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ABSTRACT

MIXED VOLUME AND TOTAL DEGREE

By

Ying Zhang

This thesis focuses on the study of solving several extensible benchmark polynomial

systems by homotopy continuation methods. By establishing the relationship between their

mixed volume and total degree, we find that for most of those systems the difference between

their mixed volume and total degree is very minimal. Consequently, those systems should

be solved by the classical linear homotopy method rather than the polyhedral homotopy

method, although in general the polyhedral homotopy method is the typical choice for

solving sparse systems. Furthermore, by restricting to the classical linear homotopy on

solving those systems, we may take the special structure of the systems into account for

solving the systems efficiently. This precious aspect of the classical linear homotopy does

not seem to exist in the polyhedral homotopy method.



To my sons, Ray and Ryan.
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Introduction

Polynomial systems arise very frequently in many fields of science and engineering [7], such

as formula construction, geometric intersection problems, inverse kinematics, power flow

problems with PQ-specified bases, computation of equilibrium states, etc. In 1977, Garcia

and Zangwill [10] and Drexler [9] independently presented theorems, which suggested that

homotopy continuation methods could be used to find the full set of isolated zeros of a

polynomial system numerically. During the last three decades these methods have been

developed into a reliable and efficient numerical algorithm for approximating all isolated

zeros of polynomial systems.

Let P(:r) = 0 be a system of n polynomial equations with n unknowns. Denoting

P = (191, . . . ,pn) and 2: = (:51, . . . ,xn), we want to find all isolated solutions of

p1(x11"‘,xn) : 0

 \ pn($1,--.,xn)=0.

The classical homotopy continuation method [2, 3] for solving P(:r) = 0 is to define a

trivial system 62(3) 2 ((11 (11:), . . . , qn (13)) and then follow the solution curves in the real



variable t from t = 0 to t = 1, which make up the solution set of

H(;r, t) = (1 — t)rQ(:c) + tP(:r) = O with generic 7‘ E C \ {0}.

More precisely, all the isolated solutions of P(:z:) = 0 can be found if the system

Q(:r) = 0, known as the start system, is chosen properly to satisfy the following three

properties:

0 Property 0. The solutions of the start system Q(:z:) = O are known;

0 Property 1. The solution set of H(2:, t) = 0 for O S t S 1 consists of a finite number

of smooth paths, and each of them can be parameterized by t in [0,1);

0 Property 2. Every isolated solution of H(a:, 1) = P(a:) = O can be reached by some

path originating at t = 0, that is, the path starts from a solution of the start system

H(a:,0) = Q(:r) = O.

A typical choice of a start system Q(a:) = 0 satisfying Property 0—2 is

d

gl(zla' .. awn) = (1111311 _ b1

qn(:rl, . . . ,3”) = anxg” — bn

where d1, . . . ,dn are the degrees of polynomials p1(:r), . . . , pn(x), respectively, and

aj, bj, j = 1, . ..,n are random complex numbers [6, 18, 23, 29, 37, 38]. The solutions

of such a start system Q(:r) = 0 can be explicitly obtained and the total number of so-

lutions is d = d1 x x dn, which is known as the total degree or the Bézout number of

the original polynomial system P(:L') = 0 [33]. We may then find all the isolated solutions

of P(:r) = 0 by following the total degree number of paths originating from solutions of



the start system Q(r) = 0. But, a great majority of the polynomial systems arising in

applications have fewer than, and in some cases only a small fraction of d = d1 x - - - x d,

isolated zeros. We call such a system deficient. In this case, many of the d1 x x dn

paths will diverge to infinity as t —> 1, and those paths become extraneous, causing highly

wasteful computation.

In the middle of 1990’s, a major computational breakthrough emerged in solving de-

ficient polynomial systems efficiently by the homotopy continuation method. The new

method, called the polyhedral homotopy method [13], takes a great advantage of the combi-

natorial root count in the Bernshtein’s theory [4], which generally provides a much tighter

bound, called mixed volume, for the number of isolated zeros of a polynomial system in the

algebraic tori (0‘)" = (C\ {0})". When the polyhedral homotopy method is employed to

solve a polynomial system, the number of homotopy paths that need to be traced agrees

with twice of the mixed volume of the polynomial system. As an important consequence,

when the mixed volume of a polynomial system is far less than its total degree, then solving

the systems by the polyhedral homotopy method will greatly reduce the extraneous paths

and thereby considerably limit the wasteful computations.

However, in the core of the polyhedral homotopy continuation method, there is a some-

times costly computation, namely the mixed cell computation, which provides the critically

important start system that one can handle for the polyhedral homotOpy. Indeed, this

mixed cell computation can become very costly for large polynomial systems. Therefore,

before the polyhedral homotopy is used to solve the polynomial system at the expense of

the sometimes costly mixed cell computations, a prior knowledge on the comparison of

the total degree of the system and its mixed volume is highly desirable. If a substantial

difference between these two numbers of the system is absent, then, of course, the system

should be solved by the classical linear homotopy rather than the polyhedral homotOpy.



While it has been largely admitted for grant that for most of the sparse polynomial sys-

tems their mixed volume is far less than their total degree, in this thesis we analyze several

extensible benchmark polynomial systems in the opposite. By establishing the relationship

between their mixed volume and total degree, we find that for most of those systems the

difference between their mixed volume and total degree is very minimal. Consequently,

those systems should be solved by the classical linear homotopy method. Furthermore, by

restricting to the classical linear homotopy on solving those systems, we may take the spe—

cial structure of the systems into account for solving the systems efficiently. This precious

aspect of the classical linear homotopy does not seem to exist in the polyhedral homotopy

method.

The thesis is organized as follows. In Chapter 1, the Bernshtein theorem is introduced

along with its application on the polyhedral homotopy continuation method for solving

polynomial systems, including mixed volume and mixed cell computations. In Chapter

2, 3 and 4, we study the extensible benchmark systems Katsura-n [35], Reimer—n [35]

and Noon-n [31] respectively. It is shown that for each of those systems the difference

between the mixed volume of the system and its total degree is very slim, if not zero.

Therefore the polyhedral homotopy continuation method, widely considered the state of

the art, is inappropriate for solving those systems. They should be solved by the classical

linear homotopy method. Birthermore, when the classical linear homotopy is used to solve

the Noon-n systems in Chapter 4, particularly illuminating is the marvelous speed-ups by

choosing proper start system to recognize the symmetry structure of the system.

In Chapter 5, we study the generalized eigenvalue problem An: = ABx, where A and

B are n x n matrices. When this problem is considered as a polynomial system, it contains

n equations in n + 1 variables. With an appended linear equation, the mixed volume of

the resulting system is shown to be n, that is far less than its total degree 2". Nonetheless,



from the obvious m—homogeneous structure of the system, proper start systems with n

isolated solutions are always available in the classical linear homotopy. In this situation, the

employment of the polyhedral homotopy method for solving this system is still unnecessary

so that the mixed cell computations can be avoided.

It is commonly known that very efficient algorithms for matrix eigenvalue problems,

QR algorithm for Ax = Am and QZ algorithm for A2: = ABx, have been implemented

and asserted in the software package LAPACK [16]. However, as the size of the matrix

becomes larger, more computing resources are required. And a natural way to allocate

extra computing resources efficiently is to perform independent tasks simultaneously in

parallel. Since each isolated zero of a polynomial system is computed independently of all

the others in the homotopy continuation method, it provides a natural environment for

the parallelization. In this regard, solving very large algebraic eigenvalue problems by the

homotopy continuation method in parallel offers a great perspective in contrast to highly

serial QR or QZ algorithms.



CHAPTER 1

The polyhedral homotopy

1.1 The Bernshtel’n theory

Let P(:1:) = (p1(:r),...,pn(x)) E C[:I:] be a given polynomial system, where a: =

1
(3:1, ...,xn). Denoting :13“ = 23‘; ”.233,” with a = (a1, . . . ,an), write

pl (:13) = ZaESI diam“

191103) : ZaESn 4mm“

where 5'1, . . .,Sn are fixed subsets of N" with cardinalities kj = #S,- and 030 E C“ =

C \ {O} for a E Sj,j = 1,. . . ,n. Here 53- is called the support of gay-(:13) and denoted by

supp(pj). Its convex hull 623- = conv(SJ-) in R" is called the Newton polytope of pj and

S = ($1,. . . ,Sn) is the support of P(2:), denoted by supp(P). For nonnegative variables

A1,...,/\n and the Newton polytopes Q_,- of p, for j 2 1,. ..,n, let A1Q1+-~+ AnQn

be the Minkowski sum of A1Q1, . . . , AnQn, i.e.,

A1Q1+'”+’\nQn={’\17'1+"'+/\n7‘n37‘jEerj=1I~wnl~



It can be shown that the n—dimensional volume, denoted Vol", of the polytope A1Q1 +

+ AnQn is a homogeneous polynomial of degree n in A1, . . . , An, and the coefficient

of the term Al x - -- x An in this homogeneous polynomial is called the mixed volume of

the polytOpes Q1, . . . , Qn, denoted M(Q1, . . . , Q"), or the mixed volume of the supports

31,. . .,Sn, denoted M(Sl, . . .,Sn). Sometimes, it is called the mixed volume of P(rr)

when no ambiguities exist.

The system (1.1.1) can be embedded into the system P(c, 1:) = (p1(c, 2:), . . ., pn(c, 22)),

where

291(6) 113) = ZaESI cl,a$a

P(c,:r) = 5 (1.1.2)

19710333) = ZaESn 92.0930

and the coefficients on with a E 5-, j = 1,. . .,n, are taken to be a set of M = k1 +

H ° + kn variables. Namely, the system P(z) in (1.1.1) is considered as a system in (1.1.2)

corresponding to a set of specified values of coefficients c* = (c; a) or P(az) = P(c“, :13).

Lemma 1.1.1. [12] For polynomial systems P(c, :13) in (1.1.2), there exists a polynomial

system C(c) 2 (91(0),. ..,gn(c)) in the variables c = (cjfl) for a E 33- and j = 1,. . .,n

such that for those coefl‘icients E 2 (035,0) for which C(E) aé 0, the root count in (C*)" of

the corresponding polynomial systems in (1.1.2) is a fixed number, and the root count in

(C*)" of any other polynomial systems in (1.1.2) is bounded above by this number.

Remark 1.1.1. Since the zeros of the polynomial system C(c) in Lemma 1.1.1 form

an algebraic set with dimension smaller than M, its complement is Open and dense with

full measure in CM. Therefore, with probability one, G(c*) aé 0 for randomly chosen

. ,,, _ M . . .

coefi‘iczents c — (cia) E C . Hence, polynomial systems P(c*,a:) in (1.1.2) with C(c") 75



0 are said to be “ in general position”.

Theorem 1.1.1. (Bernshtei’n) [4] The number of isolated zeros in (C*)”, counting multi-

plicities, of a polynomial system P(x) = (p1(:r), . . . ,pn(x)) with support 5 = (5'1, . . . ,5”)

is bounded above by the mixed volume M(Sl, . . . , Sn). When P(z) is in general position,

it has exactly M(Sl, . . . , Sn) isolated zeros in (C*)”.

In [5], this root count was nicknamed as BKK bound after its inventors, Bernshtein

[4], Kushnirenko [15] and Khovanskii [14]. In general, it provides a much tighter bound

compared to variant Bézout bounds [30, 33]. An apparent limitation of the theorem is that

it only counts the isolated zeros of polynomial system in (C*)" rather than all the isolated

zeros in the affine space C”. For the purpose of finding all the isolated zeros of a polynomial

system in C", a generalized version of the assertion in the theorem which counts the roots

in C" is strongly desirable. This problem was first attempted in [32] by introducing the

notion of the shadowed sets and a bound for the root count in C" was obtained. Later, a

significantly much tighter bound was discovered in the following theorem.

Theorem 1.1.2. [27] The root count in C" of a polynomial system P(x) =

(p1(:r),...,pn(:r:)) with supports Sj = supp(pj), j = 1,...,n, is bounded above by the

mixed volume M(31 U {0}, . . . , Sn U {0}).

Corollary 1.1.1. For polynomial system P(z) 2 (pl (11:), . . . ,pn(:r)) in (1.1.1), assume all

pj(a:)s have constant term, then the number of isolated zeros of P(x) in C" is bounded

above by the mixed volume M(Sl, . . . ,5”) of its supports S = (5'1, . . . ,5”). When P(x)

is in general position, all zeros of P(z) in C" are isolated and its total number is exactly

equal to M(Sl,...,Sn).

For a polynomial p(:c) = p(a:1, . . . ,xn) of degree d, denote the associated homogeneous



polynomial by

31 (En~ d
a o o, — x , u I I , a

17(170, 331: mn) 0p($0 $0

The solutions of p(x) = 0 at infinity are those zeros of p in projective space

I?” = {(x0,...,xn) EC"+1\(O,...,0)}/~

with x0 = 0 where the equivalent relation ~ is given by x ~ y if x = cy for some nonzero

c E C. On the other hand, zeros of p(x) in C" can be identified with zeros of p in P"

with x0 = 1.

When the system P(x) = (p1(x),...,pn(x)) in (1.1.1) is viewed in P", namely we

consider P(x0,x1, . . . ,xn) = (131 (x0,x1, . . . ,xn), . . . ,pn(x0,x1, . . .,xn)), then

Theorem 1.1.3. (Bézout) If all the zeros of P(x0,x1,...,xn) in P" are isolated, then

the number of those isolated zeros, counting multiplicities, equals to its total degree.

Together with Corollary 1.1.1, we conclude with the following proposition.

Proposition 1.1.1. For polynomial system P(x) 2 (p1 (x), . . . ,pn(x)) in general position

in which all pj (x)s have constant term, assume the zeros of P(x) at infinity are all isolated,

then

Total degree of P(x) = Mixed volume of P(x) + number of isolated zeros of P(x)

at infinity.



1.2 The polyhedral homotopy

In light of Theorem 1.1.2 given in the above section, to find all isolated zeros of polynomial

system P(x) = (p1(x), . . . ,pn(x)) in C” with support S = (51, . . . ,Sn), we first add the

monomial x0(= 1) to those pis which do not have constant terms. Followed by choosing co-

efficients of all monomials at random, a new polynomial system Q(x) = (q1 (x), . . . , qn(x))

with support 5" = (3;, . . . , 5;), where S;- = 53- U {0} for j = 1,. . . ,n, is obtained:

_ -. a(11(113) — 2,65; C,a1$

_ ‘a

I 0n,a1 -

aESn
qn(1') = Z

We call such a system an augmented system of P(x). Since all those coefficients 53-,“ for

a E S; and j = 1, . . . ,n are randomly chosen, this system may be regarded as a system in

general position. We want to solve this system in the first place. Afterwards, this system

will be used as the start system to solve P(x) = 0 via linear homotopy.

Let t denote a new complex variable and consider the polynomial system Q(x,t) =

(ch (x,t), . . . ,cjn(x,t)) in the n + 1 variables (x,t), where

@103,” = Zaesi Elflmatwfla)

(1.2.1)

— xatwn(a)

aESQ Cn,a
61161.30 .: Z

I

and the images of each 112,- : S, —> R for j = 1, . . . , n are chosen generically. For a fixed

10



to, system Q(x,t) = (d1(x,t), . . .,(jn(x,t)) can be written as

. _ w (a)

(Mate) = Z I(Cl. t 1 )9?“
0651 a 0

Q(x,t0) = 5 (1.2.2)

(an,at3m(a))$a-

Qn($,t0) : E E
a 3;,

Remark 1.2.1. [17] System (1.2.2) is in general position.

Now we regard Q(x, t) = 0 as a homotopy, known as the polyhedral homotopy, defined

on (C"‘)" x [0, 1] with target system Q(x, 1) = Q(x). The zero set of this homotopy is made

up of k homotopy paths x(1)(t), . . . ,x(kl (t). Since each rjj(x, t) has nonzero constant term

for all j = 1, . . . , n, it follows from a standard application of generalized Sard’s Theorem [1]

that all those homotopy paths are smooth with no bifurcations. Therefore, both Property 1

and Property 2 hold for this homotopy. However, as for Property 0, at t = 0, Q(x, 0) E 0,

so those homotopy paths can not get started because the paths originating from t = 0 can

not be identified. We deal with this problem with the following design.

The function as = (w1,. . . ,wn) with wj : S;- —+ R,j = 1,. . . ,n, may be considered as a

generic lifting on the support S, = (5/1, . . . , 8;) of Q(x), which lifts S;- to its graph

Al
A I -

Sj = {a= (a,wj(a))|ae Sj}, J = 1,...,n.

Let 0”: = (a, 1) E IR"+1 satisfy the following condition:

I I I

Condition A: There exists a collection of pairs {a1,a1} C 31,. . . ,{an,an} C 5;, where

11



I

{a1 — all, . . .,an — an} is linearly independent and for j = 1,. . .,n

(£1330(T): (jHé)

. .. AI . I I

(a, a) >(aj,oz),a E Sj \ {aj,aj}.

Here (., .) stands for the usual inner product in the Euclidean space. For such d = (a, 1),

where a = (0:1, . . . ,0”), let

311 =t"°1$1

yn = t—anxn-

In short, we write y = t—ax with y = (y1,. . . ,yn) or x = yta. By this transformation

and a: (a1,...,an) E N”, we have

x“ = x‘l11 nag” =(y1t0‘1)al ---(ynt°‘n)an

_ “1 an a a +~~+anan _ a (a,a)
__ y] . . . yn t 1 1 _ y t .

Consequently, cjj(x,t), for j = 1,. ..,n, of Q(x,t) in (1.2.1) becomes

qj(yta,t) : Z 5j,a yatwaa)tj(a zaez’ Cjayat a.wj(a)),(a,1)) = Z Ej,ayat<&,&>

I I

S. .a5 J 631- aES'.7

where ti = (a, wj(a)) and 0? = (0,1).

For j: 1,...,n, let

fij = min (a, Oz)

was]-

12



and consider the homotopy Ha(y, t) = (h?(y,t), . . . ,hg(y, t)) = 0 on (C*)” x [0,1], where

fig-”(v.0 = Pita-(war) = Z air/“5W“?
I

aES.

J

= 2 523a?!” 2 Ej.a?/“'5<a’o')“(33'-

aes; was;

This homotopy retains most of the properties of the homotopy Q(x, t) = 0; in particular,

both Property 1 and Property 2 remain valid and

H001. 1) = Qty. 1) = Q(y) = Q(-’I=).

. . . . .. .. J .. A ..

Moreover, With Condition A, for each 3 = 1,. . . ,n, (aj,a) z (are!) = flj and (a,a) > H]-

for a E S'; \ {aj,a;-}. Thus when t = 0

I

,5 0:5 aL1+5 ,“1:0
631 Lay 1,aly Lalyhie/.0) = 2a

H“(.11. 0) =

I

hay, 0) : ZaES; an,aya : Ema/”ya" + 5n agyan = 0

which is known as the binomial system.

Proposition 1.2.1. [12] The binomial system

I

51m?!“1 + 51 a! ya1 = 0.

’ l

I

allianyan + an (Id/”ya” = 0

9

13



has

a1 -01

ka := det

 I

(.,-..)   
nonsingular isolated solutions in (C*)".

Proposition 1.2.2. {12/ Different a = (01,1) 6 IR"+1 that satisfy Condition A will induce

difierent homotopies H“(y, t) = 0. Those diflerent homot0pies will reach different sets of

isolated zeros of H0(y, 1) = Q(y) = Q(x). Moreover, those diflerent sets of isolated zeros

of Q(x) are disjoint from each other.

Proposition 1.2.3. [12] The root count of Q(x) = 0 in (C*)" or the mixed volume of

the augmented system of P(x) is

/m_g)

:ka 2: det

G a

I

Kan—an)    

A key step in solving system Q(x) = 0 by the polyhedral homotopy method described

above is the search of all those vectors d = (a, 1) E Rn“ as well as their associated

collections of pairs COr = ({a1,a’1},. . .,{an,a:,}) which we call mixed cells with inner

normal 0: that satisfy Condition A. This is one of the most time consuming parts of the

polyhedral homotopy method and well developed algorithms for finding those mixed cells

can be found in [11, 19, 20, 22].

After all isolated solutions of Q(x) = 0 are attained, the linear homotopy

H(x, t) = (1 — t)rQ(x) + tP(x) = 0 with generic r E C*

14



will be used to solve the target system P(x) = 0 because this homotopy now satisfies all

the three properties [24].

We now summarize the polyhedral homotOpy procedure for solving polynomial systems.

Given polynomial system P(x) 2 (p1 (x), . . . ,pn(x)) with support 5 = (51,

...,s.,), let s’=(s[,...,s,’,) with sg=sju{0} for j=1,...,n.

0 Step 0: Initialization.

Choose polynomial system Q(x) = (q1(x),...,qn(x)) with support S, =

I I , .

(51,...,S'n) and generically chosen coefficients cjfl, for a E S]. and J =

1,...,n. That is,

{bi-73) = Z cj,axa, j=1,...,n.

aeSI.

J

0 Step 1: Solve Q(x) =0.

0 Step 1.1: Choose a set of real valued functions wj : S;- -» R, j =

1,...,n, their images are generic numbers.

0 Step 1.2: Find all the cells C“ = ({a1,a’1},...,{an,a:,}),j = 1,...,n

I

of SI = ($1,...,S;,) induced by w = (w1,...,wn) with ti = (a, 1) E 1R"+1

.. ,J .. Al I I

being the inner normal of ({a1,a1},...,{an,an}) in S' = (Si,...,Sn).

0 Step 1.3: For each d = ((1,1) 6 Rn“ and its associated cell 0“

obtained in Step 1.2.

15



0 Step 1.3.1 Solve the binomial system

I

_ a
€1,01ya1+cla’y 1 = 0

’ 1

I

Omanya" + 5 I ya" = 0

n,an

in (C*)", let the solution set be X3.

0 Step 1.3.2: Let fij = (511361) forj = 1,...,n. Follow homotopy

paths y(t) of the polyhedral homotopy

“dial—21
06$; Cl,ayhi"(y.t) = E

H“(y,t) =

light, t) = Zae [1%,avatié’él’fi”
S

starting from the solutions in X3. Collect all the solutions

of y(l) as a subset of isolated zeros of Q(x).

0 Step 2: Solve P(x) =0.

Follow the homotopy paths of the linear homotopy

H(x,t) = (1 -— t)rQ(x) + tP(x) = O with generic r 6 C"

starting from the solutions of Q(x) = 0 obtained in Step 1 to get all

the isolated solutions of P(x) =0 at t= 1.

I

Remark 1.2.2. To find all isolated zeros of P(x) in C", k = M(S[, . . .,Sn) homotopy

paths need to be traced in both Step 1.3 and Step 2, making it 2k homotopy paths in total.
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CHAPTER 2

Katsura—n system

In this Chapter, we consider the Katsura-n system [35]. For this polynomial system, we

shall prove that the mixed volume of its augmented system is equal to its total degree.

Therefore, for finding all the isolated zeros of this system in C", the polyhedral homotopy

method offers no advantages as regard to minimizing the number of homotopy paths one

needs to trace.

2. 1 Katsura-n system

Katsura—n system actually contains n + 1, rather than n, variables x1, . . . ,xn+1. It has

the following forms:

17



o if n is odd, the polynomials are

2xn+1+2xn+---+2x2+x1- l

2z§+1+2xfi+m+2x§+x§—z1

2127113714.] + 2$n_1$n + ' ' ° +2$1$2 — LE2

2xn_1xn+1 + 2xn_2xn + - - - + 2x1x3 + x3 —[ x3

 [ 2x2xn+1+ 2x1xn + 2x2xn_1+~-+ x H — mu;

0 if n is even, the polynomials are

2xn+1+2xn+-~+2x2+x1—1

2xi+1+2x%+---+2x§+x¥—x1

2xnxn+1+2xn_1xn +---+2x1x2 — x2

2xn_1xn+1+ 2xn_2xn + - - - + 2x1x3 + x3 -— x3

 2xx +2xx +2xx_ +---+2xx —x.
k 2n+l 1n 2n1 313:2 n

Appending constant terms to those polynomials without them and choosing all the

coefficients randomly yield the following augmented Katsura—n system
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o if n is odd,

 

Ci,1$n+1+ 61,2331: + - ' ' + 61.11962 + Ci,n+1131+ 01,n+2

2 .2 2 2
02,133,,“ + 02,217; + ' ' ° + C2,n$2 + 02,n+11‘1 + C2,n+2$1 + C2,n+3

C3,lznxn+1 + C3,2$n—1$n + ' ‘ ' + C3,nxl-732 + C3,n+1$2 + C3,n+2

2
C4,1$n—1$n+1 + 04,213n—2In + - ' ' + aim—1331333 + C4,n$2 + C4,n+1933 + C4,n+2

O a a
2

.Cn.1$233n+1 + Cn.21151313n + Cn.3$2$n—1 + + Cnrfibi‘axli'l + Cn’fllléxn + Gnu-{1’

o if n is even,

 l

Ci,1$n+1+ Ci,2$n + ' ' ' + Ci,n$2 + Ci,n+1$1+ Ci,n+2

c 2 + 2 + - - . + 2 + 2 + +2,1$n+1 C2,2-Tn Can-732 C2,n+1-731 C2,n+2$1 C2,n+3

C3,1$n$n+1 + 03,2In—11‘n + ° ' ' + 63.121311? + 03,n+1$2 + C3,n+2

C4,1$n—117n+1 + €4,217n—21‘n + ' - - + C4,n—lxlx3 + C4,n$% + C4,n+1$3 + C4,n+2

C71,133237n+1 +Gn,2$1$n+cn,3$2$n—l+”'+c n+2xn$n+2 +0 n+4$n+c n+6-

"’T 2 T "~T ”'T

As elaborated in the previous chapter, for the purpose of finding all isolated zeros of

polynomial system P(x) in C", rather than in (C*)", the number of paths that need to

be traced in the polyhedral homotopy method is twice the mixed volume of the augmented

system of P(x). Therefore the major difference, in terms of the number of paths one needs

to trace, in employing the classical linear homotopy or the polyhedral homotopy for solving

P(x = 0 in C" lies in the comparison of the mixed volume of the augmented system of

P(x) and its total degree. The following proposition shows that for a Katsura—n system

these two numbers are actually the same.
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Proposition 2.1.1. Mixed volume of augmented Katsura-n system is equal to its total

degree 2".

Proof. By Proposition 1.1.1, the mixed volume of an augmented polynomial system and

its total degree will be the same if the polynomial system has no zeros at infinity. We will

therefore prove the assertion of the proposition by showing there is no zeros at infinity for

the augmented Katsura—n system by induction on n.

First of all, when n = 1, the augmented Katsura—l system is reduced to

0111132 + 012301 + C13 (21 1)

czlxg + (3221:? + c23x1 + 624.

The zeros of this system at infinity are the zeros of its associated homogeneous polynomial

C119132 + 612931 + 613130

621.13% + 6221:? + C23x1x0 + c24x3

in P2 with x0 = 0. However, solving system

01132 + 012131 = 0

621233 + 6221‘? = 0

will result in x1 = 0 and x2 = 0. Hence, system (2.1.1) has no zero at infinity.

For n = 2, augmented Katsura-2 system becomes

011953 + 012132 + 013111 + C14

C21$§ + 622213 + 6231:? + 024:6] + 625 (2-1-2)

031932333 + 032161502 + 633332 + C34

20



and its associated homogeneous polynomial is

011333 + c125102 + 013931 + 0141130

2 2 2 2
62133 + 6221132 + 023.731 + C24$1$0 + 6251130

631302113 + C321511132 + 033502330 + 03435?)-

Hence, zeros at infinity of system (2.1.2) is the nonzero solutions of system

61113 + 612332 + 613561 = 0

62133 + ngxg + C2333? = 0 (2-1-3)

0312:2133 + 6321:1132 = 0.

If x3 = 0, system (2.1.3) becomes

0125132 + 013221 = 0

022.73% + C2322? = 0

C32x1x2 = 0

and the only solution of which is x1 = 0 and x2 = 0.

When x3 aé 0, let x3 = 1 in system (2.1.3), we have

W1 (1‘) = 611 + 012502 + C13131 =

1792(23) = 621 + 622% + czar? = 0 (21.4)

10203013) = 031172 + C32$1$2 = 0-

It is clear that this system has no solutions because the isolated zeros of the first two

equations pp1(x) = 0 and pp2(x) = 0 are all in (C*)2 and those generically chosen

coefficients C31 and C32 in pp3(x) will not subject to the nonzero constraint that pp3(x) =

21



0 imposed.

So the proposition is true for n = 1 and n = 2.

Now suppose the augmented Katsura—(k — 1) system has no zeros at infinity. We assume

I: is even. (The proof is the same for odd I: .) Then the augmented Katsura-(k — 1) system

takes the form

C1,1931: + €1,2Ik—1+'“+ Chic—11:2 + C1,1531 + Cl,k+1

2 + 2 + , , , + 2 2
62,193,, €2,2$k_1 Oak—11:2 + 02,1631 + 02,k+1931 + C2,k+2

C3,l$k—1$k + 03,2-Tk—217k—1 + ' ' ' + Care—11311132 + 03.16132 + 03,Ic+1

04,1xk—217k + 04,233k—317k—1 + ' ' ' + Cit—2171333 + Cit—135% + 04,1433 + C4,k+1

 Ck,1$2$k + Ck,235133k—1 + Ck,3$2-’Ek—2 + ' ' ° + 0,, k+2 513%, + Ck k 4Ik—1 + 0,, k+6-

’ 2

This system has no zeros at infinity, so the system

€1,193k + Cl,2$k-1+”'+ Chic—1372 + Cum

c2,1xi + c2,2xi_1 + ' - - + 62,k_1113% + c2,kx¥

03,133k—137k + 03,293Ic—217k—1 + ° ' ° + Cat—1331162

< (2.1.6)

€4,1xk—233k + C4,2$k—3-’L‘k—1 + ' ' ' + Oak—2371353 + Cue—113%

 Ck,1$2xk + Ck,2$1$k—1 + Ck,3$2$k—2 + ' ' ° + Ck k+2$
[ .7—

M
a
r
k
?

has no nontrivial zeros. For n = k, the zeros at infinity of the augmented Katsura—k system
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01,1$k+1+ 61.21% + ' ° ' + 01,1632 + Ci,k+11‘1 + Cl,k+2

2 2 _ , 2 2 +
02,113,,“ + 62,2931, + ' + 62,1602 + C2,k+1$1 + C2,k+2~771 C2,k+3

C3,1$k-’Bk+1 + C3,2$k—1$k + ' ' ' + €3,k$1$2 + €3,k+1$2 + C3,k+2

2

C4,1$k—1$k+1 + €4,2xk—213k + W + C4,k—1x1$3 + C4,k$2 + C4,k+1$3 + C4,k+2

2
ck,1x3xk+1 + Ckagxgxk + Ck,3$l$k—l + ' ' ‘ + Ck k 413k ‘1' Ck k+6 $k_1 + Ck k+8

3 2 ,

ck+l,lx2$k+1+ Ck+122$1$k + Ck+1,3132$k_1+ . . . +

 C k+2$k$k+2 +6 k+4$k +6. k+6

t “11—2— 2 T k+1’T “11—2—

(2.1.7)

are nontrivial zeros of

I

C1.131%“ + 01.21% + ' ' ' + 01,k$2 + Ci,k+1$1

2 2 ... 2 + 2
C211$k+1 + C2’2xk + + €2,532 C2’k+1$1

63,1$k$k+1 + 03.212431: + ' ' ' + 03.163132

2
l €4,1xk—1$k+1 + 04212—2112 + ' ' ' + Cale—1931553 + 04,1652 (2-1-8)

 
Ck,1$3$k+1 + Ck,2$2$k + Ck,31‘1$k—1 + ' ' ° + Ck k+4 132;),

’ 2 2

Ck+1,1$21‘k+1 + Ck+1,2$1$k + Ck+1,31‘2$k—1+“'+ CH1 k+2$k$k+2~
\ ’ 2 2 2
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For xk+1 = O, the above system becomes

01,227), + - - - + chxg + cl,k+1x1

2 2 2

C2,233)c + ' ' ' + 62,1652 + C2,k+1$1

03212—1331: + ' ' ° + C3,k$1$2

2
l 64,2113k—2Ik + ' ' ' + C4,k—1$1x3 + 641932

Ck,2~"3233k + Ck,3$lxk—l + ' ' ' + Ck k+4$
*T

M
a
s
—
N

 2

Ck+1,2$1$k + Ck+1,3$2$k—1 + ' ' ' + C k+2$k$k+2

“er T

(2.1.9)

and the first It polynomials of system (2.1.9) have the same form as the system in (2.1.6)

with randomly chosen coefficients, which has no nontrivial zeros. Consequently, system

(2.1.9) itself can not have nontrivial zeros, i.e., system (2.1.7) has no zeros at infinity when

93k+1= -

For xk+1 76 0, let xk+1 = 1 in system (2.1.8) and consider

,

1919105): c1.1+ 61,2331: + ° ' ' + 011332 + €1,k+1$1

2
1910203) = 02,1 + 62,2110}?c + ° ' ° + 02,1633 + 02,k+1$1

PP3(IL‘) = 03,131: + €3,2xk-1xk + ' ' ° + C3,k$1$2

( W405) = 04,1113k—1 + €4.213k—213k + ' ° ' + Oak—1551333 + 64.1652

 
'

2

ppk($) = Ck,1$3 + Ckgxglk + Ck,3$133k_1 + . . . + ck k+4xk

’T 2

[ Ppk+1($) = Ck+1,1:132 + Ck+l,2xl$k + Ck+1,332xk—1+ . . . +

24

ck+1,Tk+2x
k$k+2-

2T

(2.1.10)



First of all, no zeros x0 = (x?,xg, . . . ,xg) of the above system can have all x3 = x3 =

= x2 = 0. Otherwise it would lead to a contradiction to pp1(x0) = 0 together with

0
pp2(x0) = 0. So, without loss of generality, we suppose x3 75 0. Now consider x an

isolated solution of k equations

PP1($1,---,Ik)=0

pp2($1,...,$k) = 0

Ppk(171.---,Ik) =0

in k variables whose coefficients are randomly chosen but then fixed (and therefore all the

solutions are isolated). However, when we substitute (23?, x3, . . . ,xg) into ppk+1(x) = 0,

it imposes a nonzero constraint for the coefficients Ck+1,11 . . . ’Ck+1,k 2 of ppk+1(x) since

x3 95 0. This can’t occur since those coefficients are arbitrarily chosen, they do not subject

to any particular constraints. Therefore system (2.1.10) has no zeros, i.e., system (2.1.7)

has no zeros at infinity when xk+1 31$ 0. Thus the assertion of the proposition is valid for

n = k. This completes the proof. C]

2.2 Numerical results

As a comparison, we solve the Katsura—n system numerically by both the classical linear

homotopy and the polyhedral homotopy, and results are listed in Table 2.1. All the com-

putations here as well as in the following chapters were carried out on a Dell PC with a

Pentium 4 CPU of 2.2GHz, 1GB of memory, and results presented are restricted to the

systems that can be solved within 12 hours of CPU time. Recall that we use the typical
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start system Q(x) = (q1 (x), . . . ,qn(x)) where

d

(11(13): 01151311" (71,

with randomly chosen complex numbers a1, . . . ,an, b1, . . . , bn in the classical linear homo-

topy

H(x,t) = (1 — t)Q(x) + tP(x) = 0.

The speed-up ratio is the ratio of the CPU time of solving the system by the polyhedral

homotopy to that by the classical linear homotopy with the typical start system. Appar-

ently the table shows the classical linear homotopy works much better for finding all the

solutions of Katsura—n systems [21]. For instance, when n = 16 , the polyhedral homotopy

takes more than 12 hours to find all isolated zeros of the system whereas the classical linear

homotopy only takes 16 minutes and 25 seconds.
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CPU time

 

System Total Degree Speed-up ratio

Linear Polyhedral

 

 

 

 

 

 

 

Katsura— 11 2,048 113 233 2.09

Katsura—12 4,096 263 1m22s 3.15

Katsura—13 8,192 1m06s 5m32s 5.03

Katsura—14 16,384 2m38s 22m14s 8.44

Katsura—15 32,768 7m03s 1h50m26s 15.66

Katsura-16 65,536 16m253 - -

Katsura- 17 131 ,072 40m483 - -

 

Katsura-18 262,144 11135m47s - -

 

Katsura- 19 524,288 3h50m488 - -

 

Katsura-20 1,048,576 8h58mOOS - -       
 

Table 2.1.. Comparison of the classical linear homotopy with the typical start system and

the polyhedral homotopy in solving Katsura-n systems.
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CHAPTER 3

Reimer-n system

Reimer—n system [35] is a polynomial system whose mixed volume is equal to its total

degree.

3. 1 Reimer-n system

The general form of Reimer-n system is

22% — 21:3 + - - - + (—1)n+1223, — 1

2251* - 21:53 + - - - + (—1)"+12x§, — 1

(3.1.1)

221.",1+1 — 223+1+-~+(—1)"+12xg+1 — 1.

Since polynomials in the system all have constant term, its augmented system will
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consist of the same monomials with generically chosen coefficients:

C1133? + C1233 + ' ' ' + 617,321+ Cln+1

021:1)? + 022.73% + ' ' ° + €271.73?1 + C2n+1

(3.1.2)

n+1 n+1+.

Proposition 3.1.1. For Reimer-n system, mixed volume = total degree = 2 x 3 x x

(n+1) = (n+1)!.

Proof. While exactly the same argument that was used in the proof of Proposition 2.1.1

can also be applied here, we shall provide a different proof for this proposition due to the

special structure of the system.

For the Reimer-n system given in (3.1.1), the supports of polynomials in the system

are

S1={(2,0,...,0),(0,2,...,0),...,(0,0,...,2)}={2e1,2e2,...,2en}

$2 = {(3,0,...,0),(0,3,...,0),...,(0,0,...,3)} = {3e1,3e2,...,3e,,}

Sn:{(n+1,0,...,0),(0,n+1,...,0),...,(0,0,...,n+1)}

= {(Tl + Del? (n +1)62,. . . , (Tl +1)en}1

where for i = 1,. . . ,n, e,- = (0,. ..,0,1,0,.. . ,0) is the ith unit vector with its ith com-

ponent 1 and all other components zero.

Recall that for mixed cell {a1 — a’l, . . . ,an — a2} induced by the lifted support S =

. . I I

(51,...,Sn) with inner normal cl = (0,1) 6 Rn“, we have {a1,a1} C 31,. . . , {aman} C
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Sn and by Proposition 1.2.3,

(.,..3\

Mixed volume of the system = Z det

a

    (an-ah)

Now, for each i = 1,. ..,n, {a,-,a;} C S,- = {(i + 1)el, . . . , (i + 1)en} implies a,- - a; =

(i + 1)(e[ - 822) where e] aé e’é and they are both in {e1, . . . , en}. Let

K 01 — all \ { 2(6] — eé) \

    (an—a2) \(n+1)(e?—e’2’)/

Then

(a_2g)

detA=2x-~x(n+1)det ; =2x---x(n+1)detB

Kai—2}
  

where

(1 1)
61—32

  
\ 85’ ‘ 6'2’ I

is a matrix with all arrays being either —1, 0, or 1. When det B 7A 0, then Idet B] 2 1 and

consequently [det A] 2 2 x - - - X (n + 1). Thus the mixed volume of the Reimer—n system,

:0 [detA], is greater than or equal to 2 x x (n +1).

On the other hand, the mixed volume of any system is less than or equal to its total
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degree. Here the total degree of the Reimer-n system is 2 X - - - x (n+1). It follows that the

mixed volume of the Reimer—n system agrees with its total degree 2 x- - - x (n+ 1) = (n+1)!.

Cl

Corollary 3.1.1. For the Reimer—n system, there is one and only one mixed cell regardless

of what sort of liftings being applied to the support (51,. . . , Sn).

I I I

Proof. For mixed cell {a1 — a1, . . .,an — an} of Reimer-n system, where {a1,a1} C

31,. . . , {an,a:,} C Sn, by Proposition 1.2.3,

(m_g\

Mixed volume of Reimer-n system = Z det g = (n + 1)!.

a

    \an-aizI

However, from the proof in Proposition 3.1.1, for any mixed cell {a1 — all, . . . ,an — a2}

(.,—.3)

det g 2 (n+1)!.

(1-2,)
    

I I _

Therefore, there can be at most one mixed cell {a1 — a1, . . . ,an — an} w1th

(m_g)

det 3 = (n + 1)!.

I

\an—anI    
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3.2 Numerical results

Listed in Table 3.1 is the numerical result for solving Reimer-n system by the classical

linear homotopy with the typical start system Q(x) = (q) (x), . . . ,qn(x)) where

d

(11(33) = 313311— b],

(171(3) 2 and/iii” " bn

with randomly chosen complex numbers a1, . . . ,an,b1, . . . ,bn and the polyhedral homo-

topy continuation method [21]. Apparently the speed-ups of the classical linear homotopy

with the typical start system over the polyhedral homotopy in solving these systems shown

in the table are not as dramatic as Table 2.1 shows for Katsura-n systems. A major reason

is, as indicated in Corollary 3.1.1, finding only one mixed cell may not be as costly when

the system is solved by the polyhedral homotopy method.
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CPU time

System Total Degree Speed-up ratio

Linear Polyhedral

Reimer-4 120 0.085 0.13 1.25

Reimer-5 720 0.73 0.993 1.41

Reimer—6 5,040 9.23 12.8s 1.39

Reimer-7 40,320 1m588 2m498 1.43

Reimer-8 362,880 30m43s 36m433 1.20

Reimer—9 3,628,800 7h52m4OS 8h47m42s 1.12        
Table 3.1. Comparison of the classical linear homotopy with the typical start system and

the polyhedral homotopy in solving Reimer-n systems.
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CHAPTER 4

Noon-n system

4.1 Noon-n system

In this Chapter, we discuss the Noon-n system [31],

x1(x%+x§+-~+x,2,—1.l)+1

2 2 2
x2(x +x +---+x —1.1)+1

P(x): 1 3 n

xn(x§+x§ +---+:c§,_1 — 1.1) + 1.

Since polynomials in the system all have constant terms, generically choosing its coef-

ficients yields the augmented system:

$1(612$§ + C13333 + ' - ' + 611133121 + C10) + d1

222(C2123‘19' + 62333 + ' ' ° + anx% + 020) + d2 (4 1 1)

272%le + 6,1217% + - - - + Can—1533-1 + cno) + dn-

Before relating total degree of the system to its mixed volume, we first recall certain
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properties concerning the multiplicity of an isolated zero of a polynomial system. Simply

denoting the polynomial ring C[x1, . . . ,xn] by ’P" and treating it as a vector space, we

use (’P")* to represent its dual space, consisting of all the linear functionals on ’P".

Definition 4.1.1. For a given polynomial ideal I C ’P" with quotient ring Pn/I, the

dual space DU] of the ideal I is the set of linear functionals in the dual space (’P"/I)*

with their domain extended to P". Namely, for l E (’Pn/I)* and p E ’P"

l(p):=l(r) where p€r+I.

An immediate consequence of this definition is,

Proposition 4.1.1. For an ideal I C ’P” and l E (’P")*,

.lED[1]4==>l(p)=0 VpEI.

Definition 4.1.2. A subset D of the dual space (”P”)* is closed ifi

leD=> l-qu quP"

where linear functional 1 - q E (P")* is defined by

(I'Q)p==l(qp) for p67)".

Definition 4.1.3. For 3' = (j1,...,jn) 6 N8 with |j| := Zajou and for z E C”, the
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difierential functional 0j[z] E (Pn)* with evaluation at z is defined by

a [ J() 1 ( 5'”'Z I: _ , - .

J p Jl!"'3n! 8x11...6rl,”

 
p)(2) VP E 73”-

An ideal I C ’P” is called O-dimensional if all zeros of I are isolated.

Definition 4.1.4. A zero 20 of a 0-dimensional ideal I C ’P" is an m-fold zero of I

if there exists a closed set of m, but no more than m, linearly independent difierentiation

functionals dl = 23' ajojpo] with evaluation at 20 in the dual space ’D[I] .

Definition 4.1.5. For a = 1,. . . ,n the anti-difi'erentiation operators so is defined by

6;. U[z ifj >0
Saajlzli= .7 e l o

0 lfja=0

where e0 is the 0th unit vector with its oth component 1 and all other components zero

and

so(2 "Yjaj [20]) Z: Z 73- 8083' [20].

j j

Theorem 4.1.1. [34/ In (’P")*, a subset D(zo) of differential functionals with evaluation

at 20 is closed ifl

dl E P(zo) => sodl E ’D(zo) for all a = 1,. . .,n.

We now establish the relation between the mixed volume and the total degree of the

Noon-n system.

Proposition 4.1.2. For the Noon-n system,

Mixed volume = Total degree —2n = 3" — 2n.
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Proof. From Proposition 1.1.1, the above equality holds if the system in (4.1.1) has 2n

zeros at infinity. Consider its associated homogeneous polynomial system

161(612233-1- 613133 + ' ' ° + 617123721 + 6101123) + (11.138

~ 32(c21x% + 0231133 + ' ' ' + 02,1113, + 02038) + (12178

P(cco,x1, . . . ,a‘n) 2 (4.1.2)

:cn(cn1a:¥+ 9.22% + - - - + cm._1a:3,_1+ 0.02:3) + dams.

The zeros at infinity of system (4.1.1) are the nontrivial zeros of system (4.1.2) in I?" with

2:0 = 0, i.e., nontrivial zeros of the system

1:1(c12x3 + c13x§ + ' - - + clnwg)

332(c2lx? + c23x§ + - - - + anxfi)

:vn(cn122¥ + 0,1223% + - - - + Cnn—1$%_1)-

It is clear that (1,0,...,O),(0,1,0,...,0),...,(0,...,0,1) are n isolated zeros of this

system. For the multiplicity of each of those solutions, we add one more polynomial

61331 4'ng2 + ' ' ' +0n33n + Cn+l

to system (4.1.2), where c,-, i = 1,. ..,n + 1 are randomly chosen complex numbers, re-
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sulting in a system of n + 1 equations in n + 1 variables

151(x0axla- ° ° axn) = 0

P(xo,:L‘1,...,.’En) :

fin($0,$1,...,xn) =0

fin+l($0?x1) ' ' ' 1x71) : 0

where

151(170,$1,- - - .Ivn) = 931(612333 + 013mg + - - - + clnxg, + c10x3)+ dlxg

(4.1.3)

M500. 2:1. . . . mm) = :vn(cn1rc¥ + 6..sz + - - - + Gnu-13331-1 + 07.0133) + dusts?)

15n+1(330.11.-~.$n) = C1301+62302 +°"+0n$n +Cn+l'

2 1
For $0 = 0, the solutions are 212(0,_E_”c_‘1tl 0 ...,0), 22 = (0,0,—-C3é1;i,0,...,0),

.., 2,, = (0,0, . . . ,0, —E"::—1). In projective space IF", these solutions are in the same

equivalence class as (0,1,0,.. .,0),(0,0,1,0,...,0),...,(0,0,. ..,0,1).

Let I =< P(x0,x1, . . . ,xn) > be the ideal in ’P”+1 = C[:r0,:r1, . . . ,zrn] generated by

the polynomials in (4.1.3). At solution zz- = (0,...,0,——Cncz—"'Ll,0,...,0) for i = 1,...,n,

we assert that the following two linearly independent differentiation functionals

dz} = 000...0[Zil(:0) = P(Zz')

and

0

(”1'2 = 310...0l2il(P) = 333M229

constitute a closed subset of the dual space D[I] with maximal number of differential
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functionals with evaluation at 21-. Obviously P(zi) = 0, so by Proposition 4.1.1, (ll,1 6 D]I].

Further, dlz-2 is also in D[I] because

—}5j(22') =(26j0513j230 + 3djxg)(zi) =2 0 for j = 1,. . . ,n

and

a -

EI—Opn+l(zi) = 0-

Moreover,

32 Ci00n+1

—2 ‘—.—“ t 0-
0:120

,, 1

Pile) = 5(26101‘2' + 6di$0)(zi) = 6.

N
I
P
-
d

320...0l2z'l (131') =

So, by Proposition 4.1.1, 620.0(2)) ¢ D[I]. On the other hand, for j = 1,. . . ,n,

- (9 -

60...010...0lzil (Pn+1) = 5mm) = Cj 74 0,

.7

6

hence, aTj[z,] ¢ D[I] for all j = 1,. . . ,n. Consequently, by Theorem 4.1.1, chI-1 and (ill-2

are the only two linearly independent differential functionals with evaluation at zz- that

form a closed subset of D[I]. Therefore, for each i = 1,. . . ,n, the multiplicity of 21 is

two. All together, they account for 2n solutions at infinity for the system in (4.1.1). CI

4.2 A special start system for Noon—n system

As Proposition 4.1.2 indicates, for the Noon-n system, the difference between the total

degree and its mixed volume is 2n, which, compared with its total degree 3", becomes very

slim even when n is of moderate size. Such slim difference will certainly make it difficult to

enjoy the benefits that are commonly provided by using the polyhedral homotopy method
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in solving them. Thus, the classical linear homotopy

H(x, t) = (1 — t)Q(a:) + tP(a:) = 0 (4.2.4)

with the typical start system Q(:r) = (q1(a:), . . . ,qn(a:)) where

d

(11(3) = 013111 - ()1,

(171(2)) = anxg’n — bn

with randomly chosen complex numbers a1, . . . ,an,b1, . . . ,bn appears to be the pr0per

choice for solving those systems. On the other hand, beyond the reach of the polyhedral

homotopy method, the classical linear homotopy can take a huge advantage on the strong

symmetry structure existed in the Noon-n system.

In the first place, the multi-homogeneous structure [36] of the system allows the choice

of the start system

c1(:z:1+a)(:z:2+a:3+---+:cn+fi)(x2+:z:3+---+a:n+'7)

Cg($2+a)($1+$3+"'+.’L‘n+,8)(l'1+$3+'°'+$n+’7)

Q($)= (4.2.5)

0n($n+01)(331+$2+"'+$n—1+fl)($1+$2+~-+xn_1+7)

where c1, 02, ..., on, a, fl, and 'y are randomly chosen complex numbers. Clearly, with

this choice, the symmetry in the Noon-n system is retained and with the invariance of this

symmetry in the homotopy, much fewer paths need to be traced for generating the whole

solution set.
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For instance, for Noon-3 system

x1(x§+ x3 — 1.1) +1

P(x) = ”(mg + 23% — 1.1) +1

3330:? + 23% - 1.1) + 1,

the start system for the linear homotopy in (4.2.4) is

C1031+ 00(332 + $3 + @0132 + 1‘3 + 7)

QC”) = c2(:1:2 + a)($1+ 2:3 + fl)(:1:1+ 1:3 + 7)

C3(133 + a)(1‘1+ x2 + mm + $2 + 7)-

To attain the whole solution set of Q(:r) = 0, we only need to permute the variables

:81, 322, $3 on a subset of solutions of Q(:z:) = 0. For example, the solutions of the following

three linear subsystems

z1+a=0 $2+$3+fi=0 $2+$3+fi=0

x1+x3+fi=0 $2+a=0 x1+$3+fi=0

$1+x2+fl=0 $1+x2+fi=0 $3+a=0

of Q(;r) = 0 are 21 = (—a,a—fi,a—fi), 232 = (a—fl, —a,a—,B), and 23 = (a—B,a—-B, —a)

respectively. Obviously, solution 23 may be attained by permuting 2:1 and 2:3 in 21 or

permuting 3:2 and 9:3 in 22. In fact, any one of 21,2:2, and .23 can generate all the others

by permutations. This property is actually retained on the homotopy paths initiated from

those three solutions of Q(:r) = 0. So we may just follow one of these homotopy paths to

reach a solution of P(x) = 0 and generate the other two solutions from this solution by

permutations.
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It is clear that the above three linear subsystems of Q(a:) = 0 share one thing in

common: they all have one a and two 58 as constant terms. Let us represent this set of

linear subsystems of Q(:t) = 0 by (a, 25). In general, denoting (mla, mgfi, m3'y) for

the set of linear subsystems of Q(:r) with m1 as, m2 fis, and m3 75 as constants terms

where m1 + mg + m3 = 3, it is easy to see that solution of any one linear subsystem in the

set can generate solutions of all other linear subsystems in the set by proper permutations.

Among all the possible divisions of the linear subsystems of Q(:c) = 0 in this manner,

there are two sets of singular linear subsystems, hence no solutions for such systems, they

are (20, B) and (2a, 7). The rest of the 8 groups and the number of linear subsystems in

the same group are listed in Table 4.1.

 

 

 

 

 

 

 

 

    

constant terms number of solutions

(30:) = (a, a, a) 1

(33) = ([3. 16,16) 1

(37) = (7. 7, a) 1

(a. 2/3) = (a. 3.13) 3

(a. 2'7) = (01.7.7) 3

(25. 7) = (fi. fi, '7) 3

(fl, 27) = (fl. 7, 7) 3

(a. fi. '7) = (01.47) 6
 

Table 4.1. Number of linear subsystems for different grouping of constant terms.

Exhibited in Table 4.1, there are, in total, 21 solutions of Q(:r) = 0, and all those

solutions can be generated by just solving one linear subsystem from each of those 8 groups.

Note that 21 = 33 — 2 x 3, which agrees with the mixed volume of Noon-3 system given
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in Proposition 4.1.2.

For the start system Q(:r) = (q1(:c), . . . ,qn(:c)) in (4.2.5) where

(11(93)=61(1‘1+a)($2+x3+~°+xn+fi)($2+$3+“-+$n+7)

Q2(I)=02($2+a)($1+$3+-”+$n+fi)($1+$3+~~+$n+7)

(112(3) = Onlxn + 0X11 + 1‘2 + - ' ' + 9311—1 + film + 332 + ' ' ' + xn—l + 7),

let (l1(:r), . . . ,ln($)) = 0 be linear subsystems of Q(:v) = 0, where, for each i = 1,. . . ,n,

l,(:c) is a linear factor of q,-(:c). We divide those linear subsystems as follows: let

(mla, mgfi, m3'y) be the set of those linear subsystems in which m1, m2 and m3 of the

equations in (ll(:z:),...,ln(:r)) = 0 have a, ,6 and 'y as constant terms respectively. Of

m2
course, m1+m2+m3 = n. It is clear that for fixed m1, m2 and m3 there are Cg“ ~C _m1

linear subsystems of Q(:r) = 0 in (mm, mgfl, m37) and except for m1 = n —- 1, all those

linear subsystems are nonsingular.

To count the total number of possible different combinations of m1, m2 and m3

for which (mla, mgfl, m37) provide nonsingular subsystems, note that for fixed m1 6

{0,1,...,n — 2,n}, there are n + 1 — m1 choices for m2, and when m1 and m2 are

determined, m3 = n — (m1 + m2). Therefore, in total, there are

n2+3n—2

(n+1)+n+(n—1)+-~+3+1= 2

different such combinations.

One of the solutions for linear subsystems (mla, mgfi, m3'y) where m1 75 n - 1 is

F‘A—‘f—Jhfl

(011,...,al,a2,...,ag,a3,...,a3) (4.2.6)
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for certain a1, 02, and a3 . This solution comes from the subsystem whose first m1 equa-

tions have constant term 0:, followed by the next m2 equations having constant term 3

and all the remaining equations having constant term 7. We may use this solution to

generate the solution set of all linear subsystems in (mla, mgfi, mm) by permutations.

For simplicity in the description, we shall replace a], a2 and 03 by 1, 2, and 3 respec-

tively, so the solution1in (4. 2.m6) becomes (1,. ,1, 2,. .,,2 3, .,3). We generate all the

permutations of (1, ,1,2,..,,2 3,. 3) by the following steps:

m1 m2+m3 m3

Step 1: Let sq1= (1, ,1, 2, ., 2) and sq2—— (2,. 2, 3,. .,.3)

Step 2: For each sql and SQ2, search from left for the first smaller-larger pair and

interchange them. If an interchange is made, check if there are some smaller numbers

to the left of the interchange. If not, save the resulting permutation. Otherwise, move

all the smaller numbers to the left of the interchange to the most left end and save the

permutation. For the currently saved permutation, repeat the procedure until no smaller-

larger pairs exist. Rom this step, 077,711 permutations will be produced from sql and

0,,m3m1 permutations from SQ2.

Step 3: For each permutation produced from sq], replace all the numbers labeled 2

by the numbers in the permutations from sqg and save all the possible permutations.

For instance, if one of the permutations generated from sql is (1,2,1,2) and all the

permutations produced by sqg are (2, 3) and (3, 2), then the resulting permutations are

(1,2,1,3) and (1,3,1,2). Namely we replace 2,2 in (1,2,1,2) by (2,3) and (3,2).

m1 m2 m3

A

In total, there will be 0,,m1 -Cm_m1 permutations for (1,. ,1 ,2,...,2,3,...,3 . For
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instance, when n = 4, let m1 = 2, m2 = 1, m3 = 1 for the start system

(11($) = C1($1+ 01)($2 + $3 + $4 + 5)($2 + $3 + $4 + 7)

(12($) = C2($2 + a)($1+ $3 + $4 + fi)($1 + $3 + $4 + 7)

Q($) =

Q3($) = €3($3 + a)($1+ $2 + $4 + fi)($1 + $2 + $4 + 7)

(14($) = C4($4 + a)($1+ $2 + $3 + fi)($1 + $2 + $3 + 7),

there are C7731 - 033ml = C2 . C21 = 12 linear subsystems (l1(r), . . . , ln(x)) = 0 of

Q(r) = 0 in which (11(2),. . .,ln(:r)) = 0 have 2 a and 1 ,6 and 1 'y as constant terms.

One of them is

l1(:r)=a:1+a:0

L1(:1:) : l2(a:) = 2:2 + a = 0

l3(:r)=:rl+:1:2+:z:4+fi=0

14(2) =:r1 +rg+x3+7=0

and the solution for L1(x) = 0 is (—a, —a, 20 — 7, 2a — B). For simplicity, write the

solution (1, 1,2,3). For the permutations of (1, 1,2,3), we follow the above steps. Let

sql = (1, 1,2,2) and sqg = (2,3). All the permutations generated from sql = (1, 1,2, 2)

by following Step 2 are (1,2,1,2), (2,1,1,2), (1,2,2,1), (2,1,2,1) and (2,2,1,1), and

the permutation from sq2 = (2,3) is (3,2). Then by Step 3, replace all the number

23 in all the permutations generated from sql by the numbers in each of the permuta-

tions produced by 8(12 and reach all the permutations for (1, 1, 2, 3). They are (1,1, 3,2),

(1,2,1,3), (1,3,1,2), (2, 1,1,3), (3,1,1,2), (1,2,3,1), (1,3,2,1), (2, 1,3,1), (3, 1,2,1),

(2,3,1,1) and (3,2,1,1). By replacing 1, 2 and 3 back to —a, 20 — '7, and 2a — 3 re-

spectively, solutions (-a, —a, 2a — )6, 2a — '7), (—a, 2a — 'y, —a, 20 — 3), (—a, 2a —

B, —a, 20: —'y),(2a -— 'y, —a, —a, 2a — 3), (2a — 5, —a, —a, 20 — '7), (—a, 20 — 'y, 20: —
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18) -0), (—ai 2a —fi1 20 — '7: —a)1(2a —7)—a! 2a _ fit —a))(2a —:Bi _a1 20 _7) _a)1

(201—7, 2a—fl, —a, —a, ), and (Zn—)6, 201—7, —a, —a, ) are attained. They are exactly

the solutions of the following remaining 11 linear subsystems in (201, Ill, 17) :

L6($)

11(3) = 131+ a

l2(:12) = 1132 + a

l3($) = $1 +$2 +$4 +7

l4($)=$1+$2+$3+fi

l1(:r) = 221+a

l2(113) = $1 +$3+$4 +7

l3($) = 173 +0

l4($)=$1+$2+$3+,6

l1($) =$2+$3+$4+7

l2(.’1:)= 332 +0

l3(.’B) = 333 +0

l4($)=$1+$2+$3+fi

l1(£E)=IL‘1+Oz

l2(a:)=:r1+x3+a:4+7

l3($)=$1+l‘2+$4+,3

l4(:r) = 234 + a

46

L3($) =

L5($) =

L7($) =

r
-
—
—
’
\
—
—
—
-
\
/
—
—
—
’
\
—
—
‘
/
—
—
’
h
—
-
—
\
r
—
—
—
’
¥
—
—
-
—
.

l1(:1:)== z1+a

l2($)=$1+$3+$4 +5

[3(2) = 2:3 +0:

l4(£L‘)=.’L‘1+$2+I3+’7

l1(:1:) =$2+z3+x4+fl

l2(:r) = 2:2 + (1

13(2): 273 + a

l4($)=$1+$2+$3+7

l1(a:)=a:1+a

l2($)=$1+$3+x4+fi

l3(:1.‘) =$1+$2+x4+7

14(2): :54 + Oz

l1($)=$2+$3+$4+5

l2(:l:)=a:2+a

l3($)=x1+xg+x4+7

l4(:z:) = .734 + a



l1($)=$2+$3+$4+7 l1($)=$2+$3+$4+fi

lz($)=$2+a l2($)=$1+$3+$4 +7

1110(2)) = 141(2)) :

l3($)=$1+$2+$4+5 l3($)=$3+0

l4(a:) = x4 + 0: l4(:r) = $4 + a

and

l1($) = $2+$3+$4+7

12(w) =x1+x3 +x4 +fl

13(2) = $3 + a

l4(:r) = :34 + 0:.

Therefore, tracing one of the homotOpy paths of the classical linear homotopy in (4.2.4)

emanated from one of the linear subsystems of 62(2)) =4 0 in (mla, mgfi, m37) is sufficient

to generate all the corresponding solutions of P(x) = 0 in this group.

4.3 Numerical results

Numerical results on solving Noon-n systems by different homotopies are listed in Table

4.2. Recall that the difference between the total degree and the mixed volume of Noon-n

s stems is 2n. Total de ee, 3", paths need to be traced when the typical start systemY gr

Q(:r) = (q1(:r), . . .,qn(:r)) where

d

91(3) = “13311— b1:

Q1205) = anxg" '— bn
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with randomly chosen complex numbers a1, . . . ,an, b1, . . . , bn is used in the classical linear

homotopy

H(x,t) = (1 — t)Q(:I:) + tP(:r) = 0.

And twice of the mixed volume, 2 x (3" — 2n) , paths need to be traced when the polyhedral

homotOpy is applied. The table clearly shows that the classical linear homotopy with the

typical start system works better than polyhedral homotopy because much more paths

need to be followed as n gets larger for the polyhedral homotopy method. Moreover,

n2+3n—2

2

traced when a. proper start system as in (4.2.5) is assigned for the classical linear homotopy.

due to the symmetry of Noon-n systems, only homotopy paths need to be

This number is shown in the 3rd column on the table, it is much smaller than the mixed

volume. Apparently, solving Noon-n systems by choosing start system Q(:r) in (4.2.5)

leads in speed by a huge margin in finding all the isolated zeros of Noon-n systems.
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CPU time

System Mixed Volume # of paths

Polyhedral Typical Q(2:) Special Q(:r)

noon-10 59,029 64 5m128 1m27s 1.13

noon-11 177,125 76 23m27s 5m32s 1.4s

noon-12 531,417 89 1h28m008 27m29s 2.23

noon—13 1,594,297 103 7h02m103 3h7m10s 3. ls

noon-19 1,162,261,429 208 - - 18.53

noon-29 6.8630377E13 463 - - 2m103

noon-39 4.0525551E18 818 — - 16m488

noon-49 239299331323 1,273 - - 29m58s

noon-59 1.4130386E28 1,828 — - 1h11m395

noon-69 8.3438517E32 2,483 - - 2h16m59s

noon-79 4.9269609E37 3,238 - - 4h31m03s

noon—89 290932121342 4,093 - - 10h17m23s     
 

 
Table 4.2. Comparison of the polyhedral homotopy and the classical linear homotopy with

different start systems in solving Noon-n systems.
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CHAPTER 5

Generalized eigenvalue problem

By and large, polynomial system P(x) = (p1(a:), . . . , pn (1')) whose mixed volume is much

less than its total degree should be solved by the polyhedral homotopy method. However,

when certain m—homogeneous structure of the system is apparent, we may still choose

appropriate start systems 62(2) 2 0 in the classical linear homotopy so that the number

of homotopy paths that need to be traced matches the mixed volume of the system. In

such situations, the polyhedral homotopy method can no longer be beneficial in reducing

wasteful computations.

5.1 Generalized eigenvalue problem

Consider the generalized eigenvalue problem

Ax 2 A82:
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where

  

011 a12 ain

a21 $22 a2n

A:

“111 an2 arm

and

r 7

b11 b12 bln

b21 b22 b2n

B =

bnl bn2 bnn  
are n x n matrices. This problem is actually an n polynomial equations in n+1 variables

A,:I:1,...,:I:n:

/\(b11$1+“-+ b1n$n)-(a11$1+-”+ aln$n) = 0,

A(bn1$1+ ‘ ' ' + bnnmn)—(an1$1+ ' ' ' + 041711.11): 0.

We augment the system with a linear equation

c1231+~~+onzn+cn+1=0
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where C}, . . . , Gn+1 are randomly chosen complex numbers, yielding a polynomial system

of n + 1 equations in n + 1 variables

Mbu$1+m+ b1n$n)-(011$1+'°°+ ain$n)

(5.1.1)

A(b,,1:cl + - - - + bnnxn)—(an1x1 + - - - + annxn)

€1$1+"°+ 0n$n +Cn+1-

Proposition 5.1.1. The mixed volume of system (5.1.1) is 71.

To prove this proposition, we need to introduce the following fundamental lemmas.

Lemma 5.1.1. If 20,211,. . .,2n 6 IR" are aflinely independent, i.e., 21—20, 22—20, . . . ,2,,—

20 are linearly independent, then the volume of the convex hull of those points, denoted by

Voln(conv(z0, 2:1, . . . , 2n)), is

(.,_,0\

1 32—30

    (.,.-..)

Lemma 5.1.2. For a polynomial system P(x) = (p1(x), . . . ,pn(x)), let 51,” .,Sn be the

support of p1(x), . . . ,pn(x) respectively. If 31 = 52 = = Sn = S, then

M(S, . . . , S) = n! Voln(conv(S)).

Proof. The mixed volume of P(x) is the coefficient of the term Al x x An in the

homogeneous polynomial Voln(A1conv(Sl)+- --+/\nconv(Sn)) of degree n in A1, . . . , An.
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Since .9le2 = :5" :5, we have

Voln(A1conv(Sl) + -- - + /\nCOIlV(Sn))

=Voln(()\1 + - -- + An)conv(S'))

=(A1 + - - - + An)nVoln(conv(S))

=n!Voln(conv(S))/\1 x -- - x An + other terms.

Therefore,

M(S, . . . , S) = n! Voln(conv(S)).

E]

Proof of the proposition. Consider the system

W311$1+'°'+51n$n)-(&11$1+°“+ é1n$n) + 51n+1

(5.1.2)

’\(bn1$1+ ' ‘ ' + bnnmn) — (anlxl + ' ° ' + annxn) + Cinn+1

)‘(5n+llxl + ' ' ' + 5n+1n$n) + C1$1+m+ 0n$n + 0n+1

where (1,-j, bji, i = 1, . . . ,n, j = 1, . . . ,n + 1 are randomly chosen complex numbers. The

supports of all the polynomials of this system are the same. Taking n = 2 for instance,

the above system becomes

M511$1 + l312$2) — (a11$1 + 612$2) + (”113

M521$1 + 522$2) — (521$1 + 5.2ng) + €123 (5'1'3)

3(031271 + 032222) + C1131 + 021122 + C3

with variables A, 231 , and x2. We list the points in the support in descending lexicographic
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Figure 5.1. The convex hull of S for n = 3.

order, that is 21 >181. zo for 20, 21 E Z30 if the left-most nonzero entry of the vector 21 -—

zo is positive. Then S = $1 = 52 = $3 = {(0, 0, 0),(0, 0,1),(0,1,0),(1,0, 1),(1,1,0)} =

{7.0, 21, 22, 23, .24}. The graph of the convex hull of S is shown in Figure 5.1.

From Lemma 5.1.2, the mixed volume of system (5.1.3) is M(S, S, S) =

3!Vol3(conv(S)). To compute the volume of the convex hull of S, we divide conV3(S)

into two simplices: Q1 = conv{z0,z1,22, :43}, and Q2 = conv{z0,z2,z3,z4}. Graphically

it is clear from Figure 5.1,

Vol3(conv(S)) = Vol3(Q1) + Vol3(Q2).

For a proof of this equality, first note that Q1 and Q2 have three points 20, 2:2, z3 in

common and conv{zo, 22, 23} is a face for each. A normal of the face is v =- (1, 0, —1) since

(.,-1.) (.,-x.)

22—20 = 01 0 =1i+02+(—1)k-

(23—20) (101)    

54



Apparently, 21 and 24 lie on different sides of the face because

(21,v) x (24,v) = ((0,0,1),(1,0,-1)) x ((1,1,0),(1,0,—1))

=—1x1=—1<0.

Therefore, Q1 flQg = Q and conv(S) = Q1 U622, it follows that

V013(conv(S)) = Vol3(Q1) + Vol3(Q2).

On the other hand, 20, 21, 22, 23 are affinely independent. By Lemma 5.1.1

        

        

/ ,, _ ,0 ) l 0 0 1 )

1 1 1

V013(Q1)=§ 22—20 =§ O 1 0 :3?

K 23 — 20 J \ 1 0 1 j

K 22 — 20 \ K 0 1 0 \

1 1 1

V013(Q2) = 3’, 23 — 20 = g 1 0 1 = a,

K 24 — Zo ) K 1 l 0 )

thus,

2

Vol3(conv(S)) = 37.

And

M(S, S, S) = 3!V013(conv(S))= 3! x g = 2.

For the general system in (5.1.2), the variables are A, x1,x2, . . . ,xn. Listing the points

55



in the support in descending lexicographic order yields

5=&=&=m=nfl

={(0,0,...,0),en+1,en,...,e2,61+en+1,e1+en,..,,el+62}

= {20,21,22,...,22n}

where 20 = (0,0, . . . ,0), and

en+2_,- for i = 1, . . . ,n,

21' =

e1+ez(n+1)_,- for i=n+1,...,2n.

Similarly, conv(S) can be divided into n simplicies:

Q1 = conv{20,21, . . . , 2n+1}

Q2 = conv{20,22, . . . , 2n+2}

n = COHV{ZO,Zn1"" 22nl‘

These simplicies can intersect only at their faces and for each i = 1, . . . ,n,
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{ Zz' - 20 \ K 21' \

1 Zi+1 — 30 1 Z{+1

V01n+l(Qi) =m : =m

\ Zi+n - 30 j \ Zi+n /

K \ { en+2—i \

en+2—i .

C

_ 1 62 _ 1 2

_(n+1)! 81 +871“ _m en+1

K en+3—i

81 + en+2—i

/ \ ., l

l e, \

_ 1 o _ 1

_(n+1)! : _(n+1)!'

Ken+1 )  

Hence,

Voln+1(conv(S)) = n x

(n+1) (n+1)!’

and the mixed volume of system (5.1.2) is

 M(S, S, . . .,S) = (n +1)!Voln+1(conv(3))
='(n +1)! x (n n

Now, support S = (S1, . . . , Sn) of system (5.1.1) is a subset of the support S = (S, . . .,S)

of system (5.1.2), that is, S,- Q S for all i = 1, . . . ,n. Thus
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On the other hand, consider the system

Ax — ABx = 0

(5.1.4)

x1+x2+---+xn—n-—1=0

where

- .- ,- -_1

211 1 100-0 211 1

121 1 020-0 121 1

A=112 1X003 0X112 1

.111”'2. L000---n_ .111"'2l      
and B = I , the n x n identity matrix. For these specific matrices A and B, the ze-

ros of system (5.1.4) are (A, x1, x2,..., xn) = (1,2,1,1,...,1), (2,1,2,1,...,1), ...,

(n,1,1,1,...,2), that is, for i = 1,...,n, the first component of the ith zero is i, the

(i + 1)th component is 2 and all the others are 1. So the number of isolated zeros of system

(5.1.4) in (0')" is n, and therefore

M(Sl,...,§n) 2n.

So,
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5.2 A special start system for generalized eigenvalue

problem

The total degree of system (5.1.1) is 2", but the system has at most n isolated zeros. So

the system is deficient. If the classical linear homotopy is used to solve the problem, at

least 2" — n paths will be extraneous, representing huge wasteful computations. If the

polyhedral homotopy is applied, 2n paths need to be followed. But when 11 becomes

larger, finding all the mixed cells requires a big amount of computations . To alleviate

this problem, Li et al. [17] suggested the random product homotopy and proposed a more

efficient choice for the start system Q(x) = 0:

Q1($) = (A + 611)($1 + 012)

(12($) = (A + C21)($2 + 622)

Q($) = < 5 (5.2.5)

(171(37) = (A + 0n1)($n + 0112)

qn+1($) = €1$1+m+ onxn + 0n+1 
where qj’s i = 1,...,n,j = 1,2 and 6),, k =1,...,n+1 are randomly chosen complex

numbers. It is clear that Q(x) = 0 has exactly n isolated solutions. It is proved in [17]

that for this choice of Q(x) = 0, properties 0—2 hold for the linear homotopy

H(x,t) = (1 — t)Q(x) + tP(x) = 0.

Thus all the isolated solutions for the generalized eigenvalue problem can be found by

following n paths emanating from the solutions of Q(x) = 0.
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The generalized eigenvalue problem

Ax = ABx,

in particular the eigenvalue problem Ax = Ax, for B = I , has important applications in

many scientific areas. It is widely known that very efficient algorithms for matrix eigenvalue

problems, QR algorithm for Ax = Ax and Q2 algorithm for Ax = ABx, have been im-

plemented and asserted in the software package LAPACK [16]. However, as the size of the

matrix becomes larger, more computing resources are required. And a natural way to allo-

cate extra computing resources efficiently is to perform independent tasks simultaneously

in parallel. Since each isolated zero of a polynomial system is computed independently

of all the others in the homotopy continuation method, it provides a natural environment

for the parallelization. We have tested the parallel version of our homotopy algorithms on

generalized eigenvalue problem

Ax = ABx

with augmented linear equation

clxl+---+onxn+cn+1=0

where _ _

an 0.12 . . . “111

(121 022 . . . 0.2”

A =

an] an2 ann   
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and

  L . ..

are randomly chosen n x n matrices and c1, . . . , cn+1 are randomly chosen complex num-

bers for n = 100 and n = 200. We also tested the parallelization for eigenvalue problem,

i.e. B = I, the n x n identity matrix and A is a randomly chosen matrix. Our preliminary

numerical results are listed in Table 5.1. The speed-up ratio on the table represents the

ratio of the CPU time of a single processor to that of multiple processors. Almost perfect

speed-ups in the table illustrate the great potential in solving very large algebraic general-

ized eigenvalue problems in parallel by the homotopy continuation method in contrast to

highly serial QZ or QR algorithms.
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CPU time Speed-up ratio

n # of processors

Ax=ABx Ax=Ax Ax=ABx Ax=Ax

100 1 86.5 54.6 1 1

2 43.7 27.5 1.99 1.99

3 28.9 18.2 2.99 3

5 17.9 11.2 4.83 4.88

7 12.6 7.9 6.86 6.91

200 1 1795 1146 1 1

2 898 573 2 2

3 598 384 3 2.98

5 366 233 4.9 4.92

7 260 166 6.9 6.9       
Table 5.1. The parallel speed—up for solving generalized eigenvalue problem Ax = ABx and

eigenvalue problem Ax = Ax with n = 100 and n = 200.
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