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ABSTRACT

VIBRATION SUPPRESSION THROUGH STIFFNESS

VARIATION AND MODAL DISPARITY

By

Jimmy Issa

Vibration suppression is the main objective of this study. A semi-active and an ac-

tive vibration control strategy based on stiffness variation are proposed for removing

energy from vibrating structures. For the semi-active vibration control strategy, the

notion of modal disparity is introduced and exploited as a new method of vibration

suppression. For a given structure, modal disparity is a measure of the difference in the

mode shapes of the structure in two stiffness states. Modal disparity is validated exper-

imentally in a beam where stiffness variation is induced by application and removal of

constraints. In dynamical systems modeled with finite degrees-of-freedom, the appli-

cation of constraints transfers energy to the unmodeled high-frequency modes, where

it is dissipated naturally and quickly. The removal of constraints does not dissipate

energy but resets the system for the constraints to be applied again for further re-

duction of energy. Thus sequential application and removal of constraints eventually

dissipates the energy of the system completely. It is shown that energy removal is

always possible, even with a random switching schedule, except in one case where the

energy is trapped in modes that span invariant subspaces with certain orthogonality

pr0perties. The optimal locations and timing of constraint application is investigated

with the goal of maximizing energy dissipation through maximal energy transfer to

the unmodeled high-frequency modes. ,For the active control strategy, cable actua-

tors are proposed for removing energy from three—dimensional framed structures The

tension in the cables has two effects on the structure; it increases the stiffness of the

structure and applies an external load on the structure. Both effects are used in the



design of the active control strategy in which the cable tension is essentially switched

between different levels to do negative work. Experimental results are presented to

validate the efficacy of the control strategy.
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CHAPTER 1

Introduction

1.1 Background and Objectives

Vibration control is a subject of significant importance with applications ranging

from small scale structures like micro beam resonators to large scale structures

such as large space structures, buildings and bridges. All of these structures are

prone to disturbances and excitations, for example, thermal gradients on space

structures and wind excitation on bridges. To overcome the problem that arise due

to disturbances and excitations and provide stability, controlschemes are designed

for energy removal. Typically, the control schemes fall into two categories; the first

is active control in which the control action is based on realtime sensing of states of

the structure. The second category, passive control, is implemented by embedding

passive elements in the structure with the goal of increasing its energy dissipation

properties. Some control schemes are based on a combination of the two strategies

and can be described as semi-active control.

The goal of this study has been the exploration of new methods of vibration

suppression. Our main target has been the stiffness of the structure and we have

developed energy dissipation schemes based on stiffness variation. Two methods have

been proposed. In one method, actuators are employed to locally enforce constraints



at predefined locations on a structure. This leads to a change in stiffness of the

structure and transfer of energy from low-frequency to high-frequency modes. In the

high-frequency modes, energy is dissipated quickly by conversion to heat without the

need for active control. Since we actively transfer energy to the high-frequency modes

where they are passively dissipated due to high levels of damping, we refer to this

method as semi-active control. In the second method, an active control scheme is

investigated where a cable actuator is used to transmit control forces to the structure.

This results in a change in stiffness of the structure and simultaneous application of

external forces. The tension is actively controlled and applied only when it removes

energy from the structure.

1.2 A Semi-Active Vibration Control Strategy

The controlled redistribution of energy in vibrating structures is at the heart of

many engineering problems with important practical applications. Modal control

strategies, vibration absorbers, and some forms of energy harvesting, all rely in one

form or another on the redistribution of energy in vibrating Structures from mode

to mode and, in space, from one region of the structure to another. Recently, a

new methodology for design of structures was proposed to achieve a targeted and

purposeful redistribution of vibration energy [1], [2]. This methodology relies on

modal disparity, a quantifiable property of the structure being designed, and relies

on a carefully crafted variation in the stiffness of the structure.

Stiffness variation, by itself, is not a new concept. For example, Clark [3] and

Corr and Clark [4] proposed stiffness variation of piezoelectric actuators to accom-

plish energy dissipation in vibration control. Kurdila, et. a1 [5] proved that this

state-switching strategy reduces the energy of the system and is stable, and Ramarat-

narn and Jalili [6] implemented this idea of “switched stiffness” in vibration control
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Figure 1.1. A simple analogy to illustrate a control methodology based on the concept of

modal disparity.

experiments. In contrast to these results, where the purpose of stiffness variation is

to dissipate energy, Diaz and Mukherjee [1], [2] proposed stiffness variation for modal

energy redistribution which then can be used for energy absorption, harvesting, or dis-

sipation. Modal energy redistribution should also be differentiated from earlier work

on localization [7], [8], [9], and energy pumping [10], [11], where energy redistribution

occurs spatially.

Stiffness variation and its effect on modal energy redistribution can be explained

by means of a simple analogy where the amount of vibration energy present in a

flexible structure is represented by a certain volume of fluid that needs to be drained

away. A modal view corresponds to fluid (energy) that is distributed among a set of



discrete containers, one for each mode. Figure 1.1 depicts this situation using four

modes, labeled A, B, C and D. In traditional modal control, the amount of fluid in

each container has to be sensed separately and a controller that is capable of draining

fluid from all the containers is used (Fig.1.1a). Now consider a situation where the

fluid in only two containers, say containers C and D (Fig.1.1b), are sensed and then

drained by a simple controller. Once all the fluid is removed from these containers,

the overall fluid volume decreases, but fluid remains trapped in the other containers,

A and B. Energy redistribution of the remaining fluid among all the containers,

including moving some fluid into containers C and D, can be achieved by stiffness

variation. One step of stiffness variation, followed by draining of the fluid from con-

tainers C and D, would leave fluid in the other containers, but repeating this process

back and forth between two stiffness states will drain the fluid from all the containers.

The success of a stiffness variation approach to energy redistribution is measured

by the total amount of energy that is transferred into target modes (container C

and D) at each step, and the details of how much energy is transferred out of the

other modes, the source modes (containers A and B), at each step. The rate at

which energy is redistributed depends on the source modes. For instance, if a source

mode in one stiffness state is nearly identical to a source mode in the other stiffness

state (e.g., B and B* in Fig.1.1b), then modal energy will drain very slowly from

these modes, i.e., fluid will be essentially trapped in the corresponding containers.

To quantify the amenability of a structure to energy redistribution strategies, a

measure of energy redistribution is needed. Modal disparity is such measure. It is a

property of the structure, as well as of the device introduced to effect the change in

stiffness. In this work, we generate modal disparity in structures with the objective

of transferring energy from the low-frequency modes to the high-frequency modes,

where it can be dissipated naturally and quickly.



As part of our semi-active control strategy, we consider stiffness variation in struc-

tures through the application and removal of constraints. The effect of application

and removal of constraints on the system dynamics, is studied and modal disparity

between the resulting stiffness states is quantified in chapter 2. In chapter 3 modal

disparity is experimentally verified through redistribution of modal energy between

the modes of a clamped-clamped beam in its two stiffness states In particular, the

beam has a pin joint at mid-span that can be locked using an electromagnetic brake

or allowed to rotate freely by releasing the brake; the two stiffness states of the beam

result from locking and releasing the pin joint. In chapter 4 we pr0pose a control

strategy based on the scheme in Fig.1.1. The only difference is that the energy in

containers C* and D* are not drained by active control. Instead, these containers

are chosen to correspond to the high-frequency modes of the system such that the

energy is drained due to internal damping. In chapter 4, we model the system with

finite dof1 and treat the high-frequency modes as unmodeled dynamics of the system.

The control strategy developed relies on application and release of constraints that

effectively transfer energy to the high-frequency unmodeled modes, where they are

dissipated by conversion to heat. The constraints are applied at predefined locations

on the structure and it is shown that energy reduction is always possible except in

some special cases. With the view to obtain faster rates of energy dissipation, the

location and timing of the constraints are optimized in chapter 5. Two example

problems are considered with different optimization criteria.

1.3 Active Vibration Suppression Strategy

Active vibration suppression has a long history of research. A variety of actuators

have been employed in active control and these include, piezoelectric materials,

 

1degrees-of—freedom



thrusters, momentum wheels, and cables, and their performance depends on the type

of structure (beam, truss, frame) and their placement on the structure. The idea of

active tendon control began as a way to reduce damage in cable stayed-bridges and

buildings caused by earthquakes and wind. It has been primarily deve10ped by civil

engineers, as described, for example, in Yang et al. [12, 13]. Cables are attractive

as actuators for large-scale structures since their effects can be transmitted far from

the energy source of the actuator and, in addition, their effects can be non-local, for

example, by changing the overall stiffness of a structure. Many approaches to the

control system design for cable actuators in large-scale structures have been proposed

due to the variety of structures considered, in both civil and aerospace applications.

Among the work on cable control for civil structures, Chung et al. [14] carried

out an experiment and used an optimal control scheme to reduce the response of a

single dof building type structure under base motion. Other authors [15] used active

tendon actuators to reduce the horizontal vibration of building structures subjected

to seismic and wind excitation. Warnitchai et al. [16] carried. out an experiment to

study the feasibility of active tendon control on cable-stayed bridges using velocity

feedback control. Other authors used active tendon actuator to reduce vibration in

cable stayed beams and cable stayed bridges, for example, Magana et al. [17,18]

and Fujino et al. [19]. Achkire and Preumont [20] and Bossens and Preumont

[21] used positive integral force feedback, an energy absorbing control strategy, to

suppress the vibration of large cable-stayed bridges; the cable forces were supplied

by a specially-built large scale hydraulic actuator.

Cable structures are very attractive for aerospace applications, where weight is an

important issue. In these applications the cables not only offer lightweight structural

support, they are also used as active tendons to provide stability. In recent years



the idea of active tendon control in aerospace applications was explored and many

approaches have been proposed. Murotsu et al. [22] used a newly conceived torque

actuation devise for controlling the vibrations of a beam-like space structure using

position and velocity feedback. Okubo et al. [23] proposed a tendon control system

for the shape control of flexible space structures. Preumont et al. [24, 25] used cable

tension to stiffen and control trusses by inducing active damping. Nudehi et al. [26]

used a cable-supplied end force to suppress the transverse vibrations of a cantilever

beam. The control is based on active stiffness variation in which Lyapunov stability

theory and passivity analysis were used to determine when to apply and release

tension in the cable in order to pump energy out of the system.

In chapter 6 we extend the approach of Nudehi et al. [26] to three dimensional

frame structures. Unlike the beam problem where cable tension resulted in stiffness

variation of the beam only, cable tension in structures typically result in simultaneous

stiffness variation and application of external forces. Both of these effects are used

in the design of an active control scheme to remove energy and suppress vibration

of the structure. For the development of the control scheme, a finite element model

of cable-framed structures is proposed and the effect of the cable placement on the

structure is investigated. Both numerical simulations and experimental results are

presented.



CHAPTER 2

Modal Disparity

2.1 Stiffness Variation And Modal Disparity

The main objective of this chapter is to formally introduce the notion of modal

disparity and to propose a measure to quantify it. Modal disparity arise in structures

capable of having multiple stiffness states. Typically, some mechanism is required

to switch stiffness states and hence modal disparity is a property of the structure as

well as the mechanism used to change the stiffness.

To define modal disparity, we consider a linear system vibrating freely about its

equilibrium position. The potential energy of the system is assumed to be zero

in this equilibrium configuration, which will be referred to as the zero equilibrium

henceforth. The free vibration of the system about the zero equilibrium is described

by a set of natural frequencies and mode shapes, and an energy distribution among

the modes. When the stiffness of the system is changed (by a suitable mechanism) the

equilibrium configuration changes and the system is described by a new set of natural

frequencies and mode shapes. In the general case, the new equilibrium configuration

of the system will have some stored potential energy and therefore will not be a zero

equilibrium. Due to the change of stiffness, the total energy of the system will be

redistributed. Assuming that no energy is lost due to change of stiffness, a part of



the energy will be stored as potential energy in the new equilibrium configuration;

the rest will be distributed among the new modes of the system. When the stiffness

of the system reverts back to its original value, the system recovers its original shape

and vibrates about the zero equilibrium position. All the energy of the system is

transferred back to the modes of its original configuration. If damping is ignored and

if no loss of energy occurs due to modal truncation, the total energy of the system

is conserved but the energy distribution among the modes is different from that at

the initial time. The activation and deactivation of the stiffness variation mechanism

thus allows redistribution of modal energy. The amount of energy pumped into or

out of a specific mode is dependent on the timing of the transition between stiffness

states and difference in mode shapes of the structure in the two stiffness states.

A water-bucket analogy of modal energy redistribution due to change in stiffness,

as discussed in the paragraph above, is depicted in Fig.2.1. The level of energy in the

modes is represented by the volume of water in the buckets. When the mechanism is

activated, the equilibrium configuration changes and some volume of water is stored

as potential energy in the new equilibrium configuration. The remaining volume is

distributed between the buckets that represent the modes of the system in its new

stiffness state. When the stiffness of the system reverts back to its original value, the

total amount of water remains conserved but its distribution between the buckets

changes.

The efficacy of energy redistribution can be quantified by the difference in the

volume of water in each bucket at the initial time and after one cycle of stiffness

variation. While this will depend on the time when the stiffness is changed and

reverted back to its original value, it will also depend on the difference between the

mode shapes of the structure in the two stiffness states. A measure of the change in
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Figure 2.1. Modal energy redistribution after one cycle of constraint application and

removal

the mode shapes of the system due to change in stiffness is modal disparity. Modal

disparity, defined next, contributes to modal energy redistribution.

Modal disparity is the degree to which the mode shapes of the system in

its original stifiness state are different from those in its new stifiness state. The

projection of one set of mode shapes onto the other through the mass of the system is

a good way to quantify this difference. Typically, if there is no change in the stiffness,

there will be no change in the modes and if the modes are normalized with respect

to the mass matrix, this projection will lead to the identity matrix. In the case of

stiffness variation, this projection will lead to a matrix called the modal disparity

matrix. The norm of the (i, j) element of this matrix is a measure of how close the

th mode of system in one stiffness state is to the jth mode in the other stiffnessi

state. This matrix is essential for understanding the mechanics of transition between

different stiffness states of a given system.
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The stiffness of a system can be changed in a variety of ways. Diaz and Mukherjee,

for example proposed the use of cables [2], and active joints [27] for varying the

stiffness of three dimensional structures In this present study we consider enforcing

constraints on the system as a way of changing its stiffness. In the next section we

derive expressions to relate the system displacements and velocities before and after

the change of stiffness. In section 2.3 a modal coordinate description of the transitions

is presented and modal disparity is quantified. A numerical example is presented in

section 2.4 to illustrate energy redistribution due to modal disparity. In this example,

the axial vibration of a rod is considered. The rod is fixed at one end and free at

the other and a magnetic brake is used to restrain the motion of the free end at any

desired time.

2.2 Spatial Coordinate Description

We consider the general case of continuous systems. An N dof1 reduced order model

of such systems can be derived using finite element methods. Ignoring damping, the

equation of motion describing the behavior of the system about its zero equilibrium

position can be written as follows:

M)? + KX = 0 (2.1)

where M and K are the N x N mass and stiffness matrices of the reduced order

system and X is the N dimensional vector of generalized displacements corresponding

to the dof. This unconstrained state of the system is referred to as state a. Upon

application of a constraint, the configuration of the system changes. Using the same

finite element mesh, a reduced order model with N dof is again considered to facilitate

mathematical operations. In this state the system vibrates about its new equilibrium

position. Ignoring damping and using the new equilibrium as a reference, the equation
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of motion of the system can be written as

M? + RY = 0 (2.2)

where I? is the new N x N stiffness matrix and Y is the N dimensional vector

of displacements corresponding to the new dof. Physically, X and Y are the

displacements of the same nodes of the finite element model but have different

origins because of the system vibrating about different equilibrium configurations.

The constrained state of the system is referred to as state ,6.

After describing the behavior of the system in each state, we derive expressions to

relate the system displacements and velocities during its transition from one state

to another. We first assume that the system is vibrating in state a, and at some

time tag, the constraint is enforced to transfer the system to state ,6. This transition

actually occurs over a brief interval of time t E [t;fi, tgfl] and results in the application

of impulsive forces. The system displacements and velocities after the application of

the constraint, X(tgfi) and X(tgfi), can be related to the system displacements and

velocities before the application of the constraint, X (tgfl) and X(tag) as follows:

my) X(t;g)

. . (2.3)

MX(t;‘fi) = MX(t;fi)+Ia_,fl

where Ian/3 is the impulse vector. The equation above can be solved without a

problem since the number of unknowns in [aafi is equal to the number of dependent

variables in X(tgfl). The initial conditions Y(t;’fl) and Y(t:fl) of state ,8 are expressed

in terms of the final conditions in state a as

thgg) = X(t;’fl)-Xo(t:g)

Y(t:g) = X0323)

12



where X0(t;'fl) is the new equilibrium position. The equilibrium position X0(t:fl) is

determined from static analysis of the structure, as will be illustrated with the help

of an example later in section 2.4. It is important tonote that X0(t;'fi) is a function

of the switching time tag Thus, the amount of potential energy stored in the system,

E0 = %Xg(t:fl)KX0(t:fi), is time dependent. When the constraint is removed, the

system reverts back to state a. This transition occurs over a brief interval of time

t E [tgwtga], during which there will be no change in the system displacements or

momentum, i. e.

Y(t2;a) = raga)

(2.5)

3’05.) = thfia)

The initial conditions of the system in state a are calculated from the displacements

and velocities in state B using the relations

Mtg...) = Y<tga>+xo<tgg>

(2.6)

Xltfia) = mg.)

In the next section we investigate the transition between states in modal coordinates.

2.3 Modal Coordinates Description

In order to describe the system in modal space, we define <15,- and 77,-(t), i = 1, 2, . . . , N,

to be the normalized mode shapes and modal amplitudes of the unconstrained system.

Similarly, we assume wz- and V,- (t), i = 1,2,... , N, to be the normalized mode shapes

and modal amplitudes of the constrained system. The system displacements X (t) in

state a and Y(t) in state 6 can now be written as follows

13



X(t) = Z9; dm,(t) in state a

(2.7)

Y(t) = 2,121 with-(t) in state 6

The change in the system displacements and velocities due to the application of a

constraint, described by Eqs.(2.3) and (2.4), can be written as

High) = X(tggl—Xoftgg)

(2.8)

MY(t;'fl) = MX(t;fi) + [any

Substitution of Eq.(2.7) into Eq.(2.8) yields

2,121 Wdtgg) = Bill ¢i77iftggl — X00553)

(2.9)

Magnum) = M2,}:1 ¢m.-(t;fl)+Ia_.fl

The modal displacements and velocities after application of the constraint can be

computed from Eq.(2.9) as follows

”1035) = Z£1¢$M¢i 772;“; )—¢fMXO(t:gl

fl (210)

Wig) = 2.1:. «film.- may.)

In the derivation of Eq.(2.10) the identity #2311104]; 2 0 was used. This follows from

the fact that constraint forces do zero work, i.e Y(t;fl)TIa_,fl = 0.

The modal displacements and velocities after the constraint has been removed are

calculated using Eqs.(2.5), (2.6) and (2.7), as shown below

wry-(ti...) = 2.121 ifMu Mtg...) + ¢}"MXo(t:g)

(2.11)

mag.) = Z£1¢$M¢iviugal
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If we define

_ 77100 q _ V10) l

,, <I>=[¢1 <22 451v]

n(t)= ”if” , u<t>= 2.“) , .

-nNs). .vN<t>_ “H” $2 W]    

the transition between states oz and [3 described in Eqs.(2.10) and (2.11) can be

rewritten in vector form as follows

(14%) = \IITM<1>n(t;fl)—\IJTMXO(t:B)

a ——+ fl

I var.) = Wm mg)

(2.12)

f ”(7:50) _ (PTA/I‘ll V050) +¢TMX0(t:¥-fl)

s —> a ]

mega) = <I>TM\111'/(tga)

It is clear that the matrix \IITM<I> and its transpose <I>TM\II are central to the transfor-

mation between states a and 6. For this reason these matrices are chosen as measures

of modal disparity.

2.4 Numerical Example

2.4.1 Modeling

We consider the axial vibration of a linear rod with a constant circular cross—section,

as shown in Fig.2.1. The rod is fixed at one end and free at the other end. An

electromagnetic brake attached to the free end of the rod enables it to be fixed at

any desired time. In stiffness state a the brake is free whereas in state 5 the brake is

locked. The differential equation describing the motion of the system is

15
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Figure 2.2. A flexible rod
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pAii — EAu = 0 (2.13)

for all x E (0, L). The boundary conditions are

u(O, t) = 0

State a u’(L, t) = 0

State )6 u(L, t) = 6

In Eq.(2.13), E is the Young’s modulus of elasticity, p is the material density and A

is the cross-section area of the rod. In the boundary conditions, 6 is the extension

of the locked end of the bar in state B. The bar is modeled with N linear standard

finite elements, see [28] for example. Each node has one displacement dof denoted

by u(x, t). If Le denotes the length of an element, the elementary mass and stiffness

matrices take the form

 

_pALe 21

Me“ 6 [12 “l1 “l]’ [fez—L: —1 1

The modeling of both states is facilitated by the use of a linear spring as shown in

16



Fig.2.3. It is attached between the free end of the bar and the wall. In state or the

end is free, i.e. ks = 0. In state ,6, it is fixed and this is modeled by setting k3 = 00,

i.e., setting [93 to some large number. The equations of motion of the system in both

states will take the form as in Eqs.(2.1) and (2.2).

Linear spring k,

l
 

/
Electromagnetic

brake

 

Figure 2.3. The electromagnetic brake model

2.4.2 Simulations

The material and geometric properties of the rod are assumed to be those given in

Tab.2.1. The rod was modeled by 300 finite elements, i.e., N = 300. The natural

Table 2.1. Material and geometric properties of the beam in Fig.2.2

 

 

Material Rubber

Young’s Modulus 10 MPa

Density 600 Kg/m3

Cross section Area 7r 0.052 m2

Length 4.0 m

 

 

frequencies of the first 6 modes of the rod in each state are tabulated in Tab.2.2. The

normalized mode shapes of the rod in the two stiffness states are shown in Fig.2.4. It

is important to note that the mode shapes in state 6 do not depend on the deflection

17



of the end of the rod (6) in the brake locked configuration. This fact is justified as

follows. The extension of the end of the rod will move the equilibrium of the system

to a new position X0, X0 aé 0. If the change of variable Y = (X — X0) is used, the

new system will have the same mass and stiffness matrices as given by Eq(2.2) for all

values of 6. The only change will be the level of potential energy éXg(t:fl)KX0(t:fi)

that will be stored in the system.

Table 2.2. Natural frequencies of the beam in the two stiffness states

 

mode number, i

waia “1,37; (HZ)
 

i=1 i=2 i=3 i=4 i= i=6

 

 

a 8.07 24.21 40.34 56.48 72.62 88.76

6 16.14 32.27 48.41 64.55 80.69 96.83

stiffness state 

          
 

( —0.849 0.509 0.121 0.057 -0.033 0.022\

0.340 0.728 —O.566 —0.154 0.078 —0.048

—0.218 —O.283 —0.694 0.588 —0.170 0.090

0.162 0.185 0.261 0.679 0.600 —0.179

0.129 0.140 0.170 0.250 —0.670 -0.606

(—0.107 —0.113 —0.128 —O.161 0.242 —0.664 )

\DTMe = (2.14)

  

Using a 6—mode model of the system in each state, we consider the scenario where

the system is vibrating in state a starting from the following initial conditions:

n(0)=[0.00 0.00 0.00 0.00 0.00 0.00]T

0(0)=[0.01 0.01 0.01 0.01 0.01 0.01]T.

After 3 seconds in state a, the brake is locked and as a result the system is transferred

to state 6. Using Eq.(2.10), the initial conditions in state 6 are calculated as follows:

u(3+)=1e"5[ —5.67 —3.85 1.68 -—1.34 -—0.28 —1.24 ]T

p(3+) = 16—2] —O.56 —O.78 —1.22 —0.04 -—0.44 0.40 ]T.
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Figure 2.4. Mode shapes of the rod in the two stiffness states: the solid lines represent

the di’s and the dashed lines represent the wi’s.
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Here 6 = 6.38e‘5 m and if ET is the total energy in the system, the energy stored in

the system after application of the constraint is 0.133 ET. After 3 seconds in state

6 the system is switched back to state a, the modal displacements and velocities are

calculated using Eq.(2.11) as

n(6+)=1e—5[18.90 —4.55 0.72 0.80 —1.51 1.58

7'7(6+)=1e_2[0.38 —0.63 1.09 —0.83 0.54 —0.08]T.

]T

A scheme illustrating modal energy redistribution during one cycle of constraint appli-

cation and removal is shown in Fig.2.5. At the first transition 13.3% of the energy is

stored as potential, 81.4% is redistributed between the first 6 modes of the system in

state 6 and the remaining 5.3%, not shown here, is transferred to the higher modes.

After removing the constraint, 91.2% of the total energy ET is rearranged in the

modes of the system in state a and 3.45% is transferred to the higher modes.

State 9 State B State a

1st 16.67% 1st 10.87% 1st 17.66%

2nd 16.67% 2nd 20.41% 2nd 14.54%

3rd 16.67% 3rd 29.31% 3rd 20.33%

13.32 % .

4th 16.67 % 4th 4:11 12.82 %

5th 16.67 % 3.59 % 5111 "12.74 %

6th

5th

16.67 % 6th 12.23 % 6th [13.07 %

 

   

     

   

    

  

    

.. time (see)

Figure 2.5. Modal energy redistribution in the bar after one cycle of constraint application

and removal

t
o
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2.5 Remarks

A method for modal energy redistribution was presented in this chapter. It was shown

that modal energy of a vibrating system can be redistributed by stiffness variation,

and specifically through cyclic application and removal of constraints. The amount

of energy redistributed depends on the difference in the mode shapes of the structure

in the two stiffness states. A measure of this difference in the mode shapes of the

structure is defined as modal disparity and is quantified. In the next chapter we

provide an experimental verification of modal disparity and demonstrate the potential

for energy dissipation through modal energy redistribution.
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CHAPTER 3

Experimental Verification Of Modal

Disparity

3. 1 Introduction

In this chapter we present experimental results to illustrate modal disparity in a struc—

ture due to change in stiffness. In an earlier work [1], [2], modal disparity of structures

with variable stiffness was computed and simulation results of modal energy redistri-

bution were provided. The objective of this chapter is to experimentally demonstrate

modal energy redistribution in a clamped-clamped beam with a variable stiffness joint.

A mathematical model of the beam using finite elements is presented in Section 3.2.

The mechanics of stiffness variation is discussed in Section 3.3. Simulation results

are presented in Section 3.4; they provide a benchmark for the experimental results

presented in Section 3.5. Concluding remarks are provided in Section 3.6.

3.2 Modeling

In this section we review the finite element procedure to model the free vibration of

a beam with a mid-span hinge, as shown in Fig.3.1. We assume that the hinge has a

built in actuator enabling it to be locked or released at any desired time. Clamped

at both ends, the beam is switched from one stiffness state to another by locking or

22
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Figure 3.1. A clamped-clamped beam with a mid span hinge

releasing the hinge. Let A be the cross-sectional area and I be the area moment of

inertia of the beam. Let p and E be the material density and modulus of elasticity

of the beam, respectively. Assuming Euler-Bernoulli theory, the equation of motion

of the beam in the x—y plane can be written as follows:

I/Il

Ely +pAy=0 ifxE (0,L/2)orx€ (L/2,L) (3.1)

The boundary conditions are

y(0,t) = y(L, t) = 0

y (OJ) = 3! (lat) = 0

y((L/2)",t) = y((L/2)+.t)
III

6 <<L/2>-,t) = y”’<(L/2>+.t>

The beam is in stiffness state a when the hinge is free and in stiffness state )6 when

it is locked. The remaining boundary conditions needed to completely describe the

behavior of the system in the two stiffness states are as follows:

stiffness state a y::((L/2)—, t) = 0

y ((L/2)+,t) = 0

y’((L/2)—,t)
= y’((L/2)+,t)

s iffness S
”

N

t
tat/8,6

y ((L/2)—,t) = y ((L/2)+,t)
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6': y'(L/2'.t)
 
 

 

/
\
/

Figure 3.2. The hinge model

We model the beam by N standard (cubic) finite elements. Each element has two

nodes with two dof1 per node (translation in the y axis and rotation about the z

axis). The modeling of the hinge in both states is facilitated by assuming that the

node at x = L/2 has two rotational dof, 0’ and 0", corresponding to y’(L/2-, t) and

y’(L/2+,t), respectively. When the hinge is free (stiffness state a), 6’1 and 0" are

independent. However, when it is locked (stiffness state 6) the constraint 6’ = 6" has

to be enforced. This is achieved by adding a penalty of magnitude yer (6’ — (9")2 to

the strain energy, that is, by adding a rotational stiffness between 0’ and 19" as shown

in Fig.3.2.

K. = k. [ _[ ‘] ] (3.2)

To account for the hinge model, the stiffness matrix in Eq.(3.2) is added to the global

stiffness matrix. In the stiffness state a, the parameter k7. is set to zero and in stiffness

state 6, it is set to a large positive value. The finite element model has (2N — 1) dof.

The hinge model is shown schematically in Fig.3.2, where the hinge mass is accounted

for by the addition of a lumped mass m), at the central node.

 

1degrees—of-freedom
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3.3 Stiffness Change Mechanism

As mentioned in the previous section, the transition from stiffness state a to stiffness

state 6 is accomplished by an actuator, having the capability to lock the hinge. This

transition is assumed to occur over a brief interval of time and results in the applica-

tion of an action-reaction pair of impulsive moments to the middle node, as shown in

Fig.3.3. Furthermore, by sensing the state of the beam, the hinge is locked only when

the beam is passing through its equilibrium configuration. Let tgfi and tgfl denote

the beginning and the end of this brief transition period. The effect of the impulsive

moments can be mathematically described by the relations

Y(t;fl) = Yugfl)

(3.3)

MY(t;fi)+Ia_,fi = MY(t:fi)

where M is the mass matrix and Y is the vector of nodal dof. Ia_.fi, the impulse

vector, takes the form shown below:

Iaafi:[02”'iCa_Ca"'10]Ti C:fi

The nonzero entries of 1.1—.3 correspond to the coordinates 61 and 6’", where C is the

impulse and r is the impulsive moment. Y(t:fl) and Y(t;'fl) are the displacements and

velocities in stiffness state 6 at the end of the transition period. They are calculated

from the values of Y(t;fi) and Y(t;3) using Eq.(3.3). Although C is an unknown,

Eq.(3.3) can be solved since two elements of Y(t;3), namely 6°l and 0", are equal. The

transition from stiffness state 6 to stiffness state a is accomplished by releasing the

hinge. If tEa and tga denote the beginning and the end of this brief transition period,

the beam displacements and velocities vectors just prior to and right after the release

of the hinge are the same, i.e.
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\ /1'(t) dt [16) dt /

/ g Q \

middle node

  

Figure 3.3. Action-reaction pair of impulsive moments

205..) = mg.) (3.5)

mg...) = mg.)

The beam behavior at the transition from one state to another is described by equa-

tions (3.3) and (3.5). Eq.(3.1) describe the beam behavior at all other times as a

clamped-clamped beam with a frictionless hinge at mid span (in stifiness state a)

or a clamped-clamped beam (in stiffness state ,6). With this notation, the stiffness

parameter 16,. (introduced in section 3.2) can be defined as follows

{ 0 stiffness state a

kr =

1600 stiffness state 5

where koo is some large positive number chosen to enforce the constraint 6’ = 0'".

3.4 Modal Space

Let gt,- and «[2,- denote the i-th normalized mode shapes of the beam in stiffness state

a and stiffness state ,6, respectively, and let 11,-(t) and 11,-(t) denote the corresponding

modal displacements. In the two stiffness states, the vector of nodal dof can be

expressed as

26



{2,21% 1 ,uz-(t) 65,- stiffness state a

)=] (3.6)

l 231—1 112-(t) w,- stiffness state ,8

The transition from stiffness state a to stiffness statefi, mathematically described by

Eq.(3.3), can now be rewritten as

Zfo/tlmagi.- = Egg—IVAtZgWi

(3.7)

MZ§=Nl_1fli(t;g)¢i+Ia_.g = Mimi—1V2“3W

Using Eq.(3.7), the modal displacements and velocities, Vj(t:fi) and 1'1]- (tzfi), can be

expressed in terms of ,uJ-(tgfl) and uj(ta—fl) as follows

22.93;.) = Effl—lij‘watgfl)

(3.8)

2.02.7.) ——- 2351—1wa4. 77.03;.)

In the derivation of Eq.(3.8) from Eq.(3.7), we used the identity 7,0311 1043 = 0. This

is true since the entries of W, j = 1, 2, - - - (2N —- 1), corresponding to the nonzero

entries of 10,—43, namely, 01 and 6" are equal.

Using the same procedure as above, the transition from stiffness state 6 to stiffness

state 04 can be obtained from Eq.(3.5) as follows

2.0;.) = 2351‘1¢}"Mw.v.(tga)

(3.9)

rig-(ti...) = Zifi‘lqswamga)

Ifwe define (I) = [(91, p2, - -- ,¢(2N_1)] and \II = [101,102, - - - , ¢(2N—1)]a it is clear from

Eqs.(3.8) and (3.9) that elements of the matrix \IITMQ define the mapping between

modal coordinates during the transition from stiffness state a to stiffness state 6. The

transposed matrix, <I>TM\II, defines the mapping between modal coordinates during
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the transition from stiffness state 6 to stiffness state a. These matrices will be identity

matrices if the two stiffness states are the same and any deviation from the identity

structure is a measure of modal disparity between the two stiffness states [1].

3.5 Numerical Example

Consider the beam in Fig.3.1 with the material and geometric properties in Table 3.1.

The mode shapes of the first four modes of the beam in the two stiffness states are

Table 3.1. Material and geometric properties of the beam in Fig.3.1

 

 

Material Aluminum

Young’s Modulus 71 GPa

Density 2710 Kg/m3

Cross section Area 0.05x0.0023m2

Length 2.0 m

Hinge mass 0.182 Kg

 
 

shown in Fig.3.3, and their corresponding natural frequencies in Table 3.2. The even

numbered modes in the two stiffness states are identical. This is true since the hinge

is located at mid-span where the even numbered modes have zero curvature therefore

they will not be affected by the state of the hinge, i. 6. locked or released.

Table 3.2. Natural frequencies of the beam in the two stiffness states

 

mode number, i

wai, Wfii (HZ)
 

 

 

 

       

i = 1 i = 2 i = 3 i = 4

a 1.29 8.34 9.52 27.0

stiffness state

6 2.30 8.34 14.68 27.0

 

28

 



  

 

      
0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0

x (m) x (m)

  

          

0 0.5 l.0 1.5 2.0 0 0.5 1.0 1.5 2.0

x (m) X (m)

Figure 3.4. Mode shapes of the beam in the two stiffness states

Using modal truncation, the matrix measure of modal disparity, \IITMq), is computed

using the first four modes as follows

0.980 0.000 0.153 0.000

0.000 1.000 0.000 0.000

0.139 0.000 0.949 0.000

0.000 0.000 0.000 1.000

\IITM<I> = (3.10)

In the matrix \IITM<I>, the fact that second and fourth rows and columns maintain

the identity structure, is an indication that the even—numbered modes in the two

stiffness states are identical. However, the non-unity value of the diagonal elements

and nonzero elements in the off—diagonal entries of odd-numbered rows and columns

indicate the presence of modal disparity between the odd-numbered modes of the two

stiffness states.

To illustrate modal energy redistribution between odd-numbered modes in the two

stiffness states, we consider the scenario where the beam is initially in stiffness state

a and vibrating purely in the third mode with a maximum amplitude X0. Ignoring
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damping, the total energy in the system is equal to Ea = 0.5 X3 112,213. It is assumed

that the beam is switched to state 6 when it passes through its neutral position.

The modal displacements right after locking the hinge are zeros u,(t:fl) = 0, since

uz-(tgfi) = 0. The modal velocities right after switching to stiffness states ,8 can be

computed from Eq.(3.8) as follows

  

”191033) ‘ 0.980 0.000 0.153 0.000 0

- +
122005) 2 0.000 1.000 0.000 0.000 0 (3.11)

123(tgfi) 0.139 0.000 0.949 0.000 X06203

[1240533) _ 0.000 0.000 0.000 1.000 0

Clearly, the energy of the beam is redistributed in modes 1 and 3 in stiffness state 6.

The maximum amplitudes of these modes are

(3.12)

The modal energy in modes 1 and 3 are easily calculated as follows.

Em = 2Xglwgl = $153226: 7033 = 0.1532 E, (313)

E33 = §Xg3wg3 = l09492/r3 7.233 = 0.9492 Ea

These results will be validated through experiments in the next section.

3.6 Experimental Verification

The experimental hardware is shown in Fig.3.5. The beam has a pair of piezoelectric

2 mounted on each side at a distance of 5.0 cm from one of the clamped

3

transducers

ends. These transducers are used for excitation. A single piezoelectric strain sensor

is mounted on the beam at a distance of 5.0 cm from the other clamped end. The

 

2product of Mide Technology Corporation

3product of PCB Piezotronics
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piezoelectric strain sensor

 

electromagnatic brakes

Figure 3.5. Experimental hardware

position of the sensor and actuators are chosen to ensure high degree of controllability

and observability of the first three modes of the system. The material and geometric

properties of the beam in the experimental setup are the same as those used in sim-

ulations and provided in Table 3.1. In this table, the hinge mass includes the mass

of the electromagnetic brakes4, shown in Fig.3.5, used for locking and releasing the

hinge. In our experiments, we chose to investigate energy redistribution between the

Table 3.3. Natural frequencies of the beam in the two stiffness states, determined experi—

mentally

 

mode number, i

 “at: ”62' (HZ) ll

[] i: 1 i: 2

 

 

    

i=3

stiffness state a ll 1'40 8'24 9-70

fi [I 2.37 8.20 13.90   

first three modes of the beam. This was motivated by the fact that modal disparity

can be adequately demonstrated by the first three modes and estimation of the higher

modes are more prone to inaccuracies The first three natural frequencies were ex-

 

4product of Inertia Dynamics
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perimentally determined for both stiffness states and are provided in Table 3.3. The

piezoelectric transducers were used to excite the beam and the strain sensor was used

to measure beam vibration. The natural frequencies were identified as the frequencies

of excitation that resulted in maximal amplitude of vibration. The experimentally de-

termined values show good agreement with the numerically computed values in Table

3.2. We first present experimental results for two cases where the beam was initially

in stiffness state a (hinge released) and switched to stiffness state [i (hinge locked).

For the first case, Case A, the beam was excited at its second natural frequency in

stiffness state a. The stiffness of the beam was switched after termination of excita-

tion and the results, shown in Fig.3.6, indicate that the beam vibrates primarily in

its second mode in stiffness state 6. This is expected since the second mode of the

two stiffness states are identical. This can be verified from the elements of the second

column vector of the modal disparity matrix \IITMCP in Eq.(3.10). All entries of this

vector are zero except for the second entry, which is unity. For the second case, Case

B, the beam was excited at its third natural frequency in stiffness state 0. Its stiff-

ness was switched after termination of excitation and the results are shown in Fig.3.7.

Since the first and third elements of the third column vector of \IJTM<I> are nonzero,

the beam vibrates in its first and third natural frequencies in stiffness state 6. The

amplitude of these modes, immediately after the switch, can be computed based on

our analysis in the last section. These values and the values obtained from experi-

ments are both presented in Table 3.4 and they show good conformity. The plots in

Fig.3.7 indicate a small presence of the second mode in both stiffness states. It is

logical to infer that excitation of the beam introduced the second mode in stiffness

state a and energy associated with this mode transferred directly to the second mode

in stiffness state 6. For the sake of completeness, we present experimental results for

one case where the beam was initially in stiffness state ,6 (hinge locked) and switched

to stiffness state a (hinge released). The results for this case, which we denote as
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Figure 3.6. Energy redistribution between modes for Case A

Case C, are shown in Fig.3.8 and summarized in Table 3.4. For this case, the beam

vibrates in its second mode in stiffness state [3 and energy associated with this mode

isfentirely transferred to the second mode in stiffness state (1, upon switching. The

results for this case are therefore quite similar to that of Case A. The amplitude of

the third mode in stiffness state a could not be measured accurately and is marked

“xxx” in Table 3.4. The difliculty of the measurement was due to its small magnitude

coupled with waxing and waning due to beating. The beating phenomenon can be

attributed to the close proximity of the second and third natural frequencies of the

beam in stiffness state a.

3.7 Remarks

The investigation in this chapter has confirmed that changes in structural stiffness

result in modal disparity, and that this disparity permits energy to be transferred
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Figure 3.7. Energy redistribution between modes for Case B

between different sets of spatial modes in a given structure. Finite element based

analysis and systematic experiments have demonstrated that the phenomena can be

modeled and quantitatively predicted. One of the keys in the modeling is to properly

account for the physics of the transition between the different stiffness states, which

results in the correct mapping of the modal energies from one set of modes to another.

With these tools in hand, it should be possible to design structural systems with built-

in mechanisms for stiffness variation for favorable modal disparity, and to predict the

efficacy of various proposed switching schemes. In the next chapter we present a

semi-active control strategy where the stiffness of the structure is actively varied to

transfer energy from the low-frequency modes to the high-frequency modes where it

can be dissipated naturally and quickly.
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Table 3.4. Modal amplitudes immediately before and after switchings

 

amplitudes before switch amplitudes after switch

 

 

 

 

          
 

 

 
 

  

 

     
  

  

  

 

      

Stiffness mode number i actual/expected values

switch

i=1 i=2 i=3 i=1 i=2 i=3

Case A a —-> B 0.01 0.88 0.01 0.02/0.01 0.80/0.88 0.01/0.01

Case B a —> [3 0.02 0.07 0.68 036/042 005/007 044/045

Case C B ——+ a 0.00 0.84 0.01 0.01/0.00 0.79/0.84 xxx/0.00

tpa

l l f r T r

.
8

'10 3 4 '5 6 l7 8

state [3 state a

1 - - 1 .

E; 0 9: 0
> :1.

-l -1 1 m

1 1 -

E"; 0 5320'
> :1.

-l, ,1 m

1 - 1

8m 0 v~v v v‘v .Av---fi v vvv vv v E; 0W

> :1.

I 4 - . .1 . .

0 1 2 3 4 0 1 3 4

time (sec)

Figure 3.8. Energy redistribution between modes for Case C
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CHAPTER 4

Energy Dissipation In Dynamical Systems

Through Sequential Application And

Removal Of Constraints

4. 1 Introduction

Energy dissipation is the primary objective of many control problems in dynamical

systems. For such problems, we explore the feasibility of energy dissipation through

sequential application and removal of constraints. We illustrate our basic idea with

the example of the three dof1 mass-spring system, shown in Fig.4.]. In Fig.1, the

1162 163
k .

WWW/rm m2 m3

éLil

  

     
 

Figure 4.1. A three dof mass-spring system

displacements of the three masses are denoted by x1, x2, and 1123. A constraint x2 = 0

is applied by instantaneously pushing the pin into the slot in mass m2 and removed

by pulling the pin out of the slot. The application of the constraint requires the

instantaneous position of mass mg to satisfy x2 = 0 but removal of the constraint

 

1degrees-of-freedom
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can occur at any time. The application of the constraint results in an instantaneous

reduction in energy of the overall system by an amount equal to the kinetic energy of

mass mg. The removal of the constraint does not alter the energy of the system but

enables the constraint to be applied again for further reduction of energy. Except in

special situations2, sequential application and removal of the constraint will ultimately

reduce the energy of the system to zero. On reading this example, two questions arise:

1. What happens to the kinetic energy of mg when the constraint is applied ?

2. Can one generalize this idea to remove energy from dynamical systems through

sequential application and removal of constraints ?

The answer to the first question is provided in Section 4.2 but it requires that we

model the pin and/or mass as deformable bodies. This is further explained with

the help of the next example of direct central impact, which can be found in almost

any textbook in dynamics. The answer to the second question is the subject of this

chapter and is discussed in the remaining sections.

Consider the two particles A and B, of mass mA and mB, moving to the right

along the same straight line with velocities vA and 213, as shown in Fig.4.1. If we

assume that vA > 123, particle A will eventually strike particle B. Upon impact, the

two particles will deform and at the end of the period of deformation they will have

the same velocity u. A period of restitution will then take place and at the end of

this period, the two particles will have velocities 22:4 and ob. The velocities 12:4 and

u}; can be obtained by solving the two equations

 

2An example of a special situation is where the system of masses move in a manner that maintains

x2 (t) E 0; this will occur if one of the modes have a zero displacement for mass m; and the system

vibrates in that mode.
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mAvA+mBuB = mAuh+mBu’B

(via-vii) = 80124-03)

The first equation corresponds to conservation of linear momentum. The second

equation relates the relative velocities of the particles, before and after impact,

via the coefficient of restitution, e 6 [0,1]. In regards to this standard textbook

131’: 121’: .1614. W “’4 VH4

69. rmatiostitutio Q9.

' period ’ ' period '

Figure 4.2. Direct central impact between two masses

explanation of the impact phenomenon, we wish to make the observation that

initially the two masses are assumed to be rigid bodies, and hence they are

referred to as particles, but later they are assumed to undergo deformation, in

contradiction with the initial assumption of rigidity. In reality, the masses are

deformable bodies and their deformation excites their flexible body modes if the

material is elastic. The rigid body assumption, routinely made, simply implies that

the flexible body modes correspond to high frequencies and are not relevant to

the problem involving the rigid body motion of the masses after the restitution period.

Under the implicit assumption that the masses are deformable bodies, it is

useful to discuss the two special cases corresponding to e = 0 and e = 1. When

e = 0, the two masses have zero relative velocity after impact and this is referred

to as “perfectly plastic impact”. In the absence of restitution, the masses undergo

plastic deformation. Work is done during plastic deformation and hence the

kinetic energy of the masses after impact is less than that before impact. For

e = 1, the masses have the maximal relative velocity after impact, equal to that
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before impact. In this case of “perfectly elastic impact”, some of the kinetic

energy is stored as potential energy during deformation of the masses. The stored

potential energy is completely converted back to kinetic energy during restitution

and consequently the kinetic energy of the masses is the same before and after impact.

In this chapter we are interested in the removal of energy in “perfectly elastic”

systems and thus we eliminate the possibility of permanent or plastic deformation.

For the two-mass example, this implies no loss in kinetic energy and this can be simply

attributed to the fact that the motion of the masses A and B are unconstrained after

impact. To understand the loss of kinetic energy due to application of a constraint, as

in the case of our 3—dof mass spring system, we consider a variation of the two-mass

problem next.

4.2 Energy Loss due to Application of a Constraint

Consider the problem of direct central impact where the two masses are perfectly

elastic, but, by virtue of some mechanism, the masses remain coalesced after they

make contact. This scenario, depicted in Fig.4.3, will result from application of the

constraint (xA —— xBl = 0, where xA and xB are the position coordinates of the

masses. In this scenario, conservation of momentum dictates that the velocity of the

two masses after contact will be

 

 

v’ = u — 6 m3

A ("M + ms) ( )

4.1

u’ = u + 6 mA

8 ("M + me)

where u is the velocity of the center of mass, an invariant of the motion, has the

expression
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Figure 4.3. Scenario depicting two masses that stay connected after impact

u_ mA’UA-i-‘mB’UB

mA+mB

 (4.2)

and 6 has the dimension of m/sec, and assumes a positive value during waxing, a

negative value during waning, and a zero value at points of maximum deformation.

From Eqs.(4.1) and (4.2), the kinetic energy of the masses after contact can be

computed to be

1 mAmB 62

2(mA+mB)

 

1 1 1

-mAvk2 + —vai32 = —(mA + mslu2 + (4-3)
2 2 2

The second term on the right hand side of Eq.(4.3) denotes the kinetic energy that is

converted into potential energy during deformation, and converted back into kinetic

energy when the masses regain their original shape. This cyclic conversion between

kinetic and potential energy is possible due to excitation of the flexible modes of the

masses, and this process would continue perpetually if there were no modal damping.

In reality, the high-frequency flexible modes have high modal damping, and as a result

the energy is gradually dissipated through conversion into heat. From the maximum

absolute value of 6, which corresponds to e = 1, the total amount of energy dissipated

can be shown to be
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l mAmB [6'2
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2(mA+mB) "‘03— 2(
m(UA — ”B)2

When all of this energy is dissipated at steady state, the two masses move together

with the common velocity u, as shown in Fig.4.3. In contrast with the scenario

depicted in Fig.4.2, where zero relative velocity of the masses after impact implies

plastic deformation, the two masses here retain their original shape. Clearly, the

application of a constraint for a finite duration of time results in a “perfectly plastic

impact” behavior for “perfectly elastic” material property.

4.3 Relation to Prior Work

It is clear from our discussion in Section 4.2 that application of a constraint in a

perfectly elastic finite dof system results in motion identical to a perfectly plastic

impact. This dissipates mechanical energy and provides the opportunity for energy

removal through sequential application and removal of constraints. Although such a

method of energy dissipation has not been explored in the literature, there are many

papers on energy dissipation using impact dampers. The pioneering work was done

by Paget [29] for vibration reduction in turbine blades. This motivated the analytical

studies by Lieber and Jensen [30], Grubin [31], and Warburton [32] on impact damping

in single dof systems. The extension of this work includes analytical and experimental

investigations of multi-unit impact dampers [33], and the effect of impact dampers on

multi-dof systems [34], [35], [36], and continuous systems [37], [38]. There is a large

volume of literature on impact dampers, and in that work, impact is a result of a

physical collision. The approach presented in this chapter is fundamentally different

in that the physical collision is followed by coalescence, as opposed to separation. The

coalescence causes changes in natural frequencies and mode shapes of the system and

results in energy transfer from one set of modes to another. For finite-dof systems,
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the coalesced state also has fewer modes due to fewer dof and this “modal truncation”

results in loss of kinetic energy. The modal description of impact and redistribution

of energy due to application of a constraint has been verified experimentally for a

clamped-clamped beam in chapter 3, and in this chapter we generalize the idea for

finite-dof systems.

4.4 Finite DOF Linear Systems

In this section we investigate energy dissipation in linear systems with finite dof

through sequential application and removal of constraints. From our earlier discussion

we know that application of a constraint will result in an impact and transfer of energy

into flexible body modes of the system, where it will be dissipated. Our finite-dof

assumption simply implies that the flexible modes are unmodeled; this is justified

by the fact that the energy transferred to these modes decay rapidly and their high-

frequency dynamics have negligible effect on the dynamics of the the rigid body dof.

4.4.1 Spatial coordinate description

Consider the N-dof linear system

MX + KX = 0 (4.4)

where M and K are the N-dimensional mass and stiffness matrices and X =

[x1,x2, - -- ,xN]T is the vector of independent generalized coordinates. Upon ap-

plication of a holonomic constraint, the dynamics of the system takes the form

M? + RY = 0 (4.5)

where M and If are the (N —1)—dimensional mass and stiffness matrices and

T

Y = [y1, y2, - - - ,y(N_1)] is the vector of independent generalized coordinates of the
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constrained system. Both the unconstrained and constrained systems are assumed

to be undamped since our objective is to investigate energy dissipation solely due to

application of the constraint.

We denote the unconstrained system as state a. and the constrained system as

state ,8. The transition from state a to state 6 occurs over the brief interval of time

when the constraint is applied. If [t;fl, tgfi] denotes this transition interval, the effect

of the transition can be mathematically described by the relations

X(tgfl) = X(tgfl) (4.6)

MX(t2:fi) = MX(t;fl)+Ia_,5 (4.7)

and

Y(t:fi) = TafiX(t;-fl) (4.8)

Y(t:fl) = TaflXugfl) (4.9)

where 10,—.g is the N-dimensional impulse of the generalized forces and Tag is a

constant (N — 1) x N transformation matrix. Equations (4.6) and (4.7) enable us

to determine the states of the unconstrained system, X and X, immediately after

application of the constraint and Eqs.(4.8) and (4.9) determine the initial conditions

for the constrained system. The number of unknowns in the vector Ia—pfl is equal

to the number of constraints and equal to the number of dependent variables in the

vector X (tgfi), which is one in the present discussion, and therefore Eq.(4.7) can be

solved without any problem. Since the set of independent variables in the vector

X(tgfl) is not unique, the transformation matrix Tag is not unique. This will be

illustrated with an example later.

The transition from state 0 to state a occurs over a brief interval of time when

the constraint is removed. If ltEa’tgal denotes this transition interval, the effect of

43



the transition can be described by the relations

Y(tga) = Y(tga) (4.10)

Y(tga) = Y(tga) (4.11)

and

xugg:=tmarmg) Min

X(tga) = TsaYUEa) (4.13)

where Tfia is a constant and unique N x (N — 1) transformation matrix. The transi-

tions from state a to state 6 and from state B to state a are summarized in Fig.4.4.

To obtain a relationship between the mass and stiffness matrices in Eqs.(4.4) and

 

Transtion from state a to state B : Application of constraint

X(e,)=xa;,,) change of “newsman

M X(tZIB) +1643 = M X(thp) variables Y(thfi) = TaB X(tfiB)
   

 

   
 

 
 

, State 6 ,

gg §‘"""" i M Y + K Y = 0 """""’ +

l he]; tffi Y(t) in RN-l tifga tBa time

| State or i I i [ State a

----- Mx+Kx=0~>§ §~~Mit+Kx=0~~

X(t) in RN ; ‘ X(t) in RN
      
 

Transtion fi'om state [3 to state a fRemoval of constraint

new raise.) chapgeof {(68347}. rat.)
Y(tba) = Y(t’éa) variables X(tEa) = T56: Y(tEa)

   

Figure 4.4. System description before and after application and removal of constraint

(4.5), we note that the kinetic energy before and after removal of the constraint is

the same. Using Eqs.(4.11) and (4.13) we can show that
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2

1

2

. _ .. . _ 1 . .

YT(tfia)MY(tfia) = .Z—XTagawxa-ga) (4.14)

. .. . 1 . .

YT(tga)M1/(tga) = §YT(tga)Tg'aMTflai/(tga)

Since the above equation holds for any Y(tga), it follows that

M = TgaMTfia (4.15)

The strain energy immediately before and after removal of the constraint is also the

same. Using Eqs.(4.10) and (4.12) we can therefore show that

1 _ ~ _ 1

5YT(3&1)K1/(6fl0,) = EXT(1:;;C,)KX(1§C,) (416)

1 .. 1

=> §YT(tEa)KY(tEa) = §YT(tEa)TgaKTBaY(tia)

Once again, since the above equation holds for any Y(tga), we can claim that

I? = Tg’aKTfla (4.17)

Equations (4.15) and (4.17) provide expressions for M and If in terms of M and

K, respectively, but the reverse transformations are not possible. The kinetic energy

before and after application of the constraint is not the same and it is not possible

to start from an expression similar to Eq.(4.14). The strain energy before and after

application of the constraint is the same and it is possible to start with an expression

similar to Eq.(4.16) and use Eq.(4.8) to obtain

1 T _ _ 1 T ~

I 1 ..

=> EXT(t:fl)KX(t:fl) §XT(t;fl)T§BKTagX (7:31.)
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The above equation is not valid for all values of X(tgfl) since the constraint can be

applied only when the configuration of the system satisfies the constraint instanta-

neously. Therefore, we cannot claim K = TgflKTafi:

4.4.2 Energetics of constraint application and removal

The change in kinetic energy over one cycle of constraint application and removal is

given by the relation

1. . 1. _ . _

AB = ExTagfi) angfi) — §XT(tafi) anafl) (4.18)

To simplify Eq.(4.18), we premultiply Eq.(4.7) by XT(t:fi) and XT(t;fl) to obtain

XT(t:fl)MX(t;fl) = XT(t:fi)MX(t;B)+XT(t:fi)Ia_,fl (4.19)

XT(t;fi)MX(t:fl) = XT(t;B)MX(t;fi)+XT(t;B)Ia_,3 (4.20)

Assuming a workless constraint, we can claim that

XT(t;fi)Ia_,fl = 0 (4.21)

Using the symmetric property of the mass matrix, we can then show from Eqs.(4.19)

and (4.20) that

= XT(t;fl)MX(t:fi)

= XT(t;fi)MX(t;fi) + XT(t;fl)Ia_,fi (4.22)

46



Substitution of Eqs.(4.21) and (4.22) into Eq.(4.18) gives

1 .T _
AE = EX (tafl)1a_.fi (4.23)

To simplify further, we rewrite Eq.(4.7) as

X(tgfl) = X(tgfi) — M—IIaxfi (4.24)

The expression for X (tgfi) in Eq.(4.24) is substituted in Eq.(4.23) to obtain

1 'T T —T
2 (X (tgflflmw — IagfiM rang)

1 T -1
: _§Ia—»6M [CI—+3

AE

(4.25)

In simplifying Eq.(4.25) we used the relation XT(t:fi)Ia_,fl = 0 and the symmetry

of the mass matrix. The mass matrix is positive definite and thus AE S 0.

4.4.3 Modal coordinate description

Let <15, and [2,-(t), i = 1,2, - - - N, denote the linearly independent mode shapes and

the corresponding modal amplitudes in state a. Similarly, let 1,0,; and ui(t), i =

1, 2, - - - (N — 1), denote the linearly independent mode shapes and the corresponding

modal amplitudes in state 6. The mode shapes in state a, 65,-, are N-dimensional

whereas the mode shapes in state {3, 1,0,, are (N — 1)-dimensional. For convenience,

we embed the (N — 1)-dimensional mode shapes of state 6, 1b,, into N dimensions

using the transformation matrix in Eq.(4.12), namely,

an

The generalized coordinates, before and after application of the constraint, can now

be expressed as follows
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,1 2,121 #4048 = (1)1105) t5 th/B
X(t) = l

(4.27)

1 21:1 11401134 = ‘i’ 1’05) t2 15%

Where (p = [$11 ¢27'” 7¢Nl E RNXN and {I} : [IAIN/32," ' 71/;(N—1)] E RNX(N-1)

are modal matrices in states a and [3, respectively, and u = [#1, p2, - -- , ply/[T and

T

1/ = [V1, 1x2, - - - ,1/(N—1)] . The transition from state a to state 6, described earlier

by Eqs.(4.6) and (4.7), can now be written as

2.1115426) 1h = 2.1:, 742-053;.) 41>.- (4.28)

442.112.1666 = M21. 61636.”... (4.29)

From the orthogonality property of the modes we have

BTW = IUH)

where 1(N—1) is the (N —1)-dimensional identity matrix. Substituting Eqs.(4.15) and

(4.26) in the above equation we can show that

VITA/11; = I(1y_1) (4.30)

Using Eq.(4.30) and the identity $3,103 = 0, which follows from Eq.(4.21), we can

obtain the modal displacements and velocities of the constrained system in terms of

those of the unconstrained system from Eqs.(4.28) and (4.29), as follows

402;.) = 2:1. 225;“ M4.- 4.0.1,.) (431)

Drugs) = 23:1 15?!” (152' 71.0.1.) (4.32)
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In matrix form, Eqs.(4.31) and (4.32) can be written as

”(ti-g) = F #(tgg)

19(tag) 2 F [1(tafi) (4.33)

where

r a \iJTMcr (4.34)

Repeating the above procedure for the transition from state 6 to state a, we can

similarly show that

Wis) = I‘T u(tga) 4 3

. . _ PT. t_ (.5)
”(tfia) — V( Ba)

The change in kinetic energy over one cycle of constraint application and removal can

now be expressed in terms of the modal coordinates. Starting from Eq.(4.23) and

using Eqs.(4.24), (4.27), and (4.33), we obtain

AE = %XT(t;g)M [X(t;3)—X(t;5)]
%pT(t;fl)<I>TM [wag-fl) — <I>B(t;fi)l

= %pT(t;fl)<I>TM [tr — <1>] u(tgfl) (4'36)

= —%4T(t;g)AB(t;fl)

where

A 2 (IN — FTP) (4.37)

and IN is the N-dimensional identity matrix. In the next section we show that A

is positive semi-definite and this will corroborate the observation made earlier from

Eq.(4.25), namely, that AB 3 0.

We conclude this section by deriving expressions in modal coordinates that are

equivalent to Eqs.(4.15) and (4.17). Since the kinetic energy before and after removal
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of the constraint is the same, we can use Eq.(4.35) to show that

1 . _ . _ 1 . _ 1 . _ . _EVTUfiall/(tfia) : El‘TltEalt‘Ull-a) : '2'VT(tfia)FFTV(tfla)

Since the above equation holds good for all {/(t‘fl’a), we claim that

H" = 1(N_1) (4.38)

Let 02,-, i = 1,2, - -- ,N, and 1221-, j = 1,2, - -- ,(N — 1), denote the natural frequencies

of the unconstrained and constrained systems, respectively. The stiffness matrices in

modal coordinates can then be defined as follows:

9 = diag [1.0%,013, - -- ,w12V]

(4.39)

S) : diag [6363,” ,agN_1)]

Since the strain energy before and after removal of the constraint is the same, we can

use Eq.(4.35) to show that

I _ ~ _ l _ _

“VT(tfia)Ql/(tfia) : §#T(tga)9“(tga) = VTUAOWQPTVUIM)

Since the above equation holds for all u(tga), we claim that

(2 = 1“an (4.40)

4.4.4 Numerical example

We consider a system with three dof in state a: and two dot in state 6, i.e. N = 3.

The system, shown in Fig.4.5 consists of four bars connected by rotational springs

except for the two middle bars, which are connected by a frictionless pin joint. In

state a, the pin joint is free and the generalized coordinates are chosen to be the
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displacements of the ends of the bars, namely, x1, x2, x3. The pin joint is locked only

when the middle two bars are aligned, and locking the joint applies the constraint

f(X) = 3x1 — 4x2 + x3 = 0 (4.41)

and transfers the system to state B. In state 6, the generalized coordinates are the

displacements y1, y2. The relationship between the generalized coordinates of states

a and 6 can be derived from Fig.4.5 as follows:

y1 = 1231 + /\1(3£L‘1 — 4:172 + 1'3) _ 1+ 3A1 —4/\1 A1

=> T —

y2 = x3 + A2(3:1:1 — 4:132 + $3) OB 3A2 —4)\2 1 + A2

$1 = 311 1 0

1132 = 0.75y1 + 0253/2 => T30 = 0.75 0.25

333 = 92 0 1

where A1 and A2 are arbitrary non-zero constants. Clearly, Tfin: is unique whereas

T05 is not. For small displacements, the system behaves linearly and Eqs.(4.4) and

Q rotational spring © free pin joint -® locked pin joint

  

  

        

 

 

State a a ?

x1 X2. x3;

L U2 3112 L
‘4------------------------>1 7

state B g '

Y1 Y Y2:

1. U2 31/2 _ L
          

Figure 4.5. A linear system with three dof in state a and two dof in state 3

(4.5) describe its dynamics in states a and B, respectively. The mass and stiffness

matrices in Eqs.(4.4) and (4.5) can be derived from the system Lagrangian [39] as
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61 0 90 —54 0
AL k

M=p1—2183 K=9—L2——54 40—10

_0310 0—10 34

~ pAL'31 ~ It 7 —3

: —— K = —

M 3 _ 3 2L2[—3 7] 

where p is the material density and A is the cross-sectional area of the bars, I: is the

stiffness of the rotational springs, and L is a dimension that is shown in Fig.4.5.

The transformation from state a to state 6 requires the application of an action-

reaction pair of impulsive moments3, r(t), on the middle bars, as shown in Fig.4.6. If

the impulse of these moments is denoted by

t+

C=/_a‘3¢ t dt

tap?

the impulse vector corresponding to the generalized coordinates X = [x1, x2, 5133] can

be shown to be (see Appendix-A)

[any = 55- [ 2 — 8/3 2/3 ]T (4.42)

Starting from Eq.(4.25), the change in kinetic energy over one cycle of constraint

 

13(t) t(t)

1 /W©\ 1
(I

pinjoint/

Figure 4.6. Action-reaction pair of impulsive moments

 

3Such impulsive moments can be generated in experiments by an electromagnetic brake, as in

[40].

52



application and removal can now be shown to be (see Appendix-B)

AE = —11T_,flM—110_,B

z ——pAL [361(tgfi) — 4mg) + i3(t;fi)]2

13

= —'1—5%PAL {le(t;fi)l}2 S 0

where the function f() is defined by Eq.(4.41).

For the purpose of simulation, we assumed the bars to be of circular cross section

and made of aluminum. The material and geometric properties of the bars and the

stiffness of the rotational springs were assumed to be

p = 2710 Kg/m3, A = 7r(0.02)2 m2, L = 0.20 m, k = 20.0 Nm (4.43)

The system was assumed to be in state or at the initial time with the following initial

conditions

(:61, 62, x3, 6:1, 3:2, 63) = (0006,0003, —0.003, 0.00, 000,000)

in SI units. The system was switched from state a to state ,8 at the earliest opportu-

nity after 0.2 seconds when the two middle bars are aligned (f(X) = 0) and switched

back to state a after 0.2 seconds in state 6. The process was continued till the energy

of the system became negligible. Figure 4.7 shows the displacements of the bars and

the energy of the system as a function of time. The energy undergoes a step change

when the system changes state from a to 6 due to application of the constraint. It

remains constant at all other times.
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Figure 4.7. Plot of displacements of the bars and total energy of the system

4.5 Controllability Issues for Linear Systems

4.5.1 Limitation of energy dissipation

we investigate the properties of the matrix A, defined in Eq.(4.37), to understand

the limitations of energy dissipation through application of constraints. Consider the

matrix FTI‘, where l" is defined by Eq.(4.34). Using Eq.(4.38) it can be shown that

2

(I‘TI‘) = rTrrTr = rTr (4.44)

This implies FTP is idempotent and hence A = (IN — FTP) is idempotent. The trace

of A can be computed as

trace[A] = trace[IN] — trace[I‘TF]

= N —trace[I‘I‘T]

= N — trace[I(N_1)]

= 1 (4.45)
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Since the eigenvalues of idempotent matrices are all zero or unity, the trace of an

idempotent matrix is equal to its rank. From Eq.(4.45) we deduce that A has one

unit eigenvalue and other eigenvalues are all zero. If u is the normalized eigenvector

of A corresponding to its unit eigenvalue, then eigen decomposition of A gives

A = ’U’UT (4.46)

Substitution of Eq.(4.46) into Eq. (4.36) gives

1 -T __ T~ _ 1 T- .. 2
AB: ‘2“ (tafi)uv Was) = —§ ['0 ”(hall 5 0 (4.47)

Clearly, the energy of the system will not be dissipated upon application of the

constraint if any of the following conditions hold:

1. Mtgfl) = 0: the constraint is applied when the system has zero kinetic energy.

2. uT [lac—w) = 0, v,- 7é 0, i = 1,2,--- ,N: the constraint is applied when the

modal velocity vector is normal to the eigenvector of A corresponding to the

unity eigenvalue.

3. u,- = 0, i 6 Sr = {k1,k2, - -- ,kr}, uj(t;fl) = 0, Vj ¢ Sr: the kinetic energy of

the system lies in specific modes that correspond to zero entries of v.

The first and second conditions can be avoided through a proper choice of the time

when the constraint is applied. It may not be possible to avoid the third condition,

which depends on modal characteristics of the unconstrained and constrained systems

and the energy distribution of the unconstrained system. This corresponds to a

necessary condition for energy entrapment.

4.5.2 Energy entrapment

In this section we show that energy can get trapped in specific modes of the system.

The third condition in Section 4.5.1 is a necessary condition for energy entrapment
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but not a sufficient condition. Before we present the sufficient condition, we derive

some properties of the matrix I‘, defined by Eq.(4.34). We assume that F has the

form

I“=[101 P2 PN]: I‘T=[<I1'612 (KN—1)] (4-48)

where the p’s and q’s are column vectors of dimension (N — 1) and N, respectively.

Using the identity FFT = I(N—l) from Eq.(4.38), we can show that

1 °=i ..

qg‘rqj'={ J. . i,j=1,2,---,(N-—1) (4.49)

Since 12 is the eigenvector of A corresponding to its unit eigenvalue, 1) is also the

eigenvector of FTI‘ corresponding to its zero eigenvalue. This implies that

rTr6=0 => UTFTFU=0 => r6=0 => viq, j=1,2,---,(N—1)

Since FTP has (N — 1) repeated eigenvalues, there will be no unique set of orthonor-

mal eigenvectors. The qj’s, j = 1, 2, - -- ,(N — 1) are in the space spanned by the

eigenvectors of FTP with eigenvalue of unity. This follows directly from the relation

(FTP) PT = I‘T

which follows from the identity FFT = I(N-l) in Eq.(4.38). Now consider the or-

thonormal matrix

pf '01

Q=[CI1 <12 (1(N—1)‘U]= 5 °

pf vN

Since [QQTL j = pgpj + 22%, we can readily establish
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pfpj =10 — 6,2- g 1.0, i,j=1,2,-~-,N (4.50)

The sufficient condition for energy entrapment is stated next with the help of the

following theorem.

Theorem 4.1 The energy of a linear system will remain trapped in r specific modes

if F contains an orthonormal sub-matrix of dimension r. [:1

Proof: We renumber the modes of both the unconstrained and constrained systems

such that F has the form

P 2 [ A11 A12 ]

A21 A22

where A22 is the orthonormal sub-matrix of dimension r. From Eqs.(4.49) and (4.50)

we know that the p’s and q’s have norm less than or equal to unity. This implies that

A12 = A21 = 0 and hence

A11 0
F: 4.1

l 0 A22l (5)

We partition the modal coordinates of state a and state 6 as f0110ws:

#=[#1#2]. V=[V1 V2], Ital/261V (45?)

Equations (4.33) and (4.35) can now be rewritten as

V2(t:B) — 4422112033) (4 53)

929:3) = A22 #2053) l

1429;...) = 2412112 V2050.) (4 54)

'(t+)=AT1'/(t_) 'l‘2 66 22 2 66

If S222 and $222 denote the lower right r x r sub-matrices of f2 and (2, respectively,

then substitution of Eq.(4.51) into Eq.(4.40) gives
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(122 = A229224123 (455)

Using the orthonormal property of A22 it can be easily shown that

922 = A22111221422 (4-55)

In state a, the total energy associated with modes p2 prior to application of the

constraint is

__ 1 . _ . __ 1 _. _

E2(tag) = §uf(tag)u2(tafl) + §#§(tap)922fl2(tagl

Using Eqs.(4.53) and (4.55), this can be shown to be equal to

_ 1 . . 1

E2005) = §Vi(t:5)AzzAsz2(t:gl + §vf(t;'3)A22922A321/2(t:g)

1 _ _ 1 ~

: EngtzglV2ftzg) + §Vg(t:g)9221/2(t:gl

= E2(t:fl) ' (4.57)

In state 6, the energy associated with modes 112 prior to removal of the constraint is

_ 1 -T _ . _ 1 T _ ~ _

E20530) = 51/2 (tgalV2ftga) ‘I’ 51/2 (130)9221/2ftga)

Using Eqs.(4.54) and (4.56), this can be shown to be equal to

_ 1 . . 1 ~

E2(t,3(1) = §#§(tga)Af2422/t2 (132,) + §Mf(150)A22922A22#2(t§a)

1 . . 1
-: §p£(tga)p2(tga) + ~2-u5(t§a)922#2(tgal

= E2(tga) (4.58)
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Equations (4.57) and (4.58) imply that energy is trapped between modes pg in state

a and modes V2 in state ,6, and this completes the proof.

The results in Theorem 1 can be further extended as follows:

1. From Eq.(4.55) it can be shown that the eigenvalues of (222 are the same as those

of 022. Since (222 and (222 are both diagonal matrices, they must be identical.

Equation (4.55) now implies 5222 = 422022452 => 922A22 = Aggflgz.

Since (222 and A22 commute and $222 is diagonal with distinct entries, A22

must be diagonal [41]. Since A22 is orthonormal, it simply follows that A22 = IT,

where [T is the identity matrix of dimension r. In summary, we have

5122 = 5122, A22 = Ir (4-59)

This implies that r modes in state a will be identical to r modes in state 6.

These modes form an invariant sub-space that is not affected by the constraint

and energy in these modes remain trapped.

2. From Eq.(4.51) we can show that FTP and A will have the form

FTP: Atil/411 0 A: IN—r—AflA11 0

0 Ir ’ 0 0

From the expression of A in Eq. (4.46) it follows that r elements of u will be zero.

Clearly, the third condition in Section 4.5.1 is satisfied when the condition in

Theorem 1 is satisfied.

4.5.3 Numerical example

Consider the system in Fig.4.5 with all bars having the same length L, as shown in

Fig.4.8. Assuming the system parameters to be those given by Eq.(43), the matrices
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I‘ and A and the eigenvector u are computed as follows:

0.9599 0.0 0.2804

PT: 0.0 1.0 , U: 0.0 ,

—0.2804 0.0 . 0.9599

(4.60)

0.0786 0.0 0.2691

A = 0.0 0.0 0.0

0.2691 0.0 0.9214

Q rotational spring ©~ free pin joint -® locked pin joint

state a g 1

x1 x2 . x31

  

  

         

 

   

  

          

Figure 4.8. A modified version of the system in Fig.4.5 in states a and 6

From the entries of F in Eq.(4.60) it is clear that the condition in Theorem 1 is

satisfied with r = 1. Since ng = 1.0, the energy of the system is trapped in the

second mode of state a, which is also the second mode of state 3. We can also verify

that one element of 1), namely U2, is equal to zero. Energy entrapment can be verified

from the simulation results presented in Fig.4.9, the initial conditions for which were

chosen as

(3:1, 1:2, x3, 6:1, 562, :53) = (0.006, 0.016, 0.002, 0.00, 0.00, 0.00)

in SI units. As in the previous simulation, the system was switched from state a to

state [i at the earliest opportunity after 0.2 seconds when the two middle bars are
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Figure 4.9. Plot of modal amplitudes in state a and total energy of the system

aligned, i.e., when

g(X)=1‘1—2$2+:L'3=0

and switched back to state a after 0.2 seconds in state 0. The modal amplitudes

in state (1, namely, #1, [12, 113, are shown in Fig.4.9 for the intervals of time when

the system is in state a. It is clear from these plots that the amplitudes of the first

and third modes decay to zero whereas the amplitude of the second mode remains

constant. The plot of the energy confirms that some energy of the system gets trapped

in the second mode.

4.6 Application to Nonlinear Systems

For the simulations in Sections 4.4 and 4.5, the constraints were applied when the two

middle bars were aligned, i.e., the constraints were applied based on state variable
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information. The purpose of using state variable information was to make the analysis

tractable by switching the unconstrained system to the same constrained system

every time. Furthermore, the assumption of small displacements and linear system

behavior permitted the analysis in modal coordinates. For nonlinear systems, where

a modal coordinate description is not possible, the analysis does not benefit from

switching based on state variable information. However, the information of the states

can be used to maximize the amount of energy dissipated. We do not address this

optimization problem in our work. Using a numerical example we simply show that

a random switching schedule can be quite effective in dissipating the energy of a

nonlinear system. This will demonstrate an important advantage of our approach

that has not been explicitly stated thus far: that vibration control can be achieved

without state variable estimation and therefore without the use of sensors.

The analysis for nonlinear systems can be carried out in a manner similar to that

of linear systems presented in Section 4.4.1 and is therefore not repeated. It will be

different in two respects: (a) the mass matrix will be a function of the generalized

coordinates and not a constant matrix, and (b) the transformation matrices T03 and

Tfla will vary from one cycle of constraint application and removal to the next. This

simply reflects the fact that the constraint applied and removed will be different for

each cycle since a random switching schedule will be used.

We consider a serial chain of three links connected by revolute joints, as shown

in Fig.4.10. Each joint has a rotational spring and the second joint can be locked

or released for constraint application and removal. The unconstrained system has

three dof and its configuration is described by the generalized coordinates al, a2, 0:3.

The system is constrained by locking the second joint. In this locked configuration,

which is described by the generalized coordinates Bl, ,32, the relative angle between

the second joint and first joint is denoted by ’y. The value of y will be different for

each cycle of constraint application and removal since a random switching schedule
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will be used. The simulation results are presented in Fig.4.11. For this simulation,

-@— pin joint with a rotational spring

  

  

  

 

 

  

  

        

Q rotational spring

@. locked pin joint

.......................

   

   

      
  

Figure 4.10. An example nonlinear system

the mass and length of each link were assumed to be 1.0 kg and 0.5 m, respectively.

The stiffness of the rotational springs were assumed to be the same and equal to 200

Nm/rod. The initial conditions were assumed to be

(61, 92, 93, 91, 9’2, 6'3) = (15.0, —10.0, 5.0, 0.0, 0.000)

where the units are in deg and deg/sec. The second joint was locked and released

with the time interval between switchings randomly varying between 0.2 and 0.3 sec

till the total energy of the system was dissipated. The simulation results indicate

that a random switching schedule is quite effective in dissipating the total energy of

the system.

4.7 Remarks

It has been shown that a sequence of application and removal of constraints can be

used as a mechanism to extract energy of vibration from finite dimensional elastic

systems. The strategy is straight forward, as it does not rely on state—dependent
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Figure 4.11. Plot of generalized coordinates and total energy of the nonlinear system

timing of the constraint application and thus it is easy to implement. This is partic—

ularly relevant in the case of non-linear systems, where examples show that here too

application and removal of constraints leads to removal of kinetic energy. As such,

the strategy emerges as a potential mechanism for vibration control without the use

of sensors.

The results in this chapter highlight a number of interesting features of the be-

havior of linear systems under the repeated application and removal of constraints.

In general, applying and removing constraints results in energy transfer from mode

to mode and, in the case of finite-dof systems, removal from the system altogether

in a manner akin to transferring energy to unmodeled, higher-order modes. In the

process, energy is extracted from all modes except in cases where the modes and the

constraints interact in such a way that energy is entrapped and a part of the system

is indifferent to constraint application. One can view this as a sort of orthogonality

of the system, as represented by a subset of its modes, and the constraints. This sug-
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gests that if energy removal is the principal consideration, it may always be effected

by applying and removing a different set of constraints after every switch, carefully

crafted to affect all the modes of the system. A number of interesting ftuther investi-

gations are possible. For example, since the rate at which energy transfer takes place

depends on and can be controlled by the manner in which the constraints are applied,

it may be possible to optimize both the rate and the direction of this transfer to fit a

particular purpose, simply by designing the constraint application scheme. Since the

efficiency of a number of engineering systems relies on the manipulation of vibration

energy, the work presented can have interesting applications in the design of such

systems such as devices for vibration isolation, vibration control [1], [2], and energy

harvesting. The goal of the next chapter is to use the method of energy dissipation

proposed here but apply the constraints at specific times and locations to maximize

energy removal.
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CHAPTER 5

Energy Dissipation Through Optimal

Application And Removal of Constraints

5. 1 Introduction

The energy dissipation approach presented in the last chapter is revisited in this

chapter with the objective of investigating efficient energy removal through an Opti-

mal sequence of constraint application. A special case of the constraint application

procedure proposed in the last chapter is used here: the constraint is applied and

instantaneously removed instead of remaining active for a finite duration of time.

In terms of the nomenclature used in the last chapter, this implies ti]; = tEa and

the system always remains in state oz. The time spent in state [3 is zero. The basic

idea is illustrated with the help of Fig.5.1, which is a modified version of the three

dof1 mass-spring system of Fig.4.1. Unlike in Fig.4.1, where a pin is inserted in the

second mass to enforce the constraint x2 = 0, here we assume that the second mass

has an electromagnetic brake that enables it to stop instantaneously. Immediately

after it stops, the brake is disabled and the mass is set free to move. In this

case, the constraint x2 = 0 is enforced and instantaneously removed. The system

configuration does not change and therefore its dof remain three, namely, x1, x2 and

x3. The application and instantaneous removal of the constraint however results

 

1degrees-of—freedom
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in an instantaneous reduction in energy of the overall system by an amount equal

to the kinetic energy of mass m2. A repetition of the process of application and

removal of the constraint will ultimately reduce the energy of the system to zero. In

this chapter, we pose and solve several optimization problems to efficiently remove

energy from the system by applying and instantaneously removing constraints at

strategic location and specific instants of time.

 

 

Figure 5.1. A three dof mass-spring system

The above idea of energy dissipation relies on application of an impulsive force on

the system. It is however different from impact dampers, commonly used for vibration

suppression, that also apply impulsive forces. For impact dampers, the motion of the

impact mass is constrained to a specific region of the physical system, the impact

mass moves in an uncontrolled fashion and the frequency of collisions depends on the

dynamics of the overall system. In this work, we do not introduce impact masses but

apply constraints that have the equivalent effect of an impact damper. This gives us

the flexibility to control the timing as well as location of the impacts.

This chapter is organized as follows. In the next section we describe the eflect of

constraint application and removal and the loss of energy associated with this process.

In section 5.3 we consider the examples of a discrete N-dof mass spring system and

a continuous rectangular membrane fixed at all sides. For both examples, three opti-

mization problems are solved using a genetic algorithm approach. A gradient-based

optimization method is pr0posed in section 5.4 for solving Optimization problems of

the continuous rectangular membrane introduced in section 5.3. Concluding remarks

are provided in section 5.5.
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5.2 Energy Loss due to Constraint Application and Removal

In this section we investigate energy dissipation in linear systems with finite dof

through application and instantaneous removal of constraints. From our earlier dis-

cussion we know that application of a constraint will-result in an impact and transfer

energy into the high-frequency modes of the system, where it will be dissipated nat-

urally (without the use of active control). Our finite-dof assumption simply implies

that the flexible modes are unmodeled; this is justified by the fact that the energy

transferred to these modes decay rapidly and their high-frequency dynamics have

negligible effect on the dynamics of the rigid body dof.

We consider N-dof linear systems of the form

MX+KX = 0 (5.1)

where M and K are the N—dimensional mass and stiffness matrices and X =

[x1,x2, - -- ,xN]T is the vector of independent generalized coordinates. The appli-

cation and instantaneous removal of a constraint will change the momentum of the

system but will not affect the displacements. If [t_, t+] denotes the period of time

over which the constraint is applied and removed, the evolution of the system over

this interval can be mathematically described by the relations

X(1+) = X(t‘) (5.2)

MX(t+) = MX(t—)+I (5.3)

where I is the N-dimensional impulse of the generalized forces. The change in kinetic

energy over one cycle of constraint application and removal is given by the relation
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AE = éxTaWL) MX(t+) — éXT(t—) MX(t-) (5.4)

To simplify Eq.(5.4), we premultiply Eq.(5.3) by XT(t+) and XT(t—) to obtain

XT(t+)MX(t+) = XT(t+)MX(t-) + XT(t+)1 (5.5)

XT(t-)Mx(t+) = XT(t_)MX(t_) + XT(t-)1 (5.6)

Assuming a workless constraint, we claim

XT(t+)I = 0 (5.7)

Using the symmetric property of the mass matrix, we can then show from Eqs.(5.5)

and (5.6) that

XT(t+)MX(t+) = XT(t+)MX(t-)

= XT(t-)Mx(t+)

= XT(t-)MX(t—) +XT(t-)1 (5.8)

Substitution of Eqs.(5.7) and (5.8) into Eq.(5.4) gives

AE = —XT(t-)1 (5.9)

To simplify further, we rewrite Eq.(5.3) as

X(t‘) = X(t+) — M41 (5.10)

The expression for X (t’) in Eq.(5.10) is substituted in Eq.(5.9) to obtain
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AE 1 (XT(t+)I — ITM‘TI)
2

= —%ITM‘II (5.11)

In simplifying Eq.(5.11) we used the relation XT(t‘f)I = 0 and the symmetry of the

mass matrix. The mass matrix is positive definite and thus AE S 0.

5.3 Optimization Using Genetic Algorithms

In this section we consider two examples: an N-dof mass spring system and a continu-

ous rectangular membrane system. For each example, several optimization problems

are posed and solved using a genetic algorithm approach.

5.3.1 Discrete System Example: N-dof Mass Spring System

We consider the N-dof mass-spring system shown in Fig.5.2. We assume that we can

apply and instantaneously remove the constraint 2;,(1) = 0, for any i E {1, 2, - - - , N}

at any time t. This physically means that mass m; is stopped and instantaneously

released. The impulse required to enforce these constraints can be easily calculated

from Eq.(5.3) since the mass matrix M is diagonal. Assuming the initial and final

times to be t = 0 and t = T, respectively, and that the constraint can be applied n

times, we pose the following optimization problems with the objective of minimizing

the total energy of the system at the final time:

P1 Given the time sequence {0 3 t1 S t2 5 S tn S T}, find the number

sequence {j1,j2,--- ,jn}, jk 6 {1,2,--- ,N}, k = 1,2,--- ,n, such that

sequential application and instantaneous removal of the constraints 2,-(tk) = 0
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for i = jk will minimize the total energy of the system at t = T.

P2 Given i 6 {1,2,--- ,N}, find the time sequence {0 S t1 S t2 S S tn S T}

such that sequential application and instantaneous removal of the constraints

x,(tk) = 0, k = 1,2, ~ -- ,n, will minimize the total energy of the system at

t=T.

P3 Find the time sequence {0 S t1 S t2 S - - - S tn S T} and the number sequence

{j11j21"‘ ,jn}, jk 6 {1,2, - -- ,N}, k = 1,2, - -- ,n, such that sequential

application and instantaneous removal of the constraints x;(tk) = 0 for i = jk

will minimize the total energy of the system at t = T.

X X2 XN

k. rt k. 4" 2—7 k...
l-MNVWV— m. 4wvvwv1— m2 Hv‘ ------------ v— mNW

Figure 5.2. An N-dof mass spring system

   

       

The above optimization problems were solved using genetic algorithms. For each of

the problems, we assumed N = 5, n = 6, and T = 103. In SI units, the five masses

and six spring constants were chosen randomly as follows:

m1 = 0.095, m2 = 0.051, m3 = 0.132, m4 = 0.094, m5 = 0.112

k1 = 14.5, kg = 7.31, kg = 11.06, k4 = 9.85, 165 = 13.91, kg = 12.62

The initial conditions used for simulations were chosen as:
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151,31 t2,j2 t3..’i3 t4.j4 155,35 136,36

P1 1.00 , 3 2.00 , 2 3.00 , I 4.00 , 3 5.00 , 1 6.00 , 3

P2 1.65 , 3 1.82 , 3 2.21 , 3 4.72 , .3 4.86, 3 5.11 , 3

P3 0.26, 3 1.00, 1 2.00, 3 2.71 , 1 4.71 , 4 4.85, 4         
 

Table 5.1. Time and number sequence for problems P1, P2 and P3

$1 = 3.95, 232 = 3.69, 173 = 2.03, 11:4 = 4.58, 225 = 4.47

6:1 = 0.92, 6:2 = 0.17, 2:3 = 0.93, 64 = 0.41, 6:5 = 0.06

where the units are mm and mm/s. The results of problems P1, P2 and P3 are

tabulated in Tab.5.1. The plots of energr decays are shown in Fig.5.3. This figure

indicate that energy of the system is reduced by 92.5% for problem P1, by 99.2% for

problem P2 and by 99.3% for P3. For problem P1, a time sequence was given and

the number sequence was obtained through optimization. For problem P2, a number

sequence was given and the time sequence was obtained through optimization. For

problem P3, both sequences were obtained through Optimization and therefore it is

not surprising that its solution has the maximum reduction in energy of the system.

5.3.2 Continuous System Example: Membrane

We consider a uniform rectangular membrane fixed on all sides, as shown in Fig.5.4.

The natural frequencies and mode shapes for this continuous system can be written

in closed form and they take the form [42]
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Figure 5.3. Energy decay for problems P1, P2 and P3

 

(5.12)

  W,- (:c, y) = sin

where 2', m and n are integers, a and b are dimensions of the membrane as shown

in Fig.5.4, p is the mass density, and 0 is the tension per unit area. In the above

equations each value of 2' represent a mode number and is associated with a specific

combination of m and n values.

We assume that a constraint of the form z'(:rp, yp, t) = O can be applied at any time

t, to any point (mp,yp) on the membrane, 0 < 23,, < a, 0 < yp < b. The application

and instantaneous removal of the constraint is achieved by the application of an

impulsive force F16(xp,yp) at point (mp,yp). Assuming an N-mode model of the
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Figure 5.4. Uniform rectangular membrane fixed on all sides

membrane, the magnitude of this force can be computed using Eq.(5.3) as follows:

The impulse vector I is calculated by projecting the impulsive force F; 6(mp, yp) on

the mode shapes of the system. The 2th entry of the impulse vector can therefore be

computed as

ll

1(2) Ab A“ Wi(-"’: 1!) Fr 5(zp. yp) dz dy

FI W-i($p, y?)

Hence, the impulse vector takes the form

I = F1 [W1(mp,yp).- - - ,WN(zp.yp)]T (5.13)

Let 1),-(t) and 1'7, (t) be the modal displacement and velocity of mode 7'. Since the mass

matrix is the identity matrix in modal coordinates, the change in modal velocities

due to this impulsive force can be calculated using Eq.(5.3) as follows
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7720+) = 7720—) + FIWi($pa 91)) (5-14)

The magnitude of FI required to enforce this constraint 2(srp, yp, t) = 0 can now be

computed as ’

FI : _Ez-Iil Wi($payp)7li(t—)
 (5.15)

221:1 W2” (55p, yp)2

which follows directly from

N

201310.311», 0 = Z Wi($pa yp)7'h'(t+) = 0 (5-16)

i=1

Assuming the initial and final times to be t = O and t = T, respectively, and that the

constraint can be applied 71 times, we pose the following optimization problems with

the objective of minimizing the total energy of the system at the final time:

P4 Given the time sequence {0 _<_ t1 5 t2 < S tn 5 T}, find the location

sequence {($11y1)1"' ,(anyn)}, 17min < wk < Climax: ymz'n < 311: < ymax,

k = 1, 2, - -- ,n, such that sequential application and instantaneous removal of

the constraints z'(a:,-, y,, t,) = 0 for 2' = 1, 2, - - - , n will minimize the total energy

of the system at t = T.

P5 Given the location (23p,yp) 6 {1,2,--- ,N}, find the time sequence

{0 3 t1 3 t2 3 S tn 3 T} such that sequential application and in-

stantaneous removal of the constraints 2(xp,yp,t,-) = 0, 2' = 1,2, - -- ,n, will

minimize the total energy of the system at t = T.

P6 Find the time sequence {0 3 t1 3 t2 3 g tn 5 T} and the location

sequence {($1,y1).--- Jews/11)}, 36mm < 517k < xmax, ymin < 111: < ymax,
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t1 t2 t3 t4 t5 t5 t7 t3 t9

P4 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

P5 0.73 1.06 2.30 2.86 3.84 5.18 5.83 6.58 9.56

P6 0.77 1.84 2.91 4.85 4.87 5.40 6.80 8.85 9.06

Table 5.2. Time sequence for problems P4, P5 and P6

k = 1, 2, - - - ,n, such that sequential application and instantaneous removal of

the constraints z'(:c,-, 31,-, t,) = 0 for z' = 1, 2, - - - ,n will minimize the total energy

of the system at t = T.

For our numerical simulations, we assumed n = 9, T = 10 s and

xmaz = 0.85 m

ymax = 1.05 m _

37min = 0.15 m

For the membrane, we chose the following geometric and material properties: a = 1.0

m, b = 1.2 m, p = 800 kg/m3 and a = 600 N/mz. A 10-mode model of the

membranes was considered, i.e. N = 10. The initial conditions were chosen to be the

same for all modes and equal to 17,- (to) = 0.001 and 1),-(t0) = 0.001.

The results of simulations for problems P4, P5 and P6 are shown in Tab.5.2,

and Tab.5.3. The corresponding plots of energy decay are shown in Fig.5.5. They

demonstrate an energy reduction of 86.3% for problem P4, 69.3% for problem P5 and

94.0% for problem P6. For P5, we choose 22,, = 0.3 m and 3),, = 0.7 m. For problems

P4 and P6 we imposed the additional restriction that the points of application of

constraints satisfy 33min < (ck < :rmax, ymin < yk < ymax, k = 1, 2, - - - ,n. This was

done to avoid a large impulsive force needed to enforce the constraint at points that
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Table 5.3. Location sequence for problems P4 and P6

are close to the boundary. The location sequence for P4 and P6 are shown in Fig.5.6.
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Figure 5.5. Energy decay for problems P4, P5 and P6

5.4 Gradient Based Optimization Method

The membrane example in section 5.3.2 is revisited in this section and solved using. a

gradient-based optimization method. Specifically, the method of moving asymptotes
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(MMA) [43] is used. This method can be used to solve optimization problems for

continuous systems and thus the mass-spring system of section 5.3.1 is not revisited.

We present the derivation necessary and solve optimization problem P4 in the next

section. The derivations needed for problems P5 and P6 can be carried out in a

similar manner and are not presented.

5.4.1 Objective function

We restate problem P4 as follows: Given the time sequence {0 3 t1 3 t2 3 S

tn 3 T}, find p = {($1,y1), - -- ,(xn,yn)} E szn that will

n

maximize f = g 2 IEI, (5.17)

z=l

3min < 53]: < 513mm:

(5.18)
ymz’n < yk < ymaa:

subject to

In Eq.(5.17), I,- is the impulse vector resulting from application and instantaneous

removal of the constraint 2(2:,-, y,, t,-) = 0 at time t,. It is calculated from Eqs.(5.l3)
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and (5.15) and takes the form

= [C$U(t;)] B, (5.19)

where

Bi = [Oa‘”aOaW1($i13/i)1"‘:WN(xiayi)lT

000 = [n1<t>,--1- ,nN<t),m<t>,--- mm?”

C. = [0,"',0,W1($',y'),°°',WN(.T‘,y')]Tz ZfiIWflmaz/DZ z z z z
 

In the above expressions, U (t) denotes the vector of state variables at time t. Starting

from the initial state U(to), U (t,- ) and I, are calculated recursively as follows.

(1051—) = (P1 [1050)

UUT) = (1’1 U(t0) +1

(105;) = (1)2(P1 U(t0) + (1)211

U(t3-) = (I>2<I)1 U(t0) + (1)211 + I2

' 2' i—l: i

U(t,‘) = II <I>, U(t0) + 2 II <I>,,I,-

j=1 j=1k=j+1

i i—l (5.20)

U(t;'") = [I <5, U(t0)+ fi <I>,,I, + I,-

j=1 j=1k=j+1

. n n—l. n

U(t;) = H <I>j U(t0)+ 2 H lej

n 71—]

U(tj{) = 1] <I>, U(t0)+ f1 <I>kI,- +In

where

ch,- = eAAt and A = ON 11" (5.21)
—9 0N

In Eq.(5.21), At = (t, — t,-_1), 2' = 1,2, - -- ,n, denotes the time interval between

successive impacts and Q = diag(w,2-) is the N x N stiffness matrix of the system. 1N
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and 0N are the N x N identity and zero matrices respectively. The expression for (I),

can be obtained in closed form as follows

diag [cos(w,-At)] dz'ag [Sin(ijt)/wjl

(bi = —dz'ag w-sin(w-At) diag 008(W'At).7 J
3

(5.22)

where diag [cos(w,-At)], diag [sin(w,-At)/w,~], diag [wj sin(w,-At)] and

diag [cos(w,-At)] are N x N diagonal matrices with [cos(w,-At)], [sin(w_,-At)/w,~],

[0), sin(w,-At)] and [cos(w,-At)] as their j-th entries, respectively, j = 1, - -- , N.

5.4.2 Sensitivity Analysis

The gradient of the objective function in Eq.(5.17) needed for the optimization algo-

rithm is computed as follows

   

af _ " T317
3p- 1:11,. a—p (5.23)

. 314
Usmg Eq.(5.19), 5; can be computed as follows

BI,- _ . __ T60,- T3U(t,-_) T _ 8B,-

3;. _ B, a U(t,) 3,. +0, 3p + [0, 00:, )] 3;» (5.24)

GB,-
 can be computed directly because they are

3001;)

5‘10

80-

In the above equation, ——3 and

0p 019

expressed in terms of 2:,- and y,. The evaluation of is more involved and

requires recursive computations, as shown below:

3U(ti_) _ i—l i an

‘50—- ?3 H ”a;



 

 

 

 

             
Table 5.4. Location sequence for problems 81 and S2

The gradient of the objective function in Eq.(5.23) is used in the MMA algorithm to

iteratively converge to an optimal solution starting from an initial guess.

5.4.3 Numerical Simulations

The material and geometric properties of the membrane were assumed to be the same

as those used in section 5.3.2. A 10—mode model of the membrane was considered

(N = 10) and the total time of simulation was set to T = 10 sec. The constraint

was applied and instantaneously removed nine times (n = 9) and the time sequence

was chosen to be the same as that used for simulation of P4Igiven in table 5.2. The

constraints imposed on the solution, given by Eq.(5.18), were chosen as: mm," = 0.15

m, xmax = 0.85 m, ymin = 0.15 m and ymax = 1.05 m. The initial condition was

assumed to be U(to) = 0.001[1,--- ,1]T; this corresponds to initial energy of the

system equal to 31.2 x 10’5 J. We present results of two simulations, S1 and S2,

obtained from two different initial guesses for the optimal solution. Figure 5.7 shows

the energy decay and Fig.5.8 indicates the locations of constraint application on the

membrane. The exact locations are tabulated in Tab.5.4. For simulations 81 and S2

the final energies were 6.59 x 10’5 J and 9.4 x 10"5 J, a reduction of 78.9% and

69.9%, respectively. Clearly, the results of optimization depend on the initial guess

since the solutions obtained are not global optima.
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5.5 Remarks

In the last chapter it was shown that a strategy based on sequential application of

constraints can be used to significantly eliminate vibration energy from a finite dof

system. While it may seem obvious that imposition of a constraint that freezes the

motion of a dof will remove kinetic energy, as a general strategy energy removal by

constraint application reaches its full potential only in the context of an associated

optimization problem. A number of formulations of the optimization problem are

possible and can be adjusted depending on the design goal and the amount of free-

dom available to design the system. The formulations explored in this chapter are

simple, yet they demonstrate performance when different goals are considered. Other

formulations could, for instance, account for the cost of applying the constraint using

more complex cost models. Such modifications could be incorporated easily within

the present framework and the problems presented hint to how to use these ideas to

solve more complex problems. The genetic and the gradient-based algorithms used

are simple to implement and result in reasonable energy extraction, although no ef-

fort was invested in ascertaining whether the solutions obtained are actually global

optima.
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CHAPTER 6

Vibration Suppression Using Cable

Actuators

6. 1 Introduction

The results presented in this chapter are part of the active control strategy discussed

in the introduction. It is an extension of the work of Nudehi et a1. [26] where cable

actuators were used for vibration suppression in a cantilever beam. In this chapter

we extend the results to the general case of frame structures. The vibration modes

of the beam studied in Nudehi et al. [26] lie in a single plane but this is not the case

for general frame structures. As a result, the cable actuators have two distinguishing

effects: the first is a parametric effect where the stiffness of the structure is affected by

the cable tension, and the second is a direct effect by which external forces are applied

to the structure. In general cabled structures both effects are present but in most

cases one of them is the dominant or sole effect. In section 6.2 we summarize the work

of Nudehi et al., and extend it to motivate the present study. In section 6.3 a dynamic

model, which describes the dynamics of a structure formed by frame elements and

cables, is presented. The model is based on finite elements for the frame and a linear

cable element in which sag, coupling, and other such effects, are neglected. In section

6.4 a general control scheme is presented and described. In section 6.5, we explore the
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Figure 6.1. Cantilever beam with cable-supplied end force.

idea of active stiffness variation on a frame structure, placing particular emphasis on

the importance of the cable placement on the structure, and a performance function is

proposed for quantitatively assessing its effectiveness in terms of control. Numerical

simulations for several choices of cable placements are shown for a particular frame

model. In section 6.6 the direct effect of transverse cable force is examined; we

consider the special case in which the structural stiffness change due to cable effects

is small. Numerical simulations and experimental results are presented for a sample

frame. Some conclusions and directions for future work are addressed in Section 6.7.

6.2 Background

The idea of stiffness variation for vibration control of a beam using a cable—supplied

end load was investigated by Nudehi et al. [26]. In this section we briefly review that

work and use it to demonstrate the effects of cable placement. While these results are

quite straightforward in this beam application, they provide the basis for evaluating

more complex structures, as described subsequently. The results of Nudehi et al. [26]

were based on a uniform cantilever beam of length L subjected to an end load P

whose line of action is directed from the free end of the beam to its base; see Fig.6.1.

Assuming Euler-Bernoulli beam theory, the beam equation of motion and boundary

conditions can be written as follows,

IIII

Ely +Py”+pAy=0. (6.1)
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Figure 6.2. Control Scheme

The geometric boundary conditions are

I

y(01t) = 0, y (01 t) = O

and the natural boundary conditions are

II III I

y (L,t)=0, Ely (L,t)+P{y(L,t)—iy(L,t)}=0.

In Eq.(6.1), E and p are Young’s modulus of elasticity and density of the beam,

respectively, I is the second moment of cross-sectional area, and y, and 3;, denote

the partial derivatives of y(:1:, t) with respect to a: and t, respectively. Note that the

end load P appears in a unique manner in the boundary conditions, but it enters

the field equation the same as if it were a compressive buckling or flutter type load.

Using the first N normalized mode shapes of a cantilever beam, the beam model is

approximated by projecting the partial differential equation onto these modes and

expressing the resulting ordinary differential equations in state space form, resulting

in:

il=$2

.2

2:2 = —K:E1 — D1E2 + 03111 (6 )

In Eq.(6.2), 2:1 is the modal amplitude vector, 2:2 is the modal velocity vector,

K is the stiffness matrix, D is the damping matrix, 11 is the cable tension (11 = P),
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Table 6.1. Material and geometric properties of the experimental beam.

 

 

Material Aluminum

Young’s Modulus 70 GPa

Density 2730 Kg/1123

Dimensions 1.25 x 0.05 x 0.003 m

 

 

and C is the stiffness change corresponding to a unit tension. Initially, it was found

using passivity analysis, that if energy was to be removed from the system, tension

should be applied in the cable only when the output function y = —$§C$1 is positive.

Then, a low pass filter was added to remove the high frequency content of the output

y, thereby providing a signal that is consistent with the actuator bandwidth. A

memoryless nonlinearity was included to account for the unilateral nature of the

control action and to proportionally reduce the control action as the system vibration

dies out. This control scheme is depicted in Fig.6.2.

An experimental setup was built to demonstrate the approach, in which a dc motor

provided the cable tension. The material and geometric properties of the beam are

provided in Tab.6.1. The cable tension was switched between 20—22N in one case and

20—24N in another case. The 20N bias tension was applied to the cable to prevent

slack. The first mode vibration of the beam was successfully suppressed using this

approach, as shown in Fig.6.3.

In order to demonstrate the effects of cable placement, the model is adapted

here to allow for cable placement anywhere along the beam. Of course, in this case

moving the cable closer to the base will reduce the control authority of the cable,

and thus reduce its effectiveness. Our aim is to capture this effect in the equations

of motion, so that it can be investigated for more complex structural systems. In

the first configuration, designated Case I, the cable is connected from the base

to the tip, as shown in Fig.6.1. In Case II the cable is assumed to be connected
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Figure 6.3. Experimental results of the first mode, showing vibration suppression from

the cable forces.

from the base to a point at :1: = 3L/4, and in Case III the cable is attached at

x = L/2. A two-mode approximation of the beam dynamics is considered. In

Eq.(6.2), the K and the D matrices will remain unchanged for the three cases but

the C matrix will change. These matrices, including 0 for all three cases, are given by:

K: [97.33 0.0 ] D: [0.098 0.0 J

0.0 3824.39 0.0 0.618

C in Case I C in Case 11 C in Case III

1.0 —5.28 0.16 -2.10 0.01 —0.25

—5.28 44.41 —2.10 28.81 —0.25 5.58

The results of numerical simulations for the three cases are shown in Fig.6.4. The

control scheme in Fig.6.2 was used with T = 35N, 5 = 1.0 x 6‘4, and the cut-off

frequency of the low pass filter was set at 15 rad/s. The following initial conditions

(in SI units) were used,
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$1<0>= [2133] = [832],

l= [3:8]

It is clear that a shorter cable results in lesser control authority. It is also clear that

(6.3)

__ )

”(0) _ l 512(0)

the C matrix is key to quantifying the level of control authority and thus some norm

of C should be useful for assessing the control effectiveness of cable placement. This

observation motivates the question of finding a method for determining an optimal

location of the cable. In the case of the beam the cable placement is limited to be

along the beam, making the optimization problem simple, but in a three-dimensional

structure the cable can be placed between any two points on the structure, and the

assessment and optimization become more complicated.

6.3 Modeling Of Cabled Frame Structures

In this section we present a mathematical model that describes the dynamic behavior

of a structure made of frame elements and cables. Finite element analysis is used to

derive the equation of motion of the system. Two elements are needed to completely

describe the structural dynamics, a flame element, which is well known, and a cable

element, which is proposed below. The flame element is shown in Fig.6.5; it has

two nodes, N1 and N2, and six dof1 per node, 3 displacements and 3 rotations. It

carries an axial load P, which is taken to be positive in compression. Its geometric

and material properties are defined as follows: A is the cross sectional area, I is

the second moment of cross-sectional area, J is the polar moment of cross-sectional

area, p is the density, E is the Young’s modulus, and G is the shear modulus of

elasticity. We denote u(as, t) and fix (51:, t) as its longitudinal displacement and twist

 

1degrees-of-freedom
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Figure 6.4. Simulation of decay in modal amplitudes a1 and a2 due to the control shown

in Fig.6.2, for cable configuration in Case I (connection at a: = L), Case II (x = 3L/4), and

Case III (x = L/2).

angle, respectively, and v(:1:,t) and w(a:,t) as the transverse element displacements

along the y-axis and z-axis, respectively. In terms of these parameters and variables,

the frame element linear equations of motion are given by:

pAa=AEu” pA5+EIv””+Pv”=0

6.4

-- II .. rm II ( )

pJ193=GJ6$ pAw+EIw +Pw =0

where the first two equations describe the longitudinal and the torsional vibration of
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Figure 6.5. Frame element

the element, respectively, and the latter two equations describe the transverse vibra-

tion of the element in the x-y and 23-2 planes, respectively. As per standard notation,

fI and f denote the partial derivatives of f with respect to :1: and t, respectively. The

elementary mass matrix, stiffness matrix and geometric stiffness matrix for such an

element are standard; see Reddy [28], for example.

The effects of the element axial forces P, which are induced by cable and other

loads, are only one factor contributing to the change in stiffness of the structure.

Another factor is the spring-back forces created at the cable-structure interface points.

We define a cable element to be any part of the cable that connects any two different

nodes, say N1 and N2, on the structure. Let T be the cable element tension. When

the structure deforms, each cable element acts like a spring and applies a restoring

force at each of the nodes where it is attached to the structure. Assuming small

deformations, these restoring forces are linearly dependent on the displacements of

the interface nodes. A cable element stiffness matrix can be added to the usual

stiffness matrix to account for these effects, as follows. The 3D deflections of the

cable element are projected onto the x-y and 23-2 planes, where (11,312,, 10,-) are the

displacements of the node N,- along the :c-axis, the y—axis and the z-axis, respectively,

as shown in Fig.6.6. The tension in this element is T. The cable restoring forces

F01, Fv2,Fw1, and FW are determined flom the geometry of the figure, and are given

as follows:
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Figure 6.6. Cable element and its projections on the x-y and x-z planes

Fvl 2 —T(’Ul -- Ug)/lc le C‘.’ —T(w1 — w2)/lc

(6.5)

F1,2 2 —T(v2 — v1)/lc Fw2 2 —T(w2 — w1)/lc.

In Eq.(6.5) all nonlinear effects, such as sag in the cable, are ignored. It is also

assumed that the cable tension T and cable length are constant, that is, independent

of the deformation. Using these assumptions the restoring forces in Eq.(6.5) can be

rewritten in matrix form, flom which one can obtain the cable elementary stiffness

matrix Kc, as follows,

—Fvl 1 -1 0 v1

—Fw, _Z 0 1 0 —1 ml (66)

—Fv2 lC “-1 1 U2 .

1 —1 0

T 0 1 0 —1
=> K = — .c ,6 _1 0 1 (6 7)

0 —1 0 1

This stiffness is mapped into the global stiffness matrix of the system. After adding

the cable structure interface to the system, and ignoring the inertial effects of the
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cable, the numerical model is developed using finite elements and will take the form

of as

M)? + (K — TKg)X = TF. (6.8)

In this equation M and K are the mass and stiffness matrices of the system without

the cable, F is the forcing vector corresponding to a unit tension in the cable and X is

the vector of nodal displacements and rotations. Kg is the geometric stiffness matrix

which includes both axial loading and cable effects, calculated assuming a unit tension.

The total geometric effect flom the cable on the system is T Kg, which results flom

the attendant axial loading in the flame elements (the part of P that arises from T,

calculated in the static state) and the stiffness effect due to cable elements. Both of

these effects are proportional to T. The resulting system is analyzed to determine

the system vibration modes. A coordinate transformation is carried out to express

the equations of motion in terms of modal amplitudes. This model is truncated to

n modes, resulting in the following form for the equations of motion for the retained

modal amplitudes n,

fi+Dfi+(Q—Tkg)n=Tf (6.9)

In Eq.(6.9), kg is the n x n modal geometric stiffness matrix, Q = diag(w,-2) is the

diagonal matrix of zero-tension natural frequencies, D = diag(2£iw,-) is the diagonal

modal equivalent viscous damping matrix in which 5,- are the modal damping ratios,

and f is the modal forcing vector corresponding to a unit tension in the cable. It is

clear from Eqs.(6.8) and (6.9) that the cable has two distinct effects on the system.

The first is a parametric effect in which it alters the system stiffness, and the second is

a direct effect where it provides directly applied forces. Both effects will be considered

in the control design described in the next sections.
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6.4 Control Scheme Design

In this section we propose a control design for the system described in Eq.(6.9) by

generalizing the results of Nudehi et al. [26]. We first write the state space form of

the closed loop in Fig.6.7 as follows:

1131 = $2

:52 = -Q$1-D$2+(kg$1+f)h(z) (6.10)

. __ 1 T T 1
z — T(32kg$1+x2f) T2

where, 221 6 RN is the vector of modal displacements, 2:2 6 RN is the vector of

modal velocities and z E R is the state of the low-pass filter. The cable tension is the

control input, that is, u = h(z) = T. Similar to the control design in Sec.6.2, passivity

analysis is used to prove that tension in the cable should be applied to maintain the

inequality uTy = uT (—x§kgxl — 2:;f) 2 0, which removes energy flom the system.

The high flequency components of y are attenuated by the use of a low-pass filter

in order to avoid spillover. To reduce chattering, the output of the filter is passed

through a memoryless nonlinearity with a saturation function.

The origin of the closed-loop system in Fig.6.7 is shown to be globally asymptoti-

cally stable using the following Lyapunov function candidate:
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1 2

V (231,2:2,z) = 2 (x’irflxl + $5232) + T/O h(a)da. (6.11)

The derivative of the lyapunov function is found to be

V = :ifflxl + 232211232 + Th(z)2

= —$§Dx2 -- zh(z) (612)

In the above equation, V S 0 since D is positive definite and h(z) is passive. Also

V = 0 implies 2:2 = 0 and z = 0. Furthermore, flom Eq.(6.10) $2 = 0 and z = 0

implies 2:1 = 0. Since V(:z:1, 2:2, 2) is radially unbounded, we can use LaSalle’s theorem

[44] to claim global asymptotic stability of the origin (2:1, .102, z) = (0, 0,0).

In implementation of the above approach, one needs to measure or estimate vibra-

tion modal amplitudes. It is important to note that when 2 < 0 the cable tension will

be negative. To avoid this situation, a bias tension T0 is applied where To is chosen to

be more than the maximum control effort T and less than the critical load. Although

a bias tension will alter the equilibrium configuration of the system in the general case,

proper cable placement can ensure that the change in the equilibrium configuration

is insignificant. In the next two sections we conduct two separate studies. In the first

study, the parametric effect is considered, i.e., f = 0 in Eq.(6.9), and the effect of

cable placement is explored. In the second study we address the case of direct cable

control assuming the geometric stiffness kg is negligible.

6.5 Control By Stiffness Variation

6.5.1 Problem Definition

The parametric cable control of the closed loop system in Fig.6.7 is studied. It is

assumed that the cable is wrapped around the structure in a way that renders the
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modal forcing vector to be zero, 2.6., f = 0. This corresponds to a physical situation

in which the cable tension does not affect the static configuration of the system,

at least for the truncated modal description of the system. Such arrangements are

possible, and are not difficult to achieve in structures that are essentially one or

two dimensional. An important consideration that will be investigated is how the

placement of the cable will influence the control. In this section, we will identify the

parameters that determine the control authority and present numerical simulations

for a specific example.

6.5.2 Cable Placement

An important consideration in this class of problems is to develop a systematic method

for assessing and comparing various cable placements, which will be useful for deter-

mining an optimal location that maximizes the control authority of the cable on the

structure. Actuator and sensor locations have been widely studied, especially for

linear systems; see Hamdan and Nayfeh [45] and Sadri et a1. [46], for example. Un-

fortunately, these criteria can not be applied in the present case, due to the nonlinear

nature of the system. Also, unlike other actuators, the cable tendon is unique in the

fact that the overall effect of the force transmitted to the structure can be significantly

increased by rerouting the cable through pulleys at different points on the structure.

A single actuator is needed to apply the tension in the cable which can then be con-

nected to multiple locations on the structure. Here we investigate cable placement

for an undamped system, since we are interested in energy dissipation solely due to

parametric cable control. The equation of motion for this Class of systems is a special

case of Eq.(6.9):

7') + (n — Tkg)ll = 0. (6.13)

The cable placement will affect only the geometric stiffness matrix kg. This stiffness
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matrix is directly related to the negative work done by the cable tension that is

described by the term, Tkgn. It is clear that some norm of the geometric stiffness

matrix kg can be a measure of the control authority of the cable. The cable placement

problem will be approached by first applying a change of variables that decouples the

stiffness matrix of the system, and the desired criteria will be based on the new form

of the geometric stiffness. Let 05 be the n x n transformation matrix that diagonalize

the two symmetric matrices fl and kg. The statement of this generalized eigenvalue

problem and its consequences for the two matrices are given by:

905 = Akgqb (6.14)

with

¢Tkg¢ = diGQU/Tila ¢TQ¢ = Inxn

where A = diag(T,-) are the eigenvalues, 05 is normalized with respect to the 9 matrix,

i.e., 457’qu = Inxn, and T,’s are the buckling loads for the modes, as confirmed below.

For convenience, the eignvectors that compose 05 are ordered so that [7",] < |T,-+1|.

Performing the change of variables 17 = 050, where a is an (n x 1) vector of the new

set of displacement variables, and multiplying Eq.(6.13) by ¢T, we get the equation

of motion in terms of the new modal coordinates:

Ar} + [Inxn—sz'ag(1/T,-)] 0 = 0 (6.15)

where A = 45le is the new mass matrix. Since we have taken [T1] < [T2] < [Tn],

the system stiffness matrix is given by:
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This form of the stiffness matrix makes it easy to quantify the stiffness change induced

by the cable tension T. To prevent structural instability, the condition 1 — £ > 0

must hold good for all 2', 2 = 1, . . . , 72. Note that the T,’s can be positive or negative,

and stability requires that the tension in the cable to be less then the first buckling

load. The absolute values of T, indicate the extent to which the diagonal entries of

the stiffness matrix are changed flom their original values of unity (when T = 0).

The parametric effect of the cable is described by the diagonal geometric stiff-

ness matrix in Eq.(6.16) and optimal cable placement can be defined as the problem

of maximizing the deviation of this matrix flom the identity stiffness matrix, inde-

pendent of the cable tension T since it is a common factor in Eq. (6.16). This is in

conformity with the observation in section 6.2 where optimal cable placement resulted

in the geometric stiffness matrix with the “largest” norm. To maximize the norm of

kg independent of T, we propose the following performance function:

72.

F, = 21/39 (6.17)

2'=1

In the next section we consider a numerical example and determine the optimal cable

placement based on this performance function.

6.5.3 Numerical Simulations

In this section we present simulation results of vibration suppression based on the

control scheme in Fig.6.7. Consider the flame structure in Fig.6.8 and assume that

the cable can run in the plane of the structure between any three nodes. It is assumed

that the cable is rerouted through a pulley at the middle node and that the actuator
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is fixed at one of the two end nodes, which are restricted to be different nodes of

the structure. The flame is taken to be made of aluminum pipes, the geometric and

material properties of which are shown in Tab.6.2. The structure is assumed to be

1.2 m in length and 1.0 m in height. The natural. flequencies and mode shapes are

calculated flom the mass and stiffness matrices of the system, obtained using the

FEM method described in Section 6.3. A two-mode model is then obtained through

model reduction. The natural flequencies of the tension-flee system are as follows:

f1 = 2.94 Hz and f2 = 8.13 Hz. In this example, damping is ignored. Since the

cable lies entirely in the plane of the structure, the forcing vector is zero, 2.6., f = 0.

The initial conditions, in SI units, used in this simulation are as follows:

(21 (0) 0.1
0 = = ,

m ) [ 222(0) ] [ 0.01

[2:85]

The performance function is chosen based on the first two buckling loads and is

(6.18)

932(0)

ll

[
_
fi

.
c
>
.
o

O
D

l
—
—
—
I

selected to be: Fp = 1/T12 + 1/T22. The tension in the cable is switched between 0

and 50N. The low pass filter cut-off frequency is 15.9 Hz and the boundary-layer

parameter is taken to be e = 10—7. The value of PP was calculated for all possible

cable configurations: three sample cable locations are shown in Fig.6.8. The cable

configuration for Case I corresponds to the maximum value of PP and this makes it

the best configuration with respect to the proposed criterion. The remaining cases,

Case II and III are shown for comparison. Numerical simulations of the response,

demonstrating and comparing vibration suppression for all three cases are shown in

Fig.6.9. The results indicate that the value of F1, is a useful measure of effective cable

configuration.
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Table 6.2. Material and geometric properties of the flame structure

 

 

Material Aluminum

Modulus of rigidity 26.2 GPa

Pipe diameter 9.53 mm

Young’s modulus 71.0 GPa

Pipe Thickness 1.00 mm

 

 

   

   

   

               

   
   

Density 2710 leg/m3

Fp=2.06'05 Fp=2.8e4"’ ’-. Fp=6.28'08

5 2 f
/ / / '--.

g l- ; g g ....

f ......... 5 2

Case I ”1." Case II ’ Case 111         

Figure 6.8. Different cable placements

6.6 Control by Transverse Cable Force

6.6. 1 Problem Statement

In this section we consider direct cable control of the closed loop system in Fig.6.7 by

setting kg = 0 in Eq.(6.9). The tension in the cable is considered to be sufficiently

small, or placed in such a manner that it will not cause a significant change in the

stiffness of the system. Therefore, the effects of Tkg can be ignored. The control

scheme in Fig.6.7 is used by ignoring the kg term and the low pass filter, and by

switching the tension in the cable between 0 and T instead of —T and +T. For this

case, the issue of cable placement is not investigated since this problem is similar to

the actuator placement problem in linear systems, which is well know in the literature;

see, Hamdan and Nayfeh [45] and Sadri et al. [46], for example. Numerical simulations
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Figure 6.9. Simulation of decay in modal amplitude a1 and a2 due to the control in Fig.6.2,

for cable configuration in Case 1, Case II and Case III

are presented in the next section, followed by experimental results.

6.6.2 Numerical Simulations

Numerical simulations of vibration control of the flame structure depicted in Fig.6.10

are shown in this section to prove the feasibility of the control scheme. The structure

in Fig.6.10 is a 2D frame made of elements with circular cross-sectional areas. The

geometric and material properties of the elements are the same as those in Tab.6.2,

with the difference that the flame elements are solid rods and not hollow pipes. The
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Figure 6.10. Front and side view of the flame structure

frame is assumed to be fixed at one end and have a length of 1.2 m and a height of 1.0

m. The cable is assumed to be attached as shown with 6 = 12.7 mm. After calculating

the elementary mass and stiffness matrices, the global mass and stiffness matrices are

evaluated. The mesh is refined until the natural flequencies of the first two significant

modes converge. A two mode model of the structure is used with modal damping

ratios of £1 = 52 = 0.001. The first two natural flequencies of the system are found

to be f1 = 2.19 Hz and f2 = 6.06 Hz. The first mode is a pure beam bending—like

mode and the second is a torsional mode. Both mode shapes are generated using

ABAQUS/VIEWER and shown in Fig.6.11. For the control parameters, we choose

5 = 2.0 x 10‘3 and T = 10N. The initial conditions were chosen in SI units as follows:

_ a1(0) _ 0.01

31(0) ‘ ] 222(0) ] _ [ 0.005 ’

_ 621(0) _ 0.0

352(0) _ l 42(0) l _ [‘10 °

The results of numerical simulations are shown in Fig.6.12. The cable placement is

(6.19)

based on high degree of controllability of the first two modes [45] and [46].
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Figure 6.11. Shapes of the first two modes
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(cable tension)
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Figure 6.13. Experimental setup

6.6.3 Experiments

Experiments were carried out with the 2—D flame shown in Fig.6.13 which is identical

to that of the flame used in the numerical model in the last section. The aluminum

flame was built and controlled using a Kevlar cable, where the tension was provided

by a dc motor working in current-control mode. The flame is formed by aluminum

rods welded together to imitate the shape of a space structure. It is designed to

have two flequencies below 10 Hz. The cable position is the same as that used for

simulations in the previous section. An accelerometer (manufactured by PCB, with

0.5 — 3000 Hz bandwidth) was placed on the structure (using a small plate welded

to the flame) at a location where the significant (i.e., modeled) modes are strongly

observable. An observer was programmed in MATLAB/SIMULINK to estimate the

amplitudes of the first two modes flom the accelerometer readings. Normalized mode

shapes with respect to the mass matrix were found numerically using finite element

methods. An impulse test was used to estimate the natural frequencies of the system;
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Figure 6.14. Plot of the modal amplitudes of the 1“ and 2’“ mode, and the control action

(cable tension)

an impulse hammer was used for this purpose. The first two natural flequencies of

the system were found to be f1 = 2.14 Hz and f2 = 5.95 Hz. The damping ratios

were computed as 51 = 0.003 and £2 = 0.002 using the method of log decrement

on decaying oscillations produced after exciting each of the first two modes. The

sensed signal flom the accelerometer and the feedback signal flom the computer were

interfaced using a dSPACE DSP board with a 20 kHz sampling flequency. The tension

in the cable was switched between 6 N and 14 N; the 6 N bias tension was used to

overcome the problem of potential slack in the cable. We chose 5 = 5 x 10—4. It is

important to note that the natural frequency of the isolated cable under bias tension

is much higher than the first two natural flequencies of the structure. This precludes

the possibility of inadvertently exciting the cable modes. The experimental results

are shown in Fig.6.14. In this figure, the first two modal amplitudes are plotted they

are estimated flom the voltage output of the accelerometer.

6.7 Remarks

In this chapter we illustrate the use of cable actuators for vibration suppression in

flame structures. We model the cabled structure using finite element methods and
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develop a general control scheme for vibration suppression. The control force is

transmitted to the structure through a cable actuator and cable tension is applied

only when it removes energy flom the system. The cable tension has two distinct

effects on the structure. The first is a parametric effect that alters the stiffness

of the structure and the second is direct effect that stems flom externally applied

forces. Each effect is considered separately. For the parametric effect, optimal cable

placement on the structure is studied and numerical simulations are presented. For

the direct effect, numerical and experimental results are presented to demonstrate

the effectiveness of the control strategy.
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CHAPTER 7

Conclusions

The aim of this work was to explore new methods for vibration suppression in struc-

tures. Two strategies were proposed, the first one is a semi-active control strategy

and the second is an active control strategy. In the first method, the semi-active

strategy, modal energy is transferred to high-flequency modes of structures where it

is dissipated naturally and quickly due to high levels of damping. For modal energy

dissipation through redistribution, we proposed sequential application and removal

of constraints. It was found that the amount of energy pumped into or out of a mode

is dependent on the timing of the constraint application and removal and on “modal

disparity”, which is a property of a structure and the constraint. The phenomenon of

modal energy redistribution was validated in a clamped-clamped beam with a hinge

in its mid span. The beam has the capability of changing configuration on the fly

by activation and deactivation of an electromagnetic brake built in the hinge. After

experimental verification of modal disparity and modal energy redistribution, we

pr0posed a semi-active control strategy for finite-dof1 linear systems. It was shown

that energy in these systems can be pumped into the high-flequency flexible modes

through sequential application and removal of constraints. This energy is dissipated

naturally due to high levels of damping in these modes. In special cases some energy

can get trapped in particular modes that are not affected by the constraints. For

 

1finite-degrees of freedom
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linear systems, feedback was used and constraints where applied only when the

system passed through a specific configuration. This was done only to facilitate

investigation of the system behavior in modal coordinates. The use of feedback is

not a requirement of the semi-active control strategy and this is illustrated with the

example of a nonlinear system where a random sequence of application and removal

of constraints is used for energy dissipation. The potential for vibration control

without feedback is an advantage of this approach. The full potential of the approach

can be achieved through optimal application and removal of constraints. To this end,

several Optimization problems were investigated with the goal of maximizing energy

removal for a specified number of cycles of constraint application and removal. In

the second method, the active control strategy, cable actuators where used and cable

tension was varied to remove energy flom the system. It was found that the cable

has two effects on the structure. It applies external forces and alters the stiffness

of structures. The cable placement on the structure was investigated with the goal

of increasing its control authority. Numerical simulations and experimental results

were presented to show the efficacy of vibration control with cable actuators.

Our future work in semiactive control will include applications of the control

strategy to real world problems. An important application to be explored is space

structures, radar array panels, for example. For easy deployment in space, radar

array panels are typically formed by small elements connected by joints that enable

them to fold into compact shapes that can fit into the space shuttle bay. Upon

arrival in space, these radars will be unfurled and deployed. These structures are

prone to vibration problems and one approach to mitigation of such problems is to

embed electromagnetic brakes in some of the joints; the activation and deactivation

of the brakes will result in application and removal of constraints and lead to the

dissipation of vibration energy. Another target application is control of vibration in
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membrane-like structures, typically used in space based optical systems. The chal-

lenge here is to design non—contact actuators that can apply and release constraints.

Another important consideration for future work is to extend the optimization

problem addressed in this research as part of the semi-active control strategy.

Even though it was assumed that a single actuator is used to apply and remove

constraints, physical constraints associated with the design variables were not taken

into consideration. The actuators cannot apply and release constraints at two

different locations on a structure arbitrarily quickly and have limits on the maximum

impulsive forces that they can generate. In our future work we will address the

optimization problem by taking into consideration such constraints.

An important observation made in the course of our research on cable control of

structures has been the change in damping characteristics of the structure with the

cable in tension. In particular, it has been observed that damping of the structure

with the cable in tension is significantly higher than that without the cable. Although

this is beneficial in terms of vibration control, the phenomenon of increase in damping

remains unexplained and needs to be investigated.
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APPENDIX A

An alternate set of generalized coordinates for state a in Fig.4.5 are the angular

displacements of the bars, 6,, 2' = 1, 2, 3, 4, described by the relations

91 = $1/L

92 = 2($2-$1)/L

63 = 2(:l:3—:I:2)/3L

64 = -:l:3/L

If the generalized forces corresponding to 2:,- be F,, 2' = 1, 2, 3, and those corresponding

to 6,- be M,, j = 1, 2, 3, 4, then, the principle of virtual work

3 4

4 3 09.

= jZM3:18—16:32

532'

can be used to establish the relationship between F, and M,, namely

86,

F,-= )2 M,———311:],-

For the numerical example in section 4.4, we have
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M1 0 1 0 0

M2 __ —T(t) (@)_1 —2 2 0

M3 — 7(t) 8:1: ’L 0 —2/3 2/3

M4 0 0 0 —1

It follows that

F1 1 2

F2 =5 —8/3 r(t) (A.1)

F3 2/3

And flom the definition of the impulsive moment C

t+

C = _“fi 7(t)dt (A.2)l,

it simply follows

2

C

2/3
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APPENDIX B

From Eq. (4.24), the impulse vector 10H); can be expressed as

M21635) = MX(t;B) + 10,15

Substituting the expression for IO,_,5 from Eq.(4.42) and the mass matrix flom Section

4.4.4, we get

ML 6 1 0 a123,) ML 6 1 0 4103/3) C 2

—12 1 8 3 5:21:33) —-—12 1 8 3 32033) +-,j -8/3

0 3 10 a3 3,) 0 3 10 2303,) 2/3

Using the constraint 2:2 (15:5) = [3561(t:fi) + i3(t:fi)]/4, the above equation can be

rewritten as a set of three linear equations in terms of the unknowns, 231(t21'fl), 163(tgfl),

and C, as B U = f, where

9pA/16 pA/48 —2/L 910:3)

B: 7pA/12 5pA/12 8/(3L) , U = i3(t;'g)

3pA/16 43pA/48 —2/(3L) c

alum/2 + saga/12
f = pA d31(t;fl)/12 + 2i2(t;B)/3 + i3(t;fi)/4

al<t;,,)/2+a22<t;,,>/12
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Solving the above equation yields

13

C = —-sfipAL [321(tgfl) — 44:2(tgfi) + 23(t;,)] (3.1)

Substitution of Eq.(B.1) in the expression for AE in Eq.(4.25) leads us to the final

form

13 . _ '. .— - — 2AE = —fi§6pAL [3.2100(3) - 4$2(tap) + 333(tapl]
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