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ABSTRACT

APPLICATION OF MODEL-DRIVEN META-ANALYSIS

AND LATENT VARIABLE FRAMEWORK IN SYNTHESIZING STUDIES

USING DIVERSE MEASURES

By

Soyeon Ahn

In Spite of a growing interest in meta-analysis, the application of existing

methodology faces numerous difficulties and limitations. In particular, the use of diverse

measures in primary studies introduces two methodological concerns in the application of

meta-analytic techniques. First, individual study effects can vary significantly depending

on differences in measures employed. Second, the existing methodologies are limited in

dealing with very sparse data structures, where effect size has its unique measurement

characteristics.

In support of resolving these concerns, the current research proposes a method for

handling a very sparse data structure of effect Sizes that arises from variations in

measures used in primary studies. The proposed model is based on model-driven meta-

analysis, structural equation modeling with latent variables, and method-of-moments

estimation technique. This study presents the model specification in which the true

population relationship between two latent variables is estimated. A method to extract

unknowns in estimating the relationship between two underlying constructs (Equation 3.

13) is discussed.

First, several Monte Carlo Simulations are performed in order to examine the

performance of the proposed estimator under different conditions. Results from

simulations indicate that the proposed approach correctly estimates the desired population



parameter. MANOVA results Show that the factor loadings and reliabilities of indicators

have the largest effect on the bias and MSE values of the estimators.

Second, the application of the proposed approach is demonstrated by re-analyzing

a sub-set of studies reviewed by Ahn and Choi (2004). The estimated strength of the

relationship between teachers’ subject matter knowledge and student achievement

included in Ahn and Choi using the proposed method was smaller than the weighted

mean correlation corrected for artifacts proposed by Hunter and Schmidt (1990, 1994)

and the z-transformed variance-weighted mean correlation proposed by Shadish and

Haddock (1994), but leads to the same inference.

Lastly, four practical considerations of the proposed approach were discussed,

followed by a list of potential future research to resolve those limitations. In this section,

I demonstrate how well the proposed approach estimates the strength of the relationship

between two underlying constructs when it is based on a misspecified population model.
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PREFACE
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500 studies that examine the relationship between teacher qualifications and quality of

teaching vary tremendously and introduce several interesting methodological questions in

research synthesis.

This dissertation focuses on how to combine studies when the original studies use

diverse measures with different measurement characteristics such as reliability and

validity, even though researchers intend these to represent the same underlying constructs.

In this research, I have tried to develop an approach whereby we can combine the very

sparse data structure that arises from large variations across studies in measures. The

proposed method is based on the assumption that all measures are attempting to represent

the same underlying construct even though their measurement characteristics are quite

different.

The proposed approach is developed based on three existing ideas in statistics and

measurement — model-driven meta-analysis, structural equation modeling (SEM) with

latent variables, and a method-of-moments estimation technique. Even though the

proposed method is built on a simple one-factor model, it is possible to expand this model

to solve more complicated issues in meta-analysis. As presented in the section on

practical considerations, more attention should be paid to developing a method that can

 

I For more detailed information, please see the website http://www.msu.edu/'user/'rnkennedy/TOOT/
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handle missing data in research synthesis. In addition, the robustness of the proposed
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CHAPTER 1

INTRODUCTION

From its first appearance, meta-analysis has been widely used in various

disciplines including medicine, economics, psychology, epidemiology, and education

(Chalmers, Hedges, & Cooper, 2002; Hedges, 1983; Slavin, 2008; Vanhonacker,

Lehmann, & Sultan, 1990). In spite of a growing interest in meta-analytic techniques as a

means ofproviding rigorous evidence in many fields (Borrnan, 2002; Slavin, 2008;

Towne, Wise, & Winters, 2005), the application of existing methodology in research

synthesis faces numerous difficulties and limitations due to the inherent nature of

research in education and social sciences (Berk, 2006; Rubin, 1992; Slavin, 1984; Thum

& Ahn, 2007).

1.1. Challenges of Research Synthesis in Education and Social Science

As Kennedy (2007) has pointed out, multiple factors simultaneously influence

outcomes within naturally occurring settings in education and social sciences. Many

researchers have thus used multiple regressions or hierarchical linear models to eliminate

numerous confounding variables in the primary research (Kennedy, Ahn, & Choi, 2008).

However, their study findings have been often excluded from meta-analyses (e. g., Ahn &

Choi, 2004; Qu & Becker, 2003) because no generally accepted methods exist for

integrating results of multiple regressions or hierarchical linear models (Becker &

Schram, 1994; Becker & Wu, 2007; Wu, 2006a, 2006b).. AS discussed in Becker and

Schram (1994), regression analyses, path analyses, canonical correlations, and factor

analyses are not easily synthesized. This is because partial correlations provided in such



analyses seldom represent the same parameters, which vary depending on other variables

included in the model.

For example, Ahn and Choi (2004) found that among 49 studies examining the

relationship between teacher subject matter knowledge and student achievement in

mathematics, 11 used regression analysis and 4 used more advanced data-analytic

techniques such as hierarchical linear modeling (HLM) or structural equation modeling

(SEM). Consequently, Ahn and Choi (2004) excluded those 15 studies from their meta-

analysis, and synthesized only the remaining 34 studies that provided correlation

coefficients between teacher knowledge and student achievement.

In addition, in the social sciences and education, no natural scales of

measurements exist (Hedges & Olkin, 1985). Consequently, studies employ a variety of

measures. While these may represent “the same” underlying construct (e.g., student

learning, depression, or other broad constructs), meta-analysts often encounter difficulties

in putting effects on a common outcome metric across studies using various measures

(Rubin, 1992). As Bollen (1989) demonstrated, study findings (e.g., correlations or

regression coefficients) differ if the measurement errors of indicators (with variations in

the reliabilities of indicators) are introduced or if the factor loadings (i.e., validity) of

indicators are not equal to one.

Choi, Ahn, and Kennedy (under review) discovered that 15 different measures of

teacher knowledge in mathematics (e. g., Glennon Test of Mathematical Understanding,

Test of Understanding of the Real Number System (TURNS), etc) were used across the

16 studies included in their meta-analysis on teachers’ subject matter knowledge in

mathematics. Similarly, Becker and Wu (2007) identified 79 unique measures of student

I
Q



learning used to represent the quality of teaching across 65 studies that investigate the

relationship between teacher qualifications and quality of teaching. Such use of diverse

measures in the primary studies often introduces the following two methodological

concerns in the application of meta-analytic techniques.

First, individual study effects can vary significantly depending on measurement

differences in the variables employed (Baugh, 2002; Lipsey & Wilson, 2001; Nugent,

2006; Oswald & Converse, 2005; Oswald & Johnson, 1998; Rubin, 1992; Slavin, 1984).

Thus, many researchers (Hunter & Schmidt, 1990; Oswald & Converse, 2005; Oswald &

Johnson, 1998; Raju, Anselmi, Goodman, & Thomas, 1998; Raju, Burke, Normand, &

Langlois, 1991; Raju, Fralicx, & Steinhaus, 1986) have proposed methods for correcting

study effects for differences in measurement. Hunter and Schmidt’s (1990) approach,

which adjusts correlation coefficients for potential measurement artifacts including

sampling error, measurement unreliability, and range restriction, has been widely adopted

in social sciences, particularly in applied psychology.

However, some researchers (Lambert & Curlette, 1995; Oswald & Johnson, 1998)

have demonstrated that the estimate of the population correlation (,5) obtained via the

Hunter and Schmidt’s approach does not always estimate the true value ( p) and its

associated variance (0'33) is also somewhat inaccurate. For example, based on Monte

Carlo simulations, Oswald and Johnson (1998) demonstrated that discrepancies between

7") and ,0 get larger with small within-study sample sizes and with smaller numbers of

effect sizes included in the meta-analysis.

Recently, Thum and Ahn (2007) have applied a latent variable framework in

research synthesis and proposed to adjust for differences in regression coefficients due to



the factor loadings, the measurement errors, and the variances of latent variables before

combining the coefficients. On the other hand, a number of limitations stand in the way

of practical application ofThum and Ahn’s approach. In particular, many components of

the model are unreported, including the factor loadings of both criterion and predictor

variables, an index of the true relationship between two constructs, and information on

measurement errors. Even if reasonable priors on the unknowns can be selected, the

estimation process outlined by Thurn and Ahn requires information not easily available

and thus practical applications may be limited.

The second concern is that the existing univariate or multivariate statistical

modeling approaches for meta-analysis (e. g., the Generalized Least Squares (GLS)

method presented by Raudenbush, Becker, & Kalaian, 1988) are limited in dealing with

very Sparse data structures, which occur when each effect size (e. g., correlation or

regression coefficient) has its unique measurement characteristics for predictor and

outcome variables.

For example, in the meta-analysis by Choi, Ahn, and Kennedy (under review),

none of the correlation coefficients from 16 studies uses the same measures ofboth

teacher’s knowledge and student achievement in mathematics. In such a case, the GLS

method, which is frequently used to combine non-independent effect-sizes in the meta-

analysis, is inapplicable due to a singular design matrix for estimating the true population

correlation coefficient and its variance.



1.2. Empirical Example

Figure 1.1 in the Appendix C displays studies included in the meta-analysis by

Ahn and Choi (2004) that focuses on the effect of how much math teachers know on

student learning in mathematics. In Figure 1.1 in the Appendix C, three aforementioned

challenges in synthesizing studies are well delineated: 1) Studies provide results from

diverse data-analytic techniques (e. g., correlation coefficients in Brown, 1988; regression

coefficients in Chaney, 1995; HLM coefficients in Chiang, 1996). 2) Different sets of

predictors (i.e., coursework, degree level, major, GPA, and test scores for teacher

knowledge in mathematics) and outcome variables (i.e., California Achievement Test

(CAT), National Assessment of Educational Progress (NAEP), and Iowa Test of Basic

Skills (ITBS) for student achievement in mathematics) are used across studies. 3) Only

two studies (i.e., Teddlie, Falk, & Falkowski, 1983 and Hill, Rowan, & Ball, 2005)

provide exactly identical links between the same sets of predictors and criterion variables,

leading to a very Sparse data structure for firrther analyses.

1.3. Purpose of Research

The current research proposes a new methodology for handling a very sparse data

structure of the effect sizes (i.e., correlations or regression coefficients) that mostly arises

from the variations in the measures used in the primary studies. To accomplish this, I use

a Structural Equation Modeling (SEM) approach with latent variables (Bollen, 1989), the

ideas of model-driven meta-analysis (Becker & Schram, 1994), and a method-of-

moments estimation technique (Casella & Berger, 1990; Gelman, 1995). This method



quantifies the relationship between two underlying constructs measured by different sets

of indicators with unique measurement characteristics such as reliability and validity.

As Messick (1993) indicated, there are several ways of conceptualizing validity

(e. g., content validity, criterion validity, predictive validity, etc). I use the term validity to

refer to the structural relationship (correlation) between the indicator and its underlying

construct, which can be understood based on a structural equations approach (Bollen,

1989). AS Bollen (1989) pointed out, the validity of a measure is defined as the

magnitude of the direct structural relation between the indicator and its associated

construct.

In this dissertation, I first present the specification of a population model using

model-driven meta-analysis and SEM with latent variables. Based on the specified

population model, the true population relationship between two latent variables is

quantified by applying the method-of-moments estimation technique. Moreover, three

approaches are discussed for obtaining the unknown values needed to compute the

method-of-moments estimator of the strength of the relationship between two underlying

constructs. Then a series of Monte Carlo simulations is conducted to test the performance

of the proposed approach under different conditions. Last, its practical application is

demonstrated by synthesizing a set of studies that are reviewed by Ahn and Choi (2004),

in which the relationship between teachers’ subject matter knowledge and student

achievement in mathematics was investigated.
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CHAPTER 2

LITERATURE REVIEW

In many disciplines a variety of measures with different measurement

characteristics are often used to represent “the same” underlying construct in the primary

studies (Farley, Lehmann, & Ryan, 1981). For instance, Crowl, Ahn, and Baker (in press)

reported that the parent-child relationship quality is measured in several ways across the

19 studies included in their meta-analysis. These measures include standard observational

techniques, structured interviews, and several standardized assessments such as the

Family Relations Test, the Parenting Stress Index, and the Dyadic Adjustment Scale.

Also, many studies no longer focus on only a few simple bivariate relationships

(e.g., zero-order correlations), or differences (main effects) on a few outcomes (Becker,

2001; Becker & Schram, 1994). An example from an ongoing synthesis of the studies

examining the relationship between teacher qualifications and the quality of teaching

(TQ-QT)2 indicates that only 55 out of461 coded studies used a bivariate correlation

analysis, and 17 others reported simple t tests. Most other studies examined the effect of

teacher qualifications on the quality of teaching based on more advanced data analytic

techniques such as multiple regression, Multivariate Analysis of Variance (MANOVA),

and Analysis of Covariance (ANCOVA). In this section, I first review how these

challenges have been handled in research synthesis.

 

2 More details about the TQ-QT project can be found in http://tnvwmsu.edit/user/mkenrredw’TQQTL



2.1. Meta-analytic Methods For Synthesizing Studies using Various Indicators

In the literature, three methods are often used to synthesize studies using various

measures of the predictor and outcome variables. These are a univariate method, an

artifact- correction approach, and a multivariate method.

2.1.1. Univariate Method

The first approach involves creating collections of studies that use the same

measures and then performing a series of separate univariate analyses of effect sizes on

each relationship. This is accomplished by calculating an average effect for each category

(see Hedges & Olkin, 1985; Hunter & Schmidt, 1990; Shadish & Haddock, 1994) based

on traditional research-synthesis techniques (e.g., the z-transformed variance-weighted

average proposed by Hedges and Olkin (1985) or Rosenthal and Rubin (1991)).

For instance, Choi, Ahn, and Kennedy (under review) categorized 51 correlation

coefficients extracted from 19 studies into 8 categories in terms of the content domain

(i.e., arithmetic, algebra, and geometry) and the cognitive demands of the student

mathematics achievement measure (i.e., computation, concepts, and applications). Then

they obtained the z-transformed variance-weighted average estimates for 8 categories by

performing a series of separate univariate analyses, one for each subgroup of studies.

A univariate data-analysis is often used due to its ease of application. However, it

is limited when the interest is in an overall picture of interrelationships among all

variables included in the model as a whole. Moreover, when individual studies contribute

multiple measures of relationships, the univariate method ignores possible dependence in



the data, and thus might lead to inaccurate conclusions (Becker & Schram, 1994; Gleser

& Olkin, 1994).

2.1.2. Artifact Correction

Some methodologists (e.g., Bollen, 1989; Nugent, 2006) have argued that effect

sizes (i.e., standardized mean differences, correlation coefficients) based on variables

with different measurement characteristics are not directly comparable. For instance,

Nugent (2006) demonstrated that the distribution of the standardized mean difference,

which is the most widely used scale invariant effect-size measure in the current practice '

of meta-analysis, varies depending on the reliabilities ofmeasures used in the comparison

groups. It has been also known that the correlation coefficient varies depending on the

reliability of one or both measures (Baugh, 2002; Bollen, 1989; Hancock, 1997; Hunter

& Schmidt, 1990, 1994).

Although most discussions have been limited to correlation coefficients,

particularly in applied psychology, a number ofresearchers have suggested using the

correction formulas with other effect-size measures such as regression coefficients and

standardized mean differences attenuated due to measurement characteristics such as

reliability and range restriction (Hunter & Schmidt, 1990; Oswald & Converse, 2005;

Oswald & Johnson, 1998; Raju et al., 1986; Raju et al., 1991; Raju et al., 1998).

In fact, corrections for correlation coefficients are heavily used in the meta-

analytic procedures proposed by Hunter, Schmidt, and Jackson (1982) and elaborated by

Hunter and Schmidt (1990, 2004). Hunter and Schmidt (1990, 1994) have indicated that

the study population correlation p0 is always lower than the actual correlation p. This is



because we cannot do any study perfectly, and study imperfections produce the artifacts

that systematically reduce the actual correlation parameter. Therefore, they have

identified 10 possible sources of artifacts, and propose to correct the attenuated sample

correlation by multiplying it by appropriate “artifact multipliers” (1,- Shown in Table 2.1

in the Appendix C.

After disattenuating each sample correlation using appropriate artifact multipliers

ai , the weighted mean correlation F is obtained by

F=Zwsrs /Zws (2.1)

where rs is the 3th study correlation; the weight for study 5 suggested by Hunter and

Schmidt is

w, = NSASZ, (2.2)

where Ns is the sample size for study 5, and AS is the compound artifact multiplier for

study 5.

More elaborations of Hunter and Schmidt’s method have been developed by a

number of researchers (e. g., Le, 2003; Sackett & Yang, 2000 for correcting range

restriction; Hancock, 1997; Raju & Brand, 2003; Raju, Burke, Normand, & Langlois,

1991 for correcting reliability and range restriction; Oswald & Converse, 2005 for

correcting the unrestricted predictor reliability, the range-restricted criterion reliability,

and the restricted validity coefficient). The focus of recent studies (Raju, Burke,

Normand, & Langlois, 1991) has been on how to correct correlation coefficients for study

artifacts when not all the included studies provide information related to study artifacts.

Some researchers (Baugh, 2002; Bollen, 1989; Raju et al., 1986; Raju et al., 1991; Raju
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et al., 1998) have also expanded their discussions to include attenuation in either

unstandardized or standardized regression coefficients. More details can be found in

Table 2.2 in the Appendix C.

However, some research has indicated that some of the correction formulas

frequently used in research synthesis fail to fully eliminate the effects of study artifacts.

Based on Monte Carlo simulations, Oswald and Johnson (1998) found that the Hunter

and Schmidt’s method, which corrects study artifacts, yields estimates of the population

parameter that do not estimate properly the true value under some conditions, even for

bivariate normal data. In addition, Lambert and Curlette (1995) have Shown that the

variance of the corresponding mean correlation coefficient can be greatly underestimated

when some measures have skewed distributions of the predictor and criterion scores.

Such findings suggest that the existing methods for correcting the attenuation of

correlation coefficients might not fully eliminate the consequences of study artifacts on

effect-size measures. Moreover, no one has suggested how information on some of the

artifacts can be obtained from primary studies. In particular, the construct validitieS of

both predictor and outcome variables, which are briefly mentioned in Hunter and

Schmidt (1990, 1994), are seldom reported in the primary studies. Considering that these

artifact multipliers are not often reported, the application of this correction will be limited

in practice unless methods are developed for obtaining the unreported values.

2.1.3. Multivariate Method

The third approach for combining dependent effect Sizes from multiple measures

is to use multivariate methods. By using multivariate methods, intercorrelations
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(dependencies) among several effects can be taken into account. This should lead to a

more accurate error rate and ensure that samples with more data do not over-influence the

results (Becker & Schram, 1994).

The most frequently used multivariate approach is a Generalized Least Squares

(GLS) method suggested by Raudenbush, Becker, and Kalain (1988). The GLS method is

a feasible and flexible approach for analyzing multivariate data (Becker & Schram, 1994).

Depending on how the covariances between correlations for the variance-covariance

matrix S are computed, several variations of the GLS method have been proposed by

Becker and Fahrbach (1994), Cheung (2000), Furlow (2003), and Furlow and Beretvas

(2005).

In this section, a general overview of the GLS method is presented with a special

focus on pooling correlation matrices. I begin by considering that the goal is to estimate

the pooled m x m correlation matrix from the correlation coefficients which are reported

in k studies using m variables. To accomplish the GLS analysis, the correlation

coefficients should be stacked in a vectorr. The fixed-effects model for the correlation

rsj (s=1tok andj= 1 to m', m*=m(m—l)/2)canbewrittenas

rsj =pj +esj, fors=l to k, and j=1 to m*. _ (2-3)

This model can be re-written as a multiple regression in matrix form, in which the

product of a matrix X and a set of population correlations pj predict a set of sample

correlations. Specifically

r = Xp. +e, (2-4)



. . * * . . . . . .

where the matrix X IS a stack of m x m identity matrices for k studrcs, and Identrfies

which correlations are estimated in each study and p. 2 (p1 ,..., pm )' contains the

population correlations. The pooled correlations and their standard errors are estimated

by the following GLS formula shown in Becker (1992)

a. =(X'C'1X)'1X'C'lr (2.5)

and

vtfi.)=(x'C"X)". (2.6)

where C is the variance-covariance matrix among the correlations within studies

included in the meta-analysis on the diagonal, with blocks of zeros in the upper and lower

triangles. See Olkin and Siotani (1967) for formulas forC. Also, other ways of estimating

C can be found in Becker and Fahrbach (1994); S. Cheung (2000); Cheung and Chan

(2005); Furlow (2003); and Furlow and Beretvas (2005).

However, the application of the GLS method might be problematic for very

Sparse datasets, in which few studies use the same measures of variables of interest. This

is because the design matrix X in equation 2.5 and equation 2.6 may become Singular,

and GLS analysis would be impossible when estimating the true population correlation

coefficient and its variance.

2.2. Model-driven Meta-analysis

Becker (e. g., Becker, 2001; Becker & Schram, 1994; Whiteside & Becker, 2000)

described model-driven meta-analysis as an efficient tool to deal with the growing

complexity of primary studies in research synthesis. Becker (2001) refers to the model-
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driven meta—analysis as a review that incorporates models from the substantive theory

and informs us about the strength of relations posited by a population model. In a model-

driven meta-analysis, the interrelationships among multiple constructs or measures that

are explicit in the model are individually as well as simultaneously examined. Eventually,

a model-driven meta-analysis can delineate a more complete system of relationships

among constructs or variables than a traditional synthesis and provide a model for

making further predictions based on real or hypothetical predictor values.

Becker and Schram (1994) discuss the rationale for employing models in

synthesizing studies. First, they emphasize the importance of theory and theoretical

models in primary studies, which are useful to verify or refute competing models.

Similarly, a model-driven meta-analysis can help the reviewer build a stronger basis of

explanation for the mechanisms behind a phenomenon of interest. Second, a model-based

research synthesis can provide an overall picture of patterns among variables across the

existing studies, by piecing together parts of a process that has been studied by different

researchers or studied using different samples. Last, they point out that theoretical models

can also guide reviewers in the conduct of the review process, much as they can help the

conduct of primary research.

In a model-driven meta-analysis, models can arise empirically or be derived from

theory (Becker, 1997). Figure 2.1 in the Appendix C Shows one example of a model used

in the meta-analysis conducted by Whiteside and Becker (2000), in which multiple

factors affecting child outcomes including externalizing symptoms, internalizing

symptoms, social skills, and cognitive skills are investigated. As seen in Figure 2.1,

models are often illustrated using flowcharts or path diagrams. Such a diagram has two

14



components — boxes representing a construct or a set of constructs, and arrows

representing paths indicating interrelationships among a set of constructs. In Figure 2.1,

Whiteside and Becker have used 14 boxes representing variables or constructs (10 for

predictors, and 4 for outcomes), and 19 arrows representing paths for interrelationships

(including bidirectional relationships) among 14 variables or constructs. Due to the

limited number of studies, a Slightly reduced model was finally estimated in their meta-

analysis. More details can be found in Whiteside and Becker (2000).

Based on Cooper’s five stages of the review (1982), Becker (1992, 1997, 2001)

drew parallels for incorporating models in conducting a model-driven meta-analysis. At

the first stage ofproblemformulation, the models can guide reviewers to conceptualize

the problem, define the constructs, and determine study relevance, even though they

could also limit the generalization from the review by limiting variables and underlying

constructs. At the data collection stage, researchers can easily establish explicit inclusion

rules. This can occur because researchers who set up their models are fully informed

about the research related to their own model and the research on competing models. The

next stage is data evaluation, in which reviewers judge the procedural adequacy of

studies in the review. At this stage, models can be used to identify and code aspects of

study features, extract outcomes, and determine the type of data that will be used in data

analysis. At the data analysis stage, models allow reviewers to test not only individual

paths, but also interrelationships among several constructs or variables in the models.

Furthermore, researchers can examine the extent to which the relationships posited in the

models are observed in the data. At the public presentation stage, reviewers are expected

15



to describe explicitly the use of models in each stage. This helps readers evaluate the

generalizability of the findings from the proposed model in a model-driven meta-analysis.

As Becker (2001) mentioned, the major benefit of employing a model—driven

meta-analysis is its capacity to provide information about different theoretical and

empirical models. Moreover, researchers can obtain the overall picture of a complicated

system reflected in the primary studies, by estimating interrelationships among constructs

or variables Specified in the models. Consequently, the synthesized models can be useful

to establish the validity of proposed models against other competing models and to help

further formulate stronger explanations for the mechanisms of the phenomenon.

However, several statistical and practical problems in synthesizing models have

been identified. One of the most prominent issues is the missing data problem, which can

occur as the result of several causes (e. g., researchers may contribute to publication bias

by failing to report nonsignificant results (the file-drawer problem), or all the variables of

interest for the meta-analysis may not be included in any Specific study). Missing data at

the synthesis level can make estimation impossible or difficult. Also, a sufficiently large

sample Size is required for performing a model-driven meta-analysis. Other practical, but

less technical issues concern 1) variations in defining the constructs across studies, 2)

between-studies and within-study variation in synthetic models, 3) sources of artifactual

variation, and 4) model misspecification.
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2.3. Structural Equation Modeling with Latent Variables

Bollen (1989) argues that structural equation models with latent variables

encompass two general model types. One is a latent variable model that summarizes the

structural relationship between latent variables as

n=Bn+F§+C. (2.7)

where I] is the vector of latent endogenous random variables; i represents the latent

exogenous random variables; B is the coefficient matrix showing the effect of the latent

endogenous variables on each other; and F is the coefficient matrix for the effects of I;

on I].

The second component is a measurement model that specifies the structural

relation of observed to latent variables as

x = Ax§+5, (2.8)

and

y=Ayn+s. (2.9)

where y and x are vectors of observed variables; Ax and Ay are the factor-loading

matrices that show the relations of x to g and y to 1], respectively; and 8 and 5 are

the errors of measurement for y and x.

2.3.1. Structural Equation Modeling in Meta-Analysis

Although other statistical methods (e.g., a standardized regression equation from

the pooled correlation matrix) can be used to obtain an empirical synthesized model,

many researchers (e. g., Becker, 1992; S. Cheung, 2000; Cheung & Chan, 2005; Furlow,
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2003) have applied structural equation modeling (SEM) to model-driven meta-analysis.

In general, the application of structural equation modeling in the meta-analysis involves

two steps. The two-step approach in meta-analytic SEM entails first pooling a correlation

matrix across studies included in the meta-analysis, and then performing the SEM by

inputting the pooled correlation matrix into standard SEM software such as LISREL or

EQS. The meta-analytic SEM has been widely employed in literature (e.g.,Brown &

Peterson, 1993; Hom, Caranikas-Walker, Prussia, Griffeth, 1992; Premack & Hunter,

1988; Schmidt, Hunter, & Outerbridge, 1986), focusing on a path analytic method (e. g.,

Cheung & Chan, 2005; Furlow, 2003).

However, a few researchers (i.e., Cheung & Chan, 2005) have recently applied

meta-analytic SEM to estimate a confirmatory factor analysis (CFA) model (Furlow,

2003). Cheung and Chan (2005) have proposed a slightly different technique, which is

called the 2-stage structural equation modeling (TTSEM) method. In their TTSEM

method, the correlation matrices are first pooled using the technique of multiple-group

analysis in SEM, and then the pooled correlation matrices are used to fit the CFA model.

Advances in Cheung and Chan’s method are 1) to introduce observed variables and their

corresponding constructs in the model, and 2) to estimate factor loadings and

measurement errors of observed variables for measuring their constructs in the

synthesized model.

2.3.2. Latent Variable Framework in Meta-analysis

Recently, Thum and Ahn (2007) have introduced a latent variable framework for

synthesizing studies. The latent variable model consists of a measurement model that

18



specifies the relation of observed to latent variables and a latent variable model that

Shows the influence of latent variables on each other. Thum and Ahn (2007) suggested

the application of the latent variable model to reach the ultimate goal of research

synthesis -- to understand the true relationship among constructs represented by the latent

variables, which are measured using various indicators across the included studies.

If the objective in each study i is to reveal the underlying relationship among

specific unobserved constructs say, y, the relationship between y and each study-specific

estimate, say, (31-) based on the observable indicators employed has a predictable

functional relationship that ties the observable indicators to their respective constructs.

Furtherrnore, Thum and Ahn analytically showed that the study-specific estimates (i.e.,

ordinary least square (OLS) regression coefficients, ,8,-) can be related to the underlying

relationship among unobserved constructs y based on validity and reliability, the

covariance among constructs, sampling factors, and misspecifications of the structural

model. Therefore, Thum and Ahn proposed to first adjust study-specific estimates using

their respective measurement and structural parameters, and then obtain an average effect.

A Simulation by Thum and Ahn indicates that the average estimate of the OLS regression

coefficients corrected by the reliabilities of predictors and validities of predictors and

outcomes is the least unbiased of several estimates.

However, a number of limitations stand in the way of practical application of

Thum and Ahn’s approach in the real world. In particular, many components for

correcting OLS regression coefficients are seldom reported, including factor loadings of

both criterion and predictor variables, and information on measurement errors. Even if
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reasonable priors on unknowns can be selected, the estimation process outlined by Thum

and Ahn is quite complicated and thus practical applications are limited.

2.4. Method of Moments Estimation Technique

The method ofmoments is the oldest method of finding point estimators (Gelman,

1995), which is to estimate the population parameters such as mean, variance, median

and etc. of a probability distribution by matching theoretical moments to specified values

(Casella & Berger, 1990). This method is preferable to other approaches because it is

simple in that it always provides some sort of estimate.

Let X1 , ..., Xn be a sample from a population with probability density function

f(x 0 ,...,0 ) with finite moments E[xk ]. Methods-of—moments estimators are
1 k

obtained by equating the first k sample moments to the corresponding k population

moments, and solving the resulting system of simultaneous equations. The sample

consists of n observations, x1,..., x” . The kth raw or uncentered moments are

n

”11 :1. Z Xi], H :Exl,

”i=1

1 n

m2=— Z xi2, u2=Ex2,

"i=1

n

mk =1 ); xik, pk =Exk. (2.10)

"i=1
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The population moments 71,- will typically be a function of 91 ,...,6k , say

,uj (01 ,...,Ok) . The method-of—moments estimator (él ,..., 5k) of (61 ,..., 6k) is obtained

by solving the following system of equations for (621 ,...,ék) in terms of (ml ,...,mk):

M1 = #1(91,..-.¢9k),

mz =#2(91,-~,9k).

mk =,uk(91,...,6k). (2.11)

The method-of-moments estimation technique is preferable to other estimation

techniques such as Fisher’s maximum likelihood estimation technique, if the family of

probability models is not known or when estimating parameters of a known family of

probability distributions (Gelman, 1995). It also provides consistent estimators of

parameters (Greene, 1997). However, the method-ofmoments estimators are not

necessarily efficient and sufficient. Therefore, the method-of-moments estimators are

often used as the first approximation to the solutions of the likelihood equations or a

Bayes prior (Gelman, 1995).



CHAPTER 3

METHODOLOGIES

AS discussed in the previous sections, meta-analysts face challenges and

difficulties in synthesizing studies when the original studies use diverse measures. Study

effects vary considerably depending on the differences in measures employed and thus

they are not directly comparable. In addition, data can be too Sparse to apply the existing

univariate or multivariate meta-analytic methods. Therefore, the existing methods are

unable to fully resolve these challenges in research synthesis.

As a result, I propose a methodology in which the strength of the relationship

between two latent variables is estimated. In this proposed approach, the underlying

population model that is applied to all included studies is first formulated based on two

perspectives; one is based on model-driven meta-analysis, and the other is structural

equation modeling with latent variables. Then the final estimator, in which the strength of

the relationship between two constructs that are measured differently across studies is

quantified, is obtained by applying the method-of-moments estimation technique.

3.1 Model Specification

Suppose that the primary goal in the meta-analysis is to understand the strength of

relationship between two latent variables, the exogenous (4" ) and endogenous (77)

variables, which is represented by 7 . All k studies in the meta-analysis provide study-

specific effects (i.e., correlations or regression coefficients) estimating 7 from a set of

predictors x = [x1,x2 ,...,xp_1,xp] and different outcome variables



fromy = [H,)’2....,yq_1,yq ] . As shown in Figure 3.1 in the Appendix C, for instance,

the first study may provide a zero-order correlation coefficient between x1 and y., and the

kth study reports regression coefficients predicting y2 using x3 and xp'

Figure 3.2 in the Appendix C specifies the population model that underlies the k

included studies in the hypothetical meta-analysis. Our primary goal in the meta-analysis

is to estimate 7 from the study-Specific effects linking observed predictors

x = [x1,x2,...,xp_1,xp] and criterion variables y = [y1,y2,...,yq_1,yq] . Each of

these represents its corresponding underlying constructs, E, and I] , with different

accuracy.

3.2. Structural Equation Modeling with Latent Variables

The underlying measurement model delineated in Figure 3.2 implies that the

indicator variables and their corresponding latent variable are related. Specifically,

x=Ax§+5, 0-”

y =Ayfl+8, . (3.2)

where x (p x 1 )and y (q x 1) are vectors ofobserved variables; Ax (p x c, c is the

total number of g) and Ay ( q x d, , d is the total number of n) are the factor-loading

matrices that Show the relations of y to r] and x to E, respectively; and 6 (p x l )and

a (q x 1) are the errors of measurement for y and x . The errors ins are assumed to be

uncorrelated with I], F, and 5 , and 6 is in turn uncorrelated with r], g and s.



Let T be the p + q dimensional column vector of both indicators x and

X r

yT=[Y:l=[x1 x2 xp_1 xp y1 y2 yq_1 yq].ThecorreSponding

population covariance matrix of T is schematized as

r. 2 w

2 = 2(T) = [2“ 2“]. (3.3)

yx yy

The covariance matrix 2(T) consists of four submatrices: (1) the covariance

matrix among the yS, 2y), , (2) the covariance matrix ofx with y, ny , (3) the transpose

of the covariance matrix ofx with y, ny , and (4) the covariance matrix among the

xs, Xxx .

Let us consider the implied covariance matrix ofy, Eyy (T). It is

zyy (T) = E(yy') = E[(Ayn + sxAyn + an

i (3.4)

= AyE(II'I')A y + 93:

where @a is the q x q variance-covariance matrix of a.

The covariance matrix ofx with y, Exy (T) , and its transpose, Zyx (T), are equal

to

2,, (T) = E(xy') = EKAxs + filmy" + 8)" (3.5)
= AxEttn'M'y.

and

Zyx (T) = E010: EKAy" + ”(Axé + 5).] (3.6)

= AyE(IIS'lA;('
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Finally, the covariance matrix ofx, Xxx (T) , is written as

Xxx (T) = E(xx') = E[(Ax§ + 5)(Ax§ + 5)']

, (3.7)

= AxE(§§')Ax + (95,

where (95 is the p x p variance-covariance matrix of 6.

If I assemble equations (3.4) - (3.7) into a single matrix 2(T) , the population

covariance matrix for the sets of indicator variables is

fzxx ny

E y W, , . (3.8)

AxE(§§)Ax+@5 AernrAy

AyEms'MSr AyEmn'M'y +9.2

HT):

 

3.3. Estimation

From the population covariance matrix shown in Equation 3.8, let us focus on the

covariance matrix ofx with y, zxy (T) . If I assume all x and y indicators are

standardized with mean of O and variance of 1, the covariance matrix ofy with x ,

zxy (T), becomes a matrix of population correlations,

  

I ”xv/1 pxzyr po-m pxpyr

pxryz pxzyz pxpnyz pxpyz

Exy(T)=E(xy')= E 3 E E . (3.9)

pqua pxzyq—r pxp-ryq-1 pxpyq-I

_ leyq ”qu pxp-lyq-l pxpyq 3
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Applying Equation 3.5, this correlation matrix can be written as

nym=E(xy)

=Afoéfl'lA'y

r .0ny1 pxzyl pxp_1y1 pxpyl 1

p11}? pxzyz pxp_1y2 pxpyz

pleq-l pxzyq—r pxp—ryq—r pxpyq-1

_ pxryq pxzyq po—ryq-I pxpyq . 
F AXI’IyI 5(5’7') ’Ixz’lyrEW') 41p-1/lylE(§rt') apatite) _

11152 5(9'5’7') 112 472 “5’72 411,4 525677) ixp/iyzflén')

1371 qu_1E(§77') 1x2 XCVq-l EQWI) ... ’1qu quq Eg’l'l ’I'xp qu-l 51:77,)

_‘xri:qu<€'7'> fizz-20.11562) ap_,tqu<rn') Aymara);  
(3.10)

Equation 3.10 suggests that the correlation between x,- and yj , pxi'J’j , can be

written as a function of the factor loadings of x,- and yj , 21x1. and ’57 , where i = l to p,

and j = l to q. Applying the method of moments by equating the sample moments to the

corresponding population moments, and solving the resulting system of Simultaneous

equations (Casella & Berger 1990) leads to

1'E(xy')1=[1'AXIIA'yIIE(§'I')

q p , (3.11)

j=1i=l

Recall that p5,, is equal to E(§I}') , where the means and variances of g and t]

are 0 and 1, respectively. Then Equation 3.11 becomes
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Effi'l'nxi lyj

II
M
S

I
M
'
U

j 11—

q
=p§n 2 xx, 1y]. (3.12)

j=1i=l

q p

=pgnl z xyj( 2: xx, )1.
j=l i=1

From Equation 3.12, the correlation between two constructs 4‘ and 77 , pg, is

written as

f f pry.

Eflizl ' J
(313)II

V
)

 

,0 ‘=in q p

.Z ’I'yj ('2 439-)

j =1 l=I

Therefore, if I know all of the population correlations between x,-

and yj(pxl. y]. ), and the factor loadings of x,- and yj , xixl. and 21y]. , the correlation p5,,

between two latent variables can be estimated. In general, however, I will estimate each

correlation using the sample value of x,- and yj , and I will also need estimates of the

factor loadings. I discuss this issue in the next sections.

3.4. Information for Estimating p5,,

Two components are required to estimate pg, using the method-of-moments

estimator shown in Equation 3.13. One is the set of estimates of the population

correlation coefficients between xi and yj (i.e., the estimates ofpxl. y]. ), and the other is
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the factor loadings of x,- and yj for measuring the exogenous (é ) and endogenous (77)

variables, ’le- and fly]. , respectively.

3.4.1. Population Correlation Coefficients Between xs And ys, pxiyj

The population correlation coefficients can be estimated if studies provide zero-

order correlation coefficients among x,- and yj' Several methods for estimating mean

population correlation coefficients from studies have been widely investigated and

discussed (Becker, 1992; Becker & Schram, 1994; Raudenbush, Becker, & Kalaian,

1988; Wu, 2006a, 2006b). In the current research, two methods are used to estimate the

population correlation coefficients 10x; y}. . First, I average sample-size weighted

observed correlation coefficients for each x and y pair (as in Hunter & Schmidt, 1990). A

second method is to combine z-transforrned variance weighted correlations (Shadish &

Haddock, 1994).

First, the correlation coefficient estimates of pxiyj are obtained from the sample-

size weighted mean of the observed correlation coefficients between the xs and ys:

k

2 n5r(xiyjls

~ 2 5:1

pxl'yj k 9

Z "5

5:]

(3.14) 

where r(x1'J’i )s is the sth reported correlation coefficient between x,- (i = l to p ) and yj

(j = 1 to q) and k is the number of studies.
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Second, the most often used univariate method in meta-analysis, which is to

combine z-transformed correlations (Shadish & Haddock, 1994) will provide a second

estimator. Z-transforrned variance-weighted correlations are obtained by converting the

correlation coefficients r( Xi. Yi )s S by Fisher’s variance stabilizing z transform:

Z[,.(xiyj >13 =.5{ln[((1+ My]. )5 ) / (1 — any]. )3 )1), (3.15)

where In is the natural logarithm. If the underlying data are bivariate normal, the

 

 

condrtronal vanance of Z[r(x1'J’j ) 15 rs

v - 1 (3 16)

S (n. — 3) ’ '

where n5 is the within-study sample size of the 3th study.

The z-transformed weighted average correlation coefficient is

k

2 SE1 WSZ[r(xiyj)]S
3 l7

[’Ixiy1)] ‘ k . ( - >

2 HS

5:1

where wS is a weight assigned to the 5‘11 study. The weights are calculated by

1

W5 = —. (3.18)

Vs

The estimate in the 2 metric shown in Equation 3.17 is then back-transformed to

obtain [2 via

exp(23[ —l

«my-)1)

])+1'

 [2 = _ (3.19)
exp(22[r(xiyj)



3.4.2. Factor loadings (Validity coefficients)

Factor loadings or validity coefficients of observed variables are rarely reported in

primary studies. For instance, only one study included in a meta-analysis by Choi, Ahn,

and Kennedy (under review) provided a validity coefficient of the indicators representing

how teacher tests measured teachers know math knowledge. Therefore, these values need

to be estimated using other information provided in the studies or by other means.

In the case where all studies provide the correlation matrix among all variables

used in studies, factor loadings of all variables are easily computed. Consider a simple

one-factor, three-indicator model:

I— —-

X1 2“7111 51

x2 = 1x2 I§I+ 82 . (3.20)

x3 1x3 53  

where g is uncorrelated with 5,- ( i = 1, 2, 3). This leads to the following relationship:

— _

  

xii (251 +mr(5x1)

varCrI) 1

cov(x1,x2) var(x2) = 1112x295] 4:52 ¢] +var(5x3 )

cov(x1,X3 ) covflr2,)1‘3 ) var(r3 ) 2

’le Ax3 ¢I 1x2 4x3 ¢1 Ax3¢1+var(dx3)j

(3.21)

To ensure the model is identified, 1 set (.61 to l (Bollen, 1999). Then, the

covariances among the x,- S are computed as

cov(x1,x2) = ’le 21x2 ,cov(x1,x3) = xix] 1x3 ,cov(x2,x3) 2 21x22 4x3 . (3.22)
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Likewise, if I have correlations among all variables used in all studies, their factor

loadings are easily computed based on Equation 3.22. The same logic can be applied to

obtain the factor loadings of y1" However, if no information is provided (e. g., no study

provides correlations among x1,x2 , and x3 ), they must be approximated based on other

information provided in each study. More details for obtaining factor loadings of

variables used in the studies are discussed below.

3.5. Extracting Unknowns in the Model

If no correlation coefficients among the x,- or y1- exists, the following two

methods can be used to estimate factor loadings of variables used in the studies. One is

based on the reliabilities of the observed variables, which are fairly frequently reported in

primary studies. The other uses expert judgments about the validities of variables.

3.5.1. Use of Reliability Information

Considering that the reliabilities of measures are likely to be reported, it would be

reasonable to use them to estimate the factor loadings of the indicators. Bollen (1989)

introduced an alternative way to define the reliability based on classical test theory as

well as the measurement model. Based on classical test theory (Allen & Yen, 1979;

Crocker & Algina, 1986), the observed score (x) can be written as

x = ‘I.’ + e , (3.23)

where t is the true score, e is the measurement error score or error of measurement, and

the expected value ofmeasurement error is assumed to equal to 0. Thus the expected

value ofx is Ti.
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In addition, the true scores I depend on the latent variables E, such that

t=Ax<§+s, (3.24)

where Axi is the coefficient that Specifies the structural relationship between t and Q ,

and s represents specific variance unrelated to i and to e. Substituting equation 3.24 into

equation 3.23 leads to

x=Ax§+s+e. (3.25)

Since the reliability is the ratio of true score variance to the observed score

variance, I can write the reliability of xi as

2

_ V3I(Ti) _ ’lxl- ¢1 +Var(si)

pxixi — var(xi) — var(xi) I (3.26)

  

From equation 3.26, if the variance of the latent variable ( ¢,-) is set to 1, the

specific variance equals 0, and the variance of x,- iS known or can be estimated, the x,-

factor loading can be written as

 

2x]. = \[pxixi *var(x,-). (3.27)

The same logic can be applied to estimate the yj factor loading as

 

2y]. = prjyj *var(yj). (3.28)

3.5.2. Use of Expert Judgments

The second method is to use expert judgments about the factor loadings of

indicator variables xi and y1" Each content expert as an independent rater would be

asked to provide information regarding how well each of the indicators used in the



studies represents the corresponding underlying constructs. When judging the validity of

each indicator, experts are expected to read the individual studies carefully, and then rank

order all indicators in terms of each one’s relation to its corresponding construct’. Experts

would also be asked to provide an approximate value for the validity coefficient of each

indicator.

According to Thurstone’s (1927) discrete utility model, raters rank indicators

based on their utilities, in this case their validities, which are unobserved and vary across

respondents (Maydeu-Olivares & B6ckenholt, 2005). I shall denote by ’1' the latent

random variable associated with the validity for an indicator xiv. If a respondent prefers

an indicator x, over an indicator x0 his or her perception of the validity of an indicator

x,- - , uxi' should be larger than that n indicator x0. This can be Specified as

liftx th

ux.,= , 0 0. (3.29)

1 01ftx0 <tx0

The response process shown in equation 3.29 can also be written in terms of

differences between the latent utilities,u: = txi —th , where u: is the latent

1 1

comparative response. Then, ux1. can be re-written as a function of u: :

z

lifud Z 0

xi

u = . (3.30)

0 if ud < 0

Xi

 

3 A possible protocol for obtaining expert judgments is shown in Appendix A.
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Then, the latent comparative response as a linear function of latent random

variable ux. is
1

Ud = At, (3.31)

where A is an design matrix, consisting ofp choice alternatives in the columns and the

p paired comparisons in the rows. Note that there are p predictors and q outcomes.

For instance, suppose that individual experts rank order 4 measures [A, B, C, D]

in terms of their validity. In the design matrix A , each column corresponds to one of the

4 choice alternatives [A, B, C, D]. The corresponding rows give the Six paired

comparisons [A, B], [A, C], [A, D], [B, C] [B, D], [C, D]. Thus the design matrix A is

1-100

10-10

100-1
A= (3.32)

01-10

010-1

_001-1_  
A different ordering, say [A, C, B, D] would lead to a different A design

matrix.

Assuming that the vector of latent utilities txl. is normally distributed in the

population of respondents, the mean and covariance structure of u: are

1

= A , 3.33uud Ptxl. ( )

x,-

and

2 d = AZt A'. (3.34)

11 xi



AS Maydeu-Olivares and Bockenholt (2005) pointed out, the Thurstonian ranking

model can be estimated using the SEM framework. Figure 3.3 in the Appendix C depicts

the covariance structure shown in 3.34 as a SEM model for a ranking model with four

choice alternatives. In figure 3.3, there are six observed variables 11:. , and four latent

1

validitiestxl. . In fact, a: are not actually observed, but their dichotomizations “xi are

1

observed.

In SEM, parameters in the structured multivariate normal distributions ofu: that

1

have been dichotomized according to a set of thresholds are estimated in several stages

(Muthen, 1978). First, the thresholds and the tetrachoric correlations among the

underlying normal variables are estimated. Then, the parameters are estimated from the

thresholds and tetrachoric correlations. The thresholds and tetrachoric correlations are

d
x- . The standardized latent response

1

obtained first by standardizing the latent responses u

Z(u: )is computed as

1

d _ d

Z(11,“)- DfuXi wugi ), (3.35)

where D is a diagonal matrix with the reciprocals of the standard deviations of u: on

1

the diagonal:

D = [Diagal ud )1-1/2. (3.36)

x,
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Then, the standardized latent responses Z(11:: ) are multivariate normal with

. 1

mean 0 and correlation matrix P d , where

u

xi

P2016) ) = D(Eud )D = D(A£xt A')D. (3.37)

31' xi

Also, the standardized latent difference responses Z(a: ) are related to the

1

observed uxi by a threshold relationship as

1 if 2(“3. ) 2 Txi

ux_ = a; . (3.38)
l .

0 1fz(uxi ) < 7x1.

Since there are p paired comparisons, there will be 13 thresholds Txi . The vector

of Txi values has the following structure, which is proven in Maydeu-Olivares and

Béckenholt (2005)

r = -DA,u,x. . (3.39)

1

Thus, the parameters of interest ’u’x- and 2%. are estimated using equations 3.33

1 '1

— 3.34. The estimation process, which is a SEM with categorical indicators, can be

performed using standard SEM software such as LISREL, EQS or MPLUS.



CHAPTER 4

SIMULATION

A number of Monte Carlo simulations are conducted to test the performance of

the proposed approach under different conditions. In these simulations, I estimate the

relationship between exogenous variables 5 and endogenous variables I] , each of which

rs measured usrng 3 1nd1cators x,- and yj , wrth Y = [.r1,x2 ,.r3 , y] , y2 , y3] . It IS also

assumed that these indicators are each standardized with a mean of 0 and a standard

deviation of 1.

In each hypothetical meta-analysis, the data to be combined are from a series of k

independent studies, in which the 5’” study reports zero-order correlation coefficients

rxin , with population correlation coefficients pxiyj , where i = 1, 2,3, j = 1,2,3 , and

s = l,2,...,k — l,k . The sample correlation coefficients (rxiyj ) are obtained fiom a fixed

sample size of 30 in each study.

4.1. Data Generation

R (R Development Core Team, 2008) version 2.6.2 is used to generate data and

examine the performance of the proposed approach for estimating the correlation

between two latent constructs.

The method-of-moments estimator given in Equation 3.13 may be affected by the

features of the population model underlying the meta-analysis, including how well x, and

y]. represent the underlying constructs (i.e., the validities of indicators), the total number

of sample correlation coefficients included in the hypothetical meta-analysis (i.e., sample
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Size, the number of studies), the number of sample correlation coefficients r, ,_ to be

included for each study, and how reliable the predictors and outcome variables are. Also,

estimates are likely to be affected by the amount of missing data (i.e., the number ofX—Y

correlations that are not reported) and the quality of missing data, so several missing-data

conditions are investigated.

For a series of hypothetical meta-analyses, the sample correlation coefficients

rxiyj are generated from a multivariate normal distribution of n = 30 cases per pseudo

X

study, for the vector containing x,- and yj , with [y] = [x1,x2 ,x3 , y] , y2 , y3 ]', assumed

to have mean vector of 0 and variance-covariance matrix of 2. 2 , shown in Equation

3.10, is determined from the factor loadings of xi and yj (Axi ,i = 1,2,3 and ij ,

j = 1, 2,3 ), the true relationship between 4‘ and I] , and the measurement errors of x,- and

yj (6i, i=1,2,3 and ej, j=1,2,3).

4.1.1. Choice of Parameters

The parameters to be varied in the simulations are the index of true relationship

between 5 and 77 (7 ), the reliabilities of the predictor and outcome variables, the number

of studies (k) included in the hypothetical meta-analysis, and the quantities of missing

5‘in values. The first two simulation parameters are used to create the variance-

covariance matrix 2 that generates the zero—order correlations for each study. The next

two sets of simulation parameters represent the characteristics of studies included in each

hypothetical meta-analysis.



True relationship between 5 and 77. Two values are used to characterize the true

relationship between the two underlying constructs. These values are selected to

investigate how well the proposed model estimates its true relationship 1) when there is

no relationship between 5 and 77 (i.e., 7 = 0), or 2) when there is a medium and positive

relationship between {5 and 77 (i.e., 7= .5).

Reliabilities ofxs and ys. Four sets of the reliabilities of indicators, xi and yj ,

(i'e"{px1xl ’px2x2 ’px3x3 ’pYI Y1 ’pY2Y2 ’pY3Y3 } = {'9"9"9"9”9"9}’

{.5,.5,.5,.5,.5,.5}, {.2,.2,.2,.2,.2,.2}, {.9,.5,.2,.9,.5,.2}) are used to compute the factor

loadings of x,- and yj based on Equations 3.27 — 3.28. Three values of reliabilities -

.9, .5, and .2 - are chosen to represent high, medium, and low reliabilities of the

indicators, respectively.

Once the factor loadings of x,- and yj are determined, the variances of the

measurement errors are obtained from var(xi) = Xi _ (it + var(8Xi ), and

1

var(yj) = 7.in (l) + var(eyj ). Since the variances of the indicators and underlying

construct (75) are set to l in this simulation, the variances of the measurement errors are

obtained by

__ _ 2
var(SXi)—l AXi, (4.1)

and

2
vars . =l—7t . 4.2(yp yj ( 1
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Total number ofstudies included. In the published research syntheses in Review of

Educational Research from 1990 to 2004 and Psychological Bulletin from 1995 to 2004,

the number of independent studies, k, varied from 12 to 180 (Ahn & Becker, 2005). Ahn

and Becker (2005) indicate that approximately 75% of meta-analyses were based on

fewer than 40 studies. Therefore, two values (i.e., k = 9 and 36), which are multiples of

nine, are used in this simulation, considering that 9 pairs of zero-order correlations using

3 xs and 3 ys can be generated from the population model. For each of k studies, as many

as 9 sample correlation coefficients rxiyj are generated.

Number ofmissing rxl. J’j . In practice, the reported correlation coefficients

between x. and y] vary considerably. Since the population model is established under the

assumption that 3 xs and 3 ys are observed in the primary studies, at least three pairs of

zero-order correlatron coefficrents (1.e., rx1 yl , rxzyz , and "x3y3 ) should be provrded.

Thus, the quantities of missing rxiyj values manipulated in the simulation varied from O

(1.e., all nrne rxiyj values are provrded) to 6 (1.e., all other rxiJ’j except rx1y1 , rxzyz ,

and rx3y3 are missing). Therefore, 7 variations (i.e., the number of missing rs equals 0, l,

2, 3, 4, 5, and 6) are used in this simulation.

4.1.2. Replications

From 8 population variance-covariance matrices (i.e., 2 values of 7 X 4 sets of

reliabilities ofxs and ys), a total of 112 meta-analyses (i.e., 2 values of k X 7 variations

regarding the qualities of missing variables) are generated in this simulation. These 112
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different conditions are replicated 1,000 times, leading to 1 12,000 hypothetical meta-

analyses in the Simulation.

4.2. Data Evaluation

The index of the relationship between the two constructs, which is the method-of-

moments estimator based on Equation 3.13, is obtained as follows: 1) Nine estimated

population correlation coefficients (73x1. y}. s) are obtained from k rxiyj s by pooling the

values of the rxiJ’j based on a sample-size weighted average (ESl) and a z-transformed

variance-weighted average (E82), 2) Sums of factor loadings of x,- s and sums of factor

loadings of yj s are computed, and 3) Two values of the index of relationship between

the two constructs, which is shown in Equation 3.13, are computed from two sums of

nine estimated population correlation coefficients in step 1, and the sums of the factor

loadings from step 2.

These estimates E81 and ES2 are compared to the strength of the true relationship

between two latent variables (i.e., 7 = p5,] = O and 7 = pi” = .5). In particular, the bias

and mean-squared error (MSE) of the estimators are evaluated. Denoting each of the two

effect-Size estimators as d and the population effect Size as 6, I computed

Bias(5) = E(d) - 5, and

MSE (6") = [Bias((§‘ )]2 + Var(s" ),

where E( d ) is computed as the mean 5 value and Var( d ) is the empirical variance of

the 5 values across the 1,000 replications for each combination.
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Then, multivariate analysis of variance (MANOVA) was performed on the bias

and MSE values of the estimators in order to examine the relative performance of the

proposed methods for estimating the strength of the true relationship between the two

underlying constructs. The simulation features used as factors in the MANOVAS are 1)

the factor loadings of predictor and outcome variables, 2) the number of studies included

in the hypothetical meta-analysis, and 3) the number of missing sample correlation

coefficients.

4.3. Simulation Results

4.3.1. Estimators

Figure 4.1 and Figure 4.2 in the Appendix C display the distributions of the

estimators (i.e., using a sample-size weighted average (BSD and a z-transformed variance

weighted average (ES2)). They are summarized for two 7 values of 0 and .5. Figure 4.1

shows that both E81 and ES2 are normally distributed with the mean of 0 when 7 value is

set to 0. And, Figure 4.2 displays that the strength of the relationship between two

underlying constructs is underestimated with y value of .5.

4.3.2. Bias and MSE of Estimators

Table 4.1 in the Appendix C presents the average bias and MSE values of ESl

and E82 that represent the strength of the relationship between the two underlying

constructs (7 ). They are also summarized for two 7 values of 0 and .5.

The biases and MSES of the estimators when 7: 0 are .0001 and .008,

respectively. This indicates that the strength of the relationship between the two



underlying constructs seems correctly and accurately estimated. No noticeable

differences are found between the two estimators based on sample-size weighted average

rs (E81) and that computed from z-transforrned variance-weighted rs (ES2) in terms of

their bias and MSE values.

When yiS equal to .5, the bias values of E81 and ES2 are .008 and .023 and the

MSE values of ESl and ES2 are .008 and .009, respectively. This Shows that the

proposed approach slightly overestimates the true relationship between two underlying

constructs for y = .5, and does so with less accuracy. Similar to the case with y = 0, no

noticeable differences between ESl and ES2 are found in terms of the MSE. However,

the bias value of ES2 is bigger than that of BS 1.

Table 4.2 and Table 4.3 in the Appendix C Show the average bias and MSE values

of ESl and ES2 according to three factors manipulated in this simulation — the

reliabilities and factor loadings of indicators, the number of missing rs, and the number of

studies (k). Table 4.2 shows that when 7 = 0 the bias and MSE values ofboth estimators

are not affected by the three factors used in the simulation.

In Table 4.3, however, when y = .5, the bias and MSE values of the estimators

depend on some factors (i.e., reliabilities and factor loadings of indicators and the number

of studies included in the meta—analysis). In particular, as fewer studies are included or

indicators with smaller reliabilities and factor loadings are included in the meta-analysis,

the bias and MSE values of estimators get bigger. AS is true for the estimators when 7 is

set to 0, no noticeable differences between ES] and ES2 are found in terms of their bias

and MSE.

43



The quality of this Simulation is evaluated by comparing the average biases shown

in Table 4.2 and Table 4.3 to those presented in Field (2001). Field (2001) reports mean

effect sizes using two well-known methods of synthesizing correlation coefficients. They

are 1) Hedges and Olkin (1985) or Rosenthal and Rubin (1991) (i.e., ES2 in this

dissertation) and 2) Hunter and Schmidt (1990) (i.e., ES] in this dissertation). He reports

results for different average sample sizes, different numbers of studies in the meta-

analysis, and different levels of population effect size for the homogeneous case (i.e.,

Table 1 p. 170 in Field (2001)) and the heterogeneous case (i.e., Table 4 p. 174 in Field

(2001)). See Field (2001) for the simulation design in more detail.

Table 4.4 in the Appendix C displays the mean bias of r obtained from the

simulation conducted by Field (2001). As shown in Table 4.4, when the population

correlation between two underlying constructs is set to O, the average mean bias obtained

in this simulation is Similar to those obtained by Field. For example, the mean biases of

nearly 0 in this simulation With 7 of 0 for both E81 and ES2 based on 9 and 36 studies

with 30 sample size (see Table 4.2) are equal to O in Field’s results. No bias is found

regardless of the values of the factor loadings and reliability of indicators and the number

of missing correlations.

When the population correlation (7) is set to .5, the mean bias values of both ES]

and ES2 without any missing rs (see Table 4.3) are similar to the values reported in Field

(2001 ). However, the mean bias in this Simulation with missing rs gets larger as the

number of missing rs increases. With 3 missing rs, the mean bias of ES2 is closer to the

mean bias for heterogeneous case shown in Field (2001).
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4.3.2. Factors Affecting Estimators of the Strength of Relationship Between

Two Underlying Constructs

The two indicators of the quality of the estimated strength of the relationship

between two true constructs, Bias and MSE, are evaluated in relation to the following

factors: 1) the number of studies (k), 2) the number of missing rs, and 3) the reliabilities

(factor loadings) of the indicators. The MANOVAS examine the effects of these

characteristics on the bias and MSE of two estimates.

Factors affecting bias and MSE ofestimators when 7 = 0. Table 4.5 and Table

4.6 in the Appendix C display results from MANOVAS for the bias of the estimators,

when 7 is equal to 0. As shown in Table 4.5, statistically significant differences are

found in the bias values of the overall estimates across the levels of all factors. In

particular, the significant Wilks’ Lambdas indicate that the MSES of estimators differ

depending on the number of studies (k), the number of missing rs, the reliabilities and the

factor loadings of the indicators. In addition, the univariate Analysis of Variance

(ANOVA) for all factors shown in Table 4.6 in the Appendix C indicates negligible

impact of these factors on the bias of the effect-size estimators. Also, the partial Eta-

squares for all the study features manipulated in this simulation equal zero.

Table 4.7 in the Appendix C indicates that the three factors significantly affect the

MSES of the both estimators with 7 = 0. In particular, the significant Wilks’ Lambdas

indicate that the MSES of estimators differ depending on the number of studies (k), the

number of missing rs, the reliabilities and the factor loadings of the indicators. In addition,

the univariate Analysis of Variance (ANOVA) for all factors displayed in Table 4.8 in the

Appendix C shows a statistically significant impact of these factors on the MSES of the



effect—size estimators. The factor loadings of the indicators have the largest effect on the

MSES of the estimators with an Eta-square of .68. Also, the Eta-square of .53 for the

number of studies included in the meta-analysis implies that this factor has a medium

impact on their MSES. Finally, the impact of the number of missing rs on the MSES is

negligible (e.g., the 772 of the number of missing rs is .07).

Factors affecting bias and MSE ofestimators when 7 = .5. Table 4.9 in the

Appendix C displays results from MANOVAS when y is set to .5. Table 4.9 and Table

4.11 in the Appendix C Show that the bias and MSES of estimators differ depending on

all factors used in this simulation. In particular, the significant Wilk’s Lambdas suggest

that the bias and MSES ofboth E81 and E82 significantly differ depending on the

number of studies (k), the number of missing rs, and the factor loadings and reliabilities

of indicators. In addition, the univariate Analysis of Variance (ANOVA) presented in

Table 4.10 in the Appendix C indicates that the reliabilities of indicators have the largest

effect on the biases of estimators based on an Eta-square of .71.

Also, the univariate Analysis of Variance (ANOVA) for all factors displayed in

Table 4.12 in the Appendix C indicates the statistically significant impacts of these

factors on the MSES of the effect-size estimators. While the number of missing variables

has the smallest effect on the estimators’ MSES (772 = .12), the factor loadings and

reliabilities of indicators and the number of studies included in the meta-analysis have

medium effects on the estimators’ MSES with Eta-square values of .62 and .40,

respectively.

Below, the influence 0f each study factor on the bias and MSE values of both

estimators is discussed.
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True relationship between 5 and 77. In Figure 4.3 and Figure 4.4 in the Appendix

C, the average biases values of two estimates are displayed according to the true

population relationship betweenthe two underlying constructs (7 ). In particular, the bias

values of estimators with 7 = 0 differ from those with 7 = .5, indicating that when 7 = 0

the proposed model correctly estimates the strength of the relationship between two

underlying constructs (i.e., Bias is nearly 0 with 7 = 0). However, no differences on the

MSE values of estimators are found according to the true population relationship between

the two underlying constructs (7 ).

Reliabilities ofindicators. Figure 4.5 in the Appendix C displays the mean biases

of two estimators according to the reliabilities of indicators when 7 is set to 0.

Regardless of which set of the reliabilities of the indicators is used, the mean biases of the

estimators are not far off from O and they do not noticeably differ from one another.

As shown in Figure 4.6 in the Appendix C, both E81 and E82 have higher bias

values when the reliabilities of three indicators vary (i.e., .2, .5 , and .9). However, no

obvious differences are observed among the mean bias values in terms of the reliabilities

of indicators.

Figure 4.7 and Figure 4.8 in the Appendix C compare the MSES for different

magnitudes of the indicators’ reliabilities with 7 of O and .5, respectively. Although no

significant differences in the mean MSES are found, the estimators based on indicators

with the reliabilities of .2 have bigger mean square errors. This indicates that the accuracy

of estimating the strength of the relationship between two underlying constructs is lower

when rs arise from indicators with lower reliabilities.
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Factor loadings ofindicators. As shown in Figure 4.9 in the Appendix C, when 7

is set to 0, mean bias values of both E81 and E82 almost equal 0.

As displayed in Figure 4.10 in the Appendix C, when rs based on the indicators

with different factor loadings (i.e., .45, .71, and .95) are combined, the estimators have

the highest mean bias values of estimators (i.e., .07).

Figure 4.1 l in the Appendix C compares the MSES of the estimators according to

the factor loadings of indicators with 7 = 0. Figure 4.10 shows that the MSE values of

the estimators are highest when the factor loadings of indicators are .45. The MSES are

nearly zero when rs are based on factor loadings greater than .70, implying that the

strength of relationship between two underlying constructs is accurately estimated when

indicators with high factor loadings are combined.

Figure 4.12 in the Appendix C displays the MSES of estimators according to the

factor loadings of indicators with 7 of .5 . With 7 of .5, the MSE values of indicators are

nearly zero when rs from the indicators with the factor loadings of .95 are combined,

while they get bigger when indicators with factor loadings of .45 are combined.

Number ofstudies (k). As shown in Figure 4.13 and Figure 4.14 in the Appendix

C, there is no significant relationship between the number of studies included in the meta-

analysis and the bias values of estimators.

However, k is negatively related to the MSES of estimators, which is shown in

Figure 4.15 and Figure 4.16 in the Appendix C. For example, the mean MSES are bigger

with k of 9, while they get smaller with k of 36. This makes sense since less information

is available with fewer studies.
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Number ofmissing rs. Figure 4.17 and Figure 4.18 in the Appendix C compare

the biases of estimators depending on the number of missing zero-order correlations.

Figure 4.17 shows the mean biases with 7 of 0 do not noticeably differ depending on

how many correlation coefficients are missing.

On the other hand, when 7 is set to .5, the mean biases slightly increases when

the number of missing rs increases, but they are close to 0. In particular, the mean bias

values of estimators are nearly zero without any missing rs, while it is approximately .04

off from zero with only three rs (i.e., rx1 yl ,rxzyz ,rx3 y3 ) included. However, regardless

of the number of missing rs, the mean bias values are not far off from 0.

As Shown in Figure 4.19 in the Appendix C, no relationship between the MSES

and the number of missing rs is found when 7 is set to 0. However, when 7 is set to .5,

there is a slightly positive relationship between MSES and the number of missing rs

increases (see Figure 4.20 in the Appendix C).

Quality ofmissing rs. Lastly, the effect of which rs are included on the

performance of the proposed approach is examined. This is accomplished by looking at

the bias and MSE values of estimators when correlation coefficients from indicators with

different reliabilities are included.

Table 4.13 in the Appendix C shows the correlation matrix of the six indicators in

terms of their reliabilities. At least three zero-order correlations (i.e.,

rx”,1 ’rxzyz ’rx3y3 ) on the diagonal (i.e., shaded in Table 4.12 in the Appendix C)

Should be always included. The quality of rs is determined by the reliability of each

indicator. For instance, the quality of rxlfl equals to that of ’31)"! because they are based

on two indicators with high reliability (i.e., .9) and medium reliability (i.e., .5).
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For a Simple demonstration here, I only present how the strength of the

relationship between two underlying constructs is estimated by not including each one of

six correlations, which are not shaded in Table 4.13 in the Appendix C.

Table 4.14 in the Appendix C shows the results from the analysis of variance

(ANOVA) on the effect of which r is not included in the meta-analysis on the bias value

of E81. Since there is no significant difference between E81 and E82 in terms of their

bias and MSE, I here present an ANOVA result for E81.

As shown in Table 4.14, which r is not included in meta—analysis does not have an

significant impact on the bias of the E81 with 7 of 0 (F5, 24000) = 2.070, p = .07).

However, ANOVA result indicates that the bias of estimators depend on the quality of

missing r when7 is equal to .5 (F6, 24000) = 12.60, p < .05, 772 = .003 ).

Figure 4.20 in the Appendix C compares the bias values of E81 depending on

which correlation coefficient is included in a meta-analysis, in addition to three zero-

order correlations (i.e., rx1 J’I , rxzyz , rx3 y3 ) on the diagonal (i.e., three Shaded areas in

Table 4.12). As shown in Figure 4.20, E81 includes correlation coefficients from

indicators with high (i.e., .9) and medium (i.e. .5) reliabilities (i.e., rx1 y2 and rxzyl )

and it has smallest bias (i.e., |-.25|). However, E81 including correlations from indicators

with medium (i.e., .5) and low (i.e. .2) reliabilities (i.e., rx2y3 and rX3y1 ) has the biggest

bias (i.e., |-.27|).

In addition, statistically Significant results from pairwise comparisons shown in

Table 4.15 in the Appendix C indicate that the bias of E81 differ according to the quality

of r. For example, the bias of E81 including correlations from indicators with high
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(i.e., .9) and medium (i.e. .5) reliabilities (i.e., r1.1 v") and ".12 V1 ) is significantly

different from that based on correlations from indicators with medium (i.e., .5) and low

(i.e. .2) reliabilities (i.e., 5(2),3 and 5.3).] ).

4.4. Conclusions

Findings from this simulation in which the performance of the proposed approach

shown in Equation 3.13 for estimating the strength of the relationship between the two

underlying constructs is evaluated in relation to the different factors in this simulation are

as follows:

First, the average bias and MSE values of the estimators are approximately zero

when the true relationship between the two underlying constructs is set to 0 and .5,.

Overall, no distinguishable difference between the bias and MSE values of E81 and E82

is found. The mean bias values of E81 and E82 from this simulation are comparable to

those presented by Field (2001) with 7 of 0 and .5.

Second, the bias values of the estimators differ according to the number of studies,

the number of the missing rs, the factor loadings and the reliabilities of indicators with 7

of both 0 and .5. Among them, the factor loadings and the reliabilities of indicators have

the biggest effect on the bias of the estimators, while the number of the missing rs has the

smallest effect on the bias of the estimators

Third, the MSE values of the estimators differ according to the number of studies,

the number of missing rs, the factor loadings and the reliabilities of indicators. This is

found in the MSE of the estimator with 7 of both 0 and .5. The factor loadings and

reliabilities of indicators have the largest effect on the MSE values of the estimators. The
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number of studies included in the meta-analysis has the next largest effect on the MSES

of estimators.

Fifth, when no rs are missing, the mean bias and MSE values of the estimators

become nearly zero with 7 of 0 and .5, indicating that the strength of the relationship

between the two underlying constructs is correctly estimated using the proposed approach.

When all 6 rs are not included and 7 = .5, the mean bias values of estimators are

about .03. In addition, under these same conditions, the mean MSE values of estimators

are about .01.

Lastly, a statistically Significant effect on the bias of which correlation is included

is found for 7 of .5 . This indicates that the reliabilities of the missing rs have a

Sigrrificant influence on the accuracy of the estimators.



CHAPTER 5

APPLICATION

The application of the proposed method is demonstrated by re—analyzing a subset

of studies reviewed by Ahn and Choi (2004). In their meta-analysis, Ahn and Choi

investigated the relationship between teachers’ subject matter knowledge (SMK) and

student learning (8L) in mathematics. In order to deal with considerable variation in

measures, Ahn and Choi first categorized the included studies in terms ofhow teachers’

SMK was measured (e. g., teachers’ test scores and teachers’ coursework in mathematics).

Then they conducted a series of univariate analyses, one for each subgroup of studies.

However, their meta—analysis, based on a univariate method, is limited in its

ability to portray the overall picture of the relationship between what teachers know and

how much students learn in mathematics. For instance, one of the conclusions that Ahn

and Choi drew in their meta-analysis was that the relationship between teachers’ subject

matter knowledge and student learning is stronger when teachers ’ SMK is measured by

teacher test scores. Such a finding can be limited if I want to make an inference about the

overall picture of the relationship between two underlying constructs - teachers’

knowledge and student achievement in mathematics.

Therefore, 1 demonstrate here how to use my proposed method to assess the

strength of the relationship between teachers’ knowledge in math and students’

achievement, each of which is measured differently across studies. I expect that the

proposed method will deal with the sparse data structure that mostly comes from

variation in measures and further provide an assessment of the strength of the relationship
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between the two underlying constructs (i.e., teachers’ knowledge and student

achievement in mathematics).

5.1. Study Description

The main purpose of this meta—analysis is to understand the relationship between

teachers’ subject matter knowledge (SMK) and student learning (8L) in mathematics.

Studies included in this research synthesis were drawn from a larger literature database

gathered as part of the Teacher Qualifications and the Quality ofTeaching (TQ-QT)

study. The TQ-QT project aims to synthesize studies investigating the relationship

between indicator(s) of teacher qualifications (TO) and the quality of teaching (QT),

which have been conducted in the United States since 1960 (Wu, Becker, & Kennedy,

2002). As of winter 2005, the data base included about 480 studies. More details about

search criteria and selected studies in the TQ-QT study can be found at

http://www.msu.edu/~mkennedv/TOOT.

From the 480 studies in the TQ-QT database, 27 studies including 18 dissertations,

4 journal articles, 1 conference paper, and 4 reports were included in Ahn and Choi’s

meta-analysis. Details about inclusion rules can be found in Ahn and Choi (2004).

Among 27 studies, only 8 studies based on 6th grade-level students are used in the

demonstration of the proposed method. These 8 studies are a relatively homogenous

group in terms of statistical analysis, grade level, whether reliability is reported, and

content domain (i.e., arithmetic) of students’ mathematical knowledge. For instance, all 8

studies provide correlation coefficients between teachers’ subject matter knowledge as

measured by tests and student learning.



However, these 8 studies vary in terms of the measures used to represent teachers’

and students’ knowledge; by test type — researcher-made local, researcher-made large-

scale, or commercial; by whether the gain score metric is utilized in analyzing the student

achievement test and in terms of the unit of analysis and the time interval between pre-

and post-test in year. For instance, 7 studies used commercial student measures (i.e., CAT,

SAT, SRA, CTBS, and ITBS), while 1 study used a researcher-made large-scale

assessment of student learning. In addition, all except two studies (i.e., Turgoose, 1996

and Lampela, 1966) provide correlation coefficients based on gain scores. However,

some (such as Caezza, 1969) are based on 2 year gains, while others (e.g., Cox, 1970) are

based on 1 year gain scores. There are also differences in the unit of analysis across the 8

studies (i.e., student level is used in Caezza, 1969 and Cox, 1970 vs. classroom level in

Bassham, 1962; Koch, 1972; Lampela, 1966; Moore, 1964; Prekeges, 1973, and

Turgoose, 1996).

Let us closely look at the various measures that are used to represent both teachers

and students’ knowledge in mathematics in these 8 studies displayed in Table 5.1 in the

Appendix C. Two studies (i.e., Bassham, 1962; Moore, 1964) used the same test (i.e.,

Glennon test of basic mathematical understanding) as a measure of teacher’s subject

matter knowledge. Bassham (1962) and Lampela (1966) used California Achievement

Test (CAT) and Cox (1970) and Moore (1964) used the SRA Achievement Series as a

measure of student’s knowledge. However, no pair of studies provide correlation

coefficients based on the same measures of teachers’ and students’ knowledge. Figure 5.1

in the Appendix C shows the empirically driven population model.
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5.2. Method

Since the proposed approach in this research makes use of correlation coefficients

among the predictor and outcome variables, correlation coefficients that estimate the

strength of the relationship between teachers’ subject matter knowledge and student

achievement in mathematics are extracted from the 8 studies. Table 5.2 in the Appendix

C displays the study characteristics of the 8 studies in more detail.

Four studies (i.e., Caezza, 1969; Cox, 1970; Moore, 1964; Prekeges, 1970)

provide more than one correlation coefficient, which are from subtests of their student

achievement tests. For example, Caezza provided three correlation coefficients from three

subtests of the Stanford Achievement Test (SAT), which are SAT: Concept, SAT:

Computation, and SAT: Application. When several correlation coefficients are provided

for the same sample, the following two rules are applied to extract one independent study

effect.

First, if available, a correlation coefficient from the total score is used. For

instance, a correlation coefficient of .16 based on a total score on the Achievement Series

(SRA) is obtained from Cox (1970). Second, if a study provides several correlation

coefficients from subtests of the student achievement test, the average correlation

coefficient is obtained. This rule was applied to three studies (Caezza, 1969; Moore,

1964, and Prekeges, 1970).

Among the 8 studies, only one study (i.e., Turgoose, 1996) provides the validity

coefficients for the variables. Turgoose (1996) reports the concurrent validity for the

Tests of Achievement and Proficiency (TAP) ranged from .69 to .79. Seven studies (i.e.,

Caezza, 1969; Cox, 1970; Lampela, 1966; Moore, 1964; Prekeges, 1973; Turgoose,



1996) present reliability information related to teachers’ subject matter knowledge

measures. And four studies (i.e., Caezza, 1969; Moore, 1964; Prekeges, 1973; Turgoose,

1996) provide the reliability of student learning measures in mathematics. Different types

of reliability information are reported for the indicators, including Cronbach’s alpha, test-

retest, and KR-20 reliabilities.

For studies that do not report the reliability of indicators (e. g., Bassham, 1962),

whenever possible reliability is obtained from other studies that use the same measure.

For example, the reliability for the Glennon test of mathematical understanding (an

indicator of teachers’ math knowledge) is obtained from Moore (1964). Similarly, the

reliability of the Achievement Series (SRA) test used in Cox (1970) is obtained from

Darakjian and Michele (1982). Therefore, the reported reliabilities of .51 to .67 provided

by Darakjian and Michele (1982) are used for the reliability of the SRA used in Cox

(1970)

The specific procedure to estimate the relationship between teachers’ SMK and

student learning is as follows. First, the average population correlation coefficients

between the two sets of observed indicators are computed by averaging sample—size

weighted correlation coefficients and averaging z-transformed variance-weighted

correlation coefficients. Second, the validity information for the indicators is extracted

from three sources of available information. 1) The validity of indicators that are

provided in studies or borrowed from other studies (i.e., Cox, 1980; Moore, 1964;

Turgoose, 1996) is directly used, 2) If the reliability information is available, the validity

is extracted using Equation 3.27 and Equation 3.28, and 3) When the reliability or the

validity of indicators is not available from the individual study (e. g., the California
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Achievement Test (CAT) used in Bassham (1962) and Lampela (1966)), the validity of

the indicator is obtained from expert judgments. The detailed procedure for gathering the

expert judgments about the validity of indicators is later discussed in more detail. Lastly,

the strength of the relationship between SMK and students’ learning is computed using

Equation 3.13.

5.3. Expert judgments

When no information about the reliabilities and the validities of indicators is

available, validity information of indicators is obtained from content experts in the

domain. Here, I define content expert as a person who is fairly familiar with research on

teachers’ subject matter knowledge with mathematical teaching experience. Based on this

definition of content expert, five graduate students focusing on mathematics education,

from the Department of Counseling, Educational Psychology and Special Education and

the Department ofTeacher Education at Michigan State University, provided their

judgments on the validity information of indicators used in 8 studies.

Those five content experts approximated the validities of indicators based on the

protocol Shown in Appendix A. The protocol was developed to help content experts make

better judgments about the indicators’ validities. Based on the concept of concurrent

validity, experts were first asked to compare all measures that are present in the

population model (see Figure 5.1) in terms of how closely each indicator represents what

constitutes teachers’ subject matter knowledge in mathematics. In the process, either the

actual test items (for the Glennon test of basic mathematical understanding) or

descriptions of the assessments (i.e., CAT, SAT, and ITBS) were provided.
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Second, content experts are asked to rate how well each indicator measures the

conceptual dimension of teachers’ subject matter knowledge in mathematics. The

conceptual dimension of teachers’ subject matter knowledge is derived by integrating

various researchers’ definition of teachers’ knowledge in mathematics. Many researchers

(e.g., Ball, 1990a; Ball, 1990b; Hill et al., 2004; Shulman, 1986) have different but

similar conceptual definitions of teachers’ knowledge in mathematics. Therefore, I have

adopted a working definition based on the number and operations standards for grade 6-8

that are suggested by the National Council of Teachers of Mathematics (NCTM)’.

After rating how closely each indicator represents three dimensions of teachers’

subject matter knowledge, experts are asked to rank order the indicators from the one

most likely to measure teachers’ subject matter knowledge to the least likely measure.

Then, they are finally asked to provide the approximate value of a factor loading, which

is essentially a correlation coefficient between what is measured in each indicator and

what constitutes teachers’ subject matter knowledge in arithmetic. It took an average of 1

hour for each content expert to produce their judgments on the validity of indicators.

Since I need the validity ofCAT used by Bassham (1962) and Lampela (1966), I

took the average of the validity values provided by five content experts and used it as an

approximate factor loading of CAT. The validity of CAT obtained from the ratings of the

five content experts was .329.

 

4 Number and operations standards for grade 6-8 that are suggested by NCTM are available at

http://standards.nctrn.org/document/chapter6lnumb.htm.
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5.4. Results

The estimated strength of the relationship between teachers’ subject matter

knowledge and student achievement using Equation 3.13 was .0005 computed using the

sample-size weighted average correlation coefficient (E81), and .0006 using 2-

transforrned weighted correlation coefficients (E82). These nearly zero estimates based

on the pr0posed method-of—moments estimator given in Equation 3.13 indicate that there

is no relationship between how much teachers know and 6th grade student learning in

mathematics.

E81 = .0005 and E82 = .0006 were also compared to the weighted mean

correlation corrected for artifacts (i.e., reliabilities and construct validity of indicators)

proposed by Hunter and Schmidt (1990, 1994) and to the z-transformed variance-

weighted mean correlation proposed by Shadish and Haddock (1994). The weighted

mean correlation corrected for artifacts is .007 and the z—transformed variance-weighted

mean correlation is .008, all indicating that there is no relationship between how much

teachers know and 6th grade student learning in mathematics. Although the same

inference is drawn, the estimated strength of the relationship between teachers’ subject

matter knowledge ands student achievement using Equation 3.13 is much smaller than

the estimators based on the methods proposed by Hunter and Schmidt (1990, 1994) and

Shadish and Haddock (1994).

However, a nearly zero correlation between teachers’ subject matter knowledge

and student achievement should not be over-interpreted. As shown in the previous section,

the method-of-moments estimators based on Equation 3.13 might be affected by several

factors in the population model. Above all, none of the 8 studies provided all possible
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pairs of correlation coefficients that are present in Figure 5.1 in the Appendix C. Since

the effect of missing rs on the bias and MSES of estimators is large, the estimators

computed in the presence of missing correlation coefficients might be biased.

In addition, the estimated validity coefficients of measures might be incorrect.

First of all, 8 studies reported the reliabilities of measures based on different methods

such as test-retest and Cronbach alpha. No acceptable methods exist to put the different

types of reliabilities ofmeasures in a common scale (though all range between 0 and 1).

Therefore, the obtained validities could be either over-estimates or under-estimates,

because each type of coefficient may tap different sources of error.

In fact, if the true population correlation coefficient is 0 and thus study factors do

not affect the bias values of estimators as found in the simulation, the estimators based on

Equation 3.13 might not be far off. However, there is no certainty that the true correlation

between teachers’ subject matter knowledge and student achievement is 0, thus it would

be unwise to ignore the effect of study factors on computing the strength of the

relationship between two constructs.
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CHAPTER 6

PRACTICAL CONSIDERATIONS

The proposed method provides an innovative way to deal with one of the

challenges in research synthesis that comes from variations in measures. By using the

proposed approach, a reviewer can combine the sparse data that arise from the large

variations in measures. Thus, the strength of the relationship between the two underlying

constructs can be estimated. However, the method’s application in practice raises several

methodological questions. In this section, some practical considerations of the proposed

approach are discussed, followed by an outline of potential future research to examine

those limitations.

First, the most critical issue in the proposed approach is that some components

needed to compute the index of the relationship between the two underlying constructs

given in Equation 3.13 are not often reported in primary studies. In particular, researchers

virtually never report the factor loadings (aka. the validity coefficients) of variables

employed in the studies. Even though three alternative methods (i.e., use of correlation

matrices, use of expert judgments, and use of reliability information) are suggested for

obtaining validity information, these all might introduce errors in estimating the true

relationship between two underlying constructs. One potential solution is to use other

available sources to obtain information for estimating the factor loadings of variables. For

instance, reliability information used for obtaining the factor loadings of variables can be

acquired from test manuals, other similar studies using the same variables, or personal

contact with study authors.



Second, the other issue in using the proposed approach is related to the missing

data. As described above, the studies included in the meta-analysis do not always report

all of the relationships or paths included in the population model. AS discussed in the

simulation, studies often also do not use exactly parallel models, instead using different

predictors and outcome variables. Results from the simulation Show that the number of

missing rs and the quality of the rs have statistically Significant impacts on the bias and

MSE of estimators. Therefore, more attention should be paid to developing an approach

that can deal with missing data in research synthesis.

Third, the proposed approach presumes that the included studies are based on the

same population, which indicates the fixed-effect model. Without this assumption, study-

specific effects (i.e., correlation coefficients) should not be combined. For instance, if

there are significant differences in the correlations among teachers’ subject matter

knowledge and student achievement in terms of grade level (See Ahn & Choi, 2004),

these correlations should not be pooled. In fact, the test for the homogeneity of the

correlation matrices (Becker & Schram, 1994) can be used to confirm this assumption.

Fourth, the proposed method assumes that the theoretically or empirically driven

model is correctly specified. In fact, the development of a population model that is as

comprehensive as possible is required. However, it is highly probable that the empirically

or theoretically driven model may be misspecified. For example, a meta-analyst may

derive a one-factor model even though the underlying population model is really a two-

factor model. Therefore, understanding the robustness of the proposed model can be

helpful for the application of this model, so I here investigate how well the proposed
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model estimates the strength of the relationship between two underlying constructs when

it is based on a misspecified population model.

Let us suppose that the observed scores of indicators include one additional

component, which is the Specific variance (51') introduced in Equation 3.23. AS discussed

in section 3.5.1 , the specific variance is unrelated to the underlying constructs or to the

measurement errors. For instance, if teachers’ test scores that represent how much they

know in a subject depend on teachers’ age, teachers’ age introduces variation in their test

scores that is not related to the underlying construct of teachers’ subject matter

knowledge or to measurement error. When the specific variance (3,) of an indicator is

nonzero, its factor loading can be smaller than its reliability (see the relationship between

factor loadings and reliabilities described in Equation 3.25).

In order to examine the robustness of the proposed approach when specific

variances of indicators are introduced, the bias and MSE values ofthe estimators are

compared for different values of the Specific variances of the indicators (i.e., SV =

0, .15, .45, or .85). As shown in Figure 6.1 through Figure 6.4 in the Appendix C, the bias

and MSE values of the estimators are compared under the following four conditions

depending on the values of the specific variances: 1) All six indicators have zero specific

variances (i.e., 8V(x, or y,) = SV2(x2 or y;) = SV3(x3 or y3) = O), 2) All six indicators

have specific variances of.15 (i.e., SV(x, oryl) = SV2(x2 oryg) = SV3(x3 or y3) = .15),

3) All six indicators have specific variances of .45 (i.e., SV(x1 or y,) = 8V2(x2 or y2) =

8V3(x3 or y3) = .45), and 4) All six indicators have specific variances of .85 (i.e., SV(x1

or y,) = 8V2(x3 or y;) = SV3(x3 or y3) = .85), and 5) The three xs and three ys have
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different specific variances (i.e., SV(x, or y,) = .85, 8V (x; or y;) = .45, 8V (X3 or y;)

= .15).

Figure 6.1 and Figure 6.2 in the Appendix C Show that when the Specific

variances of the six indicators are zero, the bias values of both estimators are the smallest

regardless of the values of the index of the true relationship between two underlying

constructs (7 ). In fact, regardless of 7 , the biases of estimators are nearly zero.

However, the effect on the MSES of estimators of having nonzero specific

variances in the indicators seems to be greater and more obvious. As Shown in Figure 6.3

and Figure 6.4 in the Appendix C, the MSES of estimators based on indicators with

nonzero specific variances are bigger by .2 or more, compared to MSES of estimator

using indicators with zero specific variance. This pattern is shown regardless of the

population values of the true relationship between two underlying constructs (7 ). This

indicates that the strength of the relationship is accurately estimated when combining

correlations that are generated from indicators without specific variance introduced.

Therefore, it should be fully understood that the true relationship between two constructs

might be underestimated when combining correlations using indicators with specific

variances.



CHAPTER 7

DISCUSSION

With the recent movement toward evidence-based policy and practice in

education (Whitehurst, 2002), a growing interest has been devoted to meta-analytic

techniques as a means of providing rigorous educational evidence (Slavin, 2008). As

attractive and useful as these may seem in providing critical determinants for policy

decisions, the application of existing methodology in research synthesis faces numerous

difficulties and limitations due to the inherent nature of research in education and social

science.

A particular problem in the social sciences and education is that studies employ

diverse measures, even though researchers intend these to represent the same underlying

constructs. Due to the use of diverse measures in primary studies, meta-analysts

encounter three important problems. One is the variety ofmeasures that are used to

measure the same underlying construct. Another is the variety of statistical methods that

are used to estimate the relationship between the two constructs. Third, there are not

many pairs of the studies that use the same combinations of measures or statistical

approaches, which leads to call as a sparse data structure. There may be many studies but

no easy way to form a collection of studies that use the same measures or the same

statistical methods to generate their estimates of effect sizes.

Therefore, I have proposed a new method for quantifying the strength of the

relationship between two constructs that are measured in many different ways across

studies. In this research, I have developed an approach that can handle the very sparse

data structure that arises from variations in measures and statistical techniques. I also
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want an approach that recognizes the fact that, even though a set of measurements can be

quite different in their characteristics, they are all attempting to measure the same

underlying construct.

One advantage of using the proposed approach given in Equation 3.13 is that it

can estimate the strength of the relationship between two underlying constructs that are

measured in different ways. By using the proposed method, variation in measures, which

may lead to considerable heterogeneity across studies, is taken into account. Thus, the

proposed method can provide more precise estimates by combining the corrected study

effects. Contrary to Hunter and Schmidt’s approach, the proposed method also suggests

practical ways to adjust measure differences (i.e., how to obtain the validities of the

indicators) that are derived from the population model. In addition,

In spite of the advantages of using the proposed method mentioned above, further

research is required to resolve some practical issues. First of all, although the approach

focuses on a simple bivariate relationship between two underlying constructs, each of

which is measured using various indicators, it is certainly plausible to expand the

proposed method for application to more complicated models. For instance, the partial

correlation between two constructs controlling for a 3rd construct can be obtained from

pooled correlations of control variables with both outcome and predictor variables.

As demonstrated in the simulation, the proposed approach correctly estimates the

desired population parameters (i.e., the true relationship between two underlying

constructs) if no missing rs exist. However, the bias and MSE values of the estimators get

bigger as the number of missing rs is slightly increased. Since estimators differ

depending on the number of missing rs, further investigations are needed to deal with the
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missing rs. AS discussed in the previous sections, one potential solution would be to

impute missing information based on the available information. However, more attention

should be paid to developing an approach that can deal with the missing data, which

might be missing by “design”.

One potential study would be to look into the robustness of the proposed model

when the population model is not correctly specified. Knowing how robust the proposed

approach is would definitely offer useful insights for applying the proposed approach in

practice. Therefore, the generalizability of the proposed approach should be investigated

under different scenarios. For example, the performance of the proposed method based on

a one-factor model can be examined, although the true population model is a two-factor

model.

In addition, the proposed approach has been examined for the case in which all

indicators are assumed to be continuous variables. Future research could also examine

how to combine relations involving both continuous and categorical variables.
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APPENDIX A:

Protocol for Obtaining Expert Judgments
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Expert Judgments on Measure Validity

: How teacher knowledge and student learning in math have been measured?

 

 

Many researchers have long been interested in the effect of how much teachers know in a subject

they taught on improving student learning. However, studies and reviews have shown mixed

findings for the relationship between teachers’ subject matter knowledge and student learning (Ahn

8 Choi, 2005; Darling-Hammond, 2000; Wilson, Floden, 8 Ferrini-Mundy, 2001). This research

posits that variation in measures to represent both teachers’ subject matter knowledge and student

learning might lead inconsistent findings. For instance, in literature, different indicators have been

used to represent both teachers’ subject matter knowledge and student learning in mathematics;

some researchers use the indicator, number of teachers’ courses in math as the best

representation of teachers’ knowledge (the construct) and others use teachers’ test scores (as

indicator) for measuring teachers’ subject matter knowledge (the construct). Therefore, this

assessment aims to obtain your judgments about how the indicators used in 8 primary studies

represent their corresponding constructs (i.e., teachers' subject matter knowledge and student

learning in arithmetic). These 8 studies focus on the relationship between teachers’ knowledge and

5m grade students’ test scores in arithmetic. Please read the following instruction and provide your

judgments on the attached sheet.

 

[Instruction]

You as an independent rater are expected to work individually. First, you should be familiar

with the instrument(s) used in each study. You want to look at the provided information regarding to

instrument (e.g., sample item(s) of the instrument, the instrument, and method section in the study).

If needed, you can also use any accessible resources (e.g., intemet, test manual, other study using

the same instrument). For more resources, please contact Soyeon Ahn (ahnso@msu.edu or 517-

256-1891).

Second, you should evaluate how well each indicator represents each dimension of math

knowledge in arithmetic.

Finally, based on your evaluation, you want to rank order measures used in studies for

which you think would be most likely to measure each dimension of teachers’ subject matter

knowledge and students’ understanding of arithmetic knowledge. Also, you want to provide the

approximate value of validities of each indicator in terms of correlation value.
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APPEDlX B:

R Code for the Proposed Model

#

# Author: Soyeon Ahn

# Date: 2008-02-01/ 2008-02-03: Fifth revision

# Simulation in detail: This is a simulation set-up for the dissertation. In this simulation, the k

independent studies with sample size of 30 are generated from the population model. In the

population model, the relationship between two underlying factors (ksi & eta), each of which is

measured using three indicators (three xs p=3 & three ys q=3), is of our interest. In the population,

data with 30 sample size are generated from the multivariate distribution with mean vector of 0 and

variance-covariance matrix, which is obtained from the population parameters. The zero-order

correlation coefficients between xs and ys are computed for meta-analysis.

# 1000 replications per conditions.

# 0 missing case - all the included studies provide all 9 possible zero-order correlation coefficients

between 3x3 and 3ys.

#

 

 

# Set-up the directory.

setwd (”Oz/Documents and Settings/Soyeon Ahn/Desktop/Dissertation/Simulation/sim__datal0

missing")

getwd()

library(MASS)

# .

# Population parameters: Reliability of x, reliability of y, and gamma. For all simulation, it is

assumed that ksi and eta are standardized with mean of 0 and variance of 1. This indicates that

phi and psi are set to 1.

# Gamma is set to .5 & 0.

# Reliabilities of xs: [.9, .9, .9]; [.5, .5, .5]; [9,5,2]; [

# Reliabilities of ys: [.9, .9, .9]; [.5, .5, .5]; [9,5,2] [

# Specific variances: 0 or (Reliability - .05).

# Factor loading: sqrt(Reliability-specific variance)

# Delta=specific variance+(1-factor loadidng"2).; Epsilon=specific variance+(1-factor loading"2).

# Assuming that we have correlation coefficients for diagonal, # of missingness will be manipulated

(0/6, 1/6, 2/6, 3/6, 4/6, 5/6, 6/6). Choice of what should be unavailable will be based on random

selection.

#

 

2,2,2].

; 2,2,2].

 

# Detailed procedures.

# 1. make var-cov; 2. generate multivariate normal distribution using mean vector & var-cov

produced in 1; 3. generate correlation coefficients; 4. generate random number for choosing

missingness; 5. get the estimator.
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MV<~matrix(c(0), nrow=1, ncol=6, byrow=TRUE) #MV is mean-vector of variables (3x3 +3ys)

# Create hypothetical meta-analysis for each condition.

# Function called "hypothetical meta" creates 1. variance-covariance matrix for generating zero-

order correlations for each study in a hypothetical meta-analysis.

hypothetical.meta<-function(GAMMA, V, Rel1,Rel2, Rel3, study){

# For creating variance-covariance matrix, we need the following information - Gamma, Phi, Psi,

Lambda_X (from reliability of X3), Lambda_Y (from reliability of Ys), Theta_delta, and

Theta_epsilon.

GA<-matrix(c(GAMMA), c(1 ,1 ))

phi<-matrix(1,c(1,1))

psi<-matrix(1,c(1,1))

rel<-matrix(c(Rel1, Rel2, Rel3), c(3,1))

# Here, one additional condition is added for this simulation. If V=1, no specific variances exist on

any side of exogenous and endogenous variables.

if (V==1) {sv <-matrix(c(0,0,0), c(3,1))} else {sv<-matrix(c(Rel1-.05,Re|2-

.05,Rel3—.05), c(3,1))}

LX<-sqrt(rel-sv)

LY<-sqrt(rel-sv)

TD<-matrix(c((1-LX[1,1]“2),0,0,0,(1-LX[2,1]“2),0,0,0, (1-LX[3,1]"2)),nrow=3,

ncol=3,byrow=TRUE)

TE<-matrix(c((1-LY[1,1]"2),0,0,0,(1-LY[2,1]"2),0,0,0, (1-LY[3,1]"2)),nrow=3,

ncol=3,byrow=TRUE)

# Now, using seven parameters above, variance-covariance matrix (called sigma-XX, sigma_YY,

sigma_XY) will be established.

# Sigma_XX= LX*phi*LX'+TD; Sigma_YY=LY*psi*LY’+TE; Sigma_XY=LX*GA*LY' (Use these

equasfions)

Sigma_XX<-LX %*% phi %*% t(LX)+TD

Sigma_YY<-LY °/o*°/o psi °/o*% t(LY)+TE

Sigma_XY<-LX%*°/oGA°/o*%t(LY)

Sigma_YX<-LY%*°/oGA%*°/ot(LX)

Sigma<-rbind(cbind(Sigma_XX,Sigma_XY),cbind(Sigma_YX, Sigma_YY))

# Second, I'm generating multivariate normal distribution and creating correlation coefficients

among all indicators.

# x1 x2 x3

# y1[1,1][2,1][3,1]

# y2 [1,2] [2,2] [3,2]

# y3 [1,3] [2,3] [3,3]

# For missing 4 cases.

es.meta<-matrix(0,study*9,4)

ES<-matrix(0,1,17)

#change the 1: (1,6,15, 10, 6, 3, 1)
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for(j in 1:1){

for (i in 1:study){

cor.data<-mvmorm(30, MV, Sigma, empirical=FALSE)

a<~cor(cor.data)

cmatrix<-cor(cor.data)[1:3,4:6j

attributes(cmatrix)

# .

# For missing information, indicate elements in the correlation matrix that is generated from

multivariate normal distribution called "cor.data”. It is named as C1-C15.

C1<-cbind(1,2,cmatrix[1,2])

C2<-cbind(1,3,cmatrix[1,3])

C3<-cbind(2,3,cmatrix[2,3])

C4<-cbind(2,1,cmatrix[2,1])

C5<-cbind(3,1,cmatrix[3,1])

)

)

 

C6<—cbind(3,2,cmatrix[3,2]

C7<-cbind(1,1,cmatrix[1,1] #C7 is on diagonal.

C8<-cbind(2,2,cmatrix[2,2]) #C8 is on diagonal.

CQ<~cbind(3,3,cmatrixj2,2]) #C9 is on diagonal.

# By having random #, we can assgin the same # of Rs across all three elements on the diagonal.

#random<-runif(1 ,0,1)

# ind<-ifelse(random<1/3,1,ifelse(random>=1/3 8 random<2/3,2,3))

# 0 missing

es.meta[9*i-8,]<cbind ,

es.meta[9*i-7,]<-cbind

#01, C2, C3, C4, C5, C6, C7, C8, C9(i C

(i, C

es.meta[9*i-6,]<—cbind(i, C

es.meta[9*i-5,]<-cbind(i, C

es.meta[9*i-4,]<-cbind(i, C

es.meta[9*i-3,]<-cbind(i, C

es.meta[9*i-2,]<-cbind(i, C

es.meta[9*i-1,]<-cbind(i, C

es.meta[9*i,]<-cbind(i, C6)

#

7)

8)

9)

1)

2)

3)

4)

5)

}

 

#

#1 missing case

# For missing information, indicate elements in the correlation matrix that is generated from

multivariate normal distribution called "cordata". It is named as C1-C15.

C1<-cbind(1,2,cmatrix[1,2])

C2<-cbind(1,3,cmatrix[1,3])

C3<~cbind(2,3,cmatrix[2,3])

C4<-cbind(2,1,cmatrix[2,1])

CS<-cbind(3,1,cmatrix[3,1])

C6<~cbind(3,2,cmatrix[3,2])

C7<-cbind(1,1,cmatrix[1,1]) #C7 is on diagonal.
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C8<~cbind(2,2,cmatrix[2,2]) #C8 is on diagonal.

C9<-cbind(3,3,cmatrix[2,2]) #C9 is on diagonal.

all.element1<-rbind(C2, C1,C1,C1, C1, C1)

all.element2<-rbind(C3, C3,C2,C2, C2, C2)

all.element3<-rbind(C4, C4,C4,C3, C3, C3)

all.element4<-rbind(C5, CS,C5,C5, C4, C4)

all.element5<-rbind(C6, C6,C6,C6, C6, C5)

#(2,3,4,5,6), (1,3,4,5,6), (1,2,4,5,6), (1,2,3,5,6), (1,2,3,4,6), (1,2,3,4,5).

# By having random #, we can assgin the same # of Rs across all three elements on the diagonal.

#random<-runif(1,0,1)

# ind<~ifelse(random<1/3,1,ifelse(random>=1l3 & random<2/3,2,3))

es.meta[8*i-7,]<-cbind(i, C7) #C1, C2, C3, C4, C5, C6, C7, C8, C9

es.meta[8*i-6,]<-cbind(i, C8)

es.meta[8*i-5,]<-cbind(i, C9)

es.meta[8*i-4,]<-cbind(i, matrix(all.element1[j,],c(1:3)))

es.meta[8*i-3,]<-cbind(i, matrix(all.element2[j,],c(1:3)))

es.meta[8*i-2,]<-cbind(i, matrix(all.element3[j,],c(1:3)))

es.meta[8*i-1,]<-cbind(i, matrix(all.element4[j,],c(1:3)))

es.meta[8*i,]<-cbind(i, matrix(all.element5[j,],c(1:3)))}

# 

#

# 2 missing case

# For missing information, indicate elements in the correlation matrix that is generated from

multivariate normal distribution called "cor.data". It is named as C1-C15.

Cl<-cbind(1,2,cmatrix[1,2])

C2<-cbind(1,3,cmatrix[1,3])

CB<-cbind(2,3,cmatrix[2,3])

C4<-cbind(2,1,cmatrix[2,1])

CS<-cbind(3,1,cmatrix[3,1])

CG<-cbind(3,2,cmatrix[3,2])

C?<-cbind(1,1,cmatrix[1,1]) #C7 is on diagonal.

C8<-cbind(2,2,cmatrix[2,2]) #C8 is on diagonal.

C9<-cbind(3,3,cmatrix[2,2]) #C9 is on diagonal.

all.element1<-rbind(C3,C2,C2,C2,C2,C1,Cl,C1,C1,C1,C1,C1,C1 ,C1,C1)

all.element2<-rbind(C4,C4,C3,C3,C3,C4,C3,C3,C3,C2,C2,C2,C2,C2,C2)

all.element3<-rbind(C5,C5,C5,C4,C4,C5,C5,C4,C4,C5,C4,C4,C3,C3,C3)

all.element4<-rbind(C6,C6,C6,C6,C5,C6,C6,C6,C5,C6,C6,CS,C6,C5,C4)

)

)

 

# (3,4,5,6), (2,4,5,6 , (235,6), (2,3,4,6),

# (2.3.4.5), (1,4,5,6 , (1,3,5,6), (1,3,4,6), (13.4.5).

#(1,2,5,6), (1,246), (1,245), (1,236),

# (1,2,3,5), (1,2,3,4).

# 2 missing
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es.meta[7*i-6,]<-cbind(i, C7) #C1, C2, C3, C4, C5, C6, C7, C8, C9

es.meta[7*i-5,]<-cbind(i, C8)

es.meta[7*i~4,]<-cbind(i, C9)

es.meta[7*i-3,]<—cbind(i, matrix(all.element1 [j,],c(1 :3)

es.meta[7*i-2,]<—cbind(i, matrix(all.element2[j,],c(1:3)))

es.meta[7*i-1,]<-cbind(i, matrix(all.element3[j,],c(1:3)))

es.meta[7*i,]<-cbind(i, matrix(all.element4[j,],c(1:3)))}

))

# (1,2,3,4), (1,2,3,5), (1,2,3,6), (2,3,4,5), (2,3,4,6), (3,4,5,6)

# 

 #

# 3 missing case

# For missing information, indicate elements in the correlation matrix that is generated from

multivariate normal distribution called "cordata". It is named as C1-C15.

C1<-cbind(1,2,cmatrix[1,2])

CZ<-cbind(1,3,cmatrix[1,3])

C3<—cbind(2,3,cmatrix[2,3])

C4<-cbind(2,1 ,cmatrix[2,1])

C5<-cbind(3,1 ,cmatrix[3,1])

CG<—cbind(3,2,cmatrix[3,2])

CT<—cbind(1,1,cmatrix[1,1]) #C7 is on diagonal.

C8<-cbind(2,2,cmatrix[2,2]) #C8 is on diagonal.

C9<—cbind(3,3,cmatrix[2,2]) #C9 is on diagonal.

all.element1<-rbind(C1,Cl,C1,C1,C2,C2,C2,03,C3,C4)

all.element2<-rbind(C2,C2,C2,02,C3,C3,C3,C4,C4,C5)

all.element3<-rbind(C3,C4,C5,C6,C4,C5,C6,C5,C6,C6)

# (1,2,3), (1,2,4), (1, 2,5), (1,2, 6), (2,3,4), (2,3,5), (2,3,6), (3, 4, 5), (3,4,6), (4, 5, 6)

# 

#

# 4 missing case

 

# For missing information, indicate elements in the correlation matrix that is generated from

multivariate normal distribution called "cordata". It is named as C1-C15.

C1<-cbind(1,2,cmatrix[1,2])

C2<-cbind(1,3,cmatrix[1,3])

C3<-cbind(2,3,cmatrix[2,3])

C4<~cbind(2,1,cmatrix[2,1])

CS<—cbind(3,1,cmatrix[3,1])

C6<-cbind(3,2,cmatrix[3,2])

C7<-cbind(1,1,cmatrix[1,1]) #C7 is on diagonal.

CB<-cbind(2,2,cmatrix[2,2]) #C8 is on diagonal.

C9<~cbind(3,3,cmatrix[2,2]) #C9 is on diagonal.

all.element1<-rbind(C1,C1,C1,C1,C1,C1,C2,CZ,C2,C2, C3,C3,C3,C4,C4,C5)

all.element2<-rbind(C2,C3,C4,C5,C6,C3,C4,C5,C6,C4, C5,C6,C5,C6,C6,C6)
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# By having random #, we can assgin the same # of Rs across all three elements on the diagonal.

#random<-runif(1,0,1)

#ind<-ifelse(random<1/3,1,ifelse(random>=1l3 8 random<2/3,2,3))

# 4 missing

es.meta[5*i-4,]<-cbind(i, C7) #01, C2, C3, C4, CS, C6, C7, C8, C9

es.meta[5*i-3,]<-cbind(i, C8)

es.meta[5*i-2,]<-cbind(i, C9)

es.meta[5*i-1,]<-cbind(i, matrix(all.element1[j,],c(1:3)))

es.meta[5*i,]<-cbind(i, matrix(all.element2[j,],c(1:3)))}

# (c1, c2), (c1, c3), (c1, C4), (c1, CS), (c1, C6), (c2, C3), (c2, C4), (c2, C5), (c2, C6), (c3,

C4),(c3, C5), (C3, C6), (C4, C5), (C4, C6), (C5, C6).

# 

#

# 5 missing case

# For missing information, indicate elements in the correlation matrix that is generated from

multivariate normal distribution called "cor.data". It is named as C1-C6.

C1<-cbind(1,2,cmatrix[1,2])

CZ<-cbind(1,3,cmatrix[1,3])

C3<-cbind(2,3,cmatrix[2,3])

C4<cbind(2,1 ,cmatrix[2,1])

CS<-cbind(3,1,cmatrix[3,1])

C6<-cbind(3,2,cmatrix[3,2])

C7<-cbind(1,1,cmatrix[1,1]) #C7 is on diagonal.

C8<-cbind(2,2,cmatrix[2,2]) #C8 is on diagonal.

CQ<-cbind(3,3,cmatrix[2,2]) #C9 is on diagonal.

all.element<-rbind(C1,C2,C33,C4,C5,C6)

 

# By having random #, we can assgin the same # of Rs across all three elements on the diagonal.

#random<-runif(1,0,1)

#ind<-ifelse(random<1/3,1,ifelse(random>=1l3 8 random<2/3,2,3))

# 5 missing

es.meta[4*i-3,]<-cbind(i, C7) #C1, C2, C3, C4, CS, C6, C7, CB, C9

es.meta[4*i-2,]<-cbind(i, C8)

es.meta[4*i-1,]<-cbind(i, C9)

es.meta[4*i,]<-cbind(i, matnx(all.element[j,],c(1:3)))}

# 

#

# 6 missing

C7<-cbind(1,1,cmatrix[1,1]) #C7 is on diagonal.

C8<-cbind(2,2,cmatrix[2,2]) #C8 is on diagonal.

C9<-cbind(3,3,cmatrixj2,2]) #C9 is on diagonal.
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# By having random #, we can assgin the same # of Rs across all three elements on the diagonal.

#random<-runif(1,0,1)

# ind<-ifelse(random<1/3,1,ifelse(random>=1l3 8 random<2/3,2,3))

es.meta[3*i-2,]<-cbind(i, C7) #C1, CZ, C3, C4, C5, C6, C7, C8, C9

es.meta[3*i-1,]<-cbind(i, C8)

es.meta[3*i,]<-cbind(i, C9)}

attributes(esmeta)

# After creating a hypothetical studies with # of studies in it, next step is to compute the final

estimates based on sample-size weighted average Rs 8 z-transformed variance weighted Rs.

# 

# ESl is the final ES based on sample-size weighted Rs 8 E82 is the final ES based on 2-

transfonned weighted Rs.

meta<-cbind(es.meta, es.meta[,4]*30, 27*(.5*log((1+es.meta[,4])/(1-es.meta[,4]))))

ES1.sum<—data.matrix(aggregate(meta[,5], list(x=meta[,2], y=meta[,3]),sum))

ES1 <-cbind(ES1 .sum[,1], ESl.sum[,2],ES1.sum[,3]/(30*study))

ESZsum<-data.matrix(aggregate(meta[,6], list(x=meta[,2], y=meta[,3]), sum))

E82<-cbind(ES2.sum[,1], E82.sum[,2],ES2.sum[,3]/(27*study))

E82<-cbind(ES2.sum[,1], ESZ.sum[,2],(exp(2*ES2[,3])-1)/(exp(2*ESZ[,3])+1))

meta_ES1<-as.matrix((apply(ES1,2,sum))/((apply(LX,2,sum))*(apply(LY,2,sum))))

meta_ESZ<-as.matrix((app|y(E82,2,sum))/((apply(LX,2,sum))*(apply(LY,2,sum))))

# ES includes both the final ES based on sample-size weighted Rs(ES1) 8 the final ES based on

z-transforme weighted Rs.

ES[j,]<-cbind(j, LX[1,1], LX[2,1], LX[3,1], LY[1,1], LY[2,1], LY[3,1], sv[1,1], sv[2,1], sv[3,1], study,

GA, Rell, Rel2, Rel3, meta_ESl[3,1], meta_E82[3,1])}

result<-return(ES)}

# Make hypothetical meta-analyses depending on different conditions in accordance with different

parameters.

 #

# Definine function depending for getting final ES.

# 

matrix.ga<-matrix(c(.5,0), c(1,2))

matrixspecific.variance<-matrix(c(1,0), nrow=1, ncol=2,byrow=TRUE)

matrix.reliability<~matrix(c(.9,.9,.9,.5,.5,.5,.2,.2,.2,.9,.5,.2) nrow=4, ncol=3, byrow=TRUE)

n.study<-matrix(c(9, 36), ncol=1, nrow=2, byrow=FALSE) # k is # of studies included in meta:

analysis;

# 32 conditions by 2 (Gamma) * 4(Reliability sets) * 2(# of study) * 2(# of specific variance) =32

#(0.5,0,.9,.9,.9,9) (0.5,1,.9,.9,.9,9) (0,0,.9,.9,.9,9) (0,1,.9,.9,.9,9)
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(0.,,51.,9 .9, .,936)(0,

0.5,,1.,5.,5 59)(0,.0

(0.,,515..5 5,,36)(0

0.

(

0 .36) (0,1,.9,.9,.9,36)

.,5

0

0.,,51 2.229) (0 .2.

0

.,9

0,

.,.,.999

.,.,55 9)(01,.5,.5..5,9)

.,.,...,55536)(01..,.,55536)

W22mm122wza

(0.,,.,.,.,5122236)0, ..,.,22

0.,,.519.,.529)(0,0, 5.2,

(0.,,.,.,...5195236)(0 .,.95,2

..236) (0.1.2.2 .,236)

9) (0.1.9.5..29)

.36) (0,1..9,.5,.2,36)
V
A
V
A
V
A
V

replication<-1000 #write # of replications here

M1 <-lapply(1 :replication, function(x) hypothetical.meta(O5,0

M2<-lapply(1:replication, function(x) hypothetical.meta(O.51

M3<-lapply(1:replication, function(x) hypothetical.meta(0,0,9,

M4<-lapply(1:replication, function(x) hypothetical.meta(0.1,9,.

M5<-Iapply(1:replication, function(x) hypothetical.meta(O5,0

M6<-lapply(1:replication, function(x) hypothetical.meta(O.5,1

M7<~lapply(1:replication, function(x) hypothetical.meta(0,0. .9,.

M8<-lapply(1:replication, function(x) hypothetical.meta(0.1,.9,.

M9<-lapply(1:replication, function(x) hypothetical.meta(O. 5,0,. ,.

M10<-lapply(1:replication, function(x) hypothetical.meta(O. ,1, 5... 5,.

M11<-lapply 1:replication, function(x) hypothetical.meta(O,,.

M12<-lapply 1:replication, function(x) hypothetical.meta(O,

0.

0.

(
”
c
o
m
f
o
‘
o
c
o
c
o
c
o

(

(

M13<-lapply(1:replication, function(x) hypothetical.meta(

M14<—lapply(1”replication function(x) hypothetical.meta(

M15<-lapply(1 :replication, function(x) hypothetical. meta(O, ,.

M16<-lapply(1:replication, function(x) hypothetical.meta(O, ,.

M17<-lapply(1:replication, function(x) hypothetical.meta(O.5,

M18<—|app|y(1 :replication, function(x) hypothetical.meta(05,

M19<-Iapply(1:replication, function(x) hypothetical.meta(O,0,.

M20<-lapply(1:replication, function(xxhypothetical.)meta(0,1,.

M21<-lapply(1:replication, function(x) hypothetical.meta

M22<-lapply(1:replication, function(x) hypothetical.meta

M23<-Iapply(1:replication, function(x) hypothetical.meta

(

(

(

(

(X

0
7
0
)

(0

(

(

M24<-lapply 1:replication, function x) hypothetical.meta(

M25<-lapply 1:replication, function x) hypothetical.meta(

M26<-lapply 1:replication, function x) hypothetical.meta(

(

(

(

(

(

(

V

v
v

V
V
V
V

v
v

(

(

(

M27<-Iapply(1:replication, function x) hypothetical.meta

M28<-lapply(1:replication, functionx) hypothetical.meta

(

(

(

(

M29<-lapply 1:replication, function(x) hypothetical.meta

M30<-lapply 1:replication, function(x) hypothetical.meta

M31<-lapply 1:replication, function(x) hypothetical.meta

M32<-lapply 1:replication, function(x) hypothetical.meta

#

w
w
p
g
m
c
o
c
o
p
p
w
w
m
w
c
o
c
o
w
b
w
w
m
m
c
o
c
o
m

c
o
c
o
—
‘
P
c
o
c
o
r
‘
o
m
m
f
p
m
m
f
‘

m
m

.,5

0.5,

0,.0

0,,1.

0.,5

05,

0,0,.

0,1,.

0.,5

0.5

0,0,.

0,,1.

V
V

 

# Creating dataset by combining

 

#

#class(META1[[1]])

#replication
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#Iength(META1)

# replication == length(META1)

library(gdata)

create.data<-function(META1,META2){

META2<-matrix(0,1000,17)

for (i in 1:replication){

META2[i,]<-META1[[i]]}

colnames(META2)<-c( "Ind", "LX1", "LX2", "LX3", "LY1", "LY2", "LY3", "svi", ”sv2", "sv3", "study",

"GA", “Rel1”, "Rel2", "Rel3". "E81", "E82")

result<-return(META2)}

R1 <-create.data(M1 .01)

R2<-create.data(M2,02)

R3<-create.data(M3,03)

R4<-create.data(M4,04)

R5<-create.data(M5,05)

R6<-create.data(M6,06)

R7<-create.data(M7,07)

R8<-create.data(M8,08)

R9<create.data(M9,09)

R10<-create.data(M10,010)

R11<-create.data(M11,011)

R12<-create.data(M12,012)

R13<-create.data(M13,013)

R14<create.data(M14.014)

R15<-create.data(M15,015)

R16<-create.data(M16,016)

R17<-create.data(M17,017)

R18<-create.data(M18,018)

R19<-create.data(M19,019)

R20<-create.data(M20,020)

R21 <-create.data(M21 .021)

R22<-create.data(M22,022)

R23<-create.data(M23,023)

R24<-create.data(M24,024)

R25<-create.data(M25,025)

R26<-create.data(M26,026)

R27<-create.data(M27,027)

R28<-create.data(M28,028)

R29<-create.data(M29,029)

R30<-create.data(M30,030)

R31 <-create.data(M31 .031)

R32<-create.data(M32,032)



big.data<-combine(R1, R2, R3, R4, R5, R6, R7. R8, R9, R10, R11, R12, R13, R14, R15, R16, R17,

R18, R19, R20. R21, R22, R23, R24, R25, R26, R27, R28, R29, R30, R31, R32)

write.matrix(big.data, file="0_0 missing.xls", sep=" ")
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APPENDIX C:

Tables and Figures
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Table 2.1

Attenuated Artifacts and the Corresponding Multiplier

 

Attenuation Artifacts The corresponding multiplier

 

Random error of measurement in

dependent variable Y

01:5,

ryv is the reliability of the Y measure

 

Random error of measurement in

independent variable X

a2: ”xx:

’10: is the reliability of the X measure

 

Artificial dichotomization of

continuous dependent variable

split into proportions p and q

Artificial dichotomization of

continuous independent variable

split into proportions p and q

Imperfect construct validity of the

dependent variable Y

a3 = biserial constant = ¢(c)/ Jpq

2

where ¢(x) = e—x / J27r is the unit normal

density function and c is unit normal distribution

cut point corresponding to a split ofp

a4 = biserial constant = ¢(c)/ Jpq

where ¢(x) = e_x2 /m is the unit normal

density function and c is unit normal distribution

cutioint corresgonding to a split ofp

a5 = the construct validity of Y

 

Imperfect construct variable of the

independent variable X

a6 = the construct validity ofX

 

Range restriction on the dependent

variable Y

 

a7 = \/(uy2 +,02 “'uyzpz),

where u = (SDy study population)/

(SD), reference population)

 

Range restriction on the

independent variable X

 

”8 = \/(ux2 + p2 _ ux2p2) ,

where u = (SDx study population)/

( SDx reference population)

 

Bias in the correlation coefficients

due to small sample sizes

agzl-(l—p2)/(2N—2)

 

Study-caused variation  Partial correlation to remove the effects of

unwanted variation in experience
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Table 2.2.

Comparisons ofCorrectionformulas

 

  

 

  
 

d Correlation Regression

Oswald Raju & Brand

Le (2003); Hunter & & (2003);

Correcting Nugent Sackett & Schmidt Hancock Converse Raju et

factors (2009) Yang (2000) (1990) (1997) (2005) al.(l991)

Reliability (X) x x x x x

Reliability (Y) x x x

Validity (X) x

Validity (Y) x

Range restriction x x x

Sampling error x x   
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Table 4.1.

Bias and MSE ofEstimators

 

 

 

 

 

 

 

7

Quality of MSE Bias MSE

Estimators ESl ES2 ES 1 ES2 ESl ES2 ES 1 ES2

Min -.01 -.01 0 0 -.02 0 0 0

Max .01 .01 .06 .06 .15 .17 .05 .06

M .0001 .0001 .0082 .0082 .008 .023 .008 .009

SD .003 .003 .01 .01 .03 .03 .01 .01        
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Table 4.4

Mean bias ofrfrom Field (2001)

 

 

 

 

 

 

     
 

Number

Homogeneous case Heterogeneous case

of

studies H/O H/S H/O H/S

10 -.0001 -.0001 0 0

p = 0

30 -.00005 -.00005 0 0

10 .006 -.007 .1785 -.024

p = 5

30 .007 .007 .205 -.024

Note.

H/O is the method suggested by Hedges and Olkin (1985) or Rosenthal and Rubin (1991).

This is equivalent to E82 in this dissertation; H/S is the method suggested by Hunter and

Schmidt (1990). This is equivalent to ESl in this dissertation
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Table 4.13

Correlation Matrix ofSix Indicators

 

X1

(reliability = .9)

x2

(reliability =.5)

X3

(reliability = .2)

 

 

 

 

y: Gay]. rx3,yl

(reliability = .9) (medium, high) (low, high)

yz rxl,y2 rx3,y_7

(reliability = .5) (high, medium) (low, medium)

Y3 rxl.y3 ery]

(reliability = .2) (high, low) (medium, low)   
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Table 4.14

ANOVA S Comparing Bias ofES1 Across ll7ziclt r is Included

 

 

 

7 Source SS df MS F p ’7

0 Intercept .02 l .02 .65 .42 0

which r is included .38 5 .08 2.07 .07 0

Error 88.31 23,994 .04

Total 8 8.71 24,000

.5 Intercept 1,589.6 1 1,589.60 41,261.5 <.01 .632

which r is included 2.4 5 .49 12.69 <.01 .003

Error 924.4 23,994 .04

Total 2,516.42 24,000  
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Table 4.15

Pairwise Comparison Comparing Bias ofES1 Depending 0n Which r is Included

 

 

 

 

 

 

 

 

95% Cl

Ind Ind Mean Difference SE p Upper Lower

1 2 .012* .004 .008 .003 .020

3 .023* .004 .000 .014 .032

4 -.006 .004 .206 -.014 .003

5 .014* .004 .002 .005 .023

6 .019* .004 .000 .011 .028

2 1 -.012* .004 .008 -.020 -.003

3 .011* .004 .010 .003 .020

4 -.017* .004 .000 -.026 -.009

5 .002 .004 .614 -.006 .011

6 .007 .004 .090 -.001 .016

3 1 -.023* .004 .000 -.032 -.014

2 -.011* .004 .010 -.020 -.003

4 -.029* .004 .000 -.O37 -.020

5 -.009* .004 .040 -.018 .000

6 -.004 .004 .387 -.012 .005

4 1 .006 .004 .206 -.003 .014

2 .01 7* .004 .000 .009 .026

3 .029* .004 .000 .020 .037

5 .019* .004 .000 .011 .028

6 .025* .004 .000 .016 .033

5 1 -.014* .004 .002 -.023 -.005

2 -.002 .004 .614 -.01 1 .006

3 .009* .004 .040 .000 .018

4 -.019* .004 .000 -.028 -.011

6 .005 .004 .233 4.003 .014

6 1 -.019* .004 .000 -.028 -.011

2 -.007 .004 .090 -.016 .001

3 .004 .004 .3 87 -.005 .012

4 -.025* .004 .000 -.033 -.016

5 -.005 .004 .233 -.014 .003      
 

Nate- 1 : r(xl.y2 ; 2 = r(xl.y3); 3 : r(x2, y3); 4 : r(.r2,yl); 5 : r(.r3,yl); 6 : r(x3.y2)
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Table 5.1

Measures used to represent teachers ' and students ' knowledge in 8 studies

 

 

 

 

 

 

 

 

 

Studies Measures of Teachers’ Knowledge Measures of Students’ Knowledge

Bassham Glennon test score of basic California Achievement Test (CAT)

(1962) mathematical understanding

Caezza Callahan Test of Mathematical Stanford Achievement Test (SAT)

(1969) Knowledge

Cox Dr. Leroy's Test of Mathematical Achievement Series (SRA)

(1970) Understanding

Koch Test of Understandings of the Real Grade Equivalent Scores from

(1972) Number System (TURNS) CTBS

Lampela Stoneking Test of Basic California Achievement Test (CAT)

(1966) Arithmetical Principles and

Generalizations

Moore Glennon test score of basic Achievement Series (SRA)

(1 964) mathematical understanding

Turgoose Tests of Achievement and Iowa Test Basic Skill (ITBS)

(1996) Proficiency (TAP)

Prekeges Test of Teacher understanding Growth in mathematics

(1973)   
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y]

 

 

   

 

   

 

   

7

yz A

yq—l

3’61

Figure 3.2.

A population model for a hypothetical meta-analysis

 

x,

 

 

 
x2

 

 

 

 

  

 

 



 

 

\ _ .-_'r . I
3‘. no __ :r' _ \i

‘ K M H-

- ‘ ~ \ ./-- --‘\‘

“a _ - :x‘ 0' . I.

I — ~ — - - If - _-.

: _—~-- “ \~ _ ----’

— -' P. .l I D/-

f__ ; ~. I

c. ...A ' I i - ,’f

‘5 -"o . -

‘0. _/-.

.- ‘5

IN. -” ..-

- .3 -._

f N _

“'32,."
5..

1: '— .L‘

-1 ‘ K \ l' l

\ ‘5. -M.
f - p, ‘\

a" ‘ f- -
- a a. ' ‘0 .

- . - "’ I ..z: .- . Hg.

r” w ' 7 N ' f? ‘- - I.
I ' \ .l' .‘ ‘.x -/ .' -'\. --- —-__/

l '- ‘..__.___ .- ./ .-

3... _ l 5... -’-, 6’ J. .-

5. I'll-x". c'
/ .

a. J. a I

's 3'.

‘-. i,/ 3" x a
.J‘/ .0 .- n .

/ ~n . I ‘5

.- \ .' .

‘-

. [II "n ‘l .n f-— 9“- 9

fl ‘ 3" ._ / \._ _:-/

. - t . " '- ' l '5
U i_: . r-~l -— - Y7 —- 4" I“ I‘-

. g”. \ _ .ll-

1" 'a .- \\- ‘j I.

. ' " —- " o

.. T . '4’

.I. . ..-

.\ I"

'. ..l"
I.- .’

"q" l?“
‘ I 4 '1 I

I ,

. . . ___" s. '1; I

I". r w ‘ , g - . y". ‘5. -‘ '4‘ ‘0

k _,A ‘ .' - |' ~ I , iat' 'l

— ii,“ __ -— _ N" .r, ‘3! ’ "_/.

1’ I. : -9 ._-

f- .- I .I r-. ' -‘ ‘— -

.3- " X x”
{)7 x‘_ _',.r'

x “’1

/ . / .3 ,

.- I‘

Figure 3.3

Covariance structure model for ranking data with p = 4 alternatives

 8 Example is from Maydeu-Olivarcs & Bockenholt (2005).
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Histograms of estimators when y is set to .5
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Bias oftwo estimators depending on the reliabilities ofindicators when y is set to 0
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Bias of two estimators depending on the reliabilities of indicators when 7 is set to .5
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Biases of two estimators depending on the factor loadings of indicators when 7 is set to 0
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Biases of two estimators depending on the factor loadings of indicators when 7 is set
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Biases of two estimators depending on k when 7 is set to 0
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Biases of two estimators depending on k when 7 is set to .5
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MSES of two estimators depending on k when 7 is set to 0
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Biases of two estimators depending on the number of missing rs when 7 is set to 0
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Biases of two estimators depending on the number of missing rs when 7 is set to .5
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MSES of two estimators depending on the number of missing rs when 7 is set to 0



True Relationship Between Two Constructs: .5
 

   

0.10“

0.05“

000—

005-7

010-

I I I I I I I

0 1 2 3 4 5 5

# of Missing rs

Figure 4.20

—lvlSE ofESl

__...- MSE ofE82

O MSE ofESI

>< MSE ofES2

MSES of two estimators depending on the number of missing rs when 7 is set to .5

134



 

0.035“

0.025“

0.02“

M
e
a
n

B
i
a
s

o
f
E
8
1

0.015“

0.01“

0.005“  
 

—I I I I I I

r(x '1 ,y2) r(xI ,y3) r(x2 ,y3) r(x2.y1) r(x3 .y2) r(x3.y1)

Correlation Included in Meta-analysis

Figure 4.21

Bias of ESl depending on which correlation is included with 7 of .5



 

Glennon test

 

 

Callahan

Test  
 

 

Number of

coursework
  
 

 

TAP

  
 

Figure 5.1.

 

 
CAT
 

 

 
 

SAT

 

CTBS

 

 

 lTBS

 

 

SRA
 

A model for meta-analysis investigating teachers’ subject matter knowledge (SMK) and

student learning in mathematics

.3 6

 

 

 

 



True Relationship Between Two Constructs: .0
 

 

  
 

-— Bias of E81

0.10- —- Bias of E32

0 Bias ofESl

>< Bias of E82

0.054

-0.05“

010“

I I I l

sv1=sw=sv3=0 sv1= sv2= sv3= . 45 lsv1=.85&sv2=.45&sv'3=.15

sv‘I =sv2=sv3=. '15 sv1= sv2= sv3=.85

Specific Variances of Indicators

Figure 6.1

Biases of two estimators depending on specific variances of indicators when 7 is set to 0
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Biases of two estimators depending on specific variances of indicators when 7 is set to .5
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