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ABSTRACT

This dissertation explores Spatial Autoregression Models (SAM). It gives the

definition of the autocorrelation coefficient p in SAM, supplies the technique for the

computational precision for parameter estimation in SAM, and makes the SAM model

applicable in practice.

Based on SAM models, the autocorrelation coefficient p turns out to be the correlation

coefficient between a matrix W and a vector Y, a new measurement in statistics for the

social sciences; the classical Factor Analysis Method is also generalized to the non-

variance - covariance matrices.
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INTRODUCTION

The spatial autoregression model (SAM) represents the relationship between the vector

Y representing attributes of subjects, and the association matrix W that represents the

relationships among all subjects. In the model, the two main estimands, the

2, are uniquelyautocorrelation coefficient p and variance of the random error term 0

determined by the matrix W and the vector Y. But the commonly used techniques for the

estimation of p produce many values outside of a sensible range for p, and even the

interpretation of the parameter p itself is not yet well understood. All these facts restrict

the use of SAM.

This dissertation explores the interpretation and estimation of p as well as 02, and

emphasizes the importance of the extent of the consistency between W and Y which is

captured by p. This estimation of p is especially useful in the social sciences where the

data could be high in dimension (say around 10 or higher), and the data are possibly

highly correlated.

Key words: MLE method, Newton-Raphson (NR) iteration, autocorrelation coefficient p.



Chapter 1

A GENERAL REVIEW IN THE LITERATURE

OF SPATIAL AUTOREGRESSION MODELS (SAM)

Spatial Autoregression Models (SAM) are important in social sciences including in

education. In this chapter, I first briefly introduce the parameters in SAM, and approaches

researchers have applied to parameter estimation. I cite part of Ord’s (1975) technical

work on a maximum likelihood estimation (MLE) method, to which my new

development in SAM is tightly related.

1.1. The importance of SAM model in education.

Researchers are interested in how students gain their academic achievement (an

outcome vector Y). The variable Y could be caused by their personal variables (X1) such

as age, gender and race. Y could also be caused by their family variables (X2) such as

Social Economic Status (SES), income level and his / her mother’s education. Again, Y

could be caused by their school variables (X3) such as private / public school, number of

teachers in this school, etc. To answer the question how students gain their academic

achievement, the multivariate regression is commonly used. When doing so, we assume

that there is no mutual connection between individual students, or we are assuming that



students’ academic activities are mutually independent. For example, in Shavelson

(1996), the first assumption for conducting the multivariate regression analysis (MRA) is

“Independence: The scores for any particular subject are independent of the scores of all

other subjects” (page 536). It is the same for conducting the analysis of variance

(ANOVA) (page 378).

However, such kind of assumptions might be not appropriate. For example, Cressie

(1993) said in his book focusing on the Spatial Models: “The notion that data close

together, in time or space, are likely to be correlated (i.e., cannot be modeled as

statistically independent) is a natural and social phenomena” (page 3). Also, Duke (1993)

said in his article about Network Effects Models: “Researchers in the sociology of

education have long recognized the importance of peer influences in shaping the

academic achievements, aspirations, and educational attainments”, and “. .. have also

been very aware ofthe limitations of the methodologies they have employed in

investigating peer influences” (page 465). Here, “Spatial Models” and “Network Effects

Models” are exchangeable in the literature depending on the different topics.

When we start the educational quantitative research work based on the data set of Y,

{X1, X2, X3} and {W1, W2, W3} like this, we usually conduct the multivariate regression

treating Y as outcome and {X1, X2, X3} as predictors. Now new questions arise: what can

we do with those {W1, W2, W3}? Is there any kind of relation between Y and {W1, W2,

W3}? Or between {X1, X2, X3} and {W1, W2, W3}? We think that there should be some

kind of relation, strong or weak, between Y and {W1, W2, W3}, also, between {X1, X2,

X3} and {W1, W2, W3}. Treating W, Y and X as individual variables, we hope to find

some kind of relation between W and Y (or X).



The new questions make sense. Subjects are more or less mutually connected and

influenced within a network (a matrix W). The connections could be geographical (W1)

such as the distances between the seats of pairs of students (so that W. is symmetrical). It

could be personal (W2) such as the level of friendship (thus W2 is not necessarily

symmetrical). The connection could also be social (W3) such as the sports team

membership of the same interest / club (then W3 probably would be symmetrical).

Here is a practical example for teachers. In Frank (1995, 1996), the data collected from

a group of 24 high school teachers included an association (weight) matrix W and some

vectors Y. The author identified cohesive subgroups among those teachers based on W,

the level of the frequency of their professional discussions. In these two articles,

however, the relations between the weight matrix W and each of those vectors Y, such as

the teachers’ gender, race, year of teaching, and their moral agencies, were not

considered due to the lack of available techniques. So that, we are not sure whether or not

the weight matrix W, or the pattern of those teachers’ professional communication, is

more or less associated with some personal vector(s) in that school. Is the pattern of their

professional communication mainly associated with individual’s orientation to teaching?

Or mainly because of their race and gender?

Practically, we are concerned that the subjects’ variable (a vector Y) might be more

related to one of the W matrices than to others. That is, the student achievement might be

more related to the pattern of their fiiendships than to the geographical distances between

their homes. Or, we are concerned that the pattern of subjects’ fiiendship (a matrix W)



might be more likely related to one of the X vectors than to others. That is, the pattern of

subjects’ fiiendship might be more associated with their gender than with their ages.

Theoretically, the first concern above regards a comparison of relations between one

Y with different Ws; the second concern above means to compare the relations between

one W with Y and different Xs. Both of those concerns are essentially focusing on the

same topic: the relation between a matrix W and a vector Y which can be addressed

through Spatial Autoregression Models (SAM).

Substantial developments have been made by Mead (1967, 1971), Ord (1975), Doreian

(1981, 1982, 1989), Cressie (1993), Duke (1993), Marsden and Friedkin (1994),

Leenders (1995) and others to the literature of Spatial Autoregression models (SAM).

However, the remaining difficulties, both theoretical and technical, restrict the practical

application of SAM in many instances.

This dissertation makes the SAM model applicable in practice. We will be able to

measure the general relation between a matrix W and a vector Y, to compare the

differences of relation between one W with different Y and Xs. Also, we may compare

the differences of relation between one Y with different Ws. We’ll find the essence of the

relation between W and Y in SAM.

1.2. The MLE approach to SAM models.

The SAM model was initially applied to studies in geographical and agricultural

economics such as Whittle (1954), Mead (1967), and Ord (1975). Working with the

spatial autoregression model, researchers explored the relationship between a vector Y



representing attributes of subjects, and a weight matrix W, or the association matrix in

different contexts, describing the mutual relationship among those subjects.

In SAM, the subjects can range widely including plants, counties or persons; the

relationship between subjects is often given in terms of geographical distance. For

example, in Ripley (1981), possible subjects mentioned were trees, towns, birds’ nests,

imperfections of metals, galaxies and earthquakes. When the weight matrix W represents

the mutual relationship between individuals in an organization, and Y represents an

attribute of those individuals in the organization, we are applying the SAM model in a

sociological and psychological sense. Then we may find the important application of

SAM models in education.

Once the subjects are determined, the researcher needs to specify the strategy for

choosing a measurement for the relationship, either geographical or interpersonal. In

spatial autoregression models, the connections among subjects extend in all directions, so

that even geographical distance might not be unique depending on the definition of “all”

directions. For example, Anselin (1988) suggested geographical ways such as “short

path” or “neighboring” for the definition (page 18). Mead (1967) introduced ways of

making geometrical connections on a plane in different covering sizes (page 193). Both

the above approaches are objective. When trying to apply the SAM model in social

sciences, we might be dealing with the interpersonal relations in many different ways,

either objective or subjective. For example, when a subject is making a decision, this

decision could be influenced by the frequency ofphone calls made to others in the social

network, then this connection is objective. A subject’s decision could also be influenced

by his level of intention towards those he’d like to engage, then this connection is



subjective. In general, we will deal with many different types of connections, which are

represented by the weight matrix W.

SAM initially deals with effects through spatial autocorrelation. In Cliff and Ord

(1973), the authors illustrated that concept: “If the presence of some quality in a county

of a country makes its presence in neighboring counties more or less likely, we say that

the phenomenon exhibits spatial autocorrelation” (page 1), although no direct definition

of “autocorrelation” was given. Anselin (1988) acknowledged that spatial

autocorrelation, or spatial dependence in his words, “is best known and acknowledged

most often, particularly following the pathbreaking work of Cliff and Ord (1973)”. The

author also said: “it is generally taken to mean the lack of independence which is often

present among observations in cross-sectional data sets” (page 8). Recently Leenders

(1995) described spatial autocorrelation “either a variable or of an error is the situation

where the observations of variables or the values of the error terms for different actors are

not independent over time, through space, or across a network”. All of the above give us

an understanding of spatial autoregression models although a clear definition of

autocorrelation is unavailable in the extant literature. We also notice that in recent

decades, a lot of excellent research work has been done with the autocorrelation of error

terms, but relatively less has been done with the autocorrelation of variables in spatial

autoregression models.

1.2.1. The parameters p and 0'2 in the SAM model.



In Ord (1975), the weight matrix W (nxn) in SAM is assumed with entries ng 20 ( i at j)

and w,-,- = 0 for any i,j=l,2, ..., n. Ord’s assumption is carried on in this dissertation from

chapter 1 through chapter 4, and is developed to a more general case where wij 20 is not

required and w,-,- = a at 0 is considered in chapter 5.

With W = {Wij} , an (nxn) set of non-negative weights which represent the degree of

association between thejth subject and the ith subject, and with Y = {y,}, an (nxl) set of

observed outcomes, the first order spatial autoregression model is

y, =a+p2wijyj+8i (1.1)

j=l

where 8 ~ N(O, 021) with parameters or, p and 0'2.

Equation (1.1) can be reformulated in matrix notation by taking or = 0 suggested by

Ord (1975) (page121), as

Y = pWY + s (1.2)

where W is the (nxn) matrix of weights and Y, s are (nx 1) vectors. We notice that W has

entries Wy' 20 ( i ¢j) and w,-,- = 0 for any i,i=1,2, ..., n.

This is the simplest first order spatial autoregression model in which the parameters p

and 0'2 need to be estimated. We’ll mostly focus on the relationship between W and Y,

and the estimate of p as a function ofW and Y.

For the SAM model, there are different methods of estimating the parameters p and 62.

One of the commonly accepted methods is the maximum likelihood estimation (MLE)

method. In MLE for the parameters p, the Newton-Raphson iteration is conducted



repeatedly until convergence or divergence of parameters p is obtained by some rules. In

each step for the SAM model, the researcher has to obtain an estimate of parameters p

which is carried into a matrix for computation, then have the matrix inverted, and obtain

a new estimate for the next step. Without a computer or when the dimension ofthe

weight matrix W is high, say around 10 or higher, it is difficult to obtain a maximum

likelihood estimate ofparameters p and 62. So until the theoretical development of Ord

(1975), this method was rarely considered practical due to computational difficulties.

1.2.2. The “once and for all” technique for the Newton-Raphson (NR) iteration in

calculation.

In Ord (1975), writing A = A(p) = I - pW which is in full rank, the log-likelihood

function for p and 02, given Y is

 1 )Y'A'AYHnlAt (1.3)or
We may write the term Y'A’AY as ll AYllz, and specifically write the term |A| = |detA|

where “detA” is the determinant of A. Thus 1n |A| is always defined. But in order to be

consistent with Ord’s article, I keep using 1n |A|. A brief note is given later in this

chapter.

Then the ML estimators are obtained as

62 =n"Y94'AY=(l)[(Y—5WY) (Y-pWY)], (1.4)

n

and the p estimate is the maxirrrizer of

[(5.6 2) =const - (able; 2 ) — $1144]. (1.5)



Equivalently, it is to minimize

f(f>)= —;21—lnlA|+ln(62) = G(ia)+ H(fi), (1.6)

, 2 .. ..
where G(p) = —;lnlAI and H(p) = ln(oz).

I separate the function f (p) into two parts G(p) and H(p) for the reasons given in

chapter 3 (§3.1). This separation is a key step, which helps us to draw conclusions from

the equation (1.6) by applying the Cauchy mean value theorem.

The possible minimizer of (1.6) would be the solution to the equation

f '(p) = O (1 -7)

or those points on which f ’(p) does not exist.

In the process of iterating to minimize f (P), lAl , the polynomial in p has to be

evaluated afi'esh at each iteration. As Ord (1975) said, when n is large, or A is irregular,

this process becomes computationally intensive. Thus Ord created a new computational

procedure as follows.

Since |A| = 11K] — pit ,) where 7.3 e {7.3}, the eigenvalue set of W, then

i=1

ln|A| = lnfi(1 — p1,): :lnfl— pki).

M i=1

In the Newton-Raphson iteration process to find the minirnizer of f (p) in (1.6), writing

YL = WY, the iteration is taken as

p... = p, -f’(p.)/f"(p,) where

f'(p)= (321:7/(1- p7,.)+ 2(p(Y,)' Y, — Y'YL) /s2 and

10



n

f"(p)= (92(102/(1— pt.)2 +2(Y,)' Y, /s2 —4(p(Y,)' Y, — mg)2 /s4 where

i=1

s2 a 32 (p): Y'Y— 2pY'Y, + p2 (Y, )' Y,

If pr converges when r --> 00, it converges to the ML estimate of the parameter p.

The advantage of Ord’s technique of writing a determinant |A| into an algebraic product

is obvious. Because we need to repeatedly calculate the value of |A| which changes in

each step, we need to deal with a lot of matrix computation. But now with Ord’s

technique, whole matrix computations become simple algebra because the eigenvalues of

W need to be evaluated only once. That is why this technique is called the “once and for

all” technique.

1.2.3. A note in case the weight matrix W is asymmetrical.

We know that

6 2 = n"Y'A'AY = —1-[Y'(I — 5W)'(1 — my]
n

— 1[Y'Y-pY’WY-13(WY)'Y+52(WY)'(WY)]-
_ 7?

When W’ = W, this form will be the same as that in Ord’s Appendix A for the

following computation. The function (1.6) is exactly equivalent to

“5): (—%):ln(l — {340+ ln(Y'Y— sz'Y, +§2(Y,)'Y,)—1nn. (1.3)

i=1

where the author uses YL to represent WY.

1]



But when W' at W, a possible case in social sciences, the above formula (1.8) and its

derivatives need to be slightly adjusted. The new version of f (p) after adjustment should

be

A 2 n A A A2 '

f(p) = (_ figmfl - pr,)+ 1n(Y'Y— pY'(W+ W')Y+ p (WY) WY) — Inn. (1.8)’

The expression of the minimizer of f (p) in the Newton-Raphson iteration process is the

same as above, namely

9... = p. -f'(p,)/f"(p.)-

But others are now as follows:

f'(p)=(%);A,/(l-pki)+(2p(WY)'WY—Y'(W+
W')Y)/SZ and

2 n
' I 2

f~(p)= (;)Z(7t,)2/(1— p7.)2 + 2(WY) WY s2 - (2p(WY) WY— Y'(W+ W')Y] /s4

i=1

where

s2 a 52 (p): Y'Y— pY’(W+ W')Y+ p2(WY) WY.

Here I use WY instead of Y1, to clarify the difference between W and W'.

In the following chapters, I am not going to emphasize the difference between

symmetrical and asymmetrical Ws repeatedly. But in chapter 6, the data analysis involves

an (8x8) asymmetrical weight matrix, and the formulas for computations are the new

versions.

1.2.4. Problems when |A| is non-positive, and how to avoid the problems.

12



We know that I A | = | 1 — pW | is an nth polynomial of p, and may have values either

positive, or negative, or possibly zero when p ranges on (-oo, oo). In some formulas of this

chapter, e.g. (1.3), (1.5), the logarithm of |A| is taken, this logarithm may make no sense

if the value of |A| is zero or negative. Also, in chapter 4, |A| appears in a log-likelihood

function which may also make no sense if the value |A| is zero or negative. That is why I

mentioned early in this chapter to write |A| as |detA| to avoid such a technical problem. In

the following, I treat |A| as |detA| without further notification.

1.3. Methods other than MLE.

In Ord (1975), the MLE method is compared with the ordinary least square (OLS)

method or generalized least square (GLS) method. Ord showed (page121-122) that the

OLS estimator is inconsistent for a general weight matrix W, and is consistent only when

W is triangular, a limited and non-interesting case.

1.3.1. Anselin’s Bayesian method.

In Anselin (1988), the author introduced some other methods for comparison with MLE

method. The author concluded (page 81): “the maximum likelihood approach to

estimation and hypothesis testing in spatial process models is by far the better known

methodological framework”.

For the Bayesian method, the combination of prior information about the distribution of

the parameters, namely the autoregressive coefficient p and the error variance 02 in the

model, are needed. When we start to work on an SAM model, it might be difficult to get

such information in advance. Without any prior information, however, this method is not 7

l3



appropriate (not a Bayesian one). As Anselin said (page 89-90), “following the standard

approach in econometrics, diffuse prior densities for these parameters are expressed as:

P(o)o< 1/0',0<0'<+oo.

P(p) o< constant, -1 < p < +1.”

There might be flaws in these priors. The second prior density means that p is

uniformly distributed on the interval (-1, l) which is the boundary for the model after the

weight matrix W has been standardized as some authors suggested. However, the

relationship between W and Y is not considered which can strongly affect the estimate p

as I will show in the following chapters. Also, as we know, the absolute values of the

maximum and minimum eigenvalues of the weight matrix W are not equal in most cases,

so that (l/kmgn, l/itmax), the range of p, is not symmetrical to the origin in most cases. This

second prior density seems not to be appropriate. Anyway, Anselin said (page 81) that in

spatial models, the implementation of alternative approaches (other than MLE method)

including the Bayesian method “has been rather limited”.

1.3.2. Cressie’s asymptotic property approach.

Cressie (1993) gives details of spatial modeling and parameter estimating regarding the

lattice models in the chapters 6 and 7 of his book. The author said (page 458), for models

in chapter 6 of his book where the first order spatial autoregression model is included,

“estimation ofmodel parameters is not always so straightforward. Of course, finite-

sample properties, such as sufficiency, completeness, ancillarity, unbiasedness, minimum

mean-square error are still desirable; however, they are even more elusive than for the

i.i.d. paradigm.” As a conclusion, the author said that “methods of estimation are usually

14



assessed via their asymptotic properties” while those finite-sample properties are not

guaranteed.
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Chapter 2

EXISTING PROBLEMS AND NEW PROBLEMS WHEN APPLYING

SPATIAL AUTOREGRESSION MODELS TO THE SOCIAL SCIENCES

This chapter is mainly a list of problems: theoretical or technical; old or new in the

literature of Spatial Autoregression Models (SAM).

When dealing with the agricultural and geographical data decades ago, the SAM model

arosemainly as a theoretical work with limited practical meaning due to the

computational difficulty and the lack of understanding of the model itself. When trying to

apply spatial autoregression models in social network analysis in recent years, some new

problems occurred in the model application. I list these old and new problems in the

following, and am going to solve them in the following chapters.

2.1. The theoretical limitation, the old problems.

(a). The definition of the parameter p has not been clear.

0 As cited in chapter 1, Cliff and Ord (1973) said that “If the presence of some quality

in a county of a country makes its presence in neighboring counties more or less

likely, we say that the phenomenon exhibits spatial autocorrelation”. But no
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definition of autorcorrelation or illustration of the autocorrelation coefficient p were

given.

Mead (1967) wrote (page 191) that “7. is defined to be the competition coefficient” in

his interplant competition model where the coefficient p was written as 7.. In another

paper (1971), the same author said (page 18) that “7. is a competition coefficient

which, if the ‘correct’ form of f} is found, would be expected to remain constant at a

particular time in a particular environment”. There, f} is the element of the weight

matrix (or the association matrix). We noticed that in Mead (1967), the author cited a

discussion about the parameter p from another early paper, Kira et a1. (1953). When

dealing with a simplified setting, Kira et al. “found that most values of the

(autocorrelation) coefficient were positive, which they interpreted as showing co-

operative rather than competitive situations”. This interpretation began to be

considered as the meaning of the parameter p in a limited sense.

Ord (1975) briefly says (page 120) that together with 0 as the estimate of the standard

deviation for the random error, “0 and p are parameters”.

In Doreian (1982), the author says (page 240) that “p is the spatial effects parameter”.

In his other paper (1989), the author says (page 285) that “p is the network

autoregressive parameter”.

In Anselin (1988), on page 33, the first order spatial autoregression model is

introduced with no statement dealing with the parameter p; on page 35, the author

says that “p is the coefficient of the spatially lagged dependent variable (of WY)”,

giving no more details; on page 58, the author says that “p is a spatial autoregression

coefficient”.
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0 When tracing back the history of p, Leenders (1995) says (page 55) that “p is a

scalar”. The author also mentions (page 167) that p “should be considered a

descriptive parameter rather than a governing parameter” with no further explaining

on being “descriptive”.

0 Duke (1993) gives a statement about the parameter p by saying “p is the parameter

representing the strength of the context effect”. Also, no further statement was given

in that paper.

From the above, we may find that these statements about parameter p are mainly in a

sense of naming, rather than giving a definition. A new definition will be given in chapter

5 (§5.1).

(b). The necessity ofthe boundary for the p estimation is not clear.

The boundary of the estimate p is a key issue concerning the autoregression model in

the literature. The estimated value of parameter p from a computer direct search

frequently is large, and researchers have tried to find an appropriate boundary to restrict

the divergence. The commonly accepted range (l/lmin, l/itmax) or similar ones can be

found in Ord (1975), Doreian and Hunmon (1976), Anselin (1982). Recently, Leenders

(1995) suggested that parameter p could truly take large values with no further reasoning.

I will address this issue in chapter 4 (§4.3).

(c). The range and interpretation of the estimate of p have not been discussed.

The estimate p is the minimizer of the likelihood fimction f(p), so is a solution of the

equation f '(p) = 0. We know that f '(p) = 0 is a non-algebraic equation with multiple
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roots, and an analytic expression of the estimate of p is difficult to obtain. We also know

that the interpretation ofthe estimate of p was least talked about so far in the literature.

The meaning of p being high or low, positive or negative, in which sense, and in what

kind of scale, etc. has not been clearly stated. The range and interpretation of the estimate

of p will be discussed in chapter 4 (§4.1).

2.2. Technical constraints, the new problems when applying the model to the social

network analysis.

Because the matrix W could be asymmetrical, or the value wij ofW might be negative,

we are facing some new problems in the field.

(d). The matrix W might be asymmetrical, so that there might be (and most likely will

be) complex eigenvalues. On the other hand, when dealing with the boundary problem,

some researchers such as Ord (1975), Doreian (1981), Duke (1993) and Leenders (1995)

suggested the “row normalization” for matrix W. Once W is row normalized by setting

w”.
. .*=

WU n

2 war

j=I

 
for any i,j =1, 2, ..., n so that Zwy' =1 for any i= 1, 2, ..., n, the boundary

j=l

of the estimate p would be simply | p | s 1. However, the normalized matrix W* would

become asymmetrical in most cases and cause the complex eigenvalue problem, although

the original matrix W could be symmetrical. This issue is addressed in chapter 3 (§3.1.2).

(e). So far in the literature, the weight matrix is treated as w),- = 0 for i=1,2, ..., n. In

social sciences, however, the case w),- = a at 0 could make sense but has not yet been

considered. We need to explore the essence of the case w,-,- = a at 0, and the relationship
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6‘ 99

between the estimates p for cases w),- = 0 and w), = a at 0. If we treat this a as a constant

which may take zero, positive or even negative values, we are actually talking about

W(a), a family of weight matrices in a more general sense. I will address this issue in

chapter 5.
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Chapter 3

A NEW TECHNIQUE FOR ESTIMATION OF PARAMETERS p AND 0'2

TECHNICAL IMPROVEMENTS

In this chapter, I explore the construction of SAM model. Based on the understanding

of the construction of SAM, I obtain two results regarding the parameter estimation of

SAM. One is that in the interval (I/Xmin, l/kmax), the value ofY'WY and estimate p will

take the same sign, which helps to understand the construction of solution space of the

estimate p (§3.1). Another is the so-called “far end” method of initial value selection for

the estimation of p, which helps to control the estimate p not “flying out” of the required

boundary (§3.2).

3.1. The “Separation” of the log-likelihood function.

The key work here is to use a “separation” technique which helps to draw conclusions

from the log-likelihood equation in the MLE method. That is, I separate the function

f ’(p) into two parts: g(p) and h(p). In function (1.6), we had the function f(p) = G(p) +

H(p). Taking the derivative of function (1.6) gives

f '(p) = G'(p) + H'(p) = g(p) + 17(9) where

g(p)= (HZ-(fig; and
n i=1
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p(Y,) Y, — Y'Y, .

Y'Y-ZpY'Y, + p2(Y,) Y,

h(P)= 2-
 

with YL= WY.

Clearly, the value of g(p) is determined by p and W's eigenvalues {7.3}, and the value of

h(p) is determined by p, and both W and Y.

Now we have the derivative of the log-likelihood function as we had in chapter 1,

P(YL) YL —Y’YL

Y'Y-ZpY’Y, +p2(Y,) Y,

 

f'(p)= [SET—l—pit-F2)
i=1

I discuss the solution of equation f '(p) = 0 which will be the solution to our parameter

estimation.

3.1.1. Assuming W has all real eigenvalues.

Case 1. Assuming Y'YL > 0.

Applying the Cauchy mean value theorem shows that both Y'YL and estimate p will

have positive values in the boundary (llkmin, I/Xmax).

[Table3A about here]

I briefly explain Table3A as follows. The second column from left is checking the

value of function f '(p) when p = 0. Since g(0) = (2m): 0., = 0 and

h(0) = -2(Y'YL)/ YL ’YL < 0, we have f '(0) = g(O) + h(O) < 0. The fourth and fifth

columns from left are checking the value of function f '(p) when p = p' = min(pv, l/Amax)

where pV = (Y'YL)/ YL 'YL, the OLS estimate. When pV s l/itmax, we have
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Table3A

The location of p, the solution of the equation f '(p) = 0.

Assuming Y'YL > 0 so that pV = Y'YL / (YL)’YL > 0.

 

There must be p' such

that

0 < P. < min(pv, UM)

p' = min(pv. 1mm)

with pv g 1/7...,.

p' = min(p". UK...)

with pV> 10.4,...

 

g(p) =(2/n7): L- 41-974) g(O) = (21m): 7.- = o g(p') = g(p") > 0 g(p.) = g(l/lmu) = +°°

 

h(p)=2(P(YL)'YL -

Y’YL) / (Y'Y- 2pY'YL

+PZ(YL)'YL)

h(0)= -2Y'Yl/Y'Y < 0 MW) = Mo?) = 0 h(p') = h(l/AmM) < 0

 

 f '(p) = sin) + h(p)  f'(0) = 8(0) + 11(0) < 0  f '(p) = 0  f'(P') = f'(pv) > 0  fr(po) = f’(I/}Lmax) = +430
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g(p') = g(pv) > 0. and h(p') = h(pv) = 0 so that f '(p°) = g(pv) + h(pV) > 0- When

p‘7 > “Mm, we have g(p') = g(l/itmax) = +00, and h(p') = h(l/kmax) < 0 so that

f '(p') = g(l/kmax) + h(l/kmax) = +00. At last, we have f '(p') > 0 no matter pV 31/7...”1x or

p" >1/7.,,,,,..

Since f '(p) is continuous on (0, p') with f ’(O) < 0 and f '(p°-0) > 0, we must have at

least one point, namely p‘, within (0, p') with f '(p‘) = 0 by Cauchy mean value theorem.

That is, both Y'YL and estimate p will have positive values in the interval (10%", l/kmax).

Clearly to say, if Y'YL > 0 given W and Y, then the estimate p > 0. This conclusion is

expressed in the third column from left in Table3A.

Case 2. Assuming Y'YL < O.

In the similar way, we see that Y'YL and the estimate of p will both be negative in the

boundary (l/Amin, l/lmax).

Case 3. Assuming Y’YL = O.

In case Y'YL = 0, Y'YL and the estimate of p will be both zeroes.

Now, we see that the sign of the estimate of p is uniquely determined by the sign of

Y'YL which is determined by the relationship between W and Y since Y'YL = Y'WY.

Thus, we make the conclusion that the value of Y'YL and estimate of p, the minimizer of

the equation f '(p) = 0 will have the same sign in the boundary (l/kmin, l/itmax). This gives

three parts of the solution space of the estimate p taking zero, positive and negative

values respectively.
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An example is given in appendix (Appendix3A) where the dimensional number is 3. I

choose Y1 = (1 1 l) ' and Y2 =(10 -1) ' so that we will get Yl'YlL = Y1'W Y1=16 > 0

and Y2’Y2L = Y2'W Y2 = - 6 < 0 respectively. In the first case, the estimate of p will be

positive, and in the second, the estimate of p will be negative. The separated parts of its

. 2 . ..

log-likelihood fimction G(p) = —;lnlAI and H(p) = ln(o 2 ) , and their corresponding

derivatives are g(p) and h(p). In Figure3A-Figure3J, I show the likelihood functions and

their corresponding derivatives for two different Y vectors in order to demonstrate how

the positive / negative estimates of p will be located.

[Figure3A — Figure3J about here]

I briefly explain Figure3A — Figure3J as follows. Figure3A is the first part of the log-

likelihood function, namely G(p) = -(2/n)ln(I - pW). In the figure, the y axis represents

G(p). Figure3B is the derivative of the first part of the log-likelihood firnction G(p),

namely g(p) = G’(p). Both functions G(p) and g(p) are independent of Y. The second

part of the log-likelihood function is related with Y. The shape of the figure will vary

when the given Y varies. Figure3C is the second part of the likelihood function

H(p) = ln(0'2) when Y = (1 1 1)’, and Figure3D is the derivative of the second part of the

likelihood function, namely h(p) = H’(p) when Y = (1 1 1)’.

Now summing up part one and part two ofthe log-likelihood fimction, we get

Figure3G, the figure of the likelihood firnction, namely f (p) when Y = (1 1 l)’, and

Figure3H, the figure of the derivative of the likelihood function, namely f ’(p) when
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G(p)

  

 

 
2

G0?) = -;ln(1 - PW)-

The first part of the log-likelihood function, 11 = 3.

Figure3A
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g(p)

100-

50'

 

 

 
g(p) = G'(p) =(-%ln(1- 9W7),-

 

....50 .

—100*  

The derivative of the first part of the log-likelihood function, 11 = 3.

Figure3B
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Hl(p) = ln(62 (VI).

The second part of the log-likelihood function where y] = (1 1 1)’, n = 3.

Figure3C
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111(1))

20-

10-

 

 

 

 
h1(P)=1‘1’.(P)=(1n(62 y,))-

The derivative ofthe second part of the log-likelihood function

Where y1=(1 1 1)’, n = 3.

Figure3D
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H203) = 111(62 y, )-

The second part of the log-likelihood function where y2 = (1 0 -1)’, n = 3.

Figure3B
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h2(1))

 

  
h2(P)= H2 (P)=(1n(62 y,))-

The derivative of the second part of the log-likelihood function

Where y2 =(10 -1)’, n = 3.

Figure3F
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f1(p)

 

 
2

f1(p) = G(p)+ H1(p)= -;;ln(I-pW)+ln(cr2 2).

The log-likelihood function where y1 = (1 l 1)’, n = 3.

Figure3G

32



MP)

60*

40-

20*

 A-rsz

  
 

D

-20 .

-60 .      

 

. 2 ' 7

f1 (9) = g(P)+ht(P) = (-;1n(1- PW)) +(1n(6’ y,))'-

The derivative of the log-likelihood function where y] = (1 1 l)’, n = 3.

Figure3H
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f2(p)

 

 

 

 -1-

 

2

f2(P) = G(p)+H2(p) = -;1n(I-pW)+ln(<r2 ,7

The log-likelihood function where y2 = (1 0 -1)’, n = 3.

Figure3I
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f2’(p)

75L

   

 

 

 

 

L . . ./ p

-1 5 —1 -o.5 7"“ : o s

-25}

—so}

-75E   
I

7 2

f: (p) = g(p)+hz(p) = (-;ln(1- 9W7) +(ln(<r2 ,, 77’-

The derivative of the log-likelihood function where y2 = (1 0 -1)’, n = 3.

 

Figure3J
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Y = (1 1 1)’.

Similarly, Figure3B is the second part of the likelihood function H(p) = ln(0'2) when

Y = (1 0 -1)', and Figure3F is the derivative ofthe second part of the likelihood fimction,

namely h(p) = H’(p) when Y = (1 0 -1)'. We also have Figure3I, the figure of the

likelihood function f (p) when Y = (l 0 -l)', and Figure3J, the figure of the derivative of

the likelihood function f ’(p) when Y = (1 0 -1)'.

When Y1 = (1 1 l)’, we see in Figure3H that the curve of f ’(p) meets the p axis three

times. The one which is within the boundary (l/kmin, I/Xmax) is what we want to find, the

estimate of p. It is positive as we have predicted in Table3A. Similarly, when

Y2 = (l 0 -1)', we see in Figure3J that the estimate p is negative.

3.1.2. Assuming that W is asymmetrical and has pairs of conjugate complex eigenvalues.

n 2

Duke (1993) has shown that 2mrepresents a real number for the variance

i=1 “ '

matrix ofparameters including p. Duke did not mention the derivatives of g(p) and h(p)

which are used for computation, nor the functions f '(p) and f "(p) which are used in the

whole process of iterations. The conjugate complex eigenvalue problem was also touched

by Leenders (1995) but not completed.

In the case of conjugate complex eigenvalues, algebraic calculation shows that f '(p)

and f "(p) remain real in each step of each iteration (see Appendix3B), then with an

initial value p° real, the next p estimate generated from the iteration will be real, and so
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forth in all the following steps. If this process of iteration converges, it converges to a real

value, the estimate of p.

3.1.3. The solution space of the estimate p.

As we know, any matrix W (even if complex) is similar to a Jordan canonical standard

form that is not necessarily diagonal. That is, by an orthogonal transformation, any matrix

W is similar to a matrix A with diagonal blocks of Jordan matrices. Here, a Jordan matrix

has its principal diagonal constant while the next diagonal contains ones, and all the

remaining elements zeros. When the order of these blocks of Jordan matrices and the

other eigenvalues is fixed, the orthogonal transformation matrix P is unique ifW is non-

singular.

The above consideration about the Jordan canonical standard form is mostly

mathematical, but we need to talk a little about it here. As we know, when W is similar to

a Jordan canonical standard form, the corresponding A might not be diagonal. But we

may have found that A being diagonal or not is not a restriction to our previous work, and

not to the following work as well.

At last, we may find that there is almost no restriction to the weight matrix. It can be

symmetrical or not; sparse or not; singular or not. The only restriction to W might be that

W is real in practice. But theoretically and mathematically, even this restriction is not

necessary.

When W is real and symmetrical, we know that W is similar to a real diagonal matrix,

W = P'AP where A is diagonal and P is orthogonal with P’P = I. When W is non-singular
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and the order of its eigenvalues is fixed, the corresponding P is unique. Now assuming W

is real and symmetrical, we have the corresponding

LI 0 O

A = 0 L2 0 where L; is diagonal with all elements positive (all of W's positive

0 0 L3

eigenvalues) and with its index set 11; L3 is also diagonal with all elements negative (all

of W's negative eigenvalues) and with its index set 13; all elements of L2 are zeroes (all of

W's nil eigenvalues) and with its index set 12. Seemingly, the dimension number of

L1 UL2U L3 is n. In the following discussion, it’s convenient to put all eigenvalues of L1

and L3 in a descending order.

In order to decide the sign of the estimate of p, we need to solve for

Y'YL>0 (3.1.1)

Y'YL = 0 (3.1.2)

Y'YL < 0 (3.1.3)

respectively.

It’s easy to see that Y'YL = Y’WY = Y'PAP'Y = (P'Y)'A(P'Y). Let P'Y = Z, so that

Y = PZ because P'P=I. The transformation between Y and Z is orthogonal and Y'YL is

L, 0 0

transformed into Z'AZ. Corresponding to A = 0 L2 0 , I write Z = (Z. Z2 Z3)’

0 0 L3

where 23 is the subset of vector Z and get

Ll 0 O Zl 3

Y'YL = Z'AZ =(zl Z, 23 o L, o 22 = 22,. L,Z,

o o L, z, "'
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Recalling that L2 is a nil block, L1 and L3 are both diagonal with all positive and all

negative eigenvalues respectively, I transform the equations (3.1.1), (3.1.2) and (3.1.3)

into:

S,(7.,2)=Z7.,. -z,2 +Zt,-z,’>o (3.2.1)

rel, rel,

S,(7.,Z)=Z7., .2,2 +22, ~z,.2=0 (3.2.2)

is]. re],

S,(7.,Z)=Z7., 2,2 +22, -z,.’<0 (3.2.3)

rel. is],

where 23 (ieIl , 13) are the elements of 2’s subset Z], Z3 respectively.

Clearly, now we get the solution space of the estimate p when p equals zero from

(3.2.2) which is actually an n-dimensional conicoid. The “inside” and “outside” of the

conicoid would be the solution spaces from inequalities (3.2.1) and (3.2.3) respectively.

Thus, we get the construction of the solution space of the estimate p from a weight matrix

W given any observation vector Y. By the orthogonal transformation, we transform W

(and Y) from W and Y space into A (and Z) in A and Z space where each axis Z,-

(weighted by the corresponding eigenvalue 7.)) represents the ith factor. We notice that A

is diagonal.

To make the space visible, we draw a conicoid in a three dimensional space (see

Figure3K). This figure is based on the data from the example 1 (see Appendix3A) where

W is a 3x3 matrix on X or Z1 (7.1 = 5.50963), Y or Z2 (7.2 = 4.55287) and Z or

Z3 (7.3 = -.956762) coordinate system within a range of (0 3 XS 2,-2 g Y s 2).
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[Figure3K about here]

Figure3K gives the construction of the estimate of p in the Z space based on the weight

matrix W given in example one. When a given Y is transformed into Z space, and if the

corresponding Z is exactly on the surface of the conicoid, we get estimate of p = 0. If the

transformed Z is “inside” or “outside” the cone, we will obtain estimates of p > 0 and < 0

respectively.

When the dimensional number n is larger than 3, we are unable to draw a real figure,

but the construction will be the same as an n-dimensional conicoid.

3.2. The “Far End” method of the initial value selection.

3.2.1. Ord (1975) suggested using Y'YL / Y'Y as an initial value for the Newton -

Raphson iteration. In §3.1, we obtained the graphical impression that the estimate of p

would be pretty close to Y'YL / YL'YL, not Y’YL / Y'Y. It is possible that the latter can be

larger than 1 / kmax, and out of boundary (llkmin, l/Amax) before any iteration, producing

an immediate problem. It could also be the case that the latter is negatively larger than

l/Amin, and out of the boundary as well. Both cases will be verified in chapter 6 when I

run a data simulation. On the other hand, it is also possible that although we selected an

initial value within the sensible range (llkmin, I/Amax), we may not get to a “good” place

within the boundary, and the estimate p in the next steps may go out of the boundary and

take huge values easily. It is “flying out” or “falling out” of the boundary, a difficulty

bothering researchers for long. In the following, I talk about the initial value selection

problem in detail, and suggest a “far end” method.
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5.509632,2 —455287Z22—.956762Z32 = 0.

Figure3K
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3.2.2. A new method of the initial value selection based on the construction ofW and the

relationship between W and Y.

We know that for f '(p) = g(p) + h(p), the derivative of the likelihood function, g(p) is

determined by W only, and h(p) is determined by both W and Y. Looking at the equation

for h(p) = O, or

pd.) Y. - w.

Y'Y—2pY’Y, + p2(Y,) Y,

 
h(p)=2- =0,

we see that the numerator of the left side is linear in the parameter p while the

denominator is a quadratic form of p, so that the equation has one and only one

intersection point p‘7 = Y'YL / (YL)'YL at which h(p) = 0.

We may look at the graphs Figure3D and Figure3F from the example 1 given in the

appendix to get an intuitive impression. In the graphs, we see plv > 0 and p2V< 0. But in

both cases, we see that when p > pV, we have h(p) > O, and when p < pv, h(p) < 0. There

are two “peaks” symmetrical to the intersection point. Simple calculation shows that the

peaks have width {(Y'Y)((YL)'YL) - (Y'YL)2} 1’2/ ((YL)'YL), and height

((YQ'YL) / {(Y'Y)((YL)'YL) - (Y'YL)2} ”2. The product of the width and height is a

constant one. In case the width is small, the peak would be close to the intersection point

pV = Y'YL / (YL)'YL and is ‘steep’, just as h|(p) shown in Figure3D. Otherwise, when the

width is not small, the peak appears relatively far from the intersection point pV and is
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‘flat’, just as h2(p) shown in Figure3F . Notice that the scales in the figures are different

due to the limitation of the computer figuring function.

Assuming Y’YL > 0 so that pV > O, we know that the solution of the estimate p to the

equation f ’(p) = O is located between 0 and pV. If the width is small, then the peaks

would be close to pV, and are relatively ‘steep’. We see that there would be a twist around

the peak area. Once an estimate pr fiom an iteration falls into this peak area, and it

happens that the twist is “sharp”, the tangent taken for the next iteration by the Newton

tangent method may cut the p axis far away, or “fly out” easily. Our best choice (based

on intuition) is to take the initial value around .90 of the value min(pv, l/lmax), or even

.95 of the value. That is, to take it between 0 and p' = min(pv, l/lmax) and very close to

the latter. The selection is the same for the case Y'YL < 0. We may call this selection as

“far end” method.

At last, the estimate of parameter p is obtained, and the estimate of parameter (32

follows via formula (1.4) from chapter 1.

The verification of the difference between Ord’s and my new initial value settings is in

chapter 6.
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Chapter 4

A TRANSFORMATION FROM THE W, Y SYSTEM TO THE A, Z SYSTEM

A DEVELOPMENT OF THE SAM MODEL

In this chapter, I will address problems regarding the parameter p, both the technical

aspect regarding the estimation of p, and the theoretical aspect regarding the function of

p in the model. There is a new understanding about the boundary regularity

(l/Amth/kmax) for the parameter p.

4.1. A phenomenon: Why does the estimate p approach an extreme value easily?

One big issue regarding the SAM model is the interpretation of parameter p, either the

real effect of p in the model, or the estimate of p. In the literature, researchers have

mainly focused on the fact that Newton-Raphson maximum likelihood estimates may

take extreme values. Efforts were made to restrict this estimate p within specified

boundaries.

Different boundaries were suggested by Ord (1975), Doreian and Hunmon (1976),

Anselin (1982), and Leenders (1995). Recently, some began to consider the situation that

the real parameter p may take any real values while carrying the idea of finding the

boundary for estimate p. Commenting on the boundary problem, Leenders (1995) first
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said that “... the ‘appropriate‘ regularity condition is that p estimate may attain any value,

except 1/7.,-, i=1,2, ..., g for it, real” (pageIOO, Appendix to chapter 3). Then after citing

different versions of restrictions in the literature such as “-1/|7.max | S. p S I/Amax” from

Ord (1975), also from Doreian and Hunmon (1976), and “1/7.mi,, < ‘3 < 1” from Anselin

(1982), Leenders emphasized that the case when the p estimate falls out of the boundary

“is not even a rare case”, and said that “Substantively, however, it may be difficult or

even impossible to interpret values of 6 that falls outside ofthe unity interval” as a

conclusion (page71 ).

We know that theoretically, there are 71 solutions of .3 to the equation f ’(p) = 0 as we

see in Figure3H and Figure3J intuitively. By using the “separation” and “far end”

methods I introduced in last chapter, we may find any of these solutions without technical

difficulties. But we have a problem of making choices. That is, which one(s) of {5 should

we choose to be the solution to the model (1.2)? We know that one ofthe 71 solutions is

located in the range (“Mind/Max). We also know that pV = Y'YL / (YL)'YL is the global

minimizer ofthe random error term of the model (1.2), and pV can be located in or out of

the range (l/Kmiml/itmax) based on both W and Y.

We may address the issue of boundary now. The phenomenon of {5 “flying out of the

boundary” comes from two different situations.

Situation 1. If pV is located in the range (l/AminJ/Amx), then we may start the iteration

ofML estimation with an initial value which is ideally located in the range

(l/KminJ/itmax). The random error term is to be minimized in a global sense. But even
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doing so, we often get a large value of (3 that is far out of the range as a result. If this is

what we may call “flying out”, this is actually a computational error as I said in §3.2.2.,

and is easy to avoid by applying the “far end” technique.

Situation 2. If p’7 is not located in the range (l/lmiml/itmax) but another one, say

(laid/7.3“) where one of 10.3 or l/lm could be either -oo or +00, then we have a problem

of making choices. First choice is, we may prefer to choose the [3 which is located in the

same range as pV is. By doing so, we have the random error term minimized in a global

sense, but the p is out of the boundary (l/lmiml/kmax) and could be very large. Noticing

that the similar computational error of “flying out” mentioned in situation 1 may also

happen here, we still need to avoid this computational error. Second choice is, we may

prefer to choose the p which is located in the boundary (I/Amth/Amx) so that the (3

could not be large, but the random error term is minimized only in a local sense because

pV is not in the boundary as we know. In social network analysis, we prefer to make the

second choice. The reason is given later in this chapter.

4.2. The technical reason.

Here is the technical reason as to why the estimate of p approaches an extreme value:

the relationship between W and Y may cause the estimate of p to fly out in computation.

It’s just a technical error.

In the above, we have mentioned that the estimate of p may “fly out” of the range

(l/Kmin, I/Xmax) caused by the twist from the relationship between W and Y. What is

more, when W's dimension is relatively large, and the matrix W is not very sparse, it is
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usual that the eigenvalues Km. and M3,, might be relatively large in the absolute value

sense, then the range (l/Xmin, l/Xmax) would be pretty small, and the “flying out” would

occur rather easily. To avoid this technical error, we need only to select an initial value

by picking from “far end” as we have said in §3.2.2.

4.3. The theoretical reason.

Here is the theoretical reason as to why the estimate of p takes an extreme value: a

problem ofmaking choices.

The original autoregression model is

Y = pWY + e,

where the error term 8 is assumed to have an identically independent (i.i.d.) normal

distribution N(0, 0'21). Now, an orthogonal transformation from W, Y system to A, Z

system will help to find a rule in the new A, Z system. That is, the standard deviation of

each ith factor Z is adjusted by both the autocorrelation p, and the corresponding ith

eigenvalue 7.3. Let’s explore it.

As I have said in chapter 3 (§3. 1 .3), mathematically, any square matrix W can be

transformed into a Jordan canonical standard form which might not always be diagonal

with an orthogonal transformation matrix P. But if the order of the eigenvalues ofW is

fixed, the orthogonal matrix P is unique when W is non-singular. With an orthogonal

transformation matrix P for W = P’AP, and writing PY = Z, the SAM model is

transformed from the W, Y system to the A, Z system as

Z= pAZ+Pe.
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It’s well known that the new error term Ps remains i.i.d. normal, and we may rewrite it

as a for the convenience without confusion.

We know that the likelihood function for the model in W, Y system is

|A| ——l——l"'A711’

We 2’ (4.1)

whereA=|l~pW|.

Ltp. 62) =

When it is transformed into the A, Z system, the likelihood function is now

l___1—pAl—:32u—pA)(l—pA)Z

(ea—7’
140.62) (4.2)

1

As I have said in §1.2.4, we may simply rewrite |A| as «Al2 )A to avoid the negative

value problem in both (4.1) and (4.2), and the likelihood function (4.2) becomes

fi((1— p7.,)2)’4 Zz,(1— p7.,)zz,.

L(p, 02) = i=l exp _ I=I
  

  
 

(Jim—2) 202

= " 1 exp _ 2" . (4.3)

H 1/2n(%1— p7. )) 2 20%] — pm) 2

Now we see that for 2, ~ N(O, 0'2 /(1-p7.i)2), i=1,2,..., n, this likelihood function is a

product of densities of all {23 (the ith factor)} which are independent but not identical

because their variances are different from each other. I discuss the variance

632 = (52/(l-p}.t)2 below.
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(1) p cannot be a reciprocal of any eigenvalue of W, (namely 1/70) for any index i, or the

function (4.3) will make no sense.

(2) When p approaches (1/7tt) for any index i, the corresponding variance 0'32 approaches

infinity, the function (4.3) is converging to zero in a limit sense. This process can be

seen in different ways. In mathematics, it is simply a process of limitation. In physics,

this is the case when the factor z, is becoming a white noise, while all other factors

are dysfunctioned. In social sciences, this might be the case in which only the factor

2 = 62/(l-pAi)2 approaching23 is becoming a dominating figure with its variance at

infinity while all other factors are muted with their variances 032 = 0'2/(1-p7ti)2

remaining finite.

(3) When p = 0, all 23 have the same variance 02, so that all z, are i.i.d. normally

distributed.

(4) Now p at 0. First for the case p > 0, assuming W has a positive eigenvalue set {A1, 7.2,

, 7.1,} in a descending order.

(i) For all negative eigenvalues 7.1, we have 1 < 1"ij , so that all the corresponding

variances 01-2 are shrunk.

(ii) When 0 < p < 1/7tl so that 0 < p < l/7ti for i = 1,2, ..., k, we have 1 > 1-p7ti> 0 for

all i. In such a case, the variance 032 is enlarged for all i = 1,2, ..., k.

(iii) When 1/7.1 < p < 1/7.2, then for i = 2,3, ..., k, we have 1 > 1-p7.i> 0 and the

variance 632 is enlarged for i = 2,3, ..., k only. The variance 0,2 behaves as follows.

(a) If 1/7.1 < p < 2/7.1, then 0 > 1-p7.1 > -1, the variance 012 = (52/(1-p7.i)2 is

enlarged.
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(b) If 2/7.l <p, then -1 > 1-p7.., the variance 612 = 62/(l-p7ti)2 is shrunk.

From (a) and (b), we see that for 012, when p is increasing away from 1/7.., the

variance 0'12 was larger than 0'2 but decreasing to 0'2, and is then decreasing and shrunk

less than 0'2.

(iv) The discussion for the following 7.2, , 7..‘ would be the same as for 7.3 in

part (ii) and (iii).

(v) For the case p < 0. We will get the similar series of results as in (i-iv).

Let’s summarize the above (1) - (4) and talk about the change of the variance 0,2 in the

following.

Case 1.

When p = 0, for all weights 7.3, positive or negative, their variances 632 = (32/(1-p7ti)2

remain the same as 02. Neither enlargement, nor shrinkage would occur. This is a “fair

and natur ” status.

Case 2.

When 0 < p < l/7.1 where 7.1 is the 74m, for all negative weights, their variances are

shrunk. The larger the eigenvalue is (in an absolute value sense), the greater the shrinkage

will be.

When 0 < p < l/7tl, for all positive weights, their variances are enlarged. The larger the

eigenvalue is, the more the enlargement will be.

This case shows a kind of “bias”. In this case, the factors with negative weights

contribute less than it should, and the factors with positive weights contribute more than

it Should.
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We notice that in classical factor analysis, variances are proportional to the

corresponding eigenvalues where all eigenvalues are non-negative. But in SAM models,

variances are linked to both positive and negative weights, especially to those whose

absolute values are large.

Case 3.

When 1/7.. < p < 1/7.2 where 7.. is the 74m, for all negative weights, their variances are

shrunk (more than they were in case 2). The larger the eigenvalue is (in an absolute value

sense), the more the shrinkage will be.

When l/7t. < p < l/7.2, for all positive weights, their variances are adjusted differently.

For all positive weights 7.2, 7.3, ..., 7..., their variances are enlarged (more than they were in

case 2). The larger the eigenvalue is, the more the enlargement will be.

When 1/7.. < p < 1/7.2, for the positive weight 7.., its variance is first being enlarged,

then shrunk, and shrunk more and more when p is becoming larger and larger.

This case shows a kind of “bias and manipulation”. In this case, the factors with

negative weights contribute much less than they did in case 2. Those factors located right

of p with positive weights will contribute much more than they did in case 2, while for

Z., the factor located lefi of p with positive weight corresponding to 7.., its variance is

first being enlarged, then being shrunk. That is, Z. will contribute first more then less and

less.

Case 4.

When p is becoming larger and larger, similar to the case 3, the variances of all

negative weights are shrunk more and more.
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The counts of factors with positive weights located right of p will be less and less, the

variances of these remaining positive weights are enlarged much more. Their

contributions are artificially increasing.

The counts of factors with positive weights located left of p will be greater and greater,

the variances of these positive weights are first enlarged but then shrunk much more.

Their contributions are artificially first increasing then decreasing.

This case also shows a kind of “bias and manipulation” in a more serious situation. It is

biased more and more against the original weights.

Case 5,6,7.

These are cases for 0 < p. They are similar to the case 2,3,4 for p > O, and I don’t write

in details.

Seemingly, all the above cases are essentially a problem of choices. We may take any

value ofparameter p in the model. Taking any non-zero p means a kind of bias. When

this p is becoming larger and larger (in an absolute value sense), the weights of this

system are much more seriously adjusted, and less original. We may choose an extreme

value for p for a special reason, but it is mostly less meaningful.

One example might be the case of a congress meeting where each congressman is

represented by a factor. Each one is with his eigenvalue either positive or negative

depending on the case. Senior ones carry large eigenvalues and large variances, and

influence the system more than those junior ones who carry small eigenvalues and

influence the system less. In case parameter p goes out, say positively, of the boundary,

then some special situation happens. Assuming the parameter p is now between the
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reciprocals of the largest and the second largest eigenvalues, then not only the variances

of all negative eigenvalues are being shrunk, the variance of the largest eigenvalue is also

being shrunk. The variance of the second largest eigenvalue, and the following ones, are

being enlarged at the same time. Back to the congress meeting, such a situation means

that not only the influences of all congressmen from negative side are shrunk, but the

influence of the first leader from positive side (represented by the first factor) is also

shrunk, while the influence of the second leader from positive side (represented by the

second factor) is enlarged, and so are those following positive ones. It might be because

the first leader from positive side is constrained, or his role is ignored, either one is

causing the system unstable. When the parameter p moves rightwards further and further,

this situation is becoming more and more serious. At last, it could be such a case that the

variances of all factors with negative eigenvalues and almost all factors with positive

eigenvalues are shrunk, while the variances of the remaining one or two factors with very

small positive eigenvalues are highly enlarged. In the congress, it means that only one or

two very junior persons are making decision while all others, senior and junior ones are

constrained. We should believe that this kind of decision could not be very much stable,

and the system itself is not stable at all.
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Chapter 5

THE DEFINITION OF PARAMETER p AND

THE W(a) FAMILY OF THE WEIGHT MATRICES

In this chapter, I first give parameter p a general definition as an indicator of

consistency between W and Y in the model. Second, I develop a W(a) family that is a

general format of the weight matrix W with a constant “a” as the principal diagonal

elements. The assumptions of wy- 20 ( i at j) and w.,- = 0 carried on in chapter one through

chapter four are not required now. Specifically, we now consider W’s principal diagonal

elements “a” as a constant, taking zero or non-zero values. Based on the understanding of

the W(a) family in SAM models, I try to extend the concept of the classical Factor

Analysis method to a more general level.

5.1. The definition of the parameter p.

In Xu (1996), an early paper working on spatial autoregression models, I described

“The autocorrelation parameter p in the model indicates the extent of the members’

communication-cooperation within this group and is important to estimate.” Now I give

the parameter p a definition below.
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In spatial autoregression models (SAM), the parameter p is an indicator of the extent of

consistency between a weight matrix W and an observation vector Y. With 7..,... and 7..,“...

as the maximum and minimum eigenvalues of W, ifW and Y are more consistent, the

estimate of p goes positively higher, and intends to reach 1/7.max, the maximum of the

range of estimate of p. IfW and Y are less consistent, the estimate of p goes negatively

higher, and intends to reach 10......” the minimtun of the range of estimate of p. The word

of “consistency” is in an n-dimensional Euclidean distance sense based on SAM.

Now we may consider the parameter p as a correlation coefficient between a general

matrix W which is not necessarily a variance — covariance matrix, and a vector Y. It

seems to be a new measurement in statistics for the social sciences.

5.2. The geometrical reasoning of the definition of the parameter p.

The transformed Z space as in chapter 4 is spanned by factors Z., Z2, ..., Zn with the

weights of the corresponding eigenvalues 7.., 7.2, , 7... respectively. Notice that the Z

space has its combined direction 2* which is essentially the combination of all these axes

weighted by their directional weights {7..}, the corresponding eigenvalues.

When an observation Y° is transformed into Z°, the estimate p is actually a projection

of 2° on 2*, the combined direction of {2.} in the Z space. If the value of this projection

is positive and high, we see that Z° is consistent with Z*, the combined direction of Z

space, and we say that Y° is positively consistent to the matrix W. If the projection is

negative and high, we say that Y° is negatively consistent with the matrix W. That is why
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we may consider the parameter p as a correlation coefficient between a vector Y and a

weight matrix W, a new concept in statistics.

Z space is a multidimensional space. It could happen that a vector Y is exactly

transformed onto one axis Z. in Z space. But in most cases, the corresponding Z from Y is

usually “between” those axis 2.. So that mathematically, I would prefer to call this new

technique as a “non-eigenvector analysis”.

5.3. A comparison of SAM with linear models.

In a sense, the function and behavior of estimate of p seems to be similar to the

estimate r of the correlation coefficient between two vectors X and Y. This estimate p is

substantively a kind of correlation coefficient, but it is between a vector Y and a matrix

W.

In TableSA, the second column refers to a correlation coefficient analysis between two

standardized variables X and Y. The model is

Y. = IX. + 3., a, ~ N(O, 0'2), i=1,2,..., n

with cov(s., a.) = 0 when i :3j. The parameters r and 02, the variance of the random error

term need to be estimated.

The third column in TableSA refers to a spatial autoregression model with a weight

matrix W and an observation vector Y. The model is

Y = pWY + a, 8 ~ N(O, 621).

The parameters p and 0'2, the variance of random error term need to be estimated.

All values a, c, B, D in TableSA are constants.
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[Table5A about here]

I briefly compare the differences between these two models as below. Some more

comparisons can be seen in chapter 7 (§7.1).

- The solution of SAM model is not an algebraic one, so that an analytic formula for

the solution of .3 is not available.

0 The range of r in linear regression model is {-1, 1] when X and Y are standardized.

But in SAM model, the range of .3 is (1/7.m.n, 1/7.max) which can not be standardized

to [-1, 1].

o The properties are easy to verify.

5.4. The W(a) family.

In order to consider the estimate of p from weight matrix W in which all elements of

the principal diagonal are a non-zero constant “a”, we need to develop the W(a) family, a

more general concept of the weight matrix W for the following reasons.

As we know, w.,- is usually treated as zero in the literature. This property guarantees that

the summation of W’s eigenvalues equals to zero, or 27.,- = 0 which helps us to obtain the

conclusion in chapter 4 that “the values of estimate of p and Y'WY have the same sign

within the boundary”, and to obtain the construction of the distribution of the estimate of

p in space. At the same time, the importance ofthe condition of w.,~ = O, and the case

where w,-,- i 0 might not be emphasized enough in the literature especially in social

sciences. For instance, Leenders (1995) says (page 54) that “An entry w.) ofW denotes
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Table5A

 

 

 

 

 

 

estimate r estimate p

model Y. = rX. + a. Y = pWY + a

8. ~ iid normal 8 ~ N(0, 0'21)

cov(X., a.) = 0 cov(Y, 3) ¢ 0

definition correlation coefficient correlation coefficient

between a vector Y and a between a vector Y and a

vector X matrix W

analytic formula available not available

range ['1’ +1] (l/Amin, 1/7vrnax)

unit and scale no scale no scale

 

 

 

sign “+” means positively “+” means positively

consistent and vice versa consistent and vice versa

PIOPerty r(axtcabyrtm =r(X.Y)- P(aYJDW) = (1/b)p(Y,W)

IIISI- I/thn<p<1/7»max

 It | = 1 ifP(Y=bX) = 1.  p: l 0......“ If P(Y=Ymin)=l ,

p= 1 0...... if P(Y=Y,.,.,,.)=1 .
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the influence actorj has on actor t”. Then we may ask: does an entry w.,- = 0 mean the

actor has nil influence on him/herself? In other cases, if an entry “((7 represents the level

of trust subjectj gives subject i, or w.) is a measure of psychological links such as the

“intention” of communicating with others, then it’s hard to say that w),- = 0 means that the

ith ego trusts himself at a nil level, or the ith subject intends to communicate with himself

not at all. Both statements seem to be not very persuasive, and we need to work on the

case where w“- = a at 0 for i=1,2,..., n. This turns out to be a W(a) family problem.

W(a) is a weight matrix, real and possibly symmetrical. The letter “a” denotes that the

elements on W’s diagonal equal a constant “a”. This “a” can be positive, and possibly

negative which may have less practical meaning. When a = 0, the matrix W(0) is the

weight matrix W we have been working on till now. When a = 1, and if the absolute

values of W's all entries w.) are less than or equal to 1, this W(l) has all eigenvalues non-

negative, and can represent a variance-covariance matrix for a data set. In other words, all

variance-covariance matrices belong to a subfamily of W(l). We obtain an important

generalization of W.

In previous chapters, we have been working on W(O). For W(O), we obtained an

orthogonal matrix P, eigenvalue set {7..}for the diagonal matrix A, and the maximum,

minimum eigenvalues 7tmax, 7......n etc. Now we rewrite them in the “W(a) family” format

with “a” as a constant. That is, for a given W(a), we have the corresponding P(a), {7..(a)},

A(a), and 74mm), 74.....(a) etc. If a = 0, we are back to the simplified version.

Easy linear algebra shows that we always have the following properties:
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l. P(a) = P(O). That is, the transformation matrices are identical for the W(a) family

no matter what value of “a” is.

2. {7.,(a)} = {7..(0) + a}. That is, for W(a) and W(O), we have 7.,(a) = 7.,(0) + a for

i=1,2, ..., n. Seemingly, we have kmax(a) = 70mm) + a and Amin(a) = 7.,nin(0) + a.

3. A(a) = A(O) + a1 when the order of the eigenvalues are fixed. We always put them

in a descending order in our discussion. This is actually a direct result from 2.

Easy computation also shows the following properties (4-6) which I will apply in

chapter 6 when I calculate the ratios of the estimate p to the right bound 1/7.max or to the

left bound 1/ 7..,“...

4. Let W“ = kW where k is a non-zero scalar, then for W = P’AP with eigenvalue set

{7..}, we have W* = P’(kA)P with eigenvalue set {7..* }= {k7.,~}. Specifically, we have

km“ = kkmax.

5. In the SAM models, if an estimate of p is obtained over a given Y, then the

corresponding estimate p* over the same given Y and the new W* = kW will be p/k.

6. When k varies, the new estimate p* = p/k will vary. But we have

p* /(1/7.mx*) = (p/k) / (l/ kAmax) = p / (1/ 7%,“).

So, this ratio is invariant against scalar k, just as the projection of Y on W is invariant

in §5.2.

Now I consider the following situation. With a given Y, when dealing with two

different weight matrices, we would obtain different p estimates. I claim that a direct

comparison ofthese two estimates p might be not appropriate. The reason is, consider a
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first matrix with fairly large eigenvalues 7mm and 7..,“... that would cause a small boundary.

Then the obtained estimate of p could not be a large one even though it might be very

close to the value 1/7.,,,ax which means the ratio of the obtained estimate p to the value

l/me is large. Suppose the second matrix has comparatively small eigenvalues 7mm and

7m... which would cause a large boundary. The obtained estimate p might be relatively

large in an absolute value meaning compared with the first p estimate. However, it is also

possible that the second p estimate is actually not very much close to the value 1/7.max,

and the corresponding ratio is small. This is exactly what happens in chapter 6 when I

conduct a data analysis and compare p estimates from two different but related (24x24)

weight matrices. The invariance of the ratio will help for our comparison in §6.2.2.5.

Applying the above properties 1 - 3, I get the following relationship easily:

0
p(a) _L

‘ l+ap(0) (5'1)

[FigureSA about here]

The relationship between p(a) and p(O) from (5.1) can be seen in FigureSA. It is a

hyperbola. In the figure, the X axis represents p(0) which is the p estimate obtained from

a given Y and W(O), and the Y axis represents p(a) which is the p estimate obtained from

the same given Y and W(a) that is the same as W(O) except its principal diagonal

elements “a”. There is a one-to-one correspondence between p(a) and p(0). Taking

derivative to equation (5.1) gives
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p(a) ‘ 1+ap(0)
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The X axis represents the estimate of p(O) from Y and W(O).

The Y axis represents the estimate of p(a) from Y and W(a).

Figure5A
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_— 5.2

(1+ap(0))2 ( )
p'(a)| W, =

The expression of (5.2) shows that this correspondence is strictly monotonely

increasing since the right side of (5.2) is always positive. In summary, we see that the

curve meets the origin, and the slope of the curve at the origin equals 1 which is easy to

verify, and is for any value of “a”, so that the two estimates p(a) and p(O) are almost

equal around the origin for any value “a”. When parting from origin, the curve gradually

begins to change in slope.

When p(O) approaches the value of — X, from right side, we see that the hyperbola

approaches negative infinity. The hyperbola approaches positive infinity when p(O)

approaches —% from left side. In such a case, the one-to-one relationship is preserved,

but the range jumps dramatically. Easy mathematical work shows that when a = l, the

hyperbola of (5.1) is symmetrical to the line of p(a) = -p(0). So that, if the value of “a” is

around 1, we may have the ideal mapping between p(a) and p(0). That is, p(a) and p(O)

are fairly approximately close around zero.

5.5. The dynamic system in a social setting of the trio: estimate p, W and Y.

By the definition of parameter p given in §5.1, p is the indicator of the level of

consistency between W and Y, or the estimate of p is a firnction ofW and Y. A new

question now is, can we see the model in other way? Can we treat Y as the function ofW

and p when minimizing the random error terms?

5.5.1. When W is fixed, and parameter p is given, what is the expected Y?
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This is actually to solve a stochastic equation as

Y=(I - PW)" 8.

The solution of Y appears not to be meaningfirl since this is only a transformed random

error vector. But, as we know from chapter 4, the solution Y is a subspace in a super-

conic shape in a multiple space. It can be seen as the best fit ofY to the weight matrix W.

Of course, it contains infinitively many solutions, but when some marginal conditions are

available, or some of the prior information about the solution Y is available, then the

subspace of solution Y will be specified. In this sense, we are looking for the “best fit” of

Y to W at the given p level.

5.5.2. A note to equation (5.1)

For the moment, we consider the value of “a” non-negative. When “a” is negative, it is

less practically meaningful and we are not going to talk about that here. We will talk

about the case when “a” is negative including “a —) - oo” in chapter 7 where we consider

it as an extension of the classical factor analysis technique in a more general sense.

We see that when a -> + co, we have from (5.1) that p(a) —) 0 if p(0) #- 0. Also, when a

—> O, we have p(a) —-> p(O) for any p(0). When the value of “a” varies, we may obtain

information fiom these subjects as they relate with others in the network setting.

When a = 0, these egos (y.) are simple information processors. They don’t have ideas

from themselves, but make decisions totally based on other subjects’ attitudes. We see

that the case “a = 0” means these subjects are totally objective.

When a > 0, these subjects in the model become more than simple information

processors. The model effect is not purely objective. These egos (y,-) make decisions not
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only based on others’ information but also based on their own. When “a” is positively

increasing, the weights of these subjects’ own information are increasing. That is, the

positively increasing “a” indicates that these subjects are more and more self-centering.

The extreme case when “a = + co” means these subjects are totally subjective. It’s easy

to understand that in matrix W, a —) + co actually means that all wy-( for any i at j) are

approaching 0, and we find that these egos (y.) don’t want to accept information from

any others for their own consideration. They are purely subjective.

Practically, subjects in a social network are mostly between two extremes. Neither

“a = 0” nor “a = + 00” are practical and ideal. We prefer to have “a” at an appropriate

level between 0 and + 00. We see that when a is close to 0, these egos are more likely

cooperative and less self-centered; when a is becoming larger and larger, these egos are

more likely self-centered and less cooperative.
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Chapter 6

DATA ANALYSIS

In this chapter, I conduct a data analysis. There is a data simulation in part I and an

example in part II. I use my new Newton-Raphson technique in both parts. The result is

the realization of the definition I gave in chapter 5 to the parameter p in the SAM models.

6.0. The source of data.

In chapter 4 of Frank (1996), a weighted data set collected in January 1993 was

introduced. The initial motivation for using this data set was to identify cohesive

subgroups from professional discussions among teachers from a high school named “Our

Hamilton High” located in the Chicago area. In this set, a group of 24 teachers of the

school were surveyed. In Frank (1996) (page106), the collected data include these

teachers’ gender, race, years ofteaching in the school, and their level of moral agency

which was one of four measures “based on each teacher’s extent of agreement

(1 = strongly disagree to 4 = strongly agree) with items referring to the teacher’s

sentiments and orientation towards teaching”. Another variable p, the level of the

frequency of their professional discussions, was collected such that “each teacher listed

the five (or fewer) teachers with whom he or she had most often discussed professional
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matters during the 1992-1993 school year. The teachers were asked to weight the

frequency of discussions (1 = less than once a month, 2 = two to three times a month,

3 = once or twice a week, and 4 = almost daily)” (page 99) (see Appendix6A). Based on

the levels of the frequency of their discussions, an association (weight) matrix W (24x24)

was constructed in the following way. If the ith teacher indicated engaging in

professional discussion with thejth teacher at level p, the frequency of discussions (p

might take values either 1, 2, 3 or 4), then the entry w.) = p. If the ith teacher didn’t talk

with thejth teacher, then Wy’ = 0. Noticing that the conversations were not mutually

initiated, we observe that the weight matrix W is asymmetrical.

Now I will use the information mentioned above to conduct my data analysis in both

part I and part 11. Other available information collected from that school included the

teachers’ subject field (the courses they were teaching) and their office numbers, but I do

not use them here.

6.1. Part I. Data simulation.

6.1.1. The goal ofthe data simulation.

The goal of the data simulation is to check the level of goodness and efficiency of my

new technique and to evaluate the effects of using different initial values in the

estimation. Ord (1975) suggested using the initial value (Y’YL / Y’Y), and I suggest

using (Y’YL / YL’YL) as I have said in chapter 3 (§3.2.1)..

6.1.2. Simulating data in a spatial autoregression model (SAM).

In an initial SAM model
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Y = pWY + s (6.1)

where 8 ~ N( 0, 021), the weight matrix W is known, Y is observed. The researcher

estimates the parameter p by optimizing the likelihood function from model (6.1).

In this part, I first create a multivariate random error term which is i.i.d. normal. With a

given weight matrix W, a pre-chosen value of the parameter po (1 denote the value as po

here to tell the difference from the original p) within the boundary of (1/7.min, l/kmax), I

calculate Y using the formula

Y=a-pow)"e (6.17'

which is from model (6.1).

With the calculated Y as observed, I start the process of estimating the parameter p by

optimizing the likelihood function from model (6.1) to get the estimate p (which would

be different from the pre-chosen po).

For the same pre-chosen p0, I repeat the above steps a number of times by using

different random errors I created, so that the calculated Y would be different. Then I

obtain a series ofparameter p estimates. By getting the distribution of the obtained series

of estimate of p and comparing with the pre-chosen pe, I may find the extent of

efficiency of the maximum likelihood technique for the parameter estimation.

I would also repeat the above steps a number of times using other different pre-chosen

p0 values to find the extent of efficiency ofmy new technique when the pre-chosen p0 is

ranging within the preferred boundary of (l/7.m..., 1/7.max) from left side to right side.

Again, I would use the same series of multivariate random error terms I created before,

and the same pre-chosen p0 values to repeat all the previous procedure. But this time, I
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use Ord’s (1975) initial value (Y’Y. / Y’Y) instead of mine. Thus, I would have two

series of estimates p for each pre-chosen 60. By comparing the two different series, we

may have a better understanding ofmy new technique.

6.1.3. The plan of the work.

In an early version, I used a subgroup A(4x4) ofthe W matrix from Frank (1996) (see

Appendix6A) and found important differences. It was found that using Ord’s initial value

setting, we got about 23% of estimates p within the required range (1/7.m.n, llkmax) and

the percentage of violations to the requirement is 77%, a fairly large percentage (see

Appendix6B). While using my initial value setting with the “far end” technique, we got

all 100% of estimates of p being within the required range (1/7..n.,,, l/7.max). Seemingly,

the new initial value selection method gives much better results.

Since this A(4x4) is rather small, now I use a combination of subgroup A and

subgroup B from Frank (1996) for my example. Teacher ID 17 and ID 8 in subgroup B

were removed for simplicity, and I rewrite this matrix as A(8x8). A is asymmetrical and

contains a pair of conjugate eigenvalues. Its maximum eigenvalue is 6.87348 and the

minimum eigenvalue is —3.4321 1. The boundary from the reciprocal of the maximum and

minimum eigenvalues then is (-.291366, .145487) = (BL, BR) where B. and BR represent

left bound and right bound of the required boundary.

I use nine initial values as the pre-chosen p0 in the following way. They are listed from

left to right as

{po,-} = {.9OBL, 7OBL, .50B., 308., O, 308..., 503.1, .708.., .90BR} (6.2)

That is,

(p0,) = {-.26223,-.20396,-.14568,-.O874,0, .04365, .07274, .10184, .13094} (6.2)’
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We see that the left four are negative, and right four are positive. The middle one is

zero.

With a seed =3837, mean value = 0 and variance = l, I use SAS programming to

generate a series ofrandom vectors (8x 1) as the random error term a,- for i = 1 to n. For

simplicity, I chose the number n =30, not a large one. But even with n at this level, we

may find that the obtained estimates p are fairly normally distributed around the pre-

chosen p0 values respectively.

By using each of these nine pre-chosen initial values from (6.2), I calculate Y,- for i = l

to 30 based on (6.1)’. With A known, the Y,- calculated as observed, I obtain nine series

of estimates p,- (i = 1 to 30) for each of these nine initially pre-chosen values. The

distributions of these nine series of estimates of {pi} (i = 1 to 30) are easy to obtain.

Actually, all the above steps of the plan was conducted in my SAS program 1 (see

Appendix6C). The flow chart of the program is shown in Appendix6D.

I also prepared another SAS program 2 (see Appendix6E). Program 1 and 2 are

substantially the same except one minor difference. In program 1, the obtained estimate

of the parameter p is restricted within the preferred boundary, namely (I/Xmin, 1/7.max). If

the estimate is out of the boundary, I treat it as missing so that the number of obtained

estimates of the parameter p is usually less than 30 (see Appendix6F). But in program 2,

this restriction is taken off, so that the total 30 estimates will be printed out which can be

located anywhere on the real line, within or out of the boundary (see Appendix6G).

6.1.4. Discussion of the results.
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In general, the new technique gives most of the estimate p located within the boundary.

Generally but not necessarily, when the pre-chosen p0 is close to the left bound, some of

the estimates are out of the left side of the boundary; when the pre-chosen p0 is close to

the right bound, some of the estimates are out of the right side of the boundary.

6.1.5. Comparisons between different strategies of the initial value selections.

As I planned above, I re-conduct the same program again using Ord’s suggested initial

values. Now I use (Y’Y., / Y’Y) instead of (Y’YL / YL’YL) as the initial value. I found

that the difference in results is obvious. A large portion of estimates of p flew out of the

boundary when I used Ord’s method of the initial value selection.

Figure6A helps to understand the difference between these two strategies of initial

value selection. Remember I got a total of 270 8-dimensional y vectors in the above

simulation. 1 used both Ord’s and my strategies of initial value selection to get initial

values for iteration. Now, each of the 270 y vectors corresponds to a dot in Figure6A with

the coordinate (x, y) = (Xu’s initial value, Ord’s initial value). Noticing that the scales for

the horizontal and vertical axes in Figure6A are not equal, I also give individual

histograms to compare the two strategies of the initial value selection in detail (Figure6B

and Figure6C).

[Figure6A, 6B and 6C about here]

Figure6B is obtained from the initial values using my method. We may find that when

using my method, the initial values distributed pretty well within the boundary. That is,
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For each dot in the graph,

the X coordinate is Xu’s initial value, ranging (-.245376, .178482),

the Y coordinate is Ord’s initial value, ranging (-6.0202, 7.363602).

The required boundary is (-.1692563, .145487) which is between two

arrows on each coordinate.

Figure6A
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Distribution of Xu’s initial values.

The required boundary is (-.1692563, .145487) which is between two

arrows.

About 15.93% of Xu’s initial values are out of boundary.

Figure6B
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The required boundary is (-.1692563, .145487) which is between two

arrows.

About 97.78% of Ord’s initial values are out of boundary.

Figure6C
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about 84% of the estimates based on my initial values are located within the boundary,

about 5% are out from right side and 10% are out from left side. We know from chapter 3

that the Cauchy mean value theorem plays an important role in locating the estimate p.

With an initial value within the boundary, the estimate would be also located within the

same boundary, an ideal result.

Figure6C is obtained from the initial values using Ord’s method. Noticing the scales of

Figure6B and Figure6C are different, we may find that when using Ord’s method, the

initial values are not distributed ideally. That is, about only 2% of that initial values are

located within the boundary, 50% are out from right side and about 47% are out from left

side. Once the initial value is out of the boundary in the beginning, by the Cauchy mean

value theorem, the final estimate is most likely to be located in the same interval, thus a

poor result occurs.

We may change the seed value when creating the random error term, and the result

might be a little different, but the situation of “large portion being out of the boundary”

will remain the same when using Ord’s method of initial value selection.

6.2. Part II. A practical example.

6.2.1. The goal of the practical work.

Here I apply the new technique to work on a practical data set. The theoretical base is,

the parameter p in a spatial autoregression model is an indicator of the level of

consistency between W, the weight matrix and Y, the observed real outcome. We want to

compare the different levels of consistency between W, and four observations (Y).
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6.2.2. Steps of the practical work.

6.2.2.1. To obtain the eigenvalues of W.

I use the whole weight matrix W (24x24) from Frank (1996) (see Appendix6A). This

W matrix is asymmetrical, and I used Fortran programming to get {70}, the eigenvalue set

of W. (see Appendix6H).

6.2.2.2. In this school, “sex”, “race”, “year ofteaching” and “moral agency” are four

variables obtained from these teachers. Writing them in a vector format Y (24x1), I use

each ofthese Ys in SAM model to estimate p, the correlation coefficient between W and

each Y. In such a way, I may find an answer to the question: among those variables

“sex”, “race”, “year of teaching” and “moral agency”, to which one(s) is the pattern

matrix W most highly consistent?

Coding sex, I have male = 1 and female = 2.

Coding race, I choose two different versions W1NW2 and NB1B2.

In W1NW2, I code white =1, non-white = 2.

In NB 182, I code non-black = 1, black = 2.

The reason why I do so is because of the existence of the two “others”. They might be

coded as non-white, or as non-black. We may even code them with the middle value 1.5

which might be a little strange but make some sense. There are only two “others” in this

school. I found that their level of moral agency are relatively low, and different coding

technique may affect the analysis result especially when dealing with moral agency. A

comparison shows that black teachers had higher moral agency than whites (and others)
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with a mean difference around -.25 which is not significant with p value around .078 (see

Appendix6D.

Note the value of moral agency for teacher ID 24 who is a white male is missing. In

such a case, I may redo the analysis at a dimension number 23 (one unit less than 24)

level, and may still obtain general relationship between W and Y. But it would not be

consistent with analyses based on other variables (sex, race and year of teaching). To be

consistent, I assign teacher ID 24 a value of moral agency .21391 from teacher ID 11 who

was similar to ID 24 in terms of race, gender, and year of teaching. Also, I assign teacher

ID 24 another value 0.19042 that is the average value of moral agency over all white

males. As a contrast, I assign him a value of moral agency —.01690 from teacher ID 18

who is a black male, teaching the same course of physical education for similar years as a

contrast.

6.2.2.3. The real work of estimation using model (6.1).

With W given and Yme, Ysex (with two coding methods), wa and Ymom. (with moral24

= .21391, as well as moral24 = .19042 and moral24 = -.Ol690), I estimate those ps. Using

Ord’s formula (1975, page 124), I also calculate the standard deviation of those ps. Ord’s

formula might be problematic, and a brief discussion is in §6.4.

[Table6A about here]

The result is shown in Table6A. We find that both psex and prace are a little larger than

.06, pyea, is slightly below .06. These three values of pm, pm, and pyealr are pretty close.
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W’s entries are 0, 1, 2, 3, 4.

Table6A

 

 

 

 

NB1B2 W1NW2 Year of Moral Moral Moral

Sex teaching

Non-black White=l (ID 24= (ID 24= (ID 24=

=. Nomwhite .21391) .19042) -.01690)

Black=2 =2

Estimate .06051 .06147 .06340 .05910 .04653 .04644 .04503

p I (.01909) (.01784) (.01498) (.02076) (.02932) (.02936) (.02990)

% of

Estimate 85.08% 90.24% 89.13% 83.09% 65.42% 65.29% 63.31%

p to the

(UAW)        
 

I Figures in parentheses are standard deviations.

Amax = 14.059360 and l/Amax = .0711270.

Am." = -7.701774 and 1/7.m.n = -.l298402.
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All of these psex, prace and pyear are seemingly larger than pm... which is at around .046

level, no matter ID 24 takes which value for his moral agency. All estimates are within

two standard deviations of one another, even if using the smallest standard deviation of

.015. We notice that all pm, pm and pyca, are selection effects, effects of people

choosing to have professional discussion to others like themselves. That is, people may

decide the level they choose subjects to talk with just because of that person’s gender, or

race, or because of that person’s seniority. The pmm. is the only effect which could be

considered as influence.

6.2.2.4 Discussion of the table.

I make the following observations:

0 W is positively associated with race with pm, at .06 level (89%). It might mean that

when these teachers choose subjects to initiate a professional discussion, the race is a

main element to consider. They prefer to choose subjects of same race to have

professional discussion.

0 W is also positively associated with sex with psex = .0605 (85%). The levels of the

associations ofW with sex and with race are close although sex is slightly lower. It

might mean that when these teachers choose subjects to initiate a discussion, sex is

also a main element to consider. They prefer to choose subjects of same sex to have

professional discussion. It is not clear whether or not sex and race are associated

among those teachers. A correlation coefficient matrix of all variables including sex,

year, two different versions of race, three different versions of moral agency shows

that there is no strong evidence to show that sex and race are highly correlated with r
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= .299 and .293 for two different versions of races (W1NW2 and NB1B2) (see

Appendix6D.

0 With pyear = .059 (83%), W is also positively associated with years of teaching but at

a slightly lower level compared with race and sex. This is a relative comparison. It

does not confirm that year of teaching is not important compared with race or with

sex. In next chapter (§6.2.5), I would explore firrther.

0 With pmora. at .046 level (65%), Moral agency is less consistent with W than three

other Ys in the analyses. There is not much difference among the three different

values I assigned to the ID 24.

To summarize, we get a range of60% ~ 90% of the ratio (estimate of p) / (1/7.max) in

the p estimation.

6.2.3. Compare W(0,1,2,3,4) with W(0,l).

Dealing with the weight matrix W expressing connections between the regions in

spatial regression models, Ripley (1981) suggested (page 98) that “This can be just a

binary matrix giving 1 if the two regions have a common boundary, 0 otherwise, or it

could depend on the length of the common boundary, the distances between the regions

or transport costs between them”. Comparing the binary measure with the length ofthe

common boundary, we see that the author is actually talking about the coding or re-

coding ofthe weight matrix W. Ripley also said that “Bartels (1979) suggests that simple

binary weights have proved as adequate as more complex schemes”. Let’s try to explore

this idea.
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From now on, we consider another weight matrix W* which is related to the weight

matrix W I used in the above. In §6.2.l, the weight matrix has cell ranging from 0 to 4.

Now I dichotomize the value as 0:0, 1-—)4:1. That is, I re-code W into W“ as w*,-J- = 0 if

w.) = 0, and w* .1- = 1 either w.) = 1,2,3 or 4. We know that the level of wy- indicates the

frequency of the teachers’ discussions. When W is re-coded into W* in such a way, the

different level of frequency is reduced to a simple “yes or no” level, a binary one.

I repeat the same work for W* as I did for W in §6.2.2.3. The eigenvalues of W* are

different from those ofW (see Appendix 6K).

Using W*, I re-estimate the autoregression coefficient p by using the same Y values:

Yracc , Yscx , cha, and Ymond, and obtained the results shown in a table (Table6B).

Interesting enough, we find that for the W”, the ratios of pm, pm, (two methods of

coding) and pm... to (l/Xmax) are similar to the corresponding values obtained from W. We

notice that W and W“ have different eigenvalue sets. The 7.max and 741.... from W is

14.059360 and —7.701774; while the 7.max and 7..,“n from W* is 4.051115 and —2.083131.

It is appropriate to use the ratio of estimate p to the bound l/Xmax or l/7tm.n to compare the

results as we introduced in §5.4 and applied in §6.2.2.4. The results are shown in

Table6B. The ratios of pm”. to (10%...) are relatively lower in W* than in W: they were

at around 65% levels from W, but now they are at around 51% levels from W*. The ratio

of pm, to (l/lmax) and that of psex to (l/Amax) are remaining at the same levels in W* as

they were in W.

[Table6B about here]
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W’s entries are 0, 1 only.

Table6B

 

 

 

 

NB1BZ W1NW2 Year of Moral Moral Moral

Sex teaching

Non-black White=l (ID 24: (ID 24: (ID 24:

=. Nomwhite .21391) .19042) -.Ol690)

Black=2 =2

Estimate .2097 .2198 .2274 .2033 .1284 .1281 .1232

p I (.05746) (.04475) (.03344) (.06418) (.1010) (.101 1) (.1022)

% of

Estimate 84.97% 89.05% 92.10% 82.36% 52.04% 51.89% 49.90%

p to the

(UAW)        
 

I Figures in parentheses are standard deviations.

Amax = 4.051115 and l/Amax = .2468456.

Am... = -2.083 131 and l/Am... = -.4800466.
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How can we interpret this difference between W* and W regarding pmom? We know

that in W*, the different levels (0, 1, 2, 3, 4) of fiequency of professional discussion are

simplified to two levels (0, 1). When the percentage of pmom. from W and Y is higher than

that from W* and Y, it demonstrates that the teachers’ moral agency level is associated

with how frequently they initiate a professional discussion. The relatively higher pm...

from W and Y compared to that from W* and Y indicates that the fi'equency of

professional discussion is positively associated with teachers’ moral agency level. When

different levels of frequency are replaced by a simple “yes / no” choice, professional

discussion is not that positively and highly associated with teachers’ moral agency. This

pleasant conclusion seems to be acceptable in a common sense.

As we have said in chapter 5 (§5.2), the parameter p plays a role as the correlationship

coefficient between a vector Y and a matrix W, then different strategies of coding / re-

coding either Y or W may lead to changes to the value ofparameter p. Specifically to the

matrices W and W*, one is having categorical entries from 0 to 4 and another is re-coded

in a binary way, we have found a difference between these two matrices. There might be

other differences ifwe re-code the matrix W in still other ways. But here we are not

going to do further.

6.2.4. The cause — effect relationship between W and Y.

In Holland and Leinhardt (1981), the relationship described is Y as a function of W.

But now we may emphasize that there might not be a direct cause-effect relationship

between W and Y. We just say that W and Y are associated. That is, it is possible that Y

is the cause of W. It is also possible that W becomes the cause of Y. For example, when
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W is the association or pattern matrix among a group of subjects, and Y is their gender,

then usually W should not be considered as a cause ofY since by no means the subjects’

behavior can be the reason that they have their own gender. However, in a social

behavior sense, it might be better to assign some subject(s) a “social gender” which is

different fiom his / her biological one.

6.3. About the formulas for the standard deviation of p.

In Table5A and TableSB, I calculate the standard deviation of p using Ord’s formula.

There are different versions of formulas regarding the standard error term of parameters

in SAM in the literature. I list some ofthem below.

Doreian, P. (1982) (page249) with 4 parameters.

Duke, J. B. (1993) (page 472) with 3 parameters.

Both of the above formulas can be simplified to a formula with 2 parameters as below.

Ord, K. (1975) (page 124) with 2 parameters.

Doreian, P. (1981) (page 367) with 2 parameters.

The details of Ord’s formula can be seen in Doreian, P. (1981). Actually, all those

formulas are essential the same. I notice the following facts as comments.

1. Those formulas are asymptotic;

2. The importance of the relation between W and Y was not emphasized in the

formulas;

3. The fact that the boundary of p is not symmetrical to the origin when dealing with

W(O) was not considered in the formulas;
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4. Those formulas are functions of p and p is multiple-valued. It is not clear how to

pick out the value(s) of p fiom a group ofmany for the functions.

Because of the reasons above, it might be problematic to apply Ord’s formula to

calculate the standard deviations of p in my work. So are the comparisons with the

standard deviation of p. Since there is no other choices, Ord’s formula is used, and

further consideration is necessarily expected.
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Chapter 7

DISCUSSION

In previous chapters, we have obtained a new understanding of the SAM model itself,

and a new technique for parameter estimation in SAM model. Here I am going to

compare the new understanding with some other multivariate analysis methods in

statistics (§7.2 and §7.3.1 - §7.3.5) and plans for the further consideration.

7.1. The comparison of the new technique with the OLS technique.

In the following models, Y is the outcome, X is the predictor, W is the weight matrix, r

is the correlation coefficient, p is the autocorrelation coefficient, and s is the i.i.d. normal

random error. I want to make comparison of the new Newton-Raphson (NR) technique of

parameter p estimation in the SAM model with the ordinary least square (OLS) technique

of the correlation coefficient parameter r estimation.

(a). Y = rX + s

This is a general linear model with constant setting to 0 for convenience.

(b). Y = pWY + a

This is a general autoregression model with Y appears in both sides.

(c). Y = p(WY) + s
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This is a general autoregression model but treated as a linear model by computing WY

and using it as X, so that actually, Y appears at left side only.

Comments.

Model (a) is a typical regression model with no intercept.

Model (b). If Y is one of the eigenvector of W, then the error term a happens to be

zero. But practically, it’s unlikely especially when the dimensional number ofW is high.

Model (c) is an abuse ofthe spatial autoregression model Y = pWY + s by treating

(WY) as an observation X and solving for the normal equation for p and o2 estimates.

Calling this estimates of p and 02 as a “normal” solution, this “normal” solution is

different from the solution we obtained in §3.2. We have to notice the fact that the

“normal” 0'2 estimate is always smaller than that from §3.2. Can we say that this smaller

estimate of the error term is better? Then why bother working on the spatial

autoregression model?

The answer is simple: we must keep Y equal in both sides of the equity of the spatial

autoregression model, whereas the “normal” solution violated this requirement although

models (b) and (c) look like the same. Let’s talk a little more below.

In model (a) above, we are trying to get the solution of I; = rX where r is obtained by

minimizing the error term a. In model (b), we are trying to get the solution of I} = p f'

where p is obtained by Optimizing the likelihood function from model (b). We notice that

in model (b), I; appears in both sides of the equity. Now in model (c), when we abuse the

model by writing WY = X, we are actually trying to get the solution of 17: pX, or
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I’ = p(WY) by minimizing the error term a. We notice that in the left side of this

expression of I; = p(WY), we have I; , the predicted Y whereas in the right side of this

expression, we have Y, the original observation. Seemingly, I’ is not necessarily to be

the same as Y is, so that the requirement ofthe model (b) in which the same Y must

appear in both sides of the equity is violated.

7.2. The comparison of the new technique with factor analysis: the extended Factor

Analysis Method.

Substantively, the new NR technique is pretty close to the classical factor analysis. I am

going to talk a little more about the comparisons of the classical factor analysis with my

new technique in SAM models.

The history of factor analysis technique can be traced back to the beginning of the

century with the early work starting at one or two factor levels. In Harman (1960), the

author said that “a principal objective of factor analysis is to attain a parsimonious

description of observed data”. The author also said that “while the goal of complete

description cannot be reached theoretically, it may be approached practically in a limited

field of investigation where a relatively small number of variables is considered

exhaustive” (page 5). In factor analysis, we are going to transform the original data set

into a new factor space, and use less factors to express the original data set via the so-

called “factor extraction” step. We know that the main goal is to reduce the dimension

number, but when doing so, the original data set will lose some information, while

applying my new Newton-Raphson (NR) technique, we will lose less information.
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Actually, in factor analysis, the variance-covariance matrix D is a specification of W(a)

as I said in chapter 5. Here D is semi-positively definite so that all eigenvalues ofD are

non-negative with a total summation equal 71, the dimension number. Some eigenvalues

are big or much bigger than 1 whereas some are small, close to O or even equal 0 if the

rank of matrix D is less than n, the dimension number. The step of “factor extraction”

means that those factors whose corresponding eigenvalues are at the “bottom level”,

namely those which are close to be 0 or equal 0, should not be considered for the factor

list. Only those factors whose corresponding eigenvalues are at the “top level”, namely

those which are the biggest ones, should be considered for the communality. We know

that those “top level” factors are important and should be considered because of their

large variation. But we can not say that “bottom level” ones are not important, and should

not be considered in the data analysis. When we are dealing with the power balancing as

we do in the SAM model, these negative factors (especially those factors corresponding

to the negatively large eigenvalues) must be considered. That is, in SAM models, both

those factors corresponding to the positively large and negatively large eigenvalues play

the same important role. They are equally important.

In a broad sense, the technique of classical factor analysis can be applied for many

types of matrices especially for those with principal diagonal elements equal based on the

SAM model. This means that the matrices we are working with in factor analysis can be

not only variance-covariance matrices, but also more general ones. We surely assume all

elements on the principal diagonal equal, because a meaningful result can be obtained

based on this assumption.

In the SAM model
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Y = pW(a)Y + 8

where 3 ~ N(O, 0'21), if “a” equals zero, this is exactly what we were talking about in

previous chapters. If “a” is not zero, then we may standardize the model as

Y = (ap)(W/a)Y + 8.

So that the new weight matrix will have all elements on the principal diagonal one while

the parameter p does not substantially change.

Now, if all entries of the standardized weight matrix W/a are less than or equal to one

in an absolute value meaning, this W/a is really a variance-covariance matrix. All its

eigenvalues will be positive with some zeros possibly. But if some of the entries are

bigger than one in an absolute value meaning, or in other words in case the value of “a” is

decreasing to zero, then W will have some negative eigenvalues, and will have more if

“a” continues decreasing. When “a” is negatively large enough, we will have all

eigenvalues negative. The above statement can be verified easily applying the W(a)

family properties 1-3 from §5.4.

We make arrangement for the whole process: from “a” equals to positive infinity, to

positively large values, to positive 1, then less than 1 but still positive, to zero, and then

negatively increasing until “a” reaches negative infinity. In whole this process, the

corresponding eigenvalue sets are stable, with only a constant “a” adjustment. At the

same time, the important fact is, their corresponding orthogonal matrix P and factors

remain the same when W is non-singular.

Now we see, in a classical factor analysis work, we pick out the top level factors with

large variation, and delete the bottom ones with the least variation. This is because “a”

equals one. When “a” takes value zero, we know that both top level factors and bottom
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level factors must be considered because both of them carry large variation now, although

the proportion of the variations are not equal as the positive and negative eigenvalues are

not symmetrical in an absolute value meaning. It is now those factors whose eigenvalues

are at the middle level, or close to zero, that should be removed because they carry little

variation only. This process will continue to work when “a” moves in either direction.

Say, when “a” is becoming negatively large, then those bottom eigenvalues and factors

are becoming leading as they carry the major part of the variation. Those top ones should

be out of consideration as the proportion of the variation they carry is now small. All we

have found here is, the whole set of factors is in a dynamic process when the value “a” is

varying from + 00 to -00. Here I want to emphasize that the bottom ones need to be

considered because they may have potential importance while the top ones always do. In

general, top ones and bottom ones are more likely important comparing with those in the

middle places.

A question might be asked: does it make sense when we are talking about the value of

“a” being + 00 or - 00? The answer would be “yes”. We see that in a network, if those

subjects are purely objective, we have a = 0 and obtain the results before. When “a” is

positively increasing, those subjects are becoming more self-confirmation centered, more

subjective, and less influenced by others. When a = + 00, this network becomes a small

world of purely self-confirmation centered subjects. When “a” is negative, and negatively

increasing, those subjects are becoming more self-negation centered, more likely

influenced by others. When a = - 00, this network becomes a small world of purely self-

negation centered subjects. Both of the above positive / negative extreme examples might

be found in some special societies.
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7.3. The next stage work.

7.3.1. We may apply the Newton-Raphson technique for the autocorrelation coefficient

parameter p for the multilinear regression. We know that Doreian (1981, 1982, 1989),

Duke (1993), Leenders (1995) were working on the model:

Y = pWY + XB + a

where a is the random error term. This is a linear model combined with the autoregressive

information. With the newly developed Newton-Raphson technique for the

autocorrelation coefficient parameter p, we may apply this new technique in practice

without technical difficulties.

7.3.2. The original SAM model is time-independent, but it can be viewed as a result from

a long period of negotiation and balancing. That is, we may understand that the original

model is the result from the time—dependent models such as

Y.+. = pWY. + s

in which the observed Y is time-dependent but the information of interaction W is time-

independent. When t —> 00, we get the SAM model. More generally, the model can be

Y.+. = pW.Y. + s

in which the observed Y and the information of interaction W are both time-dependent. If

W. converges to a matrix W, we get back Y = p WY + a if Y also converges.

7.3.3. Cressie (1993) introduced the stationary processes in a plane prescribed by Whittle

(1954). With a set of translation operators defined on a plane, and a translation function
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of operators based on the connection matrix W, Cressie shows that the SAM model is

exactly a spatial analogue of an autoregressive time-series model (page406). It follows

that we may directly apply the newly developed technique working on the translated

model without difficulties. Similar approaches were discussed by Bartels (1979) and

others.

7.3.4. We see that the above time-series models are more advanced, and have appeared in

a wide range of application, namely autoregressive moving average (ARMA) models. It

is worth to explore the possibility to apply my new technique of the parameter p

estimation into the time-dependent model studies.

7.4. Conclusion.

There is some limitation to the application of the new technique of the parameter p

estimation in SAM models. So far, we can only work on those matrices W(a) with the

diagonal elements identical. When dealing with W(O), the summation of W(O)’s all

eigenvalues {7..} is zero so that we have 7..,... < 0 and 7..,... > 0. However, we have no

technique to have the maximum and minimum eigenvalues equal in an absolute value

sense. Consequently, the corresponding boundary (7....” 7..,...) is not symmetrical to the

origin, and we can not standardize the boundary to be [-1 , 1] as we do for the correlation

coefficient r between two vectors. This would cause the interpretation less intuitive, and a

little computationally complicated.

We now have the newly developed technique to estimate the parameters p and o2 in

SAM models. We also have the definition and interpretation of parameter p estimate.
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SAM models represent the relationship between a vector Y and a weight matrix W. When

there is association among a group of subjects, we always have chances to explore the

relationship between the pattern of the mutual motion and observations obtained from the

group of subjects.
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Appendix3A

 
 

Example 1

0 l 3 7., 550963 1 1

W=1 0 4,7.= 7.2 = —455287 ,Y,=1,Y2= 0

3 4 0 7.3 -0.956762 1 -1

2 " 7..

.. +1 .
( ) n r=l (1- pki)

_ (2) 550963 + —4.455287 + -0.956762

3 l-550963p l+4.455287p l+0.956762p '

Y. [Ya —Y.Y.L

h,(p)=2- p L) , ,(i = 1,2) so that

XZ-20YY+02I1(L) If.

h(p)_2. p(Ii.) Iii-117.. _ 2(90p—16)
l -

I — _ 2

KIi-ZPKI’..+02(Y.L)Y.L ‘3 32"”)

. , 2 12 2 2'

Yin—207213,.wY::)13, ” 9+ 7“

Solve for f,'(p) = g(p)+h,(p) = o (i = 1,2), we get

.3, z.152 and

A

p2 z—JZ.
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Appendix3B

The calculation of the conjugate eigenvalues

We need only check f ’(p) and f "(p) with one pair of conjugate complex eigenvalues

here. Assume that

M2 = u i iv with v at 0, then for any real p,

i A, _ u+iv + u—iv _2[u(1—pu)—pv2]

.=1 l-pk _1-pu-ipv 1-pu+ipv_(l-pu)2+(r>V)2

22: 1,2 _ (u+iv)2 + (u—iv)2

.-=.(1-p7~..)2 (l-pu-iPV)2 (1-pu+ipv)2

 

= 2{<u2 —v2)[(1- pu>2 -<pv>2]—4puv2(1 — pu» _

[(1- pu)2 +0»)le

Both terms involving the eigenvalues remain real, and so do f '(p) and f "(p) as well,

since their remaining components are real.
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Appendix6A

The raw data matrix W(24x24)

N Group And Actor ID

24 IAAAAIBBBBBBICCCCCCCCIDDDDDDI

| l | I |

I |22 21 I 111 11 I1*1121I

Group IDI7129I326078|55043694I8*1312|

---------+—--—+--——--+-------—+--—-—-+

1 A 7|A213I ...... I ........ I...1..|

1 A 1I4A3.I ...... I.4 ...... I ...... I

1 A 2|33A.| ...... l ........ I ...... I

1 A 9I433A| ...... I ........ I ...... I

---------+—-—-+---—--+——-—---—+-----—+

2 B 23I 2 IB443 I ........ I ...... I

2 B 22I 1 I4B I 4 I 2 |

2 B 6| l4.B I ........ | ...... I

2 B 20I I33.B. I ........ I 1 l

2 B 17| 3 l3 .3B.I ........ I 3 2 I

2 B 8| I .lBI ........ I ...... I

---------+-——-+—-—-—-+--—--—--+------+

3 C 5|....I ...... IC...3.33I.3....|

3 C 15I.4..|..4...I.C.4..4.I4 ..... I

3 C 10l....I ...... I33C.4.3.I..4...I

3 C 14I.4..I.4....l444C....I ...... |

3 C 3|3...I.4....|4.44C...I ...... I

3 C 16l.1..| ..... 4|3.2.3C..I ...... I

3 C 19I....| ...... I444..4C4| ...... I

3 C 4|....I ...... l3..3.44CI ...... I

---------+-—--+------+-----——-+-—————+

4 D 18I 1 I ...... |.1 ...... ID 1...I

4 D **l l ...... l4.3 ..... l3D4...I

4 D 11I I ...... I4 .4...4l44D...|

4 D 13I. 3 I 1 I ........ I. .D3.I

4 D 21| I 3 | ........ |.343D.I

4 D 12I 1 | 1 l ........ |.3..3DI

The value in each cell represents the extent to which

teacher in the row indicated engaging in professional

discussions with the teacher in the column (a value of 4 is

almost daily and a value of 1 is less than once a month).
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Appendix6E

The comparison of the results from different initial value selections

 

 

 

 

 

 

 

Initial value of p % ofthe estimate % of improvement

of p being within from last step

(l/Min, ln‘vmax)

Ord’s p° = v'vL / Y’Y 23

p°1 = 0.0 59 36

p°2 = v'vL / (YL) 'vL 89 30

p°3 = .75min or 96 7

.75max *

p°4 = .90min or 100 4

.90max *    
 

* min = min(pv, 1mm) if Y’YL > o and

max = max(pv, l/Kmin) if Y'YL < 0.
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Appendix6C

A SAS program (1)

*All estimates will be within the boundary, or treated as missing.

options nocenter;

proc iml;

n=8;

nr=30;

nk=9;

w={ \

O
O
O
O
Q
W
D
O

O
O
H
N
W
U
J
O
N

O
O
O
O
U
J
O
W
H

0
0
0
0
0
0
0
0
0

w
a
0
0
0
0
0

w
0
0
b
0
0
0
0

0
0
0
-
5
0
0
0
0

v
‘

‘
‘

H (
I
)

H (8);

*print w;

*print 18;

zr={6.87348 6.80376 0 —.895568 -1.72068 -l.72068 -3.43211 -5.9082}‘;

*print 2r;

zc={O O O 0 .687622 —.687622 0 O}‘;

*print zc;

BR=.145487;

*print BR;

BL=-.l692563;

*print BL;

rrO={-.15233 -.11848 -.084628 -.050777 0 .043646 .072743 .10184

.130938};

print rrO;

r0=j(l.1,0);

ee=j(n,nr.0);

e0=j(n,1,0);

seed=3837;

do i=1 to n;

do j=1 to nr;

ee(|i,j|)=0+1*normal(seed);

*if abs(ee(|i,jl))>1 then eeIli,jl)=.;

end;

end;

*print ee;

1amr=j(n,1,0);

lamc=j(n,1,0);
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y=j(n.nr,0); *y=0;

a=j(n,nk,0);

b=j (n,nk, 0);

c=j(n,nk,0);

a=l-zr*rr0;

*print a;

b=zc*rrO;

*print b;

c=a#a+b#b;

*print c;

dcc=j(1,nr,0);

ecc=j(l,nr,0);

gcc=j(l,nr,0);

yyc=j(n,1,0);

Rho=j(nr,nk,0);

ah=j(n,1r0);

bh=j(n,1,0);

h1=j(n,1,0);

hO=O;

j0=0;

fh=0;

fj=0;

XX=O;

af=j(n,1,0);

bf=j(n,l,0);

fl=j(nrllo);

aaf=j(n,1,0);

bbf=j(n,1,0);

ffl=j(n,1,0);

XX=O;

start GetRho;

m=0;

eps=1.0E-O6;

if abs(gc)<eps then XX=.;

repeat:

m=m+1;

if abs(XO)<eps then XX=XO;

if abs(XO)>eps & abs(gc)>eps then do;

af=(l-XO#zr)#zr-XO#zc#zc;

bf=(1-XO#zr)##2+(XO#2C)##2;

f1=af/bf;

sZ=dc-2*XO#ec+XO#XO#gc;

ff=2*f1[+]/n+2*(XO#gc-ec)/52;

if abs(ff)<eps then XX=XO;

if abs(ff)>eps then do;

aaf=((l—XO#zr)#zr-XO#zc#zc)##2+zc##2;

bbf=((l-XO#zr)##2+(XO#zc)##2)##2;

ffl=aaf/bbf;
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sZ=dc-2*XO#ec+XO#XO#gc;

sff=2*ff1[+]/n+2*gc/sZ—4*(XO*gc-ec)/52/52;

if abs(sff)<eps then XX=.;

if m=60 then XX=.;

if abs(sff)>eps & m<60 then X1=XO-ff/sff;

XO=X1;

goto repeat;

end;

end;

finish GetRho;

***********************~k*~k**~k***~k***~k*********************************

ak=j(n,1:0I;

bk=j(n,1,0);

Ck=j (n, 1'0);

II=j (1'1, n! 0);

WI=j(n,n,O);

IW=j (1'1, n! 0);

do k=l to nk;

r0=rr0[k];

ak=a[,k];

bk=b[.k];

Ck=c[lk];

IW=inv(I8-W*r0);

*print IW;

do j=1 to nr;

e0=ee[,j];

*print e0;

dc=j(1,l,0);

eC=j(1,1,0);

gc=j(l.l,0);

yyc=IW*eO;

*print yyc;

dccljl=yy0‘*yyc;

ecoljl=yy0‘*(W*YYC>;

gcc[j]=yyc‘*(w‘*w*yyC);

dc=dcc[j];

*print dc;

ec=ecc[j];

*print ec;

gc=gcc[j];

*print gc;

XO=.9995*ec/gc;

run GetRho;

RhOIIj,k|)=XX;
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if Rho(|j,k|)(BL then Rho(|j,k|)=.;

if Rho(|j,k|)>BR then Rho(|j,k|)=.;

end;

end;

print Rho;

varnames={rhol rhoZ rho3 rho4 rhoS rho6 rho7 rhoB rho9};

create norms from Rho (|colname=varnames|);

append from Rho;

close norms;

quit;

proc means data=norms; var _all_;

output out=normdata

mean=mrhol mrhoZ mrh03 mrho4 mrhoS mrh06 mrho7 mrho8 mrho9

var =vrhol vrhoZ vrh03 vrho4 vrhoS vrho6 vrho7 vrh08 vrho9;

proc print data=normdata; var _all_;

title'Empirical Distribution of Rho estimation';

proc univariate plot data=norms; var _all_;

run;
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Appendix6D - A Flow Chart

@

 

 

Get W, Y

Get eigenvalues {All}

  

I
 

 

Get functions

f' (p) , f"(p)

  

I 

 

Get EPS, M

Get Initial value p0

 p0 = p0 _ fl (p0)/fr( (p0)

 

    

 

M=M+l

NO

I f' (p) I<EPS

 
  I * I YES

  

 

Get p No solution

Adjust EPS, M, p°

     
 

l. l
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Appendix6E

A SAS program (2)

*All estimates will be within the boundary, or treated as missing.

options nocenter;

proc iml;

n=8;

nr=30;

nk=9;

w={

O
O
O
O
A
W
D
O

O
O
H
N
W
U
J
O
N

O
O
O
O
W
O
W
H

0
0
0
0
0
0
0
0
0

b
u
b
-
b
0
0
0
0
0

w
0
0
b
0
0
0
0

0
0
0
4
5
0
0
0
0

0
0
9
9
9
9
9
?

H
-
I
‘

‘
0

I8=I(8);

*print w;

*print I8;

zr={6.87348 6.80376 0 -.895568 -1.72068 -1.72068 -3.43211 -5.9082}‘;

*print zr;

zc={0 O O 0 .687622 —.687622 0 O}‘;

*print zc;

BR=.145487;

*print BR;

BL=-.1692563;

*print BL;

rrO={-.15233 -.11848 -.084628 -.050777 0 .043646 .072743 .10184

.130938};

print rrO;

r0=j (1! 1! 0);

ee=j(n,nr,0);

eO=j (n! 1'0);

seed=3837;

do i=1 to n;

do j=1 to nr;

ee(|i,jI)=O+l*norma1(seed);

*if abs(ee(Ii,j|))>l then ee(|i,j|)=.;

end;

end;

*print ee;

1amr=j(n,1,0);

1amc=j(n,1,0);
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y=j(n.nr.0); *y=0;

a=j(n,nk,0);

b=j (n! nkl 0);

C=j (n; nkr 0);

a=1—zr*rr0;

*print a;

b=zc*rr0;

*print b;

c=a#a+b#b;

*print c;

dcc=j(l,nr,0);

ecc=j(l,nr,0);

gCC=j(1,nr,O);

yyc=j(n,1,0);

Rho=j(nr,nk,0);

ah=j (nl 1(0);

bh=j(n,1,0);

hl=j(n.1,0);

hO=O;

j0=0;

fh=0;

fj=O;

XX=O;

af=j (nr 1! 0);

bf=j(n,1,0);

fl=j (n! 110);

aaf=j(n,1,0);

bbf=j(n,1,0);

ffl=j(n,1,0I;

XX=O;

start GetRho;

m=0;

eps=1.0E-O6;

if abs(gc)<eps then XX=.;

repeat:

m=m+1;

if abs(XO)<eps then XX=XO;

if abs(XO)>eps & abs(gc)>eps then do;

af=(1-XO#zr)#zr-XO#zc#zc;

bf=(l-XO#zr)##2+(XO#zc)##2;

f1=af/bf;

sZ=dc-2*X0#ec+XO#XO#gc;

ff=2*fl[+]/n+2*(XO#gc-ec)/52;

if abs(ff)<eps then XX=XO;

if abs(ff)>eps then do;

aaf=((l-X0#zr)#zr-XO#zc#zc)##2+zc##2;

bbf=((l-XO#zr)##2+(XO#zc)##2)##2;

ffl=aaf/bbf;
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sZ=dc—2*XO#ec+XO#XO#gc;

sff=2*ff1[+]/n+2*gc/52-4*(X0*gc—ec)/32/32;

if abs(sff)<eps then XX=.;

if m=60 then XX=.;

if abs(sff)>eps & m<60 then Xl=XO-ff/sff;

XO=X1;

goto repeat;

end;

end;

finish GetRho;

********************************~k~k***********************************~k

ak=j(n,l.0);

bk=j(nlllo);

Ck=j(nlllo);

II=j(nInIO);

WI=j (nrnl 0);

do k=l to nk;

r0=rr0[k];

ak=alrk];

bk=b[.k];

Ck=C[,k];

IW=invII8—W*r0);

*print IW;

do j=1 to nr;

e0=ee[,j];

*print e0;

dc=j(1,erI;

ec=j(1,l,0);

gc=j(l.1,0);

yyc=IW*eO;

*print yyc;

dCCIj1=yy0‘*yyc;

ecc[j]=yyC‘*(W*YYC):

gcc[j1=YYC‘*(W‘*w*yy0);

dc=dcc[j];

*print dc;

ec=ecc[j];

*print ec;

gc=qcc[j];

*print gc;

XO=.9995*ec/gc;

run GetRho;

RhOIIj,k|)=XX;
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if Rho(|j,k|)<BL then Rho(|j,k|)=.;

* if Rho(|j,k|)>BR then Rho(|j,k|)=.;

end;

end;

print Rho;

varnames={rhol rh02 rh03 rho4 rhoS rho6 rho7 rhoB rho9};

create norms from Rho (|colname=varnamesl);

append from Rho;

close norms;

quit;

proc means data=norms; var _all_;

output out=normdata

mean=mrhol mrh02 mrh03 mrho4 mrhoS mrh06 mrho7 mrhoB mrho9

var =vrhol vrh02 vrh03 vrho4 vrhoS vrho6 vrho7 vrh08 vrho9;

proc print data=normdata; var _all_;

title'Empirical Distribution of Rho estimation';

proc univariate plot data=norms; var _all_;

run;
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Appendix6F

A SAS output from program (1)

RRO

-0.15233 -0.11848 -0.084628 -0.050777 0 0.043646

0.072743 0.10184 0.130938

RHO

-0.093043 -0.035922 -0.004561 0.0225311 0.0578763

0.1328653

-0.152541 -0.112992 -0.070801 -0.030338 0.0239434 0.0649262

0.0899643 0.1133124 0.1342584

-0.14385 . . -0.088461 -0.064811 -0.039001

-0.012986 0.0306876 0.1094544

. . . -0.067272

-0.025934 0.0351362 0.1132646

-0.157897 -0.138627 -0.118766 -0.093317 -0.039522 0.0184154

0.0587202 0.0975185 0.1322099

. . . -0.044463

-0.004264 0.0516837 0.1204356

-0.144655 -0.103632 -0.076379 -0.057642 -0.031859 -0.001434

0.0268882 0.0627848 0.1035768

-0.029778 0.0225825 .

0.1330539

-0.150079 -O.102038 -0.053859 -0.014943 0.0284294 0.0593437

0.0797859 . 0.1254203

-0.151816 . -0.101576 -0.077795 -0.050537

-0.02298 0.0207714 0.1023134

-0.076481 -0.006553 0.01267 0.0262203 0.0476586 0.0704985

0.0888963 0.1101619 0.1335608

. -0.088569 -0.05954 -0.007212 0.0415269

0.0738519 0.104953 0.1336305

. -0.11541 -0.083249 -0.024229 0.0301886

0.0653107 0.0981717

-0.130321 -0.10168 —0.069988 -0.017111 0.0317415

0.0646765 0.0969821

-0.153238 -0.118188 -0.077435 -0.034343 0.0264485 0.070925

0.0961682 0.1181363 0.1371757
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0.0858966

0.0592215

-0.127586

0.0996438

-0.145711

0.1087552

-0.067926

0.1094199

-0.154478

0.1075293

0.0158846

0.0531585

-0.055392

0.0749359

-0.157611

0.0534711

-0.084654

0.095576

0.0148812

-0.152127

0.103535

-0.161596

0.0485434

-0.140211

0.1181952

Variable

-0.091266

0.1099969

0.0954299

-0.05403

0.1173267

—0.089183

0.1248541

-0.00001

0.1237517

-0.113364

0.1242923

-0.090035

-0.094694 -0.069018

0.1310436

0.0406473

0.0919801

-0.039437

0.1013587

-0.136778

0.0920938

—0.029044

0.115246

0.0523493

-0.108562

0.1217698

-0.145931

0.0912364

-0.067346

0.1285706

-0.062899

0.1375327

0.0940635

-0.049254 —0.016049

0.1342313

-0.012775 0.0168752

0.1347104

-0.034598 0.0095697

0.1382911

0.0251898 0.0448484

0.1374021

-0.01334

-0.05806 -0.036156

-0.096187

0.1294309

-0.024876 -0.007934

0.1309394

-0.11481 -0.088274

0.1296356

-0.007296 0.0137483

-0.060382 -0.014673

0.136639

-0.127747 -0.104224

0.1303182

-0.006049 0.0374953

0.1371136

Std Dev

0.026863 0.

-0.02249 0.

0.0534261 0.

0.0586682 0

0.0720933 0.

0.0479039 0.

-0.013602 0.

-0.041528 0

0.0215263 0.

-0.037288 0.

0.0466771 0.

-0.053363 -0

0.0431066 0.

-0.053415 0.

0.0805432 0

Minimum

.1250335

.0805083

.0575235

.0349216

.0055903

.0343597

.0616695

.0407659

.0493466

.0447200

.0473422

.0462534

.0479813

.0424770
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.1615960

.1459314

.1277471

.1042238

.0777951

.0672717

.0259340

0621555

0246738

0815975

.090647

0947013

0870594

0024012

.0142268

0516421

0155642

0758931

.016234

0821144

0053668

.105402



RHOB 27 0.0915260 0.0324845 0.0207714

RHO9 26 0.1274066 0.0123797 0.0940635

Variable Maximum

RHOl -0.0297784

RHOZ 0.0225825

RHOB 0.0251898

RHO4 0.0448484

RHOS 0.0805432

RHO6 0.1054020

RHO7 0.1181952

RHOB 0.1285706

RHO9 0.1382911

OBS _TYPE_ _FREQ_ MRHOl MRHOZ MRHO3 MRHO4

1 0 30 -0.12503 -0.080508 -0.057524 -0.034922

OBS MRHOS MRHO6 MRHO7 MRHO8 MRHO9

1 .0055903 0.034360 0.061669 0.091526 0.12741

OBS VRHOl VRHOZ VRHO3 VRHO4 VRHOS

1 .0016619 .0024351 .0019999 .0022413 .0021394

OBS VRHO6 VRHO7 VRHOB VRHO9

1 .0023022 .0018043 .0010552 .00015326

Univariate Procedure

Variable=RHOl

Moments

N 20 Sum Wgts 20

Mean -0.12503 Sum -2.50067

Std Dev 0.040766 Variance 0.001662

Skewness 1.149984 Kurtosis -0.04093

USS 0.344243 CSS 0.031575

CV -32.604 Std Mean 0.009116

T:Mean=0 -13.7165 Pr>|T| 0.0001

Num “= O 20 Num > 0 0

M(Sign) -10 Pr>=|M| 0.0001

Sgn Rank -105 Pr>=lS| 0.0001

Quantiles(Def=5)

100% Max -0.02978 99% —0.02978

75% Q3 -0.08885 95% -0.04259

11]



50% Med -0.14518 90%

25% Q1 -0.15289 10%

0% Min -0.1616 5%

1%

Range 0.131818

Q3-Q1 0.064041

Mode -0.l616

Extremes

Lowest Highest

-0.1616( 29) -0.08465(

-0.1579( 5) -0 07648(

-0.15761( 25) -0 06793(

-O.15448( 21) —0 05539(

-0.15324( 15) -0 02978(

Missing Value .

Count 10

% Count/Nobs 33.33

Stem Leaf

-2 0

-4 5

-6 68

-8 35

-10

-12 8

-14 884332206540

-16 2

----+---—+---—+-—--+

-0.06166

-0.15775

-0.15975

-0.1616

Obs

26)

ll)

20)

24)

8)

# Boxplot

1 I

l |

2 |

2 + -----+

I I

l I + I

12 * ----- *

l I

Multiply Stem.Leaf by 10**-2

Univariate Procedure

Variable=RHOl

—0.03+ * +++++

| * +++++

I * *++++

I **++++

| +++++

I +++++ *

I * ~k *+**+*~k** ***

—0.17+ +++++

+—---+—-—-+----+----+----+—---+----+-—--+-——-+——-—+

-l 0 +1 +2

Univariate Procedure

Normal Probability Plot
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Variable=RH02

Moments

N 21 Sum Wgts 21

Mean -0.08051 Sum -1.69068

Std Dev 0.049347 Variance 0.002435

Skewness 0.638473 Kurtosis —0.6549l

USS 0.184815 CSS 0.048702

CV -61.2938 Std Mean 0.010768

T:Mean=0 -7.47641 Pr>ITI 0.0001

Num “= 0 21 Num > 0 1

MISign) -9.5 Pr>=IMI 0.0001

Sgn Rank —112.5 Pr>=IS| 0.0001

Quantiles(Def=5)

100% Max 0.022582 99% 0.022582

75% Q3 -0.03944 95% -0.00001

50% Med -0.09127 90% -0.00655

25% Q1 -0.11336 10% -0.l3678

0% Min -0.14593 5% —0.13863

1% -0.14593

Range 0.168514

Q3-Q1 0.073928

Mode —0.14593

Extremes

Lowest Obs Highest Obs

-0.14593( 29) -0.03592( 1)

-0.13863( 5) -0.02904( 26)

-0.13678( 25) -0.00655( 11)

-0.13032( 14) -0.00001( 20)

—0.118l9( 15) 0.022582( 8)

Missing Value .

Count 9

% Count/Nobs 30.00

Stem Leaf # Boxplot

2 3 1 I

0 |

-0 70 2 I

-2 969 3 + ----- +

—4 4 l | l

-6 7 1 I I

-8 109 3 *—-+--*

—10 833942 6 +————— +

—12 970 3 I

-14 6 1 I

----+—-—-+——--+----+
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Multiply Stem.Leaf by 10**—2

Univariate Procedure

Variab1e=RH02

Normal Probability Plot

0.03+ * ++++

| ++++

| *+*++

-0.03+ * *+*++

| *+++

I +++*

-0.09+ +++***

I *+*** *ir

I * *+*+

-0.15+ * ++++

+-—--+—-—-+———-+--—-+--—-+-———+----+-——-+----+-———+

-2 -1 0 +1 +2

Univariate Procedure

Variab1e=RHO3

Moments

N 23 Sum Wgts 23

Mean —0.05752 Sum -l.32304

Std Dev 0.04472 Variance 0.002

Skewness 0.177019 Kurtosis -0.99104

USS 0.120103 CSS 0.043997

CV -77.7421 Std Mean 0.009325

T:Mean=0 -6.1689 Pr>|T| 0.0001

Num “= 0 23 Num > 0 2

M(Sign) -9.5 Pr>=IM| 0.0001

Sgn Rank -127 Pr>=|SI 0.0001

Quantiles(Def=5)

100% Max 0.02519 99% 0.02519

75% Q3 -0.01277 95% 0.01267

50% Med -0.06038 90% -0.00456

25% Q1 —0.09469 10% -0.11541

0% Min -0.12775 5% -0.ll877

1% -0.12775

Range 0.152937

Q3-Q1 0.08192

Mode -0.12775

Extremes

Lowest Obs Highest Obs
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-0.

-0.

-0.

-0.

12775(

.11877(

11541(

11481(

10168(

29)

5)

13)

25)

14)

Missing Value

Count

% Count/Nobs

Stem

-0

-2 55

-4

-6

-8 59

10 9552

2 5

0 3

12 8

Leaf

23.

-0.0073(

-0.00605(

-0.00456(

0.01267(

0.02519(

26)

30)

1)

ll)

20)

# Boxplot

1 |

1 |

4 + ----- +

2 I I

3 I + |

5 i: _____ *

2 + -----+

4 l

l I

Multiply Stem.Leaf by 10**—2

Univariate Procedure

Variab1e=RHO3

Normal

0.03+

|

|

I

-0.05+

| +

I ++**

| * +~k+~k *

-O.13+ *+++++

+---—+——--+----+---—+

-2 -1

Univariate Procedure

Variable=RHO4

Moments

N 26 Sum Wgts

Mean -0.03492 Sum

Std Dev 0.047342 Variance

Skewness 0.046978 Kurtosis

USS 0.08774 CSS

Probability Plot

26

-0.90796

0.002241

-1.32498

0.056032
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CV -135.567 Std Mean 0.009285

T:Mean=0 -3.76126 Pr>|T| 0.0009

Num “= 0 26 Num > 0 7

M(Sign) -6 Pr>=IMI 0.0290

Sgn Rank -113.5 Pr>=|SI 0.0021

Quantiles(Def=5)

100% Max 0.044848 99% 0.044848

75% Q3 0.00957 95% 0.037495

50% Med -0.03234 90% 0.02622

25% Q1 -0.08325 10% -0.09619

0% Min —0.10422 5% -0.10158

. 1% —0.10422

Range 0.149072

Q3-Ql 0.092819

Mode —0.10422

Extremes

Lowest Obs Highest Obs

-0.10422( 29) 0.016875( 18)

-0.10158( 10) 0.022531( 1)

-0.09619( 23) 0.02622( 11)

-0.09332( 5) 0.037495( 30)

-0.08846( 3) 0.044848( 20)

Missing Value .

Count 4

% Count/Nobs 13.33

Stem Leaf # Boxplot

4 5 l I

2 367 3 l

0 047 3 + -----+

-0 65538 5 l |

-2 640 3 *--+--*

-4 8 1 | |

-6 090 3 I I

-8 63883 5 +----- +

-10 42 2 |

—-—-+-—-—+——-—+--——+

Multiply Stem.Leaf by 10**-2

Univariate Procedure

Variab1e=RHO4

Normal Probability Plot

0.05+
++++*

I *+*+*
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I
*~k*++

I
***~k+*+

—0 03+ **+++

I ++**

I +++* *

I *+*+***

—0 11+ * ++*+

+---—+----+—---+—---+----+----+----+---—+---—+-—-—+

-2 —1 0 +1 +2

Univariate Procedure

Variab1e=RHO5

Moments

N 27 Sum Wgts 27

Mean 0.00559 Sum 0.150939

Std Dev 0.046253 Variance 0.002139

Skewness -0.12845 Kurtosis -1.29253

USS 0.056468 CSS 0.055624

CV 827.3815 Std Mean 0.008901

T:Mean=0 0.628024 Pr>|TI 0.5355

Num A: 0 27 Num > 0 14

M(Sign) 0.5 Pr>=|MI 1.0000

Sgn Rank 32 Pr>=|SI 0.4524

Quantiles(Def=5)

100% Max 0.080543 99% 0.080543

75% Q3 0.047659 95% 0.072093

50% Med 0.021526 90% 0.058668

25% Q1 -0.03729 10% -0.05342

0% Min -0.0778 5% -0.06481

1% -0.0778

Range 0.158338

Q3-Q1 0.084947

Mode -0.0778

Extremes

Lowest Obs Highest Obs

-0.0778( 10) 0.053426( 18)

-0.06481( 3) 0.057876( 1)

-0.05342( 29) 0.058668( 19)

-0.05336( 27) 0.072093( 20)

-0.04153( 23) 0.080543( 30)

Missing Value .

Count 3

% Count/Nobs 10.00
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Stem Leaf #

8 1 1

6 2 1 I

4 3788389 7

2 24678 5

-0 747 3

-2 7242 4

—4 3320 4

-6 85 2

----+-—--+—---+--——+

Multiply Stem.Leaf by 10**-2

Univariate Procedure

Variable=RH05

Normal Probability Plot

0.09+ +++*

| ++++*

I ****+** 'k

I *****+++

0.01+ +++++

I ++ir-k-k

I +*****

I +++**

-0.07+ * ++*+

+--—-+-——-+--—-+---—+----+--——+----+-—--+—---+---—+

—2 —l 0 +1 +2

Univariate Procedure

Variab1e=RHO6

Moments

N 28 Sum Wgts 28

Mean 0.03436 Sum 0.962071

Std Dev 0.047981 Variance 0.002302

Skewness -O.52076 Kurtosis -0.64462

USS 0.095216 CSS 0.06216

CV 139.6444 Std Mean 0.009068

T:Mean=0 3.78927 Pr>IT| 0.0008

Num “= 0 28 Num > 0 22

M(Sign) 8 Pr>=IM| 0.0037

Sgn Rank 139 Pr>=|SI 0.0006

Quantiles(Def=5)

100% Max 0.105402 99% 0.105402

75% Q3 0.073409 95% 0.094701
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50% Med 0.036634 90%

25% Q1 0.003884 10%

0% Min -0.06727 5%

1%

Range 0.172674

Q3-Q1 0.069525

Mode -0.06727

Extremes

Lowest Obs Highest

-0.06727( 4) 0.082114(

-0.05054( 10) 0.087059(

-0.04446( 6) 0.090647(

-0.039( 3) 0.094701(

-0.01623( 27) 0.105402(

Missing Value .

Count 2

% Count/Nobs 6.67

Stem Leaf

10 5

8 22715

6 25016

4 229

2 502

0 25468

-0 61

-2 9

-4 14

-6 7

----+-——-+—--—+----+

0.090647

-0.04446

-0.05054

-0.06727

Obs

28)

21)

19)

20)

30)

Boxplot

Multiply Stem.Leaf by 10**-2

Univariate Procedure

Variable=RHO6

O.1l+
*

I

I *~k***++

0.05+ ***+++

I ***+

I ****~k

-0.01+ +*+*

| ++++*

I +++* *

-0.07+ +++*

+---—+----+—---+----+----+---—+----+—-—-+—
——-+----+

-2 -1 0 +2

Normal Probability Plot
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Univariate Procedure

Variable=RHO7

Moments

N 28 Sum Wgts 28

Mean 0.061669 Sum 1.726746

Std Dev 0.042477 Variance 0.001804

Skewness -0.7597l Kurtosis -0.44793

USS 0.155204 CSS 0.048716

CV 68.87855 Std Mean 0.008027

T:Mean=0 7.682367 Pr>|TI 0.0001

Num 0: 0 28 Num > 0 24

M(Sign) 10 Pr>=IMI 0.0002

Sgn Rank 189 Pr>=|SI 0.0001

Quantiles(Def=5)

100% Max 0.118195 99% 0.118195

75% Q3 0.095872 95% 0.10942

50% Med 0.069581 90% 0.108755

25% Q1 0.037716 10% -0.01299

0% Min -0.02593 5% -0.02298

1% -0.02593

Range 0.144129

Q3-Ql 0.058156

Mode —0.02593

Extremes

Lowest Obs Highest Obs

-0.02593( 4) 0.103535( 28)

—0.02298( 10) 0.107529( 21)

-0.01299( 3) 0.108755( 19)

-0.00426( 6) 0.10942( 20)

0.014881( 27) 0.118195( 30)

Missing Value .

Count 2

% Count/Nobs 6.67

Stem Leaf # Boxplot

10 048998 6 I

8 069066 6 + ----- +

6 5545 4 *--+-—*

4 93399 5 | |

2 7 1 + ————— +

0 56 2 I

-0 34 2 I

-2 63 2 I
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----+----+---—+—-—-+

Multiply Stem.Leaf by 10**-2

Univariate Procedure

Variab1e=RHO7

Normal Probability Plot

0.1l+ **+* * *

I ******+

I ****++

I *****+

I ++*+

I ++++* *

I +++++ * *

—0.03+ +++* *

+----+--—-+—---+----+----+--——+----+—---+----+----+

—2 -l 0 +1 +2

Univariate Procedure

Variable=RH08

Moments

N 27 Sum Wgts 27

Mean 0.091526 Sum 2.471203

Std Dev 0.032485 Variance 0.001055

Skewness -0.94129 Kurtosis —0.37333

USS 0.253616 CSS 0.027436

CV 35.4921 Std Mean 0.006252

T:Mean=0 14.64031 Pr>|T| 0.0001

Num “= 0 27 Num > 0 27

M(Sign) 13.5 Pr>=IMI 0.0001

Sgn Rank 189 Pr>=|SI 0.0001

Quantiles(Def=5)

100% Max 0.128571 99% 0.128571

75% Q3 0.117327 95% 0.124854

50% Med 0.098172 90% 0.124292

25% Q1 0.062785 10% 0.035136

0% Min 0.020771 5% 0.030688

1% 0.020771

Range 0.107799

Q3-Q1 0.054542

Mode 0.020771

Extremes

Lowest Obs Highest Obs
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0
0
0
0
0

.020771(

.030688(

.035136(

.040647(

.051684(

10)

3)

4)

22)

6)

Missing Value

Count

% Count/Nobs

Stem

12

11

N
W
A
U
I
O
'
N
Q
C
D

Multiply Stem.Leaf by 10**-2

Leaf

24459

003578

15

1225788

10.

Univariate Procedure

Variab1e=RHO8

0.125+ +** * * *

I *****

I *~k*++

I ***~k*~k*++

| +++

0.075+ +++

I ++*

I ++* *

l +++ *

I ++* *

0.025+ ++*+

+—---+----+--—-+----+--------+-—--+----+----+—---+

-2 -1 +1 +2

Univariate Procedure

Variab1e=RHO9

Moments

N 26 Sum Wgts 26

0.12177(

0.123752(

0.124292(

0.124854(

0.128571(

00

\
I
N
C
D
U
‘
I
=
§
=

I
—
‘
N
l
—
‘
N
I
—
I

28)

20)

21)

19)

30)

Boxplot

Normal Probability Plot
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Mean 0.127407 Sum 3.312571

Std Dev 0.01238 Variance 0.000153

Skewness -1.53732 Kurtosis 1.311749

USS 0.425875 CSS 0.003831

CV 9.716681 Std Mean 0.002428

TzMean=0 52.47697 Pr>|TI 0.0001

Num A: 0 26 Num > 0 26

M(Sign) 13 Pr>=IMI 0.0001

Sgn Rank 175.5 Pr>=|SI 0.0001

Quantiles(Def=5)

100% Max 0.138291 99% 0.138291

75% Q3 0.13471 95% 0.137533

50% Med 0.132538 90% 0.137402

25% Q1 0.12542 10% 0.103577

0% Min 0.094064 5% 0.102313

1% 0.094064

Range 0.044228

Q3-Q1 0.00929

Mode 0.094064

Extremes

Lowest Obs Highest Obs

0.094064( 27) 0.137114( 30)

0.102313( 10) 0.137176( 15)

0.103577( 7) 0.137402( 20)

0.109454( 3) 0.137533( 21)

0.113265( 4) 0.138291( 19)

Missing Value .

Count 4

% Count/Nobs 13.33

Stem Leaf # Boxplot

13 5777788 7 +----- +

13 00112334444 11 * ----- *

12 59 2 +--+-—+

12 0 1 I

11 I

ll 3 1 I

10 9 1 0

10 24 2 0

9

9 4 1 *

————+—--—+--——+----+

Multiply Stem.Leaf by 10**-2

Univariate Procedure
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Variable=RHO9

Normal Probability Plot

0.1375+ +**+* * * *

I ******~k~k+**

I ** * ++++

O.1225+ * ++++

I +++++

I ++++ *

0.1075+ ++++ *

| ++++ * *

I+++

0.0925+ *

+-———+---—+---—+----+----+----+----+——-—+-———+

-2 -1 0 +1 +2
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RRO

-0.15233

0.072743

RHO

-0.093043

0.2173169

-0.152541

0.0899643

-0.14385

-0.012986

-0.201988

-0.025934

-0.157897

0.0587202

-0.18748

-0.004264

-0.144655

0.0268882

-0.029778

0.2303099

—0.150079

0.0797859

-0.151816

-0.02298

-0.076481

0.0888963

-0.196689

0.0738519

-0.l854

0.0653107

-0.182849

0.0646765

-0.153238

0.0961682

-0.11848

0.10184

-0.035922

0.1853992

-0.112992

0.1133124

-0.210056

0.0306876

-0.230823

0.0351362

-O.l38627

0.0975185

-0.215079

0.0516837

-0.103632

0.0627848

0.0225825

0.1920124

-0.102038

0.1462349

-0.20018

0.0207714

-0.006553

0.1101619

-0.214034

0.104953

-0.20148

0.0981717

-0.130321

0.0969821

-0.118188

0.1181363

Appendix6G

A SAS output from program (2)

-0.084628 -0.050777 0

0.130938

-0.004561 0.0225311 0.0578763

0.1328653

-0.070801 —0.030338 0.0239434

0.1342584

—0.214727 -0.088461 -0.064811

0.1094544

—O.237128 —0.235618 —0.226637

0.1132646

—0.118766 -0.093317 -0.039522

0.1322099

-0.226746 -0.228666 -0.223148

0.1204356

—0.076379 —0.057642 -0.031859

0.1035768

0.1462347 0.4329411 0.3431254

0.1330539

—0 053859 —0.014943 0.0284294

0.1254203

-0 207394 -0.101576 -0.077795

0.1023134

0.01267 0.0262203 0.0476586

0.1335608

-0.088569 —0.05954 —0.007212

0.1336305

-0 11541 —0.083249 -0.024229

0.1687808

-O.10168 —0 069988 —0 017111

0.1681896

—0.077435 —0.034343 0.0264485

0.1371757
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0.043646

0.2526557

0.0649262

-0.039001

-0.067272

0.0184154

-0.044463

-0.001434

0.272335

0.0593437

-0.050537

0.0704985

0.0415269

0.0301886

0.0317415

0.070925



-0.192002

0.0858966

-0.216725

0.0592215

-0.127586

0.0996438

-0.145711

0.1087552

-0.067926

0.1094199

-0.154478

0.1075293

-0.194392

0.0158846

-0.181668

0.0531585

-0.055392

0.0749359

-0.157611

0.0534711

-0.084654

0.095576

-0.20465

0.0148812

-0.152127

0.103535

-0.161596

0.0485434

-0.140211

0.1181952

Variable

.2167251

.2308235

.2371277

.2356177

.2266374

.0672717

.0259340

-0.091266

0.1099969

-0.208973

0.0954299

-0.05403

0.1173267

-0.089183

0.1248541

-0.00001

0.1237517

-0.113364

0.1242923

-0.090035

0.0406473

-0.l98527

0.0919801

-0.039437

0.1013587

-0.136778

0.0920938

-0.029044

0.115246

-0.227138

0.0523493

-0.108562

0.1217698

-0.l45931

0.0912364

-0.067346

0.1285706

-0.049254

0.1342313

-0.094694

0.1310436

-0.012775

0.1347104

-0.034598

0.1382911

0.0251898

0.1374021

-0.062899

0.1375327

-0.05806

0.213422

-0.202976

0.1294309

-0.024876

0.1309394

-0.11481

0.1296356

-0.007296

0.1462383

-0.226753

0.0940635

-0.060382

0.136639

-0.127747

0.1303182

-0.006049

0.1371136

.1481504

.1198988

.0830843

.0387161

0.0014760

0.0495687

0.0724791

-0.016049

-0.069018

0.0168752

0.0095697

0.0448484

-0.01334

-0.036156

-0.096187

-0.007934

-0.088274

0.0137483

-0.22218

-0.014673

-0.104224

0.0374953

Std Dev

.0472468

.0738956

.0878433

.1155761

.0974320

.0741633

.0580952
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0.026863

-0.02249

0.0534261

0.0586682

0.0720933

0.0479039

-0.013602

-0.041528

0.0215263

-0.037288

0.0466771

-0.053363

0.0431066

-0.053415

0.0805432

0.0621555

0.0246738

0.0815975

0.090647

0.0947013

0.0870594

0.0024012

0.0142268

0.0516421

0.0155642

0.0758931

-0.016234

0.0821144

0.0053668

0.105402

Minimum
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RHOB 30 0.0998283 0.0403738 0.0207714

RHO9 30 0.1336401 0.0218096 0.0940635

Variable Maximum

RHOl -0.0297784

RHOZ 0.0225825

RH03 0.1462347

RHO4 0.4329411

RH05 0.3431254

RHO6 0.2723350

RHO7 0.2303099

RHOB 0.1920124

RHO9 0.2134220

OBS _TYPE_ _FREQ_ MRHOl MRHOZ MRH03 MRHO4

l 0 30 -0.14815 -0.11990 —0.083084 -0.038716

OBS MRH05 MRHO6 MRHO7 MRHOB MRHO9

1 .0014760 0.049569 0.072479 0.099828 0.13364

OBS VRHOl VRH02 VRH03 VRHO4 VRHOS

1 .0022323 .0054606 .0077165 0.013358 .0094930

OBS VRHO6 VRHO7 VRHOB VRHO9

1 .0055002 .0033750 .0016300 .00047566

Univariate Procedure

Variable=RHOl

Moments

N 30 Sum Wgts 30

Mean -0.14815 Sum -4.44451

Std Dev 0.047247 Variance 0.002232

Skewness 0.918047 Kurtosis 0.284406

USS 0.723192 CSS 0.064735

CV -31.8911 Std Mean 0.008626

T:Mean=0 -17.l748 Pr>|T| 0.0001

Num A: 0 30 Num > 0 0

M(Sign) -15 Pr>=|MI 0.0001

Sgn Rank -232.5 Pr>=|SI 0.0001

Quantiles(Def=5)

100% Max -0.02978 99% -0.02978



75% Q3 -0.14021 95%

50% Med -0.15289 90%

25% Q1 —O.1854 10%

0% Min -0.21673 5%

1%

Range 0.186947

Q3-Q1 0.045189

Mode -0.21673

Extremes

Lowest Obs Highest

-0.21673( 17) -0.08465(

-0.20465( 27) -0.07648(

-0.20199( 4) -0.06793(

-0.19669( 12) -0.05539(

-0.19439( 22) -0.02978(

Stem Leaf

—2 0

—4 5

-6 68

-8 35

-10

-12 8

—14 884332206540

~16 2

-18 7427532

-20 752

---—+-———+—---+—---+

Univariate Procedure

-0.05539

-0.0722

-0.19934

—0.20465

-0.21673

Obs
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Multiply Stem.Leaf by 10**-2

Variable=RHOl

-0.03+ * +++

I * ++++

I * *++++

-0.09+ **++++

I +++++

I ++++ *

_O.15+ ***********

| ++*+

I * **~k**~k

-0.21+ * *+*+++

+-—--+----+-—--+—---+----+————+—-—-+----+—-—-+--—-+

—2 -1 0 +1 +2

Univariate Procedure

Normal Probability Plot
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Boxplot



Variable=RH02

Moments

N 30 Sum Wgts

Mean -0.1199 Sum

Std Dev 0.073896 Variance

Skewness 0.104961 Kurtosis

USS 0.589628 CSS

CV -61.6316 Std Mean

T:Mean=0 -8.88704 Pr>IT|

Num 0: 0 30 Num > 0

M(Sign) -14 Pr>=|MI

Sgn Rank -229.5 Pr>=|SI

Quantiles(Def=5)

100% Max 0.022582 99%

75% Q3 -0.06735 95%

50% Med -0.11318 90%

25% Q1 -0.20018 10%

0% Min -0.23082 5%

1%

Range 0.253406

Q3—Q1 0.132833

Mode -0.23082

Extremes

Lowest Obs Highest

-0.23082( 4) -0.03592(

-0.22714( 27) -0.02904(

-0.21508( 6) -0.00655(

-0.21403( 12) -0.00001(

-0.21006( 3) 0.022582(

Stem Leaf

2 3

0

-0 70

-2 969

-4 4

-6 7

-8 109

-10 833942

—12 970

-14 6

-16

-18 9

-20 540910

-22 17

----+—---+-—--+----+

30

-3.59696

0.005461

-0.96073

0.158356

0.013491

0.0001

1

0.0001

0.0001

0.022582

-0.00001

-0.0178

-0.21456

-0.22714

-0.23082

Obs
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# Boxplot
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Multiply Stem.Leaf by 10**-2
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Univariate Procedure

Variable=RHOZ

Normal Probability Plot

0.03+ +*+

I ++

I *++

I ink-+++

I *++

I +*+

I +~kir~k

I *****

I *-k*+

I *++

I +++

I ++ *

I *+*+****

-O.23+ * *++

+-———+--—-+————+——--+—-——+--—-+———-+-—-—+----+———-+

-2 —1 0 +1 +2

Univariate Procedure

Variable=RHO3

Moments

N 30 Sum Wgts 30

Mean -0.08308 Sum —2.49253

Std Dev 0.087843 Variance 0.007716

Skewness 0.034 Kurtosis 0.442815

USS 0.430867 CSS 0.223777

CV —105.728 Std Mean 0.016038

T:Mean=0 -5.18049 Pr>ITI 0.0001

Num A: 0 30 Num > 0 3

M(Sign) -12 Pr>=IM| 0.0001

Sgn Rank -197.5 Pr>=|SI 0.0001

Quantiles(Def=5)

100% Max 0.146235 99% 0.146235

75% Q3 -0.02488 95% 0.02519

50% Med -0.07359 90% 0.004054

25% Q1 —0.11877 10% -0.22074

0% Min -0.23713 5% -0.22675

1% -0.23713

Range 0.383362

Q3—Q1 0.09389

Mode -0.23713
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Lowest

-0.23713(

-0.22675(

-0.22675(

-0.21473(

-0.20739(

Leaf

0 13

-0 321110

-0 998876

-1 32210

-2 433110

Extremes

Obs

4)

27)

6)

3)

10)

6655

Highest

-0.00605(

-0.00456(

0.01267(

0.02519(

0.146235(

--——+----+—--—+----+

Multiply Stem.Leaf by 10**-1

Univariate Procedure

Variable=RHO3

Obs

30)

l)

11)

20)

8)

# Boxplot

1 0

2 I

6 + ————— +

*__+_-*

5 + ----- +

|

6 I

Normal Probability Plot

0.175+

I *+++++

| +++++

| ++++*+*

-0.025+ +++**** *

I **~k*****

I *****++

I ++++++

-O.225+ *+++*+* * **

+----+—--—+--——+----+---—+----+-———+—---+-—--+-—--+

-2 —1 0 +1 +2

Univariate Procedure

Variable=RHO4

Moments

N 30 Sum Wgts 30

Mean -0.03872 Sum -1.l6148

Std Dev 0.115576 Variance 0.013358

Skewness 2.034541 Kurtosis 9.414231

USS 0.432345 CSS 0.387377

CV -298.522 Std Mean 0.021101
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T:Mean=0 -1.83478 Pr>IT| 0.0768

Num A: 0 30 Num > 0 8

M(Sign) —7 Pr>=|MI 0.0161

Sgn Rank -140.5 Pr>=|SI 0.0023

Quantiles(Def=5)

100% Max 0.432941 99% 0.432941

75% Q3 0.00957 95% 0.044848

50% Med -0.03525 90% 0.031858

25% Q1 -0.08846 10% -0.1632

0% Min -0.23562 5% -0.22867

1% -0.23562

Range 0.668559

Q3-Q1 0.09803

Mode -0.23562

Extremes

Lowest Obs Highest Obs

-0 23562( 4) 0.022531( 1)

-0 22867( 6) 0.02622( 11)

-0.22218( 27) 0.037495( 30)

-0 10422( 29) 0.044848( 20)

—0 10158( 10) 0.432941( 8)

Stem Leaf # Boxplot

4 3 1 *

3

3

2

2

1

1

0

0 1122344 7 +----- +

-0 43321111 8 *--+--*

-0 99987766 8 +----- +

-l 000 3 I

.. l I

—2 432 3 0

---—+—-—-+---—+-——-+

Multiply Stem.Leaf by 10**—1

Univariate Procedure

Variable=RHO4

Normal Probability Plot

O.425+

|

I
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I

I ++++
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| ++++

I +++++

I +++**** * * *

I ******~k

I ****~k~k*~k*

I * *++++

I ++++

-O.225+ * ++*+*

+----+----+-——-+-—-—+--——+—-——+--——+——-—+————+————+

-2 -1 0 +1 +2

Univariate Procedure

Variable=RH05

Moments

N 30 Sum Wgts 30

Mean 0.001476 Sum 0.044279

Std Dev 0.097432 Variance 0.009493

Skewness 0.681362 Kurtosis 5.641961

USS 0.275362 CSS 0.275297

CV 6601.247 Std Mean 0.017789

T:Mean=0 0.082973 Pr>ITI 0.9344

Num A: 0 30 Num > 0 15

M(Sign) 0 Pr>=|MI 1.0000

Sgn Rank 18.5 Pr>=|SI 0.7104

Quantiles(Def=5)

100% Max 0.343125 99% 0.343125

75% Q3 0.047659 95% 0.080543

50% Med 0.007157 90% 0.065381

25% Q1 -0.03952 10% -0.0713

0% Min -0.22664 . 5% -0.22315

1% -0.22664

Range 0.569763

Q3-Ql 0.087181

Mode -0.22664

Extremes

Lowest Obs Highest Obs

-0.22664( 4) 0.057876( 1)

-0.22315( 6) 0.058668( 19)

-0.0778( 10) 0.072093( 20)

-0.06481( 3) 0.080543( 30)

-0.05342( 29) 0.343125( 8)

133



Stem Leaf # Boxplot

3 4
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Multiply Stem.Leaf by 10**-1

Univariate Procedure

Variable=RH05

Normal Probability Plot
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Univariate Procedure

Variable=RHO6

Moments

N 30 Sum Wgts 30

Mean 0.049569 Sum 1.487061

Std Dev 0.074163 Variance 0.0055

Skewness 1.363486 Kurtosis 3.184025

USS 0.233217 CSS 0.159506

CV 149.6171 Std Mean 0.01354

T:Mean=0 3.660828 Pr>IT| 0.0010

Num A: 0 30 Num > 0 24

M(Sign) 9 Pr>=|MI 0.0014

Sgn Rank 168.5 Pr>=|SI 0.0001
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Quantiles(Def=5)

100% Max 0.272335 99%

75% Q3 0.081598 95%

50% Med 0.046584 90%

25% Q1 0.005367 10%

0% Min —0.06727 5%

1%

Range 0.339607

Q3-Q1 0.076231

Mode -0.06727

Extremes

Lowest Obs Highest

-0.06727( 4) 0.090647(

-0.05054( 10) 0.094701(

-0.04446( 6) 0.105402(

-0.039( 3) 0.252656(

-0.01623( 27) 0.272335(

Stem Leaf
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Multiply Stem.Leaf by 10**-1

Univariate Procedure

Variable=RHO6

19)

20)

30)

l)

8)

Boxplot

Normal Probability Plot
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Univariate Procedure
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Variable=RHO7

Moments

N 30 Sum Wgts

Mean 0.072479 Sum

Std Dev 0.058095 Variance

Skewness 0.733946 Kurtosis

USS 0.255473 CSS

CV 80.15438 Std Mean

T:Mean=0 6.833345 Pr>|TI

Num A: 0 30 Num > 0

M(Sign) 11 Pr>=|MI

Sgn Rank 218.5 Pr>=|SI

Quantiles(Def=5)

100% Max 0.23031 99%

75% Q3 0.099644 95%

50% Med 0.074394 90%

25% Q1 0.048543 10%

0% Min -0.02593 5%

1%

Range 0.256244

Q3-Ql 0.0511

Mode —0.02593

Extremes

Lowest Obs Highest

-0.02593( 4) 0.108755(

-0.02298( 10) 0.10942(

-0.01299( 3) 0.118195(

-0.00426( 6) 0.217317(

0.014881( 27) 0.23031(

Stem Leaf
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# Boxplot
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Multiply Stem.Leaf by 10**-2
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Univariate Procedure

Variable=RHO7

Univariate Procedure

Variable=RH08

N

Mean

Std Dev

Skewness

USS

CV

T:Mean=0

Num “= 0

M(Sign)

Sgn Rank

100%

75%

50%

25%

0%

Max

03

Med

Q1

Min

Range

Q3-Q1

Mode

Normal Probability Plot

*

* ++++

+++

+++

++++

+++

+++*** * *

******

****

*****

+*++

+++*

+++-k

*+++*

+-———+—-—-+----+----+----+—-——+—-——+—---+----+----+

—2 -1 0 +1 +2

Moments

30 Sum Wgts 30

0.099828 Sum 2.99485

0.040374 Variance 0.00163

0.019259 Kurtosis 0.443616

0.346242 CSS 0.047271

40.44321 Std Mean 0.007371

13.543 Pr>ITI 0.0001

30 Num > 0 30

15 Pr>=|MI 0.0001

232.5 Pr>=|SI 0.0001

Quantiles(Def=5)

0.192012 99% 0.192012

0.12177 95% 0.185399

0.103156 90% 0.137403

0.091236 10% 0.037892

0.020771 5% 0.030688

1% 0.020771

0.171241

0.030533

0.020771
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Extremes

Lowest Obs Highest

0.020771( 10) 0.124854(

0.030688( 3) 0.128571(

0.035136( 4) 0.146235(

0.040647( 22) 0.185399(

0.051684( 6) 0.192012(

Stem Leaf

18 52

16

14 6

12 24459

10 15003578

8 1225788

6 3

4 122

2 115

————+—-—-+----+—-—-+

Multiply Stem.Leaf by 10**-2

Univariate Procedure

Variable=RH08
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Univariate Procedure

Variable=RHO9

Moments

N 30 Sum Wgts 30

Mean 0.13364 Sum 4.009202

Std Dev 0.02181 Variance 0.000476

Skewness 1.599801 Kurtosis 5.713664

USS 0.549584 CSS 0.013794

CV 16.31965 Std Mean 0.003982

Normal Probability Plot

Obs

19)

30)

9)

l)

8)

# Boxplot

2 0

l |

5 + —————+

8 *..+_.*

7 +-----+

1 l

3 0

3 0
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T:Mean=0 33.56214 Pr>|T|

Num A: 0 30 Num > 0

M(Sign) 15 Pr>=|MI

Sgn Rank 232.5 Pr>=ISI

Quantiles(Def=5)

100% Max 0.213422 99%

75% Q3 0.137176 95%

50% Med 0.133307 90%

25% Q1 0.129431 10%

0% Min 0.094064 5%

1%

Range 0.119359

Q3-Ql 0.007745

Mode 0.094064

Extremes

Lowest Obs Highest

0.094064( 27) 0.138291(

0.102313( 10) 0.146238(

0.103577( 7) 0.16819(

0.109454( 3) 0.168781(

0.113265( 4) 0.213422(

Stem Leaf

21 3

20

19

18

17

16 89

15

14 6

13 001123344445777788

12 059

11 3

10 249

9 4

—---+———-+----+---—+

0
0
0
0
0
0

Multiply Stem.Leaf by 10**-2

Univariate Procedure

Variable=RHO9

0.215+

Normal Probability Plot

0.00

0.00

0.00

.213422

.168781

.157214

.106516

.102313

.094064

Obs

19)

26)

14)

13)

22)

# Boxplot

~11:

N
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W's entries are 0,

A
Q
U
'
I
K
O
K
O

1 .059360

.023599

.534783

.083396

.894535

.894535

1.310192

w
w
b
m
m
b

.841095E-01

.841095E-01

.363135E-01

.958040E-08

.903842E—01

-1.171220

-1.171220

-1.336884

-1.336884

-2.525492

-2.525492

-4.415877

-4.827520

-4.827520

-4.899200

-7.075458

-7.701774

1,

0
0
0
0

0
0

0
0

Appendix6H

The eigenvalues of. W(O, 1 ,2,3,4)

2, 3, 4.

.000000E+00

.000000E+00

.000000E+00

.000000E+00

-1.389182

1.389182

.000000E+00

-1.732912

1.732912

.000000E+00

.000000E+00

.000000E+00

-1.956163

1.956163

-1.309866

1.309866

—1.615801

1.615801

.000000E+00

—2.857574

2.857574

.000000E+00

.000000E+00

.000000E+00
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Appendix6l

The comparison of moral levels

 

 

      
 

 

 

 

        
 

 

 

       

 

 

 

T-Test

GroupStatlstlcs

Std.

Std. Error

W] NW2 N Mean Deviation Mean

MORAL] 1.00 16 .1510794 .2560826 6.40E-02

100 8 2155950 40.5mm

Independent Sample: Test

Levene's?1'est

for Equality of

Variances t-test for Equality of Means

Sig. Std.

(2—tail Mean Error

F 51% t df ed) Difference Difference

MORAL] Equal

variances 1.477 .237 -.478 22 .637 -6.5E-02 .1348340

assumed

Equal

xgi'ances -.411 9.891 .690 —6.SE-02 .156923]

assumed

T-Test

GroupStatistlcs

Std.

Std. Error

NB] 82 N Mean Deviation Mean

MORAL] 1.00 18 .1092361 .2874029 6.77E-02

100 6 357630.0__3.QA.03.83__.12£J.Z3.L.

Independent Samples Test

Levene's

Test for

Equality of

Variances t—test for Equality of Means

Sig. Mean Std. Error

(2-ta Differenc Differenc

F Sig. t df iled) e e

MORAL] Equal

variances .044 .836 —].845 22 .078 .2533939 .1373046

assumed

Equal

:grt'ances -1.792 8.208 .110 .2533939 .1414053

assumed          
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T-Test

 

 

     
 

 

 

 

 

        
 

 

 

     
 

 

 

 

 

GroupStatistics

Std.

Std. Error

W] NW2 N Mean Deviation Mean

MORAL2 1.00 16 .1496112 .2557655 6.39E-02

2-00 8 7155950 4052mm.

Independent Samples Test

Levene's Test

for Equality of

Variances t-test for Egualig of Means

Sig. Std. Error

(Z—tail Mean Differenc

F Sig. t df ed) Difference e

MORAL2 Equal

variances 1.494 .234 -.490 22 .629 —6.60E-02 .1347570

assumed

Equal

‘r’Ig’t'ance‘ -.421 9.883 .683 -6.60E-02 .1568908

assumed

T-Test

GroupStstlstics

Std.

Std. Error

N8] 82 N Mean Deviation Mean

MORAL2 1.00 18 .1079311 .2869526 6.76E-02

2-00 6 3526300 304.03.33.4241231.

Independent Samples Test

Levene's Test

for Equality of

Variances t—test for Equality of Means

Sig. Std.

(2-tail Mean Error

F Sig. t df ed) Difference Difference

MORAL2 Equal

variances .048 .828 -1.857 22 .077 .2546989 .1371428

assumed

Equal

31'3““ -1.802 8.197 .108 .2546989 .1413545          
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The racexsexxmoral table

 

Appendix6J

 

 

*
1

‘
U

 

 

 

Correlations

sex " 7154'R' MORAL] MORAL2 MORAL3

Pearson SEX 1.000 -.252 .024 .026 .050

Correlation YEAR -.252 1.000 .160 .157 .126

MORAL] .024 .160 1 .000 1 .000” .988*‘

MORAL2 .026 .1 57 1 .000“ 1 .000 .991 *

MORAL3 .050 .126 .988“ .991 1.000

wmwz .299 .029 .101 .104 .123

NBLIBZ .293 .099 .366 .368 .382

Sig. sex . .235 .913 .903 .815

(2-tailed) YEAR .235 . .455 .464 .556

MORAL] .91 3 .455 . .000 .000

MORAL2 .903 .464 .000 . .000

MORAL3 .81 s .556 .000 .000 .

w1 NW2 .156 .892 .637 .629 .566

NBIBZ .165 .645 .078 .077 .066

N sex 24 24 24 24 24

YEAR 24 24 24 24 24

MORAL] 24 24 24 24 24

MORAL2 24 24 24 24 24

MORAL3 24 24 24 24 24

W1NW2 24 24 24 24 24

NBIBZ 24._u__2.4___24___23_    
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Appendix6J (Continued)

The racexsexxmoral table

 

 

 

 

 

 

Correlations

w_1NW2 N81 82

Pearson SEX .299 .293

Correlation YEAR .029 .099

MORAL] .101 .366

MORAL2 .104 .368

MORAL3 .123 .382

W1NW2 1.000 .816”

N81 82 .816" 1.00

Sig. SEX .1 56 .165

(Z-tailed) YEAR .892 .645

MORAL] .637 .078

MORAL2 .629 .077

MORAL3 .566 .066

M NW2 . .000

N8182 .0001

N SEX 24 24

YEAR 24 24

MORAL] 24 24

MORAL2 24 24

MORAL3 24 24

w1~w2 24 24

N3] 32 2.4.   
 

**,Correlation is significant at the 0.01 level (Z-tailed).
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Appendix6K

The eigenvalues of W(0,l)

W's entries are 0, 1 only.

4.051115 0.000000E+00

2.651598 0.000000E+00

1.883632 0.000000E+00

1.548894 -3.286612E-01

1.548894 3.286612E-01

7.357295E—01 0.000000E+00

3.613770E-01 —6.469532E-01

3.613770E-01 6.469532E-01

2.966202E—01 —6.964666E-02

2.966202E—01 6.964666E-02

5.441884E-07 0.000000E+00

-2.522140E-01 -7.226394E-01

-2.522140E-01 7.226394E—01

—3.105704E—01 0.000000E+00

-6.678435E-01 -1.496080E-Ol

-6.678435E-01 1.496080E-01

—6.870127E-01 -5.055384E-01

—6.870127E-01 5.055384E-01

-1.397442 —9.904619E-01

—1.397442 9.904619E-01

-1.533783 0.000000E+00

—1.899674 -9.174101E-02

—1.899674 9.174101E-02

—2.083131 0.000000E+00
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