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ABSTRACT

On Some Inference Problems For
Current Status Data

By

Deepa Aggarwal

In the current status or interval censored case 1 data, one does not observe the
event occurrence time but only the inspection time and whether the event has occurred
prior to the inspection time or not. This thesis consists of two parts. The first
part pertains to fitting a parametric model to the distribution function of the event
occurrence time in the one sample set up with current status data. In this part,
we first discuss two analogous minimum distance inference procedures for fitting a
regression function in the classical regression set up. These distances are based on
squa.red deviations of a nonparametric regression function estimator and the model
being fitted. In the one distance the integrating measure is o- finite and in the second,
it is data dependent. The thesis establishes asymptotic normality of the proposed
empirical minimum distance statistic and that of the corresponding estimator under
the fitted model in a general regression set up. Then, these results for empirical
minimum distance test are adapted to fit a parametric model to the distribution of

the event occurrence time based on current status data. It also contains a finite



sample comparison of the proposed test with Kqul and Yi test and the one sample
Cramér-von Mises test based on nonparametric maximum likelihood estimator of the
distribution function of the event occurrence time.

The second part of the thesis pertains to testing for the equality of the two event
occurrence time distribution functions in the two sample setting when the data is in-
terval censored case 1 from both samples. It derives the asymptotic distribution of the
underlying test statistic both under the null hypothesis and under local alternatives.
It also contains a finite sample comparison of the proposed test with the two sample
Cramér-von Mises test based on nonparametric maximum likelihood estimators of

the time to event distribution functions.
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CHAPTER 1

Introduction

In recent years there has been a considerable research on the analysis of interval-
censored data. In the case I interval censored data, an event occurrence time X
is unobservable, but one observes an inspection time T and whether an event has
occurred prior to this time or not. This type of data is also known as current status
data. It is different from the right ccnsored data where one observes true life time in
the case of no censoring and only censoring time when life time is censored.

Current status data often arises in epidemiology, demography and economics. For
example, as mentioned in Jewell and Van der Laan (2004), in the study of infectious
disease Human Immunodeficiency Virus (HIV), in particular, the partner studies of
HIV infection. These partnerships are assumed to include an index case who has been
infected via some external source, and a susceptible partner who has no other means
of infection except the contact with the index case. Suppose X denotes the time
from infection of the index case to infection of the susceptible partner and T is the

time the susceptible partner is examined after infection of the index case. Then the



infection status of the susceptible partner provides current status data. For some more
applications for current status data, see Hoel and Walburg (1972), Finkelstein and
Wolfe (1985), Finkelstein (1986), Diamond, McDonald and Shah (1986), Diamond
and McDonald (1991), Keiding (1991) and Jewell and Van der Laan (2004).

This thesis is concerned with the following two problems. The first problem per-
tains to fitting a parametric model to the distribution function of the event occurrence
time in the one sample set up with current status data. The second problem is con-
cerned with testing for the equality of the two event occurrence times distribution
functions in the two sample setting when the data is interval censored case 1 from
both samples.

We shall now focus on the first problem for the moment. To describe this problem a
bit more precisely, let F' denote the distribution function (d.f.) of the event occurrence
time X, © be a subset of ¢g-dimensional Euclidean space R?, and {Fy, 6 € 6} be
a known parametric family of d.f.’s on [0,00). Let T be the inspection time and
0 == I(X < T) and T be a compact interval of [0,00), where I[A] denotes the
indicator function of the event A. We assume X to be independent of T. The problem

of interest here is to test the hypothesis
Hyp: F(t)= Fgo(t), for all t € Z, for some 6 € O,
against the alternative
Hy1: Hpy is not true.

It is natural to base tests of H(); on a distance between the nonparametric max-
imum likelihood estimates F' of F and {Fy, 6 € ©}. One such test statistic is the
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Cramér-von-Mises statistic
. 2 .
CVi = infy / (F(2) - Fy(x)) "dF(a).

But unfortunately neither the finite sample nor the asymptotic null distribution of this
statistic is known because of the complicated nature of the distribution of £. Even
asymptotic distribution of a suitably standardized F is intractable, cf., Groeneboom
and Wellner (1992).

An alternative way to proceed is to use the well known regression relationship
between § and F(T), i.e., E(6|T) = F(T), and the fact that this regression is het-
eroscedastic. In this context then the problem of testing H(yj is equivalent to testing
the lack-of-fit of the parametric regression model {Fyp, 6 € 6}.

There is a vast literature on the problem of testing for the lack-of-fit of a para-
metric regression model. The monograph of Hart (1997) provides a nice overview
on the subjet till 1997. Using the ideas of Khmaladze (1979), Stute, Thies and Zhu
(1998) proposed an asymptotically distribution free test for this problem based on
a martingale transform of a certain marked empirical process of the residuals. Koul
and Ni (2005) used the minimum distance methodology to propose a class of tests for
the same problem. In all this literature the data is completely observable.

Using the above mentioned equivalence between testing Hpj and the correspond-
ing lack-of-fit testing of a regression model, Koul and Yi (2006) adapted the Stute-
Thies-Zhu test to test for Hpj. They provide sufficient conditions for consistency
of their test at a fixed alternative and derive an expression for its asymptotic power

against local alternatives.



Koul and Ni (2004) used the integrated square distance between a kernel type
nonparametric estimator of the regression function and the model being fitted, where
the integrating measure is a o-finite measure. A practical problem that arises in using
these statistics is the choice of the integrating measure. Although one may choose
this by using some optimality criteria, such a measure will invariably depend on the
model being fitted and the design distribution.

In this thesis we first discuss two analogous minimum distance inference proce-
dures in the classical regression set up, first when the integrating measure is o-finite
and second when the integrating measure is data dependent-viz, the empirical d.f. of
the design variable. We prove asymptotic normality of the proposed empirical mini-
mum distance statistic and that of the corresponding estimator under the fitted model
in_ a general regression set up. Then, these results for empirical minimum distance
test are adapted to fit a parametric model to the distribution of the event occurrence
times based on current status data. We also show consistency of the proposed mini-
mum distance tests against a fixed alternative and obtain asymptotic power against
a class of local alternatives for current status data.

We now describe the second problem of this thesis. To describe it more precisely,
let F] (F3) denote the d.f. of event occurrence time X (Y') from the first (second)
population, and let S (T") be the corresponding inspection time. In the two sample
current status data set up, one observes (4, S) and (,T), where § = I[X < S] and

n = I[Y < T). The problem of interest here is to test the null hypothesis that the



two event occurrence distributions are the same, i.e.

Hyp: Fy(x) = Fp(z), forallz €I,
against the alternative

Hy9: Fy(z) # Fy(z), for somez € T.

Similar to the one sample set up discussed above, it is natural to base tests of
Hgo on nonparametric maximum likelihood estimates F 1 and 1:"2 of F and Fy. One

such test is based on the Cramér-von-Mises statistic

= nlrfl-lnz /l' (Fl(x) - FQ(I))zdﬁ’l (z)
n17-l+—2n2 /1- (13'1(1) - F2($)>2dﬁg(x).

Again for the same reasons given above asymptotic null distribution of such a statistic
is not currently tractable.

An alternative way to proceed is to use the well known regression relationship
between é§ and Fy(S), and  and Fo(T), i.e., E(3|S) = Fy(S) and E(n|T) = Fo(T),
and the fact that these two regressions are heteroscedastic. In this context then the
problem of testing H(yy is equivalent to testing the equality of the two regression
functions under heteroscedasticity.

The problem of comparing the two regression functions has been discussed by
several authors. In general, see, e.g., Hall and Hart (1990), King, Hart and Wehrly
(1991), Carroll and Hall (1992), Delgado (1993), Kulasekera (1995), Koul and Schick
(1997, 2003), Neumeyer and Dette (2003), among others. The data is completely
observable in the above mentioned literature.
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Koul and Schick (2003) proposed a test using covariate matching for the same
problem in a general regression set up. In this thesis, we adapt this test to the two
sample current status data and discuss its asymptotic normality under a general set
of assumptions.

This thesis is organized as follows. Chapter 2 studies empirical minimum dis-
tance tests of lack of fit in classical regression set up. Corollary 2.3.1 and Theorem
2.3.1 state and prove consistency of empirical minimum distance estimates of the
underlying parameters of the model being fitted. Theorem 2.4.1 and Theorem 2.5.1
give asymptotic distribution of the parameter estimator and the empirical minimum
distance statistic under the null hypothesis.

In chapter 3, section 2, we apply the results of Koul and Ni (2004) for minimum
distance tests of goodness of fit hypothesis based on current status data. After that,
we discuss consistency of these tests against a fixed alternative and obtain asymptotic
power against a class of local alternatives. Section 3.3 uses the results of Chapter 2
for empirical minimum distance test to fit a parametric model to the distribution of
the event occurrence times based on current status data.

Section 3.4 reports the numerical results of the three simulation studies in the one
sample set up. The first one assesses the finite sample level and power behavior of
the empirical minimum distance test. The simulation results of empirical minimum
distance statistic are consistent with asymptotic theory. Also, simulation results show
little bias in the estimator of the best fitted parameter for all the chosen sample sizes.
The second simulation study investigates Monte Carlo size and power behavior of

the Cramér-Von-Mises test CV]. The finite sample level of this test approximates
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the nominal level well for all the chosen sample sizes. The third simulation study
investigates Monte Carlo size comparison of empirical minimum distance test, CVj,
and Koul and Yi (2006) test. Simulation results show that empirical sizes are better
for CV] and Koul and Yi (2006) test as compared to empirical minimum distance test,
when sample size is less than 200. But when sample size is 200 or large, empirical
sizes are comparable in all the three tests. In our simulations, F* is obtained by
the one step procedure for the calculation of the nonparametric maximum likelihood
estimator, based on isotonic regression, cf. Groeneboom and Wellner (1992).

Chapter 4 deals with the problem of testing the equality of two distribution func-
tions against the two sided alternative based on the current status data. Proposition
4.2.1 discuss asymptotic normality of the underlying test statistic under a general set
of assumptions. Section 4.3 reports the numerical results of the two simulation stud-
ies. The first one assesses the finite sample level and power behavior of the proposed
test statistic. The simulation results of the proposed test statistic are consistent with
asymptotic theory.

In the second simulation study, the finite sample comparison of the proposed test
statistic with the two sample Cramér-Von Mises test is made. Simulation results show
that for all the chosen alternatives, bandwidths and sample sizes, significance level and
power of the proposed and CV5 tests are comparable. Again, in our simulations, E 1
and 13'2 are obtained by the one step procedure for the calculation of the nonparametric

maximum likelihood estimator, based on isotonic regression.



CHAPTER 2

Empirical Minimum Distance
Lack-Of-Fit Testing

In Regression Model

2.1 Introduction

This chapter discusses an empirical minimum distance method for fitting a parametric
model to the regression function u(z) := E(Y|X =1z),z € RE, d > 1, assuming it
exists, where Y is the one dimensional response variable and X is a d dimensional
design variable. Let {my(z) : z € Rd, 6 € © C RY, g > 1} be a given parametric
family of regression functions and let Z be a compact subset of R, The problem of

interest is that of model checking, i.e., to test the hypothesis

Ho: plz)= mgo(z), for some 6y € 6 and for all z € I;

Hp: My is not true,



based on a random sample (X;,Y;), 1 <7 < n, from the distribution of (X,Y).

Several authors have addressed the problem of regression model checking: see,
Hart (1997) and references there in. The recent paper of Koul and Ni (2004) (K-N)
uses the minimum distance ideas of Wolfowitz (1953, 1954, 1957) and Beran (1977,
1978) to propose tests of lack-of-fit for the regression model with heteroscedastic
errors. In a finite sample comparison of these tests with some other existing tests,
they noted that a member of this class preserves the asymptotic level and has very
high power against some alternatives when compared to some other existing lack-of-
fit tests. The distance used in their paper is the integrated square deviation between
a nonparametric estimator of the regression function and the parametric model being
fitted with respect to a general integrating measure.

To be specific, K-N considered the following tests of H(j where the design is random
and observable, and the errors are heteroscedastic. Let ® be a sigma finite measure
on ]Rd, G denote the d.f of the design variable X, and Gp, be the empirical d.f. based
on X;, 1 < i < n. For any density kernel K, let Kj,(z) := K(x/h)/hd, h>0,zeRd

Define, as in K-N,

1
To(6) = /I [% > Kz - X;)(%; - me<Xi>>]2i¢T“)’

and dp = argmingcg7Tn(Y), where K, K * are kernel density functions, possibly

different, h = hp and w = wp are the window widths, depending on the sam-



ple size n. K-N gave some sufficient conditions on the underlying entities for con-

sistency and asymptotic normality of J, under Hy, and asymptotic normality of

Dp = d/2(77n(19n) - Rn)/gn/ under H(y , where
. 1 & Kh(x X; )522
Bn = — dd(z), 2.1)
n2 z=z:1/ 2(_7;)
& =Y —m; (X)
a - _2 d Kh(’:"xi)Kh(x—Xj)AEiéj . 2
Gn = h z% ( / 70 d%(z))".

A practical problem that arises in using these statistics is the choice of the inte-
grating measure ¢. Although one may choose ® using some optimality criteria, such
a @ will invariably depend on the model being fitted and the design distribution. One
way to simplify the choice of ® is to use the empirical d.f. of design in the above
entities.

We are thus motivated to propose empirical minimum distance tests of lack-of-fit

in the classical regression model. Accordingly, let 7 = I(X j € 7) and define

n n KX - X)(Y; —mg(X;)) ]2
-1 1 0
Mp(8) == n Z —Z il s
i=1 n i=1 gu}(X])
and 0 == argming g Mn (6).
We also need the following entities:
mn(z) = — z h(x , TE Rd,

gw(x)
M3(6) = n—IZ(rhn(Xj)—mg(Xj))QIj, 6 € RY,

J=1
05, = argmingeeM;'{(O).

10



In this thesis we prove the consistency of 67, and fn. We also prove asymptotic
normality of \/n(fp — 6p), and nhd/ 2(A7In(90) — Cn) under Hy, where Cr, is given
below at (2.2). Then, similar to K-N, sequences of estimators Cn, and 'y, are provided
such that C'n is nhd/ 2_ consistent for C’n and f‘n is consistent for I', and under
some sufficient conditions on the underlying entities, asymptotic null distribution of
nhd/ 2f‘; 1/ 2(Mn(én) — Cp), is shown to be standard normal. These results are

similar in nature to Theorems 4.1 and 5.1 of K-N. Here,

) K2(X; - X;)e?
— -3 h

Cn = Z Z 2(X) s (2.2)
j=li=1 J

A RN K2(X; - X;) €2

> i)
Jj=li=1 J

g = Y, — mén(xi), 1< <n,

r = 2/1_ x)d:c/(/K u)K (v +u)d u)2dv,

2
In = 2hdn_4z (ZKh( )K(h)i);l Xj)si ]Il) ,
l Ip\ A

i#j

where 02(:c) = E[(Y - mgo(z))2lX = a:],x € R%, and g is Lebesgue density of G.

This chapter is organized as follows. Section 2.2 states the needed assumptions.
In the beginning of section 2.3, we summarize some of the results of K-N and Koul
and Song (2006) (K-S) for the sake of completeness. Section 2.3 contains the proofs of
consistency of 67, and én, while section 2.4 and 2.5 contains the proofs of asymptotic
normality of 6n, and that of the proposed empirical minimum distance test statistic,

respectively.
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2.2 Assumptions

Here we shall state the assumptions that are in K-N for reference where theorems
and lemmas are proved. Throughout the thesis fj denotes the true parameter value
under H() assumed to be in the interior of 8. About the errors, the underlying design

and the o- finite measure ® on R? we assume the following:

(el) The random variables {(X;,Y;) : X; € Rd,Yi € R,i=1,2,---,n} are iid,,
E|Y| < oo, and the conditional expectation u(z) := E(Y|X = z) satisfying
f,u2(:c)d<I>(x) < 00.

(e2) E(Y — pu(X))2 < o0, and the function o2(z) = E[(Y — u(X))2|X = 1] is a.s.
(®) continuous on Z and 030 (x) is continuous on : G

(e3) E|Y - u(X)|2+5 < 00, for some § > 0.

(e4) E|Y — ,u(X)|4 < 00 and TgO(I) = E[(Y - mgo(X))4|X = z] is continuous on
R,

(g1) Thed.f. G of the design variable X has a uniformly continuous Lebesgue density
g that is bounded from below on Z.

(g2) The density g of the d.f. G is twice continuously differentiable.

(p) @ has a continuous Lebesgue density ¢.
About the kernel functions K and K*, we shall assume the following:

(k) The kernels K, K* are positive symmetric density functions on [—1, I]d with
finite variances. In addition, K is a bounded kernel and K* satisfies a Lipschitz

condition.

12



About the parametric family of functions to be fitted we need to assume the

following:
(m1) For each #, my(z) is a.e. continuous in z, w.r.t. the integrating measure ¢ on
R4,
(m2) The function mg(z) is identifiable w.r.t. . i.e., if my_(z) = my,_ () for almost
9 0 6

all z(®), then 6] = 09.

(m3) For some positive continuous function ¢ on R? with E{(X) < oo and some

g >0,

[mg, (z) — mg, ()] < 163 01)1Pe(z), V01,09 €0,z€T.

(m4) For every z, my(z) is differentiable in € in a neighborhood of 6 with the vector
of derivatives mg(:c), which is continuous on R® such that for every 0 < k < o0,

Img(X;) — moo(Xi) - (6 - 6p) "hoo(Xi)I _
Sup 16 = 6ol =op(D),

where C := {1 <i<mn, \/@”0 - 0pll < k}.
(m5) For every 0 <k< oo,
sup o V2 mg (X;) — g (X))l = op(1), ¥ > Ne
(m6) [ |lrg, 12d® < oo, and £ := fm(,omgod@ is positive definite.
About the bandwidth hy we shall make the following assumptions:

(h1) hp — 0 asn — oo.

13



(h2) nh%d — 00 as n — 0o.

(h3) hn ~ n~%, where a < min(1/2d,4/(d(d + 4))).

Let g5 and gr, denote the kernel density estimators of g with bandwidth » and
w, respectively. From Mack and Silverman (1982), we obtain that under (gl), (k),

(h1) and (h2),

sup [3,(z) - 9(@)| = 0p(1), sup lg(x) — g(@) = op(1),  (2.3)
€l zel

9(z) _41_,
sup | 555~ 1 = o))

These conclusions are often used in the proofs below.

In the sequel, e ;==Y — moo(X ). The integrals with respect to ® and G measures
are understood to be over the compact set Z. The inequality (a + b)2 < 2(a2 + b2),
for any real numbers a, b, is often used without mention in the proofs below. The
convergence in distribution is denoted by — ; and Ap(a, B) denotes the p-dimensional

normal distribution with mean vector a and covariance matrix B, p > 1.

2.3 Consistency of ¢, and 0,

This section proves the consistency of 67, and 6n. To state and prove these results
we need some more notation. For a o-finite measure o on d-dimensional Borel space
(Rd, Bd), let Lo(a) denote a class of square integrable real valued functions on R4

with respect to a. Define
o109 0) = /I(zq(x) — vg(2))2d(z),
plvy,vg) = /I(zq(x) — u(2))2dG (),

14



oy vg) = /I(ulu)—uz(x))?dan(x)

n
= 0713 (X)) - m(X)%Z5, vy, v € Ly(G),
7=1

and the maps

T(v,®) := argmingcgp(v,my;®), T(v):=argmingcg p(v, mp),

Tn(v) = argmingcg pn(v,my), veELy(G),n>1
The following lemma has its roots in Beran (1977) and is proved in Ni (2002).

Lemma 2.3.1 Let m satisfy the conditions (m1), (m2), and (m3). Then the follow-
ing hold.

(a) Vv € Lo(®), T(v; ®) always exists.

(b) If T(v; ®) is unique, then T(v;®) is continuous at v in the following sense:
For any sequence of {vn},v € Lo(®), p(vn,v; ®) — 0 implies T(vn; ®) — T(v; ®).

(c)VY 0 € ©, T(mg) =0, uniquely.

We need an analog of this lemma for the random distance pp, and the correspond-

ing T, given as follows.

Lemma 2.3.2 Let m satisfy the conditions (m1), (m2), and (m3) with ® replaced
by G. Then the following hold.

(a) Vv € Lo(G), T(v) always exists, and Tn(v) exists Vn > 1, w.p.1.

(b) If T(v) is unique, then the following holds. For any sequence of {vn},v €

Ly(G),

pn(vn,v) —p0, implies Tn(vn) —=pT(v), asn — oo.

15



(c)V 0 € ©, T(my(-)) = 0, uniquely, and Tn(my(-)) = 0 uniquely, for alln > 1,
w.p.1.
Proof. The following proof is a suitable mpdiﬁcation of the proof that appears in Ni.
Proof of Part (a). The existence of T'(v) follows from (a) of Lemma 2.3.1. We shall
prove that the family of random functions 6 +— pn(v,mg), n > 1, is almost surely
equi-continuous. Then the claim (a) pertaining to T, follows from the compactness
of B. By the Cauchy-Schwarz inequality, for any 9, 6 € 6,

1/2 1/2
lon(v,meg) = pn(vmg)| < pr(mg,mg) + 208 *(v,mg)on “(meg,mg).

But, by (m3),

pn(mg,mg) = /I(mﬁ(z)—ma(x))2dcn($)§”19"9”2"—1252()(1')11'-

1=1

Since ¢ is continuous on R? and 7 is compact then ¢ is bounded on Z and hence
sup pn(mg,mg) < Cll9 — 61, wp.l.
n>1
Similarly, under (m3),
p(mg,mg) < Clo-06]2 v8,9¢8.

Because of the SLLN’s and because my, v € Lo(G), pn(v,my) — p(v,my), as.
for each 9 € 6. Also in view of the above bounds, both functions § +— pp(-,my)
and J +— p(-,my) are Lipschitz(2) uniformly in n and with probability 1. These facts

together with the compactness of 8 imply
sup IPn(V, me) - p(”a m9)| — 0, as., asn — oo, (24)
€6
s‘:lplpn(yw m'ﬂ) - Pn(V, me)l — 0, as, as “19 - 0” -0,
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thereby completing the proof of equi-continuity of the map 6 — pn(v,mp), and of
part (a).

Proof of part (b). Let {vn}, v in Lo(G) be such that
pn(vn,v) = op(1). (2.5)
Let § = T(v), 9n = Tn(vn). For an € > 0, let
An.e :={pn(vn,v) <€ |pn(v,mg) — p(v,mg)| < €}.

By (2.4) and (2.5), there is an N¢ such that

P(Ape¢) >1—-¢, Vn> Ne (2.6)

Now, by the definition of T,
Pn(Vn,mﬂn) < pn(vn,my), Vn>1,wp.l.

By subtracting and adding v inside of the square of the integrand, expanding the

quadratic and using the Cauchy-Schwarz inequality on the cross product term,
1/2 1/2
pn(vn,mg) < pn(v,mg) + pn(vn,v) + 2Pn/ (vn, V)Pn/ (v,mg).
On Ap ¢, we thus obtain

pr(vn.my,,) < p(v,mg) + e + 261 2(e + plv,mg))1/2. (2.7)

On the other hand, again by the definition of T, Tn, 6, and Jn, pn(v,my) <

pn(v, mﬂn)’ for all n > 1, a.s. This, together with an argument like the above,

17



implies

Pn(l/n,mﬂn) - pn(v, me)
> pnlvn,my, ) — pn(v,my,)

1/2 1/2
> pn(vn,v) — 2pn/ (un,u)pn/ (v,my,) Vn 21, wp.l

But,
pn(v, mﬁn) < 6pn(vn,v) +4pn(v,my).
Hence, on An e,

Pn(l/n,mﬁn)
> pn(v,mg) + pn(vn,v) = 208 *(vm, 1) {6pn(vn,v) + dpn(v,mg)} /2
> pn(v,my) —e€— 261/2(26 + p(v, me))l/2

> p(v,mg) —2¢ — 261/2(26 + p(v, mg))l/Q.

Thus, in view of (2.6), (2.7), and the arbitrariness of €, we obtain

p(n,mg,,) = p(v,mg) + op(1).

From these facts it follows that ¥n —p 6. For, suppose Jn - 6, in probability.

Then, by the compactness of 6, there are subsequences Yn, k of {9n} such that Jp, E

¥ # 0, and by (2.8), pn; (Vnk,mlgnk) — p(v,my), in probability. Hence, p(v, m)

p(v,my), implying, in view of the uniqueness of T'(v), a contradiction, unless J = 6.

Proof of part (c). The claim here follows from the identifiability condition (m2)

with & = G.
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As in K-N, for any average L :=n~1 Z;?=1(7(X §)/ g (X §)), the replacement of
g3, by g is reflected by the notation L := n~1 E?=1(7(X j)/ g(X §))- We also need

to define for z € R%, 6 € RY,

pn(z,8) = - Z Kp(z — X;)me(X;), (2.9)

1,—1
fn(z,0) = - Z Kp(z = Xi)g(X;),

1 1,21

Un(z,0) = — > Kp(z — X;)Y; — pn(=,0)

i=1

n
= % > Kplz - X)Y; —mg(X;)l,  Un(e) := Un(=,6p)
i=1

ip(z) = Epin(z,09) = EKp(z — X)rg, (z),
Zn(z,0) = #n(’l? 0) — pn(z,6p)

= ‘Zkh(x— )[me(X;) —mg, (X)),
Un(x) (z) 1 & [ UR(X5)

n 2
Cna(6) = %Z [“guf oy e )] 7

o /ag | (@)gy (@)ring (2) 4%(2)

3() dz.

Many of these entities are the empirical analogues of the entities defined at (3.1) in
K-N.

Now, we will summarize the results of K-N and K-S for the sake of completeness.
The next two results state the consistency of 9}, and dp,.

Result 2-3-1. Suppose Hy, (el), (e2), (k), (g1), (h1), (h2), and (m1)-(m3) hold.

19



Then, 97, — 6, in probability.

Result 2-3-2. Suppose H), (el), (e2), (k), (g1), (h1), (h2), and (m1)-(m3) hold.
Then, dp, — 0, in probability.

The following result gives asymptotic normality of In.

Result 2-3-3. Suppose Hy, (el), (e2), (e3), (g1), (g2), (k), (p) , (h3), and

(m1)-(m5) hold. Then,
/20 —6g) = £51nl/28, + op(1),

Consequently, n1/2(1§n —8g) — 4 Nq(0, 261220—1), where Sp, and ¥ are as in (2.9)
and X is as in (m6).

The following result states asymptotic normality of the minimized distance
Tn(9n).

Result 2-3-4. Suppose H, (el), (€2), (e4), (k), (p), (g1), (g2), (h3), and (m1)-
(m5) hold. Then, nhd/z(Tn(@n)—f%n) —4 N1(0,T). Moreover, |G~ 1 =1 = 0p(1),
where G, Ry, and T are as in (2.1) and (2.2).

The following result from K-S gives consistency of 9 and Jp, for T(m), where m
is a given regression function, different from the model being fitted.

Result 2-3-5. Suppose (k), (g1), (m3) hold, and m is a given regression function
such that m ¢ {mg;0 € 6}, m € Ly(®), and T(m) is unique.

(a) In addition, suppose m is a.e.(®) continuous. Then 9}, = T(m) + op(1).

(b) In addition, suppose m is continuous on Z. Then dp, = T(m) + op(1).

Next, we shall prove consistency of empirical minimum distance estimates of the

underlying parameter vectors under H.
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Corollary 2.3.1 Assume H, (el), (e2), (91), (k), (m1)-(m3), (h1), and (h2) hold,

with ® replaced by G. Then 07, — 6y, in probability.

Proof. Note that My (6p) = pn(rhn,mgo), 05, = Tn(mn), and by the identifiability

condition (m2), T'(mp.) = 0p. It thus suffices to prove
o 0

pn(n, m‘90) = op(1). (2.10)

h summand of My (6p) and

To prove this, substitute mg, (X;) + ¢ for Y; inside the it
expand the quadratic summand to obtain that pn (in, m‘90) is bounded above by the
sum 2[Cy,1 + Cp0(6p)], where Cp,1, Cpyo are as in (2.9). It thus suffices to show that
both of these terms are op(1).

Since ¢; is conditionally centered, given X;, and by continuity of g and O'go,

assured by (e2), (g1), (k) and (h2), we obtain

L1 [Un(x) 1
E(n 'y [ g(xjj) z; (2.11)

— =3 T Kh(xj - X} 2
- ;;E 9(X;) J
= € 2 Kp(X; — X;)¢; 2

=n~3p2dg2() ; E[g (;‘i)I’] 03 Z?é: E h(gng) )e Ij]

2 2 9
B (nhd)Z T 9(z) dx+nhd//z 9(z) dz du
= 0(1/nh%).

Hence
_1 - [Unxy) 1 ~
" ljgl [ g(XjJ) IJ] = Op((rhh71), (2.12)



and, by (2.3), C,1 = 0p(1). Next, we shall show
Cn2(8g) = op(1). (2.13)

By taking the summations for 7 = j and 7 # j, and by using the inequality

(a+ b)2 < 2(a2 + b2), for any real numbers a, b,

Cno(0) < 2[Cp91(8) + Cpon(8)], €86, (2.14)
where
X o I [(KR(0) — K2 (0)mg(X;) 12
= N 3 ‘7 - .
) a3 [ (KR(X5 = X)ma(X;) — K5(X; — X)m(X5)) 12
Cn22(f) = n 32:1 é: e 9 g?j,(Xj;U : = Zj
J=1Li#j

By the compactness of ©, every open cover of © has a finite subcover {0j; 1<j<k}

say. For any § > 0 such that ||6 — Oj” < 4, and by (m3),

supge@ B(Cn21(9)

2K2(0) (h=2d _ 4,24

< —5 su su
", P P

1<5<k [|6-6;]|<6

mogl\Z) —m x 2 m, X 2
x/ [( () ej( N ( 9j( ) }dx
A

o() )

2(z) + m2 (z
) +m3 (2)

2
< 20K =24 _ o -2)526 4 1) o / z.
n j=1JT 9(z)
Thus by (g1), (k), and by continuity of my,V 8 € ©, we obtain
supgeg E(Cn21(6)) = O(nh®) 1. (2.16)

Hence Cp91(8) = op(1) follows from (h2), and (2.3)'.
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To deal with é’n22, let, for j # 1

ep(z,0) = BKp(Xj - X;)mg(X;)|X; = =,

ew(z,0) = E[Ky(X;— X;)mg(X;)IX; = a].

By adding and subtracting ep (X, 0) and ey (X j,9) in the quadratic term of the

summand of C’n22, one obtains

Cpoa(0) < 3Cp291(6) + 3Cp999(0) +3Cp003(6), 0 €8, (2.17)

where
G (0) = =3 J\é Fiaéjlkh(xj—;gzzj)(xi)—eh(xj»e)lzjr’(z.ls)
Crom(8) — n_3]2::1 'Ei¢j[K1Z(Xj—i{)(;j)(Xj)—e?u(Xj,B)]Ij]z’
Crom(@) = ;31)2].\;1 leh(Xj’ 90;)(_;3()(].’0)1‘7']2.

By the fact that the variance is bounded above by the second moment, one obtains

Vé €6,

= 1
ECp21(6) < — ) E
nd ~—
i#]
Again proceeding as for (2.16), for any é > 0 such that || — 0; Il <4, we obtain

Kp(X;j = Ximg(Xy) 2
9(X;) 7

sup E(Cp221(6)) (2.19)
0co
y 2 E[Kh(xj — Xi)(mg(X;) —my. (Xi))l_ r
S sup sup 'y y
1<j<k l0-0;l1<6 ™° {75 9(X;) ’
Kp(Xj - X)mg (X;) 12
+ sup =3 J Ij
1<j<km iZ5 g(Xj)
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Kp (X — X)UX;)

2p
< sup sup o — 0; Al E[ I-]
1<j<k 9-0;]|<6 ™ 3,% 9(X;) J

9 [Kh(xj = XJmg(X;) ]2
£

+ sup — Z,
1<k 9(X;) J

2528 1 K2(u)f(y — uh)g(y — uh)
‘nhd / 9(y) dudy
K2(u)m3j (v — uh)g(y — uh)

sup / / dydu
nhd 1<5< i<kJT 9(y)

= O(nnt)~1,

by (m3), (g1), (k), and by continuity of my,¥8 € ©. Hence, Cy991(fp)
Op((nhd)—l) follows from (2.3). Similarly, we can obtain that Cj999(6)) =
Op((nh®)~1).

Next, we shall show C},993(0y) = op(1). By adding and subtracting Eep,(X j,B)

and Eej,(X 3o 0) in the quadratic term of the summand of C;,993, one obtains

Cnoo3(0) < 3I,1(0) + 31,2(0) +315,3(8), 6€6, (2-20)
where
2
1 n Feh(Xj,H)—Eeh(Xj,e)
I.1(0) = - Z: , 2.21
Lo(6) = li 'efu(Xj,f?) Eew( )I
n2 nil (X ) 7
2
1 < [Eep(X5,0) — Eefy(X 5, 6)
j=1l Jwidj
But V8 € ©,

E[ / K2(u)m3(X - uh)g?(X — uh)I(X € 1) du] |

= 1
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Similar to the argument as in (2.19), by boundedness of 6, (m3), (gl), (k), and by

continuity of mg, V60 € ©, we thus obtain
suppegElp1(6) = O(n)~L. (2.22)

Hence I,1(6g)= op(1) follows from (2.3). Similarly, one can obtain that I;,9(6p) =

op(1). Also, by continuity of my and g, one readily sees that
El,3(0) = o(l), foreachfde®. (2.23)

Hence, I,3(6g)= o(1) follows from (2.3). This completes the proof of (2.13) and
hence that of (2.10) and the Corollary 2.3.1. a
Remark 2.3.1: The basic ideas of the above proof is the same as that of Corollary
3.1 in K-N. The only difference is in some details, like e.g. in the derivation of the
bounds (2.11) and (2.19). This phenomena is true in many proofs that follow. So we
shall be brief in these proofs whenever possible.
Before stating the next result we give a fact that is often used in the proofs below.

Under (gl), (k), and (h2), independence of X;’s, and for any continuous function a,

one obtain
n n 2
n 1S E|nl Kh(X-—Xz)a(Xi)I (2.24)
ng Z:l J 9(X;)™
2k20) & [aX) 1P 2 & Kp(X; = Xpa(X;)_]?
E n3p2d ;E[g(xj)z} +n3j____zlE ; 9(X;) J
_ 2K2(0) re(X) (X €D)12, 2 Kp(Xj — X;)a(X;) 42
B (nhd)2E 9(X) ] +n3i§jE[ 9(X;) IJ]
2 Kp(X; — X)) Kp (X — Xp)a(X;)a(X))
+—= Y E I
" it | 9(X;) )
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_ 2K2%(0) [ o(z) 2 K2(w)02(z — uh)g(x — uh)
"~ (nh9)2 /I 9(x) dz+nhdfé 9@ dz du

2
1
+2/I [/(K(u)a(x — uh)g(z — uh) duil 9@ dz
= o(1)+o(1) + O(1) = O(1).

We now proceed to state and prove

Theorem 2.3.1 Suppose Hy, (el), (e2), (91), (k), (m1)-(m3), (h1), and (h2) hold

with ® replaced by G. Then,
O — 6y, in probability.
Proof. Arguing as in K-N, we shall again use part (b) of Lemma 2.3.2 with v(z) =

meo(r), vp(z) = ms (z). Then by (m2), 6p, = Tn(vn), 6 = T'(v), uniquely. It thus

suffices to show that
supg|Mn(8) — Mz (0)] = op(1). (2.25)

For, (2.25) implies that

My (6n) = Mn(6n) + op(1), M7 (65) = Mn(03,) + 0p(1),

M3y (0n) — M3 (63) = Mn(6n) — Mn(65) + op(1). (2.26)
By the definitions of 65, and 67,, for every n, the left hand side of (2.26) is non negative,
while the first term on the right hand side is non-positive. Hence,

My (6n) — M7y (63) = op(1).

This together with the fact that Mj(65) < Mpj(6y) and (2.10) then proves the
required result.
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Arguing as in the proof of Theorem 3.1 of K-N, it thus suffices to show that

sngnQ(B) = op(1), sxépMn(())z()p(l). (2.27)

Using the same argument as in (2.14) - (2.23), one obtains, Cp,5(f) = op(1), for

each 6 € 6. This and (2.3) in turn imply that

72
() ~
Cpo(6) < 6) = op(1), VO €®. 2.28

2(0) sup ng(x) n2(6) = op(1) € (2:28)

By the Cauchy-Schwarz inequality, for any 67, o € ©

Cra(02) — Cra(O1)] < 2(E1 + By) + 4C44(61)[Ey + By)V/2,

where, by (m3),

n
El = n_3z

[ n Kh(X] — XZ)(m92(Xz) - m91 (Xz))I:I2
J

2. 91w (X;5)

1=1

2(z) " K (X — X;)¢ ?
< 62— 6111 sup,eg ! [ 32(2 e g(X))( )IJ)}’

gi"u(

1Y [ime, (X)) - mal(xjnzjf < 1oy - 6111%Pn=1 3" [e(x/)z;12

Ey = n
Jj=1

J=1
Hence (2.24) applied with o = ¢, (2.3) together with the compactness of © and

(2.28) completes the proof of the first part of (2.27).

To prove the second part of (2.27), note that by adding and subtracting myg O(Xz-)

5 )

Jj=1

to the it"'summand in Mn(0), we obtain

Mn(0) < 2supz€1- * x) ( Z [Un(X ]

9w (<)
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But, by a similar argument as for (2.19), and by (2.24) applied with a = ¢,

Zn 0)Z;
supg[ -1 Z [ ((X )) ] ] (2.29)

[ n K (X; - X)UX)T;) 2

L) ] = Ol

< 116 - 6g||?Pn3 Z
Jj=1

This together with (2.12) complete the proof of the second part of (2.27), and hence

that of Theorem 2.3.1. a

2.4 Asymptotic distribution of 6,
In this section we shall prove the asymptotic normality of nl/2 (Hn —6p). Let

in(x) = Efin(z,00) = EKp(z — X)rng (X)), (2.30)
Un(X;)ip(X5)Z;

= Z 9(X;)

We shall prove the following

Theorem 2.4.1 Assume that (el), (e2), (e3), (91), (92), (k), (m1)-(m5), and (h3)

hold, and ® is replaced by G. Then under Hy,
1200 —09) = g 1nl/28n + op(1), (231)

Consequently, n1/2(én —0p) —4 Ng(0, )30_12261), where £y and T are as in (m6)

and (2.9), respectively.

Proof. The proof consists of several steps. The first is to show that

nh®|lon — 6012 = Op(1). (2.32)
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Let

We claim
nh8Dp(6n) = 0p(1). (2.33)
To see this observe that

nhdMn(eo) = nhd|n~1 Z [—;‘—

IN
3
>
Q
3
|
(S
ANgE
—
b=
QX\’
<

g°(z) ]

952 (z)

di{ -1
it 715 i ] e

by (2.12) and (2.3). But, by definition, Mp(fn) < Mn(6p), implying that
nhdMn(én,) = Op(1). These facts together with the inequality Dn(8) < 2[Mn(6p) +
Mn(87)] proves (2.33).

To complete the proof of (2.32), arguing as in K-N, it suffices to show for any

0 < a < 1, there exists an Ng such that

P(.DL""")2 >a+ inf bT20b> >1-a, Vn>Ng, (2.34)
16n — 6ol ll6]l=1

where L as in (m6). To prove (2.34), let

a

Uun = on —'00, (235)

! . )
dp; = mén(Xi) - meo(Xi) - unmoo(Xz-), 1<i<n,
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Cun (X ;,00)Z;] %
funll 90X;)

Dpo = n"1

n [ n . 2
D, = n—lzl (%21{}1(){]’_Xi)(ﬁc'iunn_z")l-j)/g(xj)] ’

Jj=iEn =

2

1/2 1/2

Dn2

Then, we have Dy, (6r)/|/6n — 90|| > Dpy + Dy — 2D
By assumption (m4), consistency of 0, and by using (2.24) with a = 1, one

verifies that D1 = op(1). For the term D,,9, note that

Dy > ”b;ﬁlf Sn(b), (2.36)

where

n 1V jin(X;,00)Z;]

Sa(b) = n~1Y [ ”"((X.)O) 7} , beRd

j=1 g

Now, we will prove that for each b € RY, ||b]| = 1, Zp(b) — b’EOb, in probability.

For this it suffices to show that
E[Sn(b) - b'Sob]2 = o(1), VbeRY. (2.37)

Rewrite

b Kp(X; - Xi)meo(xi)fj>2

1 n

J

j=1li=1
e z": b'Kh(Xj—Xi)meo(xi)Kh(Xj—Xk)moo(xk)'bfj
3 2(x.

j
= Bp1(b) + Zp2(b) + 2Z,3(b) + Tpg(b),

where

K2(o n bm(, (X) 2
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o Kp(Xj — X)mg (X;) 12
() = 0 } ,
2 32;[ 9(X;) 7
o Kp(Xj — X;)ig, (X;)mg, (X;) b
s« KO 3 [HA X T
d;z§7 92(Xj) J
VK (X5 — X;)mg (X)) Kp(X5 — X )mg (Xg) b
2n4(b) — ;l% Z [ J 0 g2(Xh') J k 90 k I]}
i#], k j

The left hand side of (2.37) is less than or equal to
6[ES2, (b) + ES25(b) + EX24(b)] + 2E[S,4(b) — b'Zob)%.
Thus to prove (2.37), it is enough to show for each b € RY,
ET2 () = o(1), ET2,(b) =o(1), (2.38)
ES230) = o(1), E[Spa(t) - ¥'Soh? = o1).

Now, we shall prove the first part of (2.38). By the Cauchy-Schwarz inequality,
n ; N
. KO [nmeg(xpu z]]
- nopd . )
R L 97(XG)

£2.(b)

Therefore, by (gl), (k) and (h2), one obtains
12

K4(()) ||7h90($)
Esup ¥z, (b
W 0 ndpdd JT  g(z)

= 0@k~ = 0(1).

dz

Similarly,
b Ky (X5 — X;)ig (X;)g (X)'b 12
EsupZ]2 () < Esup [ J 0 0" 7" 7.
12 DS 200 :
K3 (z = y)lrg, (@12 llrhg, (1)I%9(v)
E 2h4d// 03(1) 0 dzdy
k20) [ [ K Wlimgy@)%lIrmgy (= - hu)l2g(e — hu)
s 2h3d// 3(9:) dz du

= 0n2r3%)~1 = 5(1).
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by (g1), (k), (h2), and continuity of meo. This proves the third claim in (2.38).

Now we shall prove the fourth claim in (2.38). Since,

EZn4(b)

[b'Kh(Xz — X1)mg (X1)Kp(Xg — X3)ng, (X3)' Ipb
92(X3)

~ /I / / KK (@)rng, (z — hu)ng, (z — uh)

g(z — hu)g(z — vh)
8 9(z)

dudvdzb

— bt'ggb.

Thus, to prove E[Z,,4(b) —b’ZOb]2 = o0(1), it is enough to show EE;ZM(b) = (g b)2.

Now,
2
Taa® = D D zZijkAma
i#j#k l#Fm#n
< C Z zz'jk(zlmi T 2my t zljm) + Z Zijk*lmn
i#jEkFEMA i#jFkFmMAIFEN
= Zpq41(0) + Tpgo(b) + g3 (b) + Tpgq(d),  say,
where
1 _g[Kr(Xj = Xymg, (X)) K (X — Xp)rig, (Xp)'
Zijk = bn 5 Ij b
9°(X;)

By independence of X’s, (k), (ml1), (g1), and (h2), one obtain for each b € RY,

lioll =1,
E¥n41(0)

;71127 / / [ /I K (u) K (o) 1ng (& — wh)iing, (= — vh)' b

X (9(z = Uh)j((;)_ vh))l/z d:v] 2du dv

= 0O(nh?4)~1 = o(1).
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Similarly, one can obtain that EX, 49(b) = o(1), for each b € RY such that ||b]| = 1.
Again by independence of X;’s, (k), (m1), and (gl), one obtain for each b € RY,

ol =1,

E¥n43(0)
< [ [ [ K@K @lrigy (e = uliingo = = wh)]
xg(z — hu)g(z — hv)du d1)]2g_3(1:)d.1:
- -1y _
= O(n™ %) =o(1).
Also by independence of X;’s, EX, 44(b) = (Eanl(b))2 - (b’ZOb)2, for each b € RY,
|lb]l = 1. This also completes the proof of (2.37).

Also note that for any A > 0, and any two unit vectors by,b9 € RY, ||b;]| =1 =

lloall, llbg — b1l < A, we have

|2n1(b2) - Enl(bl)l
nKp(Xj = X;)ingy (X;) ]2
J

_IZ[(bQ—bl)'IZ 9%;)

n Ky (X;— X;)mg (X;)
-1 B ,_ h\2j g\t ‘
x[b’l B Kp(Xj =~ Xj)rg, (X;) }

1 ‘ ’
n i=1 g(X])

nKp(Xj = X;)ingy (X;)_||2

1
5,-; 9(X;) !

n
< Ap+2n7 1Y
j=1

But similar to the argument as for £p,

[ Z “”—lth Xj = Xi)g, (X;)/9(X;)Z; ||2]

j=1 1=1
— /"rheo(z)||2dG(x), in probability,
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Hence, the second factor is Op(1). From these observations and the compactness of
{b € RY: ||b]| = 1}, one obtains supyy_; [Zn(b) - b'Tob|| = op(1).

This fact, together with (2.36), implies (2.34), and also concludes the proof of
(2.32).

Now, we shall prove asymptotic normality of nl/ 2(én —0p)- Recall the definitions

of (2.9) and (2.35), and let

. _ Un( , 0)p (X'10)
Mn(6) = — 12 [ ng(;j) J Ij].

Since 6) is an interior point of ©, by consistency, for sufficiently large n, fn, will be
in the interior of ©, and Mp(fn) = 0, with arbitrarily large probability. But the

equation Mn(én) = 0 is equivalent to

Un(X )#n( 0n) _ ',én)/ln(x',én)
IZ :U?m ] 12[ gz:,"’(xpj Ij" (239

In the final step of the proof we shall show that y/nx the left hand side of this
equation converges in distribution to a normal random variable, while the right hand
side of this equation equals Qn(fn, — 6p), for all n > 1, with Qn = £ + op(1). To
establish the first of these two claims, rewrite this random variable as the sum of
Sn+ Sp1+ 9n1 + 9n2 + 93 + na, where Sy is as in (2.30) and
n
Spp = n7t len(xjmh(xj)(g;?(xj) -9 2(X,));),
J—

1 & [UnCX))lin(X;,00) i (X))
z [ (X]) IJ !

9nl
= 1 Mz (X i (X62(X) — a— 2(X T
gng = m Z[Un(xj)[mxj,eo)—uh(x,l(gw (X)) - g 2X T,
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_ 1 n Un(Xj)[ﬂn(Xj,én)—ﬂn(xj’eo)]z.
Ind4 = n_1 Z[Un(xj)[ﬂn(xj,én) - lln(vaGO)](gEz(Xj) - 9—2(Xj))Ij]-
=1

J

Note that these g, j ’s are the empirical analogs of the similar entities in K-N. Anal-

ogous to the proof there, we need the following lemmas.

Lemma 2.4.1 Suppose (el), (e2), (91), (k), (m1)-(m5), (h1), (h2) and Hy with ®
replaced by G hold.
(i) If, additionally, (e3) hold, then \/nSn —4 Nq(0,%), where ¥ is as in (2.9).

(i) If, additionally, (92) and (h3) holds, then ¥\ € R?
VAN Syl = op(1). (2.40)

Lemma 2.4.2 Suppose (el), (e2), (91), (k), (m1), (m2), (m{4), (m5), (h1), and (h2)

with ® replaced by G hold. Then, under Hy, VA € RY
/2N gl = op(1), k=1,2,3,4. (2.41)

The proof of (2.40) is facilitated by the following lemma, which along with its

proof appears as Theorem 2.2 part (2) in Bosq (1998).

Lemma 2.4.3 Let gj,(z), = € RE, d > 1, be the kernel estimator associated
with a kernel K* which satisfies a Lipschitz condition. If (92) holds and wn =

an(log n/n)l/ (d+4), where an — ag > 0, then for any positive integer k,

(logy, n)_l(n/ log n)z/(d+4) sup |gw*(z) — g(z)] = 0 as.
z€l
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Proof of Lemma 2.4.1. Let S, denote Sy, of (2.9) with ® = Gp,. To prove the first

part of Lemma 2.4.1, by Slutsky’s Theorem, it suffices to show that

VnSn —d Nq(o, z), ﬁ”sn - Snll = Op(l)- (2.42)

First part of (2.42) follows from Lemma 4.1 of K-N. To prove the second part of

(2.42), it suffices to show that, VA € RY,
E[vaN (Sn — Sp))2 = o(1). (2.43)

Let vy, () = A'ﬂh(z) and a;; := ”_3/251' cjj, where

dG(z)|-

[ ERXG = X)op(XG) o K (2 - X))
Cij = 92(Xj) IJ /1- gQ(z)

Now, the left hand side of equation (2.43) can be rewritten as the following sum:

62 E(azzi) + Z E(a?]) +4 Z E(”ij“ii) + Z E(aijaim)' (2.44)
i J# J# m#iF£]
To prove (2.43), it suffices to show that each of the four terms of (2.44) are o(1). By

continuity of 7'n90, (k), and (gl), VA € RY and Vz € Z, one obtains

sup [[7p ()| < EKh(I—X)II/\'m.gO(X)II (2.45)

Il

/ K(u)ll)\’moo(x — hu)l|g(z — hu)du

= 0O(1).

Now, we shall show that Zj;éi E(azzj) = o(1). By (2.45), (k), (gl), and continuity

of ago, for j #14,and VA € RY,

Ealz-7 = "—3E(512612j)=n_3E(szjagO(Xi))
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Hence, by (h2), Zj;éi E(a

3 [ 9 K2 (z - y)rd(z)
w7 [y [

< Cn73h d/ oh (- h)/

O(n=3r4

show that ), E'(a -) =0o(1), VA € RT.

Note that, YA € RY, Vi # j , E[cij|xi = y] = 0. Thus, by the independence

of X,-’s, Z]#z E(aijaiilxi) =0= Zm#z#] E(ai]’az’mlxi), for all n > 1. This

completes the proof of the second part of (2.42), and hence that of the first part of

Lemina 2.4.1.

(y)dz dy

Kz(u)g(a: — hu)

g9(z)

To prove (2.40), by the Cauchy-Schwarz inequality, (2.45) ,

2.4.3, and by (h3), we obtain VA € RY

n[N'Sp1]?

<

IA

IA

n

nop(("hd)-l) Op(1) Op((logkn)z(logn/n)m

iRl

[ -1 Z [Un(X DL ] ] {n-1]§1 QEIF)IJ'

1 & [Un(X))ip(X;5) 112
@[ 2(X;) IJ'H i‘é‘;’r

g%(z)
ng(z)

J
4

4 __4
Op ((logkn)2(logn)m nad m) = op(1).

This completes the proof of Lemma 2.4.1.
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du

€l

dx

9P(@)
gw2<z)
9%(z)

32 ()

-1

2

2.) = O(nh_d)_1 = o(1), VA € RY. Similarly, we can

(2.12), by Lemma

2



Proof of Lemma 2.4.2. Let in = Mip, vy, := Njyp, and v := M. By the
h h

Cauchy-Schwarz inequality, VA € RY

n2| N gl < (—1/ znj[ X)I}) (2.46)
=1
" [llen(X;.60) = (XN 12
o[ g[ o))

By (2.11) and (h2),

on—1/2 i

[Un(Xj)Ij 2
J=1

_ n—1/2 —dy _ 5(1).
g(x]-)] 0= Y2h=d) = o(1)

The second factor is bounded by 2b,1 + 2b,,9, where

n_ TR 07, (X;) = [ Kp(X; —y)vg, @)l dGly) 12
by = n——-5/2 [ 0\’ J J 0 Z'] ,
1 El 9(X;) J
bpg = n—1/2 Z
j=1
1 IKR (X5 = Xi)ogy (X5) = [ Kp(X5 = y)og (W)l dG(y) )
g;; 9(X;) %

Now, by using (gl), (k), (h2), and continuity of meo, we obtain that the expected

value of b,,1 is bounded above by

2K2(0) IIVoO (z )12
3/2 h2d / dz
fK w7, (z — hu)llg(e — hu)du)®
+57 )y

) dz = o(1).

To handle by,9, first note that conditional on X ;, the inner term of b, is (n—1)/n
times the average of centered i.i.d. r.v.’s. Using the fact that the variance is bounded

above by the second moment, we obtain that the expected value of b,9 is bounded
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above by

n_l/QE[Kh(Xz - )(()1()2!"00()(1)“ 2] 2

IVOO z — uh)||g(z — uh) _
1/2hd / / 2@ du dz = o(1).

This completes the proof of (2.41) for kK = 1. This together with (2.1) implies (2.41)
for k = 2.

To prove (2.41) for k = 3, similarly by the Cauchy-Schwarz inequality, VA € RY

1/2, n3ll?

L& [Un(x, 1 [0, 00) = om(X5,600)1_ 17
o> Z[g(X)])(" S [ ) )

[In

But the second summation is bounded above by

L3 & [ZR KX - X)T;)
- m 2 1=1 J J
” on (X) OO(Xz)” ng [ Q(Xj) :l

1<z<

= Op(hd) x Op(1),

by (2.32) and the assumption (m5), and by (2.24) applied with o = 1. This together
with (2.12) proves (2.41) for k = 3. The proof of (2.41) for k = 4 uses (2.41) for k = 3
and (2.3), thereby, completing the proof of Lemma 2.4.2.

Next, we shall show that the right hand side of (2.39) equals Qn (6 — fg), where

Qn = Xg + op(1). Recall the notation at (2.9) and (2.35). Let

n 8

_ . gh( ) d,;
Vi n Tt 3 lin(X0n) - — 5 Ij'uu”'u]’
N [im(X;,00)7h (X, 0n)
. -1 n\A g, 0/Vn Jn ) q
Ln == n E:L T I;|, VireR?
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So, the right hand side of (2.39) can be written as the sum [Vnu;l + Lp)un. But,

ldnil \ 1/

[Vall < max1<z<n“ ”H n1ll;
Vaall = 42 [ vy J)IIVn( 50015 < IVanall + Vaiall,
where,
Vanall = maxy<icnllig (X')—moo(x‘)ll
[f ]
Vo] = n_lji:l (n lym th(;(]-)(;;(i)llmoo(xi)llzj) § (%({%Z)Ij)‘

By (2.3), (2.32), the assumption (m5), and by using (2.24) with a = 1, ||V,11ll =
op(1). Also, by the Cauchy-Schwarz inequality, (2.3), and by using (2.24) with o =

my and1 on the first and second term, respectively, one obtains

0
a1 Y KX - X; )||m00(X )||Ij> 2} 1/2

_1 n
IVai2ll < [n ]zzjl( 500

y [n—l z": (n_l Z?:i Kp(X; - Xi)l_') 2] 1/2
j=1 gw(Xj) J

Hence, ||V,1]| = Op(1). This together with (m4) then implies that ||Va|| = op(1), and
by consistency of 6, we have |[ul,Vaun| = op(1).

Next, we will show that || Lnun|| = op(1). For this write Ly, := Lp1 + Lpo, where

" n ‘un(xj,eo)[un(xj,én)—&n(xj,oo)]'zh
nl = T Z *2(X) 71’
j=11L Jw J
Lo e o=l n -i/n(Xj,Ho)f/n(Xj,Oo)'I'
j=11 Jw J
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But, by (2.3), (m5), by the Cauchy-Schwarz inequality and (2.24) ,VX € RY, | L, || =

op(1), while

T i o1(X5,60)7h(X;,60)'Z;
n2 * 2y

- i [u (n(X;,60) — 73,(X;, 60)) 12 Ij‘
1=1

gH2(X;)
" Tln(X;.00) — 74(X;, 60)) 1o (X5, 60)Il ]
I.
g[ 9% %(X;) !

But, by using same argument as in the second factor of the right hand side of (2.46),
and by (2.3), this upper bound is op(1). Moreover, similar to the argument used for

Tn in (2.37) and using (2.3), one obtains VA € RY,

12 lop (X 90)Vh( X;,00) Il

I, =%+ op(l).
7 0%
gw (Xj)

This proves Qn = £ + op(1), thereby also completing the proof of Theorem 2.4.1.

2.5 Asymptotic normality of Mn(én)

This section contains a proof of the asymptotic normality of the minimized distance
Mn(én) The replacement of g;;, by g in My and Ty, is reflected by notation Mp, and

Tn. The main result proved in this section is the following

Theorem 2.5.1 Suppose (el), (e2), (e4), (91), (92), (k), (m1)-(m5) and (h3) with ®
replaced by G hold. Then under My, nhd/ 2(Mn(én) ~Cn) —4 N1(0,T). Moreover,

IPal ™1 — 1] = op(1).
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Consequently, the test that rejects Hy whenever nhd/ 2f‘; 1/ 2IMn(én) —Cn| > )
is of the asymptotic size a, where zq is the 100(1 — a)% percentile of the standard
normal distribution.

Analogous to the proof in K-N, the proof of this theorem is facilitated by the

following five lemmas.

Lemma 2.5.1 Suppose (el), (e2), (e4), (91), (k), (h1), and (h2) with ® replaced by

G hold. Then, under Hy,
nh®2(Kin(69) — Cn) —q N1(0,T).

Lemma 2.5.2 Suppose (el), (e2), (91), (k), (m3)-(m5), (h1), and (h2) with ® re-

placed by G hold. Then under Hy,
nh 2| M (Bn) — Mn(6)] = op(1).

Lemma 2.5.3 Suppose (el), (e2), (91), (¢2), (k), (m3)-(m5), and (h3) hold with

replaced by G. Then under My,
nh%/2| My (80) — Mn(60)] = op(1).
Lemma 2.5.4 Under the same conditions as in Lemma 2.5.3,
nh®/2|Cp = Cn| = 0p(1).

Lemma 2.5.5 Under the same conditions as in Lemma 2.5.2, I'n — T = op(1),

Consequently, the positive definiteness of I' implies If'nI‘—l — 1| = op(1).

The proof of Lemma 2.5.1 is facilitated by Theorem 1 of Hall (1984) which is
reproduced here for the sake of completeness.
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Theorem 2.5.2 Let Xi,l <1t <n, bei.id random vectors, and let

Up, == Z Hn(,?i,/{’j), Gn(z,y) :== EHn(X1,2)Hn(X1,9),
1<i<j<n

where Hp, is a sequence of measurable functions symmetric under permutation with
E[Hn(X1,X9)|X1] =0, EH2(X{,X9) <00 Vn>1.

If, additionally,

EG3(Xy, Xp) + n~L EHA(Xy, Xg)
[EHA(X1, Xo)]2

— 0, asn— oo,

then Up is asymptotically normally distributed with the mean 0 and the variance

n? EHA(X1, Xg)/2.

Proof of Lemma 2.5.1. Let

B ~ _ 2dd(z)
Tn(0) = /I[ zleh(x X;)(Y; - mg(X;)] "5 2o

g2

Ry = 22/ 2(:1:) ~dq>(x).

To prove Lemma 2.5.1, by Slutsky’s Theorem, it suffices to show that

nh% (T (8g) ~ Fn) —4 N1(0.T), (2.47)
nh®/2| M (80) - Tn(0g)| = op(1),
nhd/z(én —Cn) = op(1).

The first claim in (2.47) is proved in Lemma 5.1 of K-N.

For the second claim, it suffices to show that E[nhd/ 2|A7In(00) —’fn(oo)u? = o(1).

Let

k)dG(z) ,

fiop o Kp(Xj = X)Kp(X5 - Xg) / Kp(z - X;))Kp(z - X
ik = 92(xj) I JT 92(z)
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hd/2¢ ¢
and eijk = _—,;Zz_kfl]k Hence,
%2 (Nt (80) — T (8)
[nh/%(Kn(8p) — Tn(6)) ZZZ €ijk
1
Expanding the quadratic and using the fact E[f; j k1 X;, Xp) =0,V j # i, k, we obtain

E["hd/2(Mn(90) ~ Tn(60))1? (2.48)

To prove the required claim, it suffices to show that all terms on the right hand side
of inequality (2.48) are o(1).

By (e4), (gl), (k), and (h2), one obtains

E [ Z 6121'2']

~ hd K2(0)1 KXz-X1) 12
= =B [THO(XI)[ S /.r e dz
2K4(0) 1'90 9 K4(u)g(:c - hu.)'ro0 (z — hu)
= (nd)3 /1 " 3n2 / / 9%(z) dudz

= Omrd)~1 =o(1).

Similarly, using the independence of X;’s, by (e4), (g1), (k), and (h2), one shows
EYj+ilesiiejjj] = o(1)-
Next,

e o 2
E[ > :eijiejij] = nzE[Ggo(Xl)ago(Xz)f121f212]~
J#i
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By the independence of X;’s, (g1), and (k) and continuity of ogo,

E[a%o(xl)cf%o(Xz)fmlez]

K4 u)ao :::)cr‘9 (z — hu)

_2m / / /I K2(u)K2(v)000 (@ ~ huog (&~ hu — )

9(z — hu — vh)
9(z)g(z — hu)
T — hu)ag (z — hu) 2

h2d [//K - 9(2) . dzdu| = 0O(r%)~3.

Hence, E[Zj;éi eijiejij] = O(nth)_l = 0(1). Similarly, one can show that other

dzdudv

terms of (2.48) are o(1), thereby completing the proof of the second claim in (2.47).

To prove the third claim in (2.47), it suffices to show that
E[nhY2(Rp — Cn))? = o(1).

Let

K2(X: - X;) K2(z - X;)
N i A A L h g
dij = [ 20 I; /;r e dG(x)J,

1d/2.2 o
and b;; —2—Ld2] Then, [nhd/ 2(Ry - Cn)] = Y Zj b;;- Expanding the

quadratic and using the fact that E[d; jIXi] =0, Vj # 1, we obtain

< CE[Z bs: + Z [bnbmm + bzm(bmm + bzm + bmz)]]
1 m#i

To prove the required claim, it suffices to show that all the terms on the right hand

side of above inequality are o(1).
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Thus by (e4), (g1), (k), and (h2) and continuity of 79> One obtains

2 2K4(0) [ T6p®)
E[;b""] = w3l P

K2(u 1/2(1:—hu) 9/2
0 T
n3h2d/ [/ 9(z) d| du

= o@nh%~1 =)

For the fourth term, since

rd
E[Z bimbmil = E[Uo (Xl)ae (X2)d12da1],
m#£i
2

thus, by independence of X;’s, (gl), and (k) and continuity of 090, one obtains

Blog, (X1)g, (X2)d12d21]
K4(u)09 2)09 (z — hu)

= h3d/ / :z:)g T — hu) dudz

—2;;% ///I_Kz(u)l(z(v)aeo(x - uh)ago(:c — vh — uh)

g(z — vh — hu)
o(aloe — )
K2 (u)g(z — hu)ag (z — uh) 2

h2d [// 9(z) drdu| =0(r%)3.

Hence, E [Zm# bimbmil = O(nth)_1 = 0(1). By similar arguments, one can show

that other terms are also o(1). Hence we are done with the third part of (2.47) and
also with the proof of Lemma 2.5.1. O
Proof of Lemma 2.5.2. Recall the definitions of Up and Zp from (2.9). Add

and subtract my_(X;) to the ith summand inside the squared integrand of Mp 6n),
O\t
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to obtain that

Mn(69) — Mn(én)

_ §)Zn(X; ., 0n)T ]
_ 1 n j
Z [ gw (X )
gw (X])
= 2Q —Q2, say.
It thus suffices to show that
nh¥2Q) = 0p(1), nhY2Qq = 0p(1) (2.49)

Add and subtract (fn, — 00)'Th90(Xi) to the i'? summand of Zn(Xj,én), we can

rewrite

Un ])gh(x )

@ = _IZ[ 952(X;) Ij]

N UnX n
+(9"_0°)n_lz[ ( 5()(() )IJ]

= Q11 +Q12, say,

where d,,; are as in (2.35). By using (2.3) and (2.24) with o = 1, one obtains

(X;)
12 [j:,(x]) J} = 0p(1) (2.50)

By the Cauchy-Schwarz inequality, (2.3), (2.12) and (2.50), one obtain that (nhd/ 2

|@11]) is bounded above by

N _ d. .
n1/2)6n, — 80| (kY2 . Op((nh®)~1/2). mwﬁ.
-
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But, by (m4) and (2.32), this entire bound in turn is op(1). Hence, to prove the
first part of (2.49), it remains to prove that nhd/2|Q12| = op(1). But Q19 can be

rewritten as

(o — 01 3 [

Un(Xj)ﬂn(Xj,én)I}

vl

[Un(xj)[ﬂn( 0 )—ﬂn(xj,oo)]l.]
752(X5) 7

= Q121 — @122, say-
But, by the Cauchy-Schwarz inequality, (2.3), (2.12), (2.50), one obtains (nhd/ 2
|]Q122]|)2 is bounded above by
n®h?fn ~ 6012 Op(nh®) " max; iy (X;) ~ 1nge (X;)1l

By assumptions (m5) and (h2), and consistency of 6, for 60, this entire bound is
Next, note that the average in Q191 is the same as the expression in the left hand

side of (2.39). Thus it is equal to

Zn 071 n
(fn — 6g)'n~1 Z [ X; 2(’; () )Ij] (2.51)

_ Zn(X; ., 0n) i (X5, 60)
(n =00l IZ[ 20 Ij]
[Zn( én)[ﬂn(xj,én) - ﬂn(xj,BO)]I.
952(X;) g

+(0n—00 , —1 z

Jj=1
= Dy + D9, say,
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But, by the Cauchy-Schwarz inequality, (2.3), (2.29) and (2.24) with a = m(,o, VAe

RY,

E(nh?/2||Dy]))

nhd/211(d 2, -1 Zn(X; 9n) 2 [en(X; i»0n)l
< nh%2|(6n - 69)|°n Z[gw( X ng gw(x) :r]

= nh?2) (6~ 09)IP0() = o(1),

by Theorem 2.4.1 and the assumption (m5) and (h2). Hence, nhd/ 2||D1 | = op(1).
Similarly, one obtains (nhd/ 2|| Ds||) is bounded above by nhd/ 2||(9An - 00)||20p(1) =
op(1).

This completes the proof of the first part of (2.49). The proof of the second part
of (2.49) is similar. a

Proof of Lemma 2.5.3. By (2.11) and Lemma 2.4.3.

nh®2| M (60) - Mn(oo)l

_ UA(X;) 92(z)
< nhd/2 1 -1
- [ ]ZI 92 X ) ]] :vel% gt (z)
= nhd/20p((nhd)_1) . Op((logkn)(logn/n)l/d+4) = op(1). O

Proof of Lemma 2.5.4. Let

ti=m

5. () —mg (X)), Bu(e) = %) (o (=) - 972(=)).

Rewrite C‘n as

Gn = n3%

n o n
1=1j=1

€ )2
[Kh(x = X)(e — t;) Ij]
G (Xj)
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[K%(Xj - X;)(e; — t;)?

1=17=1 g2(Xj) g
g K,%(x,-—xo(ei t;)? Buw(Xj)
" ;Z_Z[ 52(X) £

1=1j5=1

= Ap1+Ap,9, say.
Now, it suffices to prove that
nh®2(A,1 = Cn) = 0p(1), nh%2 A5 = 0p(1). (2.52)

By expanding the quadratic term in the summand, A, can be written as the sum

of Cn, Ap192, and A;, 13, where
3 n j— .
Aplg = n '
" 2 2 [ 92 (X;)
K2(X; - X;)et; ]
J

n n
An13 = —2”_3_2 Z [ 912()(].)2

By (m4) and (2.32), one obtains that m:a.x1<i<n|t1-|2 = Op((nhd)_l). Moreover,

by (gl), (k), and (h2), one obtains that

[ 3ZZ[Kh(X )X)IJ”

i=17=1

K2(0) & B(Xj — X;)
=n2h2dz [2( X;) } 32 [T]]

1=1 i#£7
_K20) [ 1 K2(u (2: — uh)
"~ n2p2d /I g(x)dz nhd / / dudz

= 0((nh%) 7).

Hence,

Kh(X - X; )I

|Ap1al < maxcicplty?® —32215_:1[ 2(X) j} (2.53)
i=1j=

= 0p((nh?%) 1) x Op((nh%) 1) = Op((nh%)~2).

50



Next, by (gl), (k), and (h2),

-3 Kh(X - X )lleI ”
121121 [ 2(X ) J
K20 & gl | 1 Kp(X; = Xleil
~ n3n2d ; ELJ?(X,-)Iz] " ;ggé:JE[ g%(X;) g

K2(0) [ 965()
~ (nhd)2 JT g(2)
// K2 (u) 090(1: — uh) g(z — uh)

(nhd) 9(@) dzdu
= O((nh%71).
Hence,
Ky (X5 — X;)le;
|Anl3' < 2maxl<z<nl{ I"_3ZZ|: h( 2X i) |I_7]
1=1j=1 ( )
= Op((nh®)~12) x Op((nh?) 1) = Op((nhh /).
Consequently,

Inh/2(A,1 = Cp)l = nhY2(0p((nh%) =2 + Op((nh%)=3/2))

= Op((nh™3%2)=1) 1 0p((nh24)~1/2) = 5p(1).

To prove the second claim in (2.52), rewrite A9 as the sum of A, 91, A;99 and

Ap93, where
o OTK2(X: — X;)e2 Aw(X5)
-3 1 w
e I e I
i=1j=1 97\
n " O[K2(X; - X;) 62 Aw(X5)
-3 h i) b Bw
Apog = n Zz J 2(X-t) J il
i=1j=1 9745 |
n o n K2(X-—X-)e-t-A (X.)
_ -3 pAAG T i) G Awl i)
Apogz = n Zz 2(X-) I
i=1j=1 974
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By (e2), (g1), (k), and (h2), one obtains that

qarlie sl

21]1

_ k%(0) KE(X; - X;) €}
BthZ 2()() ] 32 [h 2J(X.) IJ}

1=1 i#]
_ K2(0) 000(1‘) K2 (u) 00 (z — uh) g(z — uh)
" n2r2d JT g(z) (nhd / / 9(z) dedu
= O((nh%H71).

Hence,

Kh(X — X;)éf Ij]

Inh42 4,011 < k2 sup Ay (z)In 322[ 05

el i=1j=1
= nh?20,(log;n(logn/n) 2/ At4)0p((nhd) 1)

= Op(h_'d/2logkn(logn/n)2/d+4) = op(1),
by Lemma 2.4.3 and (2.3). Similarly, one obtains that

Inhd/ 2Anzzl

n o n
< nhd/2 sup IAw(x)lmaXISisn|ti|2n‘3 Z Z
=€l i=1j=1

= op((nh34/2)=1) = op(1),
and

Inhd/ 2An23|

n & [KRXG = X)leil
< 2nh®/2 sup |Aw(x)|ma.xlsisn|ti|n“3 Z z [ h % X b Ij}
zel i=1j=1 94( _7)
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= nh%20p(1og;n(logn/n)2/ 44 0p((nhd) ~1/2)0p((nhd) 1)

op((nh24)=1/2) = 5p(1),

thereby completing the proof of the claim in (2.52), and hence that of the Lemma

2.54. 0
Proof of Lemma 2.5.5. Recall the notation from (2.1), (2.2). Let
o EKp(z = X)Kp(y - X)o5 (X)) 2
G = 2h / / [ g(=)g(y) dG(z) 4G ()
To prove the first part of Lemma 2.5.5, we need to prove the following steps:
ITn —Tn| = op(1), [n—Gn|=o0p(1) (2.54)
IGn —Gnl = op(1), Gn—T.

Now, we shall prove the first part of (2.54). For the sake of convenience, write

Kh(xj - X;) by Ki(Xj) and Ap(z) == g2(x)(§}:2(x) - g—2(x)). Now, rewrite I'p

as the sum of the following three terms:

B, 2hdn_2i§- ZK(X»K XQ&) t;-)(ej—tj)Il]?,
By = thn_Q% _n_lzl:Ki(Xl)Kj(Xl)(z;()t{j))(ej_tj)Ah(Xl)Il]2,
3 (n-l Xl: Kz‘(Xl)Kj(Xl)(z;( )t(i))(ej — t;)AR(X)) Iz)] |

In order to prove the first part of (2.54), it suffices to prove that

B2 = Op(l),
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and Bg = op(1).
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For this, we shall show that

2
K; (XK (X)lesle]

B = k%72 a1 200 1| =0p(1).

i#j !

This expression is bounded by the sum of the following two terms:

2 K (X, K(X:) 12
m o= 2oy dd i)
nthd e (X;) 9°(X;) ]
. 12
K (X)) K. (X
H2 = thn_426?€§ Z l( 21) ‘7( l)II
iz gy oD

By using (gl), (k), and continuity of Ugo, we obtain
[K%(XQ)c%e%I ]

94(X9)
K2(u)c72 (z - uh)a2 (z)g(z — uh)
= pd % % udzx
= /I/ 93(z) dud

O(h~%).

Hence, EH] = O(nh%)~2 = o(1), by (h2), and Hy = op(1).

Next, rewrite Hy as the sum of the following two terms:

K2(X))K2(X;)e2e2
Hyp = hdn_4 Z U e JI,
oy a*(x)) :
I#i#]
Ki(Xl)Kj(Xl)Ki(Xm)Kj(Xm)ezze?

Hyy = hdn—4 Z
miA il
By (e2), (g1), (k), (h2), and independence of X;’s,
KT (X5 K5 (X5)og (X1)og, (Xa) ]
3
g4(X3)

9%(X))g%(Xm)

EHy = (nhd)_lE[

= (nhd)_l/l_ [/K2(u)ago(:c—uh)g(z—uh)du]2g-3(x)da:

= o(1).
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Similarly, by (e2), (gl), and (k),

EH9o

= ////[ u)K(w)K v+u)K(w+v)agO(x—uh—-vh)ago(:v—vh—wh)

N g9(z — vh — wh)g(z — vh — uh)
9(z — vh)g(z)

dw du dv d:L‘]

= 0(1).

Hence, Hy = Op(1), and (2.56) is proved.

By a similar argument, under (2.56), (e2), (g1), (k), and (h2) one obtains

pdn=2 3 n—-IZK (X1)2K (Xl)llel.l] _0,01), (257
7 X0
_ K;(X)K;(X))
d, 2; 12 2(Xz) ] = 0p(1). (2.58)
i#£j L
Furthermore,
sgp |Ap(z)| = 0p(1), by(2.3), (2.59)
max] <;<nplt;| = op(1), by (m4) and (2.32). (2.60)

Note that by expanding (¢; — tz-)(ej - tj) and the quadratic terms, |By — I'n| is

bounded above by the sum of By and Bj3, where

2
K;(X;) X tits| + et |+ |te;
By = ohdn 2}:[—12 (XD E;(X))(It; l le;t;] IL]l)I[] ,

i#7 l 2(Xl)
By = %2y (n—l 3 Ki(Xl)Kj(Xl)lfiijI)
13 by [ gz(Xl) l
_1 Ki(XDKGXDIt525] + legt;| + [ti€50)
" (" 2 2(X) h)
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But Byg = 0p(1) by (2.57), (2.58),(2.60), and the fact that t;’s are free of X;. Sim-
ilarly, by applying the Cauchy-Schwarz inequality to the double sum and by (2.56)
B3 = op(1). Hence |B] — I op(1).

Next, consider Bg. By using the inequality
le; — tillej — &1 < legejl + (8251 + legts] + i€,
and by (2.59),

By < 2 Slép |Ap(7)] [By2 + B] = op(1).
T

Similarly, an application of the Cauchy-Schwarz inequality to the double sum
yields B3 = 0p(1). This completes the proof of (2.55), and hence that of the first part
of (2.54).

To prove the second part of (2.54), it suffices to show that E[[n — (jn]2 = o(1).

Let

[Ki(Xk)Kj (XK K (XK (XTI T

Vijkl 2(Xp)g2(X))
//K i () K (z)K;(y) K (y )dxdy ,
9(z)9(y)
he 2 2

andu”kl 761 ] Sijkl- Hence, [Fn gn] Zj#izkzluijkl.

Expanding the quadratic, we obtain

Fn=GnlP =333 3 Do uijkiumnpg

t jZgi k I Mn#tm P 4
Since we have four kernel terms in each Sijkl term, thus by using (gl) and (k)
h—8d)

maximum order of Es;;x) smnpq = O( , and hence that of E["ijkl umnpq] =
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p2d

n

X O(h-Sd) = O(n_8h_6d). Also, we have eight summations, if there are at

most five different subscripts in the summations, then the expected value of those

terms which has at most five different subscripts is at most nd x O(n

-—8h—6d)

O(n'3h'6d), and hence by (h2), it is o(1).

So, we will only discuss those terms, which are involved with more than five

different subscripts in the summations. According to that criteria, [fn - (_';’n]2 is

bounded by the following terms:

U1

p)

200 > > Ujjklumnpg, (2.61)

i k1 n#mpigklmngigklmnp

)IDIEEDDENDD > ik
jFin#Emk#i,j,mnl#i,j,kmnp#ijklmn
x [umnpi + Umnpj + umnpm + umnpn],

2.0 2D mmpk

jEin#Fmk#£i,j,mn p#i,3,k,mn
X[wijii + wijij + ijim + Wijin + vijji + %55+ Uijim + Yijjn

HUijmi + Uijms t Yigmm T Yijma + Yijni + Yijnj T Yijnm + Yijnnl,

Z Uikl mnpl>
ptitithgmin ]

. Z [uijkn(umipk + Umjpk T umnpk)
pFiFjFkFm#n
+umnpk(“ijki + Ukt “ijkk) + "z’jkm(“inpk T Ujinpk + umnpk)
+(Umnpi + Umnpj + umnpm + umnpn)(u;j; + Uik + Uik + Yijkm

+“ijkn) + ("ijik + uijjk)umnpk + (Uinpm + Yjnpm + uknpm)uijkm'

To prove the claim, if suffices to show that the expected value of all of these terms is

o(1).
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Note that, for all k,l# ¢,7 and k # [, E[Sijk”Xi’Xj] = 0. Now, by using this

fact, Vp, g# i, j,k,m,n,l, and p # g,
E(u; k) umnpql X, X j, Xg» Xm, Xn, X)) = uy k1 E(umnpg| Xm, Xn) = 0.

Hence, E(U;) = 0.

Similarly, for all k,1 # 4, j,m,n,p and k # [,
E(u'l]kl umnpzlxz, X]v Xm) X'n., Xp) = 0

and, expected value of other terms of Uy is zero. Hence, EUg = 0. Similarly, for all
k,p#i,j,m,n and k # p, E(U3) = 0.

Again by the above fact,
p2d
E(Uy) = —n—E(E% €58 c2 51934 55674]
p2d
= —EB{Blog (X1)o5 (X2) 5193413, X4}?]
n2d o 2 2
= 7 Blog, (X1)og, (X2){E[s12341 X3, X4]}] = 0.

By independence of X;’s, expected value of the first term of Us is equal to

6 h2d 2 2
n° Eluiknumipk] = n—QE[Teo(Xl)ago(Xz)ago(Xs)8123435163]-

By independence of X;’s, (gl), (k) and continuity of %9 and 79 One obtains

Elrgy(X1)o (X2)o5 (X5)s123455123]

= Blrgy(X){Elog (Xa)s1234lX1, X3, Xal}?]

;{Z‘&[/I//[ T%z(x_hv_hw)ago(z_hu-hw)K(u)K(v)

2 9(z — hv — hw)

dvdwdz
g3(z — hw)g3(z)

xK(w+v)K(w + u)g(z — hu — hw)du]
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+/ [/I//Talgz(t — hv — hw)ago(:r — hu — hw) K (u)K (v)

e hnal/2(e — B — 2
g9(z — hu — hw)g*/“(z — hv hw)dudwdx] dvl

xK(w+v)K(w + u) 9(z)g(z — wh)

= O(h™49).

Hence, the expected value of the first term of Uy is equal to O(nhd)_2 = o(1), by
(h2). Similarly, by using (gl), (k) and (h2), expected value of the other terms of Us,
is o(1). Hence, the second part of (2.54) is proved.

The proof of the third and fourth part of (2.54) is given in Lemma 5.5 of K-N.

Hence (2.54) is proved, and so is the Lemma 2.5.5. a
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CHAPTER 3

Minimum Distance

Goodness-Of-Fit Tests

For Current Status Data

3.1 Introduction

This chapter discusses a minimum distance method for fitting a parametric model to
the distribution function of the event occurrence time in the one sample set up with
current status data. Let X and T denote the event occurrence and inspection times,
respectively. Let F(G) denote the d.f. of X (T'). Assume X and T are independent. In
the current status data set up, one observes § = I[X < T)] and T, where I[A] denotes
the indicator function of the event A. Let A := {Fy(t): t € RT, 00 CcRY ¢g>1}

be a given parametric family of d.f.’s. Let Z be a compact sub-interval of [0, 00). The
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problem of interest here is to test the hypothesis
Hgp: F(t) = Feo(t), for all t € Z, for some 6 € ©,
against the alternative
Hyi: Hpp is not true.

based on the random sample {(T},6;) : 1 < ¢ < n} from the distribution of (T, d).
In this chapter, we adapt the inference procedures discussed in chapter 2 to the
current status data. More precisely, let ag(Tz) = Fy(T;)(1 — Fy(T;)), and consider

the regression model
8 = Fg(T;) +0g(T3)¢;,  1<i<n.

Here {(;} are i.i.d. r.v’s such that E(¢;|T;) = 0 and E(CZZITi) =1,,1<i<n We
shall be using the notation of chapter 2 with X, Y, u(x) and my replaced by T, 4,

F(t) and Fjp, respectively, where now d = 1. Thus e.g., now

15~ —T)(5: — 1)72
Tn(6) = /I[nZ:;lKh(t Tz)(‘sz FG(Tz)):I do(t), (3.1)

gu(t)

n Kp(Tj = T;)(6 — (T,-»I_r
Al

o = % [FESOG

Dn = nhV267 Y2070, - Bn),

Ip = arg‘min0€9’1'n(0) 911 := argmingc g Mn(6),
~ _2 . .

Bn = <I>t, =8 —F: (T), 1<i<n,
" z/ 2@) (0, &=5-F; (T),1<i<n
) _ Kyt —T)Kp(t —T;)é; 9

gn — 2hd2(/ h 1 A2h J/ -t Jd@(t)) ,

i#j gh(t)
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K(T; - Ti)égz'
j=1i=1 91"2;2(7"]') J

A 2 2
. Kp(T) - T;)Kp(T) — T;)€;€;
Ip = 2hdn_42(z Ty Z)A nT = Tj)é Jl—) '
l 95(T7)

This chapter is organized as follows. Section 2 adapts the results discussed in
chapter 2 based on minimum distance statistic to the current status data. First, we
discuss consistency of 93 and dp, for T(F*), where F* € Lo(®) is a d.f., different
from the null model .A. Then, we discuss the consistency of 97, ¥n and asymptotic
normality of 95, and Dy, under Hgpyp. Similar to Koul and Song (2006) (K-S), we also
obtain consistency of Dp, against a fixed alternative, under some regularity conditions.

Additionally, we obtain asymptotic power of the proposed minimum distance tests
under a class of local alternatives Hy,, : F(t) = Fgo(t) + ¢(t)/nh1/2, where 9 is a
continuously differentiable function such that [ ¢2d<I> <ooand [ Fpypd® = 0, for all
0 €o6.

Section 4 adapts the results of chapter 2 based on empirical minimum distance
statistic to the current status data and discusses consistency of 67, and fn, and asymp-

2(Mn(6n) — Cn), under Hyy.

totic normality of 6, and nhl/2[, 1/

Section 5 reports results of the three simulation studies. The first simulation
study investigates Monte Carlo size and power of empirical minimum distance test.
The finite sample level approximates the nominal level well for large sample sizes.
Simulation results also show little bias in the estimator 6y, for all the chosen sample

sizes.

The second simulation study investigates the empirical size and power behavior
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of the Cramér-Von-Mises test CV7, where CV] is defined in chapter 1. Since the
asymptotic distribution of CV7 is not known, so in order to find the Monte Carlo levels
and powers of this test, we need to estimate its cut off points. Estimated cut off points
are obtained by first getting 10,000 values of CV7 and then by finding percentiles from
the distribution of 10,000 values. The finite sample level approximates the nominal
level well for all the chosen sample sizes. In our simulations, F is computed by the
one step procedure for calculating the nonparametric maximum likelihood estimator,
based on isotonic regression, cf. Groeneboom and Wellner (1992).

The third simulation study investigates Monte Carlo size comparison of the em-
pirical minimum distance test with the tests of Koul and Yi (2006) (KY) and CV].
Simulation results show that the empirical levels of CV] and KY tests are better
than Mn(én), when sample size is less than 200. But when the sample size is 200,

the significance levels of all the three tests are comparable to each other.

3.2 Minimum Distance Statistics and Tests

In this section we adapt the results discussed in section 2 based on a class of minimum
distance statistics to the current status data. Here we shall be using the same assump-
tions discussed in chapter 2 with X, Y, u(z) and my replaced by T, 4, F(t) and Fy,
respectively, where now d = 1 and 7 is a bounded interval in [0, 00). Also under the
current status data set up, assumptions (el), (e2), (e3), and (e4) are automatically
satisfied.

First, we discuss the consistency of 93, and O, for T(F*), where F* € Lo(®) is a
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d.f., different from the null model A. Let Hyp : F(t) = F*(t), t € T.

Lemma 3.2.1 Suppose assumptions (k), (91), and (m3) of chapter 2 hold with my
replaced by Fp, d = 1 and T is a bounded sub-interval in [0,00). Let F* be a given
d.f. such that F* ¢ A, F* € Lo(®), and T(F*) is unique.

(a) In addition, suppose F* is a.e. (®) continuous. Then, under Hyy, 95, =
T(F*) +0p(1).

(b) In addition, suppose F* is continuous on Z. Then, under Hyy, In = T(F*)+

Upon taking F* = F90 in the above result one immediately obtains the following:

Corollary 3.2.1 Suppose assumptions (g1), (k), (m1)-(m3), (h1), and (h2) of chap-
ter 2 hold with mg replaced by Fy, where now d =1 and I is a bounded sub-interval

in [0,00). Then, under Hyy, 9, — 6y, and On — 6 in probability.
Next result gives the asymptotic normality of nl/ 2(1971 — 6p) under Hpp. Let

Fu(t,6) = n~ 1Y Ky(t—T;)Fp(Ty), (3.2)

1=1

Un(t,0) = % Z Kp(t —T;)[6; — Fp(Ty)),  Un(t) == Un(t,0p),
i=1

Fa(t,6) == n71Y " Ky (t—T,)Fp(Ty),
1=1
Fh(t) = EFn(t,eo) = EKy(t - T)FGO(T)’

. Un(t)Fp(t)
Sn = /I ),

2 [ Fae (£)(1 = Figy (1)) Fyo (8)Fiy (8 8%()
Uz

o) dt.

64



Corollary 3.2.2 Suppose assumptions (g1), (92), (p), (k), (m1)-(m5), and (h8) of
chapter 2 hold with my replaced by Fy, where now d = 1 and I is a bounded sub-
interval in [0,00). Then, under Hyy, n1/2(1§n —6p) = Ealn1/28n + op(1). Conse-
quently,

n1/2(5n — 69) -4 Ng(0, 551255 1),

Next, we state the asymptotic normality result about Dy, under Hy;. Let

r = 2/;_{F00(t)(1 ;(SOO(t))¢(t) }2dt/(/K(u)K(v+u)du)2dv.

Corollary 3.2.3 Suppose assumptions (91), (92), (v), (k), (m1)-(m5) and (h3) of

chapter 2 hold with my replaced by Fy, where now d = 1 and T is a bounded sub-
interval of [0,00). Then under Hyy, Dn —4 N1(0,T) and |G~ -1 = op(1),

where Gp, s as in (3.1).

Consequently, the test that rejects H) whenever [Dn| > 2, /2 is of the asymptotic
size a, where zq is the 100(1 — a)% percentile of the standard normal distribution.

The following corollary provides a set of sufficient conditions under which |Dp| —
00, in probability, for any sequence of consistent estimators Op of T(F*) under the

fixed alternative Hyj.

Corollary 3.2.4 Suppose assumptions (g1), (92), (r), (k), (m3), (h3) of chapter 2
hold with mg replaced by Fy, where now d = 1 and T is a bounded sub-interval of
[0,00). Assume the alternative hypothesis Hyy hold with the additional assumption
that infy p(F*, Fg) > 0. Then, for any sequence of consistent estimator On of T(F¥),
|Dn| — o0, in probalility. Consequently, the test that rejects whenever |Dp| > zq is
consistent against the fired alternative Hyj.
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Its proof is similar to that of Theorem 5.1 in K-S adapted to the current status
data.
Next, let ¥ be a known continuously differentiable real valued function. In addi-

tion, assume 3 € Lo(®P) and
/Fgwd@ =0, Véeo. (3.3)
Consider the sequence of local alternatives
Hin i F(t) = Fgo(t) +me(®),  m=1/(ahl/%)1/2 (34)

The following corollary gives asymptotic power of the minimum distance test against
the local alternative Hy,,. Its proof is similar to that of Theorem 5.3 in K-S adapted

to the current status data.

Corollary 3.2.5 Suppose assumptions (91), (92), (»), (k), (m4), and (h3) of chap-
ter 2 hold with my replaced by Fy, where now d = 1 and T 1s a bounded sub-
interval of [0,00), then under the local alternative hypothesis (3.3) and (3.4), Dn —4

N(I—Y2 [y4249,1).

The following corollary gives the asymptotic distribution of Jn under H 1n- Its

proof is similar to that of Theorem 5.2 in K-S adapted to the current status data.

Corollary 3.2.6 Suppose assumptions (91), (¢2), (»), (k), (m1)-(m6), (h3) of chap-
ter 2 hold with mg replaced by Fp, where now d = 1 and T is a bounded sub-
interval of [0, 00), then under the local alternative (3.3) and (3.4), n1/2(1§n —09) —4

—lyy—1
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3.3 Empirical Minimum Distance Statistic

In this section, we adapt the results of chapter 2 based on empirical minimum distance
statistic to the current status data. First, we discuss the consistency of 67, and bn.
The consistency of these estimators for 6y under H; follows from Lemma 2.3.2 of

chapter 2. Applying Corollary 2.3.1 to the current status set up, we have

Corollary 3.3.1 Suppose assumptions (91), (k), (m1)-(m3), (h1), and (h2) of chap-
ter 2 hold with my and ® replaced by Fy and G, respectively, where nowd =1 and

is a bounded sub-interval of [0,00). Then under Hyy, 67, — 6, in probability.

Applying Theorem 2.3.1 to the current status set up, we have

Corollary 3.3.2 Suppose assumptions (g1), (k), (m1)-(m3), (h1), and (h2) of chap-
ter 2 hold with my and ® replaced by Fy and G, respectively, where now d =1 and T

is a bounded sub-interval in [0,00). Then, under Hpi,
[ 6y, in probability.

Now, we discuss asymptotic normality of nl/2 (én —6p)- Let

T)FhT)I

&, = 12 2
(T

Applying Theorem 2.4.1 to the current status set up, we obtain

Corollary 3.3.3 Suppose (el), (91), (92), (k), (m1)-(m5) and (h3) of chapter 2
hold with my and ® replaced by Fpy and G, respectively, where nowd =1 andZ is a

bounded sub-interval in [0,00). Then under Hy;,

/26— 0g) = £51nl/28, + op(1),
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Consegquently, n1/2(én —0p) —4 Nyq(0, 20-12261), where ¥ and ¥ are as in (m6)

and (3.2), respectively.

Next, we discuss asymptotic distribution of the empirical minimized distance

My (6r). 1t follows from Theorem 2.5.1 adapted to current status data.

Corollary 3.3.4 Suppose (el), (91), (92), (k), (m1)-(m5) and (h3) of chapter 2
hold with my and ® replaced by Fy and G, respectively, where nowd =1 and T is a
bounded sub-interval in [0,00). Then under Hyq, nh1/2(Mn(én) —é’n) -4 N1 (0,T).

Moreover, |f‘nl"_1 — 1| = op(1), where I'n and Cn, are as in (3.1).

Consequently, the test that rejects Hy whenever nhl/ 2f‘; 1/ 2|Mn (On) - Cn| > 26,/2

is of the asymptotic size a.

3.4 Simulations

This section contains the results of three simulation studies. The first one assesses
finite sample level and power behavior of the empirical minimum distance test statistic
Mp(6). The second simulation study investigates finite sample level behavior of the
Cramér-Von-Mises test CV}. The third simulation study investigates a Monte Carlo
size comparison of Mp (), CV7 , and KY test. The simulations are done using Matlab.

The kernel functions and the bandwidths used in the simulations are

K@) = K*)=30-21(a <1)

ho= 13, w = cn=50gn)1/5,
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with some choices for c¢; and cy. In the tables below, exp(f),8 > 0, de-
notes the exponential distribution with parameter § under the null hypothesis
Hpyy :F = exp(#), for somef > 0. The Weibull distribution with density w(t)
= ba—btb"lezp(—t/a)b is denoted by W(a,b) and G(a,b) represents the Gamma
distribution with density g(t) := mta_lexp(—t/b), a > 0,b>0. The asymp-
totic level is taken to be 0.05 in all the cases. The sample sizes chosen are 50, 100,
200, each repeated 1,000 times.

Table 3.1 reports the Monte Carlo mean and the MSE(6y,) under Hp] which are
obtained by minimizing Mn () and employing the Newton-Raphson algorithm. The
sample sizes chosen are 50, 100, 200, 500, each repeated 1,000 times. One can see
there appears to be little bias in fr, for all the chosen sample sizes and MSE decreases
as the sample size increases.

To assess the effect of the choice of (c1,cy) that appears in the bandwidths on the
level and power, we ran the simulations for various choices of (c1,¢9), ranging from
0.1to 1. Table 3.2 reports the simulation results for those (c1, cg) which gave the best
results. The entries in the tables for Mp, (én) are obtained by computing the number
of times (Inhl/zf‘,_ll/z(Mn(én) —Cn)| >1.96)/1,000. Table 3.2 summarizes the
empirical levels for test statistic Mp(fn). It shows that as the sample size increases
the simulated levels are getting closer to the asymptotic level 0.05.

Table 3.3 represents the power for test statistic Mp (fp) for four different alterna-
tives, when (cy,c9) = (.9, 1). It shows that the power is getting better as the sample
size increases.

The second simulation study investigates the behavior of the Cramér-Von-Mises
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test CV7. Since the asymptotic distribution of CV] is not known, so in order to
find the Monte Carlo levels and powers of this test, we need to estimate its cut off
points. Estimated cut off points are obtained by first generating 10,000 values of
CV] and then by finding percentiles from these 10,000 values. After that, for CV,
the empirical level and power are obtained by computing the number of (CVq >
estimated cut off point)/1,000. In our simulations, F is obtained by the one step
procedure for the calculation of the nonparametric maximum likelihood estimator,
based on isotonic regression, cf. Groeneboom and Wellner (1992).

Table 3.4 contains the simulated 90th, 95th, 97.5th, 99th, and 99.5th percentiles
of CV] when distributions of X, T are exp(1). Table 3.5 represents simulated signifi-
cance levels by using the corresponding simulated percentiles given in Table 3.4 when
testing F' = exp(1) and the distribution of T is exp(1). It shows that the simulated
significance levels of CVj for different chosen sample sizes are very close to the true
nominal sizes.

Let

~

(n = argmingcg CV1(4).

’

Table 3.6 reports the Monte Carlo mean and the MSE of ({) under F = ezp(1) which
are obtained by minimizing CV] and employing the Newton-Raphson algorithm. One
can see there appears to be little bias in 0, for all the chosen sample sizes and MSE
decreases as the sample size increases.

Table 3.7 represents the power of C'V for five different alternatives, when distri-

bution of T is exp(1). It shows that the power is getting better as the sample size
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increases.

In the third simulation study, we make a comparison of the Monte Carlo level of
the proposed empirical minimum distance test Mn(én) with the other two tests CVj
and KY.

KY test. Let § M LE denote the maximum likelihood estimator, obtained by

using the the following score statistics Sp () given in (3.3) of KY:

i=1Ll—e "7t
Let '
Un(t) :=n~1/2 Z [I(T <t)—n" Z

Tjne—e(n+Tj)/2(1 _ —-()T')—l/2( _ e_éTj)—l/zf(Tj < t/\Ti)} .

n~ly 0 T2 ~0Tj (g — e Tk)-11(T}, > T})

Let Gp, denote the emplrlca.l distribution of the design variable T;, 1 <4 < n and
tg = ggth percentile of Gn. The KY test statistic is

Un(0)]

sup ——.
0<t<tg v Gnlto)

As shown in KY, the limiting null distribution of Ky is the same as that of

f(n =

su B(t)|, where B is the standard Brownian motion. The 95" percentile
Po<t<1 |B(?)] p

of this distribution is approximately equal to 2.24241, which is obtained from the fact

o0
P( sup |B(t)] <b) = P(B(1) <b) +2 3 (~1)'P((2i — 1)b < B(1) < (2i + 1)b).
0<t<1 =

The empirical size is computed by using #{Kp, > 2.24241}/1000.
Table 3.8 shows comparison of simulated significance levels for Mn(én), CVy and

Kn. For the simulated significance levels of CV] we used the percentiles given in
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Table 3.4. It shows that the empirical levels of statistics CV} and K, tests are better
than Mn(én), when sample size is less than 200. But when the sample size is 200,

the significance levels of all the three tests are comparable to each other.

Table 3.1: Mean and MSE of 0, X, T ~ exp(1), 6 =1

Sample Size 50 100 200 500
Mean 1.0442 | 1.0172 | 1.0025 | 1.0016
MSE 0.3324 |1 0.1780 | 0.1216 | 0.0748

Table 3.2: Empirical sizes of Mn(én), X, T ~ exp(1)

c1,co\n| 50 | 100 | 200
0.5, 0.2 ]0.024 | 0.044 | 0.049
0.8, 0.6 | 0.061 | 0.058 | 0.046
0.8, 0.70.088 | 0.062 | 0.056
09, 0.8 0.07 | 0.061 | 0.05
0.9, .9 | 0.07 | 0.059 | 0.049
0.9, 1 |0.094 | 0.058 | 0.045
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Table 3.3: Power of Mp(0n), T ~ exp(1), (c1,¢9) = (.9,1)

X\n

50

100

200

G(2,1)

0.975

1

1

G(1,3)

0.927

0.999

1

W(1,5)

0.211

0.404

0.628

W(1,2)

0.452

0.693

0.929

Table 3.4: Simulated percentiles of CVq, X, T ~ exp(1)

Percentile \ n | 50 100 200
99.5 0.0412 | 0.0245 | 0.0152
99 0.0359 | 0.0216 | 0.0131
97.5 0.0298 | 0.0177 | 0.0112
95 0.0236 | 0.0156 | 0.0095
90 0.0183 | 0.0125 | 0.0077

Table 3.5: Empirical sizes of CV7, X, T ~ ezxp(1)

True level\ n | 50 100 | 200
0.005 0.004 | 0.003 | 0.004
0.01 0.011 | 0.009 | 0.008
0.025 0.025 | 0.029 | 0.026
0.05 0.048 | 0.056 | 0.049

0.1 0.101 | 0.106 | 0.09
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Table 3.6: Mean and MSE of (n, X, T ~ ezp(1), 6p=1

Sample Size | 50 100 200

Mean 1.6815 | 1.4594 | 1.3088

MSE 0.5558 | 0.3152 | 0.1878

Table 3.7: Power of CVy, T = exp(1).

Dist. of X\ n | 50 100 | 200

G(1,3) 0.95 | 0.999 1

G(2,1) |0975| 1 1

W(1,5) | 0.413 | 0.624 | 0.891

W(1,1.5) 0.394 | 0.45 | 0.575

W(1,2) | 0.619 |0.779 | 0.957

Table 3.8: Empirical sizes, X, T ~ ezxp(1), (c1,c2) = (.9,.8)

Tests\ n | 50 100 | 200

Mn .074 | 0.07 | 0.055

Kn 04 |0.049 | 0.052

%] 0.049 | 0.048 | 0.051
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CHAPTER 4

Testing the equality of two
distributions with Current Status

Data

4.1 Introduction

This chapter discusses the problem of testing the equality of two distribution func-
tions based on current status data. Accordingly, let X, S (Y, T) denote the event
occurrence and inspection times, respectively, from the first (second) population. Let
Fy (Fp) denote d.f. of X (V) and G (Gg) denote the d.f. of S (T). Let Xy,..., Xn;
(Y1,...,Yng) beiid. Fy (Fg)and Sy,...,5nq (T1,.-.,Tny) beiid. Gy (Gg) ran-
dom variables. Assume all random variables are mutually independent. In the two
sample current status data set up, one observes (4;,5;), 1 < i < ny, and (nj,Tj),

1<j<ng, whered=I[X<S],n=1IY <T].
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The problem of interest here is to test the null hypothesis that the two event

occurrence distributions are the same, i.e.

Hyo: Fy(z) = Fy(z), forallzeZ,
against the alternative

Hi9: Fj(z) # Fy(z), for some z €I,

where 7 is a compact sub-interval of [0, c0).
In this chapter we adapt the test proposed by Koul and Schick (2003)(K-Sh) to
the two sample current status data. More precisely, let a%(Si) = F1(S;)(1 = F1(S;)),

a%(Tj) =Fy (Tj)(l - FQ(Tj)) and consider the regression models

o = F1(5;) +01(8)¢; 1<i<ng,

nj = Fp(T}) +09(T;)C25, 1<j<no
Here (y;, (9; are iid. r.v.’s such that E((3;]S;) =0 = E(Czlej) and E((‘l?iISi) =
1= E(C§j|Tj), 1 <i<np,1< 5 < ng. Assume also that G, Go have positive
densities g1 and g9 on [0, 00), respectively, and that Fj, Fo have bounded densities.

Let U denote the set of all nonnegative functions that vanish off Z and whose

restrictions to Z are continuous. Consider the integral

r- / w(@)[Fy(z) - Fy(@)lds,  uell.

A possible choice for u is the indicator 17 of the interval Z. The integral I' is 0 if the

null hypothesis holds, and is non-zero under the alternative Hyo, for all u € U.
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Let K be a symmetric density with compact support [-1,1] and a = an be a

bandwidth sequence, and let

T__l__"l n2 /u(Sy) ,/u(T oS5 T
- mn 0 91(5)92(7’) ~ ) e

Observe that

E(T) = / / VaE)Val[Fy(s) — Fy(t)]Kals — t)dsdt,

which is close to I" for small a. Thus 7 provides an estimate of I if g; and g9 are
known, which is rarely the case.

This suggests to replace the densities in 7 by their estimates. Accordingly, let

n] n2
53 a1(S)a(T{6; ~ n)KalS; ~ T5), (41)
1=1j=1

T =

nin2
where Uy is an estimate of v}, = Vu/ gk, k = 1,2, constructed from the pooled sample
such that 93 (z) = 0 for z ¢ Z. Similar to K-Sh, the estimators of v, can be obtained
when u is known and when u = u~y as described in Remark 4.2.5 below. So that the

asymptotic normality of 7 both under the null hypothesis and under local alternatives

1 nn
Fl=Fy+N 2y  N:=_—1"2 4.2
1=Fy Y . (4.2)

can be obtained, where <y is a non-negative continuous function such that y(0) =
0,7(c0) =0 and 0 < [ u(z)y(z)dz < oo.

The rest of the chapter is organized as follows. Section 2 discusses asymptotic
normality of 7 under a general set of assumptions on the estimates 7] and J5. Section

3 reports the numerical results of the two simulation studies. The first one assesses
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the finite sample level and power behavior of 7 test. The simulation results of the
test statistic 7 are consistent with asymptotic theory.

In the second study, the finite sample comparison of 7" and CVy tests is made,
where CVy is defined in chapter 1. Since the asymptotic distribution of C'Vj is
not known, so in order to find Monte Carlo levels and powers of this test, we need to
estimate its cut off points. Estimated cut off points are obtained by first getting 10,000
values of CVy and then by finding percentiles from the distribution of these 10,000
values. Simulation results show that for all the chosen alternatives and bandwidths,
significance level of CVj is better than 7, and power of 7 is better than CVy, when
sample sizes are 50 and 100. But when sample size is 200, significance level and power
of 7 and CV; tests are comparable. In our éimulations, Fl and ﬁ‘z are computed
by the one step procedure for calculating the nonparametric maximum likelihood

estimator, based on isotonic regression, cf. Groeneboom and Wellner (1992).

4.2 Asymptotic behavior under the null hypothe-

sis and local alternatives

This section discusses the behavior of the test statistic 7 given in (4.1) under the
null hypothesis and under the alternatives (4.2). Note that the choice v = 0 in (4.2)
corresponds to the null hypothesis. To stress the dependence of local alternative on
the parameter v we write Py for the underlying probability measure and E for the

corresponding expectation.
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Arguing as in K-Sh, we shall describe the asymptotic behavior of 7" as the sample

sizes n] and ng tend to co. For this we need the following assumptions.

(A.1) The function u € U, the set of all non-negative functions that vanish off Z and
whose restrictions to Z are continuous.

(A.2) The densities g and g9 are bounded and their restrictions to Z are positive
and continuous.

(A.3) For any pairs of d.f.’s (F},Gq), and (Fp,G9), P(0 < F1(S) < 1) =1 and
PO< Fp(T)<1)=1.

(A.4) The weight function K is a symmetric Lipschitz-continuous density with com-
pact support [-1, 1].

(A.5) The bandwidth a is chosen such that a?N — 0 and aN¢ — 00, for some ¢ < 1.

Note that 01(S) = 0 a.s., implies either F{(S) = 0 or F](S) =1 a.s. In the former

case E(6|S) = 0 implies § = 0 a.s. Hence § — F(S) = 0 a.s.. Similarly Fy(S) =

E(6]S) =1 as. implies § = 1 a.s. and hence § — F(S) =0 a.s. Thus 67(S) =0 as,,
implies § — F1(S) = 0 a.s., and, under (A.3), P(c1(S) >0)=P(0< Fi(S)<1)=1.
Similarly, P(0 < Fo(T) < 1) = P(09(T) > 0) = 1.

The condition (A.3) is a joint condition on the supports of (F},G1) and (Fy, G9).
For example, if distributions of X and S are exponential with the scale parameter
6, > 0, then P(0 < Fy(S) < 1) = P(0 < e~%15 < 1) = 1. But if the distributions
of X and S are U(0,1) and exponential with the scale parameter 8 > 0, respectively,

then PO < Fi(S) <1)=P0<S<1)=1- e"o, and hence in this case the

79



first part of (A.3) does not hold. A sufficient condition for (A.3) is that F] (Fy) be
strictly increasing on the support of Gy (G9).

Also note that under (A.2) and (A.3) the functions g1, g9 and a%, a% are bounded
and bounded away from zero on interval Z and so are the functions or% /91 and o% /92-

To establish the asymptotic normality of 7", rewrite this statistic as

1 N 2
— > " 11(S)o1(S; )Ch——zrz Tj)oo(T})C2; +——'— > r1(8)6(S;) + Ty,
"0 2;3 =1
where
) L1 &
@) = al) Y 9(Tj)Kalz - Tj),
j=1
1 &
ro(z) = ﬂz(x)n—l > 91(S))Kalz - S;), z€[0,00),
i=1
d
an 1 nl n2
T4=nln2221/1 S;)oa(T;)(Fa(S;) = Fa(Tj) Ka(S; = T)-
1=17=

As in K-Sh, the following additional definitions and assumptions are made to
analyze the asymptotic behavior of 7. Let S = (S1,-- .,S’nl), T = (Ty,--- ,Tn2),
6= (07, ,6n1), n=(n,... ,nn2), and J; (n]-) be the vector obtained from & ()
by removing J; (nj).

Definition 4.2.1 We say the estimator 7, is consistent and cross-validated (CCV)

on Z for the function rj, if the following conditions hold:

nj
S () By [(71(Sp) — 11(S)2IS] = opy (1),
11—1
N &2
— 2 IT(T) Byl(Fa(Ty) — (T D2IT] = op, (1),
2_7 1
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N E~[(#1(z) — E~[f 5:0)2|8] =
(B 1 :gr% v[(F1(z) — Ey[f1(2)]S,8;))%|S] = 0py (1),

N max sup By(y(r) = Bylia(a)|T, i) *IT) = opy (1)
We say 7 is a modification of 7, if Py(sup,c7 |7 (z) — 7 (z)| > 0) — 0. We say
7} is essentially CCV on 7 for ry. if there exists a modification of 7, which is CCV
on Z for 1.
Assumption 4.2.2 The estimate 7, is essentially CCV on T for rp, = u/gy, for
k=12
The following result gives a sufficient condition for Assumption 4.2.2. Its proof is

similar to that of Lemma 2.4 in K-Sh and hence no details are given.

Lemma 4.2.1 Suppose there are modifications vy, of Uy, such that, for k=1,2

0<ig(z) <K, z€7, (4.3)
for some finite constant K,
%LZI;EW[(DI(Si) — v1($;))218] = opy (1), (44)
% %_221 By[(59(T}) = vo(T3))IT] = opy (1), (45)
N Jax 1 :gl} E’r?(ﬁl(x) ~ By[i1(2)IS, &])%S] = opy(1), (4.6)
Ny mex sup By{(op(n) - Br{p(aIT, ni)2IT] = op (1). (47)

Then, Assumption 4.2.2 holds.

The next result gives the asymptotic distribution of 7 under the alternative (4.2)

for any v including the case v = 0.
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Proposition 4.2.1 Suppose the conditions (A.1)-(A.5) and Assumption 4.2.2 hold.

Then, under Py, N 1/ 2(’2" —T')/7 converges in distribution to a N(0,1) r.v., where
2_ [2 p
4= [ u*(2)lq1¥1(2) + g292(2)]dz,

Y1 = F1(1 - F1)/91, Y2 = Fo(1 - F3)/g92, q1 = N/ny and g3 = N/ny.

Details of the proof of this result are similar to those appearing in K-Sh and left out
for the sake of brevity.

Remark 4.2.3 The above result suggests a test which rejects H(yo for large values
of [T]. To implement such a test we need a consistent estimate #2 of 72. Given
such an estimator 72, we have under the above assumptions that N 1/ 2(T -1)/7
is asymptotically standard normal under Py, where I' = 0 under Hpp. Let now @
denote the standard normal distribution function and z, /2 be its (1 — a/2)-quantile.
Then a test that rejects Hyo if |(N1/2'f’)/%| > 2/ has the asymptotic level a.
Moreover, from the above result, the asymptotic power of this test, under Py, is

1- <I>(za/2 - K)+ @(—za/z — k), where

_ il u(:z:)’y(x)d:z:.

T

Note that the value of x does not change if we replace u by cu, with ¢ a positive
constant.

Remark 4.2.4 Optimal u. Similar to K-Sh, the optimal u can be achieved such
that it maximizes the asymptotic power, or equivalently the function &, under (4.2)

for a specific function y. An application of the Cauchy-Schwarz inequality shows that
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K is maximized by the choice

vt
q1%1(2) + ga¥9(z)’

(4.8)

u=u»y=

and the maximal value of k is

2(z)I7(z) 1/2
= (/ qle(z) +€2¢2(x)dz) '

The optimal u~ depends on the sample sizes, the density functions g; and g9, and
the distribution functions F7 and Fy. Next, we shall present the estimates of g, a,zc,
72 and V-

Estimates of g, a,%, 72 and V. Similar to K-Sh, estimates of v, k = 1,2,
can be found for fixed given u and for the (unknown) optimal u = u~. For this we
need estimates of the inspection time densities and variance function.

The inspection time densities g; and g9 can be estimated by the kernel density

estimates

n2
do(t) = ZKhz(t‘T) teRT,
] 1
with bandwidth hj, k = 1,2. Its expected value is

%(0) = [ 9kt + B K()dw), t € R,
Lemma 4.2.2 Suppose (A.2), (A.4) hold and the bandwidth hy, is such that hy, — 0

and hynf — oo for some ¢ < 1. Then the following hold:

supye719k(t) - TH (O] = opy (1), (4.9)

/ (G (8) — 95s())2dt — 0. (4.10)
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Details of the proof of this result are similar to those appearing in K-Sh and left out
for the sake of brevity.

Next, consider the following estimator of a]%, k=12

' Z?:ll Ke (8- 5;) ,

n .
.9 Zjil(nj — [i9(T})2Key(t - T) +
Uz(t) = 75) , teR ,
Zj=1 Keo(t —Tj)

where fij., k = 1,2 is the kernel regression estimate

n
.9 Z;':l1 ‘Sz'Kbl(t = 5)
= - ,
Zi:ll Kbl (t - Si)
n
Ejzlanbz(t - T;)

~2 +
2= 2 1 Kby (t = T5)

Here the bandwidths ;. and c;, are chosen such that by — 0,¢;. — 0, "i(bk +ci) —
00, for some ¢ < % The following lemma gives the needed properties of this estimator.

It follows from Lemma 3.3 of K-Sh.

Lemma 4.2.3 Suppose (A.2)-(A.5) hold, and the conditional fourth moment vy is

bounded on an open interval I. Then &I% is essentially CCV on I for 0,% and

supzezlos — bl = opy (1), k=1,2. (411)
Now, consider the following estimator of variance function 2:
n1 .2 ny -2
1 i . 1 u°(T;)
—Z 5 a% (S) +aa— Y ——L65(T;). (4.12)

The following Lemma proves the consistency of this estimator.
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Lemma 4.2.4 Suppose the assumptions of Proposition {.2.1 and Lemma 4.2.8 hold

2

and i be a uniformly consistent estimator of u on I. Then, 72 = 72 + 0p,7(1), where

7'2 = 712+722

_ u?(z) Fy (2)(1 - F1()) u?(z) Fy(z)(1 = Fy(x))
K B e Y e )

Proof. Note that (4.12) can be written as 72 = ”i? + f22, where

nl .9 n2 ~9 T
.2 1 ¢~ 45(5) .2 -2 1~ (7)) 9
1 =(I1n_ ) S’f 01(51,)1 9 =42— Z ) T 2(TJ)
1.3 91( 2) 2j=1 92( ])
Let 72 = 'Fi? + %22, where
nl .2 "2 W2(T:
-2 1 “(S)AZ -2 1 u”( )A2
T = QIn—' ) Sz al(Si)’ 9 = Q2n_ 9 TJ. Uz(Tj)-
12___1 91( 1,) 2‘7=1 92( _7)
In order to prove #2=124 op(1), it suffices to prove that
2 = 2 4op, (1), T2=72+0p, (). (4.13)

For the first claim in (4.13), it suffices to show that

# = i +op, (1), 74 =72+ opy(1). (4.14)

By the choice of n and n9, 0 < q; < 1. Thus, for the first claim in (4.14), it suffices

to show that

" T132(S:) — w2(S:)62(S;
“I_Z [[ (Si) (5;)] 1( z)] _ Op'y(l)' (4.15)

n #(S;)
Now, the left hand side of (4.15) is bounded above by

53 ()
32 ()

1=1

g

swb#m—ﬁml
zel

] = op’)’(l),
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by uniform consistency of 4, &1, g1, (A.2) and (A.3). This completes the proof of
the first claim in (4.14). The proof of the second claim in (4.14) is similar, thereby
completing the proof of the first part of (4.13).

To prove the second claim in (4.13), it suffices to show that

72 = 12+op,(1), 74 =14 +0p,(1). (4.16)
By the choice of ny and n9, 0 < g; < 1. Thus, for the first claim in (4.16), it suffices

to show that
n1 .
15t [u%sz-)a%(si)] _ /uQ(x)a%m Gy (2)
ol (S 93 ()
By the Law of Large Numbers,
S; u(z)o?
- Z [ 01( )] — /Md(}l(x), in probability.
92(S;) 2(z)
Thus, to prove (4.17), it remains to prove that
n .
LS 2y [a%(sa _ a%(s,;)]
np U LaS)  9E(Sy)
By the triangle inequality, the left hand side of (4.18) is bounded above by the sum

= opy(1).  (417)

= opy(1). (4.18)

of the following two terms:

1 & () 2
Ay = |— 2 162(5;) — at(S;)| |,
e A
ni
1 2 ) 1 1
Ay = |— u?(S;)o1(S; - .
2 = [y 2l ’)[g%(sn g%(so]

Note that, for u known and u = u, ﬁlfzz 1 (S’) = 0p7(1) and by (A.2),

inf, 7 91(x) > 0. Hence

|a%(>—alz>| 13
A
I PP

= 0p7(1)0p7(1) = Opfy(l),
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by uniform consistency of §; and (4.11). Similarly, because a%(S) <1,VS,

- n
5@ - 3@ 1 &

zel $3@)ghE) ™ o
= 0py(1)0p,(1) = opy (1),

u?(5;)

Ay <

by uniform consistency of §; and (A.2). This completes the proof of the first claim
in (4.16). The proof of the second claim in (4.16) is similar, thereby completing the
proof of Lemma 4.2.4.

Remark 4.2.5 Estimation of v;. Estimation of vy when u is known. As-
sume (A.1), (A.2) and (A.4) hold. Then v}, can be estimated by /u/gy with h
as mentioned in Lemma 4.2.2. We shall now show that these estimates satisfy the
assumptions of Lemma 4.2.1 and hence Assumption 4.2.2. It follows from (A.2) that
gy (t) > 4B for all t € T and for some B > 0. Thus, by (A.4), gi.(t) > 26 for all t € I.
In view of (4.9), 7. = v/u/(gg V B) is a modification of ;.. We then obtain (4.3) from
the boundedness of u, while (4.4) and (4.5) follows from (4.9) and (4.10). Of course,
(4.6) and (4.7) holds as 7. does not depend on é and 7.

Estimation of vj, when u = uy. Here we shall discuss the estimation of v}, =
V% / 9k, where 7 is a known non negative continuous function. In view of (4.8), an

obvious estimate of uy is

a2 . _%
ﬂ'y =, where 'l/)k =, k= 1,2
Y1 +av2 9k

Similar to K-Sh, we can easily verify the assumptions of Lemma 4.2.1 for v =

V%y/9 by using Lemma 4.2.2 and 4.2.3.
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4.3 Simulations

This section examines the Monte Carlo comparison of the test statistics 7 and CVj
based on 10,000 replications. For simplicity we took Z = (0,5) and u(z) = 17. The
simulations are done using Matlab. The kernel function used for w, g; and g9 in the
simulations is %(1 - 1:2)1 (lz] £ 1). Let c1 be the bandwidth used for w. Similar
to K-Sh, the values chosen for ¢y are 0.2 and 0.25. Also the bandwidths used for
densities g1, g9 in the simulations are hy = hg = c2(log(n)/n)1/ 9. In the tables
below, exp()\) denote the exponential distribution with parameter A\ and wei(a,b)
represents the weibull distribution with density w(t) := ba_btb_lexp(—t/ a)b. The
asymptotic level is taken to be 0.05 in all the cases. We used #2 of (4.12) to compute
7. The entries in the table for 7 test statistic are obtained by computing the number
of (|7] > 1.96)/10, 000.

Since the asymptotic distribution of C'V5 is not known, so in order to find the
Monte Carlo levels and the Monte Carlo powers of this test, we need to estimate its
cut off points. Estimated cut off points are obtained by first getting 10,000 values
of CVy and then by finding percentiles from the distribution of these 10,000 values.
After that, for CVy, the significance levels and powers are obtained by computing the
number of (CVy > estimated cut off point)/10, 000.

Table 4.1 summarizes the empirical levels for test statistic 7 when sample sizes
for both the populations are the same with chosen values of ¢ and cg. The sample
sizes chosen here are 50, 100 and 200. It shows that as the sample size increases the

simulated levels are getting closer to the asymptotic level 0.05.

88



Table 4.2 represents the empirical levels for test statistic 7 when sample sizes for
the two populations are not the same for all the chosen values of ¢] and ¢ and chosen
inspection time densities. It shows that the simulated levels are consistent with the
asymptotic theory when sample sizes are not the same for the two populations.

Table 4.3 shows the simulated power of T for six different alternatives and chosen
values of ¢; and cg when sample size for both the populations is 50. It shows that
the power is getting better as the parameter of exponential distribution increases.

Table 4.4 represents the simulated 95th, 97.5th, 99th, 99.5th and 90th percentiles
of CVy for sample sizes 40, 80, 100, 200 when distribution of X, Y is exp(1) and
distribution of S, T is exp(1.5). Table 4.5 represents the simulated significance level
by using the corresponding simulated percentiles given in table 4.4 for sample sizes 40,
80, 100, 200 when distribution of X, Y is exp(1) and distribution of S, T is exp(1.5).
It shows that the simulated significance levels of C'Vj for different chosen sample sizes
are very close to the true nominal size.

Table 4.6 represents the simulated 95th percentile of C'V5 for sample sizes 50, 100,
200 and for all the chosen inspection time densities.

Table 4.7 shows comparison of simulated significance levels for 7 and CVy for
different inspection time densities and different sample sizes. For the simulated sig-
nificance levels of CVy we used the percentiles given in Table 4.6. It shows that the
empirical levels of statistics C'V5 is better than 7, when sample size is small. But
when sample size is large, then the results of 7" and CV; are close to each other.

Table 4.8 represents the comparison of power between 7 and CVj for different

chosen alternatives and sample sizes. For the power of CVy we used the percentiles

89



given in Table 4.6. It shows that the power of statistics 7 is better than CVy, when
sample size is small. But when sample size is large, then power of statistics 7 and

CV5 is comparable to each other.

Table 4.1: Empirical sizes of 7, X,Y ~ exp(1), S,T ~ exp(1)

cl,c2 | n1=n2=50 | n1=n2=100 | n1=n2=200
0.2, 0.6 0.1151 0.0852 0.062
0.2,0.9 0.1112 0.0812 0.0564
0.25, 0.8 0.0763 0.0698 0.0585
0.25, 0.9 0.0843 0.0655 0.0595
0.25,1 0.1016 0.086 0.052

Table 4.2: Empirical sizes of 7, X,Y ~ exp(1), (nq,n9) = (180, 200)

c1, €2 S, T :=exp(1.5) | S,T :=exp(1) | S := exp(1),T := exp(1.5)
0.2, 0.6 0.061 0.0589 0.062
0.2, 0.9 0.056 0.0551 0.0573
0.25, 0.8 0.0573 0.058 0.0549
0.25, 0.9 0.0598 0.0586 0.059
0.25, 1 0.0535 0.0522 0.0560
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Table 4.3: Power of 7, S, T ~ exp(1), X ~ exp(l), n] =ng =50

c1,¢2\Y | exp(.5) | exp(1.5) | exp(2) | exp(3) | exp(4) | exp(5)

0.2,0.6 | 0.5381 | 0.2779 | 0.5762 | 0.9095 | 0.9634 | 0.9916
0.2,0.9 | 0.4875 | 0.2767 | 0.5454 | 0.8891 | 0.9688 | 0.9940
0.25,0.6 | 0.5253 | 0.2684 | 0.5960 | 0.9197 | 0.9772 | 0.9965
0.25,0.8 | 0.5213 | 0.2777 | 0.5687 | 0.8980 | 0.9800 | 0.9913
0.25,0.9 | 0.5227 | 0.2739 | 0.5900 | 0.8732 | 0.9761 | 0.9947
0.25,1 | 0.5040 | 0.2645 | 0.5459 | 0.8943 | 0.9676 | 0.9848

Table 4.4: Simulated percentiles of CVy, X,Y ~ exp(1), S,T ~ exp(1.5)

Percentile\n; =no | 40 80 100 200
99.5 0.1896 | 0.108 | 0.0866 | 0.0466
99 0.1433 | 0.0934 | 0.0755 | 0.041
97.5 0.1413 | 0.0787 | 0.0649 | 0.0318
95 0.1189 | 0.0671 | 0.0563 | 0.0321
90 0.0974 | 0.0571 | 0.0471 | 0.0275

Table 4.5: Empirical sizes of CV, X,Y ~ exp(1), S,T ~ exp(1.5)

True level\ny = ng 40 80 100 200
0.005 0.00498 | 0.0053 | 0.0051 | 0.0049
0.01 0.0099 | 0.0105 [ 0.011 | 0.0121
0.025 0.02456 | 0.0254 | 0.0255 | 0.0249
0.05 0.05 | 0.0502 | 0.0501 | 0.0510
0.1 0.1022 | 0.1015 | 0.1014 | 0.0998
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Table 4.6: Simulated 95th percentile of CVy, X,Y ~ exp(1).

Dist. of S, T | n1=n2=50 | n1=n2=100 | n1=n2=200
exp(1) 0.0999 0.0551 0.031
exp(1.5) 0.1008 0.0563 0.0321
exp(1),exp(1.5) | 0.1011 0.0556 0.0311

Table 4.7: Empirical sizes, X,Y ~ exp(1), (c1,c9) = (.25,1).

S,T exp(1.5) exp(1) exp(1), exp(1.5)

nl=n2| T cv | T ¢V T cv
50 0.1013 0.0510 | 0.0965 0.0486 0.1115 0.0480
100 0.853  0.0497 | 0.0729 0.0494 0.0876 0.0504
200 0.0521 0.0482 | 0.0559 0.0466 0.058 0.0465

Table 4.8: Power, S,T ~ exp(1), X ~ ezp(1), (c1,c9) = (.2,.9).

ny = ng 50 100 200
Dist. of Y| 7T cv T cv T cv
exp(0.5) | 0.5016 0.2845 | 0.7067 0.5328 | 0.8941 0.8465
exp(1.5) |0.2677 0.1478 | 0.4136 0.2365 | 0.6511 0.4085
exp(2) 0.5624 0.3606 | 0.8223 0.6200 | 0.9756 0.8699
ezp(3) 0.7976 0.7209 | 0.9812 0.9429 | 1 1

w(.2,1) |0.9468 0.9488 | 0.9997 0.9993 | 1 1

w(.5,1) |0.5487 0.3876 | 0.8281 0.6586 | 0.9804 0.8999
w(1.5,1) |0.2138 0.1298 | 0.3438 0.2129 | 0.5120 0.3922
w(2,1) | 0.4445 0.3086 | 0.6568 0.5418 | 0.8673 0.8488
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