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ABSTRACT
APPLICATION OF MODEL-DRIVEN META-ANALYSIS
AND LATENT VARIABLE FRAMEWORK IN SYNTHESIZING STUDIES
USING DIVERSE MEASURES
By
Soyeon Ahn

In spite of a growing interest in meta-analysis, the application of existing
methodology faces numerous difficulties and limitations. In particular, the use of diverse
measures in primary studies introduces two methodological concerns in the application of
meta-analytic techniques. First, individual study effects can vary significantly depending
on differences in measures employed. Second, the existing methodologies are limited in
dealing with very sparse data structures, where effect size has its unique measurement
characteristics.

In support of resolving these concerns, the current research proposes a method for
handling a very sparse data structure of effect sizes that arises from variations in
measures used in primary studies. The proposed model is based on model-driven meta-
analysis, structural equation modeling with latent variables, and method-of-moments
estimation technique. This study presents the model specification in which the true
population relationship between two latent variables is estimated. A method to extract
unknowns in estimating the relationship between two underlying constructs (Equation 3.
13) is discussed.

First, several Monte Carlo simulations are performed in order to examine the

performance of the proposed estimator under different conditions. Results from

simulations indicate that the proposed approach correctly estimates the desired population



parameter. MANOVA results show that the factor loadings and reliabilities of indicators
have the largest effect on the bias and MSE values of the estimators.

Second, the application of the proposed approach is demonstrated by re-analyzing
a sub-set of studies reviewed by Ahn and Choi (2004). The estimated strength of the
relationship between teachers’ subject matter knowledge and student achievement
included in Ahn and Choi using the proposed method was smaller than the weighted
mean correlation corrected for artifacts proposed by Hunter and Schmidt (1990, 1994)
and the z-transformed variance-weighted mean correlation proposed by Shadish and
Haddock (1994), but leads to the same inference.

Lastly, four practical considerations of the proposed approach were discussed,
followed by a list of potential future research to resolve those limitations. In this section,
I demonstrate how well the proposed approach estimates the strength of the relationship

between two underlying constructs when it is based on a misspecified population model.
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PREFACE

Nearly six years of research experience in the Teacher Qualifications and Quality
of Teaching (TQ-QT) project’ under the direction of principal investigators Drs. Betsy J.
Becker and Mary M. Kennedy at Michigan State University provided me a solid
theoretical and practical background for completion of this dissertation. Approximately
500 studies that examine the relationship between teacher qualifications and quality of
teaching vary tremendously and introduce several interesting methodological questions in
research synthesis.

This dissertation focuses on how to combine studies when the original studies use
diverse measures with different measurement characteristics such as reliability and
validity, even though researchers intend these to represent the same underlying constructs.
In this research, I have tried to develop an approach whereby we can combine the very
sparse data structure that arises from large variations across studies in measures. The
proposed method is based on the assumption that all measures are attempting to represent
the same underlying construct even though their measurement characteristics are quite
different.

The proposed approach is developed based on three existing ideas in statistics and
measurement — model-driven meta-analysis, structural equation modeling (SEM) with
latent variables, and a method-of-moments estimation technique. Even though the
proposed method is built on a simple one-factor model, it is possible to expand this model
to solve more complicated issues in meta-analysis. As presented in the section on

practical considerations, more attention should be paid to developing a method that can

! For more detailed information, please see the website http://www.msu.eduw/user/mkennedy/TQQT/
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handle missing data in research synthesis. In addition, the robustness of the proposed
model should be examined before applying the proposed model in practice.

It is customary to list a long series of acknowledgements somewhere in the
preface of a dissertation. I have gained enormous personal and scientific benefits during
my time spent on the TQ-QT project at MSU, both from the people with whom I have
worked and the environment that they have created. I am only going to personally thank
four people, my mentors Drs. Betsy J. Becker and Mary M. Kennedy (we often call them

“Spiritual Mentors (SM)”), to whom [ owe so much that it would be pointless to try to

encapsulate it, Dr. Meng-Jia Wu (at Loyola University at Chicago), and Rae-Seon
(Sunny) Kim (at Florida State University), who have played multiple roles as colleague,
friend, and big sister. Their academic and emotional support helped me go through a long

and sometimes lonely journey toward the completion of this dissertation.
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CHAPTER 1
INTRODUCTION
From its first appearance, meta-analysis has been widely used in various
disciplines including medicine, economics, psychology, epidemiology, and education
(Chalmers, Hedges, & Cooper, 2002; Hedges, 1983; Slavin, 2008; Vanhonacker,
Lehmann, & Sultan, 1990). In spite of a growing interest in meta-analytic techniques as a
means of providing rigorous evidence in many fields (Borman, 2002; Slavin, 2008;
Towne, Wise, & Winters, 2005), the application of existing methodology in research
synthesis faces numerous difficulties and limitations due to the inherent nature of
research in education and social sciences (Berk, 2006; Rubin, 1992; Slavin, 1984; Thum

& Ahn, 2007).

1.1. Challenges of Research Synthesis in Education and Social Science

As Kennedy (2007) has pointed out, multiple factors simultaneously influence
outcomes within naturally occurring settings in education and social sciences. Many
researchers have thus used multiple regressions or hierarchical linear models to eliminate
numerous confounding variables in the primary research (Kennedy, Ahn, & Choi, 2008).
However, their study findings have been often excluded from meta-analyses (e.g., Ahn &
Choi, 2004; Qu & Becker, 2003) because no generally accepted methods exist for
integrating results of multiple regressions or hierarchical linear models (Becker &
Schram, 1994; Becker & Wu, 2007; Wu, 2006a, 2006b).. As discussed in Becker and
Schram (1994), regression analyses, path analyses, canonical correlations, and factor

analyses are not easily synthesized. This is because partial correlations provided in such



analyses seldom represent the same parameters, which vary depending on other variables
included in the model.

For example, Ahn and Choi (2004) found that among 49 studies examining the
relationship between teacher subject matter knowledge and student achievement in
mathematics, 11 used regression analysis and 4 used more advanced data-analytic
techniques such as hierarchical linear modeling (HLM) or structural equation modeling
(SEM). Consequently, Ahn and Choi (2004) excluded those 15 studies from their meta-
analysis, and synthesized only the remaining 34 studies that provided correlation
coefficients between teacher knowledge and student achievement.

In addition, in the social sciences and education, no natural scales of
measurements exist (Hedges & Olkin, 1985). Consequently, studies employ a variety of
measures. While these may represent “the same” underlying construct (e.g., student
learning, depression, or other broad constructs), meta-analysts often encounter difficulties
in putting effects on a common outcome metric across studies using various measures
(Rubin, 1992). As Bollen (1989) demonstrated, study findings (e.g., correlations or
regression coefficients) differ if the measurement errors of indicators (with variations in
the reliabilities of indicators) are introduced or if the factor loadings (i.e., validity) of
indicators are not equal to one.

Choi, Ahn, and Kennedy (under review) discovered that 15 different measures of
teacher knowledge in mathematics (e.g., Glennon Test of Mathematical Understanding,
Test of Understanding of the Real Number System (TURNS), etc) were used across the
16 studies included in their meta-analysis on teachers’ subject matter knowledge in

mathematics. Similarly, Becker and Wu (2007) identified 79 unique measures of student

o



learning used to represent the quality of teaching across 65 studies that investigate the
relationship between teacher qualifications and quality of teaching. Such use of diverse
measures in the primary studies often introduces the following two methodological
concerns in the application of meta-analytic techniques.

First, individual study effects can vary significantly depending on measurement
differences in the variables employed (Baugh, 2002; Lipsey & Wilson, 2001; Nugent,
2006; Oswald & Converse, 2005; Oswald & Johnson, 1998; Rubin, 1992; Slavin, 1984).
Thus, many researchers (Hunter & Schmidt, 1990; Oswald & Converse, 2005; Oswald &
Johnson, 1998; Raju, Anselmi, Goodman, & Thomas, 1998; Raju, Burke, Normand, &
Langlois, 1991; Raju, Fralicx, & Steinhaus, 1986) have proposed methods for correcting
study effects for differences in measurement. Hunter and Schmidt’s (1990) approach,
which adjusts correlation coefficients for potential measurement artifacts including
sampling error, measurement unreliability, and range restriction, has been widely adopted
in social sciences, particularly in applied psychology.

However, some researchers (Lambert & Curlette, 1995; Oswald & Johnson, 1998)

have demonstrated that the estimate of the population correlation ( o ) obtained via the

Hunter and Schmidt’s approach does not always estimate the true value ( o) and its

associated variance (0'/2)) 1s also somewhat inaccurate. For example, based on Monte

Carlo simulations, Oswald and Johnson (1998) demonstrated that discrepancies between
p and p get larger with small within-study sample sizes and with smaller numbers of
effect sizes included in the meta-analysis.

Recently, Thum and Ahn (2007) have applied a latent variable framework in

research synthesis and proposed to adjust for differences in regression coefficients due to



the factor loadings, the measurement errors, and the variances of latent variables before
combining the coefficients. On the other hand, a number of limitations stand in the way
of practical application of Thum and Ahn’s approach. In particular, many components of
the model are unreported, including the factor loadings of both criterion and predictor
variables, an index of the true relationship between two constructs, and information on
measurement errors. Even if reasonable priors on the unknowns can be selected, the
estimation process outlined by Thum and Ahn requires information not easily available
and thus practical applications may be limited.

The second concern is that the existing univariate or multivariate statistical
modeling approaches for meta-analysis (e.g., the Generalized Least Squares (GLS)
method presented by Raudenbush, Becker, & Kalaian, 1988) are limited in dealing with
very sparse data structures, which occur when each effect size (e.g., correlation or
regression coefficient) has its unique measurement characteristics for predictor and
outcome variables.

For example, in the meta-analysis by Choi, Ahn, and Kennedy (under review),
none of the correlation coefficients from 16 studies uses the same measures of both
teacher’s knowledge and student achievement in mathematics. In such a case, the GLS
method, which is frequently used to combine non-independent effect-sizes in the meta-
analysis, is inapplicable due to a singular design matrix for estimating the true population

correlation coefficient and its variance.



1.2. Empirical Example

Figure 1.1 in the Appendix C displays studies included in the meta-analysis by
Ahn and Choi (2004) that focuses on the effect of how much math teachers know on
student learning in mathematics. In Figure 1.1 in the Appendix C, three aforementioned
challenges in synthesizing studies are well delineated: 1) Studies provide results from
diverse data-analytic techniques (e.g., correlation coefficients in Brown, 1988; regression
coefficients in Chaney, 1995; HLM coefficients in Chiang, 1996). 2) Different sets of
predictors (i.e., coursework, degree level, major, GPA, and test scores for teacher
knowledge in mathematics) and outcome variables (i.e., California Achievement Test
(CAT), National Assessment of Educational Progress (NAEP), and Iowa Test of Basic
Skills (ITBS) for student achievement in mathematics) are used across studies. 3) Only
two studies (i.e., Teddlie, Falk, & Falkowski, 1983 and Hill, Rowan, & Ball, 2005)
provide exactly identical links between the same sets of predictors and criterion variables,

leading to a very sparse data structure for further analyses.

1.3. Purpose of Research

The current research proposes a new methodology for handling a very sparse data
structure of the effect sizes (i.e., correlations or regression coefficients) that mostly arises
from the variations in the measures used in the primary studies. To accomplish this, I use
a Structural Equation Modeling (SEM) approach with latent variables (Bollen, 1989), the
ideas of model-driven meta-analysis (Becker & Schram, 1994), and a method-of-

moments estimation technique (Casella & Berger, 1990; Gelman, 1995). This method



quantifies the relationship between two underlying constructs measured by different sets
of indicators with unique measurement characteristics such as reliability and validity.

As Messick (1993) indicated, there are several ways of conceptualizing validity
(e.g., content validity, criterion validity, predictive validity, etc). I use the term validity to
refer to the structural relationship (correlation) between the indicator and its underlying
construct, which can be understood based on a structural equations approach (Bollen,
1989). As Bollen (1989) pointed out, the validity of a measure is defined as the
magnitude of the direct structural relation between the indicator and its associated
construct.

In this dissertation, I first present the specification of a population model using
model-driven meta-analysis and SEM with latent variables. Based on the specified
population model, the true population relationship between two latent variables is
quantified by applying the method-of-moments estimation technique. Moreover, three
approaches are discussed for obtaining the unknown values needed to compute the
method-of-moments estimator of the strength of the relationship between two underlying
constructs. Then a series of Monte Carlo simulations is conducted to test the performance
of the proposed approach under different conditions. Last, its practical application is
demonstrated by synthesizing a set of studies that are reviewed by Ahn and Choi (2004),
in which the relationship between teachers’ subject matter knowledge and student

achievement in mathematics was investigated.
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CHAPTER 2
LITERATURE REVIEW

In many disciplines a variety of measures with different measurement
characteristics are often used to represent “the same” underlying construct in the primary
studies (Farley, Lehmann, & Ryan, 1981). For instance, Crowl, Ahn, and Baker (in press)
reported that the parent-child relationship quality is measured in several ways across the
19 studies included in their meta-analysis. These measures include standard observational
techniques, structured interviews, and several standardized assessments such as the
Family Relations Test, the Parenting Stress Index, and the Dyadic Adjustment Scale.

Also, many studies no longer focus on only a few simple bivariate relationships
(e.g., zero-order correlations), or differences (main effects) on a few outcomes (Becker,
2001; Becker & Schram, 1994). An example from an ongoing synthesis of the studies
examining the relationship between teacher qualifications and the quality of teaching
(TQ-QT)? indicates that only 55 out of 461 coded studies used a bivariate correlation
analysis, and 17 others reported simple ¢ tests. Most other studies examined the effect of
teacher qualifications on the quality of teaching based on more advanced data analytic
techniques such as multiple regression, Multivariate Analysis of Variance (MANOVA),
and Analysis of Covariance (ANCOVA). In this section, I first review how these

challenges have been handled in research synthesis.

2 More details about the TQ-QT project can be found in http://www.msu.edu’user/mkennedy/ TQQT/.




2.1. Meta-analytic Methods For Synthesizing Studies using Various Indicators
In the literature, three methods are often used to synthesize studics using various
measures of the predictor and outcome variables. These are a univariate method, an

artifact- correction approach, and a multivariate method.

2.1.1. Univariate Method

The first approach involves creating collections of studies that use the same
measures and then performing a series of separate univariate analyses of effect sizes on
each relationship. This is accomplished by calculating an average effect for each category
(see Hedges & Olkin, 1985; Hunter & Schmidt, 1990; Shadish & Haddock, 1994) based
on traditional research-synthesis techniques (e.g., the z-transformed variance-weighted
average proposed by Hedges and Olkin (1985) or Rosenthal and Rubin (1991)).

For instance, Choi, Ahn, and Kennedy (under review) categorized 51 correlation
coefficients extracted from 19 studies into 8 categories in terms of the content domain
(i.e., arithmetic, algebra, and geometry) and the cognitive demands of the student
mathematics achievement measure (i.e., computation, concepts, and applications). Then
they obtained the z-transformed variance-weighted average estimates for 8 categories by
performing a series of separate univariate analyses, one for each subgroup of studies.

A univariate data-analysis is often used due to its ease of application. However, it
is limited when the interest is in an overall picture of interrelationships among all
variables included in the model as a whole. Moreover, when individual studies contribute

multiple measures of relationships, the univariate method ignores possible dependence in



the data, and thus might lead to inaccurate conclusions (Becker & Schram, 1994; Gleser

& Olkin, 1994).

2.1.2. Artifact Correction

Some methodologists (e.g., Bollen, 1989; Nugent, 2006) have argued that effect
sizes (i.e., standardized mean differences, correlation coefficients) based on variables
with different measurement characteristics are not directly comparable. For instance,
Nugent (2006) demonstrated that the distribution of the standardized mean difference,
which is the most widely used scale invariant effect-size measure in the current practice -
of meta-analysis, varies depending on the reliabilities of measures used in the comparison
groups. It has been also known that the correlation coefficient varies depending on the
reliability of one or both measures (Baugh, 2002; Bollen, 1989; Hancock, 1997; Hunter
& Schmidt, 1990, 1994).

Although most discussions have been limited to correlation coefficients,
particularly in applied psychology, a number of researchers have suggested using the
correction formulas with other effect-size measures such as regression coefficients and
standardized mean differences attenuated due to measurement characteristics such as
reliability and range restriction (Hunter & Schmidt, 1990; Oswald & Converse, 2005;
Oswald & Johnson, 1998; Raju et al., 1986; Raju et al., 1991; Raju et al., 1998).

In fact, corrections for correlation coefficients are heavily used in the meta-
analytic procedures proposed by Hunter, Schmidt, and Jackson (1982) and elaborated by

Hunter and Schmidt (1990, 2004). Hunter and Schmidt (1990, 1994) have indicated that

the study population correlation p, is always lower than the actual correlation p . This is



because we cannot do any study perfectly, and study imperfections produce the artifacts
that systematically reduce the actual correlation parameter. Therefore, they have

identified 10 possible sources of artifacts, and propose to correct the attenuated sample
correlation by multiplying it by appropriate “artifact multipliers” @; shown in Table 2.1

in the Appendix C.

After disattenuating each sample correlation using appropriate artifact multipliers

q; , the weighted mean correlation 7 is obtained by

F=Ywerg /Y wg 2.1)
where r; is the s™ study correlation; the weight for study s suggested by Hunter and
Schmidt is

we = Ny A2, (2.2)
where N is the sample size for study s, and A is the compound artifact multiplier for

study s.

More elaborations of Hunter and Schmidt’s method have been developed by a
number of researchers (e.g., Le, 2003; Sackett & Yang, 2000 for correcting range
restriction; Hancock, 1997; Raju & Brand, 2003; Raju, Burke, Normand, & Langlois,
1991 for correcting reliability and range restriction; Oswald & Converse, 2005 for
correcting the unrestricted predictor reliability, the range-restricted criterion reliability,
and the restricted validity coefficient). The focus of recent studies (Raju, Burke,
Normand, & Langlois, 1991) has been on how to correct correlation coefficients for study
artifacts when not all the included studies provide information related to study artifacts.

Some researchers (Baugh, 2002; Bollen, 1989; Raju et al., 1986; Raju et al., 1991; Raju
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et al., 1998) have also expanded their discussions to include attenuation in either
unstandardized or standardized regression coefficients. More details can be found in
Table 2.2 in the Appendix C.

However, some research has indicated that some of the correction formulas
frequently used in research synthesis fail to fully eliminate the effects of study artifacts.
Based on Monte Carlo simulations, Oswald and Johnson (1998) found that the Hunter
and Schmidt’s method, which corrects study artifacts, yields estimates of the population
parameter that do not estimate properly the true value under some conditions, even for
bivariate normal data. In addition, Lambert and Curlette (1995) have shown that the
variance of the corresponding mean correlation coefficient can be greatly underestimated
when some measures have skewed distributions of the predictor and criterion scores.

Such findings suggest that the existing methods for correcting the attenuation of
correlation coefficients might not fully eliminate the consequences of study artifacts on
effect-size measures. Moreover, no one has suggested how information on some of the
artifacts can be obtained from primary studies. In particular, the construct validities of
both predictor and outcome variables, which are briefly mentioned in Hunter and
Schmidt (1990, 1994), are seldom reported in the primary studies. Considering that these
artifact multipliers are not often reported, the application of this correction will be limited

in practice unless methods are developed for obtaining the unreported values.

2.1.3. Multivariate Method

The third approach for combining dependent effect sizes from multiple measures

is to use multivariate methods. By using multivariate methods, intercorrelations
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(dependencies) among several effects can be taken into account. This should lead to a
more accurate error rate and ensure that samples with more data do not over-influence the
results (Becker & Schram, 1994).

The most frequently used multivariate approach is a Generalized Least Squares
(GLS) method suggested by Raudenbush, Becker, and Kalain (1988). The GLS method is
a feasible and flexible approach for analyzing multivariate data (Becker & Schram, 1994).
Depending on how the covariances between correlations for the variance-covariance
matrix & are computed, several variations of the GLS method have been proposed by
Becker and Fahrbach (1994), Cheung (2000), Furlow (2003), and Furlow and Beretvas
(2005).

In this section, a general overview of the GLS method is presented with a special
focus on pooling correlation matrices. I begin by considering that the goal is to estimate
the pooled m x m correlation matrix from the correlation coefficients which are reported
in k studies using m variables. To accomplish the GLS analysis, the correlation
coefficients should be stacked in a vectorr . The fixed-effects model for the correlation

rsj (s=1tok and j=1tom’, m*=m(m—1)/2) can be written as

rsj =P +esj,fors=ltok, andjzltom*. _ (2.3)

This model can be re-written as a multiple regression in matrix form, in which the

product of a matrix X and a set of population correlations p j predict a set of sample

correlations. Specifically

r=Xpe +e, (2.4)



- * * - - - - . .
where the matrix X is a stack of m xm identity matrices for 4 studies, and identifies

which correlations are estimated in each study and pe = (p0y,..., 2, )" contains the

population correlations. The pooled correlations and their standard errors are estimated

by the following GLS formula shown in Becker (1992)
pe =x’CclxyIxcle 2.5)
and

V(pe) =x'cxl, 2.6)
where C is the variance-covariance matrix among the correlations within studies
included in the meta-analysis on the diagonal, with blocks of zeros in the upper and lower
triangles. See Olkin and Siotani (1967) for formulas for C. Also, other ways of estimating
C can be found in Becker and Fahrbach (1994); S. Cheung (2000); Cheung and Chan
(2005); Furlow (2003); and Furlow and Beretvas (2005).

However, the application of the GLS method might be problematic for very
sparse datasets, in which few studies use the same measures of variables of interest. This
is because the design matrix X in equation 2.5 and equation 2.6 may become singular,
and GLS analysis would be impossible when estimating the true population correlation

coefficient and its variance.

2.2. Model-driven Meta-analysis
Becker (e.g., Becker, 2001; Becker & Schram, 1994; Whiteside & Becker, 2000)
described model-driven meta-analysis as an efficient tool to deal with the growing

complexity of primary studies in research synthesis. Becker (2001) refers to the model-
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driven meta-analysis as a review that incorporates models from the substantive theory
and informs us about the strength of relations posited by a population model. In a model-
driven meta-analysis, the interrelationships among multiple constructs or measures that
are explicit in the model are individually as well as simultaneously examined. Eventually,
a model-driven meta-analysis can delineate a more complete system of relationships
among constructs or variables than a traditional synthesis and provide a model for
making further predictions based on real or hypothetical predictor values.

Becker and Schram (1994) discuss the rationale for employing models in
synthesizing studies. First, they emphasize the importance of theory and theoretical
models in primary studies, which are useful to verify or refute competing models.
Similarly, a model-driven meta-analysis can help the reviewer build a stronger basis of
explanation for the mechanisms behind a phenomenon of interest. Second, a model-based
research synthesis can provide an overall picture of patterns among variables across the
existing studies, by piecing together parts of a process that has been studied by different
researchers or studied using different samples. Last, they point out that theoretical models
can also guide reviewers in the conduct of the review process, much as they can help the
conduct of primary research.

In a model-driven meta-analysis, models can arise empirically or be derived from
theory (Becker, 1997). Figure 2.1 in the Appendix C shows one example of a model used
in the meta-analysis conducted by Whiteside and Becker (2000), in which multiple
factors affecting child outcomes including externalizing symptoms, internalizing
symptoms, social skills, and cognitive skills are investigated. As seen in Figure 2.1,

models are often illustrated using flowcharts or path diagrams. Such a diagram has two
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components — boxes representing a construct or a set of constructs, and arrows
representing paths indicating interrelationships among a set of constructs. In Figure 2.1,
Whiteside and Becker have used 14 boxes representing variables or constructs (10 for
predictors, and 4 for outcomes), and 19 arrows representing paths for interrelationships
(including bidirectional relationships) among 14 variables or constructs. Due to the
limited number of studies, a slightly reduced model was finally estimated in their meta-
analysis. More details can be found in Whiteside and Becker (2000).

Based on Cooper’s five stages of the review (1982), Becker (1992, 1997, 2001)
drew parallels for incorporating models in conducting a model-driven meta-analysis. At
the first stage of problem formulation, the models can guide reviewers to conceptualize
the problem, define the constructs, and determine study relevance, even though they
could also limit the generalization from the review by limiting variables and underlying
constructs. At the data collection stage, researchers can easily establish explicit inclusion
rules. This can occur because researchers who set up their models are fully informed
about the research related to their own model and the research on competing models. The
next stage is data evaluation, in which reviewers judge the procedural adequacy of
studies in the review. At this stage, models can be used to identify and code aspects of
study features, extract outcomes, and determine the type of data that will be used in data
analysis. At the data analysis stage, models allow reviewers to test not only individual
paths, but also interrelationships among several constructs or variables in the models.
Furthermore, researchers can examine the extent to which the relationships posited in the

models are observed in the data. At the public presentation stage, reviewers are expected
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to describe explicitly the use of models in each stage. This helps readers evaluate the
generalizability of the findings from the proposed model in a model-driven meta-analysis.
As Becker (2001) mentioned, the major benefit of employing a model-driven
meta-analysis is its capacity to provide information about different theoretical and
empirical models. Moreover, researchers can obtain the overall picture of a complicated
system reflected in the primary studies, by estimating interrelationships among constructs
or variables specified in the models. Consequently, the synthesized models can be useful
to establish the validity of proposed models against other competing models and to help
further formulate stronger explanations for the mechanisms of the phenomenon.
However, several statistical and practical problems in synthesizing models have
been identified. One of the most prominent issues is the missing data problem, which can
occur as the result of several causes (e.g., researchers may contribute to publication bias
by failing to report nonsignificant results (the file-drawer problem), or all the variables of
interest for the meta-analysis may not be included in any specific study). Missing data at
the synthesis level can make estimation impossible or difficult. Also, a sufficiently large
sample size is required for performing a model-driven meta-analysis. Other practical, but
less technical issues concern 1) variations in defining the constructs across studies, 2)
between-studies and within-study variation in synthetic models, 3) sources of artifactual

variation, and 4) model misspecification.
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2.3. Structural Equation Modeling with Latent Variables
Bollen (1989) argues that structural equation models with latent variables
encompass two general model types. One is a latent variable model that summarizes the
structural relationship between latent variables as
n=Bn+Ig+L, (2.7)
where 1 is the vector of latent endogenous random variables; & represents the latent
exogenous random variables; B is the coefficient matrix showing the effect of the latent
endogenous variables on each other; and T is the coefficient matrix for the effects of &
on 1.
The second component is a measurement model that specifies the structural
relation of observed to latent variables as
X=AxE+d, (2.8)
and

y=qu+s, (2.9)
where y and x are vectors of observed variables; Ay and Ay are the factor-loading

matrices that show the relations of x to & and y to 7, respectively; and € and & are

the errors of measurement for y and x.

2.3.1. Structural Equation Modeling in Meta-Analysis
Although other statistical methods (e.g., a standardized regression equation from
the pooled correlation matrix) can be used to obtain an empirical synthesized model,

many researchers (e.g., Becker, 1992; S. Cheung, 2000; Cheung & Chan, 2005; Furlow,
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2003) have applied structural equation modeling (SEM) to model-driven meta-analysis.
In general, the application of structural equation modeling in the meta-analysis involves
two steps. The two-step approach in meta-analytic SEM entails first pooling a correlation
matrix across studies included in the meta-analysis, and then performing the SEM by
inputting the pooled correlation matrix into standard SEM software such as LISREL or
EQS. The meta-analytic SEM has been widely employed in literature (e.g.,Brown &
Peterson, 1993; Hom, Caranikas-Walker, Prussia, Griffeth, 1992; Premack & Hunter,
1988; Schmidt, Hunter, & Outerbridge, 1986), focusing on a path analytic method (e.g.,
Cheung & Chan, 2005; Furlow, 2003).

However, a few researchers (i.e., Cheung & Chan, 2005) have recently applied
meta-analytic SEM to estimate a confirmatory factor analysis (CFA) model (Furlow,
2003). Cheung and Chan (2005) have proposed a slightly different technique, which is
called the 2-stage structural equation modeling (TTSEM) method. In their TTSEM
method, the correlation matrices are first pooled using the technique of multiple-group
analysis in SEM, and then the pooled correlation matrices are used to fit the CFA model.
Advances in Cheung and Chan’s method are 1) to introduce observed variables and their
corresponding constructs in the model, and 2) to estimate factor loadings and
measurement errors of observed variables for measuring their constructs in the

synthesized model.

2.3.2. Latent Variable Framework in Meta-analysis

Recently, Thum and Ahn (2007) have introduced a latent variable framework for

synthesizing studies. The latent variable model consists of a measurement model that
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specifies the relation of observed to latent variables and a latent variable model that
shows the influence of latent variables on each other. Thum and Ahn (2007) suggested
the application of the latent variable model to reach the ultimate goal of research
synthesis -- to understand the true relationship among constructs represented by the latent
variables, which are measured using various indicators across the included studies.

If the objective in each study i is to reveal the underlying relationship among

specific unobserved constructs say, v, the relationship between y and each study-specific
estimate, say, (ﬂ}) based on the observable indicators employed has a predictable

functional relationship that ties the observable indicators to their respective constructs.

Furthermore, Thum and Ahn analytically showed that the study-specific estimates (i.e.,
ordinary least square (OLS) regression coefficients, ,[?,-) can be related to the underlying

relationship among unobserved constructs y based on validity and reliability, the
covariance among constructs, sampling factors, and misspecifications of the structural
model. Therefore, Thum and Ahn proposed to first adjust study-specific estimates using
their respective measurement and structural parameters, and then obtain an average effect.
A simulation by Thum and Ahn indicates that the average estimate of the OLS regression
coefficients corrected by the reliabilities of predictors and validities of predictors and
outcomes is the least unbiased of several estimates.

However, a number of limitations stand in the way of practical application of
Thum and Ahn’s approach in the real world. In particular, many components for
correcting OLS regression coefficients are seldom reported, including factor loadings of

both criterion and predictor variables, and information on measurement errors. Even if
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reasonable priors on unknowns can be selected, the estimation process outlined by Thum

and Ahn is quite complicated and thus practical applications are limited.

2.4. Method of Moments Estimation Technique

The method of moments is the oldest method of finding point estimators (Gelman,
1995), which is to estimate the population parameters such as mean, variance, median
and etc. of a probability distribution by matching theoretical moments to specified values
(Casella & Berger, 1990). This method is preferable to other approaches because it is
simple in that it always provides some sort of estimate.

Let X,...,X, be a sample from a population with probability density function

f(x]0y,...,6) with finite moments E[xk ]. Methods-of-moments estimators are

obtained by equating the first k£ sample moments to the corresponding k population
moments, and solving the resulting system of simultaneous equations. The sample

consists of n observations, xj,...,x, . The X" raw or uncentered moments are

| n
mp==% X! ny=Ed,
ni=1
] n
my=—73, xiz, p2=Ex2,
ni=1
n
my, =i > xik, Mk =Exk. (2.10)
Mi=1
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The population moments x; will typically be a function of 4;,...,6;. , say
Hj (&4,--..6) ) . The method-of-moments estimator (él ,...,ék ) of (4,,...,6)) is obtained

by solving the following system of equations for (é] ,...,ék) in terms of (my,...,my ) :
m = m(Q,....0),

my = (Q,....,0k ),

my = pu(8,....61) . (2.11)

The method-of-moments estimation technique is preferable to other estimation
techniques such as Fisher’s maximum likelihood estimation technique, if the family of
probability models is not known or when estimating parameters of a known family of
probability distributions (Gelman, 1995). It also provides consistent estimators of
parameters (Greene, 1997). However, the method-of moments estimators are not
necessarily efficient and sufficient. Therefore, the method-of-moments estimators are
often used as the first approximation to the solutions of the likelihood equations or a

Bayes prior (Gelman, 1995).



CHAPTER 3
METHODOLOGIES

As discussed in the previous sections, meta-analysts face challenges and
difficulties in synthesizing studies when the original studies use diverse measures. Study
effects vary considerably depending on the differences in measures employed and thus
they are not directly comparable. In addition, data can be too sparse to apply the existing
univariate or multivariate meta-analytic methods. Therefore, the existing methods are
unable to fully resolve these challenges in research synthesis.

As aresult, I propose a methodology in which the strength of the relationship
between two latent variables is estimated. In this proposed approach, the underlying
population model that is applied to all included studies is first formulated based on two
perspectives; one is based on model-driven meta-analysis, and the other is structural
equation modeling with latent variables. Then the final estimator, in which the strength of
the relationship between two constructs that are measured differently across studies is

quantified, is obtained by applying the method-of-moments estimation technique.

3.1 Model Specification

Suppose that the primary goal in the meta-analysis is to understand the strength of
relationship between two latent variables, the exogenous (< ) and endogenous (77)
variables, which is represented by . All & studies in the meta-analysis provide study-

specific effects (i.e., correlations or regression coefficients) estimating } from a set of

predictors x = [xl 1 X5 Xp 15X p} and different outcome variables



fromy = [}’1 Y2 Vg1 Vg } . As shown in Figure 3.1 in the Appendix C, for instance,
the first study may provide a zero-order correlation coefficient between x; and y,, and the
k™ study reports regression coefficients predicting y2 using x3and x p-

Figure 3.2 in the Appendix C specifies the population model that underlies the &
included studies in the hypothetical meta-analysis. Our primary goal in the meta-analysis

is to estimate y from the study-specific effects linking observed predictors
X = I:xl,xz,...,xp_l,xp] and criterion variables y = [yl,yz,...,yq_l,yq ] . Each of

these represents its corresponding underlying constructs, § and M, with different

accuracy.

3.2. Structural Equation Modeling with Latent Variables
The underlying measurement model delineated in Figure 3.2 implies that the

indicator variables and their corresponding latent variable are related. Specifically,
x=AE+S, G.1)
y=Anm+e, | (3.2)

where x (p x 1 )and y (¢ x 1) are vectors of observed variables; Ay (p x ¢, cisthe

total number of &) and Ay (g x d, , d is the total number of n) are the factor-loading

matrices that show the relations of y to n and x to &, respectively; and & (p x 1) and
€ (g x 1) are the errors of measurement for y and x. The errors in¢€ are assumed to be

uncorrelated with n, § and 8, and & is in turn uncorrelated with n, § and €.



Let T be the p + g dimensional column vector of both indicators x and

X ’
yT:l:Y]z[xl X3 ... Xp| Xp VI Y2 - Yg-l yq].Thecorresponding

population covariance matrix of T is schematized as

Iy X
r= Z(T)=[E“ zxy}. (3.3)
yx Zyy

The covariance matrix X(T) consists of four submatrices: (1) the covariance
matrix among the ys, zyy , (2) the covariance matrix of x with y, ny , (3) the transpose

of the covariance matrix of x with y, Zyx , and (4) the covariance matrix among the
xS, Lyy -
Let us consider the implied covariance matrix of y, zyy (M).Itis

Eyy (1) = E(yy") = E[(Ayn+e)(Ayn+2)']

, 3.4)
= AyE(m)A'y +©g,

where @, is the g x g variance-covariance matrix of €.

The covariance matrix of x with y, Exy (T), and its transpose, ny (T), are equal

to
Zyy (N =E(xy") = E[(AxE +3)(Ayn+e)'] 3.5)
= AxEGW)AY,
and
Zyx (T) = E(yx') = E[(Ayn +£)(AxE +9)'] (3.6)

= AyE(ME)AY.
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Finally, the covariance matrix of x, Zyy (T), is written as

Lxx (T) = E(x') = E[(Ax§ +8)(Ax§ +9)'] 37)
= AxE(EE)Ax + 05,
where @ isthe p x p variance-covariance matrix of 8.

If I assemble equations (3.4) - (3.7) into a single matrix X(T), the population

covariance matrix for the sets of indicator variables is

Ixx Exy

X(T)
[Zyx Zyy

[AxEGE)AY +O5  AcEGM)AY
AyEMENAY  AyE(M)Ay +Og |

(3.8)

3.3. Estimation

From the population covariance matrix shown in Equation 3.8, let us focus on the

covariance matrix of x with y, zxy (T) . If I assume all x and y indicators are

standardized with mean of 0 and variance of 1, the covariance matrix of y with x,

ny (T), becomes a matrix of population correlations,

[ Py Pon - Pxpan Pxpn
Pxiyp  Pxaya v Pxpya Pxpy)
LyM=E@xy)=| : : L (39)
Px1yq-1 Pxayg-1 7 Pxpygl Pxpyg-l
| P1yg Pxayg v Prpavgl Prpyg

25



Applying Equation 3.5, this correlation matrix can be written as

Eyy (T) = E(xy’)
= AxEEM)AY
Payy Py 77 Pxpan Prpin
Pxyp  Pxyy 7 Pxpyy Pxpy2
pxlyq-l px2yq-l pxp-l}’q-l p'\’p_vq-l
i leyq pxzyq pxp-IYq—l pxpyq ]

[ I Ay BGT) Ay Ay EGH) o A Ay EG) A Ay BG) ]
I Aoy EQ) Dy g EC) oo Ao Ay BGGT) A oy ECGT)

Ty Ay  BEN) g By (ECT) A Ay BT A Ay ECGT)

| Ay ECn)  Aoly ECn) o Ao Ay  ECn) A Ay BT .

(3.10)

Equation 3.10 suggests that the correlation between x; and y j» Px yj can be

written as a function of the factor loadings of x; andy, lxl. and iyj , where i = 1 top,

and j =1 to q. Applying the method of moments by equating the sample moments to the
corresponding population moments, and solving the resulting system of simultaneous
equations (Casella & Berger 1990) leads to

I'E(xy)1 =[1'Ax ][A'y 1]E(ER)

q P 3.11)
=[ Y X Ay, (

by JEGEN).
j=ti-p 1V

Recall that O:, is equal to E(S7"), where the means and variances of § and 7

are 0 and 1, respectively. Then Equation 3.11 becomes
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q P ,
> 2 E@n ))"xi ;‘yj
j=1i=1

q p
=pgn X X Axghy; (3.12)
j=1i=1

[gl (El )]
=p . )]
&nj=l Yit o, i

From Equation 3.12, the correlation between two constructs ¢ and 77, Py, is

written as

=7. (3.13)

Therefore, if I know all of the population correlations between x;
and y j( Px; ¥j ), and the factor loadings of x; and y o 'lxi and ij , the correlation P,

between two latent variables can be estimated. In general, however, [ will estimate each

correlation using the sample value of x; and y o and I will also need estimates of the

factor loadings. I discuss this issue in the next sections.

3.4. Information for Estimating O;,

Two components are required to estimate Q:, using the method-of-mome<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>