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ABSTRACT

SCANNING PROBE RECOGNITION MICROSCOPY:
RECOGNITION STRATEGIES

By
Qian Chen

Scanning Probe Recognition Microscopy (SPRM) is a specially modified Scanning
Probe Microscopy (SPM) system designed and developed by our research group in
partnership with Veeco Instruments. In Scanning Probe Recognition Microscopy, the
SPM system itself is given the ability to automatically track regions of interest during
scanning through incorporation of recognition-based tip control. The recognition
capability is realized by using algorithms and techniques in image processing, pattern
recognition and computer vision fields. Adaptive learning and prediction are also
implemented to make the object detection and tracking procedures quicker and more
reliable. The major contribution of SPRM includes: (1) decreasing overall operation time;
(2) providing the ability to quantitatively measuring properties while maintaining the
uniformity of experimental environment; (3) sequentially measuring topographic,
mechanical and chemistry properties of the same sample surface through repetitive high
resolution scanning in the appropriate mode; (4) properties measuring in situations which
are inaccessible by standard SPM. SPRM measurements of the surface roughness,
elasticity and surface chemistry of 2D nanoscale electrospun carbon nanofibers are given
in detail as an example of SPREM analysis in a situation that is not fully accessible by
SPM. The 3D nanoscale electrospun nanofibers are the components of a tissue scaffold
for regenerative medicine. These scaffolds are used for neural cells re-growth in a

damaged spinal cord. The candidate’s thesis research is therefore to design and



implement the recognition strategies that allow SPRM properties extraction along tissue
scaffold nanofibers, to perform the first quantitative measure of multiple properties that
have been shown to be important in neural cell re-growth and, by doing so, to contribute

significant understanding to the cure of presently incurable paralysis.
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INTRODUCTION

Scanning Probe Microscopy (SPM) is a newly emerging and powerful technique for
nanoscale science in biology and medicine. Its great advantages are its direct
investigative capability and its inherent resolution which easily and reliably reaches
nanometer level, the precise scale for significant investigations of macromolecular
biological units. SPM techniques can also function in a liquid ambient environment,
which means that biological entities can be investigated under nearly life-like conditions
[1-3].

But SPM has limitations in several aspects. One of them is the relatively slow rate of
scanning during SPM imaging. It usually takes several minutes to generate a typical
image. Another is the heavy dependence on an expert human both as an operator and as

an image interpreter. Still another set of issues comes from imaging artifacts.

Our research group designed and developed Scanning Probe Recognition
Microscopy (SPRM) system in partnership with Veeco Instruments, which integrates
recognition ability into the SPM system to allow the SPM system to automatically track
specific regions of interest. Also, additional powerful functionalities are also integrated
into the SPRM system, including feature recognition, object classification, auto-tracking
and property analysis abilities. Different functionalities can be realized by operating in
online or offline modes. Therefore, in addition to saving operation time, SPRM has the
advantages of providing more meaningful information about samples automatically,
efficiently and accurately. The power of SPRM allows the investigation of many

situations in which standard SPM is insufficient.

The candidates’ original research contributions to the development of SPRM are as

1



follows. One major contribution has been development of a set of recognition strategies
that provide mathematical criteria that guides the auto-tracking. The recognition
strategies are grounded on the imaging processing concept of feature definition. A feature
is any relevant aspect of a system. It must be probable of precise mathematical definition
in terms of a test criterion. The candidate’s contribution is to define the first set of
features within Scanning Probe Microscope data. These features were then used as part of
the feedback loop which guided the auto-tracking implementation. Another major
contribution by the candidate was the first adaptation of SPRM for investigation of a
significant nanobiomedical problem, analyzing nanoscale 3D cues for spinal cord repair
research. The candidate also made significant contributions to the development of the
auto-tracking implementation, and to material properties analyses.

The dissertation is divided into three parts. In the first part, the main focus is the
instrumentation design and development of the new Scanning Probe Recognition
Microscopy capability. The second part focuses on the successful application of SPRM
system in analyzing nanoscale 3D cues for spinal cord repair research. The third part
summaries the conclusions from the present research and identifies the future work.

In the instrumentation part: the first chapter introduces the commonly used imaging
techniques to set both SPM and the new SPRM within the context of techniques used for
nanoscale investigations, and particularly for nanobiological investigation. Then the
fundamentals of SPM, which is the base instrument of SPRM, are addressed in chapter 2.
Chapter 2 discusses the fundamental elements of SPM, its advantages, its limitations and
the current start of art. Chapter 3 discusses the new functionalities built in SPRM and the

basic design and development of SPRM and how these address issues in SPM.



In the second part, the main focus is using SPRM to investigate a very important
research topic: spinal cord repair. In Chapter 4, motivation and background of SPRM in
spinal cord repair are addressed. Chapter 5 discusses the auto-tracking ability of SPRM
which enables the system to scan only on individual nanofibers within the tissue scaffolds
used for regenerative medicine, thereby, collecting the first accurate nanofiber properties
analyses. In Chapter 6, the topographic, mechanical and chemical properties of
nanofibers which influence neural cell attachment are addressed and analysis of these
properties are done by using SPRM. Cell responses to different substrates are explored
and compared in Chapter 7. Chapter 8 discussed the correlation of electronspinning
parameters with nanofiber properties analysis. The last part of this dissertation
summarizes the conclusions reached from the candidate’s research, along with discussion

of the future research directions.
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Part | SPRM INSTRUMENTATION DEVELOPMENT

A new SPM-based technique, Scanning Probe Recognition Microscopy (SPRM), is
presented in this dissertation. The new SPRM system improves several aspects of SPM,
including speed, accuracy and flexibility. Also, the SPRM system enables the
investigation of situations in which SPM is insufficient. SPRM will be an outstanding
new tool in the multiple research fields that need nanoscale investigation with SPM
techniques.

Nanobiology especially needs techniques that can provide direct observation and
analysis of phenomenon at the nanoscale. SPRM has the potential to be widely used in
experimental nanobiology. The development of SPRM for applications in nanobiology is
multidisciplinary in two respects. One is the development of the new SPRM capability
within the overall field of scanning probe microscopy. Another is to set both SPM and the
new SPRM within the context of experimental techniques used in nanobiological
investigations. As the current state of art techniques used in nanobiology are also those
used in nanotechnology in general, discussion of these provides a setting for the
development of SPM as well as SPRM. Therefore, the experimental techniques used in
nanobiology will be discussed first, followed by discussion of SPM and finally by the
discussion of the development of SPRM.

Therefore, the first part of dissertation focuses on the development of the SPRM
system. It starts from the most commonly used experimental imaging tools in current
nanobiology researches. Then SPM techniques are introduced, the advantages and

limitations of SPM are emphasized, and the latest research works to improve SPM



performance are addressed. Finally, the design and development of the new SPRM

system are discussed in detail to enhance the performance of SPM.



CHAPTER 1

1 IMAGING TECHNIQUES USED IN NANOBIOLOGY

The present SPRM system is successfully used to investigate many research topics in
nanobiological field. Therefore, a survey of imaging techniques commonly used to
investigate nanobiological phenomenon is addressed and comparisons between them are

also discussed.

1.10ptical Microscopies

(1) Phase contrast microscopy

Phase contrast microscopy is an optical microscopy illumination technique in which
small phase shifts in the light passing through a transparent specimen are converted into
amplitude or contrast changes in the image [4]. It is preferable used to bright field
microscopy to provide contrast of transparent specimens such as living cells or small
organisms.

(2) Fluorescence microscopy

Fluorescence microscopy is an optical microscopy technique used to study the
properties of specimens using the phenomena of fluorescence and phosphorescence in
addition to reflection and absorption. It is one of the most ubiquitous tools in biomedical
laboratories. In fluorescence microscopy, the sample under investigation becomes itself
the light source. The fluorescence microscopy is based on the phenomenon that certain
material emits energy detectable as visible light when irradiated with the light of a
specific wavelength. The sample can either be fluorescing in its natural form like

chlorophyll and some minerals, or treated with fluorescing chemicals. Fluorescence
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microscopy has 3 strengths. First, it has high biological specificity. Second, it is highly
sensitive in the imaging of cells and tissues. The exquisite sensitivity and image contrast
allows biological structures to be imaged on the submicron length scale. Third, it is a
minimally invasive imaging technique, which gives it the ability to study biological
structure and function in vivo[5].

But in a thick sample, the signals from multiple sample places are integrated to form
the final image. Since there is little correlation between the structures at different depths,
the final image becomes fuzzy.

Fluorescence microscopy can be implemented in other more advanced configurations
to enable novel imaging modes. Two particularly important configurations, confocal
microscopy and two-photon microscopy, are discussed.

(3) Confocal microscopy

Confocal microscopy is an optical imaging technique that can obtain 3D sections in
thick specimens by using a spatial pinhole to eliminate out-of-focus light or “flare” in
specimens that are thicker than the focal plane. It achieves blur-free images of thick
specimens at various depths, at the cost of obtaining fluorescence signal from only a
single point in the specimen.

There has been a tremendous explosion in the popularity of confocal microscopy in
recent years, due in part to the relative ease with which extremely high-quality images
can be obtained from specimens prepared for conventional fluorescence microscopy. It
has been used extensively to investigate microstructures in cells and in the imaging of
tissues[6].

In laser scanning confocal microscopy, a fluorescent specimen is illuminated by a



point laser source, and each volume element is associated with a discrete fluorescence
intensity. Laser scanning confocal microscopy offers several advantages over
conventional fluorescence microscopy including controllable depth of field, the
elimination of image degrading out-of-focus information. The primary advantage is the
ability to serially produce thin optical sections through fluorescent specimens that have a
thickness ranging up to 50 pm or more[7]. Advances in confocal microscopy have made
possible multidimensional views of living cells and tissues that include image
information in the x, y and z dimensions as a function of time and presented in muitiple
colors (using two or more fluorophores). The disadvantages of confocal microscopy are
primarily the limited number of excitation wavelengths available with common lasers,
which occurs over very narrow bands and are expensive to produce in the UV region.
Another downside is the harmful nature of high intensity laser irradiation to living cells
and tissues. Finally the best spatial resolution obtained to date is on the order of 400 nm,
which is still too large to explore macromolecular resolution processes which have 1-10
nm resolution requirement.

(4) Two-photon microscopy

Two-photon microscopy is an alternative to confocal microscopy for the 3D imaging
of thick specimens. Two-photon microscopy uses non-linear absorption of two photons to
induce fluorescence that is confined to a very small region. A laser beam is scanned
laterally across the sample to generate 2D fluorescence images from an extremely thin
optical section within the sample. This optical section can be varied in depth, building up
a stack of images to produce a 3D rendering the sample. An excellent demonstration of

the ability of two-photon imaging for deep tissue imaging is in the neurobiology area[8].



The major advantage of two-photon microscopy is its ability to permit
high-resolution and high-contrast imaging from deep within intact living tissue.
Two-photon microscopy is particularly useful for live imaging of thick samples because it
has less photodamage compared with confocal microscopy. Since two-photon microscopy
obtains 3D resolution by the limitation of the region of excitation instead of the region of
detection as in a confocal system, photodamage of biological specimens is restricted to
the focal point. Photodamage at the focal plane will still occur, as with the confocal, <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>