PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

5/08 K./Proj/Acc&Pres/CIRC/DateDue.indd




MIXED VOLUME AND TOTAL DEGREE

By

Ying Zhang

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics

2008



ABSTRACT

MIXED VOLUME AND TOTAL DEGREE
By

Ying Zhang

This thesis focuses on the study of solving several extensible benchmark polynomial
systems by homotopy continuation methods. By establishing the relationship between their
mixed volume and total degree, we find that for most of those systems the difference between
their mixed volume and total degree is very minimal. Consequently, those systems should
be solved by the classical linear homotopy method rather than the polyhedral homotopy
method, although in general the polyhedral homotopy method is the typical choice for
solving sparse systems. Furthermore, by restricting to the classical linear homotopy on
solving those systems, we may take the special structure of the systems into account for
solving the systems efficiently. This precious aspect of the classical linear homotopy does

not seem to exist in the polyhedral homotopy method.
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Introduction

Polynomial systems arise very frequently in many fields of science and engineering (7], such
as formula construction, geometric intersection problems, inverse kinematics, power flow
problems with PQ-specified bases, computation of equilibrium states, etc. In 1977, Garcia
and Zangwill [10] and Drexler [9] independently presented theorems, which suggested that
homotopy continuation methods could be used to find the full set of isolated zeros of a
polynomial system numerically. During the last three decades these methods have been
developed into a reliable and efficient numerical algorithm for approximating all isolated
zeros of polynomial systems.

Let P(z) = 0 be a system of n polynomial equations with n unknowns. Denoting

P=(p1,...,pn) and z = (z1,...,Zn), we want to find all isolated solutions of

pi(z1,...,zn) =0

\ pn(z1,...,20) =0.

The classical homotopy continuation method (2, 3] for solving P(z) = 0 is to define a

trivial system Q(z) = (q1(z),...,qn(z)) and then follow the solution curves in the real



variable ¢t from ¢t =0 to ¢t = 1, which make up the solution set of
H(z,t) =(1-t)rQ(z) +tP(z) =0  with generic € C)\ {0}.

More precisely, all the isolated solutions of P(z) = 0 can be found if the system
Q(z) = 0, known as the start system, is chosen properly to satisfy the following three

properties:
e Property 0. The solutions of the start system Q(z) =0 are known;

e Property 1. The solution set of H(z,t) =0 for 0 <t < 1 consists of a finite number

of smooth paths, and each of them can be parameterized by ¢ in [0,1);

e Property 2. Every isolated solution of H(z,1) = P(z) = 0 can be reached by some
path originating at ¢t = 0, that is, the path starts from a solution of the start system

H(z,0) = Q(z) = 0.

A typical choice of a start system @Q(z) = 0 satisfying Property 0-2 is

4

d
q(z1,...,2n) = a1z, — by

\ an(z1,...,2n) = an:c‘,il“ — by,

where dj,...,d, are the degrees of polynomials pj(z),...,pn(z), respectively, and
aj, bj, j = 1,...,n are random complex numbers [6, 18, 23, 29, 37, 38]. The solutions
of such a start system @Q(z) = 0 can be explicitly obtained and the total number of so-
lutions is d = dj x --- X dy, , which is known as the total degree or the Bézout number of
the original polynomial system P(z) =0 [33]. We may then find all the isolated solutions

of P(z) = 0 by following the total degree number of paths originating from solutions of



the start system Q(z) = 0. But, a great majority of the polynomial systems arising in
applications have fewer than, and in some cases only a small fraction of d =dj X -+ x dp
isolated zeros. We call such a system deficient. In this case, many of the d; x --- x dj
paths will diverge to infinity as ¢ — 1, and those paths become extraneous, causing highly
wasteful computation.

In the middle of 1990’s, a major computational breakthrough emerged in solving de-
ficient polynomial systems efficiently by the homotopy continuation method. The new
method, called the polyhedral homotopy method [13], takes a great advantage of the combi-
natorial root count in the Bernshtein’s theory [4], which generally provides a much tighter
bound, called mized volume, for the number of isolated zeros of a polynomial system in the
algebraic tori (C*)" = (C)\ {0})". When the polyhedral homotopy method is employed to
solve a polynomial system, the number of homotopy paths that need to be traced agrees
with twice of the mixed volume of the polynomial system. As an important consequence,
when the mixed volume of a polynomial system is far less than its total degree, then solving
the systems by the polyhedral homotopy method will greatly reduce the extraneous paths
and thereby considerably limit the wasteful computations.

However, in the core of the polyhedral homotopy continuation method, there is a some-
times costly computation, namely the mized cell computation, which provides the critically
important start system that one can handle for the polyhedral homotopy. Indeed, this
mixed cell computation can become very costly for large polynomial systems. Therefore,
before the polyhedral homotopy is used to solve the polynomial system at the expense of
the sometimes costly mixed cell computations, a prior knowledge on the comparison of
the total degree of the system and its mixed volume is highly desirable. If a substantial
difference between these two numbers of the system is absent, then, of course, the system

should be solved by the classical linear homotopy rather than the polyhedral homotopy.



While it has been largely admitted for grant that for most of the sparse polynomial sys-
tems their mixed volume is far less than their total degree, in this thesis we analyze several
extensible benchmark polynomial systems in the opposite. By establishing the relationship
between their mixed volume and total degree, we find that for most of those systems the
difference between their mixed volume and total degree is very minimal. Consequently,
those systems should be solved by the classical linear homotopy method. Furthermore, by
restricting to the classical linear homotopy on solving those systems, we may take the spe-
cial structure of the systems into account for solving the systems efficiently. This precious
aspect of the classical linear homotopy does not seem to exist in the polyhedral homotopy
method.

The thesis is organized as follows. In Chapter 1, the Bernshtein theorem is introduced
along with its application on the polyhedral homotopy continuation method for solving
polynomial systems, including mixed volume and mixed cell computations. In Chapter
2, 3 and 4, we study the extensible benchmark systems Katsura-n [35], Reimer-n [35]
and Noon-n [31] respectively. It is shown that for each of those systems the difference
between the mixed volume of the system and its total degree is very slim, if not zero.
Therefore the polyhedral homotopy continuation method, widely considered the state of
the art, is inappropriate for solving those systems. They should be solved by the classical
linear homotopy method. Furthermore, when the classical linear homotopy is used to solve
the Noon-n systems in Chapter 4, particularly illuminating is the marvelous speed-ups by
choosing proper start system to recognize the symmetry structure of the system.

In Chapter 5, we study the generalized eigenvalue problem Az = ABz, where A and
B are nxn matrices. When this problem is considered as a polynomial system, it contains
n equations in n + 1 variables. With an appended linear equation, the mixed volume of

the resulting system is shown to be n, that is far less than its total degree 2™. Nonetheless,



from the obvious m-homogeneous structure of the system, proper start systems with n
isolated solutions are always available in the classical linear homotopy. In this situation, the
employment of the polyhedral homotopy method for solving this system is still unnecessary
so that the mixed cell computations can be avoided.

It is commonly known that very efficient algorithms for matrix eigenvalue problems,
QR algorithm for Az = Az and QZ algorithm for Az = ABz, have been implemented
and asserted in the software package LAPACK [16]. However, as the size of the matrix
becomes larger, more computing resources are required. And a natural way to allocate
extra computing resources efficiently is to perform independent tasks simultaneously in
parallel. Since each isolated zero of a polynomial system is computed independently of all
the others in the homotopy continuation method, it provides a natural environment for
the parallelization. In this regard, solving very large algebraic eigenvalue problems by the
homotopy continuation method in parallel offers a great perspective in contrast to highly

serial QR or QZ algorithms.



CHAPTER 1

The polyhedral homotopy

1.1 The Bernshtein theory

Let P(z) = (pi(z),...,pn(z)) € Clz] be a given polynomial system, where z =

1

(21,..-,Zn). Denoting z¢ = 271 ... 23" with a = (aj,...,an), write

¢

n(z) = ZaESI Ci,axa

P(z) = ¢ : (1.1.1)

{ pa(z) = Eaesn C:L,aza

where Sj,...,Sn are fixed subsets of N* with cardinalities k; = #S; and c’J'f,a eC* =
C\ {0} for a € S;,j =1,...,n. Here S; is called the support of pj(z) and denoted by
supp(p;)- Its convex hull Q; = conv(S;) in R™ is called the Newton polytope of p; and
S = (S1,...,S5n) is the support of P(z), denoted by supp(P). For nonnegative variables
Al,- -+, An and the Newton polytopes Q; of p; for j=1,...,n,let \jQ1+ -+ AnQ@n

be the Minkowski sum of \1Q1,...,A\n@n, i€,

MQ1+-+MQn={\r1 4+ a1 €Qjj=1,...,n}.



It can be shown that the n-dimensional volume, denoted Vol,, of the polytope A1Q; +
-+« + AnQn is a homogeneous polynomial of degree n in Aj,...,An, and the coefficient
of the term A X --- X A\, in this homogeneous polynomial is called the mized volume of
the polytopes Q1,...,Qn, denoted M(Q,...,Q@n), or the mixed volume of the supports
S1,...,Sn, denoted M(Sy,...,Sn). Sometimes, it is called the mixed volume of P(z)
when no ambiguities exist.

The system (1.1.1) can be embedded into the system P(c,z) = (pi(c, z),..., pn(c, 7)),

where

(
p1(c, %) = X 4es, €1,0°

P(c,z) = | : (1.1.2)

| Pnle,2) = Taes, cnaz®

and the coefficients ¢;, with a € §j, j = 1,...,n, are taken to be a set of M = k; +
-+ ++ kp variables. Namely, the system P(z) in (1.1.1) is considered as a system in (1.1.2)

corresponding to a set of specified values of coefficients c* = (c; o) or P(z) = P(c*,z).

Lemma 1.1.1. [12] For polynomial systems P(c,z) in (1.1.2), there exists a polynomial
system G(c) = (g1(c), - --,9n(c)) in the variables ¢ = (cjqo) for a € Sj and j=1,...,n
such that for those coefficients ¢ = (c;’ o) for which G(C) # 0, the root count in (C*)"* of
the corresponding polynomial systems in (1.1.2) is a fired number, and the root count in

(C*)™ of any other polynomial systems in (1.1.2) is bounded above by this number.

Remark 1.1.1. Since the zeros of the polynomial system G(c) in Lemma 1.1.1 form
an algebraic set with dimension smaller than M, its complement is open and dense with
full measure in CM . Therefore, with probability one, G(c*) # 0 for randomly chosen

coefficients c* = (c;f‘a) € CM. Hence, polynomial systems P(c*,z) in (1.1.2) with G(c*) #



0 are said to be “ in general position”.

Theorem 1.1.1. (Bernshtein) [4] The number of isolated zeros in (C*)", counting multi-
plicities, of a polynomial system P(zx) = (p1(z),...,pn(z)) with support S = (Sy,...,5n)
is bounded above by the mized volume M(Si,...,Sn). When P(z) is in general position,

it has exactly M(S},...,Sn) tsolated zeros in (C*)™.

In [5], this root count was nicknamed as BKK bound after its inventors, Bernshtein
(4], Kushnirenko [15] and Khovanskii [14]. In general, it provides a much tighter bound
compared to variant Bézout bounds [30, 33]. An apparent limitation of the theorem is that
it only counts the isolated zeros of polynomial system in (C*)™ rather than all the isolated
zeros in the affine space C™. For the purpose of finding all the isolated zeros of a polynomial
system in C™, a generalized version of the assertion in the theorem which counts the roots
in C™ is strongly desirable. This problem was first attempted in [32] by introducing the
notion of the shadowed sets and a bound for the root count in C® was obtained. Later, a

significantly much tighter bound was discovered in the following theorem.

Theorem 1.1.2. [27] The root count in C" of a polynomial system P(z) =
(p1(2),...,pn(x)) with supports S; = supp(p;),j = 1,...,n, is bounded above by the

mized volume M(Sy U {0},...,Sn U {0}).

Corollary 1.1.1. For polynomial system P(z) = (p1(z),...,pn(z)) in (1.1.1), assume all
pj(x)s have constant term, then the number of isolated zeros of P(x) in C" is bounded
above by the mized volume M(Sy,...,Sn) of its supports S = (S1,...,Sn). When P(z)
is in general position, all zeros of P(z) in C™ are isolated and its total number is eractly

equal to M(Sy,...,Sn).

For a polynomial p(z) = p(z,...,zn) of degree d, denote the associated homogeneous



polynomial by

1.‘1 xn

#(zo, z1,---,Zn) =:rgp(;c—',..., 70"

The solutions of p(z) = 0 at infinity are those zeros of p in projective space

P" = {(zo, ..., zn) € C"*1\ (0,...,0)}/ ~

with g = 0 where the equivalent relation ~ is given by z ~ y if z = cy for some nonzero
¢ € C. On the other hand, zeros of p(z) in C™ can be identified with zeros of $ in P"
with g = 1.

When the system P(z) = (pi(z),...,pn(z)) in (1.1.1) is viewed in P", namely we

consider P(mo,zl, .oy Zn) = (P1(zg, Z1,---,Zn), - - -, Pn(zg, T1,- .., Zn)), then

Theorem 1.1.3. (Bézout) If all the zeros of P(zg,z1,...,2n) in P* are isolated, then

the number of those isolated zeros, counting multiplicities, equals to its total degree.
Together with Corollary 1.1.1, we conclude with the following proposition.

Proposition 1.1.1. For polynomial system P(z) = (pi(z),...,pn(z)) in general position
in which all p;(z)s have constant term, assume the zeros of P(zx) at infinity are all isolated,

then

Total degree of P(z) = Mized volume of P(x)+ number of isolated zeros of P(z)

at infinity.



1.2 The polyhedral homotopy

In light of Theorem 1.1.2 given in the above section, to find all isolated zeros of polynomial
system P(z) = (p1(z),...,pn(z)) in C* with support S = (Si,...,Sn), we first add the
monomial z0(= 1) to those p;s which do not have constant terms. Followed by choosing co-
efficients of all monomials at random, a new polynomial system Q(z) = (q1(z),. .., gn(z))

with support S’ = (S;, . S;) , where 5? =S;U{0} for j =1,...,n, is obtained:

q(z) =Y 1 C1qe1°
aGSl

_ s
{ gn(z) ZaES:L Cn,aZ

We call such a system an augmented system of P(z). Since all those coefficients ¢;, for
a€ S; and j =1,...,n are randomly chosen, this system may be regarded as a system in
general position. We want to solve this system in the first place. Afterwards, this system
will be used as the start system to solve P(z) =0 via linear homotopy.

Let t denote a new complex variable and consider the polynomial system Q(z,t) =

(q1(z,¢),...,¢n(z,t)) in the n+ 1 variables (z,t), where

Gi(z,t) = Zaesl El,az“twl(a)
1

(1.2.1)

. rotwn(a)
aES;l ‘n.a

én(xv t) = Z

and the images of each w; : S; — R for j =1,...,n are chosen generically. For a fixed

10



to, system Q(z,t) = (¢1(x,t),...,dn(z,t)) can be written as

¢

N _wi(a)y 4
Qi(z,to) =3 o (Craty )z
aeSl

Q(z,tp) = 4 : (1.2.2)

- _ -~ Lwn(a)
g gn(z,tp) = Zaesa(cn‘aton )zo.

Remark 1.2.1. [17] System (1.2.2) is in general position.

Now we regard Q(z,t) =0 as a homotopy, known as the polyhedral homotopy, defined
on (C*)"x[0,1] with target system Q(z,1) = Q(z). The zero set of this homotopy is made
up of k homotopy paths (1) (¢),...,z(*)(¢). Since each gj(z,t) has nonzero constant term
forall j =1,...,n, it follows from a standard application of generalized Sard’s Theorem [1]
that all those homotopy paths are smooth with no bifurcations. Therefore, both Property 1
and Property 2 hold for this homotopy. However, as for Property 0, at ¢t = 0, Q(x, 0)=0,
so those homotopy paths can not get started because the paths originating from ¢ = 0 can
not be identified. We deal with this problem with the following design.

The function w = (w1, ...,wn) with w; : S;- — R,j7=1,...,n, may be considered as a

generic lifting on the support s = (SJ ey S:,) of Q(z), which lifts S; to its graph

N

, .
S;={a=(a,wj(a))|a€S;}, j=1,...,n

Let & = (a,1) € R™"*1 satisfy the following condition:

Condition A: There ezists a collection of pairs {al,all} C S;, ey {an.a:,} C S:‘, where

11



{a1 - all, ...,Qn — a;} is linearly independent and for j=1,...,n

/

(a;,6) = (a;,4),

A AR / /
(a,6) >(a;,&),a € S;\ {aj,a;}.

Here (.,.) stands for the usual inner product in the Euclidean space. For such & = (a, 1),

where a = (ay,...,an), let

y1 =tz

yn = t—anzn.

In short, we write y = t™%z with y = (y;1,...,yn) or z = yt®. By this transformation

and a = (ap,...,an) € N*, we have

a
7% = xll . ,,x;lln — (yltal )al .. (yntan)an

_ y¢111 . .yg"t°1a1+"'+°‘"a" _ yat(a,a)'

Consequently, §;(z,t), for j =1,...,n, of Q(z,t) in (1.2.1) becomes

q"J(ytO’t) — Z éj,ayat(a,a)twj(a) — Z Ej,ayat((a!wj(a))’(a‘l)) — Z E]‘ayat«i,d)
! ac$’ aES’-

s
a€5; j j

where a = (a,w;(a)) and & = (a,1).
For j=1,...,n,let

;= min(a,4)
aESj

12



and consider the homotopy H*(y,t) = (h§(y,t),...,h5(y,t)) =0 on (C*)™ x [0, 1], where

e (,t) =t i, t) = Y gyt
aES;-

= ¥ Gat+ Y gt
/

/
a€S.; aGSj

(8,6)=8; (8,6 >B;

This homotopy retains most of the properties of the homotopy Q(z, t) = 0; in particular,

both Property 1 and Property 2 remain valid and

H%(y.1) = Q(y,1) = Q(y) = Q(=).

. e . A oA AN A
Moreover, with Condition A, for each j =1,...,n,{a;,&) = (aj,a) = B; and (a,a&) > f;

for a € S; \ {aj,a;}. Thus when t =0

!
1 Gyt =¢C 81 4+¢ ,4% =0
aes) 1,aY l,a1¥ l,aly

h$(y,0) =3
H%(y,0) = ¢

hS(y,0) =3 1 Cnay® =Cnapy®™™ +¢ 1y =0

GGSn n)a‘n

\

which is known as the binomial system.

Proposition 1.2.1. [12] The binomial system
(

!
- = a
Cl‘alyal + cl a/ y 1= 01
™1

'
ryon =0
an

6n,,a.n yan + E
\ n

13



has

ka = det

an — a,

nonsingular isolated solutions in (C*)™.

Proposition 1.2.2. [12] Different & = (, 1) € R**! that satisfy Condition A will induce
different homotopies H(y,t) = 0. Those different homotopies will reach different sets of
isolated zeros of H%(y,1) = Q(y) = Q(z). Moreover, those different sets of isolated zeros

of Q(z) are disjoint from each other.

Proposition 1.2.3. [12] The root count of Q(z) = 0 in (C*)" or the mized volume of

the augmented system of P(z) is

/
al_al

Zka =Z det
a a

/
an — ap

A key step in solving system @Q(z) =0 by the polyhedral homotopy method described
above is the search of all those vectors & = (a,1) € R™*1 as well as their associated
collections of pairs C* = ({al,a,l},...,{an,a:,}) which we call mized cells with inner
normal « that satisfy Condition A. This is one of the most time consuming parts of the
polyhedral homotopy method and well developed algorithms for finding those mixed cells
can be found in [11, 19, 20, 22].

After all isolated solutions of Q(z) = 0 are attained, the linear homotopy
H(z,t) = (1-t)rQ(z) +tP(z) =0  with generic r € C*

14



will be used to solve the target system P(z) = 0 because this homotopy now satisfies all
the three properties [24].
We now summarize the polyhedral homotopy procedure for solving polynomial systems.
Given polynomial system P(z) = (pj(z),...,pn(z)) with support S = (S,

.., 8n), let S’=(S;,...,S,l1) with S_;=SjU{0} for j=1,...,n.

e Step 0: Initialization.

Choose polynomial system Q(z) = (qi1(z),...,qn(z)) with support s =
/ / / .
(S1,---,Sy) and generically chosen coefficients cj,, for a € .S'j and j =

1,...,n. That is,

g;(z) = Z ¢jaz® Jj=1,...,n.
aeS’.

J
e Step 1: Solve Q(z)=0.

o Step 1.1: Choose a set of real valued functions wj : S;- - R, j=

1,...,n, their images are generic numbers.
' /

o Step 1.2: Find all the cells C* = ({aj,ay},...,{an,a,}), i =1,...,n

of § = (5”1,,5':,) induced by w = (wy,...,wn) With & = (a,1) € R**!
R ) n N / /

being the inner normal of ({aj,a},...,{an,a,}) in S =(Si,...,Sn).

o Step 1.3: For each @ = (a,1) € R™! and its associated cell C“

obtained in Step 1.2.

15



o Step 1.3.1 Solve the binomial system

/
1y"1=0

cl’alyal + El a
™1

’
an +¢ n =0
Cn,any "aily

\ £}

in (C*)", let the solution set be X.
o Step 1.3.2: Let 3; = (a;,G) for j = 1,...,n. Follow homotopy

paths y(t) of the polyhedral homotopy

)
o _ a4(a,6)—0
h{(y,t) ZaES; c1,qy°%t

H(y,t) = 4

a — a{a,G)—PFn
{ hn(yvt) ZGGSL Cn,aY t

starting from the solutions in Xj. Collect all the solutions

of y(1) as a subset of isolated zeros of Q(z).

e Step 2: Solve P(z) =0.

Follow the homotopy paths of the linear homotopy
H(z,t) = (1-t)rQ(z) +tP(z) =0  with generic reC*

starting from the solutions of Q(z) = 0 obtained in Step 1 to get all
the isolated solutions of P(z)=0 at t=1.
Remark 1.2.2. To find all isolated zeros of P(z) in C", k = M(S;, ey S;) homotopy

paths need to be traced in both Step 1.8 and Step 2, making it 2k homotopy paths in total.

16



CHAPTER 2

Katsura-n system

In this Chapter, we consider the Katsura-n system [35]. For this polynomial system, we
shall prove that the mixed volume of its augmented system is equal to its total degree.
Therefore, for finding all the isolated zeros of this system in C", the polyhedral homotopy
method offers no advantages as regard to minimizing the number of homotopy paths one

needs to trace.

2.1 Katsura-n system

Katsura-n system actually contains n + 1, rather than n, variables z,...,z,41. It has

the following forms:

17



e if n is odd, the polynomials are

2Zp41+2zn+-- -+ 229+ 11 - 1
2z%+1+2z%+---+2z%+$%—11
2TnTp41 +22n_1Zp + - + 22179 — T9

2zp_1Tn+1 + 2z, _9xn + - + 22123 + x% -3

229Tn41 +221Tn + 2292n1 + -+ T3 — Tn;

e if n is even, the polynomials are

241+ 2zp+ -+ 229+ -1
2:5,2”_1 +2z%+---+2:c%+zf -1
2zpzny + 22 1T + - + 27179 — X9

2Ty 1Tp4+1 +2T_9Tn + -+ + 22123 + x% — I3

2791 +221Tn + 229Z_ 1+ -+ 22T — In.
{ 2Ln+1 1In 2Ln-1 7% n

Appending constant terms to those polynomials without them and choosing all the

coefficients randomly yield the following augmented Katsura-n system
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e if n is odd,

C11Tn+1 +C12Tn + - +C1 nT2 + Cl n+121 + C1 042

2 2 2 2
€2,1T5, 41 T €22%7 + -+ C2nT5 + C2n41T] +C2n42%1 +C2n43
€3,1ZnTn+1 +€32Tn-1Tn + -+ C3 nT1T2 + C3n4+172 + C3 n42

€41Tn—1Zn+1 +€42Tn—2Tn + -+ +C4 17173 + C4,n1'% + C4n+1Z3 + C4n+2

e 2 .
| On.1%2Tn+41 + Cn2T1%n + Cn322Tn—1 + - F Cn, 1437041 + Cn, 145 % + Cn, 14T
e if n is even,

€1,1Zn+1 +€C12Tn + - +C1 nT2 + Cl n+1Z1 + C1 n+2

2 2, ... 2 2
€2,1T5 41 +€22Tp + -+ +C2nT) + C2 n41T] + C2n4+2T1 + €2 n+3
€3,1TnTn+1 + C32Tn—1Tn + -+ C3nT1T2 + C3n+122 + C3 n42

C4,1Tn—1Tn4+1 +C42Tn—2Tn + -+ +C4n—-17123 + C4,n$% +C4n+1Z3 + C4n42

Cn,1%22Zn+1 + Cn2%1%n + Cn3T2Tn—1+ -+ € n42ZnTni2 +C ntdTn+C ni6-
g 2 g ™ ™I

As elaborated in the previous chapter, for the purpose of finding all isolated zeros of
polynomial system P(z) in C™, rather than in (C*)™, the number of paths that need to
be traced in the polyhedral homotopy method is twice the mixed volume of the augmented
system of P(z). Therefore the major difference, in terms of the number of paths one needs
to trace, in employing the classical linear homotopy or the polyhedral homotopy for solving
P(z) = 0 in C" lies in the comparison of the mixed volume of the augmented system of
P(z) and its total degree. The following proposition shows that for a Katsura-n system

these two numbers are actually the same.
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Proposition 2.1.1. Mized volume of augmented Katsura-n system is equal to its total

degree 2™.

Proof. By Proposition 1.1.1, the mixed volume of an augmented polynomial system and
its total degree will be the same if the polynomial system has no zeros at infinity. We will
therefore prove the assertion of the proposition by showing there is no zeros at infinity for
the augmented Katsura-n system by induction on n.

First of all, when n = 1, the augmented Katsura-1 system is reduced to

C11T2 + c1271 + C13 2.11)

c21z% + 02217% + co3) + co94.

The zeros of this system at infinity are the zeros of its associated homogeneous polynomial

C11T2 + C12T1 + €13T0

6211‘% + 0221‘% + co3T120 + 624.’1,‘%
in P2 with zy = 0. However, solving system

c11z22 +c1271 =0

621.'1,‘% + C22l‘% =0

will result in z; =0 and z3 = 0. Hence, system (2.1.1) has no zero at infinity.

For n = 2, augmented Katsura-2 system becomes

€1173 + c1222 + 1371 +C14

\ CZIZg + C22:1:% + 6231:% + o471 + C25 (2.1.2)

| 312273 + 327172 + 3372 + €34
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and its associated homogeneous polynomial is

c11z3 + c1222 + €137 + €149

< c21z§ + C22:E% + 6231‘% + coqTy1Z0 + C25$(2)

\ €31T92x3 + c3271T9 + €33T2Z( + 034m3.

Hence, zeros at infinity of system (2.1.2) is the nonzero solutions of system

c11z3 +c1222 +c1371 =0

{ C21.'L‘§ + c22x% + 6233:% =0 (2.1.3)

c312273 + c327129 = 0.
\

If z3 =0, system (2.1.3) becomes

cior2 +c1371 =0

c22x% + 023:::% =0

c39z1T9 =0

and the only solution of which is z; =0 and z9 = 0.

When z3 # 0, let z3 =1 in system (2.1.3), we have

4
pp1(z) = c11 + c12z2 + 1371 =0

\ pp2(z) =co1 + 622:1:% + 0231% =0 (2.1.4)

k pp3(z) = c31Z + c3p7172 = 0.

It is clear that this systemn has no solutions because the isolated zeros of the first two
equations ppj(z) = 0 and ppy(z) = 0 are all in (C*)?2 and those generically chosen

coefficients c3; and c3p in pp3(z) will not subject to the nonzero constraint that pp3(z) =
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0 imposed.

So the proposition is true for n =1 and n = 2.

Now suppose the augmented Katsura-(k—1) system has no zeros at infinity. We assume
k is even. (The proof is the same for odd k.) Then the augmented Katsura-(k —1) system

takes the form

C11Tk +C12Tk—1 + "+ +Ck-1T2 + C1 kT] +C] k41

2 2 . 2 2
€2,1Tf +C22%)_; + + 0o k175 + Co pT] + C2 k4121 +C2 k42
C3,1Tk—1Tk + €32Tk—2Tk—1 + -+ +C3 k—1T1T2 + C3 kT2 + C3 k4]

C41Tk 2Tk + C42Tk 3Tk + -+ C4 k27173 + C4,k-1$% +C4 kT3 + Cq k+1

Ck 12Tk + Ck 2T1T—1 + Ck,3T2Tk—2 +--- 4+ Ck k+2Z

+Ckk 4Tp—1tcC
7 ’

k+6-
kT

(S E g

2.1.5)

This system has no zeros at infinity, so the system

€1,1Zk + €1 2Tk + - + €1 g_1T2 + C kT]
c2‘1:r% + 02,2:10,26_1 +--- 4+ cz‘k_lx% + c2,k:c%
C3,1Tk—1Zk + C32Tk 2Tk + *** + C3 k—1T1T2

{ (2.1.6)
C4,1T—2Tf + C4 2Tk _3Tf—1 + -+ C4 k27173 + C4,k—11‘§

Ck,1%2Tk + Ck 2T1Tk—1 + Ck,3T2Tf—2 + - + C kg2”
\

ISEl

has no nontrivial zeros. For n = k, the zeros at infinity of the augmented Katsura-k system
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C1,1%Tk+1 +C12Z + -+ + € T2 + €] k4171 + €] k42

2 oozl tegpad+ 24+ +
€2,1T) 1 +C22T) + C2,kTy T C2 k4127 + C2 k4271 +C2 k43
C3,1TkTk+1 T C3,2Tk—1Zf + -+ + C3 kT1T2 + C3 k4172 +C3 k42

C41Tk—1Tk41 +C42Tf—2Tk +++ +C4 k17123 + C4,k$% + C4 k4173 + C4 k42

2
Ck,1T3Tk+1 + Ck 2T2Tk + C 3T1Tf—1 + -+ +C_ 44Ty +C, k16Tk-11TC, k48
k, k7K k, S48

Ck+1,122Tf 4] + Ck412T1Zf + Ck41 3T2Tf—1 + -+

€, k+2TkTky2 +C - k+4Tk Y C, . k+6
n k1,555 g 5 kLA k+1,%55=
(2.1.7)
are nontrivial zeros of
4
C1,1Tk41 T C1 2T+ + C1,kT2 + €1 k+171
c2,1zz+l + c2’21:% +---+ 02,,5:1:% + c27k+1z%
C3,1TkTk4] +C3 2Tk 1Tk + -+ + C3 kT1T2
{ Ca1TE_1Tkp1 + Ca2Tk_9Tk + -+ C4 k12123 + C4 kT (2.1.8)

Ck+1,1T2Tk+1 + Ck4+1,2T1Tk + Cp41,3%2Tk—1 + - +C | k427
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For zj,q, = 0, the above system becomes

C1,2Tf + - + € kT2 + €1 k+171
2
c2,2x£ +---+ cz,kx% +Co k41T

€3,2Tk 1Tk + -+ +C3 kT1T2

Ck,2T2Tk + Ck3T1Th—1 + *+* + € k447
T

(S

Ck+1,2%1Tf + Ck41,372Tf—1 + -+ + Ck+l,£’%'—2-x§z&2"—2

{ C492T_oTf+ -+ C4k-17123 + C4’k$% (2.1.9)

and the first k polynomials of system (2.1.9) have the same form as the system in (2.1.6)

with randomly chosen coefficients, which has no nontrivial zeros. Consequently, system

(2.1.9) itself can not have nontrivial zeros, i.e., system (2.1.7) has no zeros at infinity when

Tg+1 =V

For zj,; #0,let 2 ,; =1 in system (2.1.8) and consider

pp1(z) = c1,1 +c122k + - + €1 kT2 + €1 k4121
_ 2., 2 2

pp2(z) = co,1 +Co Tk + -+ - + Co kTH + C k4127

pp3(z) = c3,1Tk + €3 2Tk 1Tk + +++ + C3 4 T1T2

{ ppa(z) = 41Tk + Ca2Tp_oTk + - + Cq —1T173 + Cq kT

PPi(T) = k123 + C 2T2Tk + Ck 3TITk—1 + * +C, k1a T
k

V]

PPk+1(T) = Ck41,1%2 + Ck412T1Tk + Ck413T2Tf—1 + -+ +

ck+1,k 2151‘&_5_2.

(2.1.10)
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First of all, no zeros z0 = (x?,xg, .. .,2'2) of the above system can have all :1:(2) = zg =

cee= zg = 0. Otherwise it would lead to a contradiction to pp;(z%) = 0 together with
pp2(z%) = 0. So, without loss of generality, we suppose :cg # 0. Now consider z0 an

isolated solution of k equations

ppl(.’rl,...‘:l:k) =0

pp2(z1, ..., Tk) =

ppk(xlw . -vzk) =0

in k variables whose coefficients are randomly chosen but then fixed (and therefore all the
solutions are isolated). However, when we substitute (r?,zg, . .,12) into ppr41(z) =0,
it imposes a nonzero constraint for the coefficients ¢, 1 1,..., Crr1 k42 of ppr41(z) since
zg # 0. This can’t occur since those coefficients are arbitrarily chosen, they do not subject
to any particular constraints. Therefore system (2.1.10) has no zeros, i.e., system (2.1.7)

has no zeros at infinity when z,,; # 0. Thus the assertion of the proposition is valid for

n = k. This completes the proof. a

2.2 Numerical results

As a comparison, we solve the Katsura-n system numerically by both the classical linear
homotopy and the polyhedral homotopy, and results are listed in Table 2.1. All the com-
putations here as well as in the following chapters were carried out on a Dell PC with a
Pentium 4 CPU of 2.2GHz, 1GB of memory, and results presented are restricted to the

systems that can be solved within 12 hours of CPU time. Recall that we use the typical
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start system Q(z) = (q)(z),...,qn(z)) where

d
q1(z) = a1zy! — by,

Qn(m) = anmg‘n - bn

with randomly chosen complex numbers ajy,...,an,b;,..., by in the classical linear homo-

topy

H(z,t)=(1-t)Q(z) + tP(z) = 0.

The speed-up ratio is the ratio of the CPU time of solving the system by the polyhedral
homotopy to that by the classical linear homotopy with the typical start system. Appar-
ently the table shows the classical linear homotopy works much better for finding all the
solutions of Katsura-n systems [21]. For instance, when n = 16, the polyhedral homotopy
takes more than 12 hours to find all isolated zeros of the system whereas the classical linear

homotopy only takes 16 minutes and 25 seconds.
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CPU time
System Total Degree Speed-up ratio
Linear Polyhedral

Katsura-11 2,048 11s 23s 2.09
Katsura-12 4,096 26s 1m22s 3.15
Katsura-13 8,192 1mO06s 5m32s 5.03
Katsura-14 16,384 2m38s 22ml4s 8.44
Katsura-15 32,768 7m03s 1h50m26s 15.66
Katsura-16 65,536 16m25s - -
Katsura-17 131,072 40m48s - -
Katsura-18 262,144 1h35m47s - -
Katsura-19 524,288 3h50m48s - -
Katsura-20 1,048,576 8h58m00s - -

Table 2.1. Comparison of the classical linear homotopy with the typical start system and
the polyhedral homotopy in solving Katsura-n systems.
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CHAPTER 3

Reimer-n system

Reimer-n system [35] is a polynomial system whose mixed volume is equal to its total

degree.

3.1 Reimer-n system

The general form of Reimer-n system is

(
222 — 223 + .- + (=1)"H1222 - 1
223 - 223 + -+ (-1)"*H1223 -1
$ (3.1.1)

2xn+l _ 2:1:"+1 4ot (=1 n+12zn+1 -1
L 1 2 n

Since polynomials in the system all have constant term, its augmented system will
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consist of the same monomials with generically chosen coefficients:

)
c112? + 1223 + -+ + C1nTE + Cing1

0211‘:1‘ + 6221‘3 + -+ ConTh + Cont

n+1 n+1

| cn12]7 + cn22y + o F ezt 4 ey

(3.1.2)

Proposition 3.1.1. For Reimer-n system, mized volume = total degree = 2 x 3 x --- X

(n+1)=(n+1).

Proof. While exactly the same argument that was used in the proof of Proposition 2.1.1

can also be applied here, we shall provide a different proof for this proposition due to the

special structure of the system.

For the Reimer-n system given in (3.1.1), the supports of polynomials in the system

are

S1 =1{(2,0,...,0),(0,2,...,0),...,(0,0,...,2)} = {2e1, 2es,

Sy ={(3,0,...,0),(0,3,...,0),...,(0,0,...,3)} = {3e1, 3ea,

Sp={(n+1,0,...,0),(0,n+1,...,0),...,(0,0,...,n + 1)}

= {(n+ ey, (n+ 1)eg,...,(n+ 1)en},

.oy 2en}

...y 3en}

where for 1 =1,...,n,¢; =(0,...,0,1,0,...,0) is the ith unit vector with its ith com-

ponent 1 and all other components zero.

Recall that for mixed cell {a; — all, ceyQp — a;} induced by the lifted support § =

(81,...,5,) with inner normal & = (a,1) € R**!, we have {al,all} C Sl,...,{an,a:,} C
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S, and by Proposition 1.2.3,

al—al

Mixed volume of the system = Z det
e

!
an—an

Now, for each i =1,...,n, {a,-,a:} Cc S;={(i+1)ey,...,(t+1)en} implies a; — a: =

(i+1)(e - e%) where e} # eg and they are both in {ey, ..

.,en}. Let
/
a; —a, 2(6} - e%)
A= =
an - a, (n+1)(e} — €})
Then
el e
det A=2x-.-x (n+1)det =2x---x(n+1)detB
el —ep
where
1
€1 ¢
B =
el — €3

is a matrix with all arrays being either —1, 0, or 1. When det B # 0, then |det B| > 1 and

consequently |det A| > 2 x --- x (n+1). Thus the mixed volume of the Reimer-n system,

> o ldet A|, is greater than or equal to 2 x - x (n +1).

On the other hand, the mixed volume of any system is less than or equal to its total
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degree. Here the total degree of the Reimer-n systemis 2x---x (n+1). It follows that the

mixed volume of the Reimer-n system agrees with its total degree 2x---x(n+1) = (n+1)!.

O

Corollary 3.1.1. For the Reimer-n system, there is one and only one mized cell regardless

of what sort of liftings being applied to the support (Sy,...,Sn).

! ! /
Proof. For mixed cell {a; —a;,...,an — ap} of Reimer-n system, where {aj,a;} C

Sy, {an,a;} C Sy, by Proposition 1.2.3,

!/
al - al
Mixed volume of Reimer-n system = Z det : = (n+ 1)L
a
'
an — an
/ /
However, from the proof in Proposition 3.1.1, for any mixed cell {a; —a,,...,an —a,}
!
ay — al
det : >(n+ 1)\
!
an — an
/ /
Therefore, there can be at most one mixed cell {a; —a;,...,an — a,} with
'
al - al
det : =(n+1).

/
an — an
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3.2 Numerical results

Listed in Table 3.1 is the numerical result for solving Reimer-n system by the classical

linear homotopy with the typical start system Q(z) = (¢1(z),...,gn(z)) where

d
q1(z) = ajzy! — by,

Qn(z) = anrgn - by

with randomly chosen complex numbers aj,...,an,b1,...,bn and the polyhedral homo-
topy continuation method [21]. Apparently the speed-ups of the classical linear homotopy
with the typical start system over the polyhedral homotopy in solving these systems shown
in the table are not as dramatic as Table 2.1 shows for Katsura-n systems. A major reason
is, as indicated in Corollary 3.1.1, finding only one mixed cell may not be as costly when

the system is solved by the polyhedral homotopy method.
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CPU time
System | Total Degree Speed-up ratio
Linear Polyhedral
Reimer-4 120 0.08s 0.1s 1.25
Reimer-5 720 0.7s 0.99s 141
Reimer-6 5,040 9.2s 12.8s 1.39
Reimer-7 40,320 1mb58s 2m49s 1.43
Reimer-8 362,880 30m43s 36m43s 1.20
Reimer-9 3,628,800 7h52m40s 8h47m42s 1.12

Table 3.1. Comparison of the classical linear homotopy with the typical start system and
the polyhedral homotopy in solving Reimer-n systems.
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CHAPTER 4

Noon-n system

4.1 Noon-n system

In this Chapter, we discuss the Noon-n system [31],

¢

zl(x%+x§+---+m%—l.1)+l

zo(z?+23+- 423 -11)+1

In(:l:% +.’L‘% + e +1:,'2.l_1 - 1.1) + 1.
\

Since polynomials in the system all have constant terms, generically choosing its coef-

ficients yields the augmented system:

)
zl(clzz% + c13$§ +--+ cln:z:?1 +cy0) + dy

xg(czla:f + c23x§ + -+ C2n:L‘% + cg0) + do (4.11)

| zn(cn1z} +cnazg + -+ o125 ) + cn) + dn.

Before relating total degree of the system to its mixed volume, we first recall certain
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properties concerning the multiplicity of an isolated zero of a polynomial system. Simply
denoting the polynomial ring C[zj,...,zn] by P" and treating it as a vector space, we

use (P™)* to represent its dual space, consisting of all the linear functionals on P™.

Definition 4.1.1. For a given polynomial ideal T C P™ with quotient ring P"/Z, the
dual space D[Z] of the ideal T is the set of linear functionals in the dual space (P™/I)*

with their domain extended to P™. Namely, for | € (P"*/I)* and p € P"

l(p) :=1l(r) where per+1T.

An immediate consequence of this definition is,

Proposition 4.1.1. For an ideal T C P™ and | € (P™)*,

1eDI«<Il(p)=0 Vpel.

Definition 4.1.2. A subset D of the dual space (P™)* is closed iff

leD= l-qeD VqeP"

where linear functional |- q € (P™)* is defined by

(l-@p:=1Ugp) for peP"

Definition 4.1.3. For j = (j1,...,jn) € N} with |j| :== Y, ja, and for z € C", the
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differential functional 0;(z] € (P™)* with evaluation at z is defined by

1 il

9;[2(p) := (61{1...61-1[‘ p)(z) VpeP™

]1'..]71'

An ideal 7 C P" is called 0-dimensional if all zeros of Z are isolated.

Definition 4.1.4. A zero zy of a 0-dimensional ideal T C P™ is an m-fold zero of T
if there ezists a closed set of m, but no more than m, linearly independent differentiation

functionals dl =37, B3;;0;(z] with evaluation at zy in the dual space D[I] .

Definition 4.1.5. For o = 1,...,n the anti-differentiation operators sy is defined by

Oi_e, 2] tfjo>0
Sgaj[l] — J eo[] o

0 ifjo =0

where ey is the oth unit vector with its oth component 1 and all other components zero

and
SU(Z vj0;(20]) := Z v 8a0j[20)-
j j

Theorem 4.1.1. [84] In (P™)*, a subset D(2g) of differential functionals with evaluation

at 2y is closed iff
dl € D(z9) = sqdl € D(29) for all o =1,...,n.

We now establish the relation between the mixed volume and the total degree of the

Noon-n system.
Proposition 4.1.2. For the Noon-n system,

Mized volume = Total degree —2n = 3™ — 2n.
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Proof. From Proposition 1.1.1, the above equality holds if the system in (4.1.1) has 2n

zeros at infinity. Consider its associated homogeneous polynomial system

(
xl(clgz% + 6131% 4+ 4+ cln:l:,zl + cng) + dlzg

- .’62(621x% + 6231:% +---+ 02,1:1:?l + 0201'(2)) + dgl‘g
P(zg,z1,...,Zn) = (4.1.2)

| n(em12d + cnazd + o+ cnn17; ) + cn03f) + dnzj,

The zeros at infinity of system (4.1.1) are the nontrivial zeros of system (4.1.2) in P* with

zg = 0, i.e., nontrivial zeros of the system

(
xl(clzx% + 61327% +--- 4 clnx?,)

$2(C21z% + C231‘§ +---+ CQnZ'%)

| Zn(om12d +cnagd + -+ + Cnn12,_)-

It is clear that (1,0,...,0),(0,1,0,...,0),...,(0,...,0,1) are n isolated zeros of this

system. For the multiplicity of each of those solutions, we add one more polynomial
C1T] +C2Z2 + -+ + CnTn + Cpyl

to system (4.1.2), where ¢;,72 = 1,...,n+ 1 are randomly chosen complex numbers, re-
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sulting in a system of n + 1 equations in n + 1 variables

ﬁl(IO:xl,- . ~a1'n) =0

P(zg,z1,...,Zn) = {
Pn(20,21,...,2Zn) =0

\ Pn+1(zo,21,-..,20) =0

where

P1(z0, 71, .., xn) = T1(c1223 + 1323 + - - + 1022 + c1023) + dy 7}

(4.1.3)
pn(Z0,21,...,Tn) = l'n(cnlz% + cn2$% +--+ Cnn—lx}?;_l + Cnoxg) + dnx8

Pn+1(20,Z1,...,Zn) = C1Z] + 2To + -+ + CnTn + Cp41-

For g = 0, the solutions are z; = (O,—C"——c——jl,O,...,O), 29 = (0,0,——6%:2'—1,0,...,0),
..y zn = (0,0,...,0, ——%nﬂ) In projective space P", these solutions are in the same
equivalence class as (0,1,0,...,0),(0,0,1,0,...,0),...,(0,0,...,0,1).
Let T =< P(zg,z1,...,%n) > be the ideal in P**1 = Clxzg, z1,...,2n] generated by
the polynomials in (4.1.3). At solution z; = (0,...,0,——6%,0,...,0) for i =1,...,n,

we assert that the following two linearly independent differentiation functionals

dlj = 8oo...0l2)(p) = p(2:)

and

0
dif = B10..0l)(p) = 5.-p()

constitute a closed subset of the dual space D[Z] with maximal number of differential
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functionals with evaluation at z;. Obviously P(z;) = 0, so by Proposition 4.1.1, dl! € DIT).

Further, di? is also in D[Z] because

a%)ﬁj(zi) = (2¢jozj20 + 3d;z5)(%) =0 for j=1,...,n
and
5‘2—01371+1(Zi) =0.
Moreover,

2
oz

QO

(2ci0%; + 6d;z0)(25) = — 2t £ g,

9o0...0(2] (Bi) = pi(z) =

DO =
N =

QON|

So, by Proposition 4.1.1, 399, 0(2;) € D[Z]. On the other hand, for j =1,...,n,
- 0 .
00...010..0(%] (Pn+1) = 53— Pr+1(z) = ¢; #0,
J

0
hence, BT][z’] ¢ D[Z] for all j =1,...,n. Consequently, by Theorem 4.1.1, dl} and dl;-"
are the only two linearly independent differential functionals with evaluation at z; that
form a closed subset of D[Z]. Therefore, for each ¢ = 1,...,n, the multiplicity of 2; is

two. All together, they account for 2n solutions at infinity for the system in (4.1.1). O

4.2 A special start system for Noon-n system

As Proposition 4.1.2 indicates, for the Noon-n system, the difference between the total
degree and its mixed volume is 2n, which, compared with its total degree 3", becomes very
slim even when n is of moderate size. Such slim difference will certainly make it difficult to

enjoy the benefits that are commonly provided by using the polyhedral homotopy method
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in solving them. Thus, the classical linear homotopy
H(z,t)=(1-t)Q(z)+tP(z) =0 (4.2.4)

with the typical start system Q(z) = (q1(z),...,qn(z)) where

d
q1(z) = a1z;! — by,

gn(z) = anzg" — by

with randomly chosen complex numbers ay,...,an,b;,...,b, appears to be the proper
choice for solving those systems. On the other hand, beyond the reach of the polyhedral
homotopy method, the classical linear homotopy can take a huge advantage on the strong
symmetry structure existed in the Noon-n system.

In the first place, the multi-homogeneous structure [36] of the system allows the choice

of the start system

(
alzi+a)(zo+z3+--+zn+08)(xy+ x5+ -+ +7)

0) = | co(re+a)(zy+z3+ -+ +0)(T1+ 23+ -+ +7) (425)

\ cn(Zn+a)(zy+ 2+ 21+ B)(T1+ 22+ -+ Tpo1 +7)

where cj, c2, ..., ¢, @, B, and v are randomly chosen complex numbers. Clearly, with
this choice, the symmetry in the Noon-n system is retained and with the invariance of this
symmetry in the homotopy, much fewer paths need to be traced for generating the whole

solution set.

40



For instance, for Noon-3 system

P

P(z) = { zQ(rf-}-x% -11)+1

the start system for the linear homotopy in (4.2.4) is

a:l(x% + :1:% -11)+1

z;;(z:% + x% -11)+1
\

ci(z1 + a)(z2 + 23+ B)(z2 + T3+ 7)

c2(zg + a)(z1 + 23+ B)(z1 + 3 +7)

| c3(z3 + a)(ry + z2 + B)(z1 + 2 + 7).

To attain the whole solution set of Q(z) = 0, we only need to permute the variables

z1, T2, 3 on a subset of solutions of Q(z) = 0. For example, the solutions of the following

three linear subsystems

T1+a=0

{ z1+z3+8=0

k1:1+1'2+ﬂ=0

(

z9+23+0=0

S z9o+a=0

1+ 29+ 6=0
\

]

(
x9+23+06=0

T1+23+8=0

3+ a=0

of Q(z) =0 are z; = (—a,a—-p,a-0), z3 = (a=0, —a,a—0), and 23 = (a—F,a-03, —a)

respectively. Obviously, solution 23 may be attained by permuting z; and z3 in 2; or

permuting z9 and z3 in 29. In fact, any one of 21, 29, and 23 can generate all the others

by permutations. This property is actually retained on the homotopy paths initiated from

those three solutions of @(z) = 0. So we may just follow one of these homotopy paths to

reach a solution of P(z) = 0 and generate the other two solutions from this solution by

permutations.
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It is clear that the above three linear subsystems of Q(z) = 0 share one thing in
common: they all have one a and two (s as constant terms. Let us represent this set of
linear subsystems of Q(z) = 0 by (e, 26). In general, denoting (mja, mgf, m3y) for
the set of linear subsystems of Q(z) with m; as, mg (s, and mg3 <s as constants terms
where mj +mg +mg = 3, it is easy to see that solution of any one linear subsystem in the
set can generate solutions of all other linear subsystems in the set by proper permutations.
Among all the possible divisions of the linear subsystems of Q(z) = 0 in this manner,
there are two sets of singular linear subsystems, hence no solutions for such systems, they
are (2a, §) and (2q, 7). The rest of the 8 groups and the number of linear subsystems in

the same group are listed in Table 4.1.

constant terms || number of solutions
(3a) = (a, @, @) 1
(38) = (B, B, B) 1
GN=mr7 1

(a, 26) = (o, B, B) 3

(, 27) = (e, 1, 7) 3

(26,7) = (8, B,7) 3

(8,27) = (B, 7, 7) 3

(2, B,7) = (& B, 7) 6

Table 4.1. Number of linear subsystems for different grouping of constant terms.

Exhibited in Table 4.1, there are, in total, 21 solutions of @Q(z) = 0, and all those
solutions can be generated by just solving one linear subsystem from each of those 8 groups.

Note that 21 = 33 — 2 x 3, which agrees with the mixed volume of Noon-3 system given
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in Proposition 4.1.2.

For the start system Q(z) = (q1(z),...,gn(z)) in (4.2.5) where

a@E)=clz1+a)(ze+z3+---+zn+P)(z2+23+ -+ Tn +7)

@) =clzg+a)(zy+z3+ - +zp+B)(z1 + 23+ -+ Tn +7)

gn(z) =cn(znta)(zy+ 22+ + 21 +0)(T1 + 22+ -+ Tp_1 +7),

let (I1(z),...,ln(z)) = 0 be linear subsystems of Q(z) = 0, where, for each i =1,...,n,
l;(z) is a linear factor of g¢;(z). We divide those linear subsystems as follows: let
(mja, maB, m37y) be the set of those linear subsystems in which m;, my and mg3 of the
equations in (l1(z),...,ls(z)) = 0 have a, B and 7 as constant terms respectively. Of

I_Cm2

course, mj+mgo+mgz = n. It is clear that for fixed m;, mg and mg3 there are cn n—m,

linear subsystems of Q(z) =0 in (mja, myfB, m3y) and except for m; = n — 1, all those
linear subsystems are nonsingular.

To count the total number of possible different combinations of m;, my and mj3
for which (mja, mgB, m3y) provide nonsingular subsystems, note that for fixed m; €
{0,1,...,n — 2,n}, there are n + 1 — m; choices for mg, and when m; and my are
determined, m3g = n — (m; + my). Therefore, in total, there are

n? +3n—2

m+D)+n+(n-1)+---+3+1= 3

different such combinations.

One of the solutions for linear subsystems (mja, mgf, m3y) where m; #n—1 is

m] m2 m3

(ag,...,aq,a9,...,09,Q3,...,03) (4.2.6)
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for certain aj, ag, and ag. This solution comes from the subsystem whose first m; equa-
tions have constant term «, followed by the next mgy equations having constant term [
and all the remaining equations having constant term 7. We may use this solution to
generate the solution set of all linear subsystems in (mja, me3, m3y) by permutations.

For simplicity in the description, we shall replace a;, ap and a3 by 1, 2, and 3 respec-
m

m
p—"\
tively, so the solution in (4.2. 6) becomes (1,. ,2,3 3). We generate all the
permutations of (1,...,1, 2 2,3,...,3) by the followmg steps
m2+m3

Step 1: Let sq; =(1,...,1,2,...,2) and sg2 = (2,...,2,3,...,3).

Step 2: For each sq; and sgg, search from left for the first smaller-larger pair and
interchange them. If an interchange is made, check if there are some smaller numbers
to the left of the interchange. If not, save the resulting permutation. Otherwise, move
all the smaller numbers to the left of the interchange to the most left end and save the
permutation. For the currently saved permutation, repeat the procedure until no smaller-
larger pairs exist. From this step, Ch'! permutations will be produced from sq; and
C, "2 my permutations from sgo.

Step 3: For each permutation produced from sgq;, replace all the numbers labeled 2
by the numbers in the permutations from sg; and save all the possible permutations.
For instance, if one of the permutations generated from sq; is (1,2,1,2) and all the
permutations produced by sgy are (2,3) and (3,2), then the resulting permutations are
(1,2,1,3) and (1,3,1,2). Namely we replace 2,2 in (1,2,1,2) by (2,3) and (3,2).

m my m3
e,
In total, there will be Cn C my permutations for (1,...,1,2,...,2,3,...,3). For
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instance, when n =4, let m; = 2, mg =1, m3 = 1 for the start system

4

q(z) =ci(z1 +a)(z2+z3 + 24+ F)(z2 + 23+ T4 +7)
a@2(z) = co(z2 + a)(z1 + 23 + 74 + B)(z1 + 23 + 24 +7)

g3(z) =c3(zz + a)(z1 + 22 + 24+ B)(z1 + 22 + T4+ 7)

| 4(2) = ca(za + @) (1 + 22 + 23+ B) (21 + 22 + 23 +7),

there are Cp'! -C,T_zml = C2 - C} = 12 linear subsystems (I1(z),...,ln(z)) = O of
Q(z) =0 in which (l;(z),...,ln(z)) =0 have 2 @ and 1 8 and 1 v as constant terms.
One of them is

hz)=z1+a=0

la(z)=2z90+a=0
Li(z) = ¢

l3(z)=z1+z0+24+8=0

l(z)=z1+124+23+7=0

\

and the solution for Li(z) = 0 is (-, —¢, 2a — v, 2a — 3). For simplicity, write the
solution (1,1,2,3). For the permutations of (1,1,2,3), we follow the above steps. Let
sq1 = (1,1,2,2) and sqp = (2,3). All the permutations generated from sq; = (1,1,2,2)
by following Step 2 are (1,2,1,2), (2,1,1,2), (1,2,2,1), (2,1,2,1) and (2,2,1,1), and
the permutation from sga = (2,3) is (3,2). Then by Step 3, replace all the number
2s in all the permutations generated from sq; by the numbers in each of the permuta-
tions produced by sgs and reach all the permutations for (1,1,2,3). They are (1,1,3,2),
(1,2,1,3), (1,3,1,2), (2,1,1,3), (3,1,1,2), (1,2,3,1), (1,3,2,1), (2,1,3,1), (3,1,2,1),
(2,3,1,1) and (3,2,1,1). By replacing 1, 2 and 3 back to —a, 2a — v, and 2a — 3 re-
spectively, solutions (—a, —a, 2a — 3, 2a — v), (-a, 2a — v, —a, 2a — 3), (—-a, 2a —

B, —a, 2a —7),(2a — v, —a, —a, 2a - ), (2a - 8,—a, —a, 2a —v),(-a, 2a — v, 20 —
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ﬁa _a)) (_a) 2a _ﬁr 20 — 7Y, _a):(2a -7 —Q, 20 — .H) _a)1( 2a — ﬂ) —q, 20 it b _a)v

(2a-7, 2a-0, —a, —a, ), and (2a-0, 2a—7~, —a, —a, ) are attained. They are exactly

the solutions of the following remaining 11 linear subsystems in (2a,18,17):

Lg(z)

<

hz)=z1+«a
la(z) =19+
13(3:) =r1+29+2T4+Yy

(r) =1 +29+ 23+ 0

Lhz)=z1+«
la(z)=z1+23+24 +7
13(2:) =z3+a

ly(z) =21 + 29 + 23+

hiz)=z9+z3+24+7
la(z) =29 +
I3(r) =z3+

ly(z) =1+ 29+ 23+

hiz)=1+a
lz(:L‘)=:t:1+:L‘3+I4+‘Y
I3(z) =z1+zo+ 74+

ly(z) =24+

46

L3(z) = {

Ls(z)

Ly(z) =

Lz)=21+«a
12(2) =z1+4+z3+zx4+0
I3(z) =3+«

(z)=z1+ 29+ 23 +7

hiz)=z0+23+24+0
la(z) =29+
l3(z) =23+«

ly(z) =z1 + 29+ 23+ 7

Lhz)=z1+4+«
la(z) =z1+23+ 714+ 0
Bz)=z1+20+z4+7

z) =24+

Lz)=z9g+z3+ 24+
lb(z) =22+«
I3(z)=z1+z20+24+7

l4(z) =4 + @



( 4
h(z)=z2+z3+z4+7 h(z)=z2+z3+24+0
Ia(z) =29+ la(z)=z1+z3+24+7
Lo(z) = < Lyi(z) =
3(z) =z1+z2+z4 + 8 I3(z)=z3+a
l(z) =24+ ly(z) =24+
\ \

and

hz) =z +z3+T4+7

b(r)=z1+z3+144+0
Lya(z) = <

l3(z) =z3+a

ly(z) = z4 + .
\
Therefore, tracing one of the homotopy paths of the classical linear homotopy in (4.2.4)

emanated from one of the linear subsystems of Q(z) =0 in (mja, mgB, m3y) is sufficient

to generate all the corresponding solutions of P(z) =0 in this group.

4.3 Numerical results

Numerical results on solving Noon-n systems by different homotopies are listed in Table
4.2. Recall that the difference between the total degree and the mixed volume of Noon-n

systems is 2n. Total degree, 3", paths need to be traced when the typical start system

Q(z) = (q1(z),-..,qn(z)) where

d
q(z) = ayz;! - by,

gn(z) = anzin — b,
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with randomly chosen complex numbers ay,...,an,by1,...,by is used in the classical linear

homotopy

H(z,t)=(1-t)Q(z) + tP(z) = 0.

And twice of the mixed volume, 2 x (3" —2n), paths need to be traced when the polyhedral
homotopy is applied. The table clearly shows that the classical linear homotopy with the
typical start system works better than polyhedral homotopy because much more paths

need to be followed as n gets larger for the polyhedral homotopy method. Moreover,

n2+3n—-2
2

traced when a proper start system as in (4.2.5) is assigned for the classical linear homotopy.

due to the symmetry of Noon-n systems, only homotopy paths need to be

This number is shown in the 3rd column on the table, it is much smaller than the mixed

volume. Apparently, solving Noon-n systems by choosing start system Q(z) in (4.2.5)

leads in speed by a huge margin in finding all the isolated zeros of Noon-n systems.
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CPU time

System || Mixed Volume | # of paths

Polyhedral |Typical Q(z)|Special Q(z)
noon-10 59,029 64 5m1l2s 1m27s 1.1s
noon-11 177,125 76 23m27s 5m32s 1.4s
noon-12 531,417 89 1h28m00s 27m29s 2.2s
noon-13 1,594,297 103 7h02m10s 3h7mi10s 3.1s
noon-19 || 1,162,261,429 208 - - 18.5s
noon-29 || 6.8630377E13 463 - - 2m10s
noon-39 || 4.0525551E18 818 - - 16m48s
noon-49 || 2.3929933E23 1,273 - - 29mb58s
noon-59 || 1.4130386E28 1,828 - - 1h11m39s
noon-69 || 8.3438517E32 2,483 - - 2h16mb9s
noon-79 || 4.9269609E37 3,238 - - 4h31mO03s
noon-89 | 2.9093212E42 4,093 - - 10h17m23s

Table 4.2. Comparison of the polyhedral homotopy and the classical linear homotopy with

different start systems in solving Noon-n systems.
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CHAPTER 5

Generalized eigenvalue problem

By and large, polynomial system P(z) = (p;(z),...,pn(z)) whose mixed volume is much
less than its total degree should be solved by the polyhedral homotopy method. However,
when certain m-homogeneous structure of the system is apparent, we may still choose
appropriate start systems @Q(z) = 0 in the classical linear homotopy so that the number
of homotopy paths that need to be traced matches the mixed volume of the system. In
such situations, the polyhedral homotopy method can no longer be beneficial in reducing

wasteful computations.

5.1 Generalized eigenvalue problem

Consider the generalized eigenvalue problem

Az = ABz
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where

aj;] a2 ... Qain

a2y a2 ... ap
A=

anl Qap2 ann

and ) _

bi1 b2 bin

bo1 b2 bon
B=

bnl bn2 . e bnn

are n xn matrices. This problem is actually an n polynomial equations in n+ 1 variables

A Zy,...,Tn:

.
/\(bn:l)l +--- 4+ b]nzn) - (au.’l)l + -4 alnzn) =0,

{ A(bnlxl + -+ bnnz'n,) - (an]_zl + -+ afnnxn) = 0

We augment the system with a linear equation

11+ - +enTn +cpy1 =0
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where cy,...,ch4+1 are randomly chosen complex numbers, yielding a polynomial system

of n+ 1 equations in n + 1 variables

¢

Ab11z1 + -+ + bipzn) — (@171 + -+ + a1Tn)

{ ' (5.1.1)
Abpiz1 + -+ + bpnzn) — (an1T1 + -+ + GnnTn)

[ 171 +-+CnTn + Cuya-
Proposition 5.1.1. The mized volume of system (5.1.1) is n.
To prove this proposition, we need to introduce the following fundamental lemmas.

Lemma 5.1.1. If 29, 21,...,2n € R" are affinely independent, i.e., z1—zq9,20—20,...,2n—
29 are linearly independent, then the volume of the conver hull of those points, denoted by
Vol (conv(zg, 21, - ., 2n)), is

21 — 20

1 22

Yy
Lemma 5.1.2. For a polynomial system P(z) = (p1(z),...,pn(z)), let Sy,...,Sn be the

support of p1(z),...,pn(z) respectively. If Sy =Sg =-.- =8, =35, then

M(S,...,S) = n!Vol,(conv(S)).

Proof. The mixed volume of P(z) is the coefficient of the term A; x --- x Ay in the

homogeneous polynomial Vol,(Ajconv(S)) +-- -+ Apconv(Sy)) of degree n in Aq,..., An.
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Since S] =Sy =---=8, =5, we have

Volp(A1conv(S)) + - - - + Apconv(Sy))
=Voln((A1 + - - - + An)conv(S))
=(A1+ -+ Ap)* Vol (conv(S))

=n! Vol (conv(S))A; X -+ x Ap + other terms.

Therefore,

M(S,...,S) = n!Voly(conv(S)).

a
Proof of the proposition. Consider the system
( -— -—
A(b11z1 + -+ - + b1pzn) — (81121 + -+ + @1nTn) + 81n41
ﬁ ' (5.1.2)
A(bp1Ty + -+ + bpna) — (@121 + - + EanZn) + Annsl
\ Abnt1121 + - + buy1nZa) + €121 + - + CnZn + Coyl
where a;;, l_)j,-, i=1,...,n,7=1,...,n+ 1 are randomly chosen complex numbers. The

supports of all the polynomials of this system are the same. Taking n = 2 for instance,

the above system becomes

4

A(b11x1 + bioz2) — (@1121 + @1222) + @13

A

A(ba121 + boozo) — (G217 + dgoxa) + dp3 (5.1.3)

)\(531.'21 + 1-332:172) + 11 + ez + 3
\

with variables )\, r;, and z9. We list the points in the support in descending lexicographic
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" 24(11 1)0)

Figure 5.1. The convex hull of S for n = 3.

order, that is 21 >, 2o for 2g, 21 € Zgo if the left-most nonzero entry of the vector z; —
2z is positive. Then S = S; = S = S3 = {(0,0,0),(0,0,1),(0,1,0),(1,0,1),(1,1,0)} =
{z0, 21, 22, 23, 24}. The graph of the convex hull of S is shown in Figure 5.1.

From Lemma 5.1.2, the mixed volume of system (5.1.3) is M(S,S,S) =
3! Volg(conv(S)). To compute the volume of the convex hull of S, we divide convs(S)
into two simplices: Q) = conv{zg, 21, 22, 23}, and Q2 = conv{zg, 22, 23,24}. Graphically

it is clear from Figure 5.1,

Vols(conv(S)) = Vol3(Q1) + Vol3(Q2).

For a proof of this equality, first note that ); and @9 have three points 2p, 29, 23 in

common and conv{z, 22, 23} is a face for each. A normal of the face is v = (1,0, —1) since

i ] k i J k
-2 |=] 010 |=1+0j+(-1k
23— 2 1 01
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Apparently, 2; and z4 lie on different sides of the face because

(21,v) % (z4,v) =((0,0,1),(1,0,-1)) x ((1,1,0),(1,0,-1))

=—-1x1=-1<0.

Therefore, Q; () Q2 = @ and conv(S) = Q; |JQ2, it follows that

Vols(conv(S)) = Vol3(Q1) + Vol3(Q2).

On the other hand, zq, 21, 29, 23 are affinely independent. By Lemma 5.1.1

21— 2 0 01
1 1 1
Vols@) =gi|| -2 [|=g|| 0 10 fl=gp
23— 29 1 01
22— 2z 010
1 1 1
Vol3(Q2) = 31| 8- =3 1 01 =3
24— 2 110
thus,
2
Vols(conv(S)) = 3
And
M(5,5,5) = 3 Volg(conv(8)) =3 x = =2
For the general system in (5.1.2), the variables are A,z1,z9,...,z,. Listing the points
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in the support in descending lexicographic order yields

§S=51=5==5+

= {(0)03"'10)aen+l7en,' -+1€2,€1 +en+lvel +én,..

= {29,21,22,---, 220}

where 29 = (0,0,...,0), and

€n+2—i for i=1,...,n,

61+€2(n+1)_i for z=n+1,,2n

Similarly, conv(S) can be divided into n simplicies:

Q1 = conv{zg, 21,...,2n+1}

Q2 = conv{zg, 22, ..., 2p+2}

Qn = conv{zg, zn, ..., 221}

These simplicies can intersect only at their faces and for each i =1, ...
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( Zi — 20

1 Zi+1 — 20 1 Zi+1
Voln11(Q:) CES] . ~n+ 1)

\ Zi+n =20 ) \ Zi+n ]

€n4+2—i
€2
1 €2 1
“(n+1)! T (n+1)! €n+1
€1 +eén4tl
€n+3—i

“mrl|| m+ 1)

€n+1

Hence,

1 _ n
T D) m+DV

Vol,,;1(conv(S)) =n

and the mixed volume of system (5.1.2) is

M(S,S,...,8) = (n+ 1)! Volpy1(conv(S)) = (n + 1)! x G :

Now, support S = (S,...,5,) of system (5.1.1) is a subset of the support S = (S, ..

of system (5.1.2), that is, S; C S for all i =1,...,n. Thus
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On the other hand, consider the system

Az - ABzx =0
(5.1.4)

Ty+z9+ -+, —n—-1=0

where
i . . . . .
211 1 100 --- 0 211 1
121 1 020 -0 121 1
A=111 2 1|00 3 0(x[11 2 1
111 2 000 n (111 2

and B = I, the n x n identity matrix. For these specific matrices A and B, the ze-
ros of system (5.1.4) are (A, z1, z9,...,2zn) = (1,2,1,1,...,1), (2,1,2,1,...,1), ...,
(n,1,1,1,...,2), that is, for i« = 1,...,n, the first component of the ith zero is i, the
(¢+1)th component is 2 and all the others are 1. So the number of isolated zeros of system

(5.1.4) in (C*)" is n, and therefore

M(Sl,...,gn)zn.

So,
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5.2 A special start system for generalized eigenvalue

problem

The total degree of system (5.1.1) is 2", but the system has at most n isolated zeros. So
the system is deficient. If the classical linear homotopy is used to solve the problem, at
least 2™ — n paths will be extraneous, representing huge wasteful computations. If the
polyhedral homotopy is applied, 2n paths need to be followed. But when n becomes
larger, finding all the mixed cells requires a big amount of computations . To alleviate
this problem, Li et al. [17] suggested the random product homotopy and proposed a more

efficient choice for the start system Q(z) = 0:

q1(z) = (A +c11)(z1 +c12)
g2(z) = (A + c21)(x2 + c22)

Qz) = 4 : (5.2.5)

gn(z) = (A + cn1)(zn + cn2)

Gn+1(z) = c1z1 + - + caZTn + Cpy1

where ¢;;’s i =1,...,n,7=1,2 and ¢, k=1,...,n+1 are randomly chosen complex
numbers. It is clear that Q(z) = 0 has exactly n isolated solutions. It is proved in [17]

that for this choice of Q(z) = 0, properties 0-2 hold for the linear homotopy

H(z,t) = (1 - t)Q(z) + tP(z) = 0.

Thus all the isolated solutions for the generalized eigenvalue problem can be found by

following n paths emanating from the solutions of Q(z) = 0.
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The generalized eigenvalue problem

Az = ABz,

in particular the eigenvalue problem Az = Az, for B = I, has important applications in
many scientific areas. It is widely known that very efficient algorithms for matrix eigenvalue
problems, QR algorithm for Az = Az and QZ algorithm for Az = ABz, have been im-
plemented and asserted in the software package LAPACK [16]. However, as the size of the
matrix becomes larger, more computing resources are required. And a natural way to allo-
cate extra computing resources efficiently is to perform independent tasks simultaneously
in parallel. Since each isolated zero of a polynomial system is computed independently
of all the others in the homotopy continuation method, it provides a natural environment
for the parallelization. We have tested the parallel version of our homotopy algorithms on

generalized eigenvalue problem

Az = ABzx

with augmented linear equation

aryi+---+cpTp+cpt1 =0

where _ ;
ail] a2 ... Qi
az1 a92 ... Qap
A=
anl1 Gn2 ann
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and

bi1 b2 ... bin
b1 bo2 ... bon
B =
bn1 bn2 ... bnn
are randomly chosen n x n matrices and cj,...,c,41 are randomly chosen complex num-

bers for n = 100 and n = 200. We also tested the parallelization for eigenvalue problem,
i.e. B =1,the nxn identity matrix and A is a randomly chosen matrix. Our preliminary
numerical results are listed in Table 5.1. The speed-up ratio on the table represents the
ratio of the CPU time of a single processor to that of multiple processors. Almost perfect
speed-ups in the table illustrate the great potential in solving very large algebraic general-
ized eigenvalue problems in parallel by the homotopy continuation method in contrast to

highly serial QZ or QR algorithms.
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CPU time Speed-up ratio
n # of processors
Az = ABz| Az = Az |Az = ABz| Az = Az
100 1 86.5 54.6 1 1
2 43.7 27.5 1.99 1.99
3 28.9 18.2 2.99 3
5 17.9 11.2 4.83 4.88
7 12.6 7.9 6.86 6.91
200 1 1795 1146 1 1
2 898 573 2 2
3 598 384 3 2.98
5 366 233 4.9 4.92
7 260 166 6.9 6.9

Table 5.1. The parallel speed-up for solving generalized eigenvalue problem Az = ABz and
eigenvalue problem Az = Az with n = 100 and n = 200.
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