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ABSTRACT

A METHODOLOGY FOR MATERIAL DESIGN APPLIED TO

POROUS MEDIA WITH FLOW

By

Deep Bandyopadhyay

Two methodologies to design the microstructure of porous materials

are presented in this work. The methodologies are based on shape and

topology Optimization and allow to identify layouts of the microstructure

of a periodic cells using criteria such as maximizing the effective

properties, minimizing the energy losses, or maximizing the mixing of a

dispersed solute. The porous materials studied are made of a mixture of

a heterogeneous solid matrix with its void filled with fluids. There exist

two relevant length scales in the model materials:. a microscale, which is

associated with the pores, and a large scale associated with the overall

part.

The governing equations for the microscale and the large scale are

related through the effective properties. These effective properties are

derived using the theory of homogenization. Expressions derived using

homogenization for effective properties such as permeability, dispersivity

are computed using finite element analysis and validated with

experimental results. Shape and topology Optimization are used to find

the optimal shape and layout of the microstructure.



In shape optimization, an algorithm is developed to find an optimal

shape of the pores in the microstructure for a given criterion for single and

multiphase flow. Three different shapes for the solid region of the

microstructure were analyzed: circular, elliptic and rectangular

geometries. The macroscopic fluid flow and solute transport equations

were solved based of the effective properties computed for the Optimized

microstructure. The velocity and solute fields were compared with those

computed from a microstructure form by square array of identical porosity

as of the Optimized microstructure. The result showed that the optimized

microstructure has a significant improvement in reducing energy loss

during fluid flow and increasing mixing of the dispersed solute.

Topology optimization is then used to design porous media for two

different objective functions: minimizing dissipation power and

maximizing dispersive power. The governing equations were solved using

finite element analysis and the sensitivity is computed using an adjoint

problem based of the approach. The results were evaluated by comparing

the macroscopic fluid flow for the optimal microstructure with the flow

obtained for a microstructures formed by square array with same porosity

as the optimized microstructure.
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CHAPTER 1

INTRODUCTION

1.1 General

A porous medium is a mixture of a heterogeneous solid matrix with its

void filled with fluids (Kaviany, 1991). A porous media has structural

properties such as elasticity, strength and have found numerous scientific

and engineering applications such as those listed in Table (1.1).

The term “porous materials” is usually reserved to materials such as

ceramic, fibers, concrete, or naturally occurring porous rocks. But a

broader use of the term porous media can describe a wide variety of

devices or components. Figure 1.1 shows few examples of porous media

such as heat exchanger (b) (Industrial Quick Search, 2007), material for

micro chip (a) (I-l-IP-O, 2007), filters (c) (Filtration and Separation

Buyers Guide, 2007), and static mixture ((1) (Cleveland Eastern Mixers,

2007).



Table 1.1 List Of engineering disciplines where porous materials are used.

In many instances the microstructure of the porous material has a direct

impact on performance.

 

 

 

Discipline Usage of Porous Material

Agricultural engineering Dealing with drainage and irrigation

Civil engineering Concrete is a porous medium

 

Environmental engineering Groundwater pollution by toxic liquids and

hazardous wastes

 

Chemical engineering Reactors, static mixers

 

Mechanical engineering Layout Of heat exchangers can be modeled

as a porous media and micro channel

cooling

  Biomedical engineering Bones, lungs and kidneys   



 

((1)

Figure 1.1. a-d. Examples of industrial applications of porous media.



1.2 Solute Transport and Fluid Flow in Porous Media

Various approaches have been presented in the literature to derive the

governing equations for fluid flow in porous media and compute the

effective properties. An effective property is a property of a material that

changes with factors such as modification in the micro structure or the

acting boundary conditions, whereas a physical property can be measured

or perceived without changing its identity of the material such as

viscosity, molecular diffusivity.

Some noted works to compute effective properties are self—consistent

methods by Kroner (Kroner 1978), statistical modeling techniques by

Kroner (Kroner 1986), averaging methods by Quintard and Whitaker

(Quintard and Whitaker 1988) and the theory of homogenization by

Bensoussan and Sanchez-Palencia (Bensoussan 1978, Sanchez-Palencia

1980). The last method is used in this work to derive an expression for the

effective properties. Effective properties of any material are computed

from solving and averaging the resulting quantity over the microstructure.

The theory Of homogenization provides a rigorous treatment of multi-

scale problems applicable to numerous differential equations with multi

scale features. It is assumed here that there exists two length scales (micro

and macro) which are very different in magnitude. When applied to derive

the governing equations for porous media, the microstructure is also



assumed to be periodic at the micro scale and homogeneous at the macro

scale.

1.3 Research Approach

The Objective of this work is to develop methodologies for the design

of the microstructure of a porous material. To achieve this, first a review

of previous works done on the mechanics Of single and multiphase flows

and solute transport in porous media is presented. The equations derived

from the theory of homogenization (Bensoussan 1978, Sanchez-Palencia

1980) are used as described by C. C. Mei (Mei 1992) and solved using

various commercial software. The effective properties of the given

material are computed and compared with various experimental and

numerical results. The method of moving asymptotes, as proposed by K.

Svanberg (Svanberg 1978, 2002), is used to find the optimal

microstructure of the porous using shape and topology optimization.

Figure 1.2 shows a flowchart of the research approach. Step by step

algorithms were developed using shape and topology Optimization to

identify a microstructure for a porous media that Optimizes the given set

of conditions such as maximizing dispersion of the solute or minimizing

energy loss for both single and multiphase flow.



 

Define the objective funcron

Define the

design

variables

   

 

   

 

Initial Guess

   

 !

Compute the objective function

. using finite element or finite

difference software's   

Y

Constraints

analysis

 

   

I 

Sensitivity analysis

   

f l

Filtering the

sensitivities

 

   No

I 1

Optimization

with MMA

 

   
l
1

Design

variables

update

 

   

     

 

Termination condition

achieved 7

Yes

1 

Post-processing

   

Figure 1.2 Flow chart providing an overview of the methodology.



1.4 Material design techniques

Shape and topology optimization techniques are used to determine the

shape and layout of the solid region. Figure 1.3 shows examples of shape

and topology optimization. Here shape optimization (Figure 1.3a) is used

to find the optimal shape of the holes to avoid stress concentration under

given load (Jorgen 2003, Sigmund 2000). Topology optimization (Figure

1.3b), on the other hand, is a layout optimization, which gives an optimal

layout to avoid stress concentration under given load.

Shae Ortimization

 

 
(b)

Figure 1.3. a-b. Examples of (a) shape optimization and (b) topology

Optimization from (Jorgen, 2003).



The algorithm for shape Optimization tries to find an optimal shape

from a given family of shapes, which will maximize or minimize the

given Objective function. The design variables are mainly the dimensions

of the periodic cell and the solid region such as the radius for circular

cross section, major and minor axis for elliptic cross section, and length

and height for the rectangular cross section.

Topology optimization, on the other hand, mainly focuses on the

layout Of the fluid and the non-fluid region. The domain is divided into

small domains called “pixels” and for each pixel the design variable p

controls the local permeability of the medium as follows:

( ) 0if xe SolidRegion (1-1)
x =

'0 lif xe Fluid Region

For a given domain and boundary condition the algorithm tried to find the

optimal layout of the solid and fluid region, which maximizes or

minimizes the given Objective function.

1.5 Dissertation layout

The layout of this dissertation is as follows:

In chapter 2 and 3, existing theories on fluid flow and solute transport

in porous media are presented along with expressions for the effective

properties of a porous material for single phase fluid flow and solute

transport in porous media. The governing equations are solved using the

finite element method and compared with experimental results.



Chapter 4 presents my findings for the optimal microstructures Of

porous media that maximizes the effective properties such as permeability

and dispersivity. Shape optimization is used.

In Chapter 5 I try to find the Optimal microstructure for porous media

using shape optimization that maximizes dispersion while minimizing

energy loss.

Topology optimization is used to find the nricrostructures for two

objective functions: minimizing dissipation power in Chapter 6 and

maximizing “dispersive power” in Chapter 7.

In chapter 8, I review the theory for multiphase flow in porous media

and solve the governing equations using finite differences to find the

optimal microstructure that will minimize dissipation power or energy

loss for multiphase fluid flow using shape optimization. It is to be noted

however that this problem is mathematically identical to the single phase

flow problem as presented.

Finally, in Chapter 9 I summarize and discuss the results Obtained

from various Optimization techniques shown in the previous chapters



CHAPTER 2

THEORY FOR SINGLE PHASE FLUID FLOW IN POROUS

MEDIA

2.1 Introduction

The fluid flow in this work is assumed to be incompressible and non

turbulent. The theory of homogenization, introduced by Bensoussan and

Sanchez-Palencia (Bensoussan 1978, Sanchez-Palencia 1980), provides a

general framework for deducing both the macro scale equations and the

effective properties for the dynamics of rigid porous media. The main

assumption in this theory is that there exist two well—separated length

scales: the micro scale =O(x) and macro scale LzO(X),

where l/L = 8 <<1. In this study the porous macrostructure is assumed to

be homogeneous consisting of periodic micro cells having distinct solid

and fluid regions. Figure (2.1) shows the microscopic length scale for

different naturally found porous media.
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Figure 2.1 Schematic showing the particle pore diameter for porous media

from (Kaviany 1991).
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2.2 Derivation of Effective Permeability Tensor

The macroscopic domain (9 ) as shown in Figure 2.2 (a) is assumed to

M

be homogeneous with periodic microscopic cells (9m) as shown in

Figure 2.2(b). The periodic cell has two distinct regions: a solid region

(9s) and a fluid region (52) such that Qm=quflf

f

and as m!) = 0. The interface between the solid-fluid in each periodic

f

cell is F51 and the interface between two periodic cells is denoted by Fee“.
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Figure 2.2. Schematic of a porous material (9M ) in (a) made of an

assembly of periodic microscopic cells (Om) (b). The interface between

the solid-fluid in each periodic cell is F31 and the interface between two

periodic cells is denoted by I‘ceu.



For a rigid porous medium with incompressible Newtonian fluid of

constant density, the governing equation for the fluid flow is Navier -

Stokes equation (Mei 1991a, 1991b, 1992).

2 (2.1)
pV u—szpfu-Vu in “f

and V-u=0 in (If (2.2)

where is u is the velocity, p is the pressure, p is the dynamic viscosity of

the fluid and pf is the density of the fluid.

The boundary condition on the solid — fluid interface is the no slip

boundary condition given by

u = Corr [“3 (2.3)

I

For a low Reynolds number flow, the left hand terms in equation 2.1 are

equally important. Since there are two different scales, the pressure term

has two contributions: the global applied pressure which has the length

scale L and the local pressure variation due to the rrricrostructure which

has the length scale 1. For generality, let there be two comparable pressure

gradients. Then the global pressure must be much greater than the local

pressure by the factor 0(l/s). These two pressure variations are referred as

the driving pressure (global) and responding pressure (local) (Mei, 1992).

The multiple scale coordinates x (small scale) and X (x=aX where X is

the large scale) are introduced to relate the micro and macro length scale

14



respectively. In order to relate the vector and scalar quantities at different

scales, asymptotic expansions for u and p are used as follows

u=u(0) +5110) +£2u(2) +£3u(3) +... (2'4)

p: pm) +1510(1) +£2p(2) ”apes +... (2.5)

where u(0),u(l),u(2) and p(0), pa), p(2)... are 9m -periodic and e is

small parameter (the ratio of the small scale over the large scale). The

. 0 1 . . .
superscripts ( ), ( ) ...denote terms assocrated With a corresponding power

. O 1 . . . .
of e, 1.6. s , s m the asymptotic expansrons. The gradient operator

related the two length scales as a function of sis given as (Mei, 1995)

V = Vx + eV (2.6)

X

where the subscripts x and X represent the small and large scales

respectively.

Substituting the gradient operator and the perturbation expansions for u

and p in the Navier-Stokes equation and the incompressibility constraint,

then

2
2.7

”(VxT‘VX)(“(0)+£u(1)+£2u(2)+£3u(3)+...)—
( )

(Vx +eVX )[p(0) +£pa) +£2p(2) + €3p(3) +...) =

p(u(0) + sum + £2u(2) + £3u(3) + ...)(Vx + EVX )

(“(0) + sum + 8211(2) +€3u(3)) in Of
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and (Vx +eVX )-(u(0) +aufl) +£2u(2) +£3u(3) +...) = Oin (2'8)

“f

From equation 2.7 and 2.8, keeping terms Of 0(80) then the following

problem is identified

2 (0) (1) _ (0) ° (29)
pVx u —pr ..pr m (If

and V «(0) :0 in Q
(2.10)

x f

(0)
In Equation (2.9) p is the global pressure applied in the macroscopic

(1)-
scale, whereas p rs the local pressure and varies in rrricroscale only.

The needed no slip boundary conditions are derived by substituting the

asymptotic expansion of u in equation (2.3) as

“(0) == 11(1) = ...... = 0 on F (solid fluid interface), (2'1 1)

(0) (1) (2.12)
11 ,u andp

(0) )
,p(1 are Q -periodic.

m

“(0), p0) and p(0) can be written in dimensionless formfim), pa)

and [3(0) related by fi(0)=u(0) l<u(0)>, [3(1) =p(1)/ P and

[3(0) = pm) /P , where P is the characteristics pressure. The length scale x

and X are sealed with characteristic macroscopic length L. Equations (2.9)

and (2.10) can be written in dimensionless form as follows,

16



2.13fl@w» ( )

PL szfi(0) -Vxfi(1)=vx fi(0) in Qf

and Vx 43(0) :0 in Q
(2.14)

f

”@m»

where __ is a dimensionless number.

PL

Equation (2.9) relates the microscopic fluid flow with the macroscopic

pressure gradient. The two terms on the left hand side of equation (2.9)

are depended on the small scale where as the right hand side term

(
V pan is a function of large scale. Assuming that u 0) and pm depends
X

on the large scale pressure gradient, “(0) and pm can also be expressed in

terms of pm) from Darcy’s equation as described by (Benssoussan et a1,

1977, and Mei 1991a)

um) =-U-VXp(O) in of (2'15)

And

. 2.
p(1)=a-VXp(O) ran ( 16)

where U is the characteristic velocity tensor and a is the characteristics

pressure tensor obtained from the solution of

17



,quZU—an :1 in Of (2.17)

and

v .U=oin§2 - (2.13)

x f

The domain is the periodic cell and the boundary conditions applied are

no slip condition at the solid liquid interface and periodic boundary

conditions for U and a on Of. U and a in dimensionless form can be

written as 0 and a related by U :U/(Lzlfl) and fi=a/L, where L is the

characteristic macroscopic length. The length scale x and X are scaled

with characteristic macroscopic length L.

v 20—v 5:1 in n (2.19)

x x m

and

.‘ .. ' 2.2Vx 0.0 m 52m ( 0)

The effective permeability of the porous media is computed from

K =y<U> in QM (2.21)

where the averaging operator is defined as

(r) = —1— j ran (2.22)
O Q m

m f

and in dimensionless form,

K = (u) m OM (2.23)
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Equations (2.8 - 2.9) and Equations (2.19 — 2.20) are similar yet different

in many ways. In Equations (2.8 - 2.9) the solution for “(0) depends on the

boundary conditions applied on the macroscale (macroscopic pressure

gradient) and the microstructure whereas U is independent of the

macroscopic boundary conditions. Also for a computed value of U, “(0)

can be computed from equation (2.16). It is convenient and

computationally faster to solve equations (2.8 — 2.9) when flow

parameters such as “(0) andpm are of primary focus. On the other hand if

one needs to compute the effective permeability it is convenient to solve

Equations (2.19-2.20) as shown below.

2.3 Computation of Effective Permeabllity Tensor

In this section, the commercial software Comsol® is used to solve the

characteristic velocity equations (2.20) and (2.21), for a given

microstructure of dimension 0.002m with circular solid region Of radius

0.00062m. The domain was discretized using unstructured triangular

. . -5 .
mesh wrth an average element srze of 4c and 18 shown much further

below in Figure 4.2. The physical properties of the fluid are taken as

dynamic viscosity )2 to be 0.001 Pa.s, density of fluid pf tO be 1000

Kg/m3. The effective permeability is computed from Equation (2.22).

19



Figure 2.3 shows the longitudinal permeability for a square

2
microstructure in m. The effective permeability computed for the

l E

microstructures shown in Figure 2.3 is K=3.9(10_5)[€ 1"]m2,

c

where EC = 4.07(10"3 ). When compared with the intrinsic permeability

calculated from Kozeny-Carmen equation (Bird et al. 2001) , the results

are in reasonable argument. The intrinsic permeability is given by the

Kozeny — Carmen equation is given as

"2 (2.24)

k =—

kc 233

where n is the porosity and s is the specific surface which is expressed as

the ratio of the pore surface area to the total volume of the periodic cell.

From Equation (2.24) the intrinsic permeability computed for the

. . . -12 2 . . .

microstructure mentioned above rs kkc = 1.78(10 ) m . Permeability 1s

related to the intrinsic permeability not only on the viscosity but also on

the density of the fluid at the temperature of measurement by kk —_.

C

From the above equation the permeability if computed as kkc = 1.75(10'5)

m2 which is comparable with the results Obtained using Equations 2.20

and 2.21. Since the axial velocity is directly proportional to the

longitudinal permeability, Figure 2.3 also shows the contour for axial

velocity for an applied pressure.
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Figure 2.3 Contour plot of the distribution of the longitudinal component

of the permeability tensor (qu) for round cylinder in a square periodic

domain. The results are presented in m .
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CHAPTER 3

THEORY FOR SOLUTE TRANSFER IN POROUS MEDIA

3.1 lntroductlon

In many applications of porous media such as static mixers (solute

transport), heat exchanger (heat transport), material for microchip (heat

transfer), the dispersion of a solute or heat transfer is of critical

importance. Since the governing equations for solute transport are often

similar to the equations for heat transfer, the scope Of the work applies to

both solute and heat transport in porous media.

In this chapter, the governing equation for dispersion of solute in

porous media are presented using the theory of homogenization. As

discussed in the previous chapters, the theory of homogenization, as

introduced by Bensoussan et al. and Sanchez-Palencia (Bensoussan et al.

1978, Sanchez-Palencia 1980), provides a general scheme for deducing

both the macro scale equations and the effective properties for the

dynamics of rigid porous media.

3.2 Derivation of Effectlve Disperslon Tensor

In the analysis below, the macroscopic domain (.0M ) as shown in Figure

3.1 (a) is assumed to be homogeneous with periodic microscopic cells

22



(52m) as shown in Figure 3.1(b). The periodic cell has two distinct

regions: a solid region (9.3) and a fluid region (Q ) such that

f

Qm =98 U52 andQs an =0. The interface between the solid-

f f

fluid in each periodic cell is F81 and the interface between two periodic

cells is denoted by FCC“.
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Figure 3.1. Schematic of macrostructure ( QM ) (a) consisting of periodic

microscopic cells (9," ) (b). The interface between the solid-fluid in each

periodic cell is 1‘51 and the interface between two periodic cells is denoted

by Feell-
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The governing equations for the solute transport in porous media at the

macroscale can be derived using theory of homogenization and the

presentation of (Mei and Auriault 1989, 1991) is followed below.

For solute transfer, the governing equation for the volumetric

concentration c of the solute in the fluid region can be expressed as

g

a:

+(u)-Vc=V-[D-Vc] in Of (3.1)

where (u) the average velocity, t is time and D is the molecular

diffusivity of the fluid.

The asymptotic expansions for c and u are given as

u =u(0) +6110) +£2u(2) +£3u(3) +... (3'2)

c=c(0) +ac(1) +€2c(2) +£3c(3) +... (3'3)

where u(0),u(1),u(2) and C(O),c(1),c(2)... are (2", -periodic and e is

small parameter (the ratio of the small scale over the large scale). The

superscripts (0), (”...denote terms associated with a corresponding power

. 0 l . . . . .

of 8, Le. a , s 1n the asymptotic expansrons. The gradient operator In

terms of the two length scales is

V=Vx+eVX (3.4)

25



where the subscripts x and X represent the small and large scales

respectively.

Substituting the differential term and expansion for c and u in volumetric

concentration equation,

3c((0)+€C(1)+£2c(2)+£36(3).) (3.5)

+ 

a:

<(u(o)£u+£u(I)+ 8211(2) +£‘311(3)+...)>-(VJr +NX )

(C(O)+£c(l)+£2c(2)+£3c(3)+.")=(Vx +£VX')

[D-(Vx+£VX)(c(O)+.¢:c(l)+€2c(2)+£3c(3)+.NJ] in Of

Equating the terms at orders from C(80) and 0(8') for steady state

condition, then a zeroth and first order problems can be identified

0(a)); “(0V do) =W 26(0) (3.6)
x x

003'): u(0)V C(1)+u(1)V C(0)+u(0)v J0) = (3.7)
x x X

DV (v c(l)+v C(O))
x x X

Following (Mei and Auriault 1989, 1991) cm can be expressed as a

function Of the macroscopic gradient of cm) with the proportionality

function N as

(l) =_N,ch(0) in am (3.8)

N is further described as any periodic vector satisfying the following

equations

26



Vx(D(I+Vx.N»—u(0)v
x .N=u(0) —<u(0)>/n in am (39)

where n is the porosity, and

II+V -N)-n=0 on 1".

x (3.10)

Nis QM -periodic and (N>=0.

From Equation (3.9) it becomes clear that N depends on the fluctuating

component of “(0) (“(0) - <u(0)>/n ). Substituting the expression for c“)

from Equation (3.8) in Equation (3.7) and reorganizing the terms, then

(u)-V c‘°’=VX-lD-ch‘°’Jin OM (3.11)
X

where (u) =<u (O)>+<u (l)> and for weak inertia flow (where the

inertial force term is negligible) (um) == 0 (Mei and Auriault 1991). The

solution for cm) is Obtained by solving the macroscopic problem.

D is the effective dispersion tensor (Mei 1992) expressed as

D: D(z) in 12 (3-12)
m

where Z is “characteristic dispersivity tensor” given as,

T (3.13)

z:(l(v N+V NT)+I)-l[(u(O)N)+(u(O)N) Jinn
2 x x 2 m

The domain for Z is the periodic cell and the boundary conditions are

that of no slip on F5, and on the outer boundary 852m of an Qm -cell, the

27



boundary condition is

n-[VXcU—1)+VXC(1))=oon rm, (3-14)

where l is an integer used to represent the relevant scales, and C“) = 0

and C0) is Q", —periodic and the vector n denotes the normal vector to

0(0), 11 and D can be written in dimensionless form 5(0),1‘r and D

related by 6(0) = 6(0) / C , fi = u /<u (0)> and I) = D/ D. Equation (3.10) can

be written in dimensionless form as

<11 (0)>L (3.15)

. -0 e .0 '_D___<u>,vxc( )=VX.[D.VXC()]1n QM

<.. ‘°’>Lwhere __ is a dimensionless number.

D

It can be noted that in equation (3.11) the volumetric concentration

equation is expressed over the macroscopic domain whereas the terms in

the dispersion is defined in the microscopic domain. Hence it can be said

that the solute transport in the macroscopic domain strongly depends on

the microstructure of the porous media.
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3.3 Computation of Effective Disperslon Tensor

In this work, the commercial software Comsol® is used to solve using

finite elements the effective dispersion tensor given by Equation (3.11) for

given boundary conditions and geometry as shown in Table (3.1) and

Figure (3.2).

In the following examples, I (h = l) is the length Of the microscopic

cell and L (H=L) is the macro-scale domain length. The fluid properties

are the viscosity [1 and density pf . A macroscopic pressure gradient is

applied along the horizontal direction. Each periodic cell is identified by

the geometric parameters such as I, h, a, b, and 6 where l is the cell

length, h is the cell height, a is the major axis or length of the solid region,

b is the minor axis or height of the solid region, and 0 is the angle between

I and h in each cell.

Examples shown in this section limits 0 to 90° to represent a square

array. Given the physical properties and the values of a and b (major and

minor axis), equation (3.11) is solved to obtain the effective dispersion

tensor. The longitudinal (along the flow direction) effective dispersion

tensor (Dxx) for two-dimensional, spatially periodic, arrays of circular

cylinders is calculated over a range of Peclet number.

The Peclet number is a dimensionless number which relates the rate of

advection Of a flow to its rate of solute or mass diffusion or thermal

diffusion. For thermal diffusion it is equivalent to the product of the

29



Reynolds number with the Prandtl number, and the product of the

Reynolds number with the Schmidt number in the case of mass diffusion.

For mass diffusion Peclet number can be computed from

(u)dp n (3-6)

where dp is the “equivalent particle” diameter, (11) is the intrinsic volume

average velocity in the direction of the pressure field,n is the porosity.

For thermal diffusion the molecular diffusivity term D is replaced by

thermal diffusivity. The longitudinal effective dispersion tensor calculated

using homogenization method is compared with experimental (data taken

from Buyuktas 2003) and numerical (Edward 1991) results and shown in

Figures (3.3) and (3.4).
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I

Figure 3.2 Schematic of a periodic microscopic cells. Dimensions of a, b,

l, h are tabulated in Table (3.2) for a typical cells. “a” is the only

parameter used in the optimization of a cylinder.
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Table 3.1 Parameters corresponding to the geometry shown in Figure

(3.2) and which are used in the solution of the dispersion tensor

 

 

Symbol Value Unit

1/h l [-1

UL 0.002 [-I

a/b 1 [-l

n 0.8 and 0.4 H

AP/L 1 Nm-3

77 0.001 Pa-s

L 1 m
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Figure 3.3 Comparison of dimensionless longitudinal effective dispersion

tensor measured through experiments (data taken from Buyuktas and

Wallender 2004) with numerical results Obtained in this work using

homogenization for a porosity of 0.8.
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Figure 3.4 Comparison of dimensionless longitudinal effective dispersion

tensor measured through experiments for a cubic array of a porosity 0.43

(Gunn and Pryce 1969) and numerical simulations obtained with square

array of particles of porosity 0.4 (Edwards et al. 1991) with results

obtained in this work using homogenization.

34



Figure (3.3) shows the relative agreement of the results obtained using

homogenization method with various experimental results. Discrepancies

with the experimental results are attributed to the fact that the experiments

were done with disordered particles; whereas, this work is done using an

array of particles equally spaced with periodic boundary condition. Also

in homogenization, it is assumed that the Peclet number is of the order of

1 (low Reynolds number flow); and, hence, some significant variations

with experimental results for higher Peclet number are expected.

This can be further compared with the numerical analysis based on

Taylor dispersion theory as shown in Figure (3.4). In Figure (3.4), some

discrepancies are Observed with the experimental data (Gunn 1969). The

disagreement between the present result and those of the experiments is

due to the fact that their data from the experiments are for a three-

dimensional cubic array; whereas, the present work is for two-

dimensional, spatially periodic arrays of circular cylinders.

From the above comparison it appears that homogenization provides

very reasonable values for the dispersion tensor for a Peclet number Of

order one.

35



CHAPTER 4

DESIGN OF POROUS MEDIA USING SHAPE OPTIMIZATION

TO OPTIMIZE EFFECTIVE PROPERTIES

4.1 Introduction

Shape optimization is a well established method for design. Here the

problem is applied to material design and posed in such a manner that the

algorithm may find an optimal shape of the pores in the microstructure

that will optimize the effective properties. The optimization problem is

cast in the fashion of a standard shape optimization problem where

various shapes described parametrically are studied. The Method of

Moving Asymptotes as proposed by Krister Svanberg is used for

Optimization. The derivatives of the objective function with respect to the

design variables were computed using finite difference. The governing

equations needed to solve the effective properties were derived in

Chapters three and four and are solved using the finite element method.

4.2 Identifying the Periodic Cell

In the analysis, the macroscopic domain (QM ) is assumed to be

homogeneous with periodic microscopic cells ( 52m ). The microscopic

cell has two distinct regions: a solid region ((23) and a fluid region (9f)
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such that Qm=quQ andQSnQ =0. P, l and L are the

f f

characteristic pressure, micro length and macro length scales. Two scales

are introduced: a small scale (xz 0(1)) and a large scale (X z0(L)).

Both scales are related by X = x/e.

The homogeneous macroscopic domain shown in Figure (4.1) is

formed of periodic microscopic cells as shown in Figure (4.2) and Figure

(4.3). Each cell geometry is identified by the following parameters: 1, h,

a, b, and 6. L is the cell length, h is the cell height, a is the major axis or

length Of the solid region, b is the minor axis or height of the solid region,

and 6 is the angle between I and h in each cell. Three different shapes for

the solid region such as circle (a = b), ellipse (Figure (4.2)), and rectangle

(Figure (4.3)) are considered below.
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Figure 4.1 Schematic of of the arrangement of the cells in the macroscopic

domain studied consisting of periodic microscopic cells as shown in

dashed line.
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Figure 4.2 Schematic of periodic microscopic cells with an elliptic solid

region.
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Figure 4.3 Schematic of periodic microscopic cells formed from a

rectangular solid region
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4.3 Formulation of the optimization problem

The aim is to find a microstructure of the periodic cell that maximizes

some function of the effective properties with the added constraint of

volume fraction using shape optimization. In the following section, the

Objectives functions are presented.

4.3.1 Maximize effective permeability

Filters constitute of the common applications of porous. It is common in

such an application to be concerned with the pressure drop across the filter

media. Hence the motivation behind the work in this section is to design a

porous media that maximize the permeability for a given porosity or

volume fraction of solid i.e. to seek a periodic cell that maximizes the

permeability with isotropic flow symmetry as proposed by Guest (Guest

2007) for a given porosity or volume fraction of solid. The rrricrostructure

is modified such that the fluid in a porous media only flows in the

direction of the applied pressure gradient, and hence follows a reduction

in the loss of energy in fluid flow.

The isotropic effective permeability is defined as

kI=K in (2 (4.1)

m

The complete formulation of the optimization problem is stated as

follows:

Find the Optimal value of6, l, a and b for a g fixed of h, that will
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maximize: Isotropic Effective Permeability

where isotropic permeability is expressed as k - 8

Here k and 8p are computed from

i=1. i K- ‘4'”
21' =1 ”

and

. (1)1 2 (K -K )2 . g i (K )2] ‘4'”
p k i=1 ii (i+1)(i+1) i=1j=2 ij

where K1] is computed from equations (2.18).

subjected to: volumetric and geometric constraints

Constraint 1: 53—S- 2 V

9" fiac (4.4)

Constraint 2: a (é

hsin 0
Constraint 3: b < 

where Os is the volume of the solid region, Om is the total volume of the

cell, and mec is value (0<mec<l) specifying the minimum solid volume.

The first constraint in equation (4.4) restricts the minimum volume of

solid region to mec. The next two constraints are imposed to insure the

continuity of each phase.
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4.3.1.1 Example Problems

This section shows examples of shape optimization that maximizes

effective permeability as described in section 4.3.1. The solutions were

Obtained by casting the problem in the fashion of a standard shape

optimization problem. The derivatives of the objective function with

respect to the design variables were computed using a forward finite

difference method as shown below,

3013i __ Objdv + &lv — Objdv (4'5)

adv - (ilv

  

where “Obj” is the objective function and “dv” is the design variable. The

derivatives of the constraints with respect to the design variables were

computed analytically. The objective function was computed by solving

the governing equations for the effective properties using the finite

element method. The domain was discretized using approximately 6000

. . . . -5

triangular elements in an unstructured mesh wrth an element srze of 4c

m as shown in Figure (4.4).
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Figure 4.4 Schematic of the unstructured triangular mesh used for finite



The Method of Moving Asymptotes (MMA) is used for optimization.

The results shown in this section are all for a limiting volume fraction of

0.3 and fixed value of 0.002 m for h. The physical properties of the fluid

are taken as dynamic viscosity it to be 0.001 Pas, density of fluid pf to be

1000 Kg/m3. The dependence of the step size and initial conditions in the

Optimization algorithm were verified by varying it for two different cases.

For case 1 the step size is set to 0.1 and an initial aspect ratio is 1, radius

(major axis, minor axis) set to 5x104m and 0 value to 90°. For case 2 the

step size is set to 0.5 and an initial aspect ratio is 1 (fixed height of

0.002m), radius (or major axis, minor axis) set to 7x104m, and 6 value to

90°. The iteration history for the different cases are shown in Figure (4.5 —

4.7) for circular, elliptic and rectangular solid regions.
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Figure 4.5 Graph of the iteration history for circular solid region with

varied step size and initial conditions.
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Figure 4.6 Graph of the iteration history for elliptic solid region with

varied step size and initial conditions.
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The optimal microstructure of the porous medium for the desired

objective function to maximize isotropic effective permeability as

discussed in section 4.3.1 for volume fraction of 0.3 for solid region is

shown in Figure (4.8). The dimensions of the microstructures are shown

in Table (4.1).
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Figure 4.8. a—c. Schematic of the optimal periodic cells obtained after

Optimization. Dimensions of the periodic cells are shown in Table (4.1)
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Table 4.1 Dimensions of the microstructures shown in Figure (4.8)

Figure (4.8) l/h a/h b/h l9

 

  

 

 

(a) . l 0.31 89.6

(b) 0.65 0.19 0.33 89.6

(c) 1.07 0.25 0.28 89.6
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The effective permeability computed for the microstructures shown in

Figure (4.8) a, b and c are;

1 e 1 e

K = 3.9(10‘5)[£ C]m2, K = 2.5(10‘5)[‘E e]m2 and

C

r

1 e

K=3.5(10‘5)[£ ']m2

where ac = 407(10‘3), 2e = 222(10‘3), and er =1.35(10‘ 3)

respectively. Figure (4.9) shows a contour of the distribution of

longitudinal permeability (uUjl). It is observed in Figure (4.8) that the

nricrostructure forms a square array for both the cases with circular and

rectangular microstructure. Among the three microstructures, the circular

microstructure gives the maximum effective permeability; but the

diagonal terms of the permeability tensor are considerably higher than the

other microstructures. Overall, the microstructure with rectangular solid

region shows the best result. This may be due to the fact that it can be

considered as a flow in a channel. It can be noted that for a given pressure

gradient the velocity will have similar profile as the longitudinal

permeability.
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Figure 4.9. a-c. Schematic of distribution of longitudinal permeability

(”U1 1) for microstructures shown in Figure (4.5)
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4.3.2 Maximizing the effective dispersivity

Dispersion of a solute can be of importance for applications involving

reactors. The governing equations for solute transport are similar to the

equation for heat transfer.. Industrial examples of solute or heat transport

in porous media include static mixers (solute transport), heat exchanger

(heat transport), and material for microchip (heat transfer). For numerous

applications it is important how to disperse the solute or heat as fast as

possible. In this section, the optimization algorithm seeks a periodic cell

that maximizes the dispersion tensor. Maximizing the dispersion tensor

maximizes the solute or heat transfer. The objective function is posed in a

manner such that the algorithm also finds the required pressure gradient to

maximize the isotropic dispersivity, which can be defined as

d! = D (4.6)

The complete formulation of the optimization problem is stated as

follows:

Find the optimal value of6, l, a, b V (O) and V (0) for a
X” 1'”

given value of h, that will

maximize: Isotropic Effective Dispersivity

where isotropic effective dispersivity is expressed as d — 8d

Here d and 8d are computed from
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1 2 (4.7)

d=— z 0..
2i=1 U

and

1 2 I 2 2 1 2 (4-8)

€d=(2) i§1(Dii‘D(i+1)(i+1)) +i§le2(Dij)

Dij is computed from solving equation (3.12).

subjected to: volumetric and geometric constraints

(2 (4.9)

Constraint 1: —i 2 V

m frac

Constraint 2: a < .1—

2

Constraint 3: b <M

where Os is the volume of the solid region, Om is the total volume of the

cell, and mec is value (0<Vf,ac<l) specifying the minimum solid volume.

The first constraint in equation (4.9) restricts the minimum volume of

solid region to mec. The next two constraints are imposed to insure the

continuity of each phase.

4.3.2.1 Example Problems

This section shows examples of shape optimization that will maximize the

dispersivity as descried in section 4.3.2. The solutions were obtained by

casting the problem in the fashion of a standard shape optimization
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problem . The derivatives of the objective function with respect to the

design variables were computed using forward finite difference method as

shown below,

301))“ = Objdv +a1v —Objdv (4.10)
 

adv (ilv

where “Obj” is the objective function and “dv” is the design variable. The

derivatives of the constraints with respect to the design variables were

computed analytically. The objective function was computed by solving

the governing equations for the effective properties using the finite

element method. The domain was discretized using an unstructured

. . . -5

triangular mesh wrth 6000elements of an average srze of 4c in as shown

in Figure (4.4) Thee Method of Moving Asymptotes (MMA) as proposed

by Krister Svanberg is used for optimization.

The results shown in this section are all for a limiting volume fraction of

0.3 and fixed value of 0.002 m for h. The physical properties of the fluid

are taken as dynamic viscosity [1 to be 0.001 Pa.s, density of fluid pf to be

1000 Kg/m3, molecular diffusivity D set to 10.9 m2/s. The dependence of

the step size and initial vale were in the optimization algorithm were

verified by varying it those for two different cases. For case 1 the step size

is set to 0.1 and initial aspect ratio is 1 (fixed height 0.002m), radius (or

major axis, minor axis) set to 5x104m and 0 value to 90°. For case 2 the
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step size is set to 0.5 and initial aspect ratio is l, radius (or major axis,

minor axis) set to 7x104m and 0 value to 90°. The iteration history for the

different cases are shown in Figure (4.10 - 4.12) for circular, elliptic and

rectangular solid region.
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Figure 4.10 Graph of the iteration history for circular solid region with

varied step size and initial conditions.
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Figure 4.12 Graph of the iteration history for rectangular solid region with

varied step size and initial condition.
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The optimal microstructures of the porous medium for the desired

objective function to maximize isotropic effective dispersive as discussed

in section 4.3.2 for volume fraction of 0.3 are shown in Figure (4.13). The

dimensions of the microstructures are shown in Table (4.2).
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Figure 4.13. a-c. Schematic of the optimal periodic cells obtained after

optimization with dimensions tabulated in Table (4.2)

62



Table 4.2 Dimensions of the rrricrostructures as shown in Figure (4.13)

 

Figure (4.13) l/h a/h b/h a

  

 

 

(a) 0.94 0.30 79.3

(b) 1.07 0.33 0.31 73.4

(c) 1.18 0.33 0.27 87.3
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0

. . V X p( ) —1 3

The optimal pressure gradients computed are (0) = 0 9 N/m ,

V p T '

Y

(0) V (0)
- -

v p(0) —0.5 I "I H" -0.4
] N/m3 for Figure

Y

(4.13) a, b, and c respectively. The effective dispersion tensor computed

for the periodic cell shown in Figure (4.13) a, b, and c are

D =1.5(10 ) C m /s, D = 1.6700 ) e m /s and
ac 1 are 1

-3 1 a 2
D =1.33(10 ) r m /s

ar 1

where ac = 2000‘ 2), are =1.80(10" 2) and ar = 602(10‘ 2)

respectively.

One notable observation made from Figure (4.13): the angle between

the length and the height goes to a lower value for circular and elliptic

cross section. But for a rectangular cross section, the 0 value approaches

90. This complements the previous argument that it forms a channel flow;

and hence, it requires a comparative smaller pressure gradient to optimize

the dispersion tensor, which is of the same magnitude of the other micro

structures.



Figure (4.14) shows a contour of the distribution of the longitudinal

component of the dispersion tensor (Zn) in m2/s. It can be noted from

Figure (4.14) that the longitudinal term in the dispersion tensor is high in

the horizontal direction, hence higher solute or heat transfer in the given

direction. Figure (4.15) shows the velocity vectors which are periodic in

nature.
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Figure 4.14 a-c. Schematic of distribution of longitudinal dispersivity

(21 1) for microstructures shown in Figure (4.7)



(a)

(C)

Figure 4.15 a-c. Schematic of velocity for microstructures shown in

Figure (4.7)
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4.4 Discussion

In this chapter a methodology to find the optimal microstructure for

two different conditions; maximize effective permeability and effective

dispersivity using shape optimization.

Attempts are made to maximize the effective properties by modifying

the shape of the periodic cell. The magnitude of effective permeability

computed is comparable to the work done by Guest and Prévost (Guest

2007). It is observed in Figure (4.8) that the microstructure forms a square

array for both the cases with circular and rectangular microstructure.

Among the three microstructures, the circular microstructure gives the

maximum effective permeability; but the diagonal terms of the

permeability tensor are considerably higher than the other microstructures.

Overall, the rrricrostructure with rectangular solid region shows the best

result. This may be due to the fact that it can be considered as a flow in a

channeL

In the next optimization example, the effective dispersion tensor is

maximized. Here we try to maximize the effective property not only by

modifying the shape of the periodic cell but also by finding the

appropriate boundary condition. One notable observation made from

Figure (4.13) is that the angle between the length and the height goes to a

lower value for circular and elliptic cross section. But for a rectangular

cross section, the 0 value approaches 90. This complements the previous
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argument that it forms a channel flow; and hence, it requires a

comparative smaller pressure gradient to optimize the dispersion tensor,

which is of the same magnitude of the other micro structures.

Finally, it can be concluded from the examples that a small change in

geometry changes the effective properties significantly.
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CHAPTER 5

DESIGN OF POROUS MEDIA USING SHAPE OPTIMIZATION

TO MAXIMIZE “DISPERSIVE POWER” AND MINIMIZE

DISSIPATION POWER

5.1 Introduction

A porous medium may have to satisfy more than one desired criteria

and such problem is studied in this chapter. The desired criteria studied

are maximizing the “dispersive power” and minimizing the dissipation

power. The possible applications for such a medium include a static mixer

(fluid flow and solute transfer), a heat exchanger (fluid flow - heat

transfer), where the objective is to mix or disperse the solute (or heat)

with minimum energy loss.

The problem is cast in the fashion of a standard shape optimization

problem where various shapes described parametrically are studied. The

periodic cells are defined in similar manner as described in Section 4.1.

5.2 Optimization of “dispersive power” and dissipation power

The topic of interest of this section is to find a microscopic geometry

that will minimize the dissipation power while maximizing “dispersive

power”.
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Two different approaches were taken to find the optimal

microstructure that minimize dissipation power and maximize dispersive

power. In the first approach the pressure gradient was fixed and in the

second approach the pressure gradient was kept as a design variable. The

motivation behind two separate approaches was to understand the effect of

the pressure gradient on microstructure in dispersion of fluid.

The complete formulation of the optimization problem for first approach

is stated as

Problem definition 1:

Find6, l, a and b for a given value of h, vX pm) and V pm) that
Y

will

minimize: 3dissipation — 3dispersive

The complete formulation of the optimization problem for second

approach is stated as

Problem definition 2:

Find 6, l, a, b VX pm) and VYp(O) for a given value of h, that will

mimmrze: SSdissipation — Sdispersive

71



 

Optimization algorithm MMA always minimize the objective function

and since we are interested in minimizing 3 d
dissipation an

“'8. .,wi ntivsi frisrivmaxrnrrzrng disperszve e ncludea ega e gnbeoed pes e

power term.

subjected to: volumetric and geometric constraints

Q

Constraint 1: —s 2 V

9 frac
"I

Constraint 2: a (é (5.1)

hsin6
 Constraint 3: b <

where Os is the volume Of the solid region, Om is the total volume of the

cell, and mec is value (0<Vf,ac<l) specifying the minimum solid volume.

The first constraint in equation (5.1) restricts the minimum volume of

solid region to mec. Constraints 2 and 3 are imposed to insure the

continuity of each phase.

disipation is the normalized value of dissipation power (Borrvall

2003). An expression for the dissipation energy for the fluid in the unit

cell is derived from a mechanical energy balance. This is obtained by

multiplying equation (2.9) with 1"”), where Va” is any weighted periodic
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velocity satisfying equation (2.10) and boundary condition as shown in

equation (2.12), and integrating over the entire domain

1: x -

Q n
m m

l Vx pm) .40)“,

Q
m

where the double dot operator (z) is defined here as a ; p = aij'Bji' The

first term in equation (5.2) is the viscous power and is responsible for

dissipating the energy during fluid flow. This term is also called the

dissipation power. After setting vm) = “(0)

then, (5.3)

=fl j qu(0):(qu(0))TdQ

Q
m

dissipation

The dissipation power is sealed with the square of the trace of the

effective permeability after the expression for the velocity field is

substituted

The dissipation power can be written in a dimensionless form as follows

—_— j thiw) :(Vxfi(0))TdQ (5'4)

9
m

dissipation

. . is the normalized value of “dispersive power”, which is
disperszve

computed by multiplying equation (3.10) with 0(0), and integrating over
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the entire domain, the following expression for “dispersive power” is

obtained after using Green’s theorem:

T 5.5

(u) j vchWr-(OMO: [VXc(O)-D-[VXC(O)] an ( )

Q Q
m m

The right hand term is dispersive power term.

= l chw) -D-[ch(0)]ng, (5.6)

Q.
m

dispersive

where D is the effective dispersion tensor, which can be computed from

D 2 D<(—;-(va +vaTj+Ijgfiuwinjthmmjr»

The dispersive power term is scaled with the product of the trace of the

dispersion and the trace of the concentration gradient. Dispersive power

can be written in dimensionless terms as follows

T (5-7)

5(0)] do,
" _ ~(0) , " ,

SSdispersive _ Q! VX c D [V

m

X

5.3 Example Problems

This section shows few examples of shape optimization for the objective

functions descried in section 5.2.1 and 5.2.2. The solutions were obtained

by casting the problem in the fashion of a standard shape optimization

problem as before. The derivatives of the objective function with respect
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to the design variables were computed using forward finite difference

 

method as

30W _ Objdv + adv — Obj dv (5:8)

adv - div 1

where “Obj” is the objective function and “dv” is the design variable. The

derivatives of the constraints with respect to the design variables were

computed analytically.

The objective function was computed by solving the governing equations

for the effective properties using finite element method. The domain was

. . . . . -5

discretized usrng unstructured triangular mesh of element srze of 4e m

as shown in Figure (4.1).
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Figure 5.1 Schematic of the unstructured triangular mesh used for finite

element analysis.
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The Method of Moving Asymptotes (MMA) as proposed by Krister

Svanberg is used for optimization. The results shown in this section are all

for a limiting volume fraction of 0.3 and fixed value of 0.002m for h. The

physical properties of the fluid are taken as dynamic viscosity )1: to be

0.001 Pas , density of fluid pf to be 1000 Kg/m3, molecular diffusivity D

set to 10.9 mZ/s.

5.3.1 Optimization of disperslve power and dissipation power

for a given base dimension and pressure gradient

As mentioned earlier, the motivation of this work is not only to find

the optimal rrricrostructure for given boundary conditions but also to

understand the effect of pressure gradient on the objective function.

Computations have been performed for two different shapes of the solid

region (circular and elliptic solid region) for two given boundary

conditions,

1. The concentration gradient is parallel to the flow field.

2. The concentration gradient is normal to the flow field.

For all the above-mentioned cases, the pressure gradient is varied while

keeping the values of h.

Several optimal microstructures of the porous media for parallel and

cross flow are shown in Figure (5.2 a-h). The dimensions of the

microstructures as shown in Figure (5.2- a—h) are tabulated in Table (5.1)

where l, h, a, b and 6 are the length, height, major axis, minor axis and
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angle between length and height for the periodic cell.. The macroscopic

equation is solved for a domain of 1x1 m2 with a horizontal concentration

gradient of 1 moi/m3 and the pressure gradient has a unit of N/m-3

applied along horizontal direction. Periodic cells obtained when the

concentration gradient is applied parallel to the flow field are shown in

Figure (5.2 a—d). Periodic cells Obtained when the concentration gradient

is applied normal to the flow field are shown in Figure (5.2 e-f). The

applied pressure gradients are -2 in Figure (5.2 a, c, e, g) and -0.5 in

Figure (5.2 b, d, f, h) N/m3. Figure (5.2 a, b, e, t) represents the circular

and Figure (5.2 c, d, g, h) represents the elliptic solid region. From figure

5.2 we see the optimized results shows a square array in most of the cases.

Further comparison of the magnitude of the objective functions versus

pressure gradient is provided in Figures (5.3) and (5.4).
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Table 5.1 Dimensions of the periodic cells shown in Figure (5.2)

 

  

 

 

 

  

 

 

      

Figure (5.2) I/h a/h b/h 0

(a) . 1.939 0.231 90

(b) 1.864 0.297 90

(c) 1.840 0.233 0.285 90

(d) 1.852 0.304 0.226 90

(e) 0.516 0.172 89

(f) 0.573 0.191 80

(g) 0.498 0.165 0.276 82

(h) 0.564 0.188 0.331 83
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Figure 5.3 Computed values of the objective functions for a parallel flow

configuration.
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Figure 5.4 Computed values of the objective functions for a cross flow

configuration.
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It is seen in Figures (5.3) and (5.4) that the magnitude of

- - . ‘3 - - decreases for a decrease in ressure
dzsszpation dispersrve p

gradient. This can be explained with reference to equation (5.3) and (5.4).

Since the dissipation power directly proportional to the pressure term, for

a higher pressure gradient a higher value of dissipation power is expected.

5.3.2 Optimization of the “dispersive power” and the

dissipation power for a given base dimension

In the previous section the variation of objective function with

pressure gradient is studied. In this section, I am interested in finding the

optimal pressure gradient that satisfies both the desired criterion;

maximize “dispersive power” and minimize dissipation power. The

optimal microstructures of the porous medium for the desired objective

function as described in section 5.1 for volume fraction of 0.3 for solid

phase and prescribed molecular diffusivity of 10'9 m/s2 are shown in

Figure (5.5). The macroscopic equation is solved for a domain of 1x1 m2

with a horizontal concentration gradient of 1 mol/m3.

The dependence of the step size and initial values in the optimization

algorithm were verified by varying those for two different cases. For case

1 the step size is set to 0.1 and initial aspect ratio is 1, the radius (major

axis, minor axis) is set to 5x104m and 0 to a value of 90° . For case 2 the

step size is set to 0.5 and initial aspect ratio is 1, the radius (major axis,
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minor axis) set to 7x10'4m and 0 to a value to 90° . The iteration history

for the different cases are shown in Figure (4.10 — 4.12) for circular,

elliptic and rectangular solid region.
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Figure 5.5 Graph of the iteration history for the circular solid region with

a varied step size and initial conditions.
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Figure 5.6 Graph of the iteration history for the elliptic solid region with a

varied step size and initial conditions.
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Figure 5.7 Graph of the iteration history for the rectangular solid region

with a varied step size and initial conditions.
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The dimensions of the microstructures are shown in Table (5.2)

where l, h, a, b and 6 are the length, height, major axis, minor axis and

angle between length and height for the periodic cell. The optimal values

Of normalized dissipation power and normalized dispersion power

evaluated are tabulated in Table (5.3).
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Figure 5.8. a-c. Schematic of the optimal periodic cells obtained after

optimization with the dimensions tabulated in Table (5.2)
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Table 5.2 Dimensions of the microstructures as shown in Figure (5.8).

 

 
 

 

 

Figure (5.8) l/h a/h b/h 6

(a) , 1.07 0.32 89

(b) 1.44 0.47 0.33 89

(c) 1.74 0.42 0.33 89
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Table 5.3 Optimized value of normalized dissipation power and

normalized dispersion power for the microstructures as shown in Figure

(5.8)
 

 

 

 

Figure (5.8) S disipation Sdispersive

(a) 0.01427 4-63

(b) 0.007658 4-96

(C) 0.000772 4-93     
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The Optimal pressure gradient computed are

(0) _ (0) _

VXp - 8(10 6) N/m3, VXp = 800 6) N/m3 and

-0.7 VYP(O) -0.4

0
VXp( ) =[8(10_6)

] N/m3 for Figure (5.8) a, b, and c respectively.

- 0.1

The average effective permeability and the average dispersion tensor

computed for the periodic cells shown in Figure (5.8) a, b, and c are

K—341(10‘5) 1 EC 2
‘ ' c 1.38 m:

C

_ 1 1.31
D=5.4(10 9) mzls

1.31 3

K—307(10‘5)l 86 2
‘ ' 83 1.81 m:

_9 1 1.31 2

D = 5.20(10 ) m /s,

1.31 3

-5 1 5 2

andK=l.9l(10 )8 r m,

I”

_ 1 1.56
D = 4.50(10 9) m2/s,

1.56 3

where cc =1.4(10“ 2), £6 = 212(10‘ 2) ,er = 1.61(10‘ 1) respectively.
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Figures (5.9) and (5.10) show a contours of the longitudinal component of

the effective permeability and dispersivity
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(C)

Figure 5.9 a-c. Contours of the longitudinal component of the

permeability (pUl 1) for the rrricrostructures shown in Figure (5.8)
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(b)

11109

19

n I10

-1

(C)

Figure 5.10 a-c. Contours of the longitudinal component of the

dispersivity (211) for the microstructures shown in Figure (5.8)
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Figure 5.11 a-c. Plots of the velocity vectors in microstructure

corresponding to Figure (5.8)
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5.4 Discussion

In this chapter a methodology to find the optimal microstructure that

maximize mixing andminimize energy loss using shape optimization is

presented

A goal is also to find a periodic cell that provides a better solute

dispersion while minimizing the energy loss for a fixed or a variable

pressure gradient. It is seen in Figures (5.3) and (5.4) that the magnitude

of 3 decreases for a decrease in pressure
dissipation — 3 dispersive

gradient. For a higher pressure gradient, a higher value of dissipation

power is expected compared to the dispersive power. For a flow normal to

the concentration gradient, the optimization process does not converge to

a finite value for a very low pressure gradient (0] Wm”). This may be

due to the fact that the applied pressure gradient is not sufficient to

disperse the solute though out the domain. Also since because of the

nature of the problem the final results are highly dependent on initial

value and sometimes the solution is not the global solution. Furthermore

the sensitivity of 8 are approximated using
dissipation — S dispersive

finite difference method, which may cause some additional errors.

In the second analysis it can be observed from Table (5.3) that for the

microstructure with a rectangular solid region, the energy loss due tO

dissipation is the least and that the solute dispersion is comparable to the
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other microstructures. Since the pressure gradient is also included as the

design variable, it takes the advantage of a higher transverse effective

permeability (K22) and adjusts itself to minimize the energy loss. In other

words it minimizes the pressure gradient in the horizontal direction and

diverts the flow in vertical direction. This is also because the height was

fixed; whereas, other dimensions could vary.

The results obtained using shape optimization for minimizing

dissipation power and maximizing “dispersion power” ,in which the

pressure gradient is a design variable, can be compared with the

microstructure formed by a square array of same porosity. The

comparison shows significant improvements in reducing energy losses in

the fluid flow and increased mixing. Figure (5.12) shows the macroscopic

P —6
layout with an applied pressure gradient X x = 800 )

pry 04

Obtained for elliptic cross section (Figure 5.8 (b)). The macroscopic

velocity field computed from the Darcy’s equation is compared at the

cross section shown by dashed line in Figure (5 .13). When compared with

the microstructure form by square array of same porosity, the optimized

microstructure results in a higher velocity field as shown in Figure (5.14).
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Figure 5.12 Schematic of the macroscopic layout with applied boundary

conditions
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Figure 5.13 Comparison of the velocity fields for a domain with a

microstructure formed with the optimized elliptic cross section with the

velocity field for a square array of same porosity.
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The objective function in this chapter is set in such a way that it also

maximizes the “dispersive power” or mixing. Figure (5.11) shows higher

solute dispersion at time t for the optimized microstructure. The

concentration are compared for both the cases and shown in Figure (5.11

c).
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Figure 5.14 a—c. Comparison of solute dispersion after time t = 0.02 sec

for the macroscopic domain formed with a microstructure of elliptic cross

section cylinders (a) obtained from shape optimization with the

microstructure obtained from a square array (b) of same porosity. The

magnitude of c is shown in right (c).
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CHAPTER 6

TOPOLOGY OPTIMIZATION OF FLUID FLOW IN POROUS

MEDIA TO MINIMIZE DISSIPATION POWER

6.1 Introduction

Topology optimization is a layout optimization technique that was

originally developed to design mechanical structures (Bends¢e and

Kikuchi, 1988). Its scope was rapidly expended to the diverse field such

as optics and acoustics (Bendsee and Sigmund 2003, Eschenauer 2001,

Jensen 2003, 2004) and recently it has been applied in the field of fluid

flow by Borrvall and Petersson (Borrvall 2003). Most of the above

mentioned works were mainly applied to macroscopic layout problems.

With further development of the homogenization theory, topology

optimization was used to find the layout of the microstructure or the base

cell of the material. Few such noted works are: Sigmund (Sigmund and

Torquato 1996) to design microstructure for material that yield negative

thermal expansion, Larsen (Larsen 1996) to design material that yields

negative Poisson’s ratio and Diaz and Bénard (Diaz and Bénard 2003) to

design material that matches prescribed elastic properties.

The formulation of the problem is given in the following section. The

Method of Moving Asymptotes (MMA) as proposed by Krister Svanberg
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(Svanberg 1978, 2002) is used for optimization. The derivatives of the

objective function and the constraints with respect to the design variables

were computed using adjoint method as proposed by Olesen, Okkel and

Bruus (Olesen 2006). Figure (6.1) shows the flowchart of step by step

approach to find the optimal microstructure using topology optimization.
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Figure 6.1 Flowchart showing the steps of the algorithm based on

topology optimization for designing microstructures.
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6.2 Formulation of the optimization problem

In the analysis, the macroscopic domain (QM) is assumed to be

homogeneous with periodic microscopic cells (Qm ). The microscopic

cell has two distinct regions: a solid region (525) and a fluid region ((2f)

such that .Qm = $23 UQ andQs m!) =0. The interface between the

f f

solid-fluid in each periodic cell is 1",; and the interface between two

periodic cells is denoted by Fee".

106



 

1flcell

 

   
Figure 6.2. Schematic of a periodic microscopic cell ((2,, ). The interface

between the solid-fluid in each periodic cell is F51 and the interface

between two periodic cells is denoted by Teen“
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6.2.1 Minimizing Dissipation power

The objective in this section is to minimize the energy losses or the

dissipation power.

Find the optimal layout for the periodic cell that will

.8 . . .
minim” dzsszpatzon

subjected to: volumetric and geometric constraints

Q (6.1)

Constraint: 3 2 V

52

 

frac

m

where 05 is the volume of the solid region, Om is the total volume of

the cell, and mec is value (0<mec<1) specifying the minimum solid

volume. The constraint in equation (6.1) restricts the minimum volume of

solid region to mec.

The governing equations here are the homogenized Navier-Stokes

equation and the incompressibility constraint as derived in Chapter 2. To

generalize the above governing equation for both solid and fluid phase,

the fluid flow through the solid region is subjected to a friction force,

which is proportional to the fluid velocity. The governing equations for

the zeroth order problem are given by

x x m
XP
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and

v -u(0) :0 in n (63)
X m

where V (mis the pressure gradient across the macroscopic domain
X P

and is applied as a source term (a known quantity). These governing

equations are valid for both solid and fluid regions. The penalty term a,

which is a function of the design variable p, allows to set the velocity

equal to zero in a solid domain. The design variable p controls the phase

of the medium as follows;

lele

Following reference Borrvall (Borrvall 2003) and Olesen (Olesen 2005),

{0 if x e as (6.4)

p<x> =

the penalty term a and design variable p are related by the convex

interpolation.

a( )=a +(a — ____q[1-p] (6'5)
'0 T min max min q+p

where q is a real and positive parameter used to tune the shape of the

penalty term and taken as 0.01. In this work “min is taken as zero and

amax is a large number (105). The dependence of a on q is shown in

Figure (6.3). For q = 1, it gives a linear plot from amax to amin over the

range of p. For lower value of q (0.01), a value is close to amin for p

varying from 0.2-1. This approach is done to penalize the grey material
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formation, which is a mixture of solid and fluid and promote either the

fluid or liquid phases.
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Figure 6.3 Plot showing the dependence of a on q.
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The boundary condition are that of periodic flow through the boundaries

of the cell and no slip boundary condition at the solid fluid interface of the

inclusion.

“(0) =u(l) = ...... =0 onl" (solid-fluid interface), (6'6)

u(0),u(1)... and p(0),p(1).... are Qm-periodic.

The 3 . . . is the dissipation energy for the fluid in the unit cell

dzsszpatlon

and is derived from mechanical energy balance. Just as before, it is

. . . . . (0) (0) .

obtained by multiplying equation (6.2) With v , where v is any

weighted periodic velocity satisfying equation (6.3) and boundary

condition as shown in equation (6.6), and integrating over the entire

domain After setting vm) = “(0)

dzsszpation x x

Q
m

In dimensionless form equation 6.8 can be rewritten as,

. . . = j v am) ;(v 6“»)ng (6.9)

dzsszpatton x x

Q
m

where 0(0) is the dimensionless form of “(0) related by

a”) = .1(0) ,<u(0)>.
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6.2.2 Implementation Issues

To promote a discontinuous microstructure and avoid cases of a

continuous solid region, the layout is divided into two initial zones. Zone

1 is formed only by fluid material and forms the outer boundary of the

periodic cell, whereas Zone 2 is formed on both solid and fluid material as

shown in Figure (6.4). In Zone 1 the a value is taken as zero.
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Zone 1

)1

 

   
Figure 6.4 Schematic of a periodic microscopic cells with a liquid zones

imposed on Zone 1 above to avoid a continuous solid region between the

cells.
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6.3 Example Problems

The optimization problem was solved using commercial software's

Comsol and Matlab. “The governing equations were mentioned in earlier

sections were solved to compute the objective function and the sensitivity

were using Comsol. Matlab was used to run the optimization process.

Work done by Olesen (Olesen 2005) is used here to compute the

sensitivity. The domain of Zone 2 was discretized using an unstructured

triangular mesh of 50 elements along each boundary as shown in Figure

(6.5).
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Figure 6.5 Schematic of the unstructured triangular mesh used for the



6.3.1 Minimizing Dissipation Power

In this section, the optimized microstructures for the porous media for

different boundary condition are computed. Figure (6.6) and (6.7) shows

the microstructure obtained when a macroscopic pressure gradient of

1N/m2 is applied in the horizontal direction with volume fraction of solid

region is limited to 0.5 and 0.7. In Figure 6.6 we see that for lower volume

fraction of solid the microstructure forms a elliptic solid region, whereas

for higher volume fraction it forms a rectangular shape solid region with

curved edges.
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Figure 6.6 Schematic of microstructure layout for volume fraction 0.5 and

with macroscopic pressure gradient of lN/m2 in horizontal direction
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Figure 6.7 Schematic of microstructure layout for volume fraction 0.7

with macroscopic pressure gradient of lN/m2 in horizontal direction
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Figure (6.8) — (6.14) shows the microstructure obtained when

macroscopic pressure gradient of lN/m2 is applied in both horizontal and

vertical direction with volume fraction of solid region is limited to 0.1, to

0.8.
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Figure 6.8. Schematic of the microstructure layout for a volume fraction

0.2 with an equal macroscopic pressure gradient of 1N/m2 in the

horizontal and vertical directions.
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Figure 6.9. Schematic of the microstructure layout obtained for a volume

fraction of 0.3 with an equal macroscopic pressure gradient of 1N/m2 in

the horizontal and the vertical directions
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Figure 6.10. Schematic of a microstructure layout for volume fraction 0.4

with equal macroscopic pressure gradient of lN/m2 in the horizontal and

the vertical directions.

122



Figure 6.11 Schematic of the microstructure layout for a volume fraction

0.5 with equal macroscopic pressure gradients of lN/m2 in the horizontal

and vertical directions.
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Figure 6.12. Schematic of the microstructure layout for a volume fraction

0.6 with equal macroscopic pressure gradients of lN/m2 in the horizontal

and vertical directions.
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Figure 6.13 Schematic of the microstructure layout for volume fraction of

0.7 with equal macroscopic pressure gradients of lN/m2 in the horizontal

and vertical directions.
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Figure 6.14. Schematic of the microstructure layout for a volume fraction

0.8 with equal macroscopic pressure gradient of lN/m2 in the horizontal

and vertical directions.
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6.4 Discussion

In this chapter I tried to find an optimal microstructure to minimize

the energy losses using topology optimization.

The results show that the elliptic cross section for a lower volume

fraction has the least energy loss. This also agrees with the results

obtained from shape optimization. For a higher volume fraction, the

optimized layout obtained appears as a rectangle with smooth comers.

This validates the previous argument made in Chapter 5 that the

microstructure may form a channel flow. When the macroscopic pressure

gradient is applied along both the horizontal and vertical direction, the

optimized layout forms the shape of leaf. In this layout the specific

surface which is expressed as the ratio of the pore surface area to the total

volume of the periodic cell is less and hence increasing the permeability.

When optimized microstructures obtained from topology optimization

were compared with the square array of same porosity, it shows the same

trend. When the macroscopic flow is compared for optimized

microstructure and square array formed by circular solid region with same

porosity, a higher magnitude of velocity is obtained for the optimized

microstructure as shown in Figure (6.6). Figure (6.15) shows the

macroscopic domain and the applied boundary condition

Vpr 1
where = . Figure (6.16) shows the macroscopic velocity

VX py O
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profile for both the optimized microstructure and the un-optimized

microstructure for Vfrac 0.5 at the dashed line shown in Figure (6.16).

Here the un-optimized microstructure is formed by square periodic cell

with circular solid region of identical porosity as the optimized

microstructure.
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Figure 6.15 Schematic of the macroscopic layout with applied boundary

conditions
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Figure 6.16 Comparison of the velocity profiles in the macroscopic

domain for a microstructure formed form a cross section obtained from

topology optimization with the velocity field obtained for a square array

of same porosity
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CHAPTER 7

TOPOLOGY OPTIMIZATION OF SOLUTE TRANSPORT IN

POROUS MEDIA TO MAXIMIZE “DISPERSIVE POWER”

7.1 Introduction

Solute transport in porous media and finding the optimal layout using

topology optimization is the subject of this section. Topology

optimization is a layout optimization technique that was originally

developed to design mechanical structures (Bendsoe and Kikuchi, 1988).

Topology optimization was then used to find the layout of the

microstructure or the base cell of the material. Examples of such works

include Sigmund (Sigmund and Torquato 1996) who propose to design

microstructures of materials with negative thermal expansion, Larsen

(Larsen 1996) to design material that yields negative Poisson’s ratio and

Diaz and Bénard (Diaz and Bénard 2003) to design material that matches

prescribed elastic properties.

The problem is formulated in a similar manner to a standard

optimization problem, in which the Method of Moving Asymptotes

(MMA) is used for optimization. The derivatives of the objective function

with respect to the design variables were computed using an adjoint

method as proposed by Olesen, Okkel and Bruus (Olesen 2006). Figure
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(7.1) shows the flowchart of step by step approach to find the optimal

microstructure using topology optimization.
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Figure 7.1 Flowchart of the topology optimization methodology

employed
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7.2 Formulation of the optimization problem

In the analysis, the macroscopic domain (QM) is assumed to be

homogeneous with periodic microscopic cells (Qm ). The microscopic

cell has two distinct regions: a solid region (525) and a fluid region (S)f)

such that Qm = as UK) and as n Q = O. The interface between the

f f

solid-fluid in each periodic cell is F31 and the interface between two

periodic cells is denoted by FCC“.
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Figure 7.2 Schematic of a periodic microscopic cell.
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7.2.1 Maximizing “Dispersive power”

The main objective here is to maximize mixing or “dispersive power”.

max. dispersive

subjected to: volumetric and geometric constraints

(23 (7.1)

a— 2 Vfrac

m

where 05 is the volume of the solid region, Qm is the total volume of

the cell, and mec is value (0<mec<l) specifying the minimum solid

volume. The constraint in equation (7.1) restricts the minimum volume of

solid region to mec.

The governing equation for the solute transport along with the Stokes

equation and the incompressibility constraints are for the volumetric

concentration c of the solute in the fluid region expressed as

<.>.vx.<o>=vx .[D.vx.<o>] (7.2)

where <u>=<u (0)>+<u (1)> and for weak inertia flow <u(l)>=O

0)
(Mei and Auriault 1991). u( is computed from the homogenized

Navier-Stokes equation and the incompressibility constraint as derived in

Chapter 2.

D in Equation (7.2) is the effective dispersion tensor (Mei 1992)
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expressed as

n = 0(2) (73)

where Z is “characteristic dispersivity tensor” given as,

“@1va”Ni+')-%i(u‘°)~)+(u‘°>~fl
And D is the molecular diffusivity and N is any vector satisfying the

(7.4)

equations

V(D(1+v .N»-..<o>v ..=..«» (7.5)
x x x

— <u(0)>/n — a(va +1)ian

(7.6)

where n is the porosity, and

DII+V -N)-n=00n F.
x

N is Qm -periodic and (N) = 0.

(0)
Additional governing equations to solve u are the homogenized

Navier-Stokes equation and the incompressibility constraint as derived in

Chapter 2. For generality the fluid flow through the solid region is

subjected to a friction force, which is proportional to the fluid velocity.

#szum) _pr(1) =v pm) _ cm(0)in Om (7.7)

X

V -u(0) :0 in Q (7'8)

x m
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where V (mis the pressure gradient across the macroscopic domain
X P

and is applied as an source term. The above governing equations are valid

in both solid and fluid phases since the penalty term or, which is a function

of the design variable p, is used to extend the domain of validity to all the

cell domain. The design variable p controls the phase of the medium as

follows;

0iferS (7.9)

p(x)= lzfxeflf

Following reference Borrvall (Borrvall 2003) and Olesen (Olesen 2005),

the penalty term a and design variable p are related by the convex

interpolation.

l— (7.10)

mp) E“min +(“max — min ‘11 P]
q + P

where q is a real and positive parameter used to tune the shape of the

penalty term and taken as 0.01. In this work “min is taken as zero and

. 5
“max rs a large number (10 ).

The boundary conditions are

“(0) = “(1) = ...... =0 onl" (solid fluid interface), (7'11)

(0) (1)
u ,u ...andp(0),p(l) are Qm -periodic.

. . is the normalized value of “dispersive power”,
dzsperszve

which is computed by multiplying equation (7.2) with em), and integrating
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over the entire domain, the following expression for the “dispersive

power” is obtained after using Green’s theorem:

T (7.12)

(It) I VXc(O)-c(0)dfl= [VXC(O)-D-[V C(O)] d9

9 Q X
m m

The right hand term is the dispersive power term.

T (7.13)

. . = jV C(O)'D- V cm) do,
dzsperszve Q X X

m

In dimensionless form, equation (7.13) can be written as,

A . T (7.14)

8. . = [V 6(O)-D-V 5“” d9,
dzsperszve Q X X

m

(0)
where E and f) are dimensionless form of can and D related by

5“” = C(O) /C and I“): DID.

7.2.2 Implementation Issues

A factor that had to be considered in formulating the problem for the

optimization Is that the microstructure should be discontinuous as shown

in Figure (7.2) to model pores in a porous material. To avoid cases of

continuous solid regions, the layout is divided into two initial zones. Zone

1 is formed only by fluid material and forms the outer boundary of the

periodic cell, whereas Zone 2 is formed on both solid and fluid material as

shown in Figure (7.3). In Zone 1 a value is taken as zero.

139



 

Zone 1

i

 

   
Figure 7.3 Schematic of a periodic microscopic cells with the zones to

avoid continuous solid region
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7.3 Example Problems

The optimization problem was solved using Comsol and Matlab. The

objective function and the sensitivity were computed using Comsol. Work

done by Olesen (Olesen 2005) is used here to compute the sensitivity.

Total nodes in Zone 2 were approximately 30 elements along each

boundary.
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7.3.1 Maximizing “Dispersive power”

In this section, the optimized microstructures for the porous media that

minimize dispersion are shown. Figure (7.5) shows the microstructure

obtained when a macroscopic pressure gradient of lN/m2 is applied in

both the horizontal and vertical directions with a volume fraction of the

solid region limited to 0.7. The concentration gradient of 1 mol/m3 is

applied in horizontal direction and the objective function is set in such a

way that the microstructure should maximize the mixing in the horizontal

direction.

A sharp change in the microstructure is seen when the volume fraction

is reduced to 0.3 as shown in Figure (7.6).
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Figure 7.5 Schematic of microstructure layout for volume fraction 0.7

with equal macroscopic pressure gradient of lN/m2 in the horizontal and

vertical directions and a concentration gradient in the horizontal direction.
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L...L.....L..L...

L..L....L.....L_..

L_.L..L..L..
Figure 7.6 Schematic of the microstructure layout for a volume fraction

0.3 with equal macroscopic pressure gradient of lN/m2 in the horizontal

and vertical directions and a concentration gradient in the horizontal

direction
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7.4 Discussion

In this chapter we tried to find an optimal microstructure to maximize

mixing using topology optimization. Due to the limitations of the solver

used, the results for maximizing dispersive power cannot be solved for a

fine-mesh . The results obtained and shown in this chapter provide a hint

of the appearance of the porous medium. In the results shown in Figures

(7.5) - (7.6) the inflow in at negative 45 degree to the horizontal and the

aim was to distribute the solute in the horizontal direction. In Figure (7.6)

the microstructure diverts the flow as much as possible to the horizontal

direction. For a lower volume fraction the solid materials form a wall

around the boundary of zone 1 and zone 2 to restrict the flow in vertical

direction. For a higher velocity in horizontal direction the longitudinal

dispersion tensor will be higher and hence maximize the solute flow in

that direction.
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CHAPTER 8

THEORY FOR MULTIPHASE FLUID FLOW IN POROUS MEDIA

8.1 Introduction

Practical applications of porous materials often involve two or more

fluids. For example, use of porous material as a filter in the petroleum

industry often involve oil and water. As discussed in Chapter 1, naturally

occurring porous materials are heterogeneous there have been many

theoretical attempts to deduce the phenomenological equations by starting

from the micro-scale based on the idealized models of the microstructure.

In this chapter we review the existing theories for deriving the Stokes

equation for two phase flow in the micro-scale and derive the

phenomenological equations that describe the macroscopic behavior of the

porous media. The governing equations are developed using mixture

model. Shape optimization is used to determine the optimal

microstructure for porous media that will minimize the dissipation power,

for a given flow condition.
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8.2 Derivation of Effective Permeability Tensor using Mixture

Model

In two phase flow problems, the average velocity of one phase is

typically distinctly different from the other phase (Kleinstreuer 2003).

Also, one or more physical properties such as density or viscosity of each

phase distinctly differ in magnitude. The macroscopic domain ((2M ) is

assumed to be homogeneous with periodic microscopic cells (9m ). The

microscopic cell has two distinct regions: a solid region (528) and a

mixture fluid region (Q ) such that 9m =QSUQ

fmix fmix

and OS m 9 = 0. The Mixture model computes the average behavior
finix

of a two phase flow field as a single phase flow that is rather general and

useful as shown in Figure (8.1), where the mean density (pfmix) can be

expressed as a function of the volume fraction Vf (Vf = V2/V). The

effective mixture density in terms of volume fraction is given as

8.]

meix =vfpf2+(1—vf)pf1 ( )

where the indices mark the individual phases i=1 (carrier fluid) and i=2

(dispersed phase). For example pf 1 is the density for fluid phase 1 and

f
,0 2 is the density for fluid phase 2.
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Pfmix, ifmix

 

 
Figure 8.1 Schematic of the process of representing a two phase flow

with an equivalent a single phase flow model.
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The average steady-state mixture continuity and momentum equations

(Ishii, 2006) are given as

 

. f _ . (8.2)

V (pmixumix _0 1n Qfmix

f 2 _ _ (8.3)

”muV'me VKMx—

p .u .-Vu .+V- ii in!) .
mix mix mix f . 21 fmzx

(l—ijp mix

where “mix is defined as

 

plf (l-vf) pécvf (8'4)
u . =———u + u

mix f 1 f 2

pmix pmix

Gravity and mass transfer between two fluids are ignored. ii2| is the slip

velocity between two fluid phases. It is also assumed that the solid phase

is chemically inert. For Newtonian fluids the momentum transfer due to

shear stresses within fluid is negligible as compared with the momentum

transfer to the solid matrix (Allen 1985). So

f f (8.5)

VfP1P2 ~ 2 =0

(1 ‘Vf 1P5... “2'

and equation 8.3 reduces to

V . 

f V2u —Vp =pf u u ' (8'6). . . . . - . in Q .
mix mix mix mix mix mix fmzx

,u

The perturbation expansion for “mix and Pmix is as follows,
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“(0)mm +2u+(2) é.u3 (3) (8.7)
“mix: umix+ wmix umix+ umix

p(0) (1) £2 (2)+ £3 (3) (8-3)

pmix pmix +6pmix+ pmix pmix

The differential term related the two length scales as a function of e

V=Vx+eVX (8.9)

Substituting perturbation expansions for u,,.,;. and pm in equation 8.6 and

8.2

#f (V ”V“H(0) a1(1) +£2u(2) +53‘10) )_ (8.10)

mix mix+ almix ix mix

(v ”Vx p+(0) £p+(1)2p(2)+33%”)—

pmzx+ Epmix+ pmix Mix

p’iix(u£?;+ an“). +£2u(2.)u+s3ugzxj

(V +£V {u(0)+ sum +.92u(2.) +83am )

x X mix+ almix mix mix

and

f (0)+ eu+(l) 211+(2) 3(3)

(Vx+€VX)'(pmix(umix+ anmix+ umix+ EBumixD: 0 (8°11)

Assuming the mixture density is not a function of macroscale X, from

Equation 8.10 and 8.11, at orders from 0(80) I get

f 2 (0) (1) (0) - (8.12)

’umixVx umix prmix= Xpmix 1n Qfmix

and

, (0) _ - (8.13)

VX umix — 0 m Qfmix
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(0) (1) (0) (1) _ . - (0)
and “mix ’umix and pmix ’pmix are 0m periodic. p

is only a function of the large scale X. The needed boundary conditions

are

“(01 = um. = ...... = 0 on F (solid fluid interface), (8'14)

mix mix

In equation 8.10 and 8.1 1,8 = l/L <<1 is the ratio of two well separated

length scales: the micro scale I=O(x) and macro scale 173000. Here the

macrostructure is assumed to be homogeneous consisting of periodic

micro cells.

Equation 8.12 relates the microscopic fluid flow with the macroscopic

pressure gradient. This is similar to the approach taken by Darcy to relate

the fluid flow in porous media for a given macroscopic boundary

condition. umixw) and pmixm can also be expressed in terms of Pmix (0)

from Darcy’s equation,

umixm) = —Umix . VX pmixm)’ (8.15)

and

pmixa) zamix' Xpmixw)’ (8.16)

where Umix is the characteristic mixture velocity and amix is the

characteristic mixture pressure can be obtained from the solution of

8.17

f.V2U.—Va.-I ()
mlx x mix xmlx

,u
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and

V U , :0. (8.18)

x mlx

The boundary conditions applied are no slip and periodic boundary

conditions for Umix and amix.

The effective permeability of the porous media is computed from

K = ,uf (Umix>
(8.19)

mix mix

Equations (8.17 - 8.18) are similar to the single phase equations (2.9 —

2.10), where the velocity, pressure of a single phase is replaced by a

mixture velocity and pressure. This equation is solved to the effective

properties of the mixture fluid.

Shape optimization problem is used to find the optimal microstructure

where various shapes described parametrically are studied. Since the

governing equations are very similar to the governing equation for single

phase fluid, this work can be taken as an extension of the shape

optimization work done in earlier chapters. The Method of Moving

Asymptotes as proposed by Krister Svanberg is used for optimization. The

derivatives of the objective function with respect to the design variables

were computed using finite differences.
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8.3 Identifying the Periodic Cell

. In the analysis, the macroscopic domain (QM) is assumed to be

homogeneous. The microscopic cell (am) has two distinct regions: a

solid region ((23) and a mixture fluid region (Q ix) such that
fm

Qm=QSUQ andflan =0. P, l and L are the

fmix fmix

characteristic pressure, micro length and macro length scales. Two scales

are introduced: a small scale (x 2: 0(1)) and a large scale (X z 0(L)). The

multiscale coordinates are related by X = 8x in the asymptotic

expansion.

The homogeneous macroscopic domain is formed of periodic

microscopic cells as shown in Figure (8.2). Each cell is identified by the

geometric parameters such as l, h, a, b, and 9 . L is the cell length, h is the

cell height, a is the major axis or length of the solid region, I) is the minor

axis or height of the solid region, and 6 is the angle between I and h in

each cell. Three different shapes for the solid region such as circle (a = b),

ellipse (Figure (8.3)), and rectangle (Figure (8.4)) are considered below.
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Figure 8.2 Schematic of a homogeneous macroscopic domain studied

consisting of periodic microscopic cells.
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Figure 8.3 Schematic of periodic microscopic cells with an elliptic solid

region
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Figure 8.4 Schematic of periodic microscopic cells with a rectangular

solid region
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8.4 Formulation of the optimization problem

In this section the aim is to find a microstructure of the periodic cell that

minimizes the dissipation power for multiphase fluid flow with the added

constraint of volume fraction using shape optimization.

8.4.1 Minimize dissipation power for multiphase fluid flow

The complete formulation of the optimization problem is stated as

follows:

(0) and V p(0) thatFindt9, h, a and b for a given value of l, VXp Y

will

minimize: 3 . . .
disszpation

subjected to: volumetric and geometric constraints

52

Constraint 1: ——S— 2 V

Q frac

m (8.20)

Constraint 1: a < i

2

h sin 0
Constraint 1: b <

where 05 is the volume of the solid region, 0m is the total volume of the

cell, and mec is value (0<mec<1) specifying the minimum solid volume.

The first constraint in equation (8.20) restricts the minimum volume of
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solid region to mec. The next two constraints are imposed to insure the

continuity of each phase.

. . . is the normalized value of dissipation power for the

dzsszpatzon

mixture fluid, which is computed by multiplying equation (8.12) with

(0) (0) . . . . . . .
vmix , where vmix 18 any periodic mixture velocrty satisfying

equation (8.15) and the periodic boundary condition, and integrating over

the entire domain

d. . . =pf, (v u “(0).(V v .(0))TdQ (8.21)

13571761th)? "'1le x MIX x mlx

m

where the double dot operator (z) is defined here as a : B = aij'Bji'

8.5 Example Problems

The results shown in this section are all for a limiting volume fraction of

0.3 and fixed value of 0.002m for l. Mixture of water and crude oil are

solved here for volume fraction of 0.2. The physical properties of water

are density 1000 Kg/m3 and dynamic viscosity of 0.001 Pa.s. Physical

properties of crude oil are density 915 Kg/m3 and dynamic viscosity of

0.02 Pa.s. The properties of water and crude oil are taken at 60° F. The

macroscopic equation is solved for a domain of 1x1 m2. The applied

pressure gradient is 0.1 N/m'3 applied along X axis.
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8.5.1 Minimize dissipation power for multiphase fluid flow

The optimal microstructure of the porous medium for the desired

objective function as discussed in section 8.3 for volume fraction of 0.3

for solid region is shown in Figure (8.5). The dimensions of the

microstructures are shown in Table (8.1) where l, h, a, b and 6 are the

length, height, major axis, minor axis and angle between length and height

for the periodic cell. The dependence of the step size and initial vale were

in the optimization algorithm were verified by varying it those for two

different cases. For case 1 the step size is set to 0.1 and initial aspect ratio

is 1, radius (major axis, minor axis) set to 5x104m and 9 value to 90°. For

case 2 the step size is set to 0.5 and initial aspect ratio is 1, radius (major

axis, minor axis) set to 7x10'4m and 9 value to 90°. The iteration history

for the different cases are shown in Figure (8.5 — 8.6) for circular, elliptic

and rectangular solid region.
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Figure 8.5 Schematic of the iteration history for a circular solid region

with varied step size and initial conditions.
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Figure 8.7 Schematic of the iteration history for a rectangular solid region

with varied step size and initial conditions.
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Figure 8.8 a-c. Schematic of the optimal periodic cells obtained after

optimization
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Table 8.]. Dimensions of the microstructures shown in Figure (8.5)

Figure (9.2) M a/l b/l i9

 

  

 

 

(a) 0.73 0.21 84.4

(b) I 0.39 0.26 0.12 82.7

(c) 0.96 0.26 0.14 81.9
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The average effective permeability computed for the microstructures

.. 0.1358 0

shown in Figure (8.8) a, b and c are<K . >=1(10 6) m2,

mix 0.0303 0

—6 0.4045 0 2

<K . >=1(10 ) m and
mix 8.5826e—6 O

-6 0.7727 0 2 . .

<K . >=l(10 ) m. Figure (8.9) shows the velocrty

mix 0.0072 0

distribution for the mixture fluid.
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Figure 8.9 a-c. Schematic of velocity distribution of fluid mixture for

microstructures shown in Figure (8.8)

167



1110'2

:1 3.45

 

(a)

x10'2

H 3.18

  

-8.24

(C)

Figure 8.10 a-c. Schematic of pressure distribution of fluid mixture for

microstructures shown in Figure (8.8)
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The optimal values of normalized dissipation power evaluated are

tabulated in Table (8.2). The dissipation power tabulated is normalized

with the dissipation power for elliptic solid region. A possible reason for

the high dissipation power observe in a rectangular solid region is

because of the presence of a sharp edge. Also due to the flat surface the

stagnation point is spread over a area which adds to the energy loss.
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Table 8.2 Optimized value of normalized dissipation power and

normalized dispersion power for the microstructures as shown in Figure

(8.8)

 

 

 

 

Flguré (8'8) 8disipation

(a) 2.85

(b) l

(c) 9.83
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8.6 Discussion

In the last two chapters a theory that governs the multiphase fluid flow

in a porous media is presented and the partial differential equations are

used in an algorithm to design porous media. The governing equation

developed using mixture model gives a very approximate behavior of the

multiphase fluid flow in a porous media and do not allow to show phase

separation since the divergence of the slip velocity was set to zero.

Commercial software Fluent was used to solve the differential equations

using the finite volume method. After optimization, the microstructure

with an elliptic microstructure shows the least energy loss. From Figure

(8.8) it can also be added that for microstructure with elliptic solid region

the velocity profile shows less variance as compared with other two

microstructures. For a microstructure with rectangular solid region, the

velocity profile is more that of a channel flow.

When the macroscopic flow is compared (figure 8.12) for optimized

microstructure obtained from shape optimization with square array formed

by circular solid region with same porosity, a higher magnitude of

velocity is obtained for the optimized microstructure as shown in Figure

(8.8). The mixture velocity is obtained from the Darcy’s equation solved

at the macroscopic domain shown in Figure (8.11). The applied boundary

V
. . X px 0.1

condition where V = .

X py 0
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Vpr

Figure 8.11 Schematic of the macroscopic layout with applied boundary

conditions
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Figure 8.12. Comparison of velocity field in a macroscopic domain for

microstructure form with the cross section obtained from shape

optimization to minimize energy loss for multiphase flow with that

formed by square arrays of the same porosity
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CHAPTER 9

SUMMARY AND CONCLUSION

In this work, two methodologies based on the theory of

homogenization, combined with two material design are presented, one is

based on shape optimization, the other on topology optimization. The

theory of homogenization is used to obtain the macroscopic equations

and the microscopic equations. The effective properties such as

permeability and dispersion of the porous media are computed using the

finite element method and compared with experimental results. The

method of moving asymptotes is used to find the optimal periodic cell that

will satisfy a given criteria such as the maximization of some function of

the effective properties, minimization of energy loss, or maximization of

solute mixing using both shape optimization and topology optimization.

The expressions derived for the effective dispersion using theory of

homogenization gives reasonable argument with experimental results.

Figure (3.2) and (3.3) shows that for low Peclet number the computed

values obtained from solving equation 3.11 matches closely with the

experimental results.

Further work was done to find the optimal microstructure using shape

optimization that maximizes the effective properties such as permeability

and dispersivity. The magnitude of the effective permeability computed is
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and dispersivity. The magnitude of the effective permeability computed is

comparable to the work done by Guest and Prévost (Guest 2007). It is

observed in Figure (4.8) that the microstructure forms a square array for

both the cases with circular and rectangular microstructure. Among the

three microstructures, the circular microstructure gives the maximum

effective permeability; but the diagonal terms of the permeability tensor

are considerably higher than the other microstructures. Overall, the

microstructure with rectangular solid region shows the best result. This

may be due to the fact that it can be considered as a flow in a channel.

One notable observation made from the results obtained from shape

optimization for maximizing dispersivity is from Figure (4.13): the angle

between the length and the height goes to a lower value for circular and

elliptic cross section. But for a rectangular cross section, the 0 value

approaches 90. This complements the previous argument that it forms a

channel flow; and hence, it requires a comparative smaller pressure

gradient to optimize the dispersion tensor, which is of the same magnitude

of the other micro structures.

In the subsequent chapters I focused on finding optimal microstructure

that will minimize the energy loss and maximize mixing. Figure (5.3) and

(5.4) exhibits the dependence of pressure gradient on the objective

function (minimize the energy loss and maximize mixing). When the

results obtained using shape optimization for minimizing dissipation

power and maximizing “dispersion power” where the pressure gradient is
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a design variable, were compared with microstructure formed by square

array of same porosity it showed significant improvement in reducing

energy loss while fluid flow and increasing mixing as shown in Figure

(5.11).

Similarly, when optimized microstructures obtained from topology

optimization were compared with the square array of same porosity shows

the same trend. When the macroscopic flow is compared for optimized

microstructure and square array formed by circular solid region with same

porosity, a higher magnitude of velocity is obtained for the optimized

microstructure as shown in Figure (6.6 a).

The work done in the following chapter to find the optimized layout of

the microstructure that will maximize mixing gave a mixed idea of how

the optimized layout should look. In Figure (7.5) the microstructure layout

is such that the flow is deviated toward the vertical direction. In all the

results Figure (7.5) - (7.6) the inflow in at negative 45 degree to the

horizontal and the aim here was to distribute the solute in the horizontal

direction. In Figure (7.5) the microstructure diverts the flow as much as

possible to the horizontal direction. For a lower volume fraction the solid

materials form a wall around the boundary of zone 1 and zone 2 to restrict

the flow in vertical direction. For a higher velocity in horizontal direction

the longitudinal dispersion tensor will be higher and hence maximize the

solute flow in that direction.
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All the above mentioned work was done for single phase fluid flow.

But in most of the application of porous media the fluid is not of single

phase. In the last two chapters we developed theory that governs the

multiphase fluid flow in 1a porous media and then solve those partial

differential equations to design porous media. The governing equation

developed using mixture model gives the approximate behavior of the

multiphase fluid flow in a porous media. These governing equations were

solved using finite difference method. After optimization microstructure

with elliptic microstructure shows the least energy loss. From Figure (8.8)

it can also be added that for microstructure with elliptic solid region the

velocity profile shows less variance as compared with other two

microstructures. When the macroscopic flow is compared for optimized

microstructure obtained from shape optimization with square array formed

by circular solid region with same porosity, a higher magnitude of

velocity is obtained for the optimized microstructure as shown in figure

(8.8). The methodology developed here can also be used to understand

the effect of multiphase flow with variable volume fraction. This also

gives an opportunity to study further in the field of multiphase flow to

develop time depended expression for effective properties.

Further future work should be directed towards solving more problems

of similar nature. In addition to the solved optimization problem, such

methodology can be further extended to modeling complex materials such

as poroelastic material for artificial bones or teeth. Also experiments with
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prototype optimized material should be pursued to validate the results

obtained from this work. From simulation perspective, further algorithms

and techniques should be developed to solve for transient cases since for

multiphase fluid the transient example will be more realistic as compared

to the results shown in this work. Volume of fluid method should be

further investigated using theory of homogenization to derive governing

equations for different scales that will identify each phase separately at

each time step. Finally for better understanding of the results further work

should also be done in solving the same examples in three dimensional

domain.
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APPENDIX A

Appendix A shows the Matlab program used to solve the shape

optimization problem to maximize isotropic permeability in Chapter 4.

function main

clear all

clc

This part of the code defines the number of variables, constraints and

other parameters associated with it.

fnamel = ['G&P'];

fptl = fopen( fnamel, 'wt');

volfrac = 0.3;

mcons = 3;%number of constraints

numdesvar = 4;%number of variables

xmin = [001,001, 0.01, 0.01]';%lower area limit on area

xmax = [1, l, l, l]';%upper area limit on area

ITERMAX = 100;%maximum number of iteration

STEPSIZE = 0.1 ;%stepsize

A = 2;

R = 9.44E-4;

T = pi/2;

xval = [l,0.5,0.5,1]';%initial value of area

iter=1;

converged = 0;

30:01;

xold2 = xval;

xoldl = xval;

low = xmin - sO *(xmax - xmin);

upp = xmax + 50 *(xmax - xmin);

df0dx2 =zeros(numdesvar, l );

dfdx2=zeros(mcons,numdesvar);

a0mma = l;

cmma = 1000*ones(mcons, l );

dmma = 0*ones(mcons,1);

amma = 0*ones(mcons,l);

obj3 = 0;

0ij = 0;

obj] = 0;

while iter < ITERMAX & converged == 0

alpha=zeros(numdesvar,l);

beta=zeros(numdesvar, l );
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alpha = max(xmin, (1 - STEPSIZE)*xval);

beta = min(xmax, (1 + STEPSIZE)*xval);

This command calls a function to compute the objective function and

its sensitivity with respect to the design variables

[Obj, dObjda, dObjdb, dObjdc, dObjdd, KK, k, error, fem] =

sensitivitycalculation(xval(1)*A,xval(2)*R, xval(3)*R, xval(4)*T);

f0val = Obj;

df0dx = [dObjda*A, dObjdb*R, dObjdc*R, dObjdd*T]';

This command calls a function to compute the constraints and its

sensitivity with respect to the design variables

[con, dcon] = constraint(xval(1)*A,xval(2)*R,xval(3)*R, xval(4)*T,...

volfrac,A,R,T);

fval 2 con;

dfdx = dcon;

This command calls the MMA function to compute the optimization

process

[xmma,ymma,zmma,lam,xsi,eta,mu,zet,s,low,upp] =

mmasub(mcons,numdesvar,iter,xval,alpha,beta,xold1,xold2,

f0val,ddex,df0dx2,fval,dfdx,dfdx2,low,upp,...

a0mma,amma,cmma,dmma);

disp(['i=',sprintf('%3.0f, iter) ,

' Objective function=', sprintf('%9.9f‘, vaal ),...

' kiso=', sprintf('%9.9f‘, k ),...

' error=', sprintf('%9.9f', error ),...

' Constraint=', sprintf('%9.3f, fval ),...

' Aspect Ratio=', sprintf('%9.4f, xval(l) ),...

' major a =', sprintf('%9.4f', xval(2) ),...

minor a =', sprintf('%9.4f', xval(3) ),...

' theta=', sprintf('%9.4f', xval(4)*90 )]);

fprintf(fptl, '%f %f %f %f %f %f %f %f %f \n', iter,

f0val, xval(l), xval(2), xval(3), xval(4), 1000*KK(1,1),...

1000*KK(1,2), 1000*KK(2,1), 1000*KK(2,2) );

obj = f0val;

converged] = abs(obj-obj 1);

converged2 = abs(obj l -obj2);

converged3 = abs(obj2-obj3);

if iter > (ITERMAX-6)

set(gcf,'outerposition',[10,400,400,400]);

fname2 = ['K11-',int2str(iter)];

postplot(fem,

'tridata',{ 'Kl 1','cont','internal' } ,

'trimap','jet(1024)',

'refine',3);

saveas(gcf, fname2,'jpg')

set(gcf,'outerposition',[410,400,400,400]);
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fname3 = ['K22-',int25tr(iter)];

postplot(fem,

'tridata', { 'K22','cont','intemal' } ,

'trimap','jet(1024)',

'refine',3);

saveas(gcf, fname3,'jpg')

set(gcf,'outerposition',[10,10,400,400]);

fname4 = ['K12-',int23tr(iter)];

postplot(fem,

'tridata', { 'K12','cont','intemal' } ,

'trimap','jet(1024)',

'refine',3);

saveas(gcf, fname4,'jpg')

set(gcf,'outerposition’,[410,10,400,400]);

fname5 = ['K21-',int2str(iter)];

postplot(fem,

'tridata', { 'K21','cont','internal' },

'trimap','jet(1024)',

'refine',3);

saveas(gcf, fname5,'jpg')

end

if converged] <= 0.0001 & converged2 <= 0.0001 & converged3...

<= 0.0001 & fval <= 0

converged = 0;

else

converged = 0;

end

iter = iter + l;

xold2 = xoldl;

xoldl = xval;

xval = xmma ;

obj3 = obj2;

0ij = objl;

objl = obj;

end

fclose(fptl );

clear all

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Function to compute the constraints and its sensitivity with respect to

the design variables

function [con, dcon] = constraint(AR, major_axis,...

minor_axis, theta, volfrac,A,R,T)

B = 0.002;

conl = l-(pi*major_axis*minor__axis)/((volfrac)*AR*B"2);
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dconlda = (pi*major_axis*minor_axis)/((volfrac)*AR"2*B"2)*A;

dconldb = -(pi*minor_axis)/((volfrac)*AR*B"2)*R;

dconldc = -(pi*major_axis)/((volfrac)*AR*B"2)*R;

dconldd = 0;

con2 = 2*minor_axis* l .5/(B*sin(theta))-l ;

dcon2da = 0;

dcon2db = 0;

dcon2dc = 3/(B*sin(theta))*R;

dcon2dd = -3*minor_axis*cos(theta)/(B*sin(theta)"2)*T;

con3 = 3*major_axis/(AR*B)- l;

dcon3da = —3*major_axis/(AR"2*B)*A;

dcon3db = 3/(AR*B)*R;

dcon3dc = 0;

dcon3dd = 0;

con = [conl ;con2;con3];

dcon = [ dconlda, dconldb, dconldc, dconldd; dcon2da, dcon2db,

dcon2dc, dcon2dd; dcon3da, dcon3db, dcon3dc, dcon3dd];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Function to compute the objective function and its sensitivity with

respect to the design variables

function [Obj, dObjda, dObjdb, dObjdc, dObjdd, K, k, error, fem] =...

sensitivitycalculation(AR, major_axis, minor_axis, theta)

[OB], K, k, error, fem] = permeabilityanddispersionv2(AR,...

major_axis, minor_axis, theta);

Obj = OBJ;

Obj__old = Obj;

AR_new = AR*1.01;

[OBJ] = permeabilityanddispersionv2(AR_new, major_axis,...

minor_axis, theta);

OBJa= OBJ;

dObjda = (OBJa-Obj_old)/(AR_new-AR);

major_axis_new = major_axis* 1.01 ;

[OBJ] = perrneabilityanddispersionv2(AR, major_axis_new,...

minor_axis, theta);

OBJma= OB];

dObjdb = (OBJma-Obj_old)/(major_axis_new-major_axis);

minor_axis_new = minor_axis* l .01 ;

[OBJ] = perrneabilityanddispersionv2(AR, major_axis,...

minor_axis_new, theta);

OBJmi= OBJ;

dObjdc = (OBJmi-Obj_old)/(minor_axis_new-minor_axis);

theta_new = theta* 1.01;

[OBJ] = permeabilityanddispersionv2(AR, major_axis,...

minor_axis, theta_new);
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OBJth= OBJ;

dObjdd = (OBJth-Obj_old)/(theta_new-theta);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Function to solve the governing equations and compute the objective

functions. .

function [OBJ, Kavg, k, error, fem] =

permeabilityanddispersionv2(AR, major_axis, minor_axis, theta);

flclear fem

clear vrsn

vrsn.name = 'COMSOL 3.2';

vrsn.ext = ";

vrsn.major = 0;

vrsn.build = 222;

vrsn.rcs = '$Name: 3';

vrsn.date = '$Date: 2005/09/01 18:02:30 $';

fem.version = vrsn;

%geometry

B=0.002;

L= AR*B;

B1 = B*cos(theta);

B2 = B*sin(theta);

c1={curve2([0,L],[0,0],[1,l])};

c2={curve2([0,Bl],[0,B2],[l,1])};

c3={curve2([Bl,(B1+L)],[B2,B2],[l,1])};

c4={curve2([(B1+L),L],[B2,0],[1,1])};

g1l=geomcoerce('curve',cl);

g21 =geomcoerce('curve',c2);

g3 l =geomcoerce('curve',c3);

g41=geomcoerce('curve',c4);

g1=geomcoerce('solid',{gl l, g2], g3], g4] });

P11 = (Bl+L)/2;

P22 = 82/2;

g2=ellip2(major_axis,minor_axis,'base','center',‘pos',[Pl l,P22]);

g3=geomcomp( { g1 ,g2 } ,'ns',{ 'Rl’,'El ' } ,'sf,‘R 1 -E1 ','edge','none');

g4=geomcomp({ g3 } ,'ns', { 'CO 1 ' } ,'sf‘,’COl ','edge','none');

% geomplot(g4)

clear 5

s.objs={g4};

s.name={ 'C02'};

s.tags={'g4'};

fem.draw=struct('s',s);

fem.geom=geomcsg(fem);

%meshing

fem.mesh=meshinit(fem,'Hmaxsub',[1, 4e-5]);
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%defining the partial differential equations

clear appl

appl.mode.class = 'FlPDEC';

appl.dim = {'Kl1','K12','K21','K22','A1','A2','K1l_t','K12_t',...

'K2 1__t','K22__t','A1_t','A2_t' } ;

appl.gporder = 4;

appl.cporder = 2;

appl.assignsuffix = '_c';

clear pnt

pnt.constr = {0,[0;0;0;0;'A1';'A2'} };

pnt.ind = [1,2,1,1,l,1,1,1];

appl.pnt = pnt;

clear bnd

bnd.type = {'neu','dir' };

bnd.h = {1,{1;0;0;0;0;1;0;0;0;0;1;0;0;0;

0:1;0;0;0;0;O;0;0;0} };

bnd.ind = [1,1,1,1,2,2,2,2];

appl.bnd = bnd;

clear equ

CQU-bC = {i{0;0}.{0;0}.{0;0}.{0;0}.{0;0}.{0;0};

{0:01.{0:0}.{0:01.10;0}.{0;0}.{0;0};{0;0},{0;

0}.{O;O},{0;0}.{-1.0;0}.{0;0};{0;0}.{0;0}.{0;

01.10;0},{0;0}.{-1.0;0};{0;0}.10;0}.{0;0}.{0;

0},{O;-1-0},{0;0};{0:0}.{0;0}.{0;0}.{0;0},{0;

0}.{O;-1.0}}1;

equ.c = {{0,0,0,0,0,0;0,0,0,0,0,0;'-eta',0,0,

0,0,0;0,'-eta',0,0,0,0;0,0,'-eta',0,0,0;0,0,

0,'-eta',0,0} } ;

CQU-al = {ii1:0}.{0;O}.{0;11.10:0},{0;0},{0;0};

{0:0}.{ 1:0}.{0;0}.{0;l 1.10:0},{0;0};{0;0}.{0;

0}.{0;0}.{0;01,10;0}.{0;0};{0;0}.{0;0}.{0;0},

{0:0}.{0;0},{0;0};{0:0},{0;0}.{0;0}.{0;0},{0;

0},{0;0};iO;0}.{0;0}.{0;0},{0;0}.{0;O}.{0;0} i I;

equ.f = { {0;0;-1.0;0;0;-1.0} };

equ.ind = [1];

appl.equ = equ;

fem.appl{ l} = appl;

% Shape functions

fem.shape = {'shlag(2,"K1 1")','shlag(2,"Kl 2")',...

'shlag(2,"K21")','shlag(2,"K22")‘,...

'shlag(2,"A l ")','shlag(2,"A2")'};

fem.border = l;

fem.units = 'SI';

% Subdomain settings

- clear equ
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equ.be= {{{0;0}, {00,} {0,0} {00}{ l.;,00} {();0};.

{0,0,} {0;()}, {O;()}, {0;,0} {00}{ l.;0;0} {00} .

{00}{00} {0;0}, {0;- 1.0}, {0;0}; {0;0}, {0,0,}

{0:0},{0;O},{0;0};{0;0}.{0;0}.{0;0}.{0;0}.{0;

0130:0111

equ.c = {{'-eta';'-e;ta' '-eta';'-eta',0,0;}}

equ.da = 1;

6911-31 = {{{0:0},{O;O},{0;0},{0;01.{0;0}.10;0};

{0:0}.{O;O}.{0;0}.{0;0},{0;0}.{0;0};{0;01.{0; ..

01.{0;0}.{0;0},{0;0}.{0;0};{0;0}.{0;0}.{0;0}.

{0;0},{0;0},{0;0};{-l.0;0},{0;0},{O;-l.0},{0;

0}.{0;0},{0;0};{0;0},{-1.0;0}.{0;01,{0;-1.0}.

{0:01.10;0}}};

equ.f = {{-l.0;0;0;-1.0;0;0} };

equ.ind = [1];

equ.dim 2 {'K1 l','K12','K21','K22','A1','A2'};

equ.var = {'absKl lx_c','sqrt(Kl 1x"2+K1 ly"2)',

'absculx_c','sqrt(cu1x"2+cu1y"2)',

’absK12x_c','sqrt(Kl2x"2+K12y"2)',

'abscu2x_c','sqrt(cu2x"2+cu2y"2)',

'absK21x_c','sqrt(K21x"2+K21y"2)',

'abscu3x_c','sqrt(cu3x"2+cu3y"2)',

'absK22x_c','sqrt(K22x"2+K22y"2)',

'abscu4x_c','sqrt(cu4x"2+cu4y"2)',

'absAlx_c','sqrt(A1x"2+Al y"2)',

'abscu5x_c','sqrt(cu5x"2+cu5y"2)',

'absA2x_c','sqrt(A2x"2+A2y"2)',

'abscu6x_c',’sqrt(cu6x"2+cu6y"2)' } ;

equ.cxpr = {'U','-(Kl l*Pl+Kl2*P2)', . .

'V',’-(K21*P1+K22*P2)'};

fem.equ = equ;

% Global expressions

fem.expr = {'Pl',0,

'P2','0',

'eta','0.001'} ;

% Coupling variable elements

clear elemcpl

% Extrusion coupling variables

clear elem

elem.elem = 'elcplextr';

elem.g = {'1'};

src = cell(l,l);

clear bnd

' bnd-exp” {ii},{}.'K11'},{{},{},'A2'}.{'K22'.{},{11,1'A2',-~
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{1.111.1'K12'J}, {i}.{'K21'.{},11}.{'K11'.{},{l}.iil.{},--.

'K12'}.{'A1'.{},{}},{{1.1}.'K21'}.{{},i}.'K22'},{{},{},'A1'}};

bnd.map = {'0','0','0','0','0','0','0','0','0','0','0','0' };

bnd.ind = {{'l'},{ '2','4','5','6','7','8'},{'3'} };

srC{1} = {{ }.bnd,{ } };

elem.src = src;

geomdim = cell(l,l);

clear bnd

bnd-map ={1113131}i.{{}.'1'.{l},{{}.ii.'2'}.{{1.1}.'2'l.--.

{11.1113}. {{1,{ 1"2'}.{{i.il,'2'},{{}.'1'.{}}.{{1.111'2'},-~

{113131l},{{},'1'.{}}.{{},'1',{1}};

bnd.ind = {{'1','3','5','6','7','8'},{ '2'},{'4'} };

geomdimi 1} = {i},bnd.{}};

elem.geomdim = geomdim;

elem.var = {'pconstr9','pconstr8','pconstr6','pconstr2',...

'pconstr ','pconstrS','pconstr3','pconstr10','pconstr1',...

'pconstr] l','pconstr12','pconstr7' } ;

map = cell(1,2);

clear submap

submap.type = 'linear';

submapsg = '1';

submapsv = {'1','7'};

submap.dg = '1';

submap.dv = {'2','8'};

map{ 1} = submap;

clear submap

submap.type = 'linear';

submapsg = '1';

submapsv = {'7','8'};

submap.dg = '1';

submap.dv = {'1','2'};

map{2} = submap;

elem.map = map;

elemcpl{ l} = elem;

% Point constraint variables (used for periodic conditions)

clear elem

elem.elem = 'elpconstr';

elem.g = {'1'};

clear bnd

bnd.constr = { {'pconstr9-(K11)','pconstr8-(A2)','0','0','0',...

'0','0','pconstr10-(K12)','0','pconstrl l-(K21)',...

'pconstr]2-(K22)','pconstr7—(A1)'},{'0','0','pconstr6-(K22)',

'pconstr2-(A2)’,'pconstr4-(K12)','pconstr5-(K21)',...

'pconstr3-(Kl 1)','0','pconstr1-(Al )','0','0','0' } };

bnd.cpoints = {{'2','2','2','2','2','2','2','2','2','2','2','2'},...
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{'2','2','2','2','2','2','2','2','2','2','2','2'} };

bnd.ind = {{'2'},{'4'}};

elem.geomdim = { { { },bnd,{ } } };

elemcpl{2} = elem;

fem.elemcpl = elemcpl;

% Solution form

fem.solform = 'general';

% Multiphysics

fem=multiphysics(fem,

'sdl'.[]);

% Extend mesh

fem.xmesh=meshextend(fem);

% Solve problem

fem.sol=femlin(fem,

'conjugate','on',

'solcomp',{'K21','K11','K22','A1','K12','A2'},

'outcomp',{ 'K21','Kl l','K22','A1','K12','A2‘});

% Save current fem structure for restart purposes

fem0=fem;

% Integrate

K1 la = 0.001*postint(fem,'Kl l','dl',[l])/(L*B);

Kl2a = 0.001*postint(fem,'K12','dl',[l])/(L*B);

K21a = 0.001 *postint(fem,'K2l','dl',[1])/(L*B);

K22a = 0.001*postint(fem,'K22’,'dl',[1])/(L*B);

Kavg = [K] la K12a; K21a K22a];

k: (K1 1a+K22a)/2;

error=((Kl la-K22a)"2+((K12a+K21a)/2)"2)/k"2;

OBJ=-k+error;
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APPENDIX 8

Appendix b shows the Matlab program used to solve the topology

optimization problem to minimize dissipation power in Chapter 5.

flclear fem

clc

clear all

warning off

flclear fem

fnamel = ['minimisedissipation’];

fptl = fopen( fnamel, 'wt');

Da = le-3;

Define the Geometry

g1=rect2(],1,'base','corner','pos‘,[0,0])+rect2(1.2,l.2,'base',...

'comer','pos',[-0. 1,0 1]);

s.objs={gl };

s.name={ 'Rl’};

s.tags={'g1'};

fem.draw=struct('s',s);

fem.geom=geomcsg(fem);

Define Mesh

fem.mesh = meshinit(fem,'Hmaxsub',[l, 0.02, 2, 0.02]);

meshplot(fem.mesh)

fem.const.alphamin = 0.001;

fem.const.alphamax = l/Da;

fem.const.q = 0.01;

fem.const.eta = 0.01;

Phi0 = 1;

Define the variables and the governing equations

fem.sdim = {'x' 'y'};

fem.dim = {'u' 'v' 'p’ 'rho'};

fem.shape = [2 2 1 l];

fem.bnd.shape = {[l:3]};

fem.bnd.type = 'neu';

fem.bnd.g = {0,{0.001;0.001;0;0} };

fem.bnd.ind = [2,2,1,l,l,l,1,1];

fem.equ.shape = {[l:3] [l:4]};

fem.equ.init = { {0;0;0;0.7} };
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fem.equ.f = {{'alpha*u-1';'alpha*v+1';'ux+vy';l },{'alpha*u-l ';...

'alpha*v+l';'ux+vy’; 1 } };

fem.equ.ga = { { {'-p+2*eta*ux';'eta*(uy+vx)' } ; { 'eta*(uy+vx)';...

'-p+2*eta*vy' }; {0;0};{0;0} } };

fem.equ.ind = [1,2];

% Coupling variable elements

clear elemcpl

Enforcing periodic boundary condition

clear elem

elem.elem = 'elcplextr';

elem.g = {'1'};

src = cell(l,l);

clear bnd

bnd-CXPF={{{1.'V',{}}.{{l.'U',{}}.{'U',{1,111.1'V',{},{}}};

bnd.map = {'0','0','0','0'};

bnd.ind = { {'1’},{ '2'},{ '3','4','5','6','7','8'} };

srCill = “},bnd,{”;

elem.src = src;

geomdim = cell(l,l);

clear bnd

bnd-map = {ii1"1'.{}}.{{}.'1'.{i},{{1,111'2'}.{{1,{},'2'}i;

bnd.ind = {{'1','2','4','5','6','7'},{'3'},{'8'} };

geomdim11}={{}.bnd.{}};

elem.geomdim = geomdim;

elem.var = { 'pconstr4','pconstr3','pconstrl ','pconstr2' } ;

map = cell(1,2);

clear submap

submap.type = 'linear';

submap.sg = '1';

submap.sv = {'2','8'};

submap.dg = '1';

submap.dv = {'1','7'};

map{ 1} = submap;

clear submap

submap.type = 'linear';

submap.sg = '1';

submap.sv = {'7','8'};

submap.dg = '1 ';

submap.dv = {'1','2'};

map{2} = submap;

elem.map = map;

elemcpl{ 1} = elem;

Point constraint variables (used for periodic conditions)

clear elem

elem.elem = 'elpconstr';
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elem.g = {'1'};

clear bnd

bnd.constr = {{'pconstr4-(v)','pconstr3-(u)','0','0'},{'0','0','pconstr1-(u)',

'pconstr2-(v)'} };

bnd.cpoints = { {'2','2','2','2'},{'2','2','2','2'} };

bnd.ind = {{'3'},{'8'}};

elem.geomdim = {{{},bnd,{ } } };

elemcpl{2} = elem;

fem.elemcpl = elemcpl;

Define the objective function

fem.equ.expr = {'A' 'eta*(2*ux*ux+2*vy*vy+(uy+vx)*(uy+vx))'...

'alpha',{0,'alphamin+(alphamax-alphamin)*q*(1-

rho)/(q+rho)' }, } ;

fem.bnd.expr = {'B' '0' };

fem=multiphysics(fem);

Define the adjoint problem

fem = femdiff(fem);

fem.xmesh = meshextend(fem);

fem.sol = asseminit(fem);

femadj = fem;

femadj.equ.ga = {{{'diff(A,ux)' 'diff(A,uy)'} {'diff(A,vx)' 'diff(A,vy)'}

{’diff(A,px)‘ 'diff(A,py)'} {'diff(A,rhox)' 'diff(A,rhoy)'} } };

femadj.equ.f = {{'diff(A,u)' 'diff(A,v)' 'diff(A,p)' 'diff(A,rho)'} };

femadj.bnd.g = {{'diff(B,u)' 'diff(B,v)' 'diff(B,p)' 'diff(B,rho)'} };

femadjxmesh = meshextend(femadj);

flngdof(fem);

i4 = find(asseminit(fem,'Init',{'rho' l},'Out','U'));

L = assemble(fem,'0ut',{ 'L' });

Vgamma = L(i4);

Vdomain = sum(Vgamma);

i123 = find(asseminit(fem,'Init',{'u' 1 'v' 1 'p' l},'Out','U'));

a0 = 1;

a=0;

c=20;

d=0;

xmin=0.01;

xmax: l;

xold = fem.sol.u(i4);

xolder = xold;

low = 0;

upp = 1;

penal = 3;

for iter =1:1000

fem.sol = femnlin(fem,'Solcomp',{'u' 'v' 'p'},'U',fem.sol.u);

[K N] = assemble(fem,'0ut', { 'K' 'N' } ,'U',fem.sol.u);
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[L M] = assemble(femadj,'0ut', { 'L' 'M' } ,'U',fem.sol.u);

femadjsol = femlin('In',{ 'K’ K(i123,i123)' 'L' L(i123) 'M'...

zeros(size(M)) 'N' N(:,1123)});

rho = fem.sol.u(i4);

Phi = postint(fem,'A','Edim',2) + postint(fem,'B','Edim',1);

dPhidgamma = K(i123,i4)'*femadj.sol.u-L(i4);

x = rho;

f = Phi/PhiO;

g = rho'*Vgamma/Vdomain-0.5;

dfdx = dPhidgamma/PhiO; dgdx = Vgamma'Ndomain;

d2fdx2 = zeros(size(rho)); d2gdx2 = zeros(size(rho'));

nel = size(x); nely = nel(l); nelx = nel(2); min = 0.1;

[dfdx] = check(nelx,nely,rmin,x,dfdx);

[xnew,y,z,lambda,ksi,eta,mu,zeta,s,low,upp] = mmasub( 1 ,length(rho),iter,

x,xmin,xmax,xold,xolder,f,dfdx,d2fdx2,g,dgdx,d2gdx2,low,upp,a0,a,c,d);

xolder = xold; xold = x;

rho = xnew;

if iter >= 100

break

end

u0 = fem.sol.u; u0(i4) = rho;

fem.sol = femsol(u0);

disp(sprintf('lter.:%3d Obj.: %8.4f Vol.: %6.3f Change: %6.3f,

iter,f,rho'*Vgamma,max(abs(xnew-xold))))

fprintf(fptl, '%f %f \n',iter,f);

set(gcf,'outerposition',[ 10,400,400,400] );

fname5 = ['topo-',int2str(iter)];

postplot(fem,'tridata','rho','trimap','gray')

axis equal; shg; pause(0.1)

saveas(gcf, fname5,'jpg')

end
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APPENDIX C

In the topology optimization work shown in Chapter 6 and 7 the

derivative of objective function with respect to the design variable is

obtained using the adjoint problem as described by Olesen et al.

According to their work the derivative of the objective function can be

expressed using the chain rule,

30b)+ i 3013ng (AC.1)d

—Ob'=

dpl J] 8p 9 an 3p

m

where Obj is the objective function, p is the design variable and u is the

velocity-pressure vector. The starting point of the finite element analysis

is to approximate the solution component u,- on a set of finite element

basis functions or also known as shape function {Pin}

(AC.2)

where “Ln are the expansion coefficients. Similarly, the design variable

field p is expressed as

p = Egg/24," (AC3)

n

For a homogenized incompressible Stokes problem the standard Taylor—

Hood element pair with quadratic velocity and pressure approximation is
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commonly used. For the design variable linear Lagrange elements are

chosen.

The governing equations and the boundary conditions are discretized by

the Galerkin method as I

3 T (AC.4)

L.(U,p)— z N..A.=0

I j=1 11 J

Mi(U, p) = 0 (AC.5)

where Ui’ Ai and p are column vectors with the expansion coefficients

for the solution “in, the Lagrange multipliers #1312, and the design variable

field p", respectively. The column vector L,- contains the projection of

Neumann boundary conditions onto <Pi,n. The partial integration is given

by

Li n = I (¢i nFi +V¢i 12.11)“)... I ¢i nGidan (AC6)
9 Q 9 9 an I

m m

The column vector M,- enforces the Dirichlet constraint in the boundary

conditions

Mi,n =Ri (AC.7)

The matrix Ni]: —6Mi/6Uj describes the coupling to the Lagrange

multipliers in Neumann boundary condition. The sensitivity analysis as

shown in equation (AC.1) can be also written as
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i[0bj]=—aObj+ )3 LOW -a—U- (AC8)
dp 8p i=1 8U 8p

Equation (AC.8) is computed using the standard adjoint method. From

3

equation (AC.4-AC.5) we have for any p that Li — Z NSAJ. =0and

i=1

Ml.(U,p)=0. Therefore also the derivative of those quantities with

respect to p is zero. Adding any multiple such as D, and A, to equation

(AC.8) does not change the result. Equation (AC8) can be written as

80bj+ % 808.39% (AC9)d

—Ob'=

dp[ J] 8p 1&1an 8p

Reorganizing the terms,

- 3 ,_ al.. ,_ aM. (AC.10)

—d—[Obj]=——aObJ+ z UTi—'——A.T—‘ +

dp 3;) 1:) 8p l 3p

U

'
_
-

i:

3 ' - 3 ~ aL. ~ 30.

)3 a—O—bl+ z UTi—i—A.TN.. -—'—

an aul. 1 ap

 
3

Z 2 U iN

i=lj=l '1

The derivatives aU/ap and aft/0p of the implicit functions can be

eliminated by choosing D, and A, such that
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.. j: 3)ij (AC.11)

(AC. 12)

where Kij = —6L,-/6Uj . This problem is the adjoint of equation (AC.4) and

0i and Al. are the corresponding Lagrange multipliers.
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