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ABSTRACT

Generalizations of the Reduced Distance in the Ricci Flow

- Monotonicity and Applications

By

Joerg Enders

The evolution of a Riemannian metric by the Ricci flow has been found to be

very powerful in studying and classifying manifolds of certain curvature conditions.

However, the flow typically develops singularities in finite time, which need to be

understood. Quantities monotone in time are a common tool to study geometric

flows near singularities.

We define a reduced distance function based at a point at the singular time

of a Ricci flow on a complete n-dimensional manifold M. Our curvature bound

assumption is weaker than the generic type I condition. We show that the corre-

sponding reduced volume based at singular time is monotone along the flow. Since

the quantity being constant implies that the flow is a gradient shrinking soliton,

type I singularities can be modeled by those special solutions. We also show the

monotonicity of the reduced volume arising from the reduced distance to a compact

submanifold of 1M, and we similarly extend that notion to singular time.
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CHAPTER 1

Introduction

Given an n—dimensional Riemannian manifold M", Hamilton [16] introduced the

evolution of an initial metric 9(0) on Mn through a family of metrics g(t) according

to

M = —2Ricg(t).

(it

Such a family (M",g(t)), t E [0,T) is called a Ricci flow. The analysis of this

quasilinear second order (weakly) parabolic partial differential equation requires un-

derstanding the competition between the heat equation type (smoothing) behavior

of the evolution and the development of singularities. In general, Ricci flows in di-

mensions n 2 3 develop singularities and do not limit to a constant curvature metric

(after renormalization). To classify manifolds in a particular case in dimension 4,

Hamilton [19] introduced the concept of “Ricci flow with surgery” to continue the

flow beyond singularities. Pursuing this idea in arbitrary dimensions without strong

curvature assumptions requires a careful analysis of the singularities developing in

Ricci flow. This is where one of Perelman’s main contributions comes in. For any

p E Mn and O < to less than the singular time T, the “reduced distance” lpato arises

from a space-time version of Riemannian geometry adapted to the Ricci flow in all

dimensions [26]. It is a locally Lipschitz function on Mn x [0, t0] and satisfies impor-



tant partial differential inequalities. Those imply that the “reduced volume based at

(17,130)”

Vp,t0({) 1= A171 (47r(t0 — 5))_ge—lp’t0(q’{) dtrolg(t-)(q)

is monotone nondecreasing in I along the Ricci flow on [0, t0]. Moreover, Vp¢0® is

constant in f if and only if (M’7’, g(t)) is isometric to Euclidean space with the flat

(non—evolving) metric.

The reduced volume is the key analytic tool to prove the “No Local Collapsing

Theorem”, which is essential to extract Cheeger-Gromov type limit flows from a

sequence of rescaled Ricci flows around a singularity. For limit flows with nonnegative

curvature operator arising from finite time singularities, Perelman uses the reduced

distance again to obtain blow-down limits that are gradient shrinking solitons, i.e.

only evolve by shrinking in scale and changing by diffeomorphisms generated by a

gradient vector field. By classifying gradient shrinking solitons in dimension 3, this

fully explains the structure of singularities and allows one to perform surgery to

continue the flow [27].

Perelman’s argument is 3-dimensional in several key steps. On the other hand,

Hamilton conjectured that gradient shrinking solitons arise as blow-up solutions for

type I singularities, i.e. as rescaling limits around singularities of Ricci flows satisfying

the (generic) curvature bound

_9__
SUP lng(t)]g(t) S T _ t-
M"

If such a rescaling limit is compact, the conjecture follows from [29]. The proof

uses the monotonicity of Perelman’s entropy functional: the scaling properties of the

entropy imply that the functional is constant on the limit flow. which is precisely the

case on gradient shrinking solitons.

Unlike the entropy functional, the reduced volume is defined for any complete

Ricci flow (of any dimension). After presenting the necessary background in Chapter

2



2, we extend in Chapter 3 the reduced distance and volume to the singular time T

to allow for gradient shrinking solitons other than flat Euclidean space to appear in

the equality case of the monotonicity formula. To do this, we introduce a new (mild)

curvature bound, which is more general than the type I assumption:

Definition 1.0.1 Let T < 00. A complete n— dimensional Ricciflow (Mn,g(t)) on

[0,T) is said to be of type A if there exist C > 0 and r E [1, %) such that for all

t e [0,T)

C

R . < —.

31111.3] mg(t)lg(t) - (T— tjr

To our knowledge. it is not known whether there are closed maximal Ricci flows

on [0, T) that are not of type A. In [11], and in this dissertation in Section 3.3, we

prove the following main

Theorem 1.0.2 Let (Mn, g(t)) be a complete n— dimensional Ricci flow on [0,T)

of type A. Also let p E Mn and t,- /' T. Then there exists a locally Lipschitz reduced

distance based at singular time lpflw : Mn x (0, T) -—+ R, which is a sabsequential

limit

, CP...<A/I"><(0.T>>x 1

Ni ’ PT

 

and for all (q, B E Mn x (0,T) satisfies the partial differential inequality

8
t 2

n

_0—ilT”T(q’ 0 _ A9(0119»T(‘ba + lVgOlpma, algm — Rg(t‘)(Q) +m 2 0

in the sense of distributions.

We then define for t E (0, T) a reduced volume based at singular time (p, T)

by

~ —" —1 ,t
Vp,T(t') := an ((47T(T -— n) 7e 2),qu lavozgwq),

and Show any reduced volume based at singular time is monotone nondecreasing in

t. This uses the differential inequality in the theorem. Moreover, VET“) S 1 for all

3



t E (0, T), and if Vp,T(t_) is constant in t then (111", g(t)) is a gradient shrinking

soliton (see the precise statement in Section 3.4).

In Chapter 4 we illustrate how the usefulness of the reduced volume for analyzing

the structure of singularities is increased by generalizing the reduced volume defined at

smooth points in space-time to points at the singular time T. It also is a more direct

analogue to Huisken’s well-known monotonicity formula for the mean curvature flow

[20]. We show how one can use the reduced volume monotonicity based at singular

time to prove Hamilton’s conjecture without the restriction of compact blow-ups.

This has recently been done in [23], where similar estimates to define lp,T have been

obtained under the assumptions that the Ricci flow is of type I (and It— noncollapsed).

As a further generalization, in Chapter 5, we define and prove the monotonicity of

the reduced volume arising from a reduced distance to a lower-dimensional submani-

fold S of Mn. It turns out that this quantity can also be extended to singular base

time. Our discussion is motivated by examples of singular sets, which are of lower

dimension than Mn.

The dissertation finishes with conclusions in Chapter 6. We mention an alternative

definition of a reduced distance based at singular time, as well as future directions

of further understanding and employing the generalizations of Perelman’s reduced

distance introduced in Chapters 3 and 5.



CHAPTER 2

Background on Ricci flow

In this chapter we will present the background material on Ricci flow needed in the

subsequent chapters. After a discussion of important solutions to the Ricci flow, we

will mainly focus on the reduced distance and its properties. The natural way the

reduced distance arises is backward in time. While the forward time formulation

chosen here is different from Perelman’s original paper [26], it prepares the discussion

in the later chapters. We finish the chapter with a discussion of the reduced volume

and its monotonicity.

2.1 The equation and its properties

Let (M", g(t)), t E [0, T), 0 < T < 00 be a 1-parameter family of complete oriented

connected n-dimensional Riemannian manifolds with bounded (sectional) curvature

solving the equation

(99 .

where Ricgu) denotes the Ricci curvature tensor of the metric g(t). We call a family

with the assumptions as above a Ricci flow on [0,T) throughout this thesis. In

particular, we will always assume that the curvature for each g(t) is bounded.



It follows from work by Hamilton [16], DeTurck [9], Shi [31][32] as well as Chen

and Zhu [5] that for a given complete Riemannian manifold with bounded curva-

ture (Mn, 90), there exists a unique solution to this quasilinear second order weakly

parabolic equation (2.1) with g(0) = 90 on a time interval [0, T) and the solution is

maximal if and only if

,1)”; 331,3 [ng(t)'g(t) = 00’

where nglt) denotes the full curvature tensor of g(t).

If we let p E M", and {2:2} normal coordinates near p E M", then we can

compute at p that

(99]..

-8—;] = _2Rij = 3A92‘j» (2.2)

where Rij are the components of the Ricci tensor, and A is the coordinate Laplacian.

While equation (2.2) only holds at p, and hence doesn’t prove short—time existence, it

indicates that the Ricci flow is the “heat equation for the Riemannian metric”. This

explains the many results of special curvature cone conditions that are preserved un-

der the flow, as well as convergence to asymptotically round metrics under positivity

assumptions, e.g. (2-)positive curvature operator [2]. In general, however, the non-

linearity of the equation causes the formation of singularities in finite time, before

the manifold tends to constant curvature. This happens even when the topology is

simple.

2.2 Special solutions

In this section we will discuss special solutions to the Ricci flow (2.1). In particular,

gradient shrinking solitons will play a key role in the further discussions, namely in

the equality case of the monotone quantities.

The proper fixed points of the equation are Ricci flat solutions: Any 90 with



Ricg0 E 0 gives rise to a solution g(t) 2 go. The metric does not evolve with time.

A trivial example is the flat metric an on Euclidean space R".

Because of the scaling and diffeomorphism invariance of the Ricci tensor, we next

consider generalized fixed points of the equation.

2.2.1 Einstein solutions

Let (Mn,go), n > 1, be an Einstein manifold, i.e. 90 satisfies

. Rgo
RZCQO = 790.

where R90 denotes the constant scalar curvature of go. Then

g(t) = (1 - 3R... t) go (2.3)

is a solution to the Ricci flow, where g(t) is Einstein for each t. It only changes by

scaling. Einstein manifolds are fixed points of the volume normalized Ricci flow

(99 . _2_ W Randwlgit)

n Vol(g(t))

 
g(t). (24)

HR >0,tl.‘lt' 2.3 .'t tht' 't 1—," .W'thT:=90 1e souion( )exisson e 1me1n erva ( 00 m6) 1

m—n ,wethen et

90 g

n 1

Rg(t) =— and Ricgu) =m2(T _ t) 9(0- (2-5)

Example 2.2.1 The shrinking round n-sphere (Sn,g(t)), n > 1, on the maxi-

mal time interval (——00, T) is given by

g(t) = 2m —1><T — ogsn.

where gSn denotes the standard round metric on S" of sectional curvature I.



2.2.2 Gradient shrinking solitons

Motivated by Perelman’s perspective in [26] and [27], we make the following

Definition 2.2.2 A Riemannian manifold (Mn, g) is called a gradient shrinking

soliton if there exists a potential function f : M —a R such that

. 1

Ricg + Vngf — 59 = O, (2.6)

where nggf denotes the covariant Hessian of f. We will typically write (Mn, 9, f).

Remark 2.2.3 By making the definition as above, we assume that gradient shrinking

solitons come at a certain scale: A more general definition requires (Mn,g,f) to

satisfy

A

R’ng + Vngf — 59 = 0,

where /\ > 0. We can always scale such an f and g to obtain (2.6).

If V9f determines a complete vector field, then we get a corresponding Ricci

flow g(t) on (—oo,T) with g(T - 1) = 9, called gradient shrinking soliton in

canonical form, in the following way [7]: The l-parameter family of diffeomorphisms

(fit of Mn generated by integrating the vector field Til—3V9f (with ¢T—1 = id) gives

us

g(t) = (T - t)¢2‘9- (2-7)

With the potential function f (t) = at); f, the solution g(t) satisfies the analogue of

(2.6) on (——oo,T), i.e.

may“) + vgltlvgltlm) — 2—Eri_—t)g(t) = 0. (2.8)

Also, f(t) satisfies

3f _ t 2a _ [V9( )f(t)]g(t)' (2.9)



As we will always assume that (Mn, g) has bounded curvature, it follows from (2.6)

that V9f is at most linear, and in particular complete. Given a gradient shrinking

soliton, we can therefore always obtain the corresponding gradient shrinking soliton

in canonical form.

Remark 2.2.4 We would like to make the following clarification, which we have not

seen carefully discussed in the literature: If we have a Ricci flow g(t) on [0, T) which

together with a I-parameter family offunctions f (t) satisfies (2.8), this clearly defines

a gradient shrinking soliton according to Definition 2.2.2 by considering the equation

at t = T — 1. If V9(T—1) f(T — 1) is complete, we can conclude by uniqueness of

the Ricci flow [5/ that the corresponding Ricci flow in canonical form equals g(t) on

[T — 1,T). Moreover, if (2.9) holds for the original family of functions f (t), then

the given triple (Mn,g(t),f(t)) is the gradient shrinking soliton in canonical form

constructed from g(T — 1) as explained above.

Solitons are “self-similar” solutions, since they evolve only by scaling and diffeo-

morphism. Their existence is to be expected due to the diffeomorphism invariance

of the Ricci flow equation (2.1). We can regard them as generalized fixed points, i.e.

fixed points of the volume normalized Ricci (2.4) flow on the space of metrics modulo

the diffeomorphism group.

Without going into a more detailed discussion, we mention that by changing the

minus sign in (2.6) to “+” (or dropping the metric term), one can analogously define

gradient expanding (or steady) solitons. Also, if the vector field generating the

diffeomorphisms ¢t is not a gradient vector field, one gets a more general notion of

solitons. It follows from [26] (in the compact case) and [23] (in the complete case)

that any soliton is a gradient shrinking soliton for some (possibly different) vector

field.



Example 2.2.5 By {2.5) and Remark 2.2.4 we see that any Einstein solution with

positive scalar curvature can be regarded as a gradient shrinking soliton in canonical

form with f E 0 (or f such that Vf is a Killing vector field) and scaled so that

R _1

710-2-

Example 2.2.6 Consider the non-evolving Ricci flow (R",g(t) = an). With

$2

f(x,t) = #7437, we have

Wm = ”72—59mm

which makes flat Euclidean space into a gradient shrinking soliton in canonical form,

called Gaussian soliton. It will arise in an important context in Section 2.4.

Example 2.2.7 Consider the round shrinking cylinder

(Sn—k X Rk,g(t) = 2(7). — k —1)(T _ tlgsn—k + ng),

where n — k _>_ 2. It follows easily from examples 22.1,225 and 2.2.6 that this is

a solution to Ricci flow which is a gradient shrinking soliton in canonical form with

potential

2

[3” [9R]:

f(6,$,t) = m,

where 6 E Sn_k and 1: E Rk.

Example 2.2.8 Example 2.2.7 is a special case of the following: We can construct

gradient shrinking solitons as products of Einstein solutions Nn—k of positive scalar

curvature with flat Euclidean space Rk. It is an interesting question to ask when

gradient shrinking solitons are of that form [28].

We will now discuss an important equation satisfied by gradient shrinking solitons:

Let (Mn, g(t), f (t)) be a gradient shrinking soliton in canonical form on (—oo,T).

Taking the trace of equation (2.8) gives

72.

Rg(t) + Ag(t)f(t) -m = 0. (2.10)

10



We conclude from equations (2.9) and (2.10) that.

 

(9

— af — Ag(t)f(t) + [vg(t)f(t)l3(t) — Rg(t) + 2(Tn_ t) = 0 (2'11)

In Perelman’s point of view [26], if we let

u(:r, t) := (4m — aria—fl“), (2.12)

where :1: E Mn and t E (—oo,T), then a straight forward computation shows that

(2.11) is equivalent to

* —

Dg(t)u(:r,, t) — 0. (2.13)

flere

,. a

D90) = 7n " Ag(t) + Rye)

‘ . . ‘ __ a . .
denotes the formal adjomt of the heat operator Ely“) -— 32 — Ag“) under the Ricc1

flow. This observation will play a key role in the equality case of the reduced volume

monotonicity.

We will also need the following fact: If (Mn, g(t), f (t)) is a gradient shrinking

soliton in canonical form, then it follows from the contracted second Bianchi identity

and (2.8) that there exists a constants C(t), such that

R9“) + |v9(t)f(t)|§(t) — Lt) = C(t). (2.14)

2.3 Perelman’s reduced distance

In this section we will briefly discuss Perelman’s reduced distance for the Ricci flow.

Contrary to [26], we will use forward time notation rather than backward time, since

it will come more natural when we consider a sequence of different base-times in

Chapter 3. The monotonicity of Perelman’s reduced volume will then be described in

Section 2.4. While the results are due to Perelman, there are by now several references

detailing his work, e.g. [30], [21], [36], [6], [22].

11



Definition 2.3.1 Let (ll/I",g(t)) be a Ricci flow on [0,T). For any curve

7 : [t-,t0] —+ 1W, where 0 < t< to < T, we define the .C-length of 7 by

t

= f; O ,Ft0'—"'i(|qv(t)|§(t) +Rg(t)(7(t)))dt.

Figure 2.1 illustrates this definition.

 

\

/

rO
r

e
e
l
-
>
-

0
.
.

0

Figure 2.1: £—length of a curve 7 in M" between (qf) and (p, to).

At a curve 7, the first variation of .C with fixed endpoints is given by

(SI/5(7) = <2 to — tr >I0 (2.15)

t0 1 1

—/t_0 2 tO— Mvgigflt)—2—(t0—_57(t)—2Ricg(t)(7(t),-)#—§V9(t)Rg(t),Y(t))dt.

Y(t) is the variational vector field along 7(t) with Y(t) = Y(t0) = 0 and # de-

notes the metric dual, which we will omit. The Euler-Lagrange equation is called

.C-geodesic equation and given by

——7t'( )— 2Ricg(t7)(7(t),-)—-1V9(th (t) = 0. (2.16)

2(t0 — t) 2 9

Smooth solutions to (2.16) are called .C-geodesics. Multiplying by to — t, we can

rewrite (2.16) to get rid of the unbounded coefficient of the second term:

1

Vf/(f77177u)( tO—t7(t )—2,/t0—ttRicg( tO— t7(t), )—§(t0—t)Vg(t)Rg(t) = .

12



Using the direct method in the calculus of variations after a change of variables in

.C, as well as the ODE (2.17) together with the assumed curvature bound and Shi’s

derivative estimates [32] (see also Appendix A), one obtains the following

Proposition 2.3.2 For any (q,l) and (p, to) with p,q E M" and 0 < i< to < T

there exists an L— minimizing £- geodesic 7 : [t,t0] ——> M with 7(0 = q and

7(t0) = p. Moreover, the initial vector limt/‘to ,/t0 — t7(t) e TpM exists.

Definition 2.3.3 For (q, t) and (p, to) as in the Proposition 2.3.2, we define

(i) the C— distance from (at) to (p, to)

Lptolq(10:: inf{£(r) l7 lt tol 441.7(5) =q 7(=t0) 19}

(ii) the reduced distance based at (p, to)

_;_;___1;,t0((I(QD
t _

[NOW‘1‘)“ 2/—_"—_t__0—t

(iii) and

n

Up.t0(q(LIT—D (47T((t0 - 5))78—1'qpt0m’0

We will fix (p, to) E M" x (0,T) and regard LPatO’ [Pato and ”19,150 as functions on

space-time M" x (0,t0).

By studying the second variation of L and obtaining a Laplacian comparison

theorem for the reduced distance, Perelman derives the following three differential

(in)equalities:

Theorem 2.3.4 Fix (p, to) E A!" x (0,T). Then for all (qf) E A!" X (0,t0) the

following hold:

8
t 2 _ n

_B—flpvtOval — Ag(alp,t0(qy i) + [V9(-)lp,t0(q,i)
]g(a - Rg(t)(Q)+m _>0

(2.18)

13



or equivalently , ngvpto (q,(t) S 0. (2.19)

 

. ,t (00
_lvgdthOwaaa + Rg(t)(‘1)+ p 0:?_t_ "+ 2Agmipyomfi g o. (2.20)

431 ( i) +1v9®1 ( m2 — R (()+ ”(qW” =0 (2 21)0t— p,t0 q. p,t0 (1. g(t) g(t7 1 to _f - -

Remark 2.3.5 It can be shown (see e.g. [36]) that Lp,t0(q, D is locally Lipschitz on

M" x (0, t0). Hence, the same is true for lp,t0(q, D and up,t0(q, D, and the functions

are diflerentiable a.e. in q and f. The (in)equalities in Theorem 2.3.4 therefore hold

in the barrier sense, or in the weak sense. In particular, they hold in the sense of

distributions. For {2.18) this means that for any nonnegative (,b E C00t(MnXX(0, t0))

Tl
T 8

f0 Li1((‘ailp.to + lvg(t)’p.to|§(t) _Rg(t) +m) 05 (222)

+v9ltlzp¢0 - ngcp) dvolgmdt 2 0.

In fact, [p,t0(q,t—) is smooth away from a closed subset C C 1W” x (0,t0), and C n

M" X {t} has zero Lebesgue measure in IV!" x {t} for every t E (0, to).

2.4 Reduced volume and monotonicity

We can now define Perelman’s reduced volume.

Definition 2.4.1 Let (Mn,g(t)) be a Ricci flow on [0,T), and (p, to) E Alnx (0,T).

Then for each i E (0, to) we define the reduced volume based at (p, to) by

Vp,t0(£) 5: [M 'L’p,t0(qa 1?) delg({)(Q) = ./M (47r(t0 " al—ge—lp’tom,” dvolg(t7(q)-

Example 2.4.2 For the Gaussian soliton (Example 2.2.6) one computes

lq— pl2
1]), t0(q(qt-)—_

4(m-0’

and hence

Vp,t0(0= fn ((WO-0) _‘4—‘0‘dq=1

14



The monotonicity of the reduced volume along the Ricci flow (see also Figure 2.2)

is now essentially a consequence of inequality (2.19) in Theorem 2.3.4:

Corollary 2.4.3 (Monotonicity of the reduced volume)

Under the some assumptions as in Definition 2.4.1, we have

argnmwza

(a) 11m,—/,0 mem = 1,

(iii) Vpdoall = Vp,t0(t—2) for 0 < t1 < £2 < to if and only if (A1",g(t)) is isometric

to the Gaussian soliton (R'n,an) and Vpato (t) E 1.

Vp,t0 (t)

- fit/(.0) for (fl/.90).) :3- (3."..vi5tn)

  

  

fl
-
—
-
-
-
-
-
-
-
-
-
.
-
—
-
.
.
.
.
-
-
-
-
-
—

0 tL o T

Figure 2.2: Reduced volume monotonicity based at (p, to) for some Ricci flow

(Miamonnn.

The reduced distance and reduced volume monotonicity are one of the most impor-

tant analytic ingredients for Perelman‘s study of singularities in the Ricci flow [26].

First, the reduced volume is used to prove the “No Local Collapsing Theorem”, which

is necessary to guarantee Cheeger-Gromov-Hamilton convergence of rescaled flows to

15



a singularity model. In a next step, the reduced distance is again the essential tool to

construct asymptotic solitons for ancient solutions. Those help in the classification

of singularities. In the next chapter, we will extend the reduced distance and volume

to base points at singular time.

16



CHAPTER 3

Reduced distance and

monotonicity based at singular

time

3. 1 Motivation

In the previous chapter, we defined the reduced volume Vplto for smooth points in

space-time (p, to). We now discuss our main motivation to allow the base time to in

the reduced volume to be the singular time T of a Ricci flow.

Results of the type of Corollary 2.4.3 are known for other monotone quantities

in geometric evolution equations, e.g. for Perelman’s /\— and u— functionals for

the Ricci flow [26], or Huisken’s monotonicity formula for the mean curvature flow

[20]. In all of those, solitons arise in the equality case. Note also that the equality

of Harnack expressions in the Ricci flow similarly identifies gradient expanding and

steady solitons, see e.g. [17], [4], [24].

In the proof of Corollary 2.4.3 (iii), it is the fact that at time to the curvature is

bounded, that limits the equality case of the monotonicity to the Gaussian soliton.

17



If we are able to base the reduced distance and volume at singular time (p, T) for a

maximal Ricci flow on [0, T), depending on the base point p E Mn, we expect to get

gradient shrinking solitons other than the Gaussian soliton, whenever this generalized

reduced volume is constant. We will prove this in Corollary 3.4.3. Before that, in

Section 3.3, we will define a reduced distance based at singular time and study its

properties. Our approach is as follows:

Let (Mn,g(t)) be a maximal Ricci flow on [0,T). Let t,- / T and p E M". Then

for all (q, t) E M" x (0. T) the reduced distance [p,tif‘h D is defined for large enough i

and the differential inequality (2.18) holds for each such i. This raises two questions:

(i) Does there exist a good limit lpflw := limt,/T lpgi?

(ii) Does a differential inequality analogous to (2.18) hold for lp,T?

In Figure 3.1, we sketch the idea to define a reduced distance based at a point p

at singular time T.

 

0 5 ti ti+1 T

Figure 3.1: Convergence of the reduced distances lp,ti(q,t7 from q and p based at

times t,- approaching the singular time T.
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While the discussion is motivated by a base point p in the singular set (see Defi-

nition 4.2.2) in order to apply the quantity lpgw to the analysis of singularities as we

discuss in Chapter 4, this will not be a requirement in our main result in this section.

We will address the issue of the choice of base points in Sections 3.5.2 and 4.2. In

general, to answer the two questions above positively, we need to mildly strengthen

the bounded curvature assumption to a new curvature condition.

3.2 Type A Ricci flow solutions

Definition 3.2.1 A Ricci flow (Mn,g(t)) on [0,T) is said to be of type A if there

exist C > 0 and r E [1, 3) such that for all t E [0,T)

C

SUP 'ng(t)'g(t) 5 (gm—,7,"

Note that for r = 1 this includes the well-known type I condition. From the

maximum principle for lng(t)l (t) it follows that for a closed maximal Ricci flow
9

on the interval [0, T)

1

yrs lng(t)|g(t) Z _8(T_ t)’

which implies that curvature blow-up with r < 1 is impossible. On the other hand,

the type I condition is assumed to be generic. To our knowledge it is not known

whether there are closed maximal Ricci flows which are not of type A. The only

known example of a type II (i.e. not of type I) closed Ricci flow is the degenerate

neckpinch [15], but its curvature blow-up rate is not known. In [8], an example of a

1

—t

type II Ricci flow on R2 is shown to blow up proportional to (—T——)§.

Example 3.2.2 Let (Mn,g(t),f(t)) be a complete gradient shrinking soliton in

canonical form with bounded curvature. Then it follows directly from equation (2.7)

that the flow is of type A, in fact of type I.
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3.3 Reduced distance based at singular time

In this section, we state and prove the main

Theorem 3.3.1 Let (Mn,g(t)) be a Riccifiow on [0,T) of type A. Also let p E M"

and t,- /' T. Then there exists a locally Lipschitz function

113,71: M” x (0,T) —r IR,

which is a subsequential limit

1 CPOC(M"X(0,T))

PM ’ lp,T
 

and which satisfies the differential inequality analogous to (2.18), i.e. for all

(9.5) E M” X (0,T)

8

-.—— p,T(q1{) - Ag(01p,T(Qv 0 +|Vg(21p,r(qs alga) - Rg(t7(61) + '2‘(—Tn__'t—) Z 0 (3-1)

holds in the sense of distributions. Equivalently,

D;(QUP,T(q7 5) S 01 (3'2)

where

i'p,T(q. t) :2 (47r(T — D)_2e_lP~T(q’{).

Remark 3.3.2 This theorem has been independently obtained in [23] under the type

I assumption (and k— noncollapsedness) using very similar techniques.

Theorem 3.3.1 allows us to make the following

Definition 3.3.3 Under the assumptions of Theorem 3.3.1 we define

[1)],an X (0, T) —> R

to be a reduced distance based at singular time (p,T) in the Ricci flow

(Mn.g(t))-

20



We now give the proof of Theorem 3.3.1.

Proof. To simplify notation let 12' := lp,tz.(q,t.) and L,- := Lp,t2.(q, t). The proof will

be in 3 steps.

1. First, we will derive a basic uniform bound on 11- on compact subsets

K 2 K1 x [a, b] C Mn x (0,T). By definition of l,- it suffices to show such a bound

for L,- on K. Let 77 : [0,1] ——i M be a g(O)—geodesic with 77(0) 2 q and 77(1) 2 p.

Fix It 6 (b, T). As depicted in Figure 3.2, consider the curve

a”) he [bk]

 

7(t) == k“

p t E (k, til'

Mn

77

i ‘fi i_ i i l i?

0 a t b k tz T

Figure 3.2: Construction of 7(t) for a uniform bound on Lp,t,-(Q: 0.

Since |n’(s)|§(0) = c for a constant c, the uniform equivalence of the metrics

along the Ricci flow on [0.1:] yields a constant D such that ln’(s)l§(t) S D. The

type A assumption implies that there exist constants C > O and r E [1, %) such that
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|R| <W If Li<q,D Z O, we get the following estimate:

 
 

ti

Imam s (f (fa—'tuumgf+Rg(.)(v<t>>)dt| (3.3)

T

_ _kg”—_Dznn’I:(——:—-)|:()dt+C/_ 82—03111:

D\/(T 20 _,.__

—— mitt—.57” --E-

If [1,-(qt) < O, we let 7(t) be an L—minimizing L—geodesic such that

Li(q, t) = (3(7). Then we get the same bound:

ti

Lam = ]. \/t.-—"i(Ii(t)I§(,,+R(mama

2 —/ ,/t,-— tg(|R t))|dt

2 —E.

Thus, we have uniform bounds in i on any given compact subset K.

2. Next we derive uniform derivative bounds for L,- on compact subsets K of space-

time as above. We first prove

Lemma 3.3.4 Under the assumptions of Theorem 3.3.1 let 7,-(t) be an

[I— minimizing £— geodesics from (q, B to (p, ti), where (q, t) E K. Then there exists

a constant C independent ofi such that for all t E [t_, k]

IWW) 2

Proof. Denote by Vi(t) = ,/t.i — My“). Using the .C—geodesic equation (2.17) we

compute
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2 _

gall/i“ )l g(t) —

2

W

 —2Ric(l/;;(t), mt» +

: _2Rz'c(V,-(t), V¢(t))

 

2

+ ,___ti

= 2Ric(V(t)

Cl

(T-tl'r

02

|
/
\

2 Inmgm+

(QN/ti -- tRng ()t (Vz(t

m+¢rtuvgm

iit+§m—av“0

(T - tir—

—2Ric(V,-(t), vim) + 2<V.-,,(t)1i(t). Vimlt

(Vnm V2“), mt)»

Rg(t)1Vi(t)>t

g()V(tM)

éll/iallgu)?
(3.4)

where in the last inequality, since t 2 t > 0, we used Shi’s derivative estimates [32]

(see also Appendix A) combined with the type A assumption to bound V9(t)Rg(t).

Note that 01,02 are constants depending on the type A constant C, n and t, but

are independent of i.

Before integrating this ordinary differential inequality to conclude the proof of the

lemma, we need to get uniform bounds on each Vi(t) for some t in a compact set of

time. By definition of L, and using again the type A assumption we estimate

ti 1 2

l
/
\

5(72') +

ti

con—A «a—Hgmowna

2C 3

————-—-T2_T.
3 _

2r

Now the integral mean value theorem yields the existence of t,- E [t, k], such that

 

 

. 2 A : k_1__t_/_k

g(ti)

|
/
\

1

|
/
\
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1 [ti

_f t

Kim”) + 3— 2r

gT:.Mw>PW

 

. 2

3

20 T2“), 



or equivalently

 

 

. ti 4} 20 3
V. t' 2 g = _____ . 2‘7'

I 2( 2”9031) k —t (C(71) + 3 — 2rT )

VT 2C 3_

< — E 2 T =:

— k—b( + 3—27‘T ) F,

since by choice of 7i the bound (3.3) holds for C(71).

J

W.l.o.g. we can assume that lVilt)lg(t) 2 1 and estimate (3.4) for t E [a, k] to get

d 2 Cl C2 2 2

— v, g 2 V- = C v,- .
dtl (0'90) (T — k)? + (T _ k),._% I 2might) 3| (t)lg(t)

 

Integrating this, we conclude that for all t E [5, k]

mung“) g FeC3(‘—‘i) g F€C3T =; G. (3.5)

This proves the Lemma. C]

To get the gradient bounds for Li recall that from (2.15)

v9<t>L.(q.£) = —2\/t.~ Jam.

\Nith Lemma 3.3.4 we obtain for (q, 0 E K

Iv9(‘)L.-<q,nlg@ = 2M.- — wmgm s 2E. (3.6)

For the time derivative bound for Li: we compute

gin-(m = disz-(m—<v9(t‘>L.-(q.t7,~r'.-<t‘)>z

= _./—t,_ {at-(mat) + Rg(t-)(7(i))) + 2w.- — {Ii/(W309

2 72-1—44 Mt, -- manlgm — \/tz' - {Rgfihml-

Using the type A assumption and Lemma 3.3.4, we get the time derivative bound for

((1.0 E K

_£_, (3.7)
k — (T— b)r—:2

 
lgngqu)! S

:
1
0
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Recall that by Remark 2.3.5 each 12- is locally Lipschitz on Mn x (0,tz-). The

above bounds show that lz- are in fact uniformly locally bounded and Lipschitz on

Mn x (0, T). Hence, there exists a locally Lipschitz function

[p,T : A!" x (O, T) —» IR

such that a subsequence, denoted 1,- again, converges to a [p,T in CZOOC(Mn x (0, T)).

This proves the first part of the theorem.

3. To prove that the differential inequality (3.1) holds in the sense of distributions,

we first note that l,- E WIL’C2(M"’ x (O, T)) and the bounds derived above imply

'1' 1 < C.

2|W10’C2(M"X(O,T))

W.l.o.g. we can assume that

[i —‘ [p,T (3.8)

weakly1n W10,2(Mnx(0, T)) This implies for all (V, 10) EW 2(Mnx (0,T),Rn+1)
lloc

0 (9

[T[N V+atllwd10l)dtH/T [M V9“) lpT' V+atlpTI/Jd’UOlg(Md

In particular, if for nonnegative (b 6 C3;t(M"xx(O,T)), we let 1,0 = —¢ and

V = V9(t)cf), we get the distributional convergence

/0T -/TM V9“) ngqb—Ql- tbdvolg(Odt

—> g(t) . g(t) _fi ,

Comparing with the distributional formulation (2.22), we see that we now only need

to Show that for all nonnegative gt) E CESAR!" x (0, T))

T
T

[0 [M WHOM-lg“) aidvolg(t)dt —> A; [M lVg(t)lp,:r|§(t) ¢dL’Olg(t)dt.
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It suffices to show for each t E (0, T) and nonnegative (:5 6 3733,41)!7‘)

t '2 i “ —) gt 2 ' ..

(3-8 implies the weak L2 convergence of \/q—>V9(t)[. _i fingh ’ and hence

' p,T

fM |V9(t)1p,T|§(t)od
volgut) < limian/I Ivy(0)2'2“) ¢dU

0ltg(t)-

We now show the other direction

lim sup / V9“) [light)czidvolt </ n79“) lg(nédvol

i—»oo M I 9() M pT 9()

using an argument similar to Lemma 9.21 in [22]. We rewrite

- t , 2 _ g t 2

1151132" /M (W )lz'gm “7 ( ”pf-Plan) ¢dv0lg<t>

= limsup(/M(v9(t)(z,- — 1M), ¢V9(t)lp,T)t dvolgm (3.9)

i—aoo

+/M(V9()(z —z,,T,) av“)z,)tdvozg(,)).

We can approximate avgmzfl by V]- E Ccpt(’l~1,ll€") and conclude by weak L2

convergence of V9(t)l,-_ that the first integral goes to zero as 2' —> 00. For the second

integral, we first use the CPOC— convergence of l,- —> [p,T to get a sequence 65 \ 0,

such that on supp(¢) we have

lp,T — 12' + 62' > 0.

Then the second integral above equals

limsup / WWW,- — sz — €i):¢Vg(t)li)-tdv0lg(t).

i—->oo M ,

We multiply Perelman’s differential inequality (2.20) for l,- by (,6 and write it in the

distributional sense for a nonnegative w E CcthlI").'

1.0 l, —
/M<V9(t)(./vm) v.9“hm dvolgu) g A! g(lvgfthilgu) _R’g(t) _ t :)dv019(t)°

2'
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By approximation in W112, we can take w = lp,T — l,- + 62' 2 O to be only locally

Lipschitz, i.e. conclude

A1(v9“) ((1,- — 11,1 — 50¢), vgmzm dvolgm

  

(RT—Q+%W t 2 h‘”S /M p 2 (WM )li|g(t) _ Rg(t) _ t )dvolgm.

2

Since the right-hand integrand is bounded on supp(q§) and

[p,T—li'i'éz' —>0

uniformly, we obtain

lim sup /M(V9(t) ((z, — 1pm — e,)¢),v9(t)z,)t d’uolgm g 0.

i—ioo

Now, inserting the characteristic function Xsup“<25)’ we can rewrite

t t
/M(Vg( )(Ui - [p,T — e,)¢),V9( )li)tdv019(t)

t

= /M(Vg(t)(lz‘ — l119,1!“ — 60¢, Vg( )li>t (10019“)

t t

= /M(Vg(t)(li — w). ¢Vg(t)li>t .1..on

1 t 2 t 2
+ [M §<lz _ lp,T _ €Z)(ivg( )legU) + leupp(¢)Vg( )lllg(t)) dv0[g(t)

As before, the last integral tends to zero because of the uniform convergence of

[p,T — [2' + 62' —* 0.

This implies that the second term in (3.9) satisfies

lirn sup /M(v9(‘)(z,- — zfl), ¢V9(t)l,-)t dvolgm g 0

z—+oo

and finishes the proof. [:1

The proof of Theorem 3.3.1 implies that the analogues of the differential

(in)equalities (2.20) and (2.21) hold for a reduced distance based at singular time

as well. We summarize this in the the following
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Corollary 3.3.5 For lpflw as in Theorem 3.3.1 and (of) E M" x (0,T), the

following three (in)equalities hold:

-0217p’T(q’D—A9({)IP,T
(q’D+lvg®lp,T(2<Lt—)lg

®-%(q+) TIE—0- 2 0, (3.10)

 

or equivalently , D;({)11paT(q,D S O. (3.11)

l (q, t.) _ n
t 2 .T

—|V90lp,T(q,t_)|g(D + R9030” + p T _t. + 2AgmlpT(q,t) g 0. (3.12)

lpT<(q7fl

_t :0. (3.13)
8

—2a—,_zp,T<q.o + lVg<E>lp,T(q,f)|§®-Rg(mqq+)

3.4 Reduced volume monotonicity based at

singular time

Definition 3.4.1 Let (Mn,g(t)) be a Ricci flow on [0. T) of type A. Let p E M",

t,- /' T, and 110T andvpT as in Theorem 3. 3. I. Then we define a reduced volume

based at singular time (17.7") by

171,103 :2 ./M up,T(q, deolg®(q) = [M ((47r(T — t_))_ge—vaT(q’£)duolg(t-)(q).

Remark 3.4.2 The finiteness of 171,105) for any Ricci flow (Mn,g(t)) of type A

and any fixed 5 E (0, T) follows from Fatou’s lemma and the finiteness of Perelman’s

reduced volume as follows:

~ .71 -—lim . l . ,t

vpmm = /M (are — 3) 2e VT “2‘" ldvozgma)

= /M.:i;nT(<<4w<T-i>>£6.,”WW
3 Ian/1511 171.1,. (a

51

g 1.

Now we state the analogue of Perelman’s monotonicity (Corollary 2.4.3) for the

reduced volume based at singular time. Compare also Figure 3.3.
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Corollary 3.4.3 (Monotonicity based at singular time)

Under the assumptions as in Definition 3.4.1 we have

fl)%%1®2a

(iii) If Vp,T(t—l) = Vp,T(t—2) fOT‘ 0 < 51 < {2 < T, then (ll'ln,g(t),lp,T(-,t)) is a

gradient shrinking soliton in canonical form.

Remark 3.4.4 Similar results have also been obtained in [23] under the type I

assumption (and n—noncollapsedness).

,. f”,- (t for some gradient
[.l .

13— shrinking soliton

—n— --——-- w» ,i, — -—-r»77 ,r_ 7--—»—————————————— —— - ———¢

 

  

O “
l
.
“
—

H
—
-
-
-
-
-
-
-
-
-
-
-

Figure 3.3: Reduced volume monotonicity based at singular time (p, T) for some

Ricci fiow (M",g(t)) on [0,T).
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Proof. (i) If A!" is compact and lp,T is smooth the proof follows directly from (3.2)

in Theorem 3.3.1:

.7 8

8
= M (51? p,T + Avpfl" — R)dvolg({) (3.14)

—_ * I

— M —D vpflwdvolgm

Z 0.

In the general case, we need to justify the differentiation under the integral and

the adding in of the Laplacian term. For both arguments, we need to bound

—1
[Me PsTllpfldvolg® < oo (3.15)

for fixed time t E (0, T). From Remark 3.4.2, we know that

/M e-ZPdeuolgm < 00, and hence [M e—lvaTldvolgm < 00.

Since the proof of the finiteness of Perelman’s reduced volume Vpitz‘ relies on com-

parison of the reduced distance lpfl with the square of the distance function, we also

get

1 1

[M e-QlPdevolgm < 00, and hence /M e_?|lP,T|duolg(g) < 00.

Now let N := {q E M | lp,T(q,t) Z 0}. Then

—l —l —|l |
e P»T l duol = f e p,T l dvol + f e 191 l duol ,

1

where the second term is finite since §|lp3~| S efillpflfl. The first integral is bounded

because the type A curvature bound yields an upper bound on llp,Tl on N by

dropping the energy part in the C—functional. This proves (3.15).

The proof of Lemma 3.3.4 implies that in fact there exist constants C1 and C2

(depending on t) such that

lvgajlpfldga) S Clllp,Tl + C2.
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(Note that Lp,T gets bounded on compact sets by the constant E in that proof.)

This implies

—l

/Me P’T|V9(Dlp,T|§®duolg(g) < oo. (3.16)

We lastly show that also

—l (9

[M e Plegflledvolgm < oo. (3.17)

The differential equality (3.13)

can be used to bound lgflp,Tl' Then (3.17) follows from (3.15) and (3.16) and the

bounded curvature assumption.

Now we can justify what corresponds to the adding in of the Laplacian term in

(3.14) in the distributional setting. As in (2.22), Theorem 3.3.1 implies that for fixed

t E (0, T) and for any nonnegative a) E 25AM")

Tla , '

/M ((717 P1T+lVJ(0’P,T'§(t‘)‘Rg(t)+m) ¢+V9(5)lp,T-Vg®¢) dvolgm 2 0.

Note that

V9(5)(e—lp,T) = —e—lP,TV9®lp,T,

so using the bounds for the integrals proved above and approximating (b = e-lva by

dj 6 CgtM/I"), we conclude

0
n —l. T

«/M ( — ‘37—le _ R9“) + 2(T _ file p’ (10019“) 2 0.

Tl

Up to the factor of (47r(T — 5)) —2 this is the integral we obtain when differentiating

the integrand in the reduced volume based at (p, T). To conclude (i), we only have

to justify the differentiation under the integral sign. We will do so using the standard

dominated convergence argument. We bound, at t E (0,T), the reduced volume
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integrand difference quotient D(q,t, h), rewritten in integral form, by an integrable

function. Note that

 

- 1 h a _

Dl‘l» ti h) = E./() (_ alpfl'an t + S) — Rg(t—+3) (q)

_ n _ - dvol - (q)
n _ _ — J l ,T(q,t+8) g(t+s)

+2(T — f— 3)) (477(T t 8)) it p duolgmm)

(compare e.g. [6] for the argument in Perelman’s case). Now from Remark 3.4.2 and

the bound (3.17) as well as the exponential growth bound of the volume form under

Ricci flow, which makes the quotient

dvolg({+s) (q)

dvolgm (q)

 

bounded near 5 (where we have bounded curvature), we conclude that D(q,f, h) is

dominated by an integrable function for 17. near 0.

(ii) This follows from (i) and Remark 3.4.2.

(iii) From the initial computation in (i), which we have justified for noncompact Mn

and in the distributional setting, we get

- - {2 d - t‘2

0: t —v t =/ —_v 135:] f 43*.) dvol dt'.
p,T( 2) p,T( 1) [1 dt p,T(d {1 M p,T g(t)

From (3.2) we conclude that in the sense of distributions

D’k’b‘p’T E 0. (3.18)

and hence by parabolic regularity lp,T is smooth. Recall equation (3.13)

5 t 2
—2—lp,T + |V9<2lp,T|g(t-) — R9“) +

lp,T

at — _

Subtracting 2 - (3.18) from this, we get

._ , t 2 __
pr .— ((T — DQAQUDIILT -|V901p,T|g(t~) + Rg({)) + [p,T — n) vp,T : 0.
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Hence,

0 E ngu'nT = _2(:r — f) thgm + v9(t)v9(t)1p,T_2 g(t)2 upfl.’

—1—29 90

where the last equality follows from a formal computation as in Proposition 9.1 [26].

Because of ”p,T > 0, we conclude

. t t
13sz + vgovgoifl—Q——t.)-_gg(t)..— 0. (3.19)

Plugging the trace of (3.19) into (3.18), we obtain

01

7%? = ivgmlflmlgm. (3.20)

By Remark 2.2.4, this implies that (M7”, g(t), 1p,T( - ,t)) is a gradient shrinking soliton

in canonical form. C]

Remark 3.4.5 We will discuss some issues arising with the inverse of the statement

in Corollary 3.4.3 (iii) in Section 3. 6.

3.5 Examples

3.5.1 Einstein solutions

For Einstein solutions (Mn,g(t)) on (0,T) with 129(0) > O as in Example 2.2.1, it

follows from an explicit computation (see [6]) that for (p, to) E Mn x (0, T)

arctan $95)}.
d2((p,q

lp,t0(‘110 : g(1_ _ (321)

t -t

TQ-TO —7t-p_—f)(/jarctanflqtl—“to

we can easily conclude the following: if t,- /' T, then

C

  

l n

pati —" E
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uniformly on Mn x [0, T). In particular, any reduced distance based at any (p, T) is

given by

Tl

lp,T(CI1 5) = 5 (322)

Then the differential inequalities in Corollary 3.3.5 become equalities for the constant

function lp,T, because of equation (2.5). In particular, 171,1(0 E const. Let us

compute its value using (2.3):

p,T(t) = (4vr<T—f))‘3e‘3vw<g(t‘>>

= (47reT)—%Vol(go)

R n

= (%)2Vol(go) (3.23)

For the standard shrinking round n-sphere (8", 957;). we therefore get

n(n — 1)

2nen

 )%V0l(gsn) = (n2;el)%Vol(gSn).
Vail-(a = (

In the following proposition, we show that the condition lp,T E % characterizes

Einstein solutions uniquely.

Proposition 3.5.1 Let (MR,g(t)) be a maximal type A Ricci flow on [0,T),

p E Mn and lpflw a reduced distance based at singular time (p, T). Then we have

the following:

c

T—t

 (i) If [p,T E c on M" x (0,T), then Hg“) = , c _<_ , and Mn is compact.

M
I
:

(ii) [p,T E E if and only if (Mn,g(t)) is a (compact) Einstein solution with

Proof. (i) It follows directly from (3.13) that R9“) = TC——t’ and combined with (3.1)

that c _<_ n. The compactness of Min follows from the finiteness of Vp,T by Remark

3.4.2.
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(ii) We have seen for Einstein solutions [p,T E 3. On the other hand, if lp,T E 13-,

then it follows from (i) that (3.1) becomes an equality, and from the proof of

Corollary 3.4.3 that the corresponding reduced volume Vp,T is constant. We con-

clude (Mn, g(t)) is a gradient shrinking soliton with potential function 3, i.e.

1

—2(T_ t)g(t). Cl
Ricgfi) =

3.5.2 Gradient shrinking solitons

Recall from equation (2.11) that the potential f (t) of a gradient shrinking soliton in

canonical form (Mn, g(t), f (1‘)) satisfies the differential equality

8f n

77 _ 9‘2“” + 'Vg(t)f(t)'§(o ‘ Ram + if?) = 0.

Since by Theorem 3.3.1 the reduced distance based at singular time lp,T for some

p E M7" satisfies the same relation as an inequality, it is natural to attempt to relate

f(t) and lp!T(-,t).

Before we proceed, we discuss a normalization of the soliton potential, which pre-

serves its canonical form. Let (Mn, g(t), f (t)) be a complete gradient shrinking soli-

ton in canonical form on (—oo, T) with bounded curvature. Recall equation (2.14):

Rg(.)+1v9<‘>f(t>I§(,) — £9; = C(t)

We can use this equation to normalize the soliton potential f (t), a thought which

was triggered in discussions with Xiaodong Wang. To keep the soliton in canonical

form, however, we only normalize such that

T—1 2

Rg(T_1)+iV9( MT — 1>Ig(T_1) — f(T — 1) = 0. (3.24)

and replace the original soliton potential f (t) by the gradient shrinking soliton in

canonical form obtained from f(T — 1), as discussed in Remark 2.2.4. From here on,

we will assume a given gradient shrinking soliton is normalized by (3.24).
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Remark 3.5.2 We note the gradient shrinking solitons in canonical form

(Mn.g(t),lp,T(~.t)) arising in the equality case of the reduced volume based at

singular time (P, T) are in fact normalized for all t E (0,T), i.e. satisfy

_M=o
Rg(t) + Ivg(t)lp,T( ' 10'3“) T —t

This follows directly by plugging (3.20) into (3.13).

We will next show that for compact gradient shrinking solitons f = lpflw holds.

Theorem 3.5.3 Let (1)1”,g(t),f(t)) be a compact normalized gradient shrinking

soliton in canonical form on (—oo,T), and let p E M. If lpf is a reduced distance

based at singular time (p, T), then it is independent of p and

lp,T( ' , t) = f(t)-

Remark 3.5.4 While the theorem is mentioned in the literature [10], [3], we are

not aware of any published proof. There are however results [6] using an alternative

definition of a reduced distance based at singular time l, which we will briefly discuss

in Section 6.1. The results can be improved to obtain f = l, rather than f = l + 0,

when using the above normalization. Our proof utilizes techniques from Section 4.1.

Proof. We know from (2.7) that

g(t) = (T - t)¢2‘9(T — 1). (3-25)

In particular g(t) is of type I. For p E M7‘, let [p,T and Vp,T a reduced distance

and corresponding reduced volume based at singular time, respectively. We refer to

Section 4.1 for more details of the following argument: For tj /' T, consider the

rescaled metrics pointed at p and compute using (3.25):

 at) = Tltjg<r+(T—tj>t>

= T i tj (T —— (T+ (T — tj)t)) ¢}+(T_tj)tg(T -1)
 

= _t¢T+(T—tj)tg(T ‘ 1)-
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With the definition of Cheeger-Gromov convergence, this implies that the rescaling

limit (.Mgo,goo(t),p30) is compact. In particular, we can assume Mgo = M" and

P00 = P-

Next, note that gj(—1) = 65?]. g(T — 1), i.e.

9j(—1) '3 g(T - 1)

are isometric for all j. We can therefore identify the reduced distances defined on the

rescaled metrics by

using the diffeomorphism. After shifting time from T to O, we have

i 9:
[13,0 — p,T.

Next, we conclude by Cheeger-Gromov convergence

goo(-1) '-—‘-’9(T— 1).

which gives us the identification

where lgoo is the limit as extracted in Section 4.1 from the reduced dis-

tances based at singular time 11])0 of the rescaled metrics. By Theorem 4.1.3,

(i\1&,gx(t),l;f30(-.t)) 2’ (Mn,g(t),lp‘T(-,t)) is a normalized gradient shrinking

soliton in canonical form.

To see lp,T( - , t) = f (t), note that both potentials satisfy equation (2.8) for the

same Ricci flow. Hence, hence

v9<t>v9<t><lp,r( - ,t) — f(t)) = 0.

As observed by Xiaodong Wang, this implies lp,T( - ,t) = f(t) +c, unless the manifold

splits off a line in the direction of V9(t)(lp3T( - , t) — f(t)), which we can exclude since
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we assumed compactness of Mn. Since both soliton potentials are normalized, we

conclude

Given a normalized complete gradient shrinking soliton in canonical form

(Mn, g(t), f (t)), in general for a base point p E M" and a reduced distance lp,T

based at singular time, we cannot expect to conclude f (t) = [p,T( - ,t). The following

example (see also Figure 3.4) illustrates, that the choice of base point p is one issue.

Example 3.5.5 Let (N"_k,gN(t)), 0 < k < n — 1 be an Einstein solution on

(——oo,T) with R90 > 0. As in Example 2.2.8, we consider the normalized gradient

shrinking soliton in canonical form given by

IIlEle Tl — k

+ ),

4(T — t) 2

 

(W‘k x R’“. g(t) —-— we) +9Rk, new) =

where 6 E N714“ and :r E W“. Note that the constant 15—!“ normalizes the soliton by

equation (3.24).

We can then conclude by the obvious additivity of the L— distance for product

manifolds, as well as Example 2.4.2 and (3.22), that for p = (90,$0) and

q = (6,510) 6 MM x nk

2

l' qt = —— ————-u

P’qu' ) 2 + 4(T—t)

Hence, the equality f(t) = [p,T( - ,t) holds if and only if we choose the base point

p E Nn—k x {0}.

Using Example 2.4.2 and {3.23), the corresponding reduced volume based at
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singular time can be directly computed:

Vflu) an_k [112k (47r(T— t))_%e_lpsT(0’x’t) dvong(,)(e) dxk

_n—k _n—k

[Nu-k (47r(T — t)) Te T dvolgN(t)

lx~xol2k

. ka(4r(T-t))-'§e_ 4ZT—ti dark (3.26)

R n—k

= (57%)TVng0) (3.27)

In particular, it is constant in t, independent of the base point p and the sequence

{ti} used to define lpflw, as well as equal to the reduced volume based at singular time

for the Einstein part (N”’k , gN(t)) of the soliton.

We also make the observation that while f 76 lpgw, we do have

VP,T(t) = /Nn—k [Ric (47r(T —— t))_zzle_f(0’$’t) dvolgN(t)(0) dzrk, (3.28)

so in examples of this kind, we can define the reduced volume in terms of the soliton

potential.

 A
a

-
-
-
-
—
-
-
¢
-
’

 % ' 1R"

 

Figure 3.4: Einstein solution on N71"k x Rk as an example of a normalized gradient

shrinking soliton in canonical form with f(t) 75 [p,T( - ,t) + c.

While the choice of a suitable base point p in the very special Example 3.5.5 is

obvious, that choice of base point p E M" such that f = 1191 might not even exist
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for general complete gradient shrinking solitons, but depend on the structure of the

soliton, and in particular the critical points of f.

For complete gradient shrinking solitons with quadratic curvature decay and non-

collapsedness assumption, which converge to an incomplete metric cone which is

smooth away from the parabolic vertex (consisting of a collapsed compact set), Cao,

Hamilton and Ilmanen state in [3] that the reduced distance and volume based at

singular time are well-defined. Also, this reduced volume is constant. They use this

result to define a notion of density for such shrinking solitons, which we generalize to

type A solutions in Section 4.2.

3.6 The inverse of Corollary 3.4.3 (iii

Recall that Corollary 3.4.3 (iii) stated that if a reduced volume based at singular time

is constant, the corresponding Ricci flow is a gradient shrinking soliton in canonical

form (which is in fact normalized).

The inverse statement holds, whenever for some p E Mn, we have f = [p,T' More

generally, the following is true:

Proposition 3.6.1 If (Mn,g(t),f(t)) is a gradient shrinking soliton in canonical

form on (~oo,T), and f(t) = lp,T( - ,t) + c for some p E M", c E R, then Vp,T(t)

is constant in t.

Proof. From Example 3.2.2, we get that the type A assumption is satisfied. Since

lpflw = f is smooth, the inequality (3.1) becomes the equality (2.11), i.e.

* 1 _

From the arguments in the proof of Corollary 3.4.3 (i), we conclude

—v (t) = o. C]
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Remark 3.6.2 As discussed in Section 3.5.2, compact gradient shrinking solitons

in canonical form will satisfy the assumptions of the proposition for any p E Mn,

even without being normalized. Similarly, this is the case for solitons of the form in

Ezrample 3. 5.5 with the correct choice of base point, as well as the ones in [3].
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CHAPTER 4

Applications of monotonicity based

at singular time

One of the main applications of monotone quantities in geometric evolution equations

is the analysis of singularities. We will first show in Section 4.1 how the notion of a

reduced distance based at singular time can be used to model type I singularities by

gradient shrinking solitons. Results of that kind are very important, as they reduce

the study of singularities in the Ricci flow to the classification of gradient shrinking

solitons.

In Section 4.2, based on the reduced volume and its extension to singular time,

we will define a notion of density for any point in space-time in the Ricci flow. This

is motivated by the Gaussian density in mean curvature flow based on Huisken’s

monotonicity formula [20] [34], which can abstractly be regarded as an analogue to

the monotonicity of a reduced volume based at singular time.
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4.1 Rescaling limits of type I Ricci flows are

gradient shrinking solitons

We will describe in this section one of the main motivations for extending the notion

of the reduced distance to singular time, as done in Chapter 3.

Let (Mn,g(t)),t E [0, T), T < 00 be a complete maximal type I Ricci flow, and let

p E Mn. We rescale the flow parabolically: Let tj /‘ T and consider the sequence

of pointed 1-parameter families of Riemannian manifolds Mn, g- t ,p , where
.7

 gJ-(t) := Titjg(T+(T—tj)t). (4.1)

Then g.- t is a Ricci flow on — T ,,0 for each j. Because of the type I curvature

J 7 _ J

bound, we have at any x E Mn that

lngjtting-(tflx) - (T—ti)lng(T+(T—tj)t)l9(T+(T—tj)t)("’)

C
s (T—tj)T_ (T+ (T—tjlt)

 (4.2)

C

t.

This gives a uniform curvature bound on compact subsets of (—oo,0). Together

with Perelman’s no local collapsing theorem (which here also holds for complete Mn

because of the uniform (in t) lower bound on the reduced volume as described below),

we can use the Cheeger-Gromov-Hamilton Compactness Theorem lB.O.2 to extract a

complete pointed subsequential limit Ricci flow (M30, goo(t),poo) on (—00, 0), which

is still type I. An example of the convergence of rescales around a neckpinch to a

shrinking cylinder is shown in Figure 4.1.

As ancient solutions are expected to have a very special structure, Hamilton [18]

conjectured (under a different rescaling procedure) that (Male, goo(t)) is a gradient

shrinking soliton.
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Figure 4.1: Parabolic rescalings (M7‘, gj(t)) of a neckpinch (Mn, g(t)) and pointed

Cheeger-Gromov-Hamilton convergence near a singular point p to a shrinking cylinder
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In general, Mg}, and M" are different smooth manifolds. The definition

of Cheeger-Gromov convergence implies that if M30 is compact, then in fact

Mgg = Mn. It follows from [29], that Hamilton’s conjecture holds in this case:

Theorem 4.1.1 The rescaling limit (Mgo, goo(t)) obtained as described above is a

gradient shrinking soliton, if 11130 is compact.

The proof uses the monotonicity of Perelman’s entropy functional, which is only

defined on compact manifolds.

We will now describe our idea on how to use the monotonicity of a reduced volume

based at singular time to obtain a proof of the conjecture without the very restric—

tive assumption of Mgo being compact: Let lp,T be any reduced distance based at

singular time (p, T) for the Ricci flow (Mn,g(t)) on [0, T) as defined in Chapter 3.

For each (q, t) E M" x (—oo.0), consider for large enough j

zgfltq. a := weT + (T - mi). (4.3)

which is a reduced distance based at singular time (p, O) for the Ricci flow (Mn, gj (t))

on l—TT—j’ 0) because of the scaling properties of the reduced distance.

17,3106) = Vp,T(T + (T -— tj)t) (4.4)

We can conclude from (4.4) that

~ ' j—pw . ~

Vito ———* ,ll/rg. are

uniformly on compact subsets of (—00, 0). Hence by Corollary 3.4.3, I7; 0 converge

to a constant in (O. 1]. Figure 4.2 illustrates this convergence.
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Figure 4.2: Convergence of the rescaled reduced volumes 173 0 based at singular time

to the constant lim I7 t .
t/T p,T()

We would like to conclude that there exists a locally Lipschitz function lg; 0 on

the limit manifold Mg) x (—oo,0), such that

0

l] CIOC I“)

p O pmao’

and which satisfies the differential (in)equalities of Corollary 3.3.5. Since its

corresponding formal reduced volume V290; 0 is constant, those are equalities for

l and we can conclude that (Mgo, goo(t), lg; 0( - , t)) is a normalized gradient
00

190090,

shrinking soliton in canonical form. To do this, we need uniform bounds on the

j
p 0, as in the proof of Theorem 3.3.1. However, those boundssequence of functions 1

must survive under Cheeger-Gromov convergence.

In [23], this problem has been worked on independently, and estimates have been

derived to define a “singular reduced length”, which is a reduced distance based

at singular time as we constructed in Section 3.3. Those estimates are derived by
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comparison with a minimizing geodesic, and hence, are in terms of the Riemannian

distance away from the singular time. As such, they are preserved under Cheeger-

Gromov convergence. In our notation, they read as follows:

Theorem 4.1.2 Let (Mn,g(t)) be a complete type I Ricci flow on [0,T), and let

(p, to) E M” x [0,T). Then there exist 0 > 0 (only dependent on n and the type I

constant) such that

  

  

 

. 1 0HM) ding)

(2) 50+ tt0_t.>2—cszp,.0(q,asc<1+ :04)?

(a) WWII. i (q bl (q) < C (1+ dim”)
M ’ 9(5) - tO—t sag—4’

8 C d~(p.q)

(2”) la—{lpat0(Q~{)lg(fl(q) S to _ {(1 + \/tt—0——_—t—)2

In particular, those estimates are satisfied by any reduced distance based at

singular time [p,T by replacing to by T in Theorem 4.1.2. For the metrics gj(t)

defined in (4.1), we have the same type I bound (see (4.2)). We can therefore con-

clude from Theorem 4.1.2 that

(15(1). (1))2.

H

In the same way, the other bounds hold and are preserved under Cheeger-Gromov

 

OO

lPoo

Corollary 3.3.5 as equalities and is normalized for the same reasons as explained in

convergence. This allows us to extract 0 as we described above, which satisfies

Remark 3.5.2.

we summarize the above discussions by stating the theorem, which is stated

slightly differently in [23]:

Theorem 4.1.3 Let (Mn,g(t),p), t E [0,T), T < 00, p E M" be a complete maxi-

mal pointed type I Ricci flow. For tj / T, consider gj(t) := Til—{g(T + (T -— tj)t)

J
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on Mn x [~Tg—7, 0). Then there exists a Cheeger-Gromov-Hamilton limit Ricci flow

'3

(AvIgo,goo(t),poo) on (—oo,0) and a potential function if); 0 on M” x (0,T), such

that (M30, goo(t), [8:0 0( - , t)) is a normalized gradient shrinking soliton in canonical

form with bounded curvature.

We saw in the proof of Theorem 3.5.3, that if (Mn, g(t), f (t)) is a compact normal-

ized gradient shrinking soliton in canonical form, then the limit soliton constructed

above equals the original soliton, and moreover, the soliton potentials are equal.

4.2 Definition of a density

Consider a type A Ricci flow (M7‘, g(t)) on [0, T), and let p E Mn. For a sequence

t,- /‘ T defining a reduced distance based at singular time (p,T: we have from Defi-

nition 3.4.1 that

we?) = M3% (((47r(T — t))"i e—z,.,.,<qa) dvozgmtq).

Using the uniform lower estimate on [Pitt by the square of the distance function in

Theorem 4.1.2, we actually obtain from the dominated convergence theorem that

‘7 T09 = lim {Ci-(12.
p3 ti/T I);

which is illustrated in Figure 4.3.

We will now consider points in the closure of space—time, i.e. in Mn x [0, T], to

include the singular time.

Definition 4.2.1 Let (Mn,g(t)) be a type A Ricci flow on [0,T). For any

(p, to) E M" x [0,T] and a reduced distance [Pitoi we define a density of (p, to)

in the Ricci flow (Mn,g(t)) by

s =limi7 tEO,1.p,t0 f/to N00 ( l
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density loss
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u
—

u
p
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0 T

Figure 4.3: Convergence of the reduced volumes Vpiim to a reduced volume based

at singular time Vp,T(t‘) and density loss.

If to < T, then 9W0 is well-defined since the reduced distance Into is unique,

and we have 6pm = 1 by Corollary 2.4.3. For to = T the density might depend

on the choice of the reduced distance functions, which in general is only defined as a

subsequential limit. If (Mn, g(t), f (t)) is a compact gradient shrinking soliton, then

by Theorem 3.5.3 the density 9p,T is well-defined, in fact even independent of the

base point p. More general, for products of Einstein solutions with Euclidean space

as in Example 3.5.5, we also obtain that the density is well-defined by equation (3.28).

This provides a collection of densities E (0, 1] occuring in Ricci flows, and the values

can be computed by (3.26). In [3], Cao, Hamilton and Ilmanen define an analogous

density for gradient shrinking solitons satisfying their assumptions.

In general, for complete type I Ricci flows (Mn, g(t)) on [0,T), it follows from

Theorem 4.1.3 that for p E Mn and choice of lp,T there exists a gradient shrinking

soliton in canonical form (ll/{(7310, goo(t), loo(t)), which models the singularity at p and
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whose potential function satisfies

_n _100

61).?" = Mn(4rr(T—t)) 26 dvolgm

for any t. This is depicted in Figure 4.4. While the integral is constant in t, it is

only a formal reduced volume, i.e. 100 might not be a reduced distance. This could

even be the case when (.M”, g(t)) is a gradient shrinking soliton in canonical form if

the limit soliton is not isometric to it.

GET = /M&(47r(T — t))—3e_loodvolg(t)

for a gradient shrinking soliton

(MgO)QW(t)il°o(t))

  

    Vp,T(t) for some

Ricci flow (M",g(t))

 

  —
q
.
—
-
—
-
—
-
—
—
-
-
-
-
-
-
-
-

H0

Figure 4.4: Relation between density 612,1" for a type I Ricci flow (Mn, g(t)) and

limit gradient shrinking soliton (ll/[30,g(t), l°°(t)).

To distinguish points p E Mn where the curvature blows up at the singular time

T, from those where the curvature stays bounded, we make the following

Definition 4.2.2 The singular set E C M" for a maximal Ricci flow (Mn,g(t))

on [0,T) is given by

z := {q e M | Ing(,)(q)]g(,) t—‘i oo}.
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Remark 4.2.3 The points in the singular set 2 are equivalently those, where the

metric g(t) becomes degenerate as t —+ T.

We can prove

Proposition 4.2.4 Let (Mn,g(t)) be a maximal type I Ricci flow on [0,T) with

singular set )3. If p E Mn\2, then 6p,T = 1.

Proof. Give p E M"\E, we rescale g(t) for a sequence tj / T by

gjm := Titjgm (T —- mt). 

The bounded curvature of g(t) near p for all t implies the Cheeger-Gromov-Hamilton

limit flow is

(NI&.9m(t)) ’5 (Rnignn).

which by Theorem 4.1.3 is a gradient shrinking soliton in canonical form on fiat 112”.

The soliton equation (2.8) immediately implies this is the Gaussian soliton, and hence,

6p,T = 1 by the discussions above. Cl

We generally expect that the structure of a singularity at p E 2 determines a

“density loss”, so that 6p; < 1 as shown in Figure 4.3,
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CHAPTER 5

Reduced distance and

monotonicity based at a

submanifold

5. 1 Motivation

Our main reason to study a reduced distance based at a point (p, T) at singular time

in Chapter 3 was the application to singularity analysis in Chapter 4. In particular,

the case where p E E, the singular set of the Ricci flow (M7’, g(t)), is of interest.

In this chapter, we are motivated by the case where the singular set E is a lower

dimensional submanifold of Mn_ In general, not much is known about the size of the

singular set for a Ricci flow. The considerations here were triggered by the example

of a neckpinch as shown in Figure 5.1. We will extend the notions of the reduced

distance and volume from being based at a point p E Mn to being based at any

submanifold S C Mn.

First, we briefly discuss the neckpinch in Figure 5.1. In dimension n = 2 the

picture is actually false, since the curvature in the neck is negative. For n 2 3 the
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Mn

Figure 5.1: Formation of a neckpinch.

existence of symmetric neckpinches has been rigorously shown in [1]. The authors

identify the n-sphere Sn minus two points with (—1,1) x S"—1 and consider the

evolution of a metric of the form

9 = amide + $602994. (5.1)

where as before 9371-1 denotes the standard round metric on S"—1 (see Figure 5.2.)

311— 1

   Sn—l Sift—1

i i > t

O T

Figure 5.2: A symmetric neckpinch.

For a neckpinch the singular set 2 is of lower dimension than the manifold M7".

Motivated by this, we will study .C—geodesics, which are minimizing the .C—length

to any given k—dimensional submanifold S of Mn, where k < n and (Mn, g(t)) is
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a Ricci flow on [0, T). We show that the monotonicity of the corresponding reduced

volume still holds, and will also extend it to singular time.

Remark 5.1.] Besides the symmetric neckpinch, there are other examples where

similar pinching behavior occurs on compact lower dimensional submanifolds of non-

compact manifolds, see e.g. [33/ and [13].

5.2 Reduced distance based at a submanifold

In this section, we study the reduced distance based at a lower dimensional sub-

manifold S of M”.

Definition 5.2.1 For a Ricci flow (Mn,g(t)) on [0,T) and a compact (not neces-

sarily connected) embedded k— dimensional submanifold S C M", 0 S k < n, we

define for given to E (0,T) and any (q,t) E M" x (0,t0)

(i) the L-distance from (q,t) to (S, to) by

L ,t := inf L ,t ,s,.,<q 7 p€S{ mu 3}

(ii) the reduced distance based at (S, to) by

l ( L) ._ LS,t0(Qat7

S,t0 q, ° 2W)

(iii) and

_n —z ,t

vs.to(q.t) == (4WD - t)) 96 S"0(q 3-

Remark 5.2.2

(i) The compactness of S implies that the infimum in (i) is in fact assumed for

some p E S, i.e. L5,t0(q,t—) is given by the L—length of an £— minimizing

.C—geodesic from (q, t) to (p, to) for some p E S as shown in Figure 5.3.
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Figure 5.3: The .C—distance from (q,t) to (S, to) assumed by an .C-minimizing

L—geodesic 7 for some Ricci fiow (Mn,g(t)) with submanifold S C M".

(ii) It follows trivially from Definition 2.3.3 that

l ,t = inf l ,tS,t0(q 3 p€S{ p,t0(q 7}

and

vs,t0(q. 1f) = sup{vp,t0(q. 0}-
p68

To justify the picture in Figure 5.3, we first state and prove the following

Lemma 5.2.3 We make the assumptions as in Definition 5.2.]. If 7 : [t,t0] —>

Mn with 7(0 = q and 7(t0) = p E S is an .C— minimizing L— geodesic such that

[3(7) = L5,t0(q, t) then 7 is orthogonal to S at t = t0.

Proof. By the assumption [2(7) :2 Ls,t0(q, t), we consider the following variational

problem: Let

CD I (—c,e) x [1: tOl _. M"

be a (Cl) variation with

¢(S,t0) E S,

its?) = q.

and (MW) = alt).
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Then the first variation formula (2.15) for [I at the [I—geodesic 7 implies

d

0 = we) —
“a; £<¢<s¢>>=<2 to—tv<t>,Y<t>>g(t) go, (5.2)

 320

where

W) = gauges),

”D = 0.

and Y(t0) E T'y(t0)S'

Recall that by Proposition 2.3.2, the initial vector

w 2: lim t0 — t7(l) E T7(t0)M

t—9t0

exists. Hence, we conclude from (5.2) that

0 = tlim ( t0 '- t7(t), Y(t)>g(t) = (w, Y(t0)>g(t0)'

—+t0

This holds for all Y(t0) E T'y(t0)S (arising from any variation (b as above) and implies

that w E (T7(tO)S)i, the normal space to S at 7(t0) in (Mn,g(t0)). Cl

Remark 5.2.4 The case k = 0 is included in the above proof; S is then a finite

collection of points in Mn.

The main result of this section is that the three differential (in)equalities for [P.to

in Theorem 2.3.4 also hold for lS,t0 :

Theorem 5.2.5 Under the assumptions of Definition 5.2.], let to E (0,T). Then

for all (q,fl E M" x (O,t0) the following three (in)equalities hold:

n

2(to - D 2

(5.3)

3
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or equivalently , D;(Di'5,t0(q, D S 0. (5.4)

lS,t0 (q: B _ n

to — f

 —|v9®15,,0(q, mgm + 12mm) + + 2Ag({)lg,t0(q,t) g 0. (5.5)

[3,150 (q, f) _

t0 _ f 0. (5.6)
6

“25-15mm, a + Ivgmzmq. Olga) — 3905(0) +

Remark 5.2.6 Similarly to the reduced distance [PJO’ the reduced distance based at

a submanifold 13,150 is locally Lipschitz on Mn x (0,130), and in fact smooth away

from a closed set of Lebesgue measure zero for all t. Hence, the (in)equalities hold in

the weak sense, or in particular in the sense of distributions. Compare Remark 2.3.5.

The proof of Theorem 5.2.5 will follow from the next two propositions.

Proposition 5.2.7 Under the assumptions of Definition 5. 2.1, let to E (0, T). Then

for all q,t) E M” x (0,t ) we have
0

_3

(2') Ivzs,.,<q, 0:2 = —Rg(a<q) + Fly-15mm. t‘) - (to — 2?) MM),

(a) 5353mm = ~Rg(a(q> + flames — in — a Name,

where

t

Km. t‘) == h 0(to — 0% Hunt) dt,

3 I .

H(X,t) := aRglt) + ERQU) - 2(VR,X) + 2R2C(X,X),

and 7(t) is as in Lemma 5.2. 3.

Remark 5.2.8 The equalities in the proposition were observed for lp,t0 by Perelman.

H(X,t) is Hamilton’s Harnack expression, which is nonnegative for all vector fields

X along any complete Ricci fiow (Mn,g(t)) with bounded nonnegative curvature

operator. We will not need any properties of this expression, as will become clear in

the proof of Theorem 5.2.5.

57



Proof. It follows from Lemma 5.2.3 and the first variation formula (2.15) that

withqt‘>=—2 to—(5.

Hence,

IVLs,.0(q. $112 = 400-75) 171512 = —4<to—DR,777 +4<to—£)<R,(77 +1712?» (57)

We also get

0 d .

= —(/t0-t (|7(i)|2 +Rg((qt')))+2(/t0—tt|7(t)|2

= —2\/to—t‘R,(77<q>+ to—M<,(.7<<n)+l7®12>. (58)

we can use Perelman’s [26] computation along the .C—minimizing L—geodesic 7(t)

as in Lemma5..2 3, which in our context reads

(to—MR,soam(£11) —K(7,a+§Ls,.O<q.t‘>. (5.9)

Plugging (5.9) into (5.7) and (5.8), we obtain

2_

IVLs,t0(qq.=t7| will?g({)+\/tO—t( 2 L,(qSt0(qt)- K(N?)

8 1

and 18L5t0(q,L)—— —2\/l0-llRW (2",(CILSt0CIT)- (7,5)):

and therefore

I _3

le,t0(qa{) — (t0 _ f) 2K(71{)

2 _. _
lVls,t0(q.t)| — Rgmm + to

0 I 1 _3

and dt‘lS,t0(q(la: g(jlq(1+) —lS,(qt0(q‘i) — 5(t0_0 2K<71Ph D

To obtain the monotonicity result of the next section, we will now show that the

crucial differential inequality (5.4) holds for the reduced distance to a submanifold.
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Proposition 5.2.9 Under the assumptions of Definition 5. 2.1, we have

ngvs,to(q,a S 0

in the weak sense.

Proof. We argue by contradiction: Assume there exists a (small) parabolic cylinder

P = U x [t2,t1) C 1171’" X (0, to), U open, such that for all 0 S d) E Cgpt(M" x (0,t0))

with support in P

ff}? v3,t0Cl¢ dvolgmdt > 0.

Inverting time (r := t0 — t) implies that —v5,to is strictly subparabolic in the weak

sense of Friedman [14], and we will apply his (strong) maximum principle several

times to derive a contradiction. By Remark 5.2.2 (ii)

”S,t0((17t_) = sup{vp,t0(q. t7}-
1265'

Let p E S, up :2 vp¢0(q,t7 and ”S := vS’tO(q,t) Then up 3 ”Slot and we know

from (2.19) that

l:l*’Up S 0

in the weak sense. Now let P := P\P and wp be a solution to

Cl*'l.Up = O In P

wplp = 7.17.

Hence,

[Ni/p ‘ wp) S 0,

and the maximum principle implies

Similarly, let wS be a solution to

CHIHS = 0 in P

wslr = vslr-



Since

D*(wp — HIS) : O

and wplp = vplp S vslp = wslp, the maximum principle implies that

wp S wS in P. (5.11)

As p E S was arbitrary, we conclude from (5.10) and (5.11) that

vs S wS in P.

Using v3|p = wSH“ and the maximum principle again, this contradicts the assump—

tion that in the weak sense in P

[3*(125 — 105) > 0,

which finishes the proof. El

Remark 5.2.10 In the above proof, we only needed the weak maximum principle,

which follows trivially from Friedman’s strong maximum principle. Moreover, by

Remarks 2.3.5 and 5.2.6, we could have assumed vp and v5 are smooth and P,

and purely worked in the smooth category.

Proof of Theorem 5.2.5. The first differential inequality is equivalent to Proposi-

tion 5.2.9 by definition of ”S,t0-

We obtain equation (5.6) by subtracting (i) ——2- (ii) in Proposition 5.2.7, since then

the term involving K(”7, t) cancels.

Finally, the inequality (5.5) follows as —2-(5.3)+(5.6). [3

Remark 5.2.11 By combining the ideas of Perelman’s original prooffor the first two

equalities with the comparison principle proof for the differential equality, we avoid a

lengthy discussion of a Laplacian comparison theorem for LSatO in the setting of the

submanifold S.
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5.3 Reduced volume monotonicity based at a

submanifold

The purpose of this section is to show the monotonicity of the reduced volume corre-

sponding to the reduced distance based at a submanifold S. Therefore, we now make

a further generalization of Perelman’s reduced volume.

Definition 5.3.1 Under the assumptions of Definition 5.2.1, we define for each

t E (O,t0) the reduced volume based at (S, to) by

VSxOlD I: [M ”3x001, 15) dwigmkfl-

By definition, we have for any p E S and t E (0, to) that

175,700) 2 Vpxofll.

To guarantee the existence of the reduced volume based at (S, to), we prove the

following

Lemma 5.3.2 I75,t0(t—) as in Definition 5.3.1 is finite for any fE (0, t0).

Proof. Fix t E (0, to). For any q E M, there exists a p E S such that

The known estimate for the reduced distance in terms of the Riemannian distance at

time to (see e.g. [36]) gives

lp,t0(q1t_) Z Cldt20(p1q) _ CZ,

where Cl > 0 and C2 > O are constants only depending on t and the curvature

bound. Using the equivalence of the metrics along the Ricci flow on [0, to], we obtain

for a possibly different constant Cl (with dependencies as above) that

15.10% t‘) Z Ciditp. q) - 02,
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and thus

mom 2 oldest) — 02. (5.12)

The finiteness of V3206) now follows from the convergence of the integral

—d3<Sq)
e t ’ dvol (q) < 00

/M g(fi

for compact S C M”. C]

Corollary 5.3.3 (Monotonicity based at a submanifold)

Under the some assumptions as in Definition 5.3.1, we have

. (1 ~

(U Emma) 2 0.

(ii) If stOU—fl = 29,1092) for 0 < t.1 < t’2 < to. then (Mn.9(t).ls,tO(-.t)) is a

flat gradient shrinking soliton in canonical form.

Proof. This is very similar to the proof of Corollary 3.4.3 (i) and (iii), since the

differential (in)equalities in Theorem 5.2.5 hold. The technical ingredient in the

setting here is the comparison of ls,tO(q,fl with dt2(S, q) in (5.12).

To see the flatness of the gradient shrinking soliton (Mn, g(t), lS,t0( . ,t)) obtained

in (ii), we first use Remark 2.2.4: For t E [to — 1, to], we have

g(t) = (to - t)¢2‘9(to -1)-

Together with the fact that the curvature of (Mn,g(t)) is bounded by C on

[to — 1, to], we obtain

3],? lng(t0_1) |g(t0_1) = ski/[p lRmabz‘guo—l) lab?9(t0-1)

= Rsxlpl m%g(t)lzoi_fglt)

= (t0 — t) 8:11p |ng(t)lg(t)

_<_ (t0 — l.)C.

Letting t —7 t0 finishes the proof. Cl

62



5.4 Reduced distance and volume based at a

submanifold at singular time

The purpose of this section is to show that similar to Section 3.3, we can define

a reduced distance and volume based at a submanifold at singular time under the

type A curvature bound assumption.

Theorem 5.4.1 Let (Mn,g(t)) be a Ricci flow on [0,T) of type A, and S C M"

be a compact (not necessarily connected) embedded k— dimensional submanifold,

O S k < n. Let also t,- /‘ T. Then there exists a locally Lipschitz function

$1]:an X (0,T) —> IR,

which is a subsequential limit

1 cfocmnx (0,T); l

S,t2' ' S,T

 

and satisfies for all (q, t) E Mn x (0,T) the following differential (in)equalities:

 

a r t 2 n

(5.13)

or equivalently for 1151((1, t) :2 (47r(T -— t))—ge—lsvflq’fl

D;(Dvs,T(q,D S O. (5.14)

l (q) i) _ n

—|Vg(tlls,:r(q. W33) + 1396701) + S’TT _ t- + QAgmlst) S 0- (5-15)

5 l (at)

452-15101. 5) + Ivgmlmq, 221370 — Hymn) + S—fi—_—_,—— = 0. (516)

Proof. This proof is now almost identical to the proof of Theorem 3.3.1. For the

uniform bound on LSJZ',’ we can use the same estimate: For p E S, (q, f) E Mnx (0, T)

and 118,15”an Z 0, we have

lLS,ti(q1t_)l S le,ti(q1£)l'
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If LSan-(‘1’?) < 0 the bound follows from the same argument as in the proof of

Theorem 3.3.1, with 7(t) being an L—minimizing .C—geodesic from (q,t) to (S, ti)-

Similarly, the derivative bounds follow by letting 7,-(t) in Lemma 3.3.4 be an

£—minimizing L— geodesic from (q,t) to (S, til With the results about lS,t0 we

have stated earlier, in particular Lemma 5.2.3 and Theorem 5.2.5, the rest of the

proof follows. Cl

With Theorem 5.4.1, we can make the following

Definition 5.4.2 Under the assumptions of Theorem 5.4.1 we define

l5] : M" x (0,T) —» IR

to be a reduced distance based at singular time (S, T) in the Ricci flow

(M". g(t)).

Next, we define the corresponding reduced volume.

Definition 5.4.3 Under the assumptions as in Theorem 5.4.1 we define a reduced

volume based at singular time (S, T) by

Vsr® == fM Us,x(q, deolgmml

Remark 5.4.4 Contrary to Remark 3.4.2, the finiteness of 173,776) does not follow

by the same argument. However, we can transfer the estimates from Theorem 4.1.2

to the submanifold setting, in the same way as we did in the proof of Lemma 5.3.2.

We conclude that for every f, Vsz-(D subconverge to V5,T(t_), which is finite.

Now we state the monotonicity for this reduced volume.

64



Corollary 5.4.5 (Monotonicity based at a submanifold at singular time)

Under the assumptions as in Definition 5.4.3, we have

' it? t) > 0(2) d, s,T( _ 7

(ii) If V5161) = V5162) for 0 < t_1 < t”2 < T. then (M".g(t).ls,T(-t)) is a

gradient shrinking soliton in canonical form.

Proof. This is now standard. D

5.5 Examples

We consider examples, to indicate that the structure of the submanifold S in the

Ricci flow (M77’, g(t)) determines the behavior of the monotone quantities defined in

the previous sections.

Example 5.5.1 Consider the Ricci flow on [0,T) from Example 3.5.5 on

M” = Nn-k >< Rk, where Nn—k is an Einstein solution. Let

S = N71",c x {x0} C M”.

Then we use (3.21) to compute for t,- E [0,T), p = (190,130), as well as

q = (0,2) 6 N"—k x W“

l.,t=infl.,t
S,t,(q -) pES p,t,(q d

  

l3: "’ (”0'2 k

= inf 1 .(6,t)+ ——3—

soeNn-k 90‘” 4051 - 5)

— n—k 1 are an f—_ti)+|x—x0]Rk

2 t~—-t 4(ti — f)
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In particular, we find that for any p = (60,x0) E 1W

2

lS,T(q1 a = 2 + 4(T _ a = lp,T(q, [)1

and therefore, as computed before,

~ R90 3 ~
V510 (2%”) V0 (90) V7510.

i.e. we can say that

 

R90 2
95,1" - (27m) V01(90) — 9px-

Alternatively, in Example 5.5.1, we can immediately see from Lemma 5.2.3 and

the [I—geodesic equation that [I—minimizing L-geodesics from (q,t) to (S, to) are

constant in N”‘k . This is similarly the case for a symmetric neckpinch as discussed

in Section 5.1. In fact, the symmetries in equation (5.1) imply

lp,T = 12,2"

for a symmetric neckpinch, where p E E. For general Ricci flows, however, we do not

obtain this.
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CHAPTER 6

Conclusions

6.1 Reduced distance based at a point at singular

time

In Chapter 3 of this dissertation, we have extended the reduced distance to base points

at singular time, and have shown that the associated reduced volume is monotone. We

can make the following alternative definition of a reduced distance based at singular

time, which we denote by l.

Definition 6.1.1 Let (M",g(t)) be Ricci flow on [0,T) of type A. For p E M”, we

define

1 . T . 2

lat“) .—We/, fT“ 1707111197,, + 1297771710» at,

where the infimum is taken over all (piecewise C1 ) curves

7 = [LT] -> M”. 7(6 = q. 7(T) = p-

The infimum is well-defined, since the functional is bounded from below because of the

type A assumption. In general, however, l (q, B will not be assumed by a minimizing

curve 2' : If. Tl -* M”. W) = €1.7(T): 11
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Understanding the relation between l(q,t) and [131(an might help to answer

both, the question of uniqueness of lpflw, i.e. independence of the sequence {ti}

used to define it, as well as the question of the dependence of lpJ‘ on the base

point p E M". This is of particular importance in the case of gradient shrinking

solitons, where the relation between the soliton potential f and a reduced distance

[p,T based at singular time needs to be further understood (in the noncompact case).

The failure of f to be equal to lpgw seems to contain geometric information about

the structure of the soliton, in particular the relation between the critical points of

f and the choice of the base point p. Here, both the comparison geometry and the

partial differential equations points of view of the reduced distance should be helpful.

Techniques involving the reduced distance based at singular time, similar to the ones

in this dissertation, are also a main tool in [23] to classify 4-dimensional solitons of

nonnegative curvature operator.

We discussed applications to the singularity analysis using [p,T in Chapter 4.

The uniqueness of the reduced distance based at singular time would imply a well-

defined notion of the density 611.7" in Section 4.2. Regularity theorems similar to

White‘s local regularity theorem for the mean curvature flow [35] should then hold,

i.e. using localized quantities one should get a generalization to singular time of the

local regularity theorem in [25].

One can obtain similar results to those in this dissertation for the forward reduced

distance and volume as defined in [12]. In this case, gradient expanding solitons

replace the role of gradient shrinking solitons. We will not include further details

here.
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6.2 Reduced distance based at a submanifold

We have generalized the reduced distance to be based at a compact k—dimensional

submanifold S, O S k < n, of a Ricci flow on M” in Chapter 5, and extended

the associated reduced volume monotonicity to singular time. We mention that

one can also develop the theory of LS—geodesics similar to Perelman’s theory of

£—geodesics. In particular, for each t’ E [t, to), the time t’ [IS-exponential map

is

.C . _L n
Sexpt/ . (TS) ——> M ,

(P, U) H 7p,v(t,)7

where p E S C M", v E (TpS)J' E’ Rn—k and 719,77 is the C—geodesic with

7p,v(t0) = p and initial vector v at to. One can then study the [IS-cut locus and

[IS-Jacobi fields to obtain the expected results.

Similarly to the reduced volume based at a point at singular time, we expect

{Ii/Hf], Vp,T({),

if finite, to carry information about how the submanifold S evolves under the Ricci

flow on Mn. We can then define a density of a submanifold in the flow. When S = Z},

the singular set, this limit is related to the structure of the singularity as is the case

for the reduced volume based at a point in the singular set at singular time. If the

singular set does not collapse completely (unlike a neckpinch), this quantity should

provide insight which the reduced volume based at a point cannot provide. Finally, we

expect that one can weaken the smoothness assumptions on the set S, in particular

to include more general (compact) singular sets.
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Appendix A

Shi’s derivative estimates

For the convenience of the reader, we give the following statement of Shi’s local

derivative estimates [32], as it can be found for example in [7]:

Theorem A.O.1 For any a,K,r > O and n,m E N, there exists a constant

C = C(a,K,r,n,m) such that if M" is a manifold, p E M", and g(t) is a Ricci

flow on U x [0,T], 0 < T < 1%, where Bg(0)(p, r) C U open, and if

[ng(t)(x,t)|g(t) S K for all x E U and t E [0,T],

then

C(a, K, r, n, m)

77?.

t2

 
lvamg(t) (ya t) [g(t) S

for all y E Bg(o)(p, 5) and t E (0,T].
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Appendix B

Cheeger-Gromov—Hamilton

Compactness Theorem

For statement and proof of the following compactness theorem, see for example [7]. It

is Hamilton’s adaptation of the well-known Cheeger-Gromov Compactness Theorem

from Riemannian geometry to the Ricci flow.

Theorem B.0.2 (Cheeger-Gromov-Hamilton Compactness) Let

{(i’l’Iz-T‘,gi(t),xi)},t E (a,w), be a sequence of complete pointed solutions to the

Ricci flow and to E (a,w). Assume that

(i) llegiltlllgiU) S C on Mi" x (a,w) for some constant C independent ofi

and

(ii) injg,(t0)($il Z (5 > 0 for some constant 6 independent of i.

Then there exists a subsequence of {(Mzin, gi(t),xi)}, which converges to a complete

pointed solution {(ll/Igo,goo(t),xoo)},t E (oz,w), to the Ricci flow and

lRm(QOO(t))lgoo(t) S C on M30 x (a,w).
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The convergence is in the Cp(goo(t0))-topology for each p Z 0, i.e. there exists a

sequence of open sets U,- C 11ng with x00 E U7, U,- C 7+1 and UiUz- = 11130, and

there exists a sequence of difleomorphisms F,- : U,- —-+ Mil with V,- := Fi(Uz-) and

F.7(xoo) = x,- such that for every compact K C Mg, and I C (a,w)

Fz-*g,'(t) —> goo(t) in the Cp(K x 1,900) topology .

The injectivity radius bound needed to extract the limit flow generally follows from

Perelman’s “No Local Collapsing Theorem.”
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