than the first degree neighbors, an attack is detected. The end nodes will form a

new network topology of exponential topology, where each node has roughly same

number of neighbors. The homogeneous nature of the exponential topology makes

the network less vulnerable than a network with the scale free topology such as power

law topology in the overlay P2P systems. In order to form exponential topology, the

end nodes in the system need to connect to random neighbors with no preference. This

is implemented by the end nodes via sending random discovery ping(RDP) messages

in a deep first search (DFS) way to their neighbors. The method focuses on external

attacks. In addition, the long convergence time of this method makes it impractical

in a large scale overlay network.

Node failures caused by network dynamics are widely noticed by the research

community. Most recently proposed algorithms for overlay networks have begun to

address the problems in the system design [63, 69, 117, 13]. However, these algorithms

treat all nodes the same way and do not pay special attention to “critical” nodes.

The failure of critical nodes can create more serious problems in the network than

what these algorithms are able to handle.

Besides increasing overlay application reliability, another direction on optimizing

overlay topology is to match the overlay topology with the underlying physical topol-
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(a) Inefficient Overlay Topology (b) Efficient Overlay Topology

Figure 2.1. Mismatch of the overlay topology

ogy. As we discussed before, the overlay networks use a subset of end nodes and links

of the underlying physical network. The underlying network structure is transparent

for the overlay networks. The underlying physical network information is not pro-

vided to the overlay networks. The devoid of underlying physical network information

makes it difficult for an overlay network to build its network according to the underly—

ing physical network topology, which induces the inefficient overlay network topology.

Figure 2.1(a) shows the inefficient overlay topology caused by topology mismatch. It

is obviously that the overlay links between A-H-C—G are inefficient, where A and G

are in the same subnet, while H and G are in another subnet. All traffic from A to

C needs to pass through H first, which causes longer delay in the overlay link and

unnecessary traffic.

The inefficient topology of overlay networks downgrades the performance of the

overlay applications and increases the cost of such applications. The problem that

the overlay network topology does not match its underlying physical network is called

topology mismatch problem. Efforts have been made in both our previous research

and other research studies to solve the problem and optimizing the overlay topology

[69, 71, 118, 59, 30, 84]. Although these methods helps improve the overlay net-
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work performance by reducing traffic cost and overlay connection delay, they do not

contribute to improving overlay application availability when node failure happens.

2.2 Reliable Response Return in the P2P Systems

P2P file sharing systems can be divided into three categories according to how the

files and nodes are organized in the system: centralized, decentralized structured

(simplified as structured), and decentralized unstructured (simplified as unstructured)

[73].

The earliest model adopted by P2P system is centralized architecture, such as

Napster [9]. In this model, central index servers are used to maintain a directory of

shared files stored on peers so that a peer can search for the whereabouts of a desired

content from an index server. However, this architecture creates a single point of

failure, and its centralized nature of the service makes systems vulnerable to denial

of service attacks [47]. Today, the centralized model is out of date with the crack

down of Napster.

Decentralized P2P systems have the advantages of eliminating reliance on central

servers and providing greater freedom for participating users to exchange information

and services directly between each other. The structured P2P systems are generally

based on the distributed hash table (DHT), and the file placement is tightly controlled

with the network topology to make the subsequent searches easily satisfied, such as

Chord [100], Pastry [88], Tapestry [119], and CAN [83].

In unstructured P2P systems, files are randomly distributed among nodes and,

consequently there is no correlation between the file placement and the network topol-

ogy. File locating is generally based on the flooding search mechanism: each node

makes duplicate copies of a request it receives and then broadcasts to all its directly

connected neighbors except the one that delivered the incoming request. If the node



has the requested file, it sends a response back to the requestor along the incoming

path of the request. The flooding search mechanism is simple and robust to the node

failure: the request will spread over the system even if a few nodes in the system fail.

However, since the response return process in a P2P system is not flooding based, a

response will be lost if any one node in the corresponding incoming path fails.

The dynamics of overlay networks has been noticed by research communities re-

cently. Many solutions proposed for overlay networks now take the system dynamics

of the overlay network into their design consideration [22, 31, 34, 32, 95, 115].

However, for unstructured P2P file sharing systems, most researchers consider

that flooding search mechanisms are robust against the node failure induced by the

end system transience. The node failure during the query process in such systems is

thus hardly accepted enough attention, although it is well known that P2P systems

is highly dynamic. The robustness against node failure is obvious if a flooding mech-

anism is used in the entire search process. However, in order to reduce the search

cost, the flooding mechanism is not adopted in the response process. This leads to

the loss of responses. As the file locating as well as the file information included in

the returned responses is an important service provided by P2P file sharing systems,

the loss of responses impedes service availability of the P2P file sharing systems.

Y. Chawathe et. al [30] also noticed the response loss problem in unstructured P2P

systems and expected that their proposed optimization technique, which targeted to

optimize the network topology by periodically adjusting the neighbor connections of

each peer, may make the case worse. They proposed two methods to remedy this

problem: the first is to stop forwarding the query earlier than to stop forwarding the

response, and the second is to set a time threshold and reissue the query when it can

not be satisfied within the time limit.

While the first method may help to make up the response loss caused by their

proposed technique of adjusting overlay topology, it cannot help the response loss
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problem caused by inherent P2P system oscillation because the first technique needs

the cooperation of each peer. The second technique may reduce the unnecessary

query reissuing traffic in the case of slow response, but it provides no benefit in

reducing traffic and potential extra response delay caused by the lost responses. We

also noticed the problem in our previous work [69]. We realize that, with more and

more optimization techniques being used to limit the query traffic, this problem will

become more serious. This also motivates us to further investigate the problem.

Research has been done to provide fault tolerance in structured P2P systems [15,

83, 100, 106, 119, 120]. However, in structured P2P systems, fault tolerance needs

to be provided in the entire search process, while, in the unstructured P2P systems,

the fault tolerance only need to be provided to the response messages. Therefore, the

solutions should require no modifications to the query request process and should be

seamlessly combined with existing query mechanisms.

In structured P2P systems, each node is tightly controlled and the node informa-

tion can be used to construct fault tolerance strategies. However, in unstructured

P2P systems, the only information a peer has is on itself and its neighbors. For

example, each node in a Chord system [100] maintains a ”successor—list” of its near-

est successors to provide fault tolerance during node failure. In order to do this, all

nodes need to be assigned a hashed key and orderly organized. This is impossible in

unstructured P2P systems where nodes are completely autonomous and connections

between nodes are formed randomly.

Message delivery in an ad hoc network may also fail due to node movement.

However, routing mechanisms used in an ad hoc network [53, 80, 81] cannot be used

to solve the problem in unstructured P2P systems. Unlike an ad hoc network, where

the source node and destination node know each other; there is the requirement of

anonymity during the query process in an unstructured P2P system. In addition, the

delivery algorithm in an ad hoc network generally adopts broadcasting in a wireless



network, which should be avoided in the response delivery process. To the best of

our knowledge, no effective solution has been proposed to deal with the response loss

problem incurred by the system itself in the unstructured P2P system.

Mechanisms have been proposed to provide fault tolerance for unstructured P2P

systems against DOS/DDOS attacks [38, 41, 55, 68]. However, the response loss prob—

lem is induced by the system itself instead of outside attacks. Yet one can see from

the rest of this thesis, the proposed mechanisms can be also combined with these

approaches to reduce response loss under attacks.

2.3 Reputation Systems

Reputation systems are common methodologies being adopted in overlay applications

to provide data authenticity. In most of these systems, a trust value is assigned to

each of the end system/user. The authenticity of the data is then decided based on

the trust of the data provider. Here we check a series of studies on the reputation

systems.

Many reputation systems have been proposed for e-commerce society to provide

trust between individuals who engage in online transactions without knowing each

other [14, 39, 49, 74, 116]. However, these systems are either too complicated to

implement on P2P peers or rely on some centralized servers to provide necessary

information and/or organize the nodes of the system. For instance, the reputation

systems in well known industrial environments such as eBay, Epinions, Amazon,

are based on centralized architecture, where reputation feedbacks are solicited and

deposited in a single repository, and controlled by a single organization [1, 4, 5, 39].

For structured P2P systems, the tightly controlled structure and the system in-

formation can be used to distribute the trust value. Therefore, most efforts focus on

how to construct efficient trust value computing models.
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Based on the assumption that few nodes are malicious nodes, Aberer and Depo—

tovic [16] propose a binary trust model which utilizes only the complains for the peers

that are involved in transactions to compute trust values. Researchers in Georgia In-

stitute of Technology [113] show that computing peer’s trust value only based on

complains is not accurate enough and propose to compute trust value based on more

metrics. They also import context. factors to render general trust metric better fit

in communities of different transactional or community-specific contexts. A feedback

admission control mechanism is proposed to guarantee the effectiveness of reputation

feedbacks by checking the legitimacy transactions [99]. In another research work,

they extend their trust model and formalize the trust computation model with five

trust metrics: Satisfaction feedback, number of transactions, feed-back credibility,

transaction context factor and general trust metric [114].

EigenTrust tries to rule out. the negative effects of malicious peers who malign the

reputation of other peers [54]. It computes trust value based on both local experience

of each peer and reputation feedbacks collected from other peers in the system. All

aforementioned mechanisms utilize topology information and specific search/routing

algorithm of the structured P2P system to distribute the trust value messages in the

system.

Instead of computing reputation for peers, R. Morselli et al. [76] propose a mech-

anism to protect the authenticity of cached index with the signed digests of generated

node sets. However, this method doesn’t. provide the guarantee for the authenticity

of the file provider.

For unstructured P2P systems, it is hard and expensive to organize peers. There-

fore, it is a challenge to store and spread trust values securely and efficiently in

unstructured P2P systems.

Both TrustMe and P2PREP use flooding based mechanisms to transmit the trust

values [36, 96]. Instead of storing trust values locally, TrustMe introduces trust-
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holding agents (THA), which are assigned to each peer during its bootstrapping

process by the bootstrap server, to store the trust values and protect the privacy of

trust evaluation peers. After each transaction, a peer broadcasts transaction results

about its transaction partner to the entire system, while only the THAs of the partner

store the results. During the trust value query process, requestor broadcasts trust

value query message to the entire system and only THAs of the potential provider

send trust values back to the requestor.

P2PREP uses pure voting based mechanism to construct the reputation system.

In P2PREP, the trust value of the peers is locally computed by and stored in their

transaction partners. The requestor broadcasts trust value query messages to the

entire system. Upon receiving the request, all of the peers that own the trust value

of the potential provider return the trust value back to the requestor. In both sys-

tems, public key system is used to guarantee the authenticity of the trust value and

broadcast communications are used to deliver trust values.

P2PREP and TrustMe guarantee the authenticity of trust votes, but they also

create heavy traffic overhead due to the adaptation of flooding based trust value

delivering system. P2PREP cannot guarantee the anonymity for the voters since it

depends on the IP address of voters to verify the trust value, while TrustMe obtains

anonymity in the cost of doubling the trust polling process traffic. In addition, trust

holding agent assignments and key distributions for each peer add extra load for the

bootstrap servers.

Besides P2PREP and TrustMe, M.Gupta et al. [52, 56, 57] propose a centralized

reputation system on the top of unstructured P2P networks. This centralized system

requires an extra reputation computation agent (RCA), which is responsible for the

trust value maintenance for the entire system. As no protection is provided, RCA

can be the target/victim of attackers. M. Kinateder et al. tries to use Chaum mix

(a mechanism that is similar and stimulates the onion routing) in their proposed
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UniTEC reputation system. However, the reputation request. process in UniTEC is

essentially a broadcasting based mechanism and a trusted third party is needed in

UniTEC as the certificate authority.

2.4 Mutual Anonymity in Overlay Multicast Sys-

tems

In this section we review the related research studies of overlay mutual anonymity

that enhance user safety in overlay multicast applications. The related work includes

three categories of studies: (1) basic multicast (no anonymity) (2) anonymous unicast

and (3) multicast anonymity.

2.4.1 Basic Multicast

Multicast services allow one host to send information to a large number of receivers.

Multicast services are required by many applications including video conferencing,

video-on—demand, multi-player games, as well as peer-to—peer file sharing. Originally,

the multicast research focused on the network layer. However, no real multicast

service has been provided at the network layer. The main issues in the network

layer multicast are deployment and scalability issues. Recently, the focus has been

moved up to the application layer with the work proposed in the overlay multicast

[19, 28, 27, 33, 34, 72, 95, 105, 111, 32]. In the overlay multicast, end nodes participat-

ing the multicast application share responsibility of forwarding information to other

nodes. It is well believed that overlay networks provide much flexibility in design and

implementation, as well as enable quick deployment of the multicast functionality.
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2.4.2 Anonymous Unicast

Some work has been reported on the overlay anonymous unicast [44, 112]. The essen—

tial techniques to achieve the unicast anonymity can be classified into the following

categories: routing, addressing, layered encryption, and traffic covering.

In the routing approach, there can be either flooding, where the anonymity is

achieved by broadcasting messages across the system, or indirect forwarding, i.e. the

use of intermediate nodes (forwarders) to hide correlation between the sender and the

receiver [29, 94, 103]. The addressing approach can be implicit, where the address

contains no information either on the actual location of the addressee or on the

physical reachability of the addressee [46, 45], or explicit, where the address contains

information that can be used in a straightforward manner to route a message to the

addressee [108]. Layered encryption is often used in anonymity protocols [29, 103].

'IYaffic covering can prevent the traflic timing analysis [44, 50].

These techniques often work together to achieve anonymity. For example, indirect

forwarding needs layered encryption to encrypt the identities of forwarders. Flooding

needs implicit address. Layered encryption can also be adopted in flooding to provide

extra anonymity. Flooding is too costly (not efficient) but simple, which can be used

for achieving local anonymity and achieve distributed receiver anonymity. It can also

be combined with indirect forwarding to achieve scalability and efficiency.

There are two ways to choose forwarders in the indirect forwarding approaches. It

can be in a centralized fashion, such as Onion [108], or a distributed fashion, such as

Crowds [87] and Tor [43]. In the centralized fashion, some centers (maybe the sender

or receiver) choose the whole list of forwarders and use layered encryption techniques

to encrypt them. The list of forwarders will be piggybacked in the message. The

problem is the center needs to know the global network information, which is not

scalable in a large scale network. In the distributed fashion, during the message

forwarding, the next-hop forwarder is decided by the current forwarder (there are
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certainly some variations). The mechanism is scalable and can be applied in sender

anonymity. However, it is hard, if not impossible, for the latter to be used in receiver

anonymity.

2.4.3 Anonymous Multicast

Little work [48, 108] has been reported on anonymous multicasting. Anonymous

multicast communication service is not available yet. Grosch discussed the impor-

tance of implement anonymity in IP layer multicast and proposes optimization for

anonymous IP multicast. N. VVeiler [108] has proposed the use of a proxy, called

the SAM server, to hide some receivers. The main idea is first to add a SAM server

as a normal node into a multicast tree, then attach receivers to the SAM server so

that they are hidden by the server from other members. The concept of SAM server

is a kind of extension to proxy or mixer in unicast. There are some drawbacks to

this system. If there are multiple receivers attached to a SAM server, there exists

another multicast anonymity problem among these receivers. The SAM server can

be a target of attack. Also, the SAM servers should be trusted. Some types of mul-

ticast anonymity have not been addressed, such as multicast mutual anonymity and

multicast group anonymity.
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CHAPTER 3

Improving Service Availability by

Reducing Cut Vertices

In this chapter we discuss the cut vertex problem that exists in overlay topology. The

failures of the cut vertices can induce network failures and harm service availability

of the overlay applications. We also present our distributed solution of CAM that

can detect and neutralize cut vertices in overlay networks, which eventually improve

service availability of the overlay applications.

3.1 Cut Vertices in Overlay Networks

Overlay networks provide base infrastructures for many areas including P2P systems,

content distribution, and overlay multicast. In order to provide service availability,

the overlay network should be capable to support qualified service under all circum-

stances, especially when failure happens. A node failure here refers to three situations:

a node leaves the system, a node fails due to its own reason, and a node fails due to the

outside attacks. The failure of “critical nodes has a greater influence on the system

than the failure of normal nodes. A node may become “critical” when the functional-

ity/service it provides is important (e. g., the server in a client—server system), and/or
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its physical position is special (e.g., a cut. vertex or a high degree node).

Most overlay networks are highly distributed. The resources and services are

provided by each node in the system instead of specific servers. This removes the

potential “specialty” of a node caused by the functionality/service requirement, but

cannot remove the “specialty” of a node induced by the network topology. Nodes

in an overlay network are highly self-organized. They make connections either with

randomly selected nodes or via locally defined algorithms. In both cases, there is no

centralized control to manage the network topology and thus the presence of topolog-

ical “special” nodes in such a. system is unavoidable. S. Saroiu et al. [90] show that

the failure of a small amount of high—degree nodes can efficiently “shatter” the overlay

network, which makes the network highly vulnerable in the face of well—constructed,

targeted attacks. Here we discuss the influence of another type of ”critical” nodes,

cut vertices, on overlay networks.

Consider a network as an undirected graph. Cut vertices are such nodes whose

deletion will create new components in the original graph. For a connected graph

(component), removing cut vertices partitions the graph. In this chapter, “graph”,

“component”, and “vertex” are concepts defined in graph theory: a “graph” is used to

represent a network; a “component” is a connected graph; and a “vertex” is another

name for a node. Vertex and node will be used interchangeably in the remainder of

this thesis.

Traditional methods of detecting cut vertices generally require the global infor—

mation of the network topology. These approaches only work well if the network

topology does not change frequently and the scale of the network is from small to

medium. This is not the case, however, in most of the overlay networks. The end

systems that compose an overlay network come and go very frequently. According

to the investigation of previous studies [90, 37, 93], the average lifetime of a node in

an overlay network varies from less than 10 minutes in FastTrack to 60 minutes in
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Gnutella and Napster. This leads to high dynamics of the overlay network. Fhrther-

more, the scale of an overlay network is expected to be huge, from several thousands to

millions of nodes [32, 8]. A third factor that prevents current overlay networks from

adopting these approaches is that, due to their feature of being fully distributed, most

overlay networks lack the centralized control to maintain the global network topology

information.

In order to detect cut vertices in today’s large scale and highly dynamic overlay

networks, a distributed cut vertex detection mechanism needs to be proposed to run

on the end nodes locally without the involvement of centralized servers. We thus

propose connection adjacent matrix (CAM), a fully distributed mechanism, to detect

cut vertices. Based on the CAM algorithm, each node in the system periodically sends

out probe messages to its neighbors and decides whether it is a cut vertex based on the

received feedback. CAM is composed of three st ages: cut vertex detection, cut vertex

computation, and cut vertex neutralization. At the detection stage, a cut vertex

candidate sends out component detection messages for each of its connections. If

any two detection messages of different connections meet with each other, an arrival

message will be sent back to the message issuer. At the computation stage, the

candidate constructs a CAM graph in which nodes represent the connections of the

candidate. If it receives an arrival message of two connections, the candidate will add

an edge to the corresponding nodes in the CAM graph. The candidate can thus decide

whether it is a cut vertex by checking the CAM graph: if the graph is disconnected,

the candidate is a cut vertex. CAM then normalizes this cut vertex to a non-cut

vertex at the neutralization stage.

The rest of the chapter is organized as follows. The next section describes the

CAM algorithm. This is followed by the proof of the correctness of the algorithm in

Section 3.3. Section 3.4 discusses the simulation methodology. The severity of the

cut vertex problem and the performance of CAM are presented in Section 3.5. We
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conclude our work in Section 3.6.

3.2 CAM: A Distributed Cut Vertex Detection Al-

gorithm

Consider an overlay network as a graph. The basic idea of CAM is to check whether

this graph is still connected after a node is removed. If the graph is partitioned, the

node is a cut vertex; otherwise, it. is not a cut vertex. CAM is composed of three

stages: cut vertex detection, cut vertex computation, and cut vertex neutralization.

We present. the details of each stage in the rest of this section.

3.2.1 Cut Vertex Detection

A node in the system cannot be a cut vertex if it has zero or one connection. Oth—

erWise, the node considers itself as a cut vertex candidate and initializes a cut vertex

detection process. Before the detection, the candidate assigns a unique numerical

identifier, starting with one, to each of its connections/edges (we use the terms “con—

nection” and “edge” interchangeably in the rest of this chapter). This identifier is

called the connection number of the connection. For example, if a candidate has 77.

connections, it will label them from 1 to 72.

At the beginning of the detection, the candidate sends a component probe mes-

sage to each of its neighbors. The message contains the candidate’s IP address,

a timestamp, a TTL threshold, and the connection number of the edge that con—

nects this neighbor with the candidate. Each node in the system has a connection

list. There is one entry for each candidate in the connection list with the format

of <candidate IP address, timestamp, connection number 1, connection number 2,

>. The node deals with the received message based on the information stored in

the connection list. Upon receiving a message, one of the following situations may
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arise.

1. The node has already received the message, or the message is old. The node

drops the message.

There is no entry for the candidate that issues this message. The node creates

an entry for it.

The timestamp in the received message is newer than the one stored in the

corresponding connection list entry. The candidate replaces the old time stamp

and connection numbers stored in the connection list with the new ones.

The timestamp of a. recently received message is the same as the one stored

in the corresponding connection list entry but the connection number of the

message is not the same. The node adds the new connection number to the

corresponding entry and sends an arrival message back to the candidate. Each

arrival message contains two or more connection numbers and a timestamp. A

node does not send any arrival messages until it receives probe messages from

at least two different connection numbers.

A node forwards the message it receives to all its neighbors except the message sender

if the following conditions are met: this is a “new” message with the latest timestamp;

the node did not issue any arrival message for the cut vertex candidate who issues

this message; and the message’s TTL has not expired. To illustrate the cut vertex

detection stage, we present examples of cut vertex detection in three different situa—

tions. The initial CAM TTL values in these examples equal three. Nodes reduce the

TTL value by one each time right before they forward the probe messages to their

neighbors.

The first example is shown in Figure 3.1, where the candidate is clearly a cut

vertex. The connections to the candidate are labelled 1, 2, 3, and 4, respectively,
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Figure 3.1. Cut vertex case 1: the candidate node is a cut vertex
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in Figure 3.1(a). In Figure 3.1(b), the candidate sends a probe message for each

connection to nodes B, D, E, and G. Note that the TTL value has already been

reduced by one by the candidate before it sends the probe messages to its neighbors.

In Figure 3.1(c), nodes B, D, E, and G forward the received probe messages to other

neighbors. At this point, nodes C and F received probe messages from two distinct

connection numbers. In Figure 3.1(d), node C sends back to the candidate an arrival

message with the connection numbers 1 and 2. Node F sends back to the candidate

an arrival message with the connection numbers 3 and 4.

In the case shown in Figure 3.2. the candidate is not. a cut vertex. In Figure

3.2(b), the candidate sends probe messages for connections 1, 2, and 3 respectively

to its neighboring nodes B, A, and F. Nodes B, A, and F rebroadcast the probe

messages to their neighbors C, E, and G as shown in Figure 3.2(c). Node C and E

rebroadcast messages with connection numbers 1 and 3 respectively to node D. Here

C receives two probe messages of different connection numbers for the same candidate

at the same time. In this situation, C will broadcast only one probe message with one

connection number to its neighbors. At this point, nodes C and G have received probe

messages from two distinct connection numbers. In Figure 3.2(d), node C sends back

to the candidate an arrival message containing connection numbers 1 and 2. Node G

sends an arrival message containing connection numbers 2 and 3. As node C and G

received messages of more than one connection number, they no longer forward the

messages. In Figure 3.2(e), node D sends an arrival message back to candidate node

containing connection numbers 1 and 3.

In the case shown in Figure 3.3, the candidate is not a cut vertex. Nevertheless,

there is no arrival message sent back to the candidate since the TTL expired early.

In Figure 3.3(b), the candidate sends probe messages of connection numbers 1 and

2 to its neighboring nodes A and I respectively, with a TTL value of 2. In Figure

3.3(c), node A and I rebroadcast a probe to their neighbors B and H. TTL values
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Figure 3.2. Cut vertex case 2: the candidate node is not a cut vertex
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 (d) TTL = o

. candidate — -> arrival message

— connection —-—> component probe message

Figure 3.3. Cut vertex case 3: no arrival message is sent back to the candidate node

since the TTL is not big enough
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are reduced to 1. In Figure 3.3(d), node B and H rebroadcast probe messages to

their neighbors C and G. TTL values are reduced to 0, which prevent node C and G

from re—broadcasting the probe messages. As no node receives probe messages of two

different connection numbers, no arrival message is sent back to the candidate. The

simulation results in Section 3.5 also demonstrate that the accuracy of CAM can be

increased by increasing the value of the TTL threshold, while increasing the value

of the TTL threshold also results in an increase in the probe time and the traffic

overhead. Therefore, we have to trade the accuracy for the probe time and the traffic

overhead.

3.2.2 Cut Vertex Computation

Each candidate maintains an arrival list and a [cl—by—lc] binary matrix, where [c] is

the number of connections the candidate had. The format of the arrival list is similar

to the connection list: <IP address, timestamp, connection number 1, connection

number 2, . . . >. The IP address is the IP address of the node that sends the arrival

message back to the candidate. The binary matrix is called the candidate’s connec-

tion adjacency matrix or CAM, whose row/column numbers represent the connection

numbers of the candidate’s connections.

If an arrival message that includes connection number x is received by the candi-

date from a network node v, the candidate will add x to the corresponding entry of

v in the arrival list. For any entry (x, y) in CAM, where x is the row number and

y is the column number, if the corresponding connection number of x and y can be

found in the same entry of the arrival list, the value of this CAM entry is set to 1.

Otherwise, the value of this CAM entry is set to 0. In other words, if any node has

sent back to the candidate an arrival message containing connection numbers x and

y, a 1 is placed in the (x, y) and (y, x) entry of the candidate’s CAM.

After waiting an expected time out period, the candidate interprets its CAM as an
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Figure 3.4. CAM and CAM graph in case 1: candidate node is cut vertex since the

CAM graph has two components

 

 

 

 

     
 

connection #1 #2 #3

#1 0 1 1

#2 1 0 1

#3 1 1 0

(a) CAM
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(b) CAM graph

Figure 3.5. CAM and CAM graph in case 2: candidate node is not cut vertex since

the CAM graph is connected

adjacency matrix representation of an undirected graph, whose vertices correspond

to the candidate’s connections. This graph is called the candidate’s CAM graph. An

edge exists between node x and node y in the CAM graph if and only if the value of

the CAM entry (x, y) is 1. If the candidate’s CAM graph has more than 1 component,

the candidate is a cut vertex. The CAM and the CAM graph of the candidate nodes

in examples 1, 2, and 3 are shown in Figure 3.4, 3.5, and 3.6.
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Figure 3.6. CAM and CAM graph in case 3: no arrival message is issued due to TTL

expiration

3.2.3 Cut Vertex Neutralization

By adding new connections among different components in its CAM graph, a cut

vertex can reduce itself to a non—cut vertex. We call this process cut vertex neu-

tralization. The disconnected components of a node’s CAM graph are merged into

one connected component in the cut vertex neutralization process. The cut vertex

neutralization follows the following principles:

1. The cut vertex always chooses its neighbors to make the extra connection; it

chooses other nodes only when its neighbors cannot make the connection.

2. For neighbors associated with the same CAM component, the cut vertex always

chooses the neighbor with the biggest available bandwidth to make the extra

connect ion.

3. In the case that both CAM components have more than one node and the cor-

responding new connection for these two components is made by two neighbors

of the cut vertex, the cut vertex will disconnect its own connection with one

of the neighbors involved in the new connection. Here we recommend cutting

the connection that has longer round trip time between the cut vertex and the

neighbor.
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Consider a detected cut vertex v that has n CAM graph components C1, C2, C3,

C”. At the beginning of the neutralization process, v will choose its overlay network

neighbor that is associated with C,. If C,- has more than one node, the network

neighbors will be selected based on their available bandwidth. v always chooses the

one that has the biggest available bandwidth. If none of the overlay neighbors is

capable of making a new connection, v will choose the overlay node that sent v the

arrival message based on the arrival list. Assume v selects overlay nodes 01, 02, 03,

on to make the new connections. v then sends a connection message to 01, 02, 03,

on, to indicate how the nodes should connect to each other, e.g., 01 connects to 02; 02

connects to 03; . . . 071—1 connects to on. Consider a new connection oioj that both 0,-

and oj are neighbors of v. If both CAM components that 0,- and oj belongs to have

more than one CAM node, v will disconnect v0, or voj based on the cost of these

connections.

The network topologies of the aforementioned examples after cut vertex neutral-

ization are shown in Figure 3.7. In case 1, B, D are associated with component C1;

E, G are associated with component C2. After making an extra connection between

D and E to neutralize the cut vertex, the connection between D and the cut vertex is

disconnected based on the third principle aforementioned, as well as the round trip

time of the connection of D and the cut vertex is larger than that of E and the cut

vertex. For case 3, since both CAM components have only one neighbor associated

with them, no connection will be disconnected after the neutralization process.

Based on the third principle of CAM neutralization, a detected cut vertex will

disconnect its connection to a neighbor involved in the new connection in a specified

situation. Here we prove the recommended disconnection doest not create new cut

vertices. The situation specified in third principle is shown in Figure 3.8. Assume K is

a cut vertex detected by CAM. Here we assume that the network that K belongs to is

a connected network. (Otherwise, the CAM operation will not affect the components
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Figure 3.7. Cut vertex neutralization in case 1, case 2, and case 3
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(b)

Figure 3.8. Cut vertex based on neutralization principle 3: Cut vertex K and its

CAM graph

that K does not. belong). There are a path p1 between K’s neighbors N1 and N2, and

a path p2 between K’s neighbors N3 and N4. N3 and N4 are not in the path of p1.

N1 and N2 are not in the path of p2. K and its neighbors are show in Figure 3.8 (a).

The CAM graph of K is shown in Figure 3.8 (b). Connection numbers 1, 2, 3, and 4

are assigned to connections KN1, KN2, KN3, and KN4 respectively.

Theorem 3.2.1 Remove either KNQ or KN3 while add a new connection N2N3 will

not create a new cat vertex.

Proof: Since there is no difference in removing KN2 from removing KN3, we only

give the proof of removing KN2. The proof for removing KN3 will be similar. The

proof includes three cases:

1. Assume a new cut vertex X (X is any node in the network except N2 and N3)

is created when KNg is removed as shown in Figure 3.9. We prove this case by

contradiction. As X is a cut vertex, the removal of X will create at least one
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Figure 3.9. Assume the new cut vertex is any node but N2 or N3

more component in the network. Let’s check a new component XCl created

by the removal of X. XC1 can be reconnected to the network by adding KN2

back to the network (X will not be a cut vertex when KN2 is added back to the

network). This suggests that there is at least one path p3 via KN2 as shown

in Figure 3.9 that connects XC1 with other part of the network. In addition,

the removal of X will not disconnect p3. After remove KN2, K and N2 are still

connected via N2N3K due to the new connection of N2N3,. Accordingly, p3 is

still connected and XCl is connected to the other part of the network via p3.

This contradict with that XCl is a new component created by the removal of

X.

. Assume N3 is turned into a cut vertex by the removal of KN2. This case is

similar to case 1, but N2N3 will be disconnected with the removal of N3. Since

N3 is not in the path of p1, N2 and K can be connected by NQPINIK when

N3 is removed as shown in Figure 3.10. Therefore, p3 is still connected, as well
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Figure 3.10. Assume N3 is turned into a cut vertex when KN2 is removed

asXCl.

3. Assume removing KN2 turns N2 into a cut vertex. This suggests N2 is not a

cut vertex when KN2 is not removed. Therefore removing N2 when KN2 is in

the network will not create any new component. However, this is impossible,

as removal of N2 will also disconnect/remove KN2.

Proved I

3.3 Proof of Correctness for the CAM Algorithm

In this section, we present the proof of correctness for the CAM algorithm, starting

with the definition of the system model, which is followed by the proofs.
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3.3.1 System Model and Definitions

Consider a connected undirected graph: G = (V, E) to represent an overlay network,

where V is the set of overlay nodes and E is the set of the edges of the overlay network.

Assume that the network topology is static and the network has unlimited resources.

Thus, each node can issue the probe message with the TTL value set. to infinity. In

practice, we trade the accuracy for the traffic cost and set the TTL to a small value.

Definition 3.3.1 Given a graph G(V, E), a cut vertex candidate vc refers to a vertex

that tries to decide whether it is a cut vertex. The number of edges/connections that

vc has is referred to as |c|.

Definition 3.3.2 Given a graph G(V, E), a vertex v , and one of its connections ec

= (v ,vq), assuming the connection number of ec is c. vq is the neighbor of up that

is connected by ec. Let us remove up together with all its edges from G and get a

new graph G’(V - up, E — {(vp,v,j)|v,- E V, (v ,v,-) E E}). The reachable set of ec,

RS(ec), is the set of vertices that can be reached in G’ by a breadth first search (BFS)

initiated by vq. This search process is denoted as BFS(eC). In other words, RS(ec)

contains the set of all vertices that can be reached by vq via connection 66. It is also

important to note that there exists a vertex vq E RS(ec) such that (up, vq) E E.

3.3.2 Proofs

Lemma 3.3.1 If there is an edge that connects two vertices in the candidate’s CAM

graph that represent connections ea and eb of graph G, then RS(ea) = RS(eb).

Proof: The fact that there is an edge between the vertices representing connec—

tions ea and eb in the candidate’s CAM graph implies that the values of entry ((1, b)

and (b, a) must be 1 in the CAM. This implies that there must exist some node up in

the network that has received component probe messages for connections ea and eb.
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Since vp received component. probe messages for connections ea and eb, it is clear

that node vp is traversed by both BFS(ea) and BFS(eb). According to the operation

of BPS algorithm, after traversing node vp, BFS(ea) can reach all the nodes that

BFS(eb) can reach and vice versa. Therefore, RS(ea) = RS(eb).

Lemma 3.3.2 If the vertices that represent connections ea and eb are in the same

component of the candidate ’3 CAM graph, RS(ea) = RS(eb).

Proof: This is trivial given Lemma 3.3.1.

Lemma 3.3.3 If the vertices that represent connections ea and eb are not in the

same component of the candidate ’3 CAM graph, RS(ea) yé RS(eb).

Proof: We prove this by contradiction. Assume that the vertices that

represent connections ea and eb are not in the same component. of the candidate’s

CAM graph, but RS(ea) = RS(eb). Then there must exist at least one node

that has not been reached by probe messages containing connection numbers a

and b but that can be reached by both BFS(ea) and BFS(eb). According to

the operation of BFS, this only happens when the TTL has expired before the

probe message arrives at the specific node. This contradicts the earlier assump-

tion that the TTL values of probe messages are infinite. Therefore, the lemma is true.

Lemma 3.3.4 If RS(ea) = RS(eb) for any 1 3 a,b S |c| of a cut vertex candidate

vc, then vc is not a cut vertex.

Proof: RS(ea) = RS(eb) suggests that any node v,- E RS(ea) must 6 RS(eb).

RS(ea) = RS(eb) for all 1 g a, b 3 [cl suggests this happens in any two reachable

sets of vc. In addition, for any nodes v,- and vj E RS(ea), there exists a path from v,-
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to vj that does not include vc. Therefore, removing vc from G leaves one connected

component. By definition, vc is not a cut vertex.

Lemma 3.3.5 If RS(ea) aé RS(eb) for any 1 S a, b g |c|, then vc is a cut vertex.

Proof: Let G, be the graph that is formed by removing vc and all its edges in

G. RS(ea) 75 RS(eb) implies that there does not. exist an edge (vi, vj) E G’ where

v,- E RS(ea) and v]- E RS(eb). This implies that RS(ea) and RS(eb) are separate

components of G’. By the definition of RS, the removal of vc from G results in the

number of components of G increasing by at least 1. Therefore, vc is a cut vertex.

Theorem 3.3.1 If the candidate ’5 CAM graph has more than one component, it is

a cut vertex.

Proof: The candidate’s CAM graph has more than one component. According

to Lemma 3.3.3, we know that the RSs associated with the connection numbers

whose vertex representations belong to different components in the CAM graph are

not equal. Due to Lemma 3.3.5, we can easily conclude vc is a cut vertex.

Theorem 3.3.2 If the candidate’s CAM graph has one component, it is not a cut

vertex.

Proof: From Lemma 3.3.2, we can deduce that RS(ea) 2 RS(eb) for any 1 g

a, b 3 [cl when the candidate’s CAM graph has one component. From Lemma 3.3.4,

we can conclude vc is not a cut vertex.
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3.4 Simulation Methodology

In order to evaluate the performance of CAM, we deployed a serial of simulations

based on the real world P2P overlay network traces. What needs to be noted here

is that cut vertices exist in most overlay networks. We deployed our performance

evaluation of CAM on P2P systems due to two reasons. First, P2P systems are

very popular today. P2P traffic overwhelms web traffic on the Internet and becomes

the major consumer of the Internet bandwidth [89]. Second, the P2P system is a

representation of the overlay networks: it is composed of self-governed end systems;

it is autonomous and open; there is no central control server in the P2P system;

nodes can join and leave the system at any time; and collecting and maintaining

overall topology information in a P2P system is hard, if not impossible.

3.4.1 Performance Metrics

Performance metrics used in this study can be divided into two categories: metrics

to evaluate the accuracy of CAM and metrics to evaluate the impact of CAM on

the network service. For the first category, we introduce CAM accuracy rate (CAR),

CAM false positive rate (CFPR), and CAM false negative rate (CFNR). For the

second category, we investigated the search success rate, node traffic load, and search

cost. Assume that V is the set of all vertices in a network, C is the set of all cut

vertices, and K is the set of all vertices that are identified by CAM as cut vertices.

The definitions of aforementioned metrics are given as follows:

CAM accuracy rate (CAR): shows how many vertices detected by CAM as cut

vertices are cut vertices.

|K n cl

IKI

CAMfalse positive rate (CFPR) and CAMfalse negative rate (CFNR): CAM false

CAR =

positive rate and CAM false negative rate show the error types made by CAM. CAM



false positive rate shows how many nodes that are not cut vertices but identified as

cut vertices. CAM false negative rate shows how many nodes that are cut vertices

are not detected as cut vertices.

 

 

‘ _|(V-C)F7K|
CFPR— V_C

|Cfl(V—K)|

CFIVR=

ICI

Search success rate: search is the main operation deployed in the P2P system.

The search success rate is the main metric reflecting the quality of service of a P2P

system. The search success rate is defined as the searches that can satisfy the users’

requests over all searches issued by users. In order to check the efficiency of CAM on

the search mechanism, we deploy the searches on the simulated P2P network before

and after the CAM operation and compare their success rates.

Search cost: search cost is one of the parameters that concern the network ad-

ministrators. Large search cost impedes the scalability of P2P systems. Thus, we

expect that CAM should not greatly increase the search cost of the system. We use

the messages issued during the search process to evaluate the search cost.

Cut vertex offload rate: We also introduce Cut vertex offload rate to check how

much traffic load being offload from cut vertices by CAM. We measure the offload rate

based on the messages handled by cut vertices during the search process. Assume

messages handled by a cut. vertex before CAM are Adm, messages handled by cut

vertex after CAM are Mib- The network size is n. The cut vertex offload rate is

measured by:

_1_ Zn: Alia — A'Iib

n , Alia

’l

Besides the above performance metrics, we have investigated the change of the number

of components and new cut vertices caused by cut vertex failure, as well as the traffic

load for average node vs. cut. vertices in the search process.
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3.4.2 Simulation Setup

We generate the P2P overlay networks based on two series of real world traces:

the DSS Clip2 traces that were collected from Dec. 2000 to June 2001, and the

traces that were collected by the researchers of the University of Oregon in May

2006 [3, 10]. Clip2 traces were collected over a long period of time. It includes

both traces before and after March, 2001, the DSS Clip2 traces were available on

http://dss.clip2.com, but are not. available now. We can provide the traces to those

who are interested upon request. The traces from the University of Oregon can be

found at http: //mirage.cs.uoregon.edu/P2P/info.cgi.

We selected 20 traces from DSS Clip2 traces and 20 traces from the University of

Oregon traces respectively. We show the basic features of these traces in Figure 3.11

and Figure 3.12. The network sizes of the DSS Clip2 traces range from 225 to 47245.

For the University of Oregon traces, we removed all non—leaf nodes since leaves only

connect to the corresponding ultrapeer and do not forward any traffic [102]. We do

not consider leaf nodes and the term “node” only refers to the non-leaf nodes in the

University of Oregon traces. The network sizes without leaf nodes in the University

of Oregon traces range from 302,732 to 438,370. The average connections per node of

the traces are from less than 1 to 5 in DSS traces and from 19 to 22 in the University

of Oregon traces. This reflects a big change in the P2P file sharing system in the

past few years. The amount of components in DSS traces varies from 246 to 4473,

and from 6195 to 15990 in the University of Oregon trace. As for the cut vertices,

the number of cut vertices in DSS traces varies from 51 to 7262, while the number of

cut vertices in the University of Oregon traces varies from 5555 to 10630. Consider

the increase of the network size; both the number of components and the cut vertices

in the P2P network “drop” a lot in the past few years. On the other hand, although

in a small portion, cut vertices still exist in the current. P2P networks. This makes

successful and accurate detection of cut vertices even more difficult.
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Figure 3.11. Topology feature of collected traces: network size and edges per node
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Flooding search is one of the most popular search mechanisms in the P2P system

among peers or super peers due to its simplicity and robustness. We deploy our

simulation based on the flooding search. We simulate flooding search mechanism by

conducting the Breadth First Search (BFS) algorithm starting from a specific node.

Previous observations show that the object popularity distribution in a P2P system

does not follow a Zipf distribution like WWW objects [51]. Accordingly, we allocate

the objects randomly instead of following a Zipf distribution in this study.

3.5 Performance Evaluation

The aim of our cut vertex detection algorithm is to detect the cut vertices accurately

before they fail and improve the reliability of the network. To evaluate the accuracy

of CAM, we compute the cut vertices in each simulated network using the traditional

DFS algorithm, and compare the results with those of CAM. In order to evaluate

the impact of CAM on the reliability of the network, we investigate changes in the

quality of the service (search success rate) and the network topology features caused

by cut vertex failure with and without CAM deployment. We also investigate CAM’s

impact on the traffic load of cut vertices and check the ratios of high degree nodes in

cut vertices.

3.5.1 Accuracy of CAM Detection

We deploy simulations to evaluate the CAM accuracy rate, as well as the CAM false

positive rate and CAM false negative rate to further understand the different types of

the CAM failure. The results of the simulation for DSS traces are presented in Figure

3.13. Figure 3.14 shows the accuracy rate of CAM for the University of Oregon traces.

From these results, we observe that the false negative rate remains as zero in all cases.

With the increase of the CAM TTL value, the false positive rate keeps reducing and
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drops to almost. zero when the TTL equals 4. In the DSS trace, the accuracy rate is

over 70% even when the TTL value of CAM is 1. In the University of Oregon traces,

the CAM is not accurate when the CAM TTL value is 1 or 2. However, the accuracy

rate jumps to over 98% when CAM TTL is 3 and is almost 100% when CAM TTL

equals to 4. This suggests that CAM can successfully identify all the cut vertices with

a small CAM TTL value, and that CAM errors mainly result from the false alarms

CAM reports when it considers non-cut vertices as cut vertices if the TTL is not large

enough.

3.5.2 The Cut Vertex Failure and Cut Vertex Traffic Load

In order to investigate the influence of cut vertex failure on the network topology and

the network service, we have investigated changes of the network components, the cut

vertices, and the search success rate. The results are shown in Figure 3.15 to Figure

3.18. We gradually removed the cut vertices and measured the network performance

at the same time. Due to the page limitation of this paper, we cannot show all of

our simulation results for the 40 traces. We chose the results from four traces (shown

in Table 3.1) that were collected from different period, of different sizes, and have

different average connection numbers.

Figure 3.15 shows the increase of components with the failure of the cut vertices.

Y-axis shows the ratio of the components in the network when cut vertices fail over

that when no cut vertex fails. We observe from Figure 3.15 that the number of

network components increases to as many as 7 times (DSS trace) and 3.87 times (U.

Oregon trace) of that when no failure happens. Figure 3.16 shows that the new cut

vertices that are induced by the failure of cut. vertices are about. 35% and 10% of the

original cut vertices in DSS traces and U. Oregon traces.

We show the drop of the search success rate in Figure 3.17. In the DSS trace,

the success rate drops from greater than 70% to less than 10% with the removal of
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Figure 3.13. Accuracy rate of CAM (DSS trace)
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Figure 3.14. Accuracy rate of CAM (U. Oregon trace)
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Table 3.1. Characteristics of Traces

 

 

 

 

 

 

       

'Irace Collection Network Neighbors Components Cut

number date size per node vertices

8(DSS) 5/29/2001 27,192 4 2741 4635

19(DSS) 6/15/2001 25,703 3 3157 4170

3(U.Oregon) 5/23/2006 414,848 22 12285 8500

14(U.Oregon) 5/29/2006 315,121 21 7705 6360
 

cut vertices. Specifically, the search success rate drops about 50% when 30% of cut

vertices are removed. Given the fact that the percentage of cut vertices is no more

than 17% in all the DSS traces, 30% of cut vertices equal only 5.1% of the nodes in

the system. In the U. Oregon trace, we can observe a drop of 48% in search success

rate, from 62% to 32%, when all cut vertices are removed, which is about 2% of the

nodes. Both results suggest that the influence of cut vertex failure is comparable to

the influence of the failure of highest degree nodes in the system: a failure of the best

connected 4% of nodes will partition the system [90].

Figure 3.18 shows the ratio of traflic load of cut vertices vs. that of ordinary

nodes. We issued 50,000 searches for each network and recorded the number of the

messages that were forward by each node respectively. We can observe from the results

that cut vertices can forward as much as 7 times the message compared to common

nodes in DSS trace and about 50% more than common nodes in the U. Oregon trace.

From the results shown in Figure 3.15 to Figure 3.18, we can conclude that P2P file

systems have been improved a lot since 2001. However, although in a very small

percentage, there are still some cut vertices in the system and their failure can still

increase the number of network components and downgrade the system performance.

In addition, cut vertices need to process more messages compared to common nodes

in both systems.
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3.5.3 Influence of CAM on the Network Topology

We present here how CAM affects the network topology. Given the consistent results

of trace 8 (DSS), 19 (DSS), 3 (U. Oregon), and 14 (U. Oregon), we representatively

present the results of trace 8 (DSS) and 3 (U. Oregon), which have relatively large

network sizes. Figure 3.19 and Figure 3.20 show the increase of components induced

by the cut vertex failure with CAM. They show that, in both the DSS and the U.

Oregon trace, the component number increases much more slowly than that in a

network without adoption of CAM. At the same time, the number of components

keeps increasing when the TTL threshold is increased from 1 to 3, but decreases

when the TTL threshold is 4. For a CAM TTL of 3, the components induced by

the cut vertex failure reduce from over 7 times the original components to less than

4 times in the DSS trace. In the U. Oregon trace, the components introduced by

the cut vertex failure reduce from more than three times the original components to

about twice the original components.

Figure 3.21 and Figure 3.22 show how many new cut vertices are introduced by

the cut vertex failure after CAM is deployed. We observe that in both the DSS trace

and the U. Oregon trace, more new cut vertices are introduced by the cut vertex

failure when CAM TTL is increased from 1 to 3. The ”generation” rates of new

cut vertices are very close when CAM TTL is 3 and 4. In addition, with the CAM

deployment, more cut vertices are introduced by the cut vertex failure compared to

that in a network that does not adopt CAM.

3.5.4 Influence of CAM on the Network Service and Cut

Vertex Traffic Load

We present the impact of CAM on the network service and the cut vertex traflic load

in the search process here. Figure 3.23 and Figure 3.24 show the search success rate
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when cut vertices fail with the adoption of CAM. From the results, we can observe

that search success rates are increased up to more than 500% of that of the network

not adopting CAM in the DSS trace and around 50% in the U. Oregon trace. The

greatest increase in the search success rate is achieved when the TTL value is one.

The increase in the search success rate slows down with the increase of CAM TTL

value. However, great increases of the search success rate (more than 300% in DSS

trace and 35% in U. Oregon trace) can still be achieved even when the CAM TTL

value is increased to 3, especially when a. large number of cut vertices fail. The search

success rate of the TTL value of 4 is very close to that of the TTL value of 4, which

suggests the existence of the upper bound of the CAM TTL threshold.

We can also observe that, although CAM can neutralize all cut vertices, the search

success rate still drops with the removal of cut vertices in the original graph. This

may be due to the new cut vertices introduced by the cut vertex failure, as shown in

Figure 3.21 and Figure 3.22. The number of components introduced by the cut vertex

failure is shown in Figure 3.19 and Figure 3.20. The trend of the curves in Figure

3.19 and Figure 3.20 suggests more rapid increases in the number of components than

that of the new cut vertices. The reason for the faster increase of components number

may be that, along with the failure of the original cut vertices, new cut vertices also

contribute to the new components.

If the TTL threshold value equals one, CAM will consider all nodes except those

with only one or no neighbor as the cut vertices. During the cut vertex neutralization,

a connection will be added between any two neighbors of the cut vertex. Although

CAM will cut connections between the cut vertex and some of its neighbors, the

connections being cut are always less than those being added. In P2P systems, this

will induce the increase of the traffic cost in the search process. In order to prove

this, we measured the traffic cost of the search process. The results are presented

in Figure 3.25 and Figure 3.26. We observe that, in both the DSS and U. Oregon
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Figure 3.23. Search success rate with CAM (DSS trace)
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traces, the search traffic cost. is much higher when the TTL is set to 1 than that

of other cases: up to more than six times in the DSS trace and up to over 3 times

in the U. Oregon trace compared with that when the TTL is set to 3. The search

cost continues decreasing when the TTL increases from 3 to 4, but only a marginal

increase can be observed. Considering all these factors, we recommend setting the

TTL threshold value to 3.

Figure 3.27 and Figure 3.28 show how much traffic is offloaded after the CAM

deployment in the DSS trace and the U. Oregon trace respectively. We can observe

that the cut. vertices are offloaded from about 32% to 53% in DSS traces, and 38% to

61% in U. Oregon traces. We can also observe that more traffic is offioaded from out

vertices when CAM TTL is small. This may be because with a smaller CAM TTL

value, there is a bigger opportunity that the component probe messages that belong

to the same CAM component could not meet in the same P2P node. Accordingly,

more CAM components are detected with a small CAM TTL value and have a bigger

opportunity to create new connections between nodes other than the cut vertex, and

thus remove old connections of the cut vertex.

3.5.5 Influence of CAM on the Network Service under a Dy-

namic Environment

It has been shown that most overlay networks are highly dynamic. For P2P systems,

different research studies suggest different values on peer lifetime in the system, but

most of the studies show the lifetime of peers falls in the range of less than 10 minutes

to less than a hour [90, 93, 51, 21, 25, 61, 82, 101]. Accordingly, we evaluate the

influence of CAM on the network service in a dynamic environment.

We simulated the joining and leaving behavior of peers via turning on/off logical

peers. Peer lifetime is generated according to the distribution observed in paper [101].

The lifetime is decreased by one when each second passes and a. peer will leave in the
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next second when its lifetime reaches zero. During each second, there are a number

of peers leaving the system. To maintain the property of network topology during

node leaving and joining processes, we randomly pick up (turn on) the same number

of peers from the network to join the overlay system. For each peer, a maximum-

neighbor—connectz’on is predefined following its original degree in the DSS/U. Oregon

traces. Each peer is required to keep the number of its neighboring connections no

greater than its maximum-neighborconnection during the simulation.

The performance of CAM in a dynamic environment is presented in Figure 3.29

and Figure 3.30. Against our expectation, the search success rates of the network in

a dynamic environment are about 10% higher than that in a static environment in

the DSS trace and about 6% higher in the U. Oregon trace. The increase in search

success rate may be due to the fact that some cut vertices are turned into non-cut

vertices with the connections added by the newly joined nodes.

3.5.6 Cut Vertices vs. High Degree Vertices

Previous studies show that high-degree nodes failure in a P2P system can also par-

tition the network [90, 55]. Here we are interested in whether high-degree nodes in

P2P overlay networks are cut vertices or vice versa. We investigate the percentage of

the nodes that have higher than average degree vs. the percentage of cut vertices that

have higher than average degree. Figure 3.31 shows the percentage of high degree

nodes in the network. Figure 3.32 shows the percentage of the cut vertices that are

high degree nodes. We can observe that, in both the DSS and the U. Oregon traces,

cut vertices are more likely high degree nodes. At the same time, there are always

some cut vertices that are not high degree nodes. We can also find a large portion of

high degree nodes that are not cut vertices in U. Oregon trace: about 50% nodes are

high degree nodes vs. only 2% nodes are cut vertices. Although a high degree node

is more likely to be a cut vertex, high degree nodes are not necessarily cut vertices
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and vice versa.

3.6 Summary

In this chapter, we investigate the cut vertex failure problem in an overlay networks.

To our knowledge, we are the first to investigate this problem in overlay networks.

“7e show that although the percentage of cut vertices in a network is not large,

(around 16% in DSS traces and 2% in U. Oregon traces), the failure of these nodes

can partition the network and downgrade the service availability. In our simulation,

the failure of cut vertices can significantly reduce the search success rate (85% in the

DSS trace and 48% in the U. Oregon trace).

In order to accurately detect and then neutralize the cut vertices in today’s large-

scale, highly decentralized, and dynamic overlay network, we proposed a fully dis-

tributed mechanism, CAM, to detect cut vertices in overlay networks. CAM can be

applied to each node locally. We prove the correctness of the algorithm and also iden-

tify its accuracy with the simulation. CAM can successfully identify all cut vertices.

The detection traffic overhead can be restricted by setting a small CAM TTL value,

which may mistake a small number of non-cut vertices as cut vertices.

The results on the influence of the cut vertex failure and the performance of CAM

are summarized in Table 3.2 (CAM TTL = 3). We can see that, in both traces,

the cut vertex failure creates many new cut vertices as well as network components.

This downgrades the network service (which is evaluated by search success rate). In

addition, cut vertices process more traffic than common nodes.

With the CAM TTL threshold value set to 3, CAM can obtain a high accuracy

rate of 96% (DSS traces) and 98% (U. Oregon traces) in detecting cut vertices. The

neutralization step of CAM reduces network components created by cut vertex failure,

which leads to a. large increase in the quality of network service when the cut vertices
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Table 3.2. Performance Evaluation of CAM

 

 

 

Trace Name DSS Trace U. Oregon

’Draces

Detection accuracy (TTL =3) 96% 98%

#of network components 7 times original 4 times original

components components

 

# of new cut vertices 34% of original

cut vertices

12% of original

cut vertices

 

Search success rate
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85% drop 48% drop
 

Overload of cut vertices 7 times non-cut

vertices

150% of non-cut

vertices

 

 

 

  
 

    

:2: 3:; # of network components 3.84 times origi- More than 2

O H nal components times original

E ET, components

g t # of new cut vertices 114% of original 35% of original

:3, cut vertices cut vertices

'5‘ Search success rate 300% worst case 35% worst case

increase increase

Overload rate 32% 38%

High-degree node ratio (cut vertices) 55.6% 25.7%

High-degree node ratio (common nodes) 66% 93.7%
 

 



fail, as well as offloads the traffic handled by cut vertices.
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CHAPTER 4

Response Loss in the P2P File

Sharing Systems

In this chapter we discuss the response loss problem that. is caused by the oscillation of

P2P file sharing systems. This problem causes the loss of returned responses and thus

hinders service availability of P2P file sharing systems. we start. this chapter with

the introduction of the search process of P2P systems in the next section. We then

discuss the response loss problem and present our solutions for this problem, followed

by the simulation studies to check the impact of the problem and the effectiveness of

the solutions.

4.1 Search Process in P2P File Sharing Systems

Aimed at efficient utilization of Internet edge resources, P2P file sharing systems

have received much attention since the emergence of Napster [9]. Today, peer-to-

peer traffic has overwhelmed web traffic as a leading consumer of Internet bandwidth

[89].

In unstructured P2P systems, file placement. is random and has no correlation

with the network topology. These systems generally adopt a flooding based search
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mechanism among peers or super-peers: A source peer initiates the search process by

sending a query to all its neighbors. Each peer that receives the query makes duplicate

copies of the query and broadcasts to all its directly connected neighbors except the

one that delivered the incoming message in each forwarding step. The duplication

process only terminates when a predefined TTL value of the query reduces to zero,

or a satisfying result has been found.

The flooding search mechanism is simple to implement, robust to node failures,

and effective to partial/keyword search. A requestor can receive numerous responses

from different responders. If some nodes fail and can not forward or respond to the

query, the query can be forwarded and responded to by other nodes. On the other

hand, although a structured P2P system greatly reduces the overhead of file locating,

its weakness in partial/keyword search as well as the additional DHT maintenance

cost impede its application in the real world. The simplicity and the robustness

against node failures make the unstructured P2P system the prevalent model of the

P2P file sharing systems.

Another benefit of the flooding search mechanism is that. it provides anonymity

for the query requestor: no information of the query requestor is included in the query

request message. The peers who received the request only know the query message

ID and the neighbors who sent this message to it. To reduce the search traffic in the

system, the response delivery process in the unstructured P2P system does not adopt

a flooding mechanism. If a peer receives a query message and can satisfy this query,

it will send a response along the same path the query came from: each peer on the

path sends a response to the first neighbor who sent the incoming query to it.
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4.2 Response Loss Problem

In this section, we first discuss the response loss problem in detail and then present

our solutions to solve the problem. Before the discussion of the response loss problem,

we would like to define forwarding neighbor and primary forwarding neighbor.

Definition 1: During the query process, if a neighbor of peer p forwards a copy

of this query message to p, then this neighbor is p’s forwarding neighbor.

Definition 2: Among all the forwarding neighbors of p, the first one that forwards

a copy of this query to p is called primary forwarding neighbor. In existing P2P

systems, p always sends responses back to its primary forwarding neighbor.

The P2P system is a. highly oscillating system in that peers come and go frequently,

and even when they are in the system, they may adjust their connections with a

high frequency. Previous studies show that a peer’s lifetime varies from less than

10 minutes in FastTrack [93] to 60 minutes in Gnutella and Napster [26]. Uptime

of logical connections is obviously even shorter than individual peers, from 1 minute

to less than 24 minutes [37]. In addition, many new techniques trying to improve

the performance of P2P systems also require peers to adjust their connections to

find better neighbors [98] or achieve optimized overlay topologies [30, 98, 69]. This

further increases the dynamic nature of P2P systems.

To reduce the response traffic, responses will be sent back to the requestor along

the query incoming path instead of by flooding. In addition, to keep requestor

anonymity, no requestor information is stored in the requestor/response message.

Peers on the response path only depend on the local knowledge of their primary

forwarding neighbor to route the response. Therefore, the response message will be

thrown away if the primary forwarding neighbor fails. For example, in Figure 4.1,

peer 5' issues a query and peer T has a response for the query. The response is sent

back along the incoming query path A —> B ——+ C —> D. If any one of A, B, C or D

leaves after it forwards the query or any connection in any two of these nodes changes,
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a response loss occurs. In this case, network resources for both response return and

original query propagation are wasted.

File locating process is an important service provided by P2P file sharing system.

The file information is included in the returned responses. The loss of returned

responses is thus downgrade service availability of P2P file sharing system. One may

argue that loss of some response messages is not a major issue since multiple responses

may be found for one query. Nevertheless, our simulations show that the loss is not

negligible, as we found 35% of the responses are lost in a P2P system. In existing

P2P systems, the most popular search method is the keyword search, which suggests

the search results will not be exactly what a user expects most of the time. Increasing

the number of search results for a query results in increasing the likelihood that a

user will find what he/she really needs. Also, it is obvious that all network resources

consumed to find the response are wasted when a response is lost.

4.3 Solutions for Response Loss Problem

In order to improve service availability, the author propose three techniques, redun-

dant response delivery(RRD), adaptive response delivery(ARD), and extended adap-

tive response delivery(e—ARD), to solve the response loss problem and guarantee the

successful delivery of responses. All of the three techniques are based on the obser-

vation that the amount of forwarding neighbors of a peer in a flooding based query

mechanism is more than one in most cases. However, the third mechanism presented

of e-ARD also takes care of the case that only one forwarding neighbor is available

during the query process.

80



 

 
Query incoming path / Query response path

/ Query message delivery

Figure 4.1. Response loss problem in P2P System

81



4.3.1 Redundant Response Delivery (RRD)

Making a backup copy of vulnerable/critical components of the system is a common

technique to improve the system’s fault tolerance. The redundant response delivery

(RRD) scheme also tries to alleviate the response loss problem via backup paths. The

success of using backup paths here is based on whether the same query message can

be forwarded to the same node from more than one path. This is intuitively true for

a flooding query delivery system in a highly connected network. It is also attested

to by the result of our simulation: without specifying how the query is transferred

except flooding and network topology settings being kept consistent with those of

the real world, RRD does significantly reduce response loss rate compared with the

original response delivery mechanism.

What needs to be noted here is that RRD is totally different from a flood-

ing/broadcast delivery system in that in the RRD scheme, only the responder issues

responses to multiple selected neighbors, while other nodes in the path only forward

the response to its primary forwarding neighbor. In this sense, RRD is more like the

k-walker mechanism discussed in [41, 73]: the requestor distributes several walkers

in the system; each will detect the node that can satisfy the query via the DFS mech-

anism. However, nodes in RRD forward responses according to the recorded path

instead of a randomly chosen neighbor.

RRD is illustrated here with an example. Figure 4.1 supposes that peer S floods a

query, and peer T has a response for the query. According to the Gnutella 0.6 protocol

[11], if peer A is T’s primary forwarding neighbor, T will send back the response via

A and discard the same query message from other forwarding neighbors, such as G,

.M and F. The path for T to send back a response to S is A ——> B —> C —+ D. If any

of the peers on the path fails or leaves, the response will be lost. Instead of returning

a response through one path, the RRD scheme adds one or more redundant response

paths. For the same example, in addition to sending a response back immediately to
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A, T also selects one of the other forwarding neighbors (F, C, and A!) as back up

neighbors with redundancy probability 7 , and sends a response back through each

of the selected neighbors. All other peers except the responder will drop response

messages with the same message ID previously received.

The probability '7' is a performance control factor that will affect the performance

gain of RRD. Assume a node in the system has c neighbors. There are hj nodes

in each path starting from neighbor j . The failure probability of each node is Pji-

In addition, assume there is no overlap among these paths. The probability that a

response returned by this node is lost is:

,J'

floss : H§=1(1— 7 X (1_ [302121)

It is obviously that. the increase of 7 results in the decreases of floss Users can

reduce the probability of response loss by setting a larger value of ”y . However, floss

does not reduce linearly due to the existence of path overlap and the variance of Pji- In

order to further check the influence of in RRD’s performance, the author has deployed

a series of experiments on it and presents the results in Section 4.5.3. RRD creates

very limited computation overhead for local nodes in choosing multiple neighbors

to send back the responses. Nevertheless, it creates extra network traffic overhead,

which is increased with the increase of redundant paths, if we ignore the path length,

path overlap, and traffic variations among paths. However, the response traffic along

one path is very limited, in order of 0(1) and is restricted by the maximum TTL,

which is suggested as 7 [11]. The extra response traffic along redundant paths is also

limited and also in order of 0(1), restricted by maximum TTL and 7.

4.3.2 Adaptive Response Delivery (ARD)

In the adaptive response delivery scheme, peers deliver the response to a different

forwarding neighbor when the primary forwarding neighbor fails. In order to adap-
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tively deliver response upon the node failure, each peer keeps a forwarding neighbor

list for each query message within a certain period of time. The format of each item

in the forwarding neighbor list is <Message ID, Forwarding Neighbor>. The primary

forwarding neighbor of this peer will not be recorded in its forwarding neighbor list.

The basic idea of ARD is as follows. If a peer in a response path finds that the

next hop cannot be reached, he will check his forwarding neighbor list to see if other

neighbors also forwarded the same query message to him. If so, he will select in the list

the first that arrived and reroute the response to this forwardng neighbor. Otherwise,

he will send a failure message with the query message ID and the information about

the unreachable neighbors to his previous hop who will try to reroute the response.

The Gnutella 0.6 protocol suggests that the TTL of a response should be set to at

least the hops value of the responding query plus 2 [11]. ARD needs to set a larger

TTL in order to route the response back to the initiator. The response message is

terminated only when it returns to the originator or its TTL value is reduced to zero.

Take Figure 4.2 as an example for ARD. Peer A issues a query that is flooded

to many peers. Peer P receives his first copy of the query from F and finds that he

has a response for the query. Assume the query path for the query that first reaches

P is A ——+ B —> F —> P. We consider the case where B fails or leaves after he

forwarded the query to F. When F receives a response from P and tries to send the

response to B, F will find that he cannot reach B. With ARD, F will first check

his forwarding neighbor list for this query and select from the list the first to arrive.

In this example, F chooses G as his new forwarding neighbor. W'hen G receives the

response, he again finds that B is non-reachable and picks E to return the response.

Peer E will eventually send the response back to A via C or D depending on which

one first forwards the query message to E.

Another case is that both B and C leave or fail. Peer F will inform his previous

hop, P, that he cannot deliver the response through all his forwarding neighbors, i.e.,
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B and C. Peer P will pick H to reroute the response through. Although G is also in

PS forwarding list for this query, P will not select C since P has been informed by

F that G is not reachable.

The update frequency of the forwarding neighbor list should also be considered.

Update frequency is Ti; if we define Tara-it as the average lifetime of a forwarding

neighbor record in the forwarding list. A forwarding neighbor record will be removed

from the list if Tu'ait expires. Therefore it is important to select the proper value of

Twait- If Twait is set. too low, a forwarding neighbor record may be removed before

the response is sent back to this peer and ARD will not be very effective. If Twait is

set too high, the overhead for each peer to keep the forwarding neighbor lists will be

very high. The value of Tum-t is related to the average response time that is defined

as the time difference from when a responder sends a response to when the initiator

receives the response.

We will show that ARD, a simple resilient forwarding technique, is able to increase

response success rate with low traffic cost, especially when many peers fail in a system.

Compared with RRD, the additional traffic overhead in ARD is small because ARD

only reroutes a response if necessary. The simulation shows that the traffic caused

by the adaptive delivery algorithm is close to that of the original response delivery

mechanism.

One may also be concerned that ARD may perform poorly in the case that only

a few or none of the peers have multiple forwarding neighbors. However, in the case

of RRD, this is rare in the unstructured P2P system where the flooding mechanism

is being used. Even when this case happens, a peer can return the response to the

node that delivered it, which can provide a second chance to the response message

by rerouting it to some other peers.
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4.3.3 Extended Adaptive Response Delivery (e-ARD)

The success of RRD and ARD relies on how many duplicate copies of a query message

can be sent to one node via its different neighbors. Neither RRD nor ARD will

function effectively in the case where only one forwarding neighbor is available for

a peer. Although this situation rarely occurs in most of the existing unstructured

P2P systems, it may happen more frequently with the adoption of new techniques

targeted to cut query traffic overhead by removing unnecessary node connections and

limiting query message duplication.

To address this limitation, the ARD technique is extended to be effective even in

the case that there is only one forwarding neighbor available for a peer in the system.

The new technique is called extended Adaptive Response Delivery mechanism (e-

ARD). In the e-ARD mechanism, an IP address used for adaptive response delivery is

appended to each query message. When the next hop neighbor in the response transfer

path fails, the peer can, in addition to forwarding the response to an alternative

neighbor, forward the response to the node of this IP address. One important issue

that cannot be ignored here is that the requestor anonymity must be maintained

during the process, that is, with this additional information of a backup IP address, a

third party cannot tell the identity of the query requestor. Therefore, the address of

requestor can not be simply appended to the query message. In e-ARD, the requestor

anonymity is achieved with the introduction of the backup response delivery agent

(bRDA).

backup Response Delivery Agent (bRDA)

In the e—ARD scheme, a type II query request/response message is defined by adding a

new field of bRDA address based on the query request and response message specified

in Gnutella 0.6 [11]. The type II query request/response message is shown in Tables

4.1 and 4.2. During the query process, type II request/response messages will be
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Table 4.1. Type II Request Message

 

 

L Minimum Speed [bRDA Addr [ Search Criteria ] Extension blocks]

Byte 0 1 2 5 6- end with 0x00 Optional

Offset

issued. When a requestor makes a query request, it will put its own address in the

field of the bRDA address of the request message and broadcast it to all its neighbors.

The peer who receives the query will decide with a wrapping probability of whether

it will replace the bRDA’s IP address in the query message with its own IP address.

The node that decided to append its own IP address to the query message is called the

backup response delivery agent (bRDA). As a requestor always appends its address

to the query message, a requestor is a bRDA.

When a bRDA appends its own IP address in the query message, it also stores the

old IP address in the query message in its forwarding neighbor list. The forwarding

neighbor list of each node in e-ARD is also extended to add the address of the previous

bRDA. Each entry in the forwarding neighbor list is in the format of <message ID,

pre-bRDA address, forwarding neighbor 1, forwarding neighbor 2, etc.>. For the

node which is not the bRDA, the pre—bRDA address of the related record is NULL. A

responder will copy the bRDA address of the received query to its response message.

During the response delivery process, a node will check its neighbor list and see if it

is the bRDA of the related message. If it is, it will remove the IP address from the

response message and append the previous bRDA address stored in its forwarding

neighbor list to the response message. Here update frequency of the forwarding

neighbor list is also an important factor for the effectiveness of e-ARD. The impact

of this update frequency on the average query response time is comparable to that in

ARD.
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Table 4.2. Type II Responder Message

 

Number Port Responder Addr Speed bRDA Addr Result Set

of Hits

Byte 0 1 2 3 6 7 10 11 14 15-

Offset -

        
 

Wrapping Probability a

It is important to determine a proper value of wrapping probability. If it is too big,

most of the nodes in the query—incoming path will become bRDA. This will consume

too many local resources and reduce the response return efficiency. One extreme case

would be to set as 1. This reduces e-ARD to ARD since the backup path address

appended to the query message will be just the address of the primary forwarding

neighbor address of each peer. On the other hand, if a is too small, then one can

always consider that the bRDA address in the query message is the address of the

requestor and thus cannot guarantee the anonymity of the requestor. Previous studies

show that the older a peer is, the longer it is expected to remain in the system [25].

With the above considerations in mind, the definition of a should satisfy the following

requirements:

0 There are one lower bound a0 and one upper bound al for a such that (10 g

oz 3 a1.

a a increases as peer lifetime increases.

0 The accelerated speed of a decreases as peer lifetime increases.

a Two peers with similar lifetime should also have similar values of 0.

Therefore, we define a as:

c __ C(O/l —- do)

o(T0n,) + c) _ q>(T0n) + 0’ (4'1)
=0'0+(<11—0'0)><(1-
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where (10 is the lower bound, ozl is the upper bound, and. c is a. fixed value that can

be set by the user to further decide the distribution of or across [00,01] given the

scope of Ton.

In order to choose 00, we introduce f as the probability of the bRDA address

being changed at least once by any of the nodes in the query path. If we assume that

it takes k(k > 1) hops for a query to be satisfied, then f = 1 — (1 — oak—1. The goal

here is to find out the minimum value of at that makes f close to 1. It is obvious,

however, that f monotonically increases respect to (1. Therefore, we consider that f

is close enough to 1 if it is greater than 90%. Considering that the TTL of a query

message in most of the unstructured P2P systems is set as 7, the lower bound of a

can be 0.32. To make the analysis simpler, we assume that the node lifetime is not

less than 1 minute, and take 0.35 as the value of a. To further test out the lower

bound, we consider a case where all nodes in the query path take 0.35 as the value

of oz and that query path length is only as short as three hops. We can see f will

be 0.578 which means there is still a fairly large chance for the bRDA address to be

changed. It is obvious that the upper bound of should be a value of (0.5, 1). We thus

recommend (11 of 0.75 which is in the middle of (0.5, 1). Replacing do and (11 with

0.35 and 0.75, we can simplify the formula to a = 0.75 — W.

Without the second requirement, ¢(T0n) would be a linear function of Ton. With

the last requirement, we need to add a non-linear factor of Ton to tune the acceleration

of a. ¢(Ton) thus turns into a function with the format of Ton x ATon , with ATon

being the non-linear function of Ton. As research indicates that the average peer

lifetime ranges from less than 10 minutes to 60 minutes [93], we check the power

function, log function, and exponential function with Ton from 1 to 60. The trend

of how a increases under different non—linear functions is shown in Figure 4.3(b),

assuming 0 = 70. It is obvious log function is a good choice in that it. does not increase

as fast as exponential and power function, while not as slow as linear function. From
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Figure 4.4, we can observe how different c values affect the scope of a. As the value

of peer lifetime in our simulation is from 1 minute to 60 minutes, we take 0 = 70,

which renders a fall within the scope of [0.36, 0.68].

Adaptive Response Delivery

When a responder forms a response message, it will insert the bRDA address it

obtained from the query message in the response message. When a node receiving
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the response message finds that its primary forwarding neighbor for this response

message fails, one of three situations occurs: (1) There are other neighbors in its

forwarding neighbor list and they are still alive. The node will choose one of those

available forwarding neighbors according to the ARD and forward the response back

through it; (2) There are no other forwarding neighbors for this response or all the

neighbors on list for this query are off line. The node will use the bRDA address

appended to the response message to build a UDP connection to this agent and

forward the response message to it. (3) The backup response delivery agent itself is

failed, behind a firewall or any other circumstances that the UDP connection cannot

be built. In e-ARD, the node informs its previous hop node and ask it to choose

other node to forward the response message as in ARD. At the same time, a backup

response delivery agent will always need to replace the IP address in the response

with its stored IP address when it receives a response. (While a TCP connection may

still be built up via a mechanism similar to the push operation in Gnutella network in

this case, the author does not recommend such an operation since the cost to create

such kind of connection is too expensive for a one time communication.)

Figure 4.5 illustrates the effect of the backup delivery agent in an adaptive response

routing of the e—ARD scheme. P and K, which fail during the response return process,

are the primary forwarding neighbors of peer O and N respectively. In Figure 4.5.0.

and Figure 4.5.b, O is on the query incoming path. Therefore, whether 0 is a bRDA

or not, it always sends a response to a bRDA (here is A) which is also on the query

incoming path when no other forwarding neighbor is available for O.

In Figure 4.5.c and Figure 4.5.d, 0 sends a response to its forwarding neighbor N,

which is not on the original query incoming path. In Figure 4.5.0, N is not a bRDA

itself and thus it still sends a response back to agent A, whose address is appended

in the response message. The response message has been rerouted to the original

query incoming path since the bRDA address appended to the response message

92



is the address of the agent that is in the original query incoming path. In Figure

4.5.d, N itself is a bRDA. It changes the bRDA address field according to the bRDA

address stored in its forwarding neighbor list and sends a response message to M

accordingly. Here the response message did not reroute to the original query incoming

path although the appended bRDA address in the message is also the address of an

agent who is in the original query incoming path. In all cases, the length of the

response path is reduced due to the introduction of bRDA.

The e—ARD mechanism can be used in P2P systems adopting a DFS based search

mechanism or other non-flooding based search technique such as k-walker. In addi-

tion, forwarding responses to a backup response delivery agent in e-ARD can reduce

the number of hops in a response return process and thus further out both response

time and traffic cost in the response process. This will partly pay for the overhead of

creating a UDP connection.

4.4 Simulation Methodology

A large-scale network simulation has been done to evaluate the performance of our

techniques. Both Gnutella [11] and KaZaA [7] are popular unstructured P2P sys-

tems. As the documentation about KaZaA is not available to the public, the simula-

tion is based on a Gnutella-like context.

4.4.1 Performance Metrics

RRD, ARD and e—ARD is evaluated using different performance metrics. The first

important performance metric, response return rate, evaluates the effectiveness of the

proposed techniques. Response return rate is defined as follows:

all responses — responses lost in backward path
 

Response return rate =

all responses
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Figure 4.5. Extended adaptive response delivery and the effect of backup response

delivery agent
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The second metric, response traffic cost, evaluates the efficiency of the proposed

mechanisms. The response traffic cost is the traffic of sending a response message

from a responder to a query initiator. The response traffic cost is computed as a

function of consumed network bandwidth and other related expenses. Specifically,

we assume all messages have the same length in this work. When messages traverse

an overlay connection during the given time period, the traffic cost (Tc) is given as:

Tc = M x L, where M is the number of messages that traverse the overlay connection,

and L represents the number of physical links underlying the overlay connection. The

target of all optimization mechanisms is to achieve high response return rate with low

cost.

The third performance metric that is evaluated is the quality of service: here we

refer the quality of service(QoS) to whether the users are satisfied with the service

of the system. We use response time, which is commonly used in P2P researches,

to evaluate the QoS performance of the system. The response time is defined as the

time from when a query is issued by a requestor to when the response is received by

the requestor. The delay of a logic link are computed as follows: first, we take the

average delay of the physical links as the basic unit in the simulation, and compute

the unit-less raw “delay” of a logic link. Assume the mean delay for all the physical

links is E(T) If the sum of the delays of physical links under a logical link is Sum(T,-)

, the raw delay of a logical link is Sum(T,-)/E(T). Next, to map the P2P network

latency into our simulation, we generated a group of overlay link delays according to

the observation in paper [26]. We then sort the overlay link according to their raw

“delay” and assign the generated delay to each link.

4.4.2 Parameter Settings

The system configuration are summarized in Table 4.3. During each group of exper-

iments in the simulation, the value of some parameters may be changed to test the
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Table 4.3. Parameter Setting of the Simulation

 

 

 

] Name ] Default ] Description ]] Name I Default I Description ]

Logical 8000 Number of Redundancy 0.2 Probability

network peers in probability of responder

size the logical to select each

network neighbor as

redundant

response

backward

neighbor in

RRD

Neighbors 6 Average Wrapping 70 Constant

per number of const to adjust

neighbors accelerant

each peer has of wrapping

probability a

in e—ARD

Query 0.3 Average num— Forwarding Average Time for-

rate ber of queries neighbor response warding

each peer list uptime time neighbor

issues per record expires

minute

Peer life- 10 Average

time peer online

time(minutes)         
performance of three techniques under different circumstances. Note that for the net-

work size, we have done simulations based on network sizes of 2000, 3000, 5000 and

8000. The results from networks with different sizes are consistent which confirms

that our techniques are scalable. Here we show the simulation results from a logical

network size of 8,000.
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4.4.3 Simulation Framework

P2P networks are overlay networks. In order to capture the overlay feature, two types

of topology, physical topology and logical topology, are generated in the simulation.

The physical topology is generated to represent the characteristics of the Internet

under the P2P system. The logical topology represents the overlay P2P topology built

atop of the physical topology. All P2P nodes are in a subset of nodes of the physical

topology. The communication cost between two logical neighbors is calculated based

on the physical shortest path between this pair of nodes.

Network topology and density have a large impact on how many neighbors will

send duplicate query messages to a peer. The network topology in the simulation

should be consistent with the real network topologies to accurately evaluate the

performance of the proposed mechanisms. Previous studies show that both large

scale Internet topology and P2P overlay topologies follow the small world and power

law properties, and topologies generated using the AS Model have such properties

[90, 97, 100, 104]. BRITE is one of the topology generation tools that provide the

option to generate topologies based on the AS Model [2]. A physical topology of

22,000 node are generated based on BRITE. Four logical topologies with 2000, 3000,

5000 and 8,000 nodes are then generated based on the physical topology. In order

to check the networks with different connectivity, the average number of neighbors of

each node (of logical topology) are varied from 4 to 10.

The unstructured P2P system with flooding search mechanism is the prevalent

model of existing P2P systems; accordingly, the proposed techniques are evaluated

mainly based on this category of systems. Observations presented in paper [51]

pointed out that the object popularity distribution in a P2P system does not follow

a Zipf distribution like that of www objects mentioned in [17, 23].

Here we simulate the flooding search process via executing a Breadth First Search

(BFS) based algorithm from a specific node. A search operation is simulated by
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randomly choosing a peer as a rcqucstor and requesting keywords according to the

distribution described in paper [51]. As for the query dispatch frequency, we set every

node in the system to issue, on average, 0.3 queries per minute, which is calculated

from the data collected by K. Sripanidkulchai [98]. For instance, 12,805 unique IP

addresses issued 1,146,782 queries in 5 hours.

Based on generated P2P network topologies, the joining and leaving behavior of

peers are simulated via turning on/off logical peers. The peer lifetime is generated

according to the distribution observed in paper [90]. The lifetime is decreased by one

with each second, and once a peer’s lifetime reaches zero, it will leave the following

second. During each second, there are a number of peers leaving the system. In order

to keep the power law property during node leaving and joining processes, the same

number of peers from the network are randomly picked up (turned on) to join the

overlay system. For each peer, a maximum-neighbor-connection is predefined follow-

ing power law. Each peer is required to keep the number of his neighbor connections

no greater than his maximum-neighbor-connection during the simulation.

4.5 Performance Evaluation

Simulation results about performance evaluation are presented in this section, starting

with the performance evaluation in a Gnutella like context environment and followed

by the performance evaluation of e-ARD in a P2P system with DFS search mecha-

nism.

4.5.1 Response Return Rate

Figure 4.6 compares response return rates of a Gnutella-like system, RRD scheme,

ARD scheme, and e—ARD scheme with peer uptime ranging from 10 minutes to 60

minutes. The query frequency of each node is 0.3 queries per minute. The simulations
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are deployed in a 60 minute period with data collected every 20 seconds. This process

is repeated multiple times. The average response return rate based on these collected

data in the evaluation are used. Results in Figure 4.6 show that Gnutella-like systems

suffer from 35% response loss when the average peer uptime is 10 minutes. RRD,

ARD, e-ARD can increase the response return rate by up to about 35%, 47%, 51%

respectively, compared with Gnutella-like systems. The performance of the e—ARD

scheme is better but close to ARD, while both of them achieve a near perfect response

return rate. The reason may lie in that in a Gnutella-like system, most of the nodes

have multiple query forwarding neighbors and can forward a query to other forwarding

neighbors instead of bRDA in the e-ARD scheme.

Given that the peer lifetime is 10 minutes, Figure 4.7 compares the response

return rates of different schemes versus the average query frequency, and shows that

the response return rate is not sensitive to query frequency. The relationship between

response return rates and the average number of response neighbors per node in the

Gnutella-like system and ARD are presented in Figure 4.8. We can observe that the

return rate increases as the average number of neighbors increases in a Gnutella-like

system: the increase of the average number of neighbors suggests a network with

higher density, which eventually results in shorter response return path. If we assume

there are 10 nodes between requestor and responder in a query response path, with

the same failure probability a , the probability that no node failure happens is f =

1—1(1—o)k. Therefore, a shorter response return path will result in lower probability

of peer failure during the response return process and thus a higher response return

rate. Nevertheless, the response return rate of ARD is not sensitive to the average

number of neighbors due to its near optimal performance. The effectiveness of e—ARD

is similar to that of ARD since the number of neighbors of the peers has almost no

impact on the routing via bRDA. The same case also applies for the impact of network

topologies on response traffic cost.
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4.5.2 Response Traffic Cost and Response Time

The average response traffic costs of four different response delivery schemes are shown

in Figure4.9. For the RRD scheme, only one additional path is selected for returning

a duplicated response in the simulation. Compared with a Gnutella-like system, the

RRD scheme incurs a 102% increase in traffic cost. This is because the RRD scheme

always sends a duplicate response message through another path, which is generally

longer than the original response path, whether node failure happens or not on the

original response path. ARD only increases the response traffic cost by about 9% and

e—ARD creates even less extra traffic at 6%, compared to the original system during

the response process. The e—ARD scheme creates limited overhead due to two issues.

First, when there are no forwarding neighbors alive, a peer in e-ARD does not send a

response back to the peers of the last hop immediately but can forward it to a bRDA

first. Second, sending a response to bRDA generally reduces the number of hops of

routing the response message back.

On the other hand, extra response traffic cost of e-ARD is close to ARD. This

happens due to the next two issues: first, the extra overhead created by the construc-

tion between the peer and bRDA will cut some of the benefit in limiting the extra

traffic cost. Second, in the P2P system with a flooding query mechanism, the case

that no other forwarding neighbors are alive happens rarely. Accordingly, in most of

the cases where the primary forwarding neighbor fails, both ARD and e-ARD only

execute the first option: send a response to some forwarding neighbor alive. Figure

4.10 shows that, given a fixed average peer uptime of 10 minutes, the change of query

frequency does not affect the extra traffic costs induced by the three mechanisms.

Figure 4.11 compares response traffic cost of a Gnutella-like system and ARD with

different average number of neighbor connections. We can see that the response traffic

cost decreases as the average number of neighbors increases. The reason is that when

a peer has more neighbors, it has a higher probability of finding a candidate in his
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forwarding neighbor list to reroute the response instead of going back to his previous

hop in the case that the peer cannot reach the next hop to send back a response.

To investigate the impact of the extra traffic cost created in the entire query

request/response process, the ratio of response traffic to request traffic of all the

systems is shown in Figure 4.12. We can see that request traffic is from one to two

orders of magnitude greater than response traffic. Therefore even the traffic overhead

of the RRD scheme can be ignored considering the traffic cost in the whole query

process.

In a system that does not adopt flooding query process, the ratio of response

traffic to request traffic may increase. For example, the simulation shows the ratio

of response traffic and request traffic in random walk mechanism is around 1:10.

Nevertheless, in this category of systems, e-ARD will be used in most of the time,

which only incurs very limited extra response return traffic due to the adaptation of

bRDA.

Figure 4.13 shows the average response time of the four response schemes. As

being expected, the average response time of both the RRD and ARD schemes are

close to that of Gnutella-like systems. The response time in RRD is only 2% higher

than that of Gnutella—like systems, while ARD is about 4% higher. The average

response time of e—ARD is even shorter, only 1.2% more than that in Gnutella-like

system.

4.5.3 Analysis of RRD, ARD, and e—ARD

In this section, the influence of different key parameters in the three schemes are

evaluated respectively.
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Performance improvements upon different 7 values in RRD

The value of 7 limits the number of redundant paths in RRD and affects the perfor-

mance gain that can be achieved. The response return rates upon different 7 values

has been investigated. The results are presented in Figure 4.14. The results show

that the response return rate does increase with the increase of the ”y , but the im-

provement tends to be very little: with an average peer lifetime of 10 minutes, the

response return rate is improved by 33% when 7 is increased from 0.2 to 0.4 and

further improved when is increased to 0.6. Nevertheless, marginal improvement is

achieved when 7 is increased to more than 0.6. This may be due to path overlap in

the network. According to the investigations in previous studies, the peer lifetime in

different P2P systems ranges from less than 10 minutes to 60 minutes. The influence

of 7 will decrease when the average peer lifetime increases.

Lifetime of forwarding neighbor lists in ARD

Figure 4.15 investigates the impact of the lifetime of forwarding neighbor lists on

ARD’S response return rate. Only the impact on ARD is investigated, since the

influence of bRDA in e—ARD will be trivial. The curves in Figure 4.15 represent the

response return rates of the ARD scheme with different lifetime of forwarding neighbor

lists, i.e. 211, % 1, and 2 times of the average query response time. We can see that

when the lifetime of the forwarding neighbor list reaches twice the average response

time, the return rate is more than 95% of that for infinite lifetime. The reason is that

if the lifetime is too short, a peer failing to deliver a response is less likely to find

another candidate to reroute the response because the forwarding neighbor list may

not be available any more, which will result in a high response failure rate.
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Effectiveness of e-ARD in P2P systems with a DFS based searching mech-

anism

In order to show how e—ARD performs in a system not adopting a flooding search

algorithm, DFS is employed in the simulator, and the response return rates in such

a system with and without e—ARD are compared. Figure 4.16 shows the impact of

e—ARD in response return rate, and Figure 4.17 shows the response time of the system

without flooding. We can see that e—ARD can effectively improve the P2P system

performance: it improves the response return rate up to 60% and, at the same time,

needs less time to return a response back to the requestor.

The influence of the scope of a value is also investigated via varying the value

of c. The curves of e-ARD (c = n) in Figure 4.16 and Figure 4.17 indicate the

performance of e-ARD when c is set to be 77.. We can observe that the response

return rate increases as the c value increases. This is because when the 0 increases,

the scope of (1 decreases, which makes fewer nodes as bRDAs. The decrease of the

number of bRDAs eventually results in a shorter response return path upon the node

failure. For the same reason, the response time drops as the e value increases. One

more thing we can observe here is that the performances of e—ARD with different

scope of a are close and, therefore, we should choose a c value that makes the values

of a large enough to satisfy the anonymity requirement for the requestor.

4.5.4 Comparison of RRD, ARD and e-ARD

RRD, ARD and e-ARD are summarized in Table 4.4. Among all three mechanisms,

RRD requires the least modification of the existing response return mechanism, which

makes it a quick fix for the current response return mechanism. On the other hand,

RRD incurs more traffic overhead than ARD and e—ARD. Although nodes in ARD

need to maintain a forwarding neighbor list locally, no new packet formats and extra

bRDAs need to be introduced to construct ARD. The effectiveness and efliciency of
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ARD outperforms that of RRD and are close to that of e—ARD: up to 47% (ARD)

vs. 51% (e—ARD) upon response return rate improvement and 9% (ARD) vs. 6%

(e-ARD) upon extra traffic cost. Although the response time of ARD is the longest

among the three mechanisms, the response time of ARD is very close to that of RRD

and e-ARD. Considering both performance and implementation complexity, ARD

is the best choice to remedy the response loss problem in existing response return

mechanism.

Both RRD and ARD, however, work effectively based on the assumption that

there are more than one forwarding neighbor for each peer in the system. In a system

that such an assumption does not hold, e-ARD is the best candidate to avoid the

response loss incurred by the dynamic nature of the system itself.

4.6 Summary

In an unstructured P2P system, query responses are sent back to the requestor along

the incoming query path. However, the P2P system is a highly dynamic system in

that average peer lifetime is from 10 to 60 minutes, and the logical connection between

peers lasts from 1 to 24 minutes in average. This leads to a response loss problem,

with up to 35% of the responses being lost.

In order to remedy the response loss problem and improve service availability,

three techniques are proposed here: RRD, ARD, and e-ARD. All these techniques re-

duce response loss rate with limited extra cost regarding to the entire query process.

RRD requires the least modification of the current response return mechanism to

implement. ARD functions more effective and efficiency than RRD, while its imple-

mentation complexity is less than that of e—ARD. e—ARD extends ARD and can be

used in unstructured P2P systems with a limited or non-flooding search mechanism.
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Table 4.4. Comparison of RRD, ARD, and e—ARD
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CHAPTER 5

Hierarchical Reputation

Management for P2P Systems

Reputation systems are adopted in many overlay systems to provide data authentic-

ity. In this chapter, we explore the reputation management system for P2P systems

to enhance data authenticity and provide the trustworthy service content more ef-

fectively and efficiently. Our solution of hiREP adopts a hierarchical architecture to

limit the traffic created in the trust value spreading process. hiREP guarantees data

authenticity and voter anonymity, and also makes it easier for peers to filter out fake

trust values.

5.1 Overview of Reputation Management for P2P

Systems

Like many other overlay systems, peer-to—peer file sharing systems are fully distributed

systems with no central control. Anyone can freely join and leave the system. In

addition, it is required that the service requestor and provider remain anonymous.

These features make it easy to inject malfunctioning data into the system and hard to



trace the data source, which impede data authenticity of the service content provided

to users.

The music industry has already utilized these features to prevent people from

downloading free music. Investigations show that large amount of “polluted” data

have been injected into KaZaA, one of the most popular P2P system: more than 73%

of popular song copies are polluted data [60]. The injection of “polluted” data may

protect the music industry from financial loss, but it also demonstrates that attackers

can behave in the similar way to prevent one from publishing legal data or distribute

virus data in P2P systems.

One may consider that the anti-virus software and firewalls installed in the end

users’ PCs are enough to protect peers from the infection of such data. However,

these approaches require users to download malfunctioning data before the software

can analyze the data, which not only wastes network resources but also the users’

time, not to mention the innocent users who may not update their anti-virus software

in time. It. should be the task of the system designer to prevent spreading such

data across the system. P2P system can not be extended to support more critical

applications without. guaranteed trustworthy service.

To solve the problem and provide data authenticity, research has been done to

construct the reputation system in a P2P network. The typical query process in

a. P2P network with the reputation system is shown in Figure 5.1. After receiving

responses, a requestor sends out messages to elicit the trust values of the potential

providers. Based on the received trust values, the requestor chooses the qualified

provider to download files.

The construction of reputation system for P2P networks includes two basic com-

ponents: how to compute the trust value of each node and how to distribute/access

the trust values [96]. The trust value computation model has been studied exten—

sively [14, 16, 54, 74, 75, 76, 99, 107, 114, 113] and is beyond the scope of this thesis.
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Figure 5.1. Reputation system in P2P systems

This thesis focuses on the storage and spreading of the trust values in the unstruc-

tured P2P system. Unstructured P2P system is the prevalent model of P2P systems

in actual practice. Its flooding based query system is easy to implement and robust

to node failures. However, the overwhelming traffic caused by flooding is the main

hurdle of the system scalability and many mechanisms had been proposed to replace

the pure flooding system.

With other issues of P2P systems in mind, the following requirements should be

met to design reputation systems in an unstructured P2P network: 1) the trust value

spreading process of the reputation system cannot base on pure flooding mechanisms

that cause overwhelming web traffic. 2) voter anonymity should be guaranteed to
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protect voters’ privacy, i.e., the real identity of voters should be hidden from other

parties. 3) the authenticity of the trust value should be guaranteed, i.e. the system

should be robust to the attacks that try to invalidate the reputation evaluation.

In order to fulfill all three requirements, a hierarchical reputation system, hiREP,

is proposed for the unstructured P2P systems.

Peers in hiREP can be divided into three types: general peers, reputation agents,

and trusted reputation agents (or, trusted agents for short). Any peer with a band-

width greater than 64k can choose to function as a reputation agent, but only a

qualified one can be selected by other peers as a trusted agent. All trusted agents

construct a reputation agent community. A peer reports transaction results only to

its trusted agents, and checks only with its trusted agents to fetch the trusted values

of other peers. hiREP limits the traffic created by trust value inquiries per peer to

0(0), where C is the number of the trusted agents per peer.

In order to guarantee the anonymity of voters, hiREP adopts onion routing for

the communication of a peer and its trusted agents. Each peer is assigned a unique

nodeID together with the usage of public key system to provide authenticity of the

votes.

The main characteristics of hiREP include:

o hiREP adopts an effective hierarchical structure to construct unstructured P2P

reputation systems. The challenge of constructing eflicient hierarchical reputa-

tion system in an open and anonymous system derives from how to locate the

suitable reputation agents for an individual peer and build reliable and light

weighted communication between them. To the best of the author’s knowl-

edge, hiREP is the first reputation system with light overhead on top of the

unstructured P2P systems.

0 Besides avoiding of flooding based polling mechanisms in trust request process,

hiREP adopts a token controlled message distributing mechanism for the trusted
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reputation list exchange process.

0 By using public key hash as the nodeID of a peer, hiREP distributes public

keys efficiently in the P2P system without third party certificate authority.

0 With the adaptation of onion routing based communication in the reputation

request process, hiREP guarantees voter anonymity with fairly light overhead.

We present. the design of hiREP in the following section. Section 5.3 analyzes

the traffic load that hiREP may bring to the system as well as its robustness

under different attacks. A series of simulations are deployed to evaluate the

performance of hiREP and presented in Section 5.4. Section 5.5 gives a summary

of this chapter.

5.2 Design of hiREP

The design of hiREP is presented here in detail. hiREP focuses on the storage and

distribution of trust values. It also guarantees the authenticity of the transaction

results reported to the reputation agents. To allow better understanding of hiREP,

this section is starting with the motivation of choosing hierarchy structure, followed

by an overview of hiREP and the description of each components of the system in

details.

5.2.1 Fully Distributed, Centralized, or Hierarchical

A fully distributed mechanism is simple to implement and looks like a natural fit

for constructing functionalities atop of an unstructured P2P system, which itself

is fully distributed. Without introducing any centralized server, trust values are

generally stored locally in the peers that make the trust value evaluations. As the

trust values of a particular provider are disseminated in all the nodes that have
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Figure 5.2. Reputation system in fully distributed structure (P2PREP)
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transaction experience with it and there is no way for a node to know who owns the

trust value, the trust requestor has to poll every node of the system to collect the

evaluations. This leads to a flooding based polling process.

Figure 5.2 shows such a fully distributed structure adopted in P2PREP [36].

In P2PREP, the trust value of the peers is locally computed by and stored in their

transaction partners. The requestor broadcasts trust value query messages to the

entire system. Upon receiving the request, all of the peers that own the trust value of

the potential provider return the trust value back to the requestor. The trust value

query messages flooded across the system by the trust value requestor bring heavy

traffic load to the system.

Like the reputation/credit system in the real world, the reputation systems for

the e-commerce society are based on a centralized structure that is shown in Figure

5.3: Credits of individual entity are reported to some reliable centralized reputation

management web servers, which send out credit report to the other parties as neces-

sary. However, going back to a centralized system requires extra reliable servers to

store the trust values, which is not practical and conflict with the distributed struc-

ture of unstructured P2P system. In addition, centralized structures are inevitably

accompanied with the problems like traffic bottleneck and single point of failure of

servers, and are vulnerable to the DOS/DDOS attacks in an open system.

Adopting a hierarchical structure, hiREP tries to achieve the advantages of both

the centralized system and distributed system, and avoid the disadvantages of them.

In the hierarchical reputation system, the trust values of nodes are accumulated and

stored in a group of reputation agents. Unlike centralized systems, reputation agents

in hierarchical system are composed of general peers instead of dedicated servers. By

default, a peer can choose any node as its trusted reputation agent. On the other

hand, peers only need to contact with a group of relative fixed reputation agents

to obtain the trust value they want and evaluate agents instead of massive number
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Figure 5.3. Reputation system in centralized structure

of individual nodes to filter out the malicious nodes when an attack happens. The

challenge here is how to keep the qualified reputation agents for each peer.

5.2.2 Overview of hiREP

In hiREP system, each peer selects a group of agents as its trusted agents. Any peer

with a bandwidth greater than 64k can claim itself a reputation agent, though not

every reputation agent can be trusted by other peers. Peers update their trusted agent

lists periodically. A reputation agent computes the trust value of each node using its

own trust value computation model. A peer sends trust value request messages and

reports the transaction results only to its trusted agents. Peers and trusted agents

form a hierarchical structure as shown in Figure 5.4. Note although any peer can

claim itself as a reputation agent, only trusted reputation agents may store trust

values of other peers and send out trust values to other peer that trust them upon

request.

Voter anonymity is preserved by adopting an onion routing based communication
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Figure 5.4. Hierarchical structure of hiREP

mechanism between a peer and its trusted agents. A public key system is used to

provide data authenticity in communication processes.

5.2.3 nodeID, Public Key System, and Onion

Any peer in hiREP has two types of public key pairs: anonymity key pair (AP, AR),

which helps provide anonymity, and signature key pair (SP, SR), which helps provide

message authenticity. AR and SR are the private keys; AP and SP are public keys.

The nodeID is generated by the peer itself and is the hash of SP generated by a hash

function such as SHA—1. By associating SP with a node’s nodeID, hiREP is effectively

protected from Man-In-The-Middle attack: as nodeID is uniquely determined by SP,

it is impossible for attackers to replace the public key of a particular nodeID. nodeID

helps a peer to build its reputation in the system and only has relations with SP.
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Attackers cannot associate nodeID with a node’s identity in real world such as its IP

address.

(AP, AB.) is associated with a peer’s IP address and sent to other peers upon

request. As shown in Figure 5.5, when a peer P picks peer K as its onion routing

relay (P knows K’5 IP address as it picks up K), it will send a routing relay re-

quest (R0, APP, IPp) directly to K, where R0 is the routing relay request. K then

sends a response back to P with the form of APp(APk, IPk, nounce) to P, where

nounce is used to prevent replay attacks. Upon receiving the response, P sends a

public key verification message in the form of APk(APp, IPp, nounce) to K. When

K receives message, it decrypts it and sends back a key confirmation message of the

form APp(confirmed, IPk, nounce). If P cannot receive the confirmation, it knows

APk is invalid.

After receiving the anonymity key from its onion routing relays, P can form its

own onions which define a path to it. The onion format is:

(((((((fakeOm'on)APp)IPp)AP1)IP1)APk)IPk, sq)SRp

AP,- is the anonymity public key of peer 2'. sq is the non-decrease sequence number

used to indicate the age of the onion. SRp is used to guarantee the authenticity of

the onion. A node has P’s onion and SP1; can decrypt the onion using SP1, and

sends messages to K. K then peels one more layer of onion using AR;c and sends

the message to the next layer relay and so on until it reaches P. As the formats of

the onions sent to each relay are exactly the same, even the relay next to P does not

know P is the receiver.

5.2.4 Reputation Agent Community Formation

In hiREP system, high performance reputation agents can be selected as trusted

agents. All trusted agents form the reputation agent community.
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Figure 5.5. Fetch the anonymity key of a routing relay

Trusted agent list request

Each peer keeps a trusted agent list locally. The format for each list entry is like this:

{weight, agent nodeID, Onionagent, SP6}. Weight is decided by the expertise of this

reputation agent. SP6 is the private key of the agent.

When a peer first joins the system or it wants to collect some good reputation

agents with other peers’ recommendations, it sends out a trusted agent list request

with the format of {Rab token, TTL}. Ral is the agent list request. The amount

of agent list request messages is limited by both TTL value and token number. The

author recommends a default TTL value as 7 to be consistent with the query TTL

value in Gnutella [11]. The amount of tokens equals the number of trusted agent

lists that a peer wants to collect. A token was used up only when a node returns its

trusted agent list to the requestor. The node can return its own nodeID if it has no

trusted agent list.

Figure 5.6 illustrates the agent list request process. Requester R plans to collect

six reputation lists from other peers. Therefore, R distributes agent request messages

to its neighbors with 6 tokens in Figure 5.6(a). In Figure 5.6(b), A and B return

reputation lists to R and use up one token respectively. As C doesn’t have any

reputation list, it forwards the message with untouched tokens to F. As F receives

two tokens from B and C respectively, it uses one by itself and sends the message



with the left tokens to I. 1 sends a list back to R, uses up the last token, and ends

the message forwarding.

Agent rank and selection

Upon receiving the lists, the requestor ranks each reputation agent in different reputa-

tion lists according to their weight: assume the requestor wants to collect n reputation

agents. For a reputation agent of the greatest weight, it is ranked as value n; the one

of the second greatest weight is ranked as value n — 1 and so on. If there are more

agents in a. received agent list than what a requestor needs, say m, all the agents

ranked less than n — 777. will be assigned a rank value 0. For the same agent who

gets different rank values from different agent lists, the highest rank value will be

its final rank. The requestor then selects its trusted agents according to their ranks.

If several agents have the same rank, the requestor picks up its trusted agents from

them randomly.

Trusted agent list maintenance

After selecting its trusted agents, a peer will assign an initial expertise value of 1 to

each agent and keep updating the expertise values after each transaction. Assume

accuracy of agent E in current transaction is Ac, and its cumulative accuracy of

previous transactions Ap. The accuracy of agent E is aAc + (1 — a)Ap; a 6 (0,1).

Current accuracy Ac is either 0 or 1. It is 1 only when the evaluation given by this

agent node is consistent with the transaction result.

If an agent is offline and its accuracy value is positive, it will be moved to the

backup agent cache. Otherwise, it will be removed from the trusted agent list. Backup

agent cache is updated following the most recently first principle. When the amount

of agents in its agent list is smaller than some threshold, say 50, the peer first probes

all back up agents. If the result is not satisfying, the peer will send out. an agent
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request message to find other qualified agents.

5.2.5 Trust Value Distribution

Trust value distribution should guarantee both anonymity of voters and the authen-

ticity of trust values. The voters here refer to two parties: trusted agents that send

trust values to the trust value requestors, and peers that send their transaction results

to their trusted agents.

In hiREP, a trusted reputation agent keeps a public key list to store the public

signature keys. The format of the list is: {nodalD1, SP1; node]D2, SP2; nodeID”,

SPn}, where SP,- is the public signature key of the node that chooses this agent as

its trusted agent.

Trust Value Request

When a peer P wants to get the trust value of a particular node from its trusted

agent E, P sends out the trust value request message using an onion of E stored in

its trusted agent list. The format of trust value request is {SPe(R), SPp, Onionp}.

SP6 is the public key of E. SP1, is the public key of P. Onionp is the Onion issued

by P. R is the request message with the format request, nonce.

Trust Value Response

After receiving the trust value request message, E computes the nodeID of P using

the pre—known hash function. E will add the nodeID and public key of P to its public

key list if P’s nodeID is not in the list. E then sends back to P a trust value response

message using Onionp. The format of the message is SPp(T), SP6, Onione. SPp

and SP6 are the same as in request message. Cnione is a fresh Onion issued by E. T

is the response message with the format trust value, nonce, where nonce is the same

one included in request message R.
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Transaction Result Report

After a transaction, P will report the transaction results with the format of

(SRp(result, nounce), nodeIDp) to E using Onione. E then locates SPp in its

public key list using nodeIDp and tries to decrypt the signed transaction result. If

the result cannot. be decrypted, the message will be dropped.

Voter anonymity and data authenticity are provided in all three processes. With

the adaptation of onions, the real identity of the sender and receiver is hidden from

each other and third parties. This provides protection for voters’ privacy. The au-

thenticity of both trust. values and transaction reports is also ensured by the private

key signature of senders.

Until now, we assume the public keys can not be cracked. This assumption can

be loosed by allowing peers to update their public key pair periodically. New public

keys signed by current private key can be sent out using the most recently received

onions. It is also easy for a peer who receives the update message to map and replace

an old nodeID to a new nodeID.

5.2.6 Transaction in a P2P System with hiREP

The transaction process in a P2P system with hiREP is shown in Figure 5.7. Like the

transactions in other P2P reputation systems, it includes the query process, transac-

tion (file downloading), and transaction reporting. However, the query process and

transaction reporting process in hiREP are different from that of other reputation

systems. In the hiREP query process shown in Figure 5.7(a), the trust value request

will only be sent to requestor’s trusted agents instead of broadcasting to the entire

system. In other words, only the requestor and its trusted agents are involved in

the trust query process. After receiving the trust values, the requestor computes the

final estimated trust value of the potential file providers and selects the one with the

highest estimated trust value to download the file as shown in Figure 5.7(c). In Figure
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Figure 5.7. Transaction process in hiREP: (a)Requestor checks its trusted reputation

agents about the trust value of the provider; (b)Reputation agents send back the trust

value of provider to requestor; (c)File downloading; (d)Requestor reports the transaction

results to reputation agents

5.7(d), the requestor updates the expertise values of its trusted agents and sends its

transaction results to all of its trusted agents as discussed in Section 5.2.5.

5.3 Analysis of hiREP

This section analyzes hiREP in three aspects: the next subsection discusses the traffic

overhead that hiREP brings to the overlay networks. Then we discuss the impact of

the dynamic nature of the overlay network on hiREP. We also analyze the robustness
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of hiREP against different types of attacks.

5.3.1 Traffic Overhead

As the reputation list initialization is executed only once for each peer and all the

other messages created in the hiREP system are either sent out only as necessary or

piggybacked in other messages, the main traffic overhead of hiREP comes from trust

value distribution.

Assume each peer has 0 trusted agents in average. Each agent’s onion has 0,- relays

and each transaction result reporter’s onion has oj relays. The messages created for

trust value distribution in one transaction will be 9’21 2?:1) (0.,- + Oj), assuming

each peer execute the process once. Considering that 0,- and oj are generally less than

10, the messages for the trust value distribution of one transaction are in the order

of 0(0).

5.3.2 Impact of Dynamic Nature of P2P Networks for hiREP

P2P system is well known for its dynamic nature, i.e. nodes in P2P system come and

go frequently. One concern is that this may invalid the onion of a reputation agent.

However, although most of the nodes in the system are highly dynamic, there exist

long-life nodes in the system as well. Although previous observations indicate median

uptime for a node in Gnutella is 60 minutes [90], authors of paper [86] observe 25%

of peers stay in the system for more than 24 hours. ’ Other investigations indicate

that 80% of hosts keeps inside the P2P system for the daily measurement [21]. F.

E. Bustamante et al. [25] shows that the older a peer is, the longer it is expected to

remain in the system. Thus, peers can reduce onion failure by choosing the long-lived

relays.
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5.3.3 Robustness Against Attacks

Manipulate trusted agents

Malicious nodes try to hinder peers in selecting proper trusted agents by giving mul-

tiple bad recommendations to reputation agents with high performance or multiple

good recommendations to reputation agents with poor performance. The former case

is discouraged by the system: as an agent is always ranked according to the greatest

weight it received, the bad recommendation given by attackers will be ignored. As

for the latter case, multiple high recommendations for an agent have the same effect

as one single high recommendation.

The system can not completely prevent poor agents from getting high ranks, but

attackers cannot render requestors to assign a poor agent a weight greater than all

other agents. The point here is to guarantee good agents have chances to be se-

lected and the requestor’s reputation list is not overwhelmed with poor performance

agents. In an extreme case, the trusted agent selection process will reduce to a ran-

dom selection between the “real” good reputation agents recommended by sane peers

and “fake” good reputation agents recommended by attackers. Poor performance

reputation agents are then filtered out in the reputation list maintenance process.

Manipulate Peer Identities

In identity spoofing attacks, attackers send out trust values or transaction results

using the identities of other nodes. This is not possible in hiREP. All trust values

and transaction results are signed by the private keys which are associated with

senders’ unique nodeID. It is impossible for attackers to get the private key of the

other peers.

In sybil attacks, attackers use multiple identities in a distributed system [40].

This is not avoidable unless the system has some centralized control server to strictly
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control the identity a node can have [40]. However, if we consider each identity as

a particular node, hiREP can reduce the damage of the sybil attack by filtering out

poor performance reputation agents based on its own experience.

Manipulate the Reputation Evaluation

Attackers try to invalidate the trust value evaluation by making good evaluations for

“poor” peers and bad evaluations for “good” peers. hiREP guarantees the authen-

ticity of the transaction reports sent. to the reputation agents. With the authentic

transaction reports, reputation agents can decide the trust value of the peer using

the next level computation model. As a trusted reputation agent receives more infor-

mation for trust computation than a peer based on local experience, it is expected to

compute trust values more accurately.

DoS/DDoS Attack

DOS/DDOS attacks may be initialized to disable the service of high performance

reputation agents. To issue such an attack, the attacker has to first distinguish the

high performance agents. The cost of distinguish such agents is not trivial. As traffic

is spread among randomly chosen onion relays and reputation agents, it is hard to

identify the high performance reputation agents by analyzing the traffic flow or the

content of trust value request /response packets. The attackers have to go through all

the process like a normal peer to figure out the high performance reputation agents.

In addition, as the size of the reputation community is large, the peers that lose some

of its trusted agents can easily replace them by other high performance reputation

agents.
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5.4 Performance Evaluation

In this section hiREP are evaluated with a series of simulations. The performance

metrics is described in the next subsection, following by the simulation settings and

simulation results.

5.4.1 Performance Metrics

Two major performance metrics are used in the simulation: traffic cost and trust

evaluation accuracy. Traffic cost is used to indicate the network resources consumed

in message delivering process, which is more critical than the local machine resources

due to the rapid development of PCs. The messages induced in the trust query process

are used to represent the traffic costs. The individual bandwidth and the length of

links are ignored.

Trust evaluation accuracy is an important metric that is used to evaluate the

effectiveness of a reputation system. The system is expected to be able to achieve

at least the same level of trust evaluation accuracy as that in a pure voting system.

Here we use the mean square error (MSE) between the estimated trust value and the

true trust value of peers to indicate the evaluation accuracy of the system.

1 n

MEft. trl =— —~.2S o rus vaue n; (v '01)

where v is the real trust value, and the 77, is the trust value provided by either the

trusted reputation agent-s (hiREP) or other peers(pure voting system).

5.4.2 Simulation Setup

A P2P network with power law topology is generated using BRITE [2]. Each node

is randomly assigned as trusted (trusted value 1) and untrusted (trusted value 0).

The reputation agents (nodes with bandwidth larger than 64K) are divided into good
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Table 5.1. Simulation Parameters

 

 

 

 

Name Default Description ]] Name Default[Description

Network 2000 Number of peers Tfusted 60 Amounts of

Size in the Network agents of trusted agents

a peer on a peer’s

trusted agent

list

Neighbors 3 Average number Poor per- 10% Agents which

per node of neighbors formance can not make

each peer agents proper reputa-

tion of peers

Good rat— 0.6-1 Scope of good TTL 4 TTL limit used

ing reputation in pure voting

rating flooding process

Bad rat- 0—0.4 Scope of bad Token 10 Initial number of

ing reputation number tokens for ob—

rating taining reputa-

tion agent lists

Relies on 7 Agencies a peer

average in includes in its

an onion onion      
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agents and bad agents according to their capability to make trust value evaluation.

A good agent gives trust values ranging from 0.6 to 1 to trustworthy peers, and trust

values ranging from 0 to 0.4 to untrustable peers. A poor agent makes the inconsistent

evaluation: 0.6 to 1 for untrustable peers and 0 to 0.4 for trustworthy peers. The

default values of simulation parameters are listed in Table 5.1. They may be varied

in the experiments.

Similar as in paper [96], the hiREP is compared with a pure voting system (called

polling system in paper [96]). The trust making process is started with randomly

selecting a peer as a potential service provider. Each node in the pure voting system

computes a trust value and the overall estimated trust value is based on all of them.

The flooding process is simulated by deploying a Breadth First Search based search

operation.

For hiREP, only the trusted agents of the peers involved in a transaction compute

trust values. After a transaction, these peers update the expertise values of and report

the transaction results to the trusted agents. The above processes are simulated by

re—computing the trust values (by trusted agents) and trusted agent expertise values

(by these peers).

5.4.3 Simulation Results

The traffic costs of hiREP and pure voting process are explored in Figure 5.8, where

curves of voting-n represent messages incurred by pure voting mechanism in a network

with average node degree of n. As messages incurred by hiREP are only decided by

the number of trusted agents per node, the messages incurred by hiREP are the same

in networks of different node degree. We can see that, even in a network with average

node degree of 2, the number of messages produced in hiREP system is less than % of

that produced in pure voting system. Due to the network size limit in the simulation,

the TTL value of trust value request message in a pure voting system are set to be 4.

133



In the real system, TTL value is generally set to be 7, which suggests more messages

will be sent out. We can also observe that more messages in a pure voting system are

sent out in a density network than in a sparse network.

Trust accuracy of the hiREP systems and that of the pure voting system are

compared in Figure 5.9, with an assumption of 10% malicious nodes in the system.

The curves of hiREP-n represent MSE of hiREP systems that adopt different trusted

agent threshold: hiREP—4 represents a system where a peer removes a trusted agent

from its agent list if the expertise value of this agent is less than 0.4 and so on.

We can see that the accuracy of hiREP is at least as good as that in pure voting.

After a training process (about 100 transactions), hiREP reports trust value with

much higher accuracy. MSE of trust accuracy of hiREP continues to reduce after

300 transactions, where the trust value accuracy is 90% and the system starts being

st able. We can observe that a higher threshold results in a shorter convergence time.

We have investigated the effect of malicious nodes which give wrong evaluation

intentionally. Figure 5.10 shows that trust value evaluation accuracy in pure voting

system decreases much faster than that of the hiREP system. This may be because

in pure voting system the trust value provided by each node is treated equally while

in hiREP system, only the trust values provided by the agents of high expertise

are accepted by other nodes. Therefore, malicious nodes lose their rights to express

opinions due to their bad evaluation history. From Figure 5.10, we can observe that

evaluation of pure voting may be more accurate when there are very few malicious

nodes in the entire system. With the increase of the number of the malicious nodes,

the performance of hiREP in trust accuracy will overwhelm that of the pure voting

system. In an extreme case that 90% of reputation agents are poor performed, MSE

of trust evaluation accuracy in hiREP is still under 25%.

Besides the traffic cost and trust evaluation accuracy, we have investigated the

response time of the trust value request process, which is defined as the time from a
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peer sends out request till it obtains the trust value. Figure 5.11 shows the cumulative

response time of the pure voting system and the hiREP system. hiREP-n refers to

the hiREP system in which there are n relays in an onion. We can observe that the

decreases of the relay number result in the decreases of the response time of hiREP

system. The average response time of hiREP is lower than that of the pure voting

system.

5.5 Summary

In this chapter, a hierarchical reputation management system, hiREP, is proposed

to guarantee the authenticity of the service content in the P2P overlay application

and make it more reliable to users. The unique features of hiREP include: 1) a trust

value distribution mechanism where the trust value requestor communicates only with

a limited number of trusted agents instead of polling every node in the system; 2)

an onion based communication mechanism between peers and their trusted agents

to guarantee the voter anonymity; and 3) a public key system that does not rely on

third party certificate authority for key distribution to guarantee data authenticity

in communication.

Our analysis shows that hiREP is robust against the attacks such as trusted rep-

utation agents manipulation, identity spoofing, reputation evaluation manipulation,

and DOS/DDOS attack. hiREP also reduces the cost that may be induced by the rep-

utation system and protect the voter anonymity. The simulation results demonstrate

that hiREP creates much less traffic cost than a flooding based polling system, as

well as provide more trustworthy reputation feedbacks to the nodes in the system.
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CHAPTER 6

Mutual Anonymous Overlay

Multicast

As an extended effort for building reliable overlay applications, we explore the mutual

anonymity in overlay multicast systems. Mutual anonymity in overlay multicast

systems helps to prevent the exposure of user and group information from others and

thus enhance user safety in the systems. In this chapter, we identify the requirements

of mutual anonymous overlay multicast and provide a mutual anonymous multicast

protocol (MAM) to protect user information and provide user safety.

6.1 Overview of Mutual Anonymous Overlay Mul-

ticast

Multicast services are demanded by a variety of applications, e. g., video conferencing,

Internet based education, NASA TV, software updates, etc. However, IP multicast is

not widely deployed in the Internet due to its limitation in scalability and the support

for higher layer functionality such as reliability and congestion control. Therefore,

multicast services on overlay networks have been proposed by researchers [19, 28,
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27, 33, 34, 72, 78, 95, 105, 111, 115, 32]. The salient features of overlays include ease

of deployment and flexibility. \Ve envision that in the near future, a wide variety of

applications will be able to enjoy multicast services on overlay networks. Apart from

commercial applications, we believe that government and military organizations will

also use such services due to the several advantages multicast has to offer.

It follows to expect that, as multicast services continue to be deployed, existing

and future multicast applications will also demand the security features that unicast

communications have. Security in multicast communication has been addressed in

[26, 58, 77]. Most. of the work here focuses on authentication of the senders and

receivers and the efficient distribution of the keys to all legal group members and

exclusion of members that leave the group. Our focus here is providing anonymity in

multicast communications.

Anonymity is an important component of user security and is demanded by many

applications. Some of them are: critical multicast services like military or emergency

applications, where strategic information and critical updates are transmitted to mul-

tiple destinations and require anonymity from external observers. Multi-party video

conferencing applications carrying classified information will need anonymity from

external observers and other members in the group. Large business organizations

may have to multicast database updates to many sites for synchronization, and such

applications will demand anonymity from rival organizations.

Solutions proposed for anonymity in unicast communications can not be directly

applied to multicast applications. The fundamental difference between multicast and

unicast is the concept of a group in multicast. There is a relationship among multiple

nodes including the source(s) and destination(s) that are correlated, unlike in unicast

where only one sender and one receiver are communicating.

Due to the correlation among nodes, there are special challenges in achieving

anonymity in multicast: (1) The anonymity semantics in multicast are different from

139



those in unicast. For sender anonymity, the sender needs to hide not only from one

receiver, but from a subset. of, or all the receivers. In receiver anonymity, the receiver

may need to hide not only from the sender, but also from other receiver(s). There is a

special issue in anonymity in multicast called group anonymity, where the presence of

the group is not disclosed to outsiders. The involvement of multiple members makes

it very difficult. to hide the existence of the group. (2) Multicast services naturally

need the existence of a tree. Exposing this tree itself will compromise the degree of

anonymity. In contrast, in unicast, the path from a sender to a receiver is much easier

to hide. (3) Membership management is a challenging issue in multicast. Member

joining and leaving makes anonymity difficult. (4) There are other inherent challenges

for anonymous multicast services such as group key management.

There has been very little work on anonymous multicast. Simple solutions have

been proposed to achieve multicast anonymity by inserting some proxies (called SAM)

to the tree [48, 108]. However, this tree may itself not be efficient. The authors there

attempt to provide sender anonymity and receiver anonymity. The authors do not

address issues of providing mutual and group anonymity.

Our work on the mutual anonymous multicast (MAM) protocol for the overlay

multicast is presented in the rest of this chapter. MAM includes the design of a unicast

mutual anonymity protocol, and construction and optimization of an anonymous

multicast tree. MAM is self organizing and completely distributed. The self-organized

and completely distributed design of MAM can efficiently realize mutual anonymity

in overlay multicast systems and protect user information.

The rest of the chapter is organized as follows. The definition of multicast mutual

anonymity is given in the next section. Section 6.3 discusses the consideration on

MAM protocol design. Section 6.4 presents the detail of MAM protocol design.

Section 6.5 analyzes anonymity degree. Section 6.6 evaluates the performance of the

MAM protocol. A summary of the work on MAM protocol is given in Section 6.7.
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6.2 Definition of Multicast Mutual Anonymity

Before we give the definition of anonymous multicast, we specify roles of nodes in a

multicast system. Nodes that belong to the multicast group are called group members.

We label a node as a sender if it sends a multicast message to other nodes that

are group members. The other group members that receive this message are called

receivers. Note that we assume every node could be a sender and a receiver in the

service. Nodes that are neither senders nor receivers are called outsiders to the group.

Definition 6.2.1 Multicast mutual anonymity. Here a set of members desire

to be hidden from others. Members in such a set need to achieve mutual anonymity

from each other. Such a set can be a pair, such as the sender and a receiver; or one

receiver and another receiver. The set also can be multiple members and may even

include all members (i.e. complete anonymity).

Multicast mutual anonymity can cover multicast sender anonymity (hide the

sender’s identity) and receiver anonymity (hide one or more receivers’ identities). Of

course multicast sender anonymity and receiver anonymity can be achieved by simpler

protocols than that. for multicast mutual anonymity. Multicast mutual anonymity is

the focus in this thesis. Another type of multicast anonymity is group anonymity,

which hides the existence of a multicast group session from all outsiders. Traffic cov-

ering approaches can be used to achieve multicast group anonymity, which is beyond

the scope of this thesis.

Three types of nodes in a mutual anonymous multicast system are defined here.

1. Anonymous member nodes, AM nodes in short, are the member nodes whose

identities need to be hidden from all member/non—member nodes.

2. Non-anonymous member nodes, NM nodes in short, are the member nodes that

need not to be hidden from others.
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3. Middle outsiders, MO nodes in short, are the nodes that do not need to receive

any packets from the source for their own purpose, but providing packet for-

warding service for the multicast system. If needed MO nodes are invited by

the system for improving the overall efficiency. They do not hide their identity.

One naive approach to achieve anonymous multicast services is to treat the multicast

as a set of unicast communications from the sender to the individual receivers and

then directly apply one of the unicast anonymity schemes. While the approach is

simple, it is inefficient. In order to achieve high efficiency and reduce the redundancy

of multicast message transmissions among multiple receivers, multicast always relies

on some structure to deliver a message. The structure is usually a tree, and the tree

can be source—based or core-based. Unicast is a special case of multicast, where the

structure is a path. The potential solution to anonymous multicast must center on

the concept of the tree. This is the main difference and also the source of challenges

in achieving anonymity in multicast compared with anonymity in unicast.

6.3 Design Consideration of Anonymous Multi-

cast Systems

We need to consider both multicast tree efficiency and anonymity degree in the de-

sign of a multicast mutual anonymity protocol. An example is shown in Figure 6.1,

in which we can see that an optimal multicast tree without (Figure 6.1.a) and with

(Figure 6.1.c) anonymity concern are very different, where the cost of an AM-NM

connection is 6 times that of an NM-NM connection and the cost of an AM—AM con-

nection is 15 times that of an NM-NM connection. We have the following objectives

in designing MAM protocol.

1. High mutual anonymity degree: the identity of each anonymous node (AM),
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whether a sender or a receiver, in a multicast group should be hidden from all

group members and outsiders.

2. Delivery efficiency: a smart tree with consideration of anonymity is built with

low average delay and low resource usage.

3. Distributed fashion: the construction of the anonymous multicast system must

be completely self-organizing and in a distributed manner. No trusted cen-

tral server is involved. Further, MAM must be robust in a dynamic overlay

environment.

4. Self-optimization: MAM will allow all the nodes to incrementally optimize the

system, by reconstructing the tree and inviting more middle outsiders (MO

nodes) to improve the overall performance.

Here is the basic idea of MAM. A set of NM nodes form an efficient multicast

tree in terms of bandwidth and/or delay. Nodes of the tree are degree—bounded.

Early AM nodes connect unsaturated NM nodes, or MO nodes (if MO nodes have

been invited), on the tree using a unicast initiator anonymity protocol. When there

is no unsaturated NM node in the tree, a joining AM node will connect to another

unsaturated AM node in the tree using a unicast mutual anonymity protocol. If

there are too many AM nodes in the system, MO nodes will be invited to join the

multicast tree so that the new AM node can connect with the MO node using a

unicast anonymity protocol. When to invite MO nodes depends on the cost ratio of

unicast initiator anonymity protocol and unicast mutual anonymity protocol, and the

ratio of AM nodes in a system. The pseudo code for a joining node P is shown as

below.
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Algorithm 1 Pseudo code of unicast initiator anonymity protocol

P contacts a bootstrapping server and gets a list of members

 

P contacts one active member and gets a full list of members

if P is an NM node then

make a direct connection to an unsaturated NM node

end if

if (P is an AM node) AND (P can find unsaturated NM members) then

make AM-NM connections with few unsaturated NMs

else if (P is an AM node)AND(P can find unsaturated AM members) then

make AM-AM connections with several AMs

end if I; f AM (I

num 87' 0 no es

number 0 rmodes > IT then

Invite M nodes

end if

if timeout then

Tree optimization

end if

 if

 

6.4 Mutual Anonymity Protocol Design

Here we present the protocol design of mutual anonymity in overlay multicast system.

This include a unicast initiator anonymity protocol, a unicast mutual anonymity

protocol, and anonymous multicast tree construction. We also analyze the cost and

connection latency of anonymous connections at the end of this section.

6.4.1 A Unicast Initiator Anonymity Protocol Design

The idea of Onion and a reverse Onion can be used to achieve initiator anonymity for

bi-directional communication. Since an AM node has more than one choice for NM

nodes to make AM-NM connections with, we optimize the Onion protocol as follows

to keep both strong anonymity and robustness.

In the improved protocol for AM-NM connection, a Remailer (a reverse Onion)

is generated by the AM node for the NM node to anonymously send messages to the

AM node. In the AM—+NM communication direction, the AM node uses an approach



similar to Crowds and Tor, in which each middle node in the path can make a decision

to forward the message to another middle node or the NM node. This approach is

more robust than Onion in the case of middle node failure.

In order to simplify the protocol description, we use S to denote the AM node,

and use R to denote the NM node, as below. Note that S knows R’s identity, but

R does not know anything about S. Since this connection is initiated by S, we also

label S as the initiator. In the rest of the Chapter, we use {M}K to indicate that

AI is encrypted with the key K. Kp+ denotes p’s public key and Kp_ denotes p’s

private key.

Step 1: The node S first generates m, the number of middle nodes in the Re-

mailer. S then randomly selects a list of m nodes, p0, p1, p2,..., pm_1 to form a

Remailer. The lifetime of this one-time Remailer in seconds is also generated. The

Remailer is built with S as the last member of the path and with p,- in the middle.

It is of the form:

{pm—1» {pm—29 "'{poi {S}KP0+---}Kp(m_2)+}KP(m_1)+}KR+}

Step 2: S randomly selects a node, (10, sends it the message: S —+ go: {12,

{Remailer, life-time}KR+}.

Step 3: A peer q,- can elect itself to act as a deliver with a predefined forwarding

probability h. If q,- is self—elected, the message {Remailer, lifetime}KR+ will be

delivered to the non-anonymous member node R directly. Otherwise, q,- will randomly

select another node, %+1 and forward the message {R, {Remailer, lifetime}KR+} to

it.

Step 4: On receiving the message {Remailer, lifetime}K12+, R uses its private

key to decrypt the encrypted message.

Step 5: R generates a symmetric key K, and encrypts the multicast packet f

with K. R then encrypts K with its private key. It keeps sending multicast packets
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with the format as below through the Remailer to S:

R ——+ S: {f}K, {K}KR_

Step 6: S uses R’s public key to decrypt the symmetric key K, and uses K to

decrypt the content encrypted by K.

At any time, a node R may have one or more Remailers. It will check the age and

the expected lifetime for each Remailer periodically and delete obsolete Remailers.

Each live Remailer corresponds to one AM node. Each AM node may connect with

different NM nodes with the same or different Remailers for two reasons: increasing

the difficulty for a NM node to guess the identity of the AM node, and providing

multiple paths to the AM node in case of failure of any middle nodes in a Remailer.

Too many Remailers for the same AM node will increase overhead, which can be

adjusted by setting shorter lifetimes for the Remailers.

6.4.2 A Unicast Mutual Anonymity Protocol Design

When a joining AM node cannot find an unsaturated NM node in the tree, one option

for him is to connect to another unsaturated AM node in the tree using a unicast

mutual anonymity protocol. Most unicast mutual anonymity protocols were proposed

for file sharing systems and may not be applicable here directly because of their low

efficiency [43, 85, 94, 103, 112]. Therefore, we need to design a new unicast mutual

anonymity protocol. Designing an efficient mutual anonymity protocol is difficult,

but is possible here by utilizing the mechanism of MO node invitation.

We can use IP addresses to identify NM/MO nodes because they do not need to

be anonymous. Instead, each AM node randomly selects an 18 byte value using a

given algorithm to ensure its uniqueness when it joins the system. Note that AM

nodes may change their IDAM at any time for anonymity consideration. At the time

of its joining, each AM node is bounded with one or multiple MO nodes, which means
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an AM node sends Remailers to its bounded MO nodes, and its IDAM and bounded

MO nodes’ IP addresses, e.g. [DAAI-IPAIOI""’IDAJl[-IPAIOZ" ..., will be kept in

other NM nodes.

When an AM node (Allll) decides to make a connection to another AM node

(AAIZ), it will select one of its bounded MO nodes (M0i) to establish a connec-

tion with and one of All/12’s bounded nodes (.MOJ'). The connection between AMI

and A1027, and the connection between AAIQ and 1leOj are established by the uni-

cast initiator anonymous protocol introduced in the previous section. A connec-

tion of IDAMl-IPMOi'IPMOj'IDAMz is therefore established to achieve mutual

anonymity between A1111 and A1112.

6.4.3 Anonymous Multicast Tree Construction

Many previous studies have intensively studied how to build an efficient overlay and

optimize a random overlay, so we will not focus on this issue here. We use an idea

similar to the Narada protocol [34] to build our multicast. overlay among NM/MO

nodes. The basic idea of Narada is to construct an efficient connected mesh first.

Narada then constructs shortest path spanning trees of the mesh, each tree rooted at

the corresponding source using well known routing algorithms.

As in Narada, every NM node and invited MO node has a full list of all the

members. A joining node is able to get a list of group members (not necessary

complete or accurate) by an out-of—band bootstrap mechanism, and randomly selects

several unsaturated members to connect with. If the new joining node is an AM node

that needs to hide its identity, it will randomly select one or multiple unsaturated

NM/MO nodes forming anonymous connections with them, which is described in

Section 6.4.1.

The multicast tree needs to be maintained. All the NM nodes probe their distances

with all the other NM nodes and share the information among the overlay, so that
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every single node has an identical distance table including each pair of the NM nodes.

As the design is for small sized systems, maintaining such a list is not difficult. With

such a table, a good multicast tree including all NM nodes can be easily computed and

maintained [34]. The distance between a NM node and an AM node is not available

because the AM node is anonymous to NM nodes, but it is also not necessary since

the AM node is connected with a NM node via a number of middle nodes making the

direct distance between the AM node and the NM node meaningless in optimizing the

tree. However, the IDAM of the AM nodes can be kept in the NM nodes, and a NM

node knows the number of AM nodes that connect with it via anonymous passage

but does not know their identities. In optimizing the tree, this NM node will subtract

the number of its connected AM nodes from its bounded degree.

When a joining AM node cannot find an unsaturated NM node in the tree, one

option for him is to connect to another unsaturated AM node in the tree using a

unicast mutual anonymity protocol described in Section 6.4.2. However, we do not

wish to see too many AM-AM mutually anonymous connections for performance

reasons. Therefore, in some situations, MAM considers inviting some MO nodes to

help by joining the system. We define an Invitation Threshold, IT. When the ratio

of AM nodes to NM/MO is greater than the value of IT, the system will try to invite

some MO nodes to join. When MO nodes are invited into the systems, joining AM

nodes will have chances to join the tree by making AM-NM connections instead of

more expensive AM-AM connections.

6.4.4 Cost and Latency of Anonymous Connections

There may be additional cost and latency for multicast systems when we try to provide

anonymity to a set of member nodes. Here we discuss the potential influence of the

proposed unicast mutual anonymity protocols of MAM on the cost and latency of the

overlay multicast.
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First, the selection of the number of middle nodes, m, has great impact on the

anonymity degree and the cost of the connections. Obviously there is a tradeoff

between the anonymity degree and the cost. Specifically, a larger m will result in a

higher anonymity degree while incurring larger cost and latency.

Second, the predefined forwarding probability h also partially influences the cost

and latency of data delivery in the system. In MAM, for simplicity, we uniformly

select the value of h for the peering nodes. In real systems, nodes may select h

independently, and the variety of h will improve the anonymity degree provided to

the clients.

Third, the average cost of an AM-AM connection is at least two times greater

than an AM-NM/MO connection. If we take (1) the dynamic nature of the member

nodes, and (2) each AM node may use a set of NM/MO and switch some of them,

into consideration, the average cost of an AM-AM connection is more than twice of

that of an AM-NM/MO connection.

6.5 Anonymity Degree Analysis

The attacks targeted at overlay multicast system as well as anonymity degree achieved

by MAM protocol are discussed in this section.

6.5.1 Attack Model

we assume that the attacker will break into some overlay nodes that are chosen ran-

domly in one round, and try to figure out who the AM nodes are using the information

that he obtains from the broken nodes. We assume the attacker can find the single

parent and k children of all the nodes that have been broken. We also assume that the

broken node keeps forwarding the packets in the same way as that before it is broken.

We call the parents of all those broken nodes the potential root of a subtree with AM
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nodes, which is called an implicit tree. The attacker will give each potential root a

coefficient that is related with the probability regarded by the attacker as the root of

the implicit tree by utilizing the information he obtains from all the broken nodes.

A node that is more likely to be the root of the implicit tree has a higher coefficient,

which means it is more important than other broken nodes and more prone to further

attack.

The objective of the attacker is to use the above coefficients for future attacks,

e.g., the attacker can launch a congestion attack to the potential root(s) to deny the

service of as many receivers as possible, or the attacker can launch another break in

attack to the potential root(s) to find the identity of the root of the implicit tree. No

matter what the next attack is, the attacker will try to attack the node(s) that are

more likely to be closer to the root of the implicit tree since he can potentially deny

service to more receivers if he launches a congestion attack or has a higher probability

to get the identities of all the receivers in the implicit tree if he launches a break in

attack.

One thing to be reminded of here is that two broken nodes that are two layers

apart can generate a broken tree with length of three by sharing information with

each other. An example is that node A is in the ith layer, while node B is in the

(i + 2)th layer. After sharing the parent and children information with each other,

node A finds that the parent of node B is actually one of its children, so a three layer

broken tree is generated by nodes A and B. In this case, an unbroken node can also

be on a broken tree as long as both its parent and at least one of its children are

broken. We call node A the head of the broken tree if and only if node A is broken

while its parent and grandparent are not broken. Similarly, we call node B the tail

of the broken tree if and only if node B is broken while none of its children and

grandchildren are broken. If node A is in the ith' layer and node B is in the jth layer,

we call this broken tree a broken tree with the length j — i + 1, which is basically
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the number of nodes in this broken path. Generally, all the broken nodes can form a

broken forest comprised of several broken trees that are subtrees of the implicit tree.

We denote the length of a broken tree as the length of the longest broken path in the

broken tree.

6.5.2 Anonymity Degree Analysis

The metric we use to analyze anonymity degree is Preveal, which is the probability

that the identity of an AM node is revealed. If the AM node itself is broken, this

probability is 1, otherwise, we calculate this probability according to a weight. Each

node has a weight that stands for how sure the attacker thinks that this node’s parent

or one of its children is an AM node. Each node could be the root of a broken tree or

the tail of a broken path, which we will define later. We believe the longer the broken

tree or the broken path is, the more weight the attacker will give to this node. Our

analysis is focused on how to get the weight of each node based on the distribution

of the length of the broken tree or broken path.

In this section, we assume the multicast tree structure is a k-nary incomplete tree

with L+1 layers and the root node is at Layer 0. Here an incomplete tree means

that some receivers are not in the Lth layer. The receivers can be located from the

first layer to the Lth layer. We assume in the incomplete tree scenario, each node

has either 0 or k children. We introduce the incomplete tree in the hope of achieving

better bandwidth efficiency since there is no redundant link in an incomplete tree.

Here, we introduce a set of parameters qi,jv which is a value given to each node Pi,j

in the tree. We let q,’j be 1 if node Pi,j is a real node in the tree. We let qi,j be 0 if it

does not exist in the tree. We also assume that the attacker has successfully broken

into N nodes in this tree. Since the attacker chooses the nodes randomly for break in
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attack, the probability of each node in the tree being broken is equal, which is:

N

L H
21:0 Zj=1qm

We first analyze anonymity degree of AM as a sender and then analyze the

 

Pbrok'en = (6-1)

anonymity degree of AM as a receiver. If the root of the tree is one of the broken

nodes, the attacker has already obtained all the information he needs. Otherwise,

there is a probability that. the real root will be regarded as the root and may be

subject to the next attack. The overall probability that the identity of the root is

revealed is shown below,

S
S ’

Preveal = Pbroken + (1 — Pbroken) X Pattack (6.2)

k s
w .

S _ 1,]

Pattack — Z( L kl S ) (6-3)

j=1 Zizl Zj=1wm

 

 

r 0 (QM = 0)

PM... >< (zlepfjrz x f(l)» (gm =1,.-= 1)

Pbroken X (1 _ Pbroken) X (Zlelpi,j(l) X f(l)) (Qi,j =12i= 2)

L Pbroken X (1— szroken X (Zlepng) >< f(l)» (Qi,j = 117;) 2)

where was;j is the weight given to node 72.in (i.e. jth node in ith layer), which

is the head of a broken tree; pggjl is the probability that the length of the broken tree

with node 71.,ij as the head is l ; f (l) is a function that increases when l increases.
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The exact form of f (l) depends on the attacker’s policy. We choose f (l) = l in this

thesis.

In an incomplete tree, different nodes at the same layer have different probabilities

of being the head of a broken tree of a specific length. A node that has more ”deeper”

descendant has higher probability of being a head of a long broken tree and vice versa.

' 0 (QM = 0)

0 (l g Oorl > L)

1 (qi+1,k><j = W = 1)

- k2

k+2n=1qi+2,k2xj—k2+n
(1’ Pbroken) qi+1,kxj =13l21

(6.5)

k2

271:1 qi+1 k2 Xj—k2+n

ijl , [(pbgU) X

paw-(z — 2lbn =1» x (pare) +

 Zj—1(Pbc(J) X 17,11 3'“ - llb‘n = j))) otherwise

Here, pbc(i) is the probability that i children have been broken. Similarly,

pbg(i) is the probability that i grandchildren have been broken. pi(l|bn = j) is the

probability that the longest broken tree among j trees is of length l, given that j
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children of a parent, which is in the (i — 1)th layer, have been broken in the ith layer.

Pbc('l) pbg(i) and p.,f(l|bn = j) can be calculated as:

k
. k—

i) X pbroken X (1 _pbr0ken) ZPbc(i) = <

k2

, i

PbgU) :(Z q2+2.h2xj—lc2+n))< pbroken x

n: 1

k2 _

(1 _ pbrohen):n=1qi+1’k2xj_k2+n Z

r

0 (l = 0)

 

awn =j> = ] 23;.-. ((2.) x rpm)”:

 

Here, p§j(l) is calculated as:

 

kxi l

Sjil) = (23':=kxl'rc—k+1( ))
 

So far, we have finished analyzing how to get preveal .

For anonymity degree of AM as a receiver, we denote the AM node we consider

as Put Its parent is pu_1’[1tc_]and grandparent is p

22—21%]

[t] . Here, we denote [i] as

the largest integer that is no more than i. We give the formulae to calculate the
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probability that the identity of the AM as a receiver is revealed as below.

2 2

pr‘mal—(1 " (1 _ pbroken) ) 'l' (1 " pbroken) X pgttack (610)

r

pbroieanX(1 _pbroken) X qi,j = qi+1,k><j = 12

. . t

(Zl_1 p:j(l)Xf(l)) qi+2,k2xj=0’{7’~l}XML—1475]}

L— 1

:4 (21-1 Pfj(l)X Chgj = qi+1,k><j =1: (6.11)

 

f(l)) X pbroken

X (1 _ pbroken)2 Xpbroken

(2f.,1 p"(I) x f(l))

pbroken X (1 '" pbroken) X

, (2:13:11 p:,(> x f(l))

0

plittack =

qi+2,k2><j = 07 {W} = i“ f 1, ligl}

{ifJ}#{u-2l%1}

(6.12)
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0 l>u—1

0 l< lori < 1

1 l = 1,i = 1

1— . . l: 1,i = 2

2735.70) = < “Take” (613)

u— ..F l=1i>2
pbroken. ,

. x T - l—1 +
pbrohen pi—1,[7:—]( )

 (1 — pbroken) x pbroken x pi—2,[%]/k(l — 2) otherwise

Here, the definition of gab-(l) is similar to pfl-(l), which is defined before.

6.5.3 Numerical Results and Discussions

In the following discussion, we will consider the numerical results based on the above

formulae for anonymity degree in the incomplete tree. The incomplete tree we use is

a binary tree. The root node has four grandchildren; one is the root of a complete

subtree with 2 leaves in the third layer, one is the root of a complete subtree with 4

leaves in the fourth layer, one is the root of a complete subtree with 8 leaves in the

fifth layer and the other is the root of a complete subtree with 16 leaves in the sixth

layer. The data are obtained in MATLAB.
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Figure 6.2 and 6.3 show the sensitivity of anonymity degree to broken ratio. Dif-

ferent curves represent different combinations of k and L. Anonymity degree is rep-

Smaller Presented by P reveal means better anonymity degree. It is obvious
reveal:

that. anonymity degree improves as broken ratio decreases.

\Vhen the percent age of broken nodes and L is fixed, anonymity degree improves

when k increases. This is because when the tree grows wider, the broken nodes tend

to be in different branches. The length of the broken tree tends to decrease. When

the percentage of broken nodes and k is fixed, anonymity degree improves when L

increase. This is because when the tree grows deeper, the length of the broken tree

tends to decrease.

The AM sender anonymity of the incomplete tree in our example in Figure 6.2 is

between those of the complete binary tree with all receivers in the third or sixth layer.

This is obvious because the AM sender’s anonymity improves when the tree grows.

We observe that the difference between the incomplete tree curve and the complete

tree curve with six layers is very slight. This is because the children of the sender who

has fewer descendants will have comparatively small weight, which helps to improve

the AM sender’s anonymity. Actually we can achieve significant bandwidth efficiency

with little sacrifice on AM sender’s anonymity.

The AM receiver anonymity of the incomplete tree in our example in Figure 6.3

is worse than that of the complete tree with sixth layers. This is because fewer nodes

will be considered as the parent of the receiver, the comparative weight of the AM

receiver’s parent tends to increase. We observe that among all the AM receivers in

the incomplete tree, the higher AM receivers have better anonymity than the lower

ones. This is because their parents tend to be the tail of a shorter broken tree, which

helps to decrease their weight. This fact holds under the assumption that the attacker

does not know the layer of the AM receiver. We observe that the differences among

different AM receivers in the incomplete tree case and between the incomplete tree
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Figure 6.2. Anonymity degree of AM as a sender
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Figure 6.3. Anonymity degree of AM as a receiver
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case and the complete tree case are very slight because the AM receiver’s anonymity

is dominated by the probability that the sender or the receiver is broken, which is

determined by the percentage of broken nodes. This means that significant bandwidth

efficiency can be achieved with little sacrifice of AM receiver’s anonymity.

6.6 Performance Evaluation

W'e experimentally measure the additional overhead incurred in our design for achiev-

ing AM-NM and AM-AM anonymous connections, and use comprehensive simulations

to evaluate the effectiveness of MAM.

6.6.1 Simulation Methodology

Two types of topologies, physical and logical topologies are generated in our simu—

lation. The physical topology should represent the real topology with Internet char—

acteristics. The logical topology represents the overlay system built on top of the

physical topology. The communication cost between two logical neighbors is calcu-

lated based on the physical shortest path between this pair of nodes. To simulate the

performance of the MAM protocol in a more realistic environment, the two topolo-

gies must accurately reflect the topological properties of real networks in each layer.

BRITE [2] is a topology generation tool that provides the option to generate topolo-

gies based on the AS Model. Using BRITE, we generate physical topologies with

3,000 to 7,000 nodes. The average number of neighbors of each node ranges from 4

to 10. The 100 to 300 overlay nodes are randomly selected from the nodes in the

physical topologies.

To reflect the real overlay systems, in the experiments we report here, member

nodes are coming and leaving according to the distribution observed in [90]. The

mean of the distribution is chosen to be 1800 seconds. The value of the variance is
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chosen to be half of the value of the mean. In each experiment, a number of nodes

join the system at the first 120 seconds of the simulation in random sequence. The

lifetime of each node will be decreased by one after passing each second. A member

will leave in the next second when its lifetime reaches zero. During each second, there

are a number of members leaving the system, and we then randomly pick up (turn

on) a similar number of members from the physical network to join the system.

In all the experiments, every 50 seconds, random nodes are selected as senders

to multicast data at a constant rate, and the simulations run for 60 minutes. In the

MAM protocol, the lifetime of Remailers is randomly selected from 50 to 200 seconds.

6.6.2 Cost Measurement of Encryption Techniques

We measure the cost of basic cryptography techniques to obtain a base data for

our further simulation. In the first experiment, we measured the data on five crypto

servers, in which 2,000 overlay servers and clients of the ChinaPCCN are involved. For

each area center, local machines initiate (1) 900,000 symmetric encryption requests,

each of which encrypts a 1-100KB length file, (2) 900,000 MAC code generation

requests, each of which generates a 20 Byte MAC code for a 1-100K length file, and

(3) 10,000 RSA encryption and decryption requests, which respectively call for a

signature or verification for the 10,000 MAC results generated above.

In our second experiment, we ran the crypto software kits [12] on a desktop PC

with an 800MHz Pentium III CPU and 256Mbytes of memory, 20GBytes hard disk

and 10/100M Ethernet card. We ran each test 10 times, and use the average data.

On crypto servers, the average 1024-bit RSA decryption count per second is from

17.12 to 103.09 compared to 14.6 for software tools. The encryption is from 322.4

to 1941.7 compared to 275 for software. Normally the RSA encryption is about

10 19 times faster than the decryption process. The 768-bit and 512-bit test results

also validate it. In most. cases, the 1024-bit key RSA can be regarded as a sufficient

161



security cryptography algorithm, so in our simulation on the overlay multicast system,

we chose the 1024-bit RSA as the crypto process in the onion path and use 45.87 and

864 per second. from the crypto server’s results, as the reference values of the 1024-bit

RSA performance.

The DES performance is in the range from 2.24Mbps to 8.78Mbps, and the 3DES

is from 1.89Mbps to 6.43Mbps. The hash function of MD5 performance is from

0.97Mbps to 11.64Mbps, and SHA-l is from 3.23Mbps to 11.28Mbps. The soft-

ware implementation performance is almost at the average level of those five servers.

Therefore, we chose 5.41Mbps as the DES speed and 7Mbps as the SHA-l speed.

6.6.3 Performance Metrics

We compare the performance of three different approaches: Optimal, MAM, and

RAND. In Optimal, the anonymous multicast tree is optimized using an offline algo—

rithm. In a nave approach, indicated as “RAND”, each joining node randomly selects

a member to connect to the multicast tree.

We use two performance metrics: relative resource usage (RRU) and average

worst-case delay (AWD).

The stress of a physical link is defined in [34] as the number of identical copies

of a packet carried by a physical link. We define resource usage as 21-:1 ndj x s -,

where dj is the delay of link j and sj is the stress of link j. Resource usage is one

of the parameters of seriously concerned to network administrators. Heavy network

traffic limits the scalability of overlay networks [87]. RRU is defined as the ratio of

the resource usage of MAM or other approaches to the optimal anonymous multicast

tree. AWD is the average delay from the source to the farthest node that gets the

multicast packets, when nodes are selected at random as the source nodes in multiple

I'UIIS .
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6.6.4 Simulation Results

When there is no member needing to hide its identity, the system will be the same

as normal end system multicast. Intuitively, the total cost of the system will increase

when the number of nodes need to be hidden increases. We first show MAM’S per—

formance by increasing the number of nodes that need to achieve anonymity (AM

nodes) in the system.

With 3000 physical nodes and 200 overlay multicast members, Figures 6.4 and

6.5 plot the RRU and AWD of different approaches versus the number of AM nodes

in the system. When the ratio of AM nodes in the system is small, MAM’s RRU is

very close to the optimal solution. MAM’S AWD is very close to the optimal solution

when less than half of the nodes are AM nodes. We vary the system size from 100

to 400, and the physical network size from 2,000 to 8,000. The results are consistent,

indicating that MAM maintains effectiveness, and the RRU and AWD of MAM are

not sensitive to the system size or the physical networks size.

If all of the members in a system are AM nodes, even the optimal solution will be

as bad as the nave RAND approach, and a system of smaller size can incur greater

traffic overhead than a system with larger size. Hence, in MAM, we propose to avoid

having all the members as AM nodes by inviting MO nodes into the system. Frankly,

it is always helpful if more MO nodes can join the system. However, the overhead of

inviting MO nodes is hard to predict: they merely provide service to the system but

do not consume the multicast content.

In the “MAM” protocol, MO nodes are not invited. we can see that when the

percentage of AM nodes is large, both RRU and AWD degrade significantly. We

investigate the effectiveness of inviting MO nodes to join in Figures 6.4 and 6.5 using

the ”MAM-MO” protocol, in which MO nodes are invited when the ratio of AM

nodes in the system reaches 90%. The improvement is substantial for a system with

more than 270 AM nodes (90% of the system). The next question is when is the best
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time for the system to invite MO nodes, i.e. what is the best Invitation Threshold

IT. Figures 6.6 and 6.7 show the RRU improvement and AWD improvement versus

the number of invited MO nodes for a different given number of AM nodes in a

system with 200 overlay multicast members. RRU/AWD improvement is defined as

the percentage of the RRU/AWD improvement with the MAM-MO protocol over

the MAM protocol without MO node invitation. “RRU—n”/ “AWD-n” means the

RRU/AWD improvement for a given number of n AM nodes. In general, inviting

more MO nodes means better performance with the assumption that we have an

infinite number of available MO nodes to be invited.

However, when a certain number of MO nodes have been invited, inviting more

MO nodes is not as effective as before. For example, there is a clear jump in Figure

6.6 for RRU-120, which shows that when 30 MO nodes have been invited, inviting

more MO nodes gives little additional RRU improvement, where the corresponding

IT is 120/(200+30)=52%. Similarly, the ITs for RRU-150 and RRU-180 are 47%

and 47%. If we calculate the ITs from Figure 6.7, we have 46%, 52% and 47% for

AVVD-120, AWD-150, and AWD-180 respectively.

Therefore, our interpretation of the experimental results is that when less than

around 50% of the nodes wish to be anonymous, MAM may be directly used with no

need to invite MO nodes; otherwise, MO nodes should be invited to keep the ratio of

AM nodes in the system at about 50%. Beyond this, inviting more MO nodes is not

necessary.

6.7 Summary

In this chapter, we propose the MAlV‘I protocol to provide anonymous multicast service

and protect. user information. The main work presented in this chapter is summarized

below:
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1. we define different types of anonymity in an anonymous multicast system, and

show the rationale of our focus on multicast mutual anonymity. Our analysis

shows that the anonymity degree of AM nodes is correlated with the broken

ratio, tree degree, and tree depth. Compared to the complete multicast tree,

the incomplete multicast tree can achieve a similar anonymity degree with much

higher bandwidth efficiency.

2. We propose MAM protocol, and address the critical issues in this protocol,

which include an efficient and robust unicast initiator anonymity protocol, an

efficient unicast mutual anonymity protocol, and an effective anonymous mul-

ticast construction approach. The self-organized and completely distributed

design of MAM can efficiently realize mutual anonymity in overlay multicast

systems.

3. We define the attack model to an anonymous multicast system, and theoretically

analyze the anonymity degree of the MAM protocol.

4. We evaluate the effectiveness of MAM in a dynamic environment by compre-

hensive simulation study. The study evaluation shows that MAM is an effective

approach to construct an efficient anonymous multicast tree. When the per-

centage of AM nodes in a system is below a certain level, without inviting MO

nodes, MAM works as well as the Optimal solution. We also show that inviting

a certain ratio of MO nodes can be very effective for a system with a large

number of AM nodes.
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CHAPTER 7

Conclusion and Future Work

7. 1 Conclusion

Composed by self-organized end systems, overlay networks are decentralized and uti-

lize the edge resources of the Internet, distributing the operation cost across the nodes

in the system. Overlay networks are open and provide new dimensions to the Inter-

net usability. Running on top of the end systems, it does not need to overcome the

administration barrier to deploy applications in overlay networks. This makes it easy

to deploy applications in overlay networks. As a result, the scale of overlay networks

has increased rapidly.

At the same time, overlay networks bring challenges in building reliable applica-

tions on top of them. The openness and devoid of membership management of overlay

networks invite attackers to distribute malfunctioning data in the system. It is diffi—

cult to trace the attackers due to the lack of the centralized control. In addition, the

end systems that form the overlay networks are highly dynamic, which can interrupt

the services provided by overlay applications. As the end nodes in overlay networks

are loosely connected either randomly or according to their local based algorithm, it

is hard to avoid the appearance of “critical” nodes such as high-degree nodes and cut
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vertices in the overlay networks.

The reliability of reliable applications is multi—folded. The basic and essential

requirement of reliability is the availability of the service provided by the application.

The service provided by the overlay applications should always be available for users,

even when failure happens. For the overlay applications that provide content service

to users, the service content should be authenticate. In other words, the service

should be trustworthy to users. Moreover, the user safety should also be guaranteed

as an extension of reliability.

In this thesis, the author makes efforts on building reliable applications by identify-

ing the specific problems and proposing corresponding solutions on all three different

aspects of reliability.

The first problem addressed in the thesis is the cut vertex problem, which hinders

the service availability of the overlay applications. Cut vertices are one category of

topological “critical” nodes that are induced by the randomness and self-organization

that overlay nodes connect with each other. Cut vertices are unavoidable in overlay

topology and application independent. The solution for the cut vertex problem is

applicable for all overlay applications. Traditional methods of detecting cut vertices

require the information of overall topology, which is impossible in today’s large scale

and highly dynamic overlay networks. In this thesis, CAM, a distributed solution

that can effectively detect and neutralize the cut vertices, is proposed to combat the

cut vertex problem in overlay networks. In the CAM mechanism, nodes in overlay

networks send out probe messages to their neighbors to collect local connection in-

formation. The trafic cost induced by the probe messages is bounded by the hops of

the probe messages. Based on the received feedbacks, a node can form a connection

adjacent matrix(CAM) to figure out whether it is a cut vertex. A cut vertex will

then be neutralized by adding extra connections to other nodes. At the same time,

connections of the cut vertex are also selectively removed to offload the traffic that
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is processed by the cut vertex. CAM greatly improves the reliability of the overlay

network upon the failure of cut vertices. The correctness of the CAM algorithm is

proved in the thesis. The effectiveness and efficiency of CAM algorithm are evaluated

by the simulations based on the real world traces.

Besides the cut vertex problem, another problem that hinders the availability of

the service, the response loss problem, is also addressed. The response loss problem

is induced by the dynamics of the end nodes and the way the responses are sent

back in the unstructured P2P file sharing system. Three different techniques are

proposed to overcome the problem: the redundant response delivery (RRD) scheme

as a proactive approach, the adaptive response delivery (ARD) scheme as a reactive

approach, and the extended adaptive response delivery scheme(eARD) to function

in an unstructured P2P system with limited or no flooding based search mechanism.

RRD reduces the response loss rate by sending back redundant copies of response from

responder via different paths. RRD requires the least modification of the existing

response return mechanism and is the easiest technique among the three to deploy.

In ARD, each node in the response return path needs to maintain a list of neighbors

that forward the request to this node. The response can be sent back to a different

neighbor if one neighbor fails. As responders in ARD do not send out redundant copies

of responses, ARD induces less traffic than RRD. Both RRD and ARD are based on

the assumption that one request will be forwarded by more than one neighbor to

a node. eARD introduces the backup response delivery agent (bRDA) to store the

response path information and loose the above assumption. All three techniques can

effectively increase the response return rate, from up to 35% in RRD to 51% in eARD.

A hierarchical reputation system, hiREP, is proposed to guarantee the authen-

ticity of the service content provided by P2P file sharing systems. hiREP adopts a

hierarchical structure to effectively store and spread trust values in the P2P system.

A node in the hiREP system only reports transaction results to and fetches trust
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values of other nodes from its trusted reputation agents. This restricts the traffic cost

induced by trust value storage and spread. Public key systems are used in hiREP to

guarantee the data authenticity during the trust value storage and spread process.

A nodeID associated with the public key hash of the node is assigned to each node,

which enables the key distribution without third party certificate authority. Onion

routing based communication is adopted during the reputation request process to

protect the user information of voters.

In order to further improve the reliability of overlay applications for users, ef—

forts are made to explore the user safety issues. Specifically, we investigate the mu-

tual anonymity in overlay multicast systems. Different types of anonymity in an

anonymous overlay multicast system are defined in the thesis. A mutual anonymity

protocol, MAM, is proposed for implementing anonymity in overlay multicast sys-

tems. MAM includes an efficient and robust unicast initiator anonymity protocol, an

efficient unicast mutual anonymity protocol, and an effective anonymous multicast

construction approach. The anonymity degree provided by MAM against attacks is

analyzed theoretically. The analysis shows that the anonymity degree of AM nodes

is correlated with the broken ratio, tree degree, and tree depth. Compared to the

complete multicast tree, an incomplete multicast tree can achieve a similar anonymity

degree with much higher bandwidth efficiency. A series of comprehensive simulations

are deployed to evaluated the performance of MAM. The simulations show that MAM

can effectively construct an efficient anonymous overlay multicast tree.

7.2 Future Work

Looking forward to the future, work can be done on continuing refine and improve

the proposed solutions, as well as identifying and solving problems that hinder the

implementation of reliability in other categories of overlay applications. Specifically,
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the future work will lie in three directions and is listed as follows:

1. Integrate our work of reducing cut vertices with other studies on optimizing

the overlay topology to form a comprehensive solution on overlay topology op-

timization, which will further improve the reliability, and even the performance

of overlay applications. For instance, our work can be combined with the work

of P. Keyani ’8 work [55] on reducing high degree nodes to reduce both cat-

egories of topological “critical” nodes. They can be further integrated with

the topology aware methodologies to help improve the performance. There will

be problems and challenges in building such an integrated overlay topology

optimization solution. Our investigation proves high-degree nodes are not nec-

essarily cut vertices in overlays [63]. Removing high degree nodes by turning

the overlay topology into an exponential topology may induce new cut vertices.

In addition, the efforts to match the overlay topology with the underlying phys-

ical topology may lead to high degree nodes as well as cut vertices. Especially

it is shown that the topology of the Internet follows power-law [42]. It may

not be possible to achieve best results in all three aspects, i.e., minimizing the

number of cut vertices and high degree nodes, as well as matching the overlay

topology with the underlying physical topology. In this case, one/several new

metrics may need to be proposed to measure the overall benefit based on cut

vertices, high degree nodes, and topology matching, as well as an integrated

solution that can optimizing the overlay topology according to the new metrics.

2. Overlay networks are built on top of the underlying physical networks. The

characteristics of the underlying physical network may affect the reliability of

the overlay on top of it. Our study focuses on the overlay network itself without

taking into the account the influence of the underlying physical network. In the

future, our research can be extended by exploring the influence of the underlying

physical networks on the overlay networks.
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For instance, the multihoming technology is now deployed extensively in stub

networks to achieve reliability and redundancy on the connection to the Inter-

net. Intuitively, this will have positive influence on the reliability of the overlay

networks. However, studies need to be done to measure quantitatively how

much positive effect this change of the underlying networks will bring to the

upper layer overlays. In order to handle the connection failure scenario, the

multihoming technology adopts some methodologies such as prepending the

stub network’s AS number in the back-up BGP route, advertising the IP ad-

dress block associated with a broken connection to the upstream BGP router

connected with a live connection, or providing a tunnel between the upstream

BGP router connected with the broken connection and the live connection.

These methods generally take some convergence time to move the packets orig-

inally going through the broken connection to the live connection. This may

reduce the benefits that the multihoming technology brings to stub networks as

well as overlay networks. In order to achieve better performance and reduce the

financial cost of ISPs, traffic can be moved among different connections in the

load balancing process. This may conflict with the adjustment/optimization of

the overlay topology, which also tries to induce traffic among different paths in

the overlay network. In this area, we have completed a survey on the current

research in the multihoming technology and propose a load balancing mecha-

nism for multi-homed stub networks [62, 66]. We plan to further investigate

the effect of the underlying multihoming technology on the overlay topology.

. Besides optimizing the overlay topology, our research addresses problems that

are unique in the P2P file sharing systems and overlay multicast systems. This

can also be extended by identifying the problems and issues that are unique

in other categories of overlay applications. For instance, the dynamic feature

of the end systems also affect the availability of the live streaming application,
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which cause the loss of streaming packet and downgrade the quality of the live

streaming. Authenticity will also be an issue in the parallel downloading system

to guarantee the reliability of the downloaded data content. User safety will be

critical in the applications such as micro-pay to protect user information and

protect users from malicious behaviors such as identity theft. In this direction,

problems need to be identified first, as well as the root causes related to the

requirements/operations of the overlay application that leads to these problems.

Solutions can then be proposed to solve the problems and increase the reliability

of the applications. In addition, these solutions need to be easy to be adopted

in the original application. They should also be designed in a way that does

not downgrade the performance and reliability that are already achieved in the

application.
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