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ABSTRACT
A METHODOLOGY FOR MATERIAL DESIGN APPLIED TO
POROUS MEDIA WITH FLOW
By

Deep Bandyopadhyay

Two methodologies to design the microstructure of porous materials
are presented in this work. The methodologies are based on shape and
topology optimization and allow to identify layouts of the microstructure
of a periodic cells using criteria such as maximizing the effective
properties, minimizing the energy losses, or maximizing the mixing of a
dispersed solute. The porous materials studied are made of a mixture of
a heterogeneous solid matrix with its void filled with fluids. There exist
two relevant length scales in the model materials:. a microscale, which is
associated with the pores, and a large scale associated with the overall
part.

The governing equations for the microscale and the large scale are
related through the effective properties. These effective properties are
derived using the theory of homogenization. Expressions derived using
homogenization for effective properties such as permeability, dispersivity
are computed using finite element analysis and validated with
experimental results. Shape and topology optimization are used to find

the optimal shape and layout of the microstructure.



In shape optimization, an algorithm is developed to find an optimal
shape of the pores in the microstructure for a given criterion for single and
multiphase flow. Three different shapes for the solid region of the
microstructure were analyzed: circular, elliptic and rectangular
geometries. The macroscopic fluid flow and solute transport equations
were solved based of the effective properties computed for the optimized
microstructure. The velocity and solute fields were compared with those
computed from a microstructure form by square array of identical porosity
as of the optimized microstructure. The result showed that the optimized
microstructure has a significant improvement in reducing energy loss
during fluid flow and increasing mixing of the dispersed solute.

Topology optimization is then used to design porous media for two
different objective functions: minimizing dissipation power and
maximizing dispersive power. The governing equations were solved using
finite element analysis and the sensitivity is computed using an adjoint
problem based of the approach. The results were evaluated by comparing
the macroscopic fluid flow for the optimal microstructure with the flow
obtained for a microstructures formed by square array with same porosity

as the optimized microstructure.
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CHAPTER 1
INTRODUCTION

1.1 General

A porous medium is a mixture of a heterogeneous solid matrix with its
void filled with fluids (Kaviany, 1991). A porous media has structural
properties such as elasticity, strength and have found numerous scientific
and engineering applications such as those listed in Table (1.1).

The term “porous materials” is usually reserved to materials such as
ceramic, fibers, concrete, or naturally occurring porous rocks. But a
broader use of the term porous media can describe a wide variety of
devices or components. Figure 1.1 shows few examples of porous media
such as heat exchanger (b) (Industrial Quick Search, 2007), material for
micro chip (a) (H-IP-O, 2007), filters (c) (Filtration and Separation
Buyers Guide, 2007), and static mixture (d) (Cleveland Eastern Mixers,

2007).



Table 1.1 List of engineering disciplines where porous materials are used.
In many instances the microstructure of the porous material has a direct
impact on performance.

Discipline Usage of Porous Material
Agricultural engineering Dealing with drainage and irrigation
Civil engineering Concrete is a porous medium

Environmental engineering | Groundwater pollution by toxic liquids and

hazardous wastes

Chemical engineering Reactors, static mixers

Mechanical engineering Layout of heat exchangers can be modeled
as a porous media and micro channel

cooling

Biomedical engineering Bones, lungs and kidneys




Figure 1.1. a-d. Examples of industrial applications of porous media.



1.2 Solute Transport and Fluid Flow in Porous Media

Various approaches have been presented in the literature to derive the
governing equations for fluid flow in porous media and compute the
effective properties. An effective property is a property of a material that
changes with factors such as modification in the micro structure or the
acting boundary conditions, whereas a physical property can be measured
or perceived without changing its identity of the material such as
viscosity, molecular diffusivity.

Some noted works to compute effective properties are self-consistent
methods by Kroner (Kroner 1978), statistical modeling techniques by
Kroner (Kroner 1986), averaging methods by Quintard and Whitaker
(Quintard and Whitaker 1988) and the theory of homogenization by
Bensoussan and Sanchez-Palencia (Bensoussan 1978, Sanchez-Palencia
1980). The last method is used in this work to derive an expression for the
effective properties. Effective properties of any material are computed
from solving and averaging the resulting quantity over the microstructure.

The theory of homogenization provides a rigorous treatment of multi-
scale problems applicable to numerous differential equations with multi
scale features. It is assumed here that there exists two length scales (micro
and macro) which are very different in magnitude. When applied to derive

the governing equations for porous media, the microstructure is also



assumed to be periodic at the micro scale and homogeneous at the macro

scale.

1.3 Research Approach

The objective of this work is to develop methodologies for the design
of the microstructure of a porous material. To achieve this, first a review
of previous works done on the mechanics of single and multiphase flows
and solute transport in porous media is presented. The equations derived
from the theory of homogenization (Bensoussan 1978, Sanchez-Palencia
1980) are used as described by C. C. Mei (Mei 1992) and solved using
various commercial software. The effective properties of the given
material are computed and compared with various experimental and
numerical results. The method of moving asymptotes, as proposed by K.
Svanberg (Svanberg 1978, 2002), is used to find the optimal
microstructure of the porous using shape and topology optimization.
Figure 1.2 shows a flowchart of the research approach. Step by step
algorithms were developed using shape and topology optimization to
identify a microstructure for a porous media that optimizes the given set
of conditions such as maximizing dispersion of the solute or minimizing

energy loss for both single and multiphase flow.
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Figure 1.2 Flow chart providing an overview of the methodology.



1.4 Material design techniques

Shape and topology optimization techniques are used to determine the
shape and layout of the solid region. Figure 1.3 shows examples of shape
and topology optimization. Here shape optimization (Figure 1.3a) is used
to find the optimal shape of the holes to avoid stress concentration under
given load (Jorgen 2003, Sigmund 2000). Topology optimization (Figure
1.3b), on the other hand, is a layout optimization, which gives an optimal

layout to avoid stress concentration under given load.

Shape optimization

Topology optimization

N

Figure 1.3. a-b. Examples of (a) shape optimization and (b) topology
optimization from (Jorgen, 2003).



The algorithm for shape optimization tries to find an optimal shape
from a given family of shapes, which will maximize or minimize the
given objective function. The design variables are mainly the dimensions
of the periodic cell and the solid region such as the radius for circular
cross section, major and minor axis for elliptic cross section, and length
and height for the rectangular cross section.

Topology optimization, on the other hand, mainly focuses on the
layout of the fluid and the non-fluid region. The domain is divided into
small domains called “pixels” and for each pixel the design variable p

controls the local permeability of the medium as follows:

) 0 if xe SolidRRegion (1.1)
x)=
P 1if x e Fluid Region

For a given domain and boundary condition the algorithm tried to find the
optimal layout of the solid and fluid region, which maximizes or

minimizes the given objective function.

1.5 Dissertation layout

The layout of this dissertation is as follows:

In chapter 2 and 3, existing theories on fluid flow and solute transport
in porous media are presented along with expressions for the effective
properties of a porous material for single phase fluid flow and solute
transport in porous media. The governing equations are solved using the

finite element method and compared with experimental results.



Chapter 4 presents my findings for the optimal microstructures of
porous media that maximizes the effective properties such as permeability
and dispersivity. Shape optimization is used.

In Chapter 5 I try to find the optimal microstructure for porous media
using shape optimization that maximizes dispersion while minimizing
energy loss.

Topology optimization is used to find the microstructures for two
objective functions: minimizing dissipation power in Chapter 6 and
maximizing “dispersive power” in Chapter 7.

In chapter 8, I review the theory for multiphase flow in porous media
and solve the governing equations using finite differences to find the
optimal microstructure that will minimize dissipation power or energy
loss for multiphase fluid flow using shape optimization. It is to be noted
however that this problem is mathematically identical to the single phase
flow problem as presented.

Finally, in Chapter 9 I summarize and discuss the results obtained

from various optimization techniques shown in the previous chapters



CHAPTER 2

THEORY FOR SINGLE PHASE FLUID FLOW IN POROUS
MEDIA

2.1 Introduction

The fluid flow in this work is assumed to be incompressible and non
turbulent. The theory of homogenization, introduced by Bensoussan and
Sanchez-Palencia (Bensoussan 1978, Sanchez-Palencia 1980), provides a
general framework for deducing both the macro scale equations and the
effective properties for the dynamics of rigid porous media. The main
assumption in this theory is that there exist two well-separated length
scales: the micro scale [~O(x) and macro scale L=O(X),

wherel/L = £ << 1. In this study the porous macrostructure is assumed to

be homogeneous consisting of periodic micro cells having distinct solid
and fluid regions. Figure (2.1) shows the microscopic length scale for

different naturally found porous media.
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2.2 Derivation of Effective Permeability Tensor

The macroscopic domain (£ M ) as shown in Figure 2.2 (a) is assumed to
be homogeneous with periodic microscopic cells (Qm) as shown in

Figure 2.2(b). The periodic cell has two distinct regions: a solid region

(QS) and a fluid region (Q ,) such that Qm=quQf

f

and Qs NQ . =0. The interface between the solid-fluid in each periodic

f

cell is I';] and the interface between two periodic cells is denoted by I'ceji.
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Figure 2.2. Schematic of a porous material (Q M )in (a) made of an
assembly of periodic microscopic cells (Qm ) (b). The interface between

the solid-fluid in each periodic cell is I'g| and the interface between two
periodic cells is denoted by I'cej.



For a rigid porous medium with incompressible Newtonian fluid of
constant density, the governing equation for the fluid flow is Navier —

Stokes equation (Mei 1991a, 1991b, 1992).

2 2.1

uv u—Vp:pfu-Vu in Qf

and V-u=0 in Qf 2.2)

where is u is the velocity, p is the pressure, 4 is the dynamic viscosity of

the fluid and pf is the density of the fluid.

The boundary condition on the solid — fluid interface is the no slip

boundary condition given by

u=00n rsl (2.3)

For a low Reynolds number flow, the left hand terms in equation 2.1 are
equally important. Since there are two different scales, the pressure term
has two contributions: the global applied pressure which has the length
scale L and the local pressure variation due to the microstructure which
has the length scale 1. For generality, let there be two comparable pressure
gradients. Then the global pressure must be much greater than the local
pressure by the factor O(1/¢). These two pressure variations are referred as
the driving pressure (global) and responding pressure (local) (Mei, 1992).
The multiple scale coordinates x (small scale) and X (x=eX where X is

the large scale) are introduced to relate the micro and macro length scale

14



respectively. In order to relate the vector and scalar quantities at different
scales, asymptotic expansions for u and p are used as follows

u=u(0) +eu(l) +£2u(2) +e3u(3) +... 24

= p® L0, 2,0, 3,0, 25)

where @ u® y@ _and ;O ,D @ areQ,, -periodic and ¢ is

small parameter (the ratio of the small scale over the large scale). The

superscripts (O), M denote terms associated with a corresponding power

. o 1 . . .
of € i.e. €, € ... in the asymptotic expansions. The gradient operator

related the two length scales as a function of € is given as (Mei, 1995)

V=V +e&v, (2.6)

where the subscripts x and X represent the small and large scales
respectively.

Substituting the gradient operator and the perturbation expansions for u
and p in the Navier-Stokes equation and the incompressibility constraint,

then

U (vx +eV )2 (u«» +euD +620@ 4 34D 4 )_ (2.7)
(Vx +CVX )(P(O) +£p(l) +€2p(2) +£3p(3) +) =

P(u(o) +eul 4 £2u@ 1 303 4 ...)(Vx +EV )

(u(o) +£um + e2u(2) +s3u(3)) in Q f

15



and (V. +e7 )'(“(O) reul® 120 4 3O +) =0in 238

Qp

From equation 2.7 and 2.8, keeping terms of O(e”) then the following

problem is identified

2.(0) _ M _ (O (2.9)
W Fut v pt=v, pin Qf

andv -u@-0inQ (2.10)
X

f

In Equation (2.9) p(O) is the global pressure applied in the macroscopic

).

scale, whereas p" ’is the local pressure and varies in microscale only.

The needed no slip boundary conditions are derived by substituting the

asymptotic expansion of u in equation (2.3) as

u(O) = u(l) =..... =0 onTI (solid fluid interface), @10
u(o),u(])... and p(O), p(l).... are .Qm -periodic. (2.12)
u(O), p(’) and p(O) can be written in dimensionless formﬁ(o), i;(l)

and ﬁ(o) related by ﬁ(o) =u(0) /<u(0)> , ,‘7(1) = p(l) /P and

i;(o) = p(O) / P, where P is the characteristics pressure. The length scale x

and X are scaled with characteristic macroscopic length L. Equations (2.9)

and (2.10) can be written in dimensionless form as follows,

16



/1<u(0)> (2.13)
szﬁ(o) _Vxﬁ(l) =VX ﬁ(o) in Qf

andv 4@ =0inQ (2.14)
X

f

ﬂ<u(0)>
where | 1 _’ | is a dimensionless number.
PL
Equation (2.9) relates the microscopic fluid flow with the macroscopic
pressure gradient. The two terms on the left hand side of equation (2.9)

are depended on the small scale where as the right hand side term

v X p(O) is a function of large scale. Assuming that u? and p(l) depends

(V)

on the large scale pressure gradient, u ~ and p(l) can also be expressed in

terms of p(o) from Darcy’s equation as described by (Benssoussan et al,

1977, and Mei 1991a)

W@ - vy, Qi o (2.15)
And
pV =8-VXp(O) in 0 (2.16)

where U is the characteristic velocity tensor and a is the characteristics

pressure tensor obtained from the solution of

17



,quzU—an =1in Q f (2.17)

and

V .U=0in Q (2.18)
x f

The domain is the periodic cell and the boundary conditions applied are

no slip condition at the solid liquid interface and periodic boundary

conditions for U and a on Qf. U and a in dimensionless form can be
written as U and a related by {j = U/(Lz/ﬂ) and a=a/L, where L is the

characteristic macroscopic length. The length scale x and X are scaled

with characteristic macroscopic length L.

vV 20-v a=1in Q (2.19)
x x m
and
o 220
v -0=0in S).m (2.20)

The effective permeability of the porous media is computed from

K =u(U) in QM (2.21)

where the averaging operator is defined as

(f)=—— | 0 2.22)
mEf

and in dimensionless form,

K=(0)inQ,, (2.23)

18



Equations (2.8 - 2.9) and Equations (2.19 — 2.20) are similar yet different
in many ways. In Equations (2.8 - 2.9) the solution for u?® depends on the

boundary conditions applied on the macroscale (macroscopic pressure

gradient) and the microstructure whereas U is independent of the
macroscopic boundary conditions. Also for a computed value of U, u®

can be computed from equation (2.16). It is convenient and

computationally faster to solve equations (2.8 - 2.9) when flow
© ) . .
parameters such asw ' and p"  are of primary focus. On the other hand if

one needs to compute the effective permeability it is convenient to solve

Equations (2.19-2.20) as shown below.

2.3 Computation of Effective Permeability Tensor

In this section, the commercial software Comsol® is used to solve the
characteristic velocity equations (2.20) and (2.21), for a given
microstructure of dimension 0.002m with circular solid region of radius

0.00062m. The domain was discretized using unstructured triangular

. . -5 .
mesh with an average element size of 4e = and is shown much further

below in Figure 4.2. The physical properties of the fluid are taken as

dynamic viscosity x to be 0.001 Pa.s, density of fluid pf to be 1000

Kg/m3. The effective permeability is computed from Equation (2.22).

19



Figure 2.3 shows the longitudinal permeability for a square
microstructure in m’. The effective permeability computed for the

e 1
c

1 €
microstructures shown in Figure 2.3 is K=3.9(10_5)[ c}mz,

where £, = 4.07(10_3 ). When compared with the intrinsic permeability

calculated from Kozeny-Carmen equation (Bird et al. 2001) , the results
are in reasonable argument. The intrinsic permeability is given by the
Kozeny — Carmen equation is given as

n2 2.24)
kkc = -3
2s

where n is the porosity and s is the specific surface which is expressed as
the ratio of the pore surface area to the total volume of the periodic cell.

From Equation (2.24) the intrinsic permeability computed for the
microstructure mentioned above is ki, = 1.78(10'12) m2. Permeability is
related to the intrinsic permeability not only on the viscosity but also on

the density of the fluid at the temperature of measurement by

_ Ku
L
ple

From the above equation the permeability if computed as k. = 1.75(10)

m® which is comparable with the results obtained using Equations 2.20
and 2.21. Since the axial velocity is directly proportional to the
longitudinal permeability, Figure 2.3 also shows the contour for axial

velocity for an applied pressure.
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Figure 2.3 Contour plot of the distribution of the longitudinal component
of the permeability tensor (xU) for round cylinder in a square periodic
domain. The results are presented in m>.



CHAPTER 3

THEORY FOR SOLUTE TRANSFER IN POROUS MEDIA

3.1 Introduction

In many applications of porous media such as static mixers (solute
transport), heat exchanger (heat transport), material for microchip (heat
transfer), the dispersion of a solute or heat transfer is of critical
importance. Since the governing equations for solute transport are often
similar to the equations for heat transfer, the scope of the work applies to
both solute and heat transport in porous media.

In this chapter, the governing equation for dispersion of solute in
porous media are presented using the theory of homogenization. As
discussed in the previous chapters, the theory of homogenization, as
introduced by Bensoussan et al. and Sanchez-Palencia (Bensoussan et al.
1978, Sanchez-Palencia 1980), provides a general scheme for deducing
both the macro scale equations and the effective properties for the

dynamics of rigid porous media.

3.2 Derivation of Effective Dispersion Tensor

In the analysis below, the macroscopic domain (Q M ) as shown in Figure

3.1 (a) is assumed to be homogeneous with periodic microscopic cells

22



( Qm) as shown in Figure 3.1(b). The periodic cell has two distinct
regions: a solid region (Qs) and a fluid region (Q f) such that

Qm =Qs u andQs NQ . =0. The interface between the solid-

f f

fluid in each periodic cell is I'g] and the interface between two periodic

cells is denoted by I'ce|j-
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Figure 3.1. Schematic of ucture ( 2y ) (a) consisting of periodic
microscopic cells (£, ) (b). The interface between the solid-fluid in each

periodic cell is I'g and the interface between two periodic cells is denoted
by Teell-
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The governing equations for the solute transport in porous media at the
macroscale can be derived using theory of homogenization and the
presentation of (Mei and Auriault 1989, 1991) is followed below.

For solute transfer, the governing equation for the volumetric

concentration ¢ of the solute in the fluid region can be expressed as

ac
or

+(u>-Vc=V-[D-Vc] in Qf 3.1

where (u) the average velocity, ¢t is time and D is the molecular

diffusivity of the fluid.
The asymptotic expansions for ¢ and u are given as

0) m, 2.2

u=u +a1 "’ +€°u +£3u(3)+... (3.2)

c=c@ 4 a® 422 3.3, 3.3)

where u(O)’u(l),“(Z)m and C(O)‘C(l)'C(Z)m are Q2,, -periodic and ¢ is

small parameter (the ratio of the small scale over the large scale). The

superscripts @, )., .denote terms associated with a corresponding power

. o1 . . . . .
of g, i.e. €, € ... in the asymptotic expansions. The gradient operator in

terms of the two length scales is

V=Vx+£Vx 34

25



where the subscripts x and X represent the small and large scales
respectively.

Substituting the differential term and expansion for ¢ and u in volumetric
concentration equation,

a(c“’) +6cD 4622 4 33 +) 3.5)

+
ot
<(u(0) +eul 1+ e2u@ 4 33 +...)>-(Vx +ev, )

(C(O) vec® 422 1 3.3 +) = (V V% )

[D . (V +&V )(C(O) + e'c(l) + 820(2) + 83(:(3) + )] in Q
X X

f
Equating the terms at orders from 0(80) and O(s') for steady state

condition, then a zeroth and first order problems can be identified

0(80): I.l(O)V C(O) =DV 20(0) 3.6)
X X
oE): Oy O, ,Op O O O _ 3.7
X X X
DV (V Wiy c(o))
x\ x X

Following (Mei and Auriault 1989, 1991) c¢'” can be expressed as a
function of the macroscopic gradient of ¢ with the proportionality

function N as

" =NV, inQ (3.8)

N is further described as any periodic vector satisfying the following

equations
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Vx(D(“'Vx 'N»'“(O)Vx 'N=u(0) —<u(0)>/n in Qm (3.9

where n is the porosity, and
(I+V -N)-n=0 onT.

x (3.10)
Nis Q,,-periodic and (N)=0.
From Equation (3.9) it becomes clear that N depends on the fluctuating
component of u® (u(® - <u(0) > /n ). Substituting the expression for ¢'”
from Equation (3.8) in Equation (3.7) and reorganizing the terms, then

WV, c®=v p-v, c®|inQ, (3.11)
where (u)=<u (0)>+<u (l)> and for weak inertia flow (where the

inertial force term is negligible) <u"’> =0 (Mei and Auriault 1991). The

solution for ¢ is obtained by solving the macroscopic problem.
D is the effective dispersion tensor (Mei 1992) expressed as

D=D(Z) in Q (3.12)
m

where Z is “characteristic dispersivity tensor” given as,

T (3.13)
Z=(l(v N+V NT)+1)-1[(u(°)N)+(u(°)N) J in @
2 X X 2 'm
The domain for Z is the periodic cell and the boundary conditions are

that of no slip on I',, and on the outer boundary an of an Qm -cell, the
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boundary condition is

.,.(ch(z-l) +ch(z))zo on T . (3.14)

where [ is an integer used to represent the relevant scales, and C"" = 0

U]

and C" is Q,, -periodic and the vector n denotes the normal vector to

0)

C(O)’ u and D can be written in dimensionless form c“( ,d and D

related by d0 - O, , = u/<u (°)> and D=D/D . Equation (3.10) can

be written in dimensionless form as

<u (0)>L 3.15)
N ~(0 A ~(0) | {
L u).vxc( )=VX .[D.vxc( )] inQ,

(0 @)
where [\ /| is a dimensionless number.

D
It can be noted that in equation (3.11) the volumetric concentration
equation is expressed over the macroscopic domain whereas the terms in
the dispersion is defined in the microscopic domain. Hence it can be said
that the solute transport in the macroscopic domain strongly depends on

the microstructure of the porous media.
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3.3 Computation of Effective Dispersion Tensor

In this work, the commercial software Comsol® is used to solve using
finite elements the effective dispersion tensor given by Equation (3.11) for
given boundary conditions and geometry as shown in Table (3.1) and
Figure (3.2).

In the following examples, I (h = [) is the length of the microscopic

cell and L (H=L) is the macro-scale domain length. The fluid properties

are the viscosity x4 and density pf . A macroscopic pressure gradient is

applied along the horizontal direction. Each periodic cell is identified by
the geometric parameters such as [, h, @ b, and @ where [ is the cell
length, h is the cell height, a is the major axis or length of the solid region,
b is the minor axis or height of the solid region, and @ is the angle between
! and A in each cell.

Examples shown in this section limits 8 to 90° to represent a square
array. Given the physical properties and the values of a and b (major and
minor axis), equation (3.11) is solved to obtain the effective dispersion
tensor. The longitudinal (along the flow direction) effective dispersion
tensor (Dxx) for two-dimensional, spatially periodic, arrays of circular
cylinders is calculated over a range of Péclet number.

The Péclet number is a dimensionless number which relates the rate of
advection of a flow to its rate of solute or mass diffusion or thermal

diffusion. For thermal diffusion it is equivalent to the product of the
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Reynolds number with the Prandtl number, and the product of the
Reynolds number with the Schmidt number in the case of mass diffusion.

For mass diffusion Péclet number can be computed from

(u)d (3.6)
D 1-n

where dp, is the “equivalent particle” diameter, (u) is the intrinsic volume

average velocity in the direction of the pressure field,n is the porosity.
For thermal diffusion the molecular diffusivity term D is replaced by
thermal diffusivity. The longitudinal effective dispersion tensor calculated
using homogenization method is compared with experimental (data taken
from Buyuktas 2003) and numerical (Edward 1991) results and shown in

Figures (3.3) and (3.4).
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1

Figure 3.2 Schematic of a periodic microscopic cells. Dimensions of a, b,
1, h are tabulated in Table (3.2) for a typical cells. “a” is the only
parameter used in the optimization of a cylinder.
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Table 3.1 Parameters corresponding to the geometry shown in Figure
(3.2) and which are used in the solution of the dispersion tensor

Symbol Value Unit
Vh 1 [-]
/L 0.002 [-]
a/b 1 [-]
n 0.8 and 0.4 [-]

AP/L 1 Nm™>
n 0.001 Pa-s
L 1 m
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Figure 3.3 Comparison of dimensionless longitudinal effective dispersion
tensor measured through experiments (data taken from Buyuktas and
Wallender 2004) with numerical results obtained in this work using

homogenization for a porosity of 0.8.
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Figure 3.4 Comparison of dimensionless longitudinal effective dispersion
tensor measured through experiments for a cubic array of a porosity 0.43
(Gunn and Pryce 1969) and numerical simulations obtained with square
array of particles of porosity 0.4 (Edwards et al. 1991) with results

obtained in this work using homogenization.
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Figure (3.3) shows the relative agreement of the results obtained using
homogenization method with various experimental results. Discrepancies
with the experimental results are attributed to the fact that the experiments
were done with disordered particles; whereas, this work is done using an
array of particles equally spaced with periodic boundary condition. Also
in homogenization, it is assumed that the Peclet number is of the order of
1 (low Reynolds number flow); and, hence, some significant variations
with experimental results for higher Peclet number are expected.

This can be further compared with the numerical analysis based on
Taylor dispersion theory as shown in Figure (3.4). In Figure (3.4), some
discrepancies are observed with the experimental data (Gunn 1969). The
disagreement between the present result and those of the experiments is
due to the fact that their data from the experiments are for a three-
dimensional cubic array; whereas, the present work is for two-
dimensional, spatially periodic arrays of circular cylinders.

From the above comparison it appears that homogenization provides
very reasonable values for the dispersion tensor for a Peclet number of

order one.
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CHAPTER 4

DESIGN OF POROUS MEDIA USING SHAPE OPTIMIZATION
TO OPTIMIZE EFFECTIVE PROPERTIES

4.1 Introduction

Shape optimization is a well established method for design. Here the
problem is applied to material design and posed in such a manner that the
algorithm may find an optimal shape of the pores in the microstructure
that will optimize the effective properties. The optimization problem is
cast in the fashion of a standard shape optimization problem where
various shapes described parametrically are studied. The Method of
Moving Asymptotes as proposed by Krister Svanberg is used for
optimization.. The derivatives of the objective function with respect to the
design variables were computed using finite difference. The governing
equations needed to solve the effective properties were derived in

Chapters three and four and are solved using the finite element method.
4.2 Identifying the Periodic Cell

In the analysis, the macroscopic domain (Q M ) is assumed to be
homogeneous with periodic microscopic cells ( Qm ). The microscopic
cell has two distinct regions: a solid region (Qs) and a fluid region (2

f)
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such that Qm=QSuQ andQ.an =0. P, | and L are the

f f

characteristic pressure, micro length and macro length scales. Two scales
are introduced: a small scale (x=O(l)) and a large scale (X = O(L)).
Both scales are related by X = x/¢.

The homogeneous macroscopic domain shown in Figure (4.1) is
formed of periodic microscopic cells as shown in Figure (4.2) and Figure
(4.3). Each cell geometry is identified by the following parameters: I, h,
a b, and 8. L is the cell length, & is the cell height, a is the major axis or
length of the solid region, b is the minor axis or height of the solid region,
and @ is the angle between ! and & in each cell. Three different shapes for
the solid region such as circle (a = b), ellipse (Figure (4.2)), and rectangle

(Figure (4.3)) are considered below.
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Figure 4.1 Schematic of of the arrangement of the cells in the macroscopic
domain studied consisting of periodic microscopic cells as shown in
dashed line.
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Figure 4.2 Schematic of periodic microscopic cells with an elliptic solid
region.
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Figure 4.3 Schematic of periodic microscopic cells formed from a
rectangular solid region
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4.3 Formulation of the optimization problem

The aim is to find a microstructure of the periodic cell that maximizes
some function of the effective properties with the added constraint of
volume fraction using shape optimization. In the following section, the

objectives functions are presented.

4.3.1 Maximize effective permeability

Filters constitute of the common applications of porous. It is common in
such an application to be concerned with the pressure drop across the filter
media. Hence the motivation behind the work in this section is to design a
porous media that maximize the permeability for a given porosity or
volume fraction of solid i.e. to seek a periodic cell that maximizes the
permeability with isotropic flow symmetry as proposed by Guest (Guest
2007) for a given porosity or volume fraction of solid. The microstructure
is modified such that the fluid in a porous media only flows in the
direction of the applied pressure gradient, and hence follows a reduction
in the loss of energy in fluid flow.
The isotropic effective permeability is defined as

K=K in Q 4.1)
m

The complete formulation of the optimization problem is stated as
follows:

Find the optimal value of @, /, a and b for a g fixed of A, that will
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maximize: Isotropic Effective Permeability

where isotropic permeability is expressed as k — €
Here k and sp are computed from

4.2)

12 2 2 1 2 4.3)
gl’:(I) ,-El(Kii'K(in)(iﬂ)) +i§lj§2(xij)

where Kij is computed from equations (2.18).
subjected to: volumetric and geometric constraints

Q
Constraint 1: —5 >V

. e 4.9)

Constraint 2: g < é

Constraint 3: p <

hsin @
2

where () is the volume of the solid region, €, is the total volume of the

cell, and Vj is value (0<Vfr4c<1) specifying the minimum solid volume.
The first constraint in equation (4.4) restricts the minimum volume of
solid region to Vg,c. The next two constraints are imposed to insure the

continuity of each phase.
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4.3.1.1 Example Problems

This section shows examples of shape optimization that maximizes
effective permeability as described in section 4.3.1. The solutions were
obtained by casting the problem in the fashion of a standard shape
optimization problem. The derivatives of the objective function with
respect to the design variables were computed using a forward finite

difference method as shown below,

00bj _ Obigy + &tv ~ gy 4.5)
adv av

where “Obj” is the objective function and “dv” is the design variable. The
derivatives of the constraints with respect to the design variables were
computed analytically. The objective function was computed by solving
the governing equations for the effective properties using the finite

element method. The domain was discretized using approximately 6000

. . . . -5
triangular elements in an unstructured mesh with an element size of 4e

m as shown in Figure (4.4).
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Figure 4.4 Schematic of the unstructured triangular mesh used for finite
element analysis.



The Method of Moving Asymptotes (MMA) is used for optimization.
The results shown in this section are all for a limiting volume fraction of

0.3 and fixed value of 0.002 m for A. The physical properties of the fluid

are taken as dynamic viscosity u to be 0.001 Pa.s, density of fluid pf to be

1000 Kg/m3. The dependence of the step size and initial conditions in the

optimization algorithm were verified by varying it for two different cases.
For case 1 the step size is set to 0.1 and an initial aspect ratio is 1, radius
(major axis, minor axis) set to 5x10“m and 6 value to 90°. For case 2 the
step size is set to 0.5 and an initial aspect ratio is 1 (fixed height of
0.002m), radius (or major axis, minor axis) set to 7x10™*m, and @ value to
90°. The iteration history for the different cases are shown in Figure (4.5 -

4.7) for circular, elliptic and rectangular solid regions.
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Figure 4.5 Graph of the iteration history for circular solid region with
varied step size and initial conditions.
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Figure 4.6 Graph of the iteration history for elliptic solid region with
varied step size and initial conditions.
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Figure 4.7 Graph of the iteration history for rectangular solid region with
varied step size and initial conditions.
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The optimal microstructure of the porous medium for the desired
objective function to maximize isotropic effective permeability as
discussed in section 4.3.1 for volume fraction of 0.3 for solid region is
shown in Figure (4.8). The dimensions of the microstructures are shown

in Table (4.1).
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Figure 4.8. a-c. Schematic of the optimal periodic cells obtained after
optimization. Dimensions of the periodic cells are shown in Table (4.1)
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Table 4.1 Dimensions of the microstructures shown in Figure (4.8)
Figure (4.8) /h a/h b/h 6

(a) 1 0.31 89.6
(b) 0.65 | 0.19 | 0.33 | 89.6
(c) 1.07 | 0.25 | 0.28 | 89.6
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The effective permeability computed for the microstructures shown in

Figure (4.8) a, b and c are;

5 (1 ¢ ] ’ sl €] 5
K=3910 -) Clm*“, K=2510 -) €m and
£ 1 £ 1

¢ 7] e
K=35(10—5)— : gf-mz
) er 1

where £ = 40701073y, £, = 2.2210°3), and £, =135010" 3

respectively. Figure (4.9) shows a contour of the distribution of
longitudinal permeability (uUjy). It is observed in Figure (4.8) that the

microstructure forms a square array for both the cases with circular and
rectangular microstructure. Among the three microstructures, the circular
microstructure gives the maximum effective permeability; but the
diagonal terms of the permeability tensor are considerably higher than the
other microstructures. Overall, the microstructure with rectangular solid
region shows the best result. This may be due to the fact that it can be
considered as a flow in a channel. It can be noted that for a given pressure
gradient the velocity will have similar profile as the longitudinal

permeability.
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Figure 4.9. a-c. Schematic of distribution of longitudinal permeability
(#U1) for microstructures shown in Figure (4.5)
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4.3.2 Maximizing the effective dispersivity

Dispersion of a solute can be of importance for applications involving
reactors. The governing equations for solute transport are similar to the
equation for heat transfer.. Industrial examples of solute or heat transport
in porous media include static mixers (solute transport), heat exchanger
(heat transport), and material for microchip (heat transfer). For numerous
applications it is important how to disperse the solute or heat as fast as
possible. In this section, the optimization algorithm secks a periodic cell
that maximizes the dispersion tensor. Maximizing the dispersion tensor
maximizes the solute or heat transfer. The objective function is posed in a
manner such that the algorithm also finds the required pressure gradient to
maximize the isotropic dispersivity, which can be defined as

dl=D (4.6)
The complete formulation of the optimization problem is stated as

follows:

Find the optimal value ofé@, I, a, b V ©) and VY p(O)for a

xP
given value of A, that will
maximize: Isotropic Effective Dispersivity

where isotropic effective dispersivity is expressed as d — € 4

Hered and € 4 e computed from
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1 2 @4.7)
d== 3 D,
2i=1 "
and
1)2 2 2 1 2 4.38)
£d=(§) iEI(Dii‘D(iH)(iH)) +i§1j§2(0,-j)

D;j is computed from solving equation (3.12).
subjected to: volumetric and geometric constraints

Q 4.9)
Constraint 1: —5- >V a

Constraint 2: g <é

Constraint 3: p < hsiné

where ) is the volume of the solid region, ), is the total volume of the

cell, and Vi, is value (0<Vf40<1) specifying the minimum solid volume.
The first constraint in equation (4.9) restricts the minimum volume of
solid region to Vg,c. The next two constraints are imposed to insure the

continuity of each phase.

4.3.2.1 Example Problems

This section shows examples of shape optimization that will maximize the
dispersivity as descried in section 4.3.2. The solutions were obtained by

casting the problem in the fashion of a standard shape optimization
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problem . The derivatives of the objective function with respect to the
design variables were computed using forward finite difference method as

shown below,

o0bj _ Obigy + sty ~ gy (4.10)
adv &v

where “Obj” is the objective function and “dv” is the design variable. The
derivatives of the constraints with respect to the design variables were
computed analytically. The objective function was computed by solving
the governing equations for the effective properties using the finite

element method. The domain was discretized using an unstructured

triangular mesh with 6000elements of an average size of 4e-5 m as shown

in Figure (4.4) Thee Method of Moving Asymptotes (MMA) as proposed

by Krister Svanberg is used for optimization.

The results shown in this section are all for a limiting volume fraction of

0.3 and fixed value of 0.002 m for h. The physical properties of the fluid

are taken as dynamic viscosity 4 to be 0.001 Pa.s, density of fluid pf to be

1000 Kg/ms, molecular diffusivity D set to 10.9 m2/s. The dependence of

the step size and initial vale were in the optimization algorithm were
verified by varying it those for two different cases. For case 1 the step size
is set to 0.1 and initial aspect ratio is 1 (fixed height 0.002m), radius (or

major axis, minor axis) set to 5x10™m and 0 value to 90°. For case 2 the
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step size is set to 0.5 and initial aspect ratio is 1, radius (or major axis,
minor axis) set to 7x10*m and 6 value to 90°. The iteration history for the
different cases are shown in Figure (4.10 - 4.12) for circular, elliptic and

rectangular solid region.
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Figure 4.10 Graph of the iteration history for circular solid region with
varied step size and initial conditions.
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Figure 4.11 Graph of the iteration history for elliptic solid region with
varied step size and initial conditions.
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Figure 4.12 Graph of the iteration history for rectangular solid region with

varied step size and initial condition.



The optimal microstructures of the porous medium for the desired
objective function to maximize isotropic effective dispersive as discussed
in section 4.3.2 for volume fraction of 0.3 are shown in Figure (4.13). The

dimensions of the microstructures are shown in Table (4.2).
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Table 4.2 Dimensions of the microstructures as shown in Figure (4.13)

Figure 4.13) | h ah | bh [

(a) 0.94 0.30 79.3
(b) 1.07 | 033 | 031 | 734
(c) 1.18 | 033 | 0.27 | 873
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. . v X P(o) -1 3
The optimal pressure gradients computed are ) = 0.9 N/m~,
\ /) -
Y

(V) ©
v -1.3 v -0.7
X P(O) =[ 05] N/m3 and| X p(o) =[ 04] N/m3 for Figure
VYp - VYp -y

(4.13) a, b, and c respectively. The effective dispersion tensor computed
for the periodic cell shown in Figure (4.13) a, b, and c are

D--lS(lO"'s)l ac 2/ D—l67(10_8)l ae m2/ d
=1. ac 1 m /s, =1. ae 1 S an

1
r

1 a
D=1.33(10—8)[a '] m?/s

where @ _= 2.0010™ 2y, o, =180(10" 2y and &, =6.02(10" 2y

respectively.

One notable observation made from Figure (4.13): the angle between
the length and the height goes to a lower value for circular and elliptic
cross section. But for a rectangular cross section, the 0 value approaches
90. This complements the previous argument that it forms a channel flow;
and hence, it requires a comparative smaller pressure gradient to optimize
the dispersion tensor, which is of the same magnitude of the other micro

structures.



Figure (4.14) shows a contour of the distribution of the longitudinal
component of the dispersion tensor (Z;,) in m%/s. It can be noted from
Figure (4.14) that the longitudinal term in the dispersion tensor is high in
the horizontal direction, hencc higher solute or heat transfer in the given
direction. Figure (4.15) shows the velocity vectors which are periodic in

nature.
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Figure 4.14 a-c. Schematic of distribution of longitudinal dispersivity
(Zy) for microstructures shown in Figure (4.7)



(a)

;
©
Figure 4.15 a-c. Schematic of velocity for microstructures shown in
Figure (4.7)
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4.4 Discussion

In this chapter a methodology to find the optimal microstructure for
two different conditions; maximize effective permeability and effective
dispersivity using shape optimization.

Attempts are made to maximize the effective properties by modifying
the shape of the periodic cell. The magnitude of effective permeability
computed is comparable to the work done by Guest and Prévost (Guest
2007). It is observed in Figure (4.8) that the microstructure forms a square
array for both the cases with circular and rectangular microstructure.
Among the three microstructures, the circular microstructure gives the
maximum effective permeability; but the diagonal terms of the
permeability tensor are considerably higher than the other microstructures.
Overall, the microstructure with rectangular solid region shows the best
result. This may be due to the fact that it can be considered as a flow in a
channel.

In the next optimization example, the effective dispersion tensor is
maximized. Here we try to maximize the effective property not only by
modifying the shape of the periodic cell but also by finding the
appropriate boundary condition. One notable observation made from
Figure (4.13) is that the angle between the length and the height goes to a
lower value for circular and elliptic cross section. But for a rectangular

cross section, the 0 value approaches 90. This complements the previous
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argument that it forms a channel flow; and hence, it requires a
comparative smaller pressure gradient to optimize the dispersion tensor,
which is of the same magnitude of the other micro structures.

Finally, it can be conéluded from the examples that a small change in

geometry changes the effective properties significantly.
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CHAPTER 5

DESIGN OF POROUS MEDIA USING SHAPE OPTIMIZATION
TO MAXIMIZE “DISPERSIVE POWER” AND MINIMIZE
DISSIPATION POWER

5.1 Introduction

A porous medium may have to satisfy more than one desired criteria
and such problem is studied in this chapter. The desired criteria studied
are maximizing the “dispersive power” and minimizing the dissipation
power. The possible applications for such a medium include a static mixer
(fluid flow and solute transfer), a heat exchanger (fluid flow - heat
transfer), where the objective is to mix or disperse the solute (or heat)
with minimum energy loss.

The problem is cast in the fashion of a standard shape optimization
problem where various shapes described parametrically are studied. The

periodic cells are defined in similar manner as described in Section 4.1.

5.2 Optimization of “dispersive power” and dissipation power

The topic of interest of this section is to find a microscopic geometry
that will minimize the dissipation power while maximizing “dispersive

power”.
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Two different approaches were taken to find the optimal
microstructure that minimize dissipation power and maximize dispersive
power. In the first approach the pressure gradient was fixed and in the
second approach the pressure gradient was kept as a design variable. The
motivation behind two separate approaches was to understand the effect of
the pressure gradient on microstructure in dispersion of fluid.

The complete formulation of the optimization problem for first approach
is stated as

Problem definition 1:

©) and V p(O) that

Find @, I, a and b for a given value of h, V xP Y

will

minimize: 3dissipation —Sdispersive

The complete formulation of the optimization problem for second
approach is stated as

Problem definition 2:

Find6,1,a,b V., p©and v, p© for a given value of h, that will

minimize: Sdissipation - Sdispersive
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Optimization algorithm MMA always minimize the objective function

and since we are interested in minimizing and

Sdissipation

o e e S . . . . . . .
maximizing < ;. spersive’ we include a negative sign before dispersive

power term.

subjected to: volumetric and geometric constraints

Q
Constraint 1: 5 >y
Q,  frac

Constraint 2: 4 < é a.1)
Constraint 3: 5,  #siné
2

where () is the volume of the solid region, €, is the total volume of the

cell, and Vj, is value (0<Vfrq<1) specifying the minimum solid volume.
The first constraint in equation (5.1) restricts the minimum volume of
solid region to Vgge. Constraints 2 and 3 are imposed to insure the

continuity of each phase.

disipation is the normalized value of dissipation power (Borrvall

2003). An expression for the dissipation energy for the fluid in the unit
cell is derived from a mechanical energy balance. This is obtained by

0)

multiplying equation (2.9) with v, where v is any weighted periodic
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velocity satisfying equation (2.10) and boundary condition as shown in

equation (2.12), and integrating over the entire domain

u v u(o) (Vv v(o))TdQ— jp(l)divv(o)dﬂ = (5:2)
x x
Q Q
m m

i v, @O
Q

m
where the double dot operator (:) is defined here as a:f = aij'Bji' The

first term in equation (5.2) is the viscous power and is responsible for

dissipating the energy during fluid flow. This term is also called the

dissipation power. After setting v(o) = “(0)
then, (5.3)
= 0. (U
dissipation ~ H QI qu '(qu )" dQ
m

The dissipation power is scaled with the square of the trace of the
effective permeability after the expression for the velocity field is
substituted

The dissipation power can be written in a dimensionless form as follows

ipation Qg = X
m
dispersive is the normalized value of “dispersive power”, which is

computed by multiplying equation (3.10) with c(o), and integrating over
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the entire domain, the following expression for “dispersive power” is

obtained after using Green’s theorem:

T 55
W) | v,c@ Qua= [VXc(O)-D~[VXc(O)] dQ ©-3)

Q Q
m m

The right hand term is dispersive power term.

T (5.6)
- ;vxc(o)-n-[vxc(o)] Q,
Q

m

dispersive

where D is the effective dispersion tensor, which can be computed from

- <( % (VxN N VxNT) +1) _%[(u(O)N) +(u(0)N)T}>

The dispersive power term is scaled with the product of the trace of the
dispersion and the trace of the concentration gradient. Dispersive power

can be written in dimensionless terms as follows

T 5.7
= 20) H. +(0)
dispersive ~ QI Vx¢ D [VX ¢ ] aq,
m
5.3 Example Problems

This section shows few examples of shape optimization for the objective
functions descried in section 5.2.1 and 5.2.2. The solutions were obtained
by casting the problem in the fashion of a standard shape optimization

problem as before. The derivatives of the objective function with respect
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to the design variables were computed using forward finite difference

method as
d0Obj _ Objdv +&v Obj dv ©-8)
odv av

where “Obj” is the objective function and “dv” is the design variable. The
derivatives of the constraints with respect to the design variables were
computed analytically.

The objective function was computed by solving the governing equations

for the effective properties using finite element method. The domain was
discretized using unstructured triangular mesh of element size of 4e-5 m

as shown in Figure (4.1).
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Figure 5.1 Schematic of the unstructured triangular mesh used for finite
element analysis.
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The Method of Moving Asymptotes (MMA) as proposed by Krister
Svanberg is used for optimization. The results shown in this section are all
for a limiting volume fraction of 0.3 and fixed value of 0.002m for A. The

physical properties of the fluid are taken as dynamic viscosity u to be

0.001 Pa.s , density of fluid ¢/ to be 1000 Kg/m", molecular diffusivity D

set to 10.9 m2/s.

5.3.1 Optimization of dispersive power and dissipation power

for a given base dimension and pressure gradient

As mentioned earlier, the motivation of this work is not only to find
the optimal microstructure for given boundary conditions but also to
understand the effect of pressure gradient on the objective function.
Computations have been performed for two different shapes of the solid
region (circular and elliptic solid region) for two given boundary
conditions,

1. The concentration gradient is parallel to the flow field.

2. The concentration gradient is normal to the flow field.

For all the above-mentioned cases, the pressure gradient is varied while
keeping the values of A.

Several optimal microstructures of the porous media for parallel and
cross flow are shown in Figure (5.2 a-h). The dimensions of the
microstructures as shown in Figure (5.2 a-h) are tabulated in Table (5.1)

where [, h, a, b and @ are the length, height, major axis, minor axis and
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angle between length and height for the periodic cell.. The macroscopic
equation is solved for a domain of 1x1 m? with a horizontal concentration
gradient of 1 mol/m3 and the pressure gradient has a unit of N/m-3
applied along horizontal direction. Periodic cells obtained when the
concentration gradient is applied parallel to the flow field are shown in
Figure (5.2 a-d). Periodic cells obtained when the concentration gradient
is applied normal to the flow field are shown in Figure (5.2 e-f). The
applied pressure gradients are -2 in Figure (5.2 a, c, e, g) and -0.5 in
Figure (5.2 b, d, f, h) N/m3. Figure (5.2 a, b, e, f) represents the circular
and Figure (5.2 c, d, g, h) represents the elliptic solid region. From figure
5.2 we see the optimized results shows a square array in most of the cases.

Further comparison of the magnitude of the objective functions versus

pressure gradient is provided in Figures (5.3) and (5.4).

78



[ A A ]
..-...-.-l

-------------.------‘
A Y

(a)

.

poccscscccssns
‘..........

o ©
Ppovoveygy

() NGE

’
’
'
’
’

d

.peeccccacsee
' LA KX X X X X X ¥ ¥ 3

'
'
’
’
L]

1

ceocvseoscsccscssevssccnncdal
L ]

' (b)

)
q
[}
[}
)
[}
[]
)
[}
)
ol

T @

[N
]

.....‘
¢ ’
¢ ’
4 ’
4 (]
4 .
4 ’

¢ ]

4 [}

’ 0
(]
bovoow

€9)

Figure 5.2 a-h Schematic of the optimal periodic cells obtained after
optimization for the dimensions tabulated in Table (5.1)
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Table 5.1 Dimensions of the periodic cells shown in Figure (5.2)

Figure (5.2) l/h ah b/h 6
(a) 1.939 0.231 90
(b) 1.864 0.297 90
() 1.840 0.233 0.285 90
(d) 1.852 0.304 0.226 90
(e) 0.516 0.172 89
3] 0.573 0.191 80
(g) 0.498 0.165 0.276 82
(h) 0.564 0.188 0.331 83
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Figure 5.3 Computed values of the objective functions for a parallel flow
configuration.

81



-o- Circular solid region

-+ Elliptic solid region

Objective Function
1)
N

‘05 T T T
2.1 -1.8 -1.5 -1.2 -0.9 -0.6 -0.3 0

Pressure Gradient

T T T 1

Figure 5.4 Computed values of the objective functions for a cross flow
configuration.
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It is seen in Figures (5.3) and (5.4) that the magnitude of

. =8 . decreases for a decrease in pressure
dissipation dispersive p

gradient. This can be explained with reference to equation (5.3) and (5.4).

Since the dissipation power directly proportional to the pressure term, for

a higher pressure gradient a higher value of dissipation power is expected.

5.3.2 Optimization of the “dispersive power” and the

dissipation power for a given base dimension

In the previous section the variation of objective function with
pressure gradient is studied. In this section, I am interested in finding the
optimal pressure gradient that satisfies both the desired criterion;
maximize “dispersive power” and minimize dissipation power. The
optimal microstructures of the porous medium for the desired objective
function as described in section 5.1 for volume fraction of 0.3 for solid
phase and prescribed molecular diffusivity of 107 m/s® are shown in
Figure (5.5). The macroscopic equation is solved for a domain of 1x1 m?
with a horizontal concentration gradient of 1 mol/m’.

The dependence of the step size and initial values in the optimization
algorithm were verified by varying those for two different cases. For case
1 the step size is set to 0.1 and initial aspect ratio is 1, the radius (major
axis, minor axis) is set to 5x10*m and 0 to a value of 90° . For case 2 the

step size is set to 0.5 and initial aspect ratio is 1, the radius (major axis,
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minor axis) set to 7x10“m and 0 to a value to 90° . The iteration history
for the different cases are shown in Figure (4.10 — 4.12) for circular,

elliptic and rectangular solid region.
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Figure 5.5 Graph of the iteration history for the circular solid region with
a varied step size and initial conditions.
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Figure 5.6 Graph of the iteration history for the elliptic solid region with a
varied step size and initial conditions.
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Figure 5.7 Graph of the iteration history for the rectangular solid region
with a varied step size and initial conditions.
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The dimensions of the microstructures are shown in Table (5.2)
where [, h, a, b and 0 are the length, height, major axis, minor axis and
angle between length and height for the periodic cell. The optimal values
of normalized dissipation power and normalized dispersion power

evaluated are tabulated in Table (5.3).
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Figure 5.8. a-c. Schematic of the optimal periodic cells obtained after
optimization with the dimensions tabulated in Table (5.2)
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Table 5.2 Dimensions of the microstructures as shown in Figure (5.8).

Figure 58) | h | ah | b/ | 6
@) 1.07 0.32 89
(b) 144 047 | 033 | 89
© 174 042 | 033 | 89
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Table 5.3 Optimized value of normalized dissipation power and
normalized dispersion power for the microstructures as shown in Figure
(5.8)

Figure (5.8) g disipation Sdispersive
@ 0.01427 4.63
) 0.007658 4.96
S 0.000772 4.93
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The optimal pressure gradient computed are

I 0] r . 0)
vl -6 v -6
x? o |7 810 ) N/m3, xP o | [8(10 )] N/m3 and
-07 -04
[ Vyp ] L 70T VyP
[ O r ]
\v/ -6
xP " |_[{801077) N/m3 for Figure (5.8) a, b, and ¢ respectively.
\V/ (0) -0.1
S A L.

The average effective permeability and the average dispersion tensor

computed for the periodic cells shown in Figure (5.8) a, b, and c are

-5 1 5CW 2
K=3410075) = c|m’,
c ]
_ 1 1.31]
D=54310"2) m>/s
131 3 |

K=30700-5) | e | m?
= e, 181 m

o[ 1 1317 2
D=520(10"") m®/s,
131 3

1 £
and K=l.91(10_5)[€ r ] m2,

r

o1 156
D =4.5010"9) mZs,
156 3

where £ =14(10” 2, £,=2.12(07%),6_=1.6110"") respectively.
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Figures (5.9) and (5.10) show a contours of the longitudinal component of

the effective permeability and dispersivity
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Figure 5.9 a-c. Contours of the longitudinal component of the
permeability (4U,,) for the microstructures shown in Figure (5.8)
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dispersivity (Z11) for the microstructures shown in Figure (5.8)
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Figure 5.11 a-c. Plots of the velocity vectors in microstructure
corresponding to Figure (5.8)
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5.4 Discussion

In this chapter a methodology to find the optimal microstructure that
maximize mixing and minimize energy loss using shape optimization is
presented

A goal is also to find a periodic cell that provides a better solute
dispersion while minimizing the energy loss for a fixed or a variable

pressure gradient. It is seen in Figures (5.3) and (5.4) that the magnitude

of S

ssipation S di ; r for a decrease in pressure
dissipation ~ dispersive decreases p

gradient. For a higher pressure gradient, a higher value of dissipation
power is expected compared to the dispersive power. For a flow normal to
the concentration gradient, the optimization process does not converge to
a finite value for a very low pressure gradient (-0.1 N/m™). This may be
due to the fact that the applied pressure gradient is not sufficient to
disperse the solute though out the domain. Also since because of the
nature of the problem the final results are highly dependent on initial

value and sometimes the solution is not the global solution. Furthermore

the sensitivity of 3 are approximated using

dissipation Ssdi:rpersive
finite difference method, which may cause some additional errors.

In the second analysis it can be observed from Table (5.3) that for the
microstructure with a rectangular solid region, the energy loss due to

dissipation is the least and that the solute dispersion is comparable to the
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other microstructures. Since the pressure gradient is also included as the

design variable, it takes the advantage of a higher transverse effective
permeability (K77) and adjusts itself to minimize the energy loss. In other

words it minimizes the pressure gradient in the horizontal direction and
diverts the flow in vertical direction. This is also because the height was
fixed; whereas, other dimensions could vary.

The results obtained using shape optimization for minimizing
dissipation power and maximizing “dispersion power” ,in which the
pressure gradient is a design variable, can be compared with the
microstructure formed by a square array of same porosity. The
comparison shows significant improvements in reducing energy losses in
the fluid flow and increased mixing. Figure (5.12) shows the macroscopic
layout with an applied pressure gradient VX Px =[8(10_6):|

VxP, 0.4
obtained for elliptic cross section (Figure 5.8 (b)). The macroscopic
velocity field computed from the Darcy’s equation is compared at the
cross section shown by dashed line in Figure (5.13). When compared with
the microstructure form by square array of same porosity, the optimized

microstructure results in a higher velocity field as shown in Figure (5.14).
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Figure 5.12 Schematic of the macroscopic layout with applied boundary
conditions
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Figure 5.13 Comparison of the velocity fields for a domain with a
microstructure formed with the optimized elliptic cross section with the
velocity field for a square array of same porosity.
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The objective function in this chapter is set in such a way that it also
maximizes the “dispersive power” or mixing. Figure (5.11) shows higher
solute dispersion at time t for the optimized microstructure. The
concentration are compared for both the cases and shown in Figure (5.11

c).
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Figure 5.14 a-c. Comparison of solute dispersion after time t = 0.02 sec
for the macroscopic domain formed with a microstructure of elliptic cross
section cylinders (a) obtained from shape optimization with the
microstructure obtained from a square array (b) of same porosity. The
magnitude of ¢ is shown in right (c).
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CHAPTER 6

TOPOLOGY OPTIMIZATION OF FLUID FLOW IN POROUS
MEDIA TO MINIMIZE DISSIPATION POWER

6.1 Introduction

Topology optimization is a layout optimization technique that was
originally developed to design mechanical structures (Bendsge and
Kikuchi, 1988). Its scope was rapidly expended to the diverse field such
as optics and acoustics (Bendsge and Sigmund 2003, Eschenauer 2001,
Jensen 2003, 2004) and recently it has been applied in the field of fluid
flow by Borrvall and Petersson (Borrvall 2003). Most of the above
mentioned works were mainly applied to macroscopic layout problems.
With further development of the homogenization theory, topology
optimization was used to find the layout of the microstructure or the base
cell of the material. Few such noted works are: Sigmund (Sigmund and
Torquato 1996) to design microstructure for material that yield negative
thermal expansion, Larsen (Larsen 1996) to design material that yields
negative Poisson’s ratio and Diaz and Bénard (Diaz and Bénard 2003) to
design material that matches prescribed elastic properties.

The formulation of the problem is given in the following section. The

Method of Moving Asymptotes (MMA) as proposed by Krister Svanberg
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(Svanberg 1978, 2002) is used for optimizapion. The derivatives of the
objective function and the constraints with respect to the design variables
were computed using adjoint method as proposed by Olesen, Okkel and
Bruus (Olesen 2006). Figure (6.1) shows the flowchart of step by step

approach to find the optimal microstructure using topology optimization.
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Figure 6.1 Flowchart showing the steps of the algorithm based on
topology optimization for designing microstructures.
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6.2 Formulation of the optimization problem

In the analysis, the macroscopic domain (Q M) is assumed to be
homogeneous with periodic microscopic cells (Qm ). The microscopic

cell has two distinct regions: a solid region (Qs) and a fluid region (Q

f)

such that Qm = QS uQ andQs NQ . =0. The interface between the

f f

solid-fluid in each periodic cell is I'y and the interface between two

periodic cells is denoted by I'¢cey).

106



1—‘cell

Figure 6.2. Schematic of a periodic microscopic cell (2, ). The interface
between the solid-fluid in each periodic cell is I's) and the interface
between two periodic cells is denoted by I'cejj..
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6.2.1 Minimizing Dissipation power

The objective in this section is to minimize the energy losses or the
dissipation power.

Find the optimal layout for the periodic cell that will

minimize: 3dissipation

subjected to: volumetric and geometric constraints

Q 6.1
Constraint: —%_ >V
Q frac

where () is the volume of the solid region, Q,, is the total volume of

the cell, and Ve is value (0<Vf,<1) specifying the minimum solid

volume. The constraint in equation (6.1) restricts the minimum volume of

solid region to V.

The governing equations here are the homogenized Navier-Stokes
equation and the incompressibility constraint as derived in Chapter 2. To
generalize the above governing equation for both solid and fluid phase,
the fluid flow through the solid region is subjected to a friction force,
which is proportional to the fluid velocity. The governing equations for
the zeroth order problem are given by

W 2Oy 02y O @O (6.2)

x P
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and

v u@-0inQ (6.3)
X m

where v _ p@is the pressure gradient across the macroscopic domain

x P
and is applied as a source term (a known quantity). These governing
equations are valid for both solid and fluid regions. The penalty term a,
which is a function of the design variable p, allows to set the velocity
equal to zero in a solid domain. The design variable p controls the phase

of the medium as follows;

Oif xe Q_ (6.4)
N”=1yxeaf

Following reference Borrvall (Borrvall 2003) and Olesen (Olesen 2005),

the penalty term a and design variable p are related by the convex

interpolation.

_ ql1 - p] (6.5)
2P = it Pmax ~ %min gtp

where g is a real and positive parameter used to tune the shape of the

penalty term and taken as 0.01. In this work aminis taken as zero and
@ ox is a large number (10°). The dependence of a on q is shown in
Figure (6.3). For q = 1, it gives a linear plot from a o0& . over the

range of p. For lower value of q (0.01), a value is close to a i for p

varying from 0.2-1. This approach is done to penalize the grey material
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formation, which is a mixture of solid and fluid and promote either the

fluid or liquid phases.
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T B.E+4 -
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Figure 6.3 Plot showing the dependence of a on g.
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The boundary condition are that of periodic flow through the boundaries

of the cell and no slip boundary condition at the solid fluid interface of the

inclusion.
u(O) = u(l) =.... =0 onI (solid-fluid interface), (6.6)
u(O),u(])... and p(O),p(l).... are Qm-periodic.

Th is the dissipation energy for the fluid in the unit cell

S, . .
© dissipation
and is derived from mechanical energy balance. Just as before, it is
. L . . ) o) .
obtained by multiplying equation (6.2) with v °, where v is any

weighted periodic velocity satisfying equation (6.3) and boundary

condition as shown in equation (6.6), and integrating over the entire

domain After setting v(o) = u(o)
- ). ((UNS (6.8)
dissipation =4 | qu '(qu )" dQ
m

In dimensionless form equation 6.8 can be rewritten as,

dissivation = | V0@ a@)Tag (69)

issipation x X

Q
m

where ﬁ(o) is the dimensionless form of u(O) related by

&mzﬁm«me

111



6.2.2 Implementation Issues

To promote a discontinuous microstructure and avoid cases of a
continuous solid region, the layout is divided into two initial zones. Zone
1 is formed only by fluid material and forms the outer boundary of the
periodic cell, whereas Zone 2 is formed on both solid and fluid material as

shown in Figure (6.4). In Zone 1 the a value is taken as zero.
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Zone 1
A

Figure 6.4 Schematic of a periodic microscopic cells with a liquid zones
imposed on Zone 1 above to avoid a i solid region b the
cells.
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6.3 Example Problems

The optimization problem was solved using commercial software's
Comsol and Matlab. The governing equations were mentioned in earlier
sections were solved to compute the objective function and the sensitivity
were using Comsol. Matlab was used to run the optimization process.
Work done by Olesen (Olesen 2005) is used here to compute the
sensitivity. The domain of Zone 2 was discretized using an unstructured

triangular mesh of 50 elements along each boundary as shown in Figure

(6.5).
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Figure 6.5 Schematic of the unstructured triangular mesh used for the
finite element analysis.
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6.3.1 Minimizing Dissipation Power

In this section, the optimized microstructures for the porous media for
different boundary condition are computed. Figure (6.6) and (6.7) shows
the microstructure obtained when a macroscopic pressure gradient of
IN/m? is applied in the horizontal direction with volume fraction of solid
region is limited to 0.5 and 0.7. In Figure 6.6 we see that for lower volume
fraction of solid the microstructure forms a elliptic solid region, whereas
for higher volume fraction it forms a rectangular shape solid region with

curved edges.
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Figure 6.6 Schematic of microstructure layout for volume fraction 0.5 and
with macroscopic pressure gradient of 1N/m? in horizontal direction
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Figure 6.7 Schematic of microstructure layout for volume fraction 0.7
with macroscopic pressure gradient of 1N/m? in horizontal direction
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Figure (6.8) - (6.14) shows the microstructure obtained when
macroscopic pressure gradient of IN/m? is applied in both horizontal and
vertical direction with volume fraction of solid region is limited to 0.1, to

0.8.
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Figure 6.8. Schematic of the microstructure layout for a volume fraction
0.2 with an equal macroscopic pressure gradient of IN/m? in the
horizontal and vertical directions.
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Figure 6.9. Schematic of the microstructure layout obtained for a volume
fraction of 0.3 with an equal macroscopic pressure gradient of IN/m? in
the horizontal and the vertical directions
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Figure 6.10. Schematic of a microstructure layout for volume fraction 0.4
with equal macroscopic pressure gradient of 1N/m? in the horizontal and
the vertical directions.
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Figure 6.11 Schematic of the microstructure layout for a volume fraction
0.5 with equal macroscopic pressure gradients of 1N/m? in the horizontal
and vertical directions.
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Figure 6.12. Schematic of the microstructure layout for a volume fraction
0.6 with equal macroscopic pressure gradients of 1N/m? in the horizontal
and vertical directions.
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Figure 6.13 Schematic of the microstructure layout for volume fraction of
0.7 with equal macroscopic pressure gradients of 1N/m? in the horizontal
and vertical directions.
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Figure 6.14. Schematic of the microstructure layout for a volume fraction
0.8 with equal macroscopic pressure gradient of IN/m? in the horizontal
and vertical directions.
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6.4 Discussion

In this chapter I tried to find an optimal microstructure to minimize
the energy losses using topology optimization.

The results show that the elliptic cross section for a lower volume
fraction has the least energy loss. This also agrees with the results
obtained from shape optimization. For a higher volume fraction, the
optimized layout obtained appears as a rectangle with smooth corners.
This validates the previous argument made in Chapter 5 that the
microstructure may form a channel flow. When the macroscopic pressure
gradient is applied along both the horizontal and vertical direction, the
optimized layout forms the shape of leaf. In this layout the specific
surface which is expressed as the ratio of the pore surface area to the total
volume of the periodic cell is less and hence increasing the permeability.

When optimized microstructures obtained from topology optimization
were compared with the square array of same porosity, it shows the same
trend. When the macroscopic flow is compared for optimized
microstructure and square array formed by circular solid region with same
porosity, a higher magnitude of velocity is obtained for the optimized
microstructure as shown in Figure (6.6). Figure (6.15) shows the
macroscopic domain and the applied boundary condition

VX Py 1
where =[0]. Figure (6.16) shows the macroscopic velocity

VXpy
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profile for both the optimized microstructure and the un-optimized

microstructure for Vg, 0.5 at the dashed line shown in Figure (6.16).

Here the un-optimized microstructure is formed by square periodic cell
with circular solid region of identical porosity as the optimized

microstructure.
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Figure 6.15 Schematic of the macroscopic layout with applied boundary
conditions
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Figure 6.16 Comparison of the velocity profiles in the macroscopic
domain for a microstructure formed form a cross section obtained from
topology optimization with the velocity field obtained for a square array

of same porosity
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CHAPTER 7

TOPOLOGY OPTIMIZATION OF SOLUTE TRANSPORT IN
POROUS MEDIA TO MAXIMIZE “DISPERSIVE POWER”

7.1 Introduction

Solute transport in porous media and finding the optimal layout using
topology optimization is the subject of this section.  Topology
optimization is a layout optimization technique that was originally
developed to design mechanical structures (Bendsge and Kikuchi, 1988).
Topology optimization was then used to find the layout of the
microstructure or the base cell of the material. Examples of such works
include Sigmund (Sigmund and Torquato 1996) who propose to design
microstructures of materials with negative thermal expansion, Larsen
(Larsen 1996) to design material that yields negative Poisson’s ratio and
Diaz and Bénard (Diaz and Bénard 2003) to design material that matches
prescribed elastic properties.

The problem is formulated in a similar manner to a standard
optimization problem, in which the Method of Moving Asymptotes
(MMA) is used for optimization. The derivatives of the objective function
with respect to the design variables were computed using an adjoint

method as proposed by Olesen, Okkel and Bruus (Olesen 2006). Figure
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(7.1) shows the flowchart of step by step approach to find the optimal

microstructure using topology optimization.
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Figure 7.1 Flowchart of the topology optimization methodology
employed
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7.2 Formulation of the optimization problem

In the analysis, the macroscopic domain (Q M) is assumed to be
homogeneous with periodic microscopic cells ( Qm ). The microscopic

cell has two distinct regions: a solid region (Qs) and a fluid region (Q

f)

such that Qm = Qs U . and Qs N Q . =0. The interface between the

f f

solid-fluid in each periodic cell is Iy} and the interface between two

periodic cells is denoted by ['ce)-
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l—‘cell

Figure 7.2 Schematic of a periodic microscopic cell.
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7.2.1 Maximizing “Dispersive power”

The main objective here is to maximize mixing or “dispersive power”.

max: =~ dispersive

subjected to: volumetric and geometric constraints

Qs 7.1
Q_— 2 Vfrac
m

where () is the volume of the solid region, Q,, is the total volume of

the cell, and Vjye is value (0<Vfye<1) specifying the minimum solid

volume. The constraint in equation (7.1) restricts the minimum volume of

solid region to V.

The goveming equation for the solute transport along with the Stokes
equation and the incompressibility constraints are for the volumetric

concentration ¢ of the solute in the fluid region expressed as

ORI .[D.vxc(o)] (7.2)

X

where <u>=<u (0)>+<u (1)> and for weak inertia flow <u(l) >=O

(Mei and Auriault 1991). u(O) is computed from the homogenized
Navier-Stokes equation and the incompressibility constraint as derived in
Chapter 2.

D in Equation (7.2) is the effective dispersion tensor (Mei 1992)
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expressed as
D=D(Z) (7.3)

where Z is “characteristic dispersivity tensor” given as,

z =(%(VxN +vaT) +l)‘%{(u(0)N)+(u(O)N)T]

And D is the molecular diffusivity and N is any vector satisfying the

(7.4)

equations

v [p+v, N)-uOv N=u© (7.3)

—<u(0)>/n ~a(V _N+DinQ

(7.6)
where n is the porosity, and

D(1+V -N)‘n=00n r.
X
Nis @  -periodic and (N) =0.

)

Additional governing equations to solve u are the homogenized
Navier-Stokes equation and the incompressibility constraint as derived in
Chapter 2. For generality the fluid flow through the solid region is
subjected to a friction force, which is proportional to the fluid velocity.

w 2Oy Oy O _@O®na (7.7)

X

v u@-0inQ (7.8)
X m
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where v _ p@is the pressure gradient across the macroscopic domain

xP
and is applied as an source term. The above governing equations are valid
in both solid and fluid phases since the penalty term a, which is a function
of the design variable p, is used to extend the domain of validity to all the
cell domain. The design variable p controls the phase of the medium as

follows;

0if x€Q_ 719)
””=1yxegf

Following reference Borrvall (Borrvall 2003) and Olesen (Olesen 2005),

the penalty term o and design variable p are related by the convex

interpolation.

_ qli-p] (7.10)
ap)=a i (@ ax ™ %min ﬁ

where g is a real and positive parameter used to tune the shape of the

penalty term and taken as 0.01. In this work a . is taken as zero and
. 5
amax is a large number (107).

The boundary conditions are

u(O) = u(l) =..... =0 onI (solid fluid interface), (7.11)
u(O),u(l)... and p(O),p(l).... are Qm-periodic.
di . is the normalized value of “dispersive power”,
ispersive

which is computed by multiplying equation (7.2) with c(o), and integrating
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over the entire domain, the following expression for the “dispersive
power” is obtained after using Green’s theorem:

T 7.12
w) [ V,cQ Qua= jvxc(o)-n-[v c(O)] dQ (712

Q Q X
m m

The right hand term is the dispersive power term.

T (7.13)
=g v, Oplv OF 4q,
dispersive X X
Q
m
In dimensionless form, equation (7.13) can be written as,
A . T (7.14)
§ = (v, @ piv O 4q
dispersive Q X X
m
where 6(0) and D are dimensionless form of c(O) and D related by

@ -0 camdD=D/D.

7.2.2 Implementation Issues

A factor that had to be considered in formulating the problem for the
optimization Is that the microstructure should be discontinuous as shown
in Figure (7.2) to model pores in a porous material. To avoid cases of
continuous solid regions, the layout is divided into two initial zones. Zone
1 is formed only by fluid material and forms the outer boundary of the
periodic cell, whereas Zone 2 is formed on both solid and fluid material as

shown in Figure (7.3). In Zone 1 a value is taken as zero.
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Zone 1
A

Figure 7.3 Schematic of a periodic microscopic cells with the zones to
avoid continuous solid region



7.3 Example Problems

The optimization problem was solved using Comsol and Matlab. The
objective function and the sensitivity were computed using Comsol. Work
done by Olesen (Olesen 2005) is used here to compute the sensitivity.
Total nodes in Zone 2 were approximately 30 elements along each

boundary.
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Figure 7.4 Schematic of the unstructured triangular mesh used in the finite
element analysis.
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7.3.1 Maximizing “Dispersive power”

In this section, the optimized microstructures for the porous media that
minimize dispersion are shown. Figure (7.5) shows the microstructure
obtained when a macroscopic pressure gradient of 1N/m? is applied in
both the horizontal and vertical directions with a volume fraction of the
solid region limited to 0.7. The concentration gradient of 1 mol/m® is
applied in horizontal direction and the objective function is set in such a
way that the microstructure should maximize the mixing in the horizontal
direction.

A sharp change in the microstructure is seen when the volume fraction

is reduced to 0.3 as shown in Figure (7.6).
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Figure 7.5 Schematic of microstructure layout for volume fraction 0.7
with equal macroscopic pressure gradient of 1N/m? in the horizontal and
vertical directions and a concentration gradient in the horizontal direction.
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Figure 7.6 Schematic of the microstructure layout for a volume fraction
0.3 with equal macroscopic pressure gradient of IN/m? in the horizontal
and vertical directions and a concentration gradient in the horizontal
direction

145



7.4 Discussion

In this chapter we tried to find an optimal microstructure to maximize
mixing using topology optimization. Due to the limitations of the solver
used, the results for maximizing dispersive power cannot be solved for a
fine-mesh . The results obtained and shown in this chapter provide a hint
of the appearance of the porous medium. In the results shown in Figures
(7.5) - (7.6) the inflow in at negative 45 degree to the horizontal and the
aim was to distribute the solute in the horizontal direction. In Figure (7.6)
the microstructure diverts the flow as much as possible to the horizontal
direction. For a lower volume fraction the solid materials form a wall
around the boundary of zone 1 and zone 2 to restrict the flow in vertical
direction. For a higher velocity in horizontal direction the longitudinal
dispersion tensor will be higher and hence maximize the solute flow in

that direction.
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CHAPTER 8

THEORY FOR MULTIPHASE FLUID FLOW IN POROUS MEDIA

8.1 Introduction

Practical applications of porous materials often involve two or more
fluids. For example, use of porous material as a filter in the petroleum
industry often involve oil and water. As discussed in Chapter 1, naturally
occurring porous materials are heterogeneous there have been many
theoretical attempts to deduce the phenomenological equations by starting
from the micro-scale based on the idealized models of the microstructure.
In this chapter we review the existing theories for deriving the Stokes
equation for two phase flow in the micro-scale and derive the
phenomenological equations that describe the macroscopic behavior of the
porous media. The governing equations are developed using mixture
model. Shape optimization is used to determine the optimal
microstructure for porous media that will minimize the dissipation power,

for a given flow condition.
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8.2 Derivation of Effective Permeability Tensor using Mixture
Model

In two phase flow problems, the average velocity of one phase is
typically distinctly different from the other phase (Kleinstreuer 2003).
Also, one or more physical properties such as density or viscosity of each
phase distinctly differ in magnitude. The macroscopic domain (Q M) is

assumed to be homogeneous with periodic microscopic cells (Qm ). The
microscopic cell has two distinct regions: a solid region (Qs) and a

mixture fluid region such that Qm=quQ

(Q Jmix ) Jfmix

and Q.s NQ =(. The Mixture model computes the average behavior

Jfmix

of a two phase flow field as a single phase flow that is rather general and

useful as shown in Figure (8.1), where the mean density (pf mix) can be

expressed as a function of the volume fraction V¢ (V¢ = Vo/V). The

effective mixture density in terms of volume fraction is given as

f @.1)

p” mix = fpfz +(1—Vf)p 1

where the indices mark the individual phases i=1 (carrier fluid) and i=2
(dispersed phase). For example pf 1 is the density for fluid phase 1 and

f

p° 2 is the density for fluid phase 2.
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Q pf mix, I-/ mix

Figure 8.1 Schematic of the process of representing a two phase flow
with an equivalent a single phase flow model.
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The average steady-state mixture continuity and momentum equations

(Ishii, 2006) are given as

( f P 8.2)
v (pmix“mix =0 in Qfmix
f 2 _ _ 8.3)
ﬂmixv Y mix meix B
; veele] 2
pl.u . -Vu . +V. i inQ . .
mix~ mix mix f .21 Sfmix
l‘Vf P mix
where u,,;, is defined as
8.4
ola-vy  pfv, ©4
u = + u
mix f 1 f 2
pmix pmix

Gravity and mass transfer between two fluids are ignored. ii,, is the slip

velocity between two fluid phases. It is also assumed that the solid phase
is chemically inert. For Newtonian fluids the momentum transfer due to
shear stresses within fluid is negligible as compared with the momentum

transfer to the solid matrix (Allen 1985). So

f,f (8.5)
pr] Py 2 0

(I—Vf)p’{“.x 2

and equation 8.3 reduces to

V-

f (8.6)

f o2 , .
Viu Vp mix  mix Vumixm Qfmix

mix mix mix

U

The perturbation expansion for u,,;, and p,,; is as follows,
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b 2u@ ra® L 2,@ 3,0 @.7)

mix mlx mtx mtx mzx
(0) )] £2 (2) e3 3) (8.8)
pmtx mlx @nllx mtx pmlx

The differential term related the two length scales as a function of €

V=Vx+£VX 8.9

Substituting perturbation expansions for u,,, and p; in equation 8.6 and

8.2
ﬂ,{l (V + &V P( fr?ll+mgzx+e2u(2) te “Si)x)_ (8.10)
(V + &V [ 0 . (1) e2 (2) 3p(3))

X XA Pmix ¥ Pmix € Pmix mix
prﬁi}((uir(z)l)x al) +eul?) +€3u£3i)x)
(V +&V I (0) (1) +£2u(2) 3 (3))

x X A\ mix T mix mix ¥ € Y mix
and

f (O) (1) e2u (2) &3 3)

(Vx +€Vx)'(pmix( mix T ®mix T€ Cpix t mvc)) 0 (.11

Assuming the mixture density is not a function of macroscale X, from

Equation 8.10 and 8.11, at orders from O(¢®) I get

f 2,0 M ) (8.12)
'umzxvx Ymix ~ VXPMLX X Pmix ™ Qfmi)c
and
0@ _g (8.13)
VX Ynix =0in Qfmix
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and umix(O)’“mix(l)"' and pmix(O)’pmix(l)"" are Qm-periodic. p(O)

is only a function of the large scale X. The needed boundary conditions

are
u(o.) =u®d - ...=0 onI" (solid fluid interface), (8.14)
mix mix

In equation 8.10 and 8.11,& =1/L <<1 is the ratio of two well separated

length scales: the micro scale /=~O(x) and macro scale L=~O(X). Here the
macrostructure is assumed to be homogeneous consisting of periodic
micro cells.

Equation 8.12 relates the microscopic fluid flow with the macroscopic
pressure gradient. This is similar to the approach taken by Darcy to relate

the fluid flow in porous media for a given macroscopic boundary

.- 0 1 . 0
condition. um,'x( ) and p,,,,-x( ) can also be expressed in terms of p,;y ©

from Darcy’s equation,

o __ ) 0) (8.15)
Ynix = Umix VXpmix ’
and

(. . (0) (8.16)
pmix amix VXpmix ’

where Uy, is the characteristic mixture velocity and a,,;, is the

characteristic mixture pressure can be obtained from the solution of

8.17
,uf v 2u -V.a . =1 ®17

mix x mix X mix
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and

vV U . =0, (8.18)
X mix

The boundary conditions applied are no slip and periodic boundary

conditions for U,,;, and a,,;,

The effective permeability of the porous media is computed from

uf (o) (8.19)

K .
mix

mix ~
Equations (8.17 - 8.18) are similar to the single phase equations (2.9 —
2.10), where the velocity, pressure of a single phase is replaced by a
mixture velocity and pressure. This equation is solved to the effective
properties of the mixture fluid.

Shape optimization problem is used to find the optimal microstructure
where various shapes described parametrically are studied. Since the
governing equations are very similar to the governing equation for single
phase fluid, this work can be taken as an extension of the shape
optimization work done in earlier chapters. The Method of Moving
Asymptotes as proposed by Krister Svanberg is used for optimization. The
derivatives of the objective function with respect to the design variables

were computed using finite differences.
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8.3 Identifying the Periodic Cell

. In the analysis, the macroscopic domain (£ M) is assumed to be
homogeneous. The microscopic cell (Qm) has two distinct regions: a

solid region (Qs) and a mixture fluid region (Q ix) such that

fm

Qm=quQ andQshQ =0. P, | and L are the

fmix Jfmix

characteristic pressure, micro length and macro length scales. Two scales

are introduced: a small scale (x = O(l)) and a large <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>