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ABSTRACT

DEVELOPMENT OF PLENOPTIC INFRARED CAMERA USING LOW DIMENSIONAL
MATERIAL BASED PHOTODETECTORS

By

Liangliang Chen

Infrared (IR) sensor has extended imaging from submicron visible spectrum to tens of microns

wavelength, which has been widely used for military and civilian application. The conventional

bulk semiconductor materials based IR cameras suffer from low frame rate, low resolution, tem-

perature dependent and highly cost, while the unusual Carbon Nanotube (CNT), low dimensional

material based nanotechnology has been made much progress in research and industry. The unique

properties of CNT lead to investigate CNT based IR photodetectors and imaging system, resolving

the sensitivity, speed and cooling difficulties in state of the art IR imagings.

The reliability and stability is critical to the transition from nano science to nano engineering

especially for infrared sensing. It is not only for the fundamental understanding of CNT photore-

sponse induced processes, but also for the development of a novel infrared sensitive material with

unique optical and electrical features. In the proposed research, the sandwich-structured sensor

was fabricated within two polymer layers. The substrate polyimide provided sensor with isolation

to background noise, and top parylene packing blocked humid environmental factors. At the same

time, the fabrication process was optimized by real time electrical detection dielectrophoresis and

multiple annealing to improve fabrication yield and sensor performance. The nanoscale infrared

photodetector was characterized by digital microscopy and precise linear stage in order for fully

understanding it. Besides, the low noise, high gain readout system was designed together with

CNT photodetector to make the nano sensor IR camera available.

To explore more of infrared light, we employ compressive sensing algorithm into light field



sampling, 3-D camera and compressive video sensing. The redundant of whole light field, includ-

ing angular images for light field, binocular images for 3-D camera and temporal information of

video streams, are extracted and expressed in compressive approach. The following computational

algorithms are applied to reconstruct images beyond 2D static information. The super resolution

signal processing was then used to enhance and improve the image spatial resolution. The whole

camera system brings a deeply detailed content for infrared spectrum sensing.



ACKNOWLEDGMENTS

I feel tremendously lucky to have had the opportunity to work with Dr. Ning Xi, Dr. Lixin Dong

on the ideas in this dissertation, and I would like to thank them for their guidance and support. Dr.

Xi instilled in me a love for designing nanosensor based infrared camera, agreed to take me on as

a graduate student, and encouraged me to immerse myself in something I had a passion for. Dr.

Dong inspired me much on nanophotonics enhancement and nano manipulation. I have never met

a professor more generous and friendly with his time and experience.

I am grateful to Dr. Timothy Grotjohn, Dr. Fathi M. Salem, Dr. Donnie Reinhard and Dr.

Zhengfang Zhou for serving on my thesis committee. They offered me timely help and unfailing

support that improve the technical soundness and the presentation of this dissertation.

I would like to acknowledge the fine work of the other individuals who have contributed to this

camera research. Dr. Baokang Bi and Dr. Reza Loloee in Department of physics and astronomy,

helped me on nanosensor fabrication and assembly device. Dr. Loloee generously donated his time

and expertise to help verify fabrication process. Dr. Ming Yan in Department of mathematics con-

tributed the most to explaining how the nonconvex works, and many of the optimization problem

in these pages are due to his artistry. Dr. Weihong Guo in case reserve university, supported me on

single image super resolution. Mr. David Smith in wintechdigital, gave much guidance on digital

micromirror setup and applications.

In addition, I would like to thank Dr. King Wai Chiu Lai, Dr. Carmen Kar Man Fung, Dr.

Hongzhi Chen, Dr. Ruiguo Yang, Mr. Bo Song, Dr. Zhanxin Zhou, Dr. Yongliang Yang, Mr.

Zhiyong Sun, Dr. Chi Zhang, Dr. Erick Nieves, Dr. Jianguo Zhao, Dr. Yunyi Jia, Mr. Yu Cheng,

Mr. Mustaffa Alfatlawi, Mr. Emad Alsaedi, Mr. Lai Wei and Mr. Xiao Zeng for their support

in the experiments and discussion at the MSU Robotics and Automation Lab. Thanks also to Dr.

iv



Tong Jia, Dr. Jianyong Lou for helpful discussions related to this work.

Finally, I would like to thank my family, my wife, Qiaozhi Sun, for their love and support.

This dissertation would not have been possible without their years of encouragement and contin-

uous support. My wife have made countless sacrifices for me, and have provided me with steady

guidance and encouragement.This dissertation is dedicated to them.

v



To my parents, my wife Qiaozhi

for their love and support

vi



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Infrared Everywhere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Fundamental of Infrared . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Conventional Infrared Sensor . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Infrared Detector Market . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Carbon Nanotube Based Infrared Sensor . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Sensors Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Nano Material IR Photodetector . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Computational Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 High Dimensional Plenoptic Function of Light . . . . . . . . . . . . . . . . . . . . 15
1.5 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6 Organization of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 2 Low Dimensional Material Based Infrared Photodetector . . . . . . . . . 19
2.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 CNT IR Sensor Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Realtime DEP Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Introduction of DEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Assembly Method and System . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.3 Quantitatively CNT Deposition and Device Fabrication . . . . . . . . . . . 28

2.4 Sensor Reliability and Response Enhancement . . . . . . . . . . . . . . . . . . . . 29
2.4.1 Substrate Effect and Packaging on Nano Sensor . . . . . . . . . . . . . . . 30
2.4.2 Extrinsic Surface State Effect . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.3 Sensor Response Enhancement . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Nanoscale IR Sensor Characterization . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.1 Sensors and Measurement Method . . . . . . . . . . . . . . . . . . . . . . 37
2.5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Chapter 3 Single Pixel Infrared Camera . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Spatial Light Modulator based Imager . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Compressive Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.2 Single Pixel Imager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Weak Signal Readout Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vii



3.3.1 Current to Voltage Conversion Method . . . . . . . . . . . . . . . . . . . . 52
3.3.2 Resistor based Current Readout Method . . . . . . . . . . . . . . . . . . . 54
3.3.3 Capacitor Based Current Readout Method . . . . . . . . . . . . . . . . . . 54

3.4 ROIC Structure for CNT IR Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.1 Zero bias Readout Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.2 High Gain Current to Current Converter . . . . . . . . . . . . . . . . . . . 56
3.4.3 High Speed Readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Hardware Experimental Performance and Applications . . . . . . . . . . . . . . . 57
3.5.1 Readout System Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.2 Readout Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Chapter 4 Light Field Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 4D Light Field Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 Light Field Model in Lens . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.2 Light Field Model in Mirror . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Mask based Single Pixel Light Field Sensing . . . . . . . . . . . . . . . . . . . . . 71
4.3.1 Optics and System Design . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.2 Experimental Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Double Compressive Light Field Sensing . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.1 Modeling of Double Compressive Light Field Sensing . . . . . . . . . . . 74
4.4.2 Recovery Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.3 Experiments with Double Compressive Sensing . . . . . . . . . . . . . . . 77

4.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Chapter 5 3-D Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2 Time of Flight 3D Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.1 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.2 Time of Flight Modeling and Application . . . . . . . . . . . . . . . . . . 85

5.3 Stereo Vision 3D Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.1 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.2 Stereo Vision Modeling and Application . . . . . . . . . . . . . . . . . . . 88

5.4 Compressive 3D Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4.1 Sparsity in 3-D Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4.2 Compressive 3D Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.3 Experiments with Prototype Camera . . . . . . . . . . . . . . . . . . . . . 95

5.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Chapter 6 Super Resolution Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2 Observation Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3 Multiple Images based Super Resolution . . . . . . . . . . . . . . . . . . . . . . . 103

6.3.1 Nonuniform Interpolation Approach . . . . . . . . . . . . . . . . . . . . . 103

viii



6.3.2 Frequency Domain Approach . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.3 Regularized SR Reconstruction Approach . . . . . . . . . . . . . . . . . . 105
6.3.4 Multiple Frames Sampling in Single Pixel Camera . . . . . . . . . . . . . 106
6.3.5 Experiments with Prototype Camera . . . . . . . . . . . . . . . . . . . . . 109

6.4 Single Images based Super Resolution . . . . . . . . . . . . . . . . . . . . . . . . 110
6.4.1 Observation Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.4.2 Spline based Reproducing Kernel Hilbert Space and Approximative Heav-

iside Function Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.4.3 Iterative Reconstruction Algorithm . . . . . . . . . . . . . . . . . . . . . . 115
6.4.4 Simulations and Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Chapter 7 Compressive Video Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.2 Sparsity of Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2.1 Intraframe Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.2.2 Interframe Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2.3 Video Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.3 Compressive Video Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.3.2 Combined Sparsity Sampling for Video . . . . . . . . . . . . . . . . . . . 135
7.3.3 Non-convex Problem Solver . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.3.4 Non-convex Sorted `1 Method . . . . . . . . . . . . . . . . . . . . . . . . 138
7.3.5 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.3.6 Experimental Implementation and Results . . . . . . . . . . . . . . . . . . 146

7.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Chapter 8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 149
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

ix



LIST OF TABLES

Table 1.1 Infrared sub-division scheme. . . . . . . . . . . . . . . . . . . . . . . . . 4

Table 2.1 Au-CNT-Au structure and its photoresponse. . . . . . . . . . . . . . . . 38

Table 2.2 Eucentric five axis table specificiations. . . . . . . . . . . . . . . . . . . 39

Table 2.3 CNT metal contact length and the direction of output photocurrent. . . . . 44

Table 4.1 Characterizing angular images accumulation residual error by PSNR and
RMSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Table 6.1 RKHS based single image super resolution algorithm. . . . . . . . . . . . 116

Table 6.2 RMSE value of medical IR image and indoor IR image. . . . . . . . . . . 120

Table 7.1 Iteratively reweighted `1 minimization with thresholding. . . . . . . . . . 142

Table 7.2 Characterizing video frames accumulation residual error by PSNR and
RMSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

x



LIST OF FIGURES

Figure 1.1 Planck’s law (colored curves) and classical theory (black curve). For in-
terpretation of the references to color in this and all other figures, the
reader is referred to the electronic version of this thesis. . . . . . . . . . . 2

Figure 1.2 Conventional digital photography. . . . . . . . . . . . . . . . . . . . . . 14

Figure 1.3 Computational photography. . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 1.4 Optics classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 1.5 P(x,y) and P(x,y,λ ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 1.6 Dissertation overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 2.1 Band diagram of CNT metal contact. . . . . . . . . . . . . . . . . . . . . 20

Figure 2.2 Band bending of a Schottky barrier in CNT-FET, for two gate voltages. . . 21

Figure 2.3 CNT metal contact with three distinct positions. a) CNT on the top metal;
b) CNT under metal; c) CNT between metal. . . . . . . . . . . . . . . . . 22

Figure 2.4 Illustration of the dielectrophoretic manipulation. . . . . . . . . . . . . . 26

Figure 2.5 DEP force on CNT in a non-uniform electrical field (side view). . . . . . 27

Figure 2.6 Real-time monitoring DEP system. Red row shows current loop when
CNT is bridged between gap (yellow). The system will shut down AC
source through feedback when impedance changes. . . . . . . . . . . . . 27

Figure 2.7 SEM image of multiwall carbon nanotubes. There is only one CNT
(MC1) on top device, two CNTs (MC2 and MC3) on middle device and
three CNTs on bottom device (MC4, MC5 and MC6). . . . . . . . . . . . 29

Figure 2.8 SEM image of single wall carbon nanotube. Top is single CNT (SC1)
bridged. The bottom device shows single wall CNT film using real time
DEP deposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 2.9 Dark current measurement results on CNT IR detector. . . . . . . . . . . 32

Figure 2.10 Linearity measurement results on CNT IR detector. . . . . . . . . . . . . 32

xi



Figure 2.11 Parasitic capacitance model of CNT metal Schottky barrier. . . . . . . . . 34

Figure 2.12 Surface charge storage on substrate. . . . . . . . . . . . . . . . . . . . . 35

Figure 2.13 CNT-based IR sensor response enhancement by helical antenna. . . . . . 36

Figure 2.14 I-V curve of CNT IR Sensor. a) device A; b) device B. . . . . . . . . . . 36

Figure 2.15 Top: SEM image of Au-CNT-Au structure. Bottom: The relative size
between CNT detector and IR laser beam spot. . . . . . . . . . . . . . . . 38

Figure 2.16 a) Proposed testing bench using digital microscope, laser and five axis
substage. b) Hardware setup, inset is substage. c) Four points calibra-
tion marker for detector. d) Raster scanning: experimental measurement
pathway for centroid of photodetector. . . . . . . . . . . . . . . . . . . . 40

Figure 2.17 Focused and unfocused light rays on digital microscope. . . . . . . . . . 41

Figure 2.18 Photocurrent measurement along x direction with distinct y. . . . . . . . . 43

Figure 2.19 Photocurrent measurement along y direction with distinct x. . . . . . . . . 44

Figure 2.20 Photoresponse and darkcurrent on different bias voltage. . . . . . . . . . 45

Figure 2.21 Photocurrent comparison on Au-CNT, Cu-CNT and Ag-CNT. . . . . . . . 46

Figure 3.1 System setup of compressive sensing based imaging system using a CNT
photodetector, response enhanced by photonic cavity. . . . . . . . . . . . 53

Figure 3.2 Schematic of R type IV converter. . . . . . . . . . . . . . . . . . . . . . 54

Figure 3.3 Schematic of C type IV converter. . . . . . . . . . . . . . . . . . . . . . 55

Figure 3.4 Zero bias readout circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 3.5 Current to current converter for CNT IR sensor. . . . . . . . . . . . . . . 57

Figure 3.6 Diagram of readout system. . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 3.7 Readout linearity test on CNT based IR detector. . . . . . . . . . . . . . . 58

Figure 3.8 Readout comparison between proposed system and semiconductor pa-
rameter analyzer (Agilent 4155c). . . . . . . . . . . . . . . . . . . . . . 59

Figure 3.9 Hardware setup of single pixel IR imaging system. . . . . . . . . . . . . 60

xii



Figure 3.10 Images recovery based on single CNT detector. . . . . . . . . . . . . . . 61

Figure 4.1 Concave object radiance (left) and convex object radiance (right). . . . . . 63

Figure 4.2 Parameterizing light ray in 3D space by position (x,y,z) and direction (θ ,φ ). 63

Figure 4.3 Two plane parameterization for light field. . . . . . . . . . . . . . . . . . 67

Figure 4.4 Two plane parameterization in SLR camera. . . . . . . . . . . . . . . . . 67

Figure 4.5 Two plane parameterization in Cartesian coordinates. . . . . . . . . . . . 68

Figure 4.6 Light ray diagram of camera (unfocused). . . . . . . . . . . . . . . . . . 69

Figure 4.7 Rays in Cartesian coordinates (unfocused). . . . . . . . . . . . . . . . . . 70

Figure 4.8 Two plane parameterization in DMD based imaging system. . . . . . . . 71

Figure 4.9 Schematic diagram of single pixel light field sensing. . . . . . . . . . . . 72

Figure 4.10 Distinct angular image from two aperture. . . . . . . . . . . . . . . . . . 72

Figure 4.11 Synthetic aperture imaging. The focus plane is becoming far away to
main lens from left to right. . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 4.12 5×5 angular images of Stanford jelly beans. . . . . . . . . . . . . . . . . 75

Figure 4.13 Adjacent angular image difference. a) intensity difference, b) significant
changes (nonzero changes) of angular image. . . . . . . . . . . . . . . . 76

Figure 4.14 Angular image recovery comparison between basic compressive sensing
and double compressive sensing. . . . . . . . . . . . . . . . . . . . . . . 77

Figure 4.15 Angular image recovery residual error by RMSE and PSNR. . . . . . . . 78

Figure 4.16 Angular image recovery from double compressive sensing, the first col-
umn is reference image and the other four are restored depends on its
left. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 5.1 3D time-of-flight camera operation principle. . . . . . . . . . . . . . . . 85

Figure 5.2 Two time-of-flight methods: pulsed (left) and continuous wave (right). . . 87

Figure 5.3 Retinal disparity from eyes. . . . . . . . . . . . . . . . . . . . . . . . . . 89

xiii



Figure 5.4 Stereopsis depth through disparity measurement (left) and simplified stereo
vision system (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 5.5 Sparsity in DMD based 3D sampling. . . . . . . . . . . . . . . . . . . . 92

Figure 5.6 Dual detectors 3D imaging system. . . . . . . . . . . . . . . . . . . . . . 94

Figure 5.7 Mask based 3D imaging system. . . . . . . . . . . . . . . . . . . . . . . 94

Figure 5.8 3D image reconstruction in red/cyan color. . . . . . . . . . . . . . . . . . 96

Figure 6.1 Multiple images super resolution. . . . . . . . . . . . . . . . . . . . . . . 98

Figure 6.2 Four causes of LR image acquisition. . . . . . . . . . . . . . . . . . . . . 98

Figure 6.3 Schematic diagram of single pixel camera. . . . . . . . . . . . . . . . . . 107

Figure 6.4 Two apertures design in DMD imaging system. . . . . . . . . . . . . . . 108

Figure 6.5 Multiple apertures design for high resolution imaging. . . . . . . . . . . . 108

Figure 6.6 Measurement covered in neighborhood of X0 point. . . . . . . . . . . . . 109

Figure 6.7 Prototype hardware of super resolution single pixel camera. . . . . . . . . 111

Figure 6.8 Experimental results, from top: 4×, 9×, 16× . . . . . . . . . . . . . . . . 111

Figure 6.9 Classical multiple images and single image super resolution. . . . . . . . 113

Figure 6.10 Near IR image of building. a) bicubic method; b) nearest neighbor; c)
proposed method; d) ground truth image. . . . . . . . . . . . . . . . . . . 117

Figure 6.11 Hand and head infrared image from superlattice (SLS) cooled FPA. a)
bicubic method; b) nearest neighbor; c) proposed method; d) ground truth
image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Figure 6.12 Handprint thermal image from cooled thermal camera. a) bicubic method;
b) nearest neighbor; c) proposed method; d) ground truth image. . . . . . 118

Figure 6.13 The uncooled thermal image super resolution comparison. . . . . . . . . 119

Figure 6.14 Hand infrared image from uncooled thermal IR camera, a) bicubic method;
b) proposed method; c) ground truth image . . . . . . . . . . . . . . . . . 119

Figure 7.1 Conventional Nyquist Shannon signal sampling and compressive sampling.123

xiv



Figure 7.2 Light illumination in SLR camera. . . . . . . . . . . . . . . . . . . . . . 124

Figure 7.3 Sparsity in video signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Figure 7.4 Sub-sampling of image compression. . . . . . . . . . . . . . . . . . . . . 126

Figure 7.5 DCT based transform coding image compression. . . . . . . . . . . . . . 127

Figure 7.6 Difference between adjacent frame. . . . . . . . . . . . . . . . . . . . . . 128

Figure 7.7 Histogram plot of adjacent frame difference. . . . . . . . . . . . . . . . 129

Figure 7.8 Flow chart of motion compensation process. . . . . . . . . . . . . . . . . 130

Figure 7.9 Macroblock (4:2:0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Figure 7.10 H.261 frame sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Figure 7.11 MPEG-1 frame sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Figure 7.12 MPEG compression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Figure 7.13 Spatial and temporal resolution trade-off in video stream. . . . . . . . . . 134

Figure 7.14 Frame difference sampling. . . . . . . . . . . . . . . . . . . . . . . . . . 135

Figure 7.15 Countour maps of different penalties and feasible set of y = Φx at p =
0,1/2,1, and 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Figure 7.16 Countour maps of proposed nonconvex sorted `1 with M (M = 4) values. . 139

Figure 7.17 Signal recovery on distinct sparsity, 4096 in length. . . . . . . . . . . . . 144

Figure 7.18 Adjacent frame intensity difference. . . . . . . . . . . . . . . . . . . . . 144

Figure 7.19 Signal recovery on different sampling rate. . . . . . . . . . . . . . . . . . 145

Figure 7.20 Accumulation residual error. . . . . . . . . . . . . . . . . . . . . . . . . 146

Figure 7.21 Moving object video recording. . . . . . . . . . . . . . . . . . . . . . . . 147

Figure 7.22 Rotating object video recording. . . . . . . . . . . . . . . . . . . . . . . 147

xv



Chapter 1

Introduction

1.1 Infrared Everywhere

1.1.1 Fundamental of Infrared

The first discovery of electromagnetic radiation other than visible light came in 1800, when William

Herschel discovered infrared (IR) radiation [1]. It is widely used in civilian application from indus-

trial, agricultural, scientific, night vision, building inspection, medical thermography and meteo-

rology, medical diagnosis due to that the IR camera can explore more information than visible light

camera. Most importantly, it operates in night and long distance compared to visible light camera

so that it is becoming one of most popular non-destructive diagnostic technology in industry. There

are thousands of commercialized applications, including hyperspectral imaging in biological and

mineralogical measurements, target acquisition and tracking, night-vision [2], IR data communi-

cations by standards published by IrDA, Infrared telescope in astronomy, environment monitoring

in meteorology, etc. Besides, infrared photography is not only applicable in industry, but also

for scientific research. The most popular application is Fourier Transform InfraRed spectroscopy

(FTIR) [3], which determines what fraction of the incident radiation is absorbed by passing infrared

radiation through a sample. Another counterpart application is that Stimulated Raman Scattering

(SRS) benefits from the use of pulsed near-infrared lasers, which generates high signal levels at a

moderate average power in biomedical cutting edge research [4]. Meanwhile, the infrared photog-
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Figure 1.1 Planck’s law (colored curves) and classical theory (black curve). For interpretation of
the references to color in this and all other figures, the reader is referred to the electronic version
of this thesis.

raphy discovers beneath a paintings surface and views detail that would otherwise remain unseen

in art science. It is also applied to detect disease, insect infestation in plants science [5]. In the

field of medicine science, medical infrared thermography is a non-invasive, non-radiating low cost

detection method for analyzing physiological functions in sports medicine as traumatic knee in-

juries [6], cancer diagnostics [7]. The most widely applications come from military, where infrared

light is extensively employed for target acquisition in wide IR bandwidth.

Infrared thermography detects electromagnetic spectrum from 720 nm up to 14 µm. Since

IR radiation is emitted by all objects above absolute zero kelvin and the irradiated wavelength

depends on its temperature according to the blackbody radiation law [8], thermography allows one

to observe variations in temperature. This technology is especially related to human body because

humans at ambient room temperature can radiate around 12 µm wavelength infrared light based

on Wiens displacement law [8].

The planck’s law describes the black body electromagnetic radiation in thermal equilibrium.
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As shown in Eq. (1.1), Bv represents the spectral radiance which tells the amount of energy at

different wavelength in absolute temperature T , where kB is the Boltzmann constant, h is the planck

constant, c is the speed of light in the medium. In Figure 1.1, the colored curves show 5000 K,

4000 K and 3000 K energy radiance according to wavelength respectively. In long wavelength

range, the Planck’s law tends to be Rayleigh Jeans law, while it is close to Wien approximation

in short wavelength [9]. The peak wavelength (λmax) can be numerically evaluated by solving

mathematical equation Eq. (1.1) and concluded as Eq. (1.2).

Bv(v,T ) =
2hv3

c2
1

e
hv

kBT −1
(1.1)

λmax =
hc
x

1
kT

=
2.89776829×106nm ·K

T
(1.2)

The IR images measure the infrared irradiation and its distributions. There are two IR sources

for imaging, one is internal emissivity as Planck’s law depicted and another is external reflection

similar as visible light. The reflected light, e.g. sunlight, indoor lighting, is not only the pre-

dominate element for visible image sensors, but also contributes on near IR, SWIR imaging. In

naturally, both sunlight and airglow at night generate near IR lightwave and radiate on object so

that the camera could capture the reflective light to form a near IR image. The wavelength of man-

made IR illuminator also locates within near IR and SWIR spectrum, e.g. light bulbs and solid

state Light Emitting Diode (LED). The incandescent light bulbs heat a tungsten filament to high

temperature and produce visible light but together with infrared radiation. However the solid state

LED are more efficient with near monochromatic infrared energy, which depends on the sponta-

neous and stimulated emission. When an electron orbits the nucleus of an atom [10] in high energy

state, it has chance spontaneously decay path to low energy. The electron decay in such a manner
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Table 1.1 Infrared sub-division scheme.

Division Abbreviation Wavelength Frequency Photon Characteristics
Name (µm) (THz) Energy(meV)
Near-
infrared

NIR, IR-A
DIN

0.72-1.4 214-400 886-1653 Passive night vision
devices

Short-
wavelength
infrared

SWIR, IR-B
DIN

1.4-3 100-214 413-886 Water absorption
and long-distance
telecommunications

Mid-
wavelength
infrared

MWIR, IR-
C DIN

3-8 37-100 155-413 Atmospheric win-
dow and thermal
infrared above body
temperature

Long-
wavelength
infrared

LWIR, IR-C
DIN

8-15 20-37 83-155 The thermal imaging
region, requiring no
illumination

Far-
infrared

FIR 15-1000 0.3-20 1.2-83 Far-infrared laser

will introduce a photon emitted at exactly the same wavelength and phase. It becomes man-made

infrared light source when photon energy is within infrared spectrum as shown in Table 1.1. It lists

the infrared classification by wavelength, frequency, photon energy and application.

1.1.2 Conventional Infrared Sensor

IR sensor can be broadly divided into two categories: cooled and uncooled detector. It also can

be classified by detection mechanism: a thermal type that has no wavelength dependence (thermal

detector) and a quantum type that is wavelength-dependent (photon detector) [11]. Infrared radia-

tion energy is equal to the vibrational or rotational energy of molecules ranging from 1.24 eV at 1

µm down to 0.12 eV at 10 µm.

Many specialized IR sensor structures and materials have been manufactured and compared as

thermistor for IR detection [12]. It senses the heat irradiation, through which the resistance will be

changed, and a readout circuit monitors resistance variation to determine photocurrent response of
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IR sensor. The whole process will cost too much time and make the sensor relatively slow response

because the detector element is suspended on lags which are connected to the heat sink, though it

works in room temperature and independent of wavelength.

The quantum detectors, including indium antimonide, indium arsenide, MCT [13], lead sulfide

and lead selenide [14], usually need a cryogenically dewar for the operation of semiconductor

materials. The fore infrared photodetectors are also known as quantum detectors which depend on

the bandgap of materials. They offer higher detection performance and a faster response speed.

However, they always work in very low temperature to keep high responsibility, so that a cryogenic

cooled system is needed to maintain IR sensor work stable. Even though some other photoelectric

effect quantum dot (QD) and quantum well (QW) IR sensors improve working temperature and it

could detect 10 µm wavelength at room temperature [15], the sensitivity deteriorates much. At the

same time, the bulky cooling system is against with portable design of imaging system.

1.1.3 Infrared Detector Market

Infrared camera (imager) is also named focal plane array (FPA) or IR sensors in infrared industry

and scientific research. It is a thermal system which converts infrared radiation into a visible

image and the core of camera includes electronics, IR lenses and sensor. In overall, the military

demand dominates infrared camera market in last 50 years. However, since the military market for

uncooled infrared imaging technologies declines, it turns toward commercial businesses such as

personal vision and smartphones by Yole report [16].

Although the widely application of IR imaging covers consumer electronics, surveillance,

aerospace and defense, automotive, industrial, medical, and firefighting, etc., the IR cameras mar-

ket growth is being driven by the ultra-low-end market which consists of low-resolution cameras

for basic radiometric purposes. It is estimated that the global infrared imaging market will reach
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$8,450 million by 2020 [17]. The global infrared market is divided into four geographic segments,

the American, Europe, Asia-Pacific, and Rest of the World. Major players in the IR imaging mar-

ket are FLIR Systems Inc. (U.S.), DRS Technologies Inc. (U.S.), Fluke Corporation (U.S.), Axis

Communications AB (Sweden), Samsung Techwin (South Korea), Seek Thermal Inc. (U.S.) and

Sofradir Group (France). Undoubtedly, Americas is considered to be the leader in the overall IR

imaging/sensors market.

There are at least five trends from application insight.

- Thermography: the ultra-low-end cameras with attractive pricing, lower than $1,000 drive

the market. They will widen the customers of thermal technology. There are many new models

released from leading companies, FLIR [18] and Fluke [19] in 2014 and 2015, and they are going

to lead the price war due to their vertical business model.

- Automotive: the market leader Autoliv will continue to introduce night vision 3rd generation

on new car models. New Euro NCAP could boost the market by promoting, in 2018, night time

pedestrian collision mitigation solutions potentially using a thermal solution, but only if the cost

is sufficiently low. FLIR Systems also provides camera cores for Rolls Royce, BMW, Audi and

Mercedes Benz models through a partnership with Autoliv Electronics.

- Surveillance: infrared camera is a good surveillance robust equipment that can handle any

environmental conditions for naval, air and ground security. SWIR works for counter-aerial, very

long range land and sea, large area naval surveillance. Price erosion will continue (-12%/year) and

will enlarge the scope of commercial applications like traffic, parking, and power stations.

- Consumer applications: this is the fast growth in 2013-2014. Personal vision systems (gog-

gles, sight for security, and hunting, outdoor observation) dominate civil applications. Since there

are many new entrants arriving from the outdoor visible business, it will continue to grow in future

years.
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- Smartphones: There are two smartphone modules (FLIR One, Opgal Android) and Seek Ther-

mal been introduced at the ground breaking price of $349 by FLIR and $249 by Seek Thermal in

2014. A high number of pre-release reservations for the FLIR One already proves the commercial

success of this smartphone platform. The smartphone business is an almost billion market. Those

high volumes will only be possible if a huge cost reduction is obtained by the IR imaging industry.

At sensor level, major manufacturers (such as DRS, FLIR, Raytheon, ULIS, GWIC) have now

moved to 8 inch production lines instead of 6 inch to reduce wafer manufacturing cost. Several

have even outsourced their production to foundries to further reduce production cost. These two

elements are preliminary signs of a strong microbolometer cost reduction that will open up cost

driven applications such as smartphones.

At camera level, vertically integrated players, with internal sensor manufacturing, can benefit

from their efficient cost structures to enter any commercial market with an aggressive camera

price. For instance, DRS and FLIR lead the price war in surveillance while FLIR has introduced a

low-cost infrared camera for firefighting in 2012. This represents a major advantage for vertically

integrated players because they can leverage high volume manufacturing that the single market

cameras specialists cannot.

1.2 Carbon Nanotube Based Infrared Sensor

1.2.1 Sensors Characterization

The major IR detector performance criteria indicating infrared detector performance are operating

temperature, photo sensitivity, noise equivalent power (NEP) and detectivity.

- Photon sensitivity (Responsivity)

When noise is not a main consideration, the photon sensitivity can be calculated by the output
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(voltage or current) per watt of incident energy, show in Eq. (1.3).

R =
S

PA
(1.3)

R: Responsivity, [V/W]

S: Signal Output, [V] or [A]

P: Incident energy, [W/cm2]

A: Detector active area, [cm2]

In photovoltaic infrared detectors, the output signals are extracted as photocurrent. It is ex-

pressed as Eq. (1.4), when the light is at a given wavelength irradiated on detector.

ISC = ηq
PA
h c

λ

=
ηqPAλ

hc
(1.4)

q: Electron charge, [C]

The responsivity of photovoltaic photodetector at specific wavelength (λ ) will be simplified as

Eq. (1.5).

Rλ =
ISC

PA
=

ηqλ

hc
=

ηλ

1.24
(1.5)

η : Quantum efficiency

However, the output of photoconductive detector is voltage. The output voltage VO will vary

(∆VO) due to changes (∆Ri) of internal resistance Ri when exposing to infrared light.

VO =
RL

Ri +RL
·VB (1.6)

∆VO =− RLVB

Ri +RL

2
·∆Ri (1.7)
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∆Ri =−Ri
q(µe +µh)

σ

ητλPA
lwdhc

(1.8)

τ: Carrier lifetime [S]

µe: Electron mobility [cm2/(V · s)]

µh: Hole mobility [cm2/(V·s)]

σ : Electrical conductance [S/m]

∆Rλ =
∆VO

PA
=

q(µe +µh)λτη

σ lwdhc
· RLRiVB

(Ri +RL)2 (1.9)

Although the photon sensitivity is so complicated, it can be expressed by Eq. (1.9). It is only

applicable to few cases because Ri, µe, µh, τ and σ are dependent with each other. Moveover, it is

also related to bias voltage (VB) applied on the detector.

- Noise equivalent power: NEP

Noise equivalent power (NEP) is another critical value to measure the sensitivity of a photode-

tector. It is defined as the signal power that gives a signal-to-noise ratio of one in a one hertz output

bandwidth [20]. The NEP (W/Hz1/2) measures the quantity of incident light when the signal to

nosie ratio (S/N) is one.

NEP =
PA

S/N ·√∆ f
(1.10)

N: Noise ouput, [V]

∆ f : Noise bandwidth, [Hz]

The smaller NEP is, the photodetector will be more sensitive. For example, a detector with

an NEP of 10−12W/
√

Hz can detect a signal power of one picowatt with a Signal-to-Noise Ratio

(SNR) of one after one half second of averaging. The SNR improves as the square root of the
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averaging time, and hence the SNR in this example can be improved to 10 by averaging for 50

seconds. Eq. (1.10) only refers to the electrical NEP. There is another NEP related to the detector

system, called optical DEP. The optical NEP is equal to the electrical NEP divided by the optical

coupling efficiency of the detector system.

- Detectivity: D∗ (D-star)

Detectivity is the photon sensitivity per unit active area of a photodetector. This is widely used

to compare the characteristics of different detectors [21]. The detectivity is given in Eq. (1.11),

where A is the area of the photosensitive region of the detector, f is the frequency bandwidth [22].

When measuring D∗ in experiments, it is related to temperature (T:[K]), wavelength of a radiant

source (λ : [µm]) and the chopping frequency ( f : [Hz]). Based on experimental results reported,

the detector always has a peak sensitivity wavelength.

D∗ =
√

A f
NEP

(1.11)

- Operating temperature

There are two sensing mechanisms for semiconductor bulk photon detector: the majority carrier

and the minority carrier [23]. The sensing will be photoconductive in nature if it is majority

carrier dominant, while it is both photoconductive and photovoltaic modes if the minority carrier

dominates device output. Both carrier mobility and thermal noise are temperature dependent so

that operating temperature is critical in characterizing of IR sensor.

In practically, it is necessary to consider wavelength, response time, temperature, cooling

method, sensing area, number of sensing elements for infrared application.
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1.2.2 Nano Material IR Photodetector

Carbon nanotubes have brought extensively attention both theoretically and experimentally since

its discovery so that there are many nano electronic devices and NEMS using single or multiwall

carbon nanotubes [24]. The ultra high surface-area-to-volume ratio and quasi 1D near ballistic

electronic transport make it attractive in super capacitors [25], solar cells [26], mechanical oscilla-

tors [27], gas sensors [28]. Carbon nanotube based MEMS also drew increased scientific attention

in single CNT, CNT film [24].

The observation of photoelectric effect in CNT has opened a number of avenues of research

in both characterization and photonic applications of carbon nanotubes [29]. Infrared detection

using CNTs was first realized and reported in [30] and [31]. The CNT based IR sensors, including

individual single wall carbon nanotube (SWNT) based Schottky diode structure [32] [33] [34]and

CNT field effect transistor (CNTFET) modulated structure [35] were also reported.

CNT is one dimensional nano materials with hexagon hollow cylinder structures, which shows

outstanding mechanical, electrical and optoelectronic properties [36]. With development of more

than 20 years, the theoretical analysis and potential applications are found. Depending on its

chirality, carbon nanotubes have armchair, zigzag and chiral structure [37], which are classified as

semiconductor and metal material . The bandgap energy of semiconductor CNT can be modulated

by controlling the diameter of CNT in order to detect different wavelength of IR light [38]. The

electron transport in CNT is confined in one dimension so that the thermal noise of CNT IR detector

is extremely low due to phonon scattering suppression [39]. This creates the CNT device with

stable response in room temperature.

The distinct properties of nano material distinguish it from traditional bulk materials. There

are many researches turning to novel 1D, 2D materials and its derivatives. The carbon nanotubes
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are very good thermal conductors with ballistic conduction, so that it is used as a ultra small scale

temperature sensor [40], which makes the sensor performance better than other devices in simi-

lar size. The resulting device exploits the superior thermal and electrical properties by deriving

the temperature based on a change in electrical resistance [41]. Carbon nanotube not only works

for thermal type but also quantum type infrared detector. There are many contributions on sin-

gle wall carbon nanotube based infrared detector, in which the carbon nanotube is characterized

as semiconductor materials with bandgap within near infrared wavelength. The second infrared

detectors are demostrated using MWCNT. In [42] , different morphologies of MWCNT are syn-

thesized to detect infrared radiation in room temperature via measuring photoconductance. The

third is CNT films based IR photodetector. Most experimental data of these detectors suggest that

the IR photoresponse arises mainly from the thermal effect, as in [43] [30]. It was also reported

that photoexcitation effect predominated the IR photoresponse in CNT film at [44]. All of these

infrared detectors can work in room temperature with fast responsivity in small bandgap.

1.3 Computational Imaging

Computational imaging (Photography) refers to digital image capturing and processing techniques

which use digital computational method instead of optical processes. The goal is to overcome

the limitations of traditional photography and enhance the way of capturing, manipulating, and

interacting with visual media. As shown in Figure 1.2, the traditional film/array camera is mim-

ics human eye for a single snapshot, single view, single instant, fixed dynamic range and depth

of field for given illumination in a static world. The camera comes from basic geometry optics

to form image. However, the computational image use one more process to recovery image, as

shown in Figure 1.3. Computational photography which enhances or extends the capabilities of
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digital imaging, is one of most rapidly developing research field in computer vision, image pro-

cessing and applied optics [45]. The output of these techniques can reconstruct information of

scene which is not obtained by today’s digital camera [46]. The current research has evolved many

fields. First of such techniques is computational imaging, including high dynamic range imaging

(HDR), light field imaging, color management, etc. [45]. The high dynamic range imaging in [47],

is achieved by placing an optical mask adjacent to image sensor array, followed by an efficient

image reconstruction algorithms. More reconstructions algorithm on HDR image are in [48] [49].

Light field imaging [50] [51] is used to analyze image parts that are not in focus and extract depth

information by ray tracing. The novel computational photography involves optics coded exposure

imaging, which inserts a patterned coded aperture to recover both depth information and an all

focus image from single photographs. Compressive coded aperture [52] is combined in supper

resolution image reconstruction from low resolution [53]. Another novel computational photogra-

phy, which is based on new mathematical theory and algorithms of compressive sensing, combines

sampling with compression into a single non-adaptive linear measurement process, named single

pixel imaging [54]. The single pixel camera utilizes Spatial Light Modulator (SLM), comprised of

millions of electrostatically actuated micromirrors, to project target image into a low dimension.

The 2-D mirrors work as optical switch with two states ON and OFF, so that the single pixel cam-

era measures the inner product between an M×N-pixel image and two dimensional functions in

matrix. It has been proved by Emmanuel Candes, Terence Tao and David Donoho [55] [56] [57]

that the sparsity signal may be reconstructed with fewer samples than Nyquist Shannon theorem

requires. Extra constraints are imposed so as to get a unique solution in underdetermined system.

Since compressive sensing is Non-deterministic Polynomial time hard problem (NP hard), one

approach is directly to use greedy selection algorithms. Because of its non-convex, there is no

guarantee to find global minimizer and the solution is unreliable, though it is fast in this approach.

13



Traditional PhotographyTraditional PhotographyTraditional  PhotographyTraditional  Photography
Sensors

Lens

Sensors

Pi lPixel

Image

Figure 1.2 Conventional digital photography.

Computational  PhotographyComputational  Photography: : 
O ti S d C t tiO ti S d C t tiOptics, Sensors and ComputationsOptics, Sensors and Computations

Sensors

Generalized
Optics

Computations
Optics

4D Ray Bender
h d l

Ray Reconstruction
High dimensional 

Sampler

Image
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1.4 High Dimensional Plenoptic Function of Light

The light behaviour has been investigated when Michael Faraday proposed that the light should

be interpreted as a magnetic fields. The radiometry describes how energy is transferred from light

sources to surface patches. In pervious research, the study of light can be divided as quantum

optics, physical optics and geometry optics from micro to macro scale. The inclusion relation

is shown in Figure 1.4. From the research area point of view, the quantum optics is the study

of the interaction of object with light. If the object is in sub-wavelength or nanometer scale, it

is referred to nanophotonics [58]. The physical optics’s topics include interference, diffraction,

polarization etc., which discuss physical theory. The abstract geometrical optics are also named

ray optics which use approximation method to describe the light in terms of rays. The research

will concentrate on how to mathematically express rays and get images by ray optics.

In ray optics, the plenoptic function was proposed for light field since 1991 by Adelson and

Bergen [59]. In order to describe the nature luminous enviornment, there are seven parameters high

dimensional model (7-Dimensional function) considered, shown in Eq. (1.12) (polar coordinates),

Eq. (1.13) (Cartesian coordinates), where V = (Vx,Vy,Vz) is the view point, S = (θ ,φ)/S = (x,y) is

the direction of the ray light passing through the view point.
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P = P(θ ,φ ,λ , t,Vx,Vy,Vz) (1.12)

P = P(x,y,λ , t,Vx,Vy,Vz) (1.13)

For a gray scale photograph taken by a pinhole camera, it only shows the intensity of light from

a single view point in static. The wavelength is averaged over the spectrum, shown in Figure 1.5

left. The grayscale image can be parametreized by Eq. (1.14) or Eq. (1.15) in two distinct coor-

dinates. A color image will add wavelength information to make it as a function of wavelength

(P(θ ,φ ,λ )), as Figure 1.5 right. The color video stream will extend the information to cover time

variable(P(θ ,φ ,λ , t)). Moreover, the holographic movie would reconstruct of scene from every

viewpoint such that seven parameters model is required. In order to make the model applicable,

the assumption includes of rays passing through free space, the regions free of occluders such as

opaque objects and the light traveling via a ray in constant along its length [60]. The 6D light field

will be discussed in this research, as Eq. (1.16).

P = P(θ ,φ) (1.14)

P = P(x,y,λ ) (1.15)

P = P(x,y,λ , t,u,v) (1.16)

1.5 Dissertation Overview

The central contribution of this dissertation is to design a reliable low dimensional material based

IR sensor (CNT) and imaging system. A general overview of the research is discussed in section
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Figure 1.5 P(x,y) and P(x,y,λ ).

of introduction. The following are six themes including nano material IR sensor, computational

camera (single pixel IR camera), and four beyond IR camera systems, as shown in Figure 1.6.

1.6 Organization of the Study

The reliable CNT IR photodiode design, fabrication and testing method are presented in Chapter

2, including novel sensor structure design, an efficient sensor fabrication method and character-

ization of nanoscale IR sensor. It is followed by developing low dimensional material based IR

camera, which comprised of compressive sensing and single IR sensor in Chapter 3. The camera

readout system was also discussed. In Chapter 4, the compressive light field sensing method for IR

spectrum is introduced, which makes IR light field sensing available. In Chapter 5, 3-D imaging

method is described to explore more of scene in IR wavelength. In Chapter 6, the super resolution

from multiple images to single image and its importance to single pixel imaging system are dis-

cussed, which open the door of nanosensor IR imaging system to commercialization. In Chapter

7, the nonconvex compressive video sensing and its implementation method was proposed to dis-

cover more IR messages in temporal domain. Finally, Chapter 8 presents the summary of research

and future works.
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Figure 1.6 Dissertation overview.

18



Chapter 2

Low Dimensional Material Based Infrared

Photodetector

2.1 Previous Work

Although nanotechnology had attracted a huge number of attentions since carbon nanotube (CNT)

was firstly synthesized and reported by Sumio Iijima in 1991 at NEC [61], and the optical ab-

sorption spectra of the SWNTs were observed from visible to near infrared region [62], a high

performance CNT based infrared detector was still unavailable. Over the past several years, nu-

merous studies have been performed in the field of carbon nanotube based photodetectors. In all, it

can be classified as single wall CNT, multi-wall CNTs and CNT films. For single wall CNT, it has

armchair, zigzag and chiral structure depending on its chirality [63], which are classified as semi-

conductor and metal material. In order to differentiate wavelength of IR light, the bandgap energy

of semiconductor CNT can be modulated by controlling the diameter of CNT [38]. The electron

transport in CNT is confined in one dimension so that the thermal noise of CNT IR detector will be

extremely low due to phonon scattering suppression [39]. This creates the CNT device with stable

response in room temperature. So far, nearly all CNT based IR photodetectors sensing scheme are

based on CNT metal junctions for photon electron transition [32]. The Schottky barriers, shown in

Figure 2.1, will be formed at the contact regions between metal and semiconductor CNT. When IR

light irradiates onto contact region, photon induced electrons will be injected from CNT to metal
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surface, to generate photocurrent in close circuitry.

Ef

Ev

Ec qV2

Figure 2.1 Band diagram of CNT metal contact.

However, CNT and metal contact has negative effect for photoconductance based IR photode-

tector [42] [44] so that the small contact resistance is preferred. The experimental results suggested

that Pd and Ti contacts were superior to Au and Pt contacts, but the results for Ti were erratic, pos-

sibly due to the high chemical reactivity of Ti compared to other metals [64]. The calculations

also demonstrated that there was no Schottky barrier to electron transfer between Pd and nanotube

at the interface, because interface states, due to the charge transfer at the Pd/CNT contact, fills

the band gap of the semiconducting CNT, resulting in a contact of metallic nature [65]. In order

to reduce contact resistance in CNT-FETs, the use of a graphitic carbon (G-C) interfacial layer to

semiconducting CNT can improve the electrical contact to the semiconducting CNT and reduce

the subthreshold swing of transistors with these improved contacts [66]. Not only on the relation-

ship between contact and photoresponse, it is known that the one-dimensional geometry of CNTs

makes them highly sensitive to their electrostatic and electrochemical environment [67]. In [67], it

also demonstrates that an electrochemical charge transfer reaction is the underlying phenomenon

governing the suppression of electron conduction in CNTs devices. Besides, the device is also

sensitive to electrical field. As shown in Figure 2.2, the “off”-state and “on”-state represent two

different gate voltage conditions, which generate distinct band diagram in CNT-FET Schottky bar-

rier. This kind of band bending affects the flow of electrons from source to drain and alters device

properties.

Unfortunately, CNT metal contact sensing methodology suffers from limited sensing area and
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Figure 2.2 Band bending of a Schottky barrier in CNT-FET, for two gate voltages.

weak optical absorption. The fully explanation of how nanoscale material respond to infrared

spectrum is critical in low dimension materials research. In this work, it is not only for the funda-

mental understanding of CNT photoinduced processes, but also for development of a new infrared

photosensitive material with unique optical and electrical features.

2.2 CNT IR Sensor Design

As discussed in previous section, there are two kinds photoresponse mechanisms of CNT based

infrared photodetector. They are quantum photovoltaic and photoconductance effect respectively,

in which the single CNT photodetector happens on quantum photovoltaic while the CNT film or

arrays based IR sensors depend on the photoconductance. In different CNT devices, the CNTs

work as distinct functions. However, the CNTs-metal contact is most widely used structure for

nano electrical circuits [68] and nano sensors [69]. In this research, a single CNT is preferred due

to its unique performance so that CNT-metal contact is investigated more deeply. There are two

types of CNT-metal contact area in most researches, the radial direction side contact and sidewall

contact.

As shown in Figure 2.3, there are three locations of CNT in the side contact. The CNT-metal

contact can be formed at bottom side (Figure 2.3 a), top side (Figure 2.3 b), and middle contact

(Figure 2.3 c). The CNT on top of metal (bottom contact) can be manipulated by growth directly

and Dielectrophoretic (DEP) assembly. However, the DEP method is not suitable for CNT under
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Figure 2.3 CNT metal contact with three distinct positions. a) CNT on the top metal; b) CNT under
metal; c) CNT between metal.

metal. In the proposed application, CNTs are integrated into infrared optical sensor so that the

Figure 2.3 (a) structure is more photoelectric conversion efficiency and the contact area will be

transparent to IR irradiations. In this design, there is no top metal to block infrared light and the

IR penetration depth on CNT can reach 450 nm [70] to increase efficiency.

2.3 Realtime DEP Fabrication

The techniques for manufacturing CNT based nano devices can be generally classified into bottom

up and top-down two distinct methods [36]. In the first, CNTs are grown directly onto device sub-

strate using chemical vapor deposition method [71]. With the directly growth method, single CNT

devices are fabricated by growing a single CNT between a pair of prefabricated microelectrodes to

make connections. The directly growth method is able to fabricate multiple single CNT devices at

once. Thus it is good for making CNT based nano device arrays. However, the limitation of this

method is that the properties of the CNTs can not be effectively controlled. Different CNTs may

have distinct properties even they are produced at one batch based on its chirality [72]. Moreover,
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the production process may generate impurities around the microelectrodes and CNTs, which will

affect the electronic properties of the CNT device. Thirdly, it is difficult to grow only a single CNT

between the microelectrodes while they are bundles or films, losing the unique properties brought

by the 1-D structure of CNTs. The most disadvantage of directly growth method comes from CVD

process in very high temperature [73]. This limits the substrates such as silicon sapphire so that it

could not widely work for flexible materials and some biocompatible MEMS applications.

The second category is to grow, purify and sort CNTs firstly, and align CNTs using assembly

manipulation. There are two ways to manipulate CNTs including DEP manipulation [74] and nano

probe based mechanical manipulation [75]. With the DEP deposition method, microelectrodes are

first fabricated using conventional microfabrication. During localizing CNT process, a droplet of

CNT suspension (appropriate concentration in ethanol) is dropped between the microelectrodes

and an AC voltage is applied across the microelectrodes. CNTs will be attracted by the dielec-

trophoretic force and bridged on the electrodes to form an electrical connection. Although the

number of CNTs attracted to the electrodes can be roughly controlled by varying the AC volt-

age and the concentration of the CNT solution, it is very difficult to deposit a single CNT using

this method. Hence the DEP deposition method is normally used to fabricate devices with CNT

films or CNT bundles. The nano probe based mechanical manipulation was also called nanorobot

manipulation [75]. In [75], a single CNT attached at the tip end was manipulated using focused

ion beam. In this method, the nanotube has to be metal-coated for manipulation and not good for

building nanoelectronic devices.

DEP based assembly is potentially one of most important bottom-up technologies for fabricat-

ing nano materials based MEMS and NEMS blocks. It is liquid medium based method to transport

micro/nano particles at room temperature. However, CNTs have very low dispersibility in many

solvents due to its high Van der waals forces between each nanotube, inducing strong tendency to
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aggregate with each other. The most difficulty in controlling nanotube deposition using DEP is that

a large number of tubes or bundles of tubes will be accumulated between gap so that a real-time

controlled system is required to monitor the quantity. In [76], a conductance measuring was used

to estimate a large number of multiwall carbon nanotubes with small impedance but not applicable

to single wall CNTs. The approach in [77], used an in situ detection system and lock-in amplifier

to read DC and AC current through DEP loop in order to align single wall CNT between gap. Due

to the large impedance of SWCNT, the current is such weak between electrodes that the lock in

amplifier needs time to integrate. Therefore, the quantity is out of control in this point.

The whole DEP based CNT assembly process has millions applications from electrical device

to bio-sensors. It includes growth of CNT, deposition of as-grown CNTs on electrodes by dielec-

trophoresis (DEP). In bio-application, the extra process is to make self-assembly by functionalizing

CNTs with different chemicals or even DNA molecules [78]. To a certain extent, these methods

have their shortcomings in terms of repeatability, mass production. In generally, the both methods

usually come together in fabrication process of CNT based device, where top-down methods are

used to fabricate supporting structures such as contacting electrodes, and bottom-up methods are

used to assemble CNTs and localize it onto desired position.

2.3.1 Introduction of DEP

The dielectrophoresis force originates from Pohl’s theory and DEP forces FDEP and torques TDEP

can be calculated [79] as Eq. (2.1) and Eq. (2.2). As shown in Figure 2.4, the nano particle is

dispersed in medium and an electrical force will be applied on particle when an AC voltage is ON.

FDEP = (p ·∇)E (2.1)

24



TDEP = p×E (2.2)

In Eq. (2.1) and Eq. (2.2), p is the induced dipole moment of the nano particle and E is the non

uniform electric field applied on electrodes. The DEP forces can be simplified as Eq. (2.3) and

Eq. (2.4) in general, where νp is the volume of the particle and ∇|E|2 is the root-mean-square of

the applied electric field.

FDEP =
1
2

νpRe( fCM)∇|E|2 (2.3)

fCM =
ε∗p− ε∗m
ε∗p +2ε∗p

(2.4)

Based on this equation, the direction of the DEP force is determined by the real part of fCM. In

Eq. (2.4), ε∗m denotes the complex electrical permittivity of the liquid medium and ε∗p is the com-

plex electrical permittivity of nano particle. fCM is the Clausius-Mossotti factor, which indicates

whether the medium or the particle is more polarizable. When fCM is larger 0, it is called posi-

tive DEP force, resulting the particle moving towards microelectrodes (high electric field region).

When fCM is less than 0, it is called negative DEP force, resulting the particle is moving away

from high electric field region. The electrohydrodynamics of CNTs is not only related to DEP

force, but also influenced by the effect of the fluid exerted on the particle. The viscous drag force

is proportional to the relative velocity for a prolate ellipsoidal CNT.

The velocity dynamics in a fluid medium environment can be expressed by Newton’s second

law for a particle with mass m, as shown in Eq. (2.5). It only considers DEP force, viscous force

and relative velocity (u− v). The constant f shown in Eq. (2.6), is the translation friction factor

which depends on size, shape, and fluid viscosity η . Recalling Perrin friction factors and further

developed hydrodynamic approaches by Hardings and Small [80] [81], the friction factor moving

25



at random is generalized shown in Eq. (2.7).

m
dv
dt

= FDEP + f ∗ (u− v) (2.5)

〈 f 〉= 3πη l
ln(l/r)

(2.6)

v = (
FDEP

f
+u)(1− e−( f/m)t) (2.7)

 

 

      Electrodes 

     Nano Particle 

Liquid Medium 

AC 

Figure 2.4 Illustration of the dielectrophoretic manipulation.

2.3.2 Assembly Method and System

DEP assembly refers to the manipulation of micro/nano particles using dielectrophoretic force,

which exerts on polarized dielectric particles [82], when the particles present in a non-uniform

electric field with distinct dielectric constant and polarizability to surrounding medium. As shown

in Figure 2.5, the non-uniform electrical field is generated between symmetric electrodes with

round shape, (SEM image shown in Figure 2.7) and carbon nanotubes have different dielectric

constant to surrounding medium (Ethanol). There is a DEP force applied to CNTs when turning

on external AC voltage, which will bridge CNT between gap [83]. In this novel system, an iso-
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lation method was proposed to measure impedance changes within DEP system loop. As shown

in Figure 2.6, a customized transformer structure was used to read di/dt value to detect current

changes. When a new nanotube is bridged, a sudden small change of impedance introduces a

tremendous large di/dt, which will be reflected on both sides of transformer. The integrated weak

signal detection module will easily read current change and send a feedback to turn AC off. Based

on this method, the number of CNTs trapped by DEP is quantitatively identified. Compared to the

method of reading electrical current directly, the proposed indirect approach responses much faster

since it does not read absolute weak current value in DEP system.

1.02 Generic MEMS and NEMS Manufacturing Techniques 0338 
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Figure 2: Proposed real-time monitoring DEP 
system. Red row shows current loop when CNT is 
bridged between gap (yellow). The system will shut 
down AC source through feedback when impedance 
changes. 
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Figure 4: SEM image of single wall carbon 
nanotube. one, two CNTs and CNT film. Top left is 
single CNT SC1bridged, two CNTs on top right SC2 
and  SC3. The bottom device shows single wall CNT 
film using real time DEP deposition. 
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Figure 3: SEM image of multi  wall carbon 
nanotube. There is only  one tube MC1 on top left 
device, two CNTs MC2 MC3 on top right device and 
three CNTs on bottom device, MC4 MC5 and MC6. 

Figure 2.5 DEP force on CNT in a non-uniform electrical field (side view).
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Figure 2: Spectral content of diffracted light from a 
programmed grating for single (upper) and double 
(lower) band pass filters.  The dashed lines are the 
simulated spectra while the solid lines are the 
measured spectra.
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Figure 2.6 Real-time monitoring DEP system. Red row shows current loop when CNT is bridged
between gap (yellow). The system will shut down AC source through feedback when impedance
changes.
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2.3.3 Quantitatively CNT Deposition and Device Fabrication

In DEP process, the Au electrodes were fabricated using Electron Beam Lithography (EBL) and

lift-off technique to get 1 µm width and 1 µm gap on substrate. The CNT powders (Buckyusa)

were dispersed in liquid medium (UN1170 Ethyl Alcohol) for 1.5 hour ultrasound. In the deposi-

tion process, a droplet of the CNT suspension will be dropped onto finished substrate and an AC

voltage of 1.5 V peak-to-peak with frequency of 1 kHz is applied. When AC voltage is ON, the

weak signal detection will also start to read current change. If the peak is larger than threshold, the

AC voltage will be turned off automatically.

There is a critical treatment for CNT after AC voltage off. Since the bridged CNT is still in

alcohol medium, the volatile alcohol will remove CNT out from desired position due to surface

tension when the medium evaporates. The extra treatment for CNT is to merge the sample into

DI water before alcohol dries. Although CNT is dissolved into alcohol, the surface of CNT is

hydrophobic. When the sample is immersed in DI water, the residual medium (Alcohol) will be

diluted. After one minute, the DI water is isotropic to the hydrophobic CNT so that the aligned

CNT will stay on the original position when it is taken out of DI water.

There are two groups of experiments discussed. Figure 2.7 and Figure 2.8 show the SEM

image of MWCNT and SWCNT aligned between gaps using proposed real-time monitoring. The

weak signal detection system will count pulse generated by number of CNTs aligned. The results

show one, two, three multiple wall CNTs deposition in Figure 2.7 and nanotubes can be precisely

located. In this experimental setup, the CNT deposition yield is very high which reach 100%

(20/20) for single CNT deposition. The two CNTs alignment experiment has 90% (18/20) device

yield ratio. Figure 2.8 shows single wall carbon nanotube deposition from quantitatively control,

which includes one nanotube and a CNT film deposition in localized area. Although the single
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Figure 2.7 SEM image of multiwall carbon nanotubes. There is only one CNT (MC1) on top
device, two CNTs (MC2 and MC3) on middle device and three CNTs on bottom device (MC4,
MC5 and MC6).

wall CNT deposition is a little lower yield (15/20), it is possible to improve by reducing solution

concentration. The thickness of CNT film is controllable, as shown in Figure 2.8 bottom.

2.4 Sensor Reliability and Response Enhancement

The nanomaterials are either diameter or thickness between 1 and 1000 nm [71]. Due to such

small dimension, not only the material properties change, but also the sensing structure and mech-

anisms are distinct from conventional buck materials. On the other hand, nano structures such as

nano tube, nanorods, nanobelts and nano fibres possess high surface to volume ratio, large pene-

tration depth and fast charge diffusion rate, which are sensitive to gas such as H2, CO, NO2 and

volatile organic compounds. Meanwhile, electrical charges trapped under CNT will also change
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Figure 2.8 SEM image of single wall carbon nanotube. Top is single CNT (SC1) bridged. The
bottom device shows single wall CNT film using real time DEP deposition.

device performance in nano electronics [84]. It is experimentally proved that the one dimensional

geometry of CNTs makes them highly sensitive to their electrostatic and electrochemical envi-

ronment [67]. In [67], it also demonstrates that an electrochemical charge transfer reaction is the

underlying phenomenon governing the suppression of electron conduction in CNTs devices. From

these points, the design of CNT based infrared detector will be more complicated than general bulk

semiconductor materials.

2.4.1 Substrate Effect and Packaging on Nano Sensor

Since the interfacial/isolation layer on substrate (shown in Figure 2.3) has significant effect on

IR photoresponse by their electrostatic and electrochemical environment, there are four distinct

isolation layers deposited in experiments respectively, including SiO2 (300 nm), Si3N4(180 nm),

quartz (500 µm), parylene-C(4.5 µm), polyimide (10 µm) polymer. SiO2 and Si3N4 are grown on

silicon from University Wafer (htt p://www.universitywa f er.com/). The substrate is p type (100),

0.01-0.02 ohm-cm.

The stability and reliability are two critical parameters to characterize nanoelectronics device.
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It was found that the stability of the CNT device was affected by oxygen contamination. The

exposure of single-walled CNT (SWCNT) samples and devices to oxygen appeared to have a

strong influence on their electronic transport properties as reported previously [85]. In order to get

a stable IR response of CNT sensor, the package layer using parylene-C thin film was deposited

on top of CNT-metal contact so as for oxygen barrier.

The parylene-C is deposited by PDS 2010 parylene coater. The thickness of parylene was

a critical parameter in the device because too thin layer will not isolate CNT from surrounding

environment and too thick layer will have much absorption of IR irradiance. In experiments, 1 µm

parylene was coated on CNT IR sensor using PDS2000 parylene coating.

In order to compare device performance, all measurements were performed using the same

infrared source (100 mW 830 nm), and all date were collected by Agilent 4156C precise semicon-

ductor parameter analyser in the room temperature (25◦C). Figure 2.9 shows the darkcurrent in five

IR sensors with different interfacial layer. It was larger than 1.75 nA on SiO2 (as SiO2) interfacial

layer while it was around 0.6 nA on quartz (as Quartz). However, the dark current was reduced to

less than 0.3 nA on parylene-C (as Parylene), Si3N4 (as SiN) and polyimide (as Polyimide). The

polymer can isolate oxygen-CNT contact under the Schottky barrier, especially the thicker poly-

imide will reduce the darkcurrent to 0.1 nA level. Meanwhile, the linearity measurements were

shown in Figure 2.10. Five different sensors have very good linearity when IR irradiance power

linearly increases. The results also show that the sensor with polyimide interfacial layer has largest

response and the photocurrent is around 170 nA at 3000 mW/cm2 IR irradiation. The SiO2 layer

has the worst response at around 30 nA photocurrent.

In CNT based nano electronic device, there is no exact function for electron transport although

green functions are widely used to describe and simulate current. In the proposed CNT based IR

sensor structure, the interfacial layer under CNT-metal contact has significant effects on electron
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Figure 2.9 Dark current measurement results on CNT IR detector.

Figure 2.10 Linearity measurement results on CNT IR detector.
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transport. The different interfacial layer under CNT-metal can change oxygen doping in CNT [67].

It is reported that the CNTs works as high p type semiconductor when fully exposing to oxygen.

When the interfacial layer is changed, the chemical nature of CNT will be different so as to make

p doping changes0.

In the experimental results, Si3N4 interfacial layer induced higher photocurrent than Si02.

When Si02 was changed to Si3N4, there was no oxygen under CNT so that the contact barrier

was high. Parylene and polyimide is also oxygen free. When CNT was deposited on parylene or

polyimide, the electrochemical charge was less than on Si02, so that the CNT would be in low p

type. Meanwhile, it increased the barrier height resulting a higher photocurrent.

2.4.2 Extrinsic Surface State Effect

In nanoscale material, surface state could also introduce extra electron energy state in CNT bandgap.

The surface charges between CNT and metal, CNT and substrate are critical in the device, which

are closely related to parasitic capacitance. The capacitance between two electrodes increases

dramatically when gap decreases. This could cause the sensor behavior to depart from expected

sensing performance. As shown in Figure 2.11, there are at least six parasitic capacitors in this

device. Cs is the internal capacitance within CNT-metal Schottky barrier, which measures the

build-in potential in CNT-metal contact. In Schottky diode, the depletion region is an insulator that

separates the metal layer and doped semiconductor layer, forming a parallel plate capacitor Cs.

The thickness of depletion layer can be modulated by the magnitude of externally applied voltage.

C1 and C2 are substrate capacitors (� Cs). Csr and Csl are parasitic capacitors between electrode

and substrate, which is source to deteriorate sensor response. From capacitance equation Eq. (2.8),

the parasitic capacitance depends on the gap size between two electrodes and isolation materials

underneath. Although C1 and C2 is larger than than Ci, it is coupling to ground and has no effect
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Figure 2.11 Parasitic capacitance model of CNT metal Schottky barrier.

on sensor response. ε is the dielectric constant of silicon dioxide and d represents the gap size.

When gap size decreases, the Cs increases dramatically for nanoscale sensor. This large capacitor

stores more charges between two electrodes and changes electrical potential distribution along car-

bon nanotube. Moreover, it may reduce Schottky barrier height to make IR detector performance

worse. In the proposed CNT IR device, a low-k material was deposited as interfacial layer to re-

duce charge distribution under carbon nanotube. On top of SiO2 layer (150 nm) there was 10 µm

polyimide spined on top as interfacial layer. The polyimide thickness and surface flatness is the

key process. In this research, the polyimide (HD MicroSystems, Inc. PI-2555) was spined twice

on silicon based wafer with the speed of 2000 rpm. After spin process, it was put in oven and

cured the polyimide at 300◦C for 2 hour with 5◦C per minute starting from room temperature.

The resulting polyimide thickness is around 10 µm.

Ci =
ε ∗S

d
(2.8)

The capacitance measures charge storage ability between two isolation plates. It is obvious

that the charge storage under sensor will change sensing performance. As shown in Figure 2.12,

when metal atoms are deposited on isolation layer, there is positive charge layer formed on sub-

strate. Based on this model and Figure 2.11, parasitic capacitors from Ci and Csr or Csl will affect
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Figure 2.12 Surface charge storage on substrate.

charge redistribution in substrate. Meanwhile, electron work function difference between metal

and substrate material will also contribute on charge distribution. The electron work function of

Au is around 5.3 eV [86], while the energy bandgap of silicon dioxide is 9 eV, the polyimide is

4.32 eV for two layers [87]. This difference will generate charge accumulation on the surface,

which contributes to surface voltage. The huger difference forms larger dynamic surface capaci-

tance. In order to make infrared sensor stable and high responsivity, the polyimide contributes less

charge stored on Csl since the work function of Au and polyimide layer is less than other materials

discussed.

2.4.3 Sensor Response Enhancement

Although the IR sensor response can be optimized by device structure, the fill factor of CNT-based

IR sensors is still limited by low incoming electric field at their nanometer scale sensing area.

The photoresponses of CNT-based sensors are relatively low. It is mainly because the detection

methodology based on the CNT/metal schottky junction suffers from limited sensing area and weak

optical absorption. There are many ways proposed to enhance the performance of the CNT-based

IR sensors, of which the promising approach is use optical antennas to enhance the local electric

field [88]. Helical antennas have a high gain over a broad band of frequency characteristics. The

radiation along the helix axis is found to be the strongest when the circumference of the helix

is of the order of one wavelength. To improve the fill factor of CNT-based IR sensor, the three-
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Abstract — This paper reportsthe integration of the helical 
nanobelts (HNBs) onto carbon nanotube (CNT)-based infrared 
(IR) sensors to enhance theirsensitivity by improving the fill 
factor. The repeatable and controllable assembly process is 
achieved by employing nanoroboticmanipulation. The 
enhancement after integration is confirmed by the 
electromagnetic simulation. Based on the simulation result, the 
integration of HNB antenna can increase the local electric field 
by 58 folds, which makes the CNT-based IR sensors an ideal 
candidate for non-cryogenic highly sensitive IR detection. 
 
Index Terms - Infrared detector, nanorobotic manipulation, 
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I. INTRODUCTION 

High sensitivity infrared (IR) sensors are of great importance 
in a variety of military and commercial applications 
including remote sensing, environmental monitoring, 
medical diagnostics, thermal imaging, and night vision. To 
date, commonly used photodetector devices such as Mercury 
Cadmium Telluride (HgCdTe) photodiodes [1, 2] and 
quantum well infrared photodetectors (QWIPs) [3-5]that 
offer the sensing capability in the middle-wave IR (MWIR) 
and long-wave IR (LWIR) range respectively. However, 
high performance IR detectors require cryogenic cooling to 
suppress the thermally-generated noise. In addition, most 
existing IR detectors suffer from low quantum efficiency 

thatonly allows detection of thewavelengthin specific ranges, 
which makes them impractical for many applications. 
Carbon nanotubes (CNTs)are rolled up graphene sheets with 
a radius of a few nanometers. They can be either metallic or 
semiconducting depending on circumferential boundary 
conditions [6].The semiconducting 
CNTsshowpotentialapplications in IR detection due tothe 
unique properties such asIR sensing compatiblebandgaps[7], 
low thermal noise [8], high quantum efficiency, and low 
temperature dependency, making themcapable of sensing a 
wide range of IR radiation at either room or moderately low 
temperature where cryogenic cooling is not required. These 
properties set it apart from conventional semiconductor 
based materials in terms of IR detector. 
 
The bandgap of CNTs locate in IR wavelength so that it 
make CNTs to be one of most innovative candidate for IR 
irradiation detection. So far, most of CNT based IR detector 
sensing scheme are based on CNT metal junction. The 
Schottky barriers will be formed at the contact regions 
between metal and semiconductor CNT. As shown in Fig.2. 
The Au metal layer will be finished by traditional 
lithography and evaporation, while CNT will be deposited 
using DEP force and atomic force microscopy (AFM) 
manipulation. When IR light shines onto contact region, 
photon will induce electrons from CNT to metal surface.   

 
Fig.2 CNT IR sensor structure 

However, there are several fundamental problems which still 
plague the development of CNT-based truly nano-devices 
for practical applications. The critical problem is that, the fill 
factor of current CNT-based IR sensors is still limited by 
low incoming electric field at their nanometer scale sensing 
area, so the photocurrent responses of CNT-based sensors 
are relatively low. At the same time, CNT metal contact 
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Fig  1  Design of the CNT IR sensor array with helical antennas  

 

  

Figure 2.13 CNT-based IR sensor response enhancement by helical antenna.

To fully characterize the performance of the integrated detector, the electrical and photoresponse 
properties are both tested and discussed below. 

        The results of electrical property tests for both detectors are shown in Fig. 7, with the red line 
for the detector after integration and the black line for the bare one. It can be readily find that after 
the integration, the detector is more sensitive to the change of the electrical signal, and therefore 
the HNB antenna is of a better performance for the IR sensing from the perspective of electrical 
properties. Several factors could contribute to this effect. Firstly, in this setup, the HNB works as a 
charged particle, which will generate a small electrical field around the CNT-metal contact and 
therefore change the I-V relationship. On the other hand, due to the mechanical assembly of the 
HNB antenna, this can also be attributed to the change of the position of the CNT and/or the contact 
between the CNT and the electrode. Clarifications will be made with more experiments using the 
samples as shown in Fig. 3.  
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Fig. 7. I-V Curves of CNT IR detectors. (a) Sample A; (b) sample B 

         The photoresponse property is the key indicator of the performance of the IR detector. Both 
of detectors are tested under IR light with a wavelength of 808 nm and the results are shown in Fig. 
8. The photoresponse of the detectors after integration, which is represented by the red line, is much 
weaker than the ones before integration, which is shown in black line. There are three possible 
explanations for this result. The first one is that the electrodes are milled away by the FIB during 
the integration. However, it is almost impossible because the electrical sensitivity is much stronger 
after integration. The second explanation is that the Schottky contact between CNT and the 
electrode is changed into more ohmic by either the FIB or the mechanical collision with the HNB. 
Furthermore, it is possible that the field distribution is greatly impacted by the HNB antenna. A 
reducing effect instead of amplifying one is due to the positioning and orientation of the HNB 
antenna.  

          To isolate the impact purely from the HNB antenna from others, a new in-situ test plan is 
proposed. After picking up the HNB, the micromanipulator will be moved out of the SEM and 
placed under an optical microscope. The IR laser will be mounted on a linear positioning stage near 
the optical microscope. After alignment of the laser with the detector, the micromanipulator can 
approach the HNB near the CNT detector and the photoresponse of the detector can be tested in 
situ. Without exposure and possible damage from the FIB, the contact between CNT and the 
electrode will be kept intact. So, the influence solely from the HNB antenna can be better identified. 
Also, the best position and orientation of the HNB can be figured out. 

Figure 2.14 I-V curve of CNT IR Sensor. a) device A; b) device B.

dimensional helical structures with micro and nano-features are needed. In this research, the helical

nanobelt (HNB) structure was fabricated from the InGaAs/GaAs by a top-down fabrication process

in which a strained nanometer-thick heteroepitaxial bilayer curled up to form three-dimensional

(3D) helical structure with nanoscale features [89]. It served as the optical antennas to improve the

fill factor of the CNT-based IR sensors, which is schematically illustrated in Figure 2.13.

The electrical and photoresponse properties are both tested and discussed to fully characterize

the performance of the integrated detector. The results of electrical property tests for both detectors

are shown in Figure 2.13 and Figure 2.14, with the red line for the detector after integration and

the black line for the bare one. It can be readily found that after the integration, the detector is

more sensitive to the change of the electrical signal, and therefore the HNB antenna is of a better

performance for the IR sensing from the perspective of electrical properties. Several factors could

contribute to this effect. Firstly, the HNB works as a charged particle, which will generate a small

electrical field around the CNT-metal contact and therefore changes the I-V relationship. On the
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other hand, due to the mechanical assembly of the HNB antenna, this can also be attributed to the

change of the position of the CNT and/or the contact between the CNT and electrode.

2.5 Nanoscale IR Sensor Characterization

2.5.1 Sensors and Measurement Method

In CNT based infrared photodetectors, the most basic structure is CNT-metal schottky diode, in

which the CNT is aligned between two electrodes by quantitatively controlled dielectrophoretic

(DEP) assembly [90]. As shown in Figure 2.15 (top), the SEM image shows Au-CNT-Au struc-

ture and its dimension on SiO2, where the CNT length is around 6 µm. There are three areas

from left to right (L, M and R): left Au-CNT (1 µm), CNT connection (4 µm) and right CNT-Au

(1 µm). In this Au-CNT-Au symmetry structure, both photoconductance and photovoltaic effect

have possibility to lead photocurrent in device and the dominate effect depends on the CNT area

and CNT-metal contact type, shown in Table 2.1. At left and right side, the Au-CNT/CNT-Au con-

tact can introduce both photoconductance and photovoltaic effect for IR response while the center

CNT (M area) only generate photoconductance. In order to certify the foremost photoresponse

source, a reliable testing system is required to measure CNT IR sensor response. The characteri-

zation of nanoscale photodetector is a huge challenge due to optics diffraction limit [91] and the

commercialized infrared laser beam spot size can only narrow to 10 µm scale which is thousand

times of single wall CNT diameter [61]. In Figure 2.15 (bottom), it shows the relative size be-

tween laser beam (World Star Tech UH5-100G-808, 100 mW 808 nm single mode laser module)

and CNT after fine focus, in which the bright white oval shape shows the laser beam and the center

black dot represents the CNT under laser. The CNT length is around tenth of laser beam diame-

ter. It is hardly to know the localization of CNT and laser beam in this configuration. Therefore,
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Table 2.1 Au-CNT-Au structure and its photoresponse.

Side Name Possible Photoresponse
Area L Photoconductance, Photovoltaic
Area M Photoconductance
Area R Photoconductance, Photovoltaic

in [31] [92] [34], it just showed the maximum photocurrent with estimated input irradiance energy.

  

 

20um 

L M R 

Figure 2.15 Top: SEM image of Au-CNT-Au structure. Bottom: The relative size between CNT
detector and IR laser beam spot.

In the proposed testing bench (Figure 2.16(a) and Figure 2.16(b)), a digital microscope (Keyence

VHX-600) and precise five axis substage (Kleindiek Eucentric Five Axis Table) are used to local-

ize CNT photodetector. The long working distance of digital microscope leaves the space for IR

irradiation on detector. Both microscope and laser are locked on non-movable position and the

microscope monitors the height (z direction) and position (x and y direction) of CNT detector.

The nanoscale CNT device is moved on precise substage and a charge integration readout circuit

measures the current flowing in it. The inset at left corner of Figure 2.16 (a) shows the relative
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Table 2.2 Eucentric five axis table specificiations.

Items Specificiations
Dimensions L:72 mm - W: 50 mm - H: 44 mm
Travel (x and y) 10 mm
Travel (z) 3 mm
Travel (R) 360 deg
Travel (T) ± 90 deg
Absolute accuracy T < 0.2 deg
Repeatablity T < 0.03 deg
Linear resolution < 0.5 nm
Rotational resolution < 6x10−6 deg (10−7 rad)
Speed up to 1 mm/s
Resolution < 0.5 nm

position of detector and laser spot on stage. Figure 2.15 (b) is more precise about the dimension.

Figure 2.16 (b) is the experimental setup using laser, substage and digital microscope. Table 2.2

lists the specifications of eucentric five axis (x, y, z, R and T), in which the resolution, speed and

travel range is accurate enough for repositioning device.

In order to leverage the detector in horizontal, there are four markers (perpendicular ‘L’ shape

and its mirror image) designed on substrate, as shown in Figure 2.16 (c), M1-M4. During calibra-

tion process, the detector is moved by stage controller to focus marker respectively. This process

is finished till four markers are in focus when it is moved to the center of microscope without

changing z direction. In the measurement, the center point of digital microscope (via microscope

display screen) should keep focus when the detector is moving with the substage on x-y plane. The

measurement trajectory is around 1 µm step size, as shown in Figure 2.16 (d) and the center of

photodetector will be moved on this pathway. The measurement process includes x-axis and y-axis

scanning. In order to set the center focused corresponding point under the same IR irradiation, the

focus point/line is always in the center of digital microscope no matter where the detector is.

As shown in Figure 2.17, there are three points selected from device (A, B and C) and three

imaging point (A′, B′ and C′) formed on image sensor after objective lens and tube lens. The
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clear focused points from microscope are in the same height. However, when the detector plane is

not perpendicular with symmetry axis of microscope (point A1 point C1 light path), there is only

one narrow line (point B1) focused as shown in Figure 2.17 right. As in Figure 2.16 proposed

measurement system, the digital microscope is not vertical on detector plane, there must be one

line focused when moving the photodetector on x-y plane. By controlling this focus line in the

middle of microscope image on y direction, the detector will be moved on the same horizontal

level.
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Figure 2.16 a) Proposed testing bench using digital microscope, laser and five axis substage. b)
Hardware setup, inset is substage. c) Four points calibration marker for detector. d) Raster scan-
ning: experimental measurement pathway for centroid of photodetector.

2.5.2 Experimental Results

In this section, CNT IR sensor response on x-axis, y-axis, bias voltage and contact length are

discussed. The measurement is firstly conducted after aligning CNT photodetector along x-axis,
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Figure 2.17 Focused and unfocused light rays on digital microscope.

in which the maximum response can reach to 28 nA, shown in Figure 2.18. The photocurrent

decreases when moving the detector up and down (y >40 µm and y <40 µm). The photocurrent

(Ip) relation on line y (= 20, 30, 40, 50, 60 µm) is ordered as Eq. (2.9) and Eq. (2.10) on its

corresponding point. The line with maximum response is close on the center in y direction (y = 40

µm).

Ip,y=40µm > Ip,y=30µm > Ip,y=20µm (2.9)

Ip,y=40µm > Ip,y=50µm > Ip,y=60µm (2.10)

In Figure 2.18, there are three areas, including positive response area, negative response area

and the unknown area between these two. The photocurrent is on positive direction, negative

direction and unstable respectively. In overall, there are two opposite direction current sources in

the device when IR irradiates on detector, because it generates positive and negative photocurrent

with zero bias on it. This could be explained by two Schottky barrier formed by Au-CNT (left)

and CNT-Au (right). When the detector is on left side of laser spot, the CNT-Au Schottky diode

dominates the response, while the Au-CNT Schottky diode generates more photocurrent on right

side. The maximum response does not happen in the center line but with a little offset on both side.
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As shown in Figure 2.18, it locates around 32 µm at left and 55 µm at right half. Therefore, the

photoconductance effect can not dominate the photoresponse because the maximum IR irradiation

is on the center due to its single mode gaussian beam. The maximum photocurrent should be on

center if photoconductance contributes the most.

In the measurement, the maximum photocurrent is generated on the large slope area of gaussian

laser beam, where the two diodes will stay in distinct areas with large IR energy difference. The

photodetector on higher power IR irradiation will output more current after neutralizing small part

of charges with another side. In the unknown area between positive and negative response, the

photocurrent is noisy and unstable. It jumps from positive side to negative side or reversely. The

reason is that gaussian beam will produce nearly uniform output in center area. The two current

in facing photodetectors will be canceled by each other so that it is very hard to generate a stable

photocurrent. As shown in Figure 2.18, the more unknown area happens the sensor is closer to

center, which is consistent with gaussian distribution.

Figure 2.19 shows the photoresponse along y direction. The photocurrent is positive when the

detector is located on left side, while it generates negative response on right side. Meanwhile, the

photocurrent decreases when the sensor goes further left (from x = 33 µm to x = 30 µm) or further

right (from x = 48 µm to x = 51µm). All the photoresonse are symmetry along y = 40 µm due

to that the detector direction is perpendicular to moving trajectory and the laser beam output is

symmetry along y = 40 µm. The photocurrent is proportional to the difference of IR irradiation

between Au-CNT contact (left) and CNT-Au (right) contact. However, the photocurrent curve

is not fully symmetry at x = 32 µm and x = 33 µm because the precise substage changes the

position at 1 µm step size but with measurement position errors. If photoconductance dominates

the photoresponse, each line should be gaussian curve as the result that the photocurrent directly

reflects the laser output distribution on y direction.
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Figure 2.18 Photocurrent measurement along x direction with distinct y.

In infrared photodetector, the figure of merit includes NETD, responsivity etc [93]. Responsiv-

ity is referred to photosensitivity which is related to quantum efficiency (the number of electrons

released per incident photon). When noise is not a main consideration, the photo sensitivity can

be calculated by the output (voltage or current) per watt of incident energy, shown in Eq. (2.11),

where R: Responsivity, [V/W], S: Signal Output, [V] or [A], P: Incident energy, [W/cm2] and A:

Detector active area, [cm2]. The responsivity can be calculated by localizing CNT IR photodetec-

tor due to that the IR irradiance is gaussian distribution dependent on x-y position. In this research,

the proposed detector maximum responsivity can reach to 16.8 µA/mW.

R =
S

PA
(2.11)
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Figure 2.19 Photocurrent measurement along y direction with distinct x.

The nano device is very sensitive to external environmental changes, e.g. chemical [94], elec-

trical signals [95]. In the CNT photodetector characterization, the bias voltage is sweep signal from

-10 mV to 10 mV as shown in Figure 2.20 and the darkcurrent is from -160 nA to 160 nA, which

is almost linear curve due to small voltage range. However, the photocurrent (maximum value) is

always within 16.5±1 nA and the photoconductance has no effect on total current in sensor.

Since the Schottky barrier is critical in CNT based photodetector, the metal materials and con-

Table 2.3 CNT metal contact length and the direction of output photocurrent.

Left Length (µm) Right Length (µm) Photoresponse
8 1.5 Single direction
6 1.8 bi-direction

3.5 1.2 Single direction
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Figure 2.20 Photoresponse and darkcurrent on different bias voltage.

tact area will play a key role in output. The Cu and Ag metal CNT contact are also characterized. A

group of ten Au-CNT-Au, Ag-CNT-Ag and Cu-CNT-Cu Schottky diode based IR photodetectors

are measured with IR irradiation (100 mW 808 nm). As shown in Figure 2.21, the Au-CNT contact

has more response than Ag and Cu in average due to its high work function (Au: 5.1 eV, Ag: 4.26

eV, Cu: 4.7 eV). The contact length is also characterized by different size, shown in Table 2.3. The

first and third detector only respond to one side and the 6/1.8 µm detector has positive and negative

current. The 1.8 µm side only generates around 1 nA scale photocurrent but 6 µm side produce

about 40 nA response (All the measurements are from maximum point). The experimental results

indicate that photovoltaic dominates photoresponse on CNT-metal Schottky detector although the

photovoltaic voltage can not be sampled due to its tiny value merged in noise. The detector IR

response are dependent on CNT-metal contact size and metal workfunction.

2.6 Chapter Summary

The stability and reliability of CNT based IR sensor were analyzed and presented fully in this study.

In the first, by analyzing the parasitic capacitance in CNT metal Schottky barrier, a novel structure

was proposed. The sensor on low-k polyimide interfacial layer has around 100 nA photocurrent at
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Figure 2.21 Photocurrent comparison on Au-CNT, Cu-CNT and Ag-CNT.

830 nm 3000 mW/cm2 irradiation. The parasitic capacitance reduces the sensor response while in-

creasing substrate surface voltage. It dominates nano electrical device performance, nano material

sensors when the device feature size shrinks into sub-micro or nano scale. Secondly, a novel iso-

lation electrical feedback system was introduced into DEP system. By measuring the impedance

changes, the system can quantitatively count the number of carbon nanotubes bridged between two

electrodes. The experimental results show that the system response speed is fast to single wall and

multi-wall CNTs, although the impedance differs much. This system will also applicable to thin

layer graphene deposition control and other nanomaterials deposition and localization. Thirdly,

the robust test bench using digital microscope and precise five axis substage is used to measure

detector photoresponse. The relative position between nanoscale sensor and IR beam is local-

ized by mapping the photocurrent on laser spot. The distance between photodetector and infrared

laser lens is leveraged by digital microscope. The experimental results show photovoltaic quan-

tum effect dominates CNT-Metal Schottky based IR detector and the photoresponse is dependent

on contact size and metal materials. Our proposed measurement method provides a robust and

precise approach to characterize sub-micro and nano scale photodetector which is important for

sub-wavelength scale photodetector characterization.
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Chapter 3

Single Pixel Infrared Camera

3.1 Previous Work

Over the past few years, there have been considerable breakthroughs in the thermal imager market

including the fact that prices have dropped considerably. With the advances in technology and

materials, infrared cameras are finally being designed for the end user. Regarding to the cost,

there was no new fully-featured imager less than $20,000 USD. However, there are many fantastic

choices out there for building applications with a wide range of features in prices ranging from

$2,000 to $9,000 USD. As complex as some systems may seem, infrared cameras are comprised of

some basic components: lens, detector, processing electronics, display, controls and power supply.

Some features such as thermal sensitivity and detector size are useful in evaluating performance.

Thermal Sensitivity: This is the most important specification to evaluate IR camera. The ther-

mal imager is able to resolve temperature differences at least 0.1◦ (100 mK) or lower. The smaller

number indicates the better (i.e. more sensitive) of the system. In overall, a handful of 40-50

mK (0.04− 0.05◦) system is also available to provide fantastic image quality and clarity. The

lower sensitivities are capable of discerning smaller temperature variations typically encountered

in marginal inspection conditions (when the inside to outside wall surface temperature difference

is low). In other words, the additional cost of improved sensitivity is an investment that can have

real returns.

Detector Array Size: Most infrared sensor arrays have fewer pixels than visible-light cameras.
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IR imagers available for the civilian market are a long way from the 5-8 megapixel visual arrays

which are used to seeing on most smartphone cameras. However, more pixels generally means

greater detail and higher resolution infrared cameras can measure smaller targets from further

away and create sharper thermal images, adding up to more precise and reliable measurements.

Excellent infrared systems for civilian application are now being made with 120× 120 (14,400),

160× 120 (19,200) and 320× 240 (76,800) focal plane arrays (FPAs). The FPAs smaller than

120× 120, though financially attractive, don’t provide sufficient spatial resolution. On contrary,

the FPAs larger than 320× 240, such as 640× 480 (307,200), produce an impressive image but

cost more. In addition, it must be aware of the difference between detector spatial resolution and

display resolution.

Image Display: A high-quality LCD display screen is essential to diagnosing an image. There

must be clarified the display resolution and sensor array resolution. In product description, some

manufacturers boast about a high resolution LCD and hide their low resolution detector. For in-

stance, LCD resolution may spec at 640× 480, but if the IR detector pixel resolution is only

160× 120, or 19,200 pixels, the greater display resolution accomplishes absolutely nothing. The

quality of the thermal image and its measurement data are always determined by the detector res-

olution.

Frame Rate: 9 Hz systems have become widely available and work just as well as 30 Hz and

60 Hz systems. However, the higher frame rate has the better ability to render and capture moving

targets. Lower frame rates are less tolerant to movement and will blur the image if crossing a scene

too quickly. Although there is an important consideration for industrial thermographers who are

inspecting certain types of rotating equipment (motor shafts, bearings or couplings), it is far less

of a concern in building applications where the targets are stationary.

The thermal infrared (IR) camera that attaches to a smart phone (FLIR One/Seek Thermal) is
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now available, which brings infrared technology into consumer electronics. The novel $250 Seek

Thermal infrared camera evaluates its effectiveness in helping wildland firefighters find lingering

smoldering areas during the mopup stage of fire suppression. FLIR ONE is another lightweight

easily connect and use in smartphone. It explores the natural world with no additional cords, cases,

devices or screens. The IR-Blue is an affordable thermal imaging accessory for iPhone and An-

droid devices, which uses a 64 zone 16× 4 pixel non-contact infrared sensor array to read the

temperature in viewing and connects using bluetooth to iPhone or Android device to show the

temperature reading as colors. The novel infrared cameras are mostly in research lab. A single

pixel IR camera was proposed in [69], where the camera system used a single CNT photodetector

to compressively sample the linear projection of the image onto binary random patterns. By em-

ploying compressive sensing algorithm, high resolution image can be achieved with fewer samples

than original image dimension.

In 2006, compressive sensing based new digital image/video camera directly acquires random

projections of a scene without first collecting the pixels/voxels [96]. The camera architecture

employs a digital micromirror array (DMD) to optically sample linear projections of the scene

onto pseudorandom binary patterns. The key hallmark is its ability to obtain an image or video

with a single detection element (“single pixel”) while measuring the scene fewer times than the

number of pixels/voxels. Since the camera relies on a single photodetector, it is also adapted to

image at wavelengths where conventional CCD and CMOS imagers are blind.
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3.2 Spatial Light Modulator based Imager

3.2.1 Compressive Sensing

The conventional Nyquist-Shannon sampling theorem requires the sufficient sampling rate at least

twice of signal frequency in order for fully reconstruction guaranteed. The compressive sensing, a

new computing paradigm directly samples the signal in compressed form so that the sampling rate

can be significantly reduced, which has attracted extremely interest in imaging [54] [69], geophys-

ical data analysis [97], control and robotics [98], communication [99], medical imaging processing

including MRI, CT [100]. In compressive sensing, there is no need to design sensors with higher

bandwidth than original signals to follow and capture [101]. It can be seen as a sum of the linear

projection from original signal to measurement matrix. The compressive sensing is a combined

sampling and compression process, which is the most efficient way to sample signals from single

processing point of view. E. Candes, etc. gave the mathematic proof of using random measure-

ment matrix to recover the original signal by solving minimization of the `0 and `1 optimization

problem [57].

Given an unknown signal x (x ∈RN), compressive sensing takes M times linear measurements

from measurement matrix to original signal x, as shown in Eq. (3.1). If M = N (N is the dimension

of unknown signal x), the signal x could be easily reconstructed by solving linear equation or else it

would be an underdetermined question. However, the original signal can also be reconstructed with

less measurements (M <<N) using compressive sensing, where Φ is a M×N measurement matrix,

which transforms the measurement as a linear projection from original signal to measurement

matrix. y is the measurement result. The optimal solution for x could be reconstructed [102]

by solving the minimization of the 1-norm optimization. More discussion and comprehensive

introduction on compressive sensing can be seen on [103] [104].
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y = Φx (3.1)

The core of compressive sensing is the solver of problem of Eq. (3.1). It is NP-hard unfortu-

nately. In y = Φx. Φ (Φ ∈ Rm×n) is the measurement matrix (m < n).

Instead of solving the NP hard directly, Donoho [104] proves that if x is sparse and Φ is

under some conditions, such as the null space property [105], the incoherence condition [106] and

restricted isometry property [55], the Eq. (3.1) will be equivalent to Eq. (3.2). The nature image

(x) sparsity will be discussed in Chapter 5.

x̃ = argmin ‖ x‖1

s.t. Φx = y
(3.2)

A lot of algorithms have been proposed to solve this `1 problem, including Orthogonal Match-

ing Pursuit (OMP) [107], Iterative Shrinkage-Thresholding (IST) [108], CoSaMP [109], subspace

pursuit [110], Accelerated Proximal Gradient (APG) [111], and Alternating Direction Method

(ADM) [112] and its linearized version (LADM) [113].

3.2.2 Single Pixel Imager

The structure of the IR sensing system is built upon the compressive sensing theory introduced in

the previous section. Figure 3.1 depicts the system setup using a single pixel CNT photodetector

as image sensor, in which IR images are directed onto a DMD through a set of lenses. The IR

images on the DMD represents the original signal x in Eq. (3.1) (x ∈ Rn, n is the number of image

pixels). The DMD generates patterns according to a measurement matrix Φ (Φ ∈ Rm×n) so as to

compress the IR images. Each pattern on the DMD is comprised by n pixels, thus there are m
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different patterns form the measurement matrix Φ. The compressed IR images are reflected and

focused to a CNT photodetector. The IR signal arriving at the CNT photodetector represents the

linear projection of the image onto the measurement matrix, which could be considered as the

inner product of IR image x and each row vector in the measurement matrix Φ. The photocurrent

is recorded by a fast readout system integrating with a charge integrator, an Analog-to-Digital

Converter (ADC), and a Data Acquisition (DAQ) card. The amplitude of photocurrent represents

the value of y in Eq. (3.1) (y ∈ Rm, m is the number of measurements). It should be noted that

compressive sensing sets m < n, therefore, the IR image x is compressively sampled into the y.

Based on the measurement results y and the designed measurement matrix Φ, the original signal x

can be recovered using an image reconstruction algorithm.

3.3 Weak Signal Readout Method

The readout circuit is one of the key components in imaging system. With the limitation of

nanomaterial electron transport, the photocurrent is from pA to nA scale in CNT infrared sen-

sor [32] [33]. More importantly, it is bias dependent. In order to read photocurrent in CNT infrared

sensor, a low noise, high gain readout circuit is needed, in which a fully current readout system

includes a current to voltage module, and a Digital Signal Processing module (DSP).

3.3.1 Current to Voltage Conversion Method

There are two classes of CNT photodetector signal monitoring, voltage and current based. The

former requires great voltage difference (at least mV scale) on sensor when light irradiates on it,

especially for photovoltaic device. However, the IR irradiation is nonlinear to voltage generated

in quantum effect infrared sensor but linear proportional to photocurrent. Meanwhile, in CNT
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Figure 7.2: The setup of compressive sensing based imaging system using a CNT detector
with photonic cavity and DMD.

136

Figure 3.1 System setup of compressive sensing based imaging system using a CNT photodetector,
response enhanced by photonic cavity.
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can generate nanoampere scale photocurrent without voltage changes. However, in current monitoring circuits, for the 

purpose of reducing the bias voltage influence on photodetectors, it requires that readout circuits implement zero input 

impedance. Especially in CNT based IR detector, the photocurrent characteristic highly depends on the applied bias voltage 

[7][8]. There are two requirements on readout circuits of CNT based IR detector, one is the highly resolutions to picoampere 

scale, another is no bias applied on the detector. In order get good resolution, a high performance current to voltage amplifier 

(also named trans-impedance amplifier) becomes the most important module in readout system.   

34.2 Current to Voltage conversion method 

        There are two types of CNT detector signal monitoring, including voltage monitoring and current monitoring. Voltage 

monitoring requires great voltage difference (at least mV scale) on detector, when light irradiates on the detector. In CNT 

detector experiments [9], CNT photovoltaic effect is not like silicon photodiode, it generates nA scale photocurrent while the 

voltage doesn’t change much. However, current monitoring requires that the readout circuits present zero input impedance to 

the detector, and the readout circuit absorbs the detector’s current without producing a voltage across the detector, especially 

for CNT based detector, of which the photocurrent characteristic of CNT detector depends on the applied bias voltage. It is 

the best way to use zero bias for current monitoring on CNT detector.  

34.2.1 Resistor based Current readout method 

        In order to convert pA/nA photocurrent to voltage, a current to voltage amplifier (also named trans-impedance amplifier) 

becomes the most important module in readout system, then a microprocessor can be used to process the photocurrent. The 

basic principle of current to voltage converter (IV converter) is to use photocurrent (Ip) multiplied a resistor. These circuits, 

shown in Fig.34.2, need very large, approximately GΩ and precise resistor to detect pA current [10]. The thermal noise of the 

large resistor will also limit the resolution of the circuit. The deep negative feedback of amplifier (OPA1) makes negative 

node(-) and positive node(+) work in same potential, so CNT detector is at zero bias in this condition.  

 
Fig.34.2 Schematic of R type IV Converter 
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CNT 

Detector 

Figure 3.2 Schematic of R type IV converter.

detector experiments [114], CNT photovoltaic effect is not as silicon photodiode. It generates

nA scale photocurrent while the voltage doesn’t change much. Therefore, a current to voltage

conversion will be designed for CNT photocurrent measurement. The current monitoring requires

the readout circuit present zero input impedance to the detector, and absorb the detector’s current

without producing a bias voltage. Since the photocurrent highly depends on the applied bias, it is

desired to use zero bias for current monitoring on CNT detector.

3.3.2 Resistor based Current Readout Method

In order to convert pA/nA photocurrent to voltage, a current to voltage amplifier (transimpedance

amplifier)becomes the most important module in readout system. The basic current to voltage

converter (IV converter) is to use photocurrent (I p) multiplied by a resistor. These circuits, shown

in Figure 3.2, need very large (giga ohms) and precise resistor to detect pA current [115]. The

thermal noise of the large resistor will also limit the resolution of the circuit, although the deep

negative feedback (OPA1) set CNT detector at zero bias in this condition.

3.3.3 Capacitor Based Current Readout Method

Capacitive Trans-Impedance Amplifier (CTIA) also works as a current to voltage converter and

it can be designed to have high charge to voltage conversion ratio with low noise. Figure 3.3 is
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34.2.2 Capacitor based Current Readout Method  

        Capacitive Trans-impedance amplifiers (CTIA) also works as a current to voltage converter (IV converter) and it also 

can be designed to have high charge to voltage conversion ratios and low read noise [10][11]. Fig. 34.3 is the basic circuit of 

CTIA using switch capacitor as adjust resistor. There are two working phases in Fig. 34.3. In phase1, switch S is high, OPA2 

works like voltage follower. The CNT detector formed circular loop with current source in OPA2 and the photocurrent is 

partial current of the current source. In phase2, switch S is low in Toff seconds, the photocurrent (Ip) will charge negative 

node (-) of OPA2 and the charge will redistribute in it. Q=Ip*Toff. Vo2=Q/C0 (Toff represents switch S off time). This 

circuit can detect as low current as possible based on the noise process in the input and was used in our readout system. And 

it also achieves a large power supply rejection ratio (PSRR), high open loop gain and large dynamic range. The CTIA gain is 

given by G=Q/C0, QIN being the input charge integrated on the CTIA’s feedback capacitor. 

 
Fig.34.3 Schematic of C type IV Converter 

 

34.3 Design of Sensor readout system 

34.3.1 Zero Bias Current to Voltage Conversion 

        There are two requirements on readout circuits of CNT based IR detector, one is the highly resolutions to picoampere 

scale, another is no bias or bias modulated on the detector.  In order to reduce noise and read such low current of MWCNT 

detector, a Capacitive Transimpedance amplifiers, shown in Fig.34.3 was designed in this IR readout system, because CTIA 

have high charge to voltage conversion ratios and low read noise [11].  

        The amplifier works in deep negative feedback control, which will make bias on CNT detector modulated by positive 

input of AMP in Fig.34.3. This circuit can detect as low current based on the input noise.  

 

34.3.2 High resolution ADC 
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Figure 3.3 Schematic of C type IV converter.

the basic circuit of CTIA using switch capacitor as adjust resistor, in which there are two working

phases. In phase1, switch S is ON, OPA2 is reset the output as zero. In phase2, switch S is OFF

in To f f and the photocurrent (I p) will charge negative node (-) of OPA2 to redistribute it, where

Q = Ip ∗ To f f , Vo2 = Q/C0, (To f f represents switch S off time). In this design, the circuit can

detect ultra low current based on the noise level in input. It also achieves a large Power Supply

Rejection Ratio (PSRR), high open loop gain and large dynamic range. The CTIA gain is given by

G = Q/C0.

3.4 ROIC Structure for CNT IR Sensor

3.4.1 Zero bias Readout Circuits

As discussed in previous section, there are two requirements on readout circuits. One is the highly

resolutions to picoampere scale and another is no bias or bias modulated on the detector. In order to

reduce noise and read such low current from MWCNT detector, a CTIA, shown in Figure 3.3 was

designed in this IR readout system. Since the offset of input generates a serious bias on CNT IR

sensor due to input asymmetry, in the proposed design, a dummy CNT IR sensor will be connected

on positive input of OPA, as shown in Figure 3.4, such that the input impedance match will be in
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Figure 3.4 Zero bias readout circuit.

same order.

3.4.2 High Gain Current to Current Converter

In order to get high speed CNT based IR sensor readout system, the current needs amplified before

converting to voltage.

In this part, a proposed current amplified readout method for carbon nanotube infrared sensor

was described herein, shown in Figure 3.5. There are four electrodes, in which left part is CNT

sensor, while right part is conventional Bipolar Junction Transistor (BJT) structure. In this con-

figuration, the CNT sensor is connected to the base of BJT, so that the photocurrent will flow to

the base node under condition of infrared irradiation. The base current could be amplified by BJT

working principle [116].

3.4.3 High Speed Readout

In high resolution ADC, delta-sigma (∆Σ, or sigma-delta, Σ∆) modulation is a method for encoding

high resolution signals into lower resolution using pulse-density modulation. A high performance,

24-bit Σ∆ analog-to-digital converter was used in experiments. It combined wide input bandwidth
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bottom-up device simulations due to the following reasons 
[8]: (l) atomistic descriptions of devices can be readily 
implemented, (2) open boundaries can be rigorously treated, 
and (3) multi-phenomena (e.g., inelastic scattering, AC 
characteristics, light emission, and etc.) can be modeled. 
In electrical current model of a CNT, an electron 
transmission model calculated from the self-consistence 
non-equilibrium Green's functions (NEGF) method, which 
gives the optimal estimation of the current-voltage 
characteristic of a specific device, is utilized as the state 
space model for current calculation . The quantum energy 
states and the electron wave function of a CNT can be 
modeled by the Hamiltonian matrix (H) which is derived 
from Schrodinger's equation. The numerical solution of the 
electron transport model for CNT conduction can be 
obtained by iteratively solving the NEGF formulas and 
Poisson's equation.l3 Therefore, the current of the CNT 
device (ICNT) is given by eq.l [9]. 

lent = (4e) k T{ln[1+eXP(I]Fs1kBT)n 
h B 1+exp(I]FDlkBT) 

eis the electron charge; 
his the Planck constant; 
T is the temperature in Kelvin, 
kBis the Boltzmann constant. 

(l) 

i1Fsdenotes the potential difference between the sourceand 
the barrier height of the metal semiconductor contact. 
i1Fsdenotes the potential difference between the drain and 
the barrier height of the metal semiconductor contact. 
In most of experiments, source is grounded, and barrier 
height can be calculated by NEGF result, so that Icnt is 
dominated by drain voltage, and it makes CNT IR sensor 
sensitive to bias voltage. 

As shown in Fig.3, experiments show that the 
photocurrent always locate in nano even to picoampere.The 
photocurrent is around O.8nA, while dark current is about 
O.lnA. In order to process these current in DSP, a lMil 
resistor needed to converter the current to m V scale, while 
will introduce O.lmV noise. Even in charge integrator 
structure[IOHII], a max frequency only reach to 100Hz 
based on IpF capacitor, which are not suitable for modern 
signal processing in gigahertz. 
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Fig.3 Real dark current and photocurrent in CNT 
infrared sensor 

B. High gain current to current converter 

In this part, a proposed current readout method for 
carbon nanotube infrared sensor was described herein, 
shown in FigA. There are four electrodes, in which left part 
is CNT sensor, also shown in Fig.5, while right part is 
traditional bipolar junction transistor (BJT). CNT sensor was 
connected to base of BJT, so that the photo current in CNT 
sensor will flow to the base node in condition of infrared 
irradiation. 
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Figure 3.5 Current to current converter for CNT IR sensor.

and high speed Σ−∆ conversion with a performance of 106 dB SNR at 625 kSPS, making it ideal

for high speed data acquisition. Wide dynamic range, combining with significantly reduced anti-

aliasing requirements, simplifies the design process. In addition, the device offers programmable

decimation rates and digital FIR filter. It is ideal for applications demanding high SNR without a

complex front end signal processing design.

3.5 Hardware Experimental Performance and Applications

3.5.1 Readout System Testing

In this section, the hardware setup and some experimental results are presented. For the sake of

reducing the noise after CTIA, a Low Pass Filter (LPF) was introduced to limit the bandwidth and

optimize the thermal noise contribution on CTIA. Meanwhile, it weakens all high frequency noise,

the power frequency noise included. Figure 3.6 is the experimental diagram of readout system.

Based on this readout system, a group of experiments were designed to verify the readout

performance. As shown in Figure 3.7, it measures the linearity and stability of ROIC, where x-

axis is corresponding to laser intensity. The digital output at T = 1h keeps close as value at T =
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        In high resolution ADC, Delta-sigma (∆Σ; or sigma-delta, Σ∆) modulation is a method for encoding high resolution 

signals into lower resolution signals using pulse-density modulation.  A high performance, 24-bit Σ-Δ analog-to-digital 

converter (ADC) was used in our experiments. It combines wide input bandwidth and high speed with the benefits of Σ-Δ 

conversion with a performance of 106 dB SNR at 625kSPS, making it ideal for high speed data acquisition. Wide dynamic 

range combined with significantly reduced anti aliasing requirements simplifies the design process. In addition, the device 

offers programmable decimation rates, and the digital FIR filter can be adjusted if the default characteristics are not 

appropriate to the application. It is ideal for applications demanding high SNR without a complex front end signal processing 

design. Fig.34.4 shows the ADC part in readout system, including ADC control part, ADC chip, input and out interface [9].  

 
Fig.34.4 ADC PCB board in readout system 

 

34.4 Readout system testing 

34.4.1 Hardware setup of testing system 

        In this section, the hardware setup and some experiment results of ROIC are presented. For the sake of reducing the noise 

after CTIA, a Low pass filter (LPF) was used to limit the bandwidth and optimize the thermal noise contribution on CTIA. 

Meanwhile, the LPF can weaken all high frequency noise, the power frequency noise included. The readout system also 

includes ADC circuits, which was used to convert analog current to digital values. Fig.34.5 is the experimental PCB of 

readout system. 
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Figure 3.6 Diagram of readout system.

34.4.2 Test results 

       Based on this readout system, a group of experiments were conducted to verify the performance of stability. In Fig. 34.6 

x-axis is corresponding to laser intensity. The digital output at T=1h keeps almost the same value at T=0 in different laser 

input. Meanwhile, the readout out also was compared with Curve Tracer (Agilent 4155C Semiconductor Analyzer) 

measurement in Fig.34.7. The results show that the readout system can reach pA resolution and has good stability 

performance [9]. 

 
 

Fig. 34.6 Readout test on CNT based IR detector 

 

 
 

Fig.34.7 Compare readout system with Curve Tracer  
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Figure 3.7 Readout linearity test on CNT based IR detector.

0 with linear response. Meanwhile, the readout output was also compared with Agilent 4155C

Semiconductor Analyzer (refer to Curve Tracer) measurement in Figure 3.8. The ROIC output

follows Curve Tracer very well. The results show that the readout system can reach pA resolution

with high stability performance.

3.5.2 Readout Applications

In the CNT based single pixel IR camera, it integrated the precisely weak signal readout system to

fulfil a camera. The hardware set up was shown in Figure 3.9, where IR irradiation was controlled

by Digital Micromirror Device (DMD). Based on the hardware setup, three experiments were

realized, shown in Figure 3.10. A rectangle bar was moved from top to bottom and the recovery

image could follow target image very well. In visually, there are two features in the restored

image, noisy and partial recovery image. The noise originates from sensor and sampling process.
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34.4.2 Test results 

       Based on this readout system, a group of experiments were conducted to verify the performance of stability. In Fig. 34.6 

x-axis is corresponding to laser intensity. The digital output at T=1h keeps almost the same value at T=0 in different laser 

input. Meanwhile, the readout out also was compared with Curve Tracer (Agilent 4155C Semiconductor Analyzer) 

measurement in Fig.34.7. The results show that the readout system can reach pA resolution and has good stability 

performance [9]. 
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Figure 3.8 Readout comparison between proposed system and semiconductor parameter analyzer
(Agilent 4155c).

Meanwhile, the results also show that the lower left corner is destructive (partial image) due to

such tiny sensing area. From these results, it is found that the readout system work perfectly in

CNT based IR single imaging system.

3.6 Chapter Summary

Nano-photodetectors have demonstrated promising performance to detect IR signals, especially

CNT photodetectors. However, a small absorption area and the difficulties to fabricate a large

scale photodetector array impede its application in imaging systems. In order to overcome these

problems, a compressive sensing based IR camera system was developed. Firstly, the ultra high

speed, high resolution readout system was presented in this study. It could test the current to sub nA

in CNT based IR detector with low noise so as to integrate it in CNT based single pixel IR imaging

system. The experimental results show that the number of measurements required to recover the

images can be much fewer than the pixel number of original images. This camera system was

capable of observing the dynamic movement of a laser spot in near infrared wavelength. In general,

the compressive sensing method might make the nanosensor based infrared camera achievable.
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Figure 3.9 Hardware setup of single pixel IR imaging system.
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Fig. 34.9 Recovery image based on single MWCNT detector 

 

34.6 Conclusion 

The design and experimental results of MWCNT based IR detector ROIC system are presented in this study. By this 

system, we can use it to test the low current to sub nano ampere in CNT based IR detector, and it also works in CNT based 

single pixel IR imaging system. Although in our readout system, it can work in hundred Hz, it is not enough for high 

resolution image recovery. Meanwhile, ultra fast readout method is also a challenge project in nano electronics.  
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Chapter 4

Light Field Imaging

4.1 Previous Work

The conventional photographs only record the sum total of light rays for each point on image plane

so that they tell little about the amount of light traveling along individual rays. The focus and lens

aberration problems have challenged photographers since the very beginning, therefore, light field

photography was proposed to solve these problems. In geometric optics, the fundamental carrier

of light is a ray and it is focused on incoherent light with objects far larger than the wavelength.

The radiance is represented to measure the amount of light which is interpreted as a field since

1846 [117]. In 1936, Gershun introduced this light field terminology, the first systematical phys-

ical theory of light [118], which defined the light field as a function of position and direction in

regions of space free of occluders. The plenoptic function firstly modeled the light field using

seven parameters, shown in Eq. (4.1) in general [59].

P = P(x,y,λ , t,Vx,Vy,Vz) (4.1)

P = P(x,y,u,v) (4.2)

The rays in space can be parameterized by three coordinates x, y, and z and two angles θ and

φ for any stationary, quasi monochromatic light field,as shown in Figure 4.2. The 5D radiance

function describes the appearance of scene through all light rays (2D) emitted from 3D point. It is
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Figure 4.1 Concave object radiance (left) and convex object radiance (right).
6/20/2015 https://upload.wikimedia.org/wikipedia/commons/d/d3/Plenoptic_function_b.svg

https://upload.wikimedia.org/wikipedia/commons/d/d3/Plenoptic_function_b.svg 1/1

Figure 4.2 Parameterizing light ray in 3D space by position (x,y,z) and direction (θ ,φ ).

a five-dimensional function, that is a function over a five-dimensional manifold equivalent to the

product of 3D euclidean space and the 2-sphere. The 5D plenoptic function is not practical since it

is impossible to capture views by point to point. However, it is can be reduced to four dimensions

by two assumptions. Firstly, the region of interest is restricted to locations outside of convex hull of

the object because the light leaving from one point may end by another point on a concave object,

as shown in Figure 4.1. Secondly, it is reduced as four parameters with the assumption of rays

passing through free space regions and free of occluders, such as opaque objects, and scattering

media, such as fog. Under these assumption, the light traveling is constant along its pathway,

eliminating one dimension of variation [60].

Based on 4D light field model, there are many light field photography implementations pro-

posed in literatures. Recently, lenslet-based light field system has been integrated into digital cam-

eras [119]. Light modulating in mask-based systems have evolved to be more light efficient than
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pinhole arrays [120]. Nevertheless, both approaches sacrifice image resolution because the number

of sensor pixels is the upper limit of the number of light rays captured. To avoid this limitation,

alternative design has been proposed which favors spatial resolution over angular resolution [121].

In order to fully preserve image resolution, current options include camera arrays or taking mul-

tiple photographs by a single camera [122]. In overall, the time sequential approaches are limited

to static scenes since high speed camera arrays are costly and bulky. The idea of compressive light

field acquisition itself is not new either. In [123], it simulates a compressive camera array for light

field sensing. Recently, researchers have started to explore compressive light field acquisition us-

ing a single camera, such as optical coding strategies including coded apertures and coded lenslets.

It is a combination of coded mask, aperture and random mirror reflections. Unfortunately, they

require multiple images to be recorded such that they can’t capture dynamic scenes, though they

succeed in reducing the number of shots compared to noncompressive counterparts.

Light field camera is not only active in research lab, it is also very popular in business prospects.

Lytro was founded by Stanford university computer graphics laboratory alumnus Ren Ng to com-

mercialize the light field camera. They developed a consumer light field digital camera capable of

capturing images using a plenoptic technique. Raytrix is another light field camera company which

has sold several models of plenoptic camera for industrial and scientific applications since 2010,

with resolutions starting from one megapixel. Pelican Imaging has thin multi-camera array systems

intending for consumer electronics, which use from 4 to 16 closely spaced micro-cameras instead

of a micro-lens array image sensor. Meanwhile, Nokia has invested in Pelican Imaging to produce

a plenoptic camera system with 16-lens array camera to be implemented in Nokia smartphones.

The Adobe light field camera is a prototype 100-megapixel which takes a three-dimensional photo

of the scene in focus using 19 uniquely configured lenses. Each lens will take a 5.2-megapixel

photo of the entire scene. The CAFADIS camera is another plenoptic camera developed by the
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University of La Laguna (Spain). CAFADIS stands (in Spanish) for phase-distance camera. Since

it works for distance and optical wavefront estimation, the product produces several images re-

focused at different distances, depth mapping, all-in-focus images and stereo pairs from a single

shot. A similar optical design can be used in adaptive optics in astrophysics so as to correct the

aberrations caused by atmospheric turbulence in telescope images. In order to accelerate these

tasks, different algorithms running on GPU and FPGA, operate on the raw images captured by the

camera. Mitsubishi Electric Research Laboratories’s (MERL) light field camera is based on the

principle of optical heterodyning and uses a printed film (mask) placed close to the sensor. Any

hand-held camera can be converted into a light field camera using this technology by simply in-

serting a low-cost film on top of the sensor. This mask-based design avoids the problem of loss of

resolution, since a high-resolution photo can be generated for the focused parts of the scene.

However, the core of all light field cameras in lab or commercialized system are large visible

sensor array. These approaches are not applicable to IR spectrum in overall. A novel compressive

sampling approach will be proposed in this research as it is necessary for IR camera to capture

more information than simple 2D camera. In this thesis, the light field imaging is a narrowly name

of light field omitted time and wavelength (or stationary, quasi monochromatic light), as shown in

Eq. (4.2), also referred to plenoptic camera [124] or synthetic aperture camera [125].

4.2 4D Light Field Model

4.2.1 Light Field Model in Lens

The 4D light field, defined as radiance along rays in empty space, was firstly proposed in form

of the light field [126] and the lumigraph [127]. In this model, the observer and the scene can

be separated by a surface so that the radiance is represented by a function of light rays passing
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through it. The model is named two plane parameterization, as shown in Figure 4.3, where the

plane (s, t) and (u,v) set the relative coordinates for light ray passing through. The (u,v)-plane is

the viewpoint plane in which all camera focal points are placed on regular grid points while the

(s, t)-plane is the focal plane. In order to create such a 4D plenoptic model for real scenes, a large

number of views are taken. By this way, they are discrete sampling of the plenoptic function. This

could be enhanced as continuous light field by assumption of the real objects to be lambertian. Any

point of the object has the isotropic radiance in all possible directions so that the light rays can be

fully represented by interpolating algorithms.

As shown in Figure 4.3, the radiance can be represented by f (s, t,u,v) for any rays passing

between (s, t) and (u,v). The pair of points between st plane and uv plane correspond only to

one ray. The disadvantage of two plane parameterization is that the method can not represent rays

parallel to the two parallel planes. However, as shown in Figure 4.4 in the real camera sampling

system, the lens plane and sensor film are assigned as uv and st plane distinctly, because every

ray that contributes to a photography must pass through the lens and terminates somewhere on the

film. It also explains the camera limits light rays within Angle Of View (AOV). In Figure 4.5,

f (s0,u0), f (s0,u1), f (s0,u2) show the light rays passing through u0, u1 and u2. The u ((u,v)) is the

directional axis because the u intercepting on the lens determines the direction at which the rays

will be collected by sensors. The s ((s, t)) refers to the spatial axis. In general, it can be mapped to

a point on the ray-space diagram on Figure 4.5 for any rays in diagram Figure 4.4.

In conventional camera, the focus will be adjusted by changing the distance between the film

and the lens. The ray space will also be changed as the camera focus on the different depth. As

shown in Figure 4.6 (top), when moving the sensor array (film) plane closer to the lens, the rays

from selected point will correspond to a line with positive slope, shown in Figure 4.7 (left) and all

rays from same point must be on this positive slope line in ray-space diagram. On the contrary, it
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Figure 4.3 Two plane parameterization for light field.
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Figure 4.4 Two plane parameterization in SLR camera.
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Figure 4.5 Two plane parameterization in Cartesian coordinates.

68



 

 

Lens Diagram (Lens groups 
in camera) 

Sensors Array Plane 

u0

u2

u1

s2 

Lens Diagram (Lens groups 
in camera) 

Sensors Array Plane 

u0

u2

u1

s1 

Figure 4.6 Light ray diagram of camera (unfocused).

will be a negative slope line when moving the film further from the lens, as shown in Figure 4.7

(right). The slope on the ray-space depends on the separation between the real image plane and

film plane [60].

4.2.2 Light Field Model in Mirror

In order to get fully light field information of scene, there is at least 4D space to support all values

as f (s, t,u,v). In the DMD based light field sampling, it also requires two plane parameters to
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Figure 4.7 Rays in Cartesian coordinates (unfocused).

characterize light rays. In the mirror reflection, it is a reflected duplication of an object that appears

identical but mirrored. In geometry, the mirror image of an object or two-dimensional figure is a

virtual image formed by specular reflection. It is the same size as the original object except the

object or figure has reflection symmetry (also known as a P-symmetry). Reflection in a mirror also

results in a change of chirality, more specifically from a right-handed to a left-handed coordinate

system (or vice versa). As a consequence, if one looks in a mirror and lets two axes (up-down and

front-back) coincide with those in the mirror, this will give a reversal of the third axis (left-right).

The mirror image appears to be three-dimensional if the observer moves or uses binocular vision.

Although the mirror changes the light distribution in the halfspace in front and behind it, the mirror

image does not violate the conservation of energy as the mirror simply redirects the light. In terms

of the light distribution, the DMD only changes the direction of lights stopped on its surface so

that the mirror plane could be one internal plane of light field modeling, as shown in Figure 4.8.

The second plane would be selected in front of DMD and it is the mask (aperture) plane. Through

the mask and DMD plane, all light rays passing within these two objects can be modeled.
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Figure 4.8 Two plane parameterization in DMD based imaging system.

4.3 Mask based Single Pixel Light Field Sensing

4.3.1 Optics and System Design

As shown in Figure 4.9, the basic single pixel camera is composed of main lens, digital micro mir-

ror device (DMD, working as spatial light modulator), second lens for converging light to single

sensor, and IR sensor. After main lens, the scene or desired object is projected onto DMD array to

form a virtual image behind, shown in Figure 4.9 inset. The DMD can be controlled individually

and DMD patterns are decided by measurement matrix. Through multiple patterns, it will gener-

ate a serial of measurements, in which each mirror corresponds to part of the desired object and

contributes to one pixel in recovery image. The key optical component in this light field imaging

system is aperture on mask, which controls the light ray directions. As shown in Figure 4.10, mul-

tiple angular images are captured in single pixel camera in order to get all directional rays. There

are two aperture holes of A1 and A2, which generate two distinct recovery image di1 and di2 in

image space. They represent two distinct angular information (group of light rays) from scene.

The whole light rays can be recorded through multiple aperture positions.
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Figure 4. Distinct directional image from two aperture.

Figure 4.9 Schematic diagram of single pixel light field sensing.
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Figure 4. Distinct directional image from two aperture.Figure 4.10 Distinct angular image from two aperture.
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Figure 7. Synthetic aperture imaging. From left to right, the focus plane is becoming far away to main lens

works in near focus on the bottom aircraft, and the far aircraft will become clear when the focus plane moves
away. Meanwhile, both objects will have kind of a blur when focusing between them.

4. CONCLUSIONS

In this paper, we show a whole single pixel camera system which can compute light field of IR image. By taking
multiple angular resolution images through coded aperture, we can use single CNT IR sensor to reconstruct a
large object. The room temperature working performance of CNT will shrink the IR camera size and remove
cryogenic system. Synthetic aperture photography will make the IR focus problem go away and also get 3D
imaging using same method. The experimental results show that the more angular images will achieve the
larger object recovery using nano sensor and better refocus in synthetic aperture photography for single pixel IR
cameras.
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Figure 4.11 Synthetic aperture imaging. The focus plane is becoming far away to main lens from
left to right.

4.3.2 Experimental Performance

The most popular application of light field camera is to study the synthetic aperture photography,

on which the focus is adjustable using a single shot. In the experimental setup, there are two

aircrafts located in two distinct planes along the main lens, one close to the lens and another is

further away from lens. During sampling, 25 angular (directional) images are reconstructed. For

each angular, it will sense distinct rays from same object. The plane and parallax method was used

to show refocus of single pixel IR imaging, shown in Figure 4.11. The left shows that camera

works in near focus on the bottom aircraft while the far aircraft will become clear when the focus

plane moves away. Meanwhile, both objects will have kind of blur when focusing between them.

4.4 Double Compressive Light Field Sensing

The light field sensing are characterized by spacial resolution and angular resolution though it

is trade-off in conventional design. This problem could be solved by multiple cameras design.

However, the more cameras introduce more difficult optics design and larger space. In compressive

light field sampling, it is obvious that spatial sampling is sparsity as single pixel camera [128]. The

angular information could also be sparsity since the difference is relatively small between adjacent

angular images. In this research, double compressive light field sensing includes the basic spacial
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and angular sensing. The spatial compressive sensing is discussed in Chapter 3. The second

compressive regime is applied for angular image difference. By taking the first angular image as

full recovery, the system only samples the difference between second and first angular image. In

the following recovery algorithm, it also only reconstructs the difference and the whole second

reconstructed image is combined by this difference with first angular image.

4.4.1 Modeling of Double Compressive Light Field Sensing

The simplified light field is modeled as 4D information, including 2D spacial images and 2D

angular values. The light field sampling is described as 2D images along 2D angular values so

that the angular images could be modeled as series, shown in Figure 4.12. Each individual angular

image is a single sampling and recovered by single pixel imager algorithm. Along the angular axis,

there is also some redundant in some way. The difference between two adjacent angular images

are quite sparse in spatial domain, as shown in Figure 4.13, in which the intensity is in grayscale

and the nonzero values (significant changes) are shown in Figure 4.13 (b). Based on the difference

signal, another compressive sensing, referred to double compressive sensing, can be applied on

next angular image reconstruction.

4.4.2 Recovery Algorithm

As discussed in Chapter 3, `1 minimization is most popular in compressive sensing due to it is

`0 equivalence under some conditions. However, Total Variation (TV) regularization makes the

recovered image quality sharper and preserves the edges or boundaries more accurately. It not only

reconstructs sparse signals or images but also succeeds when the gradient of the underlying signal

or image is sparse. There is only a limited number of TV solvers available, including SOCP [129],
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Figure 4.12 5×5 angular images of Stanford jelly beans.

`1-Magic [57], TwIST [130] and RecPF [131]. In this research, TVAL3 [128] is used for double

compressive recovery. The TV regularization solves the problem of Eq. (4.3), where x̃ is estimated

value, x ∈Rs×t , Dx is the discrete gradient of x, Φ is the measurement matrix (random Bernoulli).

y is the observation of x via some linear measurements. It can be either 1-norm (corresponding to

the anisotropic TV) or 2-norm (corresponding to the isotropic TV).

x̃ = argmin ‖ Dx‖

s.t. Φx = y
(4.3)
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Figure 4.13 Adjacent angular image difference. a) intensity difference, b) significant changes
(nonzero changes) of angular image.

In TVAL3 algorithm, instead of employing the augmented Lagrangian method to minimize the

TV model Eq. (4.3) directly, an equivalent variant of Eq. (4.4) is considered and its unconstrained

corresponding augmented Lagrangian function is Eq. (4.5). Suppose that x(l) and ω
(l)
i respectively

denote the approximate minimizers of Eq. (4.5) at the (l) iteration which refers to the inner it-

eration while solving the subproblem. The alternating direction method solves two subproblem

respectively.
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minωi, x ∑
i
‖ ωi ‖,

s.t. Φx = y and Dix = ωi for all i.

(4.4)

minωi, x ϕA(ωi,x) = ∑
i
(‖ ωi‖− vT

i (Dix−ωi)+
βi

2
‖ Dix−ωi‖2

2)

−λ
T (Φx− y)+

µ

2
‖Φx− y‖2

2

(4.5)

4.4.3 Experiments with Double Compressive Sensing

In this section, the double compressive sensing numerical results are analyzed. Firstly, the basic

compressive sensing is applied on angular image recovery. The sampling ratio must be greater than

30% so as to get high image quality, as shown in Figure 4.14 (top), while the bottom line shows

recovery images using difference respectively. Though it is hardly to distinguish the difference in

visually, it is much clear in Figure 4.15 where two methods are compared using same measure-

ments. The double compressive sensing can reduce sampling ratio down to 9% with high image

quality while basic compressive sensing requires as high as 25%.

 

500 1000 1500 2000 2500 3000 

Figure 4.14 Angular image recovery comparison between basic compressive sensing and double
compressive sensing.

The second simulation is based on Stanford Jelly Beans (htt p://lightfield.stanford.edu/lfs.html).

There are 100 (10×10) images selected and the first column is chosen as reference image in each
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Figure 4.15 Angular image recovery residual error by RMSE and PSNR.

row. As shown in Figure 4.16, there are 10 rows, 5 columns (50 angular images) recovered. The

estimation of next angular image comes from current image and the reconstructed difference. Since

the residual error is such small and image spatial resolution is only 96×96, it is hard to discover

difference in visual. Table 4.1 lists the RMSE and PSNR for each image compared to ground truth,

where angular ID represents the image row/column (0102: 01 row 02 column). In overall, the

residual error is still within 30 dB in five images according to PSNR.
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Table 4.1 Characterizing angular images accumulation residual error by PSNR and RMSE.

Angular ID 0102 0103 0104 0105
PSNR (dB) 40.2367 34.7074 32.5634 31.2847

RMSE 1.7042 2.8735 3.2524 3.5392
Angular ID 0202 0203 0204 0205
PSNR (dB) 42.4017 35.2519 32.9163 31.5164

RMSE 1.3074 2.7402 3.1839 3.5185
Angular ID 0302 0303 0304 0305
PSNR (dB) 40.535 34.3587 32.738 31.1188

RMSE 1.5826 2.9546 3.207 3.5282
Angular ID 0402 0403 0404 0405
PSNR (dB) 40.5569 34.6422 32.665 31.3414

RMSE 1.696 2.9551 3.2956 3.5862
Angular ID 0502 0503 0504 0505
PSNR (dB) 41.9746 34.988 33.1187 31.3126

RMSE 1.3578 2.8385 3.2109 3.6197
Angular ID 0602 0603 0604 0605
PSNR (dB) 41.2399 34.1652 32.28 31.073

RMSE 1.5256 3.1313 3.5052 3.7688
Angular ID 0702 0703 0704 0705
PSNR (dB) 41.5864 34.4899 32.3982 30.3772

RMSE 1.4209 2.9379 3.3659 3.7864
Angular ID 0802 0803 0804 0805
PSNR (dB) 40.4599 34.5469 32.1183 30.7085

RMSE 1.5341 2.8866 3.3293 3.6208
Angular ID 0902 0903 0904 0905
PSNR (dB) 41.9962 34.4988 32.5221 30.8233

RMSE 1.3524 2.9075 3.3043 3.6575
Angular ID 1002 1003 1004 1005
PSNR (dB) 39.9315 34.1226 32.3102 30.9432

RMSE 1.7786 3.0697 3.4578 3.7069

79



4.5 Chapter summary

In this chapter, the light field sensing is discussed and compared with conventional imaging. A

single pixel infrared camera system based light field sensing is proposed to capture infrared light

rays. By taking multiple angular images through coded aperture, we can use single CNT IR sensor

to reconstruct full 4D light field from large object. The synthetic aperture photography will remove

the IR focus problem away. This brings broadly application in virtual reality field. The double

compressive sensing reduces sampling rate using the redundant of angular image difference. The

experimental results show that the more angular images will achieve higher angular resolution,

better refocus in synthetic aperture photography for single pixel IR cameras.

.
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Figure 4.16 Angular image recovery from double compressive sensing, the first column is reference
image and the other four are restored depends on its left.
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Chapter 5

3-D Imaging

5.1 Previous Work

Three dimensional infrared cameras are potentially used in autonomous vehicles, robot manufac-

turers, security firms, industrial and video game manufacturers. All of these industries use either

some sort of infrared imaging system or depth calculation. Especially with the development of

autonomous vehicle and advanced robot industry, the three dimensional infrared camera becomes

more and more important. Autonomous vehicles, including self driving cars, use several different

methods of understanding their surroundings [132]. In general, there are two current techniques

to achieve a three-dimensional image of an environment in market. The first is range distance

cameras which use brute force computation to calculate the image based on single point scanning

system [133]. It will produce a 2D image showing the distance to points in a scene from a specific

point. Therefore, the problem with this system is that it is very difficult to obtain video rate imag-

ing in a dynamic environment due to the computation intensity required to collect all the data for

a single image. Besides, they are unable to distinguish what something they detect is. Anything of

a close size (a deer or a parked car) looks similar in those imaging systems. Stereo photography

is another 3D camera, which uses stereoscopic vision system, attempting to overlay the images

collected by the two cameras to create a three-dimensional image. It makes the camera simulate

human binocular vision [134] to capture three-dimensional scene. However, this technique is less

than ideal due to problems with camera placement or inadvertent movement, calibration and other
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difficulties [135]. In addition, these systems are large and expensive. Due to the manufacturing

limitation of large infrared sensor array, there is very little 3D IR camera based on binocular vision.

In the 3D camera market, it did have some 3D visible light cameras, which come into three

different configurations: time of flight cameras, projected texture stereo vision cameras and phase

shift cameras. Time of Flight (ToF) is one of effective ways to map the distance for 3D imaging.

In [136] [137], the system combined ToF and standard RGB camera to do real-time 3D scene aug-

mentation with virtual objects so that both 3D geometry and color information are matched. From

on shelf market, time of flight cameras are the most common, which are typified by the SR4000

from Mesa Imaging. It’s largely used in industrial inspection processes. However, it should be

noted that the near-IR (or visible) light ToF camera is with the price approximately $10,000. Pro-

jected texture stereo vision cameras are examples of 3D visible cameras and represented by the

Ensenso N10. This camera has higher resolution than ToF configuration, and is capable of provid-

ing video images. Phase shift camera requires two CMOS sensor arrays, which increase calibration

difficulty. They are represented by the Fujifilm Finepix Real3D camera, a commercially available

system capable of taking 10 megapixel image. In overall, all three cameras’ configurations are

designed to work with visible light rather than infrared and are therefore incapable of operating in

the mid-IR spectrum or longer wavelength.

There are at least three following factors considered when selecting a 3D camera, including

operating in highly dynamic environments, camera resolution and price. It is undoubtedly that

the infrared is better than visible camera for highly dynamic environments, because the infrared

sensing can filter visible noise in daytime and works at nights. However, the infrared 3D cam-

era needs high performance IR sensor, which introduces additional difficulties stemming from a

cooling requirement. It requires cryogenic cooling to reduce the background noise especially for

middle wave spectrum. Therefore, the 3D IR camera is not portable.
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In this thesis, the low dimensional material based IR sensor and imaging method were proposed

to solve these problems. In the proposal, a combination of distance measurement and stereo camera

will allow a system to measure 3D coordinates and photorealistic texture at a video frame rate in

the IR spectrum. The compressive sensing combines the advantages of the single-point technique

with the advantages of the stereoscopic, e.g. it has a single-point detector so it does not require

the difficult calibration as the stereoscopic technique. Besides, it is much less intensive computing

than current single-point method as it uses a compressive sensing. As such, it is possible to capture

video-rate 3D images that are unobtainable with the current generation of single-point systems. A

critical requirement in compressive sensing imaging is that the detector has to switch multiple times

instead of a single shot. Especially for a high resolution image, a detector is required to switch tens

of thousands times to obtain an image. This requirement has made it extremely difficult to apply

compressive sensing onto IR imaging. However, the nanomaterial based infrared photodetector

provides the solution to these IR-specific problems.

5.2 Time of Flight 3D Imaging

5.2.1 Working Principle

The ToF method comes from depth measurement techniques. It refers to the passive process of

measuring the depth of a scene by quantifying the changes that an emitted light signal encounters

when it bounces back from objects in a scene. As shown in Figure 5.1, a 3D time-of-flight camera

works by illuminating the scene with a modulated infrared light source and observes the distance

to a 3D object by measuring the absolute time of which a light pulse needs to travel from a source

into the 3D scene and back after reflection. Since the speed of light is constant and known, (c =

3 ∗ 108m/s), this is also called phase shift method which measures the phase shift between the
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Figure 5.1 3D time-of-flight camera operation principle.

illumination and the reflection. In order to improve measurement accuracy, the illumination is

typically from a solid state laser or a LED operating in the near-infrared range ( 850 nm) invisible to

the human eyes and works in short bandwidth [138]. The receiver sensor is designed to respond to

the same spectrum as irradiation which converts the photonic energy to electrical current. However,

the ambient light also contributes to object reflection so that the depth accuracy will go worse

(lower signal to noise ratio) with higher ambient component.

5.2.2 Time of Flight Modeling and Application

The phase shift determines the distance from desired object. In order to detect phase shift between

the illumination source and the reflection, the light source is pulsed or modulated by a Continuous-

Wave (CW) [138]. The modulation would be a sinusoid or square wave. The latter is more common

because it can be easily realized using digital circuits. There are two ways to record time. The first

is to integrate photoelectrons from the reflected light and another is to start a fast counter at the first

detection of the reflection which requires a ultra fast photodetector. As shown in Figure 5.2, the

phase difference is calculated by Eq. (5.1) from the relation between two different electric charge

(left) or four different electric charge (right). The phase control signals have 90 degree delay from

each other. Therefore, the distance can be calculated by Eq. (5.2).
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DDepth =
c
2

∆ϕ

2π f
(5.1)

d =
1
2

c∆t(
Q2

Q1 +Q2
) (5.2)

On contrary, the continuous wave modulation method retrieves phase shift by demodulation of

received signal, which crosses correlation of received signal with emitted signal. For an emitted si-

nusoidal signal g(t) with modulation frequency ω , the received signal could be s(t) after reflection

from 3D surface, shown in Eq. (5.5) and Eq. (5.6), (b: constant bias, a: amplitude, φ : phase shift).

The cross correlation of g(t)*s(t) is c(τ) in Eq. (5.7). By sampling c(τ) at four sequential instants

with 90 degree phase offset to get Qi = c((i−1) ·π/2), i= 1, ...,4, the four resulting electric charge

can be used to estimate the phase difference ∆ϕ as Eq. (5.3), where the distance in Eq. (5.4), c is

the speed of light in constant. It also directly obtains the parameters a and b in Eq. (5.8).

∆ϕ = arctan(
Q3−Q4

Q1−Q2
) (5.3)

d =
c

2 f
∆ϕ

2π
(5.4)

g(t) = cos(ωt) (5.5)

s(t) = b+acos(ωt +φ) (5.6)

c(τ) = s∗g =
∫ +∞

−∞
s(t) ·g(t + τ)dt =

a
2

cos(ωτ +φ)+b (5.7)

a =

√
(Q4−Q2)2 +(Q3−Q1)2

2

b =
Q1 +Q2 +Q3 +Q4

4

(5.8)
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Figure 5.2 Two time-of-flight methods: pulsed (left) and continuous wave (right).

In CW 3D depth measurement, the reflected amplitude (a) is a function of the optical power.

The offset (b) is a function of the ambient light and residual system offset. The high amplitude,

high modulation frequency and high modulation contrast will increase accuracy while high offset

can lead to saturation and reduce accuracy. At high frequency, the modulation contrast will attenu-

ate due to the physical property of the silicon, which puts a practical upper limit on the modulation

speed. The advantages of pulsed modulation ToF method is direct measurement, where the irra-

diation light pulse energy is tens order higher than background illumination to reduce background

noise. Most importantly, the direction of illumination and observation are collinear.

The most obvious drawback is long time measurement due to scanning point by point. Mean-

while, the light pulse inaccuracy comes from light scattering on distinct surface. From a hardware

perspective, it is difficult to generate short light pulses with fast rise/fall time and low repetition

rate. The continuous wave modulation is applicable to variety of light sources due to no short

and strong pulse required. Besides, the long integration time introduces motion blur and limits the

frame rates. The measurement accuracy is dependent on the power of the emitted IR source and

the material of target surface.
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5.3 Stereo Vision 3D Imaging

5.3.1 Working Principle

The stereo vision imaging comes from human binocular vision which requires two or more lenses

with separate sensor. The binocular vision has distinct advantages compared to single eye. It gives

precise depth perception by two eyes and allows a creature to see more of, or all of, an object

behind an obstacle [139]. With two eyes, there would be overlapping of vision from same scene,

which introduces a slightly different viewpoint between it. As a result, binocular vision provides

depth information by calculation. In human eye imaging, the differences is provided as binocular

disparity to brain so as to calculate the depth of visual scene, including the nature of the stimulus

and brain process.

In binocular vision, the retinal disparity, or the separation between objects as seen by left and

right eye, are key values to evaluate depth. As shown in Figure 5.3, the distance between two eyes

is almost always 6.5 cm for adult. The object image in left eye and right eye is slightly different.

This retinal disparity will provide the relative depth of object due to no referral distance. It might

be argued that people could estimate the distance by eyes. This is because there is a calibration in

brain when seeing the object. Since the 3D image is highly dependent on the image difference, it

is very easy to understand that the closer objects generate the smaller retinal disparity [140].

5.3.2 Stereo Vision Modeling and Application

Stereo vision generally uses two cameras separated by a distance, in a physical arrangement similar

to the human eyes. As shown in Figure 5.4, the left shows the simple pin hole camera model and

this is also the basis of laser triangulation and radar distance measurement. The α and β are

computed by two distinct images. The depth z can be calculated, as Eq. (5.9).
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Figure 5.3 Retinal disparity from eyes.
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Figure 5.4 Stereopsis depth through disparity measurement (left) and simplified stereo vision sys-
tem (right).
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z =
x

1
tanα

+ 1
tanβ

(5.9)

Figure 5.4 right shows the diagram of a simplified stereo vision setup. The both cameras are

mounted exactly parallel to each other, and with the exact same focal length, where

x: The baseline, or the distance between two cameras.

f: The focal length of camera.

P: The real world point defined by the coordinates X, Y and Z.

uL: The projection of P in image plane by left camera.

uR: The projection of P in image plane by right camera.

The model locates in 2D cartesian coordinates (xA, zA) where the distance between two cameras

are x, the point P(X, Y, Z) are at uL and uR in image plane respectively. By acquiring two distinct

images, the X-coordinates of the point uL and uR can be given in Eq. (5.10). The disparity refers to

the distance between uL and uR. It is obviously to calculate depth by Eq. (5.11), though an actual

stereo vision set-up is more complex. The same fundamental principles still apply anyhow.

uL = f ∗X/Z

uR = f ∗ (X−b)/Z
(5.10)

DDepth = f ∗ b
uL−uR

= f ∗b/z (5.11)
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The major challenge of stereo vision is the correspondence calibration which involves com-

plex, computationally intensive algorithms for feature extraction and matching. Compared with

ToF method, the stereo vision implementation cost is very low, as most common off-the-shelf

cameras can be used. This technique is intuitive presentation to humans so that both human and

machine are looking at the same images. In stereo vision, the error of depth resolution is a quadratic

function of the distance. However, the stereo vision infrared 3D camera is very uncommon due to

price, resolution, temperature limitation. In this thesis, a compressive 3D imaging sampling was

proposed for infrared stereo camera design.

5.4 Compressive 3D Imaging

5.4.1 Sparsity in 3-D Image

The single pixel camera system has been introduced based on compressive sensing to overcome the

current limitation and challenge in manufacturing large scale photosensor arrays [54]. It is more

attractive by using a low dimensional materials based infrared sensors. Compressive 3D imaging

will both have the advantage of ToF sensor and stereo vision method.

The most important issue is to find redundant and duplicate information or sparsity in 3D

image so as for compressive sensing. Generally, it is proved that most natural digital images are

sparse [55]. For example, the background of a image may have many pixels with the same color

and texture information. Much of this redundant information ends up being discarded during the

compression process, making these high resolution cameras very inefficient. In case of a nons-

parse signal, a sparsity process is required to transform the non-sparse signal into a spare signal

by using some special basis, such as wavelet, curvelet and Fourier [141], as shown in Eq. (5.12),

where s is the sparse representation of the non-sparse signal in basis, y is the observation.
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Figure 5.5 Sparsity in DMD based 3D sampling.

x = Ψ× s

y = φ ×Ψ× s
(5.12)

In digital micromirror device based single pixel camera sampling system, there is another re-

dundant information during sampling except for the image itself. In Chapter 3, it already discussed

how DMD worked. As shown in Figure 5.5, when the object 3D scene (x) locates in front of DMD,

there will be two distinct reflected images from DMD “ON” state and “OFF” state, x1 and x2. It

can be seen as the two images of stereo vision. During each sampling process, when the DMD

pattern is D, the C1 and C2 can be derived as Eq. (5.13). C2 is dependent on C1 for a desired scene

so that the sampling would be redundant. By introducing anther IR sensor, it will generate second

image for stereo vision system.

C1 = DX1

C2 = (I−D)X2

(5.13)
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5.4.2 Compressive 3D Sampling

The prototype 3D camera is silicon infrared sensor based. In a 2D single pixel camera, it will

consist of a group of lenses, DMD and photodetector, along with some associated optics and hard-

ware. There are two approaches for developing a 3D camera using DMD, as shown in Figure 5.6

and Figure 5.7. In the first design, the camera will detect IR emission from two distinct angular

mirrors via the DMD status “ON” and “OFF”. When the DMD is “ON”, the reflected light will

be focused on sensor “I” from the upper lens. When the DMD is “OFF”, the infrared light passes

through the lower lens into sensor “II”. The difference between DMD “ON” and “OFF” status is

an angular change of 12 degree. This way, light incident to sensors “I” and “II” will provide an-

gular information about the object being imaged. After the light is captured by the photodetector,

the information flows to a readout circuit and ADC, which will converter analog photocurrent into

digital values. The image recovery is based on sampled values and red-cyan color model is applied

to build uncalibrated stereo image.

There is another 3D camera design, shown in Figure 5.7, named as the mask configuration. In

this optics design, there is only one IR sensor, while an electrically controlled mask is placed before

the detector to get two angular images. The object will be projected on to the DMD plane through

the main lens. When the mask opens the upper window, only the light that is incident to upper

window will be let through to the detector. This allows the light to serve as one of the two images

required to obtain a 3D scene. Likewise, the same process takes place when the lower window

opens, allowing the system to have both images necessary to reconstruct a 3D image falling on a

single detector. The following readout circuits and 3D modeling will be same as Figure 5.6.
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Figure 1.Dual Detectors 3D imaging system 

 

 
Figure 2.Mask Based 3D imaging system 
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Figure 5.6 Dual detectors 3D imaging system.
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Figure 5.7 Mask based 3D imaging system.
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5.4.3 Experiments with Prototype Camera

The experimental results demonstrate the generation of stereoscopic images using the desired

imaging system. Figure 5.6 depicts the illustration of the 3D imaging system which captures

3D scenes. Two photodetectors are employed and their positions are aligned to the reflected signal

from DMD, so that the reconstructed image on each detector represents the directional informa-

tion. In the experiment, an infrared light source (830 nm) produces illumination on the target scene.

When the signals are reflected from the digital micromirror devices, a series of photocurrents are

generated on each detectors, which are acquired by a high-speed readout circuitry. Finally, images

are reconstructed based on the compressive sensing algorithm. As a result, two images can be ob-

tained from two detectors simultaneously and they are considered as sub-aperture images for 3D

computation. The resolution of the recovered images is 64×64 pixels, with 30% sampling ratio.

It is noted that these two sub-aperture images also represent two different perspective views of the

source signal. Therefore, a stereoscopic image can be computed and generated as shown in Fig-

ure 5.8. There are two noise sources, including sampling noise and recovery error of compressive

sensing.

5.5 Chapter summary

The development of these two systems solves the problems confronting the current generation of

3D IR sensors. These problems include the computation time and calibration issues associated with

current 3D image systems and the cryogenic cooling system required by most current IR sensors.

The compressive sensing algorithm developed will be capable of decreasing the computational

time required for imaging to a point where the image itself can be updated at a video frame rate of

30 Hz. The algorithm can be adjusted to ensure photorealistic quality of environments and enable
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 Figure 5.8 3D image reconstruction in red/cyan color.

precise depth calculations. The use of CNT photodetector and its associated signal enhancement

that are developed in chapter 2 will eliminate the need for the cryogenic cooling system. To

conclude, the proposed 3D imaging system is based on the integration of compressive sensing and

binocular vision. By introducing two photodetectors into the system, two sub-aperture images

can be obtained from two different perspective views. Current experimental results indicated that

infrared images can be recovered based on this principle and the images can be used to compute

stereoscopic photography. It opens the door to the 3D imaging through investigating the new

camera architecture using compressive sensing and computational light-field.
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Chapter 6

Super Resolution Imaging

6.1 Previous Work

The High Resolution (HR) imaging are required and necessary for many electronic imaging appli-

cations because HR image offers more details of object, especially for medical image diagnosis,

pattern recognition in computer vision. The most directly way to enhance resolution is to increase

the chip size (together with lens changes) or reduce the pixel size to increase the number of pixels

per unit area. Both techniques are dependent on microfabrication manufacturing. They are lim-

ited by device fabrication, price and sensor sensitivity. The disadvantage of former method is to

increase capacitance which makes the readout circuit in low charge transfer rate. It also requires

a high precision optics [142]. For the latter solution, reducing the pixel size will also decrease

the amount of light coming to each sensor so that the shot noise will degrade the image quality.

The minimum active pixel area is around 40 µm2 for a 0.35µm CMOS process [143]. However,

the resolution also can be enhanced using signal processing (referred to super resolution). The

recovered high resolution image is obtained from multiple low resolution images observed. As

shown in Figure 6.1, the red points represent pixel center of reference Low Resolution (LR) im-

age. The blue and green point show two LR images with subpixel shift for the same scene. The

three low resolution images are subsampled (aliased) as well as shifted with a subpixel. In order

to increase resolution, the LR images must have subpixel shifts or else there is no new information

for image reconstruction. This could be obtained from one camera with several captures or from

97



 

Reference LR Image 

First LR Image with subpixel shift 

Second LR Image with subpixel shift 

Figure 6.1 Multiple images super resolution.Super�Resolution
General Camera Characteristics:General Camera Characteristics:

Original Scene

Common IR Imaging
Blurred, Noisy, 
Aliased LR Image

Lens Sensor Array Environment

Optical Distortion Aliasing Motion Blur Noise

8/5/2015 2

Optical Distortion Aliasing Motion Blur Noise

Figure 6.2 Four causes of LR image acquisition.

multiple cameras located at different positions. In conventional camera (visible, infrared SLR cam-

era), there are at least four factors inducing LR image, including optical distortions (out of focus,

diffraction limit, etc.), motion blur due to limited shutter speed, noise that occurs within the sensor

or during sampling. As shown in Figure 6.2, the recorded image usually suffers from distortion,

blur, noise, and aliasing effects.

There are two main categories of Super Resolution (SR) method, including multiple images

(frames) and single image based. As shown in Figure 6.1, the multiframe SR reconstruction has

longest history and it involves three steps, image registration, interpolation and restoration. The
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most difficulty is to estimate the motion of LR input frames corresponding to reference frame,

referred to image registration. The typical method is to look up for interest points in the low-

resolution image set, then use robust methods to estimate the point correspondences and compute

homographies between images. In [144], the iterative method was used to estimate registration pa-

rameters, shifts and rotation. The block matching is also applied to register input images in [145].

The Bayesian method searched a continuous space of shift and rotation together with conventional

MAP reconstruction algorithm to estimate the high resolution. The dense and scene illumination

changes are also used to estimate motion of each pixel in [146], because the photometric will be

changed as well when scene illumination changes. The zoom and defocus approaches are dis-

cussed in [147] and [148] to build up the constraints for recovering super resolution image, where

the registration and estimation could be in a joint framework. In [149], the joint MAP estima-

tion algorithms capture the dependence between LR image registration and HR image estimation

although it may introduce overfitting problem. All above approaches are explicit motion estima-

tion which is critical to SR reconstruction. Besides, the fuzzy motion estimation based on block

matching is also used in denoising algorithm in [150].

Compared to multiple images based super-resolution, single image based is more applicable

since there is only one low-resolution image required, especially for portable applications. The

most straightforward way of single image super resolution is interpolation. The nearest neighbor

interpolation model the unknown point by its nearest neighbor point [151]. For each point on the

HR grid, the closest known LR pixel is selected as the value at the point in HR grid. The disadvan-

tage is jaggy effect on the HR images. Bicubic interpolation utilized a cubic kernel to interpolate

but created blur effect [152]. The edge directed interpolation method is presented in [153] for super

resolution. It estimates the local covariance coefficients from a single low resolution image, and

applies the same coefficients to reconstruct high-resolution. The contourlet transform and wavelet
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based linear interpolation is proposed in [154]. The directional filtering and data fusion were used

to edge guided nonlinear interpolation to preserve sharp edges and reduce ring artifacts in [155].

The another single image based super resolution is statistics methods. It utilizes statistical edge

dependency information as in low and high resolution images in [156]. The learning based method

operates by building a model from example, learns from and makes predictions on data. It is a

powerful tool for image super resolution, although it requires two large training data sets. In order

to get super resolution, a profile of image gradient was described as the shape and sharpness in

recovery algorithm [157]. In [158], it proposed a method via an example-based strategy which

divided the high-frequency patches of a low-resolution image into different classes. The signal

sparsity and learning methods were combined together in [159]. The low resolution images were

represented in sparse domain by computing corresponding coefficients, and the high resolution

images are generated via these coefficients.

In image reconstruction, it requires high computational effort, even for problem of moderate

size, especially for real time processing. The super resolution becomes more attractive in single

pixel imaging system due to time complexity of compressive sensing. Many efficient algorithms

have been developed for solving this minimization, including linearized Bregman method, runtime

10 s for 4096 data set [160], fixed point continuation method, 6.2 s for 4096 data set [161], Bregman

iterative method [162]. Although a fast coordinate descent method was proposed in [163], of 0.94

s for 4096 data set, it was specialized for sparsity data, however it might not applicable to image

recovery. Fourier domain computation was introduced to replace iterative linear solvers in MRI

reconstruction via `1 minimization, which cost 11.5 s to reconstruct of 256×256 image in Matlab

on 1.2 GHz laptop computer in [164]. The problem was that the runtime would increase to 346 s

for 1024×1024 uterus image.

Another approach is to get fast recovery via hardware improvement on FPGA [165]. It in-
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tegrates orthogonal matching pursuit (OMP) and approximate message passing (AMP) in FPGA

to get 0.63 ms for 32×32 image block recovery. Due to hardware limited, it is still hard to do

1024×1024 image size. The Total Variation (TV) norm image restoration makes the recovered

image quality sharper and more accurately by preserving the edges or boundaries. It works when

the gradient of the image is sparse. Most images can be well approximated by TV norm so that

there are huge TV minimization methods proposed. The weakness of these algorithms are still

either too slow or less robust compared with `1 minimization algorithm, especially for large image

size [128]. In order to produce image with super resolution, high image quality in single pixel

camera system, it will cost more than 10 s for 256×256 image in 1.4 GHz desktop using TVL3

algorithm. Moreover, the runtime will increase dramatically when image size goes high.

The combined super resolution and compressive sensing attracts more interesting in infrared

spectrum than visible image. The higher resolution IR images means better ability to spot small

targets at longer distances. It is hardly to directly reconstruct high resolution IR image from com-

pressive sensing, such that the signal processing approach would be best option for IR image super

resolution.

6.2 Observation Modeling

The digital imaging system suffers form hardware limitations, acquiring images with various kinds

of degradations, as shown in Figure 6.2, including the optical distortion, the motion blur due to

aperture time, the sensor noise. Finally the frames captured by the low resolution imaging system

are blurred, aliasing, and noisy version of the underlying true scene.
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Yk = DkBkMkX+nk,k = 1,2, ...,K

X = [x1,x2, ...,xN ]

(6.1)

As shown in Eq. (6.1), X = [x1,x2, ...,xN ] denotes the desired high resolution image, sampled

above Nyquist sampling frequency. Yk is the kth LR image with subpixel shift from reference LR

image (k = 1). All vectors are represented in lexicographical order, and if M = 1, it is single image

super resolution observation model. Mk describes the motion information for kth LR image. Bk is

the blur models effect and Dk is the down sampling operator. nk represents the noise model. The

linear equation is in Eq. (6.2). The kth LR image is denoted as Y (s, t),(s= 1,2, ...N1, t = 1,2, ...N2),

N1,N2 are horizontal and vertical direction resolution of LR images. The parameters L1,L2 are

down sampling factors for each direction respectively (N = L1N1L2N2). In mathematically, the

motion warp matrix size is L1N1L2N2×L1N1L2N2, blur matrix Bk is L1N1L2N2×L1N1L2N2, while

subsampling matrix Dk is (N1N2)
2×L1N1L2N2 size.


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

(6.2)

As shown in Eq. (6.1) and Eq. (6.2), the motion warp matrix represents the global or local

translation and rotation. This can be estimated by the difference between reference and particular

LR images. It is an interpolation method when the fractional unit of motion is not equal to the HR

sensor grid. The blur matrix are very hardware related, which depends on optical system, focus,

diffraction limit, aberration. It is usually a known value. The downsampling matrix Dk models the
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aliasing in LR image. These three matrix are correlated to super resolution process closely.

6.3 Multiple Images based Super Resolution

6.3.1 Nonuniform Interpolation Approach

Currently most of the non-uniform interpolation based super resolution image reconstruction meth-

ods proposed in the literature consist of the three stages: registration, interpolation and restoration.

As the crucial step to the success of the super resolution, the displacement between two pixels is

calculated as given information. The sampled angular images are irregularly data, lack of high

frequency components and in presence of noise from the optical system.

The simplest way to interpolate a HR image is nearest neighbor interpolation. All LR images

are registered in its position, shown in Figure 6.1. It interpolates pixel by its nearest neighbor

point. For each point on the HR grid, the closest known LR pixel is selected and used as the value

at the point in HR grid. This has lower complexity but with jaggy effect. The most applicable

non-iterative algorithm is gradient adaptive interpolation. The inserted pixel value is influenced by

the local gradient of pixels, where all LR image motions will be estimated by distinct algorithms.

According to the motions, the low resolution images are mapped to the uniform high resolution

grid. The three nearest pixels around the interpolated HR pixel will be selected by Euclidean

distance between the desired pixel and its neighboring pixels. The interpolated gray values can be

calculated by Eq. (6.3), where f (i, j) is the interpolated point, f (ik, jk) k= 1,2,3 are its three nearest

points. W (ik, jk) is the gradient weight function, and m is a positive value, µ is a positive value

close or smaller than 1. f ′x(ik, jk), f ′y(ik, jk) are vertical derivative and horizontal derivative. The

gradient-based adaptive interpolation takes into account of local gradient. The smaller the local

gradient of a pixel is, the more contributions it should have on the interpolated pixel [166].
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f (i, j) =

k=3
∑

k=1
W (ik, jk)S(ik, jk) f (ik, jk)

k=3
∑

k=1
W (ik, jk)S(ik, jk)

S(ik, jk) = (1−∆x(ik, jk))(1−∆y(ik, jk))

∆x(ik, jk) = |ik− i|

∆y(ik, jk) = | jk− j|

W (ik, jk) = (−µG(ik, jk)+1)m

G(ik, jk) =
| f ′x(ik, jk)|+ | f ′y(ik, jk)|

2
√

( f ′x(ik, jk))2 +( f ′y(ik, jk))2

(6.3)

6.3.2 Frequency Domain Approach

Since the multiple frames super resolution approach reconstructs the HR image from LR images,

there must be a relationship between LR images and desired HR image. The frequency domain

method utilizes this relationship, which is based on:

1) The shifting property of Fourier transform shift theorem. F{ f (t− t0)}(s) = e− j2πst0F(s).

2) The aliasing relationship between the Continuous Fourier Transform (CFT) of an original HR

image and the Discrete Fourier Transform (DFT) of observed LR images.

3) There is an assumption that an original HR image is bandlimited.

The first two principles are critical to frequency domain super resolution because it builds the

connection between the fourier transform of reference HR and its subpixel shift or the transfor-

mation of HR and its downsampling signals. Given a reference continuous HR image x(t1, t2), the

corresponding fourier transform is X(w1,w2). When a subpixel LR image is taken, it is down-

sampling of an kth shifted image from x(t1, t2), defined as xk(t1, t2) = x(t1+δk1, t2+δk2) in spacial
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domain (t1, t2 are representing high resolution). By the frequency transform shift theorem, the

continuous fourier transform of shifted image Xk(w1,w2) can be derived as Eq. (6.4).

Xk(w1,w2) = exp[ j2π(δk1w1 +δk2w2))]X(w1 +w2) (6.4)

All kth shifted images can be expressed as Eq. (6.4) in frequency domain. Based on inverse

Fourier transform, the kth LR image will be Eq. (6.5). By comparing Eq. (6.4) and Eq. (6.5),

the discrete fourier transform of LR images and CFT of HR image is connected and modeled as

Y = ΦX , such that the HR image super resolution becomes an linear inverse problem.

rk(t1, t2) =
1

T1T2

L1−1

∑
n1=0

L2−1

∑
n2=0
×(2π

T1
(

t1
N1

+n1),
2π

T2
(

t2
N2

+n2)) (6.5)

6.3.3 Regularized SR Reconstruction Approach

The non-uniform interpolation and frequency domain approach are both non-iterative algorithm

for super resolution. However, the iterative super resolution is also attractive due to the excellent

performance. As shown in Eq. (6.1), the observation model could be simplified as Eq. (6.6).

The deterministic regularized approach solve this problem by the prior information, which can be

converted to optimization by choosing a x to minimize the lagrangian in Eq. (6.7). For least square

prior knowledge, it suggests that most of images are naturally smooth with limited high frequency

values. In Eq. (6.7), α represents the lagrange multiplier, commonly referred to the regularization

parameter. This is critical in reconstructing HR image since the larger value of α will generally

lead to a smoother HR image. The least square approach works for a small number of LR images
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available (or the problem is underdetermined) or the observed data has too much noise due to

registration error and noised sampling. On the other hand, if a large number of LR images are

available and the amount of noise is low, small α will lead to a good solution. The HR recovery

can be converted to an iteration problem as Eq. (6.8). The convex problem is differentiable with

quadratic regularization, where β represents the convergence parameter.

Yk =WkX+nk,k = 1,2, ...,K (6.6)

min
p

∑
k=1
‖yk−Wkx‖2 +α‖Cx‖2 (6.7)

(
p

∑
k=1

WT
k Wk +αCT C)x̂ =

p

∑
k=1

WT
k yk

x̂n+1 = x̂n +β (
p

∑
k=1

WT
k (yk−Wkx̂n)−αCTCx̂n)

(6.8)

6.3.4 Multiple Frames Sampling in Single Pixel Camera

In conventional multiple frames super resolution, the LR images are taken by multiple cameras or

single camera in distinct position/time. However, the compressive multiple frames sampling can

be implemented by simple optics design. As shown in Figure 6.3, the basic single pixel camera

is composed of one main lens, digital micro mirror device (working as spatial light modulator),

lens for converging light to single sensor, and IR sensor. The imaging system working process is

discussed in Chapter 3 and Chapter 4.

In order to get high resolution image, multiple position angular images are captured in single

pixel camera. As shown in Figure 6.4, when the object ‘S’ locates in front of mirror, there will be

a virtual image with reflection symmetry. When there are two imaging systems (eyes) capturing it
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Figure 6.3 Schematic diagram of single pixel camera.

from distinct directions, each micro mirror will correspond to different area on two angular images.

The micro mirror in single pixel camera is similar as one pixel in sensor array. If all micro mirrors

are continuously as a complete plane, the two separate images are exactly same only with image

translation (the reflections are same for different angular), as shown in Figure 6.4 right. There are

two pin holes of A1 and A2 which generate two distinct recovery images di1 and di2 and the image

displacement can be calculated by Eq. (6.9).

∆d =
d0

d0+da
∗∆x (6.9)

As shown in Figure 6.5 right, four different mirrors (in different color) will reflect different

part of light rays to single sensor through two pin holes. For example, the left end point will map

to different mirror through aperture A1 and A2, which contributes to different image pixels. The

more angular images are captured, the higher resolution will be achieved, because there are more

subdivisions of object than one pin hole recovery. In this research, 16 different angular images

are sampled, as shown in Figure 6.5 left and each aperture pin hole size is close to mirror size in

0.5 mm. There are 16 measurements corresponding to 16 angular images, of which the difference

are within sub pixel. In experimental setup, an electrical controlled aperture mask is put between

107



Mirror

 

���1 

��1 

�0 

�	 


� 

��2 

A1 A2 


� 
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Figure 6.5 Multiple apertures design for high resolution imaging.

DMD and lens to control subpixel difference. By this way, the multiple frames sub-aperture image

compressive sampling is implemented.

108



E0 =




1 x1 y1 x2
1 y2

1 · · ·
1 x2 y2 x2

2 y2
2 · · ·

...
...

...
...

... · · ·
1 xn yn x2

n y2
n · · ·




However, as shown in Fig.6 the measurement for each pixel cover a large area in low resolu-
tion, also shown in Fig.8, there are four different measurements at the neighborhood of center
circle of S0(x0, y0). The measurement will be a integration on specific area, shown in Eq.(12).
The observation matrix will be I. In Fig.8, the observation was shown in matrix I1, I2, I3, I4.

I = E0*




C0
C1
C2
P


 = E0 P’

I =
∫ ∫

f (s,s0)dxdy = c0+ c1x+ c2y+ p0(s0)xy+ p1(s0)x2y+ p2(s0)xy2

+ p3(s0)x3y+ p4(s0)x2y2+ p5(s0)xy3+ ...
(12)




I1
I2
I3
I4


 =




∮
s1 f (s,s0)ds∮
s2 f (s,s0)ds∮
s3 f (s,s0)ds∮
s4 f (s,s0)ds



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Fig. 8. Measurement in neighborhood of X0 point.

In order to solve for the projection coefficient P for point S0, in Eq.(13), an extra constraint
needed. In [37][38] least squares estimation, ℓ2 minimization was applied to get unique solu-
tion. However, the algorithm is not robust due to the signal certainty to be known in advance
[36].

E0P′ = I (13)

A photometric spread (σr) was introduced to measure the acceptable range of the residual
error. So a robust constraint of Eq.(13):

min C(s,s0) = exp(−|I(s)− I(s,s0)|2
2σ2

r
), s.t. E0P′ = I (14)

The product of a quadratic norm (|I(s)− I(s,s0)|2) and the Gaussian function results in an
error norm that is robust to Gaussian noise during measurement. The least square estimation is
ℓ2 problem. After multiple iterations, till convergence to get solution of P. Due to the process

Figure 6.6 Measurement covered in neighborhood of X0 point.

6.3.5 Experiments with Prototype Camera

Due to the limitation of computation and accuracy of compressive sensing system, the acquired

images are in low resolution. In this experiment, the continuously gradient based interpolation

model was implemented in single pixel IR camera system. The registration in compressive sens-

ing camera is the crucial step to the success of the super resolution image construction. In DMD

based single pixel camera system, the registration is easier than SLR camera and the displacement

between two pixels within any different angle images is calculated as given information so that the

registration is linear and easily obtained. In this research, the continuous gradient based interpo-

lation also named surface interpolation is introduced as model. As shown in Figure 6.6, within a

local neighborhood centered at S0(x0,y0), the intensity value at position S(x+ x0,y+ y0), f (s,s0)

is approximated by a polynomial expansion with basis, shown in Eq. (6.10). However, as shown

in Figure 6.6, the measurement for each pixel covers a large area in low resolution. The measure-

ment will be a integration on specific area, shown in Eq. (6.11), where the observation matrix is

I. In order to solve for the projection coefficient P for point S0, an extra constraint needed. In this

research, least squares estimation or L2 minimization was applied to get unique solution.

f (s,s0) = p0(s0)+ p1(s0)x+ p2(s0)y+ p3(s0)x2

+ p4(s0)xy+ p5(s0)y2 + p6(s0)x2y+ ...

(6.10)
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I =
∫∫

f (s,s0)dxdy

= c0 + c1x+ c2y+ p0(s0)xy+ p1(s0)x2y+

p2(s0)xy2 + p3(s0)x3y+ p4(s0)x2y2 + p5(s0)xy3 + ...

(6.11)

A group of experimental results were shown to verify the images from high resolution single

pixel infrared camera. Figure 6.7 shows the hardware of system, including IR source, object, main

lens, DMD and its controller, digital mask. In this configuration, the IR source irradiates on white

spartan object, generating pseudo diffuse reflection on the surface. The object irradiation will pass

through main lens and form a virtual object image behind DMD. A digital mask and its pattern are

followed for angular image capturing.

As shown in Figure 6.8, there are three groups high resolution image. In left, it is 96×96 single

angular image, and the right images are 192×192(4×) , 288×288(9×) , 384×384(16×) pixels

distinctly. It is obvious that all high resolution images get the edge of inside black hole, while

the original 96×96 image has blur inside and on the edge because the high resolution images has

noisy removal during calculation. At the same time, the sharpness becomes better than original LR

image and the details inside football becomes clear in which the image goes from “white - gray -

black” from left to right. Meanwhile the texture becomes clear.

6.4 Single Images based Super Resolution

Due to the hardware computational limitation, the single pixel camera has relatively low recovery

resolution. Although previous interpolation method could enhance image resolution by multiple

images, it is complicated with high time cost. The single image based super resolution methods,

including interpolation-based, learning-based, statistics-based and others were reported [167]. In
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Figure 6.7 Prototype hardware of super resolution single pixel camera.

Figure 6.8 Experimental results, from top: 4×, 9×, 16× .
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this research, a spline based reproducing kernel hilbert space and approximative heaviside function

are deployed to model smooth part and edge component of image respectively. By adjusting the

heaviside function parameters, the proposed model will enhance distinct part of images. Compared

to multiple scenes or video sequences super resolution method, the proposed algorithm is appli-

cable on real-time camera or video system. The overall system can get super resolution IR image

based on single IR photodetector, making IR camera better measurement accuracy and observing

more details at long distance.

6.4.1 Observation Modeling

The digital IR image acquiring system is hardware dependent. The output image comes with

various kinds of degradations from motion blur, aliasing and noisy version of true scene [143]. As

shown in Eq. (6.12), X = [x1,x2, ...,xN ] denotes the desired high resolution image above Nyquist

sampling frequency, where Y is the single LR image observed, B is the blur models effect and D is

the down sampling operator, n represents the noise model. This is simplified model of Eq. (6.1).

Y = DBX+n,

X = [x1,x2, ...,xN ]

(6.12)

As shown in Figure 6.9, the multiple LR images superresolution will reconstruct each HR grid

distinctly by extra sampling. However, the single LR image will combine the feature of HR image

into one, so that an extra constraint will be necessary for HR reconstruction.
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Figure 6.9 Classical multiple images and single image super resolution.

6.4.2 Spline based Reproducing Kernel Hilbert Space and Approximative

Heaviside Function Model

The image intensity f (x,y) is divided by smooth component and edges, as f (x,y) = h(x,y) +

g(x,y). In the model, the smooth part (h(x,y)) is modeled by functions in a reproducing kernel

hilbert space (RKHS) and every evaluation function is bounded. Edge is described as step function

in g(x,y). For an arbitrary real value h(x), x ∈ [0,1], its taylor series can be expanded at x = 0

as Eq. (6.13). h0(x) and h1(x) is corresponding to first and second part of h(x), also referred to

lagrange remainder. The span of Eq. (6.14) will form a RKHS [167], H0 = span{φ1,φ2,φ3, ...,φm}

and h0(x) = ∑m
n=1 dnφn(x), dn(n = 1,2, ...,m) is coefficients.

h(x) =
m−1

∑
n=0

xn

n!
h(n)(0)+

∫ 1

0

(x− t)m−1

(m−1)!
h(m)(t)dt

= h0(x)+h1(x)

(6.13)

φn(x) =
xn−1

(n−1)!

n = 1,2,3, ...,m

(6.14)

The remainder h1(x) can also be expanded on a RKHS [167]. Let Gm(x,u) =
(x−u)m−1

(m−1)! and the

boundary conditions hn
1(0) = 0,n = 0,1, ...,m−1. H1 is a Hilbert space on [0,1] with reproducing

113



kernel K(s, t) =
∫ 1

0 Gm(t,u)Gm(s,u)du [168]. The function h1 can be expanded on the basis of

H1, h1(x) = ∑n
i=1 ciK(si,x). The generalized taylor series expansion is described as Eq. (6.16). In

matrix format, ~h = T d +Σc, where T is n×m matrix , Σ is a n× n matrix, d = (d1,d2, ...,dm)
′,

c = (c1,c2, ...,cn)
′. The noise observation~g =~h+η can be smoothing by minimizing Eq. (6.17).

h1(x) =
∫ 1

0

(x−u)m−1

(m−1)!
h(m)(u)du

=
∫ 1

0

(x−u)m−1

(m−1)!
dh(m−1)(u)

= Gm(x,1)h(m−1)(1)−Gm−1h(m−2)(1)+

Gm−2(x,1)h(m−3)(1)+ ..+G1(x,1)h(0)(1)

(6.15)

h(x) =
m

∑
v=1

dvφv(x)+
n

∑
i=1

ciξi(x) (6.16)

min
c,d

1
n
‖~g−T d−Σc‖2 +λc

′
Σc (6.17)

As previous discussion, the RKHS based model makes the image smooth. However, the im-

age contrast is edge dependent and functions significantly, especially for narrow band cooled IR

camera. The heaviside step function includes a singular point at x = 0, which describes the edge

on image signal perfectly. In the proposed model, an approximated heaviside function, Eq. (6.18)

is applied, where ξ controls the sharpness of signal. The ξ is selected distinctly for reflective

IR image, narrow band and broadband IR image depending on the thermal image contrast re-

quirement. The total image intensity function is the summation of edges and smooths part, as

~f =~h+~g = T d +Σc+Ψβ , where~g is edge model, Ψ is edge matrix and β is edge coefficients.
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ψ(x) =
1
2
+

1
π

arctan(
x
ξ
) (6.18)

6.4.3 Iterative Reconstruction Algorithm

Based on proposed model, the super resolution image restoration is the minimization problem as

Eq. (6.19), where desired H = T hd+Σhc+Ψhβ is the target super resolution output and re-define

the equivalent problem in Eq. (6.20). The Eq. (6.20) `1 problem can be easily converted to its

augmented lagrangian function as Eq. (6.21), α , ρ,b ∈R. In order to solve Eq. (6.21), it is divided

by two subproblems as the u problem and (d,c,β ) problem. The u−subproblem Eq. (6.22) has the

solution of Eq. (6.23) [169].

min
1
n
‖ L−DB(T hd +Σhc+Ψh

β‖2 +λc
′
Σc+α ‖ β‖1 (6.19)

min
1
n
‖ L− (T ld +Σlc+Ψl

β‖2 +λc
′
Σlc+α ‖ u‖1

s.t.,u = β

(6.20)

L(d,c,β ,u) =
1
n
‖ L− (T ld +Σlc+Ψl

β‖2 +λc
′
Σlc+α ‖ u‖1 +

ρ

2
‖ u−β +b‖2 (6.21)

minα ‖ u‖1 +
ρ

2
‖ u−β +b‖2 (6.22)

ui = max{‖ βi−bi‖,
α

ρ
} βi−bi

‖ βi−bi‖
(6.23)

The (d,c,β )−subproblem is more complicated than u− subproblem. The Eq. (6.24) subprob-

lem can be employed by least square method [167] so that d,c,β can be obtained. The main
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Table 6.1 RKHS based single image super resolution algorithm.

Algorithm
for i = 1: n
a. Compute the u(i) by Eq. (6.23).
b. Update the coefficients: (d(i),c(i),β (i)) =
argmin 1

n ‖ L(k)− (T ld +Σlc+Φlβ )‖2 +λc
′Σlc+α ‖ β‖1

c. Calculate the high-resolution image:
H(k) = T hd(k)+Σhc(k)+Φhβ (k).
d. Down sampling to L̃ = DBH(k).
e. Residual update: L(i+1) = L(k)− L̃
end

iteration is shown in Table 6.1.

min
d,c,β

1
n
‖ L− (T ld +Σlc+Ψl

β‖2 +λc
′
Σlc+

ρ

2
‖ u−β +b‖2 (6.24)

6.4.4 Simulations and Experiments

In this section, there are three groups of numerical experiments discussed: reflective IR images,

narrow band cooled and broadband uncooled IR emissive images. The ground truth image is

from IR camera. In order for comparison and algorithm evaluation, a low resolution image is

generated from downsampling of HR ground truth at scale of 2 or 3. All experiments are run

in MATLAB(R2010a) on a laptop of 3.25Gb RAM and Intel(R)Core(TM) i3-2370M CPU: 2.40

GHz.

The reflective IR sensors work similar as SLR camera but different wavelength, which mani-

fests the object shape and material reflectance. The image detail (high frequency components, the

edges) and base (low frequency, smooth variations) are equivalent to each other, so that a medium

edge part is chosen for modeling near IR image.

As shown in Figure 6.10, the standard bicubic and nearest neighbor approaches are compared
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              (a)                           (b)                              

  

                         (c)                                               (d) 

Figure 6.10 Near IR image of building. a) bicubic method; b) nearest neighbor; c) proposed
method; d) ground truth image.

to proposed method (Figure 6.10 (c)). From qualitative images, it is obviously that the bicubic

method smooths the target too much and generates blur at edge, while the jaggy effect happens on

nearest neighbor. The small arc door shape and triangular edge in selected green box area are very

close to ground true image (Figure 6.10(d)). In quantitative viewpoint, the RMSE value is bicubic:

6.8170, nearest neighbor: 8.7848 and proposed model: 6.0488 at scale of 2. The image spacial

resolution increases 4 times with 2.37% normalized RMSE error.

The cooled emissive IR images have ultra high sensitivity and background filter so that it out-

puts a high contrast with great sharpness images. However, the smooth part will dominate super

resolution result since the edge can be sampled in low resolution image. The proposed model is

modified with a smaller edge component compared to reflective IR image super resolution. Fig-

ure 6.11 and Figure 6.12 show two cooled emissive IR images and three super resolution compar-
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                       (a)                                              (b) 

   

                       (c)                                              (d) 

Figure 6.11 Hand and head infrared image from superlattice (SLS) cooled FPA. a) bicubic method;
b) nearest neighbor; c) proposed method; d) ground truth image .

   

              (a)                           (b)                             

  

              (c)                             (d) 

Figure 6.12 Handprint thermal image from cooled thermal camera. a) bicubic method; b) nearest
neighbor; c) proposed method; d) ground truth image.

ison.

The nearest neighbor is worst but all other three images look very similar in Figure 6.11. The
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RMSE of bicubic and proposed approach have both relative small values of 2.8092 and 2.3202

respectively. The weaker edge component will improve better output on images which has higher

contrast in LR format. Figure 6.12 compares the super resolution reconstruction of handprint

thermal image in color style, in which the different color shows the temperature distribution. The

proposed recovery is between bicubic method and ground truth image. The selected area color

order is purple, blue, green, yellow and red from outside to inside. The downsampling is at scale

of 2 and the RMSE is 3.7619 (bicubic) and 3.5696 (proposed).

     

     

 

Figure 6.13 The uncooled thermal image super resolution comparison.

     

                (a)                              (b)                                   (c) 

Figure 6.14 Hand infrared image from uncooled thermal IR camera, a) bicubic method; b) proposed
method; c) ground truth image .

The uncooled IR images are not as good as cooled sensors. The image thermal contrast is
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lower than cooled images so that the edge would be lost in low resolution sampling. In the proposed

model, a high edge component is applied on this image restoration. Figure 6.13 shows one medical

IR image (top) and indoor IR image (bottom) where the left small image is downsampling at scale

of 3 from the most right. The large size image in the middle is from proposed model while the

left is from bicubic model. From viewing imaging point, the neck part in top image is becoming

clear compared to left HR image. Although it is very hard to distinguish from each other due to the

large raw image (top: 1200×900, bottom: 384×288), the Table 6.2 shows the RMSE. The worst

normalized root-mean-square-error is 2.35% in all results.

Table 6.2 RMSE value of medical IR image and indoor IR image.

Wavelength Bicubic Proposed method
Medical IR 6.817 6.004
Indoor IR 5.636 5.479

Most of uncooled thermal IR camera has very low resolution. The low level civil thermal im-

ager features around 60×80 pixels and enhances the spacial resolution to multiple times digitally.

The edge information is lost as a result of such large enlargement, as shown in Figure 6.14 (c),

the output thermal image is blur. However, a high edge model is introduced to strengthen image

details in Figure 6.14 (b). The finger edge can be clearly seen in the reconstruct image.

6.5 Chapter summary

The signal processing based super resolution method is discussed in this chapter which enlarges the

image resolution by computing. The multiple LR images and single LR image were both discussed.

By taking multiple angular images, a robust high resolution reconstruction algorithm was applied

to recover HR image. Meanwhile, the adaptive single image based super resolution model was

also discussed for IR image enhancement. The infrared image is split by smooth part and edge
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details, where the 2D spline based RKHS model is used for image base (smooth component)

while a modulated heaviside function is applied for image edge. The super resolution is casted

into a model based estimation problem. By computing the coefficients of the redundant basis of

low resolution image, it was applied as same in high resolution image. The iterative scheme was

proposed to preserve more image details and the experimental results show the model is robust and

easily adaptive with different IR image. The computing is still a challenging for this method due

to iteration in estimation. However, the parallel computing and hardware accelerating will make

the proposed approach fast and easily integrated into consumer electronics.
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Chapter 7

Compressive Video Sensing

7.1 Previous Work

In plenoptic function, the light irradiation is time dependent for a dynamic scene so that the video

sensing is necessary for moving visual image acquisition. The video camera brings broadcasting

lively and real time images directly to a screen for immediate observation. It not only serves for live

TV production, but also for security, military and industrial operations. There are numerous de-

signs and applications, including professional video cameras, camcorders, closed circuit television

(CCTV), webcams, phone camera and some special camera systems. The analog video produc-

tion attracted research attention since 1970s, such as videotape recorders (VTR) on magnetic tape,

although the digital video recorder was mostly pioneered by company [170].

The digital video is highly correlated with big data because it comprises a series of orthogonal

frames at a constant rate. For an example of one minute duration, frame size 640×480 px, 24 bits

color depth, and frame rate of 25 f ps, the video size will be 1.38 GB. Therefore, the video com-

pression is necessary for recreating the video signals and it is usually integrated in one chip [171]

or software algorithm [172]. In conventional method, as shown in Figure 7.1, the compression

is after sampling process, of which the most applied standard is MPEG (Moving Picture Experts

Group) compression. The separated sampling and compression method will not be applicable to

non focal plane sensors imaging system as single pixel camera. Otherwise, it will cost much time

and makes it very slow frame rate. The compressive sensing allowes us to combine the signal
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Figure 7.1 Conventional Nyquist Shannon signal sampling and compressive sampling.

acquisition and compression processes into one step [55], as shown in Figure 7.1 bottom.

Although the conventional video camera can record most of scenes, it still doesn’t work when

seeing more in temporal domain. For a space shuttle discovery flight deck, it is 2.74 gigapix-

els [173] and a bubble dynamics research needs 500 f ps video microscopy [174]. More impor-

tantly, the commercialized high performance video camera is very expensive as a basic model

7,500 f ps at mega pixel (1K×1K) resolution with 12 bit color depth (fastcam SA5 from photron)

is around $100,000 (quotation from techimaging.com). There are at least two factors, light limita-

tion and readout bandwidth, to elevate the cost. As shown in Figure 7.2 and Eq. (7.1), the electrons

accumulated on sensor will be reverse proportional to F-number, the ratio of focal length to aper-

ture size (F \#), but proportional to exposure time (t), incident illumination (Isrc), scene reflectivity

(R), quantum efficiency (q) and pixel size (∆2) [175]. The high speed video camera requires less

t, less ∆, but they are mutual restraint in the camera design. Another limitation is sensor readout

rate. Since the readout timing will include analog to digital conversion, clear charge from parallel

register and shutter delay, the 1 mega pixel, 1000 f ps, 16 bit color camera requires 4 GB/s readout
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Figure 7.2 Light illumination in SLR camera.

circuitry.

J = 1015 (F \#)−2 tIsrcR q∆2 (7.1)

The compressive video sensing was proposed to solve this trade off and made infrared spec-

trum high speed video camera feasible. In [96], a single pixel camera was set up for video sampling

with the assumption of image changing slowly across a group of snapshots. This would not be used

for real time video streaming without incurring latency and delay. Another practical system [176]

is developed by first splitting each video frame into non-overlapping blocks of equal size. Com-

pressive sampling is then performed on sparse blocks, determined by predicting sparsity based

on previous reference frames which are sampled conventionally. However, the remaining blocks

are still sampled fully so that the compressive ratio is low. In order to fully use sparsity of image

in [177], there are two frames captured the position of the moving object at two instances, by which

the difference frame is obtained subtracting. It accumulates residual error and mean square error

increases significantly when the difference is not sparse. For a periodic signals, the model based

high speed sampling was proposed in [178], to recovery signal with temporal sparsity. Meanwhile,

a novel measurement model reduces the bilinear problem to a sequence linear convex problem for
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a linear dynamic system in [179]. However, there is hardly any contributions on infrared spectrum

due to the sensor limitation. In this chapter, an infrared high speed video sensing will be discussed.

7.2 Sparsity of Video

The video can be seen as a series of images as shown in Figure 7.3, where the coordinate space

(x,y, t) is composed as spatial domain ((x,y)) and temporal domain (t). For each uncompressed

frame, it is full resolution of 2D image. Fortunately, it is proved that the natural image is sparse

in specific domain so the spatial information could be redundant and intraframe compression is

proposed to discuss the correlation and compression within a frame. The baseline is JPEG com-

pression standard. The another redundant of video is between like frames. The compression,

referred to interframe compression, will base on H.261 standard. The audio compression is not

included in this thesis.
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Figure 7.4 Sub-sampling of image compression.

7.2.1 Intraframe Compression

In video sequence, the individual frame can be considered as sperate file. The intraframe coding,

by spatial redundancy, refers to the fact that the various lossless and lossy compression techniques

are performed relative to information that is contained only within the current frame.

Sub-sampling is the most basic of intraframe compression technique, which reduces the amount

of data by throwing some of it away. As shown in Figure 7.4, it samples the color component of

image by 2 in both directions, in which every second line and column is completely ignored so

that only quarter of pixels are sampled. It is very common to sub-sample the color data and the

interpolation process makes sub sampled image appear to original resolution.

Rather than reducing the number of pixels, coarse quantization [180] method accomplishes

compression by reducing the number of bits used to describe each pixel. The pixel is reassigned

a lower bits color depth than the original image to save storage requirements for images. Vector

quantization [181] is also introduced to image compression, where the input data stream is divided

as blocks and coded using patterns in a pre-defined table. By comparing the block between input

data and pre-defined block in table, the image could be compressive described.

The widely used intraframe compression is transform coding which transforms an image from

the spatial domain into other domain (frequency, wavelet etc). The Discrete Cosine Transform

(DCT) is the most popular transform in image coding because of the low computational complexity.

As shown in Figure 7.5, the 8×8 grid is represented by DCT coefficients instead of 64 original
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Figure 7.5 DCT based transform coding image compression.

values. The coefficients can be coarsely quantized without seriously affecting the quality of the

image which results from an inverse DCT of the quantized coefficients. Most of lossy image coding

techniques are extension of these basics but only slight implementation detail differences.

7.2.2 Interframe Compression

In video streams, the adjacent frames are highly correlated and relatively little changes happen

from one frame to the next in general. The interframe compression is compression method ap-

plied to a sequence of video frames rather than a single image, which exploits the similarities

between successive frames, known as temporal redundancy, to reduce the volume of data required

to describe the sequence.

In most of interframe compression techniques, the basic concept is to reuse parts of frames al-

ready exist. The new frame comes from the previous frame and estimation. The simplest interframe

compression is sub-sampling which originates from sub-intraframe sampling. It only transmits

some of frames, e.g. every second frame and the decoder (viewer) would be required to interpolate

the missing frames at the receiving end. The first interframe compression using adjacent frame is

conditional replenishment [182], also named difference coding. It bases on the premise of small
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Figure 7.6 Difference between adjacent frame.

difference between successive frames. As shown in Figure 7.6 (160×120 px) and Figure 7.7, more

than 85% pixels have no changes. In this method, each frame of a sequence is compared with its

predecessor and only changed pixels have been transmitted. The lossless compression will require

to sample every changed pixels. However, only pixels that change significantly will be updated at

the cost of introducing some loss.

Since the difference coding compression considers the whole image as target object, the block

based difference coding will be more efficiency. During this compression, the frames are divided

into non-overlapping blocks and each block will be compared with its counterpart in the previous

frame. The update sampling is only for blocks significantly changed. The basic difference coding

block size is single pixel while the block based difference coding depends on an area. Due to the

larger blocks update some pixels unnecessarily, the block size would be optimized before designing

the pattern and algorithm. In general perspective, the block based difference coding is limited by

its prerequisites. When there is a lot of motion or the camera itself is moving, there are lots of

changes happened in each frame. To solve this problem, it is necessary to compensate the object
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Figure 7.7 Histogram plot of adjacent frame difference.

motion.

The block based motion compensation is a practical and widely used method to compensate

movements of blocks for future frame. Firstly, it has frame segmentation, as shown in Figure 7.8.

The frame to be approximated (current frame) is divided into uniform non-overlapping rectangular

blocks. In [183], it claims that the block is rectangular shape (16×8 pixels) based on the fact that

motion within image sequences is more often in the horizontal direction than the vertical. For

larger block size, there will be fewer motion vectors but more correction data to transmit [184].

On the opposite, the smaller blocks will result in a greater number of motion vectors, but very

sensitive to noise [185]. It is a trade-off between minimizing the number of motion vectors and

maximizing the quality of matching blocks in frame segmentation. Secondly, the block matching

is the most time consuming of encoding compression because each target block of the current

frame will be compared with a past frame so as to find a matching/corresponding block. Although

there is a search area in blocking matching, which could be on all of the past frame, it is usually

restricted to a smaller area centered around the position of the target block in current frame. If
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Figure 7.8 Flow chart of motion compensation process.

the block size is b and the maximum displacements in the horizontal, vertical directions are dx,

dy respectively, the search area will be of size (2dx + b)(2dy + b). The Exhaustive Search, Brute

Force Search, and Full Search are proposed in research for block matching [183]. The matching

criterion affects quality of compression, the runtime of algorithm. The whole process of finding

the best match is known as motion estimation. Thirdly, a motion vector will be calculated based on

relative difference between target block and past frame, which is quantized by efficient arithmetic,

adaptive Huffman and Lewpel-Ziv coding [185]. If the target block and matching block are found

at the same location in their respective frames, the motion vector that describes their difference is

known as a zero vector. In the decompression process, the motion vectors and past frame will be

used reconstruct current frame.

However, the block motion compensation has at least two limitations. It is the assumption that

the target is moving parallel to camera plane and the illumination is uniform over time.
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Figure 7.9 Macroblock (4:2:0).

7.2.3 Video Compression

The video compression can be classified as lossless and lossy method. The former compression

retains the original data and the algorithm saves some space by just removing image areas that

use the same color. The lossy compression methods remove image and sound information that is

unlikely to be noticed by the viewer or not differentiated by the human perception. Therefore, the

quality perceived is still the same, but the volume is dramatically decreased.

The most popular compression scheme is MPEG-X (Moving Picture Experts Group) series and

H.26x series. The common of these visual coding standards are similar macroblock based motion

compensated prediction, as shown in Figure 7.9. It is corresponding to a 16×16 pixel region

of a frame, including 16×16 pixels for Y frame, 8×8 for Cb and Cr frames. The 4:2:0 chroma

subsampling will have four Y, one Cb and one Cr.

In H.261 standards, there are two types of images frames: Intra-frames (I-frames) and Inter-

frames (P-frames), as shwon in Figure 7.10. The I-frames are coded using intraframe compression,

while the P-frames are coded by a forward predictive coding method. In Motion compensation,

the encoder will search the image surrounding marching block to discover where it comes from.

The Brute Force, Hierarchical Search are applied to encode motions. The motion vector depending

on the difference between current macroblock and best match block will be encoded. The DCT

coefficients will be quantized for entropy coding.

131



Fundamentals of Multimedia, Chapter 10

I P P P P P PI I
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Figure 7.10 H.261 frame sequence.

MPEG-1 is another international standards employing two basic techniques: block based mo-

tion compensation for temporal redundancy and transform coding, such as DCT for spatial re-

dundancy. The video sequence is divided into a group of pictures, as Intracoded Frame (I-frame),

Predictive Frame (P-frame) and Bidirectional predictive Frame (B-frame), as shown in Figure 7.11.

For forward prediction, the macroblock in P-frame is assigned a best matching block from previous

I-frame or P-frame. However, the target macroblock may not have a good matching in the previous

frame due to unexpected movements and occlusion, but it might be best match from macroblock

in next frame. In MPEG-1 search matching algorithm, a backward prediction is also performed

in addition to forward prediction so that the best matching macroblock is from a next P-frame or

B-frame. Consequently, each macroblock from a B-frame will be specified to two motion vec-

tors, one from forward and one from backward prediction. Figure 7.12 shows the whole MPGE-1

encoding process.

The MPEG-X series achieves a high compression rate by storing only the changes from one

frame to another. MPEG-1 provides a 352×240 resolution at 30 f ps. The MPEG-2 provides a

720×480 and 1280×720 resolutions at 60 f ps with full CD-quality audio. Although there are

many standards from MPEG-1, they all have similar motion compression with little difference on

coding or motion estimation.
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Figure 7.11 MPEG-1 frame sequence.
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Figure 7.12 MPEG compression.
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Figure 7.13 Spatial and temporal resolution trade-off in video stream.

7.3 Compressive Video Sensing

7.3.1 Introduction

As discussed in this chapter, the temporal resolution and spacial resolution are a trade-off due to

Eq. (7.1) in conventional video sampling. As shown in Figure 7.13 left, the image is high spacial

resolution but low temporal resolution and the spacial resolution will go worse when temporal

resolution increase, shown in Figure 7.13 right. However, there is no trade off between spacial

and temporal resolution in compressive video sensing. The spacial compressive sensing could be

implemented using spacial light modulator, DMD (Digital Micro Device), LCOS-SLM (Liquid

Crystal on Silicon-Spatial Light Modulator), discussed in Chapter 3 and Chapter 4. The combined

spatial and temporal compressive sensing will be discussed in this chapter.
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Figure 7.14 Frame difference sampling.

7.3.2 Combined Sparsity Sampling for Video

In the proposed design, the temporal redundancy will be the first priority. As H.263 standards, the

image sequence is divided by groups as three frames in each. The first frame is reference, which

only samples with spacial redundancy, as shown in Figure 7.14. Another two frames following

reference frame, name P-frame, will be sampled by temporal redundancy and reconstructed by

reference frame and the difference recovery.

7.3.3 Non-convex Problem Solver

Although `1 minimization is fully understood and stable with a number of theoretical results, it

is not the best sparest solutions in special applications, e.g. computed tomography, video stream

difference in which the recovered signal is very sparse, as shown in Figure 7.6. The non-convex op-

timization, also referred to `p minimization, requires weaker conditions and enhances the sparsity

of recovery solutions.

The basic non-convex optimization is `p(0<p<1), between `1 and `0 problem [186] [187].
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Figure 7.15 shows the feasible set of y=Φx at 0,1/2,1 and 2 norm. The norm-2 has a bad intersect

point which is not on x1 or x2. Relatively speaking, the `1/2 is closer to non-convex problem `0

and the smaller p will recover more sparse result. More importantly, the `p minimization problem

reconstructs results from fewer linear measurements than `1 optimization [188]. In video streams,

the difference between the adjacent frames are very sparse, which need nonconvex penalty to

improve the recovery performance.

                                           

                                                      

x2 

x1 

p = 2 

y = Φx 

x2 

x1 

p = 1 

y = Φx 

x2 

x1 

p = 1/2 

x2 

x1 
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Figure 7.15 Countour maps of different penalties and feasible set of y = Φx at p = 0,1/2,1, and 2.

In order for understanding, the bold font x denotes a vector and x = (x1,x2, ...,xn) ∈ Rn. The

truth value is x0 and the variable at its ith iteration is denoted as x(i). x̃ represents the converged

value. In general, there are three categories of `p problem algorithms for Eq. (7.2). Iteratively

Reweighted `1 minimization (IRL1) is the first method to solve problem Eq. (7.2). The weighted

`1 minimization is demonstrated as Eq. (7.3). Candes et al. [189] suggests the weights as inversely

proportional to the the ground truth value. In implementation, it is suggested to choose according to
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the current iterates, as Eq. (7.4). The iteratively reweighted minimization problem can be simplified

as Eq. (7.5), by iteratively solving it.

There are a lot of extending algorithms by IRL1 and the weights are suggested as Eq. (7.6) [187]

[190], where ε > 0 to avoid zeros under denominator. The IRL1 is analyzed and proved that the

iterates will converge to the sparsest solution when measurements are sufficient.

x̃ = argmin ‖ x‖p

s.t. Φx = y
(7.2)

minx∈Rn

n

∑
i=1

wi ‖ xi‖

s.t. y = Φx

(7.3)

wl+1
i =

1
| xl

i |+ε
(7.4)

xl+1 = argmin{
n

∑
i=1

wl
i|xi| , s.t. Φx = y} (7.5)

wl+1
i =

1
(| xl

i |+ε)1−p
(7.6)

The parallel approach, Iteratively Reweighted Least Squares (IRLS) was proposed in [191]

for `p minimization. It is very similar as IRL1 but completely different, as Eq. (7.7), where the

weights are set by Eq. (7.8). Although it is shown that IRLS is theoretically better than IRL1, the

convergence is still uncertain.

xl+1 = argmin{
n

∑
i=1

wl
ix

2
i , s.t. Φx = y} (7.7)
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wl+1
i = ((x(l)i )2 + ε)

p
2−1 (7.8)

The iteratively thresholding method [188] has been established for unconstrained problem by

introducing F(x,λ ) as penalty function. Eq. (7.9) can be solved by alternating minimization of

Eq. (7.10), where zl is an auxiliary variable. By simply assigning z(l+1) = x(l+1), the solution will

be given by Eq. (7.11), where Θ is referred to thresholding function. This algorithm will search a

local minimization sequence for large scale problem, although it only applies to `p problem at p =

0, 1/2, 2/3 and 1.

minx∈Rn
1
2
‖ y−Φx‖2 +F(x,λ ) (7.9)

x(l+1) = argminx∈Rn
1
2
‖ x− [(I−ΦT Φ)z(l)+ΦT y]‖2

+F(x,λ )
(7.10)

x(l+1) = Θ((I−ΦT Φ)zl +ΦT y;λ ) (7.11)

7.3.4 Non-convex Sorted `1 Method

In order to get closer to `0, a non-convex sorted `1 is introduced. Let the coefficient ωi be a nonde-

creasing sequence of nonnegative numbers, where ωn > ...> ω2 > ω1 > 0. The objective function

is defined as Eq. (7.12), in which the higher weights are assigned on components with smaller ab-

solute values. The contour map of proposed `p is shown in Figure 7.16. An additional variable P

is introduced in Eq. (7.13) to solve the nonconvex sorted `1 problem, where Ω = (ω1,ω2, ...,ωn)
T ,

(x)i is the ith element of vector x. As assumed the absolute values are ranking in decreasing order

for generality, |x1|> |x2|> ...> |xn|.
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Rω(x1,x2, ...,xn) = ω1|x1|+ω2|x2|+ ...+ωn|xn| (7.12)

F(x,P) =
n

∑
i=1

(PΩ)i|xi| (7.13)

                                                                                      

x2 

x1 

y = Φx 

Figure 7.16 Countour maps of proposed nonconvex sorted `1 with M (M = 4) values.

Given any P⊆ Rn×n, if (PΩ)1 6= ω1, let (PΩ)k = λ1, and k > 1. By row switching of P, let 1st

row exchange with kth row and obtain P(1) such that (P(1)Ω)1 =ω1, otherwise P(1)=P. It is easy to

derive the relation of Eq. (7.14), and F(x,P(1))6F(x,P). For an arbitrarily j > 1 and i= 1,2, ..., j,

it is similarly to find P( j) such that (P( j))i = ωi, and F(x,P( j)) 6 F(x,P( j−1)) 6 ... 6 F(x,P).

After n times ordering, P(n)Ω = InΩ, where In is identity matrix, and F(x, In)6 F(x,P). It means

minP F(x,P) = F(x, In) = Rω(x), shown in Eq. (7.12).

F(x,P(1))−F(x,P) = ω1|x1|+(PΩ)1|xk|− (PΩ)1|x1|−ω1|xk|

= [ω1− (PΩ)1](|x1|−|xk|)6 0
(7.14)
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Since the nonconvex sorted `l has the same convergence as minimization of F(x,P), the equiv-

alent basis pursuit problem Eq. (7.3) will become Eq. (7.15), where L(x) is lagrange multiplier of

unconstrained function. It is proven that by a given fixed x∗, when x∗ minimizes F(x,P), the x∗ is

a local minimizer of F(x) in [188]. In Eq. (7.15), there are two variables to solve the problem. The

alternating minimization procedure will be the best option because it is easy to solve problem with

any one of variables fixed. In this approach, the optimization is divided by variable P and x. The

problem for x with fixed P is formulated into a weighted `1 minimization, such as basis pursuit.

The updating of P is to change the weights, referred to iteratively reweighted `1 problem.

minx

n

∑
i=1

ωi|xi| , s.t. y = Φx

or

minxRλ (x)+L(x)

(7.15)

The nonconvex sorted `1 can be divided as different levels based on the number of weights. It

becomes 2-Level when giving two different weights, e.g. ω1 = ω2 = ... = ωk = a1 and ωk+1 =

... = ωn = 1. It will turn into iterative support detection when a1 = 0. The proposed M-Level

sorted `1 minimization has m(m > 1) number of weights and the value is generated by Eq. (7.16),

where r controls the decreasing rate form 1 to 0, K depends on support detection discussed later.

The parameters a1 and r are closely related to signal sparsity and the algorithm nonconvexity. The

smaller a1 is, the more nonconvexity becomes. In order to converge fast, it starts from `1 to get

initial value x0 in the beginning and increases the nonconvexity by updating K.

ωi =





1 if i > K

e−r(K−i)/K otherwise
(7.16)
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The weights generating rule is critical on converging speed. In the proposed method, K in

Eq. (7.16) is updated by reliable support detection and there are two categories signals included,

sparse Gaussian signals and certain power law decaying signals. In each iteration, a threshold (ε)

is generated to compare with xi and then K is determined. The threshold (ε) is redifined in outer

loop by counting the signal fast decaying.

The most simple threshold generating rule is ε(l) =| x(l) |∞ /β (l+1), β > 0 [192]. This is an

effective rule when selecting an appropriate β because the large β introduces a small number of

iteration but low solution quality while the small β causes a large number of iterations. In this

work, the rule is based on location of “first significant jump” in the increasingly ordered sequence

| x(l) |. Finding the smallest i such that | x(l)
[i+1]−x(l)

[i] |> ε(l), then set ε(s)=| xs
[i] |, where x[i] represents

the ith largest component in x(l) by magnitude. In sparse signal, the true nonzeros are large value

but small in number, while the false signal are large in number but small value as noise. By this

method, the true ones are spread out while the false elements are clustered. This is proved and

experimentally verified in [192].

Besides, the accumulated residual errors within interframes is another challenge in proposed

compressive video sampling. Since the noise error only happens on the significant changes part,

especially on the image edge due to frame difference sensing mechanism, the error of frame differ-

ence reconstruction can be converted into edge detection problem. The edges has strong intensity

contrast and it is a jump intensity from one pixel to the next, so that the edge detection will remove

background noise even the residual errors.

The majority of distinct edge detection could be grouped into two categories, gradient and

laplacian. The gradient method detects the edges by looking for the maximum and minimum in the

first derivative of the image, while the laplacian method searches for zero crossings in the second

derivative of the image to find edges [193]. The gradient edge detection shows a maximum located
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Table 7.1 Iteratively reweighted `1 minimization with thresholding.

Algorithm
Initialize x0,ω
for i = 1: maxit
a. Compute threshold ε .
b. Update ω(i) by support detection, and check stopping rules.
c. Update x(l+1) with fixed weights. Yall1 solver [195] for
`1-minimization models
end
d. Sobel edge detection of x̃ and select significant changes part
e. Reconstruct next frame image by current frame and the denoised
frame difference.

at the center of the edge in the original signal [194]. In this work, Sobel operator, using a pair

of 3×3 convolution mask on x-y, is used to detect frame difference, which finds the approximate

absolute gradient magnitude at each point in grayscale image and enhances frame difference to

improve image quality.

7.3.5 Numerical Analysis

In this section, a group of numerical experiments are analyzed and compared to illustrate the per-

formance of proposed algorithm. In order for comparison, iterative reweighted `1 (IRL1), two

different weights method including ISD (ISD), 2-Level (2-Level) and multiple weights `1 mini-

mization (M-Level) are run for same object. In IRL1, the weights are updated by Eq. (7.17). The

difference between ISD and 2-Level is the weight value (0, 1) pair or (a, 1) a ∈ (0,1) pair. In this

analysis, a is selected as 0.6.

ω
(l)
i =

1
|xi|+max{0.5l−1,0.88}

(7.17)

The nonconvex compressive sensing has advantage on sparse signal recovery compared to con-

vex problem. In compressive video recovery, the frame difference is quite sparsity such that
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the nonconvex algorithm has better recovery. Firstly, it examines the relation between outcome

of reconstruction and signal sparsity. As shown in Figure 7.17, the target is to reconstruct a

sparse signal (4096 in length) which has k nonzero value (k ∈ [100,1000]). The index of k is

pseudorandom values selected within 4096 and signal intensity is also pseudorandom, as x =

(0,0, ...,−1.5293,0,0...,−0.9123,0, ...). In order for sampling hardware compatible, the mea-

surement matrix is Bernoulli matrices with ±1 entries and the dimension of matrix is 614×4096

(15%).

There are two criteria to evaluate recovery algorithm, runtime and root-mean-square error

(RMSE). As shown in Figure 7.17, under same measurement matrix, when setting 500 nonzero

values in observe signal, the recovery by IRL1 cost most time around 28 s and RMSE is close to

0.32, largest error among four algorithms. In general, IRL1 algorithm has the worst results with

longest runtime and largest RMSE, while the proposed 2-Level and M-Level have smaller RMSE

and less time. In the compressive video sensing, the less RMSE will fulfill the goal to reduce the

number of samplings and increase video speed.

As discussed in previous section, nonconvex approach will reduce the number of measure-

ments to achieve fully recovery. The less measurements are required, more powerful algorithm

is deployed. The second analysis is to explore the outcome of reconstruction and sampling rate.

As shown in Figure 7.18, there are two adjacent frames (particle moving) and its difference by

simply subtraction. In this simulation, the number of measurements is adjusted from 6% to 35%

(×4096), as shown in Figure 7.19. Each row of measurement matrix will keep same on row index

and the newly added line is generated by pseudorandom bernoulli distribution with ±1 entries.

In Figure 7.19, the x-axis represents the percentage between number of measurements and signal

length (4096). From the analysis results, the IRL1 still has worst output with longest runtime and

largest RMSE. The M-Level algorithm has least RMSE when measurement percentage is less than
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Figure 7.17 Signal recovery on distinct sparsity, 4096 in length.

0.1 (10%). Meanwhile, the Peak Signal to Noise Ratio (PSNR) which describes the quality of

recovery image and its ground truth is also discussed. The M-Level proposed algorithm has largest

PSNR on above 8% percentage measurement.

             0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

 

 -80

-60

-40

-20

0

20

40

60

80

Figure 7.18 Adjacent frame intensity difference.

The third analysis discusses the interframe error. Accumulation residual error deteriorates

image reconstruction in far behind, e.g. there are 10 frames in one group, 1 reference frame (I-

frame) and 9 interframes (P-frames, named P1,P2, ...,P9), P9 frame will have largest error since all

errors happening before will be accumulated on this frame. As shown in Figure 7.20, there are

five frames (particle moving) recovery based on one I-frame. P01 - P05 shows five ground truth
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Figure 7.19 Signal recovery on different sampling rate.

frames. P11 - P15 are reconstruct images directly using M-Level sorted algorithm, while P21 -

P25 come after edge detection denoising. Since the image dimension is only 64×64, it is hardly

seeing difference in visual. The RMSE and PSNR are listed in Table 7.2 for comparison. The

residual errors increase when recovering more interframes. However, the edge detection denoising

can improve frame reconstruction by 1.5 dB in PSNR because most error happens on the frame

difference in proposed method. The edge detection removes noise by selecting the most significant

changing part and improves the interframe image quality.
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Figure 7.20 Accumulation residual error.

Table 7.2 Characterizing video frames accumulation residual error by PSNR and RMSE.

P01 P02 P03 P04 P05
PSNRM−Level 40.8987 37.4587 36.2745 35.6323 35.0012
PSNRDenoising 42.3382 37.5839 36.6928 35.9371 35.0856
RMSEM−Level 2.2994 3.4167 3.9157 4.2163 4.5340
RMSEDenoising 1.9482 3.3678 3.7317 4.0709 4.4901

7.3.6 Experimental Implementation and Results

The compressive video sampling is implemented on a spatial light modulator, digital micromirror

device from Texas Instruments. The target dynamic scene is projected onto DMD plane by objec-

tive lens. After projection with measurement matrix (on DMD), another lens focuses the projected

image to a single sensor. In the experiments, the irradiator (THORLABS LIU850A) is 850 nm

near IR source and commercial silicon photodiode (THORLABS FDS1010) is selected as receiver

sensor. The DMD sampling rate (projection) is 6000 Hz.

There are two experiments including linear moving object and rotating object to validate the

proposed compressive video system. Figure 7.21 shows one airplane moving with the frame rate

10 f ps. In this experiments, there is only one I-frame and one P-frame, e.g. t01, t03, ...t17 are P-

frames and t00, t02, ...t16 are I-frames. The sampling ratio is 18% and 8.5% for reference frame and

P-frame respectively. The proposed video system clearly records whole scene on realtime.
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Figure 7.21 Moving object video recording.

The second experiment is to capture the fan rotation. As shown in Figure 7.22, each blade is

designed with different length for easily identification. There is one reference frame (I-frame) and

three P-frames in testing. Each line shows one group of frames, including one I-frame and three

P-frames. The video frame is demonstrated from first to seventh line on time sequence. The frame

rate is 18 f ps and the sampling ratio of reference frame is 20%, 9% for P-frame.

 Figure 7.22 Rotating object video recording.
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7.4 Chapter summary

In this chapter, the video compression was discussed by spacial and temporal redundancy. The

combined method uses H.263 standard to divide video frame as intra-frame (reference frame)

and inter-frame. The non-convex compressive video sensing has advantage on requiring very few

number of measurements to record a real time dynamic scene. The proposed non-convex sorted `1

approach has fast convergence to local minimizer and achieves a high accuracy. Besides, the edge

detection based denoising reduces the accumulated residual error on frame difference to increase

frame rate. Compared with the conventional compressive video sensing, there is no image analysis

during sampling process. Although the experimental video frame is only 18 f ps, the sampling

frame rate can reach to 105 f ps based on current DMD mirror limitation (maximum 32,000Hz).

Moreover, this non-convex compressive video sensing gives a real-time video and makes single

pixel compressive video camera available.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

Infrared spectrum expands visual to explore more stories beyond visible imaging. In the state of

art infrared detection, the higher sensitivity sensor mostly requires the larger bucky and expensive

cryogenic cooling, although this provides better spatial resolution and determines longer detection

distance. The low sensitivity uncooled IR imaging system needs a small f -number lens to increase

the light signal transmitted through it. Both are subject to the critical component of photodetector

which determines the overall system performance.

The low dimensional materials, e.g. carbon nanotube, graphene, have attracted attention since

its discovery because of ultra high surface to volume ratio and near quasi 1D ballistic electronic

transport. The novel materials have promising optoelectronic and optical properties. Meanwhile,

single pixel compressive sensing based camera samples and reconstructs target signals overcoming

the limits of Nyquist-Shannon theorem. This mechanism uses fewer sensing cells and measure-

ments to reconstruct image using iterative algorithm. In this research, the CNT based infrared

photodetector and infrared imaging system are built. Based on the results and discussions pre-

sented in previous chapters, the following conclusions can be made:

• Nano Fabrication: the real-time electrical feedback system was introduced into DEP as-

sembly. By measuring the impedance changes, the system can quantitatively count the num-
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ber of carbon nanotubes bridged between two electrodes. The experimental results show

that the system response speed is fast enough to single wall and multi-wall CNTs alignment,

although the impedance differs much. It reduces the time of CNT selection and sample

clean compared to conventional method and will also be applicable to thin layer graphene

deposition control and other nanomaterials deposition and localization.

• Nano Sensor Characterization: the in-situ measurement method using digital microscope

and precise five axis substage localize the relative position between nanoscale sensor and

IR beam by mapping the photocurrent on laser spot. The experimental results indicate that

photovoltaic dominates photoresponse on CNT-metal Schottky photodetector although the

photovoltaic voltage can not be sampled due to its tiny value merged in noise. The detector

IR response are dependent on CNT-metal contact size and metal work function. The re-

sponsivity can be calculated by photocurrent mapping. The proposed measurement method

provides a robust and precise approach to characterize sub-micro and nano scale photode-

tector which is important for sub-wavelength scale photodetector characterization.

• Nano Sensor Reliability: the reliability related characteristics of nanoelectronics and nano

sensors could be summarized as multi-scale in both geometric and time domain. The former

is highly dependent on sensor array uniformity while the latter nano-reliability measures

the probability that a nano-scaled product performs its intended functionality without fail-

ure under given conditions for a specified period of time. The sandwich structured sensor

was fabricated within two polymer layers, in which the substrate polyimide provided sen-

sor with high bending stiffness, and top parylene packing blocked humidity environmental

noise. The designed structure isolates stimulus except selected IR wavelength, especially

from substrate charges. The proposed design improves sensor response and avoids failure
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under different environmental conditions. The fabrication, substrate material, and sensor

structure are critical to CNT-IR photodetector reliability which is essential for the transition

from nano science to nano engineering.

• Weak Signal Readout: the electrical properties of CNT IR photodetector are such compli-

cated due to unknown internal structure. The weak signal intensity (nA), bias sensitive (zero

bias) limit the readout design. In this research, the zero bias, high gain, two stage readout is

designed to test the low current to sub nano ampere in CNT based IR detector. Meanwhile,

it also works in CNT based single pixel IR imaging system. Although it works in hundreds

hertz , that is not enough for fast high resolution image recovery. The ultra fast readout

method is still a challenging project in nano electronics.

• IR Compressive Imager & 3D: a compressive sensing based IR camera system was devel-

oped. In the camera system, a single CNT field effect transistor integrated with a photonic

cavity was employed to measure the compressed signals. This camera system was capable

of observing the dynamic movement of a laser spot. The binocular 3D IR camera is also im-

plemented in this system. This camera architecture provides a novel and alternative platform

for future IR cameras, particularly the cameras using nano-photodetectors.

• Compressive Light Field: by taking multiple angular images through coded aperture, we

can use single IR sensor to reconstruct a large object. Synthetic aperture photography will

make the IR focus problem go away and also get 3D imaging using similar optics. The

experimental results show that the more angular images will achieve the larger object re-

covery, better refocus in synthetic aperture photography. The double compressive sensing

reduces the sampling ratio by angular image redundancy. It improves sampling speed with

high accuracy.
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• Non Convex Compressive Video Sensing: the non-convex compressive video sensing has

advantage on the trade off problem between temporal and spatial resolution in video captur-

ing. Besides, it requires very few number of measurements to record a real time dynamic

scene. The non-convex sorted `1 approach has fast convergence to local minimizer and

achieve a high accuracy. The edge detection based denoising reduces the accumulated resid-

ual error on frame difference so as to increase frame rate. Compared with the conventional

compressive video sensing, the proposed `p solver will generate video frame in real time.

This is the first reported real-time single pixel compressive video camera.

• Infrared Super Resolution: the super resolution is a special approach to solve infrared

image low resolution problem. The 2D spline based RKHS model is used for image base

(smooth component) while a modulated heaviside function is applied for image edge. The

super resolution is casted into a model based estimation problem. By computing the co-

efficients of the redundant basis of low resolution image, it was applied as same in high

resolution image for computing. The experimental results show the model is robust and eas-

ily modified with different IR image. The single low resolution image based super resolution

will bring infrared technology into consumer electronics.

8.2 Future Research

There are three parts of future works from infrared sensor and its broadly imaging application.

• Ultra High Sensitivity IR Sensor: the sensitivity is a critical parameter to characterize

infrared sensor. The conventional materials based technology has its limitation on thermal

noise and the noise-equivalent temperature difference (NETD) is more than 20 mK. Another

related parametric value is sensing area which dominates quantum efficiency. The single
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CNT based IR photodetector has such tiny sensing area that it might not applicable for

large area IR imager. Besides, the sensing area also depends on IR wavelength due to light

diffraction. The 2D low dimensional materials, e.g. graphene and graphene derivative (rGO),

Molybdenum disulfide (MoS2), Phosphorene or its hibrid materials, have large area and

good semiconductor performance. They will open a new approach for high sensitivity, high

quantum efficiency IR photodetector.

• Compressive IR Light Field Application: infrared wavelength discovers distinct charac-

teristics of object compared to visible imaging because the material reflection has unique

distribution along whole electromagnetic spectrum especially on material, biology, plants

and animals science. The broad infrared light field includes 3D, general light field and fast

infrared video. These three technology will explore more distinct details for all applications

above. The infrared microscopy together with 3D, light field and fast compressive video is a

promising technology for the cutting-edge research.

• IR Super Resolution: there are two concepts on super resolution in scientific research. The

first is algorithm based in computer science. It increases image spatial resolution from a low

resolution image. The basic idea is to model the target and estimate the high resolution using

signal processing. However, another super resolution is to resolve light diffraction limitation

in optics and science research. The infrared wavelength is sub micro to tens micrometer

so that it is extremely difficult to discover feathers underneath the wavelength. An extra

hardware or firmware is required to increase sampling resolution. This super resolution is

more challenging and more meaningful in microscopy imaging.
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