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ABSTRACT
INFLAMMA TION AND IDIOSYNCRATIC DRUG REACTIONS:
INFLAMMATORY MECHANISMS AND INTERACTIONS IN A MURINE MODEL
OF TROVAFLOXACIN HEPATOTOXICITY
By

Patrick Joseph Shaw

Drug-induced liver injury is the leading cause of acute liver failure in the
United States and is a major concern for both public health and the
pharmaceutical industry. Idiosyncratic adverse drug reactions (IADRs), a rare
form of drug-induced liver injury, have been the reason for the majority of
postmarket regulatory actions on drugs. The liver is often a target of IADRs.
|IADRs are characterized by the toxicity being unrelated to the pharmacology of
the drug and do not demonstrate obvious dose or time dependence. The erratic
occurrence and lack of mechanistic evidence makes IADRs very difficult to
predict. Hepatotoxicity induced by the fluoroquinolone antibiotic trovafloxacin
(TVX) exhibited these characteristics. The mechanism underlying TVX-induced
idiosyncratic hepatotoxicity is unknown. We and others have hypothesized that
an inflammatory stress, commonplace and erratic in people, could alter the
threshold for toxicity of certain drugs precipitating an IADR.

This dissertation tested the hypothesis that an inflammatory stress could
precipitate idiosyncrasy-like TVX hepatotoxicity in mice. Administration of a
nonhepatotoxic dose of TVX 3 h before a nonhepatotoxic dose of either

lipopolysaccharide (LPS) or peptidoglycan-lipoteichoic acid mixture caused



significant hepatocellular necrosis and apoptosis. Levofloxacin (LVX), a
fluoroquinolone antibiotic without IADR liability in humans, did not interact with
LPS to cause hepatotoxicity. The remaining studies focused on understanding
the mechanisms underlying TVX/LPS-induced liver injury.

Gene expression analysis at a time before the onset of liver injury
segregated mice to their respective treatment groups. Therefore, gene
expression analysis was able to distinguish TVX/LPS-treated mice from all other
treatment groups.

Furthermore, LPS-induced increases in TNFa, IFNy, thrombin activation,
PAI-1 and VEGF were enhanced by TVX. The progression of TVX/LPS-induced
liver injury was dependent on PMN activation, TNFa, IFNy, thrombin activation,
PAI-1 and VEGF. Based on this finding, mice were killed at a time near the onset
of liver injury to explore how these mediators of inflammation interact with one
another and the cascade of events which leads to TVX/LPS-induced
hepatotoxicity. TNFa, IFNy, PAI-1 and VEGF potentially interacted to form
several cycles of dysregulated inflammation. These potential vicious cycles of
inlammation might be involved in TVX/LPS-induced liver injury.

In summary, novel proinflammatory properties and potential cycles of
inlammation were identified which might be involved in various models of
inflammatory tissue injury. Additionally, these studies support the possibility of
predicting and identifying mechanisms underlying IADRs by utilization of a

drug/LP'S coexposure model.
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CHAPTER 1

General Introduction and Specific Aims



1.1 ldiosyncratic adverse drug reactions

1.1.1 Overview of idiosyncratic adverse drug reactions

Adverse drug reactions are a serious problem for not only the public
health, but also for pharmaceutical companies and drug-regulatory agencies. In a
study in the United Kingdom, adverse drug reactions accounted for more than
6% of hospital admissions. Of these admissions due to adverse drug reactions,
the mortality rate was 2% (1). In addition to the risk to public health, adverse drug
reactions are a major issue for drug development. A significant amount of time
and money is expended in the effort to predict the risk of adverse reactions from
drug candidates. Despite comprehensive preclinical drug testing and clinical trials,
over 10% of drugs approved during 1975-2000 were either withdrawn from the
market or have been highly restricted in use (2). In 1998, the pharmaceutical
industry spent over 20 billion dollars on drug discovery and development, with
screening assays and toxicity testing accounting for about 20% of the total
amount spent (3). Despite such extensive efforts, in 1999 over 258,000 post-
marketing adverse events were reported in the United States, suggesting that
this is a persistent major issue (4).

Adverse drug reactions can occur in any number of tissues, but the liver is
often the target organ. Of the 28 drugs removed from the US market between
1976 and 2005, 6 were withdrawn due to hepatotoxicity (5). Drug-induced liver
injury (DILI) accounts for more than 50% of acute liver failure cases (6). It is

associated with significant mortality; therefore, a number of drugs which have



been associated with DILI have been removed from the market. For example,
bromfenac (7), troglitazone (8, 9) and tienilic acid (10) have been completely
removed from the market due to hepatotoxicity. In addition, hepatotoxicity of
other drugs such as trovafloxacin (TVX) (11, 12), nefazodone (13), and
nevirapine (14, 15) has led to “black box” warnings limiting their use. DILI is the
leading cause for the withdrawal of drugs from the market by either the U.S.
Food and Drug Administration or pharmaceutical companies (16).

An important subset of adverse drug reactions which cause DILI are
idiosyncratic adverse drug reactions (IADRs), which account for 13-17% of all
cases of acute liver failure (6, 17). IADRs typically occur in a small fraction of
people (generally < 1%) within the range of doses used clinically. The exact
mechanisms underlying IADRs are unknown but typically do not involve the
pharmacological properties of the drug. In addition, IADRs lack an obvious dose-
dependence, meaning that a dose which causes toxicity in some patients does
not in others. Another characteristic of IADRs is that the onset of toxicity relative
to the duration of drug therapy is variable. Finally, there is a wide range in the
severity of the reactions depending on the drug and individuals.

Despite extensive research, animal models do not exist which reproduce
the hepatotoxicity caused by IADRs. The development of animal models is
necessary to predict those drugs which cause IADRs and to decrease human
suffering. A predictive animal model would be beneficial for several reasons.
Prediction of drug candidates that could cause IADRs would prevent their

development into marketed pharmaceuticals and thereby reduce risk to public



health. In addition, it would prevent pharmaceutical companies from sending
such candidates to clinical trials or to market and would thereby save money
spent on clinical trials, marketing and potential lawsuits from patients affected by
IADRs.

Drugs which lead to IADRs are usually not identified in preclinical testing
due to their typically rare occurrence and the use of relatively small numbers of
animals in toxicity testing. The inability of animal tests to predict IADRs may be
due, in part, to the reaction being idiosyncratic in animals as well as humans, and
thus an extremely large number of animals would be needed to detect toxicity. It
has been estimated that to predict an IADR confidently, toxicity testing would
require 30,000 animals to be treated (18). In addition, the current animal testing
paradigms might not include sufficient biological diversity to elucidate IADR
toxicities. Since such large studies are not possible for drug candidates, it is
critical that the modes of action of IADRs are better understood to develop

predictive models.

1.1.2 Hypothesized mechanisms of idiosyncratic adverse drug reactions
Despite extensive research, the mechanisms underlying IADRs remain
poorly understood and incompletely characterized. There exist several obstacles
to understanding IADRs. A substantial challenge is that an animal model for the
early detection of hepatic IADRs is currently unavailable. In addition, the tissue
from afflicted individuals is often difficult to obtain for research purposes,

although the DILI network is trying to address this obstacle. Even when tissue



from affected individuals is available, the tissue would have been harvested long
after injury developed and is likely, therefore, to be of limited value for
mechanistic studies. However, despite such limitations and difficulties, progress
has been made in understanding IADRs. Such progress has led to the
development of several diverse theories about IADR pathogenesis. To this point,
none of the hypotheses to explain IADR pathogenesis have been proved or
disproved. The prevalent hypotheses to explain IADR toxicity and supporting

experimental evidence are described in more detail below.

Reactive Intermediate Hypothesis

One theory for the mechanism of IADRs is that a drug is metabolized into
a reactive metabolite, which might bind with important cellular proteins, damage
membrane integrity, alter calcium homeostasis or other intracellular signaling in
ways which could lead to toxicity and that susceptible individuals have
polymorphisms in the bioactivating enzyme(s) (19). Indeed, there are several
cases in which a drug linked with IADRs has the ability to form a metabolite
which is reactive (20). The reactive intermediate hypothesis can be closely
associated with all of the hypotheses to be described, especially if a reactive
metabolite and not the parent drug is the agent involved in the toxicity.

Troglitazone is an antidiabetic drug which was linked with serious
idiosyncratic hepatotoxicity (9). Research conducted after troglitazone was
removed from the market showed that it is metabolized in the rat to five

intermediates with the ability to form glutathione conjugates that appear in bile



(21). In addition, metabolic activation by cytochrome P450 3A4 (CYP3A4) forms
reactive metabolites which bind to proteins and nucleophiles (22). Whether these
form protein adducts that play a role in toxicity is unknown. In addition, if the
protein adducts are formed and involved in toxicity, the degree of protein adducts
that constitute a threshold for troglitazone IADRs is unknown. Furthermore,
several drugs which form reactive metabolites are not associated with an
increased risk of IADRs (23). Moreover, one would expect an “intrinsic” (dose-
related) toxicity picture in the absence of some metabolism-related sensitivity
factor that renders a small fraction of patients susceptible to IADRs. Thus,
although the reactive intermediate hypothesis is a reasonable one, a causal link
between reactive metabolite generation and hepatotoxicity has not been

established conclusively for drugs that cause IADRs.

Genetic Polymorphism Hypothesis

A related theory is that genetic polymorphisms among individuals can
cause differences in the toxic responses of individuals to drugs. Many
polymorphisms can lead to drug metabolism differences among individuals,
leading to differences in pharmacokinetics and reactive intermediate formation
(24). Human polymorphisms in genes encoding cytochrome P450 drug
metabolizing enzymes have been identified and could lead to differences in drug
metabolism and clearance that could render some individuals more susceptible

to toxicity. In addition, it is possible that a polymorphism in drug metabolizing



enzymes might lead to the formation of a reactive intermediate not seen in the
majority genotype.

Alternatively, a genetic polymorphism in a protective gene, such as an
anti-inflammatory cytokine, might render individuals more susceptible to normally
nontoxic doses of drugs, resulting in an IADR. For this hypothesis to explain
IADRs, the genetic polymorphism of people on drug therapy would have to be as
rare as the IADR itself or the IADR would have to be a result of a rare
combination of several more common polymorphisms. Even if this explains the
rarity of IADRs, the genetic polymorphism hypothesis does not explain other
characteristics of IADRs such as the variability in the onset of toxicity.

An example often referenced by supporters of the importance of
polymorphisms is toxicity caused by isoniazid, a first-line drug used in the
prevention and treatment of tuberculosis. Isoniazid has been linked to several
cases of liver injury (25). The susceptibility of individuals to isoniazid-induced
liver injury has been linked to a polymorphism resulting in a rapid acetylator
phenotype (25, 26). It was hypothesized that the rapid acetylators produce more
of a reactive metabolite which causes hepatocellular necrosis. However, several
epidemiological studies failed to find an association between the rapid acetylation
polymorphism and liver injury (27). Another example of this hypothesis is evident
from a study in which individuals were treated with the idiosyncratic drug,
diclofenac. It was found that individuals who developed a toxic response had a
greater rate of polymorphisms in the interleukin 10 (IL-10) and interleukin 4 (IL-4)

genes than the group of individuals who did not develop a toxic response to



diclofenac (28). An association between IADRs and genetic polymorphisms does
exist with some drugs; however, their roles remain uncertain, and it remains likely

that other factors play a role in precipitating IADRs.

Hapten Hypothesis

A widely accepted theory to explain IADRs is that they result from an
adaptive immune response. Some clinical characteristics of IADRs such as the
delayed onset of toxicity, the lack of a simple dose-response relationship and
eosinophilia have led some to postulate that IADRs are mediated by adaptive
immunity (29). This has led to the formation of two related hypotheses. The
hapten hypothesis states that a chemically reactive drug or a reactive metabolite
binds to an endogenous protein. This protein adduct is then seen as a foreign
antigen capable of initiating immunological recognition (30). According to this
hypothesis, the drug-modified protein must be processed by antigen-presenting
cells and presented to T cells. This results in sensitization of the T cells to the
foreign antigen. The immune system develops memory to the foreign antigen,
and upon subsequent exposure to the drug, robust immune system activation
occurs, resulting in the formation of autoantibodies and/or the activation of
cytotoxic T cells targeting self proteins (31). It is important to understand that
both sensitizing and challenging exposures are required in this hypothetical
mechanism.

In support of the hapten hypothesis, the presence of autoantibodies has

been detected in patients with hepatic IADRs after exposure to several drugs,



including diclofenac, troglitazone, halothane and tienilic acid (28, 32). The study
which found autoantibodies in the sera of patients who experienced diclofenac
hepatotoxicity also reported the presence of autoantibodies in some patients
treated with diclofenac who did not develop hepatotoxicity (28). Such a finding
was also found in halothane-treated patients, in whom autoantibodies were found
whether they developed toxicity or not (33). Thus, from these reports, a clear
cause and effect relationship between autoantibodies and idiosyncratic
hepatotoxicity is lacking. The clinical evidence supporting the role of the adaptive
immune system may in some cases be explained by immune system activation
occurring secondary to tissue damage. Efforts have been undertaken to show the
involvement of the specific immune system in hepatotoxic IADRs; however, in all
of the current animal models of drug immunogenicity, an adaptive immune
response was detected in the absence of liver damage (34). Accordingly,
experimental support for this hypothesis is incomplete, and an animal model of

drug hepatotoxicity with an adaptive immune mechanism has not emerged so far.

The danger hypothesis

A theory closely related to the hapten hypothesis described above is the
danger hypothesis, which proposes that a damaging immune system activation
occurs only if the drug binds to a protein which causes some type a of a stress
response, such as inflammation or cell death, resulting in a ‘danger’ signal (35).
Thus, according to the danger hypothesis, the formation of a drug-protein adduct

is insufficient to cause injury, a secondary signal during sensitization such as



mild cell death or cytokine release then results in adaptive immune system
activation and pathogenesis (36). It has been postulated that reactive drug
metabolites themselves could cause this danger signal, and this is what
determines which reactive metabolites lead to IADRs (37, 38). However, the
‘danger’ signal could be from a number of independent factors including an

infection causing an innate immune response, resulting in an inflammatory stress.

The pharmacological interaction (Pl) hypothesis

The Pl hypothesis is closely related to the hapten and danger hypotheses,
in that it suggests an active role for the adaptive immune system in the
development of IADRs. The Pl hypothesis proposes that drugs bind reversibly to
the major histocompatibility complex (MHC) and T cell receptor (TCR) complex. It
is hypothesized that the drug then acts like a superantigen to elicit an adaptive
immune system response, precipitating an IADR (39). Much of the early work
leading to the development of the Pl hypothesis was done with
sulfamethoxazole; which caused proliferation of T cells isolated from
sulfamethoxazole IADR patients (40). However, there is no evidence that an
IADR drug binding to the MHC-TCR complex is capable of eliciting an immune
response. The role as a possible superantigen to the MHC:TCR complex has not
not been shown with any other drugs linked with hepatotoxic IADRs. In addition,
evidence is also lacking in support of a causal link between an adaptive immune

response and the precipitation of a hepatotoxic IADR.
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Mitochondrial dysfunction hypothesis

Another hypothesis for IADRs is that mitochondrial dysfunction and
disturbances in mitochondrial integrity by oxidative stress are an underlying
cause. Mitochondria play a critical role in providing the cell with energy,
controlling the process of apoptosis and regulating intracellular oxidative stress.
Mitochondrial dysfunction can encompass several changes such as decreased
adenosine triphosphate (ATP) production, mitochondrial reactive oxygen species
(ROS) production or depolarization of the mitochondrial membrane potential.

One way in which mitochondrial dysfunction can occur is through DNA
alteration. Mitochondrial DNA alterations which could result in dysfunction are
rare but are seen in humans. It was found in a epidemiological study that >12 in
100,00 people either had mitochondrial DNA disease or were at risk to develop it;
these results reflect the minimum prevalence of mtDNA disease and pathogenic
mtDNA mutations (41). It is hypothesized that either a mitochondrial disease or
polymorphism could alter mitochondrial function and render cells sensitive to a
drug, resulting in idiosyncratic toxicity (42). It is also postulated that genetic or
acquired mitochondrial abnormalities can lead to silent and gradually
accumulating mitochondrial injury which reaches a threshold and abruptly
triggers liver injury (43).

There is extensive evidence linking IADR drugs with mitochondrial
alterations. Troglitazone, tolcapone, diclofenac, valproic acid, and isoniazid are
some of the drugs which cause IADRs and which have mitochondrial liability in

hepatocytes (43-48). In addition, diclofenac and troglitazone are cytotoxic to
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HepG2 cells through a mitochondrial mechanism (49, 50). In one study,
superoxide dismutase 2 (SOD2) heterozygote mice, a model of silent
mitochondrial abnormality, were chronically treated with troglitazone. This
treatment had no effect on wild-type mice but resulted in hepatocellular necrosis
in SOD2*" mice (51). However, the hypothesis fails to explain the apparent lack
of dose dependence that characterizes IADRs. In addition, there are several
drugs that cause mitochondrial alterations in vitro but have not resulted in
adverse drug reactions in people.

It is of importance to note that mitochondrial dysfunctions can be induced
by a number of independent factors such as xenobiotics which might be taken
concurrently, hypoxia or inflammation. Therefore, it is possible that alterations in

mitochondrial function play a role in other hypothesized mechanisms of IADRs.

Failure to adapt hypothesis

Another hypothesis of IADRs is that a small fraction of people develop
minor liver toxicity in response to a drug. Most of these individuals “adapt® and
experience a resolution of liver injury even in the continued presence of the drug.
However, it is proposed that a small fraction of these people fail to “adapt”, and
the injury progresses to overt toxicity (52). Reports of isoniazid hepatotoxicity
seem to support this theory, inasmuch as 15% of patients taking isoniazid
experience minor alanine aminotransferase (ALT) elevations, but less than 1%

develop symptomatic hepatitis with continued treatment (53).
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The mechanisms underlying the “adaptation” phenomenon are unknown.
Adaptation may not be recognized in clinical trials because drug treatment is
stopped when the serum ALT activity rises to greater than 3 times the upper limit
of normal, making it impossible to distinguish between patients who would and
would not adapt. In addition, there are currently few animal models in which
adaptation can be studied. However, future studies made possible by the DILI
Network will attempt to address these issues and determine possible reasons for
increased susceptibility of certain individuals to IADRs. It is also of importance to
note that the ‘failure to adapt’ hypothesis does not discount other hypotheses of
IADRs, as toxicity may be due to any number of mechanisms to which certain

individuals cannot adapt and therefore experience an IADR.

Muiltiple determinant hypothesis

The multiple determinant hypothesis proposes that idiosyncratic reactions
are the result of multiple, discrete but necessary factors or processes all
occurring simultaneously (54). Each factor has an independent probability of
occurring, but all of them are required to precipitate an IADR, thus accounting for
the rare occurrence rate. According to the hypothesis, an idiosyncratic reaction
would only occur in an individual if all the critical steps occur within an
appropriate time. An equation for the probability of an idiosyncratic reaction is
proposed below:

PiaDR = Pchem X Pexp X Penv X Pgene, Where,
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Pupor is the probability of an IADR, Pcem is the probability contributed by
chemical properties, Pey, is the probability determined by the drug exposure to
the critical organ(s), Penv represents probabilities determined by environmental
factors (drug coexposure, inflammation, etc.) and Pgene is the probability related
to genetic factors (54).

The multiple determinant hypothesis is a rather general and
encompassing hypothesis which takes into account the other hypotheses
mentioned above. However, it is important to understand in more detail the
mechanistic aspects of IADRs to develop predictive animal models. Inasmuch as
environmental and genetic factors might play a role in the probability of a specific
drug causing an IADR, it is important to determine which factors are important to
toxicity and why.

The hypothesis implies that an underlying factor has the potential to lower
the toxicity threshold of a drug, rendering a normally therapeutic dose toxic.
Several factors have the potential to affect the susceptibility of an individual to
drug toxicity including age, gender, coexposure to other pharmacological agents,

drug metabolism differences, and state of health.

Inflammatory stress hypothesis
In the multiple determinant hypothesis, one environmental factor that
might render an individual sensitive to a normally nontoxic drug dose is

inflammatory stress. This idea has led to the inflammatory stress hypothesis,
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which states that an episode of inflammation has the potential to interact with
concurrent drug therapy to precipitate an IADR.

Inflammatory episodes are commonplace in people and occur erratically
throughout life. Many are modest enough that they go unnoticed. A hypothetical
relationship between inflammation and IADRs is illustrated in Fig. 1.1. For
therapeutically useful drugs, the pharmacologic effect is seen at much smaller
doses than signs of toxicity. Most drugs are developed so that the range between
a therapeutic dose and the smallest toxic dose (ie., the therapeutic window) is as
large as possible. As dose is increased, toxicity is seen (such as kidney toxicity in
Fig. 1.1) and death ensues at large doses. Liver toxicity in this example is not
observed because the toxicity threshold lies at doses higher than those that are
lethal. The hypothesis is that a modest inflammatory stress can decrease the
threshold for hepatic toxicity, thereby shrinking the therapeutic window and
resulting in a toxic response at a normally safe and pharmacologically effective
dose of the drug. In this case, an IADR would occur at a dose which is nontoxic
to individuals not experiencing a concurrent inflammatory episode. The erratic
nature of inflammatory episodes can explain the unpredictable nature of IADRs.

Lipopolysaccharide (LPS), a component of gram-negative bacterial cell
walls, is one agent that can induce an inflammatory stress as described in more
detail below. Experimental models have been developed in which nontoxic doses
of IADR-causing drugs are rendered hepatotoxic upon coexposure to a nontoxic
dose of LPS. For example, rats became susceptible to hepatotoxicity from

several drugs known to cause IADRs when they were concurrently exposed to a
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Fig. 1.1. Hypothetical relationship between inflammation and drug
idiosyncrasy. Drug A is a relatively safe and efficacious drug. The asterisk
indicates the wusual therapeutic dose. The safety margin between
pharmacological effect and kidney toxicity is quite large. A modest inflammatory
response shifts the threshold for liver toxicity and precipitates and idiosyncratic

response (55).
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nontoxic dose of LPS. Drugs known to cause IADRs in humans such as
trovafloxacin, ranitidine, sulindac, chlorpromazine and diclofenac were all
rendered hepatotoxic to rats when coupled with a nontoxic dose of LPS (56-60)
(Table 1.1). Drugs in the same pharmacologic class which were not associated
with IADRs in humans were used when available. These drugs not associated
with human IADRs did not interact with inflammatory stress to cause
hepatotoxicity in animal models (58, 59).

Of the drugs tested, only the ones linked with IADRs in humans interacted
with a concurrent inflammatory stress to cause hepatotoxicity in rats. This
concordance suggested a potential role for inflammation in the mechanism of
human |ADRs. The results in animal models suggest that an inflammatory
episode caused by LPS or other factors could render an individual susceptible to
hepatotoxicity at normally nontoxic drug doses, thus causing an idiosyncratic
reaction. A challenge still lies in understanding mechanisms of the hepatotoxicity
observed with coexposure to LPS and an IADR-causing drug. The remainder of
the Introduction and subsequent chapters of the thesis will explore inflammatory
stress in greater detail and present work to develop and explore an

inflammation/drug interaction model of TVX toxicity in mice.
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Table 1.1. Concordance of LPS/drug coexposure model in rats for IADR-

causing drugs in humans

Linked to
. LPS/drug coexposure
Drug hepatotoxicity in .
hepatotoxic to rats?

humans?
Trovafloxacin Yes Yes
Levofloxacin No No
Chlorpromazine Yes Yes
Ranitidine Yes Yes
Famotidine No No
Sulindac Yes Yes
Diclofenac Yes Yes
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1.2 Inflammation

1.2.1 Overview of inflammatory stress

Inflammation is an innate immune system process critical for the host’s
defense against infection and foreign substances. The inflammatory response is
a complex process encompassing the recruitment of cells, release of cytokines
and other biologically active mediators, vasodilation, hemostatic system
activation and complement activation. The magnitude of an inflammatory
response depends on the cause and varies from one individual to the next.
Modest inflammatory episodes occur sporadically and are commonplace in
people. Inflammation occurs in response to a number of stimuli including tissue
injury, microbial pathogens and other foreign substances.

As mentioned above, recognition of microorganisms by various cell types
within the body induces an inflammatory response. Components of gram-
negative bacteria have been measured in the plasma of individuals and are
increased by conditions such as gastrointestinal disturbances, alcohol
consumption, surgery, alterations in diet, etc. (55, 61). In turn, a great deal of
inflammation research has focused on host responses to gram-negative bacterial
cell wall constituents. Endotoxin is a component of gram-negative bacterial cell
walls and is released when bacteria undergo cell division or are damaged by
antibiotics (62). A major, biologically active component of endotoxin is LPS.
Chapter 3 presents some studies exploring the interaction between TVX and

gram-positive bacterial cell wall components peptidoglycan and lipoteichoic acid,
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which can also induce inflammation. However, the majority of the work will
explore in detail the interaction between TVX and LPS. The mechanism by which
LPS induces an inflammatory response will described below.

Toll-like receptors (TLRs) are conserved pattern recognition receptors that
recognize bacterial components (63). The effects of LPS are elicited primarily
through the activation of TLR4. LPS-binding protein and CD14 are required for
presentation of LPS to TLR4; and the interaction of the co-receptor MD-2 with
dimerized TLR4 is required to elicit activation of TLR4 by LPS (64, 65). After LPS
activates TLR4, the resulting responses can be divided into those dependent on
myeloid differentiation factor 88 (MyD88) and those independent of MyD88. The
signaling pathways activated by TLR4 activation by LPS are described in more
detail below and summarized in Fig. 1.2.

The activated TLR4 dimer recruits Toll/IL-1R domain-containing adapters
(TIRAP), TIR-containing adapter molecule (TRIF) and TRIF-related adapter
molecule (TRAM) (66). TIRAP recruitment and activation results in MyD88
recruitment. MyD88 is an adapter protein which activates inflammatory signaling
pathways. The activation of MyD88 leads to the recruitment and phosphorylation
of members of the IL-1-receptor-associated kinase (IRAK) family (67).
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