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ABSTRACT

A LINEAR HOMOTOPY METHOD FOR COMPUTING GENERALIZED
TENSOR EIGENPAIRS

By

Liping Chen

A tensor is a multidimensional array. In general, an mth-order and n-dimensional tensor

can be indexed as A = (Ai1i2...im), where Ai1i2...im ∈ C for 1 ≤ i1, i2, . . . , im ≤ n. Let A be

an mth order n-dimensional tensor and B be an m′th order n-dimensional tensor. A scalar

λ ∈ C and a vector x ∈ Cn\{0} is called a generalized B-eigenpair of A if Axm−1 = λBxm′−1

with Bxm′ = 1 when m 6= m′. Different choices of B yield different versions of the tensor

eigenvalue problem.

As one can see, computing tensor eigenpairs amounts to solving a polynomial system.

To find all solutions of a polynomial system, the homotopy continuation methods are very

useful in terms of computational cost and storage space. By taking advantage of the solu-

tion structure of the tensor eigenproblem, two easy-to-implement linear homotopy methods

which follow the optimal number of paths will be proposed to solve the generalized tensor

eigenproblem when m 6= m′. With proper implementation, these methods can find all equiv-

alence classes of isolated eigenpairs. A MATLAB software package TenEig 2.0 has been

developed to implement these methods. Numerical results are provided to show its efficiency

and effectiveness.
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Chapter 1

Introduction

1.1 Tensor

The tensor considered here is a multidimensional array, instead of the tensor in physics and

engineering [17] or tensor fields in mathematics [28].

A first-order, n-dimensional tensor is an n-vector. A second-order, n-dimensional tensor

is an n× n matrix. In general, an m-th order n-dimensional tensor can be indexed as

A = (Ai1i2...im),

where Ai1i2...im ∈ C for 1 ≤ i1, i2, . . . , im ≤ n. We denote the set of all mth-order, n-

dimensional tensors on C by C[m,n]. See Figure 1.1 for a third-order two-dimensional tensor.

a111 a112

a121 a122

a211 a212

a221 a222

Figure 1.1: A third-order, two-dimensional tensor

A tensor A is symmetric if its entries are invariant under permutation. For example, a
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third-order tensor A ∈ C[3,n] is symmetric if

Aijk = Aikj = Ajik = Ajki = Akij = Akji

for all i, j, k = 1, . . . , n.

A tensor A ∈ C[m,n] is called a diagonal tensor if Aii...i 6= 0 and all other entries are zero.

In particular, a diagonal tensor with ones along the diagonal is called an identity tensor.

1.2 Tensor eigenvalue and eigenvector problems

Let A ∈ C[m,n], x := (x1, . . . , xn)T ∈ Cn, and x[m] := (xm1 , x
m
2 , . . . , x

m
n )T . The tensor A

induces an mth-degree homogeneous polynomial given by

Axm :=
n∑

i1,··· ,im=1

Ai1···imxi1 · · ·xim

in x1, . . . , xn. By the tensor product [23], Axm−1 denotes an n-vector whose jth entry is

(Axm−1)j =
n∑

i2,··· ,im=1

Aj,i2···imxi2 · · ·xim .

The following notion of eigenpairs for complex tensors was introduced by Qi [21] in 2005.

DEFINITION 1.2.1. Suppose A ∈ C[m,n], where m ≥ 2 and n ≥ 1. We call a number

λ ∈ C an eigenvalue of A if it and a nonzero vector x ∈ Cn are solutions of the following

homogeneous polynomial equation:

Axm−1 = λx[m−1], (1.1)
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and called the solution x an eigenvector of A associated with the eigenvalue λ.

At the same time, Lim [14] proposed a theory of eigenvalues, eigenvectors, singular values,

and singular vectors for tensors from a variational approach. Since then, tensor eigenvalues

have found applications in automatic control, diffusion tensor imaging, image authenticity

verification, spectral hypergraph theory, and quantum entanglement, etc., see, for example,

[3, 7, 10, 18, 22, 24, 25, 26].

In the following an application of the tensor eigenvalue in automatic control is described

[18].

Consider an autonomous nonlinear dynamical system

ẋ = g(x),

where x(t) ∈ D ⊂ Rn is the system state vector and g : D → Rn is continuous. It

is well known that Lyapunovs method can be used to determine whether this system is

asymptotically stable. More specifically, if a multivariate positive definite polynomial f(x)

can be found such that

∇f(x)T g(x) < 0, ∀x ∈ Rn, x 6= 0

then the system ẋ = g(x) is asymptotically stable. Here we call f(x) positive definite if

f(x) > 0, ∀x ∈ Rn, x 6= 0. (1.2)

To find a proper multivariate positive definite polynomial, let us consider the positive defi-
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niteness of an even-degree homogeneous polynomial given by

f(x) =
n∑

i1,...,im=1

ai1...imxi1 · · ·xim , (1.3)

where m is even and ai1...im ’s are the entries of a symmetric tensor A ∈ R[m,n]. Let

Axm := f(x).

By (1.2), the positive definiteness of f(x) becomes

Axm > 0, ∀x ∈ Rn, x 6= 0. (1.4)

It is equivalent to the positiveness of

min{Axm
∣∣ ‖x‖mm = 1}, (1.5)

where ‖x‖mm = xm1 + · · ·+ xmn . To use the method of Lagrange multiplier, let

L(λ, x) := Axm − λ(‖x‖mm − 1).

Then the critical point must satisfy

∇xL(λ, x) = 0, ∇λL(λ, x) = 0. (1.6)
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When A is symmetric, it was proved in [12]

∇x(Axm) = mAxm−1.

Then (1.6) implies

mAxm−1 − λmx[m−1] = 0,

‖x‖mm − 1 = 0,

or,

Axm−1 − λx[m−1] = 0, (1.7)

‖x‖mm = 1,

which is the eigenvalue problem defined in (1.1) with normalization condition ‖x‖mm = 1.

Multiplying both sides of (1.7) by xT from the left yields

xTAxm−1 − λxTx[m−1] = 0.

Clearly, xTAxm−1 = Axm and xTx[m−1] = ‖x‖mm. It follows that

λ = Axm.

Hence (1.5) can be replaced by

min{λ
∣∣ ‖x‖mm = 1}.
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Consequently f(x) in (1.3) is positive definite if the smallest real eigenvalue of the corre-

sponding tensor A is positive.

1.3 Generalized tensor eigenvalue and eigenvector prob-

lems

Various definitions of eigenvalues for tensors have been proposed in the literature, including

E-eigenvalues and Qi-eigenvalues in the complex field, and Z-eigenvalues, H-eigenvalues, and

D-eigenvalues in the real field [14, 21, 24]. In [6], Chang, Pearson, and Zhang introduced

a notion of generalized eigenvalues for tensors that unifies several types of eigenvalues. Re-

cently this definition has been further generalized by Cui, Dai, and Nie [9]. In this section,

generalized tensor eigenvalue problems will be introduced.

Let A ∈ C[m,n] and x := (x1, . . . , xn)T ∈ Cn. For 1 ≤ k ≤ m, let A(k)xm−1 be an

n-vector whose jth entry is

(A(k)xm−1)j =
n∑

i1,··· ,ik−1,ik+1,··· ,im=1

Ai1···ik−1jik+1···imxi1 · · ·xik−1
xik+1

· · ·xim .

When k = 1, A(1)xm−1 is the Axm−1 defined in the previous section.

The notion of mode-k generalized eigenpairs for complex tensors was defined by Chen,

Han and Zhou [8] as follows.

DEFINITION 1.3.1. Suppose A ∈ C[m,n] and B ∈ C[m′,n], where m ≥ 2, m′ ≥ 2, n ≥ 1.

Assume Bxm′ as a function of x is not identically zero. For 1 ≤ k ≤ m, (λ, x) ∈ C×(Cn\{0})

is a mode-k B-eigenpair of A if
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• when m = m′,

A(k)xm−1 = λBxm−1, (1.8)

• when m 6= m′,

A(k)xm−1 = λBxm
′−1, Bxm

′
= 1, (1.9)

For suitable A, m′ and B, many different types of tensor eigenpairs defined in the liter-

ature were contained in (1.8) or (1.9). For instance,

• For A ∈ R[m,n], an E-eigenpair [14, 21] is defined as a pair (λ, x) ∈ C× Cn\{0} such

that

Axm−1 = λx, xTx = 1. (1.10)

This is a mode-1 B-eigenpair with m′ = 2 and B being the n × n identity matrix. A

real E-eigenpair is called a Z-eigenpair [14, 21].

• For A ∈ R[m,n], let D ∈ Rn×n be a symmetric positive definite matrix, (λ, x) ∈

R× Rn\{0} is called a D-eigenpair [24] if

Axm−1 = λDx, xTDx = 1.

This is a real mode-1 B-eigenpair with m′ = 2 and B = D.

• For A ∈ R[m,n], a Qi-eigenpair [21] is defined as a pair (λ, x) ∈ C×Cn\{0} such that

Axm−1 = λx[m−1], (1.11)

where x[m−1] := (xm−1
1 , xm−1

2 , . . . , xm−1
n )T . This is a mode-1 B-eigenpair withm′ = m
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and B being the identity tensor. A real Qi-eigenpair is called an H-eigenpair [21].

• For A ∈ R[m,n], a CPZ-eigenpair [6] is defined as a pair (λ, x) ∈ C×Cn\{0} such that

Axm−1 = λBxm−1.

This is a mode-1 B-eigenpair with m = m′.

• For symmetric tensors A ∈ R[m,n] and B ∈ R[m′,n], a CDN-eigenpair [9] is defined as

a pair (λ, x) ∈ C× Cn\{0} such that

Axm−1 = λBxm
′−1, Bxm

′
= 1.

This is a mode-1 B-eigenpair with A and B being symmetric.

1.4 Problem formulation

Let A ∈ C[m,n] and B ∈ C[m′,n]. As one can see from Definition 1.3.1, computing mode-k

B-eigenpairs of A amounts to solving A(k)xm−1 = λBxm′−1 followed by normalizing x for

Bxm′ = 1 when m 6= m′.

As discussed in Remark 2.1 in [8], the solution set of A(k)xm−1 = λBxm′−1 consists of

different equivalence classes. If (λ, x) is a solution, we denote its corresponding equivalence

class by

[(λ, x)] := {(λ′, x′) |λ′ = tm−m
′
λ, x′ = tx, t ∈ C\{0}}.

When m 6= m′, imposing the normalization condition Bxm′ = 1, the problem (1.9) has m′

eigenpairs from each equivalence class. According to this observation, the problem of solving
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the eigenvalue problem (1.9) can be converted to first solving the following polynomial system

P (λ, x) =

A(k)xm−1 − λBxm′−1

ηTx+ η0

 = 0, (1.12)

where η ∈ Cn and η0 ∈ C are randomly chosen. When m 6= m′, for each solution of (1.12)

obtained we normalize it for an eigenpair (λ∗, x∗) satisfying (1.9), then find m′ equivalent

eigenpairs (λ′, x′) by setting λ′ = tm−m
′
λ∗ and x′ = tx∗ with t being a root of tm

′
= 1.

Note that (1.12) is a polynomial system. To find all solutions of a polynomial system,

the homotopy continuation methods are very efficient in terms of computational cost and

storage space (see, for example, [13], [29]). In [8], Chen, Han and Zhou proposed two

homotopy continuation methods (Algorithms 3.1 and 3.2 in [8]) for computing all eigenpairs

of a general real or complex tensor. Specifically, while Algorithm 3.1 is a linear homotopy

method which handles the case m = m′; Algorithm 3.2, which handles the case m 6= m′, is

based on a polyhedral homotopy method.

The most time consuming part of homotopy continuation methods is the path following

step. The polyhedral homotopy methods have the advantage that in certain situations

they can follow much fewer paths than continuation methods using other homotopies, such

as the total degree homotopy (see, for example, [13]). As indicated in [1], however, the

polyhedral homotopy methods involve a highly complicated combinatorial process for finding

the maximal root count for a given sparse structure and setting up a compatible homotopy.

This makes the implementation of a polyhedral homotopy method very sophisticated.

In this article, a linear homotopy method will be proposed to solve (1.12) when m 6= m′.

It is shown that the method finds all isolated eigenpairs of problem (1.9). This method is
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easy to implement. Moreover, the method follows an optimal number of paths by fully using

the solution structure of problem (1.9), making it an efficient and competitive homotopy

method for computing eigenpairs of general tensors.

This dissertation is organized as follows. We first describe the linear homotopy methods,

showing these methods can find all isolated eigenpairs in Chapter 2. A detailed algorithm

with some implementation tips will be given in Chapter 3. Finally, we give some numerical

results in Chapter 4.
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Chapter 2

Construct a linear homotopy to

compute generalized tensor eigenpairs

Let A ∈ C[m,n] and B ∈ C[m′,n]. As discussed in Section 1.4, the problem of computing

mode-k B-eigenpairs in (1.9) is equivalent to solving (1.12), and when m 6= m′, we normalize

it to satisfy Bxm′ = 1. In this chapter, we will construct two linear homotopy methods

to compute all isolated zeros of the polynomial system (1.12) for m > m′ and m < m′

respectively, and thereby compute all the eigenpairs.

2.1 Preliminaries

The following two lemmas about coefficient-parameter homotopy play an essential role in

our construction.

LEMMA 2.1.1 (Theorem 7.1.1 in [29]). Let F (z; c) be a system of polynomials in n variables

and l parameters,

F (z; c) : Cn × Cl → Cn,

that is, F (z; c) = (f1(z; c), . . . , fn(z; c))T and each fi(z; c) is polynomial in both z and c.

11



Furthermore, let N (c) denote the number of nonsingular solutions as a function of c:

N (c) := #

{
z ∈ Cn

∣∣∣F (z; c) = 0, det

(
∂F

∂z
(z; c)

)
6= 0

}
.

Then

(1) N (c) is finite, and it is the same, say NF , for almost all c ∈ Cl.

(2) for all c ∈ Cl, N (c) ≤ NF .

Here is an example to illustrate Lemma 2.1.1. Let F (z1; q1, q2, q3) : C × C3 → C be

defined as

F (z1; q1, q2, q3) := q1z
2
1 + q2z1 + q3,

which is a polynomial both in the variable z1 and in the parameters q1, q2, q3. By the

definition of N (q), we have

N (q) = #

{
z1 ∈ C

∣∣∣F := q1z
2
1 + q2z1 + q3 = 0,

∂F

∂z1
:= 2q1z1 + q2 6= 0

}
.

Therefore, q1z
2
1 + q2z1 + q3 = 0 always has two solutions

z1 =
−q2 +

√
q2
2 − 4q1q3

2q1
or
−q2 −

√
q2
2 − 4q1q3

2q1

as long as q1 6= 0. And these solutions will satisfy 2q1z1 + q2 6= 0 as long as q2
2 − 4q1q3 6= 0.

Denote

Qs := {(q1, q2, q3) | q1 = 0 or q2
2 − 4q1q3 = 0}.

Then for any q := (q1, q2, q3) ∈ C3\Qs, N (q) is equal to 2. Note that Qs has measure 0 in
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C3. In this sense, we say for almost all q ∈ C3, N (q) is equal to the same number 2, which

is denoted by NF in Lemma 2.1.1. Moreover, for any q := (q1, q2, q3) ∈ Qs, we have the

following three cases:

(i). If q1 = 0 but q2
2 − 4q1q3 = q2

2 6= 0, then F = q2z1 + q3 is linear. So N (q) = 1.

(ii). If q1 6= 0 but q2
2−4q1q3 = 0, then F = 0 has no nonsingular solutions. So N (q) = 0.

(iii). If q1 = 0 and q2
2 − 4q1q3 = q2

2 = 0, then F = q3. When q3 6= 0, F = 0 has no

solutions. When q3 = 0, F = 0 has no nonsingular solutions. So N (q) = 0 in this case.

From the above discussion, we conclude that N (q) is equal to NF for almost all q ∈ C3

and N (q) ≤ NF for all q ∈ C3.

LEMMA 2.1.2 (Theorem 8.3.1 in [29]). Let F (z; c), N (c) and NF be as in Lemma 2.1.1.

Suppose F (z; c) is linear in c. Let f(z) = F (z; c1) for some given c1 ∈ Cl. If g(z) = F (z; c0)

for some c0 ∈ Cl has NF nonsingular zeros, then the linear homotopy

h(z, t) := γ(1− t)g(z) + tf(z) = 0

has NF nonsingular solution paths on t ∈ [0, 1) whose endpoints as t→ 1 include all of the

isolated roots of f(z) = 0 in Cn. Here γ is a randomly chosen nonzero complex number of

absolute value 1.

Lemma 2.1.1 and Lemma 2.1.2 suggest the following steps to construct our linear homo-

topy for finding all isolated solutions of the system P (λ, x) = 0 in (1.12) when m 6= m′:

• Step 1. Construct a polynomial system F (λ, x; c), where c denotes the set of param-

eters, making F (λ, x; c) linear in c and F (λ, x; c1) = P (λ, x) for certain parameter set

c1.
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• Step 2. Compute NF as defined in Lemma 2.1.1 for F (λ, x; c);

• Step 3. Find a parameter set c0 such that G(λ, x) := F (λ, x; c0) has NF nonsingular

zeros.

Then by Lemma 2.1.2, all the isolated zeros of P (λ, x) can be found by tracing the solution

paths of the linear homotopy

H(λ, x, t) := γ(1− t)G(λ, x) + tP (λ, x)

from t = 0 to t = 1.

We shall follow the above three steps to construct our linear homotopy for the case of

m > m′ and m < m′ separately.

Let P (x) := (p1(x), . . . , pn(x))T be a polynomial system with x := (x1, . . . , xn)T . For

α := (α1, . . . , αn) ∈ (Zn≥0)T , write xα := x
α1
1 · · ·x

αn
n and |α| := α1 + · · · + αn. Then P (x)

can be written as

P (x) :=


p1(x) :=

∑
α∈S1

c1,αx
α

...

pn(x) :=
∑

α∈Sn
cn,αx

α


, (2.1)

where S1, . . . , Sn are finite subsets of (Zn≥0)T and ci,α ∈ C∗ := C\{0} are the coefficients

of the corresponding monomials. Here for each i = 1, . . . , n, Si is called the support of

pi(x) and its convex hull Ri := conv(Si) in Rn is called the Newton polytope of pi(x). The

n-tuple (S1, . . . , Sn) is called the support of P (x). For nonnegative variables λ1, . . . , λn, let
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λ1R1 + · · ·+ λnRn be the Minkowski sum of λ1R1, . . . , λnRn, i.e.,

λ1R1 + · · ·+ λnRn := {λ1r1 + · · ·+ λnrn | ri ∈ Ri, i = 1, . . . , n}.

The n-dimensional volume of λ1R1 + · · · + λnRn, denoted by Voln(λ1R1 + · · · + λnRn), is

a homogeneous polynomial of degree n in λ1, . . . , λn (See, for example, Proposition 4.9 of

[4] for a proof). The coefficient of the monomial λ1λ2 . . . λn in Voln(λ1R1 + · · · + λnRn) is

called the mixed volume of R1, . . . , Rn, denoted by MVn(R1, . . . , Rn), or the mixed volume

of the supports S1, . . . , Sn, denoted by MVn(S1, . . . , Sn). It is also called the mixed volume

of P (x) if no ambiguity exists. The following theorem relates the number of solutions of a

polynomial system to its mixed volume.

LEMMA 2.1.3. (Bernstein’s Theorem) [2] The number of isolated zeros in (C∗)n,

counting multiplicities, of a polynomial system P (x) = (p1(x), . . . , pn(x))T with supports

S1, . . . , Sn is bounded by the mixed volume MVn(S1, . . . , Sn). Moreover, for generic choices

of the coefficients in pi, the number of isolated zeros is exactly MVn(S1, . . . , Sn).

An apparent limitation of Lemma 2.1.3 is that it only counts the isolated zeros of a

polynomial system in (C∗)n rather than Cn. To deal with this issue, Li and Wang gave the

following theorem.

LEMMA 2.1.4. [16] The number of isolated zeros in Cn, counting multiplicities, of a

polynomial system P (x) = (p1(x), . . . , pn(x))T with supports S1, . . . , Sn is bounded by the

mixed volume MVn(S1 ∪ {0}, . . . , Sn ∪ {0}).

The following lemma was given as Exercise 7 on page 338 of [4].

15



LEMMA 2.1.5. Consider a polynomial system P (x) = (p1(x), . . . , pn(x))T with supports

S1 = S2 = · · · = Sn = S. Then

MVn(S, . . . , S) = n!Voln(conv(S)).

Recall that an n-simplex is defined to be the convex hull of n+1 points z1, . . . , zn+1 such

that z2− z1, . . . , zn+1− z1 are linearly independent in (Rn)T . It can be shown that for this

simplex

Voln(conv(z1, z2, . . . , zn+1)) =
1

n!

∣∣∣∣∣∣∣∣∣∣∣
det


z2 − z1

...

zn+1 − z1



∣∣∣∣∣∣∣∣∣∣∣
. (2.2)

2.2 Construct a linear homotopy to compute general-

ized tensor eigenpairs when m > m′

Let D ∈ C[m,n], E ∈ C[m′,n] and L ∈ C[2,n]. Let vdiag(L) := (L11, . . . , Lnn)T . Write

c := {D, E ,L}. (2.3)

Consider

F1(λ, x; c) =

Dxm−1 − λExm′−1 − Lx[m−m′] + λ · vdiag(L)

ηTx+ η0

 . (2.4)

It is clear that F1 is linear in c. Taking

c1 := {A,B, 0}, (2.5)
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we obtain F1(λ, x; c1) = P (λ, x), which is our target system (1.12).

Let NF1
be defined in Lemma 2.1.1 for F1(λ, x; c). To compute NF1

, we first prove the

following theorem.

THEOREM 2.2.1. Let F1(λ, x; c) be as in (2.4) and c as in (2.3) be the set of parameters.

Then the number of isolated zeros, counting multiplicities, of F1(λ, x; c) is bounded by

(m− 1)n − (m′ − 1)n

m−m′
.

When c is generic, F1(λ, x; c) has exactly ((m− 1)n − (m′ − 1)n)/(m−m′) isolated zeros.

Proof: For the random hyperplane ηTx + η0 = 0, i.e., η1x1 + · · · + ηnxn + η0 = 0, in

(2.4), without loss, we suppose ηn 6= 0. Then

xn = a1x1 + · · ·+ an−1xn−1 + b, (2.6)

where ai = −ηi/ηn for i = 1, . . . , n − 1 and b = −η0/ηn. Notice that the number of

solutions of (2.4) in Cn+1 is the same as the number of solutions in Cn of the resulting

system T ∗(λ, x1, . . . , xn−1) by substituting (2.6) into the first n equations of (2.4). Denote

the corresponding supports of T ∗ by S1, . . . , Sn. We claim that

MVn(S1 ∪ {0}, . . . , Sn ∪ {0}) =
(m− 1)n − (m′ − 1)n

m−m′
. (2.7)

If this is proved, let N denote the number of isolated zeros of (2.4) in Cn. Then (2.7) implies

N ≤ (m− 1)n − (m′ − 1)n

m−m′
.
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When the parameter set c = {D, E ,L} is generic, the equality in the above holds by using

Lemma 2.1.3 and Lemma 2.1.4.

To prove (2.7), let c̄ := {D̄, Ē , L̄} be generic. Similar to (2.4) the corresponding polyno-

mial system being solved is

T̄ (λ, x) =

D̄xm−1 − λĒxm′−1 − L̄x[m−m′] + λ · vdiag(L̄)

ηTx+ η0

 = 0. (2.8)

Substituting (2.6) into the first n equations of (2.8) yields a new system T̄ ∗(λ, x1, . . . , xn−1).

Let S̄1, . . . , S̄n be the corresponding supports of T̄ ∗. Since D̄, Ē and L̄ are generic, without

loss of generality one can assume that all monomials λ, xm−m
′

1 , . . . , xm−m
′

n with

{xα1
1 x

α2
2 . . . xαnn

∣∣∣αi ∈ Z≥0, α1 + α2 + · · ·+ αn = m− 1}

and

{λxα1
1 x

α2
2 . . . xαnn

∣∣∣αi ∈ Z≥0, α1 + α2 + · · ·+ αn = m′ − 1}

will appear in each of the first n equations in (2.8). It follows that all monomials

{xα1
1 x

α2
2 . . . x

αn−1
n−1

∣∣∣αi ∈ Z≥0, α1 + α2 + · · ·+ αn−1 ≤ m− 1}

and

{λxα1
1 x

α2
2 . . . x

αn−1
n−1

∣∣∣αi ∈ Z≥0, α1 + α2 + · · ·+ αn−1 ≤ m′ − 1}
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will appear in each equation of T̄ ∗. Consequently, S̄1, . . . , S̄n are all equal to

S̄ := {(0, α)
∣∣α ∈ (Zn−1

≥0 )T , |α| ≤ m− 1} ∪ {(1, α)
∣∣α ∈ (Zn−1

≥0 )T , |α| ≤ m′ − 1}.

Let Q̄ be the convex hull of S̄. Denote the i-th unit vector in (Rn)T by ei for i = 1, . . . , n.

Then vertices of Q̄ are given by

zi =



0, i = 0

(m− 1)en+1−i, 1 ≤ i ≤ n− 1

e1, i = n

e1 + (m′ − 1)e2n+1−i, n+ 1 ≤ i ≤ 2n− 1.

(2.9)

From which,

zn+i = e1 +
m′ − 1

m− 1
zi, 0 ≤ i ≤ n− 1.

This indicates that zn, . . . , z2n−1 are scaling of z0, . . . , zn−1 respectively by a factor (m′ −

1)/(m− 1) followed by a shift. Actually, each zn+i is obtained by moving zi along the line

li(t) := (1− t)zi + tzn+i, 0 ≤ i ≤ n− 1 (2.10)

as t changing from 0 to 1. Simple computation yields

li(t) =


te1, i = 0

te1 + (m− 1 + (m′ −m)t)en+1−i, 1 ≤ i ≤ n− 1.

(2.11)
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We now claim that

Q̄ =
⋃

t∈[0,1]

conv(l0(t), . . . , ln−1(t)). (2.12)

To prove this, let q ∈ Q̄, then there exist βi ≥ 0 (i = 0, 1, . . . , 2n − 1) such that∑2n−1
i=0 βi = 1 and

q =
2n−1∑
i=0

βizi. (2.13)

Substituting (2.9) into (2.13) yields

q =
2n−1∑
i=n

βie1 +
n−1∑
i=1

[βi(m− 1) + βn+i(m
′ − 1)]en+1−i. (2.14)

To show q ∈
⋃
t∈[0,1] conv(l0(t), . . . , ln−1(t)), we need to find t∗ ∈ [0, 1] and γi ≥ 0 (i =

0, . . . , n− 1) such that
∑n−1
i=0 γi = 1 and

q =
n−1∑
i=0

γili(t
∗). (2.15)

Substituting (2.11) into (2.15), we have

q = γ0t
∗e1 +

n−1∑
i=1

γi[t
∗e1 + (m− 1 + (m′ −m)t∗)en+1−i]

= t∗
(
n−1∑
i=0

γi

)
e1 +

n−1∑
i=1

γi[m− 1 + (m′ −m)t∗]en+1−i

= t∗e1 +
n−1∑
i=1

γi[m− 1 + (m′ −m)t∗]en+1−i. (2.16)
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Comparing (2.14) with (2.16), if we choose

t∗ =
2n−1∑
j=n

βj ,

γi =
βi(m− 1) + βn+i(m

′ − 1)

m− 1 + (m′ −m)t∗
, i = 1, . . . , n− 1,

γ0 = 1−
n−1∑
i=1

γi,

and rewrite the denominator of γi (for i = 1, · · · , n− 1) as

m− 1 + (m′ −m)
2n−1∑
j=n

βj = m− 1 + (m′ − 1 + 1−m)
2n−1∑
j=n

βj

= (m− 1)(1−
2n−1∑
j=n

βj) + (m′ − 1)
2n−1∑
j=n

βj

= (m− 1)
n−1∑
j=0

βj + (m′ − 1)
2n−1∑
j=n

βj ,

then we have t∗ ∈ [0, 1], γi ≥ 0 for i = 0, · · · , n − 1, and
∑n−1
i=0 γi = 1. Moreover, (2.15)

holds. This shows q ∈
⋃
t∈[0,1] conv(l0(t), . . . , ln−1(t)). Therefore,

Q̄ ⊂
⋃

t∈[0,1]

conv(l0(t), . . . , ln−1(t)).

On the other hand, let q ∈
⋃
t∈[0,1] conv(l0(t), . . . , ln−1(t)). Then there exist t∗ ∈ [0, 1],

γi ≥ 0 (i = 0, . . . , n− 1) such that
∑n−1
i=0 γi = 1 and (2.15) holds. By (2.10),

q =
n−1∑
i=0

γi((1− t∗)zi + t∗zn+i) =
n−1∑
i=0

γi(1− t∗)zi +
n−1∑
i=0

γit
∗zn+i.
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Let

βi =


γi(1− t∗), i = 0, . . . , n− 1,

γi−nt∗, i = n, . . . , 2n− 1.

Then

q =
2n−1∑
i=0

βizi,

where βi ≥ 0 for each i and
∑2n−1
i=0 βi = 1. Therefore, q ∈ Q̄. We conclude that⋃

t∈[0,1] conv(l0(t), . . . , ln−1(t)) ⊂ Q̄.

To compute the volume of Q̄, let q := (q1, . . . , qn) ∈ Q̄, by (2.12) there exist t ∈ [0, 1]

and γi ≥ 0 (i = 0, . . . , n− 1) such that
∑n−1
i=0 γi = 1 and

q =
n−1∑
i=0

γili(t).

By (2.11) and
∑n−1
i=0 γi = 1,

q = l0(t)(1−
n−1∑
i=1

γi) +
n−1∑
i=1

γili(t) = l0(t) +
n−1∑
i=1

γi(li(t)− l0(t))

= te1 +
n−1∑
i=1

γi(m− 1 + (m′ −m)t)en+1−i

with t ∈ [0, 1], γi ≥ 0 and
∑n−1
i=1 γi ≤ 1. Let ∂(q1, . . . , qn)/∂(t, γ1, . . . , γn−1) be the Jacobian

matrix of q1, . . . , qn with respect to t, γ1, . . . , γn−1. Then

∣∣∣∣det

(
∂(q1, . . . , qn)

∂(t, γ1, . . . , γn−1)

)∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det



e1 +
∑n−1
i=1 γi(m

′ −m)en+1−i

(m− 1 + (m′ −m)t)en

...

(m− 1 + (m′ −m)t)e2



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (m−1+(m′−m)t)n−1.
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By the change of variables (See, for example, [27]), the volume of Q̄ is:

Voln(Q̄) =

∫
q∈Q̄

dq =

1∫
0

∫
∑n−1
i=1 γi≤1
γi≥0

∣∣∣∣det

(
∂(q1, . . . , qn)

∂(t, γ1, . . . , γn−1)

)∣∣∣∣ dγ1 . . . dγn−1dt

=

1∫
0

(m− 1 + (m′ −m)t)n−1dt

∫
∑n−1
i=1 γi≤1
γi≥0

dγ1 . . . dγn−1

=

∫ 1

0

(m− 1 + (m′ −m)t)n−1

(n− 1)!
dt (2.17)

=
(m− 1)n − (m′ − 1)n

(m−m′)n!
,

where (2.17) holds because the region {(γ1, . . . , γn−1)
∣∣ ∑n−1

i=1 γi ≤ 1, γi ≥ 0} is a standard

(n − 1)-simplex with volume 1/(n − 1)! (See, for example, Exercise 2 and 3 on page 307 of

[4])). Therefore, by Lemma 2.1.5,

MVn(S̄1, . . . , S̄n) = n!Voln(Q̄) =
(m− 1)n − (m′ − 1)n

m−m′
.

Noting that for i = 1, . . . , n, Si ∪ {0} is a subset of S̄i. Hence

MVn(S1 ∪ {0}, . . . , Sn ∪ {0}) ≤ MVn(S̄1, . . . , S̄n),

and therefore

MVn(S1 ∪ {0}, . . . , Sn ∪ {0}) ≤
(m− 1)n − (m′ − 1)n

m−m′
. (2.18)

On the other hand, consider the identity tensors D ∈ C[m,n] and E ∈ C[m′,n] such that
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Dii...i = 1, Eii...i = 1 and all other entries are zero. Let L be n× n zero matrix. Then (2.4)

becomes 

xm−1
1 − λxm

′−1
1

...

xm−1
n − λxm′−1

n

ηTx+ η0


=



xm
′−1

1 (xm−m
′

1 − λ)

...

xm
′−1

n (xm−m
′

n − λ)

ηTx+ η0


= 0, (2.19)

where η = (η1, · · · , ηn) ∈ Cn and ηi’s are generic. Clearly, x = 0 cannot be a solution since

generically η0 6= 0. Thus at least one of

xm−m
′

1 − λ = 0, . . . , xm−m
′

n − λ = 0 (2.20)

must be valid. Assume i (1 ≤ i ≤ n) equations of (2.20) hold. If the first i equations of

(2.20) hold, then

xm−m
′

j − λ = 0, j = 1, · · · , i,

xm
′−1

j = 0, j = i+ 1, · · · , n.

For j = i+ 1, · · · , n, xj can be 0 with multiplicity m′ − 1. Also from the first i equations,

xm−m
′

2 = xm−m
′

1 , . . . , xm−m
′

i = xm−m
′

1 .

So each xj (j = 2, . . . , n) can be expressed by x1 in m−m′ ways. Correspondingly, x1 can

be determined uniquely under the choices of xi+1, . . . , xn and the last linear equation, so is

λ. Therefore, there are (m′ − 1)n−i(m−m′)i−1 solutions in total if the first i equations of

(2.20) are valid. This argument holds for any i equations of (2.20) are chosen to be valid.
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So there are n
i

 (m′ − 1)n−i(m−m′)i−1

solutions when i equations of (2.20) are true. Since i may be any one of {1, · · · , n}, the

number of zeros of (2.20) in total should be

n∑
i=1

n
i

 (m′ − 1)n−i(m−m′)i−1 =
1

m−m′
n∑
i=1

n
i

 (m′ − 1)n−i(m−m′)i

=
1

m−m′
[(m′ − 1 +m−m′)n − (m′ − 1)n]

=
(m− 1)n − (m′ − 1)n

m−m′
.

By Lemma 2.1.4,

MVn(S1 ∪ {0}, . . . , Sn ∪ {0}) ≥
(m− 1)n − (m′ − 1)n

m−m′
.

Combining the above inequality with (2.18), we have

MVn(S1 ∪ {0}, . . . , Sn ∪ {0}) =
(m− 1)n − (m′ − 1)n

m−m′
.

2

Let NF1
be defined in Lemma 2.1.1 for F1(λ, x; c) in (2.4). In the following lemma, we

compute NF1
.
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LEMMA 2.2.1. Let NF1
be as in Lemma 2.1.1 for F1(λ, x; c) as in (2.4). Then

NF1
=

(m− 1)n − (m′ − 1)n

m−m′
. (2.21)

Proof: By Lemma 2.1.1, NF1
is the upper bound of the number of the nonsingular zeros

of F1(λ, x; c) in (2.4). Since nonsingular zeros are isolated zeros, Theorem 2.2.1 implies that

NF1
≤ (m− 1)n − (m′ − 1)n

m−m′
.

On the other hand, F1(λ, x; c) in (2.4) has ((m − 1)n − (m′ − 1)n)/(m − m′) nonsingular

zeros when c is generic. So by Lemma 2.1.1,

(m− 1)n − (m′ − 1)n

m−m′
≤ NF1

.

2

Now it is sufficient to find a parameter set c0 such that F1(λ, x; c0) defined in (2.4) has

NF1
nonsingular zeros. Let

c0 := {I [m,n], I [m′,n],G}, (2.22)

where I [m,n] is the m-th order n dimensional identity tensor, G ∈ C[2,n] is a diagonal matrix

with Gii = αi (i = 1, . . . , n) being randomly chosen nonzero complex numbers. Let

G1(λ, x) := F1(λ, x; c0).
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Then

G1(λ, x) =



xm−1
1 − λxm

′−1
1 − α1x

m−m′
1 + α1λ

...

xm−1
n − λxm′−1

n − αnxm−m
′

n + αnλ

ηTx+ η0


=



(xm
′−1

1 − α1)(xm−m
′

1 − λ)

...

(xm
′−1

n − αn)(xm−m
′

n − λ)

ηTx+ η0


,

(2.23)

THEOREM 2.2.2. Let G1(λ, x) and NF1
be as in (2.23) and (2.21) respectively. Then

G1(λ, x) has exactly NF1
, as given in (2.21), nonsingular zeros.

Proof: It can be asserted that at least one of

xm−m
′

1 − λ = 0,

... (2.24)

xm−m
′

n − λ = 0

must be true. Otherwise system (2.23) is equivalent to an overdetermined system of n + 1

equations in n unknowns, which has no solutions due to randomness. Assume that i (1 ≤
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i ≤ n) equations of (2.24) are true. If the first i equations of (2.24) hold, then

xm−m
′

1 − λ = 0,

...

xm−m
′

i − λ = 0,

xm
′−1

i+1 − αi+1 = 0,

...

xm
′−1

n − αn = 0

From the (i+ 1)-th equation to the n-th equation, each xj (j = i+ 1, . . . , n) can be any one

of the (m′ − 1)-th root of αj . Also from the first i equations,

xm−m
′

2 = xm−m
′

1 ,

...

xm−m
′

i = xm−m
′

1 .

So each xj (j = 2, . . . , n) can be expressed in x1 by m−m′ ways. Correspondingly, x1 can

be determined uniquely by xi+1, . . . , xn and the last equation, and λ can also be determined

uniquely. Therefore, there are (m′−1)n−i(m−m′)i−1 solutions in total if the first i equations

of (2.24) hold. This reasoning holds for any i equations of (2.24) are true. So there are

n
i

 (m′ − 1)n−i(m−m′)i−1
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solutions in this situation. Since i may be any one of {1, . . . , n}, the number of isolated zeros

of G1(λ, x) in total should be

n∑
i=1

n
i

 (m′ − 1)n−i(m−m′)i−1 =
1

m−m′
n∑
i=1

n
i

 (m′ − 1)n−i(m−m′)i

=
1

m−m′
[(m′ − 1 +m−m′)n − (m′ − 1)n]

=
(m− 1)n − (m′ − 1)n

m−m′
.

We now show that each zero of G1(λ, x) in (2.23) must be nonsingular. As discussed

above, any zero (λ∗, x∗) of G1(λ, x) satisfies

(x∗j )
m−m′ − λ = 0, j ∈ Ii

(x∗j )
m′−1 − αj = 0, j ∈ {1, · · · , n}\Ii

η1x
∗
1 + · · ·+ ηnx

∗
n + η0 = 0,

where Ii is an index set which contains i elements of {1, . . . , n} for 1 ≤ i ≤ n. Without loss

of generality, we assume Ii = {1, . . . , i}. Then

(x∗j )
m−m′ − λ = 0, j = 1, · · · , i,

(x∗j )
m′−1 − αj = 0, j = i+ 1, · · · , n, (2.25)

η1x
∗
1 + · · ·+ ηnx

∗
n + η0 = 0.

Let DG1(λ, x) be the Jacobian of G1(λ, x) with respect to (λ, x). To show DG1(λ∗, x∗) is
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nonsingular, let

Aj(λ, x) := −(xm
′−1

j − αj),

Bj(λ, x) := (m′ − 1)xm
′−2

j (xm−m
′

j − λ) + (m−m′)xm−m
′−1

j (xm
′−1

j − αj)

for j = 1, . . . , n. Then

DG1(λ, x) =



A1 B1

...
. . .

Ai Bi

Ai+1 Bi+1

...
. . .

An Bn

0 η1 . . . ηi ηi+1 . . . ηn



.

Note that

Aj(λ
∗, x∗) =


−((x∗j )

m′−1 − αj), j = 1, . . . , i

0, j = i+ 1, . . . , n

and by (2.25),

Bj(λ
∗, x∗) =


(m−m′)(x∗j )

m−m′−1((x∗j )
m′−1 − αj), j = 1, . . . , i

(m′ − 1)(x∗j )
m′−2((x∗j )

m−m′ − λ), j = i+ 1, . . . , n.
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For simplicity, write A∗j := Aj(λ
∗, x∗) and B∗j := Bj(λ

∗, x∗). Then

DG1(λ∗, x∗) =



A∗1 B∗1
...

. . .

A∗i B∗i

0 B∗i+1

...
. . .

0 B∗n

0 η1 . . . ηi ηi+1 . . . ηn



.

So

det(DG1(λ∗, x∗))

=

 n∏
j=i+1

(−1)(i+1)+(i+2)B∗j

 det



A∗1 B∗1
...

. . .

A∗l−1 B∗l−1

A∗l B∗l

A∗l+1 B∗l+1

...
. . .

A∗i B∗i

0 η1 . . . ηl−1 ηl ηl+1 . . . ηi


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=

 n∏
j=i+1

(−1)B∗j

 i∑
l=1

(−1)(i+1)+(l+1)ηl · det



A∗1 B∗1
...

. . .

A∗l−1 B∗l−1

A∗l 0

A∗l+1 B∗l+1

...
. . .

A∗i B∗i



.

Furthermore,

det(DG1(λ∗, x∗))

= (−1)n−i

 n∏
j=i+1

B∗j

 i∑
l=1

(−1)(i+1)+(l+1)ηl · (−1)l+1A∗l

i∏
k=1
k 6=l

B∗k

= (−1)n+1

 n∏
j=i+1

B∗j

 i∑
l=1

ηlA
∗
l

i∏
k=1
k 6=l

B∗k

= (−1)n+1

 n∏
j=i+1

B∗j

 i∑
l=1

ηl[−((x∗l )
m′−1 − αl)]

i∏
k=1
k 6=l

(m−m′)(x∗k)m−m
′−1((x∗k)m

′−1 − αk)

= (−1)n(m−m′)i−1

 n∏
j=i+1

B∗j

( i∏
k=1

((x∗k)m
′−1 − αk)

)
i∑
l=1

ηl

 i∏
k=1
k 6=l

(x∗k)m−m
′−1

 6= 0

by (2.25). 2

By Lemmas 2.1.1, 2.1.2, Theorem 2.2.1, Lemma 2.2.1 and Theorem 2.2.2, we have proved

the following theorem.
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THEOREM 2.2.3. Let H1(λ, x, t) be defined as

H1(λ, x, t) := (1− t)γG1(λ, x) + tP (λ, x), t ∈ [0, 1] (2.26)

where G1(λ, x) and P (λ, x) are given by (2.23) and (1.12) respectively. Then following

solution paths of H1(λ, x, t) = 0 in (2.26) will give all isolated solutions of (1.12) for m > m′.

2.3 Construct a linear homotopy to compute general-

ized tensor eigenpairs when m < m′

Let c = {D, E ,L} as defined in (2.3). Consider

F2(λ, x; c) =

Dxm−1 − λExm′−1 − vdiag(L) + λLx[m′−m]

ηTx+ η0

 . (2.27)

Clearly F2(λ, x; c) is linear in c. For c1 = {A,B, 0} defined in (2.5), F2(λ, x; c1) agrees with

our target system (1.12). Similar to Theorem 2.2.1 we have the following theorem.

THEOREM 2.3.1. Let F2(λ, x; c) be given as in (2.27) with the set of parameters c being as

in (2.3). Then the number of isolated zeros, counting multiplicities, of F2(λ, x; c) is bounded

above by

(m′ − 1)n − (m− 1)n

m′ −m
.

When c is generic, F2(λ, x; c) has exactly ((m′ − 1)n − (m− 1)n)/(m′ −m) isolated zeros.

Proof: For the random hyperplane ηTx + η0 = 0, i.e., η1x1 + · · · + ηnxn + η0 = 0, in
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(2.27), we may suppose ηn 6= 0. Then

xn = a1x1 + · · ·+ an−1xn−1 + b, (2.28)

where ai = −ηi/ηn for i = 1, . . . , n − 1 and b = −η0/ηn. Notice that the number of

solutions of (2.27) in Cn+1 is the same as the number of solutions in Cn of the system

T ∗(λ, x1, . . . , xn−1) resulting from substituting (2.28) into the first n equations in (2.27).

Denote the corresponding supports of T ∗ by S1, . . . , Sn. We claim that

MVn(S1 ∪ {0}, . . . , Sn ∪ {0}) =
(m′ − 1)n − (m− 1)n

m′ −m
. (2.29)

Let N denote the number of isolated zeros of (2.27) over C. Then (2.29), when it is proved,

implies

N ≤ (m′ − 1)n − (m− 1)n

m′ −m
.

When the parameter set c = {D, E ,L} is generic, the equality in the above holds from

Lemma 2.1.3 and Lemma 2.1.4.

To prove (2.29), let c̄ := {D̄, Ē , L̄} be generic. Similar to (2.27) the corresponding

polynomial system is

T̄ (λ, x) =

D̄xm−1 − λĒxm′−1 − vdiag(L̄) + λL̄x[m′−m]

ηTx+ η0

 = 0. (2.30)

Substituting (2.28) into the first n equations of (2.30) yields a new system T̄ ∗(λ, x1, . . . , xn−1).

Let S̄1, . . . , S̄n be the corresponding supports of T̄ ∗. Since D̄, Ē and L̄ are generic, without
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loss of generality one can assume that all monomials 1, λxm
′−m

1 , . . . , λxm
′−m

n with

{xα1
1 x

α2
2 . . . xαnn

∣∣∣αi ∈ Z≥0, α1 + α2 + · · ·+ αn = m− 1}

and

{λxα1
1 x

α2
2 . . . xαnn

∣∣∣αi ∈ Z≥0, α1 + α2 + · · ·+ αn = m′ − 1}

will appear in each of the first n equations in (2.8). Therefore, after substituting (2.6) into

the first n equations of (2.8), all monomials

{xα1
1 x

α2
2 . . . x

αn−1
n−1

∣∣∣αi ∈ Z≥0, α1 + α2 + · · ·+ αn−1 ≤ m− 1}

and

{λxα1
1 x

α2
2 . . . x

αn−1
n−1

∣∣∣αi ∈ Z≥0, α1 + α2 + · · ·+ αn−1 ≤ m′ − 1}

are contained in each equation of T̄ ∗. Consequently, S̄1, . . . , S̄n are all equal to

S̄ := {(0, α)
∣∣α ∈ (Zn−1

≥0 )T , |α| ≤ m− 1} ∪ {(1, α)
∣∣α ∈ (Zn−1

≥0 )T , |α| ≤ m′ − 1}.

Let Q̄ be the convex hull of S̄. To compute the volume of Q̄, we employ a geometric approach

here. As before, denote the i-th unit vector in (Rn)T by ei for i = 1, . . . , n. Then the vertices

of Q̄ are

zi =



0, i = 0

(m− 1)en+1−i, 1 ≤ i ≤ n− 1

e1, i = n

e1 + (m′ − 1)e2n+1−i, n+ 1 ≤ i ≤ 2n− 1.

(2.31)
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So,

zn+i = e1 +
m′ − 1

m− 1
zi, 0 ≤ i ≤ n− 1.

From which zn, . . . , z2n−1 are scaling of z0, . . . , zn−1 by a factor(m′ − 1)/(m − 1) followed

by a shift respectively. In fact, each zn+i is obtained by moving zi along the line

li(t) := (1− t)zi + tzn+i, 0 ≤ i ≤ n− 1 (2.32)

as t changing from 0 to 1. A simple computation yields

li(t) =


te1, i = 0

te1 + (m− 1 + (m′ −m)t)en+1−i, 1 ≤ i ≤ n− 1.

(2.33)

Notice that when m− 1 + (m′−m)t = 0, i.e., t = (1−m)/(m′−m), each li (1 ≤ i ≤ n− 1)

will have the same intersection point

w :=
1−m
m′ −m

e1

with the line l0(t). Moreover, all the first coordinates of z0, z1, . . . , zn−1 are 0 and all the

first coordinates of zn, . . . , z2n−1 are 1. Write

zi :=


(0, yi), i = 0, 1, . . . , n− 1

(1, yi), i = n, . . . , 2n− 1.
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Denote the i-th unit vector in (Rn−1)T by ui for i = 1, . . . , n− 1. By (2.31),

yi =


0, i = 0, n

(m− 1)un−i, i = 1, . . . , n− 1

(m′ − 1)u2n−i, i = n+ 1, . . . , 2n− 1.

Let ∆0 be the convex hull of y0, y1, . . . , yn−1 and ∆1 be the convex hull of yn, . . . , y2n−1.

Then ∆0 is a simplex with

voln−1(∆0) =
1

(n− 1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det



y1 − y0

y2 − y0

...

yn−1 − y0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1

(n− 1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det



(m− 1)un−1

(m− 1)un−2

...

(m− 1)u1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
(m− 1)n−1

(n− 1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det



un−1

un−2

...

u1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

(m− 1)n−1

(n− 1)!
.

Similarly, ∆1 is also a simplex with

voln−1(∆1) =
(m′ − 1)n−1

(n− 1)!
.

Therefore, when m < m′, as t decreases from 1 to 0 to (1−m)/(m′ −m), ∆1 shrinks to ∆0

and then shrinks to one point w. See Figure 2.1 for the case of m = 3, m′ = 4 and n = 3.
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w

z3

z4

z5

z0

z1

z2

Figure 2.1: Diagram of Q̄ when m = 3, m′ = 4 and n = 3

Let

Q̄0 := conv(z0, z1, . . . , zn−1, w),

Q̄1 := conv(zn, zn+1, . . . , z2n−1, w).

Then

voln(Q̄) = voln(Q̄1)− voln(Q̄0).
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Note that

Voln(Q̄0) =
1

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

det



z1 − z0

z2 − z0

...

zn−1 − z0

w − z0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

det



(m− 1)en

(m− 1)en−1

...

(m− 1)e2

1−m
m′−me1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
(m− 1)n

(m′ −m)n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

det



en

en−1

...

e2

e1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
(m− 1)n

(m′ −m)n!

∣∣∣∣∣∣∣∣∣∣∣
det


e1

...

en



∣∣∣∣∣∣∣∣∣∣∣
=

(m− 1)n

(m′ −m)n!

and

Voln(Q̄1) =
1

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

det



zn+1 − zn

zn+2 − zn
...

z2n−1 − zn

w − zn



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

det



(m′ − 1)en

(m′ − 1)en−1

...

(m′ − 1)e2

1−m′
m′−me1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
(m′ − 1)n

(m′ −m)n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

det



en

en−1

...

e2

e1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
(m′ − 1)n

(m′ −m)n!

∣∣∣∣∣∣∣∣∣∣∣
det


e1

...

en



∣∣∣∣∣∣∣∣∣∣∣
=

(m′ − 1)n

(m′ −m)n!
.

Hence,

Voln(Q̄) =
(m′ − 1)n

(m′ −m)n!
− (m− 1)n

(m′ −m)n!
=

(m′ − 1)n − (m− 1)n

(m′ −m)n!
. (2.34)
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Therefore, by Lemma 2.1.5,

MVn(S̄1, . . . , S̄n) = n!Voln(Q̄) =
(m′ − 1)n − (m− 1)n

m′ −m
.

Since Si ∪ {0} is a subset of S̄i for i = 1, . . . , n, it follows that

MVn(S1 ∪ {0}, . . . , Sn ∪ {0}) ≤ MVn(S̄1, . . . , S̄n).

Consequently,

MVn(S1 ∪ {0}, . . . , Sn ∪ {0}) ≤
(m′ − 1)n − (m− 1)n

m′ −m
. (2.35)

For the other direction, consider the identity tensors D ∈ C[m,n] and E ∈ C[m′,n] in which

Dii...i = 1, Eii...i = 1 and all other entries are zero. Let L be the n × n zero matrix. Then

(2.27) becomes 

xm−1
1 − λxm

′−1
1

...

xm−1
n − λxm′−1

n

ηTx+ η0


=



xm−1
1 (1− λxm

′−m
1 )

...

xm−1
n (1− λxm′−mn )

ηTx+ η0


= 0, (2.36)

where η = (η1, · · · , ηn) ∈ Cn are generic. Apparently x = 0 cannot be a solution since

η0 6= 0 in the augmented random hyperplane. Hence at least one of

1− λxm
′−m

1 , . . . , 1− λxm
′−m

n (2.37)

must be zero. Assume i (1 ≤ i ≤ n) items of (2.37) are zero. If the first i items of (2.37) are
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zero, then

1− λxm
′−m

j = 0, j = 1, · · · , i,

xm−1
j = 0, j = i+ 1, · · · , n.

From the (i + 1)-th equation to the n-th equation, each xj (j = i + 1, . . . , n) can be 0

with multiplicity m − 1. But λ cannot be 0, otherwise the first n equations will result in

x1 = · · · = xn = 0 making the last equation of (2.36) invalid. Thus from the first i equations,

xm
′−m

2 = xm
′−m

1 , . . . , xm
′−m

i = xm
′−m

1 .

So each xj (j = 2, . . . , n) can be expressed in x1 by m′ −m ways. Correspondingly, x1 can

be determined uniquely by the choices of xi+1, . . . , xn and the last equation, and λ can also

be determined uniquely. Therefore, there are (m−1)n−i(m′−m)i−1 solutions in total if the

first i equations of (2.37) are valid. This argument holds for any i equations of (2.37) are

valid. In this situation, there are

n
i

 (m− 1)n−i(m′ −m)i−1

solutions. Since i may be any one of {1, . . . , n}, the number of zeros of (2.37) in total should
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be

n∑
i=1

n
i

 (m− 1)n−i(m′ −m)i−1 =
1

m′ −m

n∑
i=1

n
i

 (m− 1)n−i(m′ −m)i

=
1

m′ −m
[(m− 1 +m′ −m)n − (m− 1)n]

=
(m′ − 1)n − (m− 1)n

m′ −m
.

By Lemma 2.1.4,

MVn(S1 ∪ {0}, . . . , Sn ∪ {0}) ≥
(m′ − 1)n − (m− 1)n

m′ −m
.

So,

MVn(S1 ∪ {0}, . . . , Sn ∪ {0}) =
(m′ − 1)n − (m− 1)n

m′ −m
.

2

Let NF2
be as in Lemma 2.1.1 with F2(λ, x; c) being as in (2.27). Similar to Lemma 2.2.1,

we have the following lemma.

LEMMA 2.3.1. Let NF2
be as in Lemma 2.1.1 with F2(λ, x; c) being as in (2.27). Then

NF2
=

(m′ − 1)n − (m− 1)n

m′ −m
. (2.38)

Proof: By Lemma 2.1.1, NF2
is an upper bound of the number of nonsingular zeros of
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F2(λ, x; c) in (2.27). Since nonsingular zeros are isolated zeros, by Theorem 2.3.1,

NF2
≤ (m′ − 1)n − (m− 1)n

m′ −m
.

On the other hand, F2(λ, x; c) in (2.27) has ((m′ − 1)n − (m − 1)n)/(m′ −m) nonsingular

zeros when c is generic. So by Lemma 2.1.1,

(m′ − 1)n − (m− 1)n

m′ −m
≤ NF2

.

2

Let c0 = {I [m,n], I [m′,n],G} be as in (2.22) and

G2(λ, x) := F2(λ, x; c0).

Then,

G2(λ, x) =



xm−1
1 − λxm

′−1
1 − α1 + λα1x

m′−m
1

...

xm−1
n − λxm′−1

n − αn + λαnx
m′−m
n

ηTx+ η0


=



(xm−1
1 − α1)(1− λxm

′−m
1 )

...

(xm−1
n − αn)(1− λxm′−mn )

ηTx+ η0


.

(2.39)

THEOREM 2.3.2. Let G2(λ, x) and NF2
be as in (2.39) and (2.38) respectively. Then

G2(λ, x) has exactly NF2
nonsingular zeros.
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Proof: At least one of the equations

1− λxm
′−m

1 = 0,

... (2.40)

1− λxm
′−m

n = 0

must hold, otherwise system (2.39) is equivalent to an overdetermined system of n + 1

equations in n unknowns, which has no solutions due to randomness. Assume that i (1 ≤

i ≤ n) equations of (2.40) are true. Without loss, we may suppose they are the first i

equations. Then

1− λxm
′−m

1 = 0,

...

1− λxm
′−m

i = 0,

xm−1
i+1 − αi+1 = 0,

...

xm−1
n − αn = 0

From the (i + 1)-th equation to the n-th equation, each xj (j = i + 1, . . . , n) can be one

of the (m − 1)-th root of αj . Also from the first i equations, λ = 0 cannot be a solution,

since (2.39) will then be an overdetermined system with n + 1 equations in n unknowns.
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Consequently,

xm
′−m

2 = xm
′−m

1 ,

...

xm
′−m

i = xm
′−m

1 .

So each xj (j = 2, . . . , n) can be expressed in x1 by m′−m ways. Thus, x1 can be determined

uniquely by the choices of xi+1, . . . , xn and the last equation, and λ can also be determined

uniquely. Therefore, there are (m − 1)n−i(m′ − m)i−1 solutions in total in this situation.

This argument holds for any i equations of (2.24) are valid, and there are

n
i

 (m− 1)n−i(m′ −m)i−1

isolated solutions. Since i may be any one of {1, . . . , n}, the number of zeros of G2(λ, x) in

total should be

n∑
i=1

n
i

 (m− 1)n−i(m′ −m)i−1 =
1

m′ −m

n∑
i=1

n
i

 (m− 1)n−i(m′ −m)i

=
1

m′ −m
[(m− 1 +m′ −m)n − (m− 1)n]

=
(m′ − 1)n − (m− 1)n

m′ −m
.

We now show that each isolated zero of G2(λ, x) must be nonsingular. As discussed
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above, any zero (λ∗, x∗) of G2(λ, x) satisfies

1− λ(x∗j )
m−m′ = 0, j ∈ Ii

(x∗j )
m−1 − αj = 0, j ∈ {1, · · · , n}\Ii

η1x
∗
1 + · · ·+ ηnx

∗
n + η0 = 0,

where Ii is an index set containing i distinct elements of {1, . . . , n} for some 1 ≤ i ≤ n.

Without loss of generality, we assume Ii = {1, . . . , i}. Hence

1− λ(x∗j )
m−m′ = 0, j = 1, · · · , i,

(x∗j )
m−1 − αj = 0, j = i+ 1, · · · , n, (2.41)

η1x
∗
1 + · · ·+ ηnx

∗
n + η0 = 0.

for some 1 ≤ i ≤ n. Let DG2(λ, x) be the Jacobian of G2(λ, x) with respect to (λ, x). To

show DG2(λ∗, x∗) is nonsingular, let

Aj(λ, x) := −xm
′−m

j (xm−1
j − αj),

Bj(λ, x) := (m− 1)xm−2
j (1− λxm−m

′
j )− (m′ −m)λxm

′−m−1
j (xm−1

j − αj)
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for j = 1, . . . , n. Then

DG2(λ, x) =



A1 B1

...
. . .

Ai Bi

Ai+1 Bi+1

...
. . .

An Bn

0 η1 . . . ηi ηi+1 . . . ηn



.

Notice that

Aj(λ
∗, x∗) =


−(x∗j )

m′−m((x∗j )
m−1 − αj), j = 1, . . . , i

0, j = i+ 1, . . . , n

and

Bj(λ
∗, x∗) =


−(m′ −m)λ∗(x∗j )

m′−m−1((x∗j )
m−1 − αj), j = 1, . . . , i

(m− 1)(x∗j )
m−2(1− λ(x∗j )

m′−m), j = i+ 1, . . . , n
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by (2.41). For simplicity, write A∗j := Aj(λ
∗, x∗) and B∗j := Bj(λ

∗, x∗). Then

DG2(λ∗, x∗) =



A∗1 B∗1
...

. . .

A∗i B∗i

0 B∗i+1

...
. . .

0 B∗n

0 η1 . . . ηi ηi+1 . . . ηn



.

So,

det(DG2(λ∗, x∗))

=

 n∏
j=i+1

(−1)(i+1)+(i+2)B∗j

 det



A∗1 B∗1
...

. . .

A∗l−1 B∗l−1

A∗l B∗l

A∗l+1 B∗l+1

...
. . .

A∗i B∗i

0 η1 . . . ηl−1 ηl ηl+1 . . . ηi


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=

 n∏
j=i+1

(−1)B∗j

 i∑
l=1

(−1)(i+1)+(l+1)ηl · det



A∗1 B∗1
...

. . .

A∗l−1 B∗l−1

A∗l 0

A∗l+1 B∗l+1

...
. . .

A∗i B∗i



.

And,

det(DG2(λ∗, x∗))

= (−1)n−i

 n∏
j=i+1

B∗j

 i∑
l=1

(−1)(i+1)+(l+1)ηl · (−1)l+1A∗l

i∏
k=1
k 6=l

B∗k

= (−1)n+1

 n∏
j=i+1

B∗j

 i∑
l=1

ηlA
∗
l

i∏
k=1
k 6=l

B∗k

= (−1)n+1

 n∏
j=i+1

B∗j


·
i∑
l=1

ηl[−(x∗l )
m′−m((x∗l )

m−1 − αl)]
i∏

k=1
k 6=l

[−(m′ −m)λ∗(x∗k)m
′−m−1((x∗k)m−1 − αk)]

= (−1)n(m−m′)i−1

 n∏
j=i+1

B∗j

( i∏
k=1

((x∗k)m−1 − αk)

)
i∑
l=1

ηlx
∗
l

 i∏
k=1
k 6=l

(x∗k)m
′−m−1

 6= 0

by (2.41). 2
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By Lemmas 2.1.1, 2.1.2, Theorem 2.3.1, Lemma 2.3.1 and Theorem 2.3.2, we have proved

the following theorem.

THEOREM 2.3.3. Let

H2(λ, x, t) := (1− t)γG2(λ, x) + tP (λ, x), t ∈ [0, 1] (2.42)

where G2(λ, x) and P (λ, x) are given by (2.39) and (1.12) respectively. Then following

solution paths of H2(λ, x, t) = 0 in (2.42) will give all isolated solutions of (1.12) for m < m′.
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Chapter 3

Implementation of the linear

homotopy methods

Based on Theorem 2.2.3 and Theorem 2.3.3 in Chapter 2, a linear homotopy algorithm can

be constructed to compute generalized tensor eigenpairs.

3.1 A linear homotopy algorithm to compute tensor

eigenpairs

Suppose m 6= m′, A ∈ C[m,n] and B ∈ C[m′,n]. As discussed in Section 1.4, computing eigen-

pairs satisfying (1.9) is equivalent to solving (1.12) in the first place, followed by normalizing

the corresponding solution for an eigenpair. According to Theorem 2.2.3 and Theorem 2.3.3

in Chapter 2, the following linear homotopy is useful to solve P (λ, x) in (1.12):

H(λ, x, t) = (1− t)γG(λ, x) + tP (λ, x) = 0, t ∈ [0, 1), (3.1)

where γ is a randomly chosen complex number on the unit circle, G(λ, x) is given in (2.23)

when m > m′ and (2.39) when m < m′.

We now present our linear homotopy algorithm for computing generalized tensor eigen-

pairs when m 6= m′.
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ALGORITHM 3.1.1. (Compute mode-k B-eigenpairs of A, where A ∈ C[m,n], B ∈

C[m′,n].)

Step 1. Compute all solutions of G(λ, x) = 0 as given in (2.23) or (2.39).

Step 2. Compute all solutions (λ, x) of (1.9) by following the paths from t = 0 to t = 1

using the linear homotopy H(λ, x, t) = 0 defined in (3.1).

Step 3. Compute a representative from each equivalence solution class of A(k)xm−1 =

λBxm′−1 by normalizing each (λ, x) obtained in Step 2 for an eigenpair (λ∗, x∗), i.e.,

λ∗ =
λ

(Bxm′)(m−m′)/m′
, x∗ =

x

(Bxm′)1/m′

to satisfy (1.9).

Step 4. Compute m′ equivalent eigenpairs (λ′, x′) for each (λ∗, x∗) obtained in Step 2

by λ′ = tm−m
′
λ∗ and x′ = tx∗ with t being a root of tm

′
= 1.

REMARK 3.1.1. If only one representative from each equivalence class is required (see,

for example, [5]), then Step 4 in the above Algorithm can be skipped.

REMARK 3.1.2. When m 6= m′, it was shown (Theorem 2.3 [8]) that ifA has finitely many

equivalence classes of B eigenpairs, then the number of equivalence classes of B eigenpairs,

counting multiplicities, is bounded by

K(m,m′, n) =
(m− 1)n − (m′ − 1)n

m−m′
. (3.2)

Furthermore, if A and B are generic tensors, then A has K(m,m′, n) equivalence classes

of B eigenpairs, counting multiplicities. As a consequence, the optimal number of paths to

follow for solving the system (1.12) is K(m,m′, n). Our starting system (2.23) or (2.39) has
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exactly K(m,m′, n) nonsingular solutions. Therefore, Algorithm 3.1.1 follows the optimal

number, making it an efficient homotopy method for computing generalized eigenpairs.

3.2 Algorithms to compute solutions of the starting

system in the linear homotopy algorithm

In this section, two algorithms will be described to compute solutions of the starting system

G(λ, x) in (3.1), which is G1(λ, x) as defined in (2.23) when m > m′ and G2(λ, x) as defined

in (2.39) when m < m′.

The following algorithm gives a method to compute all solutions of G1(λ, x).

ALGORITHM 3.2.1. (Compute all the solutions of G1(λ, x).)

Step 1. For i = 1, . . . , n, choose Ii to be an index set containing i elements of {1, . . . , n}.

Step 2. For each Ii chosen in Step 1, let k be the smallest integer contained in Ii. For

each j ∈ {1, . . . , n}\{k}, compute xj by

xj =


e

2πli
m−m′ xk, j ∈ Ii\{k}

e
2πpi
m′−1αj , j ∈ {1, . . . , n}\Ii

(3.3)

where l can be chosen from {0, 1, . . . ,m−m′−1} and p can be chosen from {0, 1, . . . ,m′−2}.

Step 3. For the chosen l and p from Step 2, substitute all xj’s ( except xk) given by

(3.3) to ηTx+ η0 = 0 to compute xk.

Step 4. For the chosen l and p from Step 2, substitute xk back into (3.3), all the xj’s

can be obtained, and λ = xm−m
′

k .

The following algorithm is to compute all solutions of G2(λ, x).
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ALGORITHM 3.2.2. (Compute all the solutions of G2(λ, x).)

Step 1. For i = 1, . . . , n, choose Ii to be an index set containing i elements of {1, . . . , n}.

Step 2. For each Ii selected in Step 1, let k be the smallest integer contained in Ii. For

each j ∈ {1, . . . , n}\{k}, compute xj by

xj =


e

2πli
m′−mxk, j ∈ Ii\{k}

e
2πpi
m−1αj , j ∈ {1, . . . , n}\Ii

(3.4)

where l ∈ {0, 1, . . . ,m′ −m− 1} and p ∈ {0, 1, . . . ,m− 2}.

Step 3. For the chosen l and p in Step 2, substitute all xj’s (except xk) given by (3.4)

to ηTx+ η0 = 0 to compute xk.

Step 4. For l and p selected in Step 2, substitute xk back into (3.4), all the xj’s can be

obtained. For a nonzero xj, λ can be computed by

λ =
1

xm
′−m

j

.

3.3 Algorithm to follow solution paths of the linear

homotopy

In this section, we will propose an algorithm to follow the solution paths of the linear

homotopy (3.1). Let u := (λ, x). Then (3.1) becomes

H(u, t) = (1− t)γG(u) + tP (u) = 0, t ∈ [0, 1]. (3.5)
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Denote the solution set of G(u) = 0 by Φ, which can be computed using Algorithm 3.2.1 or

Algorithm 3.2.2.

ALGORITHM 3.3.1. (Follow solution paths of (3.5).)

Step 1. Let (uk, tk) := (u(tk), tk). Take t0 = 0, and let u0 ∈ Φ. For finding the next

point (u1, t1) on the solution path of

H(u, t) = (1− t)γG(u) + tP (u) = 0, t ∈ [0, 1]

in (3.5), the following steps are employed:

• Prediction Step by Euler method: Compute the tangent vector
du

dt
to a solution path

u(t) of H(u, t) = 0 at (u0, t0) by solving the linear system

Hu(u0, t0)
du

dt
= −Ht(u0, t0)

for
du

dt
. Then compute the approximation ũ to u1 by

ũ = u0 + ∆t
du

dt
, t1 = t0 + ∆t,

where ∆t is the stepsize.

• Correction Step: Use Newton’s iterations, i.e., for i = 0, 1, 2, . . . , compute

vi+1 = vi − [Hu(vi, t1)]−1H(vi, t1) with v0 = ũ

until ‖H(vJ , t1)‖ is very small. Then let u1 = vJ . When the iteration fails to converge,
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the Prediction Step will be repeat with ∆t = ∆t
2 .

Step 2. Path following: Follow the paths from t = t1 to t = 1 using the prediction-

correction strategy. Given (uk, tk), to find the next point (uk+1, tk+1) on the solution path

of H(u, t) = 0 as in (3.5), the following steps are employed:

• Prediction Step by the cubic Hermite interpolation: Compute the tangent vector
du

dt
to

a solution path u(t) of H(u, t) = 0 at (uk−1, tk−1) and (uk, tk) by solving the linear

system

Hu(uk−1, tk−1)
du

dt

∣∣∣∣
t=tk−1

= −Ht(uk−1, tk−1)

for
du

dt

∣∣∣∣
t=tk−1

and

Hu(uk, tk)
du

dt

∣∣∣∣
t=tk

= −Ht(uk, tk)

for
du

dt

∣∣∣∣
t=tk

. Let ũ(t) be the cubic polynomial which interpolates u(t) and u′(t) at

t = tk−1 and t = tk. Namely,

ũ(tk−1) = uk−1, ũ(tk) = uk

and

ũ′(tk−1) =
du

dt

∣∣∣∣
t=tk−1

, ũ′(tk) =
du

dt

∣∣∣∣
t=tk

.

Then ũ(tk+1) can be taken as the prediction of u(t) at tk+1, i.e., an approximation to

uk+1. Here, tk+1 = tk + ∆t with ∆t being the stepsize.

• Correction Step: Use Newton’s iterations, i.e., for i = 0, 1, 2, . . . , compute

vi+1 = vi − [Hu(vi, tk+1)]−1H(vi, tk+1) with v0 = ũ(tk+1)
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until ‖H(vJ , tk+1)‖ is very small. Then let uk+1 = vJ . When the iteration fails to

converge, the Prediction Step will be repeat with ∆t = ∆t
2 .

Step 3. End game. When tN is very close to 1, the corresponding uN should be very

close to a zero u∗ of P (u) = P (λ, x). So Newton’s iterations

u(k+1) = u(k) − [DP (u(k))]−1P (u(k)), u(0) = uN , k = 0, 1, . . .

will be used again to refine our final approximation ũ to u∗. If DP (u∗) is nonsingular, then

ũ will be a very good approximation of u∗ with multiplicity 1. If DP (u∗) is singular, ũ is

either an isolated singular zero of P (u) with multiplicity l > 1 or in a positive dimensional

solution component of P (u) = 0. We use a strategy suggested in Chapter VIII of [13] (see

also [29]) to determine whether ũ is an isolated zero with multiplicity bigger than 1 or in a

positive dimensional solution component of P (u) = 0.

By using random complex numbers in the formulation of homotopy, with probability

one the solution paths do not intersect with each other or go to infinity for 0 < t < 1

theoretically. Practically, however, two solution paths may become very close to each other

and the magnitude of some components of a solution path may become very large during

the procedure of path tracking. This causes various numerical difficulties such as missing

solutions, losing efficiency or stability. In our implementation of Algorithms 3.3.1, we use

the following strategies to address these issues.

When tracing two paths that are sufficiently close, it is possible for the path tracing

algorithm to jump from one path to the other and thus result in missing of zeros. To minimize

the chance for curve jumping and keep the efficiency, our First Strategy is: The stepsize ∆t

in Step 1 and Step 2 of Algorithm 3.3.1 is chosen adaptively. Initially, ∆t = 0.1/(n + 1),
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where n + 1 is the number of unknown variables λ, x1, . . . , xn in (1.12) or (1.9). Similar

to [15], if more than three steps of Newton iterations were required to converge within the

desired accuracy, ∆t is halved. On the other hand, if several consecutive steps (the default

being 2) were not cut, ∆t is doubled, up to a prescribed maximum value (the default being

0.1/(n+ 1)).

Although this adaptive approach can often reduce the possibility of curve jumping signif-

icantly, curve jumping can still occur in some occasions. Our Second Strategy is: To check if

there exist curve jumpings, all found solutions are stored in a binary search tree. Each time

when a new solution is found, we can quickly find (with time complexity O(logN), where N

is the number of solutions) whether there is any existing solution that is numerically iden-

tical to the new solution, that is, the difference between them is less than a threshold (the

default being 10−6). If two numerically identical solutions are detected and the condition

numbers of their Jacobian matrices are less than a threshold (the default being 1010), the

curve jumping has likely occurred. We then retrace the two associated curves with more

restricted parameters.

When the magnitude of some components of certain solution curve become very large

at t0 ∈ (0, 1), tracing these paths may fail due to numerical instability. This issue can be

largely resolved by following paths in the projective space (see, for example, [29]). However,

empirically it is more time consuming to follow all paths in the projective space. In our

implementation of Algorithms 3.3.1, our Third Strategy is: To retrace solution curves in the

projective space only for those paths that are detected to have very large solution components.

For example, when m > m′, to trace a path in the projective space, we first homogenize
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each polynomial equation of (2.26) in the variables λ, x1, . . . , xn, namely

Ĥ(λ, x̂, t) = (1− t)γ



(xm
′−1

1 − α1x
m′−1
0 )(xm−m

′
1 − λxm−m

′−1
0 )

...

(xm
′−1

n − αnxm
′−1

0 )(xm−m
′

n − λxm−m
′−1

0 )

ηTx+ η0x0



+t



(A(k)xm−1)1 − λxm−m
′−1

0 (Bxm′−1)1

...

x0(A(k)xm−1)n − λxm−m
′−1

0 (Bxm′−1)n

a1x1 + a2x2 + · · ·+ anxn + bx0


= 0, (3.6)

where x̂ = (x0, x1, . . . , xn)T . Then follow the solution curve of (3.6) in the projective space.

Notice that in (3.6) if (λ, x̂) is a solution, so is (αλ, αx̂) for α ∈ C\{0}. Thus along the path

we can always scale (λ, x̂) to keep each component’s magnitude in a suitable finite range.

To the best of our knowledge, Strategies 2 and 3 have not been used in other implemen-

tations of homotopy methods, although some packages may trace all curves in the projective

space.

3.4 Evaluating polynomials and derivatives

The prediction-correction process for following the homotopy paths of

H(λ, x, t) = (1− t)γG(λ, x) + tP (λ, x) = 0
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requires the computation of H(λ, x, t), Ht(λ, x, t), and the Jacobian matrix DH(λ, x, t) =

[Hλ(λ, x, t), Hx(λ, x, t)] for fixed t ∈ [0, 1]. What is essential in those evaluations is the

evaluation of multivariate polynomials and their partial derivatives. In HOM4PS [15], a

multivariate polynomial g(x1, · · · , xn) was evaluated via Horner’s rule for univariate poly-

nomials. The basic idea is to single out a variable, say x1, and consider g(x1, · · · , xn) as a

polynomial in x1 with coefficients in x2, · · · , xn. By the same approach, those coefficients,

as polynomials in one less variable, were evaluated by singling out another variable. This

may continue until the variables are exhausted.

In a single variable case, Horner’s rule has been proved to be optimal [19, 20], i.e., any

other algorithms to evaluate a polynomial must use at least as many operations (additions

and multiplications) as Horner’s method. However, in multivariate cases, it is not guaranteed.

As pointed out in [15], the same powers of some variables will be computed repeatedly in this

manner. To improve the efficiency, in HOM4PS 2.0, a table T of size n×M is precomputed

to store all possible powers of xi, i = 1, · · · , n where M is the maximum power of all the

variables in the entire polynomial system. For example, for the following system [15]:

P (x1, x2, x3) =


2x6

1 + 3x4
2 + 5x5

3 − 1

3x6
1x

4
2 + 2x6

1x
5
3 + 4x4

2x
5
3 − 5

5x6
1x

4
2x

5
3 − 7

 , (3.7)

the maximum degree of x1 is 6, x2 is 4, and x3 is 5, so M = 6. We establish Table T in

Table 3.1. With this table T (i, j), the value of a monomial can be easily obtained. For

instance, the quantity of x6
1x

4
2x

5
3 is T (1, 6)∗T (2, 4)∗T (3, 5). Since this method mainly bases

on Table T, we call it Table-T method.

A big advantage of the Table-T method is that those powers of each variable involved
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x1 x2
1 x3

1 x4
1 x5

1 x6
1

x2 x2
2 x3

2 x4
2

x3 x2
3 x3

3 x4
3 x5

3

Table 3.1: Table T

in any monomial evaluations will only need to be computed once, no matter how often they

appear. However, some shortcomings exist:

1. There are some redundant computations in Table 3.1. For example, if only the value of

x6
1 is required, the value of x5

1 and x4
1 are not needed since x6

1 = x3
1 ∗ x

3
1, x3

1 = x2
1 ∗ x1,

and x2
1 = x1 ∗ x1. A little more extreme example is that if only x100 is in demand,

instead of computing from x2, x3 until x100, one may compute it in the following way:

x100 = x50 ∗ x50,

x50 = x25 ∗ x25,

x25 = x13 ∗ x12,

x13 = x12 ∗ x,

x12 = x6 ∗ x6,

x6 = x3 ∗ x3,

x3 = x2 ∗ x,

x2 = x ∗ x,

where only 8 middle values need to be computed in comparison to computing 99 middle

values previously.
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2. The method can not take advantage of computing some higher degree monomial by the

product of two lower degree monomials. For instance, in the polynomial system (3.7),

the value of x6
1x

4
2x

5
3 may set to be x6

1x
4
2 ∗ x

5
3 where values of x6

1x
4
2 and x5

3 are already

computed in the first two polynomials. Comparing to the old way, i.e., x6
1x

4
2x

5
3 =

T (1, 6) ∗ T (2, 4) ∗ T (3, 5), one less multiplication is required.

3. If the same monomial appears in different polynomials or in its Jacobian matrix, the re-

peated computation of this monomial is inevitable in the above approach. For example,

for the system

P (x1, x2, x3) = (p1(x1, x2, x3), p2(x1, x2, x3), p3(x1, x2, x3)) ,

where

p1 = x6
1x

5
3 + 3x5

1x
4
2 + 5x5

3 − 1

p2 = 3x6
1x

4
2 + 2x6

1x
5
3 + 4x4

2x
5
3 − 5 (3.8)

p3 = 5x6
1x

4
2x

5
3 − 7,

the monomial x6
1x

5
3 appears in both p1 and p2. And the monomial x5

1x
4
2 appears in

both p1 and
∂p2
∂x1

= 18x5
1x

4
2 + 12x5

1x
5
3. In the above approach, those quantities will be

computed repeatedly.

To resolve those issues, the following new method has been developed.

Step 1. Collect all the monomials from the given polynomials and their derivatives,

and divide them into different groups according to their degrees. Since the coefficients of

the monomials are not fixed in following the homotopy paths, only variable parts of the
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monomials are selected, their coefficients will be calculated separately. For the convenience

of future computations, each group is organized as a linked list with each node being a

monomial and the nodes are sorted alphabetically and also by the powers of each variable.

For duplicated monomials, they only need to appear once. This accounts for the problem

stated in 3 above. For example, the Jacobian matrix of (3.8) is


6x5

1x
5
3 + 15x4

1x
4
2 12x5

1x
3
2 5x6

1x
4
3 + 25x4

3

18x5
1x

4
2 + 12x5

1x
5
3 12x6

1x
3
2 + 16x3

2x
5
3 10x6

1x
4
3 + 20x4

2x
4
3

30x5
1x

4
2x

5
3 20x6

1x
3
2x

5
3 25x6

1x
4
2x

4
3

 . (3.9)

Collecting all the monomials from (3.8) and (3.9) and putting them into different linked lists

based on their degrees yields following structure:

1 → x1 → x2 → x3

4 → x4
3

5 → x5
3

8 → x5
1x

3
2 → x4

1x
4
2 → x4

2x
4
3 → x3

2x
5
3

9 → x6
1x

3
2 → x5

1x
4
2 → x4

2x
5
3 (3.10)

10 → x6
1x

4
2 → x6

1x
4
3 → x5

1x
5
3

11 → x6
1x

5
3

14 → x6
1x

4
2x

4
3 → x6

1x
3
2x

5
3 → x5

1x
4
2x

5
3

15 → x6
1x

4
2x

5
3

Here x1, x2, and x3 are also in the structure because they are the initial values needed to
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evaluate the monomials.

Step 2. Starting from the monomials with the highest degree to degree 2, for each

monomial xα, search all the nodes in the linked lists to find two lower degree monomials xβ

and xγ such that their product is equal to xα, i.e. α = β + γ. Without loss of generality,

let us assume that |β| ≥ |γ|. Since
⌊
|α|
2

⌋
≤ |β| < |α|, we only need to search the monomials

with degree between
⌊
|α|
2

⌋
and |α| − 1 in order to find a possible monomial xβ with β ≤ α.

For α := (α1, . . . , αn) and β := (β1, . . . , βn), by β ≤ α we mean βi ≤ αi for i = 1, . . . , n.

There are three cases:

Case 1: If there exist two monomials xβ and xγ in the linked lists such that xα = xβ ∗ xγ .

Then label the relation in the structure. For example, as we can see from (3.10),

x6
1x

4
2x

5
3 is the product of x6

1x
4
2x

4
3 and x3, x6

1x
4
2x

4
3 is the product of x6

1x
4
2 and x4

3, then

their relations will be marked in the structure as shown in the linked lists of degree 14

and 15 in Figure 3.1;

Case 2: If xβ is in the linked lists but xγ = xα−β is not in the lists, then add a new

monomial xγ into the linked lists and then label the relation. If there are several

choices for xβ , choose the one with the largest degree. Take (3.10) for instance, x4
3 is

a factor of x4
2x

4
3 but x4

2 is not in the linked lists. In this case, add x4
2 into the linked

list with degree 4;

Case 3: There is no monomial xβ satisfying the conditions. Let β = dα/2e and γ = α− β,

add xβ and xγ into the linked lists and label the relation. If β = γ, the monomial

only needs to be added once. For example, there is no monomial with degree between

5 and 9 which is a factor of x6
1x

4
3 in (3.10). Let β = dα/2e = d[6 0 4]/2e = [3 0 2], then

γ = α − β is equal to β, we only need to add the monomial x3
1x

2
3 to the linked lists.
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Similarly, in order to evaluate x5
1x

3
2, two lower degree monomials x3

1x
2
2 and x2

1x
1
2 are

added into the linked lists.

Applying the above rules to (3.10), results in Figure 3.1.

Step 3. Evaluate monomials from the lowest degree to the highest degree in the linked

lists based on the evaluation diagram obtained in Step 2 (See, for example, Figure 3.1). Since

our linked lists is built according to the criteria that every monomial of higher degree can be

evaluated by computing the product of two monomials of lower degrees in Step 2, the values

of all the monomials can be evaluated in this step.

Step 4. Compute the values of the polynomials and their derivatives by using the

monomials’ values. For this goal, there are two approaches.

On-line evaluation: we maintain a mapping between the monomials in the polynomials and

their derivatives with the ones in the linked lists in the memory. To get the value of a

polynomial, we replace the monomial with the values in the linked lists first, then sum

up the values to obtain the polynomial’s value;

Off-line evaluation: we create a new function which contains all the evaluation rules in the

hard disk. So if we want to evaluate a polynomial system and its Jacobian matrix, all

we need to do is to call that new function with the value of x and coefficients as inputs.

See Figure 3.2 for an example of the off-line evaluation function.

The reason why we need two different approaches is that normally off-line evaluation is much

more efficient than on-line evaluation. However, some languages, like C++ and Fortran, do

not support off-line evaluation, i.e. one cannot dynamically create a new function and require

the program to call it. For these languages, in order to use the new created function stored

65



Figure 3.1: An example of the evaluation graph
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Figure 3.2: An example of the off-line evaluation function
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in a separate file, the file should be complied before we can use it. In this case, one prefers

an on-line evaluation.
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Chapter 4

Numerical results

In this section, we present some numerical results to show the effectiveness and efficiency of

Algorithm 3.1.1. The numerical experiments were carried out using MATLAB 2013a, on a

Thinkpad T400 laptop computer with an Intel(R) dual core CPU at 2.80GHz and 2GB of

RAM, running the Windows 7 operating system.

4.1 The efficiency of the new evaluation method

As discussed in Section 3.4, the most time-consuming procedure in Algorithm 3.1.1 is in fact

evaluation of polynomials and their derivatives and new approaches have been proposed to

execute these evaluations. In this section, we compare the efficiency of our new approaches

with the Table-T method used in HOM4PS 2.0.

EXAMPLE 4.1.1. In this example, we intend to compare the efficiency of the on-line

and off-line approaches described in Section 3.4 with the Table-T method. All these three

approaches are used in Step 2 of Algorithm 3.1.1 compute B-eigenpairs of a tensor A, where

A ∈ C[m,n],B ∈ C[m′,n] are generic tensors with m 6= m′. Each tensor was generated using

randn(n, · · · , n) + i ∗ randn(n, · · · , n) in MATLAB. The numerical results are reported in

Table 4.1.

As it shows, the on-line and off-line approaches are considerably faster than Table-T

method, and the speed-up ratio increases as the number of eigenpairs becomes bigger. The
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(m,m′, n)
Number Table-T On-line approach Off-line approach Speed-up

of method CPU Speed-up CPU Speed-up ratio of
eigenpairs time(s) time(s) ratio time(s) ratio off/on-line

(3, 2, 5) 31 38.7 2.3 16.8 1.2 32.3 1.9
(4, 2, 5) 121 605.0 21.8 27.8 12.3 49.2 1.8
(4, 3, 5) 211 735.1 24.4 30.1 10.1 72.8 2.4
(5, 6, 4) 369 1746.0 64.6 27.0 22.5 77.6 2.9
(5, 3, 5) 496 3215.2 95.1 33.8 37.0 86.9 2.6

Table 4.1: Comparison of on-line and off-line approaches with Table-T method

off-line approach is about 2-3 times faster than the on-line approach as tested in MATLAB.

4.2 Computing complex tensor eigenpairs

We compare the performance of Algorithm 3.1.1 with that of Algorithm 3.2 proposed in [8].

Algorithm 3.2 uses polyhedral homotopy methods. It has been implemented as a function

teneig in the tensor eigenvalue package TenEig1.1 ([8]). The function teneig is based on

a sophisticated polyhedral homotopy polynomial system solver PSOLVE ([30]). Numerical

results in [8] show that teneig is significantly more efficient than the popular NSolve in

Mathematica for computing generalized eigenpairs defined in (1.9).

EXAMPLE 4.2.1. We intend to find all isolated B-eigenpairs of a tensor A, where A ∈

C[m,n],B ∈ C[m′,n] are generic tensors with m 6= m′. Each tensor was generated using

randn(n, · · · , n) + i ∗ randn(n, · · · , n) in MATLAB.

The numerical results for m > m′ and m < m′ are reported in Table 4.2 and Table 4.3

respectively. In these tables, K(m,m′, n) (defined in (3.2)) represents the theoretical bound

of the number of equivalence classes of isolated B-eigenpairs of A when m 6= m′. For

generic tensors A and B, this is the exact number of equivalence classes of B-eigenpairs of

A. Note that by Remark 2.1 in [8] and Algorithm 3.1.1, the total number of eigenpairs is
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m′K(m,m′, n). Let N denote the number of equivalence classes of B-eigenpairs found by

Algorithm 3.1.1 or teneig in the tables.

(m,m′, n) K(m,m′, n) Method N CPU time (s)

(3, 2, 7) 127
Algorithm 3.1.1 127 5.9

teneig 127 10.1

(4, 2, 6) 364
Algorithm 3.1.1 364 24.2

teneig 364 29.3

(4, 3, 5) 211
Algorithm 3.1.1 211 10.1

teneig 211 13.1

(5, 4, 5) 781
Algorithm 3.1.1 781 68.7

teneig 781 82.6

(6, 5, 4) 369
Algorithm 3.1.1 369 27.7

teneig 369 28.1

(7, 6, 4) 671
Algorithm 3.1.1 671 54.4

teneig 671 74.0

Table 4.2: Comparison of Algorithm 3.1.1 with teneig for m > m′

(m,m′, n) K(m,m′, n) Method N CPU time (s)

(3, 4, 6) 665
Algorithm 3.1.1 665 42.5

teneig 665 62.7

(3, 5, 5) 496
Algorithm 3.1.1 496 37.2

teneig 496 47.4

(4, 5, 4) 175
Algorithm 3.1.1 175 8.8

teneig 175 9.6

(4, 5, 5) 781
Algorithm 3.1.1 781 72.9

teneig 781 104.3

(5, 6, 4) 369
Algorithm 3.1.1 369 22.5

teneig 369 31.8

(7, 8, 3) 127
Algorithm 3.1.1 127 8.4

teneig 127 9.7

Table 4.3: Comparison of Algorithm 3.1.1 with teneig for m < m′

EXAMPLE 4.2.2. Consider finding all E-eigenpairs of a generic tensor A. Tensor A ∈

C[m,n] was generated using randn(n, · · · , n) + i∗ randn(n, · · · , n) in MATLAB. In this case,

tensor B is the n× n identity matrix.
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The numerical results are reported in Table 4.4. In this table, K(m, 2, n) (defined in

(3.2)) represents the bound of the number of equivalence classes of isolated E-eigenpairs of

A. Since tensor A is generic, it has exactly K(m, 2, n) equivalence classes of E-eigenpairs

(see, [5]). N denotes the number of equivalence classes of E-eigenpairs found by Algorithm

3.1.1 or teneig.

(m,n) K(m, 2, n) Method N CPU time (s)

(3, 9) 511
Algorithm 3.1.1 511 32.4

teneig 511 47.3

(3, 10) 1023
Algorithm 3.1.1 1023 73.5

teneig 1023 130.5

(4, 7) 1093
Algorithm 3.1.1 1093 69.8

teneig 1093 117.5

(4, 8) 3280
Algorithm 3.1.1 3280 380.6

teneig 3280 565.1

(5, 5) 341
Algorithm 3.1.1 341 18.8

teneig 341 21.6

(5, 6) 1365
Algorithm 3.1.1 1365 117.8

teneig 1365 167.9

(6, 5) 781
Algorithm 3.1.1 781 69.7

teneig 781 99.3

(6, 6) 3906
Algorithm 3.1.1 3906 622.3

teneig 3906 975.9

(7, 4) 259
Algorithm 3.1.1 259 15.2

teneig 259 20.8

(7, 5) 1555
Algorithm 3.1.1 1555 211.3

teneig 1555 230.8

Table 4.4: Comparison of Algorithm 3.1.1 with teneig for computing E-eigenpairs

From Tables 1–3, while both Algorithm 3.1.1 and teneig find all B-eigenpairs of a generic

tensor A, Algorithm 3.1.1 is more efficient in terms of CPU time. We believe the efficiency

of Algorithm 3.1.1 is achieved because of its employment of the linear homotopy (3.1) with

simple starting system (2.23) or (2.39). The algorithm teneig, on the other hand, uses a

polyhedral homotopy in which mixed volume computation is required. The efficiency along
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with easy implementation makes Algorithm 3.1.1 a competitive method for computing tensor

eigenpairs when m 6= m′.

4.3 Computing real tensor eigenpairs

Sometimes, only real eigenpairs are of interest. As suggested in [8], one can compute all the

complex eigenpairs first and use different approaches to extract real eigenpairs from complex

eigenpairs. Here we use Algorithm 3.1.1 to compute complex eigenpairs and follow the same

procedure indicated in Algorithm 4.1 in [8] to acquire real eigenpairs from these complex

eigenpairs.

For computing all real eigenvalues of a symmetric tensor the only available methods at

this time are Algorithm 3.6 in [9] and Algorithm 4.1 in [8]. In the following example, we

compare the performance of our methods with theirs.

EXAMPLE 4.3.1. Consider the symmetric tensor A ∈ R[4,n] (Example 4.16 in [9]) in the

polynomial form

Ax4 = (x1 − x2)4 + · · ·+ (x1 − xn)4 + (x2 − x3)4 + · · ·+ (x2 − xn)4

+ · · ·+ (xn−1 − xn)4.

Shown in Table 4.5, our new algorithm obtained all the Z-eigenvalues found by Algorithm

3.6 in [9] and Algorithm 4.1 in [8] for different n. Remarkably, when n = 8, 9, 10, our new

algorithm and Algorithm 4.1 in [8] can find all the Z-eigenvalues in a reasonable amount of

time, but [9] reports that Algorithm 3.6 can only find the first three largest Z-eigenvalues.

The CPU times used by these three algorithms are listed in the table. (The CPU times
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by Algorithm 3.6 ([9]) are from [9]1.) The corresponding Z-eigenvectors are not displayed.

Apparently, as it shows, our new algorithm leads to a large speed-up, ranging up to 239s, over

Algorithm 3.6 in [9] on all the systems, especially for large ones. Compared to Algorithm 4.1

in [8], the new algorithm is about 1.4 times faster.

n λ
CPU time(s)

Alg 3.6 Alg 4.1 New
([9]) ([8]) Alg

4 0.0000 4.0000 5.0000 5.3333 3.6 1.7 1.1
5 0.0000, 4.1667, 4.2500, 5.5000, 6.2500 274.5 5.4 4.0
6 0.0000, 4.0000, 4.5000, 6.0000, 7.2000 280.2 15.5 11.8

7
0.0000, 4.0833, 4.1667, 4.7500, 4.8846,

9565.6 58.3 40.1
4.9000, 6.5000, 8.1667

8
0.0000, 4.0000, 4.2667, 4.2727, 4.3333,

938.2∗ 244.1 165.3
5.0000, 5.2609, 5.3333, 7.0000, 9.1429

9
0.0000, 4.0500, 4.1250, 4.5000, 5.2500,

4173.8∗ 788.0 544.0
5.6250, 5.7857, 7.5000, 10.1250

10
0.0000, 4.0000, 4.1667, 4.1818, 4.2500,

15310.5∗ 2665.6 1893.64.6667, 4.7500, 4.7593, 4.7619, 5.5000,
5.9808, 6.2500, 8.0000, 11.1111

Table 4.5: Z-eigenvalues of the tensor in Example 4.3.1 (* denotes that the CPU time used
by Algorithm 3.6 ([9]) when it finds the first three largest Z-eigenvalues)

1It should be cautious when comparing the CPU times used by the two methods because of different
computers were used.
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