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ABSTRACT

COMPUTATIONS OF FLOER HOMOLOGY AND GAUGE
THEORETIC INVARIANTS FOR MONTESINOS TWINS

By

Adam C. Knapp

I compute the Lagrangian Floer cohomology groups of certain tori in closed simply
connected symplectic 4-manifolds arising from Fintushel - Stern knot/link surgery. These
manifolds are usually not symplectically aspherical. As a result of the computation we
observe examples where HF(Lg) = HF(L;) and Lo and L, are smoothly and Lagrangian

isotopic but Lo, L; are not symplectically isotopic.
and

In [Gil82), C. Giller proposed an invariant of ribbon 2-knots in S* based on a “Conway cal-
culus” of crossing changes in a projection to R3. In certain cases, this invariant computes
the Alexander polynomial. Giller’s invariant is, however, a symmetric polynomial - which
the Alexander polynomial of a 2-knot need not be. After modifying a 2-knot into a Mon-
tesinos twin in a natural way, we show that Giller’s invariant is actually the Seiberg-Witten

invariant of the exterior of the twin, glued to the complement of a fiber in E(2).
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CHAPTER 1

Computations of Lagrangian Floer

Homology

1.1 Introduction

1.1.1 Symplectic Manifolds

An even dimensional manifold M?" together with a two form w is said to be symplectic if w
is a nondegenerate and closed. The condition of non-degeneracy is equivalent.to w"” being
a volume form on M. In particular, M must be oriented. The prototype of a symplectic
n
manifold is R%" given coordinates (z;,y;) and symplectic form wp = Z dz; A dy;.
For example, all orientable 2-manifolds are symplectic with sym;>=lelzctic forms equal to
their volume forms. In fact, Moser’s stability theorem gives us that, up to diffeomorphism,

symplectic forms w on closed 2-manifolds ¥ are determined entirely by / w.
p

Theorem 1.1.1 (Moser). Let M be a closed manifold with w; a smooth family of coho-
mologous symplectic forms. Then there is a family of diffeomorphisms ¢; : M — M so that

¢o = id and ¢} (w;) = wp.

From a manifold topologist’s point of view, symplectic manifolds are interesting due
to the fact that the symplectic structure has no local invariants. Hence, when we obtain
invariants of symplectic manifolds, we get information about the global topology of the

manifold. The statement of “no local invariants” is more precisely Darboux’s theorem:



Theorem 1.1.2 (Darboux). Every symplectic form w on M is locally diffeomorphic to the

standard form wg on R%".

A chart of such local diffeomorphisms is called a Darboux chart.

Not all manifolds admit a symplectic form. Consider a closed symplectic manifold M.
As w" is a volume form, it orients M and gives a non-zero class in the top dimensional
cohomology group H?"(M;R) = R. Thus w must represent a non-zero class in H 2(M;R)
in order for [w"] = [w]” to be non-zero. In particular, even dimensional spheres other than
52 cannot be symplectic.

On a closed 4-dimensional manifold X, once we pick an orientation [X] € Hy(X;Z) C
H4(X;R) we get a symmetric inner product @x on HQ(X;IR) by a- 3 = (a A B)([X]). Let
by and b_ be the dimensions of the maximal positive and negative definite subspaces for
this inner product, respectively. If X is to admit a symplectic form with this orientation,
we must have by > 1. Now, cP (the complex projective space CP? with the opposite
orientation), has Qep2 = (=1). Hence TP? does not admit a symplectic form with its given
orientation.

On the other hand, CP™ with its complex orientation, admits a symplectic form 7y, the
Fubini-Study form. In the local coordinates [29 : z; : --- : 2zi_1: 1 zi4y 1 -+ : 2,] We can
write

. n
To = %B(Tilog Zijzj
j=0
In particular, CP? is symplectic.

An almost complez structure on M?" is a bundle map J : TM — TM with J? = —I. If
M is symplectic, we say that w tames J if w(X, JX) > 0 for any nonzero tangent vector X.
A tame almost complex structure is said to be compatible with w if w(JX,JY) = w(X,Y).
If J is compatible with w, the symmetric 2-tensor g(X,Y) = w(X,JY) is a Riemannian
metric on M. The space of compatible almost complex structures is contractable and so
one can make sense of invariants that depend on an almost complex structure such as the
Chern classes ¢;(X) of a symplectic manifold (X,w).

A Kaihler manifold is a symplectic manifold (X,w) which admits an integrable almost

complex structure. That is, X has a set of complex charts with holomorphic transition



functions so that J corresponds to multiplication by ¢ = v/—1. Complex projective spaces
are Kahler as are all complex submanifolds of a Kahler manifold. In particular, smooth
projective subvarities of CP™ are Kahler.

A technique which can be applied to a Kéahler or symplectic manifold (X,w) is the blow
up at a point. This procedure replaces a point p € X with the projectivized tangent space to
p. The procedure results in another smooth manifold and can also be done in the algebraic
setting. In the 4-dimensional case, this is smoothly equivalent to connect summing X with
()

Suppose that we take a generic pencil of cubics on CP2. Then there are 9 points
common to each cubic. If we blow up at each of these 9 points, we get the manifold
EQ1) = (CPQ#QW2 which admits a holomorphic map E(1) — CP! where the fibers are
the cubics in CP2. Genericity of the pencil ensures that a generic fiber of this map will be
a smooth elliptic curve. Now, take two of these generic fibers, F}, F5. The n-fold branch
cover of E(1) along F}, F; is the manifold E(n). The manifolds E(n) also admit holomorphic
maps to CP! where the generic fiber is an elliptic curve and are examples of elliptic surfaces.

There are other prototypes of symplectic manifolds: Suppose that we have a manifold
X" with cotangent bundle T*¥. Take a coordinate chart z; : U — Ron U C X. Over
each point z in U, the differentials (dz;), form a basis of T, ¥ and give coordinate charts

(ziyy:) : T*U - R2. We can then form the canonical 1-form

n
Qcan = Zyidzi
i=1

W’}Iich is independent of the coordinates chosen. In this case the form wean = —dacan =
Z dr; Ady; is a symplectic form on T*X. These manifolds occur in Hamiltonian mechanics
\irvzl}ere the base is interpreted to be a configuration space and the fibers as momentum
coordinates.

Suppose that we are given two compact symplectic manifolds (X;,w;), (X2,ws) of the
same dimension each with a codimension 2 symplectic embedding of (Q,w¢). Assume that
Qi C X; has trivial normal bundle for each i. Then for each embedding of Q, we have the

symplectic neighborhood theorem:



Theorem 1.1.3 (Symplectic Neighborhood). Suppose that there is an isomorphism & :
v(Q1) — v(Q2) of symplectic normal bundles which covers a symplectomorphism ¢ : @; —
Q2. Then ¢ extends to a symplectomorphism 9 : N(Q;) — N(Q2) of tubular neighborhoods
so that dy = & along Q);.

As Q is codimension 2 in each Xj, the isomorphism type of the symplectic normal bundle
is determined by its first Chern class. We will be interested in the case where the dimension
of Xj is 4, where the Chern number is the same as the self intersection number of the surface
Q.

For each i, there are symplectic embeddings f; : Q@ x B?(e;) — X; so that ff(w;) =
w@ +dxr Ady. Suppose 0 < €; < € and let A(ey, €2) = B?(e3) \ B?(€1). There is an area and
orientation preserving map ¢ which exchanges the two components of dA(¢;, €2). Then we

form the fiber connected sum:

Xi#Xo=(X1\QuU(X1\Q)
Q 4

There are more general versions of this important construction in [Gom95] and in [MW94).
Our principal interest will be in gluing symplectic 4-manifolds along square zero symplectic
tori such as we find in elliptic surfaces.

Having constructed a number of symplectic manifolds with the above procedures, we
arrive at the question: How flexible is a symplectic structure w on a fixed manifold X? Or
rather, what does the space Symp(X,w) of diffeomorphisms of X which preserve w look
like?

Because it is non-degenerate, the symplectic form gives a bijection V — ¢(V)w between
vector fields and 1-forms on X. Suppose that V; is a time-dependant vector field on a sym-
plectic manifold (X,w). Cartan’s formula and dw = 0 gives Ly,w = ¢(X)dw + d («(V})w) =
d(¢(Vi)w). We say that V}; is a symplectic vector field if d(«(Vi)w) = 0. i.e. if the corre-
sponding 1-forms are closed. The flows of such time-dependant vector fields give elements
in the identity component of Symp(X,w).

A time dependant Hamiltonian vector field is a vector field Vi, such that «(Vy, )w = dH,;
for functions H; : X — R. i.e. the corresponding 1-forms are exact. The flows of such

vector fields are a subset of the symplectic diffeomorphisms and are called Hamiltonian



symplectomorphisms or Ham(X,w). If b;(X) = 0, then Ham(X,w) is the same as the
identity component of Symp(X,w) as all closed forms are also exact.

One of the natural, early conjectures concerning symplectic or Hamiltonian diffeomor-
phisms was that of Arnold, who conjectured that the number of fixed points of a Hamiltonian
diffeomorphism on X was always greater or equal to the rank of the singular homology of X.
If we restrict to the Hamiltonian diffeomorphisms generated by generic time-independant
vector fields this fact is comparatively easy. Hamiltonian vector fields Vy correspond to
smooth functions H : X — R, modulo constants. Generic smooth functions are Morse and
the Morse inequalities give that the number of critical points of H is at least as large as the
rank of the homology of X. Then since ¢(Vy)w = dH, Vg must be zero exactly when H has
a critical point. The general case is, of course, not this easy and was proved for symplectic
manifolds with m2 = 0 by A. Floer in [Flo87]. This result has been extended several times

by a number of authors.

1.1.2 Lagrangian submanifolds

A Lagrangian submanifold L of a symplectic manifold (M?",w) is a n-dimensional subman-
ifold of M such that w|y = 0. Some examples include RP™ C CP" and the graphs of
closed 1-forms within cotangent bundles with their canonical symplectic form. The closed
condition which defines Lagrangians suggests that they should be fairly rigid objects, and
this indeed seems to be the case. The question we seek to answer is: How rigid are they?

First, similar to symplectic submanifolds, Lagrangian submanifolds have “nice” neigh-

borhoods:

Theorem 1.1.4. Let (M,w) be a symplectic manifold and L C M a compact Lagrangian
submanifold. Then there exists a neighborhood N(Lg) C T*L of the zero section, a
neighborhood N(L) € M of L, and a diffeomorphism ¢ : N(Lg) — N(L) such that

¢*(w) = —dacan (where « is the canonical 1-form) and ¢|;, = id.

That is, Lagrangian submanifolds have neighborhoods which are symplectomorphic to
the zero sections of their cotangent bundles. Therefore, when we look to dimension 4, a

Lagrangian L is 2-dimensional and has self-intersection equal to —x(L). This has immediate



consequences, for example the only closed orientable Lagrangian submanifolds of R* are tori.
We will assume that we are in 4-dimensional symplectic manifolds unless otherwise
noted. We also require that Lagrangian submanifolds be orientable so that they represent
homology classes.
For a pair Lg,L; of Lagrangian submanifolds in a symplectic 4-manifold, there are

several types of isotopy that we may consider:
e Smooth isotopy.

e Lagrangian isotopy. Lo and L; are Lagrangian isotopic in X if there is an smooth

isotopy of Lo to L; through Lagrangians.

e Symplectic/Hamiltonian isotopy. These are Lagrangian isotopies of Ly to L; which ex-
tend to Symplectic/Hamiltonian isotopies of the ambient manifold X. These concepts

coincide when b;(X) = 0.

Let us consider the case of Lagrangian tori in RY. Consider R* = C2? and the unit
circle S! ¢ C. Then it is easy to verify that S x S ¢ C? is a Lagrangian torus. This
can be reinterpreted as a “spun knotted torus”. i.e. Take a knot K lying away from the
boundary in the half space R** and form S x K c (S!xR3*)/ ~ where (61, x1) ~ (82, z2) iff
T = T9 € OR?*. Now, (S! xR?**)/ ~= R and m;(R*\S! x K) = 7 (R3*\ K) = m(S3\ K).
Therefore, distinct knots K determine distinct isotopy types of “spun knotted tori” in R?.

In [Lut95], K. Luttinger showed that, out of these isotopy classes, only the spun unknot
can have a Lagrangian representative. His theorem is based on a kind of surgery which can
be performed on Lagrangian tori which we describe here. We know that a Lagrangian torus
L will have a trivial normal bundle since x(T?) = 0. Pick a trivialization of the normal
bundle, L x D?, so that L x {pt} is Lagrangian for all pt € D?. Such a trivialization is
canonical.

In fact, since these tori are nullhomologous, there is another trivialization of the normal
bundle coming from a push-off of the Lagrangian into the Seifert 3-manifold that it bounds.
For Lagrangian tori in R?, Luttinger shows that the framing coming from Lagrangian push-

offs and the nullhomologous framings coincide.



Suppose that L is a Lagrangian representative of a the isotopy class of the spin of
a knot K. Give L x D? coordinates =,y € R?/Z? on L and polar coordinates (r,6) on
D?. We can then write w = d(r(cos(278)dz + sin(276)dy)). The map Fy, n(z,y,7,0) =
(x + m8,y + nb, r, 6) preserves the restriction of w to (L x D?). Therefore, we can excise
L x D? and glue it back in using Fy, , for any m,n. Whenever the knot K is not the unknot,
nontrivial surgeries will result in manifolds with 7, nontrivial. However, there is a theorem

due to Gromov with a refinement due to McDuff, which says

Theorem 1.1.5 (Gromov, McDuff). If (X,w) is a symplectic 4-manifold which is symplec-
tomorphic to R* at infinity, then (X, w) is symplectomorphic to R* blown up finitely many

times.

Since Luttinger’s surgery only affects a compact region, this theorem holds. Therefore,
K could not have been nontrivial so there are no Lagrangian representatives of the isotopy
classes of spins of nontrivial knots.

Further restricting the isotopy classes of Lagrangians, Eliashberg and Polterovich showed
in [EP96] that a Lagrangian R? in R* which is asymptotic to a Lagrangian plane at infinity is
Hamiltonian isotopic to the planar embedding. This rules out the idea that you could have
potentially chosen a Darboux chart centered at a point in the Lagrangian and performed a
local knotting operation. i.e. a connect sum of a 2-knot in S*.

Another result from Eliashberg and Polterovich ([EP93]) shows that if L is a Lagrangian
sphere or torus embedded in T* L, if L is homotopic to the zero section then it is smoothly
isotopic to the zero section.

The previous three results each speak of topological unknottedness of Lagrangians.
Things become more subtle when the symplectic invariants come into play. For exam-
ple, in [EP97] Eliashberg and Polterovich gave examples of Lagrangian tori in R* which are
Lagrangian isotopic but not Hamiltonian isotopic. These examples require the introduction
of the Maslov class. Suppose that we have a loop v on a Lagrangian L C X with a trivial-
ization of T X over 7. If X is simply connected (or if [y] = 1 € m;(X)), such a trialization
may be given by fixing a disc D which 4 bounds and trivializing the pullback of TX over

D. Then the Maslov class u(7y) is a winding number of the Lagrangian planes T'L around



v relative to this trivialization. For a general manifold, this may only be well defined up
to adding of spheres S to D which changes the Maslov class by ¢;(X) - S. However, R? is
contractable so this issue is immaterial here. It is elementary to see that u gives a homo-
morphism H;(L) — Z and so can be thought of as an element of H'(L;Z). It is also easy
to see that u is a Lagrangian isotopy invariant.

Now, thinking of R* as T*R?, we have the canonical 1-form c. Let f : T? — R? give
the embedding of L. We call f*a € H!(T?) the symplectic area class of L. The torus L is

monotone if f*a = Au for A € R*. Consider the following Lagrangian tori in R* & C2:
2a 2b
Lop = {(21,22) €C?||a| ==, |z = —}
™ 3

The Lo, are monotone while L, with a # b are not. Clearly any L,p and L. g4 are La-
grangian isotopic and so have the same Maslov classes. They must have different symplectic
area classes then — which are invariants of Hamiltonian isotopy. Thus these Lagrangian
tori are smoothly isotopic through Lagrangians, but are not isotopic by Hamiltonian diffeo-
morphisms.

We can also look at Lagrangian tori in closed symplectic 4-manifolds and manifolds
with nontrivial topology. The construction which we use for our theorem is originally due
to Vidussi in [Vid06]. It will be described more throughly later. Roughly, however the
construction starts with the Fintushel-Stern knot surgery manifolds. That is, a fibered
knot K in S* is chosen and zero surgery on that knot is performed to get S3(K). Then
with m a meridian,

E@k=E@2) # S'xSiK)
F=S1xm

is a symplectic manifold. Vidussi pointed out that loops on the fiber of K cross S! corre-
spond to Lagrangian tori. He showed that there are an infinite number of these Lagrangian
tori which are smoothly nonisotopic inside F(2)x by computing relative Seiberg-Witten
invariants and showing that the degrees go to infinity.

In the related paper [FS04], Fintushel and Stern defined an integer valued smooth invari-
ant (extracted from the relative Seiberg-Witten invariants) of the same sort of Lagrangian
tori, distinguishing the smooth isotopy class of an infinite family. In fact, the tori in ques-

tion are nullhomologous and hence have a Lagrangian push-off and Seifert pushoff framing.



Unlike in R*, where Luttinger proved that the two coincide, Fintushel-Stern’s integer in-
variant detects the difference between the two and is shown to take an infinite number of
values.

The previous two results can be interpreted as stating that Lagrangians may be smoothly
knotted - without giving any symplectic results. To get such results, a new tool is needed.
This is Lagrangian Floer Homology, introduced by Floer in [F1o88]. The original purpose of
Lagrangian Floer homology was to answer a variant of Arnold’s conjecture. The variant of
the conjecture in question is this: Suppose that L C X is a Lagrangian submanifold of the
symplectic manifold (X,w). Then given a Hamiltonian diffeomorphism ¢ on X so that L
and ¢(L) are transverse, |LN¢(L)| is at least as large as the rank of the singular homology

of L.

1.1.3 Lagrangian Floer Homology

Floer’s solution to Arnold’s (Lagrangian) conjecture is an invariant of Lagrangian subman-
ifolds, now called Lagrangian Floer Homology, which is well defined up to Hamiltonian
isotopy. We will now sketch a basic “User’s Guide” to the construction.

Suppose that (X,w, J) is a symplectic manifold together with an almost complex struc-
ture and that L C X is a compact Lagrangian submanifold of X. Let ¢ be a Hamiltonian
diffeomorphism of X so that L and ¢(L) intersect transversely. Then L and ¢(L) will
intersect in a finite number of points. Define the chain group

CFLL)= @ Zu
reLng(L)
With this definition in mind, we can see that any homology built out of this chain group
will have at least as many generators as there are points of L N ¢(L). Thus, once a set of
invariant homology groups are built, its rank will give a lower bound on |L N ¢(L)|.

Consider the moduli space M(z,y) of maps @ of the infinite strip S = {z € C| 0 <

R(z) <1} to X such that

e lim 4(z)=zand lim a(z2) =y,
3(z) o0 ( ) O el t( )=y

e 4(0+1iy) C L and a(1 + iy) C ¢(L), and



e 4 is J-holomorphic. i.e. with Jp the standard complex structure on C, Jodu = duoJy

The first two conditions define what we refer to as a “topological Floer disc” connecting z
and y. Together with the third we define a “Floer disc” connecting z and y. There is a
free R-action on M(z,y) given by precomposing with a reparameterization of the infinite
strip r : £ + iy — x + i(y + r). Also, we can consider maps u from the unit ball around zero
D? ¢ C by a conformal map S — D?\ {£i} which sends (D% N {R(z) < 0}) \ {#i} to
{0 + iyly € R} and (8D N {R(2) > 0}) \ {£i} to {1 +iyly € R}.

Homotopy classes of topological Floer discs form a space mo(X, L) that has an action
of m(X) on it. These split M(z,y) into sets of connected components divided by their
homotopy class. For a moment, assume that m5(X) = 0. Then for a generic choice of J,
M(z,y) is a smooth orientable manifold of dimension u(z,y) where p(z,y) a Maslov class
defined as follows: Take a topological disc in the (unique) homotopy class connecting
and y. Trivialize the (pullback of the) tangent bundle of X over this disc. Then u(z,y) is
the winding number of T*L and T*¢(L) with respect to this trivialization. A more precise
definition can be found in [RS93].

When m(X,L) # 0, we must specify the homotopy class in order to define u(z,y).
If Dy, D, are two such homotopy classes with [8D;] = [0D3] € m1(L), then Dy — Dy is a

element of mo(X). It is elementary to compute that up, (z,y) — pp,(z,y) = e1(X)[D1— Dy].

Define
0z= Y #(Min)/Ry
yeLng(L)
u(z,y) =1

where # (M(z,y)/R) is the point count modulo 2 of the 0-dimensional space. Compactness
arguments show that this sum is finite.

Gromov showed in [Gro85] that when bounds on symplectic energy (integral of the
symplectic form over the surface) are satisfied, the spaces M(r,y) can be compactified
by adding in configurations of nodal curves to the boundary. There are three types of
degeneration, which in a high dimensional moduli space may each happen together and/or

more than once:

e Breaking into trajectories. i.e. A Floer disc from z to z may degenerate into a Floer

10



disc from z to y and one from y to z.

e Bubble sphere off interior. i.e. A Floer disc D; from r to y may degenerate into

another Floer disc D, from z to y plus a J-holomorphic sphere S. In this case,

1D, (2,y) = pp, + c1(X)[S].

o Bubble disc off boundary. i.e. A Floer disc D, from z to y may degenerate into another

Floer disc D5 from z to y plus a J-holomorphic disc D3 with boundary entirely on L

or ¢(L).

As J-holomorphic curves are necessarily symplectic, any non-constant J-holomorphic

spheres S or J-holomorphic discs D with boundary on L have / w, / w > 0. There-
s Jp
fore, when mo(X,L) =0 or / W|xy(x,L) = 0 there are no non-constant spheres or discs with

boundaries entirely on one Lagrangian. For a moment assume that / Wlmy(x,L) = 0.

Now, for 9 to be a differential, we must have 8% = 0. With the assumption that
/ W|ny(x,2) = 0, the boundary of a compactified 1-dimensional moduli space M(z,z)/R
of Floer discs consists only of products of zero dimensional moduli spaces M(z,y)/R x

M(y,z)/R for y € LN ¢(L). Then we compute,

Fz = Y S #(MG)/R) 4 (M(y,2)/R) 2
zeLng¢(l) ye LN¢(L)
w(y,z) =1 wz,y) =1

_ 3 # (0(M(z,2)/R)) z
ze LNn¢(L)
p(r,z) =2

which is zero as M(z, z) /R is a 1-dimensional space and so has an even number of boundary
components. Thus 8% = 0.

Floer showed that his homology is a Hamiltonian isotopy invariant and independent
of almost complex structure by continuation. Suppose that we have two generic almost
complex structures Jp, J;. Then the chain group CF(L,$(L)) has two differentials 8y, 9y
each defined as above but counting Jyp- and J;-holomorphic Floer discs respectively. As the

space of almost complex structures is contractable, there is a path .J; connecting Jy and J;.
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Now define

So(z)= Y, Mz,
ye Ln¢(L)
u(z,y) =0

a map from (CF(L,(L)),81) to (CF(L,¢(L)),8). Here, M(z,y) is a zero dimensional
moduli space of Floer discs where the almost complex structures vary. That is, maps @ of

the infinite strip S = {z € C| 0 < R(z) < 1} to X such that

li u(z) =z and li w(z) =y,
og(zx)x_r_l‘oou(z) T an g(z)lgl_oou(z) y

e 4(0+ty) C L and @(1 + iy) C ¢(L), and
e 4 has

— Jo o di = diio Juq over points z with I(2) <0,
— Jyodi = dit o Jyuq over points z with 3(z) > 1, and

— Jyodi = dit o Jyq over points z with J(z) =t € {0,1],
where Jgq is the standard almost complex structure on C.

Note that there is no R-action on M(z, y) defined this way so when M (z,y) is 0-dimensional,
it need not be empty.

To prove that &g; is a chain map, and thus induces a map on homology, we must
show that 9g o®g; — ®g; 0 8; = 0. This is accomplished by describing the boundary of the
compactification M(z, z) of M(z,2) when pu(z,z) = 1. In this case W is compact,
one dimensional and so modulo two the count of points in its boundary is zero.

In this setup, Gromov compactness means that elements of M(:t, z) will degenerate into

two types of curves in the limit:

e Jp-holomorphic Floer discs in M(z,y) with u(z,y) = 1 and elements of M(y, z) with

u(y,z) =0

¢ Elements of M(z.y) with u(r,y) = 0 and J;-holomorphic Floer discs in M(y, z) with

n(y,z) = 1.
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These configurations are exactly those counted by 99 o®o; and ®p; 0 9; respectively. There-
fore, as |8m| =0 mod 2, dgoPg; — Pg1 091 =0 mod 2. So Pg; is a chain map.

Now we describe why ®; is well defined (on homology) independent of the path J;.
Suppose that we had two paths J;, J; interpolating between Jo, J;. We then get two map
@01, Py, We wish to show that they are chain homotopic. That is, there is a map H on
CF(L,$(L)) for which ®p; — &y, = —H 89 — 8; H. Take a homotopy J,; so that Jo; = J;
and Jy; = J; and define

Hz)= > M@y
ye Lng(L)
}L(I, y) =-1

where M(x,y) is the space of maps % from [0,1] x iR C C with

li i(z) = d 1 i(z) =y,
og(zl)rgwtt(z) T an g(z)lzl_oou(z) Yy

e (0 +7y) C L and u(1 + iy) C ¢(L), and
e U has

— Jp odit = dit o Jgq over points z with J(2) <0,
— Jy odtt = dit 0 Jq over points z with 3(z) > 1, and

— Jgt o dit = dii o Jgq over points z = s + it with (z) =t € [0,1],
where Jgq is the standard almost complex structure on C.

With pu(z,y) = —1, M(z,y) is a compact manifold of dimension 0.

The statement &g — &y, = —Hp—0; H then follows by viewing oy — og; +
H 8o+ 61 H as counting elements of the boundary of the 1-dimensional space M(z, z),
u(zr,z) =0.

Now ®p; is an isomorphism on homology as a result of the invariance result we have
just discussed. In particular, consider the map ®;9 o ®o;. This can be thought of as being
given by a homotopy of J; to itself. We have invariance under such moves so ®90 &) = I
and the converse. Hence, @611 = &0 so P10 and ¢, are isomorphisms.

A set of similar arguments can be made to show that Lagrangian Floer homology is

independent of Hamiltonian isotopy. The reader should note that the assumptions on / w
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on mo(X, L) made for the purposes of the discussion are in some places necessary for the
sketch as stated. This is because, without said assumption, the boundaries of moduli spaces
considered may contain other configurations of curves. While some boundary configurations,
like that of bubbled-off spheres S with non-negative ¢;(X) - S, can be dealt with via largely
algebraic constructions, (see [HS95] for the relevant idea of Novikov homology done in
the symplectic Floer homology setting) bubbles on the boundary pose more fundamental
problems. For our own theorem, we will show non-existence of these problem configurations.

The property of Lagrangian Floer homology which proves the Lagrangian Arnold conjec-
ture is that, on small time flows of 1-parameter Hamiltonians, there is a bijection between
Floer discs and gradient flows of a Morse function on the Lagrangian. This means that
Lagrangian Floer homology is isomorphic to the standard Morse homology. Invariance
of Lagrangian Floer homology then gives us the desired result for any Hamiltonian flow.
(Remember that all of this is only the case when / Wlny(x,L) = 0)

We say Lo, L) have clean intersection if their intersection is a embedded submanifold
and T(LoN L) = TLo NTL,. The result of PoZniak in [PoZ94] was a chain homotopy
between the Morse complex of the clean intersection and the Lagrangian Floer complex
with differential restricted to counting intersections and Floer discs in a neighborhood of the
clean intersection. i.e. the local Floer homology HF (L, $(L);U) Where U is a neighborhood
of the clean intersection. PoZniak’s result is used in key places in both our own work and
the work of Seidel described below.

When / w and ¢; restricted to mo(X, L) are nontrivial, we may have problems as in
the boundary, moduli spaces may have different curve configurations than we have specified
previously. This can be remedied by restricting to Lagrangians and spaces which are “nice”
in the sense that all the above constructions work.

When Lagrangian Floer homology is defined but / w is nontrivial, we have the phe-
nomena of so called “quantum corrections”, i.e. pseudoholomorphic discs which contribute
to 0 and have large energy even for small time Hamiltonian isotopies. In the presence of
quantum corrections, HF(L,$(L)) may not be isomorphic to H.(L;Z,). In fact, quantum

corrections give higher order differentials computing HF(L, (L)) from a chain complex
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starting at the sum of local Floer homologies, @ HF(L,¢(L); N(S)) where S is a
ScLna(L)
connected component of L N ¢(L) and N(S) is a tubular neighborhood of S.

We now have an invariant sensitive enough to distinguish non-Hamiltonianly isotopic
Lagrangian submanifolds. In [Sei99], Seidel uses Lagrangian Floer homology to distinguish
an infinite family of smoothly isotopic but symplectically nonisotopic Lagrangian spheres
in an exact symplectic 4-manifold. He extended this result in [Sei00] to certain embeddings
of these examples into K3 and Enriques surfaces. Seidel’s computation uses the “Morse-
Bott” spectral sequence for clean intersections of Lagrangians from [PoZ94] to compute
these Lagrangian Floer homologies. We now describe his construction.

Suppose there is a Lagrangian 2-sphere, L, in X.
T*S?% = {(u,v) € R3 x R3 | (u,v) =0, ||v]| = 1}

with w = £3_, du; A dv; (restricted to T*S2. The function h(u,v) = ||u|| induces a Hamil-

tonian circle action on T*S?\ S2

or(u,v) = (cos(t)u — sin(t)||ul||v, cos(t)v + sin(t)ﬂz—“>

Then o, extends to the antipodal map while for t € (0,27) \ 7, the map does not extend to
the zero section. Seidel describes this as the normalized geodesic flow for the round metric
on S? as it transports each (co)tangent vector along the corresponding geodesic at unit
speed.

Letting 7 : R — R be such that r(—t) = r(t) — t and when t > 0, r(t) = 0. Then letting
H = roh, we get a Hamiltonian flow ¢; = 0,(jju)(%,v). Then as 7'(0) = —;-, the 27 map
can be extended over the zero section as the antipodal map. We then get the symplectic

diffeomorphism

_ Tomrr(flull) (¥, v) ifu#0
7(u,v) { (0, —v) ifu=0

which is compactly supported and called a Dehn twist. As 7 is compactly supported, it ex-

tends to a symplectomorphism 77, of X which is the identity outside a tubular neighborhood
of L. The action of 77, on Hy(X) is

(tL)s(x) =z + (z- L)L
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and since L? = —2, (7)), has trivial square. In fact, as a smooth map 7} is isotopic to the
identity.

Now let X be a linear plumbing of three T*S?s, Ly, Lo, L3 so that Ly N Ly = pty,
Ly N L3 = pty, with pty,pte antipodal, and Ly N L3 = @. Then ¢;(X) and wx are both
nullhomologous. Consider the sequence of Lagrangian S%s LT = T%:(Ll). As 72 is smoothly
isotopic to the identity, each LT is smoothly isotopic.

In the symplectic world, consider the intersections LT N L. By hypothesis, LyN Lz =@
so we must have HF(L;,L3) = 0. As X is a plumbing, L; and L; intersect so that, in the
tubular neighborhood N(L3) in which the support of 1124 lies, Ly N N(L) is a normal disc.
By the description previously, we can then see that the image ng(Ll N N(L2)) projects
to a double cover N(Ly) — Lo. As pty,pts are antipodal, they are each other’s conjugate
locus with the round metric. Thus ‘rf2 (Ly N N(Ly)) intersects the fiber over pt; in an S’
so L} N L3 = S'. Moreover, this is a clean intersection - TL} N TL3 = T(L} N L3).

By similar argument, LT N L3 is a clean intersection that consists of n copies of S 1
Pozniak’s result then gives us the E; page of a spectral sequence converging to HF (LT, L3):
E; = H,(S';Z,)®". Seidel then proves that

Theorem 1.1.6 (Seidel). HF(Ly,L3) =0 and HF(L}, L3) # 0

by showing that, due to large (> 2) differences in Maslov class of discs connecting the
components of L} N L3, at least one term of the spectral sequence does not vanish. Thus L
and LT are Hamiltonianly isotopic. In fact, all L] and L] are Hamiltonianly non-isotopic for
2s
2

r > s, as we can pull back via 777 and see that L; and L]™° are Hamiltonianly non-isotopic.

1.2 Construction

Vidussi’s symplectic version of the Fintushel-Stern link surgery can be described as follows:
Consider My, a 3 manifold obtained from zero surgery on a nontrivial fibered m component
link L in S® with a fibration 7 : M, — S!'. Choose metrics on My and S! appropriately so
that the fibration map 7 is harmonic. (Without loss of generality assume that the metric
on S! gives it volume 1.) Then S! x My, has a symplectic form w = df A dm + *3dm. Here

6 is a coordinate on S' and *3dr indicates the pullback of *dm in M, via the projection
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S x M, — M. The form w is closed since 7 is harmonic and nondegenerate since L
is fibered. If m; are meridians to the components K; of L, then S! x m is a symplectic
torus of square zero. Let X; be symplectic 4-manifolds each with a symplectic torus F; of
square zero and tubular neighborhood N(F;). Suppose that m1(X; \ N(F;)) = 0, then the
symplectic fiber sum

XL = Sl X ML # X,-
i=1,....m
F.=Sl><m,~

is simply connected and symplectic. Symplectic and Lagrangian submanifolds of each X;
and of S' x M which do not intersect the F; = S' x m; remain so under this process.
(We also note that on each link component the choice of meridian m; does not matter since
isotopies of m; induce deformation equivalences of symplectic structures on X7.)

Let v be a loop on a fiber of m. Then with the specified symplectic form, L., = St x v
is a Lagrangian torus in S' x Mg. When « and the m; are disjoint, L., is also naturally
a Lagrangian torus in X. It is this class of Lagrangian tori which we will be considering
here.

There is one more observation of note. In the 3-manifold M/, there is a natural con-
struction of a vector field 1, namely the vector field uniquely determined by ¢(u)(*dm) =0
and 7*(dvolgi)(u) = 1. By construction, the time t flow of u preserves the fibers of T,
moving them in the forward monodromy direction. Thus the time 1 flow of u on M|, gives
the monodromy map when restricted to a fiber of . If we extend u to a vector field on
S! x My, which we also call , then we note that ¢(u)w is a closed, but not exact 1-form.
Thus we get a 1-parameter family of symplectomorphisms ¢; on S! x M}, which are not
Hamiltonian.

Consider the action of ¢; on our Lagrangian torus L,. Whent ¢ Z, ¢;(L,)NLy =0
as vy is moved to a disjoint fiber. However, when t € Z it is possible that ¢;(L,) and L,
intersect. Further, when the monodromy is of finite order, we can find a good choice of
meridian m so that the symplectic isotopies of L., to its iterates under the monodromy stay

away from the S x m;. These symplectic isotopies survive as Lagrangian isotopies in X.
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1.3 Calculation of Floer Cohomology

We use the variant of Lagrangian Floer cohomology over the universal Novikov ring A
in [FOOO]. In this theory, the construction of the Floer cohomology groups is defined
when certain obstruction classes vanish. These classes. count pseudoholomorphic discs with
boundary on the Lagrangians. The following lemmas show that we are in the situation

where these classes vanish and serve to compute the homology.

Lemma 1.3.1. Suppose (S! x My, w) is as above and that the link L is nontrivially fibered
in the sense that the genus of the fiber is at least 1. Then S x M, contains no pseudoholo-
morphic spheres. Further, suppose that «;, ¢ = 0,1, are loops on a fiber of # which meet
transversely in exactly one point and let L; = L,,. Then all pseudoholomorphic discs in

S x My, with boundary on Lo or on L; are constant and there are no nonconstant Floer

discs for Lo, L;.

Note that we cannot extend this lemma to say that there are no pseudoholomorphic

representatives of m(S! x My, LoU L;). We see such a counterexample in Section 1.4.

Proof of Lemma 1.3.1. As was assumed, M, is a fibration over S! with fiber ¥, of genus
g > 1 and projection 7. As [yo]-[71] = £1 in the homology of the fiber no nonzero multiples
of the two may be homologous. Thus they represent distinct infinite order elements of
71(Zg,70 N 1) for which no powers i, j # 0 give [10]' = [11)’. By considering the universal
abelian cover £y x R, we see that m;(%,) injects into m1(M]) by the inclusion of a fiber.
Then the subgroups generated by vp,7; intersect trivially in 7y (M, v N 71).

Since the genus of the fiber g > 1, m(My) = 0 and thus mo(S? x ML) = 0. Now consider

the exact sequence
0 = my(S! x My) —>ma(St x M, L;) —>=m (S x ;) ——>m1(S? x My)

It follows that mo(S' x My, L;) = ker(i) = 0 by our assumptions on 7;. Therefore, the
homomorphism / w on my(S! x My, L;) given by choosing a representative and integrating
the pullback of w over the disc is the zero homomorphism.

Let Q(Lo,L;) denote the space of paths 6 : ([0,1],0,1) — (S! x M, Lo.L;) and

Q0(Lo, L1) be that subset whose members are homotopic to a point. As Lo N L; is con-
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nected, Qo(Lo, L) is also connected. Let ig,%; be the inclusions of Lo and L; into S Ly M
respectively. There is an evaluation map p : Qo(Lo, L1) — Lo x Ly, p(6) = (6(0),8(1)).
This is a Serre fibration whose fiber is homotopy equivalent to Qo(S! x My, ). Thus

(P~ (80, 61)) = mry1 (St x Mp) and there is the exact sequence

i i1
(S x Mp) —=m1(Q0(Lo, L1)) £=>m1(Lo) x m1(L1) =y (ST x M)
0 ——m(Q(Lo, L1)) ———72 x 22 ———Z x m (ML)

For the last map, the sequence is exact in the sense that
im(p,) = ker(io, - i7,') = {(a,b) € m1(Lo) x m1(L1) | iou(a) - (14(b)) " =€}

Then 71 (Q0(Lo, L1)) = ker (ios - il__l). Since the v; are nontrivial and nontorsion each ig., 21+
is individually injective on m. So the kernel of iy, - il_,‘1 depends only on the intersection
of the images of ip. and ¢, in Z x m(ML). Then as we know ‘the subgroups generated by
Y0, 71 in w1 (ML) intersect trivially, we see that m(Q0(Lo, L)) = Z.

Consider D? as the unit disc in C and let 9, = dD?*N{z € C | Rz > 0} and 9_ =
dD? N {2 € C | Rz < 0}. Consider A as the annulus {z € C | 1 < |z| < 2} with boundary
components J;=; and J);)—p. We may represent elements of m1(Q9(Lo, L1)) as maps of
the annulus (A, 0);|=2,0|;)=1) into (S' x My, Lo,Ly). As with mo(S* x My, L;) there is a
homomorphism on 7 (£2(Lo, L1)) which we shall call / w which is given by integrating the
pullback of w over (in this case) the annulus. We now show / w on 7 (Qo(Lo, Ly)) is the
zero homomorphism.

To see this, consider a certain generator for m;(€9(Lo, L;)) = Z represented by a map
u: (A, 0;)=2,0):=1) = (S x My, Lo, Ly) for which u(A) € LoN L, and 0)2=1,0)z)=2 both
map to * the generator of (Lo N L)) = Z. Clearly /u'w = 0. Then /w = 0 on
m1(Q(Lo, Ly)). !

If we have topological Floer disc, that is, a map
w: (D% 0_,8,) — (S' x My, Lo, Ly),

then the images of +i lie in LoNL,. As LoNL, = S! is connected, we can connect the images

of +i by an arc v : ([——g,%] {—g}, {g}) — (Lo N Ly, u(—1),u(i)). There are, of course,
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two ways of doing this but that will be immaterial. Then define @ : (A, §;j=2,9|:j=1) —
(S! x My, Lo, L) by

u

(2) = uo¢g ifRz<0
T v6) ifRz>0,z=re?,-F <0<

(S E]

Where ¢ is a diffeomorphism from the interior of D = AN{z € C | Rz < 0} to the interior of
D? whose extension to the boundary takes DN 0)z|=2 to 0-, DN ;= to 8y, the part of D
lying on the positive imaginary axis to ¢ and the part of D lying on the negative imaginary
axis to —1.

Then /ft'w = / u*w. Now, @ defines an element of m($2(Lo, L1)) so / v'w =
A D2 D2

@'w = 0. Thus as all nonconstant pseudoholomorphic curves have positive symplectic
A
area, there are no nonconstant Floer discs.

a

Lemma 1.3.2. Suppose that the Lagrangian tori L; = S x +; meet in an S in (S' x My, w)
as in Lemma 1.3.1. Let m; be meridians to each component K; of L each away from the
vi and (X;,wx,) be a collection of symplectic 4-manifolds each containing an embedded
symplectic torus F; of square zero. Then, given any bound on energy E, there exists an
almost complex structure on the fiber sum manifold X; (which on each side of the fiber
sum is sufficiently close to one for which the F; and S! x m; are pseudoholomorphic) for
which all (perturbed) pseudoholomorphic discs in X with boundary on Lg or on L; and

all Floer discs for Lo, L; have energy greater than E.

Note that if J; is a loop of almost complex structures, starting at a J as described,
which is contained within a small neighborhood of J, then J;-pseudoholomorphic strips
(Floer discs) can be considered as solutions to the perturbed pseudoholomorphic curve

equations.

Proof of Lemma 1.3.2. In [IP04], Ionel and Parker construct a 6 dimensional symplectic
manifold Z with a map to D? so that over A € D?\ {0} the fiber is the symplectic sum
X, and over 0 the fiber is the singular manifold S! x Ay, U Xi. Each fiber X » is

i=1,...,m
F,=S'xm;
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canonically symplectomorphic to S! x My \ N(S! x m;) 0 Xi\ N(F;) away from the fiber
sum region. =

Further, the almost-complex structure Jz on Z is chosen so that in the singular fiber
XL0, S! x m; is a pseudoholomorphic torus and so that the restriction of Jz to each fiber
is an almost complex structure. (The singular fiber is pseudoholomorphic in the sense that
each inclusion of X and S! x M, is pseudoholomorphic.)

Suppose that + is a smooth embedded path in D? which passes through zero and that
{An} o — 0 with A, € 7\ {0}. Since the L; are disjoint from the fiber sum region, there are
Lagrangian submanifolds L; in Z for which in every fiber X », above A, LinX L, = Lin
which is mapped to L; under the canonical identification.

Suppose that we have a family of pseudoholomorphic discs ,, in X, ,, that have bound-
ary in L; for each n and have energy bounded by E. Then by Gromov compactness for
pseudoholomorphic curves with Lagrangian boundary conditions, this sequence has a sub-
sequence which converges to a pseudoholomorphic curve @ with image in the singular fiber
Xro = St x MU ,~=1,_",',,, X; and boundary on L;o = L;. The domain C of @ is then a
collection of sphereg :rfdx(;:;cs

We next state Lemma 3.4 of [[P03] within our context. Note that here, v is a perturba-

tion of the 8; operator. (We suppress the perturbation elsewhere.)

Lemma 1 (Ionel,Parker). Suppose that C is a smooth connected curve and f : C — S x M,
is a (J,v)-holomorphic map that intersects S! x m at a point p = f(z9) € S! x m. Then

either
1. f(C) c S! x m; for some i or

2. there is an integer d > 0 and a nonzero ag € C so that in local holomorphic coordinates

centered at p

f(2,2) = (p' + O(|2]), apz? + O(|2|*+1))

where O(|z|*) denotes a function which vanishes to order k at z = 0.

We note that no irreducible component of % is mapped entirely into any S x m; as there

are no nonconstant holomorphic maps of spheres into tori and all discs have boundary on
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L; away from each S' x m;. Part (2) of the lemma shows us that on each component of
the domain, & meets the F; as algebraic curves do. Thus we know that @ intersects each
S! x m; at a finite number of points and that the image of each spherical or disc component
of the domain of @& will lie entirely in one of the X; or.in S x M.
Then our map 4 splits into two pseudoholomorphic maps @, : (C;,8C;) — (St x My, L;)
and iy : Cy — H Xi. Here C = C1UC, with C) a collection of spheres and discs and Cy
i

a (possibly empty) collection of spheres so that C; N Cy C 47! (0 St x m,~> are nodes of
c. i=1

Thus we have obtained i;, a pseudoholomorphic curve in S' x My with boundary on
L;. By our Lemma 1.3.1 this map must be constant. Thus the image of 4, is in L; disjoint
from the fiber sum region. Then since the images of iy and #; are connected, i must have
empty domain. Therefore, 4 is constant.

This implies that for A sufficiently small, all of the discs £,, must have been contained in
S! x My, disjoint from the fiber sum region. Therefore by Lemma 1.3.1, they were constant
in the nonsingular fiber sum. Let ) be one such value. Then picking J equal to the
fiber-wise almost complex structure Jy» on Xy, y/, we have the desired result.

The proof follows identically if we consider pseudoholomorphic Floer discs for Lg, L;.

a

Theorem 1.3.3. Let Lagrangian tori Ly = S x ; in (S! x M, w) meet in a S! as in

Lemma 1.3.1. Then
HFs1,p, (Lo, Lo) 2 HF 1,01, (L1, L) = H*(T*) @ A

and

HFsipr, (Lo, L1) = H*(SY) ® A

Corollary 1.3.4. The Lagrangian tori L; = S' x v; are not Hamiltonian isotopic in (St x

Mp,w).
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Proof of Theorem 1.3.3. We begin by computing HF(Lo,Lp). Since we have found in

Lemma 1.3.1 that m5(S! x My, Lo) = 0, we have that
HF(Lo,Lo) = H*(T*) ® A

as in Floer’s original work [Flo88]. Similarly, HF(Ly,L;) = H *(T? ® A.

Now we consider HF (Lo, L1). As Lo, L intersect cleanly, Proposition 3.4.6 of [Poz94]
implies that in some neighborhood N(Lo N L) of Ly N L, the Floer complex and Morse
complex for some Morse function f : Lo N L; — R coincide. This allows us to consider a
slight modification of the action spectral sequence of [FOOO].

The universal Novikov ring A can be written as the ring of formal sums Z a;THe™

1

with
1. ;¢ Randn; € Z

2. for each A* € R, #{i|l\ < X"} < >

Here the T* parameter will be used to keep track of the action of a pseudoholomorphic
disc. The formula degT?e™ = 2n determines a grading on A and we denote by A* the
homogeneous degree k part.

An R* filtration on A is given by

FA\ = {Zaﬂ'T*aem | A > ,\}
i
We can then get a Z filtration by picking some A* € R* and setting FIA = F9'A. The

homogeneous elements of level g are then gr,(FA) = FIN/FIHIA.

Then as in Theorem 6.13 of [FOOO] we have a spectral sequence EP*? with
E}? =@ H* (Lo L1;Q) @ gr (AP
k

Thus E; = H*(S') ® A. We now want to see that all higher order differentials vanish.
Recall that in Lemma 1.3.1 we showed that w|r,(s1xa;,LouL,) = 0. Since the Hamiltonian
perturbation may be chosen to be very small so that the local curves are of area less than
A*, Lemma 1.3.1 shows that we have found all of the discs to be counted. Therefore, there

are no higher order differentials and

HF(Lo,L1) = H*(SHY® A
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In [Che98], Chekanov showed that when the Hofer energy of a Hamiltonian symplecto-
morphism is less than the minimum symplectic area of pseudoholomorphic sphere or disc
with boundary on a Lagrangian, a modified Lagrangian Floer homology can be computed
which has rank equal to the rank of the singular homology. The Hofer norm of a Hamiltonian

function H : [0,1] x P — R on a symplectic manifold P is defined as

1
Hj| = H(s,r) - min H ds.
[|H| /0 (Irnea];( (s,7) min (s,r)) s
This extends to a definition of Hofer energy of a Hamiltonian symplectomorphism ¢ by

E(¢) = inf {||H|| | ¢ is the time 1 flow of H}

Theorem 1.3.5. For all E > 0, let X, be the fiber sum of S! x My, and the X;, L; the
image of S! x 7; in the fiber sum with v as in 1.3.1, J as found in Lemma 1.3.2, and ¢
a Hamiltonian symplectomorphism which has Hofer energy less than E. Then, supposing
that for each L;, the Maslov class u : mo(Xp,L;) — Z takes only even values, in the fiber

sum manifold X,
HFx, (Lo, Lo:J,¢) = HFx, (L1, L1;J,¢) = H*(T?) ® Ag
where Ag is the truncated Novikov ring A/FEA.
Note that this version of Lagrangian Floer homology is not invariant under change of ¢

to a Hamiltonian with larger Hofer energy.

Corollary 1.3.6. Under the conditions of Theorem 1.3.5, the Lagrangian tori L; = S x ;

are not Hamiltonianly isotopic in X.

In section 1.4, We give examples which are Lagrangian isotopic. As these examples are

in simply connected X, we may strengthen the corollary to exclude symplectic isotopies.

Proof of Corollary 1.3.6. From Theorem 1.3.5 we see that for any energy bound E on ¢,
HF(L;,L;);J,$) has 4 generators so #L; N ¢(L;) > 4 for any Hamiltonian symplectomor-

phism of energy at most E. Also, there is a Hamiltonian isotopy which is given by smoothly
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extending a perfect Morse function on S! = LyN L; to be constant outside a neighborhood
of Lo N L;. Letting one of the L; flow by this Hamiltonian, we get a pair of Lagrangians

with two intersection points. Therefore, Ly and L; cannot be Hamiltonian isotopic. a

Proof of Theorem 1.3.5. This is proved using the same methods as in the previous theorem.
Lemma 1.3.2 ensures that the obstructions to defining a small perturbation Lagrangian
Floer cohomology on the L; C X vanish and we make make the following local (in J
and H) computation: Using the action spectral sequence for HF(Lg, Ly) we see that Ey =
H*(T?) ® Ap. By Lemma 1.3.2, we see that all the higher order differentials vanish for a
small perturbation as all flow lines either have already been counted via d; or are of energy
higher than E and thus die in Ag. (This can be seen by Lemma 6 of [Che98]) In this case,
the calculation of HF(Lg, Ly) goes through as in the case of Theorem 1.3.3 and we find
that HF (Lo, Lo; J, ¢) = H*(T?) ® Ag. Similarly, we get HF(Ly, L1; Jmé) = H*(T?) ® Ag.

Now we show that the computed groups are invariant under the Hofer energy hypothesis.
Invariance is guaranteed as long as in 1-parameter families, there are no discs with boundary
on Lo, L, of index —1 which bubble off.Our restriction on the Maslov class ensures that there
are no index —1 discs which appear in the boundary of 1-parameter families. Thus there
is a continuation isomorphism and we have a well defined invariant of (energy bounded)

Hamiltonian isotopy in X .

1.4 Example

If we let L be the union of the right-hand trefoil knot K; and one of its meridians Ky, the
loops 71,72,73 in Figure 1.1 are all freely smoothly isotopic in M}, and meet transversely
pairwise.! We select the fibration m : My — S! so that the Seifert surface containing 7;
shown in Figure 1.1 is the fiber. The smooth isotopies of v; and 42 to a common curve
are shown in Figures 1.4 and 1.5. In each of these figures going from (1) to (2) involves

sliding over the O-surgery on the meridian, going from (2) to (3) is an isotopy. To relate

"Though they are freely isotopic, the proof of Lemma 1.3.1 shows that they are not equal in m i.e. fixing
a basepoint.
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Figure1.1. 74,1 =1,2,31i ing pairwise tr ly (within the fiber) in single points

the end results we have the additional move of “twisting up the corkscrew” which takes the
curves each (3) to the other. Note that this smooth isotopy is different than the Lagrangian
isotopy which we will mention later.

Since the v; are smoothly isotopic, the Lagrangian tori L; = S x v; are smoothly
isotopic. As Lagrangians do not have canonical orientations we neglect the orientations of
the loops here.

Addressing the comment made after Lemma 1.3.1, we note that we can choose the
almost complex structure J so that the Seifert surface ¥ (a T?) is pseudoholomorphic.
Then choosing any pair 7;,7; (i # j), £\ (7:U~;) is a disc. This is however, not a Floer
disc as it does not satisfy the correct boundary conditions.

For the left and right handed trefoils, the monodromy is of order 6 and in the basis A, B

shown in Figure 1.2 is given by the matrix

i L |

-1 0
On the (positive/negative) Hopf link the monodromy is a (positive/negative) Dehn twist
about a curve parallel to the components. The connect sum of fibered links is fibered with

monodromy which splits around the connect sum region.

From this computation of monodromy, we see that 4, is + the 2nd and 5th image of
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Figure 1.2. Basis for monodromy on trefoil

~1 under the monodromy map and that 43 is + the 1st and 4th image of ;. Finally, v, is
sent to —v; under the third iteration of the monodromy. Thus, as the monodromy gives a
symplectic isotopy (c.f. Section 1.2) in S! x M, the tori Ly, Ly, L3 are all symplectically
isotopic. In X they are all Lagrangian isotopic as the fiber sum is taken away from the
isotopy. Despite the existence of these symplectic isotopies in S* x M}, Theorem 1.3.3
shows that the L; = S! x 4; are not Hamiltonian isotopic there.

Now we consider how Theorem 1.3.5 applies. That all the hypotheses of the theorem
are satisfied, except that on the Maslov class, is clear. With the following lemma we see
that the remaining condition is satisfied. Then Theorem 1.3.5 shows that the L; are not
symplectically isotopic in X,

Lemma 1.4.1. For the Lagrangian tori L;, we may choose X; = F(1), and the particular

identification of F; and S! x m; so that pr, 2 m2(Xp,Li) — Z is even.

Proof. As L is a two component link with odd linking number, X, is a homotopy E(2) and
thus is spin. See [FS98|. In fact E(2)r is E(2)Trefoil- We shall write F(2)r := X. For such
a 4-manifold, the first Chern class is an even multiple of the fiber.

Note that uy, factors through mo(E(2)r, L;) — Ha(E(2)r,L;). As Hi(E(2)r) = 0, the
Meyer-Vietoris sequence gives that the group Ho(E(2)r,L;) is generated by elements of

Hy(E(2)1)/ (L) and relative classes with boundary spanning H;(L;). The Maslov index of
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a class B8, pur,(8), B € Ho(E(2)k, L;), will change by an even amount whenever an element
of Hy(E(2)L)/ (Li) is added as ¢1(E(2)r) is divisible by 2. Thus if we can find a pair of
relative discs whose boundaries generate H;(L;) and whose Maslov indices are even, we
have shown that u is even.

For i = 1,2, we will choose the identification of F; and S! x m; so that
1. pt x m; is identified with a vanishing cycle on F; and

2. S! x pt is identified with the sum of two vanishing cycles on F; whose boundaries

meet once, transversely, in F;.

Because m(E(1) \ F;) = 1, we may select an elliptic fibration on E(1) with nodal fibers
having vanishing cycles a and b where a,b generate 7, (F;). With the decomposition F; =

a x b, identify a with pt xm and a+ b with § 1 x pt. This gives us the desired identification

—

2SR

Figure 1.3. An isotope of v; bounding meridians to K; and K3

of F; and S! x m;.

\

Each of the v; bounds a four times punctured disc Do, in M} where three punctures
are meridians of K; and one is a meridian to K. See Figure 1.3. By our choice of fiber
sum gluing, each meridian of K; bounds a vanishing disc on its E(1) side of the fiber
sum. Similarly, the meridian to K3 bounds a vanishing disc on its E(1) side of the fiber

sum. Take three copies of the vanishing disc Dy, Dy, D3 from the E(1) fiber summed to
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S! x m; and one vanishing disc Dy of from the E(1) fiber summed to S x m9 and form
D., = Dy, UDyUDyUD3U Dy.

Each v;’s Lagrangian framing relative to that induced by trivializing over D.,; is —2 and
is given by a pushoff in the Seifert surface. See [FS04]. The framing coming from this disc
isthen -1 -1-1-1-(-2) = -2 and gives us p,(D,,) = —-2.

By our choice of gluing, the S' x pt C L; is bounded by a pair of vanishing discs. This
pair of vanishing discs intersects at one point on F' and so can be smoothed to a disc Dg1
with relative framing —2. For this loop the framing defect from the torus is 0 (given by
pushoff in the monodromy direction) and so pur,(Dgiyp) = —2.

Thus we have found a basis on which u is even, hence u is even.

a

This example generalizes to similar links with K; = T, 9,41 where we find many La-

grangian but not symplectically isotopic tori.
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CHAPTER 2

Gauge-theoretic Invariants of

Twins

2.1 Introduction

A 2-knot K is an embedded S? in S*. We say that K is unknotted when it bounds a D3.
In contrast to the classical case of embedded S's in S3, 2-knots display many pathologies;
including that their exteriors need not be K(m,1)s and that the homeomorphism type of
the knot exterior does not determine the knot’s isotopy class. For instance, see [AC59)])
and [Gor76]. From a gauge theoretical perspective, 2-knots are uncomfortable to deal
with as their exteriors are homology S' x D3s and even after the surgery which replaces
N(K) = 8% x D? with D® x S!, we obtain homology S' x S3s. With by = 0 for these
manifolds, current tools for smooth 4-manifolds offer little help.

On the other hand, the natural generalizations of gadgets like the Alexander
ideal/polynomial can be computed for 2-knots. In [Gil82], C. Giller proposed a defini-
tion and method of computation for an invariant we will call Ag. The proposed invariant
is derived from the projection of 2-knots to R® and for a certain class of 2-knots is known to
compute the Alexander polynomial. This is a result of the proposed invariant obeying a re-
lation similar to Conway’s for computing the Alexander polynomial for classical knots. The

relation, which we discuss more thoroughly in section 2.1.8, always results in a symmetric
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polynomial. However, the Alexander polynomial of a 2-knot need not be symmetrizable.
For example, the example given in Figure 2.7 has Alexander polynomial A4 = 1 — 2t while
Giller’s polynomial is Ag =t72 — 1 + t2.

Further complicating matters is that Giller’s polynomial is not actually known to be an
invariant. If instead of 2-knots, we look at “twins” in S*, we have objects to which standard
gauge-theoretic methods can be applied. It is in this context we see that Giller’s polynomial

computes, in the relevant cases, the Seiberg-Witten invariant of the exterior of the twin.

2.1.1 Twins

In [Mon83] and [Mon84], José Maria Montesinos introduced the concept of a twin in S*.
Such an object consists of two embedded S%s which meet exactly twice, transversely. As
the second homology of S* is trivial, these intersection points have opposite orientations.
By “standard twins”, I will mean that both S?s bound embedded B3s and that the exterior
of the pair is T2 x D?. In general, the exterior of such a twin is only a homology T? x D?
with boundary T3.

Standard twins may be described as follows: Take a 3-ball B3 in R®. Form the space
(S x B3)/ ~ with (8o, o) ~ (61, z1) iff zo = z; € AB3. This space is S*. Then consider the
image of {1} x B* and the S! x z-axis under ~. Call these Sj, S, respectively. S; bounds
{1} x B? and if we take S! times the half plane {y = 0,z > 0} then after quotienting by ~
we get a B3 which S, bounds. Also we can see that the exterior of these twins is S! times
the exterior of the z-axis in B3 — i.e. S! x (S! x D?) = T? x D?. See Figure 2.1.

In fact, all twins in S* have as their exterior a homology T2 x D? with T2 boundary.

As m2(SO(2)) is trivial, an orientation on an S? C S* determines a trivialization
N(S?) = §% x D?. Thus, for a S? ¢ §%, all framings are equivalent to the Seifert framing.
Fix orientations on the 2-spheres, K}, K2, in a twin Tw and consider N (Tw) = T3. Take a
simple closed curve 7y on the twin passing through the intersection points of K;, K2 and lift
it to ON(Tw) using the framings. All such v are isotopic on the twin and as each K; has a
single framing, this lift is canonical. This decomposes N (Tw) = v x T? The boundaries of
normal discs D?, D3 to K, K complete the decomposition to give 9N (Tw) = yxdD? xdD3.

With this decomposition in mind, we define a standard surgery a twin Tw in S*: form
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Figure 2.1. Spin to get standard twins

S4(Tw) = (S*\ Tw) L(.g(T2 x D?) where ¢ : T3 — T3 identifies #D? and . Up to isotopy,
any two such ¢ differ by a diffeomorphism T2 x pt — T? x pt. Since any such map extends
over T? x D?, the resulting manifold only depends on the embedding of the twin. Also,
H.(S*(Tw);Z) = H,(T? x S?;Z) so that the core T? of the surgery is identified with

T? x pt C T? x S? as a homology class.

2.1.2 Definition of the invariant for twins

Let F be a fiber in an elliptic fibration of the K3 surface, £(2). Then N(F) comes with
a trivialization N(F) = D? x T? from the fibration map which induces N(F) = 8D? x
F. Taking a twin Tw C S*, we also have a decomposition ON(Tw) = v x T2. Fix an

identification of this T2 and F' and using an orientation reversing diffcomorphism between

dD? and «y we obtain an identification ¢ of &(E(2) \ N(F)) and 8(S*\ Tw). Form
E(2)1w == (E(2) \ N(F)) g(S“ \ Tw).

Although the resultant manifold may depend on the precise choice of ¢, we will omit the
distinction. As my(E(2)\N(F)) = 0 and the image of 7;(T2) normally generates 7, (S*\Tw),
E(2)Tw is simply connected.

This procedure may also be thought of as the generalized fiber sum of E(2) and S*(Tw)
along F and the core T2 of the surgered twin. As such, we will sometimes write E(2)Ty as
E(2) # S%(Tw).

F=T?
The invariant of the twin Tw which we will consider will be the Seiberg-Witten invariant

of E(2)w. i.e.
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Definition 2.1.1. I(Tw) := SW(E(2)Tw) thought of as an element of the group ring
Z|Hy(E(2); Z).

Precisely, SW(E(2)tw) lives in Z [H2(E(2)tw;Z)] and we identify H2(E(2)Tw) with
H>(E(2)) by a homomorphism which extends the identity map on Ha(E(2)1w \ (S*\Tw)) —
Hy(E(2) \ F). While E(2)Tw may depend on the choice of the gluing map ¢, the
Seiberg-Witten invariant does not. This is due to the gluing formulas in [MMS97].
The invariant is well defined up to a sign which depends on a homology orientation of
Ho(E(2)) @ det H (E(2)) ® Hi(E(2))

As standard twins Tw,;q have exterior equal to T2 x D?, the gluing map ¢ extends over

* the interior so E(2)1y,,, = E(2) and
I(Twgq) = SW(E(2)) = 1. (2.1)

Now suppose that we have a twin Tw and a disjoint torus T in S%. T has a canonical
framing given by pushing off into its Seifert manifold. Thus we can form the self fiber
sum §* (Tw) ‘# , where Ty, is the core of the standard surgery on Tw with its default
framing. ThZ:;Znifold is well defined with a choice of an identification of TF,, and T.
Again, any choice of identification will have the same Seiberg-Witten polynomial. Then
form E(2)tw T = E(2) #’ (54(']I‘W)T # T) with Tg,, a pushoff of Tty. Now, E(2)1w T

=T}, Tw=

is a homology E(2) # with F,F’ elliptic fibers and SW(E(2) # ) = (t —t™!)? with
F=F' F=F'
t = exp([F]). This is a result of the gluing theorems of [MMS97]. We define

Definition 2.1.2. I(Tw,T) := (t — t~!)"!SW(E(2)1w.r) thought of as a element of the
group ring Z [H2(E(2);Z)).

2.1.3 Construction of Knotted twins

We will, of course, want to consider twins other than the standard ones. There are several

techniques we will consider.

Construction 2.1.3 (Connect sum). Take Kp, a knotted S$%? and a twin Tw = K; UK,

in S*. Then, selecting one of the spheres K; in the twin, we form the connected sum
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(S*# 8%, Ko # K) at some point away from the 2 double points of the twins. (This con-

struction is not independent of the choice of K;, K7 in Tw in general.)

If we take Tw to be the standard twins, then this construction s independent of the
choice of S%s and provides a handy method for studying 2-knots via twins. This inde-
pendence is due to the existence of a orientation preserving diffeomorphism p of S* which
interchanges Kj, K7 in standard twins. The diffeomorphism p is constructed as follows:
View S* as N (']I‘wstd)UT2 x D?. Define p on N(Twgy) to be the obvious map which

interchanges K; and Ky. Then p induces the map

010
1 00
0 01

on ON(Twgq) = T? x dD? = T? under the basis for H,(T3) given by BD?“,@D?Q, and
BD%Z where apg is the boundary of the normal bundle to S. This map then extends over
T2 x D? giving p on S

Construction 2.1.4 (Artin Spin). In the construction in the introduction, if we replace the
z-axis with a knotted arc, K, meeting OB at the north and south poles, the procedure

gives us a twin Twy whose complement is S x (§3\ K) with
K = K U{the international date line of #B%}

and consists of a unknotted sphere (the image of B?) and an Artin spun knot (the image

of K). This spinning construction is originally due to Artin in [Art26].

When the standard twin surgery is performed on twins formed by Artin spinning K, the
result is the manifold S! x S3(K). (Where S3(K) is the result of zero surgery on K C S3.)
This case is identical to the knot surgery considered by Fintushel and Stern in [FS98] and

so we have

Theorem 2.1.5 (Fintushel,Stern). I(Twg) = Ag(t?) where Ag(t?) is the symmetrized

Alexander polynomial of K and t = exp([F]).

Construction 2.1.6 (Twist Spin). As before, take a knotted arc K; in B® with boundary on

the north and south poles. For each § € S! = R/27Z we take the image of K rotated by nf
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radians. Then in S' x B® we have an annulus formed by the rotated K;s. This descends
to a knotted S?, K5, in S* = S! x B3/ ~ which together with the image of {#} x dB3,
forms a twin. We call K, the n-twist spin of K, and write Ko = 7" K and Tw,ng, for the

associated twin.

This comes from Zeeman, who in [Zee65], showed that the n-twist spin of a knot was
not isotopic to any 2-knot obtained by Artin spinning when n > 1. The n = 1 case is

interesting in that the 1-twist spin, K5 is unknotted independently of choice of K.

Construction 2.1.7 (Roll Spin). Similar to the twist spin, this construction involves a de-
formation of a knotted arc K in B® fixing the north and south poles which returns the
arc to the starting point. Take a international date line of B3 union K; and push it into
B3\ K so that it is null homologous. Call this K;. Then consider the 1-parameter family
of diffeomorphisms given by pushing a base point z n times along K;. This gives us a
diffeomorphism of the quadruple (B3,8B3, K, x) which is the identity on all but the first
component. Proceed as before and quotient S! x B3 by ~ to get K to be the image of the
K, in each {6} x B3. We call K5 the n-roll spin of K; and write Ky = p" Ky and Twpng,

for the associated twin.

This idea is due to Fox who, in [Fox66], showed that, for K = 4, the knotted 2-sphere
K3 coming from the deformed arc is not isotopic to any n-twist spun knot. In this case, the
1-roll spin had a corresponding visualization of the motion of K; in B® which explains why
“roll” was chosen to describe this. I duplicate the rolling move in Figure 2.2.

Note that both twist and roll spinning can be described in terms of certain diffeomor-
phisms of B which keep B> and K, fixed identically. With this in mind, we now consider

their mutual generalization, Deform spinning;:

Construction 2.1.8 (Deform Spin). Let g be a self diffeomorphism of B® keeping B3, K
and a base point r fixed identically. Then the mapping torus of g is S* x B3 = ([0,1] x
B?)/((0,2)~(1,g(x))) with an embedded annulus K, which is the quotient of I x K;. Then
after quotienting by ~ as before, we have a knotted 2-sphere K5, the image of K"g, which
together with the image of {6} x OB3, forms a twin. We write K, = gK; and Tw,, for

the twin pair. The isotopy class of Ko and of Twyk, is determined solely by the isotopy
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Figure 2.2. Fox’s Roll Spin
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class of g.

This construction was introduced by Litherland in [Lit79]. Diffeomorphisms such as g
are called “deformations” and form a group D(K)) of deformations modulo isotopy. D(K})
is isomorphic to the group Auts(m(S®\ K))) of automorphisms of 7;(S% \ K) preserving
some fixed peripheral subgroup. In this setup we find that 7 corresponds to conjugation by

the meridian of K; and p corresponds to conjugation by the longitude of K;. Then

Lemma 2.1.9 (Litherland). If K,
e is not a torus knot, D(Ky) = Z, @ Z,,.

e is a torus knot, D(K) =& Z, and 77p = id.

2.1.4 Ribbon Knots and Twins

We say that a 2-knot K is ribbon if it is formed by the following construction: Let D = 1p3
(bases), B = 1ID? x I (bands) each be embedded in R* with (8D) N B = 1ID? x +1.
If a band intersects a base elsewhere, (D? x (-1,1)) N D*® = D? x ¢, t € (-1,1) and
(D? x (—1,1)) N (8D*) = P. The second type of intersection is called a ribbon intersection
of K or ribbon singularity of DU B. Then
K = (8D \ IID? x +1) U(L1I(8D?) x I)
in 9B

is a ribbon knot with ribbon presentation given by DU B. We can define ribbon surfaces
of arbitrary genus in the same manner.

Suppose that we have a twin Tw = K; U K for which the K; are ribbon. Then for each

K; we have a set of bases D; and bands B;. We will say that Tw is ribbon if
e BiNBy=9

e DiNBy =1ID? x t, t € (—1,1) with (8D;) N D? x (—1,1) = @ for each band in B,

(ribbon intersection)

e DynNBy =1D? xt, t e (~1,1) with (9D2) N D? x (—1,1) = @ for each band in B,

(ribbon intersection)
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e D, N Dy = 2D%. More specifically, D; and Dy meet only in two balls D!, D! from
each and at these intersections (corresponding to the intersection points K; N K3), we

have the following local model:
Di = {(z1,22) € C? | Rzp < 1,92 = 0} C C?,

D) = {(21,22) € C?* | R2; < 1,92, = 0} C C?,

So that taking the boundary of each gives us the cone of the positive Hopf link. The
1, Dy case is the same but with orientations reversed on Dj, giving us a negative

Hopf link cone boundary.

In this case we say that Tw is a ribbon twin.

It is known that of the deform spun knots, only the Artin and 1-twist spun knots are
ribbon. Artin spun twins are also ribbon. It is not known to the author if 1-twist spun
twins are ribbon (and suspected not to be the case). All other deform spun twins are not
ribbon.

There are several operations which will be useful to perform on ribbon presentations.
Addition of a trivial base/band pair, sliding the disc to which a band attaches (band slide),
and moving a ribbon intersection along a base/band sequence (band pass) are shown in
Figure 2.3 and together with isotopy generate stable equivalence of ribbon presentations.
Clearly stable equivalence of ribbon presentations generates isotopies of the corresponding
ribbon knot but the converse also holds — isotopic ribbon knots have stably equivalent
ribbon presentations. For a proof of this, see [Mar92].

It will occasionally be easier to deal with simplified ribbon presentations. Let I' =
I'(D, B) be the graph which has vertices corresponding to bases and edges given by bands,
connected in the natural way. It is clear that b (I') (thought of as a cell complex) is the
genus of the ribbon surface specified by the ribbon presentation. Restrict ourselves to the
case where the ribbon surface is a sphere or torus. Suppose that I" has a vertex z of valence
3 or greater. Then one of the outgoing edges of £ has a path, never returning to z, which
ends at a vertex y which has only one incoming edge. Perform the band slide corresponding

to this path to get a new ribbon presentation I'' with the same set of bases. In I', the
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Figure 2.3. A) Trivial addition/deletion B) Band slide C) Band pass

valence of x has decreased by 1 and the valence of y is now 2. Continue this procedure until
we arrive at a graph I' (and corresponding ribbon presentation) for which each vertex has
valence at most 2. Then, as cell complexes, I isAeit.her an interval or an S! as the ribbon
surface is a S? or a torus. We will call such ribbon presentations linear.

Consider the connect sum of a ribbon 2-knot Ky with standard twins Tw = K; U K.
Standard twins have a simple ribbon presentation given by two bases and a band each.
(Each base is for one of the twin intersection points.) Stabilize the band in K by switching
it for two bands and a base. Then the connect sum Ky # K is formed by taking Ko and
K eachin a D?® and adding a band from an endpoint base D’ of Ky to the “middle” base of
K. Then sliding the band from the “middle” base of Ky to the © along Kj'’s linear ribbon
presentation to the other endpoint base, we get a linear ribbon presentation of Ky # K,

which has the twin intersection bases as its endpoints.

2.1.5 Projections

In the study of classical knots in R3, their generic projections to R? together with crossing
information completely determine their isotopy type and have proved extremely useful.
Projections are also quite useful for twins and surfaces in R* = §% \ pt.

Giller proves in [Gil82] that projections of surfaces in R* to R® with only double and

triple points exist and are generic. In these generic projections, the double points either
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exist in families which are either simple closed curves or embedded open intervals whose
closed endpoints are triple points. See Figure 2.4. In the same paper, he gives methods
of decorating these projections with over/middle/under crossing information and a way of
determining if an arbitrary set of crossing information gives a lift of such an immersion of

a surface in R? to an embedding in R?.

Figure 2.4. Local models for a family of double points and a triple point

We will only consider those knots and twins which admit a projection which contain no
triple points. Not all twins or surfaces have such a projection and those that do are said
to be simply knotted. First examples of simply knotted 2-knots include Artin spun knots
and ribbon 2-knots. For Artin spun knots, we can get a projection with no triple points
by doing the same spinning construction (one dimension down) to the projection (to R?)
of the original, classical knot. This creates an S's worth of double points for each crossing
in the classical knot’s projection. We will call a twin Tw = K; U K5 simply knotted if both
K; are simply knotted and pairwise have no triple points.

Ribbon knots have embedded projections away from the ribbon singularities — the
intersections of the interiors of bands with interiors of the bases. (This is in contrast with
ribbon 1-knots, for the which projections of bands may have crossings. The analogous
situation here is an under/over crossing of the whole band — which does not result in
a crossing in the projection.) Nearby the ribbon singularities, we have projections which
appear as in Figure 2.5. It was proved in [Yaj64] that all simply knotted S2s are ribbon.

When we have a S! family of double points, we have local neighborhoods around each
which appear as in the first picture in Figure 2.4. This gives the neighborhood of the family
the structure of an bundle over S*, possibly with nontrivial monodromy. As the surfaces in
R* are orientable and the two preimages of the double points are separated, the monodromy
must be trivial. This means that, local to the S! family of double points, the projection is
that of a classical knot crossing times S?.

Then, for a simply knotted projection of a (oriented) surface in R*, it is sufficient to

label one of the surfaces as being over crossing at each family of double points. We will use
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Figure 2.5. A projection of the neighborhood of a ribbon singularity (shaded disc) and the
corresponding two S's of double points.

“4+” to denote this.

Figure 2.6. A sphere and a torus with crossing information.

For a twin, a few additional pieces of information are needed. We need to keep track of
the two intersection points of the spheres. In §4, the neighborhood of each is diffeomorphic
to the cone on a positive or negative Hopf link. Then the (undecorated) projection of
such a neighborhood appears as does a neighborhood of double points. We decorate the
projection with a solid dot to indicate the intersection point of the S%s and + signs to
indicate over/under crossings on the double point arcs which emanate. We switch from

over to under at the intersection of the spheres in twins. See Figure 2.8

43



Figure 2.7. A 2-knot with Alexander polynomial 1 — 2¢ and Giller polynomial Ag =
t2 1412
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Figure 2.8. The projection of the neighborhood of the intersection of spheres in a twin. To
the left, the vertical plane crosses above and to the right, the horizontal does.

2.1.6 Virtual knot presentation

In [Sat00], Satoh showed how to represent ribbon surfaces of genus 0 and 1 in R* by means
of virtual knots/links. For our purposes, a virtual knot (or link) is a diagram in R? of
embedded, oriented arcs which end either at “crossings” as in the (top) first two pictures in
Figure 2.9 or at endpoints as in the (top) third picture. Each such diagram corresponds to
a collection of immersed surfaces in R® by replacing each of the crossings and endpoints in
Figure 2.9 with the corresponding surfaces in R® under them. These are then connected via
tubes parallel to the embedded arcs. Thus, any virtual link corresponds to the projection,
with crossing information, of a collection of ribbon 2-spheres and tori in R*.

Conversely, linear ribbon presentations of knots correspond to virtual knots. Take a
projection of K ¢ R* — R3 having only double points at ribbon singularities. For each
band in the linear ribbon presentation, consider the image of its core in R® extended to
the center of the bases to which the band attaches. This gives an immersed (at ribbon
singularities) arc K in R3. Taking a generic projection R> — R? we get an arc K immersed

in R? with two kinds of singularities:
e double points of the projection K ¢ R* - R? > K and

e projections of immersion points K < R3.
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Q40210 Q1[0

Figure 2.9. Correspondence of crossings in virtual knots to crossings in projections of
surfaces to R?

Each of the first kind of double point corresponds to a virtual crossing. For the second kind
of crossing we must first consider a diversion about orientations.

The endpoints of K each correspond to a base with only one band attached — here, K
locally consists of the discs D, Dy. With a fixed orientation on K, we orient the boundary
of the D; with the outward normal. We then say that the endpoint of K is out/in as the
boundary orientation on the Dj; is counterclockwise or clockwise, respectively (when D; is
orientation-preserving identified with the unit complex disc.) This orients K.

Then, with K oriented, we can check that the second type of immersion point corre-
sponds to the ribbon intersection in Figure 2.9. If it does not (i.e. the two crossings have the
opposite under/over information) then perform the isotopy in Figure 2.10. Once this has
been done, we may use our correspondence from Figure 2.9 to label each of the immersion
points of K as virtual knot crossings.

In addition to the “classical” Reidemeister moves in Figure 2.11, associated to a virtual
knot, we have the series of “virtual” Reidemeister moves in Figure 2.12 giving allowable
isotopies. Notice that move D is one of the forbidden moves of the virtual knots of Kauffman.

The type of virtual knot we consider here is sometimes referred to a being weakly virtual but
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Figure 2.10. Fixing a “bad” ribbon crossing by an isotopy which creates two virtual crossings

in the spirit of brevity we will omit “weakly” in this paper. These concepts of virtual knots
are inequivalent as there are virtual knots (in the sense of Kauffman) which are knotted
(nonisotopic to a standard configuration) which, when move D is allowed, are unknotted.

An example of this is given in [Sat00].

=X &=
A1 A2
(X=X
A3

Figure 2.11. Reidemeister Moves for Classical knots

We will add two more items to these diagrams. For a ribbon twin Tw = K; U K, there
are two bases D, DY in the ribbon representation of each K; which correspond to the twin
intersection points K; N K5. Perform band slides until the ribbon presentations of the K;

/

are linear with endpoints D!, D. Then we have corresponding virtual knot representations
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Figure 2.12. “Reidemeister” Moves for Virtual knots
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of the K; which have identical endpoints. We will use &, S to mark each of these as they
correspond to the cone on the positive and negative Hopf bands at the intersection points.

With this in mind, we get the moves in Figure 2.13.

| S
$F1T & F2 |

Figure 2.13. “Reidemeister” Moves F'1,F2 for Twins, versions for © are identical

Now let us consider the connect sum of a ribbon 2-knot Ky with standard twins Tw =
K3 U K> as described in Section 2.1.4. Notice that Ky will not have any ribbon singularities
with Ko # K. In fact, we can drag the bases of K; and K, corresponding to one of their
twin intersections along together when we perform the band slide described previously.
This creates only virtual crossings between the new diagrams for Ko # K7 and K. By the
“Reidemeister” moves B1 — B3 for virtual knots (Figure 2.12) or the standard Reidemeister
moves Al — A3, we can separate the arc for Ky entirely from that for Ko # K, except
for their common twin points. This means, in practice, we can obtain the virtual knot

presentation of the connect sum of a ribbon 2-knot and ribbon twins by:

e using move F of Figure 2.12 to obtain a diagram where the endpoints are on the

boundary of a D2.

e connecting these points via an unknotted arc in the complement of the D? and chang-

ing the source point to a @ and the sink point to a ©.

For example, see Figure 2.14

2.1.7 Surgery diagrams

As discussed earlier, a twin in S* has a canonical surgery associated to it. Since our

decorated projections determine isotopy type, no additional information is needed to carry
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Figure 2.14. Giller’s example (left, projection version in Figure 2.7) and twin version (right)

out surgery. For a T? in §*, however, we will need additional information.

As any T? ¢ $* is nullhomologous, it bounds a Seifert manifold! which, via its inward
normal, gives a Seifert framing for the T2. This gives us a decomposition, AN (T?) = T?x S*.
As surgery replacing N (T?) with T? x D? is determined by the’image of dD?, we see that we
can entirely describe surgery by specifying a curve on T2 and an integer giving the winding
about a meridian (boundary of normal disc) to T?2. See Figure 2.15.

When the T2 is ribbon with a linear ribbon presentation and corresponding virtual knot
diagram, we can decompose T? in the following manner: Let C be the core of the ribbon
presentation, projected to R3. Let a be an essential loop on T2 which, when projected to
R? is null-homologous in R3\ C. Any such loop represents the same homology class on T2.
Let 3 be 8D? x {t} in a band in the ribbon presentation. Orient « to coincide with the
orientation of the virtual knot diagram. Then orient 3 so that a -3 = +1 with respect to
the orientation on T2. So T? 2 a x 3. Then, in the virtual knot diagram, labeling the knot
corresponding to T2 with (v, 3/a) where v is the winding number of the attached dD? with
respect to the Seifert framing and 3/« is the slope of 8D? projected to T2.

We will write an S together with *s on the appropriate components when we wish to

A Seifert manifold for a surface ¥ in §* is a 3 manifold M with boundary diffeomorphic X, smoothly
embedded in S* so that @M = X. As in [Rol76], Seifert manifolds exist because of the following: Consider
the map £ x 8D? — 8D? which is given by a trivialization of the normal bundle of X. Obstruction to
extending this map over all of $* \ N(Z) vanish, giving us a map §*\ N(Z) — S'. We can homotope this
map to a smooth map which remains equal to the projection £ x 8D* — 8D? on a tubular neighborhood
of the boundary. Then as §*\ N(X) is compact there are a finite number of critical points. Let M be the
preimage of one of the regular points.
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Figure 2.15. Projection and Virtual Knot surgery diagrams for a twin and torus.

denote this surgery.

2.1.8 Giller’s Polynomial

In [Gil82], C. Giller defines a polynomial Ag(t) of simply knotted S2%s in §*. This supposed
invariant obeys a “Conway calculus” relation similar to that of the Alexander polynomial
for classical knots.

That is, consider a embedded circle of double points in a projection of a (collection of)
oriented sphere or torus in R?. As mentioned before, we can trivialize the neighborhood of
the double points so that we have the neighborhood of a classical knot crossing times S?.
All surfaces in question are oriented and so orient the double points of their projection —
this orients both strands in the classical picture. We can then replace this neighborhood
with S! times any of the 3 options in Figure 2.16, obtaining

The invariant is then defined by the relation:
Ag(Ly) - Ag(L2) = (/2 = t71%)Ag(Lo) (2:2)

together with

Ac(unknotted sphere) = 1 (2.3)
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Figure 2.16. Resolution of a knot crossing

and

Ac(surfaces separated by an S%) = 0. (2.4)

Giller also describes Ag in a manner similar to that of the Alexander polynomial. That
is, letting M be a Seifert manifold for K, he forms the infinite cyclic cover X of $*\ K and
presents H;(X) as a Q[t,t™!] module. Then Ag is defined by T = Q|[t,t~!]/(Ag) where T
is the Q[t,t!] torsion part of H;(X).

Whenever K is ribbon, we can choose M to be a punctured nS! x S? given by the
ribbon presentation. It is easy to verify by standard arguments that isotopies and band-
stabilizations of the ribbon presentation yield the same Ag. Therefore, Ag is well-defined
for ribbon knots.

For Artin spun knots, Giller’s polynomial is the Alexander polynomial. In the case that
we apply these computations to the projection of the knotted sphere in an Artin spun twin,
Giller’s polynomial is the Seiberg-Witten polynomial. (as shown in [FS98]).

Interestingly, 2-knots and twins need not have a symmetric Alexander polynomial.
Giller’s polynomial and the Seiberg-Witten polynomial, however, are symmetric. For ex-
ample, see Figure 2.7, which is the spun right hand trefoil with crossing changes.

The natural questions to ask are then: Is Giller’s polynomial an invariant of 2-knots? If
s0, is it equal to the Seiberg-Witten polynomial for the corresponding twin? For twins, what
is the relationship between the Alexander polynomial and the Seiberg-Witten invariant?
Our invariant provides suggestive evidence that the second question, at least, should be

answered in the affirmative.
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2.2 The 4-dimensional Macarena

2.2.1 3-dimensional Hoste Move

The main theorem of Fintushel and Stern in [FS98] gives a way of computing the Seiberg-
Witten Invariants of classical-knot surgered 4-manifolds in terms of the symmetrized
Alexander polynomial of the knot. The proof relies on a technique J. Hoste developed
in [Hos84] which is a method for obtaining Kirby calculus diagrams for so called “sewn-up
r-link exteriors” in S3. (Like Fintushel and Stern, we will only consider the case where
r-links are actually knots and links.) We discuss a simplified but sufficient version of the

original move below so to demonstrate the ideas involved.

A A
I L
0| 1

A

Y
K1 K2

Figure 2.17. 3-dimensional Hoste move

A sewn up knot exterior is formed by taking either two oriented knots in one copy of S3 or
in two separate copies, excising a normal neighborhood of each knot, and gluing the resulting
boundary T?s by a diffeomorphism. For our purposes, we will let the diffecomorphism be
the one which identifies oriented meridians and longitudes for the Seifert framings of each
knot.

This procedure does two things, it removes two copies of S! x D? with a chosen framing
and orientation, and it replaces them with an S! x S' x I. Together, these are the boundary
of S! x D? x I. Thus we may think of forming a sewn up link exterior as the result (on the
boundary) of adding a round 4-dimensional 1-handle to B so that the feet of the round
1-handle are the two knots, each with the proper framing.

Now, consider a projection of a link L in S* with oriented components K, Ko and a
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small region in the projection where K and K> run parallel but in opposite directions. We
can then connect K and K5 via an arc. See Figure 2.17. Attach the round handle as above
to form the sewn up link exterior for K} and K. Note that we can choose the attaching
map of the round handle so that in the corresponding Morse-Bott function, the points py, p2
on K, K5 where the arc touches each knot are both connected to the same point p on the
critical S' by gradient flow lines.

Take a perfect Morse function on the critical S* of the round handle so that the index
zero critical point is p. This decomposes the round 1-handle into a 1-handle and 2-handle

corresponding to the 0- and 1-handles of the Morse function on S*.

Figure 2.18. Round handle becomes a 1 and 2 handle

Attaching the 1-handle to S® results in self connect summing $* at the points py,pa.
By standard tricks, this is the same as zero surgery on the unknot around the arc in the
second drawing in Figure 2.17.

The attaching circle of the 2-handle is the “band sum” K of K and Kj as shown in

Figure 2.18 and the second picture in Figure 2.17. Attaching the 2-handle to the result (an
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St x S’) of the previous surgery is then merely zero surgery on K.

2.2.2  4-dimensional Hoste Move

In [FS98], the Hoste move shows up in 4-dimensions with an S' equivariance as we cross
the 3-manifold with S'. When that is done, the surgeries on knots show up as surgeries on
square zero tori which, by using [MMS97], are amenable to computations of the Seiberg-
Witten invariant. The 4-dimensional version of the Hoste move we will discuss here does
not assume this ' equivariance, although local S! equivariances will occur.

Proposition 2.2.1. Consider two embedded, oriented square zero tori T}, 75 in a 4-manifold
X. Suppose that Ty, T, are connected by an annulus A = St x I, embedded in X, so that
A consists of an essential curve on each torus. Let each T; be framed so that ANaN(T;)
is in the subspace of Hy(ON(T;)) = H\(T®) generated by the pushoffs of loops on T; with
respect to the framing. Let ¢ be a diffeomorphism Ty — T which identifies the components
of A in T} and T». Then the self fiber sum, X # |, is also the result of surgery on two
tori: the “band sum” of the tori along A and ton‘x:‘gizven by the loop in Figure 2.19 in the

neighborhood of 6 x I C A for each 6 € S'.

Figure 2.19. Band sum

Proof of Proposition 2.2.1. We can reinterpret the fiber sum as the result (on the boundary)
of adding a 5-dimensional toric 1-handle (a T% x D? x I) to X x I so that the attaching
region, T? % D? x +1 is identified with the normal bundles to T} and T with their chosen

framing. This results in deleting the two 7 x D”s and replacing them with a 7% x 9D? x I.
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This identification is determined by choice of framings for T},T, and a diffeomorphism ¢
between them.

Choose a factorization T} =24 T = S, x S} so that the S} factor is A in both T;s.
The critical T2 for the 5-dimensional toric handle is identified with the T}s by the gradient
flow. Pick a perfect Morse function on S}, and perturb the Morse-Bott function on the
5-dimensional handle by an extension of it. This gives us a reinterpretation of the 5-
dimensional toric 1-handle as two round (S!) handles — a round 2-handle and a round
1-handle — corresponding to the critical points of the Morse function on S},.

Consider the round 1-handle first. Such a handle is a S* x D? x I so that it attaches
along S! x D3 x +1. By construction, the two S! x D3s are neighborhoods of the components
of 0A, with framing given by the inward normal along A, a vector field along A parallel to
T;, and a third vector field defined by orthogonality to these and the tangent space to A.

Consider a neighborhood of A which is S' equivariant, matching the S! equivariance
of A =1 x S'. When small, such a neighborhood is diffecomorphic to S! times the “H” in
Figure 2.19. (The vertical lines are in T;; the horizontal, slices of A.) Attaching the round
1-handle is the same as (equivariantly) self-connect summing at the places where the vertical
lines intersect the horizontal core of the band. In each 3-manifold slice, this is equivalent
to performing zero surgery on the loop linking the band in Figﬁre 2.19. Then, in turn, this
gives us a square zero torus L and a surgery to perform on it within the neighborhood of
A.

Now, a 5-dimensional round 2-handle is a S* x D? x D? attached along S! x D? x 8D?.
Outside of the neighborhood of A, the attaching torus is equal to the 7;. (two annuli) Inside
the neighborhood of A, the attaching torus T is given by S! times the boundary of the band
in Figure 2.19. (two more annuli) The framing of this torus is given by the framings of the
T; outside the neighborhood of A and by the inward normal to the band on (each slice of)
the inside. This can be seen by band summing pushoffs of the T;. (By hypothesis, A has
zero winding with respect to our framing so this can be done by band summing in the S*
trivialization. ) T inherits a factorization S} x S} from the T; by noting that the S! factors
of the T; survive and that the S}; factors are themselves band summed. Attaching the round

2-handle then performs a surgery on this torus which sends 8D? to the S,} factor. O
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4-Dimensional Hoste Move for a Twin and Torus

Let us now examine how Proposition 2.2.1 can be described in terms of surgery information
on projections. First we will look at the case when the tori come from surgeries on a twin
and a torus.

Let X be the result of standard surgery on a ribbon twin Tw and (0,0) surgery on a
ribbon torus T in S*, both specified by a virtual knot diagram as in sections 2.1.6 and 2.1.7.
Note that the cores Tt,,, Tt of each surgery inherit preferred framings from their surgery
description.

Suppose that Tw and T have a classical knot crossing in the virtual knot diagram
and hence a ribbon intersection. Then, in a projection to R3, there is a neighborhood as in
Figure 2.20. Consider the annuli shown in the figure. Each of these annuli are isotopic. This
can be seen by the fact that on the left of each picture, the horizontal surface overcrosses
the vertical surface so the annulus must lie completely under the horizontal surface to the
left of the ribbon singularity. Thus we can isotope the annulus freely on the left of the
ribbon singularity. Similarly, on the right the annulus lies completely above the horizontal
surface and so we can isotope it freely on that side.

Now let B be the particular representation of the annulus corresponding to the particular
orientations of the virtual knot crossing depicted below it. Now, B connects an equator
~YTw to one of K; in Tw = K; U K to a essential curve yr on the torus. Since we have done
(0,0) surgery on the torus (in virtual knot notation), the surgery curve (in the projection
notation) meets yr once.

The method of constructing B ensures that OB consists of essential curves on the cores of
the twin and torus surgeries when B is extended by the projection to the surgered manifold.
This means that we can apply proposition 2.2.1 once we have chosen the diffeomorphism
¢ between Ty, Tr. We have already required that ¢ identify the components of 0B. ¢ is

then determined when we require that it identify the following:

e the projection to Tt of pt; x dD?, where pt, €T, T x D? c 8% the normal bundle,

and

e the projection to Tty of pt, x dD?, where pty € Tw \ (S? intersection points) and
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Figure 2.20. Annulus B used for smoothing

lies in the S? which does not contain the preimage of the double points. dD? is the

boundary of the fiber of the normal bundle to this $2.
With this data fixed, proposition 2.2.1 can be applied. The result is that
X\ (N(Trw) UN(Tr)) = S*\ (N(Tw) UN(T))
sewn up by ¢ is diffeomorphic to
S\ (N(TW#B#‘T)UT)UIQ xDPUT% % D?

where

o Tw ﬁ T denotes the “band sum” of Tw and T along B,

o the first 72 x D? is glued to IN(Tw ﬁ T) by the standard surgery on twins,

e 7 is the torus given by the loop in Figure 2.19, and

o the second T2 x D? is glued to N(7) so that D goes to the nullhomologous pushoff

of the loop in Figure 2.19.

Finally, we can isotopy this region in Tw # T to be as shown in one of the pictures in

B
the top row of Figure 2.21. The appropriate smoothing depends on the orientation of the
horizontal surface and corresponds to the selection of band previously. In Figure 2.21, the

correspondence of the orientation of the horizontal surface to the virtual knot diagrams is
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Figure 2.21. Two smoothings of the intersection on Figure 2.20 with corresponding virtual
knot diagrams

show by the original diagrams to the lower left of each smoothing and the smoothed virtual

knot diagrams to the lower right.

4-Dimensional Hoste Move for two Tori

We will require the Hoste Move between two tori in only one case. Suppose that both tori
lie in a neighborhood diffeomorphic to §* x D* so that in each 8 x D* the tori are as shown
in Figure 2.22. The we only need to describe one aspect of the 3-dimensional local picture

the gluing map for the sewn up exterior for the right hand side of Figure 2.22. This
map is given by identifying meridians to each loop and the pushoffs along the obvious once

punctured discs to each.

2.2.3 4-Dimensional Crossing Change

Consider a classical crossing in a virtual knot diagram for a twin and/or a torus and the
corresponding annulus from Figure 2.23. Notice that the correspondence is reversed from
that of the 4D Hoste move. As before, both bands shown are isotopic. Push the horizontal

surface along the annulus in Figure 2.23 to get the configuration in Figure 2.24.
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Figure 2.22. S* times the left is S' times the right with the two starred tori sewn up

71

-
—
—

e
—

Figure 2.23. Annulus B used for crossing change
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Figure 2.24. Diagram obtained from the first picture in Figure 2.23 by pushing horizontal
tube along band, over crossing the vertical tube in the two new sets of double points. The
new pair of crossings is locally modeled on S! times the diagram in the lower right. The
diagram corresponding to the second picture in Figure 2.23 is similar.

Focus our attention to the lower of the two new loops of crossings in Figure 2.24 (or the
corresponding picture for the other band.) Call this crossing C. Local to C, we have the
model of S! times a 3-dimensional oriented knot crossing. Note that if we form an annulus
by taking a path from the lower to the upper double point in each 3-manifold picture, we
get an annulus A which is isotopic to the annulus B from before.

Perform one of the surgeries on a torus indicated by the 3-dimensional pictures in Fig-
ure 2.25 localized at C in Figure 2.24 (or the corresponding picture for the other band.)
The appropriate surgery is the top for the first picture of Figure 2.23 and the lower for the
second. This changes the crossing C from an overcrossing of the horizontal surface to an
under crossing, resulting in Figures 2.26 and 2.27. Finally, we perform the isotopies indi-
cated in these figures and see that our result has changed the crossing type from a classical
+ to — or from a classical — to + in the virtual knot diagram.

It is important to note that the torus which we have surgered is isotopic to the surgered

torus 7 of section 2.2.2. We identify the two via the isotopy of the band B.
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Figure 2.25. Isotopy in 3-dimensional picture
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Figure 2.26. Isotopy of first picture in Figure 2.23 after surgery and the corresponding
virtual knot crossing of result
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Figure 2.27. Isotopy of second picture in Figure 2.23 after surgery and the corresponding
virtual knot crossing of result

2.3 Calculation of the Invariant for Certain Ribbon Twins

Consider a twin Tw = K, U Ky gi\'«;n by a virtual knot presentation and the manifold
X(Tw) = E(2)7w. Suppose that the virtual knot presentation for K contains a classical
crossing; so K has a ribbon intersection with itself. Let Tw,, Tw_ and Twg be the results
of replacing the crossing in the virtual knot diagram with the three options in Figure 2.28.

Note that Two will actually be a twin and a torus.

OGS N
/+ '\/0\

Figure 2.28.

Consider the square zero torus 7 from the previous sections. Now, ON(7) admits a
decomposition dN () = S} x S} x S} from it lying in the S' equivariant neighborhood of
the annulus B. Namely, in each 3-manifold slice of the neighborhood, 7 is given by a loop
a linking the slice of B once. Then S} x S} = 7 where 3 is pt x S' in the equivariant

neighborhood of B. Finally S} = #D? finishes the decomposition.
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Log transform surgery on 7 is defined by removing N(7) = T? x D? and replacing with
another copy of T? x D?. Such a surgery is uniquely determined up to diffeomorphism by
the image of AD? in ON(7) = T3. Using our decomposition above, we can describe such a
surgery by a triplet of integers (a, b, ¢) with no common factor. Such a triplet gives specifies
the isotopy type of the curve to which we will glue 8D%. We will write X+(ab,c) for the
result of the (a,b,c) log transform surgery on X.

From section 2.2.3 we see that we can move from Tw_ to Tw by surgery on 7 C S* \Tw_
which in each 3-manifold slice is +1 surgery on the loop which gives 7. Thus we can move
from Tw_ to Twy by a (0,1,1) log transform on 7. Note that (0,0,1) surgery on 7 is the
identity.

Morgan, Mrowka, and Szabo’s formula in [MMS97] then gives
SW(E(Q2)tw,) = SW(E(2)1w_) + SW(E(2)1w_,7(0.1,0)

Now by our description in section 2.2.2, E(2)1w_ +(0,1,0) is the sewn up twin/torus exterior
of Twq fiber summed to E(2). Thus, by our definition of I, SW(E(2)tw_ r(01,0) = (t —
t~1)I(Twyg), while I(Tw,) = SW(E(2)1w,) and I(Tw_) = SW(E(2)Tw_). Therefore,

I(Twy) = I(Tw_) + (t — t~)I(Two)

Now consider a twin Tw = K U K3 and torus T given by a virtual knot presentation.
Suppose that the virtual knot presentation contains a classical crossing between K; and T;
so K has a ribbon intersection with T'. Let Tw,, Tw_ and Twg be the results of replacing
the crossing in the virtual knot diagram with the three options in Figure 2.28. Note that
Tw4 will each be a twin and a torus while Twq will be a single twin.

As before, we consider the torus 7 ¢ S*\ Tw_. From section 2.2.3 we see that we can
move from Tw_ to Tw, by surgery on 7 C S*\ Tw_ which in each 3-manifold slice is +1
surgery on the loop which gives 7. Thus we can move from Tw_ to Tw, by a (0,1,1) log
transform on 7. Note that (0,0,1) surgery on 7 is the identity.

Morgan, Mrowka, and Szabo’s formula in [MMS97] then gives

SW(EQ2)1w, = SW(EQ2)Tw.) + SW(E(2)Tw_ 7(0,1,0))
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Now, since each Twy are composed of a torus and a twin, the manifolds E(2)tw, are each
sewn up twin/torus exteriors fiber summed to E(2). Thus SW(E(2)1w,) = (t—t~1)I(Twy).

Nearby 7 we have a local model for Tw_ given in the left picture of Figure 2.29. If
we perform the 4D Hoste move on E(2)1w_ r(0,1,0) 2t an annulus equal to S! times the

horizontal line in this picture, we obtain the picture to the right in Figure 2.29.

. t o |
- [_o 0

0 I

‘, [~

Figure 2.29. Hoste move nearby

Note that this picture is identical to that of Figure 2.22. Applying the version of the 4D
Hoste move from section 2.2.2, we get a local picture equal to that in the right hand side of
Figure 2.22. The tori in this picture are each isotopic to the torus dD? x D2 — where dD? is
the normal bundle to Kj, the knots which comprise Twg. This torus can also be described as
one of the components of SN (K1)NON (K3). In the fiber sum manifold, E(2)1w_ r(0,1.0), €ach
torus we have just described is isotopic to the fiber F'. Thus, E(2)1w_ +(0,1,0) is diffeomorphic
to E(2)Tw, F#F" Therefore, SW(E(2)1w_ +(0,1,0)) = (t — t ™ H2SW (E(2)1w,) SO

SW(E(Q2)Tw, = SW(E(@2)1w_) + (t — t 7 1)2SW(E(2)1w,)

and

(t—t™)I(Twy) = (t— ¢~ )I(Tw_) + (t — t71)?I(Two)

SO

I(Twy) = I(Tw_) + (t — t~1)I(Twyo)
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2.3.1 Relation to Giller’s polynomial

Recall the definition of Giller’s polynomial given by Equations (2.2), (2.3), and (2.4). These
are the Conway-style relation, the value on the unknotted sphere, and the vanishing of the
polynomial for split links, respectively. We now discuss similar results for our invariant.

That I(Twsq) = 1 was shown at Equation (2.1).

Suppose that Tw = Ky UKy and T are ribbon with a virtual knot presentation which
is split or only has pairwise virtual crossings. Then using the virtual Reidemeister moves
of Figures 2.12 and 2.13, we can separate Tw and T. This means that the projections of
Tw and T are separated by an S3. So Tw and T are separated by an S3. This means
that the manifold formed by surgering Tw and T is a connected sum. Now, on the T side
of the connected sum, the intersection form on H; will be a hyperbolic pair as will the
intersection form on the side given by surgery on Tw. Thus we are given a manifold which -
is the connected sum of two manifolds each with b, > 0. Therefore, the Seiberg-Witten

invariant of this surgery vanishes. It follows that SW(E(2)Tw 1) = 0 and that
I(Tw,T) = 0 for Tw, T split. (2.5)

Now let us consider the Conway-style relation for Giller’s polynomial we initially dis-
cussed in Section 2.1.8. This relation involves crossing changes and resolution at individual
loops of double points. Now, in our crossing change surgery, we had a similar action of
changing the lower crossing from Figure 2.24. In the diagrams for our 4D Hoste move, we
took a different local projection to illustrate the appropriate surgery. However, smoothing
the lower crossing from Figure 2.24 also yields a smoothing in the virtual knot diagram.

In other words, selecting a particular set of double points to apply the relation in Equa-
tion (2.2) to, Ag(Tw) computes I(Tw). Therefore, Ag(Tw) = I(Tw) for ribbon knots. We
cannot make a stronger statement of equality however, as the relation from Equation (2.2)

allows us to move into configurations of surfaces which are inaccessible to the invariant I.

2.3.2 The Class of Ribbon Twins

We now make some remarks on computations.
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Now suppose that Tw = K; U K> is ribbon with a virtual knot presentation which only
has virtual crossings. Then we can use the virtual Reidemeister moves B and F from
Figures 2.12 and 2.13 to completely unknot the diagram for Tw. Therefore, Tw = Twgq
and so I(Tw) = I(Twgq) = 1.

Suppose that Tw = KU K is a twin possibly with accompanying torus T with the
configuration ribbon. Suppose that we reverse the orientation of one of the K; or of T'.
This reverses the orientation of the torus Tty (or Tr) and induces a chance in homology
orientation from the change of sign in pairing with T7,,. Then, if Tw =K UK>, I (']l:w) =
—I(Tw). Similarly, I(Tw,T) = —I(Tw, T).

Currently, the author is unaware if crossings can be chosen so that the tree of terminates
in standard twins and unlinked twin/torus pairs. The previous work of Fintushel and Stern
guarantees that the process terminates when K; in Tw = K; U K> is knotted with only
classical crossings and K> is unknotted with no ribbon intersections with K;. The presence
of virtual vcrossings in the diagrams complicates the general case. Additionally, the author
has yet to find a general method of dealing with ribbon intersections between the Kj;.

However, there seem to be a fairly large number of new examples which we may compute
using the current tools. The first we will compute is the twin version of the example from
Giller’s paper. Call this twin Twg. This was encountered previously in Figure 2.14.

Follow the computation through Figures 2.30, 2.31, 2.32, and 2.33. In Figure 2.33, we
arrive at configurations C,D, E, and F. Here C and F are isotopic to standard twins, so
I(C) = I(F) = 1. The other configurations D, E differ by the orientation of the torus and
so I(D) = —I(E). Therefore,

I(Twg) = I(A)+(t-t")I(B)
= I(C)+ (t—tHI(D)+ (t -t HI(E) + (t —t~")2I(F)
= 1404 (t—t")?

t72 14 ¢2

Now let us look at the twin in Figure 2.34, a twin in which both 2-knots are unknots
but which pairwise have ribbon intersections. Call this twin Twy. Our current tools do not

allow us to deal directly with pairwise ribbon intersections.
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Figure 2.30. Giller Twin Tw¢ with highlighted crossing
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A B

Figure 2.31. I(Twg) = I(A) + (t — t~1)I(B)
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Figure 2.32. Isotopy of A and B from Figure 2.31 with highlighted crossings
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Figure 2.33. I(Twg) = I(C) + (t — t - )I(D) + (¢t — t)I(E) + (¢t — t"1)2I(F)

Follow the computation through Figures 2.35, 2.36, and 2.37. We arrive at configurations
H,K, and L. Here H and L are isotopic to standard twins, so I(H) = I(L) = 1. The other

configurations K contains a separated torus so I(K) = 0. Therefore,

I(Twy) = I(H)-(t-t"H)I(J)
= I(H) - (t—t"HI(K)+ (t -t~ H)2I(L)
= 1404 (-t1)?

= t72_1+¢

Finally, we remark on uniqueness and related topics. In what is our Artin spun case,
Fintushel and Stern have conjectured that their knot surgery construction yields nondif-
feomorphic manifolds for “essentially different” knots. (Here, “essentially different” means
that two knots are not isotopic nor are they mirror images of each other.) The Alexander
polynomial does not completely distinguish knots however, so the Seiberg-Witten invariants
in their current form do not shed any light on their conjecture. Similarly, it seems doubtful
that the manifolds E(2)Tw, and E(2)rw, are diffeomorphic, but with the Seiberg-Witten
invariants being equal, we have no obvious way in which to distinguish them. In particular,

it scems possible that E(2)r,, is diffeomorphic to E(2)Tw, where Twy is the Artin spin
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of the left handed trefoil.

Also, results of C. Taubes in [Tau94] show that a manifold X with by > 2 admits
a symplectic form, the leading term in SW(X) will have coefficient equal to one. The
converse to this statement is known to be false by work of Fintushel and Stern in [FS97]. In
the classical (or Artin spun) case, it is possible to construct a symplectic form on E(2)tw
when the classical knot K from which Tw is constructed is a fibered knot. While it may
be possible to rephrase this construction in terms of twins, it is unclear what topological
conditions are required on Tw to achieve the same result. (A sufficient condition is that
S4(Tw) fibers over T? or S2.)

We then ask, do E(2)twe, E(2)Tw, admit symplectic forms? What conditions on the

exterior of the twin guarantee a symplectic form?

'R

Figure 2.34. A twin in which both 2-knots are unknots
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Figure 2.35. A negative crossing from Figure 2.34
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Figure 2.36. I(Twy) = I(H) — (t — t~1)I(J)
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Figure 2.37. I(J) = I(K) — (t — t ™) I(L)
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