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ABSTRACT

USING MULTIDIMENSIONAL ITEM RESPONSE THEORY TO REPORT SUBSCORES
ACROSS MULTIPLE TEST FORMS

By
Jing-Ru Xu

There is an increasing interest in subscores in educational testing because subscores have
potential benefits in remedial and instructional application (Sinharay, Puhan, & Haberman,
2011). Users of score reports are interested in receiving information on examinees’
performances on subsections of an achievement test. These scores “typically are referred to as
‘subscale scores,” ‘subtest scores,” or more generically, ‘subscores (Ferrara & DeMauro, 2006, p.
583).””

Among these current subscore research reports, few address the following issues. First,
in most research, the number of subscores, the number of items in each subscore domain and the
item types in each domain are already fixed according to the classification produced by test
developers and content experts. Thus, the distinct domains defining subscores may not be
clearly defined in a technical psychometric sense. Also, little information may be provided to
show there are enough items in each domain to support reporting useful scores. Moreover, it
may not be clear why particular types of items are grouped together within each domain.
Finally, few discuss how to link and equate test forms when reporting subscores.

In order to fill in the above gaps and to explore solutions to the questions, this research
study applied the multidimensional item response theory to report subscores for a large-scale
international English language test. Different statistical and psychometric skills and methods
were used to analyze the dimension structure, the clusters for reporting subscores, and to link

individual test forms to provide comparable and reliable subscores.



The results show that there are seven distinct dimensions that capture the
variation among examinee responses to items in the data sets. For each different form, there are
different number of clusters identified. Moreover, each cluster corresponds with a unique
reference composite. Across all five test forms, there are 6 — 8 clusters identified. There is a
consistency of the dimensional structure across these five forms based on the parallel analysis,
exploratory and confirmatory factor analysis, cluster analysis and reference composite analysis.
The nonorthogonal Procrustes rotation linked each individual form with the base form and
rotated the subscores from individual forms back to the same base form so that the subscores
identified from different forms were comparable.

In conclusion, this research provided a systematic method to report subscores using
multidimensional item response theory. Such procedures can be replicated and applied for
different test programs. Large amount of missing values and small sample size for each
individual form were limitations in this study. For future research, | would suggest using large-
scale data sets with few missing values. For each individual test form, the sample size should be

better larger than 450, such as 600 to 800.
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CHAPTER 1
INTRODUCTION OF THE RESEARCH QUESTIONS

It all starts with an interesting idea — how to report valid and reliable subscores. In other
words, this research targets the consistency, the reliability, and the interpretability of subcores
across different test forms within a multidimensional score space. Subscores are scores for
different sub-categories or sub-constructs. There are more than one hypothetical construct to be
measured for a test. Meanwhile, for testing security purpose, a test program should have more
than one test forms. These different test forms are supposed to measure the same multiple latent
abilities, skills, knowledge or constructs from examinees. Therefore, subscores from examinees
on different test forms should be interchangeable and comparable. In this research, a new
systematic methodology was developed to provide solutions to these questions as well as to share
insights on the application of subscore reporting in educational measurement field.

1.1  Popularity of Subscores

There is an increasing interest in subscores in educational testing because subscores have
potential benefits in remedial and instructional application (Sinharay, Puhan, & Haberman,
2011). Users of score reports are interested in receiving information on examinees’
performances on subsections of an achievement test. These scores “typically are referred to as
‘subscale scores,” ‘subtest scores,” or more generically, ‘subscores (Ferrara & DeMauro, 2006, p.
583).”” For example, instructors and parents are interested to know whether English as a Second
Language (ESL) students perform speaking as well as writing in an English language test.

Policy makers, college and university admissions officers, school district administrators,
educators, and test takers all want subscores to help them make decisions for both admission and
diagnosis purposes (Monaghan, 2006). The National Research Council report "Knowing What

Students Know™" (2001) emphasizes that the goal of assessment is to provide useful information



for examinees' knowledge, skills and abilities. Also, the U.S. Government's No Child Left

Behind (NCLB) Act of 2001 requires that students should receive diagnostic reports that allow
teachers to address specific diagnostic needs. Subscores can be used to identify such particular
information for examinees and to report diagnostic analyses for teachers (Sinharay et al., 2011).

According to Sinharay et al. (2011), various researchers have proposed different methods
for examining whether subscores have adequate psychometric quality. For example, Stone, Ye,
Zhu, & Lane (2010), Wainer et al. (2001), and Sinharay, Haberman, and Puhan (2007) applied
different factor analysis procedures to explore the distinctiveness of subscores. Harris and
Hanson (1991) used the beta-binomial model to analyze whether subscores have added-value
over the total score. Another approach to address this issue is to use a multidimensional item
response theory (MIRT) model (e.g., Reckase, 1997; Ackerman, Geierl, & Walker, 2003) to
analyze the structure of the item response data. See von Davier (2008), Haberman and Sinharay
(2010), and Yao et al. (2007) for a detailed description of such methods. Also, Ackerman and
Shu (2009) used the dimensionality assessment software programs such as DIMTEST (Stout,
1987) and DETECT (Zhang & Stout, 1999) to identify subscores. Haberman (2008a) and
Sinharay (2010) used classical-test-theory-based methods to determine whether subscores have
added value over the total score.

Most of the research regarding subscore reporting takes one of two approaches. One
focuses on the application of dimensionality analysis using such procedures as factor analysis,
MIRT models, and dimensionality assessment software programs to identify subscores for tests
that were constructed to yield a well-supported total score (essential unidimensionality). The
other approach focuses on the classical-test-theory-based methods, such as those implemented by

Haberman and Sinharay's.



1.2 Myth of Reporting Subscores in Current Research

However, among these current subscore research reports, few address the following
issues. First, in most research, the number of subscores, the number of items in each subscore
domain and the item types in each domain are already fixed according to the classification
produced by test developers and content experts. As a result, the distinct domains defining
subscores may not be clearly defined in a technical psychometric sense. Also, little information
may be provided to show there are enough items in each domain to support reporting useful
scores. For example, are 16 items in a particular domain sufficient to represent the skills and
knowledge included in that domain? Moreover, it may not be clear why particular types of items
are grouped together within each domain. The analyses focus more on supporting the subjective
classification of items into domains rather than determining the sets of items that form coherent
sets that merit reporting as subscores.

According to the Standard 5.12 of the Standards of Educational and Psychological
Testing (American Educational Research Association [AERA], American Psychological
Association [APA], & National Council on Measurement in Education [NCME], 1999), "Scores
should not be reported for individuals unless the validity, comparability, and reliability of such
scores have been established”. Also, the Standard 1.12 further clarifies:

When a test provides more than one score, the distinctiveness of the separate scores

should be demonstrated, and the interrelationships of those scores should be shown to be

consistent with the construct(s) being assessed. (p. 20)

The requirements implied by these standards stimulated the following questions. Can the
subscore structure defined by the test specifications be supported with empirical evidence about

the number of domains, the relationship of item types to domains, and the number of items



within each domain? If the dimensional structure of the test is not appropriately identified, then
reporting subscores based on such fixed domains may not be meaningful.

Second, almost no research focuses on the dimensional structure of the test across
multiple forms. In most research, the data sets are either from simulations or from a single set of
real test data without the number of missing values minimized. Using multiple forms to support
the inferences about the dimensional structure of the test for reporting subscores is very
important for showing the generalizability of the results. This is especially important when
subscores are reported for diagnostic purposes for multiple groups of examinees with differences
in demographic and language background.

Third, research articles do not emphasize that the dimensionality needed to model the
response data from a test is not only a feature of the test items but also a function of the
dimensions of variability of the examinees. The reason for reporting subscores is to diagnose
distinctive abilities or skill levels of examinees. Thus, when considering the dimensionality of
the response data from a test that is supposed to support subscores, we need to take into account
the characteristics of the examinees. Reckase (2009) showed that “"the number of dimensions
needed to model the item response matrix may be different depending on the amount of
variability on the dimensions in different samples of examinees (p.183)."

Furthermore, in most research studies the subscores are considered for one test form. In
reality, there are multiple test forms designed and pre-equated for examinees taking on different
test dates. Instructors, policy makers, and school administrators want to compare the subscores
across different examinee groups in different areas on different test dates. Therefore, linking and
equating multiple test forms when reporting subscores is an essential procedure to ensure the

validity and reliability of score reporting.



During test development, multiple test forms are often equated under one hypothetical
construct, which is based on a unidimensional model. However, when reporting subscores, there
are multiple hypothetical constructs. Each test form measures more than one hypothetical
construct. The unidimensional assumption is violated. Therefore, how to link and equate test
forms using multidimensional item response theory (MIRT) when test forms were originally
designed and equated using unidimensional IRT is an interesting part for this research.

Given the issues identified in the research literature on subscores, three major research
questions were identified as the focus for the research reported here. First, can MIRT methods
be used to identify a reasonable subscore structure for a large-scale test that is well fit by a
unidimensional model? This question is addressed in the context of real test data with multiple
test forms and the associated problems of missing data. Second, is there evidence that the
multidimensional subscore structure generalizes over multiple forms from the same test?
Finally, if a subscore structure is identified across multiple test forms, how to link and equate
multiple forms to report meaningful subscores that are comparable and interchangeable across

different test forms for different examinee groups.

1.3 Research Questions

The data for this research came from a relatively new test of English for those who have
other first languages — the Pearson Test of English Academic (PTEA) (Pearson Longman, 2010).
This test was selected for analysis because it has thorough coverage of the components of
English language and item response data were available from individuals from a number of
different countries and language backgrounds. There are some complexities in the use of the

data from this program, however. The PTEA has many different test forms and a complex



pattern of common items between forms. This makes the analyses of the data from this program
challenging. However, through careful analysis, these challenges were overcome and the data
were used to address the following specific research questions.

1. How many distinct dimensions are needed to accurately describe the relationships
between the test items for the current heterogeneous sample of examinees? In particular,
IS more than one dimension needed?

2. If more than one dimension is needed to represent the relationships among the test items
for the current sample of examinees, are there clusters of items that are sensitive to
distinct combinations of skills and knowledge and are these clusters related to known
constructs of language performance?

3. If meaningful clusters can be identified, are they specific to one form of the test or do
similar clusters appear for more than one form? That is, do multiple forms replicate the
complex structure of the language constructs?

4. If replicable clusters can be identified in each test form, how to link and equate different
test forms so that subscores from examinees taken in different places on different dates
can be comparable and interchangeable?

The results of investigations related to these research questions were used to determine if
it is meaningful to report subscores on a large scale test with multiple test forms even though the
item response data are well fit by a unidimensional item response theory model when the full
examinee sample that is composed of multiple groups is analyzed. Multidimensional item

response theory (MIRT) was the main methodology for investigating the research questions.



CHAPTER 2
LITERATURE REVIEW

2.1 Item Response Theory (IRT)

“Item response theory (IRT) is a family of statistical models used to analyze test item
data” (Yen and Fitzpatrick, 2006, p. 111). IRT estimates the characteristics of test and
examinees using a statistical procedure and states how these characteristics interact in defining
item and test performance. IRT models describes the relationship between item scores and
examinee ability levels and item parameters using nonlinear functions. The core of IRT models
is to relate the probability of getting an item right to an examinees’ abilities given the particular
responses to an individual item. It is convenient to assume that the responses to individual items
are conditionally independent. Lord (1980) states the local independence principle as the
probability of success on item i given 6 is equal to probability of success on item i given both 6
and the examinee’s performance on items j, K, ..., and so forth. For three items i, j, k, the
mathematical equivalent for local independence is

P =1u =1u =1]8) =Py = 110) P(u; = 1|6) P(u, = 1|6) (1)

2.1.1 Types of Item Data

Different types of item responses are associated with different item scores. Item scores
can be dichotomous (having only two possible outcomes — either correct or incorrect). They can
also be polytomous (having more than two possible outcomes). Most constructed-response items
or open-ended response items have more than two score categories. For example, polytomous
item score rubrics could be 0 = inaccurate answer, 1 = partially correct answer, 2 = completely
accurate answer; for rating scales, 1 = completely disagree, 2 = disagree somewhat, ... , 5=

strongly agree (Yen and Fitzpatrick, 2006, p. 112).



2.1.2 Dimensionality

IRT models use examinee parameters, such as person parameters, traits, proficiencies, or
abilities to describe the dimensions representing important differences in examinees’
performances measured by the test items. These dimensions are referred to as “abilities”. In
educational measurement field, they can be called proficiencies, knowledge, skills, attitudes, or
other characteristics. According to Yen and Fitzpatrick (2006), models that use only one ability
to quantify the differences among examinees and among items are unidimensional IRT models.

Models that use more than one ability are multidimensional IRT models (p. 112).

2.2 Unidimensional IRT (UIRT) Models for Items with Two Score Categories

2.2.1 One-Parameter Logistic Model

The simplest commonly used UIRT model is one-parameter logistic model. It uses one
parameter to describe the item characteristics and one parameter to measure person ability. This
model can be represented by

B B o0
P(Uij - 1|9j'bi) - 6,-b (2)

where u;; is the score for Person j on Item i. 1 means the examinee answers the item correct. 6;
is the person characteristics parameter that describes Person j’s latent ability or achievement
level on a continuous scale related to the performance on Item i. b; is the item characteristics
parameter that describes the item difficulty. The larger the b; value, the more difficult the item.
P is the probability of Person j answering Item i correctly. If person A is more capable than
person B, then for the same item with equal b; value, person A has a higher probability — larger

P — than person B.



2.2.2 Two — Parameter Logistic Model
Birnbaum (1968) proposed the two-parameter logistic model to introduce a slightly
complex concept of the discrimination parameter, a;. The mathematical expression for the

model is

e al-(ej—bl-)

=R 3)

P(U;; =116}, a;, b;) =
where a; is the discrimination parameter and the other symbols have the same definition as those
given in one-parameter logistic model. The discrimination parameter reflects the strength of the
relationship between probability of correct response and person ability. It indicates the rate of
change in probability regarding the unit change of ability scale. A large discrimination
parameter means a small change in ability will result in a big change of probability for correct

response. It shows how strongly an item can discriminate the ability level when item difficulty

does not change.

2.2.3 Three — Parameter Logistic Model

Within person-item interaction there is another feature that indicates low ability
examinees can still have the possibility to get an item correct. This characteristic of an item is
named as its “guessing” parameter. It represents the empirical observation that a person can get
an item right by guessing one of the options from a multiple-choice item. The mathematical

formula for the probability of a correct response to the item is given by

e ai(ej—bi)

P(Uy; =116, a; by, ;) :Ci+(1—Ci)W, (4)
where c; is the guessing parameter. Therefore, different from the other two UIRT models, the

asymptotic probability with extremely low ability examinees to get an item right is no longer



zero but ¢;. It is very unlikely that the probability of a person with even no knowledge of the

correct answer to get a multiple-choice item right will be zero.

2.3 Unidimensional IRT Models for Items with More than Two Score Categories
Different IRT models are used to describe different item data. Since the required
responses for different types of items are different — generating writing samples, solving
mathematics problems, and rating statements, the IRT models that describe the item/response
interactions are different as well (Reckase, 2009, p. 32). The most commonly used IRT models
for polytomous items are — the partial credit model (Masters, 1982), the generalized partial credit
model (Muraki, 1992), and the graded response model (Samejima, 1969). The partial credit

model family is the focus of this research.

2.3.1 The Partial Credit Model

The partial credit model is appropriate for items that require successful accomplishment
of a number of tasks. It is designed for items with two or more ordered-score categories. The
partial credit model considers each score category as correct/incorrect or accomplished/not
accomplished. In order to receive the maximum score, examinees need to complete all tasks
correct. Therefore, the scores on the item represent different levels of performance. The higher
score indicates the examinees have accomplished more desired tasks. The boundaries between
adjacent score categories are called thresholds. An examinee’s performance is associated with a
particular probability on either side of a threshold. At each threshold, the item can be scored
dichotomized reflecting the probability of a response either above or below the selected

threshold corresponding to a particular score category.

10



The mathematical formula of the partial credit model is

oZti=0(8=8i2)]

P(ul] = klej) = Zmi e[ZZ:o(gj_Siu)] ) (5)

v=0

where k is the score on Item i, m; is the maximum score on Item i, and §;,, is the threshold
parameter for the uth score category for Item i. The threshold parameter shows where the

adjacent score categories have equal likelihoods.

2.3.2 The Generalized Partial Credit Model

Muraki (1992) first proposed the generalized partial credit model. It is an extension of
partial credit model with the addition of the discrimination parameter, a, to the former one. The
difference between the two is similar to the difference between the one-parameter logistic model
and two-parameter logistic model. The mathematical formula of the generalized partial credit
model is

k
e [Zu_=1 Dai(gj—bi+diu)]

P(wij = k|6) = s IEE=1 Da(0)=bytdiy)] | ©
v=1

where k is the score on Item i, m; is the maximum score on Item i, and d;,, is the threshold
parameter for the uth score category for Item i. b; is the overall difficulty of the test item and a;
is the overall discrimination parameter of the item. It is assumed to be the same across all

thresholds but can be different across different items.

2.4 Multidimensional Item Response Theory (MIRT)
MIRT is a model or theory that idealizes the psychological and educational measurement
in reality. It approximates the relationship between peoples’ capabilities and responses to test

items. In other words, it states the relationship between people’s locations in a multidimensional

11



space and the probabilities of their responses to a test item (Reckase, 2009, p. 58). The
mathematical models that represent such relationship are MIRT models because they assume
multiple hypothetical constructs influence people’s performances instead of only one
hypothetical construct (Reckase et al., 1988).

If unidimensional IRT is designed to capture the dominant capability of a person, then
MIRT is designed to dig deeper to discover the multiple capabilities of a person given the
responses from a test item. How the human mind works is a timelessly interesting and
fascinating topic for centuries. Tracing back millennia, Plato teased out why human beings
could come to know things we had not known before. Avristotle endeavored to virtually
encompass all facets of intellectual inquiry. Kant set the foundation of how human mind would
structure human experience. What we conceive and perceive will influentially infect what we do
and how we do. In testing and measurement theory, according to our responses to different items
— which can either be from academic achievement tests or psychological and mental tests,
researchers are able to analyze how human mind works and the characteristics of a person.

The characteristics of a person are measures of hypothetical constructs. The MIRT
models relate the probability of a response to person characteristics rather than to the response
itself. Since the models relate probabilities of getting test items right to the characteristics of
persons, they are named as “item response theory” (IRT) models. These MIRT models are
different from other IRT models in that they assume there are multiple hypothetical constructs
influence the performances on test items instead of only one hypothetical construct (Reckase,

2009, p. 59). The basic form of MIRT models is

P(U =ul6) = f(u,6,y), (7)
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where U is the score on the test item for a person, u represents the value of possible scores
assigned to that person given the test items, @ is a vector of parameters describing the location of
the person in the multidimensional space, and y is the vector of parameters describing the
characteristics of the test item.

In this research, the models for the analysis are the multidimensional 2PL compensatory
model and multidimensional generalized partial credit model. The multidimensional 2PL
compensatory model was used to calibrate dichotomous items. The multidimensional

generalized partial credit model was applied to estimate the parameters of polytomous items.

2.4.1 Multidimensional 2PL Compensatory Model

aie'-+di

PWﬁ=1WM%¢)=i%%E; (8)

e

P is the probability of correct response. U is the response string with 0 indicating
incorrect and 1 for correct responses. 6 is a vector of people’s abilities indicating the number of
dimensions in the coordinate space, since there are multiple hypothetical constructs. a is a vector
of item discrimination parameters and d is an intercept term, a scalar. i is a subscript of item and

j is a subscript of people.

2.4.2 Multidimensional Generalized partial Credit Model

1_gk
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K; defines the maximum score for Item i. The lowest score is 0. There are K; + 1 score

categories. The score to a person on the item is represented by k=0, 1, 2, ..., K;. B;,, IS the
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threshold parameter for score category u and f;, is defined to be 0. All the other symbols were

defined previously.

2.4.3 Statistical Description of Item and Test Function in MIRT

In UIRT, the item difficulty parameter indicates the value on the 6 scale that corresponds
to the point of the steepest slope for the item characteristic curve (ICC). The discrimination
parameter is related to the slope of the ICC at the steepest point. The interpretation of difficulty
and discrimination parameters in UIRT can be generalized to the MIRT.

In MIRT, we use item response surface to represent the relationship between
multidimensional abilities and the probability of getting the item right because the location of a
person is no longer on a unidimensional scale — not on a line but in a multidimensional space.
The slope of a surface changes with the direction of the movement along that surface. Therefore,
the point where the steepest slope is in a surface is determined by the direction of the movement.

Reckase (2009) points out that at each point in the 8 — space, there is a direction
indicating the maximum slope at that particular 6 location. Suppose the entire multidimensional
space is considered and the slopes in all directions at each point are evaluated. Then, there exists
a maximum slope overall for a particular item. But, this is only true for a compensatory model.
It is not true for all possible surfaces. Thus, the value of that maximum slope can be taken as a
best measure of the capabilities of a test item for distinguishing between 8-points along the
direction of the greatest slope.

The difficulty parameter “b” in UIRT shows the distance between the origin “0” of the
unidimensional scale to the point on the 8 — scale corresponding to the location of the point of

steepest slope of ICC. The sign of the b — parameter indicates the direction from the 0-point to
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the 6 point. The negative sign means the distance is to the left of the 0 — point while the positive
sign indicates the right side. The larger the b — parameter is, the harder the item is.

A similar conceptualization for the difficulty parameter can be developed for MIRT
models. In MIRT, the multidimensional difficulty is the distance from the origin of the 8-space
(usually the 0-vector) to the @-point that is below the point of the steepest slope for the
multidimensional surface. The associated sign indicates the relative position of the 8-point to
the origin of the @-space (Reckase, 2009, p. 114).

Our goal is to use these statistics to determine the point where the steepest slope is for the
surface in the @-space and the distance from the origin 0-vector to that point. The idea of
introducing the distance from the origin to the steepest slope point is helpful to reparametrize the
measure of item difficulty in MIRT. Reckase (2009) proposed a different representation of each
point in the B-space. Instead of using a vector of @-coordinates, each point can be represented
by a vector of angles from each coordinate axis and a distance from the origin.

In an m-dimensional space, m — 1 angles can be computed from the 6-coordinates using
trigonometric relationships. The last mth angle can automatically be calculated since the sum of
squared cosines must equal to 1. The relationship between the distance from the origin, the
directions from the axes, and the coordinates of the 8-point on each of the axes can be
represented by the following formula:

6, =(cosa,, (10)
where 6, is the value of the coordinate of the 8-point on dimension v, ¢ is the distance from the
origin to the point, and «,, indicates the direction from the axes, which is the angle between the

vth axis and the line from the origin to the point.
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If we substitute the exponent part in compensatory multidimensional 2PL model with the
above direction and coordinate formula, then the multidimensional 2PL model can be given by

m
e({j Y1=1 @i cos “jl)"’di

P(U; = 11¢, a5, a;,d;) = (11)

140822 ajcos aj)+d;’
where {; is a scalar parameter for Person j indicating the distance from the origin to the location
of the person, q; is the vector of angles between the coordinate axes and the line extending from
the @-point to the origin in the multidimensional space. The @-point represents the location of
Person j in the 8-space. Note, the vector a; has m elements, but only m-1 of them need to be
estimated to make the sum of squared cosines equal to 1.

To find the steepest slope of the surface along the direction specified by the angle-vector
a; in the @-space, we first need to take the partial derivative of the equation 11 with respect to

{; to obtain the slope expression. The partial derivative is given in

opP(U;=1(¢j.ai.a),d;)
Te = P;jQij XiZ1 ay cos ajy (12)
]

From equation 12 we can find that the slope of the item response surface in the direction
specified by «; is dependent on the probability of getting the item correct, the a-parameter, and
the angles with axes indicated by a-vector. If the angle with an axis is equal to 0°, then its

cos aj; = 1 while all other cosines are 0. Thus, the slope associated with that particular
coordinate axis [ simplifies to P;;Q;;a;. This is the slope for unidimensional 2PL model, since

this item only measures the dimension which is exactly the same as coordinate axis [ when the

angle between the axis [ and the origin to that point is equal to 0.
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To calculate the steepest slope in the direction specified by a-vector, we need to take the
second derivative of the item response function defined in Equation 11 with respect to {; and
then solve for the value of {; when setting its second derivative to 0. The second derivative is
given by

6P(Ui-=1|(-,ai,a-,dl-) 2
d 6(} ! = (Zﬁl a;; COs ajl) Pl](l - 3PU + ZPL?])’ (13)

Setting the equation equal to O results in three solutions. Among the three, only one will have
finite value of ¢;. That is when probability P is equal to 0.5 and the exponent part in item

response function ({; X%, a;; cos a;;) + d; is equal to 0. Thus, {; is

— —di
Ytiajcosaj

{j (14)

It indicates the distance from the origin to the 6-location in the 8-space where item response

surface has the maximum slope along the direction specified by a-vector (Reckase, 2009, p.

116). From equation 14 we could also derive the formula showing the location of the point of

. . . . —d . .
maximum slope along a particular axis [ is — because all of the cosines will be 0 except for the
il

axis L.
The value of the slope at the steepest point in the item response surface along the

direction specified by a-vector is

iZ{Zl a; cosaj (15)
where the probability of getting the item correct is equal to 0.5 as shown in Equation 11. The
direction of slope can be obtained by taking the first derivative of the slope equation. Thus, to

solve for the direction of the steepest slope from the origin of the 8-space, we need to

differentiate the equation 15 with respect to cos a and set it as 0. The calculation must be solved
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under the constraint that the sum of the squared cosines is equal to 1. The result is given in

Formula 16

Ay — Ay — =0, forl=12..,m—1 (16)

COS Ajm

where cos?a;, = 1 — Y1 cos?a;,. Thus, the cosine of the corresponding angles with the
steepest slope are given by

i (17)

COs @y ===
f k=1%k

Taking the arccosine of the cos a;;, we get the angles that indicate the direction from the origin

of the @-space to the point having the greatest slope considering all possible directions. These
angles and cosines are characteristics of the item in MIRT (Reckase, 2009, p. 117). The cosines
can be referred to as direction cosines.

Furthermore, the distance from the origin to the point of steepest slope in the direction

specified in formula 17 can be presented by

Bi = 4 y (18)

m 2
1’Zk=1 Aik

where B; is the multidimensional difficulty of the test item. Also, the multidimensional

discrimination parameter for Item i can be represented by
A= |XiLaf (19)

Therefore, the relation between the multidimensional difficulty and discrimination parameters is
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2.4.4 Reference Composite

Reference composite is one of the ways to summarize the set of item characteristics in
MIRT. The basic idea is to use a unidimensional scale to represent the test items in a
multidimensional space. The orientation of this line indicates the direction of best measurement
underlying the performance on the set of items. “This is the line in the multidimensional space
that represents the unidimensional scale (Reckase, 2009, p. 126).” If we apply a unidimensional
IRT model to analyze the item-response matrix with multidimensional structure, then the
obtained estimates are the projections of the multidimensional 68-points on that unidimensional
6-scale in the multidimensional space.

Wang (1985, 1986) proved that the unidimensional 8-line represents the 6-estimates
related to the characteristics of the matrix of the discrimination parameter a for the
multidimensional compensatory model. Here, the orientation of the reference composite is given
by the eigenvector of the a’a matrix corresponding with the largest eigenvalue of that matrix.
Note that the sum of the squared elements of the eigenvector is equal to 1. Therefore, the
elements of the eigenvector can be considered as the direction cosines. These direction cosines
indicates the orientation of the reference composite and the coordinate axes of the 6-space. The
angle between the reference composite and the coordinate axes can be derived by taking the
arccosine of the elements of the eigenvector. According to Reckase (2009), the reference
composite tends to be oriented along the direction of the steepest slope from the origin of the

multidimensional 8-space regarding the test characteristic surface.
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2.4.5 Analyzing the Structure of Test Data

One common application of MIRT is to analyze the dimension structure of an item
response data set. There is a long history of research approaches on determining the number of
dimensions to capture the correlations among the data set using factor analysis. Major studies
having carried forward to this day that can be performed on MIRT analysis are summarized in
the following paragraphs.

Holzinger and Harman (1941, pp. 64-68) provided the expression for determining the
number of variables needed to support the estimation of the factor loadings for m independent
factors. The mathematical formula is

n> % vem+l (18)

where m is the number of factors and n is the number of variables needed to support the
estimation of the m factor loadings. The formula is under the assumption that there is no error in
the estimation of correlations. Thurstone (1947) recommended that the number of variables
needed for a plausible analysis with m factors should be “two or three times greater” than that
number. He also specified a principle of factor analysis that has been influential over the years
on MIRT analyses. “The scientific problem is to account for as much as possible of the relations
between tests by the smallest possible number of common factors” (Thurstone, 1947, p. 82).
However, the early work of factor analysis concentrated much more on stipulating the
amount of data for an analysis with a specified number of dimensions than the solution to
determining the number of dimensions needed to model the data (Reckase, 2009). As computer
technology improved, solving the issue of number of dimensions was achievable. Reise et al.
(2000) summarized the research on determination of number of dimensions by concluding that it

is better to overestimate the number of dimensions than to underestimate them. They suggested
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scree plots, parallel analysis and analysis of residual correlation matrix are as good as more
elaborate procedures for specifying the dimensions needed to model a matrix of test data.

Reckase (2009) clarifies there is no true number of factors, but through different
statistical and psychometric methods can researchers identify a sufficient number of dimensions
needed to accurately represent the major relationships in the item response data. He states too
few dimensions will result in projecting the complexities of the relationship into a smaller space
than is sufficient to represent the relationships. If the number of dimensions used to model an
item response matrix is minimized on purpose to only diagnose the major constructs of the data
matrix, then the meaning of constructs will be confusing rather than illuminating. According to
Reckase (2009, p. 182), this can occur because the locations of people and items are projected
from a high multidimensional space onto a lower dimensional space, which makes person
locations seem close when they are not and items seem to be sensitive along the same
dimensions when they are not. These situations happen because person locations or item vectors
may be projected on top of each other when there are really large distances between them in a
higher dimensional space.

Moreover, “the number of dimensions needed to accurately model the relationships in the
item response matrix is dependent on two aspects of the data collection process — the number of
dimensions on which people taking the test differ and the number of dimensions on which test
items are sensitive to differences” (Reckase, 2009, p. 182). If a group of examinees are carefully
selected to be capable on only one dimension, then even the items are designed to measure more
than one constructs the total item response matrix can represent the differences on only one
dimension. The same thing happens if the set of test items are designed to measure only one of

the dimensions of variability of the examinee population, the data matrix will be analyzed to be
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well fit by a model with a single ability 8 no matter how many abilities the examinees may
capture. Therefore, Reckase (2009) points out that “the number of dimensions needed to
accurately model a matrix of item response data is the smaller of the dimensions or variation for
the people and the dimensions of sensitivity for the test items (p. 182).”

A prominent implication setting the stage of this research is that the dimensions of
variability not only depends on the set of items but also on the sample of examinee groups. The
number of dimensions needed to model the variations among the item response data will be
different given the different sets of items and different examinee groups. The multidimensional
nature of test data is determined by the variations from both items and examinees (Reckase,
2009).

However, few of the current research studies on reporting subscores undertake this
premise. Most research do not check the dimensionality analysis and assume that the number of
subscore category classified by item writers or content developer is appropriate and correct.
Such an assumption does not reflect the multidimensional nature of the whole data set but the
test design only from content developers’ perspective. If the number of dimensions is poorly-
defined and the items clustered in one dimension actually do not measure the particular content
those item are designed to measure, then the subscores reported on these clusters cannot be
trustable even though the statistical methods to calculate the subscores could be reasonable.

When reporting subscores using latent variable 8, most researchers would apply MIRT
models, higher-order IRT models, or even cognitive diagnostic models. All these models require
the identification of multiple constructs/dimensions/abilities/clusters. If the classification of
items are inappropriate, then the results will be misleading. When applying unidimensional

models, we do not have such concerns since there is one and only one underlying construct/latent
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variable/dimension/cluster. However, when transferring from a unidimensional scale to a

multidimensional space, the valid and meaningful dimensionality analysis is required.

2.5 Procedures for Determining the Required Number of Dimensions

2.5.1 Parallel Analysis

Parallel analysis is one approach for determining the number of dimensions needed to
describe the interactions between variables in a data set (Reckase, 2009). It has been described
by Ledesma and Valero-Mora (2007) and others. It has a long history in the factor analysis
literature when Horn (1965) first mentioned it in the last century. Parallel analysis has two
procedure. The first step is to apply a dimensional analysis by performing the eigenvalue
decomposition based on the inter-item correlations of the item-score matrix. After obtaining the
eigenvalues and eigenvectors, the eigenvalues can be plotted against the number of dimensions
extracted from the data matrix using a traditional scree plot. The eigenvalue decomposition was
programmed using the default operation in Matlab (2015a).

The second step is to simulate a set of test data that has no relationship among the items
but has the same proportion correct for each item as the real data and the same sample size. The
simulated data set is then analyzed using the same eigenvalue decomposition procedure to obtain
the eigenvectors and the associated eigenvalues. Since the simulated data has the same
proportion correct for items as the real data, the difficulty factors generated from the simulated
data set should be the same as from the real data. Thus, the eigenvalues from the simulated data
are then plotted on the same scree plot with the eigenvalues from the real data using the same
number of factors. The larger number of eigenvalues from the real data is then determined. That

number is the number of dimensions suggested by the parallel analysis. Ledesma and Valero-
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Mora (2007) suggest replicating the procedure of simulating data from the real data with the
same proportion correct and same sample size for a number of times to estimate the sampling

variations of the eigenvalues.

2.5.2 Clustering Analysis

Clustering analysis is another approach to determining the number of coordinated axes
needed to model the relationships in the data set (Reckase, 2009, p. 220). The number of clusters
does not necessarily represent the number of dimensions needed for the data set. Instead, the
number of clusters from the clustering analysis sets the upper limit of the number of coordinate
axes in the multidimensional space that supports the dimensional structure in the data set. It is
feasible to use fewer dimensions than clusters to model the relationships in the data matrix. The
smaller set of dimensions are sufficient to represent such relationships.

There are two steps to determine the clustering of items. The first step is to measure the
similarity between items. The second one is to decide for the algorithm for forming clusters.
Many options are available for both of these two decisions in clustering analysis literature. In
MIRT application, two major methods can be adapted for each of the two decisions. For the
measure of similarity between items, Miller and Hirsch (1992) proposed to compute the angle
between each pair of item arrows. The other option is to measure the conditional variance
between the items.

Kim (2001) analyzed a number of clustering methods regarding the measure of similarity
between items and concluded that the Ward’s method (1963) could recover the underlying
structure of the multidimensional data more precisely than other alternatives. The

implementation of Ward’s method for clustering is further explained in the following section.
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Suppose the vector a; contains the angles between item arrow and coordinate axes for
Item 1 and the angles with the coordinate axes for the item arrow for Item 2 are in vector a,.
According to Harman (1976, p. 60), the angle between Item 1 and Item 2 can be calculated by
the inverse cosine of the inner product of the cosines of the angles with each of the coordinate
axes for each item:

@, = arccos(cosayay) (19)
Note that a, is a scalar value since the two lines extended from two item arrows will intersect at
the origin of the multidimensional space. Also, two intersecting lines will fall within a two-
dimensional plane. Therefore, only one angle can be obtained between two lines extended from
two item arrows.

In MIRT literature, the Formula 19 can be substituted by the discrimination parameter a
for the items. The relationship between the angles between two item arrows and the MIRT

discrimination parameters a can be represented as

coSa 1, = (20)

a, az
\/Zﬁﬂfz \/Eﬁﬂ%l
According to the formula in (11), if two item arrows are aligned with each other, then the angle
between them is equal to 0. If two item arrows are orthogonal to each other, then the angle
between them is 90°. Therefore, as the angle increases, the items will have their corresponding
directions associated with the maximum discrimination parameters in different directions in the
0-space.

Harman (1976, p.63) proves that the cosine of the angle between two variables, in MIRT
test items, is the correlation between the two items. In other words, the continuous latent
variables underlying the performance on two items are correlated given the angles between the

items. For example, when two items point in exactly the same direction, the angle between them
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is 0°. The cosine of 0° is equal to 1, indicating that the correlation between the continuous latent
variables underlying the performance on these two items is 1. On the other hand, if two item
arrows point at right angle to each other, then there is a zero correlation between the underlying
continuous latent variables because the cosine of 90° is 0. In MIRT, the input data for clustering
analysis is the matrix of angles between all possible pairs of test items (Reckase, 2009, p. 221).

When clustering items using Ward’s method in MatLab, the items that have the smallest
angles in-between will be clustered together. Later, the program will select items that have the
second smallest angles between the items that have already been clustered and create new
clusters with those old clusters. These procedures will be repeated until all the items in the data
set have been grouped within appropriate clusters. Therefore, the final cluster dendrogram
shows that the items measuring the similar knowledge and skills are grouped together while the
items measuring distinct combination of knowledge and skills are classified into different

clusters.

2.6 Transformation of Parameter Estimates between Coordinate Systems for Different

Test Forms

2.6.1 Test Forms and Test Specifications

Millman and Greene (1989) defined a test form a set of test questions that is designed
based on content and statistical test specifications (as cited in Kolen and Brennan, 2004, p. 2).
Test specifications are the blueprints that test developers will use to “ensure that the test forms
are as similar as possible to one another in content and statistical characteristics” (Kolen and
Brennan, 2004, p.2). Multiple test forms are used to maintain test security. Most test forms are

constructed using the same test specifications and are considered as equivalent test forms.
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From each test form, an item-response matrix data set can be collected. If we run the
clustering analysis for a particular test form, then there will be a specific multidimensional space
— coordinate system defined for that test form. For multiple test forms, there can be different
corresponding coordinate systems defined. After identifying different clusters of items in a
coordinate system for each individual form, we want to compare the subscores obtained from
different clusters across different test forms.

In order to compare the subscores from different clusters in different test forms, we need
to transform the parameter estimates between different coordinate systems from different
multidimensional spaces. These parameters are item parameters and person parameters from
different multidimensional item response models using both dichotomously-and-polytomously
scored items. In the IRT literature, the invariance and indeterminacy are often discussed.

For MIRT model, there are three types of indeterminacy — placement of the origin,
selection of units of measurement along axes, and orientation of the axes. In all cases, the
locations of the persons and the characteristics of the items are invariant. In other words,
“proficiencies and other characteristics of the persons will remain constant and the sensitivity of
items to differences in persons’ characteristics will be the same (Reckase, 2009, p. 235).” This
results in the invariance of item-person interaction which generates the same probability of
response for the person to the test item.

Therefore, the invariance of the MIRT model indicates that the probability of the selected
response do not change with the change in the coordinate system. The indeterminacy of MIRT
model means that the results obtained from different coordinate systems should be equally good.
Thus, the users need to make the decision of what origin, units, and orientation of axes are most

convenient for a particular test design and measurement application (Reckase, 2009).
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The invariance and indeterminacy of both UIRT and MIRT literature is commonly
defined and applied in item-person calibration software. For MIRT, there is no standard
coordinate system. Estimation programs will usually set their own system of convenience. One
typical method is to set the origin of the solution space to have a mean #-vector as 0-vector.
Another common choice in MIRT estimation program is to use the standard deviation of a
coordinate axis as the unit of measurement for that axis. Different estimation programs can set
units of measurement in different ways.

A third adjustment that is commonly used in MIRT estimation program is to fix the
correlation between coordinates axes to zero. Such constraint simplifies the statistical procedure
for parameter estimation because it forces to place the axes of the coordinate system in a
particular orientation. The zero-correlation constraint on coordinate axes also rotates the original
coordinates to yield better interpretation of the constructs being assessed associated with each
particular coordinate axis.

Before estimating the person and item characteristics using MIRT models, we needed to
select software that could satisfy the requirements of invariance and indeterminacy of MIRT
models. Chapter 3 — section 3.2.1 discusses the details of the selection of the software —

FlexMIRT and Mplus for parameter estimation in this study.

2.6.2 Recovery of the Rotation and Scaling Matrices

The space we are interested in MIRT is the space defined by the location of persons.
These locations are represented using @-vectors. The origin of the @-space, the rotation of
coordinates, and the units of measurement are all arbitrarily determined by people who apply the

MIRT analysis or people who write the estimation programs to estimate the model parameters.

28



The invariance property of the MIRT models should hold when applying the indeterminacy
property. In order to fulfill these properties, the expressions for the exponents of the MIRT
model and items should yield identical values. That is,

v'+{1 = af’'+d1, (21)
where v is the matrix of discrimination parameters for the transformed space, v is the matrix or
person parameters after transformation, and { is the intercept parameter after transformation.

If the transformation does not involve rotation of coordinate axes or change of the unit of
measurement, then the relationship between @ and v - the person location from the first
coordinate system and the second coordinate system is given by

v, =0; -6, (22)
where v; is the vector of coordinates for Person j in the new coordinate system, and 6; is the
vector of coordinates for Person j in the old coordinate system, and & is the vector representing
the location of the new origin using the old coordinate system. Therefore, the matrix equation
for converting the coordinates of the person locations from the old coordinate system to the new
coordinate system is

v=0-16, (23)
If the transformation includes the change of origin and unit of measurement, and the rotation of
coordinate axes, then the relationship between @ and v is given by

v = ORotC — 18'RotC, (24)
where Rot is the rotation matrix and C is the scaling matrix.

Therefore, given the above formulas of the relationship of person parameter

transformation between different coordinate systems, the relationship between item parameters
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before transformation to those after transformation can be determined by replacing the term of v
in equation x with equation xx. Thus, the left side of equation x can be transformed into

v(BRotC — 18'RotC)'+{1 = v(BRotC)' — (18'RotC)’' + {1

=vC'Rot’'@' — (16'RotC)’ + (1. (25)

Comparing the second line in Equation 25 with the right side of Equation 24, we obtain the
equivalent of a in

a = vC'Rot’ (26)

Since a and v can be obtained from the calibration, then the result can be solved for
C'Rot’. This solution requires the nonorthogonal Procrustes procedure to determine the rotation
and scaling matrices for the transformation of item parameters between two coordinate systems.
In Equation 26, a is used as the target matrix before transformation while v is the new matrix
after transformation. Here, the nonorthogonal Procrustes is used to determine the transformation
from v to a. The recovery of the rotation matrix and the scaling matrix can be represented as

C'Rot' = (W'v) Wa

M=C'Rot’ . (27)
where M is the rotation and scaling matrix to transform the parameters from the new coordinate
space to the old coordinate space. Once we obtain the matrix M, we can postmultiply M1 by
the subscores @’ in the new coordinate system to get the recovered subscores @ in the old
coordinate system. The formula is given as

0'=M"1¢0’ (28)

The rationale of this formula is to achieve the invariance property of MIRT model. That
is the location of persons do not change and the probability of getting items correct will not

change during the procedure of transformation. Thus, the exponent part - a@’ in any MIRT
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model should not be changed. When person parameter @ is transformed using R~* 8’, the item
parameter a also needs to be transformed by the rotation and scaling matrix M to achieve the
invariance property. The transformed a is given by

a=aM (29)

SinceMM™1=1,a0"=aMM™'0' = a@’', where MM~ = 1.

2.7 Linking, Scaling and Equating

Test centers report scores for different examinees taking tests on different test dates. For
international tests, examinees take tests in different countries. Therefore, test scores reported for
examinees taking tests in different places on different test dates should be interchangeably
comparable and interpretable. Dating back to early 20" century, Kelly (1914), Starch (1913),
Weiss (1914), and Pinter (1914) discussed the methods of putting scores from different tests into
comparable units. It was not until decades after the invention of scaling methods that the desire
to equate scores on alternative forms of the same test arose (Holland and Dorans, 2006, p196).
Levine (1955) and Lord (1980) made great contributions in the application of equating test forms

using classical test theory and item response theory.
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2.7.1 Unidimensional Linking, Scaling and Equating

Linking is a general concept of transforming scores from one test form to another.
Linking can be divided into three categories: predicting, scaling, and equating (Holland and
Dorans, 2006, p. 187). Predicting is to predict an examinee’s scores on one test form from other
information about that examinee, such as a score on another test form, demographic information,
and so forth (Holland and Dorans, 2006, p. 188). Scaling is to transform the scores from
different test forms onto a common scale so that the scores can be comparable from different test
forms (Holland and Dorans, 2006, p. 189). According to Kolen and Brennan (2004), “Equating
is a statistical process that is used to adjust scores on test forms so that scores on the forms can
be used interchangeably. [...] The process of equating is used in situations where such alternate

forms of a test exist and scores earned on different forms are compared to each other” (pp. 2 - 3).

2.7.2 Use Multidimensional Linking to Report Subscores across Different Test
Forms
In the MIRT context, people need to know the difference of examinees’ locations in the
coordinate system defined by the tests at two or more times. The determination of amount of
change in location requires putting item-and-person parameter estimates from two or more
different test forms into the same coordinate system. The goal is to report test scores using the

same reporting system (Reckase, 2009, p. 275).

2.7.3 ldentifying the Common Multidimensional Space
The first step in the application of linking is to specify a base coordinate system. Our

goal is to transform all the calibrated results of item and person parameters from different
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coordinate systems into this base coordinate system. Thus, the subscores obtained from each
individual test forms are comparable.

In order to achieve such goal, we need to keep the origin of the coordinate system, the
units of measurement and the rotation of coordinate axes consistent accordingly to those in the
base coordinate system. For example, one option is to use the same software to run the
calibration for each test form so that the invariance and indeterminacy properties of MIRT can
hold.

Therefore, the selection of the base coordinate system is very important. Instead of
selecting a default output from an estimation program, we need to thoughtfully consider how to
set up a base coordinate system in MIRT application. Unlike in the UIRT application, the
selecting of a base coordinate system in MIRT is much more complex. Not only do we need to
decide the location of the origin of the coordinate system, but also need to set the units of
measurement on each coordinate axis. Moreover, the determination of the orientation of
coordinate axes is also essential. That is, we should build up parallel multidimensional
coordinate systems across different test forms so that we can compare the subscores from each
individual test form.

When multiple test forms were built up using the unidimensional IRT model, how to
report valid subscores that can be comparable across different test forms requires linking these
test forms using multidimensional item response theory. The first step is to specify a common or
base coordinate system. The second step is to transform the subscores from each individual form
onto that base form. That is to link the test forms using multidimensional item response theory.

If we consider each test form as a data set and set up a corresponding multidimensional

coordinate system for each data set, then the question here is we will get different coordinate
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systems or the same coordinate systems? The coordinate system is composed of coordinate axes,
the origin of the space, and units of measurement. When using the same software to estimate the
item and person parameters, the origin of the space and units of measurement are default setting
in the program. The only thing that is to be determined is the number of dimensions. In other
words, we need to tell the estimation program how many dimensions or coordinate axes can be
identified in the data set.

We can solve the number of dimensions by running the parallel analysis with 100
simulations. The number of dimensions specified in the base coordinate system is the one that
needs to be defined in the calibration program. Here, additional questions should be considered:
which data set can be selected to run the parallel analysis? In other words, which data set can be
used to generate the base coordinate system? Is this the one that is selected among those
individual test forms or is it the one that has contained enough responses to run the
multidimensional analysis?

In order to answer these questions, we first need to run the dimensionality analysis to
check the number of dimensions that is required to capture all the relationship within each data
set. Moreover, we need to set up the data set for the base coordinate system, because all the
subscores will be transformed back into this coordinate system. After obtaining the rotation and
scaling matrix between each individual form and the base form, we will use these rotation
matrices to link the subscores onto the same dimensions in the base space. The formula is given
by
0=M10, (30)

and its rationale is explained in Chapter 2 — section 2.6.2.
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Once we select the data set for the base coordinate system, we will run the parallel
analysis to identify the number of dimensions that is appropriate to represent the relationship
among item-person response in the data set. The number of dimensions will then be used to run
the calibration on the estimation of item and person parameters for each individual test form.
The cluster analysis will also be applied to specify reasonable clusters for items within the data
set with the number of dimensions identified from the base coordinate system. After the group
of items are clustered together, we will compute the reference composite for each cluster. That
is, for an individual test form, each cluster is represented by a reference composite. Finally, we
will link different test forms based on the common reference composites.

2.8 Relating Subcores from Different Test Forms

Many test programs have more than one test forms to maintain test security or to control
the memory of responses in pretest and posttest experimental designs. Usually, these multiple
test forms are designed using the same test specification and are intended to be equivalent forms
of each other. In these cases, putting the results from different test forms into the same
coordinate system is called equating (Reckase, 2009).

For those test forms that are not constructed according to the same test specification, if
we still need to report the results using the same coordinate system, then even though the
statistical procedures are the same as are used for equating, such processes are called linking or
scaling for comparability because the obtained estimates of constructs do not have the same level
of accuracy and may have slightly different meaning (Reckase, 2009).

In this research, the goal is to report subscores from different test forms. Thus, the
multidimensional linking and equating will be applied accordingly to achieve the research goal.

But, the focus of this research is not on the application of multidimensional linking and equating.

35



So, the details of linking and equating will not be introduced here. There are extensive books on
equating and linking of calibrations such as Dorans, Pommerich and Holland (2007), Kolen and

Brennan (2004).

2.8.1 Common-Person Design

The common-person design is also named as single-group design. It means two different
test forms are administered to same examinees. There are two defects regarding this design.
First, the fatigue factor will influence the testing results given same group of examinees taking
the same test using two different forms on different test dates. Second, the familiarity with the
test information will increase the performance for the later tests. Therefore, single-group design
is rarely applied in practice due to the fatigue issue and the order of effect issue.

Under multidimensional condition, the common-person design means reporting the
scores from two different test forms within the common multidimensional space. Thus, the goal
here is to put the ability estimates (6-estimates) from different test forms into the same
coordinate system. Such a design needs to be applied under the condition that no change has to

be made to the examinees between the administrations of test forms.

2.8.2 Common-Item Design

Although the concept of common-person design is easy to understand, it is not easy to
apply this design in operational linking and equating procedure. There are some concerns that
for examinees who take the same tests it is impossible for them to be motivated on the same level
when responding to different test forms, not to mention other carry-over effects. For example,

counterbalancing the administration of different test forms may not be sufficient to balance
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differences in motivation. Also, examinees may experience some fatigue when taking the same
tests again and again. Therefore, other equating designs are more often implemented.

The common-item design is a frequently used method for linking and equating. The
general idea is both test forms maintain a subset of common items which are identical across the
forms. The size of the common items occupies 20% to 25% of the total test length. These
common items are selected to span the content of the test as a whole and are designed to be as
parallel as possible to the full test. That is, these common items can be considered as mini

version of the full test and function exactly the same way for different test forms.

2.8.3 Randomly Equivalent-Groups Design

Another commonly used equating design is randomly equivalent-groups design. It is
used when tests are assumed to be sensitive to differences in examinee performance on a single
composite of skills. The examinee sample is randomly divided into two or more subsamples
with the number of samples equal to the number of test forms to be equated. The assumption is
that the distribution of the examinee performance on the composite skill being measured should
be the same across all different test forms due to the random assignment of forms to samples. If
there are any differences among these distributions of performances, then they are because of the
slight differences in the characteristics of the tests. Transformation of scores from each
individual test form to a common scale requires the distributions with the same features for all
test forms.

The randomly equivalent-groups design will be effective once the carefully designed test
forms can be assumed to result in score scales that have the same conceptual meaning. In other

words, the constructs represented by the test scores are the same across all forms. Moreover, the
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distributions of the performance are assumed to be the same due to the random assignment of the
test forms to groups.

When applying the randomly equivalent-groups design in MIRT case, it becomes more
complex than in the UIRT case because the orientation of the coordinate axes might not be the
same for the calibration of the two test forms even when the examinee groups are random
samples from the same population. Further, there are no common items between two test forms
that can be used to determine the rotation needed to align the coordinate axes. Therefore, the
application of randomly equivalent-groups design in MIRT case involves developing a criterion
for rotating the coordinate axes to a common multidimensional space (Reckase, 2009).

There will be future work in MIRT for linking and equating using other methods. In this
research, the solution we have is to compute the reference composite for the clusters assessed by
the tests. Then, we can use those common reference composites to link test forms. That is, once
the constructs can be identified for multiple test forms, then the coordinate axes can be
transformed to a common orientation by solving the rotation and scaling matrix to align the
reference composites from different test forms (Reckase, 2009).

One assumption needs to be satisfied when applying the above method. That is, test
forms are constructed to be parallel or they measure common constructs. Such assumption not
only applies for the unidimensional but also works for the multidimensional case. Therefore,
before relating results or subscores from different test forms into one common orientation
multidimensional coordinate system, we need to assure the multidimensional structure from
different individual test forms are parallel, or at least these forms are measuring the common

constructs.
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The application of multidimensional linking and equating requires the common
dimensionality structure and common constructs across different forms. This is the same as what
is done in unidimensional linking and equating. However, most test forms are designed using
unidimensional model and are linked and equated based on unidimensional structure. When
reporting subscores for these test forms, we need to set up a reasonable transformation between
unidimensional structure and multidimensional structure.

In order to achieve such goal, we should apply the parallel analysis, exploratory factor
analysis, confirmatory factor analysis, clustering analysis, and reference composite computation
to link and equate different test forms and to report and compare subscores across different test
forms.

In general, the procedures for linking and equating test forms using multidimensional
IRT are as follows:

Step 1. Set up the base coordinate system so that any results from individual test forms
can be transformed back into this base form

Step 2. Set up the coordinate system for each individual test form so that subscores from
different clusters or constructs can be computed

Step 3. Run the parallel analysis, exploratory and confirmatory analysis, and clustering
analysis for the base form to identify the target matrix for the nonorthogonal rotation

Step 4. Run the parallel analysis, exploratory and confirmatory analysis, and clustering
analysis for each individual form

Step 5. Calibrate the data for each individual form and determine the directions of the
reference composites in individual coordinate space. The direction cosines of the reference

composite are used as the a- parameters for the reference composites. These a- parameters will
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be collected into a matrix and used to compute the nonorthogonal Procrustes rotation matrix
between each individual test form and the base form

Step 6. Determine the nonorthogonal Procrustes rotation that will convert the directions
of the reference composites in individual test form into the directions of the reference composite
in the base form

Step 7. The rotation matrices will be used to covert the locations of examinees from each
individual test form to the base form. These transformed locations of examinees for each

different clusters are the subscores that can be compared across different test forms.
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CHAPTER 3
METHODOLOGY AND RESULTS

3.1  Data Description and Data Analysis Procedure

The purpose of the test used in this research is to measure non-native-English speakers’
ability to function in an academic environment where instruction is provided in English.
Specifically, this test assesses proficiency in listening, reading, speaking, and writing English. It
uses 20 different item types that assess different communicative skills, enabling skills and other
traits. Detailed descriptions of the item types are provided in Pearson Longman (2010).

This study used data from 36,938 examinees, 954 items, and 164 test forms from over
165 countries. Those with the largest number of examinees included China, India, the United
States, Japan, South Korea, Australia, the United Kingdom, Hong Kong, Taiwan and Canada.
Unfortunately, even though this is a large data set, the number of examinees responding to each
test form was lower than desired for stable estimation of the parameters of a MIRT model.
Therefore, individual form data were used to check the generalizability of results obtained from a
large set of common items across forms. The large set of common items was used to identify an
overall dimensional structure that was checked against the dimensional structure of individual
forms.

In order to have sufficient data for stable estimation of MIRT model parameters, the most
frequently used 100 items over all test forms were selected for analysis. One problem with this
approach was that the most frequently used 100 items did not have the same distribution over
item types as a full test form. The use of the most frequently used 100 items had both
advantages and disadvantages. The advantage was getting very stable estimates of model
parameters and good evidence of the dimensional structure of the item types that were present.

Often there were numerous items of a particular type in this data set. The disadvantage was that
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the results from the analysis might not represent results to be expected from operational test
forms. For that reason, the results obtained for the most frequently used 100 items were checked
with analyses of the four most frequently used test forms.

Of the 164 test forms, four were found to have sufficient data for the multidimensional
analyses. The minimum sample size for the forms was 432. Thus, the analysis data consisted of
five data sets. The first data set is the 100 items with highest frequencies of use. This was used
to obtain results that could generalize across all test forms. The second to fifth data sets are from
the four test forms with highest frequencies of administration. These were used to confirm the
results from the 100 most frequently used items and to check the consistency of findings across
forms.

Table 1 shows the distributions of item types for a test form. Table 2 provides the
number of examinees and the number of items for the five data sets. Table 3 shows the number
of common items between pairs of the five analysis data files. These common items are from
different content categories labelled by the content experts during the item writing and test
development. Therefore, these common items are distributed over different content categories

across different test forms.
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TABLE 1:

Item Types and Content Distribution for One Form of the Test

Part and Section Item Types Number of Items

Part 1: Speaking Read aloud 6
Repeat sentence 10
Describe image 6
Re-tell lecture 3
Answer short question

[EEN
o

Part 2: Writing Summarize written text
Write essay

Part 3: Reading Multiple-choice, choose single answer
Multiple-choice, choose multiple
Re-order paragraphs
Reading: Fill in the blanks
Reading and writing: Fill in the

Part 4: Listening Summarize spoken text
Multiple-choice, choose multiple
Fill in the blanks
Highlight correct summary
Multiple-choice, choose single answer
Select missing word
Highlight incorrect words
Write from dictation
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TABLE 2:

Number of Examinees and Number of Items for the Five Analysis Data Sets

Data Sets Number of Examinees Number of Items
Dataset 1 100 Items with Highest Frequencies 36938 100
Dataset 2 Form 1 448 65
Dataset 3 Form 2 438 53
Dataset 4 Form 3 437 69
Dataset 5 Form 4 432 66
TABLE 3:

Common ltems between Pairs of the 100 Items and Four Test Forms

100 Items F1 F2 F3
F1 16
F2 14 3
F3 25 1 6
F4 21 21 0 2

3.2  Dimensionality Analysis

Parallel analysis, exploratory and confirmatory factor analysis, cluster analysis and
reference composite analysis were used to investigate the structure of the dimensions among the
five data sets - most frequently used items and most frequently used forms. The procedures are

described in detail in the following sections.
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3.2.1 Software Check — FlexMIRT VS. Mplus

Due to the complexity in the data sets — a large sample size, a large group of mixed item
types composed of both dichotomous and polytomous items, and missing values, the estimation
capability of software is essential to this research. The calibration results using MIRT models
have to be accurate and reliable. Otherwise, the results will not be valid and meaningful. The
major software selected for this research is FlexMIRT (2013, Li et. al). The reason is that it can
calibrate item parameters and multidimensional person-abilities for polytomous MIRT models
(Houts and Cai, 2013). Mplus was also used to run the same analyses for quality assurance
purpose. Interested readers can refer to the paper (Reckase and Xu, 2015) for the research design
and its corresponding results obtained from Mplus.

Before running the analyses on real data sets, we first checked the quality and efficiency
of FlexMIRT. In order to do that, we simulated the data sets with exactly the same information
and the format as the real data sets. That is, the simulated data sets contained both dichotomous
and polytomous items with large amount of missing data, and same number of examinees. Then,
we ran the FlexMIRT under different conditions 1) dichotomous items 2) polytomous items 3)
different number of examinees. Later, we compared the results obtained from FlexMIRT with
true values generated in simulation and those from Mplus as well using the same simulated data
sets to double check whether FlexMIRT could be used to run the calibration on the real complex
data sets appropriately. Finally, after confirming the quality and validity of the software, we
applied FlexMIRT to run calibrations on all five real data sets using the multidimensional

generalized partial credit model.
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3.2.2 Simulated Data Sets

We first simulated eight clusters within a six-dimension multidimensional space. The six
dimensions are the results obtained from Mplus. The parallel analysis based on the F100 data set
showed that both seven-dimension and eight-dimension solutions were efficient enough to
capture the correlations among the data set. Then, we ran cluster analysis using seven and eight
dimensions respectively. Both results returned six clusters for F100. When determining the
number of dimensions in a data set, the conservative number of dimensions is preferred.
Therefore, we selected seven-dimension structure as the base space.

Eight clusters were obtained from parallel analysis using Matlab given the seven-
dimension structure. Before the analysis of mixed structure of dichotomous and polytomous
items, we first simulated a data set with 10,000 examinees and 100 items. The examinees were
randomly selected from multidimensional standard normal distribution with seven dimensions.
All item responses were dichotomously generated using MIRT 2PL model.

Next, we ran the parallel analysis using MatLab to check the number of dimensions for
the simulated data set. The results from parallel analysis showed that the simulated data set had
six dimensions. It had less dimensions because the simulated data set had less examinees and
only dichotomous items. Then, we used FlexMIRT and Mplus to run exploratory factor analysis
separately by defining six dimensions. After obtaining discrimination a-parameters associated
with each dimension for all 100 items, we used MatLab to run cluster analysis on the two
a-parameter matrices. One was from FlexMIRT analysis and the other was from Mplus analysis.
We did this to compare the efficiency and workability between the two software. The cluster

analysis results showed that both FlexMIRT and Mplus returned eight clusters. The results from
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the simulated data set indicated that FlexMIRT worked well on dichotomous items using the
MIRT 2PL model.

Later, we expanded the number of examinees from 10,000 to 20,000 but still simulated
the same number of 100 items and eight clusters within six dimensions. For real data set, there
are 36,938 examinees. So, we needed to check whether both software worked well for large
sample of examinees. We did the analysis following the same procedure — parallel analysis,
exploratory factor analysis, and cluster analysis. The results indicated that both FlexMIRT and
Mplus worked well for large sample size.

Finally, we simulated the data sets by adding the missing values that have exactly the
same pattern as those in the real data set for the first 20,000 examinees and 100 items in F100.
We ran the parallel analysis, EFA, and clustering analysis using both FlexMIRT and Mplus. The
results showed that FlexMIRT and Mplus could handle missing values very well.

Moreover, FlexMIRT provided more accurate results since it used the MIRT 2PL model
to calibrate the item parameters directly while Mplus did not. The a-parameters obtained from
FlexMIRT are linear transformation of factor loadings obtained from Mplus. Therefore, the
factor loadings could also be used to check for the dimensionality and clustering of items in data

sets.

3.3  Real Data Sets

3.3.1 Analysis of Most Frequently Used Items — Form F100

We first ran the parallel analysis to determine the number of dimensions needed to
capture the correlations (variations) among the data set. The number of dimensions identified

can be used to set up the coordinate axes for the common space since they are stable and
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consistent. Next, we re-scored the items in the F100 for the first 10,000 examinees. We
examined the score distribution for each item to decide which score categories can be combined
together. Such procedure was named as “repolytomizing” in the following sections. The reason
to do so was to have enough examinees for each score category of polytomous items so that the
item parameters could be calibrated using the multidimensional Graded Response Model
appropriately.

After repolytomizing these items, we ran EFA using FlexMIRT with seven dimensions.
The results of the calibration were plausible. So, we continued to repolytomize F100 but using
all 36, 938 examinees. We ran EFA using FlexMIRT in a seven-dimensional space. We also ran
clustering analysis, but the results were not as good as expected. The classification of clusters
was not distinguishable. Therefore, we redesigned the factor analysis to combine both
exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) together — CEFA.

The following section describes each step in detail.

In this study, the first step consisted of computing the eigenvalues from the inter-item
correlations among the 100 most frequently used items. This was done pair-wise to account for
missing data across forms resulting in a different sample size for the correlations of each pair of
items. This can influence the results of the dimensional analysis.

In order to solve the missing values due to the random assignment of test forms, after
computing the eigenvalues from the inter-item correlations among the 100 items, we generated a
data set that has the same proportion item correct with the missing values replacing exact the
same places as in the real data for the 100 items. Multinomial model was applied when
generating the proportion correct in Matlab. Then, the eigenvalues from the generated data set

were extracted from the inter-item correlations with 100 replications. In order to deal with the

48



missing values, we used the multiple linear correlation method to impute the missing values in
the covariance matrix from the data set by estimating the missing values with the first five
columns of the covariance matrix. In other words, we replaced the missing-value correlation
labeled as NaN (stands for Not a Number in Matlab) with a real number that was predicted from
the previous five columns of the covariance matrix without missing values so that all the missing
values in the whole covariance matrix were approximated.

Therefore, for comparison purpose, random data sets were generated with the same
proportion of item scores for each item, individual item scores were removed to exactly match
with the pattern of missing values in the real data sets. Then, the eigenvalues from the generated
data set were extracted from the inter-item correlations. This process was replicated 100 times to
yield distributions of the eigenvalues from the randomly generated data sets.

The parallel analysis was applied based on two different statistical assumptions. The null
hypothesis is there are no eigenvalues from the observed data set larger than those from the
randomly simulated data set. The alternative hypothesis is there did exist number of eigenvalues
from the observed data set larger than those from the randomly simulated data set. These two
statistical hypotheses were established based on the fact that we developed an empirical
sampling distribution over the 100 randomly generated data sets to investigate the point when the
real eigenvalues are statistically significantly higher than those from the simulated distribution.

Because of the pattern of missing data, there were cases where a correlation could not be
computed between a pair of items. Without the full correlation matrix, the eigenvalues could not
be computed so the missing values were imputed by predicting the missing values using the data
from all of the other columns of the correlation matrix using multiple linear regression. Because

the same procedure was used for the real data and the randomly generated data, any artifacts
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caused by the imputation and the pattern of missingness would be present in both types of data
sets.

Figure 1(a) shows a plot of the magnitude of the eigenvalues from the real data and those
from the 100 replications of the randomly generated data. Because the eigenvalues from the
generated data showed little variation, the results where the curves cross is magnified and
presented in Figure 1(b) so the number of eigenvalues from the real data that are greater than
those from the random data can be identified.

Figures 1(a) and 1(b) indicated that the first eight eigenvalues for the real data were
larger than the first eight eigenvalues for the random data, although the difference between the
seventh and eighth real eigenvalues was very small. According to the rule suggested by
Ledesma and Valero-Mora (2007), the number of dimensions needed to model the data is the
number of eigenvalues that are greater than those from the random data. In this case, both seven
and eight dimensions were investigated further and there was little difference in the results so the

more parsimonious seven dimensions were selected for further analysis.
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Figure 1. (a): Plot of the Eigenvalues for the Real Data and 100 Replications of Random Data
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51



3.3.2 Dichotomized Data Sets

The results from the simulation study showed that FlexMIRT gave good results for MIRT
calibration. The next step was to use the real data sets for analysis. The F100 has 36,938
examinees and most items are polytomous items with number of score categories up to 12. So,
the major differences between the simulated data and the real data are that real data have a larger
sample size with more missing values and most items are polytomously scored. Our goal was to
investigate whether FIexMIRT could recover a-parameters of dichotomous items in real data
using MIRT 2PL models. The first 10,000 examinees and first 100 items from F100 with highest
frequencies across all examinees and all test forms were selected, for they contained least
missing values and were stable for the MIRT analysis.

First, we dichotomized polytomous items by computing the median score for all 100
items across 10,000 examinees. Next, we compared each examinee’s score response with the
corresponding median score for that particular item. If the score for that item was larger than the
median score, then 1 was assigned; otherwise, 0 was assigned. We dichotomized all the
responses to get a balanced proportion of score categories so that those polytomous score
categories with small frequencies would not affect the item parameter calibration.

After dichotomizing all 100 items, we ran an exploratory factor analysis (EFA) on the
dichotomized 10,000-by-100 matrix with missing values represented by -1 in a seven
dimensional space. The FlexMIRT calibrated the a-parameters using MIRT 2PL model. Cluster
analysis was later applied using the calibrated a-parameter matrix. There were still some
convergence problems, such as a-values and d-values for some items were very large or even

negative and the standard errors could not be computed. The cluster analysis showed that items
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were clustered together with same item types. Therefore, FlexMIRT was supported for real data

analysis with dichotomous items.

3.3.3 Polytomous Data Sets

FlexMIRT worked well for calibration of the dichotomized items with frequent missing
values using the multidimensional 2PL model. The next step was to further check whether it
could calibrate the polytomous items using multidimensional generalized partial credit model.
We first collapsed the original polytomous score categories into smaller numbers of categories
by combining score categories together where there were small counts of responses. After
reducing the category number for all the items for the first 10,000 examinees in F100, we ran
EFA in a seven-dimensional space using the multidimensional generalized partial credit model.
The a-parameters associated with each dimension for individual items from the first 10,000
examinees among 36,938 were reasonably good even though there were few items that were not

calibrated appropriately.

3.3.4 Exploratory Factor Analysis

Finally, we repolytomized all 100 items in F100 using all 36,938 examinees. In order to
check the viability of using seven dimensions to compute the item parameters especially the
discrimination parameter matrix — a matrix associated with each dimension, exploratory factor
analyses were run on the 100 item dataset using FlexMIRT (2013, Li et. al). Weran EFAina
seven-dimensional space using both multidimensional 2PL model and multidimensional

generalized partial credit model.
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The results showed that the seven-dimensional solution gave the best combination of
distinctly defined dimensions. Most items had reasonable a-parameters while only few did not.
The inappropriately calibrated a-parameters might have been due to the inappropriate
repolytomizing of polytomous items. Therefore, we scrutinized these items and repolytomized
them again details described in Section 3.3.1. Then, we re-ran the EFA using the revised data
set. We kept repeating these procedures until all a-parameters from FlexMIRT calibration were
reasonable.

The results from EFA using FlexMIRT for the first 100 item data set supported the
seven-dimension structure. However, these results are based on the linear regression imputation
of missing data and the repolytomizing of multi-score-category items for the first 100 items. To
further check the meaningfulness of the seven dimensional structure, cluster analysis procedures
were used to determine if sets of items had theoretically supportable connections to the content

structure of the tests.

3.3.5 Hierarchical Cluster Analysis

Within the context of multidimensional item response theory, hierarchical cluster analysis
(HCA) is an approach for identifying sets of items that are best at measuring the same
combination of skills and knowledge. There are two steps in cluster analysis procedure. The
first step is to select a method to measure the similarity between items. The second step is to sort
the items that share similarities into clusters (Reckase, 2009).

When using FIexMIRT to analyze the data sets, the a-parameters from the seven-
dimension solution were used as the item discrimination parameters for the multidimensional

item response theory model. The average distance algorithm in the hierarchical clustering
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routine within MatLab was used for the clustering. The cluster results indicate that six distinct
clusters were identified through the analysis of the 100 item data set. Moreover, among these six
clusters, five distinct clusters consist of unique collections of item types and one cluster is
composed of a mix of three different item types. These six major clusters were labeled
according to the conceptual representation of factors in the language ability domain defined by
Carroll (1993, p.147). They are: (1) Cloze, (2) Listening, Oral Production (3) Listening, Writing

(4) Oral Production, (5) Phonetic Coding, Spelling, and 6) Pronunciation, Word Recognition.

3.3.6 Reference Composites

The reference composite for a set of test items is a mathematical derivation of the line in
the multidimensional space that represents the unidimensional scale defined by a set of items.
This scale is the one that would be obtained if the items were analyzed using a unidimensional
item response theory model. Wang (1985, 1986) showed that the eigenvector that corresponds to
the largest eigenvalue of the a‘a-matrix gives the orientation of the reference composite line in
the multidimensional space. The a-matrix in this case is the matrix of item discrimination
parameters for the multidimensional item response theory model from the seven-dimensional
solution. Because the sum of the squared elements of the eigenvector is equal to 1, the elements
of that eigenvector can be considered as the direction cosines for the line representing the scale.

The reference composites were computed for each of the clusters of items identified by
the cluster analysis procedure. The reference composites represent the distinct subscores that can
be supported by the set of items. One way of computing the subscores is to project the estimates
of locations of the examinees in the seven-dimensional space onto these reference composite

lines. See Reckase (2009, p. 301) for the details of the projection method.
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In order to compute the reference composite for all the items within each cluster, the a'a-
matrix was obtained and decomposed into eigenvalues and eigenvectors. Table 4 gives the angles
in degrees between each reference composite line and the coordinate axes in seven-dimensional

space for each cluster of the 100 item set.

TABLE 4:

Angles between the Reference Composites and the Coordinate Axes in Seven-Dimensional
Space for Six Clusters in Form F100

Clusters Axisl Axis2 Axis3 Axis4 AXxis5 Axisb Axis7
Cloze 45.69 89.52 79.76 60.11 81.40 71.56 70.66
Listening, Oral Production 62.26 45.85 76.85 83.69 86.88 71.89 68.45
Listening, Writing 64.52 51.62 50.19 84.59 86.78 89.67 85.04
Oral Production 57.89 61.54 74.17 87.09 74.80 67.17 63.87
PhonCo, Spelling 65.21 64.92 78.77 67.52 62.93 69.21 69.09
Pronunciation, Word Recognition 77.56 73.13 64.07 55.31 65.60 72.97 7177

PhonCo: Phonetic Coding

The results in Table 4 show that the reference composite lines tend to match one of the
coordinate axes in the multidimensional 0-space. For example, the Cloze cluster has a reference
composite line that is closest to the Dimension 1 coordinate axis — its angle with the axis is
45.69°. Also, the Listening and Oral Production cluster has a reference composite line that is
closest to Dimension 2 coordinate axis, since its angle with the axis is 45.85°. The same
relationship can be observed for the reference composites of the other clusters as well. Thus,
each cluster defines a unique dimension corresponding to a particular language ability and aligns
with a coordinate axis in the solution. Based on these results, it is clear that there exist multiple

dimensions in the data that may be related to important language constructs.
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3.3.7 Analysis of Most Frequently Used Test Forms

The next stage of the analysis focused on determining whether the constructs identified in
the most frequently used 100 items would also appear in individual test forms. To investigate
this, each of the test forms with the highest frequency of use was analyzed in the same way as the
100 most frequently used items. Because of the smaller sample size and smaller number of
items, it was expected that these analyses would be less stable than the analysis of the 100 items,
but the same basic pattern of results should be evident.

Each form was analyzed in the same way as the most frequently used 100 items — the
number of dimensions was determined, a confirmatory factor analysis combined with
exploratory factor analysis (CEFA) was performed using the identified number of dimensions,
the angles between item pairs were computed, the items were clustered, and reference

composites were determined for the clusters.

3.3.8 Consistency of Dimension Structure

To determine the consistency of structure across forms and the most frequently used 100
items, the common language constructs across four test forms were identified. Figure 2 shows a
comparison between clusters identified within each form and the clusters extracted from the 100
items with highest frequencies. The number of clusters identified for the 100 items with highest
frequencies (F100), F1, F2, F3, and F4 are 6, 6, 6, 6, 6, and 8, respectively. The corresponding
cluster names are also alphabetically sorted in Figure 2. In the figure, the black squares indicate
that clusters from the different item sets that share exactly the same language constructs whereas

the grey boxes indicate only part of the constructs are the same between two clusters.
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For example, Cluster 1 in F100 and F1 are Cloze, which are exactly the same, so the
square is black. Clusters 2 in F100 is Listening, Oral Production while Cluster 2 in F1 is
Communication, Listening. So, the square is grey because these two clusters only share the
Listening construct. Also, there are no common constructs that can be identified between Cluster
2 in F100 and Cluster 1 in F1, so the cross - square is white.

Thus, F1 and F3 have very similar dimension structures. Most of the forms share some
of the constructs with the 100 item set, but not all of them. That is not surprising because the
100 most frequently used items did not include all of the item types. It appears forms F2, F3,
and F4 show strong multidimensional parallelism and share some of the constructs with the 100

item set.
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Figure 2: Common Clusters among Five Forms

59




In this research, CEFA is a combination of CFA and EFA. First, we ran cluster analysis

on F100 and obtained six clusters out of form F100. Next, we selected the individual test form

— the new form that could be linked back to the base coordinate

items in individual form that have exactly the same item type as

system later. We sorted out the

those in F100. We then

classified those items in individual form according to the item type and categorized them into the

clusters that were already defined in F100. In other words, these items were grouped together

based on the item type. These item types were clustered together according to the results from

the clustering analysis of form F100. We then repeated the sam

e procedure of CEFA for all four

individual test forms. Figure 3. shows the eight clusters of Form F4 after cluster analysis using

the above method.
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Figure 3: Clusters from Form F4
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3.4  Set up the Common Coordinate System

After the application of all analyses defined above for all test forms - F100, F1, F2, F3,
and F4, we need to determine the common coordinate system for rotation purpose so that the
results from each individual test form can be transformed back to the base system and be
compared on the common clusters.

In order to do this, we investigated the results from cluster analysis for all five forms.
These results from Figure 3 show that there are some common clusters across all five forms, yet
there are still some clusters that are uniquely associated with particular forms but not with other
forms. Since our goal is to set up a common coordinate system so that all clusters from different
individual test forms can be transformed back into this common multidimensional space, the
target matrix in the nonorthogonal rotation procedure needs to be identified by the clusters in the
common space. In other words, these common clusters should include all the clusters across all
different test forms.

Therefore, according to the cluster analysis results for all five test forms, we take the
union of all clusters identified and put the corresponding reference composites together into a big
matrix composed of discrimination parameter — a- parameters in a seven-dimensional space. As
shown in Tables 5 to 8, there are 11 clusters in total across all five test forms. In nonorthogonal
Procrustes rotation procedure, the space that contains these 11 clusters will be considered as the
base coordinate system. The rotation matrix between each individual test form and this common
space will be used to rotate the subscores from individual test forms into this common space.

The rotation of the coordinates will not change the location of examinee in a
multidimensional space but will change the interpretation of the scores. Here, the target matrix

for the nonorthogonal Procrustes rotation is defined as the identity matrix with 11 dimensions
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because these 11 dimensions will align with the coordinate axes in the 11-dimensional space

with the degree between each dimension equal to 90. Such orthogonal direction will help to

interpret the results of scores in a more meaningful way and will also simplify the calculation
procedure of nonorthogonal Procrustes rotation.

However, based on the results of cluster analysis and reference composite analysis from
individual test forms, the a-parameter matrix for each individual test form contains different
number of dimensions and clusters. When applying the nonorthogonal Procrustes rotation, in
order to solve the rotation matrix, we need to add the O columns to the new a-parameter matrix to
represent the dimensions that are not identified in that particular individual test form. Moreover,
we need to add the dummy rows that represent the clusters that are not identified for that
particular test form but retained in other test forms. That is, we need to investigate the a-
parameter matrix obtained from each individual test form and compare the clusters from that
particular test form with all clusters from five test forms. By adding the dummy rows we include
the clusters that are not identified for individual test form. The dummy columns indicate the
number of dimensions in the base coordinate system.

Tables 5 to 8 represent the original matrix of the degrees between the coordinate axis and
the reference composite for each cluster from four individual test forms, respectively.

Tables 9 to 12 show the augmented matrices with additional dummy columns indicating the
number of dimensions added and the dummy rows representing the clusters that are not

identified for that particular individual test form.
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TABLE 5:

Angles between the Reference Composites and the Coordinate Axes in Seven-

Dimensional Space for Six Clusters in Form F1

Clusters Axisl  Axis2  Axis3  Axis4d  Axis5  Axis6  AXis7
Cloze 86.61 86.52 8530 88.19 8740 7.54 89.05
Communication, Listening 7235 4196 7793 6801 8881 65.74 87.57
Listening, Oral Production 0.00 90.00 90.00 90.00 90.00 90.00 90.00
Oral Production 89.47 89.79 89.27 1.00 89.89 89.65 89.97
PhonCo, Pronunciation, Word Recognition 86.72 7752 8866 8455 1946 86.26  77.46
Reading 89.36 72.69 22.65 87.09 83.40 84.61 79.21

TABLE 6:

Angles between the Reference Composites and the Coordinate Axes in Seven-

Dimensional Space for Six Clusters in Form F2
Clusters Axisl AXis2 AXis3 Axis4 AXisb AXis6 AXis7
Cloze 86.78 8533  87.96 8759  89.82 6.63 88.69
Listening, Oral Production 29.55 80.84 84.98 77.49 78.83 87.81 69.35
Oral Production 76.03 82.17 78.45 22.42 88.45 89.13 80.45
PhonCo, Spelling 90.00 0.00 90.00 90.00 90.00 90.00 90.00
Pronunciation, Word Recognition 90.00 90.00  90.00 90.00 0.00 90.00 90.00
Reading 85.01 85.06 10.44 82.98 87.79 88.41 88.56
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TABLE 7:

Angles between the Reference Composites and the Coordinate Axes in Seven-

Dimensional Space for Six Clusters in Form F3

Clusters Axisl  Axis2 ~ Axis3  Axis4  Axis5  Axis6  Axis7
Cloze 89.66 89.67 88.65 89.19 89.34 185 89.47
Communication, Listening 35.84 87.08 80.99 56.14 86.58 88.33 88.27
Oral Production 90.00 90.00 90.00 0.00 90.00  90.00  90.00
PhonCo, Pronunciation 75.57 53.14 78.39 62.29 79.47 87.55 57.66
Pronunciation, Word Recognition 90.00 90.00 90.00 90.00 0.00 90.00  90.00
Reading 86.27 75.05 20.01 81.66 88.23 83.91 83.43

TABLE 8:

Angles between the Reference Composites and the Coordinate Axes in Seven-

Dimensional Space for Eight Clusters in Form F4
Clusters Axisl  Axis2  Axis3  Axis4  Axis5  Axis6  Axis7
Cloze 90.00 90.00 90.00 90.00 90.00 0.00 90.00
Listening, Oral Production 1.78 89.02 89.07 89.08 89.62 89.39 90.00
Listening, Oral Production, Reading 60.55 8381 5157 5819 7434 8852  84.62
Oral Production 90.00 90.00 90.00 0.00 90.00 90.00 90.00
PhonCo, Pronunciation 8425 59.93  82.61 73.33 69.35 77.87  46.63
PhonCo, Spelling 86.79 8.56 85.52 87.99 88.25 84.13 89.02
Pronunciation, Word Recognition 90.00 90.00 90.00 90.00 0.00 90.00  90.00
Reading 87.35 86.55 6.66 86.26 88.38 87.06 89.85
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Tables 9 to 12 show the augmented matrix angles between the reference composites and
the coordinate axes for the corresponding clusters in an eleven-dimensional space for each
individual form. The rows represent the clusters while the columns indicate the eleven
coordinates in the base space. The blue rows mean that these clusters are not from the original
form but from the union across all five forms. The last four pink columns (the dummy columns
when taking the cosine of 90° and 0°) represent the expanded dimensions added to the original
seven dimensions for each individual form. Note, when creating these augmented matrices, two
rules need to be followed. First, there should not be two identical dummy rows. Second, no

zeros should appear in the same row so that the rotation matrix will not be singular.
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TABLE 9:

Augmented Matrix of Angles between the Reference Composites and the Coordinate Axes in Eleven-Dimensional Space for

Eleven Clusters in Form F1

Clusters Axisl  Axis2  Axis3  Axis4  Axis5  Axis6  Axis7  Axis8  Axis9  Axisl0 Axisll
Cloze 86.61 86.52 85.30 88.19  87.40 7.54 89.05  90.00 90.00 90.00  90.00
Communication, Listening 72.35 41.96 77.93 68.01 88.81 65.74 87.57 90.00 90.00 90.00 90.00
Listening, Oral Production 0.00 90.00 90.00  90.00 90.00 90.00 90.00  90.00 90.00 90.00  90.00
Listening, Oral Production, Reading 90.00 90.00 90.00 0.00 90.00 90.00 90.00  90.00 90.00 90.00  90.00
Listening, Writing 90.00 90.00 90.00 90.00 90.00 90.00 90.00 0.00 90.00 90.00  90.00
Oral Production 89.47 89.79  89.27 1.00 89.89  89.65 89.97  90.00 90.00 90.00  90.00
PhonCo, Pronunciation 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 0.00 90.00  90.00
PhonCo, Pronunciation, Word Recognition 86.72 77.52 88.66 84.55 19.46 86.26 77.46 90.00 90.00 90.00 90.00
PhonCo, Spelling 90.00 90.00 90.00 90.00 90.00 90.00 90.00  90.00 90.00 0.00 90.00
Pronunciation, Word Recognition 90.00 90.00 90.00 90.00 90.00 90.00 90.00  90.00 90.00 90.00 0.00
Reading 89.36 7269 2265 87.09 8340 84.61 79.21  90.00 90.00 90.00 90.00
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TABLE 10:

Augmented Matrix of Angles between the Reference Composites and the Coordinate Axes in Eleven-Dimensional Space for

Eleven Clusters in Form F2

Clusters Axisl AXxis2 AXis3 Axis4 AXis5 AXisb AXis7 Axis8 Axis9 Axisl0 Axisll
Cloze 86.78 85.33 87.96 87.59 89.82 6.63 88.69 90.00 90.00 90.00 90.00
Communication, Listening 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 0.00 90.00 90.00
Listening, Oral Production 29.55 80.84 84.98 77.49 78.83 87.81 69.35 90.00 90.00 90.00 90.00
Listening, Oral Production, Reading 90.00 90.00 90.00 0.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00
Listening, Writing 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 0.00 90.00
Oral Production 76.03 82.17 78.45 22.42 88.45 89.13 80.45 90.00 90.00 90.00 90.00
PhonCo, Pronunciation 90.00 90.00 90.00 90.00 90.00 90.00 0.00 90.00 90.00 90.00 90.00
PhonCo, Pronunciation, Word Recognition 90.00 90.00 90.00 90.00 90.00 90.00 90.00 0.00 90.00 90.00 90.00
PhonCo, Spelling 90.00 0.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00
Pronunciation, Word Recognition 90.00 90.00 90.00 90.00 0.00 90.00 90.00 90.00 90.00 90.00 90.00
Reading 85.01 85.06 10.44 82.98 87.79 88.41 88.56 90.00 90.00 90.00 0.00
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TABLE 11:

Augmented Matrix of Angles between the Reference Composites and the Coordinate Axes in Eleven-Dimensional Space for

Eleven Clusters in Form F3

Clusters Axisl AXxis2 AXis3 Axis4 AXis5 AXis6 AXis7 AXis8 Axis9 Axisl0 Axisll
Cloze 89.66 89.67 88.65 89.19 89.34 1.85 89.47 90.00 90.00 90.00 90.00
Communication, Listening 35.84 87.08 80.99 56.14 86.58 88.33 88.27 90.00 90.00 90.00 90.00
Listening, Oral Production 90.00 90.00 0.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00
Listening, Oral Production, Reading 90.00 90.00 90.00 90.00 90.00 90.00 0.00 90.00 90.00 90.00 90.00
Listening, Writing 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 0.00 90.00
Oral Production 90.00 90.00 90.00 0.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00
PhonCo, Pronunciation 75.57 53.14 78.39 62.29 79.47 87.55 57.66 90.00 90.00 90.00 90.00
PhonCo, Pronunciation, Word Recognition 90.00 90.00 90.00 90.00 90.00 90.00 90.00 0.00 90.00 90.00 90.00
PhonCo, Spelling 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 0.00 90.00 90.00
Pronunciation, Word Recognition 90.00 90.00 90.00 90.00 0.00 90.00 90.00 90.00 90.00 90.00 90.00
Reading 86.27 75.05 20.01 81.66 88.23 83.91 83.43 90.00 90.00 90.00 0.00
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TABLE 12:

Augmented Matrix of Angles between the Reference Composites and the Coordinate Axes in Eleven-Dimensional Space for

Eleven Clusters in Form F4

Clusters Axisl  Axis2  Axis3  Axis4  Axis5  Axis6  Axis7  Axis8  Axis9 Axisl0 Axisll
Cloze 90.00 90.00 90.00 90.00 90.00 0.00 90.00 90.00 90.00 90.00 90.00
Communication, Listening 90.00 0.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00
Listening, Oral Production 1.78 89.02 89.07 89.08 89.62 89.39 90.00 90.00 90.00 90.00 90.00
Listening, Oral Production, Reading 60.55 83.81 51.57 58.19 74.34 88.52 84.62 90.00 90.00 90.00 90.00
Listening, Writing 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 0.00 90.00
Oral Production 90.00 90.00 90.00 0.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00
PhonCo, Pronunciation 84.25 59.93 82.61 73.33 69.35 77.87 46.63 90.00 90.00 90.00 90.00
PhonCo, Pronunciation, Word Recognition 90.00 90.00 90.00 90.00 90.00 90.00 90.00 0.00 90.00 90.00 90.00
PhonCo, Spelling 86.79 8.56 85.52 87.99 88.25 84.13 89.02 90.00 0.00 90.00 90.00
Pronunciation, Word Recognition 90.00 90.00 90.00 90.00 0.00 90.00 90.00 90.00 90.00 90.00 90.00
Reading 87.35 86.55 6.66 86.26 88.38 87.06 89.85 90.00 90.00 90.00 0.00
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3.5  Two Ways of Linking Different Items on Common Multidimensional Scale
3.5.1 Common-Iltems Linking

First, we selected a base form. Next, within each subdomain we found common items
between the base form and forms that needed to be linked to the base form. Finally, we scaled
those common items onto the common scales for each subdomain.

We selected F100 as the base form, since it was extracted based on the sorted data with
highest frequencies across all forms and all examinees. Forms F100 and Form 1 have 16
common items, which were distributed on six common subdomains C1 — C6. Form 1 has 65
items in total. Among those uncommon items, which are 47 items = 65 — 16, we found the items
that have item types exactly the same as those in the six common constructs. In FIlexMIRT, we
ran EFA by fixing the item loadings to 0 so that the rest of the uncommon items could be loaded
on particular dimensions corresponding with the subdomains. However, the estimation of a-
parameters from FlexMIRT did not converge well. The a-parameters of these common items
were not accurately calibrated. It might be due to the fact that there were few common items
between the two forms. It might be also due to the reason that some items were dichotomously
scored while others were polytomously scored.

Table 2 shows the common items among different forms. Table 2 shows that there are
small numbers of common items between the individual forms and the base form — F100. So,
the common reference composite method was considered as a better linking method for this
research. Before running FIexMIRT to obtain the accurate a-parameters, some score categories

needed to be collapsed so that the distribution of score category was reasonable for calibration.
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3.5.2 Non-equivalent Group Common Reference Composite Linking

The idea is for each form different reference composites represent different clusters.
After identifying common reference composites between the base form and the new form, we
used the Procrustes rotation to rotate the common reference composites from the new form back
onto the base form. Given the rotation matrix, we then rotate examinees’ subscores on each
reference composite from new form onto the same reference composite in the base form.
Therefore, for each individual new form, there is a corresponding rotation matrix associated with
the base form. Finally, when obtaining all the rotation matrices for each new form, we could
start rotating all the subscores from individual forms on the identified clusters onto the base
form. Thus, we could compare the subscores because they are all in the same multidimensional
base space.

Moreover, the sample size for each test form varies, so in this research we applied the
non-equivalent group common reference composite equating.

The reference composite is based on a’a matrix (the eigenvector corresponding with the
largest eigenvalue from the a’a matrix). So, we needed to find the common clusters between
each form.

In FlexMIRT, we ran CFA on those items that were classified into clusters defined in
F100 according to their item types. Meanwhile, for items whose item types do not exist in F100,
we ran EFA. In other words, we let those items freely load on each dimension, for we have no
idea which clusters these items could be grouped together given the correlations among the data
set. We ran CEFA using FlexMIRT for each individual form F1 — F4 and obtained the a-
parameters associated with each item in seven-dimensional space according to the results from

parallel analysis in F100.
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There are two major reasons that we ran the CEFA to calibrate the a-parameters using
multidimensional generalized partial credit model. First, we ran EFA directly for each individual
test form, but the results from clustering were not distinguishable. That is, the items could not be
distinctively classified into separate clusters. This was due to the lacking of degrees of freedom.
Second, for each individual test form, by forcing to combine items that have the same item type
as those in the first 100 form together, FlexMIRT could ran EFA very efficiently due to the
control of degrees of freedom among the data set. This is because for individual test forms there
are not enough data — examinee responses to calibrate the item parameters for the
multidimensional item response models.

To sum up, our goal was to link each individual form to the base form. In other words,
the base form defines the base space while the individual forms define the new space. In order to
report subscores in a multidimensional space, we defined a common space where constructs from
different individual forms could be rotated into the common space so that the subscores were
comparable.

After running the cluster analysis for form F100 and four individual forms F1 — F4, we
included all the clusters across all five forms and sorted the clusters in alphabetic order. There
are 11 clusters in total. For each individual form, there was a corresponding 11-by-7 reference
composite matrix with 11 clusters as rows and 7 dimensions as columns. These four matrices
indicate the clusters identified in four individual coordinate systems. Each cluster is represented
by the corresponding reference composite using the cosine of the degree between the reference
composite and the coordinate axis. Thus, the target matrix in the nonorthogonal Procrustes
rotation procedure is represented by the 11 — by — 11 identity matrix, which includes all clusters

across all five forms.
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When linking two forms in a multidimensional space, we rotated the new space onto the
base space. We applied nonorthogonal Procrustes rotation method to obtain four different
rotation matrices, respectively. One of the four rotation matrices was provided in Table 13 for
demonstration purpose. The columns and rows indicate the 11 dimensions in the base space.
TABLE 13:

Rotation Matrix for Form F4

Axisl AXis2 AXis3 Axis4 AXis5 AXis6 AXis7 AXis8 Axis9  Axisl0 Axisll

-0.01 -0.02 1.01 -0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.01 -0.05 -0.80 1.68 0.00 -0.81 -0.23 0.00 0.00 -0.37 0.00
0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-0.31 -0.72 0.00 -0.31 0.00 -0.27 1.50 0.00 0.00 -0.44 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
-0.10 -0.97 0.01 -0.12 0.00 0.03 -0.01 0.00 1.00 0.01 0.00
0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
-0.06 -0.01 0.75 -1.66 0.00 0.74 0.22 0.00 0.00 0.34 1.00

With the four rotation matrices, we could rotate subscores from each individual form onto
the base form. After obtaining these four rotation matrices, we postmultiplied these four
matrices by the estimated abilities for examinees in each individual form. Equation 31 explains
the details.

0=M"e, (31)
The rotated 0 abilities are the subscores linked back to the base form from each individual test
form after multidimensional linking and equating.

For those clusters that do not belong to a particular form, the rotated subscores are not
meaningful because they do not represent any constructs that the form was designed to measure.
Therefore, we did not report the subscores for the clusters that were not identified in that

particular individual form. When rotating subscores from new form back onto the old form, we
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would get the values of subscoes for those clusters, which were not identified in that particular
form. However, these values are meaningless because they just indicate the numbers that we
obtained through the mathematical calculation. In other words, they are mathematically
meaningful, but psychometrically meaningless.

Table 14 shows the subscores after the rotation from Form F4 to the base form. Since
there are 432 examinees, only the first 10 examinees rotated subscores were provided. The
highlighted blue columns correspond with the clusters that are not originally from Form 4. Thus,
when interpreting the results of subscores, the subscores from these clusters will be discard

because they do not represent the true language constructs measured by the items.
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TABLE 14:

The Rotated Subscores after Nonorthogonal Procrustes Rotation for Form F4

Examinee 1D Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6 Cluster 7 Cluster 8 Cluster 9 Clustfcr) Clustﬂ
1 0.39 0.05 0.59 0.23 0.00 -0.24 -0.80 0.00 0.11 0.52 0.14
2 -0.62 -1.52 1.00 -1.60 0.00 -1.34 -1.29 0.00 -1.70 -1.16 -1.79
3 2.81 3.43 -1.26 2.92 0.00 1.20 2.32 0.00 3.94 2.33 3.81
4 2.34 2.93 -1.02 2.18 0.00 0.94 2.10 0.00 3.33 1.24 2.97
5 0.23 0.30 0.60 0.77 0.00 -0.36 0.03 0.00 0.41 0.96 0.78
6 2.64 2.53 -1.31 1.95 0.00 1.19 1.83 0.00 2.93 1.53 2.61
7 2.63 3.03 -1.80 2,51 0.00 1.47 1.83 0.00 3.48 2.15 3.50
8 2.23 1.83 -1.67 0.78 0.00 1.11 1.35 0.00 2.08 -0.81 1.86
9 0.34 -0.20 0.10 -0.18 0.00 -0.07 -0.13 0.00 -0.17 -0.68 -0.03
10 -0.09 -0.42 1.26 -0.44 0.00 -1.47 -1.08 0.00 -0.44 -0.27 -0.28
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CHAPTER 4
CONCLUSIONS AND IMPLICATIONS

This research addresses major issues on how to report subscores in a multidimensional
structure. First, it shows how to report subscores for a test that is well designed based on a
unidimensional model. That is, it introduces a new methodology to transport the data from a
unidimensional space into a multidimensional space. Almost all current operational test
programs are designed using unidimensional models. Test scores or composite scores are
reported on a unidimensional scale. Although researches endeavor to apply different statistical
and psychometric analyses to report subscores, the multidimensional structure analysis of the
data set itself is still a mysterious era that few studies have investigated.

In this research, in order to explore how to report subscores from a test that is designed
using a unidimensional model to multidimensional subscales, we applied different statistical and
psychometric analyses using multidimensional item response theory. Note, multidimensional
item response theory is the major method we used in this research. This research does not focus
on developing a statistically significant multidimensional item response model to report
subscores or to compare the efficiency of reporting subscores using different multidimensional
item response models. Instead, the contribution of this research is to use multidimensional item
response theory to develop a scientific procedure that can be applied to report valid and reliable
subscores when the test is designed using a unidimensional item response model.

In order to achieve this research goal, we applied different methods based on
multidimensional item response theory. They are dimensionality analysis, reference composite
analysis, and multidimensional item linking and equating. The dimensionality analysis includes
the parallel analysis, exploratory factor analysis, confirmatory factor analysis, and cluster

analysis. The reference composites of different clusters were calculated based on the results
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from cluster analysis. The direction of the reference composite indicates the direction of the best
measurement of a set of items in a particular cluster. The multidimensional linking and equating
provided a plausible way to compare subscores across different individual test forms, which are
designed using a unidimensional item response model.

For PTEA, the parallel analysis shows that seven dimensional space can capture the
variations among the data set — F100. Therefore, setting up a multidimensional space with seven
coordinate axes can be considered as a reasonable and stable coordinate system.

We originally wanted to set this seven-dimensional space as a base space in
multidimensional linking and equating. However, there are not many common clusters between
F100 and the four individual test forms F1 — F4. Also, there are few common items between pair
of test forms among the individual test forms as shown in Table 2. Therefore, we applied the
common reference composite design to link and equate test forms. Moreover, instead of using
the coordinate system from F100 as the base space, we set up an 11-by-11 target identity matrix
as the base space. These eleven coordinate axes represent all the clusters among all five forms
from F100 to four individual test forms.

This research started with a very simple but interesting idea that is how to report
subscores that can be comparable when the test is well-designed by a unidimensional model.
This research idea covers the topic of test design, dimensionality analysis, scaling, linking,
equating, and score reporting. It includes the development of item response theory from
unidimensionalilty to multidimensionalilty. All the statistical and psychometric analyses fulfill

our research goal.
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The major purpose of the set of analyses reported here was to determine whether it would
be meaningful to report subscores when the item response data can be well fit by a
unidimensional IRT model. This was done by determining if the item response data provided
evidence that multiple constructs were being assessed, and if there were, would those constructs
replicate across forms? Further, do the identified constructs yield meaningful information when
reported?

Moreover, the results for the dimensional analysis clearly show that, even though the
overall data set is well fit by the unidimensional Rasch model, that multiple dimensions are still
needed to explain the inter-relationships between the responses to test items in these data sets.
The largest data set with 100 items suggests that seven dimensions are needed to represent the
relationships in the data, but this data set does not include all of the item types. That suggests
that more dimensions might be needed for typical test forms. Unfortunately, the sample sizes for
the test forms are too small for detailed multidimensional analysis, but the pattern of results
across the forms clearly indicates that multiple dimensions are needed. As more data are
collected, a common structure may be identified. The analyses of the data on individual forms
suggest that six to eight dimensions are needed, a result consistent with the 100 item analysis.

In conclusion, this study explores the support for the validity of the multidimensional
structure across multiple test forms when the test was originally designed for a unidimensional
scoring procedure using the Rasch model. Through the analysis, we can support the use of
subscores for reporting. The analyses suggest that six to eight dimensions are needed to

represent the constructs assessed by the different test forms.
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The analysis of data set 1 - 100 items with highest frequencies across all test forms -
showed the very distinct seven-dimensional solution was needed to accurately describe the
relationships between the test items and the current sample of examinees. The analyses of data
sets from four test forms were consistent with the 100-item analyses, supporting 6 to 8
dimensions, even though the samples were small. Figure 2 shows there was a consistency of the
dimension structure across five data sets, indicating the language constructs can be replicated
across multiple forms. Therefore, the subscores on the sets of items in these clusters provide

meaningful differences in English skills.

4.1  Solutions to Research Questions

Research Question 1. How many distinct dimensions are needed to accurately describe
the relationships between the test items for the current heterogeneous sample of examinees? In
particular, is more than one dimension needed?

The analysis results show that there are seven distinct dimensions needed to capture the
variation among the data sets. The first hundred items with highest frequencies indicate that a
multidimensional structure with seven coordinate axes is sufficient to represent the relationships
between the test items and the heterogeneous sample of examinees. Although for each
individual test form the number of dimensions identified to represent the relationship among the
data set is either less or larger than the seven dimensions, it is due to the small sample size of the
data sets. For individual forms, the number of examinees is around 450. Compared with the
frequency of 36,938 for the first hundred item data set, the results from individual forms are not
as stable as those from the F100 form. That is why the number of dimensions identified from

the parallel analysis for each individual form varies depending on different data sets. Also, the
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clusters of items classified from each individual form are very different from each other and
different from the first 100 item set, too. The research proves that even though a test can be
well-designed using a unidimensional item response theory model, the data sets can still require
a multidimensional structure to represent the relationships among the items and examinees.

Research Question 2. If more than one dimension is needed to represent the relationships
among the test items for the current sample of examinees, are there clusters of items that are
sensitive to distinct combinations of skills and knowledge and are these clusters related to known
constructs of language performance?

The first research question answered that a seven-dimensional coordinate system is
sufficient to represent the relationships among the data sets. The next question would be how
items can be clustered together within this seven-dimensional space. It is like in a three-
dimensional space, for example, in a university campus there are many departments. If we
consider these departments as clusters and people on campus as items, then our questions here is
how can we classify people together within this three-dimensional space? There are different
ways to cluster people under this circumstance. We can group people according to their
academic major. Let’s say people whose research deals with psychology are usually grouped
together in the building of psychology department. Therefore, according to this way
classification, people on campus can be classified into different buildings.

Same philosophy applies here in clustering analysis of items in a data set. In a seven-
dimensional space, how can we cluster items that are sensitive to distinct combinations of skills
and knowledge? We ran the clustering analysis using the Ward’s method by grouping items
according to the angles between the item arrows. As proved in previous sections, the angles

between item arrows indicate the correlations of the underlying constructs that these two items
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can measure. The smaller the angles, the closer the items’ arrows will be, and the more similar
the underlying constructs and skills that the items are measuring. In this way, the items are
classified into clusters that are sensitive to distinct combination of constructs and skills.

In order to identify whether these clusters of items are related to known constructs of
language performance, we referred to Carroll’s book which explained how each different item
type in PTEA in each cluster can be related to an appropriate identified language constructs.
Thus, the clustering analysis classified items using the psychometric and statistical analysis.
After obtaining all these clusters, we investigated all the items regarding their item types within
each cluster. Then, we applied Carroll’s way of labeling these clusters using appropriate
constructs related to language performance.

In other words, if Carroll’s identification of these clusters is from a cognitive and
linguistic perspective, then the reference composite analysis quantified these clusters by
calculating the degree of angle between each reference composite line that represent each cluster
and each coordinate axis. Tables 5 — 8 show these angles between each reference composite
representing each cluster and the corresponding coordinate axis within each cluster.

Among the five forms in this research, F100 is the most stable one because it has the
largest sample size with around 39,000 examinees. It contains the first hundred items with the
highest frequency across all test forms. Therefore, the clusters in F100 did not cover all of the
item types. F100 is larger sample but with more items while the four individual forms have
smaller sample size but less items per content area. That is why Listening construct was divided

up in F100 but not in Form FL1.
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Research Question 3. If meaningful clusters can be identified, are they specific to one
form of the test or do similar clusters appear for more than one form? That is, do multiple forms
replicate the complex structure of the language constructs?

There are five forms analyzed in total for this research. The first form — F100 is the form
that contains the first hundred items that have the highest frequencies among all examinees
across all 164 test forms. The second to fifth forms — F1 to F4 are individual forms that have the
highest frequency around 450 among all 164 test forms. The multidimensional analysis requires
data sets have sufficient responses. So, we first sorted the individual test forms according to the
frequency in descending order. The first four individual test forms that have the highest
frequencies around 450 were selected as the individual test forms in this research. We set up the
ideal frequency number as 450 because it would return reliable results in multidimensional
analysis.

In order to check for the consistency of the dimensional structure across these five forms,
we ran the parallel analysis, exploratory and confirmatory factor analysis, cluster analysis,
reference composite analysis for all these five forms from F100, F1 to F4, respectively. Figure 3
shows the pattern of the clusters across all five forms. Those black squares indicate there are
common clusters identified across different forms. That is, these different forms replicate the
complex of multidimensional structure of language constructs. The purpose for the factor
analysis was to calibrate the item parameters using the multidimensional item response theory
models so that we could link different test forms when report subscores.

Research Question 4. If replicable clusters can be identified in each test form, how to
link and equate different test forms so that subscores from examinees taking tests on different

test dates in different places can be comparable and interchangeable?
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The basic is to first identify a base space and then rotate the subscores for each cluster
from each individual test form back onto the base space. Since the sample size for each test form
varies, in this research we applied the non-equivalent group common reference composite
equating.

There are two major steps here. First, we defined the base space as an 11-by-11 identity
matrix. The eleven coordinate axes represent eleven clusters across all five forms. In other
words, each form has different clusters and these eleven clusters are the “union” of these
different clusters so that each cluster from individual form will have a corresponding coordinate
axis in the base form. Second, we applied the nonorthogonal Procrustes rotation to rotate the
reference composites corresponding with each cluster in each individual test form back onto the
base form. There is a one-to-one relationship between each individual test form and the base
form that is quantified by a unique rotation matrix. Using that rotation matrix, we could report
subscores for each cluster from individual forms onto the multidimensional scale defined in the
base form. When all the subscores are rotated back onto the base form, they can be compared

and used interchangeably.

4.2 Implications

This research addresses an essential question when reporting subscores for a real testing
programs. Can a multidimensional structure be identified and supported as the basis for reporting
subscores even though a test was originally designed for reporting a single score based on a
unidimensional IRT model? The results of these analyses suggest that the answer to the question

for the case analyzed here is “yes”.
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Three issues related to subscore reporting were addressed through this research. First,
this research demonstrated statistical methods for identifying a multidimensional structure for
subscore reporting on a test designed to support a unidimensional scale. The implication of this
result is that even tests that result in item response data that can be well fit by a unidimensional
IRT model may still tap into multiple skills and abilities. The scale that results from a
unidimensional IRT analysis is a composite of those skills and abilities. If sufficient examinees
and items are available, it is possible to tease out the skills and abilities that go into the
composite defined by the unidimensional model.

For each cluster in an individual test form, there is a corresponding reference composite
line. These reference composite lines tend to rescale the locations of examinees in a
multidimensional space onto a unidimensional scale. Each reference composite represents a
unidimensional scale of a subscore. When equating different test forms, the scales associated
with the reference composites were rotated back onto the scales in the base form. Such
transformation of subscores among different unidimensional scales in different multidimensional
spaces across different individual test forms is one of the major contributions from this research.

The second issue is that large assessment programs use multiple test forms and the
dimensional structure needs to be replicated over the forms taking into account of missing data.
This means it is necessary to check whether the number of dimensions and the structure
generalizes over multiple test forms. The scores received from multiple test forms and
administrations should be comparable (Wendler & Walker, 2006, p.446). Moreover, "Validity is
a unitary concept . . . [it] refers to the degree to which empirical evidence and theoretical
rationales support the adequacy and appropriateness of interpretations and actions based on test

scores (Messick, 1993, p.13)." Therefore, for large-scale testing programs, in order to provide
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the validity evidence supporting the number and types of subscores, we need to provide evidence
for a consistent dimensional structure across multiple test forms with large number of missing
data.

The third issue is multidimensional linking and equating of different test forms to report
subscores that can be comparable. Currently, the multiple forms of the test used in this research
are equated using unidimensional IRT linking. In this study, we first confirmed the dimension
structure across multiple forms. Then, we equated the individual test forms using MIRT linking
procedures by setting up the base coordinate system and solving the nonorthogonal Procrustes
rotation matrix for each individual test form.

Overall, this research introduces a new method to report subscores using
multidimensional item response theory. It also applies a new method to investigate whether the
content classification of item types is appropriate or not. In test design, the content that each
item is measuring is usually defined by content experts. Yet, whether the items measure what
they are supposed to measure is unclear until the data sets combined with responses from
examinees are analyzed. This research provides a valid and reliable methodology for
dimensionality analysis and subscore reporting.

There are several applications of the methods presented in this study. One option is they
can be generalized to other large-scale testing programs with different test content that report
subscores for different test forms. Also, this dimensional analysis method can be applied to
identify different cognitive constructs. Finally, the dimension structure analysis can help test
developers to revise the test specification. This can improve the test validity and reliability as

well as the accuracy of subscore reporting for testing programs.
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4.3  Limitations and Future Studies

The methods in this research demonstrated how to report subscores across different test
forms using multidimensional item response theory. It started with the test form that has the
highest frequency of item access. For each individual form, the analyses were analyzed based on
the average sample size of 450. Such small sample sizes might cause uncertainty and
unstableness when running the multidimensional analyses. Also, it might not be sufficient to
calibrate the multidimensional item parameters, such as the discrimination parameters in MIRT
models.

The reliability of the subscores are not provided because the subscores are IRT scores
with the average standard error around 0.30. For future study, there could be research discussing
the computation of reliability given the methodology of reporting subscores in this research.

The other factor that may influence the results is that there are many missing values in the
total data set. For example, in the F100 form — the first hundred items with highest frequency,
we used the linear regression imputation to estimate the missing values using the existing scores.
Such missing-data estimation worked well for the analysis in this research. However, it is
unclear whether it would work for other future research with different data sets and missing
value patterns.

For future studies, it would be ideal to use more data sets without a large amount of
missing values. Also, the sample size for each test form could be enlarged in order to run a valid
item calibration using multidimensional item response theory models. It would reduce the
random errors in statistical and psychometric analysis. The reliability of subscores would also be

improved.
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