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ABSTRACT

CENTRALIZERS OF ELEMENTS OF PRIME ORDER IN LOCALLY FINITE
SIMPLE GROUPS

By

Elif Seckin

This thesis is mainly focused on the centralizer of elements of prime order. We prove
a result which gives all the cases where Cg(g1) = Cg(g2) holds for G = PGLk(V)
or G = PSLk(V) if V is a finite dimensional K-space and g;,92 € G of prime order
r such that 7 # charK. A similar result is obtained for finite alternating groups.
We prove that a simple locally finite group containing an element of prime order
p whose centralizer is abelian is either linear or a group of p-type. Another result
presented is that any non-linear simple locally finite group contains a p-subgroup
which is not Cernikov. This in turn proves that such a group contains an infinite

abelian p-subgroup.
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Introduction

Centralizers have long played a very important role in the theory of finite as well as
locally finite groups. These subgroups are one of the key tools that can be used to

obtain detailed information about the structure of the group itself.

In this dissertation, we focus on the centralizer of elements of prime order. The
thesis is organized as follows. In Chapter 2 and 3, we investigate the cases when two
such centralizers are equal in certain groups. In other words, the following question
is considered in these chapters:

Question 1. Let G be a group and a,b € G be elements of prime order r such

that Cg(a) = Cq(b). Then what can be said about (G,a,b) ?

In Chapter 2, we deal with the case when G is a projective linear or a special
linear group. More precisely, in Section 2.1 we prove a result (Theorem 2.1.1) that
characterizes exactly when Cg(g1) = Cg(g2) holds for G = PGLg(V) if V is a
finite dimensional K-space and g;,92 € G of prime order r such that r # char K.
A similar result is obtained for the group PSLg (V) in Section 2.2 (Theorem 2.2.3).
The key lemmas giving the structure and properties of C(g;) that are needed for the
proofs of theorems in Chapter 2 are provided in the first two sections of Chapter 1.
Some small cases (i.e., when dimV < 3 and |K]| < 5) appearing in these results are

investigated in Section 1.3.



In Chapter 3, we consider the finite alternating group Alt(n) and determine all

possibilities for (n,z,y) such that z,y € Alt(n) of prime order, (zr) # (y) and

Catt(n) () = Cal(n) () -

Chapter 4 is, roughly speaking, about the centralizers of elements of prime order in a
simple locally finite group. In order to give a more precise description of each section
we shall need some definitions as well as the classification theorems that are used in

our proofs.

e Let G be agroup. G is called locally finite if every finite subset of G generates

a finite subgroup of G. G is a LFS-group if G is a simple, locally finite group.

o A set of pairs {(Hj, M;) | i € I} is called a Kegel cover for G if, for all i € I,
H; is a finite subgroup of G, M; is a maximal normal subgroup of H; and for
each finite subgroup F' < G there exists ¢ € I with F < H; and FNM; = 1.

The groups H;/M;, i € I, are called the factors of the Kegel cover.

It has been shown in [13, p.113] that every LFS-group has a Kegel cover. Kegel
covers are one of the important tools in the study of locally finite groups because
using Kegel covers many question about LFS-groups can be transferred to questions
about finite simple groups, which in turn may be answered using the classification

of finite simple groups.

e A group G is called finitary if there exists a field K and a faithful KG-module
V such that dimg[V, g] < oo for all g € G where [V, g] := {v(g9 —1)|v e V}.

The classification of infinite finitary LFS-groups has been completed:



(a) those that are linear have been classified independently by several authors:
Theorem 1 ([1, 2, 10, 17]) Each LFS-group which is not finite but has a faithful
representation as a linear group in finite dimension over a field is isomorphic to a

group of Lie type over an infinite locally finite field.

(b) those that are non-linear have been classified by J. I. Hall:
Theorem 2 ([8]) Each LFS-group which is not linear in finite dimension but has
a faithful representation as a finitary linear group over a field is isomorphic to one
the following holds:

(1) an alternating group Alt(Q?) with Q infinite;

(2) a finitary classical group: FSpg(V,s), FSUK(V,u), FQg(V,q);

(3) a special transvection group Ty (W,V).
Here K is a (possibly finite) subfield of Fp, for some prime p; the forms
s, u, and q are non-degenerate on the infinite dimensional K -space V; and W

is a subspace of the dual V* whose annihilator in V is trivial: 0 = {v € V|vW = 0}.

Let G be a non-finitary LFS-group. Then

o G is of alternating type if G has a Kegel cover all of whose factors are alter-

nating groups.

e G is of p-type for some prime p if every Kegel cover for G contains at least
one factor which is isomorphic to a classical group defined over a field in char-

acteristic p.

In [14, Theorem A}, U. Meierfrankenfeld proved an important result on the structure
of an arbitrary LFS-group showing that any LFS-group can be sorted into one of

the following classes:



Theorem 3 ([14]) Let G be a LFS-group. Then one of the following holds:

(a) G is finitary.

(b) G is of alternating type.

(c) There ezists a prime p and a Kegel cover {(H;, M;) | i € I} for G such that
G is of p-type and for all i € I, H;/Op(Hj;) is the central product of perfectcentral
extension of classical groups defined over a field in characteristic p and H;/M; is

a projective special linear group.

It is possible to split the groups of alternating type into two categories. First, let
us give more notation and terminology. Let G be an infinite LFS-group, H a finite
subgroup of G and §? an H-set such that |[2] > 7 and H/Cg(Q) = Alt(R2). Let A
be the class of such pairs (H,2). Note that G is of alternating type if and only if
for each finite subgroup F of G there exists (H,Q) € A such that F < H and F
acts faithfully on Q. Let G be of alternating type, FF < G be finite, and define

Areg(F) :={(H,Q) € A| F < H and F has a regular orbit on Q}.

Then
e F is called regular if Areg(F') is a Kegel cover for G.

o G is of regular alternating type if G is locally regular, that is, every finite

subgroup of G is regular.

e F' is called non-regular if there exists a finite subgroup F* of G with F < F*

such that for all (H,Q) € A with F* < H, F has no regular orbit on .

e (G is called non-regular alternating type if G is of alternating type and G has

a non-regular finite subgroup.



There is another characterization of regular and non-regular alternating type groups

given in [4, Theorem 1.4], for which the following definitions are needed.

e G is of 1-type if every Kegel cover has a factor which is an alternating group.

e We say that G is of oo-type if the following property holds:
Let S be any class of finite simple groups such that every finite group can be
embedded into a member of S. Then there exists a Kegel cover for G all of

whose factors are isomorphic to a member of S.

Theorem 4 ([4]) Let G be a LFS-group of alternating type.
(a) G is of non-regular type if and only if G is of 1-type.

(b) G is of regular alternating type if and only if G 1is of oo-type.

In [6], it is proven that if G is a locally finite simple group of alternating type, p is a
prime, and Z < G is an elementary abelian subgroup of order p?, then there exists
1 # 2z € Z with Cg(z) # Cg(Z). One might ask whether a stronger result is true;
namely,

Question 2. Let G be a locally finite simple group of alternating type and p be
a prime. Does Cg(a) # Cg(b) hold for all a,b € G with |a| = |b| = p and (a) # (b).

Note that this is a special case of Question 1. In Section 4.1, we observe that Question
2 is true when G is a regular alternating group (see Theorem 4.1.2), and we also
prove that if G is a non-regular alternating group, C(z) is non-abelian for z € G
with |z| = p, p a prime. One of the corollaries we derive from these results is the
following: If G is a LFS-group of alternating type, then Cg(z) is non-abelian for
any ¢ € G with |z| = p (see Theorem 4.2.5). In addition to this, Section 4.2 answers

the following question.



Question 3. What can be said about the structure of a simple locally finite group

containing an element of prime order p whose centralizer is abelian.

This question is stated by Hartley in [9, page 39] and it is mentioned that “We have
not been able to say anything about the structure of such a group even with the
assumption that the centralizer is elementary abelian.” We shall show that the group
under consideration must be either linear or a group of p-type. For the proof of

this result, we shall be using the classifications mentioned above in Theorems 2 and 3.

Finally, in the last chapter, we prove that a non-linear LFS-group contains a p-
subgroup which is not Cernikov where p is a prime. This enables us to show that

such a group contains an infinite abelian p-subgroup.



Chapter 1

Preliminaries

This chapter provides the definitions, notation and lemmas that will be used in
Chapter 2. Some well-known material is included in order to make the presentation

self-contained. Throughout this chapter we assume the following:

K is a field of characteristic p, p is a prime or zero, V is a finite dimen-
sional K-space, G = GLg(V), G = G/Z(G) = PGLk(V), S = SLg(V),

S = PSLk(V) and r is a prime.

Also, we regard K as a subring of Endg(V), that is, we identify k with kidy for
k e K.

1.1 Structure of Centralizer in GLk(V)

Lemma 1.1.1 Assume that v # p. Let 2" — 1 = [[72 t;(z) where t;(z) € K[z] is
irreducible and tyg = z — 1. Let E be a splitting field for ™ — 1 over K. Let &; be a

root of t; in E. Then
(a) 2" — 1 has r distinct roots in E.

(b) ti(x) #tj(x) forall 0<i<j<m



(c) E=KI[&] forall 1<i<m.
(d) Let d =dimgE. Then degt; =d forall 1<i<m.

Proof: (a) ra™~1 # 0 since charK # 7. So ged(z” — 1,72"~!) = 1 and hence
z" — 1 has no multiple roots in E.

(b) This is immediate from part (a).

(c) Any root of t;(z), 1 <1i <m, isa primitive r-th root of unity and &; is algebraic
over K[z]. Therefore K[¢;] = K(§;) and it contains all the roots of z" — 1, that is,
it contains E. The other inclusion, K(¢;) C E, is obvious. Thus K(¢;) = E = KI[¢;].
(d) For all 1 <i < m, we have d =dimg E = [E : K] = [K(§;) : K] = degree of the

minimal polynomial of &; over K[z] = degt;.

Definition 1.1.2 Let K be a subfield of a field F and V be an F-space. Then
'k GLg(V) is the set of all F-semilinear isomorphisms of V which are K-linear.
So if h € GLg(V), then h € T'g GLg(V) if and only if there erists o € Autg(F)
with h(fv) = o(f)(hv) forallveV and f € F.

Lemma 1.1.3 Let F be a subfield of Endg (V) containing K. If h € I'gx GLg(V)
acts o -semilinearly, then hfh™! = o(f) for all f € F. Moreover, T'x GLp(V) =

NeLy (v)(F).
Proof: Let h € 'k GLp(V) be o-semilinear. Then h(fv) = o(f)(hv) for all

veV and f € F by definition. Thus hf = o(f)h and hence hfh~! = o(f) for all

f € F, proving the first statement.

For the proof of the second statement, let h € 'y GLp(V) with 0 € Autg(F) as

the corresponding automorphism. Then hfh~! = o(f) € F for all f € F by the



first part. Hence h normalizes F, giving us I'gx GLp(V) C NGLK(V)(IF). For the
converse inclusion, take h € NGLK(V)(IF). Then hfh~! € F for all f € F. Defining
o(f) := hfh~1, we see that o € Autg(F) and h(fv) = o(f)(hv) for ve V, feF.
Hence h € T'x GLg(V).

Lemma 1.1.4 Let g € G and § = gZ(G) € G. Assume that E := K[g] < Endg(V)
is a field. Then

GLE(V) = Cg(g) € Ce(g) € IT'k GLE(V). (1.1)

Proof: Let us first prove GLg(V) = Cq(9):

If z € Cg(g), then g™ = g™z for all n € Z*. Therefore, zp(g) = p(g)z for
any p(z) € K[z] and hence ze = ez for e € E, that is, £ € GLg(V) which gives
C;(9) € GLE(V). For the converse inclusion, observe that any element in GLg(V)
commutes with g since E = K[g]. Hence GLg(V) C Cg(g), giving the first equality
in (1.1).

Now we shall show the last inclusion as the other one is obvious. Let h € Cg(7).
Then gh = ng € E for some n € K. Hence hg"h~1 € E for all n € Z* and so
heh™! € E for all e € E. Thatis, h € Ng(E) and hence h € I'x GLg(V) by Lemma
1.1.3.

Lemma 1.1.5 Assume that r # p and let ¢ € G with g" = 1. Let f(z) be the

minimal polynomial of g. Then the following holds:
(a) f(z) divides 2" — 1 in K[z].

(b) f(z) = [li=1 fi(z) where f;’s are pairwise distinct and f; = t; for some

0<¢ <m.



(c) For 1<i<s, let V;=Ann(fi(g)):={veV| fi(g)u=0}. Then V; #0 for

all i and

S
v=@@Pv.
i=1
(d) Let g; be the restriction of g to V;. Then f;(g;) = 0.

(e) Let E; = Klg;] be the K-subalgebra of Endg(V;) generated by g;. Then
E; = K[z]/fi(z)K[z].

f) E;=K if fi(zx) =2 —1 and E; 2 E if fi(z) # £ — 1 where E is a splitting
field for " — 1 over K.

(g) V; is a vector space over E; and

?=<1 GLg,(V;) = Cgl9)

where we identify X3i_, GLg,(V;) with its image in GLg(V).

Proof: (a) This is obvious as g satisfies the polynomial z" — 1 € K|[z].

(b) Follows from Lemma 1.1.1 since f(z) |z" — 1.

(c) Each V; is a g-invariant subspace and V is a direct sum of these subspaces are
from a theorem about decomposition of a vector space via a linear transformation
(see [11, Theorem 12, p.220]). Also note that, for each 1 < i <'s, V; # 0 because
otherwise f(z)/f;(z) would be the minimal polynomial of g, contradiction.

(d) By definition of V;, we have f;(g)v; =0 for all v; € V;. Hence f;(g;) = 0.

(e) Let m(z) be a polynomial in K[z] such that m(g;) = 0. Then m(g)g;(g) = 0
where ¢;(z) = f(x)/fi(z). Since f is the minimal polynomial of g, f divides mg;
and hence f; divides m. This shows that f;(z) is the minimal polynomial of g;.

Consider now the map ¥ : K[z] — Endg(V;) given by 9(m(z)) = m(g;). We

10



observe that the kernel of 9 is f;(x)K|[z] and the image is K[g;], giving the required
isomorphism of part (e).

() If fi(z) =x—1, then f;(¢9;) = 0 implies that g; =1 and hence E; = K[g;] = K.
If fi(z) # £ — 1 then g; # 1. Part (e) and Lemma 1.1.1 easily imply that E; =
Klz]/ fi(z)K[z] = K[€]] = E where £ is a root of the irreducible polynomial f;(z).

(g) For any v € V; and e € E; < Endg(V;), let us define e - v := e(v). It is straight
forward to check that this multiplication gives an E;-module structure on V;. Note
also that E; is a field because it is isomorphic to either K or E by part (f), giving
us the first part.

For the second part, let 1 < ¢ < s. If h € Cg(g), then hg™ = g"h for all
n € Z* and hence hp(g) = p(g)h for any polynomial p(z) € K|[z]. In particular,
hfi(g) = fi(g)h. Applying v; € V; to both sides of this equation and using
part (d), we get 0 = f;(9)h(v;). So h(v;) € V; by definition of V;. Define h;
as the restriction of A on V;. Then h; is a K-linear map on V;. In fact it is
E; -linear since h;g9; = g;h; and E; = K[g;]. Hence, h; € GLIEi(Vi) implies that
Cglg) < szlGLIEi(Vi) with the correspondence h + (hy, hg, - ,hs). For the
converse inclusion, note that since E; is a field for each 1 < i < s, we can apply

Lemma 1.1.4 and conclude that GLg,(V;) = CGLK(Vi)(gi) C CGLK(V)(Q)- Thus
Xi=1GLg,(V}) < Cg(9)-

Remark 1.1.6 Let H be a group and assume that V = V1 ®Vo®---®Vs where V; ’s
are simple KH -submodules of V for 1 <i <s. Then {V;| 1 <i< s} is the set of

all simple KH -submodules of V' if and only if the V; ’s are pairwise non-isomorphic.

Proof: (=) Without loss of generality, assume that V; = V5 as KH -modules.
Then there exists a K-linear map f : Vi — V4 such that f(hvy) = hf(v;) for

all h € H and vy € Vi. Let us denote the image of vy under f by 7;. Then

11



W = {(v1,71,0,...,0) | vy € 1} is a nonzero simple KH -submodule of V and

W #£ V; for any ¢, a contradiction. Hence V;’s are pairwise non-isomorphic.
1 y 1

(<=) Let W be a nonzero simple KH -submodule of V. Then the projection m; :
W — V, is nontrivial for some 1 < ¢ < s. Since both W and V; are simple
submodules, W = V; by Schur’s Lemma. So W # V; and thus 7; = 0 for all j # 7.

Therefore W = V; for some 1%, as desired.

Lemma 1.1.7 Let E; be a field containing K for 1 < i < s. Assume that V =
VieVo® - --® Vs where V; is an E;-space and dimIEi Vi #1 forall i. Let H =
Xf:l SLlEl(‘/l) Then

(a) V;'s are pairwise non-isomorphic.

(b) {Vi| 1<t < s} is the set of all simple KH -submodules of V.

Proof: (a) Since for any j € {1.2,...,s}

S
Cu(V;) = X SLg,(V),
i#]

we observe that V; and V; have different centralizer if i # j. Hence V; # V.

(b) The assumption dimg, V; > 1 implies that V; is a simple SL[Ei(Vi)-submodule

and in particular a simple KH -submodule. Remark 1.1.6 finishes the proof.

Notation: We will denote the set of nonzero elements of a set S by St.

Lemma 1.1.8 Assume that r # p. Let g € G with |g| = r and f,s, f;,E;,V; be
defined as in Lemma 1.1.5. Then the following holds:

(a) Vi's are pairwise non-isomorphic.

12



(b) {V;| 1 <i< s} is the set of all simple KCq(g) -submodules of V.
(©) E; = Crnay(v;)(GLE;(Vi)) = Cgnay (v;)(Ca(9)) for 1 <i<s.

Proof: (a) Observe that

S
Cogle) (Vi) = %g GL, (Vi)
1

Suppose to the contrary that Cg G(g)(vi) = CCG(g)(Vj) for some distinct 7 and j.
Then GLIEi(Vi) = GLEJ. (V;) = {1} and this implies dimg, Vg =1and Ex =K =T
for k =,j. By Lemma 1.1.5(f), E;, = K = E where E is a splitting field of z" — 1
over K and hence K contains a primitive r-th root of unity, a contradiction to
|K| = 2. Thus CCg(g)(Vi) # CCG(g)(Vj) for any 7,j. Since isomorphic KCg(9)-
submodules must have the same centralizer in Cg(g), we conclude that V;’s are
pairwise non-isomorphic.

(b) By Lemma 1.1.5 (g),

S
Calg) = ,Xl GLg, (V;)-
1=

Since GL]Ez.(Vi) acts transitively on Vin, so does Cg(g). Thus, V;’s are simple

KCq(g)-modules. Now, Remark 1.1.6 completes the proof of part (b).

(c) Note that the second equality is trivial and we only need to verify the first one:
(€) Denote C := CEndK(Vi)(GLEi(V‘i)) and let e € E; < Endg(V;). Then for any
h e GLlEi(Vi) we have h(ev;) = eh(v;) for v; € V;, that is, e € C.

(2) Let 0 # h € C. Then h commutes with every element in GL]E,-(Vi) and,
in particular, it commutes with every element in E; since I‘Eii Cc GL]Ei(V,-). Thus

h e Z(GLIEi(Vi)) which implies that h = {idy; for some £ € E;. So h € E;.

13



Lemma 1.1.9 Assume that v # p and for j = 1,2, let g; € G with |gj| = .
Let fj. sj, fij, Eij and V;; be defined as in Lemma 1.1.5. Then the following are

equivalent:

(a) Cgl91) = Cglg2).

(b) s := s; = sy and (possibly after permuting fi9, fo9,..., fs2) Vi1 = Vio and

]Eil =IE1'2 fOT‘ all 1 <:i:<s.

Proof: (b)= (a): Trivial by Lemma 1.1.5(g).

(a)= (b): Assume that Cg(g1) = Cg(g2). By Lemma 1.1.8(b), {V;; | 1 <i < 55}
is the set of all simple KCg(g;)-submodules of V' for j = 1,2. Then the assumption
Cg(91) = Cg(g2) implies that s := s = s and possibly after permuting the f;;’s

Vii=V;o forall 1 <i<s. By Lemma 1.1.8(c), we have

Ei1 = Cendy (v;;)(C6(91)) = Crndg (vip) (Cc(92)) = Eia.

Lemma 1.1.10 Assume that r # p and let g € G with |g| = 7. Let the notation be

as in Lemma 1.1.5. Then ezactly one of the following holds:

1. Cz(9) = Cal9).

(b) f(x) =" — 1.

(c) s=r and there exists 1 # & € K¥ with € =1 such that forall 1<i<r
fi(z) = z — €1 (possibly after recrdering the f;’s).

(d) dimg V; =dimg V; forall 1<i<j <.

() Cx(g) = Cg(g)(h) where h € G with k™ = 1, hV; = Viy1 for all

1<i<rand hV; = V1.

14



Proof: Assume that (1) does not hold. Then Cx(g) 2 Cg(g) and hence there
exists § € C(g) such that y ¢ Cg(g). So 1# [9,y] € Z(G). Let 1 # [g,y] =& for
some £ € K¥. As y~lgy = £g and |y~ 1gy| = |g| = r, we have |¢| =r. That is, £ is
a primitive r-th root of unity in K and hence E = K. This proves 2(a).

We shall now prove the parts 2(b)-(d) together: Since f(z) = [, fi(z) divides
z" — 1 and z" — 1 splits in K[z], we may let fi(z) =z —¢&;, 1<1i<s, where & is

an 7-th root of unity in K. Note that, for each 1 < i <s,

Vi = Ann(fi(9)) = {ve V| gv = ¢&v} = Ker(g — &).

That is to say, V; is the eigenspace of g corresponding to the eigenvalue &;. For any

AeK!and ve V, we have
g% = €M & Egu = EXv & gu = v,

which means that

Ker(g — A) = Ker(g¥ — €)). (1.2)

Using (1.2) with A = §;, it follows that V; = Keir(g — &;) = Ker(g¥ — £§;). Let us

now consider Ker(g¥ — &;) and observe that
Ker(gV = &) ={veV |ghv=tu} = {veV|fgu=¢v}={veV|gv=E 60}

is the eigenspace of g corresponding to the eigenvalue £~1¢;. Thus, Ker(g¥ — &)

gives another eigenspace V;, where j # i. Also, note here that

dimg V; = dimg Ker(g — §;) = dimg h ™" (Ker(g? — &))

= dimg Ker(g¥ — §&;) = dimg V;,
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which yields 2(d). By (1.2), we have Ker(g¥ — €/¢;) = Ker(g — €771¢;). Since
|€] = 7, for each j € {1,2,...,7}, Ker(¢¥ — €J¢;) gives a different eigenspace of g.
Therefore, s = r as claimed in part 2(c) and hence f(z) = z" — 1. Without loss of

generality, let f;(z) =z — c-lfor1<i<r

2(e) First we shall show that an arbitrary h € G with the conditions A" = 1,

hV; = Viy1 and hV; = Vi, for all 1 <4 <7, must satisfy Cx(g) = Cc(g)(R). Note

that, for any 7, we have
gMvi = (7 gh)(vi) = R~ g(h(v) = R~ (€' hoy) = €'v; forallv; € Vi (13)

On the other hand, £gv; = €€~ 1y; for all v; € V;. Combining this with (1.3), we
conclude that gh = £g on each V; and hence on V. Now gh = £g implies h € C(7)
and hence C(g) 2 Cg(g)(h). Conversely, take an element d € Cz(9). We need to
show that dh=F € Cg(g) for some k € Z. Let [g,d] = A € Z(G) for some A € K,

Since A" = 1, we have A = £¥ for some k. Then dh=% € Cg(g) easily follows.

Next we shall show the existence of such an h. For this, we let h; : V; — V41
be arbitrary K-linear maps for all 1 < ¢ < r and define h, : V, — V] as
hr = (hy_1hy—o---h1)"L. Now let h € G with hIVi := h;. Then obviously A" =1

and above observation implies that C(g) = Cg(g)(h).

Let us mention some further observations that will be needed later.

Remark 1.1.11 Assume that 7 # p and let g € G with |g| = r be as in Lemma
1.1.10(2). If y € Cq(g) with yVi = Vo, then yV; = Vjy1 forall 1 < i < r and
yVr = V1.
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Proof: y € C;(g) implies y~lgy = Ag for some A € K. Then, for any v; € V,
y~lgyvy = Aguy. As yv; € Vo and gv; = v;, we get y~léyv; = Av; and hence

& = A. Now take v; € V; and observe that

yu; € Vig1 @ g(yv;) = E'yv; & y ™ lgyu; = €v; & Egu; = €'y,

The last equality above does hold by the definition of V;. Hence yv; € Vj;;. Also

we know that V;’s have the same dimension.

Proposition 1.1.12 Assume that r # p and let g € G with |g| = r be as in Lemma
1.1.10(2). Further assume that dimg V; =1 for 1 < i < r. Then either Cg(g) is

the unique abelian subgroup of index T in Cg(g) or r =2, |K| =3, dimgV = 2.

Proof: Let A = Cg(g9) and B = Cg(g). Note that A is an abelian normal

subgroup of B and |B/A| = r. Suppose that there is a subgroup D of B such that
D is abelian, |B/D| =71 and D # A. Then AD = B. Now

AND < Ca(D) , = C4(AD)=Cy(B)=Ca(A(h) = Ca(h)
D abelian A abelian

and |[A/AN D| = |AD/D| = |B/D| = r imply that |A/C4(h)] < r. Since
dimg V; =1, A= XT_;K" Let y = (ki,ka,...,kr) € A where k; € K* for all 4.
Since h permutes the k;’s, y € C4(h) if and only if y is of the form y = (k, &, ..., k)
for some k € K!. Therefore C4(h) = K! and hence |4/C4(h)] = |K}™~! < r.
Since K contains an 7-th root of unity, |[K¥ > 7. Thus 7"~! <7 = r! which gives
r=2. Now r < |K! < r implies that |K| = 3. Furthermore, dimg V = 2 follows

from r =2 and dimg V; =1 for 1 <i<r.

Now we will state a similar result where GLk (V) is replaced by SLk (V).
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Proposition 1.1.13 Assume that r # p. Let g € G with |g| = r be as in Lemma
1.1.10(2). Assume that dimg V; =1 for 1 <i <r. Then either Cg(g) is the unique

abelian subgroup of index r in Cg(g) or we have one of the following cases:
(1) r= 3, |K| = 4, and dimg V = 3.
(2) r=2, |K| =3, and dimgV = 2.
(3) r=2, |K| =5, and dimg V = 2.

Proof: Let h € Cg(g) \ Cg(g) and d := det(h). Consider the element z € G
which acts as d~! on V| and as identity on the remaining V;’s. Trivially z € Cg(g)
and hr € Cg(g) has determinant 1, that is, hx € Cg(g). It is also obvious that
hx ¢ Cg(g). Thus, we have Cg(g) # Cs(g).

Since Cg(9) < Cg(9)Cs(@) < Cg(g) and [Cg(9)/Ce(9)l = r, we have
Cel9) = Cg(9)Cs(g) or Cg(9)Cs(g) = Cg(g). The first case implies

that Cg(g) = Cg(g9) which is not possible. Therefore, by the latter case
r=|Cc(9)/Cc(9)| = ICc(9)Cs(9)/Ca(9)l = |Cs(3)/Cs(9)l.

The rest of the proof is essentially the same as the proof of Proposition 1.1.12: Let
A =Cg(9) and B = Cg(g) and suppose that there exists an abelian subgroup D of
index 7 in B and D # A. Then AD = B and |B/D| = r implies |A/AND| = r.
Since B = SN (Cg(g)(h)), we have B D A(SN (h)) and

AND < Cy(D) == Cy(AD) = Cy(B) < Cy(SN(h)).

A =
D abelian A abelian

Thus |4/C4(S N (k)| < r. We also have A = SN XI_, K* and |4| = |KF™ L,
The elements in C4(S N (h)) are of the form (k,k,...,k) with k" = 1 where

k € K!. Since K contains an r-th root of unity, |C4(S N (h))| =  and hence
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|A/C4(SN (h))| = K} 1/r < r. Therefore
KT <r? and |K*| >

From these inequalities we get r"~1 < r2. Thus r = 2 or r = 3. The first case

yields |K| =3 or 5 (|K| # 4 since 7 # p) while the second case gives |K| = 4.

Remark 1.1.14 Assume that v # p. Let § € G with |g| = . Put € = g" € K.

Then the following are equivalent.
(a) |gk| # r for any k € KI
(b) £ ¢ K.
(c) 2" — € is irreducible over K.

Proof: (a) < (b):
|gk| = 7 for some k € K! <= (gk)" =1 for some k € K! <= g¢" = k™" for some
keK' < €=k" for some k € K! < € e K" for some k € K".

(b) & (c): See [12, Lemnma 16.3].

Lemma 1.1.15 Assume that v # p and let g € G with |g| = r. Suppose |gk| #
for any k € K! and let € € K! be such that g" = €. Put E := K[g] < Endg(V).
Then the following holds.

(a) f(x):=2a" =& is irreducible.
(b) E = Klz]/f(x)K[z] is a field with dimg E = 7.
(c) V is a vector space over E and Cg(g) = 'k GLE(V).

@) |K| > 2.
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Proof: (a) This is from Remark 1.1.14.

(b) Obvious since f(z) is the minimal polynomial of g and dimg E = deg f(z) = 7.
(c) Define e-v = ¢(v) for all e € E and v € V. This defines an E-module structure
on V. Note that by Lemma 1.1.4 we have C(g) C I'x GLg(V). Thus, it remains
to show the converse inclusion. Let h € I'x GLg(V) with o € Autg(E) being the
corresponding automorphism. We need to prove that h € C;(g), which is equivalent
to hgh™1g~! € K. By Lemma 1.1.3, heh™! = o(e) for all e € E. Letting e = g € E,

1

we get hgh™! = o(g) and hence hgh~lg~! = 0(g9)g~!. Therefore, we are done if

we show that o(g)g~! € K.

T 1

Since ¢" = £ = 0(g)", we have (0(g)g™!)" = 1. Hence o(g)g~! is a root of z" — 1.

The degree of the minimal polynomial of ¢(g)g~! is strictly less than r because
z" — 1 is reducible. Then [E: K] = 7 and [K(o(g)g™!) : K] divides [E : K] imply
that o(g)g~! € K.

(d) If |[K| =2, then ¢" =0 or 1, contradiction.

Remark 1.1.16 Let § € S with |j| = r where r # p. Then C5(y) is not solvable

if n>2r(r — 1) where n = dimg V.

Proof: Assume first that |yk| # r for any k € K. Put y" = £ € K. Then, by
Lemma 1.1.15. dimg E = r where E = K[y] and moreover Cx(y) = I'g GL(V).
Hence C5(7) = SNTgGL(V) 2 SLg(V)Z(G)/Z(G). Choosing n > 2r implies
that dimg V' > 2. Then SLg(V)Z(G)/Z(G) and hence Cg(y) is non-solvable,

giving the desired result in this case.

Now suppose that |yk| = r for some k € K. Without loss of generality, we may
assume |y| = r and then use Lemma 1.1.10. In Case 1.1.10(1), we have Cg(y) 2
[Xi=1SLg,(V})]Z(G)/Z(G), where E; = E or K and [E : K] < r—1. Thus choosing
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n > 2r(r —1) implies that dimg, V; > 2 for some ¢ and hence Cg(y) is not solvable.
In Case 1.1.10(2), we observe that Cg(7) 2 [Xj=; SLk(Vi)]Z(G)/Z(G). Similarly,

if n > 2r then dimg V; > 2 for some ¢, which leads to desired result.

1.2 Field Extensions

Lemma 1.2.1 Assume that r # p and K contains a primitive r-th root of unity.
Suppose a is an element of an extension field of K such that a" € K. If b € K(a)

with " € K, then b= alk for some j € Z and some k € K.

Proof: It istrivial if a € K, so we assume a ¢ K. Since K has a primitive r-th root
of unity, we have a” ¢ K. Put ¢:=a" € K and g(z) := 2" — ¢ € K[z]. By Remark
1.1.14, g(z) is irreducible and it is also separable since ged(g(z),g’(z)) = 1. Thus
K(a) is a splitting field of g(z) and K(a)/K is a Galois extension with [K(a) : K] = 7.
Let 1 # o € Autg(K(a)). Then o(a) = £a where £ is a primitive r-th root of unity.
Hence o(a?) = €%a’ for all 0 < i < r, which means €' is an eigenvalue of o with the
corresponding eigenvector a® for 0 < ¢ < r. Obviously Ka* C Ann(o — ¢*). Since
K (a) is a vector space of dimension r over K, each eigenspace of o has dimension 1
and thus Ka! = Ann(o — £!). By assumption d := b" € K. So both b and o(b) are
the roots of the polynomial z" —d € K[z]. Hence o(b) = b¢7 for some j. Therefore,

b is in the eigenspace of o corresponding to the eigenvalue ¢J and thus b € Ka’.

Lemma 1.2.2 Assume that v # p and let a be an element of an extension field of
K such that a” € K\K". If b € K(a) with " € K, then b = a’k for some j € Z
and k € K.

Proof: Let & denote a primitive r-th root of unity in an extension field of
K(a). Then [K(¢) : K] < 7 — 1. Since a” ¢ K", we have [K(a) : K] = r. Hence
[K(a) : K] and [K(§) : K] are relatively prime and so K(a) N K(§) = K. We

21



are now in a position to apply Lemma 1.2.1 to the field extension K(¢)(a)/ K(§)
and conclude that b = ka/ for some j € Z and k € K(£). On the other hand,
k=ba"J € K(¢) NK(a) = K.

The previous lemma will in fact be needed and used in Chapter 2 only in the

following set up and, for convenience, we would like to mention it here.

Lemma 1.2.3 Let g;j € G be such that |§;| = r where r # p. Assume that E; :=
Klgj] s a field for j = 1,2. Assume further that for at least one of gj we have
|kgj| # 1 for any k € K. If E; = Ey then (g;) = (o).

Proof: For j = 1,2 we have g;f € K and, say, g5 ¢ K". Using Lemma 1.2.2, we

get go = g{k for some j € Z and k € K. Then g, € (g;) and the lemma follows.

Lemma 1.2.4 Let E be an extension field of F. Then

|]Eﬁ : ]Fﬁl = number of 1-dimensional F-subspaces of E.

> dimpE unless F=E.

Proof: Let Fe be a 1-dimensional F-subspace of E, where e € Ef. It is easily
seen that Stabg(Fe) = F. Let Q be the set of all 1-dimensional F-subspaces of E.
Since E! acts transitively on Ef, and hence on 2, we have |E¥ : Stabpy (Fe)| = |EY -
F¥| = |Q|. The last part is from the fact that each element in an F-basis of E gives

a 1-dimensional F-subspace. But there are 1-dimensional subspaces other than this

type.

Lemma 1.2.5 Let V be an E-space and K be a subfield of E. If dimgV # 1, then

CEndg (v)(SLE(V)) = E.
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Proof: Let us denote CEndK(V)(SLIE(V)) by D. Note that D = E“dKSLE(V)(V)
and V is a simple KSLg(V')-module, so D is a division ring by Schur’s Lemma. If
e € E and h € SLg(V), then e commutes with h since h is E-linear. Hence e € D,
giving the inclusion E C D. Now, let t € SLg(V) be a transvection. Then [V,t] is
a 1-dimensional space over E. Let d € D and 0 # v € [V,t]. Since D centralizes t,
[V,t] is invariant under D. Hence dv € [V,t], and dv = ev for some e € E. Then

d = e since D is a division ring. Therefore D C E, completing the proof.

Lemma 1.2.6 Let E|, Eg be subfields of Endg (V) containing K with SLE2(V) <
'k GLIEI(V)- Then one of the following holds:

(1) dim]E2 V=1
(2) E; CEa.
(3) K=Ey=Fy, E) =Fy4, and dimgV = 2.

Proof: Note that since V is finite dimensional, dimg E; < oo for j = 1,2. We

may assume that dimg, V > 1. Let Sy = SLg, (V).

Case (a) Assume that (dimg, V, IEal) # (2,2),(2,3).

Then Sy is quasisimple. Since Sy < Ng(E,), 052(IE§) d S;. Suppose for
a contradiction that [Sg,IEti] # 1. Then SQ/CSQ(IEQ) # 1. Furthermore, Sj
being quasisimple implies that C'S,Z(IEI{) < Z(S3). Since 52/052(IE'{) is iso-
morphic to a subgroup of Autg(E;), Autg(E;) has a section isomorphic to
Sa/Z(S9) = PSLE2(V). Also since Autg(E;) is finite, PSLg, (V) is finite. Thus
Eg, and so K and E;, are finite. Hence Autyg(E;) is cyclic, but So/Z(S3) is not, a
contradiction. Therefore, [Sg,IEt{] = 1 and hence IE% C Ey by Lemma 1.2.5. Thus

(2) holds in this case.
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Case (b) Assume that (dimg, V, [Ez|) = (2,2) or (2,3).
Since K C Eg, K = Eg. If E; = Ep, then (2) holds. So we may assume that
Ep = K ¢ Ey. Since 2 = dimg, V = dimg, Ey-dimg, V, it follows that dimg, E; = 2

and dimIE1 V = 1. Therefore,
K=E;=F, and E; =IFp2 =V (1.4)

where p =2 or 3. Since SLg, (V) < Tk GLE, (V), we have

(p? - 1)(p* — p)
p—1

|SLE, (V)| = < [Pk GLE, (V)| < 2(p® - 1).

This implies p = 2 and hence (3) holds by (1.4).

Proposition 1.2.7 Assume that r # p and let E) and Eq be subfields of Endg (V)

containing K.
(a) If E} < Ng(Es) and E} < Ng(E;), then [E} EE] =1.

(b) Assume that GLE, (V) < 'k GLg,(V) and GLg, (V) < Tk GLg, (V). Then
E; = Eg or the following holds: K = Fo, {E;,Eg } = {Fg,F4}, and V = Fy4.

Proof: (a) For i = 1,2, let us define L; by L; := Cg,(E5_,). Obviously, L; is
subfield of E;. Since Endg(V) is finite dimensional over K, we have [E; : K] < oo

and hence [E; : L;] < oo.

Now consider the map 6; : IE‘{ — AutL2(IE2) defined as 6(ej)(eq2) = el‘legel for
all e; € ]E’{ and eg € E9. The first isomorphism theorem implies that ]Eg / Lg is
isomorphic to a subgroup of Auty,(E2) and thus llEi/ lLt{I < lAutL2(]E2)|. Let

a € Eg be in the fixed field of AutIL,‘2 (Ez). Then, in particular, a is fixed by the
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automorphisms 6, (e;) for each e; € IE% So a commutes with every element in IE”,
hence a € Lg. This shows that the fixed field of Autp, (E2) is equal to Lo, that is,

Eg/Ljg is a Galois extension and | Auth(IEg)l = dimp,, Ep. Therefore,
|E}/LY| < dimy, Es. (1.5)
We define the map 65 : lEg — Aut]Ll (E1) in a similar manner and obtain
| ES/LY| < dimy| Ey. (1.6)
Combining (1.5) and (1.6), along with Lemma 1.2.4, gives
|EY/LY) < dimy, By < |E}/LY| < dimy By < |EY/LY) < dimy, Ey.

Thus IIES/ ILf| = dimy,, E; and hence E; = L; by Lemma 1.2.4 for 7 = 1,2. In other

words, E; and Ey do commute, proving part (a).

(b) Observe that the assumption GL]EJ.(V) < TI'k GLIE3_J.(V) implies that IEg <
Ng(E3_j) for j = 1,2. Then by the previous part e;(egv) = ez(e1v) for all e; € E;
and v € V. That is, IE? < GLEz(V) and IE% < GLg, (V). Without loss, assume

dimg, V < dimg, V. 1.7
E 2

If dimg, V =1, then IE? < GLE2(V) = IE% Moreover, since dimg, V =1 we have
]Eu2 < GLg, (V) = IEt{ Hence IE“{ = IE“2 We are done in this case, so assume that
dim]E2 V > 1 By Lemma 1.2.6, either E; C E9 or K = Eg = Fp, E; = F4, and

dimg V = 2. In the latter case we are done and in the former case E; = Eo by (1.7).
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Definition 1.2.8 Let K be a sulfield of E with [E: K] < co. Let e € E. Then the

norm on E over K is defined by
NE(e) := detK (re)

where re is the left multiplication by e; namely, re : E — E such that r¢(a) = ea

for all a € E. Note that re is a K-linear map. Also, we define E by
w Koy —
E:={e€E| Ng(e) =1}.

Remark 1.2.9 (a) N%( :EY — K* is multiplicative.
(b) NE(k) =k" for all k € K where [E: K] = n.

(c) If V is a 1-dimensional vector space over E and g € GLg(V), then g is
multiplication by an element of E. So g = el = e for some e € E}. It easily

follows that detué(g) = det%(re) = N]uEg(e).

(d) If E/K 1is a finite Galois extension with Galois group A, then

NIHEﬁ(e) = H o(e)

og€EA

for all e € E. See [15,Corollary 8.13].

Lemma 1.2.10 Let V be an E-space and K a subfield of E with [E : K] < oo.
Let g € GLg(V). Then

(a) SLg(V) < SLg(V).

(b) detif(9) = Ni (det}(9)).
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Proof: (a) Note that SLg(V) is generated by transvections. Let t = I + aE;; be
a transvection in SLg(V), where 0 # a € E and ¢ # j. Clearly, detﬂé(t) =1, that
is, t € SLg(V).

(b) Let g € GLg(V) and d := det]%z,(g). We can write g in the form g = kh where
k = diag(d,1,1,...,1) and h is a product of transvections in SLg(V). By part (a),
detné(h) = 1. Note that we can view k as a linear transformation on a 1-dimensional

vector space, and hence Remark 1.2.9(c) gives detué(k) = N%((d). Thus
det(g) = det® (k) det¥ (n) = det¥ (k) = NX(2) = NE(detE (g)).
Lemma 1.2.11 Let K <F < E be a chain of fields with [E : K] < co. Then
NE(e) = NE(NE(e)) forall ecEM

Proof: Let V = E. We can view V as a vector space over both K and F. Let

e € E!. Using Lemma 1.2.10(b) for the field extensions F/K and E/F, we get

det® (e) = NF (detf(¢)) and (1.8a)

det¥, (e) = NE (detE (e)) (1.8b)
respectively. Combining these equations and using detl‘b}-(e) = e, we obtain

K\ = NK(qorE _ Koy - NK(detF

o5y OB b)) = ME(VEC)).
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Lemma 1.2.12 Let E be a separable extension field of K of degree n > 1. Assume
that K is mazimal in E and let N = NI]EI:(' Then €"/N(e) ¢ K for some e € E\ K.

In particular, there are elements in E\ K whose norm is 1.

Proof: First observe that ¢”/N(e) has norm 1 by Remark 1.2.9(a)-(b).
Suppose for a contradiction that for any e € E\ K we have e"/N(e) € K. Then

e" € K. Let ¢ be a prime dividing n. We shall show that n = ¢ and charK # gq.

Since e" = (e9)™4 € K, we have [K(e9) : K] < n/q < n. Moreover, [E: K] =n
implies that K(e?) # E. Therefore e9 € K by maximality of K. Now since
e € E\K, E = K(e) again by maximality of K. Hence n = [K(e) : K] < ¢ and so
n=q. Now 27 — €% € K|z] is the minimal polynomial of e and so it is irreducible.

Then E/K is a separé,ble extension implies that char K # q.

Since z9—e? is irreducible, e? ¢ K? by Remark 1.1.14. By our assumption b?/N(b) €
K, and so b7 € K for any b € E\ K. Now we observe that the hypothesis of Lemma
1.2.2 are satisfied. Therefore, for any b € E, b € (e)K' and hence E! = (e)K!. As
E'/K! = (eK") and e? € K, we have |Ef/K!| = g. On the other hand, |Ef/KH| >

dimg E = ¢ by Lemma 1.2.4. This contradiction completes the proof.

Corollary 1.2.13 Let E be a finite separable extension field of K. Then
E=K(eecE|NKe)=1).

Proof: Suppose that E # K(e € E | ngi(e) =1). Let F be a maximal field in E
containing K(e € E | N]HE((e) = 1) and note that E/F is separable. By Lemma 1.2.12,
there exists an £ € E\F with Ng(x) = 1. Then N]%((_x) = A%Q(Ng(:r)) = Nmﬁ‘((l) =1

by Lemma 1.2.11. Hence x € F by definition of F, contradiction.
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Lemma 1.2.14 Assume that r # p and let E be an extension field of K of degree

7. Then there erists e € E such that e" ¢ K.

Proof: Assume that e € K for all e € E. Let e € E\ K. By as
sumption both (1 + e)” and e" are in K, so is their difference. ~That is,
(1+e)"—e" = X0 (;)ej]—er =k for some k € K. Put f(z) =rz" " 1+.. . +1-k.
Then f(z) is a polynomial of degree 7 — 1 in K[z] with the root e € E\ K which

implies that [K(e) : K] < r — 1, a contradiction since K(e) = E and [E: K] =r.

Lemma 1.2.15 Let E/K be a Galois extension of degree v where r # p. Assume
that K contains a primitive r-th root of unity. If (r,|K|) # (2,3) then there exists

an element e € E such that N]%((e) =1 and e" ¢ K.

Proof: Assume to the contrary that whenever e € E with N(e) = 1 we have
e’ € K, By Corollary 1.2.13, there are elements in E \ K whose norm is 1. Let 3
be such an element. By assumption " € K, so let f" =d € K. Since [E: K] =r,
we have E = K(J). Let 1 # o0 € Autg E. Note that o(8) = £3 where § is a
primitive 7-th root of unity. We observe that ac(a)~! has norm 1 for a € E. Thus
a” = ko(a)” for some k € K. Choosing a =1+ 3 gives (1+8)" = k(1+£05)". Note
that {l,ﬂ,ﬁQ, . ,ﬁr_l} is a basis for E/K. We expand both sides to get

(L+d)+rB+ )82+ +rf ™ = k(L+d) + kerB+ -+ kre" =171,
2

If d # —1, then £k =1 = ¢, a contradiction Thus, d = —1. Comparing the coefli-
cients of 3 and of 87!, we get k€ = 1 and k€71 = 1 correspondingly. Hence
€'=2 = 1, which implies r = 2. Replacing a by 1 + ¢ where ¢ € K! gives

1+ dc? =0. Thus ¢2 =1 for all ¢ € K and hence |K| = 3.
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Proposition 1.2.16 Assume that v # p. For j = 1,2, let E; be a subfield of

Endg(V) containing K with dimg E; =r.

(a) Suppose that E; < Ng(Ep) and Ey < Ng(E,). Then [IEn,IEg] =1or r=2
K| =3, |E;|=9.

(b) If GLEI(V)HSLK(V) <TIk GLE2(V) and GLEQ(V)OSLK(V) <TIk GLEI(V),

then one of the following holds:

(1) Ep = Es.

(it) r=2, [K| =3, dimgV =2, and |E;| =9 for j =1,2.

Proof: (a) Certainly | Autg(Es)| < dimg E9 = . But in fact | Autg(Eg)| =1 or
r. To see this, let Eg = Fix(Autk(E2)), the fixed field of Autg(E2). Then Eg/Eg
is a Galois extension. If Eg = K, then |Autg(Eg)| = dimgEg = 7. If Eg = Eo,
then Autg(Es) = {id} by definition of Eg. These arguments remain true if Eg is
replaced by E;. Hence, we have | Autg(E;)| =1 or r.

Obviously, IEJ- is a multiplicative group for 7 = 1,2. Now we consider the map
9 : E; — Autg(Eg) defined by 9(e;)(e2) = e]eze; for e; € Ej,eq € Ep. The
assumption Iﬁl < N¢g(E9) implies that el"legel € [Eq. It is easy to check that 9 is
well-defined and Ker(v) = CIEI (E3). Therefore, |E, /CIEI(IEz)I divides | Autg(E2)]|.
By symmetry, 'IEQ/CI‘E2(]E1)| divides | Autg(Eq)].

Case(1) Suppose that |1Ej/C',E'(IE3_j)| =1forj=1lorj=2.
J
Without loss, assume that j = 1. Then E; = C[’EI(IEQ) and hence [IEl,IEg] = 1.

Since r # p, E,/K is separable, thus there exists an element a € IEI \ K such that

E; = K(a) by Corollary 1.2.13. So [Ej,Eg] = 1, and we are done in this case.
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Case(2) Suppose that
11F:j/c@j(IE3_j)| =r for j=1,2 (1.9)

Then C@j(Eg_j) S IE]- and hence CIEJ- (E3—j) = E;. Note that certainly K <

C]Ej(IEg_j). Therefore, K = CIE].(IE3_J~) S E; by dimg E; = r. We now have
[lEl,IEQ] - IEl N IEQ - C]Ej (E3_j) =K. (1.10)

Using (1.9), together with

~

E;K' _ E; E;
N

Kf=C ﬁ(Eg_]‘) and J__ o~ _ = J ,
E} K E;jnK! C}Ej (E3-5)
it follows that |IﬁjKﬁ/Ku| = 7. Thus there exist elements e; € Iﬁj \K for j =1,2.
Then by (1.10) we have (e, e9] € [Iﬁl,lﬁz] C K, which implies 6518162 = ek for
some k € KF. Note that since Cg,(E2) =K and E; = K(ep), we have [e},e2] # 1
and hence k # 1.

Denote ng(j by Nj. Since ey € Eg < Ng(E;), we define 8 : E; — E; by 6(e) =
ez_leez where e € E;. Then 6 € Autg(E;). Note that | Autg(E;)| = r by (1.9)
and thus E;/K is a Galois extension. Since @ is a nontrivial automorphism of E;,
Autg(E;) = (6). Using 62—16162 = e1k, we obtain 6™(e;) = k"e; for all n. Then

n =r gives k" = 1. Hence k is an r-th root of unity. By Remark 1.2.9(d),
1= Niey) = ep - kep -+ k" Ley = e[k D72 = 7 (2) (1.11)

If » # 2, then (5) is divisible by r. Since k£ is an r-th root of unity, we have

k@) = 1. Hence, (1.11) simplifies to e] = 1. Since K contains a primitive r-th
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root of unity, namely &, we have e; € K, which contradicts to the choice of e;.
Therefore r = 2.

It remains to show |K| = 3 and |E;| = 9. By (1.11), e% =k 1l=-1lask?®=1
and k # 1. Then e, = #i where i2 = —1. If k € K with Nj(k) =1, then k2 =1
and hence k£ = +1. We thus conclude that IEl = {£1,+:}. For any a € E;, the
Ni-norm of a"/Nj(a) is equal to 1, that is to say, a"/Ni(a) € E;i. Therefore
a? = f or a? = fi for some f € K. Also E; = K(i). Let k € K! and consider the
element k+i € Ey. If (k+14)2=k%—1+2ki=f € K then k = 0, contradiction.
Hence we may assume (k + )2 = fi. It implies that k2 — 1 = 0. Thus k = +1
and |K| = 3 since k € K! is arbitrary. Finally, |E;| = 9 follows from dimg E; = 2,

completing the proof of part (a).

(b) The assumption GLg, (V) NSLk(V) < Tk GL]E.Z(V) implies that E; < Ng(Ey).
Similarly, E3 < Ng(E;). Hence []Eq,lEg] = 1 or we have 7 = 2, |K| = 3, and
IE;| =9 by part (a).

Assume first that [IEﬁ,IEg] = 1. Then IEg < GLIE3_J-(V) for j = 1,2. Without loss

of generality, suppose
dimg, V < dimg, V. (1.12)

If dimg, V' = 1, then IEt{ < GLIE2(V) = IEg Moreover since dimg, V =1 we
have ]Eﬂ2 < GLg, (V) = IE’{ Thus IEti = IE% and part (i) holds. So assume that
dimg, V > 1. Since SLE].(V) <TIk GLE?’_J.(V), by Lemma 1.2.6 either E; C Eo
or K=Eg = Fg, E;j ®Fy4 and dimgV = 2. The latter case is a contradiction to
the assumption dimg E; = 7. Thus E; C Ep. Now it clearly follows from (1.12)
that E; = Es.
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Next assume that r = 2, |K| =3, |E;| = 9. If E; = E, then again part (i) holds.
So assume E; # Eg, and without loss, say E; € Eo. Then dimIE2 V =1 by Lemma

1.2.6. Hence dimg Eg = 2 implies that dimg V = 2 and so (ii) holds in this case.

1.3 Exceptional Cases of Theorems 2.1.1 and 2.2.3

In this section we investigate the existence of the exceptional cases that will
show up in the results of the next Chapter. As in the previous sections, we let
G =GLg(V), G=G/Z(G), S =SLkg(V) and S = SZ(G)/Z(G) = PSLk(V).
Lemma 1.3.1 Let G = GL3(3) and g; € G such that |g;| = |gj| =2 for j =1,2.
If (91) # (G2) and Cgz(g1) = Cz(g2), then the following holds:

(a) detg; = —1 and Cx(g;) = (91,92) is an elementary abelian group of order 4.

(b) Cclg1) # Cc(g2)-
(c) g; satisfies Lemma 1.1.10(2), j = 1,2. In particular, Cg(g;) # Cg(9;)-
Moreover, with respect to some suitable basis, g; = ((1) _01) and go = ((1) (1))

Proof: We shall prove (a)-(c) together. Since g; # +1 and it has order 2, its
minimal polynomial is 22 — 1 and we may assume that g = ((1) _01) with respect

to a basis {v1,v2}. Then

Celor) = {£L£g1} and Co@) = {21 g, +(93), (9 §)}:

The assumptions Cg(g;) = C¢(g2) and (g;) # (go) with go has order 2 imply
that :i:((l) (1)) are the only options for go. If necessary we may change the basis
to {—vy,v2} so that go = ((1) (1)) Note that the matrix of g; remains unchanged.

Then Cg(g2) = {£1,+ g2} and the lemma follows easily.
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Lemma 1.3.2 Let G = GLy(3) and g; € G such that |g;| = |gj| =2 for j =1,2
and (g1) # (92)- If C5(91) = C5(g2), then
(a) Cg(91) = Cg(72)-
(b) g; satisfies Lemma 1.1.10(2), j = 1,2. In particular, Cg(g;) # Ca(9;)-
(¢c) Cslgy) = %I and Cg(g1) # Ci(g2)-
1 0 1

Moreover, g = (0 _1) and gy = ((1] 0) for some suitable basis.

Proof: As in the previous lemmas, we may assume that g; = ((1) _01). Then

) + (_01 (1))} and Cs(3;) = {i[,:&: (_01 (1,)}

Let h:= ( O 1). Then h € Cg(g;) and hence [g2,h] € Z(G). Let go = (¢ b).
10 S cd

O

Ca(@) = {+1.xg1, = (§

Using g% = 1, if goh = hgo, we get go = %1, a contradiction. Thus goh = —hgy
and so g9 = :}:((1) (1)) As in Lemma 1.3.1 by changing the basis we may assume

g2 = ((1) (1)) Then Cg(g2) = {xI,£g9} and all parts of the lemma follow.

Lemma 1.3.3 Let G = GLy(5) and gj € G such that |g;| = |gj| =2 for j = 1,2.
Assume that Cg5(g1) = C5(92) and Cx(g1) # Cz(g2). Then the following holds:

(a) Cg(9;) = (91.92) is an elementary abelian group of order 4.
(b) Lemma 1.1.10(2) holds for gj, j =1,2. In particular Cg(g;) # Cg(9;)-

(c) Cs(g1) # Cs(g2).

Furthermore, there is a basis so that g; = ((1) _01) and go = ((1) (1))
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Proof: Let K = {0,%1,+i}. Since g; # 1, we may assume g; = ((1) 01), say

with respect to the basis {v;,vs}. Then

cs@) ={(8 21)(L21§)leck }=qs

a

Also Cg(g)) is elementary abelian of order 4. Now ig; € S and g, € Cg(g1)

imply that g199 = g2g12, where 2 € Z(S). Let g9 = (g 2) Having 2 = I would

imply g0 equals +g; or £I, either of which is not possible. Hence z = —I and

go == ((IJ (1)) or go =% ( 01 (1)) The second case does not hold as |go| = 2. Thus

go = % (? (1)) If necessary changing the basis to {—v;,v9} gives go = ((1) (1))

Then Cg(g2) = {£I,+ (9 6)} and

Csa) ={=1.%(§ 5).=(6) = (%)}

Now observe that (9 6) € Cs(g2)\Cs(91), giving part (c). Also (% i) € Cz(92)\

Cz(91). Now the lemma follows.

Lemma 1.3.4 Let G = GL3(4) and g; € G with |g;| = |gj| = 3 for j = 1,2.
Assume that g; has three different eigenvalues. If C5(91) = C<(g2) and Cgx(g;) #
Cz(92), then the following holds:

(a) C5(9;) = (91,72) is an elementary abelian group of order 9.
(b) Lemma 1.1.10(2) holds for g;, j = 1,2. In particular C(3;5) # Calyg;)-

(c) Cs(g1) # Cgs(g2)-

Moreover, there ezists a suitable basis and € € K¥ with |€] = 3 so that

100 010
g=(0¢ 0 ) and gz=(001>.
00 &2 100
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Also the pair (g1, 92) is unique up to conjugation by an element of T GL3(4).

Proof: Let K = {0,1,&,£2} where €3 = 1. Since g; has three distinct eigenvalues,

100
00 &2

with respect to some basis {vy,v9,v3}. Hence

x 00 00 00
Co(g1) = : : €K',
R HEGHUHIRS

|Cs(g1)| = 27, and C%(g;) is elementary abelian of order 9. Since g € Cs(7)

we may assume

OO*

we have gog; = g1922 for some 2 € Z(S). Let go = (a;;) and use |go| = 3. Then
if z=1, we get go € Z(S) or g9 = kglil for some k € K, a contradiction. Hence
z#1 and so z € K with |2| = 3. Without loss of generality (by changing vy and

0a0
vg if necessary), we assume that z = £&. Then go = (0 § 8) where abc = 1. In
c

this case changing the basis to {v}, avy,abvs}, we get go =

/N
—Oo0

10
8 ) Note that

1
0
the matrix of g; is unchanged with respect to this basis.

Now a trivial calculation gives parts (a) and (b). We also note that

g2 € Cs(g2) \ Cs(g1) and (

OO
m OO

1
8) € Cg(91) \ Cg(92)-

Lemma 1.3.5 Let G = GLa(3), g; € G with |g;| = 2, |g;| # 2 for j = 1,2 and

(91) # (92). Assume that Cx(g1) # Cz(g2) and Cg(g1) = C5(92). Then |gj| = 4
and Cg(g;) = (g1,92) is an elementary abelian group of order 4. Moreover, with

respect to some basis,

5= (98) o= (1 1)
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Proof: Note that |g;| = 4, since g]2- = —1. Furthermore, vg; # v, for any
0 # v € V. Hence, with respect to the basis {v,vg;}, we have g; = (_01 (1)) Also,
with respect to the same basis, the only elements of G of order 4 other than +g;

are the followings:

(14) (1) (43) (371)

If we have the first case above, then we are done. If not, we can change the basis
to {v+ vg1,—v +vg1}, {v—vg,v+vg}, and {—vg;,v}, respectively, to get
ga = ( % _11 ) while the matrix representation of ¢g; remains unchanged. Elementary

calculations give (‘1) %) € Cg(92) \ Cg(71) and C<(7;) = (71,92)-
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Chapter 2

Centralizers in PGLg(V) and

PSLg (V)

In this chapter, we prove two main results (Theorems 2.1.1 and 2.2.3) which
describe when two distinct elements of prime order in the finite dimensional projective
and special linear group shall have the same centralizer. We adopt the notation and

set up of Chapter 1. Furthermore, throughout this chapter we will assume that r # p.

2.1 The PGLk(V) Case

Theorem 2.1.1 For j = 1,2, let g; € G with |gj| = r and choose g; so that
lkg;l > lg;| for all k € KY. Then Cz(91) = Cgx(g2) if and only if one of the

following holds.
(a) (91) = (72)-
(b) Cglg1) = Calg2), lgjl =, and Cglg;) = Cg(g;) for j=1,2.

(c) 7 =2, |[K| =3, and dimgV = 2. Moreover, there erists a basis of V with

respect to which gy = ((1) _01) and gg = ((1) (1))
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Proof: (<=) Sce the proof of Lemma 1.3.1.

(=) Assume that Cx(g;) = Cz(g2) and hence

Cg(91) = Ca(2)- (2.1)

Due to lemmas 1.1.10 and 1.1.15, it is reasonable to split the proof into the following
five cases:

Case 1. |gj| = and Cg(g;) = Cg(gj) for j =1,2.

Case 2. |g;| =7 for j =1,2, and Cg(91) = Cg(91), Cs(92) # Ca(92)-

Case 3. |g;| = and Cg(g;) # Cg(gj) for j =1,2.

Case 4. |gj| #7 for j =1,2.

Case 5. |g1| =1, |gol # 1

Case 1. By the hypothesis of this case and (2.1), clearly Theorem 2.1.1(b) is

attained.

Case 2. Note that the assumptions of this case imply that g; and go satisfy parts

(1) and (2) of Lemma 1.1.10, respectively. Then, using Lemma 1.1.5, we have

51
Ce(@1) = Calo) = X Gl (Va). (22)
Ca(32) = Calga)(ha) = [X GLy(Vi2) ] (ha). (2.3)

We observe that V is a simple Cg(gy)-module. Then (2.1), together with (2.2),
gives s; = 1, and hence V|; = V. Moreover. by Lemma 1.1.10 (2a), E = K.
Recall that E was the splitting field of 2" — 1 over K and E;; = K or E by
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Lemma 1.1.5(f). Hence Ej; = K. Therefore (2.2) turns into Cg(g1) = GLg(V),

that is, g1 € Z(G), a contradiction to |g;| = 7. Hence, this case does not occur.

Case 3. Note that we are in the situation of Lemma 1.1.10(2) for both g; and gs.

In particular, we have (2.3) and

Ce(@) = Calon) (1) = [X GLi (V1) | (k). (2:4)

Furthermore, the V;;’s have the same dimension over K for all 7 and j, namely

dimK VU = dimK V/T

Step 1. If Cg(g1) = Cgl(g2), then (1) = (go) (and hence Theo-
rem 2.1.1(a) holds):

We use the notation and results of Lemma 1.1.5 and Lemma 1.1.10(2) and write
V=V;®Vy® - &V, where Vj; = Ann(f;;(9;)) ={veV | gjv= f;—lv} for
all 1 <i<r and j=1,2 where {; € K is a primitive 7-th root of unity. Now, g;

acts as (l,fj,ﬁ,z,...,EJT-—l) on (Vi;,Vaj,-++,Vp;). Put £ =¢;. By Lemma 1.1.9,
{(Vall<i<r}={Vp|1<i<r}

Hence gg is of the form (§i1,§i2, e ,Eir) on V where the exponents i are in Z.

Note that g = £ '1gy. Replacing g9 by € '1ge, we may assume that go acts as
an identity on Vj; and hence go = (1,£%2,...,£). On Vy1, we have gyv = £y
for any integer n. Choose an n so that €72 = £. Note that (go) = (E) Then

replacing go by g5 gives go = (1,€,€%2,...,€r). Thus,

Vi1 =Vig and Vo = Voo (2.5)
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Take y € Cg(g;) with yV11 = Vo1. Then, by Remark 1.1.11, yV;; = Vi1 for all
i. Now (2.1), together with (2.5), implies that y € C(g9) and yVjo = Vag. Hence

yVio = Viq1,2 for all i. It follows that V;; = Vjp for all i and thus g; = go and

(91) = (92).
Step 2. If dimk V;; > 1, then Cg(g1) = Ci(g92) and part(a) holds:

First assume |K| > 3. Since C(3;)/Cg(g;) = (h;) is abelian, we have Cg(g;)" <
Cg(g;)" = Xi—1(GLk(V;5))" = Xi_; SLk(V;j). Conversely, we have SLg(V;;) =
(SLk (Vi5))"” < Cg(g;)" for each i. Thus Cg(g;)"” = Xi=; SLk(Vi;). If [K| < 3,
let us consider the group OP'(C(;(gj)). Since the quotient Cg(9;)/Cg(g;) is a p'-
group, 07 (Cg(3;)) = OF (Cglg;)). Besides

T
0" (C(g;)) =><0P (GLk (Vi) XOP (SLg(Vij)) = XISLK%).
1=

For the last equality we used the fact that SLk(V;;) is generated by transvections
and if ¢ € SLg(V;;) is a transvection then it has order p, which implies that ¢t €
Op,(SLK(V,-j)). Thus, the assumption (2.1) yields

T T
.><1 SLg (V1) = ,Xl SLi (Vi2).
1= 1=

regardless of the order of K. Therefore, {V;; | 1 <i<r}={Vjp| 1<i<r} by
Lemma 1.1.7. Since E;; = K, we deduce from Lemma 1.1.9 that Cg(g1) = C;(92).
By step (1), we conclude that whenever dimy V;; > 1 part (a) of the theorem holds.

It remains to treat the case dimg V;; = 1.
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Step 3. If dimg V;; = 1 for all i, then Cglg)) = Ci(g2) or r = 2,
K| =3, dimgV =2:

This statement follows from Proposition 1.1.12 and by mentioning that both C¢g(g1)
and Cg(g2) are contained in Cg(g;)-

The case Cg(91) = Cg(g2) implies that part (a) holds again by step (1), Therefore,
we may assume 7 = 2, |K| = 3 and dimgV = 2. Lemma 1.3.1 shows that this
exceptional case does really occur and the properties stated in part (c) are satisfied.
Moreover, since (g} # (g2) and Cg;lg1) # Cr(g2), we get a new case as claimed

in the theorem.

Case 4. Note that in this case we have |kgj| # r for all k € K, j =12
Put E; .= K[g;i < Endg(V). Then Lemma 11.15 implies that E; is a field
and |[K| > 2. By Lemma 1.14, Cg(g;) = GLE].(V) C Cq(g;) < FKGLEj(V)
which implies, together with the assumption (2.1), that GL]EI(V) < Tk GL]E2(V)
and GLE2(l/') < 'k GLEl(I/'). Therefore, E; = E9 or K = Fy by Proposition
1.2 7. The latter case does rot hold. Thus E; = Ey and by Lemma 1 2.3, we get

{91} = (72, giving part {a).

Case 5. Recall that by the hypothesis of this case, g; satisfies Lemma 1.1.10 and

hence one of the following holds:

8]
Ce(d1) = Calar) = X GLy, (Vi) or (2.6a)
1=1
‘A [P \ r y N ’ vl : /
Cc(g1) = Calg)(h1; = I><] ‘JLK("M)J“LI}- (2.6b)
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By the assumption of this case gy satisfies Lemma 1.1.15 and in particular, Eq :=

K(go] is a field with dimg E9 = 7. Thus Lemma 1.1.4 implies
Cc(92) = GLE, (V) € C(92) € 'k GLE, (V).

We observe that C;(gy) acts transitively on V' and so is primitive. Thus, Cg(g;)
is primitive. Hence (2.6b) does not hold and s; = 1, which means that the minimal
polynomial of g; is irreducible. Then V}; =V and E;; = K[g;]. By Lemma 1.1.5(f),
E;yp = K or E. If E); = K, then (2.6a) gives g1 € Z(G), a contradiction to
|g1| = . Thus E;; = E. Note that since E is the splitting field of 2" — 1 over K,
dimg E); < r. By Lemma 1.1.4, Cg(g1) = GLg,, (V) € Cg(g1) € Tk GL]EH(V)-
We now can imitate the proof given in Case (4) and apply Proposition 1.2.7 where E,;
is replaced by E;; and conclude that E;; = Eg. But, this is a contraction because

these fields have different dimensions over K. Thus, Case (5) does not hold.

2.2 The PSLkg(V) Case

In the PSLg (V) case, we have an analogue to Theorem 2.1.1. For its proof, we

will use the following lemmas.

Lemma 2.2.1 Let ¢ € G with |g| = r. Let the notation be as in Lemma 1.1.5.
Then the following holds:

(a) V; is a simple KCg(g)-submodule of V' for all i.

(b) Assume that g # —I. Then {V;| 1 <i < s} is the set of all simple KCg(g)-

submodules of V if and only if the following does not hold:
r=2, |[K|=3, and dimgV = 2. (1)
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(C) IE, = EndIKCS(g)(Vi) fOT' all 1 S 1 S S.

Proof: Note that we have

Cs(g) = SLg(V n)( GLg, (V; X (2.7)

(a) Fixan ¢ € {1,2...,s}.

If dlmE V; > 1, then V, is a simple SLE( 3)-submodule and, in particular, it
is a simple KCg(g)-submodule of V. Now assume dimEiVi =1 If K = E,;,
then V; is a 1-dimensional K-space and hence it is simple. Therefore, we may
suppose that K # E;. Note that for all e € IE” we have det%i(e) = NIHE(,- (e) by
definition. Moreover, by (2.7) and by the assumption dimEiV} = 1, we have
C’S()D{eGIEz1 | detIE = 1}—{e€IEﬁ | NIE()=1}=IE,-. By Lemma
1.1.5(f), E; = E (recall that E is the splitting field of 2™ — 1 ove K). Hence, E;
is a Galois extension over K and, in particular, it is separable. Observe that V; is
simple if E; = K(e € IEi1 | NIHEi(e) = 1). But, this is immediate by Corollary 1.2.13,

proving part (a).

(b) We observe, by Remark 1.1.6 and part (a), that the V;’s are the set of all simple
submodules if and only if they are pairwise non-isomorphic. Thus, it is enough to
show that V;’s are non-isomorphic if and only if (1) does not hold.

(<=) Suppose that there exist j and k such that 1 < j # k < s and V; =V} as
KCg(g)-submodules. We shall show that (1) holds.

Step 1. dimg . V; = dimg, V. = 1. In particular, |E;| = |V;| = |Vi| = |Eg|:
IE] j E. Yk j b k k

Suppose false and without loss of generality let dimEj V; #1. Then 1 # SLIE].(V]')

acts nontrivially on V; and trivially on Vj, contradiction.
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Step 2. K=E; =E and |[K| < 3:
Since V; =V}, there exists a KCg(g)-linear isomorphism a : V; — Vj. Define the
map & : Endggy(Vj) — Endg g (Vi) by a(o)(vg) = a(o(a~1(vg))) where o €
Endy 4 (V;) and vi € Vi. It is straight forward to check that & is an isomorphism of
K-algebras. Since dim]Ej V; =1, we have EndlEj(Vj) = Ej, that is, EndK(g>(Vj) =
E; and, by symmetry, we also have EndK(g>(Vk) = E;. Therefore o : E; — Ej.

Take an element e € IEg and define € € G by

ev fveV;
ev =14 a(e) v ifveV

v ifveV, l#jk

Since by definition E; = K[g;] where g; = g|Vj, and similarly for k, we see that
€ commutes with g. Also a(e) = aea™! by definition. Taking the determinant
of both sides gives det(a(e)) = det(aea™!) = det(e). Thus, det(e) = 1 and
hence & € Cg(g). By KCg(g)-linearity of o, we have a(ev;) = ea(v;) for all
v; € Vj. Expanding this equality gives a(ev;) = a(ev;) = ea(vj) = 5(6)—10(1)]') =

1

&(e”l)a(vj) = a(e‘la“l(avj)) = a(e”'vj;), that is, a(ev;) = a(e‘lvj) for all

vj € Vj and e € IEg Now by injectivity of a, ev; = e_lvj. Hence e = e, ie,

2 — 1. As e is an arbitrary element of Eg, we conclude that |E;| < 3. Hence

e
E; = K as K C E;. Then E; = K = E; because |E;| = |[E;| and K C E;. Also

K| <3.

Step 3. |[K| =3, r =2, and dimg V = 2:
By Lemma 1.1.5(f), E; # E for at most one 7, 1 <i<s. So E; = K=E; =E and
since |K| < 3, 7 # p, and E contains a primitive 7-th root of unity, we conclude

that |K| = 3 and 7 = 2. Since s < r = 2, we also have dimg V = 2, completing
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the proof of this direction.

(=) Suppose that () holds. Since g # —I and g has order 2, its minimal
polynomial is z2 — 1, and V = V; @ V. Without loss of generality, we may
assume g = <(1) _01 ) Then V} and V3 are isomorphic as KCg(g)-modules because

Cs(g) = 1.

(c¢) The proof splits into two cases depending on the dimension of dimEi V.

First assume that dimg, V; = 1. Then E; C Cgs(g). Since E; = K or E;/K is
Galois, we have E; = K(E;) C #(KCgs(g)) by Corollary 1.2.13 where ¢ is the canon-
ical homomorphism ¢ : KCg(g9) — Endg(V). Therefore, E; C EndKCS(g)(Vi) -
Endg, (V;) = Endg, (E;) = E; which gives E; = EndKCS(g)(Vi), as claimed.

If dimg, V; # 1, then we have E; = CEndK(Vi)(SLIEi(Vi)) by Lemma 1.2.5. Now
let ¢ € Endge S(g)(vi)' Then ¢ commutes with every element in Cg(g). Because
of (2.7), in particular, ¢ commutes with every element in SL]Ez.(V,-) which gives

CEndK(Vi)(SLIEi(Vi)) 2 EndIKCS(g)(Vi)- Combining these two, we obtain

E; = Cenay (v;) (SLE; (Vi) 2 Endg oo (g) (Vi) 2 Ei,
which completes the proof of part (c).

Proposition 2.2.2 Let g; € G with |gj| = r and g; # —I for j = 1,2. Then
Cs(g1) = Cg(g2) if and only if one of the following holds:

(a) Cglg1) = Cclg2)-

(b) lgjl =2, detg; = -1, |[K| =3, dimg V =2, and Cg(g;) = £I.
Proof: (<=) Obvious.

(=) Suppose that Cg(g1) = Cs(g2)-

Assume first that (b) does not hold. Then for j = 1,2, {Vj; | 1 <i<s;} is the set

46



of all simple KCg(g;)-submodules of V by Lemma 2.2.1. Since Cg(g1) = Cg(92),

we conclude that s := sy = s9 and V;; = Vjo for all 1 < ¢ < s. Furthermore,
E = EndIKCS(gl)(Vil) = E“dKCS(gg)(Vﬁ) = E;o by part (c) of previous lemma.
Hence Cg(g91) = Cg(g2) by Lemma 1.1.9.

It remains to treat the case r = 2, |K| = 3 and dimg V = 2. The following claim
implies that part (b) does occur.

Claim: Let G = GL9(3) and g € G be such that |g| = 2 and g # —1. Then
detg = —1 and Cg(g;) = */I. In particular, if g;, go € G with |gj| = 2 and
g9; # £1, then Cg(g1) = Cs(g2)-

Proof of claim: The minimal polynomial of g is z2 — 1 and. without loss, we put

g1 = ((1) _01). Take r € Cg(g) and let x = (‘é 3) Then [z,9] =1 and z € S

imply that z = £I, and so Cg(g) = {£I}.

Theorem 2.2.3 Let g; € G with |g;l =1 for j =1,2. Choose g; so that |kg;| >
lg;| for all k € KY. Then C5(91) = C5(92) if and only if one of the following holds:

(a) Cg(g1) = Cg(g2)-

(b) lg;l =r, =23, |[K| =4, dimg V =3, and there erists a basis of V and some

€ € K* with |€] = 3 such that

g1=(0¢ 0| and g-z=(00 1).
00 &2 100
(¢) lgjl =7 r=2, K| =5, dimg V =2, and there exists a basis of V' such that
(1 0 — (01
g1 = (0 ._1) and gy = (1 O)'

(d) lg;l =4, r=2, [K| =3, dimgV =2 and g; = (_1 (1)) and gy = (% _11)

for some suitable basis of V.
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Proof: (<=) See the proof of Lemmas 1.3.3, 1.3.4, and 1.3.5.

(=) Assume that
Cs(@1) = Cs(g2). (2.8)

As before, the proof splits into five cases and those are exactly the same cases as in

the proof of Theorem 2.1.1 (see page 39).

Case 1. If (g;) = (gu), then (a) holds. So assume (g;) # (g2). By the
hypothesis of this case, we have Cg(g;) = Cg(g;) and hence Cg(g;) = Cs(g;)-
Then by (2.8), we obtain Cg(g9;) = Cg(g2). By Proposition 2.2.2, we have
either the case r = 2, |K| = 3, dimgV = 2 or Cg(g1) = Cg(g2). But,
the first case does not satisfy the assumption Cg(g;) = Cg(g;) by Lemma 1.3.2.

Thus Cg(91) = Ci(g2)- By the assumptions of Case (1), we get Cz(91) = Cx(g2)-

Case 2. In this case, g; and g satisfy part (1) and (2) of Lemma 1.1.10, respectively.

Then, using Lemma 1.1.5, we have

Ce(@1) = Caler) XGLE (Vi) (2.9)

Cs(@2) = SN Calg2)(hy) = ([X GLx(Vio) |(h2))  (210)

and, by Lemma 1.1.10 (2a) we have E = K. Furthermore, E;; = K = E by Lemma
1.1.5(f).
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Claim: V is a simple KCg(g2)-module.
Observe that go # —I. Assume first that r = 2, |K| = 3, and dimg V' = 2. Without

loss of generality, we put go = ((1) _01). Then

Note that z has order 4 and its eigenvalues are 4-th roots of unity. Suppose that
W := Kw = (w) is a 1-dimensional KCg(gs)-invariant subspace of V. Then for an
arbitrary h € Cg(gs), we have hw = kw for some k € K!. Thus the only eigenvalues
of h are x1, a contradiction. Hence such a W does not exist and V is a simple
module.

Now assume that we are not in the above case, let 0 # W < V be a KCg(gs)-
submodule and 0 # U be a simple KCg(g2)-submodule of W. By Lemma 2.2.1,
U = Vi for some 1 < k < r. Let z := (¢.1,1,...,1) € X]_; GLg(V;2) be
chosen such that det(t) = det(hy)~!. Then zhy € Cg{gs) and (zhy) permutes the
subspaces Vj9 for all i. So V < Vk(;h2) = Ulzh2) C W, thatis V = W, proving
the claim.

The above claim, along with (2.8), implies that V' is a simple Cg(g;)-module. This
implies s; = 1 and V = V;;. Consequently, (2.9) simplifies to Cg(g1) = GLk(V),

that is, g; € Z(G), a contradiction to |g;| = r. Hence Case (2) does not hold.

Case 3. In this case, Lemma 1.1.10(2) holds for both g; and g2. In particular we
have (2.10) and a similar formula for g; holds. The proof of this case is essentially

the same as the proof of Case (3) of Theorem 2.1.1:

Suppose first that dimg V;j > 1 for all 4, .
If K| > 3, then Cs(7;)" = Xi_; SLk(V;) and if [K| < 3, then OF'(Cs(3;)) =
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Xi=1SLk(V;j). Hence in both cases we get

T T
_><1 SLk (Vi) = ><1 SLk (Vi)-
1= 1=

Therefore, by Lemma 1.1.7, {V;;|1<i <71} ={Vj2|1 <i<r}. By Lemma 1.1.9,
Cg(91) = Cg(g2). Hence, by Step(1) of Case (3) in the proof of Theorem 2.1.1 (see

page 40), we conclude that (g;) = (gg) and so Cq(7;) = Cq(g2)-

Suppose next that dimg Vi =1 for all i, j.
Then Proposition 1.1.13 implies that one of the following holds:
(a) Cs(g1) = Cs(g2) or (b) (r,|K|,dimg V) = (2,3,2),(2,5,2) or (3,4,3).
Suppose first that Case (a) holds. Then by Proposition 2.2.2, we get either
Cc(91) = Cg(ge) which as above implies Cg(g;) = Cg(g2), or we have
r = 2,|K] = 3,dimgV = 2 which again implies that Cg(g;) = Cg(g2) by
Lemma 1.3.2.
Now suppose that Cg(g;) # Cg(g2) and let us look at the cases listed in (b). By
Lemma 1.3.2 r = 2,|K| = 3 is not possible. By Lemma 1.3.3, r = 2, |K| =5
gives (c). Finally note that g;j’s have three different eigenvalues in the case r = 3,

|K| =4, dimg V =3 and Lemma 1.3.4 gives (d).
Case 4. For j = 1,2, put E; = K[g;] € Endg (V). Since |kg;| # r for all k € K,

E; is a field, V is a vector space over E;, and dimg E; = r by Lemma 1.1.15. Note

that

Cs(9;) = SNGLg, (V) € Cs(7;) € SN Tk GLg; (V). (2.11)
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d;

Write V = E; where d; := dlmlE V. Use the notation N; := NX and let
J IE

ej EE;. Then by Lemma 1.2.10(b) we have

dimg .V
= [Njlej)] ™

(2.12)

]dimlEj |4 ]dimIE %

E .
detﬂé(ej) = [det%j(ej) = [Nj(detIE;(ej))

Thus whenever Nj(ej) = 1, e; € SLg(V) by (2.12). Also note that e; commutes
with g; by definition of E;, hence ]Ej C Cg(g;) where IEJ- = {ej € Ej | Nj(ej) = 1}.
Moreover, we have GLEJ.(V) N SLkg(V) C I'k GLIE3_J-(V) for j = 1,2. So by
Proposition 1.2.16 one of the following two situations holds:

(1) E; = Ey. This gives (g;) = (g2) by Lemma 1.2.3 and thus (a) holds.

(2) r=2. |K| =3, dimg V = 2. In this case part (d) holds, see Lemma 1.3.5.

Case 5. In this case, |g1| = 7 and |go| # r. Then Ey = K|[go] is a field and

dimg Eo = r by Lemma 1.1.15. Moreover, we have
SLg, (V) € Cs(g2) = GLg, (V) NSLk(V) € Cs(g2) € I'k GLE, (V).

As for g1, we have either

51
Cs(g1) = SLx(V) N X GLg, (Via) or (2132)
Cs(3) = SLk(V) N XGLK Vi) J(h1)). (2.13b)

by Lemma 1.1.10.
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Claim(1) V is an irreducible KCg(g9) -module:
If dimg, V' # 1, then V is a simple IKSL[EQ(V)-module, and the claim follows
easily. If dimg, V = 1, then Cg(g2) = {e € Eo | N(e) =1} where N := N[Ié{z. Let
F := K[e € Eg | N(e) = 1]. In order to prove the claim it suffices to show that
F = E9. By Lemma 1.2.14, there is e € E9 such that e" ¢ K. Let a := e"/N(e).
Since [Eg : K] = r, we have Eo = K(a). On the other hand, a € F, thus K(a) <F,

and F = Eg, as required.

We now deduce, using both (2.8) and the above claim, that V is an irreducible

KCg(g;)-module. Hence s; =1 or (2.13b) must hold.

Claim(2) sy # 1 and hence (2.13b) holds:
Suppose to the contrary that s; = 1. Then V = V}; and E;; = K[g;] is a field.
Therefore SLg,, (V) € Cs(g1) CTI'k GLE,, (V) by Lemma 1.1.4 and so the hypoth-
esis of Proposition 1.2.16 are satisfied. Hence one of the following holds:
(1) E;; = Eo. Then (7;) = (7o) by Lemma 1.2.3. However, this implies gok has
order r for some k € K", a contradiction to the choice of go.

(2) 7 =2, |[K| = 3. Then |g;| = 2 implies g; = —1 € K*, contradiction.

Claim(3) We have dimg, V =1 and dimg V;; =1 forall 1 <i<r:
If dimg, V # 1, then 1 # SLEz(V) C Cs(g2). So Cg(ga) is transitive (and primi-
tive) on V. But Cg(g;) is not primitive, a contradiction. Thus dimg, V' = 1. Now

dimg E9 = r implies that dimg V' = 7 and hence dimg V;; = 1 for all i. Therefore,

Cs(§1)=SLu<(V)ﬂ[>_<l K* |(h1) and Cg(ga) = SLx(V) N E} Auty Eo.
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Claim(4) K is finite:
Let us take y = (\,A71,1,...,1) € Cs(g;) = Cg(gy) where X is any nonzero
element in K. Since |Cg(gq)/ Ey| divides | Autg(Ep)| and |Autg(Eg)| = 1 or
r, we see that ]CS(EQ)/IEQIIr and hence y" € Ey. Note that if @ € Eg has an
eigenvalue in K, then av = kv for some 0 # v € V = Ey and k € K, giving us
a = k. Therefore, since y" has an eigenvalue in K, we get y" = (A7, A\",...,A").

That is, if 7 = 2 then A" = A7" and if r > 2 then A" = 1. In any case, K is finite.

As our final step let g := |K|. The determinant map det : Cg(g;) — K is onto
with Ker(det) = Cg(g;). Also |Cgq(g1)| = r|K¥" = r(g — 1)". Hence |Cg(g;)] =
(¢ —1)"/q — 1. On the other hand, |Ey| = ¢" and |Cg(g2)| = |IEﬂ2|r Furthermore,
the norm map N : IEg — K is onto since both fields are finite and image of N is a
cyclic group of order ¢ — 1. Thus |Cg(gs)| = (¢" —1)r/g—1. But (¢—1)" <¢" -1

implies that Cg(g;) # Cs(g2), a contradiction. Hence Case (5) does not occur.
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Chapter 3

Centralizers in Alt()

3.1 Centralizers in Alt(n)

Throughout this section assume the following: G = Alt(2) where Q is a finite
set of size n and = and y are elements of G of prime order p such that (z) # (y).
Our aim is to prove a theorem which lists all possibilities for z, y, and n so that z

and y have the same centralizer in G.
Let

r=x1x2---Tr and Y=yjy2---Ys

be the decompositions of r and y into the product of disjoint p-cycles where

z; = (ai1, @4, -- .- ajp) and  y; = (bj1, b52,...,bjp)

forall 1<i<rand 1<j<s.

Theorem 3.1.1 Let z, y, and G be as above. Then the cases where Cg(z) = Cq(y)

are ezactly the following:
(a) pisodd, n =2p or 2p+1, and z = 1129, Yy = x’fa‘é with k, | € Z,
1<k#l<p.
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(b) p=3, n=6 and r = 1113, y =T} Or vVice versa where 1 <k < p.

(c) p=3, n=6 and z = x1, y = y; with supp(z) Nsupp(y) = 0.
(d) p=2, n=4 or 5 and supp(z) = supp(y) has size 4.

For the proof of this theorem, the following two lemmas will be needed.

Lemma 3.1.2 Cg(z) does not act transitively on supp(z) if and only if p is odd,

| supp(z)| = 2p, and n =2p or 2p+ 1.

Proof: Note that Cg(z) acts on supp(z).
Case 1. Suppose r = 1.
Then z = 1 and p is necessarily odd since z € Alt(n). Clearly, Cg(x) contains

the subgroup (z;) and hence acts transitively on supp(z).

We may now assume that 7 > 2. Let o and 3 be in supp(z). If they belong to the
same orbit of z, then there exists an element ¢ € (z) which moves a to 3. Hence
it is enough to consider only the case where o and (3 are in two different orbits of
z. Without loss of generality, assume that a = aj; and 8 = as;.

Case 2. Suppose r > 3.

Let o = (a11,a21,a31)(a12,a22,a32) . .. (a1p, azp,azp). It is evident that o is an
even permutation, commutes with z, and o(aj;) = ag9;. This proves that Cg(z)
acts transitively on supp(z) when r > 3.

Case 3. Suppose r = 2.

Let u:= (a11,a21)(a12,022) - -~ (a1p,ap). If n # 2p,2p+ 1, then define o by

I if p is even
o=

um if p is odd
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where 7 is a transposition whose support is contained in 2\ supp(z). Such a trans-
position exists since n > 2p + 1. Then o € Cg(z) and o sends a;; to ag;, which
proves the transitivity of Cz(x) on supp(z) in this case.

Finally, if n = 2p or 2p + 1, then we have Cgyyn)(z) = (z1, z2,7) where
7:=(a11,a21) - (a1p,azp). If p iseven (so n =4 or 5), then 7 € Alt(n) and thus
C¢(z) is transitive on supp(z). On the other hand, if p is odd then Cg(z) = (r1, z2).

Hence Cg(z) does not act transitively on supp(z).

Lemma 3.1.3 Let 1 < i < r and 1 < j < s and let p be an odd prime.
Put £ = r129 -2 and y = y1y2---ys be as above with Cq(z) = Cg(y).
Then either supp(z;) = supp(y;) or supp(z;) Nsupp(y;) = O. Furthermore, if

supp(x;) = supp(y;) then y; = xf for some 0 < k < p.

Proof: Since p is odd, z; is an even permutation and z; € Cg(z) = Cg(y). Thus
supp(z;) is y-invariant and so it is a union of orbits of y. Now the first part of the
lemma follows from the facts that |supp(z;)| = p and orbits of y have length 1 or
p. For the second part, note that [y;,y] =1 and hence y; € Cg(y) = Cg(z). Then
[yj, il = 1 as supp(z;) = supp(y;). Since y; € Coym(supp(z;))(Ti) = (i), we get

yj=zi-c for some 0 < k < p.
Proof of Theorem 3.1.1. We split the proof into two cases:

Case 1. Cg(z) does not act transitively on supp(z) for z =z or z = y.

Without loss of generality, assume that C(z) does not act transitively on supp(z).
Then by Lemma 3.1.2, | supp(z)| = 2p where p is odd and n = 2p or 2p + 1. Thus,
supp(z) Nsupp(y) # 0. By Lemma 3.1.3, y = :c’lcl :r§2 forsome 0 < k; <p,i=1, 2.
First assume that both k; and ky are nonzero. If k := k; = kg, then y = zF, a

contradiction to (z) # (y). Thus k; # kg which gives part (a) of the theorem. If
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one of the k; is zero, say k9, then y = xlfl where 1 < k] < p. Note that p > 5 is
not possible since otherwise we can construct an element 1 # o € Alt(n) such that
supp(o) € supp(ry). Then o € Cg(y) \ Cg(z), a contradiction. Therefore p = 3
and hence n = 6 or 7. When n = 7, we can define o := (ag;,ag9)(ag3,b) where
b € 2\ supp(z). Then o commutes with y but not with z, a contradiction. Hence

n =6 and (b) is attained.

Case 2. Cg(2) acts transitively on supp(z) where 2z € {z, y}.

Since supp(z) is an orbit of Cg(z), supp(y) is an orbit of Cg(y), and

Ca(z) = Ca(y), we have supp(z) Nsupp(y) = @ or supp(z) = supp(y).

Case 2a. supp(z) Nsupp(y) = 0:
In this case, z € Alt(Q2 \ supp(y)). Moreover, Alt(2\ supp(y)) C Cq(y) = Cg(z).
So 1 # z € Z(Alt(Q \ supp(y))) and hence |2 \ supp(y)| = 3. This implies

| supp(z)| = 3. We use the same argument for y instead of z and get |supp(y)| = 3,

giving us (c).

Case 2b. supp(z) = supp(y):

Suppose to the contrary that p is odd. We write y as y = x’fl a:]2c2...:c,’?’ for

some 0 < k; < p by Lemma 3.1.3. 1If all the k;’s are equal then y = xk, a
contradiction. Thus, if necessary by replacing y with some power of y and re-
ordering r;’s we choose the notation as y = 1 3:52 . .:cl,fr with ko # 1. If r > 3,
the permutation (a11,a21,a31)(a12,a22,a32) ... (a1p, agp, a3p) is in Cg(z) \ Ca(y),
a contradiction. Therefore r = 2. By Lemma 3.1.2, n > 2p + 1. Now the element

o := (a11,021)(a12,a22) - - - (a1p , agp)™, where 7 is a transposition whose support is

in Q \ supp(z) satisfies [0,z] =1 and [o,y] # 1, a final contradiction. So p = 2.
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Next we will show that r = 2. Assume for a contradiction that 7 > 3. Let 1 <i<r
be arbitrary and pick j and k such that |{,7,k}| = 3 where 1 < j,k < 7.
Since z;zj; € Cg(z) = Cg(y), supp(z; ;) is y-invariant. Similarly, supp(z;zy)
is y-invariant. Then their intersection, supp(z;z;) N supp(z; zx) = supp(z;), is
y-invariant as well. That is, supp(z;) is an orbit of y. As i is arbitrary, we get

z = y which is a contradiction. Thus r = 2.

Now p = 2 and r = 2 imply that supp(z) = supp(y) has size 4. Finally, the
assumption Cg(z) = Cg(y) forces n < 5. To see this, without loss of generality let
z = (a,b)(c,d) and y = (a,c)(b,d). If n > 6, take e, f € Q \ supp(z) and consider
o = (b,d)(e, f). Clearly, 0 commutes with y but not with z, a contradiction. This

gives (d) and completes the proof of the Theorem.
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Chapter 4

On Abelian Centralizer in Locally

Finite Simple Groups

In this chapter, we show that the centralizer of an element of prime order in a

group of alternating type as well as in a nonlinear finitary group is non-abelian.

4.1 The Non-regular Alternating Case

Recall the definition of regular and non-regular alternating groups from the In-

troduction.

Lemma 4.1.1 Let G be a LFS-group of alternating type and Cp x Cp, = Z <G a
regular subgroup of G. Then Cg(2) # Cq(Z) forall 1# 2 € Z.

Proof: Since Z is regular, there is an element (H,2) € K such that Z has at least
t regular orbits on € for all Kegel covers K and for all non-negative integers ¢t by
[4, Theorem 1.2]. Choosing t > 53p3 implies Cg(z) # Cy(Z) for some 1# 2 € Z
by [6, Theorem 6.1]. In fact, the proof of {6, Theorem 6.1] gives a stronger result;
namely, Cy(z) # Cy(Z) for all 1# 2 € Z. In that proof the assumption “for all

1 # z € Z” is used only in one place, the forth line before the end of the proof.
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Instead, one could have said “for some 1 # z € Z” because the lemma referred
to only requires the existence of some such element. Thus Cg(z) # Cg(Z) for all
l1#£z2¢€Z.

Proposition 4.1.2 Let G be a regular alternating group. Then Cg(a) # Cg(b) for

all a,b € G with |a| = |b| = p and (a) # (b) where p is a prime.

Proof: Assume it is false. Let a,b € G be of order p such that (a) # (b) and
Cgla) = Cg(b). Put Z := (a,b). Since G is regular, Z = Cp x Cp is regular

and Cg(Z) = Cg(a)NCq(b) = Cq(a) = Cg(b), a contradiction to the above lemma.

For the remaining of the section more definitions and terminology will be needed. Let
(H,?) € A. Then, by [14, Lemma 2.8], there exists a unique minimal (sub)normal
supplement R to Cy(€?) in H. That is, R is a normal subgroup of H and min-
imal with respect to H = RCg(f?). For w € 2, we denote the minimal normal

supplement to Cy(€?) in Cy(w) by R, .

Definition 4.1.3 Let A be an H -set and ¥ be an orbit for H on A. Then
(a) X is called Q-essential if Cy(X) < Cy(R).
(b) X is called Q-natural if ¥ and Q are isomorphic as H -sets.

(¢) ¥ is called Q-block-natural if for some H -invariant partition A of ¥, A 1is
Q-natural and Ng(D) = Cy(D)Cy(Q) for all D € A.

(d) If all the Q2-essential orbits on A are Q2-block-natural, then A is said to be

Q -block-diagonal.

Remark: (a) The condition Ng(D) = Cy(D)Cg(R) in the above definition is
equivalent to Cy (D) £ Cy(Q).
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(b) ¥ is an 2 -essential orbit for H on A < R acts non-trivially on X.

Proof: (a) Obvious since Ny (D)/Cyg(R2) = Alt(|2] — 1) is simple.

(b) Assume that R acts non-trivially on £. Then R ¢ Cg(X) and hence
Cy(Z)CyH(Q) # H. Since H/Cy(Q) is simple, Cy(X) < Cy(R2). For the converse,
assume that ¥ is an Q-essential orbit. If R < Cy(X) < Cy(), then H = Cy(N),
a contradiction. So R £ Cy(%).

Let G be a group of alternating type. For 4 € A, we define H4 and §24 by
A = (Hy,24). Let D be a subset of A. Then D is called a Kegel cover for G if
{(H,Cy(2)) | (H,Q) € D} is a Kegel cover for G. For any finite subgroup F of G,
we define D(F) := {(H,Q) € D| F < H and Cp(Q) = 1}.

Remark: Let A and F be finite groups with E perfect and acting transitively on a
finite set Q2. Denote the base group of AlqE by A® and put (AQ)O = ARN(AE) .
Then (Alq E) = [ARE, A2E) = (AY)'[A%, E] E. Furthermore,

(4% = (4% (4%, B] = {(aw)uca € A7 | [Jawea'}. (4.1)
weR

The first equality in (4.1) is clear. For the second equality, we will first assume that
A is abelian and show that [A®, E] = {(aw)yeq € AT | [loeqaw =1}:
(C) is obvious since E permutes the coordinates of the elements of the base group
and A is abelian. For the converse inclusion, without loss of generality, we put
Q=1{1,2,...,n} and let a = (a;);cq € A such that []";a; = 1. We need show
that a € [A%, E]. Since E is transitive, there exists e; € E such that 1% =i for
i € Q. For each 1 # k € Q define h(k) € A% by h(k) = (ag,1,1,...,1). Then

[h(k),ex] = (a;l, 1,...,1,ak,1,...,1) where a is in the k*h position.
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Hence

n n
[T(Aak) ex) = (T] e a2.- - an)

which is equal to a since [J%;a; = 1. Thus, a € [A%, E].

For the general case, since A%/(A%)' = (A/A")® is abelian, we get
n
(4)2(A%, B)/(4)? = [(4/4)%, B] = {(:A)icq | [[asd’ = A'}.
=1

This implies (A")?[A%, E] = {(ai)ieq | [Ticqai € A}, as claimed.

We now quote a theorem proven in (4, Theorem 4.3].

Theorem 4.1.4 ([4]) Let (H,Q) € A and suppose that H is faithful and Q-block-
diagonal on some set. Let R be the minimal normal supplement to Cy () in H.

Let w € Q and put K = Cr(w)/Ry. Then R (K 1 Alt(R)).

Let us denote the isomorphism defined in the proof of the above theorem by

¢ R =, (K o Alt())'. We will show that it can be extended to H as follows:

Lemma 4.1.5 Let H,R,w, R, and K be as above. Put L := L, = Cg(w)/Ry
and D := {(dy)yeq € LY | duK = d K for allw,w’ € Q}. Then there ezists a

monomorphism 6 : H — L Alt(?) such that bip = ¢. Moreover,
(K < KYno(H) < K< 9(Cy ()K= D 96(H)K? = D Alt(Q)

with K/ (K% = K/K' and D/K® = L/K.

Proof: Let us first show that R? = R forall h € H and w € Q.
By definition of R,, Cy(w) = RLCy(2) and conjugating it by h gives
Cr(wh) = RECH(Q") = RECH(Q). Thus R j, < RI by definition of R ;. In
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- a similar way, we have R, < RZ;I and so Rfj = R p. Next we will show that
L, =L for any w,w’ € Q. Since H/Cy(Q) = Alt(Q2) and H = RCy(Q?), H and
hence R acts transitively on Q. So choose 7 € R such that w” = ' and define
¥ : Cy(w) — Cy(w')/R by 9(h) = r'lher/. One can easily check that it is an

epimorphism with kernel R,,, giving the isomorphism L, = L ;.

Definition of 8 and the proof that it is a monomorphism will be similar to that of the
one given in [4]. But they are included below as well because the explicit definition
of @ and some further observations will be needed later on.

Without loss of generality, assume Q = {1,2,...,n} and w = 1. For i € Q, pick
r; € R such that 1" = {. Since rihri_hl € Cy(1) forall h € H and i € Q, we

obtain a map
9: H— LigAlt(Q): h — ((rihri_thl)ieQ, m(h))

where 7 : H — Alt(f2) is the onto homomorphism arising from the action of H on

2. 6 is a homomorphism since for any h,t € H we have

0(1)0(t) = ((rihr 3 Ri)ieq m(W)((ritr g  R)ieq, 7(1))
= ((’Tz'hT‘z._h1 T,-htrl._hi Ry)ieq, m(h)7(t))
= ((Tihtri_h%Rl)ieQ, m(ht))

= 0(ht).

Now let h € H such that 8(h) = 1. Then n(h) = 1, that is, m(h) acts trivially on
2. Hence 0(h) = ((7'ihT'i-IR1)i€Q, 1) and so rih'ri_]' € Ry and h € RIi = R; for all
i. By assumption H acts faithfully and §2-block-diagonally on some set, say A, and

NieqR; acts trivially on A by [4, 4.1(b)]. Thus h =1 and 6 is one-to-one.
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Note that (K®), = K NO(R) < KN G(H). To show that K/(K?), = K/K',
define ¥ : K — K/K' by 4 : (kj)jeq — (I1jeqk;)K’ and observe that it is an
epimorphism and the kernel consists of elements (k;);eq such that [[;cqk; € K !

Then Ker(¢) = (K%)o by (4.1).

Since rj,7x € R and R J H, we have (rjhr;hl)—l(rkhr;hl) € Cgr(1) for
any j,k € €. This implies rjhrj_th = rkhr;th for 5,k € Q and from
this it is immediate that 6(Cy(Q)) € D. Obviously, K® < D and hence
O(Cy(Q)K? C D. In fact, we will show that 9(C’H(Q))KQ = D. For this, let
d = (diR1)ieq € D. So d; € Cy(1) and d;Cg(1) = d;Cgr(1) for all 4,5 € Q.
Since Cy(1) = R1Cg(Q), there exist t € R; and h € Cy(R) such that dy = th.
Recall that 6(h) = (r;hr] 'Ry);cq by definition. Putting s = (s;R;) = do(h)™!,
we have s; = d;(r;h~1r; 1) = diry(d7 O)r7t = (dirid;Y)(did ) (¢r7 ). Note that
di"ldl € Cg(1) and since R < H and d; € H, we also have diridi_l € R, thus
si € R. In fact, s; € Cg(1) because s; = di(rih"lri_l) and both d; and nh,‘lri_1
fixes 1. Therefore, s € K and hence d = sf(h) € K®(Cy(Q)) which gives
D C 0(Cy(Q)) K2,

Next let us consider the map ¢ : D — L/K defined by ¢ : (dj)jeq — d1K. It
can be easily checked that ¥ is an onto homomorphism and if (d;) € Ker(%), then
diK = K, that is, d; € K. Thus d; € K for all j € Q, giving Ker(y) = K and
D/K® = L/K. Finally, 0(R) = (K 1q Alt()) = (K)o Alt() and H = Cy(Q)R
imply that 8(H) = 6(Cr(Q)8(R)) = 0(Cg())(K?)o Alt(R). Multiplying this by
K9 and using (K)o < K, we obtain §(H)K = D Alt(Q2), completing the proof.
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Put B := ¢~ ((K®),) and note that g € Cgr(Q) if and only if n(g) = 1 if
and only if ¢(g) = ((Tig’l'i_glRl)ieQ, 1) € (K%)o. In other words, B = Cg(f) and
hence B = RNCy(Q) < H. Without loss of generality, we let Q = {1,2,...,n} for
the remaining of the section. Moreover, whenever convenient, we shall identity the

group with its image under the isomorphism ¢. In particular, for the next lemma

we identify R with (K g Alt(Q2))' and B with (K%)..
Lemma 4.1.6 Let R* := {(gi)ﬂ €ER | g1=1and 1™ = ]_} Then R = R*.

Proof: It is straight forward to check that R* is a group.

Step 1. Ry < R*:

It is enough to show R* <Cpg(1) and Cy(1) = R*Cy(f2), since then R; < R* fol-
lows from the minimality of R;. For R*<Cg(1); let u € Cy(1) and y = (y;)7 € R*.
Since y; = 1, 1™ = 1, and ¢(u) = (u;)0 where u; = riuri—ulRl with 19 =1, we
get (y)m)°) = o= (u) wm(u)o = [(u)~ i) (ws)™ o~ no. The first
coordinate of this element is (rluri'l)_l -1- rlurl—lRl = 1g and o~ 170 fixes 1.
Thus, ((y;)7)?®) € R* and hence R* <4 Cy(1). For the second part, notice that
Alt(©2\ {1}) € R* and hence Cg(1) = Cyx() Alt(2\ {1}) C Cx(QR* C Cx(1).

Step 2. (K")¥" < Ry where Q* = Q\{1}:

Let k € K and r = (r;)m € Ry be such that 27 = 3. Let a:= (k,k~1,1,...,1) € B.
Then o = (k,1,k772,1,...,1) and a"a" = (1,k,k772,1...,1). Since Ry ICg(1)
and B = CR(Q) < Cg(1), B normalizes R; and hence a™!a” = [a,7] € Ry N B.
Let s = (s;)o € Ry such that 2° = 4 and consider ¢ := (,I71,1,...,1) € B where
| € K. Similarly, ¢71¢® = (1,1,1,17%2,1,...,1) € Ry N B and the commutator
[a“lar,c“lcs] gives (1,[k,l],1,1,...,1) € Ry N B. In fact, for 2 < j < n, if we put
k~! and 7! into the jth position in the definition of a and b respectively, and

choose r and s so that j7 # 1,5 and j® # 1,j,j" we get the commutator [k,!] in
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the j*® position. This proves Step 2 as [k,1]’s generate K'.

Step 3. RyNB = R*NB:

Obviously, Ry N B < R*N B by Step 1. For the converse, let ¢ € R* N B. Then
9 = (9i)icq where g; =1 and [[7-,9; € K'. Observe that g can be written as
9=(Lg2,g5"1,..., 1)(1,1,9203, (9293) "1, 1,..., 1) - (L,..., Ly,y~1)(1,...,1,2)
where y = ;‘;21 g; and = = [[l*.5g;. Since z € K’, the last factor of g is in R;
by Step 2. In order to conclude g € R;, we shall show that the other factors are
in R; as well. Without loss, take (1,k, k~l1,. .., 1) for some k € K. Recall that
d:=(1,k,k7"2,1,...,1) € R; from the previous step. Moreover, since a~la” € B,
kk™"2 € K’ and so does its inverse and hence e := (1,1,k71k™2,1,...,1) € R;.

Thus de = (1,k,k~1,1,...,1) € Ry.

Step 4. R; = R*:
Since R} JICg(1) and R* < CRg(1), we have RjJR*. Also R*/R*NB = Alt(Q\{1})
is simple. Then R} &£ B, together with Step (3), implies that R* N B S R; I R*

and hence R; = R*, completing the proof of the lemma.

Let (H,Q),(H4,924) € A such that H < Hy, Cy(Q24) =1 and H is Q-block-
diagonal on Q4. Since R # 1, R £ Cg(24) and hence there exists an orbit L
for H on Q4 such that R £ Cy(X). Thus, L is an Q-essential orbit. Let A* be
the union of all Q2-essential orbits for H on Q4. Then there exists an H -invariant
partition A of A* such that A = Q as H-sets. Thus, set A = {A; | i € Q}. Define
By = {(9))icq € B | g1 = 1}. Then:

Lemma 4.1.7 Cg(A;) < B;.
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Proof: Put J; := {91 | 9 = (9i)icn € Cp(A1)}. In other words, Jj is the
projection of Cpg(A;) onto the first coordinate and hence J; < K. We define
J:={9g € B| g € Jyforall i € Q} and observe that it is a group. Since
B = {(gi)ieq € K| [Tica9i € K'}, we can choose any element of K as g; and
choose rest of the coordinates so that the product of these coordinates is in K.
This shows that if we take the projection of the groups Cpg(A;) and B onto the
first coordinate and use Cg(A;) < B, we get J; < K. We now claim that J < R.
To see this, take g € J and r € R. Since R = B Alt(2), we put r = (r;)m where
(r;) € B. Then g" = (r; lgiri)feﬂ and each of these coordinates is in Jj since

gi € J1 and r; € K. Hence J < R, as claimed.

Next we shall show that R} < Cpr(A;). Let ¥ be an Q-essential orbit for H on
Q4. Then Cy(¥ NA;) £ Cy(R) by Remark (a) on page 60. Put Hy := Cg(1).
Then Cg, (¥ N A1) < Hy and so Cg, (¥ N A1)Cy(R2) < Hy. Since Hy/Cy,(R)
is simple, we obtain H; = CHI(\I! N A1)Cy(Q). Minimality of R; implies that
R; < CHl(‘I’ N Aj) and since ¥ is arbitrary, we get R} < Cy(A1). Then Ry < R

gives Ry < Cpr(A1).

Now we claim that Cg(Ay) = {g € B | g1 € J1}. Observe that (C) is trivial. For
the converse, let ¢ € B with g € J;. Then g; = h; for some h € Cg(A;) and
hence h"lg € BNR* = BN R; < BNCgr(A)). Now h~lg € Cp(A1) implies
that ¢ € Cpg(A1), proving the converse. As our final step, we shall show that
J = 1. Note that trivially J C {g € B | g1 € J1} = Cg(A1). Let w € Q. Then
w = 19 for some g € R and since J IR, J = JI9 C Cg(A1)9 = Cg(Ay). Since
w is arbitrary, we get J < Cpg(A*). On the other hand, R and in particular B
acts trivially on Q4 \ A*. Hence Cg(A*) < Cy((24 \ A*) UA*) = Cy(2y4) = 1.

Thus J = 1 which implies that ./; = 1 and thus Cg(A;) < Bj, completing the proof.
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Proposition 4.1.8 Let G be a non-regular alternating group and ¢ € G be of prime
order p. Then there exists g € G such that Z := (z,29) 2 Cp x Cp and Z is a

regular subgroup of G.

Proof: By [4, Theorem 3.4], there exists an alternating Kegel cover D for G such
that, for any A, B € D with Hy < Hg, Hy is §24-block-diagonal on Qg. Without
loss of generality, * € Hy4 for all A € D. Since the set {degq A(I) | A € D}
is unbounded by [8, Corollary 3.13|, we pick an element (H,Q) € D such that
degq () > 2p?, that is, = has at least 2p non-trivial orbits on . Thus, we write
p p
m = [[[(ai1, aiz. - ... aip)] [ [ [ (Bin, bias - - bip)] o (4.2)
1=1 1=1
where 7 is the image of z in Alt(12), {aij, bij} C Q, and o denotes the action of z
on the remaining elements of 2.
Without loss of generality, we may assume that D = D(H) and hence H acts
faithfully on Q4 for all A € D by definition of D(H). We continue the notation
used above and recall the definition of ¢ : R =, (K1q Alt(R2))’. In particular, recall
that B = Cp() = ¢~ ((K™)o) QH and (K%)o = {(g:)icq € K | [Licq 9 € K'}.
We now consider the cases p{ |K| and p | |K| separately.
Case (a) Assume that p 1 |K]|.
Let H = H/Cg(f) and note that Alt(Q) = H = RCg()/Cr(Q) = R and (K%),

is a p’-group. Observe that there exists an element g € R so that

p p
79 = [H(ali, ag;, .- -, am-)] [H(blis boi, . .., bm)] o. (4.3)
1=1

1=1
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Indeed, we can let

g:=[ II (el TI (i05]
1<i<j<p 1<i<j<p
Note that g is a product of even number of transpositions and hence g € Alt(R).
Clearly (Z) # (z9), [,29] = 1, and |z| = |z9| = p. Thus (Z,79) = Cp x Cp. Note
that {a;; | 1 <i,5 <p} (or {b;j | 1 <i,5 <p}) is a regular orbit for (Z,z9) on Q.
Since (z,79) is abelian, [z,29] € Cy (). Moreover, since g € R and R<H, we have
zR = z9R. Thus [z,29] € Cr(Y) = B and so B = 29B. On the other hand, ob-
serve that (x)B = (29) B would imply that (z)Cg(Q2) = () BCy(R2) = (z9)Cyg(Q),
a contradiction. Therefore (z)B # (29)B and hence (z,z9)B/B = Cp x Cp.
Let T be a Sylow p-subgroup of (r,z29)B containing r. Since B is a p’-group,
TNB = 1. Then (z,29)B = TB and Cp x Cp, = TB/B = T. Let y be such
that TNa29B = {y}. Since (y) and (z9) are Sylow p-subgroups of (z9)B, there
exists an element h = (z9)% € (z9)B with (z9)" = (y). Hence (z9%) = (y), which
implies y~ 129 ¢ (y). Moreover, 29°B = 29B = yB since g € R and B < H. Thus,
y~129% € () NB =1 and y = 29°. By the definition of g, y = z9° ¢ (z) and hence
T = (z,y) = (z,29°) = Cp x Cp. Since b € B acts trivially on Q, T has a regular

orbit on Q as well. So let w € Q such that Cp(w) = 1.

Let A € D be arbitrary and let £ be an (2-essential orbit for H on 4. Let A be
an H-invariant partition of ¥ such that 2 = A as H-sets and let D be the element
in A corresponding to w. Then Cp({D}) = Cr(w) = 1, that is, D* # D for any
1#t€T. Hence d® #d forany 1 #¢t€ T and d € D. So Cp(d) = 1, in other

words, T has a regular orbit on Q4. Therefore, we have shown that

Dreg(T) := {(H4,Q4) € D|T < Hy and T has a regular orbit on 24} = D.
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Since Dreg(T) € Areg(T), we conclude that Apeg(T) is a Kegel cover for G and

hence T is a regular subgroup of G. This proves Case (a) with ‘Z’=‘T"and ‘g’="‘gb".

Case (b) Assume that p | |K].

Since z € H < L Alt(Q), write z = (z;);eqm where (z;);cq € LY. Recall that
by (4.2) we already defined the action of z on Q2. However, for the rest of the proof
we shall change this notation and put 7= = (1,2,...,p)(p+ 1,p+ 2,...,2p)o where
o denotes the remaining orbits of z on §2. This is done to simplify the notation.
Besides the proof of Case (b) requires only that z has at least two non-trivial orbits.
Let £k € K be of order p and define h € K% by h := (k,l,...,l,k‘l,l,...,l)

where k1 is on the (p +1)%* coordinate. Put
B el or 1322+ (p1)gP—2
=Hh” = h. 2z p3zt L ple-1)2PTF (4.4)

and observe that since h € B and B < H, we have g € B. Forany 1 < n < p,
= (1,k™1,1,..., 1,k "p+L, 1, ..., 1) where k~"*P+1 appearing in the (p+2)"d

coordinate. In a similar way, hm =(1,...,1,%1,...,1,%,1,...,1) where the non-

trivial elements * are on the (j+1)%* and (p+;+1)%* coordinate for any 1 < j < p.

This shows that [hmi, hmzj] =1 forall n,m and for all 1 <4i,j <p.

Let us now consider the product [TF_, pl+Dat — p2z p3a? (h}’)’:p_1 . (RPF1)eP

Since hP = zP = 1, the last two factors of this product are equal to 1 and A,

respectively. Since the factors do commute, we get g = ]_[f=1 pli+1)z!

Then g~ ! =[I5_, A~ (i+1)z* gpq

p

g g% = Hh (i+1)zt | izt _ Hh— (4.5)

i=1
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Since the first coordinate of g7 1g% is k=1 # 1, g~ 1¢* & B; by definition of Bj.
In particular, g~1g% # 1 which means z # z9. Next assume to the contrary
that (r) = (29). Then z7!29 € (z). Since g € B and B H, zB = z9B
and hence =129 € B and z7!29 € BN (z). Note that BN (z) is a group of
order 1 or p and since z does not act trivially on 2, x ¢ B. Thus BN (z) =1
which implies 27129 = 1, a contradiction. Hence (z) # (z9). Notice that
(971g%)® = g7 14% by (4.5) and so 29 and z do commute and (z,z9) = Cp x Cyp.

Put Z := (z,z) = Cp x Cp where 2 := [g,z]. Note that Z = (z,29).

Let A € D. We shall show that Z has a regular obit on Q4. Since z = g~1¢% & By,
2 ¢ Cg(A1) by Lemma 4.1.7. Therefore, there exists A € Aj such that A* # A. We
claim that AZ is a regular orbit for Z. Since z € B = CRr(€) acts trivially on A,
we have z € Nz(Aj). On the other hand, = ¢ Nz(A;). Thus, (2) < Nz(A)) £ Z
and since |z| = |Z| = p? we get Nz(A;) = (2). For any y € Cz(}), we have
AY = X € A;. Since A is an H -invariant partition, A’lj = Ap, that is, y € Nz(Ay).
Thus, Cz(A) < Nz(A;) = (z). This implies Cz()) = C»»(A) =1 and hence Z
has a regular orbit on A; and so on Q4. By an argument similar to the one in the

previous case, we deduce that Z is a regular subgroup of G, completing the proof.

Theorem 4.1.9 Let G be a non-regular alternating group and € G with |z| =p

where p is a prime. Then Cg(z) is non-abelian.

Proof: Let z € G be of order p. There exists an element g € G such that
Z = (x,29) = Cp x Cp and Z is a regular subgroup of G by Proposition 4.1.8.
Then by Lemma 4.1.1 Cg(z) # Cg(Z) forall 1 # 2z € Z and, in particular, Cg(z) #
Cg(z9). Suppose to the contrary that Cg(z) is abelian. Then z9 € Cg(z) implies
that Cg(z) < Cg(29) and similarly Cg(z9) < Cg(z). Thus Cg(z) = Cg(z9), a

contradiction. Therefore, Cz(z) is non-abelian.
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4.2 The Finitary Case

Lemma 4.2.1 Let P be a finite p-group, p a prime, and z € P with |z| = p. If
X = (z) £ Z(P), then there is an element g € P with (z) # (z9) and [z,29] = 1.

Proof: X £ Z(P) implies that Cp(X) is a proper subgroup of P. By the normal-
izer condition, Cp(X) < Np(Cp(X)). Since the quotient Np(X)/Cp(X) is isomor-
phic to a subgroup of Aut(X) whose order is p— 1, we also have Cp(X) = Np(X).
Let g be an element in Np(Cp(X))\ Np(X). Then g ¢ Np(X) implies (z9) # (z)
and g € Np(Cp(X)) gives us 29 € Cp(X) and hence [z,z9] = 1.

Lemma 4.2.2 Let G be a locally finite group and x € G such that |z| = p, p a
prime. If [z,29] # 1 for any g € G with (z) # (z9), then every finite p-subgroup is

conjugate to a subgroup of Cq(z).

Proof: Let P be a finite p-subgroup of G. Since G is locally finite, (P,z) is a
finite subgroup. Choose a Sylow p-subgroup S of (P,z) with z € S. Then P9 < S

for some g € (P,x). If x ¢ Z(S), we get a contradiction by Lemma 4.2.1. Thus
z € Z(S) and hence P9 < S < Cg(x).

Theorem 4.2.3 Let G be a non-linear LFS-group and n € Z*. Then there erist
A Q B <G with B finite and B/A = Sym(n).

Proof: It is a well known result. See, for instance, [9, Theorem 2.6].

Corollary 4.2.4 Let G be a LFS-group and p a prime. If every finite p-subgroup

of G is abelian, then G is linear.

Proof: Suppose that G is non-linear. Then, by Theorem 4.2.3, for any n € Z*
there exist A < B < G such that B/A = Sym(n). We can choose n large enough

so that Sym(n) has non-abelian Sylow p-subgroups. So let PA/A be a non-abelian
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Sylow p-subgroup of B/A where P € Syl,(B). As PA/A= P/PN A, P is non-

abelian. Hence G contains a non-abelian p-subgroup, a contradiction.

Theorem 4.2.5 Let G be a LFS-group of alternating type. Then Cg(z) is not

abelian for any z € G with |z| = p where p is a prime.

Proof: Assume that Cg(x) is abelian for some = € G with |z|] = p. Suppose
for a contradiction that [z,z9] # 1 for all g € G with (z) # (z9). Then, by
Lemma 4.2.2, every finite p-subgroup is conjugate to a subgroup of Cg(z). So every
finite p-subgroup is abelian. Then G is linear by Corollary 4.2.4, a contradiction.
Hence there exists t € G such that (z) # (z!) and [z,2!] = 1. Since Cg(z) is

t € Cg(z), we have Cg(z) < Cg(zt). By a similar argument we

abelian and z
obtain Cg(z!) < Cg(x) and thus Cg(z!) = Cg(z). By Proposition 4.1.2, G is

non-regular. Now by Theorem 4.1.9, we get a final contradiction.

Lemma 4.2.6 Let K be a field, V a vector space over K, X a finite dimensional
subspace of V and s a nondegenerate bilinear form on V. Then there exists a finite

dimensional subspace U of V' containing X such that s|yxy is nondegenerate.

Proof: Write V = (X + X1)® Y for some K-space Y. Note that dimY =
dimV/X + X+ <dimV/X1 = dim X < co. Let U := X +Y. We need to show that
UNUL =0. Since UNUL CUNXL C(X+Y)N(X+XL) = X+(YN(X+X1)) =
X, we have UNUL C X. Moreover, XNUL = XnXinyLc (X+XLH)inyt =

Vi=0 ThusUnULtcCcXxnUL=o.

Lemma 4.2.7 Let s : V x W — K be a nondegenerate bilinear map and X;
and Yy be finite dimensional subspaces of V and W, respectively. Then there are
finite dimensional subspaces X and Y satisfying the following: X1 < X <V,
YI<YSW, V=XoY!t ad W=XaY.
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Proof: See [8, Lemma 3.5].

Lemma 4.2.8 Let G be a group, K a field, and A and B be KG-modules. Let
s: Ax B — K be a G-invariant bilinear map, that is, s(a9,b9) = s(a,b) for all

acA beBand geG. If AL =0, then [A,g]*t = Cp(g) forall g€ G.

Proof:

be[A gt  s([a,g],b) =0 forallac A
& s(a9—a,b) =0 for all a € A.
< s(a¥,b) — s(a,b) =0 for all a € A.
& s(a, bq_l) — s(a,b) =0 since s is G-invariant.
os(@b?  —b)=0 forallac A
oW —beatew ! =b

< be Cp(g).

Corollary 4.2.9 Let G be a LFS-group and z € G such that |z| = r where r
is a prime. If Cq(z) is abelian, then G is either a group of r-type or linear. In
particular, if there are two elements in G with distinct prime orders and with abelian

centralizers, then G is linear.

Proof: Let z € G with || = r and Cg(z) abelian. By Theorem 4.2.5, G can
not be of alternating type. Hence, using Theorem 3 (page 4). we will assume that
G is either a group of p-type for some prime p # r or a non-linear finitary group

and obtain a contradiction in both cases.

Case 1. Assume that G is a group of p-type where p # .
Then there exists a Kegel cover K for G such that if (H, N) € K then H/Op(H) is
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ti.e central product of perfect central extensions of classical groups defined over a field
in characteristic p and H/N is a projective special linear group, again by Theorem
3. So H/N = PSLy(p*) for some n and k and, without loss of generality, we
may assume n > r. Note that H/N is simple, so Op(H/N) =1 and Op(H) < N
for any (H,N) € K. Now choose (H,N) € K such that £ € H\ N and write
H := H/Op(H) = Gy - G2--- G| where [G;,G;] =1 for all i # j, G;’s are perfect,
and G;/Z(G;) is isomorphic to a classical group. Put T = z129 - - - ) where z; € G;.
Since N is a maximal normal subgroup of H, there exists 1 < i < [, say i = 1,
such that G, g N. Then H = GiN. Also [G;,G1] = 1 implies that G;N/N <
Z(H/N). Then since H/N is simple, G; C N for j = 2,3...,1. Thus z; ¢ N
and, in particular, 1 # 1. Note that |z| = r implies 27 € G1 N H§=2 G;= Z(H),

that is, £1Z(G1) has order 7 in G1/Z(G;). Moreover,
PSLn(p*) 2 H/IN 2 H/N = G\N/N = G1/G1 NN = G1/Z(G1).

Denote D/Z(Gy) = CGl/Z(Gl)(Il)- Then D/Z(G,) and hence D'Z(G,)/Z(Gy)
is not solvable by Remark 1.1.16. So D’ is non-abelian. Since [D,z;] < Z(G),
by Three Subgroup Lemma we have D' < CGl(.’lfl). Therefore CGI(IE) = Cg, (x1)
is non-abelian. Moreover Cg(z) = Cg(z) by [16, Theorem 8.13, p.238]. Since
Ofel (z) < Cg(z), we conclude that Cy(z) and hence Cg;(z) is not abelian. This

contradiction completes the proof of this case.

Case 2. Assume that G is a non-linear finitary group.

Then by Theorem 2 (p.3), G is isomorphic to one of the following:
(a) an alternating group Alt(2) where € is infinite,
(b) a finitary classical group, or

(c) a finitary special transvection group.
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(a) This is not possible: Clearly, Alt(Q \ supp(z)) C Caj(n)(z) implies that

Calr()(z) is not abelian, a contradiction to the assumption.

(b) Assume G is a finitary classical group and let G < FGLK (V) and s be the cor-
responding bilinear form on V. Since G is finitary, X := [V, 2] is finite dimensional.
By Lemma 4.2.6, there exists a finite dimensional subspace U of V containing X
and V = U ® U where U := UL. Now we get [U,z] <UNU = 0 and note that
U is infinite dimensional and induces a full classical group K := C'IK(U' ,8). Hence
[z, K] centralizes both U and U, which implies that [z, K] = 1. Thus K C Cg(z).

Hence Cg(x) is not abelian, contradiction.

(c) Suppose now that G is a finitary special transvection group, that is,
G=Tg(W,V) :=(t(p,v) | p € W,v € V,op=0) < GLg(V)

where W is a subspace of the dual V* and Anny W = 0. Observe that
Anny, V = 0. We note here that t(p,v) is defined by u.t(y¢,v) := u + (up)v for
all u € V. Observe that W is a G-submodule of V* with the action given by

u.Ag := (ug™!)\ where u €V, Ae W and g € G.

Let 2 € G. Since G is finitary, dim[V,z] < oo. Define s : V. x W — K by
s(v,A) = v.\. Obviously, s is a G-invariant, non-degenerate bilinear map. Since
VL =0 and Wt =0, we have [W,z]+ = Cy(z) and [V,z]+ = Cly(z) by Lemma
4.2.8. Then dim|[W, z] = codim Cy(z) = codim[V, z]* = dim[V, 2] < co. Therefore,
there are finite dimensional subspaces X and Y such that [V 2] < X < V and

(W,2] <Y <W with V=X®Y"L and W = X1 @Y by Lemma 4.2.7.
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We now claim that H := T(X1,Y1) < C, 7). Clearly, [V,z,H] < [X,H] = 0.
Let u € V and t(p,v) € H where ¢ € X+ and v € Y+ such that vp = 0. Then
[u, t(p,v)] = (up)v € Kv < YL implies that [V, H] < YL, Since [W,2] <Y, we
have Y+ < [W,z]+ = Cy(z). Thus [V, H,z] < [Y1,2] = 0. Using Three Subgroup
Lemma, we conclude that [V, [z, H]] = 0. Hence [z, H] = 1, that is, H < Cg(z).
Therefore C(z) is not abelian, a contradiction. This completes the proof of the

first statement of the theorem.

The second statement follows from the fact that a LFS-group cannot be a p-type

group for two different primes.
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Chapter 5

On Infinite Abelian Subgroups in

Locally Finite Simple Groups

Recall that a group is said to have the minimum condition, or min, if every
descending chain of subgroups terminates in finitely many steps and G is called a
Cernikov group if it is abelian-by-finite and satisfies min.

Notation: (Cpoo)k 1= Cpoo X Cpoo X +++ X Cpoo where Cpoo stands for Prifer

- 7
Ve

k—times
groups.

Lemma 5.1.1 Let Y <X < R where X/Y is a finite elementary abelian p-group
and R = (Cpoo)¥. Then |X/Y| < p*.

Proof: First consider the special case when X is finite. Then X =
Cpr1 X Cyrg X -+ x Cry. for some r; € Z* where 1 < i < k and the Frat-
tini subgroup of X is ®(X) = Cprl_l X Cprz—l X +or X Cprk_l. Since X/Y is
elementary abelian, ®(X/Y) = 1. Then ®(X)Y/Y < &(X/Y) gives &(X) <Y
and hence |X/Y| < |X/®(X)| = p.
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For the general case, write X = U;c1X; where Xj; is of finite order with X; < X4
for all z € I. Note here that X is a locally finite group. By letting Y; := Y N X;,
we get Y = UY; and X;Y < X;41Y for all ¢ € I. Assume to the contrary that

|X/Y| > p*. Then we can choose i € I such that |X;Y/Y|> p*. But
XY =2X/YNX; = XYY

implies that |X;/Y;| > p* for some i and X;/Y; is elementary abelian since X;/Y;
is isomorphic to a subgroup of X/Y. As X; is finite, we get a contradiction to the

special case. Thus |X/Y| < p*.

Lemma 5.1.2 Let G be a Cernikov p-group. Then there exists an integer n such

that |A/B| < p™ for all B A < G with A/B elementary abelian.

Proof: Let A/B be an arbitrary elementary abelian section of G. Since A/B
satisfies min, the order of A/B is finite. Recall that G is a Cernikov p-group
implies that there exists an abelian normal subgroup R of G such that G/R is
finite and R = (C'poo)k for some k € Zt, see [5, Theorem 1.5.5 |. Let |G/R| = p
and A/B = (Cp)t. We shall show that t <n:=k+ L.
R < RB < RA < G implies that RA/RB, which is isomorphic to A/AN RB, has
order divisible by pl. Hence

|A/JANRB| < . (5.1)

We also have ANBR/B = (ANR)B/B = ANR/ANBNR:= X/Y. Since X/Y is
isomorphic to a subgroup of A/B, it is elementary abelian. Note that X < R. By
Lemma 5.1.1, we get

|ANBR/B| = |X/Y| < p*. (5.2)

Combining (5.1) and (5.2), we obtain |A/B| < p*ti.
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Theorem 5.1.3 Let G be a non-linear LFS-group and p a prime. Then there exists

a p-subgroup of G which is not Cernikov.

Proof: For any integer n, there exist A, 4 B, < G with B, finite and
Bn/Ap = Sym(n) by Theorem 4.2.3. Let s, := |n/p]. Sym(n), and thus Bp/An,
has elementary abelian p-subgroups of order p*». Let Cp /A, be such a group and

let P, € Sylp(Cn). Then C, = P,A, and

C P,A P,
A—: = Zln" o y I’?Pn is an elementary abelian group of order p°™.

This means P, has arbitrarily large elementary abelian sections as n gets arbitrarily
large. Let Q1 = P;. Let Q2 be a Sylow p-subgroup of (P, P;) containing the
p-subgroup Pj. Continuing like this, we choose Q11 as Qni1 € Syl,((@Qn, Pny1))
containing (. Then we get a chain @) < Q2 < ---Qn < Qpy1 < ---. Define
Q = UQp and note that Q is a p-group. Since P, is a p-subgroup and Q, is a
Sylow p-subgroup of (Q,_1, P,), we have Q, D PjJ for some g € G. As P, has
elementary abelian sections of order p7, so does PJ. So Q has elementary abelian
sections of unbounded order as n gets arbitrarily large. Therefore, Lemma 5.1.2

implies that Q@ can not be Cernikov.

Corollary 5.1.4 Let G be a non-linear LFS-group and p a prime. Then there ezists

an infinite elementary abelian p-subgroup of G.

Proof: By Theorem 5.1.3, there exists a p-subgroup Q of G which is not Cernikov.
Then, by [13, 1.G.6], @ contains an infinite elementary abelian p-subgroup and so

does G.
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Corollary 5.1.5 Let G be a LFS-group. The:: the jollowing are equivalent.
(a) G is non-linear.
(b) For all prime p, there exists an infinite elementary abelian p-subgroup of G.

(c) There exist distinct primes p; and py such that G has an infinite elementary

abelian p; -subgroup for i =1,2.

Proof: (a) = (b) This is Corollary 5.1.4.

(b) = (c) Trivial.

(¢) = (a) Suppose for a contradiction that G is linear and let G < GLy(V') where V
is a finite dimensional vector space over a field F. Let p € {p;.po} with p # charF
and let H be an infinite elementary abelian p-subgroup of G. Clearly, H = C) x
Cp x --- and does not satisfy min. On the other hand, this gives a contradiction to
the fact that a linear p-group over a field of characteristic different than p satisfies

min condition, see [13, 1.L.3].

Corollary 5.1.6 Let G be a LFS-group. Then G is infinite if and only if G has

an infinite elementary abelian p-subgroup for some prime p.

Proof: (<) Obvious.

(=) If G is not linear then we are done by Corollary 5.1.5.

If G is linear, then by Theorem 1 (page 3) G is a group of Lie type defined over an
infinite locally finite field F. Let A be a long root subgroup in G. Then A = (F, +)

and so A is an infinite elementary abelian p-subgroup of G.
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