A LINEAR HOMOTOPY METHOD FOR COMPUTING GENERALIZED TENSOR
EIGENPAIRS

By

Liping Chen

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

Applied Mathematics — Doctor of Philosophy

2016

ABSTRACT

A LINEAR HOMOTOPY METHOD FOR COMPUTING GENERALIZED
TENSOR EIGENPAIRS

By

Liping Chen

A tensor is a multidimensional array. In general, an mth-order and n-dimensional tensor

can be indexed as A = (A , where A; € Cforl<iy,ig,...,im <n. Let Abe

i1i2...im) 1%9...im

an mth order n-dimensional tensor and B be an m/th order n-dimensional tensor. A scalar
A € C and a vector z € C™\{0} is called a generalized B-eigenpair of A if Az™ 1 = ABz™ 1
with Bz = 1 when m # m’. Different choices of B yield different versions of the tensor
eigenvalue problem.

As one can see, computing tensor eigenpairs amounts to solving a polynomial system.
To find all solutions of a polynomial system, the homotopy continuation methods are very
useful in terms of computational cost and storage space. By taking advantage of the solu-
tion structure of the tensor eigenproblem, two easy-to-implement linear homotopy methods
which follow the optimal number of paths will be proposed to solve the generalized tensor
eigenproblem when m # m/. With proper implementation, these methods can find all equiv-
alence classes of isolated eigenpairs. A MATLAB software package TenEig 2.0 has been
developed to implement these methods. Numerical results are provided to show its efficiency

and effectiveness.

To my family

il

ACKNOWLEDGMENTS

I would like to gratefully and sincerely thank my advisor Professor Tien-Yien Li for his
constant guidance, support, understanding and encouragements during my years at Michigan
State University. Especially at this time, although he was so sick (he had a bladder cancer
and just finished a surgery about three weeks before my thesis defense) and could not stand
up these days, he still supported me to defense in this semester so that I can head to work
on time.

I would like to thank Dr. Chichia Chiu, Dr. Patricia Lamm, Dr. Gabriel Nagy and
Dr. Moxun Tang, for serving as members of my thesis committee. I am so indebted to Dr.
Chichia Chiu for supporting me as a research assistant during my first year PhD study. I am
grateful to Dr. Patricia Lamm, Dr. Sheldon Newhouse and Dr. Gabriel Nagy for giving me
the opportunity to work on WeBWorK and providing letters of reference. I am also grateful
to Dr. Peiru Wu and Dr. Zhengfang Zhou for their help in these years. Special thanks to
Professor Lixing Han for introducing the tensor eigen problems to us and giving me a lot of
advice on this subject.

I also want to take this opportunity to thank my friends, my academic brothers and
sisters. Special thanks to Dr. Jiu Ding and Dr. Xiaoshen Wang for recommending me to
study aboard.

Finally, and most importantly, I would like to thank my family for their continuous and

strong support.

v

TABLE OF CONTENTS

LIST OF TABLES s vi
LIST OF FIGURES e vii
Chapter 1 Introduction 1
1.1 Tensor e 1
1.2 Tensor eigenvalue and eigenvector problems 2
1.3 Generalized tensor eigenvalue and eigenvector problems 6
1.4 Problem formulation 8
Chapter 2 Construct a linear homotopy to compute generalized tensor
eigenpairs 11
2.1 Preliminaries 11
2.2 Construct a linear homotopy to compute generalized tensor eigenpairs when
m>ml 16
2.3 Construct a linear homotopy to compute generalized tensor eigenpairs when
m<m 33
Chapter 3 Implementation of the linear homotopy methods 51
3.1 A linear homotopy algorithm to compute tensor eigenpairs 51
3.2 Algorithms to compute solutions of the starting system in the linear homotopy
algorithmo 53
3.3 Algorithm to follow solution paths of the linear homotopy 54
3.4 Evaluating polynomials and derivatives 59
Chapter 4 Numerical results 69
4.1 The efficiency of the new evaluation method 69
4.2 Computing complex tensor eigenpairs 70
4.3 Computing real tensor eigenpairs 73
BIBLIOGRAPHY e 75

Table 3.1:

Table 4.1:

Table 4.2:

Table 4.3:

Table 4.4:

Table 4.5:

LIST OF TABLES

Table T o 61
Comparison of on-line and off-line approaches with Table-T method 70
Comparison of Algorithm 3.1.1 with teneig form >m/ 71
Comparison of Algorithm 3.1.1 with teneigform <m/ 71

Comparison of Algorithm 3.1.1 with teneig for computing E-eigenpairs 72

Z-eigenvalues of the tensor in Example 4.3.1 (* denotes that the CPU time
used by Algorithm 3.6 ([9]) when it finds the first three largest Z-eigenvalues) 74

vi

LIST OF FIGURES

Figure 1.1: A third-order, two-dimensional tensor 1
Figure 2.1: Diagram of Q when m =3, m/ =4andn=3 38
Figure 3.1: An example of the evaluation graph 66

Figure 3.2: An example of the off-line evaluation function

vil

Chapter 1

Introduction

1.1 Tensor

The tensor considered here is a multidimensional array, instead of the tensor in physics and
engineering [17] or tensor fields in mathematics [28].
A first-order, n-dimensional tensor is an n-vector. A second-order, n-dimensional tensor

is an n X n matrix. In general, an m-th order n-dimensional tensor can be indexed as

where A € Cfor 1 < iq,i9,...,0m < n. We denote the set of all mth-order, n-

i1i9.im

dimensional tensors on C by clmnl. See Figure 1.1 for a third-order two-dimensional tensor.

az11 as

ari aii2

ag21 a2

a121 aiz2

Figure 1.1: A third-order, two-dimensional tensor

A tensor A is symmetric if its entries are invariant under permutation. For example, a

third-order tensor A € CB3nl is symmetric if
Aijk = Aikj = Ajik = Ajki = Agij = Akji

forall 4,7,k =1,...,n.
A tensor A € C™n g called a diagonal tensor if A;; ; # 0 and all other entries are zero.

In particular, a diagonal tensor with ones along the diagonal is called an identity tensor.

1.2 Tensor eigenvalue and eigenvector problems

Let A € Cmnl 4 .= (z1,...,2n)T € C", and 2l = (2, 2y, ... ,w,’ln)T. The tensor A

induces an mth-degree homogeneous polynomial given by

n
Az = Z Ail"'imxil Ty,
i1, im=1
in z1,...,zy. By the tensor product [23], Az™~1 denotes an n-vector whose jth entry is
n
-1
(.Aﬁm)j = Z Aj,ig---imng . -xim.
i, im=1

The following notion of eigenpairs for complex tensors was introduced by Qi [21] in 2005.

DEFINITION 1.2.1. Suppose A € CI™? where m > 2 and n > 1. We call a number
A € C an eigenvalue of A if it and a nonzero vector x € C" are solutions of the following

homogeneous polynomial equation:

Az = zglm=1, (1.1)

and called the solution x an eigenvector of A associated with the eigenvalue .

At the same time, Lim [14] proposed a theory of eigenvalues, eigenvectors, singular values,
and singular vectors for tensors from a variational approach. Since then, tensor eigenvalues
have found applications in automatic control, diffusion tensor imaging, image authenticity
verification, spectral hypergraph theory, and quantum entanglement, etc., see, for example,
3, 7, 10, 18, 22, 24, 25, 26].

In the following an application of the tensor eigenvalue in automatic control is described
[18].

Consider an autonomous nonlinear dynamical system

&= g(x),

where z(t) € D C R" is the system state vector and g : D — R" is continuous. It
is well known that Lyapunovs method can be used to determine whether this system is
asymptotically stable. More specifically, if a multivariate positive definite polynomial f(z)
can be found such that

Vi) gz) <0, VoeR"z+#£0

then the system & = g(x) is asymptotically stable. Here we call f(z) positive definite if

f(z) >0, VxeR" z#0. (1.2)

To find a proper multivariate positive definite polynomial, let us consider the positive defi-

niteness of an even-degree homogeneous polynomial given by

n

F@) = D iy imTiy T (1.3)

i]yeeim=1

where m is even and ail,_.im’s are the entries of a symmetric tensor A € R et
Ax™ = f(x).

By (1.2), the positive definiteness of f(z) becomes

Az™ >0, VeeR" z#0. (1.4)
It is equivalent to the positiveness of

min{Az" | [|z[[;; = 1}, (1.5)
where ||z||77 = 27" + --- + 2];'. To use the method of Lagrange multiplier, let
L\ x) = Az™ = X(J|lz|Iv — 1).

Then the critical point must satisfy

VLA x) =0, V) L(A\z)=0. (1.6)

When A is symmetric, it was proved in [12]

Vo (Az™) = mAz" 1.

Then (1.6) implies

mAz™ 1 — Amalm—1] = 0,
|zl —1 = 0,
or,
Azt Aglm=1 = o, (1.7)
|zl = 1,

which is the eigenvalue problem defined in (1.1) with normalization condition |z|? = 1.

Multiplying both sides of (1.7) by 2 from the left yields

2L Axm=1 €T plm=1 — .

Clearly, 2T Az~ = Az™ and 2T 2lm—1 = ||z||ir. It follows that

A= Ax™.

Hence (1.5) can be replaced by

min{)\‘ |zl = 1}.

Consequently f(x) in (1.3) is positive definite if the smallest real eigenvalue of the corre-

sponding tensor A is positive.

1.3 Generalized tensor eigenvalue and eigenvector prob-

lems

Various definitions of eigenvalues for tensors have been proposed in the literature, including
E-eigenvalues and Qi-eigenvalues in the complex field, and Z-eigenvalues, H-eigenvalues, and
D-eigenvalues in the real field [14, 21, 24]. In [6], Chang, Pearson, and Zhang introduced
a notion of generalized eigenvalues for tensors that unifies several types of eigenvalues. Re-
cently this definition has been further generalized by Cui, Dai, and Nie [9]. In this section,
generalized tensor eigenvalue problems will be introduced.

Let A € CMm1 and 2 = (xl,...,a:n)T € C" Forl <k <m,let Ak) gm=1 pe an

n-vector whose jth entry is

n

k), m—1y . _ . ..) e . e
(A()$)j — Z A'lek—lﬂk—l—llmle xzk_1x2k+1 xzm.
7’17 7Z]§_17Zk_|_17 ﬂmzl

When k =1, AL zm=1 g the A2z 1 defined in the previous section.
The notion of mode-k generalized eigenpairs for complex tensors was defined by Chen,

Han and Zhou [8] as follows.

DEFINITION 1.3.1. Suppose A € clmnl gnd B € C[m/’"], where m > 2, m' >2,n > 1.
Assume Bz™ as a function of x is not identically zero. For1 <k <m, (\,z) € Cx(C"\{0})

is a mode-k B-eigenpair of A if

o whenm =m',

AF) gm=1 — \gzm—1, (1.8)

o when m #m/,

/

/
AR gm=1 — By =1 ggm — 1 (1.9)
For suitable A, m’ and B, many different types of tensor eigenpairs defined in the liter-

ature were contained in (1.8) or (1.9). For instance,

e For A € R an E-eigenpair [14, 21] is defined as a pair (A, z) € C x C™\ {0} such
that

A"V =)z, 2Tz =1. (1.10)

This is a mode-1 B-eigenpair with m’ = 2 and B being the n x n identity matrix. A

real E-eigenpair is called a Z-eigenpair [14, 21].

e For A € RI™M let D € R™ ™ be a symmetric positive definite matrix, (A, z) €

R x R™\{0} is called a D-eigenpair [24] if
Az L = \Dz, 27Dz =1.

This is a real mode-1 B-eigenpair with m’ = 2 and B = D.

e For A € RI™"] 4 Qi-eigenpair [21] is defined as a pair (), z) € C x C™\{0} such that

Az = \glm=1, (1.11)
where z[m—1 .= (:chl, x’znfl, ., 21T This is a mode-1 B-eigenpair with m’ = m

and B being the identity tensor. A real Qji-eigenpair is called an H-eigenpair [21].

e For A € RI™"] 4 CPZ-cigenpair [6] is defined as a pair (A, z) € C x C"\{0} such that

Azm 1 = \Bg™m 1L

This is a mode-1 B-eigenpair with m = m’.

e For symmetric tensors A € RI™" and B € R[m/’”], a CDN-eigenpair [9] is defined as

a pair (A, z) € C x C™\{0} such that

Az =)\Ba:m/_l, Ba™ — 1.

This is a mode-1 B-eigenpair with .4 and B being symmetric.

1.4 Problem formulation

Let A € ClmM and B € cl'n] As one can see from Definition 1.3.1, computing mode-k
B-eigenpairs of A amounts to solving AR) gm—=1 ABz™ =1 followed by normalizing z for
Ba™ =1 when m £m/.

As discussed in Remark 2.1 in [8], the solution set of AK)zm—1 — ABz™ 1 consists of
different equivalence classes. If (A, z) is a solution, we denote its corresponding equivalence

class by

(O 2)] = [V, &) [N = "™\ o = 1, t € C\{O}).

/
When m # m/, imposing the normalization condition Bz = 1, the problem (1.9) has m’

eigenpairs from each equivalence class. According to this observation, the problem of solving

the eigenvalue problem (1.9) can be converted to first solving the following polynomial system

AR) gm=1 _ \gym'=1
P\ z) = =0, (1.12)

x4
where n € C" and 7y € C are randomly chosen. When m # m/, for each solution of (1.12)
obtained we normalize it for an eigenpair (*, 2*) satisfying (1.9), then find m’ equivalent
eigenpairs (X, 2) by setting \ = = * and of = t2* with ¢ being a root of ' =1,

Note that (1.12) is a polynomial system. To find all solutions of a polynomial system,
the homotopy continuation methods are very efficient in terms of computational cost and
storage space (see, for example, [13], [29]). In [8], Chen, Han and Zhou proposed two
homotopy continuation methods (Algorithms 3.1 and 3.2 in [8]) for computing all eigenpairs
of a general real or complex tensor. Specifically, while Algorithm 3.1 is a linear homotopy
method which handles the case m = m/; Algorithm 3.2, which handles the case m # m/, is
based on a polyhedral homotopy method.

The most time consuming part of homotopy continuation methods is the path following
step. The polyhedral homotopy methods have the advantage that in certain situations
they can follow much fewer paths than continuation methods using other homotopies, such
as the total degree homotopy (see, for example, [13]). As indicated in [1], however, the
polyhedral homotopy methods involve a highly complicated combinatorial process for finding
the maximal root count for a given sparse structure and setting up a compatible homotopy.
This makes the implementation of a polyhedral homotopy method very sophisticated.

In this article, a linear homotopy method will be proposed to solve (1.12) when m # m/’.

It is shown that the method finds all isolated eigenpairs of problem (1.9). This method is

easy to implement. Moreover, the method follows an optimal number of paths by fully using
the solution structure of problem (1.9), making it an efficient and competitive homotopy
method for computing eigenpairs of general tensors.

This dissertation is organized as follows. We first describe the linear homotopy methods,
showing these methods can find all isolated eigenpairs in Chapter 2. A detailed algorithm
with some implementation tips will be given in Chapter 3. Finally, we give some numerical

results in Chapter 4.

10

Chapter 2

Construct a linear homotopy to

compute generalized tensor eigenpairs

Let A € Clmnl and B € clm'nl. As discussed in Section 1.4, the problem of computing
mode-k B-eigenpairs in (1.9) is equivalent to solving (1.12), and when m # m’, we normalize
it to satisty me/ = 1. In this chapter, we will construct two linear homotopy methods
to compute all isolated zeros of the polynomial system (1.12) for m > m/ and m < m’

respectively, and thereby compute all the eigenpairs.

2.1 Preliminaries

The following two lemmas about coefficient-parameter homotopy play an essential role in

our construction.

LEMMA 2.1.1 (Theorem 7.1.1in [29]). Let F'(2;¢) be a system of polynomials in n variables

and | parameters,

F(zc): C"x Cl = C™,

that is, F(z:¢) = (fi(z:0),..., fa(z;e)T and each fi(z:¢) is polynomial in both z and c.

11

Furthermore, let N'(c) denote the number of nonsingular solutions as a function of c:

N = # {z eCn ‘ F(z;¢) = 0, det (g—f(z; c)) ”] 0} .

Then
(1) N(c) is finite, and it is the same, say N, for almost all ¢ € CL.
(2) for all c € C', N(c) < Np.

Here is an example to illustrate Lemma 2.1.1. Let F(z1;q1,¢2,q3) : C X C3 — C be

defined as

F(21:q1,42,03) = 175 + @221 + @3,

which is a polynomial both in the variable z; and in the parameters qi,q2,q3. By the

definition of A/(q), we have

oF
N(Q)Z#{Zl EC‘FiZQ12%+9221+Q3=0, 8—21222Q121+Q2#0}-

Therefore, ¢ z% + q221 + q3 = 0 always has two solutions

—@ /B —dne —@ -G —daa

= O
° 2q1 ' 2q1

as long as q1 # 0. And these solutions will satisfy 2¢1z1 + g2 # 0 as long as q% —4q1q93 # 0.

Denote

Qs = {(q1,92,43) | 1 = 0 or ¢3 — 4q193 = 0}.

Then for any q := (q1,¢2,q3) € (C3\QS, N(q) is equal to 2. Note that Qs has measure 0 in

12

C3. In this sense, we say for almost all ¢ € C3, A/ (q) is equal to the same number 2, which
is denoted by Np in Lemma 2.1.1. Moreover, for any ¢ := (q1,¢2,q3) € Qs, we have the
following three cases:
(i). If ¢4 = 0 but q% —4q1q3 = q% # 0, then F' = go21 + ¢3 is linear. So N (q) = 1.
(ii). If g1 # 0 but q% —4q1q3 = 0, then F' = 0 has no nonsingular solutions. So N'(g) = 0.
(iii). If g1 = 0 and q% — 4q1q3 = q% = 0, then F' = ¢g3. When ¢3 # 0, F' = 0 has no
solutions. When g3 = 0, F = 0 has no nonsingular solutions. So A/(¢) = 0 in this case.
From the above discussion, we conclude that A (q) is equal to N for almost all ¢ € C3

and N(q) < Np for all ¢ € C3.

LEMMA 2.1.2 (Theorem 8.3.1 in [29]). Let F'(z;¢), N(c) and N be as in Lemma 2.1.1.
Suppose F(z;¢) is linear in c. Let f(z) = F(z;¢1) for some given ¢ € CL. If g(z) = F(z;¢p)

for some cq € C! has NE nonsingular zeros, then the linear homotopy

h(z,t) :=~v(1—=t)g(z) +tf(2) =0

has N nonsingular solution paths on t € [0,1) whose endpoints as t — 1 include all of the
isolated roots of f(z) =0 in C™. Here v is a randomly chosen nonzero complex number of

absolute value 1.

Lemma 2.1.1 and Lemma 2.1.2 suggest the following steps to construct our linear homo-

topy for finding all isolated solutions of the system P(\,z) = 0 in (1.12) when m # m’:

e Step 1. Construct a polynomial system F(\, x;c), where ¢ denotes the set of param-
eters, making F'(\, z;¢) linear in ¢ and F(\,z;¢1) = P(\, z) for certain parameter set

Cc1-

13

e Step 2. Compute Np as defined in Lemma 2.1.1 for F(\, z;¢);

e Step 3. Find a parameter set ¢y such that G(\, z) := F(\, x; ¢g) has Ng nonsingular

ZEeros.

Then by Lemma 2.1.2, all the isolated zeros of P(\,z) can be found by tracing the solution

paths of the linear homotopy
H\ x,t) :==~v(1 =)G\, z) + tP(\, z)

fromt=0tot=1.

We shall follow the above three steps to construct our linear homotopy for the case of
m >m' and m < m/ separately.

Let P(z) := (p1(z),...,pn(x))T be a polynomial system with = := (z1,...,2,)7. For
a:=(ay,...,ap) € (ZgO)T, write % := x?l ozp™ and |a| == aj + -+ + ap. Then P(x)

can be written as

p1(x) == > 1,02
a€cSq

pn(z) = > cnaz®
aESn,

where S1,...,S5), are finite subsets of (ZQO)T and ¢; o, € C* := C\{0} are the coefficients
of the corresponding monomials. Here for each ¢ = 1,...,n, S; is called the support of
p;(z) and its convex hull R; := conv(S;) in R" is called the Newton polytope of p;(x). The

n-tuple (S, ...,5y) is called the support of P(x). For nonnegative variables A1, ..., Ay, let

14

MRy + -+ ARy be the Minkowski sum of MRy, ..., A\pRp, ie.,

MR+ -+ MRy = {/\1T1—|—"'+)\n7"n|7“iERZ',iZL...,n}.

The n-dimensional volume of ARy + - - - + Ay Ry, denoted by Vol (M Ry + -+ + A Rp), is
a homogeneous polynomial of degree n in Aq,..., A, (See, for example, Proposition 4.9 of
[4] for a proof). The coefficient of the monomial Ay Ao ...\, in Vol,(M Ry + -+ + A\yRy) is
called the mixed volume of Ry, ..., Ry, denoted by MV,,(Ry, ..., Ry), or the mixed volume
of the supports Sy, ..., Sy, denoted by MV,,(S1,...,Sp). It is also called the mixed volume
of P(z) if no ambiguity exists. The following theorem relates the number of solutions of a

polynomial system to its mixed volume.

LEMMA 2.1.3. (Bernstein’s Theorem) [2] The number of isolated zeros in (C*)",
counting multiplicities, of a polynomial system P(x) = (p1(z),... ,pn(a:))T with supports
S1,...,Sp is bounded by the mized volume MV, (S1,...,Sy). Moreover, for generic choices

of the coefficients in p;, the number of isolated zeros is exactly MV (S1,...,5n).

An apparent limitation of Lemma 2.1.3 is that it only counts the isolated zeros of a
polynomial system in (C*)" rather than C". To deal with this issue, Li and Wang gave the

following theorem.

LEMMA 2.1.4. [16] The number of isolated zeros in C", counting multiplicities, of a
polynomial system P(x) = (p1(x),...,pn(z))T with supports Si,...,Sy is bounded by the

mized volume MV (S1 U{0}, ..., S, U{0}).

The following lemma was given as Exercise 7 on page 338 of [4].

15

LEMMA 2.1.5. Consider a polynomial system P(z) = (p1(z),...,pn(x))T with supports

Sy =Sy=---=8y,=5. Then

MV, (S,...,S) = n!Vol,(conv(S)).

Recall that an n-simplex is defined to be the convex hull of n+1 points 21, ..., 2,41 such
that zg — 21,..., 241 — 21 are linearly independent in (R”)T. It can be shown that for this
simplex

22— %1
1
Vol (conv(z1, 29, ..., 2pt1)) = — |det : : (2.2)
n!
Zn+1 — %1

2.2 Construct a linear homotopy to compute general-

ized tensor eigenpairs when m > m’

Let D € Clmnl, & e ™'l and £ € C27. Let vdiag(L) := (L11, ..., Lun)T. Write
c:={D,E L} (2.3)

Consider

Dem=1 _ \gxm' =1 _ pylm=m'] . vdiag(L)
Fi(\ z;¢) = . (2.4)

nTx +ng

It is clear that F} is linear in c¢. Taking

c1 = {A,B,0}, (2.5)

16

we obtain F (A, x;c1) = P(A, x), which is our target system (1.12).
Let NFl be defined in Lemma 2.1.1 for F}(\, z;¢). To compute NFl’ we first prove the

following theorem.

THEOREM 2.2.1. Let Fy(\ xz;¢) be as in (2.4) and ¢ as in (2.3) be the set of parameters.

Then the number of isolated zeros, counting multiplicities, of F1(\,x;c) is bounded by

(m—1)" = (' =)"

m—1m

When c is generic, F1(\, x;¢) has exactly ((m —1)" — (m’ — 1)) /(m — m') isolated zeros.

Proof: For the random hyperplane nTx +n9 =0, 1e, mx1+---+nprp +1n9 =0, 1n

(2.4), without loss, we suppose 7, # 0. Then

Tp =a1T1 + -+ ap_1Tp—1 + b, (2.6)

where a; = —n;/np for i = 1,...,n — 1 and b = —ng/np. Notice that the number of
solutions of (2.4) in C"*! is the same as the number of solutions in C™ of the resulting
system T*(\,z1,...,2x,—1) by substituting (2.6) into the first n equations of (2.4). Denote

the corresponding supports of T* by Sq,...,Sy. We claim that

(m — 1) — ('~ 1)

MV (S U {0},..., S, U{0}) = (2.7)

m—m

If this is proved, let NV denote the number of isolated zeros of (2.4) in C". Then (2.7) implies

(m —)" — ('~ 1)

N <
m—m/

17

When the parameter set ¢ = {D, &, L} is generic, the equality in the above holds by using
Lemma 2.1.3 and Lemma 2.1.4.

To prove (2.7), let & := {D, &, L} be generic. Similar to (2.4) the corresponding polyno-
mial system being solved is

_ Dam=1 = \Egm' =1 _ falm=—m'] | . vdiag(£L)
T(\z) = = 0. (2.8)

"z + 1
Substituting (2.6) into the first n equations of (2.8) yields a new system T*(\, z1,. .., T,_1).
Let S1,...,S, be the corresponding supports of T*. Since D, £ and L are generic, without

. . —m! —m! .
loss of generality one can assume that all monomials A, z{"™"" ... 2p"™™ with

al,.%2 a
{o tay” 2™

OZiGZZOa Oq—l—Ozg—l—---—i—Ozn:m—l}

and

« «
{/\xllx22...a:%” a; € >, oq—l—ozg—i—---—i-ozn:m’—l}

will appear in each of the first n equations in (2.8). It follows that all monomials

a1 a9 7oy |
{otey” o2,

; € L>p, 01+ g+ +ap1 <m—1}

and

aflag? . i

1 Ty” .z, |y € Zi>, a1+a2+---+an_1§m/—1}

18

will appear in each equation of T%. Consequently, S,..., S, are all equal to

S:={(0,a)[a € (@M o] <m -1} U{(1,0)[a € (2%, o] <m’ -1}

Let Q be the convex hull of S. Denote the i-th unit vector in (R™)T by ¢; fori =1,...,n.

Then vertices of () are given by

§
0, 1=0
(m—1)ept1—4, 1<i<n-1
5= A (2.9)
e1, 1=n
\ e1 + (m' —Degpy1_j, n+1<i<2n—1.

From which,

!/
1
m sz, 0<i<n-L

Zn4i = €1+

This indicates that 2z, ..., 29,_1 are scaling of z, ..., z,_1 respectively by a factor (m’ —

1)/(m — 1) followed by a shift. Actually, each z,; is obtained by moving z; along the line

Lit) =1 —t)z; +tzpe, 0<i<n-—1 (2.10)

as t changing from 0 to 1. Simple computation yields

teq, 1=20
L;(t) = (2.11)

tep +(m—14+(m —m)t)epp1—i, 1<i<n-—1

19

We now claim that

)= |J conv(ip(t),....lr—1(1)). (2.12)
t€]0,1]

To prove this, let ¢ € Q, then there exist 8; > 0 (i = 0,1,...,2n — 1) such that

Z2n 18, =1 and

2n—1
q= Z Bizi- (2.13)
Substituting (2.9) into (2.13) yields
2n—1
q= Z 5z€1+z Bi(m = 1) + Bnyi(m' = Dlent1-i. (2.14)

To show q € Uyepo,1) conv(lo(t), - .-, ln—1(t)), we need to find t* € [0,1] and v; > 0 (i =

0,...,n — 1) such that Z?gol v; = 1 and
n—1
g=> 7ili(t". (2.15)
1=0

Substituting (2.11) into (2.15), we have

n—1
¢ = t'er+ Y vilt'er + (m—1+ (m —m)t*)ep 1)
1=1
n—1 n—1
=t (Z %’) e1+ Y vilm =1+ (m' —m)ten 1
i=0 i=1
n—1
= tfer+ > vilm =1+ (m' —m)ten 1. (2.16)
i=1

20

Comparing (2.14) with (2.16), if we choose

2n—1

t = Zﬁ;}
j=n

S TS (B (s R
m— 1+ (m/ —m)t*

n—1
o o= 1-> v
i=1

and rewrite the denominator of ; (for i =1,--- ,n—1) as
2n—1 2n—1
m—l—i—(m’—m)ZBj = m—l—i—(m’—l—kl—m)Z@-
J=n Jj=n
2n—1 2n—1

= (m=1)(1= > B +m—1) > p;
j=n j=n

2n—1

n—1
= - g+ -1 Y 8
7=0 j=n

then we have t* € [0,1], 7, > 0 for i = 0,--- ,n — 1, and ?;01 vi = 1. Moreover, (2.15)
holds. This shows ¢ € ;g 17 conv(lo(?), - - -, ln—1(t)). Therefore,
QC U conv(lg(t), ..., ln—1(t)).
te[0,1]

On the other hand, let ¢ € U1y conv(lo(t), - - ., ln—1(t)). Then there exist t* € [0, 1],

% >0 (i=0,...,n — 1) such that Y-"""v; = 1 and (2.15) holds. By (2.10),

n—1 n—1 n—1
g=> %1 =tz + " 2000) = Y 7ill =2+ > vt 2ngs
i=0 i=0 i=0

21

Let
v =t*), i=0,...,n—1,

Bi =
Yient®, i=n,...,2n— 1.
Then
2n—1
q=Y_ Biz,
1=0
where §; > 0 for each ¢ and Z% 1 = 1. Therefore, ¢ € Q. We conclude that

Utejo,1 conv(lo(t), - . In—1(t)) C Q.

To compute the volume of Q, let ¢ := (q1,...,qn) € Q, by (2.12) there exist ¢t € [0, 1]

and vy, >0 (i =0,. n—l)suchthatzz()%—land

n—1
g=>_7ili(t)
1=0

By (2.11) and } }” O v =1,

n—1 n—1 n—1
q = lo(t)(1— Z%) + Z%‘li(t) =lo(t) + Y 7illi(t) —
' ' i=1

= tep + Z Yilm =1+ (m' —m)t)en 1

with ¢ € [0,1], 7 > 0 and) 1 1 vi < 1. Let 9(qq, ..., qn)/0(t, 71, -

matrix of qq, ..., qy with respect to t,v1,...,v,—1. Then

-1
er+ 2y vilm/ —m)ey 1

e (2)| |

(m — 1+ (m —m)t)es

22

,Yn—1) be the Jacobian

= (m—1+(m'—m)t)"

By the change of variables (See, for example, [27]), the volume of Q is:

Vol (

Qi

1
= dq = det dyy...dyp—1dt
€qQ 0 1,

nz_ll%'fl
7;=0
1 m — m —m n—1
:tA(1t;4ﬂﬁ) dt (2.17)
(m =)" (' — 1)
(m —m/)n! ’

where (2.17) holds because the region {(v1,...,7—1) | Z?:_ll vi < 1,7; > 0} is a standard
(n — 1)-simplex with volume 1/(n — 1)! (See, for example, Exercise 2 and 3 on page 307 of

[4])). Therefore, by Lemma 2.1.5,

Mvn<§1, cee S’n) = n!VOln(Q) _ (m — 1)71 _ (777/ _ 1)71'

m—m
Noting that for i = 1,...,n, S; U {0} is a subset of S;. Hence

and therefore

(m —)" — ('~ 1)"

MV, (St U{0},..., S, U{0}) <

— (2.18)

On the other hand, consider the identity tensors D € CI™" and € € Cl™' 7] such that

23

Dj;. i =1, E;; ;=1 and all other entries are zero. Let £ be n x n zero matrix. Then (2.4)

becomes
/ / /
1:5”_1 — Azl -1 z _1(:1:?[”_7” —)
= ' =0, (2.19)
m—1 m/—1 m/ =1/, m—m'
T — X\l gt = (xh —A)
x4 x4
where n = (n1,- -+ ,nn) € C™ and n;’s are generic. Clearly, z = 0 cannot be a solution since
generically ng # 0. Thus at least one of
/ /
27— XA=0, ..., 27" =A=0 (2.20)

must be valid. Assume i (1 < i < n) equations of (2.20) hold. If the first i equations of

(2.20) hold, then

*w;’n_m -\ = 07 j = 17 X2
m/—1 . :
T =0, j=i¢+1,---,n.
For j=14+1,---,n, z; can be 0 with multiplicity m/ — 1. Also from the first i equations,

—m/ o))

x2 m — $1 m’ 73:1’()1 m — xl m
So each (j =2,...,n) can be expressed by z1 in m —m’ ways. Correspondingly, x1 can
be determined uniquely under the choices of ;41,..., 2, and the last linear equation, so is

A. Therefore, there are (m’ — 1) ¢ (m — m/)i~! solutions in total if the first i equations of

(2.20) are valid. This argument holds for any ¢ equations of (2.20) are chosen to be valid.

24

So there are

" (m! — 1) (m — /)i~

solutions when ¢ equations of (2.20) are true. Since ¢ may be any one of {1,--- n}, the

number of zeros of (2.20) in total should be

SN ;i ni—1 1 (" ;o yn—i N
S - it = L (! — 1) —)
=1 7 =1 7
1 / n\n / n
= m_m,[(m—1+m—m) —(m'—1)"
o
N m—m/ ’

By Lemma 2.1.4,

(m —)" — ('~ 1)"

MV, (S U{0},..., S, U{0}) >

Combining the above inequality with (2.18), we have

(m —)" — ('~ 1)"

MV, (51 U{0},...,S,U{0}) = -

Let /\/'F1 be defined in Lemma 2.1.1 for F1(\, z;¢) in (2.4). In the following lemma, we

compute N, .

25

LEMMA 2.2.1. Let NFl be as in Lemma 2.1.1 for F1(\,x;¢) as in (2.4). Then

N, = = D" = (=) (2.21)

1 m—m'

Proof: By Lemma 2.1.1, V, Fy s the upper bound of the number of the nonsingular zeros

of F (A, x;¢) in (2.4). Since nonsingular zeros are isolated zeros, Theorem 2.2.1 implies that

(m—1)" —(m'—1)"
Np, < — :

On the other hand, Fy(\, x;¢) in (2.4) has ((m — 1)" — (m/ — 1)™)/(m — m/) nonsingular

zeros when c is generic. So by Lemma 2.1.1,

(m—1)" = (m' —1)"

m—m/

< Np,.

Now it is sufficient to find a parameter set ¢y such that Fy (A, z;¢q) defined in (2.4) has

NF

nonsingular zeros. Let

1
/
co = {1tmnl pminl gy (2.22)
where 7177 is the m-th order n dimensional identity tensor, G € cl2n] ig a diagonal matrix
with G;; = a; (i = 1,...,n) being randomly chosen nonzero complex numbers. Let

Gi(\z) == F1(\, x5 ¢0).

26

Then

/ / / /
xrln_l — Azt -1 oz g ()" -1 o) (2" = X)
Gi(\) = ' = ' :
() m—1 m/—1 m—m/ m!/—1 m—m/
T = Al T — gl + apA (= — ay) (x]) —A)
!z + o !z + o
(2.23)

THEOREM 2.2.2. Let G1(\ x) and N be as in (2.23) and (2.21) respectively. Then

G1(\, x) has exactly NFl’ as given in (2.21), nonsingular zeros.

Proof: It can be asserted that at least one of

(2.24)

must be true. Otherwise system (2.23) is equivalent to an overdetermined system of n + 1

equations in n unknowns, which has no solutions due to randomness. Assume that i (1 <

27

i < n) equations of (2.24) are true. If the first ¢ equations of (2.24) hold, then

"7 =X =0,
mfm,
T, —A = 0,
1
m/—
i1 ajy1 = 0,
/
a0, = 0

From the (i 4 1)-th equation to the n-th equation, each z; (j =i+1,...,n) can be any one

of the (m/ — 1)-th root of aj. Also from the first i equations,

:L,gn—m — xvln—m ,
m—m/ _ m—m/
Ti = T
So each x; (j =2,...,n) can be expressed in 1 by m — m/ ways. Correspondingly, z1 can
be determined uniquely by x;41, ..., 2y and the last equation, and A can also be determined

uniquely. Therefore, there are (m/—1)"~%(m—m’)"~1 solutions in total if the first i equations

of (2.24) hold. This reasoning holds for any i equations of (2.24) are true. So there are

" (m — 1) (m — m)i~L

28

solutions in this situation. Since ¢ may be any one of {1,...,n}, the number of isolated zeros

of G1(\, z) in total should be

" [n ‘ 1 1 "o[n . .
(ml o 1)n—2(m o m/)z— — — m/ (m/ . 1)n—1(m - m/)z
=1\ 1 =1\ 1
1 / nn / n
= [— 1 m =)" — (' —1)"]
(m—1)"—(m -1)"

m—m/

We now show that each zero of G1(A,x) in (2.23) must be nonsingular. As discussed

above, any zero (A", 2*) of G1(\, x) satisfies

@)™ X =0, jel
(‘r*)m -1 _aj - 07 je {17 7n}\IZ

may + -+ ma,+m = 0,

where [; is an index set which contains i elements of {1,...,n} for 1 <i <n. Without loss

of generality, we assume I; = {1,...,i}. Then

!
(x*)m —1 _aj — 07] :Z+1, , 1, (225)

mai+-+may,+n = 0.

Let DG (A, x) be the Jacobian of G(\, z) with respect to (A,). To show DG (*,z*) is

29

nonsingular, let

Bj(\, x)

for j=1,...,n. Then

A, B
A B;
DGi(Ax) = | 444 Bitq
Ap By,
0 m M Ni+1 n
Note that
\ym'—1 _ _ .
AN 2") = ((3) aj), §=1...,1
07 :Z+1, ,n
and by (2.25),
— l_ — .
BL(A.a") = (m—m) (@)= (@)™ =), j=1,0
jALT) =
(m/ = @)™ 2@y =N, =it

30

For simplicity, write A; = A;(A*,7%) and B;-‘ i= B;j(A*,2%). Then

Al By
A7 By
* ok
DGi(\ %)= | o B},
0 B
O m .o W N+l - M
So
det(DG1(*, %))
A7 Bp
ATy B
n . . A¥ B
— | T ~noteps) qer | :
j=i+l A?<+1 Bfk+1
A7
O m .. m— m My

31

Ui

Ay By
) Z. Aiy By
= | I By | o0y det | g 0
j=it1 =1
AT By
At B!
Furthermore,
det(DG1 (N, ™))
= (-1 H B;f Z<_1)(Z+1)+(l+l)m'<_1)l+1A7HBZ
j=i+1 =1 k=1
k£l
n) 7
= 0™ IT By) 2omaAr 1T B
j=i+1 =1 k=1
k£l
1 . : -1 : / '—1 '1
= (=" I 85 | Do ml=(@)™ = a)) [(m =) ()™ ™ ()™~ =)
j=i+1 =1 k=1
k£l
n (3 ’ (3 (3 /
= oot T1 8] (T o) S | T | 40
j=i+1 k=1 I=1 k=1
k£l
by (2.25). O

By Lemmas 2.1.1, 2.1.2, Theorem 2.2.1, Lemma 2.2.1 and Theorem 2.2.2, we have proved

the following theorem.

32

THEOREM 2.2.3. Let Hi(\, x,t) be defined as
Hi(\z,t) = (1 —=t)yGi(\,x) + tP(\,x), te€][0,]1] (2.26)

where G1(\,x) and P(\,x) are given by (2.23) and (1.12) respectively. Then following

solution paths of Hy(\,x,t) = 0 in (2.26) will give all isolated solutions of (1.12) form > m/.

2.3 Construct a linear homotopy to compute general-

ized tensor eigenpairs when m < m/’

Let ¢ = {D, &, L} as defined in (2.3). Consider

D=1 21 - vdiag(L) + ALzl =m]
Fy(\ z;¢) = . (2.27)

'z +
Clearly Fp(\,x;c) is linear in ¢. For ¢ = {A, B,0} defined in (2.5), F5(\, z;c1) agrees with

our target system (1.12). Similar to Theorem 2.2.1 we have the following theorem.

THEOREM 2.3.1. Let Fo(\, x;¢) be given as in (2.27) with the set of parameters ¢ being as
in (2.8). Then the number of isolated zeros, counting multiplicities, of Fo(\, z;¢) is bounded

above by

(' =)" — (m—1)"

m' —m

When c is generic, Fo(\, z;¢) has exactly ((m' — 1)™ — (m — 1)) /(m/ — m) isolated zeros.

Proof: For the random hyperplane nTa: +n9=0,1e, mx1+---+mxn+n9 =0, in

33

(2.27), we may suppose 1, # 0. Then
Tp =a121 + -+ ap_1Tp—1 + b, (2.28)

where a; = —n;/np for i = 1,...,n — 1 and b = —ng/n,. Notice that the number of
solutions of (2.27) in C"*! is the same as the number of solutions in C™ of the system
T*(\,x1,...,xp—1) resulting from substituting (2.28) into the first n equations in (2.27).
Denote the corresponding supports of T by Si,...,Sy,. We claim that

(m! — 1) = (m —1)"

MV, (S3 U {0},..., S U{0}) = (2.29)

m —m

Let N denote the number of isolated zeros of (2.27) over C. Then (2.29), when it is proved,

implies
(m' = 1" — (m —1)"

m' —m

N<

When the parameter set ¢ = {D,&, L} is generic, the equality in the above holds from
Lemma 2.1.3 and Lemma 2.1.4.

To prove (2.29), let ¢ := {D,&,L} be generic. Similar to (2.27) the corresponding
polynomial system is

_ D=1 \Em =1 — vdiag(L) + ALl =m]
T\ x)= = 0. (2.30)

nl'z +ng

Substituting (2.28) into the first n equations of (2.30) yields a new system T*(\, x1, ..., Z,_1).

Let S1,...,Sn be the corresponding supports of T*. Since D, £ and L are generic, without

34

/ /
loss of generality one can assume that all monomials 1, \z]" =", ... Azj" =™ with

a1,.%2 !
{o tay® o2

a; € L>p, 01 +ag+ -+ oy =m—1}

and

(0% (0%
{)\xllx22...x%” ; € Z>p, a1 +ag+ - +ap=m' — 1}

will appear in each of the first n equations in (2.8). Therefore, after substituting (2.6) into

the first n equations of (2.8), all monomials

{otey® o,

a; € L>p, 01 +ag+ -+ ap_1 <m—1}

and
{)\%?11’32 .. 'sz—lIl a; € L>p, a1 +ag+ -+ ap_1 < m — 1}
are contained in each equation of T*. Consequently, S1,..., S, are all equal to

S={0,0)]ae @7 o] <m-1}U{(La)|a e (ZMT o] <m -1},

Let @ be the convex hull of S. To compute the volume of @), we employ a geometric approach

here. As before, denote the i-th unit vector in (R”)T by e; for i = 1,...,n. Then the vertices
of Q are
(0, i =0
. (m—1)ept1—;, 1<i<n-1 (2.31)
e1, 1=n
| ert (m' —1eopi1—i, n+1<i<2n—1.

35

So,

Zn+i:€1+m 1zl~, 0<1<n—1.

From which 2y, ..., 2z9,_1 are scaling of zg,..., 2,1 by a factor(m’ — 1)/(m — 1) followed

by a shift respectively. In fact, each z,; is obtained by moving z; along the line

Li(t) =1 —t)z; +tzpyy, 0<i<n-—1 (2.32)

as t changing from 0 to 1. A simple computation yields

tey, 1=0
(1) = (2.33)

tep +(m—1+(m —m)t)epu1—4, 1<i<n-—1

Notice that when m — 14 (m/ —m)t =0, i.e., t = (1—m)/(m' —m), each I; (1 <i<n—1)

will have the same intersection point

1—m
W= — e1
m' —m
with the line [y(¢). Moreover, all the first coordinates of z, z1,...,2,_1 are 0 and all the
first coordinates of zy, ..., z9,_1 are 1. Write

0,y), i=0,1,...,n—1

(Ly;), t=n,...,.2n—1.

36

Denote the i-th unit vector in (R* N7 by w; for i =1,...,n — 1. By (2.31),

(

0, i=0,n

Yi=94 (m—Duy_;, i=1,....n—1

(m' — Dugp—i, i=n+1,...,2n—1.

\

Let Ag be the convex hull of 39, y1, ..., yn—1 and Aq be the convex hull of yy,, ..., y9,_1.

Then Ay is a simplex with

Y1 = Y0 (m — D)up—1
1 Y2 — Yo 1 (m — 1)uy_o
l,_1(4g) = det = det
voln-1(A0) (n—1)! ¢ : (n—1)! ¢
Yn—1— Y0 (m —1)u
Un—1
GO Vi e -t
(n—1)! : (n—1)!
uy
Similarly, Ay is also a simplex with
B (m/ o 1)n—1
vol,—1(A1) = HCES

Therefore, when m < m’, as t decreases from 1 to 0 to (1 —m)/(m’ —m), A1 shrinks to A

and then shrinks to one point w. See Figure 2.1 for the case of m =3, m’ =4 and n = 3.

37

Figure 2.1: Diagram of Q when m =3, m' =4 andn =3

Let

Qo = conv(zp,21,.--,2p_1,W),

Ql = COHV(Zn, Zn+ls---5r22n—1, U))

Then

VOln(Q) = VOln(Ql) - VOln(Q0)~

38

Note that

Vol (Qo)

and

Hence,

(m —1)"

(m! —m)n!

39

274 (m—1)ep—1
1 1
— |det = — |det
n! n!
Zn—1 — 20 (m — 1)62
1-m
w — 20 m/—mel
€1
— 1" 1)
(TCL—) det = @7—)
(o~ ! oy
€n
Zn+l — #n (m' — 1)ep
“n+2 7 An (m, —1ep—1
1 1
— |det = — |det
n! n!
Zn—1 — %n (m' —1es
/
WA G|
€1
I nr !/ _ 1)1
=D e _ =
(m’ —m)n! (m! — m)n!
€n
_ I _ 1\ _ 1) Iy _ 1
Vol (Q) = (' =" (m-1)" _ (m—1)"—(m—-1)
(m" —m)nl (m" —m)n! (m! —m)n!

det

det

(2.34)

€2

€1

€2

€1

Therefore, by Lemma 2.1.5,

(m' ~1)" — (m —1)"

m' —m

Since S; U {0} is a subset of S; for i = 1,...,n, it follows that

MV, (S1 U{0},...,9, U{0}) <MV, (S1,...,Sn).

Consequently,

(m' —1)" — (m —1)"

MV, (S U{0},..., S, u{0}) <

(2.35)

m —m

/
For the other direction, consider the identity tensors D € clmnl and € e ™7 in which
D;; ; =1, F; ; =1 and all other entries are zero. Let £ be the n x n zero matrix. Then

(2.27) becomes

/ /
xT_l — Az -1 xT_l(l = Azt ™)
= ' =0, (2.36)
xmfl _)\xm/fl xmfl(l .)\xm/fm)
n n n n
x4 x4
where n = (91, ,mn) € C™ are generic. Apparently £ = 0 cannot be a solution since
1o # 0 in the augmented random hyperplane. Hence at least one of
/ /
L=z 7™M o, 1T=day ™™ (2.37)

must be zero. Assume i (1 <i < n) items of (2.37) are zero. If the first i items of (2.37) are

40

zero, then

T =0, j=14+1,--- ,n.

From the (i 4 1)-th equation to the n-th equation, each z; (j = i+ 1,...,n) can be 0

with multiplicity m — 1. But A cannot be 0, otherwise the first n equations will result in

x1 = -+ = xp = 0 making the last equation of (2.36) invalid. Thus from the first i equations,
m/—m _ m/—m m/—m _ m/—m
Lo =N ARRRRY! =N
So each x; (j = 2,...,n) can be expressed in x1 by m' —m ways. Correspondingly, x1 can
be determined uniquely by the choices of z;,1,...,z, and the last equation, and A can also

be determined uniquely. Therefore, there are (m —1)"~*(m’ —m)*~! solutions in total if the
first ¢ equations of (2.37) are valid. This argument holds for any ¢ equations of (2.37) are

valid. In this situation, there are

n (m N 1)n—i(m/ N m)i—l

solutions. Since i may be any one of {1,...,n}, the number of zeros of (2.37) in total should

41

be

= (1) (= 1)
('~ 1" — (m — 1)

m' —m

By Lemma 2.1.4,

(' —)" — (m—)"

m —m

MV, (S1U{0},...,S,U{0}) >

So,

(m! — 1) = (m — 1)"

MV, (S1uU{0},...,5,U{0}) =

m —m

Let N, be as in Lemma 2.1.1 with F»(A, 2; ¢) being as in (2.27). Similar to Lemma 2.2.1,

we have the following lemma.

LEMMA 2.3.1. Let N, be as in Lemma 2.1.1 with Fa(A, x;¢) being as in (2.27). Then

m — 1" = (m—-1"
Ny = =02 m 2 DT

(2.38)

Proof: By Lemma 2.1.1, N/ Fy is an upper bound of the number of nonsingular zeros of

42

Fy(\, x;¢) in (2.27). Since nonsingular zeros are isolated zeros, by Theorem 2.3.1,

/_1n_ _1n
NF2§(m T)n,_i;n).

On the other hand, Fy(\, z;c) in (2.27) has ((m' — 1)" — (m — 1)")/(m’ — m) nonsingular

zeros when c is generic. So by Lemma 2.1.1,

(m'—1)" — (m—1)"

< Np,.

O
Let ¢g = {I[mvn},][m,’”], G} be as in (2.22) and
Ga(A,) == Fo(A, x5 cp).
Then,
m—1 A m/—1 N A m!/—m m—1 11—\ m!/—m
Ty T} a1 + AaqT] (27 a1)(Y)
Ga(A,2) = / | / B /
x;’ln_l — Azt -1, + Aagpapt —M (:Lﬁ_l —ap)(1 = Azt =)
nlx+m 'z +m
(2.39)

THEOREM 2.3.2. Let Go(\ x) and N, be as in (2.39) and (2.38) respectively. Then

Go(\,) has exactly NFQ nonsingular zeros.

43

Proof: At least one of the equations

1—)\x71nl_m = 0,
(2.40)

L= =m =

must hold, otherwise system (2.39) is equivalent to an overdetermined system of n + 1
equations in n unknowns, which has no solutions due to randomness. Assume that i (1 <
i < n) equations of (2.40) are true. Without loss, we may suppose they are the first i

equations. Then

/
L=Xz" 7™ = 0,
/
L=Azg* 7" =0,
-1
z;ﬁ.l — Q41 = 0,
e, = 0

From the (7 + 1)-th equation to the n-th equation, each z; (j = i+ 1,...,n) can be one
of the (m — 1)-th root of a;. Also from the first i equations, A = 0 cannot be a solution,

since (2.39) will then be an overdetermined system with n + 1 equations in n unknowns.

44

Consequently,

-m —m
L9 = N ’
m/fm _ m,fm
T = 7
So each z; (j =2,...,n) can be expressed in x1 by m’ —m ways. Thus, 1 can be determined
uniquely by the choices of x;41, ...,y and the last equation, and A can also be determined

uniquely. Therefore, there are (m — 1)"~¢(m/ — m)i~1 solutions in total in this situation.

This argument holds for any i equations of (2.24) are valid, and there are

" (m i 1)n—i(m/ . m)i—l

isolated solutions. Since i may be any one of {1,...,n}, the number of zeros of Ga(\, z) in

total should be

1

m' —m

2

n
= 1

T-L (m . 1)n—i(m/ . m)i—l _ n (m . 1)n—i(ml . m)z

1 1

m!/ —

(m' =)" = (m—1)"

m' —m

— 1m[(m—1+m/—m)n—(m—1)n]

We now show that each isolated zero of Ga(A,z) must be nonsingular. As discussed

45

above, any zero (A", 2*) of Ga(\, x) satisfies

*)m—m/

-1
(@)™ —qy

may + -+ nuey, + o

where [; is an index set containing ¢ distinct

Without loss of generality, we assume I; = {1,

*)m—m/

1
(@)™ —a

may + -+ nuxy + 0o

for some 1 < i < n. Let DGa(A, x) be the Jacobian of Go(\, z) with respect to (A, z).

show DGo(A*, x*) is nonsingular, let

Aj(\z) = —; _m(IE;-n_l—Oéj);
Bj(\x) = (m 1)x;n_2(1—/\x§n_m

46

0, j €]i

07 je {17 7n}\]Z

0,
elements of {1,...,n} for some 1 < i < n.
...,1}. Hence

0, J=1,---,3

0, j=itl-.n, (2.41)

0.

To

for j=1,...,n. Then

A DBy
Az Bi
DGy(Ax) = | A4 Bit1
An Bn
O m .. m Mgl - M
Notice that
/
()™= (@)™l —), j=1,...,i
Aj(XF,2¥) = g ! !
07 j:Z+17,n
and
/ *(k\m —m—1 xym—1
B\, o) — —(m’ —m)X*(a7) ((=7) aj), j=1,...i
(m — 1)(})™2(1 = A})™ ™), j=i+l,...n

47

by (2.41). For simplicity, write A}'f = A;(*,2%) and B;-‘ = B;j(A*,2%). Then

Al By
Aj By
* ok
DGoy(*2%) = | o B},
0 B
O m ... W N+l - M
So,
det(DGo(*, "))
A7 By
AT B,
n . . A¥ B
— | T ~nroreps) qer | :
j=i+l A?<+1 Bfk+1
A7
O m .. m— m My

48

Ui

A B
) Z. A7 B,
= | I By | o0y det | g 0
j=i+1 =1
Al B,
A¥ B!
And,
det(DGo(N*, ™))
))
= (-1 (H B}k) Z(_l)(i+1)+(l+l)n (_1)l+1A;< H BZ
J=i+1 =1 k=1
k£l
n))
= (" I B mA; 1] B
j=i+1 =1 k=1
22
n
+1
S A I)
j=i+1
7 , 7
S oml= @)™ T (@) = a)) T = m)N @)™ ()™ o))
I=1 k=1
k#l

by (2.41).

49

By Lemmas 2.1.1, 2.1.2, Theorem 2.3.1, Lemma 2.3.1 and Theorem 2.3.2, we have proved

the following theorem.

THEOREM 2.3.3. Let

Hoy(\ 2,t) == (1 — t)yGa(\,) + tP(\,z), te[0,1] (2.42)

where Go(A,z) and P(\,xz) are given by (2.89) and (1.12) respectively. Then following

solution paths of Hy(\, z,t) = 0 in (2.42) will give all isolated solutions of (1.12) form < m/.

50

Chapter 3

Implementation of the linear

homotopy methods

Based on Theorem 2.2.3 and Theorem 2.3.3 in Chapter 2, a linear homotopy algorithm can

be constructed to compute generalized tensor eigenpairs.

3.1 A linear homotopy algorithm to compute tensor
eigenpairs

Suppose m # m/, A € clmnl and B € ¢l As discussed in Section 1.4, computing eigen-
pairs satisfying (1.9) is equivalent to solving (1.12) in the first place, followed by normalizing
the corresponding solution for an eigenpair. According to Theorem 2.2.3 and Theorem 2.3.3

in Chapter 2, the following linear homotopy is useful to solve P(\, z) in (1.12):
H\x,t) =1 -t)yG\,z) +tP(\z) =0, te][0,1), (3.1)

where 7 is a randomly chosen complex number on the unit circle, G(\, z) is given in (2.23)
when m > m’ and (2.39) when m < m/.
We now present our linear homotopy algorithm for computing generalized tensor eigen-

pairs when m # m/.

51

ALGORITHM 3.1.1. (Compute mode-k B-eigenpairs of A, where A € clmnl B e
clm'.nl.)

Step 1. Compute all solutions of G(\,z) = 0 as given in (2.23) or (2.39).

Step 2. Compute all solutions (A, x) of (1.9) by following the paths fromt =0 tot =1
using the linear homotopy H(\, z,t) = 0 defined in (3.1).

Step 3. Compute a representative from each equivalence solution class of AR) gm—=1
ABz™ 1 by normalizing each (\,x) obtained in Step 2 for an eigenpair (*,z*), i.e.,

A “ x

A\ = = —
(me/)(m—m/)/m/’ v (me’)l/m’

to satisfy (1.9).
Step 4. Compute m’ equivalent eigenpairs (N, 2') for each (*,z*) obtained in Step 2

/ /
by N =t * and o' = ta* with t being a root of t"™ = 1.

REMARK 3.1.1. If only one representative from each equivalence class is required (see,

for example, [5]), then Step 4 in the above Algorithm can be skipped.

REMARK 3.1.2. When m # m/, it was shown (Theorem 2.3 [8]) that if A has finitely many
equivalence classes of B eigenpairs, then the number of equivalence classes of B eigenpairs,

counting multiplicities, is bounded by

K(m,m!,n) = (M= D" = (= D (3.2)

m—m/

''n) equivalence classes

Furthermore, if A and B are generic tensors, then A has K(m,m
of B eigenpairs, counting multiplicities. As a consequence, the optimal number of paths to

follow for solving the system (1.12) is K (m,m’,n). Our starting system (2.23) or (2.39) has

92

exactly K (m,m’ n) nonsingular solutions. Therefore, Algorithm 3.1.1 follows the optimal

number, making it an efficient homotopy method for computing generalized eigenpairs.

3.2 Algorithms to compute solutions of the starting

system in the linear homotopy algorithm

In this section, two algorithms will be described to compute solutions of the starting system
G(\, z) in (3.1), which is G1(\, x) as defined in (2.23) when m > m’ and Ga(\, z) as defined
in (2.39) when m < m/.

The following algorithm gives a method to compute all solutions of G (), x).

ALGORITHM 3.2.1. (Compute all the solutions of G1(A, x).)
Step 1. Fori=1,...,n, choose I; to be an index set containing i elements of {1,...,n}.
Step 2. For each I; chosen in Step 1, let k be the smallest integer contained in I;. For

each j € {1,...,n}\{k}, compute x; by

27li
em=—m'zpj e I\{k}
Tj = Ui (3:3)
em'=laj, je{l,...,n}\]

where | can be chosen from {0,1,...,m—m’'—1} and p can be chosen from {0,1,...,m'—2}.

Step 3. For the chosen | and p from Step 2, substitute all x;’s (except xy,) given by
(3.3) to Tz +ny = 0 to compute xy,.
Step 4. For the chosen | and p from Step 2, substitute . back into (3.3), all the T;’s

/
can be obtained, and \ = x}'""

The following algorithm is to compute all solutions of Ga(A, x).

53

ALGORITHM 3.2.2. (Compute all the solutions of Ga(A, x).)
Step 1. Fori=1,...,n, choose I; to be an index set containing i elements of {1,...,n}.
Step 2. For each I; selected in Step 1, let k be the smallest integer contained in I;. For

each j € {1,...,n}\{k}, compute x; by

2mli
em'=mzg; je L\{k}

27t
em—la;, je{l,...,n}\I;

Tj =

where | € {0,1,...,m' —m — 1} and p € {0,1,...,m — 2}.

Step 3. For the chosen | and p in Step 2, substitute all x;’s (except xy,) given by (3.4)
to nTx +n9 =0 to compute .

Step 4. For [and p selected in Step 2, substitute xj. back into (3.4), all the x;’s can be

obtained. For a nonzero xj, A can be computed by

3.3 Algorithm to follow solution paths of the linear

homotopy

In this section, we will propose an algorithm to follow the solution paths of the linear

homotopy (3.1). Let u:= (A, z). Then (3.1) becomes

H(u,t) = (1 —)7G(u) + tP(u) =0, te€[0,1]. (3.5)

o4

Denote the solution set of G(u) = 0 by ®, which can be computed using Algorithm 3.2.1 or

Algorithm 3.2.2.

ALGORITHM 3.3.1. (Follow solution paths of (3.5).)
Step 1. Let (up,t) = (u(ty),tg). Take tg =0, and let uy € ®. For finding the next

point (uy,t1) on the solution path of
H(u,t) = (1=t)yG(u) +tP(u) =0, t€]0,1]

in (8.5), the following steps are employed:

du
e Prediction Step by Euler method: Compute the tangent vector i to a solution path

u(t) of H(u,t) =0 at (ug,tyg) by solving the linear system

du

Hu(UOatO)E = —Hy(ug, to)

u
for e Then compute the approximation u to uy by

du
U =uy+ At—, t1 =tg+ At,
dt
where At is the stepsize.
e Correction Step: Use Newton’s iterations, i.e., for 1 =0,1,2,..., compute

Vig1 = v — [Hu(vp, 1) " H (v, t1) with vg =4

until ||[H (v, t1)] is very small. Then let u; = vy. When the iteration fails to converge,

%)

the Prediction Step will be repeat with At = —Aft

Step 2. Path following: Follow the paths from t = t1 to t = 1 using the prediction-
correction strategqy. Given (uy,tr), to find the next point (upyq1,tr1) on the solution path

of H(u,t) =0 as in (3.5), the following steps are employed:

du
o Prediction Step by the cubic Hermaite interpolation: Compute the tangent vector — to

dt
a solution path u(t) of H(u,t) = 0 at (up_1,tp—1) and (uy,ty) by solving the linear

system
du
Huy(ug-1,tk-1) = = —Hy(up—1,tp—1)
t=tp 1

d

for au and
du
Hu(ug, t) —| = —Hi(ug, 1)
t=tp,

d

for d_? Let a(t) be the cubic polynomial which interpolates u(t) and u'(t) at
t=tp

t=1tr_1 and t =t5. Namely,

U(tp—1) = up—1, u(ty) = ug

and

. du .
@ (tp_q) = pr , W (tg) = — :
t=tp 1 =t

Then U(tgy1) can be taken as the prediction of u(t) at tgyq, i.e., an approximation to

upy1. Here, tp 1 =ty + At with At being the stepsize.

e Correction Step: Use Newton’s iterations, i.e., for 1 =0,1,2,..., compute

1) -
Vip1 = v — [Hy(vj, tgq)] H(vi, tggq) with vy = (tgyq)

56

until ||[H(vy,tgo1)| is very small. Then let up 1 = vy. When the iteration fails to

converge, the Prediction Step will be repeat with At = %

Step 3. End game. When ty is very close to 1, the corresponding up should be very

close to a zero u* of P(u) = P(\,z). So Newton’s iterations

W) = o) — (PN P@®)), W = uy, k=01,...

will be used again to refine our final approximation @ to u*. If DP(u*) is nonsingular, then
@ will be a very good approximation of u* with multiplicity 1. If DP(u*) is singular, U is
either an isolated singular zero of P(u) with multiplicity I > 1 or in a positive dimensional
solution component of P(u) = 0. We use a strateqy suggested in Chapter VIII of [15] (see
also [29]) to determine whether @ is an isolated zero with multiplicity bigger than 1 or in a

positive dimensional solution component of P(u) = 0.

By using random complex numbers in the formulation of homotopy, with probability
one the solution paths do not intersect with each other or go to infinity for 0 < ¢ < 1
theoretically. Practically, however, two solution paths may become very close to each other
and the magnitude of some components of a solution path may become very large during
the procedure of path tracking. This causes various numerical difficulties such as missing
solutions, losing efficiency or stability. In our implementation of Algorithms 3.3.1, we use
the following strategies to address these issues.

When tracing two paths that are sufficiently close, it is possible for the path tracing
algorithm to jump from one path to the other and thus result in missing of zeros. To minimize
the chance for curve jumping and keep the efficiency, our First Strategy is: The stepsize At

in Step 1 and Step 2 of Algorithm 3.5.1 is chosen adaptively. Initially, At = 0.1/(n + 1),

57

where n + 1 is the number of unknown variables A, z1,...,zp in (1.12) or (1.9). Similar
to [15], if more than three steps of Newton iterations were required to converge within the
desired accuracy, At is halved. On the other hand, if several consecutive steps (the default
being 2) were not cut, At is doubled, up to a prescribed maximum value (the default being
0.1/(n+1)).

Although this adaptive approach can often reduce the possibility of curve jumping signif-
icantly, curve jumping can still occur in some occasions. Our Second Strategy is: To check if
there exist curve jumpings, all found solutions are stored in a binary search tree. Each time
when a new solution is found, we can quickly find (with time complexity O(log N), where N
is the number of solutions) whether there is any existing solution that is numerically iden-
tical to the new solution, that is, the difference between them is less than a threshold (the
default being 10_6). If two numerically identical solutions are detected and the condition
numbers of their Jacobian matrices are less than a threshold (the default being 1010), the
curve jumping has likely occurred. We then retrace the two associated curves with more
restricted parameters.

When the magnitude of some components of certain solution curve become very large
at tg € (0,1), tracing these paths may fail due to numerical instability. This issue can be
largely resolved by following paths in the projective space (see, for example, [29]). However,
empirically it is more time consuming to follow all paths in the projective space. In our
implementation of Algorithms 3.3.1, our Third Strategy is: To retrace solution curves in the
projective space only for those paths that are detected to have very large solution components.

For example, when m > m/, to trace a path in the projective space, we first homogenize

58

each polynomial equation of (2.26) in the variables A, x1,..., x5, namely

/ !/ / /
-1 m —1)(xm—m .)\xgn—m —1)

1

H\it) = 1—t)9y

! I o/ —m/!—
() L an:p6n 1)(37?{‘ mo_)\xg1 m 1)
nz + noxo

(AK) gm=1), _ Ax?_m/_l(me/_l)l

+t ' / , =0, (3.6)
xO(A(kz)mmfl)n o)\mgl—m _1(B:Em fl)n

a1r1 + agrg + - - - + apxn + bxg

where & = (zg, 1, . .. ,xn)T. Then follow the solution curve of (3.6) in the projective space.
Notice that in (3.6) if (A, Z) is a solution, so is (aA, az) for & € C\{0}. Thus along the path
we can always scale (A, Z) to keep each component’s magnitude in a suitable finite range.
To the best of our knowledge, Strategies 2 and 3 have not been used in other implemen-
tations of homotopy methods, although some packages may trace all curves in the projective

space.

3.4 Evaluating polynomials and derivatives

The prediction-correction process for following the homotopy paths of

H\z,t)= (1 —t)yG(\,x) + tP(\,x) =0

59

requires the computation of H (A, x,t), H¢(A, x,t), and the Jacobian matrix DH (X, z,t) =
[Hy\(\,z,t), Hp (A x,t)] for fixed t € [0,1]. What is essential in those evaluations is the
evaluation of multivariate polynomials and their partial derivatives. In HOM4PS [15], a
multivariate polynomial g(z1,--- ,xy) was evaluated via Horner’s rule for univariate poly-
nomials. The basic idea is to single out a variable, say x1, and consider g(z1,--- ,zy) as a
polynomial in x1 with coefficients in z9,--- ,x,. By the same approach, those coefficients,
as polynomials in one less variable, were evaluated by singling out another variable. This
may continue until the variables are exhausted.

In a single variable case, Horner’s rule has been proved to be optimal [19, 20], i.e., any
other algorithms to evaluate a polynomial must use at least as many operations (additions
and multiplications) as Horner’s method. However, in multivariate cases, it is not guaranteed.
As pointed out in [15], the same powers of some variables will be computed repeatedly in this
manner. To improve the efficiency, in HOM4PS 2.0, a table T of size n x M is precomputed
to store all possible powers of z;,7 = 1,--- ,n where M is the maximum power of all the

variables in the entire polynomial system. For example, for the following system [15]:

235(13 + 3w% + 5w§’) -1
P(x1,29,23) = Sx?xg + 2x?x§ + 4x%x§ -5 1> (3-7)

5x?x%x§ -7

the maximum degree of z1 is 6, x9 is 4, and x3 is 5, so M = 6. We establish Table T in
Table 3.1. With this table 7'(,7), the value of a monomial can be easily obtained. For
instance, the quantity of x?x%x% is T(1,6)«T(2,4)«T(3,5). Since this method mainly bases
on Table T, we call it Table-T method.

A big advantage of the Table-T method is that those powers of each variable involved

60

)

Table 3.1: Table T

in any monomial evaluations will only need to be computed once, no matter how often they

appear. However, some shortcomings exist:

. There are some redundant computations in Table 3.1. For example, if only the value of

w? is required, the value of x? and xil are not needed since :11:(13 = x‘;’ * x‘;’, x‘i’ = w% * X1,

0

and J}% — 21 *21. A little more extreme example is that if only z1% is in demand,

2 .3

instead of computing from 22, 2% until z1%9

, one may compute it in the following way:

P00 50, 50
0 = 2, 2
22— 13,12
1'13 = %12*1’,
212 = 64,6
20 = 23xa?,
3 = :102*37,

2 = Tk,

where only 8 middle values need to be computed in comparison to computing 99 middle

values previously.

61

2. The method can not take advantage of computing some higher degree monomial by the
product of two lower degree monomials. For instance, in the polynomial system (3.7),

the value of x?x%xg may set to be x?x% * xg where values of x?x% and xg are already

computed in the first two polynomials. Comparing to the old way, i.e., x?x%x% =

T(1,6) «T(2,4) «T(3,5), one less multiplication is required.

3. If the same monomial appears in different polynomials or in its Jacobian matrix, the re-
peated computation of this monomial is inevitable in the above approach. For example,

for the system

P(z1,292,23) = (p1(@1, 2, 23), p2(21, x2, 23), p3(21, T2, 73)) ,

where

p1 = x?x% + 3:1:?521 + 5x§ —1
py = Bx?x% + 21’?13% + 4x%x§ -5 (3.8)
p3 = 51’?3:%95% -7,

the monomial x?x% appears in both p; and po. And the monomial x?x% appears in
both p; and ?# = 18x?x% + 121:51%5. In the above approach, those quantities will be
1 3 ’

computed repeatedly.

To resolve those issues, the following new method has been developed.
Step 1. Collect all the monomials from the given polynomials and their derivatives,
and divide them into different groups according to their degrees. Since the coefficients of

the monomials are not fixed in following the homotopy paths, only variable parts of the

62

monomials are selected, their coefficients will be calculated separately. For the convenience

of future computations, each group is organized as a linked list with each node being a

monomial and the nodes are sorted alphabetically and also by the powers of each variable.

For duplicated monomials, they only need to appear once. This accounts for the problem

stated in 3 above. For example, the Jacobian matrix of (3.8) is

6x?x§ + 15x%x%
18x‘;’:17§l + 12x?x

5..4,.5
30x1x2x3

5,..3
12x1x2

12x(15:p% + 16x‘;’xg IOx?xg + QOx%mg

6,.3,..5
20x1x2x3

6,44
253:19523:3

5x?x§ + 25x§

(3.9)

Collecting all the monomials from (3.8) and (3.9) and putting them into different linked lists

based on their degrees yields following structure:

EREREREEEN e

Tl — X9 — T3
73
73

5.3 4.4 4.4

3

5

2923 — 2923 — 23}

2ag — 2925 — 293

773

6,4, 4 6.3

riwye}

4

11273

(3.10)

Here x1,x9, and x3 are also in the structure because they are the initial values needed to

63

evaluate the monomials.

Step 2. Starting from the monomials with the highest degree to degree 2, for each
monomial %, search all the nodes in the linked lists to find two lower degree monomials 2P
and z7 such that their product is equal to =%, i.e. a = 4 ~. Without loss of generality,
let us assume that || > |v|. Since L%J < |B| < ||, we only need to search the monomials
with degree between {LO‘[‘J and |a| — 1 in order to find a possible monomial ° with 8 < a.
For a := (aq,...,an) and B := (B1,...,0n), by 8 < a we mean §; < a; for i = 1,... n.

There are three cases:

Case 1: If there exist two monomials 7 and z7 in the linked lists such that 2% = 27 x 27.
Then label the relation in the structure. For example, as we can see from (3.10),
x?x%x% is the product of x?x%x% and x3, x?x%xél is the product of x?x% and x%, then

their relations will be marked in the structure as shown in the linked lists of degree 14

and 15 in Figure 3.1;

Case 2: If 27 is in the linked lists but 7 = 2® 7 is not in the lists, then add a new
monomial z7 into the linked lists and then label the relation. If there are several
choices for , choose the one with the largest degree. Take (3.10) for instance, x% is

a factor of x%xé but x% is not in the linked lists. In this case, add x% into the linked

list with degree 4;

Case 3: There is no monomial z satisfying the conditions. Let 8 = [«/2] and v = a — 3,
add z” and 27 into the linked lists and label the relation. If £ = 7, the monomial
only needs to be added once. For example, there is no monomial with degree between
5 and 9 which is a factor of x?x% in (3.10). Let 8 = [a/2] = [[604]/2] = [302], then

v = a — [is equal to £, we only need to add the monomial x‘%x% to the linked lists.

64

Similarly, in order to evaluate mi’x% , two lower degree monomials xi’x% and x%x% are

added into the linked lists.

Applying the above rules to (3.10), results in Figure 3.1.

Step 3. Evaluate monomials from the lowest degree to the highest degree in the linked
lists based on the evaluation diagram obtained in Step 2 (See, for example, Figure 3.1). Since
our linked lists is built according to the criteria that every monomial of higher degree can be
evaluated by computing the product of two monomials of lower degrees in Step 2, the values
of all the monomials can be evaluated in this step.

Step 4. Compute the values of the polynomials and their derivatives by using the

monomials’ values. For this goal, there are two approaches.

On-line evaluation: we maintain a mapping between the monomials in the polynomials and
their derivatives with the ones in the linked lists in the memory. To get the value of a
polynomial, we replace the monomial with the values in the linked lists first, then sum

up the values to obtain the polynomial’s value;

Off-line evaluation: we create a new function which contains all the evaluation rules in the
hard disk. So if we want to evaluate a polynomial system and its Jacobian matrix, all
we need to do is to call that new function with the value of x and coefficients as inputs.

See Figure 3.2 for an example of the off-line evaluation function.

The reason why we need two different approaches is that normally off-line evaluation is much
more efficient than on-line evaluation. However, some languages, like C+4 and Fortran, do
not support off-line evaluation, i.e. one cannot dynamically create a new function and require

the program to call it. For these languages, in order to use the new created function stored

65

—+ I —+ ITg —r I3

I
ey

a0 | N8 whee e
S e e Y)
* - =} - *
L] L]

66

Figure 3.1: An example of the evaluation graph

I - I - o
Welms
e e |caen e e |enen L5 =i
TR s e | TEA s 2 | s e R L=] 5
e P | 5 [| i = |2 i = 5 g
= : u] e] &] .. i L7 v Ve
¥ ¥ ¥ ¥ ¥ % B E
11 1 L 1 L 1 1
T T 10 | p———— |
LT)
el o o [Y L L e [[l L L] i el
SR SRR TR E e e = PR
— — = e — = e || = B Enell fnek] i BT
o by Ao I EET i IR S i i IR el
0 el P T = T | T ¥ ® o= R TE o= R
177 ——_ s = L 1oL I I | [
o5 % % ® ®
| [|
T T T T T T ——
.. | — ‘.. T T T 1T 1T L ¥
e
g o e e o S A o B Ol U e e B [i g 7
S oo e et ol | A I o el B ol el IR E ol ool =0 ol il =R el IE=E el Bl) i ¥
b : : > | - * Lo 1y : L | - | | : - | | - * L | * | | ® D °
=] 7 [} X
—...x..th I - * .x.hp * .x.hp ¥ x.hF * 1l L ¥ 1 L ¥ I * i

—
—
—
—
—
—
0] —
—
—

findFastEval.m % | psolvem

EDITOR PUBLISH

|| tmpPDPEval.m #| tmpPsolveEval.m® x

(V=R SR D= T I S L LS T)

Lo SR I R S S N SN U L R L I LU LR LR LI LR LI LN T T 5 R o T N T T I S S I L e e R e e e e
M =] gn A = W R O W -] gy R W RO O W0 0] g R e W RO O W0 -] g R W RO

kunction [Jacok, polyv] = tmpPDPFEval (pCoef, x)

m = zeros (29, 1)

mil) = x(1)*=x(1):
mi2) = x(2)*x(2):
mi3) = x(2)*x(3):

mid) = x(3)*x(3):

miS) = m(l)*=x(1):

mie) = m(2)*x (1)

mi{7) = m({1l)*mi(l):

mig) = m(&)*x(2):

mi%3) = m(2)*m(2);

mi{l0) = m(2)*m(3):

mi{ll) = m(4)*m(4):

mi{l2) = m(l)*m(5):

mi{l3) = m(11l)*x(3):

mi{l4) = m(7)*m(l):

mi{l5) = m(8)*m(7T):

milé) = m(7)*m(9):

mi{l7) = m(9)*m(ll);

mi{l8) = m(11l)*m(10);

mi{l9) = m(1l2)*m(g):

mi{20) = m(12)*m(9):

mi{21l) = m(13)*m(9):

mi22) = m(1l4)*m(9):

mi23) = m(14)*m(11);

mi24) = m(13)*m(12);

mi{25) = m(13)*m(14);

mi2&6) = m(22)*m(11);

mi27) = m(19)*m(13);

m(28) = m(20)*m(13);

mi29) = m(22)*m(13);

polyv = zeros(3,1);

polyv(l) = pCoef(l)+pCoef(2)*m(20)+pCoef(3)*m(13)+pCoef(4)*m(25);

polyv(2) = pCoef(5)+pCoefi6)*m(22)+pCoef(7)*m(25)+pCoef(8)*m(21)

polyv(3) = pCoef(9)4pCosf (10)*m(29);

jacok = zeros(3):

jacok(l,1) = pCoef(2)*5*m(16) + pCoef(4)*6*m(24);

jacok(l,2) = pCoef(2)*4*m(15)

jacok(1,3) = pCoef(3)*5*m(11l) + pCoef(4)*5*m(23);
- jacok(2,1) = pCoef(6)*6*m(20) + pCoef(7)*6*m(24);
- jacok(2,2) = pCoef(6)*4*m(19) + pCoef(8)*4*m(18);

jacok(2,3) = pCoef(7)*5*m(23) + pCoef(8)*5*m(17);

jacok(3,1) = pCoef(l10)*&6*m(28)

jacok(3,2) = pCoef (10)*4*m(27)

jacok(3,3) = pCoef(10)*5*m(26&)

end

Figure 3.2: An example of the off-line evaluation function

67

in a separate file, the file should be complied before we can use it. In this case, one prefers

an on-line evaluation.

68

Chapter 4

Numerical results

In this section, we present some numerical results to show the effectiveness and efficiency of
Algorithm 3.1.1. The numerical experiments were carried out using MATLAB 2013a, on a
Thinkpad T400 laptop computer with an Intel(R) dual core CPU at 2.80GHz and 2GB of

RAM, running the Windows 7 operating system.

4.1 The efficiency of the new evaluation method

As discussed in Section 3.4, the most time-consuming procedure in Algorithm 3.1.1 is in fact
evaluation of polynomials and their derivatives and new approaches have been proposed to

execute these evaluations. In this section, we compare the efficiency of our new approaches

with the Table-T method used in HOM4PS 2.0.

EXAMPLE 4.1.1. In this example, we intend to compare the efficiency of the on-line
and off-line approaches described in Section 3.4 with the Table-T method. All these three
approaches are used in Step 2 of Algorithm 3.1.1 compute B-eigenpairs of a tensor A, where
Aecmnl ge cl™'n] are generic tensors with m # m’/. Each tensor was generated using
randn(n,--- ,n) +i* randn(n,--- ,n) in MATLAB. The numerical results are reported in
Table 4.1.

As it shows, the on-line and off-line approaches are considerably faster than Table-T

method, and the speed-up ratio increases as the number of eigenpairs becomes bigger. The

69

Number | Table-T | On-line approach | Off-line approach | Speed-up
(m,m’,n) of method | CPU | Speed-up | CPU | Speed-up | ratio of

eigenpairs | time(s) | time(s) ratio time(s) ratio off /on-line
(3,2,5) 31 387 23 16.8 1.2 32.3 1.9
(4,2,5) 121 605.0 21.8 27.8 12.3 49.2 1.8
(4,3,5) 211 735.1 24.4 30.1 10.1 72.8 2.4
(5,6,4) 369 1746.0 64.6 27.0 22.5 77.6 2.9
(5,3,5) 496 3215.2 95.1 33.8 37.0 86.9 2.6

Table 4.1: Comparison of on-line and off-line approaches with Table-T method

off-line approach is about 2-3 times faster than the on-line approach as tested in MATLAB.

4.2 Computing complex tensor eigenpairs

We compare the performance of Algorithm 3.1.1 with that of Algorithm 3.2 proposed in [8].
Algorithm 3.2 uses polyhedral homotopy methods. It has been implemented as a function
teneig in the tensor eigenvalue package TenEigl.1 ([8]). The function teneig is based on
a sophisticated polyhedral homotopy polynomial system solver PSOLVE ([30]). Numerical
results in [8] show that teneig is significantly more efficient than the popular NSolve in

Mathematica for computing generalized eigenpairs defined in (1.9).

EXAMPLE 4.2.1. We intend to find all isolated B-eigenpairs of a tensor A, where A €
(C[m’n],B € (C[m/’n] are generic tensors with m # m’. Each tensor was generated using
randn(n,--- ,n) +i*randn(n,--- ,n) in MATLAB.

The numerical results for m > m’ and m < m/ are reported in Table 4.2 and Table 4.3
respectively. In these tables;, K(m,m’ n) (defined in (3.2)) represents the theoretical bound
of the number of equivalence classes of isolated B-eigenpairs of A when m # m/. For
generic tensors A and B, this is the exact number of equivalence classes of B-eigenpairs of

A. Note that by Remark 2.1 in [8] and Algorithm 3.1.1, the total number of eigenpairs is

70

m/K(m,m’,n). Let N denote the number of equivalence classes of B-eigenpairs found by

Algorithm 3.1.1 or teneig in the tables.

(m,m’,n) | K(m,m' n) Method N | CPU time (s)
(3.2.7) 197 Algortletnh;nig&l.l 1;; 156?1
(4,2, 6) 364 Algoiletnhi; = ggi 33@
(4,3,5) 211 Algoiletnhi;’l'l ;ﬂ igi
(5,4,5) 781 Algoiletnhemi; e 2%
(6.5,4) 369 Algoiletnhi; e
o | m [l

Table 4.2: Comparison of Algorithm 3.1.1 with teneig for m > m/

(m,m',n) | K(m,m',n) Method N | CPU time (s)
sh | [
(3,5,5) 496 Algo?etnhi; 7
(4.5,4) 7y e e 0%
(4.5.5) 81 Algoiletnh;ni g3.1.1 ;gi 17024-.93
v | o e
(7,8,3) 27—

Table 4.3: Comparison of Algorithm 3.1.1 with teneig for m < m/

EXAMPLE 4.2.2. Consider finding all E-eigenpairs of a generic tensor A. Tensor A €
clmn] was generated using randn(n, - - - ,n)+ixrandn(n,--- ;n)in MATLAB. In this case,

tensor B is the n x n identity matrix.

71

The numerical results are reported in Table 4.4. In this table, K(m,2,n) (defined in
(3.2)) represents the bound of the number of equivalence classes of isolated E-eigenpairs of
A. Since tensor A is generic, it has exactly K(m,2,n) equivalence classes of E-eigenpairs
(see, [5]). N denotes the number of equivalence classes of E-eigenpairs found by Algorithm

3.1.1 or teneig.

(m,n) | K(m,2,n) Method N | CPU time (s)
(3,9) | 511 Algortletffis - iﬂ igé
(3,10) | 1023 Algortletffis i T
(4,7) | 1003 Algortie?:i; BTy
(4,8) | 3280 Algortietf:i; = 3328 222?
(5.5) 341 Algortlet;lemig& 1.1 gjﬁ ;5132
(5,6) | 1365 Algortlet;lemi; 7S
6.5) 81 Algortlet;zni gs. 1.1 ;21 gg:;
6.6) 2006 Algortletlilemi gs. 1.1 2382 gigjg
(7,4) 259 Algortlet;l:is - ;gg ;gg
(7,5) | 1555 Algortletxilemi; R

Table 4.4: Comparison of Algorithm 3.1.1 with teneig for computing E-eigenpairs

From Tables 1-3, while both Algorithm 3.1.1 and teneig find all B-eigenpairs of a generic
tensor A, Algorithm 3.1.1 is more efficient in terms of CPU time. We believe the efficiency
of Algorithm 3.1.1 is achieved because of its employment of the linear homotopy (3.1) with
simple starting system (2.23) or (2.39). The algorithm teneig, on the other hand, uses a

polyhedral homotopy in which mixed volume computation is required. The efficiency along

72

with easy implementation makes Algorithm 3.1.1 a competitive method for computing tensor

eigenpairs when m # m/.

4.3 Computing real tensor eigenpairs

Sometimes, only real eigenpairs are of interest. As suggested in [8], one can compute all the
complex eigenpairs first and use different approaches to extract real eigenpairs from complex
eigenpairs. Here we use Algorithm 3.1.1 to compute complex eigenpairs and follow the same
procedure indicated in Algorithm 4.1 in [8] to acquire real eigenpairs from these complex
eigenpairs.

For computing all real eigenvalues of a symmetric tensor the only available methods at
this time are Algorithm 3.6 in [9] and Algorithm 4.1 in [8]. In the following example, we

compare the performance of our methods with theirs.

EXAMPLE 4.3.1. Consider the symmetric tensor A € RI4" (Example 4.16 in [9]) in the

polynomial form

4 4

Art = (ay = a)t ot (a1 = o) (e~ 2g) e (22—)

ot (Tp-1 — xn)4-

Shown in Table 4.5, our new algorithm obtained all the Z-eigenvalues found by Algorithm
3.6 in [9] and Algorithm 4.1 in [8] for different n. Remarkably, when n = 8,9, 10, our new
algorithm and Algorithm 4.1 in [8] can find all the Z-eigenvalues in a reasonable amount of
time, but [9] reports that Algorithm 3.6 can only find the first three largest Z-eigenvalues.

The CPU times used by these three algorithms are listed in the table. (The CPU times

73

by Algorithm 3.6 ([9]) are from [9]!.) The corresponding Z-eigenvectors are not displayed.
Apparently, as it shows, our new algorithm leads to a large speed-up, ranging up to 239s, over

Algorithm 3.6 in [9] on all the systems, especially for large ones. Compared to Algorithm 4.1

in [8], the new algorithm is about 1.4 times faster.

CPU time(s)
n A Alg 3.6 | Alg4.1 | New
(1) ([8]) | Alg

4 | 0.0000 4.0000 5.0000 5.3333 3.6 1.7 1.1

5 | 0.0000, 4.1667, 4.2500, 5.5000, 6.2500 274.5 5.4 4.0

6 | 0.0000, 4.0000, 4.5000, 6.0000, 7.2000 280.2 15.5 11.8
0.0000, 4.0833, 4.1667, 4.7500, 4.8846,

7 4.9000, 6.5000, 8.1667 9565. 58.3 401
0.0000, 4.0000, 4.2667, 4.2727, 4.3333, “

8 5.0000, 5.2609, 5.3333, 7.0000, 9.1429 938.2 2441) 1653
0.0000, 4.0500, 4.1250, 4.5000, 5.2500, «

) 5.6250, 5.7857, 7.5000, 10.1250 738 788.0 | 544.0
0.0000, 4.0000, 4.1667, 4.1818, 4.2500,

10 | 4.6667, 4.7500, 4.7593, 4.7619, 5.5000, | 15310.5* | 2665.6 | 1893.6
5.9808, 6.2500, 8.0000, 11.1111

Table 4.5: Z-eigenvalues of the tensor in Example 4.3.1 (* denotes that the CPU time used
by Algorithm 3.6 ([9]) when it finds the first three largest Z-eigenvalues)

11t should be cautious when comparing the CPU times used by the two methods because of different
computers were used.

74

BIBLIOGRAPHY

5

1]

[10]

[11]

BIBLIOGRAPHY

D.L. Bates, J.D. Hauenstein, A.J. Sommese and C.W. Wampler, Numerically Solving
Polynomial Systems with Bertini, Society for Industrial and Applied Mathematics,
Philadelphia, 2013,

D. N. Bernstein, The number of the roots of a system of equations, Funct. Anal. Appl.,
1975, 9:183-185.

J. Cooper and A. Duttle, Spectra of uniform hypergraphs, Linear Algebra and its
Applications, 2012, 436: 3268-3292.

D. A. Cox, J. Little, and D. O’Shea, Using Algebraic Geometry, 2nd ed., Springer-
Verlag, New York, NY, 2005.

D. Cartwright and B. Sturmfels, The number of eigenvalues of a tensor, Linear Algebra
and its Applications, 2013, 438: 942-952.

K.C. Chang, K. Pearson and T. Zhang, On eigenvalues of real symmetric tensors,
Journal of Mathematical Analysis and Applications, 2009, 350: 416-422.

K.C. Chang, L. Qi, and T. Zhang, A survey of the spectral theory of nonnegative
tensors, Numerical Linear Algebra with Applications, 2013, 20: 891-912.

L. Chen, L. Han and L. Zhou, Computing tensor eigenvalues via homotopy methods,
SIAM Journal on Matriz Analysis and Applications, 2016, 37: 290-319.

C. Cui, Y.-H. Dai and J. Nie, All real eigenvalues of symmetric tensors, SIAM Journal
on Matriz Analysis and Applications, 2014, 35: 1582-1601.

S. Hu, Li. Qi, and B. Zhang, The geometric measure of entanglement of pure
states with nonnegative amplitudes and the spectral theory of nonnegative tensors,
arXiv:1203.3675, 2012.

T. Kolda and B. Bader, Tensor decompositions and applications, SIAM Review, 2009,
51(3): 455-500.

76

[12]

[15]

[19]

[20]

[21]

[22]

[23]

[24]

T.G. Kolda and J.R. Mayo, Shifted power method for computing tensor eigenpairs,
SIAM Journal on Matriz Analysis and Applications, 2011, 32: 1095-1124.

T.Y. Li, Solving polynomial systems by the homotopy continuation method, Handbook
of Numerical Analysis, XI, 2003, 209-304.

L.-H. Lim, Singular values and eigenvalues of tensors: a variational approach, Proceed-
ings of the IEEE International Workshop on Computational Advances in Multi-Sensor
Adaptive Processing (CAMSAP’05), 2005, 1: 129-132.

T.L. Lee, T.Y. Li, and C.H. Tsai, Hom4PS-2.0, a software package for solving poly-
nomial systems by the polyhedral homotopy continuation method, Computing, 2008,
83:109-133.

T.Y. Li and X. Wang, The BKK root count in C", Math. Comp., 1996, 65: 1477-1484.

M. Narasimhan, Principles of Continuum Mechanics, John Wiley & Sons, New York,
1993.

Q. Ni, L. Qi and F. Wang, An eigenvalue method for testing positive definiteness of a
multivariate form, Automatic Control, IEEE Transactions on, 2008, 53: 1096-1197.

A. M. Ostrowski, On two problems in abstract algebra connected with Horner’s rule,
Studies in Math. Mech., 1954, 40-48.

Y. Ja Pan, On means of calculating values of polynomials, Russian Math. Surveys,
1966, 21: 105-136.

L. Qi, Eigenvalues of a real supersymmetric tensor, Journal of Symbolic Computation,
2005, 40: 1302-1324.

L. Qi, W. Sun, and Y. Wang, Numerical multilinear algebra and its applications,
Frontiers of Mathematics in China, 2007, 2: 501-526.

L. Qi and K.L. Teo, Multivariate polynomial minimization and its application in signal
processing, Journal of Global Optim., 2003, 26: 419-433.

L. Qi, Y. Wang, and E.X. Wu, D-eigenvalues of diffusion kurtosis tensors, Journal of
Computational and Applied Mathematics, 2008, 221: 150-157.

7

[25] L. Qi, G. Yu, and E.X. Wu, Higher order positive semi-definite diffusion tensor imaging,
SIAM Journal on Imaging Sciences, 2010, 3: 416-433.

[26] L. Qi, G. Yu, and Y. Xu, Nonnegative diffusion orientation distribution function,
Journal of Mathematical Imaging and Vision, 2013, 45: 103-113.

[27) W. Rudin, Principles of Mathematical Analysis, 3rd edition, McGraw-Hill, New York,
2006.

[28] V. De Silva and L. Lim, Tensor rank and the ill-posedness of the best low-rank ap-
proximation problem, SIAM J. Matriz Anal. Appl., 2008, 30: 1084-1127.

[29] A.J. Sommese and W.W. Wampler, The Numerical Solution of Systems of Polynomials
Arising in Engineering And Science, World Scientific Pub Co Inc, 2005.

[30] Z. Zeng and T.Y. Li, NACLab, A Matlab Toolbox for Numerical Algebraic Computa-
tion, ACM Communications in Computer Algebra, 2013, 47: 170-173.

78

