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ABSTRACT
STRATEGIES IN REPEATED GAMES
By
Mingfei Li

In games that are repeated, the players have the opportunity to use information on
opponents’ past moves in sclecting a move for the current stage. Strategies for Plaver
IT are considered in this thesis. In particular, the Play Against the Past strategy
(PAP), the Play Against the Past plus Present strategy (PAP+), the Play Against
the Random Past strategy (PARP), and Hannan-type strategies are investigated.
especially in the repeated play of the two-person game called matching pennies. The
effectiveness of a strategy is measured in terms of difference in average loss and an
envelope loss: this difference is called regret. In some cases. exact expressions for
regret are derived; more often, asymptotic properties are derived.

The PAP strategy for Player 11 is not effective against all Player I move scquences.
Hannan (1957) used a Baves response to random perturbations of Player I's empiri-
cal distribution of past moves as a strategy and established good asymptotic regret
properties uniform in Player I move sequences for the repeated play of a variety of
games. Gilliland (2004) and Gilliland and Jung (2006) introduced the PARP strategy
where the randomization comes through bootstrap sampling of Player I's past moves
and established results for the repeated play of matching pennies.

The PAP, PAP+, PARP and Hannan-type strategies are defined in Chapter 2.
The adaptation of PARP to achieve regret results relative to k-extended envelopes
is demonstrated in Chapter 3 for matching pennies. Chapter 4 documents cases
where strategies published following Hannan's seminal (1957) paper are unrecognized,
special cases of his work. PARP is discussed in the context of the expert selection
problem in Chapter 5. and regret asvmptotics are derived for certain classes of Plaver

I move sequences.
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Chapter 1

Introduction

1.1 Game theory

Game theory is the theory of rational behavior for interactive decision problems. In
a game, participants strive to maximize their expected gain by choosing particular
courses of action, and each participant’s final payoff depends on the profiles of the
courses of action chosen by all participants. The interactive situation, specified by
the set of participants, the information flow, the possible courses of action of each
participant, and the set of all possible pavofls. is called a game. Participants. i.e..
those who are ‘playing’ the game, are called the players.

In a game. if the goal of each plaver is to achieve the largest possible individual
gain (profit or payofl). the game is called a noncooperative game. Games in which
the actions of the players are directed to maximized the gains of coalitions without
subsequent subdivision of the gain among the plavers within the coalition are called
cooperative gamnes. In this thesis, we focus on some noncooperative games.

The basic objects of interest in noncooperative games are plavers’ strategics. A
player’'s strategy is a complete plan of action, i.e.. the moves to be taken when the
game is played: it must be completely specified before the actual play of the game

starts. and it prescribes the course of play for each move that a plaver might be called



upon to take, for each possible piece of information that the player may have at each

time where he or she might be called upon to act.

In simple form, a two-person game is a triple (4. B, L) where A is the set of moves
for Player I, B is the set of moves for Player II. and L is a nonnegative function defined
on A x B with L(x,y) denoting loss to Player II when Player I plays x and Plaver 11
plays y. With a o—field of subsets defined for A, suitable integrability conditions for
L, and A* denoting the class of probability distributions on the o—field, the domain
of L is extended to 4* x B by L(r.y) = [ L(x,y)dr(x). If the class of probability
distributions includes all degenerate probability distributions for the points in .4, then
(A*, B, L) formally extends the game (A. B, L) to include randomized strategies for
Player I. Under suitable assumptions, the game extends to (A*, B*, L) where both
players have randomized strategies 7 € A*, v € B*. For the extension, the loss

function is an expectation (expected loss). but it will still be called the loss function.

Our focus is on moves or strategies for Player II and generally Player I's utility or
inutility are not defined. For a zero-sum game, it is understood that Plaver I's gain
is Player II's loss. If Player II uses the distribution 7 to generate his/her move, we
refer to this as randomization. Here the move y is determined as the realization of a

random variable with a probability distribution v specified by the player.

A minimax strategy for Player II is any move s such that maxg L(7, ymar) =
min, max, L(7,7), the upper value of the game. A maxmin strategy for Player 1 is
any move 7, such that min, L(# arm. 7) = max, min, L, v), the lower value of the
game. If the upper value is equal to the lower value, the common value is called the
value of the game.

A Bayes rule for Player II versus the distribution 7 is any 7y such that L(7,v) =
miny L(7, ). The minimum is denoted as R(x) and called minimum Bayes risk. R(-)
is called the Bayes envelope for the game. A minimizer exists in the set B of pure

moves. Any function ¢ on A* with range in B* and such that L(x.o(7)) = R(7) for
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all # € A* is called a Bayves response. Hannan (1957) took ¢ to be B-valued.

Consider a zero-sum game where Player I selects a move from the set 4 =
{a).aa,...,an} and Plaver II selects a move from set B = {b;.b,....,b,} with loss
L(as,b;) to Player II if 1 chooses a; and II chooses b;. This is called a finite m x n
game. Here A* is the probability simplex in R™, B* is the probability simplex in R”
and all of the expectations are inner products.

Much of our study concerns the simple 2 x 2 game where each player selects from
{0,1} and the loss function is L(i.j) = [i—j| =i-(1—j)+ (1 —=14)-j, 4,5 = 0.1. This
is the game of matching pennies (or matching binary bits) with Player II's objective
to match Plaver I. In matching binary bits, 1 — 2L is the gain for Plaver II while
2L — 1 is Player I's gain.

Suppose that Plaver II generates his/her move in the matching pennies with a
Bernoulli distribution B(1.p), i.e. prob(j = 1) = p and prob(j = 0) = 1 — p. Then
Player II's expected loss is seen to be L(i.p) =i-(1—p) + (1 —1)-p = |t — p,
i€ {0,1}, p € [0,1]. Thus the loss function extends to expected loss on the domain
{0.1} x [0, 1] and we will call it simply loss where there is no chance of confusion.

Applying the extended loss to a weather forecast of rain with probability p. the
forecaster (Plaver II) suffers “loss” 1 — p if it rains (i = 1) and “loss” p if it does

not rain (¢ = 0). The choice p = 5 in the minimax choice for II, it minimizes the

1
2
maximum possible expected “loss™, 1. e.. p = % minimizes (1 —p)Vp. Notice that the
weather forecaster is not required to actually generate the Bernoulli random variable
to serve as his/her move. Rather he/she simply specifies a probability p. If “Nature”

flips an unbiased coin to determine whether it rains or not. then the equilibrium “loss™

% is achieved, the value of the game.



1.2 Repeated play

If a fixed group of plavers plays a given game repeatedly, we say this is a repeated game
or is repeated play. In another words, a repeated game is the same simultaneous game
playved repeatedly. The pavoffs add across repeated play. In repeated play, rules will
specify what information generated in the repeated play is made available to what
players and when. We will assume that all plavers will be fully informed of the rules
that govern the game that is being repeated together with the history of moves of all
plavers at all stages of the repcated plav. Thus. the player may use strategies. i.e.,
sequences of functions that map the history of past moves into a move for the current
stage.

The repeated play is of two types:

(1) Finite Horizon where there is to be a sequence of N plays where N is finite,
specified and known to the playvers in advance. See Hannan's weak sequence game
(1957. Sec 3). In finite horizon play, the plavers’ strategies can depend on N. Con-
ceptually, the finite horizon repeated play game is another example of a simultaneous
move game where the strategies are finite sequences of recursive functions. Plaver
II strategies are evaluated in terms of the average loss over the N games. We will
consider finite horizon repeated play only in Chapter 4, Section 3.

(2) Infinite Horizon where there is an infinite sequence of plavs and the players
know this. See Hannan's strong sequence game (1957, Sec 3). A plaver II strategy is
evaluated in terms of the sequence of average loss over initial segments.

Our study concerns the review of and the development of “good” strategies for
Player II in the repeated play of a two-person game. Generally. results uniform in
sequences of Plaver I moves are sought and obtained. With such results, the findings
extend to results uniform in Player I strategies and show that the motivation for
Player I is irrelevant (Hannan, 1957). The two-person construct is not as restrictive

as it secems since the term Player I may be taken to name a coalition or collection of



players.

Now consider the repeated play of matching pennies. We let a and b denote infinite
sequences of moves for the respective plavers and let a, and b, denote initial sequences,
t=1.2,... A deterministic strategy (pure strategy) for Player II has as components
recursive functions b,(a,_,) taking values in {0.1}. ¢ =2,3.... with b; € {0.1}. The

associated average (Cesaro) loss to Player II across N plays at the Plaver I sequence

7]

a is:

CLy(a. b)—ZLat b(a,_,))/N = Zm,—bt DN

As is rather obvious and perhaps first recorded by Cover (1967),

N
max{) _|a —bi(a_,) |ay € {0.1}¥} = N

t—1

for every b; and sequence of a,_; - measurable functions b,(-), t = 2.3,.... Thus, no
. =2t—1 ~Zt )
deterministic strategy for Plaver II can produce the uniform convergence of average
N . . . .
loss to zero. ) |ap — b| is the Hamming distance between the binary sequences

ap.dp.. ... any and by.by. ... bn.

A stochastic strategy (nired strategy) for Plaver 11 has as components recursive
functions p (a,_;) taking values in [0.1], ¢ = 2,3.... with p; € [0.1]. Identifying
1 with p = 1 and 0 with p = 0. the stochastic strategies include the deterministic
strategies as a subclass. The associated average (Cesaro) loss to Player II across N
plays is

[\!
CLx(a.p) ZL ac.pila,))/N = la = pula_y)l/N

t=1 t=1
Note that
Al
max{z lag — pela,_ )| | ay € {0.1}N} > N/2.
=1
for every p1 and sequence of @,_; - measurable functions p,(-). t = 2.3,.... Thus. no

stochastic strategy for Player II can produce the uniform convergence of average loss



to zero.

Hannan (1957, Sec 3, (11)) introduced what he called modified regret for the
evaluation of Player II strategies (using the scale of total loss). We use the term regret
to denote the difference between the average loss for a strategy and the minimum
average loss (envelope loss) across a specified set of (often simple) strategies.

We will illustrate regret in the repeated play of matching pennies where Plaver 1
selects a € {0, 1} and Player II selects a probability p € [0. 1] with loss L(a, p) = |a—p|
to Player II.

Example 1.1 The Sinple Envelope and Regret for Repeated Play of Matching
Pennies.

Consider the two strategies p'® and p'" where
P =0 and p’(a,_,)=0
fort =2,3,... (i.e., always play a 0) and
P’ =1 and p"(g_,) =1

for t = 2,3,... (i.e., always play a 1). Let S = {p'?,pi'}. The simple envelope is

defined as

N N
RW(ay) = min{CLn(a.p)lp € S} = min{z a /N, 1- Za,/]\-’}.

t=1 t=1

Dropping the superscript and letting gy = Zfl a/N, N =1.2,..., the simple enve-

lope evaluated at a, can be written by:
R(gn) = gn A1 — gn).

This is the Bayes envelope of the component game evaluated at the empirical prob-

6



ability distribution gy of {aj.as....,an}. The regret sequence associated with a

strategy p relative to the simple envelope is
DN(QB) = CLN(Q.B)—R(Q,\T). N=1.2...

Remarkably, Hannan (1957) and Blackwell (1956ab) independently developed strate-
gies of a very different structure for which Dy (a.p) is O(N~1/2) uniformly in a. In
each case the development was for repeated play of general finite games and more.
Hannan (1957) worked to get tight bounds and, therefore, good constants in his

O(N~12) demonstrations. Of course, Player II's concern is
limsup Dy (a.p) <0
N P

and this limit condition may have first been referred to as Hannan consistency (at a)

in Hart and Mas-Colell (2001, p.27). We will also refer to the sufficient condition
]1}1\;1] Dn(a,p) =0

as Hannan consistency (at a). This thesis has elaborations on various strategies

demonstrating Hannan consistency.

Example 1.1 (continued) Figure 1.1 below is a plot of the simple envelope R
and the Cesaro loss for a hypothetical strategy with Hannan consistency. Note this
interpretation: Player II using the Hannan consistent strategy does almost as well on
average through horizon N as if he/she were told in advance what was to be Player
I's majority move in the stages t = 1,2,..., N and he/she simply plaved that choice

in attempting to match Player 1. The Hannan consistent strategy p has the property

limsup max{CLy(a.p)lay € {0.1}"} < 1/2,
N P

~1



i.e., it is asymptotically subminimaz. In the limit, Player II loses at most one-half the

time and does better if gy stays away from 1.

Figure 1.1: Cesaro Loss vs Bayes Envelope
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1.3 Summary of Thesis

In this section we summarize the thesis and the results herein.

Chapter 2 introduces the play against the past strategy which we label as the
PAP strategy. With this strategy, Player II at stage t plays component Bayes versus
the empirical distribution of Player I's past moves {a;.az....a—1}. t = 2.3..... In
matching pennies. this has Player II playing the majority move found in Plaver I's past
moves. We also consider the unrealizable strategy called play against the past plus
present (PAP+ strategy). In matching pennies, this has Player I1 plaving the majority
move found in Player I's past and present moves {a;,as,....a_,a;}. Hannan (1957)
used these strategies and their properties both in motivation and in proofs for Hanman
consistent strategies for repeated play. We develop exact expressions for the simple
regrets of the PAP and PAP+ strategies in matching pennies. In Chapter 2, we
introduce the play against the random past strategy (PARP strategy) first considered
by Gilliland (2004) and Gilliland and Jung (2006). With this strategy, Plaver 11
plays component Bayes versus a random sample drawn with replacement from the
past moves {aj.a....ai—1}. A goal of this thesis work was to demonstrate Hannan
consistency for this strategy for the repeated play of the expert selection problem,
a goal only partially reached (Chapter 5). In Chapter 2 we define Hannan-type
strategics for later reference in Chapter 4. Essentially, a Hannan-type strategy plays
component Bayes versus either a controlled random perturbation of the empirical
distribution of Player I's past moves or the expectation of such. We conclude Chapter
2 by illustrating the need for fresh randomization across stages when implementing a
strategy for matching pennies. We base the example on a Hannan-tvpe strategy.

In Chapter 3, we examine extended envelopes for matching pennies. These en-
velopes are called k-extended envelopes and are more stringent than the simple en-
velope. Whereas the simple envelope is the Baves envelope of the component game

evaluated at the empirical distribution of {a;.a,,....an_j.an}. the 2-extended en-

9



velope is a Baves envelope evaluated at the empirical distribution of pairs

{(a1.a2).(az.a3)....,(an—1.an)}. If Plaver I's moves exhibit Markov structure, for
example, a tendency to follow a 0 with a 1, then the 2-extended envelope can be
considerably less than the simple envelope. In matching pennies, we develop exact
expressions for the 2-extended regrets for the PAP and PAP+ strategies and establish

Hannan-consistencv for a PARP strategy.

Chapter 4 reports on a literature search to document specific theorems and results
published by others after Hannan's (1957) seminal paper, results that are found in
or are direct consequences of Hannan (1957) results. Because of the cryptic styvle
and possibly the notations used in Hannan (1957). it is understandable that other
researchers failed to recognize the specific results therein. The style and notations
makes the documentations rather challenging in some cases. The literature includes
Cover (1967), Feder. Merhav and Gutman (1992). Foster and Vohra (1993). Chung
(1994), and Cesa-Bianchi and Lugosi (1999). This search was motivated in part by
the Gina Kolta (2006) New York Times article Pity the Scientist Who Discovers the

Discovered in which Hannan is mentioned.

Chapter 5 introduces the expert selection problem, which has gotten considerable
attention in the game theory and computer science research communities. Here Player
IT must select from a class of experts and assume whatever loss is incurred by that
expert in a specified game. This problem is often cast in terms of a forecasting
problem. For example. consider a set of K weather forecasters (experts). Player
II must make a weather forecast for tomorrow; rather than do his/her own analysis,
Player II examines the records of accuracy for the K experts and selects the forecast of
the one who has the best record of past accuracy. As described, this would be a PAP
strategy. PAP strategies here and in general are not Hannan consistent on all Player I
sequences a. In repeated games. the set of experts could be a set of strategies. Plaver

IT uses the performance record of the strategics to sclect one to implement in the

10



current stage. Chapter 5 starts by discussing focus forecasting (Smith. 1978) which
can be described as PAP where the tests of the forecasting strategies in the pool
are over recent performance. not the complete past. In practice, this is a criticized
methodology since the pool of experts seems to have grown in a rather ad hoc fashion.
For example, see Gardner, Anderson-Flether and Wicks (2001). Smith’s company
(Focus Forecasting.com) continues to serve customers. In Chapter 5. we investigate
the use of the PARP strategy in expert selection. We examine the case the pool has
only two experts and show the problem to be reducible to a one-dimensional problem.
This problem is examined and a class of sequences a where PARP is Hannan consistent
is identified. We conclude Chapter 5 with empirical tests of the PARP strategy for

selecting from competing time series models for prediction.

11



Chapter 2

The PAP, PAP+, PARP and

Hannan-Type Strategies

2.1 Play Against the Past (PAP) and Past plus

Present (PAP+)

Play against the past in the repeated play of a two-person game denotes the strategy
for Player 1I in which II at each stage t = 2,3,... plays component game Bayes
versus the empirical distribution of I's past moves. The study of this strategy in
general settings is undertaken in Hannan (1957) where basic inequalities (Sec 8. (11))
show the possible importance of the study to the construction of good strategics for
Player II in repeated games. Gilliland (1972) continues the discussion of play against
the past strategies in sequences of statistical decision problems. Play against the
past is a one-sided version of what is called fictitious play in the repeated play of a
two-person, zero-sum game (Robinson. 1951).

Recall that a Bayes rule for Player II versus a prior distribution over the pos-
sible moves by Player I is any move that minimizes the expected loss to Playver II.

For example, in matching pennies, a Bayes rule versus the probability distribution

12



Prob(a = 1) = w, Prob(a = 0) = 1 — 7. is any rule where p = 1 (Plaver II plavs
b=1)if 7 > and p = 0 (Player II plays b = 0) if 7 < % In our study. we will
1 1

usually take the determination p = 5 when © = 5. Formally. the Bayes response we

consider in our analvses of matching pennies is denoted by o(-,-), where

Here and throughout this thesis. square brackets denote indicator functions. More-
over, it is convenient for future use to extend the domain of the Bayes response to

0’(\‘.«)1\&}2) S [0 OC)2 - (00) by
o(wi.w2) 1= o(wi/ (w1 + w2) w2/ (w1 + w2)).
The PAP strategy for Player II in matching pennies is denoted by and defined by

1 1 1 1
PAP: pap = 5 papi(a,_y) = [ge—1 > E] + 5[9!—1 = ;]

where recall from Chapter 1 that g,_; denotes the proportion of 1's in the sequence
a,_,. With the PAP strategy for matching pennies. Player II starts with a coin toss
(assumed to be a fair coin) and subsequently plays the majority choice in Player I
past moves with a coin toss in the event of a tie

Hannan (1957, Sec 8. (11)) also considered the unrealizable strategy for Plaver 11

that in the context of matching pennies is
1 1. 1 1
PAP+: papt+; = 5+ pap + (a) = lg: > E] + 5[9; =]

This can be thought of as play against the past including present. Note that this
strategy has Plaver II's move at stage t to be the Baves response versus the empirical

distribution of {a,.a,..... at-1.a; }. Hannan (1957) established for the repeated play

13



of a general game that the average loss from PAP+ in no greater than the siinple
envelope loss and that the average loss from PAP is no less than the simple envelope

loss.

The evaluations for PAP and PAP+ are simple and illustrative in the case of
matching pennies. In developing a new strategy PARP for matching binary bits
(matching pennies) Gilliland and Jung (2006) proved the following proposition in

regard to PAP.

Proposition 2.1.1. In Matching Pennies, the Cesaro loss sequence for the PAP

strategy s given by

CLn(a.pap) = gy A(1 — gn) + 0508 /N + 0.5 [gn # 1/2]/N. N =1.2....
where vy is the number of g, visit to 1/2, t =1,2.3.....N

Note that the excess average loss over the simple envelope loss gy A (1 — gn) is
positive and is maximized at a = (0.1.0.1,...) or (0.1.0.1....) with the maximum
being 0.25 asymptotically. Here we have limy Dy(a.pap) = 0.25. That PAP is not

Hannan consistent at all in Player I move sequences is a well known result.

We now turn to the the unrealizable strategy PAP+ in matching pennies.

Proposition 2.1.2. The Cesaro loss sequence for the PAP+ strategy is given by
CLn(a.pap+) = gn A (1 — gn) — 0.5un /N,
where vy 18 the number of g, visit to 1/2, t =1.2,3..... N. Furthermore,

max{CLy(a.papt)|fived Ngn} = gn A (1 —gn)

11



and

min{CLx(a.pap+)|fired Ngn} = gn A(1 —gn)

— 0.5(greatest integer in  N/2)/N.

Proof: Let N > 0 be fixed and take a; = 1 without loss of generality. Suppose
that g; returns to 1/2 at stages iy, iy.... k. where 1 < i; < iy,.... < 1 < N. Consider
the first epoch 1 <t < ;. Note that ¢ > 1/20on 1 <t < 7; and 9y = 1/2 so that
Player II plays 1 on 1 <t < 4; and 1/2 at t = i;. Player I has plaved 7,,/2 0's
including the 0 at stage 4; and 7;/2 1's on epoch 1 < t < 7;. Thus, the total loss to
Player II on the first epoch is (i,/2 — 1) + 1/2 = (i;/2 — 1/2). The total loss across
all epochsis (4,/2—=1/2)+ (ix—i1)/2=1/24+ -+ (I —ix—1) /2= 1/2 =0 /2 = k/2.

If i, = N, then gy = 1/2 and the average loss is
CL]\"(Q.[)(I[)+) = gN — O.SI/N/N = gn N (1 - !/N) - O.SI/}\V/}V

where vy := {number of g visits to 1/2]t=1,2.3....,N}

Now suppose that i < N. Let ay 41 = 1 without of loss of generality so that
gy > 1/2. Then Player II plays 1 on the N — i stages ix <t < N. On these stages.
Plaver I plays a total of (Ngn — ix/2) 1's and therefore, (N — i) — (Ngn — 14./2) O's.
which is the total loss for Player II. Thus, the average loss for Plaver II across all N

stages is
CLN(Q. 7)(1[)-*—) = (ik/Q — IIN/'Z)/.N + (1 — g[\') — ‘ik/Q.’\" = gN A (1 - _(/;\') — 0.51/1\'/.]\".

For the fixed total number Ngn of 1's in the sequence ay . we see that the Cesaro

loss is maximized when vy = 0 and minimized by alternating 1's and 0’s.

Proof is done.J



It follows from Propositions 2.1.1 and 2.1.2 that

Vn [.‘/N # 1/ 2]

DN(Q.M) — E n T
and
Dn(a.papt) = _5_1]:_'/

Suppose that Plaver I generates moves a;,as, .. .as independent, identically dis-
tributed B(1, 7). We show that PAP is Hannan consistent at a. It suflices to show
that vn /N + [gn # 1/2]/N — 0. The second term is bounded by 1/N so we need
only consider the first term vn /N. vy is the number of visits of the random walk
Sy = S(2a; — 1) to 0 across t = 1.2,...,N, N = 1.2..... The strong law of
large numbers shows that Sy/N — 27 — 1 a.s.. Thus. if # # 1/2, Sy is 0 onlv
finitely often a.s., which implies that vy /N — 0 a.s.. Thus, where PAP is not
Hannan consistent at all sequences a. it is Hannan consistent a.s. if Plaver I re-
peatedly and independently generates his/her moves by a coin toss that has prob-
ability 7 of turning up Heads (a = 1) provided = # 1/2. Since gn — 7 a.s. and
R(ay) =gvnNA(1—gn) = A (1 —7) < 1/2 as. with equality if and only if 7 = 1/2,
Player II is sure to win more than 50% of the time in the limit if # # 1/2, i.e.. the
coin is biased. If # = 1/2 (the coin is unbiased). there is simple expression for £ (wx).

From Grinstead and Snell (2008. p. 481),
E(ry) =an =1

where
2N+ 1)
AN = RN

will appear again in chapter 4. section 3. Since ay ~ \/AN/7. E(1an /2N) ~ 1/ N

and using yn 41 = N it follows that E(vy/N) — 0 in Ly.
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Figure 2.1 shows the result of a simulation where the a; are i.i.d Bernoulli (1,1/2),

t=1,2,...,100.

Figure 2.1: PAP vs PAP+ vs Envelope for i.i.d Bernoulli sequence
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2.2 Play Against the Random Past (PARP)

Gilliland (2004) announced the result that play against the random past in match-

ing pennies is Hannan consistent with uniform rate O(N~-12),

Proof was given in
Gilliland and Jung (2006). The PARP strategy for Player 11 in matching pennies is
denoted by and defined by

. 1, 1., 1
PARP : parp, = parpla,_y) = [g{_y > 5] + 5[9:-1 = E]

K| =

where ¢;_, is the proportion of 1's in a random sample of size t — 1 drawn with
replacement from Plaver I's moves {a;,a,,....ai—}. It is assumed that the bootstrap
samples are independent across the stages t. i.e., that fresh samples are drawn at each
stage t = 2.3,... Study of PARP in matching pennies requires the analysis of the
half-binomial probabilities

L1, 1,1
Piovg_y = E(lgioy > 3] + 5[.%_1 = §])

Gilliland and Jung (2006) show that there exist constants A and B such that

|Dn(a.parp)| < (A+ BN - (gn A (1= gn)) )/N,

thus establishing uniform Hannan consistency for PARP with rate O(N~1/2),
In Chapter 5 we explore the PARP approach for repeated play of an infinite

component game that is motivated by the expert selection problem.

2.3 Hannan-Type Strategies (H)

Hannan-type (1957) strategies overcome the weakness in PAP by plaving Baves re-
sponses or the expectations of Bayes responses to properly scaled random perturba-

tions of the empirical distributions G,_;. Specifically, with a component game where

18



Player I has m moves {1,2....,m}. the empirical probability distribution of Player

I's moves through time t — 1 is the vector G,_; := (n{~',n5™', ... .n'>1)/(t — 1) where

ni™!' = num{a; = i]j = 1.2.....t = 1}, i = 1,2,....m. We define a Hannan-type

strategy as any Plaver I strategy that at stage t plavs

U(Gz_l +]Iv1_1Zt_1) \ t = 23. (21)
or

where {h,_1} is a sequence of positive real numbers, Z;_; and Z are random vectors
take values in (0,oc)™, and E is expectation over Z. To simplify proofs. Hannan
extends the domain of the Bayes response ¢ from the probability simplex in R™ to all
of [0,2c)™ with ¢ being positive homogeneous of order 0, that is, o(cu:) = o(u') for
all ¢ > 0, w € [0.o¢)™. Hannan (1957) for repeated play of a variety of component
games, including the finite two-person game and the S-game, imposes conditions on
the sequence of constants {h,} and the distribution of Z to achieve uniform Hannan
consistency for the strategy (2.2) with rates.

In matching pennies where m = 2, we have labeled the pure moves as 0 and 1 and
let g,y = num{a; = 1]j = 1,2.....t—1}/(t — 1) denote the empirical proportions of
1's in Player I's initial move sequences. Since 1 —g;—; = num{a; = 0]j = 1.2..... t—
1}/(t = 1). the empirical probability distribution is Gi_y = (1 — gr—1.ge—1)-

Chapter 4 includes a survey of published results that are subsumed by Hannan
(1957). It appears that many of the authors were unaware of the specific results
contained in Hannan (1957). Since a positive homogeneous (order 0) Bayes response
function plays a key role in proofs for Hannan-type strategices, we conclude this sec-
tion with examples to illustrate o, its properties and the notations that are used.
Hopefully, these examples will help make the proofs in Chapter 4 of connections of

Hannan-type strategies to other work understandable.
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Example 2.2 (Matching pennics)

Here Player I and Player 11 have m = n = 2 pure moves which we have denoted
as {0,1}. Suppose that Player I selects his/her move with the (prior) probability
distribution Prob(0) = 1 — 7, Prob(1) = 7. Consider Player II selects his/her move
with Prob(0) = 1 — p. Prob(1l) = p. The expected loss to Player Il is L(r.p) =
(1 —=m)p+ 71 —p). Any p that minimizes L(w.p) is Bayes versus #. A Bayes
response is any function o on the probability simplex in R? such that p= o(1 — 7. 7)
is Bayes versus 7. For each # > 1/2. p = 1 is uniquely Bayves versus =; for each
7 < 1/2, p = 0 is uniquely Bayes versus = for # = 1/2, all p € |0. 1] are Bayes versus
7. To specify a Baves response one must select a minimizer when the minimizer is

not unique. Here is the example given earlier in section 2.1:

0 OS7.‘<%.
c(l—m.7)= Loow=1
1. i<r<l1

When m = 2. there is the notational convenience derived from identifying (1—#, =)
by 7 . However. this identification hides features. including the positive homogeneous
property of order 0 imposed by Hannan on the Bayes response. As noted in section 2.1,
once a Bayes response is defined on the probability simplex in R2, the domain is easily
extended to all of [0.oc)2 — {(0,0)} by o(w. w2) = o(w,/(w, + wa). wy/(wy + wy))
and then to all of [0.2¢)? by defining ¢(0,0) to be any specific move. Then. o(-.-)
is a positive homogeneous function of order 0 defined on [0. >c)?. Then for matching
pennies. ¢(4.7) = o(4/11.7/11) = ¢(2-4,2-7) = 1.0(12.12) = 0(1/2.1/2) =
o(7,7) = 1/2. Note, for example, that with Z = (Z,. Z,) and h a positive constant.
o(l—7m+hZy.%+hZy) =1if and only if (Zy — Z;) > (1 — 27)/h. In the Hannan-
type strategy (2.2). a random perturbation is used. in particular, (Z,. Z,) is a random
vector. Thus the expected Bayes response (2.2) is a probability distribution on Plaver

II's pure moves. specifically. P(1) = Prob(Z,—Z; > (1=27)/h)+0.5- Prob(Z,— Z, =
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(1=2m)/h) and P(0) = Prob(Z,—Z, < (1—2%)/h)+0.5- Prob(Z,— Z; = (1-27)/h).
Example 2.3 (Maiching 3-sided pennics) Here Player I and Player II have m =
n = 3 pure moves which we denote as {1.2,3}. Consider the Player II loss matrix

shown below

Player 11

side 1 side 2 side 3

side 1 0 1 1
Player I side 2 1 0 1
side 3 1 1 0

Suppose that Player I selects his/her moves with the (prior) probability distribu-
tion P(1) = my, P(2) = w2. P(3) = 73. A Bayes response for Player 11 defined on the

probability simplex in R® must satisfy

1, T > Ty V T3,
(71, T2, T3) = 2, o > T V T3,

3, Ty > T V Wa.

These (7. 79, 73)-sets are the interiors of the convex regions shown in the probability
simplex in figure 2.2.

The domain of ¢ can be extended to the boundaries by any choices of probability
distributions supported on the maximizing coordinates. For example, ¢(0.25.0.40,0.35) =
2 =(0,1.0) and one could take ¢(0.35,0.35,0.30) = (1/2,1/2,0) and ¢(1/3.1/3,1/3) =
(1/3,1/3,1/3). Note, for example. that if the domain of the function ¢ is extended
to all of [0, 0c)? as a positive homogeneous function of order 0, then o () + hZ;. 79 +
hZy. w3+ hZy) = (1,0.0) if (Zy— Z,) > (mo—71)/h and (£, — Z3) > (73 —71)/h where
h is a positive constant. In the Hannan-type strategy (2.2), a random perturbation
is used, in particular. Z = (Z,, Z,, Z3). The expected Baves response (2.2) is then a

probability distribution on Player II's pure moves.

»)l
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Figure 2.2: simplex

0.0.1

/

(1,0,0)

2.4 Need for Fresh Randomizations

Consider the situation where Player 11's moves are probabilities p (the weatherman
example) or, more generally, probability distributions or expectations. Contrast this
with the situation where Player I1 is forced to play the realization of his/her random-
ization. For example, in matching pennies Player 11 is required to select a 0 or a 1.
albeit, he/she may generate the move with a probability distribution. Because the
histories of Plaver II's past moves are available to Playver I, Plaver II must be con-

cerned about the joint distribution of the random variables he/she generates across

the stages of the sequence.

Hannan (1957) did not deal with this issue since his concern was with repeated
play where II's moves were probability distributions or expectations and component

loss was measured following expectation over the randomization. To be more specific,
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a single random variable Z ~ F (serving like a dummy variable of integration) is used
in describing the Hannan moves E(o(Gy + hy- Z)), E(c(G2+ hy- Z)), E{(o(Gs + hs -
Z))....in his theorems.

Suppose that Plaver II must play a move b, at stage t = 2 determined by the

Bayes response (G, + hy - Z), a move bz at stage t = 3 determined by the Bayes

response (G2 + hy - Z)..... In this case, information on the realization of Z passes
to Player I through the the sequence by, bs,.... (Plaver 11 applyving o(Gy + hy - Z)),

0(Ga+ hy- Z,). 0(Gs+ hs- Z3)....with iid Z; ~ F removes this possibility for Plaver
I.) However, we take the matching pennies example to show how Player Il can be
trapped if employving a Hannan-tyvpe strategy based on a single randomization Z.

Recall our matching pennies example and consider the Hannan-type strategy.

1 h(Z, - Z
0(1 — g1+ h't—lZl-.(]t—l + }I-z-le) = [.(/t—l > =+ LI—(—I—Z)

2 2 ]

where g¢;_; is the proportion of 1's in the sequence of Playver I moves from stage 1 to
stage t-1. In our example we take the scale factor hy = 2/\/? and let U = Z; — 2,

where (Z;. Z,) is uniformly distributed in the unit square [0, 1J2. Then

U
t—1

1
b(:[g1_1>3+ ],122.3

where U € [-1.1].

Consider this strategy for Player I: a; = 0. a; = 0. a3 = | and

-1 ifb-1=1-am-1,
ay =

1—(11_1 ifbg_] = Q¢_1.

Thus, Player I continuous to play the same move until he /she observes that Plaver
IT has matched his/her move. Assume that Plaver 11 generates his/her first move b,

and the randomization (Z), Z3) independently with P(b; = 0) > 0 so that P(b; =
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0.U > 0) > 0. We will show that on the event (b; = 0,U > 0) that Player I wins at

least 3/5ths of the time in the limit so that limyDy(a.b) > £ — 1 = & Since the
event has positive probability, there are move sequences a where the strategy b is not
Hannan consistent. (If P(b; = 0) =0, then P(b; = 1) = 1 and analysis of the Plaver

I strategy starting with 1 1 0 will lead to a similar conclusion.)

Assume that U > 0. Let Ny + 2 be the maximum of stage before Player I switches

his/her play to begin to play the opposite, i.e

N0—2<0'+ U but No—1 0.5+ U
gng = ———— < 0.5 —, but g = 54 ——.
N = TN, Vo TN+ = N1 VNo+1
. . Ny-
From the inequality of gn and gng = 1(\’.0 we have
U No—2
0.5+ °_~>0

ie.,

0< Ny <2U% +4+2U-VU? + :(U+m)2

where N is the maximum integer number such that Ny < 2U2 +4 42U - /U2 + 4.

Since U € [0, 1], the maximum of Ny is achieved when U = 1, and minimum at U = 0.

max No = 10 when U =1; min Ng = 4 whenU = 0.

e, 4 < Ny <10, for all U € [0.1].

From stage 3 to stage No. No + 1 and Ny + 2, Player I still plays 1. And

Player II plays 0 from stage 1 to stage Ny. Then at stage Ny + 1, Plaver II ob-

Np—1 - 7 . .
Serve gny 41 = 0 > 0.5 + ——, so Player II switch his play from 0 to 1 at stage

071 VAT

No + 1. Then at stage Ny + 2, Plaver I begins to play 0.

Player II switches his play at stage Ny + 2. then Player I switches his play from 1
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Table 2.1: Plaver I and Player II's dynamic play to N = Ny + 3

Stage 11213 5 No | No+1 | Ng+2| No+3
Player I |0 |0 |1]1 |1 1 1 1 0
Plaver I |0 |0 | O 0 0 1 0

Table 2.2: Player 1 and Player II's dynamic play to N = No+ +m; + 3

Stage Plaver I | Plaver 11

No
No+1
No+2
No+3

Ol—lb—lb—l:
»—-;—aoo

]Vo + mg
]\r() +my + 1
N() + my + 2
No + my + 3

—_— o O O

to 0 at stage Ny + 3.
Let m; be the number of stages needed for Player II to switch his play back to 1

after stage No + 2. i.e.

As Player I and Player II's play are listed above, the total number of 1's in Plaver
NO

I's play from stage 1 to stage Ny + mj. thus INg+m| = Ryt And by the definition
of m; and Ny.
No U
m == P > 05 + Ry ———
INg+my No +my VINy +my
o — 2 <05 U
= 0+
INo No — No
U No —2 U N,
0.5 22T 05+ ¢

- — <0
VNo+my No+my )<



i.e., m is the largest integer such that

- U No
o+ S - — <0.
VNo+m;  No+my

therefore, we have

ANQ +m; < -U + vV U2 + 2]\"0

ie.,

m S 2U2+N0—2U 2,]\’0—{-(,/'2.

Lemma 2.4.1. With the results about Ny above, we have the following bounds for
2 <my <4, forallU € [0.1]. And m; reaches its minimum at U = 1, and

maximum at U = 0. Similarly. we have the same conclusion for ms, ms. m-.,. ... e

2<m; <4, j7=123.5.T7,

Proof: For m;, (U?+4) < Ny < (U + VU2 + 4)%, Ny is the maximum integer to

satisfy this inequality.

INA

(U = 2Ny + U2)? = (v/Ny)?
= \/2]\/0+U2+\/ (/—\/2]\/0+02 \/]Vo)
< QU+ VU4 - 2Ny + U2) - (=/2N, + U2 + (U = VUZ + 1))

ma

Obviously —v2Ny + U? + (U — v/U? + 4) < 0, with the fact that m; > 0.

V2N +U22>2U + VU2 + 4
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then

my <207 4 No—2U - U + VU2 +4)
= No—2U%-2U-VU?+4
= U4 U2 44420 -VUZP 44202 - 20U - V0?14

= 4.
For the lower bound of m;, assume m; < 2,i.e 0 < m; < 1, then
2U0% + Np —2U - /2Nog+ U2 =1 <m; < 1.
Thus.

(2U?% + Ng — 2)? 2Ny + U?

IN

N§ + (AU = 6) - No + 4U* — 9U* + 4

IN

0
No < 3-2U%++V5-302

Then, we have Ny < 2.4 when U = 1. Contradiction with Ny = 10 when U =1 from
previous discussion on Ny. Therefore, my > 2. Together with the first part proof.

2 <my < 4. With similar argument, for m;. j = 1,3.5.7,.., we all have
2<m; <4
(for example, to prove ms. one just need to replace Ny by N,. which equals Ng+m, +

my) Proof is done. (O

Let Ny = Ny + my, proportion of 1 from stage 1 to stage N; has property that

gny 2 05+ ’i—l Let my be the number of stages needed to switch play back to 0.
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N] —-m] +mao—2

4my = 54U
Then. gNy+my = N T <05+ e .Therefore.
- U _ U Ni—my+mo—2
0.5+ — —gn,) - (0.5 + - - = <0
(03 N 91\1) (05 VN + 1y Ny + my ) <

and m, is the largest integer such that

U Ni—my+mg—2

VN A ms B Ny + mgy

0.5+ > 0.

Then. solve for m,. with the property of m;. m; — Ny < 202 = 2U - 2Ny + U2

me < AU? + 4 = 2U - /2Ny + U2 +2U - \/U? + 2m, + 4.

Lemma 2.4.2. With the discussion of my and Ny, we claim that 3 < m, < 4.

Similarly, for my, mg, ms.... we also have 3 <m; < 4, j =2,4,6.8,...

Proof: For my, claim that m, < 4.

If my > 4, 1.e. my > 5, since my is integer and satisfy

4U2 +4=2U - \/2Ng + U2 4+ 2U - /U2 4 2m; +4 > my > 5.

Then

QU2 420 - /U2 42my+4> 142U - /2Ny + U?

i.e when we assume U # 0.

1
VU2+2m +42> 57~ 2U + /2No + U=

By previous discussion, v2Ny + U? > 2U + VU2 + 4. thus the right hand side is > 0.
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Then,

2m; > ——2U+\/7N0+U2) -U?-4
2(—+9U+\/U2 —2U)?-U%-14

2U
1

= e +U2+4+ VU2 +4-U?% -
1 U2+4

= et X U—0.

Contradiction with 2 < m; < 4 from previous discussion. Thus, we have the conclu-

sion that m, < 4.

If my < 3, i.e. my < 2, since my must be a integer.

AU+ 4 —2U - /2Ny + U2+ 2U - /U2 + 2m; +4 -1
4U% —2U - \/2Ng + U2 +2U - /U2 +2m; +4 < -1

IA
1\

for all U € [0,1].
However, when U = 0, we have left side=0 < —1. Contradiction!

Therefore, based on all the discussion we have above. we have 3 < my < 4. Similar

proof for my, mg, ms....In another words, we have 3 <m; <4, for j =2.4.6.8.....
Proof is done.d

According to the two propositions above, we can consider the Player 1I's total
loss. Since Player II only wins twice in each cycle (each cycle contains mq_; plus

may stages which is of length at least 5) and since Plaver I plays 0 at stage 1, Plaver

N- Jv(, N—N,

II's win< 2 + — 2. Thus, Player II's total loss is > N — 0.2 i.e Player

. 2N,
II's total loss is > %N 4 —09— — 2. Therefore the Cesaro loss is

5

3 1
CLy(a) = £ + O(5)-
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At the other side, the Bayes envelope gy A (1 — gn) <

Example 2.3 (Simulation of PARP without refreshing randomness )

%. Therefore,

1 1
;= . — an ) D =)
Dy =CLy(a) —gn A (1—gn) 2 T O(N)

Suppose the randomness used in Player II's strategy U = 0.7. Player I and Player

II play as we describe at the beginning of this section. Then, the Player II's average

loss sequence and Bayes envelope at each stage are showed by the graph below. and

the simulation of the first 27 stages of Player I and Player II are listed by the following

table.

Figure 2.3: Non refresh randomness U=0.7.
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Table 2.3: Non refresh randomness example with U=0.7.

stage | Player I g1 bar,x | Player 11 | Loss,

1 0 0 1.2000 0 0
2 0 0 0.9950 0 0
3 1 0.3333 | 0.9041 0 0
4 1 0.5000 | 0.8500 0 1
5 1 0.6000 | 0.8130 0 1
6 1 0.6667 | 0.7858 0 1
7 1 0.7143 | 0.7646 0 1
8 1 0.7500 | 0.7475 0 1
9 1 0.7778 | 0.7333 1 0
10 0 0.7000 | 0.7214 1 1
11 0 0.6364 | 0.7111 0 0
12 1 0.6667 | 0.7021 0 1
13 1 0.6923 | 0.6941 0 1
14 1 0.7143 | 0.6871 0 1
15 1 0.7333 | 0.6807 1 0
16 0 0.6875 | 0.6750 1 1
17 0 0.6471 | 0.6698 1 1
18 0 0.6111 | 0.6650 0 0
19 1 0.6316 | 0.6606 0 1
20 1 0.6667 | 0.6528 0 1
21 1 0.6818 | 0.6492 1 0
22 0 0.6522 | 0.6460 1 1
23 0 0.6250 | 0.6429 1 1
24 0 0.6000 | 0.6400 0 0
25 1 0.6154 | 0.6373 0 1
26 1 0.6296 | 0.6347 0 1
27 1 0.6429 | 0.6323 0 1
28 1 0.6552 | 0.6300 1 0
29 0 0.6333 | 0.6278 1 1

* bar, = 0.5 + ﬁ is the threshold for decision based on g;.

All the discussion and simulation example show that it is necessary to refresh the

randomness at each stage when we use Hannan type strategy to make decision.
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Chapter 3

PARP Strategy for k-extended

Envelope Problem

3.1 Introduction

Practical forecasting problems are of great variety. Sometimes we suspect that Nature
or the market (as our Playver I) makes its decision by some patterns. The decision
on one stage may be affected by the previous k stage decisions. For example. the
market gives rise to a certain stock price. This may raise investors confidence and

this confidence or followup may make the market give another increase the next day.

Therefore, we are motivated to study such kinds of pattern behavior. Suppose
the Player I's moves on a; are affected by ar—k. @¢—g41. ..., ai—1. then with this situ-
ation, our Bayes envelope is called k-extended Bayes envelope, and the corresponding
forecasting problem is called k-extended Bayes envelope problem.

In this chapter. we will give definitions and extensions of PAP strategy and PARP
strategy for the two-extended envelope problem. Although we focus on the two-
extended envelope problem. it is easy to generalize the two-extended envelope case

to k-extended cases.

32



3.2 Envelopes including Extended Envelopes

We have already introduced the simple envelope R for the evaluation of average loss
in the repeated play of matching pennies. Hannan (1957, Sec 3) defines the simple
envelope at stage N as the total loss N -CLy to Plaver II had II known the empirical
distribution of I's moves ay.a;....,an and played Bayes against this distribution at

each stage t =1,2,... . N.

We consider what are called extended envelopes for repeated play, first introduced
by Swain (1965) and Johns (1967) for the repeated play of a statistical decision
problem and first analyzed and ordered in general terms in Gilliland and Hannan
(1969). Extended envelopes can be defined as minimum average loss across specified
sets of strategies including those chosen to take advantage of possible Markov-type

structure in the empirical distribution of I's moves.

Example 3.2.1 Repeated Play of Matching Pennies.
Consider the repeated play of matching pennies and the collection of strategies S =

{p@.p".p? . p'*} where p@ and p'V were defined in example 1.1 and
])(12) =ay and pﬁz) =a—. t=23...,N

and

1’23) =1l—-an and p§3) =1—-a_;. t=2.3..... N

These may be thought of as a stay strategy and swilch strategy, respectively. although
the moves by strategy p'*) at stage 1 are not possible given the rules for the repeated

plav. The extended envelope of order 2 is given by

R (ay) = min{CLn(ayn.p,)lp € S}
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As the minimum over a larger set of strategies,
R®(an) < RM(ay) = R(g,) for dl ay

Thus. 2-extended envelope R'?) is a more stringent envelope against which to compare
the average loss of a Plaver II strategy.

For the explicit evaluation of the extended envelope R®) it is useful to consider all
consecutive pairs contained in the sequence ay understood to be wrapped in a circle
so that an precedes a;. There are N consecutive, overlapping pairs. Let n;; denote
the count of the pairs with first component 7 and second component j, i.7 = 0,1.
Then it follows that n; := 19 4+ ny; = Ngy =number of 1's in the sequence a, and

No = Ngo + o1 = N(1 — ga) =number of 0's in the sequence ap. and ng; = nyq.

Proposition 3.2.1. If n;; arc defined as above, then
NR®(ay) = (no1 Ango) + (11 Anig)

Proof:

From the definition of n;; and CLx, we have
1 N

. 0
N -CLN(QN.EN)) = np="njp +nyn
N . CLN((_IN.B(,\I,)) = TN = N1 + Ngo

4 (2 - y
N - CLN(QN'BE\’)) = noy + Ny = 27101

N‘CLN(Q!\“E\?)) = MNgo + N1

Proof can be completed by considering the four situations: (ng; < ngo and ng; < nyy).
(no1 € moo and noy > n11). (o1 > ngo and noy < nyy) and (no1 > neo and ngp > nyy).

Example 3.2.2 Let N = 17. and a;;: (0.1.1.1.0.1.0.1.1.0.0.0.1.1.0.1.0). In this
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case ngg = 3, Ng; = Ny = d.ny; = 4.

Then 2-extended envelope 17-R®(a,;) = (3A5)+(4A5) = 7. While, 17-R(9/17) =
17- R(a;;) = (3+5) A (4 +5) = 8.

Consider another example where the sequence of Player I moves shows greater
second order dependency, Markov structure. Take N = 17, and
a;-: (0.1.0.1.0.1.0.1.1.0.0.1.1.1.0.1.0). In this case ngp = 2. ng; = nyp = 6.nyy = 3.

Then 2-extended envelope 17-R®(a,-) = (2A6)+(3A6) = 5. While, 17-R(9/17) =
17- RV@I?) = (2 £ 6) A (3 4+ 6) = 8.

The extended envelope idea can be based on three-tuples, four-tuples, etc. and

leads to an ordering for a family of k envelopes
R%(an) < R*D(ay) <+ < RW(an) = gv A (1 = gn).
Regret relative to the 2-extended envelope is

D@Na.p) = CLx(an.p,) — RP(ay).

This Chapter includes the adaptation of the PARP strategy (defined in Chapter 2)
to matching pennies that achieves uniform Hannan consistency with the 2-extended
envelope, i. e.,

1
Dﬁ) (a.parp) = O(N™2) wniformly in a.

Remark:

The wrapping of the sequence ay gives an ordering to the resulting envelopes.
an idea exploited in Gilliland and Hannan (1969). However, in developing Hannan
consistent strategies in repeated play with the k-extended envelope. there are only
t — k past k-tuples of Player I consecutive moves available to Plaver 11 for basing a
move at stage t. t = k+1.k+2,.... Thus. the regrets studied in the following sections

are relative to envelopes based on the empirical distribution of the N —k+1(not N) k-
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tuples (aj,ag.....ax). (@2.a3.. ... Qpy1)s - -« (AN—k41-AN_k32:- - - .an). The difference
in regrets compared to those relative to envelopes based on the N k-tuples from the
wrapped sequences is for fixed k of order O(1/N) since only k of the k-tuples are
omitted at each stage N.

In the rest of this chapter we consider the repeated play of matching pennies.
In section 3.3 we continue discussion of the 2-extended envelope. In section 3.4 and
3.5 we derive exact expressions for the Cesaro loss from PAP and PAP+ applied to
empirical distribution of past. In section 3.6, we show how PARP applies to give

Hannan consistency for the 2-extended problem.

3.3 Two-extended envelope problem
Let's consider Player I's moves in an actual game in N = 13 trials.

Table 3.1: An example of Plaver I's actual moves in N=13 trials

stage | 1/2(3/4|5(6|7|8{9|10|11 12|13
Paver 11O |1{0(1|1|0}1(011]J0]0}|1/0

Now as Player 11, we want to predict Plaver I's move on the (N + 1)™ trial.

In order to do the prediction. we have considered PAP and also discussed the
strategy based on random past (PARP) which is randomized from the empirical
distribution in previous chapters. However, another question arises: Does Plaver 1
more likely play 1 following a 0 or more likely play 0 following 0. In another words.
is it possible that Player I is plaving on a certain ‘pair’ pattern.

Here, we explore a strategy to deal with such kind of "pair’ pattern moves of Player
[, i.e. our Baves responscs will be based on the past ‘pairs’.

In general, Plaver I 's move is sequence a with N trials:



By pairing Plaver I's move on each trial and its next trial. we have a set ay:

ZI:N : {((l], (lg), (0.2. (1.3), ((13. (14). N ((11\"_1, GN)}.

For each pair in ay. we take the first coordinates as the condition. Then, we can get
two partition sets of @y with respect to the condition of each pair 0 or 1. and during

this partition procedure. we keep the order of these pairs.

Therefore. by partition with the first coordinate as the condition. we have:
ANi{((l.,‘.(lj)' (1,1':0‘ 1312,1’\[—1. _]:].2..JV}

By :{(a.q))] =1, .i=12....N-1, j=1.2,...,N}

Suppose Player I's move on the N* is ay = 0. Our Bayes response by, is the move
under the condition, preceding move is 0. Naturally, our prediction should be based

on Plaver I's pair move under the same condition, i.e, on set An.

In set An. all the second coordinates of each pair are Player I's move with condi-
tion: the preceding move is 0. Therefore, we take out the second coordinates of each
pair, keep their orders and put them together to form a new sequence An. The new
sequence An contains all the behavior of Player I with the condition: the preceding

move is 0.

Take the example at the beginning of this section:

We have:

Ay {(0.1). (0.1). (0.1). (0.1), (0.0)}

By {(1.0). (1.1). (1.0). (1.0). (1.0). (1.0)}
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Since any = 0, like what we discussed above, we consider Ay, and take out all the

second coordinates of each pairs in Ay to form a new sequence:

Av:1, 1. 1, 1. 0. ang1.

where ay ) is the move we want to predict.

In sequence Ay, each term is an individual play with the same condition: proceed-
ing move is 0. In another word, we can consider each term of Ay as an individual
move. Therefore, we can use the strategies we have discussed already in previous

chapter and the PARP from Gilliland and Jung (2006).

3.4 PAP Strategy in two-extended envelope prob-

lem

We apply PAP strategy on the sets Ay and By which we have constructed in last

section.

Theorem: In this kind of two-extended envelope problem. when the PAP strategy
is used to do the (N + 1) stage prediction, the Cesaro expected loss sequence for his

PAP strategy p is given by:

0.5 1 0.5

%’ - (7760.]\,- N 77/61.1\7 + 77/]0.N A '”I“.]\r) + T . (l/n,l + /1'11,'2)
. 0.5

N [noo.n # norn] + N ("o # Mi1n]

CLY =



where

nyn = numberof (ax. arr) = (4,7) . fork=1,23,....N -1
nl = (ng.n + noin)

V1 = {numberof timesof g = 0.5k =1.2.3,....nl}

gr is the empirical proportion of 1 as the second coordinate through stage k in the

sequence Ap.

n2 = (njon +11N)

tne = {numberoftimesof g =0.5 |k =1.2,3....,n2}

gk is the empirical proportion of 1 as the second coordinate through stage k in the

sequence By. Furthermore.

min { C'Lg)(gly,p,\,)lfi.red myn. 1=0.1, .5 =01}
an =
0.5 1

’ / ! P,
N TN (noo.nw Aoy + Mion AN N)

4

and
max { CLﬁ\%)(gN.pNﬂ firedni; n, 1=0.1, .j =01}
an -
0.5 1
= 5 tlo % (noo.n A Mo + Mon Ayn)
0.5
+ N (Indo.n # nown] + [Mon # 7w
Proof:

For any sequence ay. according to four patterns in two-extended envelope problem.
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(0.0).(0.1).(1.0).(L.1), we can always create sct ay from sequence an where

ay :{(ar.az), (as.a3). (as.aq)..... (an—1.an)}.

Since the first coordinate in a pair is 0 or 1, ay can be divided into two subse-

quences:

An  {{ai,qj)|a; = 0. i=1.2...., N—-1l.j=2....N}

By {(ai.qj)|a;i=1. i=1.2....N—-1.j=2.....] N}
Therefore. we notice that Ay N By = @ and Ay U By = ay. Thus.

. (2 .
N-C L'N) = Loss on a; + Loss on second coordinates Ay

+ Loss on second coordinates By

Since we always flip a coin on b, as the start, Loss on a; = 0.5.

For sequence Ay, since we only consider loss on second coordinate in each pair.
we can form all the second coordinates into a sequence. By using past strategy p,

according to Gilliland and Jung (2000),

! /
Noo.N No1. N \
/J

Loss on second coordinates Ay = nl- (= - - -
Noo.n + Mo1x Noon + Nop N

Noo &
= 05 U+ 05 [—X 4.5

! !
Noo.n T Mo1.n

Since n1 is the the number of the pairs in the sequence Ay, ie. nl = (ngg - +

ng; n)- therefore we can simplify the formula above,

Loss on second coordinates Ax = (ngo y Angya) + 0.5 vy
- ! !
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where.
V1 = {number of times of g, = 0.5 | k=1,2.3.....n1}.

gk 1s the empirical proportion of 1 as the second coordinate through stage k in the

sequence Ay.

Similar for sequence By.

Loss on second coordinates By = (g ny Anjya) + 0.5 2

+ 0.5 [nion 7 M1N]
where
n2 = (nijgn +nhN)

fne = {number of timesof gp =0.5|k=1,2,3....,n2}

gk is the empirical proportion of 1 as the second coordinate through stage k in the

sequence By.

Thus. the total loss can be written as the following form:

+ 0.5 [noon # norn] +0.5- 0o n # nin]

l.e.

: 0.5 1 0.5
CLY = ~ TN (noo.x Aoy + Mo n ANy n) + w1t h)
0.5 0.5
+ - [on # mora] + 57 - o 7 1w
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/
n r
By Gilliland and Jung (2006), for fixed nl and nl - ,——0—0——’\7—— minimum loss on

"00,N T701.N
the second coordinates on Ay is achieved by the minimum number of 1,;. And

min{loss on the second coordinates on Ay}

! !
n Ny N
00.N 01.N -
= nl'(/ +n W T )+0"3
Mooy T Nor.n Moo.N T NorN
Similar for the sequence By.
min{loss on the second coordinates on By}

/ !
) No.N N -
= n2-( )+ 0.5

! ! ! !
Npn TN Pyt NuN
i.e.

min { CLE\Q,)((_IN.;QN)lfi;red Ngg.\"), i=0,1, .7=0.1}

1.5 1
= N + N (ngo.n A ngyn + Mon ANy N)

.. . . .. . {2
Similarly, we can easily derive for the explicit form for the maximum of CL, 2

mar{loss on the second coordinates on Ay}

! !
Too.N T91.N

= nl-( ) + 0.5 [noon # Mo1n]

7 14 ! !
NooNy T No1n Moon T No1N

max{loss on the second coordinates on By}

No N n}
10.N 11N )+ 0.5- [7?60.1\" # 7761J\']

= n2 ('n’ +n' n' + n'
'10.N 1LN '10.N LN



Therefore,

max{CLﬁ)(_q‘,V.pN) |  fived ]\"gf;\'). i=0.1,.5=0.1}
ay -
0.5 o1
= N +1.5- N (noon ANG1n + Mon AnYN)
0.5 /
+ N ([ngo.n 7 norn] + [Phon # Miin])

Proof is done.O]

o . 2) . .
Comments 3.4.1: Since the maximum of the CL(N) is achieved by the sequence
with maximum of vy, in another word. max loss on the second coordinate on Ay /nl

is achieved by the maximum of wn, i.e.

! . !
Noo.N = NMp1.N

as many times as they can in the sequence Ap.

This indicate that the sequence Ax : {(0.0). (0.1), (0.0). (0.1). (0.0)....}
or conversely Ax : {(0,1). (0.0), (0.1). (0.0), (0.1),...}.

Similar for the sequence By,
the maximum case is the sequence: By : {(1.0). (1.1), (1.0). (1.1). (1.0)....}
or conversely By : {(1.1). (1.0). (1.1). (1.0), (1.1)....}.

If we transfer the two sequence back to original sequence form. the maximum case

ay:0 01 1 001 1 001 1 0 O..
or

ay:1 1 0 011 00110 0 1 I1....

.. . .. (2) . .
For the minimum case. since the minimum of C L_‘N) is obtained by the sequence
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with the minimum of vy i.e.

! ! ! —
Noi Ny = MyoNy  ThoN = NN

As few times they can, i.e. Ay : {(0,1). (0.1), (0.1), (0.1). (0.1),...} or
By : {(1,0). (1.0), (1.0). (1.0). (1.0),...}. In another word, the original

sequence Is:

ax:0 1.0 1010 1O0T1TO0T11 0,....

or reverse the position of 0 and 1.

Corollary 3.4.1: When we take the dimension of the envelope as a higher di-
mension k. k is a fixed positive integer, we can use the same idea as the theorem we
proved above. Here we can take k=3 as an example to show the possibility of this

generalization.

For k=3. we have 2% = 8 triple patterns which is the combination of the three

dimension with each coordinates has 0 and 1 two choices:

(0.0.0) (0.0.1) (0.1.0) (0.1.1) (1.0.0) (1.0,1) (1.1.0) (1.1.1)

to transform original sequence a into

~

an : {(aj.az,a3). (as.as.ay), (az.agq.az)..... (aGm_2.an_j.an)}.
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Then. we can construct the sets 4,. 4,. A; and Ay:

141‘]\,' 2{((li.aj.ak)| ai:O,ajZO.i.:l....‘N—‘Z‘j:‘Z,...,N—l, A:BJ\’}
;42‘1\] :{(a,-,aj.ak)| ai:0,aj:1,i:1....,N—'2.jz?,...,N—l.k:3,...J\’}
Asn {(aigja)] as=1.a;=0.i=1... N-2 j=2.. N—1 k=3... N}

Ayv A{laiagea)| ai=liaj=14=1... . N=2 j=2.....] N—-1,k=3,...N}

As we do in the theorem we proved above:

. 3
N C’Lx) = Loss on a; + Loss on ap
4
+ E Loss on 3™ coordinates on A; n
i=1
And
Loss on 3™ coordinates on A, n
/! !
Moo N nhora
000.N 001.N -
= nl-( )4 0.5 vy
n; + n{ ny; + Ny N
000.N T Thoo1.N 000.N 001.N
nl
. 001.N -
+ 05 [ ; # 0.5]
Nooo.n 1 Moo1. N
(! 7 = W /
= (ngoo.n ANoorn) + 0.5 v + [n400 x 7 Mo01.N]
where n; ;, is the number of (ax.axs1,ax42) = (i.4.0) for k =1,2.3..... N =2 nl

is the number of the pairs in the sequence An..e. nl = (n{po x + Mp01 A )-

Apply the similar ideas on 4,. A3 and A4. and plug them into the formula of
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CLg\:f), we have:

3 _ 1 1 / / W
CLy = I + N (Nooo.n A Moor.n + Moron A Mo N

! ! 4 /
+ nigon ANjorn T Mon A T1N)

0.5
- (an + Un2 + Wiz + H}’nt‘l)

+ N (Indoo.n 7 Moo1.n) + [P010.8 7 Mor1.n]

+ [",100.1\1 7 ",101.1\'] + [77',110.N # 7"/111.1\'])

Furthermore,
. 3) 3 1 li ' I i
minCLy = ~ TN (000.8 A Moor.n + Toro.n A Norn N
7 / ’ '
+ nigon AMjorn t Pion AT1N)
and
"CL(S) _ _1_ 1.5 1 ’ A / An
max NOTON +1.0- N (nooo.n AN Moorn 1+ Moto.n A o1
! ! ! !
+ Neo.n AN N T+ Npon A 7’-111.1\7)
0.5

+ N : (["600.1\/ # "601.1\'] + ["610.1\/ 7 ”611.1\']

+  [Ploon # Porn] + Mion 7 Nn))

With the discussion in theorem. comments and corollary above, we can see that
using PAP strategy which does not involve any random process, just makes the fore-
casting decision based on the exact empirical data. will be trapped in some special
cases like the maximum example we just showed in comments after the theorem.
Therefore. reasonably we would like to more innovative idea to avoid the trapping

situations.
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3.5 PAP+ Strategy in two-extended envelope prob-

lem

Similar with what we discussed in chapter 2. after we construct and studied the PAP
strategy in 2-extended envelope problem. we come to consider to play against past
plus present (PAP+) strategy.

Theorem: In this kind of two-extended envelope problem, when the PAP + strat-
egy is used to do the (N) stage prediction, the Cesaro expected loss sequence for his
PAP+ strategy p is given by:

0.5
Ar’

2) 1 0.5 .
CL?V (p) = + 7\?(7":)0‘1\" Ao N + Non AN N) — N (V1 + tn2)

where

nyn = numberof (ar, aryr) = (i.j) , fork=1,2.3,....N - L.
nl = (ngn + NoLn)-

vp1 = {numberof timesof g = 0.5 |k =1.2,3...., nl}

gk is the empirical proportion of 1 as the second coordinate through stage k in the

sequence Ap.

n2 = (njon +nN)

tn2 = {numberoftimesof gp =05k =1.2,3...., n2}

Here, gx is the empirical proportion of 1 as the second coordinate through stage k in

the sequence By.

Proof:



Similarly in the proof of PAP strategy.for any sequence a,, according to four
patterns in two-extended envelope problem, (0.0). (0.1), (1.0), (1.1). we defined the
four proportions with respect to these four patterns. and also we can always create

set ay from sequence ay . where

EN : {((ll,(lg), ((12.(13)‘ ((13.(14), ey (G.N_I,G.N)}.

By first coordinate in a pair is 0 or 1, ay can be divided into two subsequences:
ANZ{((LL'.GJ‘)I CL.,':O, ,121.2,...,]\/'-—1, ]:12,,]\T}

By {(a;.q;)] =1, i=1.2,....N—-1, j=12,...,N}

Therefore, we notice that Ay N By = § and Ay U By = ay.

Since any a;, ¢ = 2.3,.... N and the second coordinates in a pair appear once
and only once either in Ay or By. and decision on a; only depend on {(a;.ax) | a; =
aic1,j =1....00—2, k=2.3,...,i— 1} i.e. loss on decision of a; in ayis equal to

the loss on decision of a; in An.

Thus,

(2 :
N-CL N) = Loss on a; and as + Loss on second coordinates An

+ Loss on second coordinates By

Since we always flip a coin on b; as the start, Loss on a;=0.5.

Loss on second coordinates Ay = (ngg y Angy n) — 0.5+ )
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where,
vn1 = {number of times of g = 0.5k =1.2.3,...,nl}.

and here gy is the empirical proportion of 1 as the second coordinate through stage

k in the sequence Ay. Similarly. for set By

. ’ -
Loss on second coordinates By = (ngg x Angyn) — 0.5+ fin2

where.
tno = {number of times of g = 0.5 | k=1,2.3.....n2}.

and here g is the empirical proportion of 1 as the second coordinate through stage
k in the sequence By.

In this wayv. for PAP+ strategy. the total loss is

N. C'Lf,)(p) =05 4+ (neon Angin + Non AN A) = 0.5 (Va1 + fn2)

l.e.

e 0. 1 0.5
CL%)(E) =5 t W(“f)o.}v Angyn + oy ATy n) = 55 (Wl + ).

(@3]
<

Proof is done. O
The explicit form of the expected loss of PAP+ strategy above shows that when

Vn1, and fyo reach their maximum n1/2 and n2/2, the expected loss approach to its
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minimum, which is

0.5 1
! ! ! ! s 1o
+ —(ngo.n Aoy + Mion Ay n) — 0.25

min CLﬁ)(Q) =~ 1t

and when when 1,;, and ., reach their minimum 0. the expected loss approach to

its maximum, which is

0.5 1, A Ly A
+ _(7"00.1\’ Moy N T Nio.N 77'11.1\’)-

2)
max C'Lg\, (p) = RN

3.6 PARP Strategy in two-extended envelope prob-

lem

As we did in last section for PAPast strategy, we partition the original sequence
ay into two sets Ay and By, according to the previous stage value as the condition.
Then, we extract all the second coordinates of each pair pattern within these two con-
dition subsets, to form two subsequence correspondingly. On these two subsequences,

instead of PAPast strategy, we use PARP strategyv ideas.

For each fixed n, when we forecast the next stage i.e. the (N+1) stage. in sequence
an. we are going to do the forecast base on the N stage an’s value. If ay = 0, we
will use the subsequence Ay from the empirical data set Ay. By PARP strategyv
idea, we will do bootstrap sampling in this subsequence. and use the majority from
the bootstrap sampling result as our forecast for ay;y. Different from the PARP
strategy we introduced in previous chapters, this is an conditional PARP strategy.
The object of applying PARP strategy in not the original sequence ay any more, but
the conditional subsequence. With this idea, we have to investigate the asymptotic

properties of this new methodology.
Theorem: If we apply PARP strategy on two-extended envelope problem. let p*
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be the PARP decision, then

|N - C'Lﬁ)(g,p*) - ng)(p)l SA+B-((/ngon AN N+ \/’7‘,10.A’ AN N)

2 .
where A and B are constants, Rﬁv)(p) = ngo n ANy n 1 NARY N s the two-extended
Bayes envelope.

Proof:

We partition the original sequence a into two subsets:

‘4N : {(ai.aj)| a; = 0, .21= ].2 ..... N — 1, J: 1.2..... A"Y}
By {{ai.a;)] aa=1, .i=1.2...., N-1, j=12,....N}

Furthermore, we take out the second coordinates of each subsets to form two new
subsequences Ax and By. Thus, applying PARP strategy on original sequence comn-
ditional on the previous stage, is equivalent to using PARP strategy on A~N and By.

By Gilliland and Jung (2006), when we use PARP strategy on Ay to predict an41,

we will have two constant Al and Bl such that

e * 1 7 ;
CLu(A.p) £ —(A1+ B1-y/ul g A (1= gl}))

where CL,,(A.p*) is the Cesaro loss on the random past strategy for sequence Ay,
/
n

01.N

gh; = v 7
n ’
"01,N 00N

ng; n = number of (0.1) in ZA
ngo.n = number of (0,0) in ZA

and nl = (ng; y + Ny ), i-e. the number of pairs in Ay.
Similarly, if axy = 1, i.e. our Bayes response would be based on the set By instead
of Ax.and when we use the random past strategy on the sequence By. We have A2,

-
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B2 such that

~ 1 , '
CLn2(B.p") < ;;3(142 + B2-4/n2- 971:2 A1 - 922))

/
11N
7 ! .
10N 11N

I

where g7,

n

n'o y = number of (1.0) in By,

n x = number of (1,1) in By,

— ! ol
and n2 = (nf; y + nio.n)-

Since C'Lnl(/T, p*) is the Cesaro loss with condition ay = 0. and CLng(E.p‘) is

the Cesaro loss with condition ay = 1, the total Cesaro loss should be:

CLn(a.p*) = Play = 0) - CL,y(A.p*) + Play = 1) - CLo(B.p")

/ /
o0, N 01N

(1 A+ A
v Cand —OLNTTIIN

to estimate P(ay = 0) =T

By empirical distribution, we use

to estimate P(ay = 1).

Thus.

N-CLn(a.p*) = (nlhy nx + nho ) - CLuy (A.p*) 4+ (o n + 1 n) - CLua( B.p*)

o
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. 2) -
Since the extended envelope R (p) = Nogon NNMopn + Mg n ANy We have

IN-CLx(a.p") — RY (D)

IN

IA

|(noy.n 4 Moon) - CLu(Ap*) - Tgo.n A NoyN

('”'110.1\’ + ""11.1\') : CLn‘z(RV - 77-110‘1\-' A 77'/11.1\'|

|2y x + Mo ) - (CLut(Ap*) — g2 A (1= g2)))
(Mhon + 150 n)  (CLua(B.p* = ghy A (1 = gh)]
(Mos + o) == (AL + BL-fnl -l A (1= g2)

1 N
(o +7hun) - —(42+ B2-y/n2- gl A (1= g))

(AL+ B1- [l Ay )
(A2 + B2- W)

Let A= Al + A2, and B = max{Bl. B2}. then

IN-CLn(a.p") = Rﬁ\%)(f’ﬂ <A+ B- (\/"60.1\1 Aoy + 4/ Mon Ain)

for all Player I move sequence a and all N (N > 1).

Proof is done.Od

Comments 3.6.1: The theorem above shows that |[CLy(a.p*) — Rf,f.) (p)/N| has

a uniform bound which is O(N ~1/2) in Plaver I sequence of move.i.e., the Cesaro loss

of PARP strategy in two-extended envelope problem converges to the Baves envelope

with convergence rate O(N~1/2).

Example 3.6.1 Suppose Plaver 1 is plaving 0 or 1 for each time. we suspect

that Plaver I's move at each stage is effected by his move on last stage. Therefore.

it is reasonable for us to form this forecasting problem as a two-extended envelope

problem.



Table 3.2: Two-extended envelope problem

stage k | ax | p CLLQT(Q. p) | CL};Z)(g.p*)

1 1105 0.5 0.5 0.5

2 1|05 0.5 0.5 0.5

3 0 1 0.667 1 0.667
4 1|05 0.625 0.5 0.625
5 01 05 0.6 0.5 0.6

6 0 1 0.667 1 0.667
7 1| 05 0.643 0.5 0.643
8 0] 03 0.604 0.26 0.595
9 1 |0.67 0.574 0.74 0.557
10 1 10.25 0.592 0.16 0.586
11 1|04 0.592 0.32 0.595
12 0] 05 0.585 0.5 0.587
13 1 10.75 0.559 0.84 0.553

We observed Player 1 's moves through 13 stages:
ay:1 1.0 1 0 01 0 1 1 1 01

We apply both PAP and PARP strategy after each stage to make the decision for
the next step. After the 13" stage, we collect all the results in the table 3.1 showing
where Player I move ax, the PAP decision from Player I's past move is p. the PARP

decision is p*. and the expected Cesaro losses for both PAP and PARP strategy are

also listed in this table.




Chapter 4

Discovering Hannan

This chapter gives the results of a search of the literature that had the goal of finding
published results that were in Hannan (1957) and not recognized as being there.
We find several examples. To some extent, the cryptic stvle and notations of Hannan
(1957) explain the failure of other researchers to fully exploit the Hannan work and to
recognize the specific theorems that he proved. Motivation for this search is provided
in part by Gina Kolta's New York Times article Pity the Scientist Who Discovers the

Discovered. February 5. 2006.

In Section 4.1, we discuss some of the Kolta (2006) article and mention that Chen
(1997) established the direct connection of the Foster and Vohra (1993) result to
Hannan (1957). In Section 4.2 we show that the main result in Feder, Merhav and
Gutman (1992) is contained in Hannan (1957). In Section 4.3 we consider for the first
and only time the finite horizon version of repeated play (see Section 1.2) and connect
results on minmax regret found in Cover (1967), Chung (1994) and Cesa-Bianchi and

Lugosi (1999) to Hannan (1957).



4.1 Foster and Vohra: Selecting Forecasters

Kolta's lead paragraph mentions the Foster and Vohra (1993) paper “A Randomized
Rule for Selecting Forecasters.” The strategy proposed in the Foster and Vohra paper
has the structure of a Hannan strategy. much in appearance like those covered by
his Theorems 3. 4 and 6. (The structure of Hannan-type strategies was explained in
Chapter 2. Section 3.)

Hannan's theorems claimed and proved the conclusions for strategies built on be-
ing Bayves versus random perturbations of the multinomial empirical counts (t—1)G,_;
of Plaver I's pure moves in repeated play of a game where Plaver I has m possible
pure moves. Chen (1997) reexamined the Hannan theorems and proofs and showed
that the proofs actually cover the case where the empirical distributions G;_, are re-
placed by the empirical distributions of randomization distributions taking values in
the probability simplex in R™. A randomization distribution x is a probability distri-
bution over the m pure moves and (t—1)G;_ is replaced by X¢_y = r1+x2+- -+ 1.
Then Chen (1997. Section 4.3) shows how the Foster and Vohra strategy is a Hannan
strategy so that bounds on its regret and asvmptotics are a direct consequence of
her reinterpretation of the Hannan theorems. Following Chen’s work. Gilliland and
Hannan (1999, 2008) improved on Chen. mainly through the demonstration of good
bounds and Hannan consistency for strategies in the repeated play of the dual of the
S-game. This component easily subsumes the expert selection problem considered by
Foster and Vohra without a weakening of bounds (larger constants) that is inherent
in Chen’s approach.

Vohra is quoted in the following paragraph from Kolta (2006) in which Ilannan’s

name is misspelled:

In 1957, for example. a statistician named James Hanna called his the-
orem Bayesian Regret. He had been preceded by David Blackwell. also
a statistician. who called his theorem Controlled Random Walks. Other.
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later papers had titles like “On Pseudo Games”, “How to Play an Un-
known Game”, “Universal Coding” and “Universal Portfolios” Dr. Vohra
said, adding, “It's not obvious how you do a literature search for this
result.”

As mentioned previously. Hannan and Blackwell used different approaches in the
construction of their strategies, and it is likely that neither one named his theorems.
Moreover, the term “Bayesian Regret” was probably not ever used by Hannan. “Con-
trolled Random Walks” is the title of a talk and a subsequent proceedings paper by
Blackwell (1956) that give a general result that can be applied to produce Hannan-
consistent strategies. “On Pseudo Games”, “How to Play an Unknown Game”, “Uni-
versal Coding” and “Universal Portfolios” denote different general but related topics.
The quoted paragraph might leave the false impression that exactly one result or

theorem has been given the different names.

4.2 Feder, Merhav and Gutman:Universal Predic-

tion

Feder, Merhav and Gutman (1992) considered the problem of predicting the next
stage of an individual binary sequence using finite memory. And in the section III
of this paper, they gave out the definition of this predictor. which is called “S-State

Universal Sequential Predictor.” in the following way:

~ “0",  with probability ¢(p:(0)),
)ﬂt+1 =
“17,  with probability ¢(p(1)) = 1 — ¢(p:(0)).
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where ¢(-) is given by

0, O§a<%—e,
dla)=9q Lla-3J+1  l-_e<a<l+e
1. ;te<a<l

They allow € to depend on t. i.e., € = ¢, and use 7;(27) to represent the expected
fraction errors made by this scheme over the sequence ™ where the expectation is
with respect to the randomization in the definition of z,. 7;(x7) is our Cesaro loss.

In the major theorem, they proved that. for e = ¢, = 1/(2v/t + 2).

m(x]) < m(al) + 6:1(n).

where 6;(n) = O(1/v/n). m1(x7) = 1/n - min{N,(0). N.(1)}, and N,(0) and N, (1)
are count of zeros and ones, respectively, along the sequence X. Thus in their major
theorem, they showed that the expected error converges to the simple Bayes envelope
with convergence rate O(1/y/n).

However, we can show that their strategy is equivalent to a special case of Han-

nan's strategy. Recall a Hannan-type strategy in matching pennies problem, which

is discussed in chapter 2 with Player II's predictor:

0. Z-2 <=L
0(1 _gf"l‘gt-) = 1—2y
1, 22 - Zl > —h:_—l

where ¢;_; is the proportion of 1's in Plaver I's play from stage 1 to stage t-1. In

another words, Player 1I's predictor is

) ‘ . 1-2g4 1.,
. S0 with probability P(Z, — Z; £ _TJ:_-I))’
Atp1 = 2
“17, with probability P(Z, — Z; > I’QTI_I)'

Now we can show that Feder, Merhav and Gutman's strategy’s probability of
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plaving 1, &(p:(1)) = 1 — ¢(p:(0)). is the same as probability of plaving 1 in Hannan's

1-2
strategy P(Z> — Z; > ,'Z:_] ) with a specified distribution for Z = (Z,, Z5).

Take Z) to be a random variable from uniform distribution on [0.1], let Z2 be
degenerate at 1/2, and let a = py(1) the proportion of 1 in empirical distribution of

Player I moves from stage 1 to t-1. Then, we have

0, 0<a<i-
1 1 1
45((1):P(Zl<3+2—:(0—3)): ~la—1]+3 1-e<a<i+e
1, 1+te<a<l
and letting a = ¢;_;. 2—1; = % i.e. hy = 4=z, we have
1 1 1 1 2 1
PZi< =+ —(a— = = P(7i—-< Z(a-=
(Zi<g+qla=3) = PZi-5<a=3)
1 1
= P(Zl—5<—(29t_1—1)
2 t

1
= PZi—-2,< F(Q‘q"_l —1) where Z,=
't

1o — 13| —

1
= P(Z,-7Z, > }—(1 —2¢i—1) where Z, =
it

This shows that probability of playing 1 in the Feder, Merhav and Gutman's strat-
egy is the same as the probability of playing 1 in Hannan's strategy where Z; ~
Uniform|0,1] and Z, is degenerated at 1/2. Furthermore, since probability of play-
ing 0, Prob(playing 0)=1-Prob(playing 1), we also have ¢(p(0)) = P(Z, — Z, <

hl_.,(l — 2g;_1), which is probability of playing 0 in Hannan's strategy.

Therefore, the Feder, Merhav and Gutman(1992) strategy is the same as a Han-

nan's strategy (1957).
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4.3 Minimax Regret

In this section and only in this section we consider repeated play with a finite horizon
N known to Player II in advance of the repeated play. Player 1I's concern is with
regret at stage N and IT's sequence of recursive functions py can depend on N. There
is a considerable literature on predicting individual sequences in the context of finite
horizon repeated play and minimax regret strategies. A minimax regret strategy can

be constructed from backward reduction starting at N. Since

N-1
NDn(a.p) = Z L{ar-pi(ae-y) + {L(an.prlan_y)) = NR(Gn)}.

t=1

pn(ayn_,) can be chosen to minimize
max{L(an.pn(ay_;)) — NR(Gn)lan € A}.

Then the resulting max is added to L(an—-1,pn-1{an_5)) and py_1(ay_,) chosen
to minimize the maximum possible total over all any_;. Continuing in this way, a

mM  mM oM

minimax regret strategy p™M = (ppM ppM ... peM) is determined. The minimax

regret strategy results in constant regret across all sequences a and that common

value is denoted by DM and is called minimax regret.

Hannan (1957, Section 4) constructed minimax strategies for the finite horizon
repeated play of a game where Plaver 1 has m moves. He illustrates his results with
an example of “matching m-sided pennies.” The translation of his minimax regret to

. o . L . . il ) . . _ 1 .
predicting a binary sequence requires taking m = 2. his p; = p» = 5 and noting that
his loss of 2 comes from a match not a mismatch. Then the translation of Hannan

(1957, (8), p. 115) gives,

N
NDWM — 5 - Emin{Y,N - Y} (4.1)
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).

where Y ~ Binomial(N,

No|—

Proposition 4.3.1. For the repeated play of matching pennies with a finite horizon,

m/ m 1 2]‘ ! 1 7 %
[)2k¥l = D'Zk-M = 54(“14'!)1:! = ;P()' = k), (4.2)

“

where Y* ~ Binomial(2k,1/2). Furthermore, DM is a decreasing sequence with

limit 0, V2kDJM ~ 1/V/2%. and

1 1
9. . :mAI — - .
V2k - Dt —= 0 (4.3)

Proof: Hannan (1957, Theorem 2. p. 111) develops an asvmptotic lower bound
for DM in the general case that he considers. that is. in the repeated play of an
m x n game. The constant h in his Theorem 2 bound can be shown to be 1 for
matching two-sided pennies with the loss matrix we use. so that Theorem 2 implies
that liminfy }\71/2])"{31” > (27)172,

We develop an expression for DM, Since min{Y. N =Y} = N —max{Y. N =Y},

(4.1) can be expressed by:

1

DM = % -Emax{Y.N - Y} — - (4.4)

o |

A calculation using the symmetry of the distribution B(N.1) about N/2 shows that

with N =2k + 1.

2k + 1. ifY =0 2k+1
2k, ifY =1, 2k
2k — 1. ifY =

(2]
.

2k — 1,
max{Y,2k+1-Y} =<

k+1, ifY =~k k+1
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Therefore,

k
, , 1 2k +1 .
Emax{Y.2k+1-Y} = 2-22k+1-2( j >'(2k+1—])
j 0
5 (2k +1
- 22A+1 Z 12k — 2k +1-7)
k
2k +1 (2k)!
o 2% Z:; 312k — 7)!

— (2k+1)- (% + %P(}"* = k)).

where Y* ~ Binomial (2k. ). i.e.

Emax{Y,2k+1-Y}=(2k+1 L, 1K)
smax{Y,2k +1 - Y} = (2k + )'{§+§m}s
And with N = 2k, similarly we have
1 (2k)!
Emax{Y,2k - Y} = 2k - { + 24‘A'A'}
It follows that minimax regret is given by
1 (21: o1
mM mM s *
where Y* ~ Binomial(2k.3). k=1.2.3.....
Furthermore, since for all k = 1,2,..., DZM > 0, and
mM 1. 2(k+1)!
Dy 2 gy 2k +1 <1
Dmﬂ]\! - 1, 2k - 2k + 2
2 gk o

This shows DJ'M y is smaller than DM e, DM is a decreasing sequence.

2(k+1
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From the Stirling Formula it follows that

DM~ (4.6)

2r N

We deduce (4.3) from the well-known result on the rate of convergence of the

Walli's product sequence to 7 /2, i.e..

2 *

T 1
Wi = E—gz+o(z), ask — <
. s Tk _ 4k+2 _ (2k+1)! . . oy
where N, = T = 55 ap = . (For example, see Hirschhorn (2003).) The

oL PR R
sequence {ay} was encountered at the end of section 2.1 and was studied extensively
in Frame and Gilliland (1985) where a continued fraction representation is found.

Note that

V2k- DM = ,/ 1/
N \/°A+1

l\3|>—'

Then 27 - Vok - D'"M

_2k_
2k+1

And we claim that

V2k - DM —

LT

ﬁ

where

A=0(+

1
k)'

Since

Proof is done if we show that \/— =1+ 0(1). ie. {Z- =1+ O(%).
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Since Wallis’ sequence,

. 1
Wi = g—&-l—o(z) as k~x
and W = %’ then we have
T 1
T =T = + O(Z)
le.,
Tk 1 1
ULIE Q)
- o)
In another form.
T 1
T 1 —1/(4k) + o(1/k)
- 14 1 —o0(1)
4k — 1+ o(1)
1
= 14+0(+
+0(7)
Proof is done. [J
Here is a table of initial values of minimax regret. Recall that DM, = DM and

note that 1/v/27 = 0.39894.

We have given a simple expression for the minimax regret. There is interest in
the minimax regret strategy for Player II, that is, the strategy p™, that minimizes
the maximum regret for the finite horizon N.

For the simple case that we are considering, the strategy can be deduced by

specializing Hannan (1957, (4). p. 114) to the binary case m = 2 with p; = p, = 1.

Also, the Hannan loss is 2 for a match so that his Bayes envelope and procedures

must be reinterpreted. His ¢} is our p7™. Hannan (1957, (4). p. 114) written for the
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Table 4.1: Convergence of minimax regret

N | DM | /N DM
1| 3 0.5
2| 7 | 0.35355
4| 3 | 0375
0
IEEE
296 :
10| = | 0.38911
12| 006 | 0.39073
14 | 1557 | 0.39189
16 | === | 0.39276
oo| 0 | 0.39894

binary sequence case that we are considering is

j—1 Jj-1
PP (@) = 51+ ER(Y a+ Y)/N = ER(Yac+ Y+ Y)/N)] (47)

t=1 t=1

where Y ~ Binomial(N — j,3), and Y* ~ Binomial(1, 3) are independent. Expec-

tation over Y* results in
1 Jj— Jj-1
PPy = 5+ ER((Y_ac+Y)/N) = R(Q_a+ 14 Y)/N) (48)

Since R(x) = min{rx.1 — 7}, we see that

1, ifY > N/2-Y0"1a.
R((Za:+3)/N Zat+1+))/N> 0, Y >N/2-%Ilg -1,
-1, Y <N2-3Ila -1
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It follows that

j-1 j-1
piM(a; ) = % + -;—[P(Y > N/j2 - 3 a)—PY <N/2-1- ;a,) (4.9)
where Y ~ Binomial(N —j,3)if j =1,2,... N —1and Y is taken as 0 if j = N.
Note that pt*(ay_,) is simply the PAP strategy, that is, at the last stage N, the
Player II minimax regret strategy plays the Player I majority choice in the first N —1
stages.
In the minimax strategy, is the probability used for playing 1 is larger than the
probability in Hannan's strategy and in the PARP strategy. Figure 4.1 and 4.2 show

these three probabilities for N=5 and N=10.

Table 4.2: Player I's play sequence with N=5.

stage | 1[2]3]|4]|5
a |1|1]1]1]0

Figure 4.1: Hannan, PARP and Minimax probability for N=5

09r

08

Hannan Probabilty
07t —— PARP Probability
Minimax Probability

061
0.5

04r

0.1}
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Figure 4.2: Hannan, PARP and Minimax probability for N=10

09t
08
07}
Hannan Probabilty
06 ——— PARP Probability E

Minimax Probability

0.5

04r

0.3

0.2

01t

4 5 6 7 8 9 10

Asymptotically Hannan's probability is smoother than probability in PARP strategy,
and Minimax probability is bigger than both of them as shown by Figure 4.3. We
generate a binary sequence with N=100 from Bernoulli(1,1/2) as Player I's play se-
quence and the asymptotic behavior of Hannan, PARP and Minimax probability are
illustrated by figure 4.3.

Cover (1967) develops many interesting results concerning strategies for predicting
binary sequences. Cover measures the performance of strategies by gain through the
number of matches (not by loss through number of misses) so his regret is the negative
of the one we consider. The display following his (4.13) is of the minimax regret value

(4.4) with the asymptotic result DT ~ 1/v/27 N noted. Cover (1967, (4.11)) gives

Table 4.3: Player I's play sequence with N=10.

stage | 1234|567 [8(9]10
a |1]1(1|11]0(0)1{1(0]1
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Figure 4.3: Hannan, PARP and Minimax probability for N=800
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the minimax regret strategy, which we will show is the same as derived by Hannan

(1957).

His predictor achieving § is:

N—k .. o
~ _1 1N—k+l ,‘\1+]+1 ~t+7 N -k
Pl =g+ N R =)
And it follows that Cover (1967) (4.13), 5 can be specified as the simple Bayes enve-
lope, i.e.

s(n) =max{n,1—-n}, 0<n<lLl

Let ¢ = k — 1, then

N-k

i)\k(k"' 1) — % +]V' (%)N—k-H Z(g(k;]) _g(lx +1‘<‘/— 1))<N; A)

j=1
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where

ki) = ifY —k<j<N-k
N \1—‘“—,1;1, if0<j<X—k,
(

: ktj—1 CNFL i N L
,"’\(I{'+]—]\:< =, ifSH —k<j<N-—k
) N k+j—1 - o N+l _ g

\1——;—,-. fo<j< a2 -k

Since j is an integer, based on the fact that

k-1, )L fEH k<< N-k

kot

s(—) = $(—x—)

. . N %
-1, lfOS]_<_~2——1\,

we have

N—k
. 11 N—k\ lye  « N=k\ 1
at-n = g0 > (VTG z ("7h) @
j:f’\‘.l_k Jj=0
1 1 N+1 N
= S+5 PV 2 —— -k - P < S - k)

where Y ~ Binomial(N — k.1/2).

This shows that Cover's strategy pi(7) is the same as Hannan's strategy (4.9), if

the envelope is the simple Bayes envelope.

Chung (1994) and Cesa-Bianchi and Lugosi (1999) studied sequential randomized

prediction for an arbitrary binary sequence. In latter with n replaced by N. the
prediction at each time ¢t = 1.2.3,.... N, it is given by

t—1 1 1 t 1Ny N—-t t—11y"N— '

p(y =)= 5+ 3E[mep( 0y ) — meF( 1YNY)] (4.10)

. _ FN— _ PN —t .
F is the set of experts, and y'~10Y M~ and 41 1YV~ represent the following sequences
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respectively:

r

Y1-Y2.- - Y-1,0. Y0 .. ¥

and

Y1:Y2e oY1 LY o YN

where the Y} are independent random variables which follow Bernoulli(1/2).

In Chung (1994) with T = N, it was expressed as

1 1 , .
t—1 ) AU t=1 ( y/N . t—1 1 N
ply )= 3 + 51:[111;@.)\ QN (y,0,Y ) - max din(y' ™. 1LY (4.11)
where max; ®; y(a) gives the maximum pay-off for sequence s among 7 experts given

the total stages N.

Since these two predictions are essentially the same, we take Cesa-Bianchi and
Lugosi (1999) strategy as an example and specialize it to the simple Bayes envelope.

Then

1, if S>N/2—(t—1)- g1
inf Lp(y' "' 0Y Y= —inf Lp(y* 1Y M) = ¢ o, ifS>N/2—(t—1)- gi1-1/2.
o W < )

-1, fS>N/2-(t—1)-g_, —1.

where S = > ¥; ~ Binomial(N —t.1/2), since Y; ~ Bernoulli(1/2),7 =t+1..... N,

and g, is the proportion of 1 from stage 1 to stage t-1.

In this way. (4.10) is converted to

1 .
PPV = 5 P 2 N/2=(1=1)-gin) = P(S < N/2—1=(t=1)-gior) (412

where S ~ Binomial(N —t.3).

This shows that if we specify the envelope to be the simple Baves envelope, mini-

max regret results in both Chung (1994) and Cesa-Bianchi and Lugosi (1999) are the
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same as found in (4.9), Hannan (1957).
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Chapter 5

Expert Selection Problem

5.1 Introduction and Review

Nowadavs. all kinds of consulting services are booming, especially in financial services.
There are many financial companies and agencies giving advice everyday to all kinds
of investors. They are using different and complicated system or algorithms to analyze
the financial market of different financial products and to forecast the market of these
products. As experts with experience and knowledge in finance, each of them is trying
to persuade the individual investors to take his/her advice. However, surrounded by
so many experts’ advice. as an investor, how can one make a decision? This is called
expert problem.

Littlestone (1988) generalized the carlier researcher’s idea to an arbitrary set of
experts. However. in his strategy. randomness is not included in the forecasting
process. His strategy concerns picking the the expert whose forecasting record is the
best, as the best expert in the set of experts. and using this best expert’s prediction as
the final forecast. He showed that as long as there exist one expert whose forecasting is
correct in all stages, the final decision maker will not make more than logs N mistakes.
where N is the total number stages.

To remove the restriction in Littlestone(19838). i.e., to consider the case that among
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all experts there is no expert alwavs correct. Littlestone and Warmuth (1989) intro-
duced the idea of weighted majority algorithm. In this strategy, they assign a weight
to each expert. Once an expert makes a mistake in forecasting, he will receive a
penalty: his new weight is old weight multiplied by k, 0 < k < 1. i.e.. to reduce the
weight on his advice in our final decision. Furthermore, Warmuth and Haussler, et
al (1993) considered the weighted majority strategy in the situation that each ex-
pert’s forecaster is a probability distribution on set {0,1}. In all these strategies.

randomness is not involved in selecting the expert’s actual forecast.

Hannan in 1957 first proposed the idea of bringing randomness into sequential
forecasting problems. In Hannan's strategy. a random factor is added to the empirical
distribution, and a predictor based on this adjusted empirical distribution is used as
the forecaster for next stage of the play in a repeated game problem, as we have
introduced in previous chapters. This idea can be introduced into expert selection

problem.

Foster and Vorha (1993). proposed a randomized rule for selecting experts. They
first proposed this expert actual selection problem instead of predicting a probability
distribution of experts’ set, or combining the experts’ advices. However, the random-
ized strategy they proposed is equivalent to Hannan's strategy, which was proved by

Chen (1997) and improved in Gilliland and Hannan (1999. 2008).

By using bootstrap sampling, we introduce the PARP strategy to the expert selec-
tion problem, especially the two experts selection problem. which will be discussed in
section 5.3. Section 3.2 will introduce an example of usage of expert selection in the
real world. a methodology called focus forecasting. And at the end of this chapter. a

simulation example of using PARP strategy in financial forecasting is given.
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5.2 Focus Forecasting

5.2.1 Introduction

In inventory management. forecasting is essential. As a new concept of forecasting.
the term focus forecast was raised by Bernard Smith (1978). With around 30 years of
usage so far, this method which is described as a heuristic methodology and it is used
widely in industrial area. Over 800 companies in 47 countries worldwide are using
Demand Solution which is designed around focus forecasting in their inventory man-
agement request. And this method is described to be a simple simulation approaches
to optimization, to be more practical. more easy to understand and a simple svstem
to work.

Focus forecasting constructs a pool of alternative decision rules for forecasting one
stage ahead. At every stage. all the decision rules or models in the pool, are tested by
the empirical data generated before this stage, and the rule with the smallest error
in selected for the decision.

Therefore. focus forecasting simulates every time it forecasts. It is a dvnamic
simulation. It uses a computer to simulate every time, and compares the errors of all
the rules. to pick one to use in the current forecast. Regardless the scasonal or trend
type of time series data. focus forecasting itself just picks the one best strategy based
on the empirical test against recent history data.

In inventory management. the traditional method is exponential smoothing. which
is taught to almost every student in inventory management and is still the most widely
used forecasting method in the world today. However. focus forecasting doesn’t use
the exponential smoothing to approximate moving average. The reason Smith states

in Bernard Smith (1978):

In those early computers, storing a twelve moth inventory history to calcu-
late a moving average was expensive, inaccurate, and dangerous. So Bob
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Brown used exponential smoothing. .. Focus Forecasting doesn’t use expo-
nential smoothing to approximate moving average. Why? Well, comput-
ers today don’t make mistakes. They are nearly 100 percent accurate. ..

However, Gardner and Anderson (2001), compared the focus forecasting and expo-
nential smoothing showing that exponential smoothing is substantially more accurate
than the Demand Solutions approach. Although there are some criticism on focus
forecasting in academic field, we still can notice some interesting ideas in focus fore-

casting, which is Play Against Past strategy’s idea.

5.2.2 Methodology

Focus forecasting constructs a pool of decision rules or strategies. Some of these
rules are designed for recognizing trend, some of them are designed for recognizing
seasonality.

For example, ‘whatever the demand was in the past three months will probably be
the demand in the next three months’, this would be a rule to recognize trend instead
of seasonality. While if a simple rule as ‘whatever percentage increase or decrease we
had over last year in the last three months will probably be the percentage increase
or decrease over last year in the next three months’, would be a rule of recognizing
seasonality.

Gardner, Anderson-Flether and Wicks (2001) listed the seventeen decision rules
included in Demand Solutions. And there rules are functions of the previous quarterly

data:

1. Next quarter will equal last quarter.

2. Next quarter will equal last quarter plus a growth factor.

3. Next quarter will equal the same quarter a year ago.

4. Next quarter will equal the same quarter a year ago plus a growth
factor.

5. Next quarter will equal the average of the last two quarters.

6. Next quarter will equal the average of the last two quarters plus a
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growth factor.

7. Next quarter will equal the average of the last two quarters with the
last quarter double weighted.

8. Next quarter will equal the last quarter plus the difference of the
corresponding quarters last year.

9. Next quarter will equal the average of the last three quarters, with the
last quarter double-weighted, and which seasonal adjustment.

10. Next quarter will equal the average of the same quarter in the last
two years plus a growth factor.

11. Next quarter will equal the average of the last quarter of the current
vear plus the difference of the corresponding quarters from the last year
plus the difference of the corresponding quarters from two years ago.

12. Next quarter will equal the average quarter of the last vear.

13. Next quarter will equal the average quarter of the last year plus a
growth factor.

14. Next quarter will equal the average quarter of the last two years.

15. Next quarter will equal the average quarter of the last two years with
seasonal adjustment.

16. Next quarter will equal the average quarter of the last year plus the
change from the average quarter two years ago.

17. Next quarter will equal the average quarter last year, plus the change
from the average quarter two vears ago, with seasonal adjustment.

Then, during the simulation procedure. an error of measurement for each strategy

for each time will be computed. and the final forecast strategy is selected among these

decision rules.

From these decision rules’ definition, we can easily notice that although the final

decision is selected among these rules, final decision is a function of the history data.

i.e. past data. since all the decision rules are function of past data. In another words.

focus forecasting is using Play Against Past strategy to make the decision.
o Q O O

From our discussion about PAP strategy and its failure, we could see that there

are some situations in which focus forecasting fails.
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5.3 Two experts selection problem

Suppose there are two experts who give out predictions against the market each day.

Their errors probabilities are recorded at the end of the day:

Expert 1:X,. Xy Xs... X1, Xa.o...

Expert 2:Y). Yo, Ys.... Y,_1. Y. ...
where we assume the errors arc bounded. Without loss of generality we take {X;}

and {Y;} € [0.1].

Selecting an expert for each stage is repeated playv of the component game where
O I le) I . o

Player I selects a pure a = (x,y) € [0, 1]?

Player 11 selects a coordinate b € {12}

and the loss function for Player 11 is
L(a.b) = X[b=1]+Y[b=2].
If = is a probability distribution on [0.1]?, then the Bayes risk of b is
L(z.b) = /L(a, bydm(a) = E-(X)[b=1]+ E.(Y)[b=2].
Bayes risk is any choice b to minimize thus.

(

1. if EX(X) < EA(Y)
b= ¢ arbitrary, if E-(X) = Ex(Y)

2, if Ex(X) > E(Y)

\
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and minimum Bayes risk is
R(7) = Ex(X) AN EL(Y).

In repeated play, Player II uses b(q,_;) for stage t, t = 2,3,... and the simple
envelope is Xy A Yy where (X n, Y n) is the average of the (X1,V71), (X2.Y2).....

(Xn.Yn).

5.3.1 Reduction to Z-problem

Let Z; = X; — Y, then the Bayes envelope of two-experts selection problem Ry =
Xn A Yy is equivalent to Ry = Zy A0+ Yn. Thus, two experts’ forecasting error

sequences are equivalent to:
ZZZ], Z—z, Z3,... Z.N—l? ZN~---

and the zero sequence since ¥; are fixed and given by the past history data. In this
way, original two experts problem is transforined into a one-dimensional game.
Each term of this Z-sequence can be arbitrary number from -1 to 1, then by

previous result.

N N
N-Dy(Z.parp) =Y (Pe- Zk) = (O Zk) NO.
k=1

k=1
where P is the probability sequence Py, Ps...., Pn. P. = Prob(?,:_] < 0). for
k = 2,3....,N, P, =arbitrary number from [0.1], and Z,_, is the average of the
random sample from {Z;, Z,.. .., Zr_1}.

Let 0 < Ay T and 0 < By T be such that

—Ayx < N-Dy < By.
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If we remove all the 0 terms from this Z-sequence to form a new sequence _Z_ which is
the subsequence of original Z-sequence. let my < N be the number of the non-zero
terms, also be the number of the terms in sequence Z )

Then. consider P is the probability through the past summation, we have

~Any SN Dy(Z.P) = my - Dy (Z.P) < By

Therefore. we have a stronger bound for original regret:

~Amy S N-DN(Z.P) < By

m
N

When {X.}, {Yi} € {0.1}. Z; € {-1.1} which is equivalent to {0,1} matching
binary bits problem. In fact, any two state game.i.e. two Plavers’ action set is {a.l},

is equivalent to {0,1} matching binary bits problem.

Lemma 5.3.1. If in a repeated game Z, € {—1,1}, P. € [0.1], L(Z.P) = Z - P,

then the regret of this game is equal to the regret of matching binary bits. v.e.,
Dn(Z.P) = Dy(X. P)

where X € {0,1}, P € [0.1] is the matching binary bits problem.

Proof: By the definition of the loss function.

—-P. ifZy=-1
Lk(Zk” Pk) ==
Py if Z;, = 1.
Where P, = Prob(Z,_, < 0). And from matching binary bits game, X € {0.1}.
P € [0.1], and
P if X, =0
Li( Xk Py) =
1-F ifXe=1
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where P, = Prob(X,_, > %). Then, let gy = 1 — P, = Prob(X,_; < %).
KX P) = Xe g + (1= Xp) - (1 —qr) = 22Xk - gr + 1 — g + X
Since there exist the one to one transformation mapping:
" -
X :§(Z+1) or Z=2X-1.

Then Z, = 2X; — 1, i.e. Prob(Ze-; <0) = Prob(2X; —1<0) = g.
Thus,

N
1<
Ly(Zn. P = — 2X;-1)- P,
NZn-Py) = 2]( )
&
- = Q,X,—IR l—Xi—l—Xi
¥ ;( ) Pt (1~ X.)
= Ly(Xy.gy) = (1= Xn)
Therefore. since Z, = 2X; — 1 the Bayes envelope of matching binary bits game:
XvA(l=Xn=02Xr=1) A0+ (1-Xn).
the regret of Z-sequence is:

DN(ZaP) = LN(ZN-,EN)—-Z—N/\O
= Ly(Xn.qy) — (1=Xn) = (2Xx=1) A0
= Ly(Xn.gy) = (2Xk = 1) A0+ (1= X))

= Di(X.P).

Proof is done.J
Comments 5.3.1. With proof in lemma, study of two-experts selection systemn, s
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equivalent to the study on sequence Z. where Z; = X; — Y;. And this is used in

following sections.

5.3.2 Worst case discussion

In Gilliland and Jung (2006), asymptotic convergence property was proved by con-
sidering the worst case a for the strategy. For Matching Binary Bits problem, the

worst case for both PAP strategy and PARP is:

IR
(@]
—
(o]
—
[ew]
—
o
—
o
—
o
—
[e]
=

By establishing a bound for the modified regret of this worst case, a uniform bound
of the regret for all situations of Plaver I's play sequences a was developed.
To study the asymptotic convergence property of PARP strategy in the two-

experts selection problem. it is reasonable to seek and analvze a worst case.

Lemma 5.3.2. The worst case of modified regret of PARP strategy is not achicved

at boundary. i.e. max, Dn(a.b) ts not achieved on the boundary.
Proof: Suppose n=3. so two experts svstem is:
(X1. Y1), (X2, ¥2). (X3, Y3)
the modified regret of Play Against Random Past strategy is defined as:

3D5(QQ) = 5()&1"}')'1)"*‘)&2[)&1_<_}'1]+)£3'P2+}’3'(1—P2)

- (X1 4+ Xo+ X3a) A (YT + Yo+ YY),

where the probability P, = Prob(X, < Y,) and [-] is an indicator function.

By discussion of last section, two-experts selection problem is isomorphic to Z-
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problem. Let Z; = X; — Y}, then

1
3-Ds(a.b) = 5(21 +2Y1) + Zo| X SN+ Yo+ Zs- P+ Y

— (Z1+ Za+ Z3) A0 — (Y1 + Yo+ Y5).
where the density function P, = Prob(zz, <0). i.e.
1
3. Ds(a.b) = 3Z1 + Zy [Zy <0+ Zs- Py —(Z1 + Zy+ Z3) NO

According to Play Against Random Past strategy, the probability mass function of

Z, from bootstrap sample {Z,. Z,} is:

(1
1 when choose Z; twice
1
P2 = 4 5 when choose once Z; and once Z,.
1 .
- when Z, twice
\ 4

Suppose (Z, + Z, + Z3) < 0 i.e. Baves envelope Ry = Zy + Zy + Zs.

Further more, assume Z; > 0. then

1
3-Ds(a.b) = §ZI+ZQ'O+Z3'P2_(ZI+Z2+Z3)

1
= —Zi-Z- 2 (1-P)

Since Z; > 0, to achieve maximum of the regret

max 3. Ds(a.b),
Zl >0.Z1 +22+Z3<0
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Zy and Z; should be negative. When Z; > 0, Z5 < 0.

1
- when Z; + Z3 >0
P, = 4
2713
1 when Z; + Z, < 0.
If P, = 41,
ax  3-Dy(alb) = —2Zi— Zp—(=1)- (1=
Zl>0,zllric%+z3<o' A et 4
~ 1.25

where Z, = 1, Z, = —0.9999, and Z3 = —1, since Z;, > 0. Z, < 0 and Z; + Z5 > 0.
The nearer to -1 Z, is. the better. but Z, can not be -1.

If P =3,

1 3
Zl>O,Z?—]+aZ}\2+Z3<03 ’ D3(Q‘Q) - _§Zl — 2y — (—1) : (1 - Z)

~ 1.25

where Z; = 0.0001, Z, = =1, and Zs = —1, since Z; > 0, Z, < 0 and Z; + Z, < 0.
The nearer to 0 Z; is. the better, but Z; can not be 0.

For the case of Z; <0,

1
3D3(Qb) = EZl+Zgl+ngz—(Z1+Zz+Zg)

1
= —5Z1—Z3'(1—P2)

Base on the definition of probability mass function P, we have

when Z; + Z, > 0, since Z; < 0. Z, >0
P, =

when Z; + Z, < 0.

Qo | =
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When P, = %,

1 1
Zlgo.zllllrt%+z3<03 'Dsla.b) = _§Zl - (D= Z)

~ 1.25

where Z; = —0.9999, Z, = 1, and Z3 = —1, since Z, <0, Z, >0 and Z; + Z, > 0.

The nearer to -1 Z, is, the better, but Z; can not be -1.

When P, = %.

2
L=
~

max 3- Ds(a.

1 1
Z1<0.21+29+23<0 - Ty (-1)—-(-1)-(1- Z)

= 1.25

where Z) = =1, Z, = {any value € [-1,1]|Z, + Z, < 0}, and Z3 = —1.
All the calculations above, shows even for n=3. the maximum of the modified
regret of PARP Strategy is not achieved at the boundary of the problem domain

[0.1)* x [0, 1™ which is equivalent to the domain [—1,1]" for the Z-problem.
Proof is done.]

Therefore, the proof of Hannan consistency of PARP strategy for two-experts

selection problem can not be studied through the worst case idea.

5.3.3 Hannan consistency of PARP for Certain classes

We concern the asymptotic convergence property of PARP strategy's regret under
different classes of sequences. With discussion in Z-problem, we notice that the orig-
inal problem is equivalent to Z-problem, i.e. we only need to discuss the convergence

property of Z-sequence.

Z:Zl‘ Zg, Zg,... ZN—1~ ZN....
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The most easy case is the one expert is superior to the other one. i.e. in sequence
Z. all Z; has the same sign. Let Z; > 0 without loss of generality. Then, for all
N >0,
N N
N-Dy(Z.parp) = Zi- P(Z,_y S0) = NZyAO=Y_Z  P(Z,_, <0) = 0=0.
k=1 k=1

¥ . .
where Z,_, is the sample mean of bootstrap sample in PARP strategy.

This means if one expert’s prediction is always better than the other. the regret

of PARP strategy is always 0.
More difficult situation is the two experts are competing with each other.

Theorem: For any sequence Z. Z, € [=1.1].if 0, > C1 > 0. the regret of PARP

strategy converges to 0 with order O( \—/1_1\—) ie.,

1
Dn(Z.parp) — 0 with rate O(—=).

v N
where C1 is a constant and o3 is the variance of sequence {Z;...., Zy}.
Proof:

By Berry-Esseen theorem in Loeve (1963, pp 288),

N.-Dn(Z.p') = ZN:ZL . ((I)(..M)) + XN:Z‘ _C
T k=1 Tk-1 k=1 Vk =1 ¢

where C'is a constant. p, = E|Z}, — Z k.|3.

Now we consider the term:

Ze (== ——))

i —Z.k—l . \/k -1
k=1

Let Ap_; = _"kl—l A Zi-1 -V =1), and since Z, = k- Z — (k= 1) - Zp_y. We can



write the term as:
AY

> (k-Zi— (k= 1) Zisy) - O(Am).

k=1

It follows that

N
Sk-Ze = (k=1)-Zpo1) - D(Aey)
k=1

= Y k- Zk- (2(Aem1) — P(4K) -0+ NZy - B(Ay)

I\'J

N Ap—1 1
= k-Zu/ S d1‘+ NZn P(AN
; =, Wirdki N - P(AN)

Therefore,
N A 1 z2
N-Dn(Z.parp) = > k- Zi- e T dr + NZy - ®(Ax)
k=1 Ak 2m
N
C Pk

+ Zh s — e

2P T

. N 7 Ak-1 _;1;;"); , , N7 p
Let Part [=Y",_ k- Z - fAk 7=-¢ Zdr, Part I=NZy - ®(Ay). and

N
; =N L Pk

Part 11I=3",_, Zk 7 02

For Part I, suppose o;_; < o, without loss of generality. Then

AZker Vh=1=Z;-Vk)|
(Zher - VE =Wk = Zi(k = 1) + Zi(k = 1) = Zik)|

|Akor — Akl <

Uk—l

O'k 1\/_
= \/,_|Zk+(l‘.‘—l)7k_] —Zk_l-vk-— 1\/1:,

Uk—l
(2] + Wk =1-Zky - (VE=1=VE)])

Ok — 1\/_
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Since Vk \/—— 0. >2C1>0

1 1
(1Zk] + C - [ Zk-]) < O( 7— O(ﬁ)gk—l

NZial.

1
A — ALl <
‘ k-1 kI—Uk-l\/—

Thus,
f)
Ak—l 1 _:r2 ]. _44'~
/ ——-¢e 2dr < |Ak_ — Al e —-’L
Ak 27 AV 27
2 2

i 1 "éfi 1 —;—-A 1
if we assume ¢(A;) = =€ > O(Ap) = e without loss of generality.,

then
kZ7.
kZ)

Part I< ZO( )+ O(—=

k=1

§
< -
%)—‘
3
I

VA Z
since k - ;JT e %k <Cand 0< C1< g, < C. we have

Part I< 31, O(1/Vk) = O(VN).

For Part II=NZy - ®(Ap).
if Zn <0, then Part 1I< 0;

if Zn > 0. then

\/— \/T

— V- (VRZy) (- ZEYY

NZyN-®(AN)=NZy-

Let wy = v/N - Z. then by Feller (1964, pp 166).

_277!- 1 ,r:.) 1l—‘l‘\-r- 1 ,,.2 \/3 71'7\"

() p— /A) = e —_ _

uyN./ A\ —.e R d.’l':u’N'(l—/v‘ 2_'6 2] d;r)NU'A" = e ] < C'
- -0 V 27 Virtwy




Thus,

Part II = VN -wpy-®(—= ) N uN-<I>(—%)

:\/—uw/f’\/; ir

< VN-C

i.e. Part II < O(V/N).

For Part I1I= S0 | Zy - o= - 24,
7k

by the definition of Z}, and |Z,| € [-1.1].

k
Z _ 7k|3

IN
Q ?“Ir—-a

Then,
1z 2 < c
O

ie. Part IIT < O(V/N).

With discussion on Part I, Part II, and Part III, we have Dy (Z. parp) < O(1/v/'N).

1
Dn(Z.parp) = 0 with rate O(—=

Nl

Proof is done.O3

The group of three figures below shows the simulation of PARP strategy for se-
quence 2z, where = € [—-1,1] and o > 0.1, which is shown in the figure in row3. The
figure of row 1 is actual Cesaro loss-Bayes Envelope (in blue) vs expected Cesaro loss
- Bayes Envelope (in red) and the function 1/v/N. The figure in row 2 is S* (in blue)

vs S (in green).
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Figure 5.1: Simulation
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5.4 Examples of the application of PARP strategy

As a statistical decision strategy in expert selection problem, PARP strategy can be
applied to many kinds of practical problems. Here we only give an example of the

application of this strategy in two-expert system.

By Hull (2002) in finance, there is a constant effort to predict future or forward
prices of stocks, bonds, options and commodities; the ability to predict future behavior

provides important information about the underlying structure of these securities.

In interest rate market, many different types of interest rates are regularly quoted.
These include mortgage rates, deposit rates, prime borrowing rates, and so on. As
a member of interest rate market, the n-year zero rate or spot rate is defined as the
rate of interest earned on an investment that starts today and last for n years. All

the interest and principal is realized at the end of n years. There are no intermediate
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payments. Forward rates or forward interest rates are the rates of interest implied by

current zero rates for periods of time in the future. The graph shows the movements

Figure 5.2: Forward Rate History Data
Forward Rate Historical Data

Forward Rate

of various forward rates of US market data from 1983 to 2003. It includes forward
rates for 3 months, 6 months, 1 year, 2 years, 3 years, 4 years, 5 years, 7 years, 10
years and 30 years.

We are going to use forward rate for 3 month as an example to show how PARP
strategy is applied on it. In our two expert system, Expert I is ARMA model and
Expert II is just the average rate for the recent last 3 days. Blue line represent the
true data; red line is Expert I, i.e. ARMA model; Green line is Expert II which is
average rate of past 3 days.

We take 1 cycle=120 work days, then list two experts’ errors and the PARP

strategy’s error in the table 5.1. From the table above, it is easily to observe that
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Figure 5.3: Forward Rate prediction: True data vs ARMA vs Simple Average
Forward Rate: True data vs ARMA vs Simple average

10.5 T T ! :
: ' - | —— True data
. | —+—ARMA
1oH . - « | —*— Simple Average|

Forward Rate

PARP strategy automatically choose the better model,i.e. Expert I which has more
precise predictions.

In this example, since Expert I the ARMA model is superior to Expert II at most
of time, it is reasonable that PARP strategy converges to Expert I's decision, and
the graph 5.4 also shows that average loss of PARP strategy converges to the Bayes
Envelopes, which agrees with the theoretical proof in previous section with the sample
standard deviation o, > 0.01 for all Kk =1,2,...,120 in this example.

Situation is more complicated if the two experts’ forecast are quite close. For
example, Expert I is still ARMA model, but Expert II is GARCH(1,1) model with
their prediction showed in the graph.

We still keep 1 cycle=120 work days,then the comparison between experts and
PARP strategy’s errors are showed in Table 5.2.

The simulation shows the PARP strategy works well. The graph 5.6 also shows
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Table 5.1: Forward Rate prediction: ARMA vs Simple Average

Number of Cycle | Ave Loss Expert I | Ave loss Expert II | Ave Loss of PARP
cycle 1 0.0759 0.1083 0.0776
cycle 2 0.0711 0.0820 0.0699
cycle 3 0.0698 0.0830 0.0749
cycle 4 0.0499 0.0719 0.0522
cycle 5 0.0434 0.0591 0.0440

Figure 5.4: Forward Rate: Bayes Envelope vs PARP Average Loss for cycle 5
Forward Rate: Bayes Envelope vs PARP Average Loss in cycle 5

0-06 ! Ll T 1 Ll
— Bayes Envelope
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0.01F i
0 4 1 1 1 1 1
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Table 5.2: Forward Rate prediction: ARMA vs GARCH(1,1)

Number of cycles | Ave loss of Expert I | Ave loss Expert II | Ave Loss of PARP
cycle 1 0.0707 0.0719 0.0706
cycle 2 0.0500 0.0503 0.0500
cycle 3 0.0697 0.0714 0.0689
cycle 4 0.0635 0.0640 0.0635
cycle 5 0.0673 0.0676 0.0666
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Forward Rate

Figure 5.5: Forward Rate: True data vs ARMA vs GARCH(1,1)
Forward Rate: True data vs ARMA vs GARCH(1,1)
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Figure 5.6: Forward Rate: Bayes Envelope vs PARP Average Loss for cycle 2

Forward Rate: Bayes Envelope vs PARP Average Loss in cycle 2
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that average loss of PARP strategy converges to the Bayes Envelopes, which agrees
with the theoretical proof in previous section with o, > 0.001 for all k =1.2..... 120

in this example.

5.5 Future work

Future work will include work on the two-expert selection problem and the k-expert
selection problem. For the two-expert selection problem. the goal is to extend proofs of
Hannan consistency for the PARP strategy to the general case covering all sequences
z € [-1,1] . To accomplish this, we need to get approximations of P(Z, < 0) for
the general case.

We are looking forward to understanding and discovering more propertics about
the distribution of Z} in the future. One possible approach may be creating some bins
on the domain of Zj. i.e., make [—1,1] in to several categories, in order to make the
domain of Zj a discrete set. Another one may be considering the change of P(7; < 0)
from stage i = k to stage i = k + 1. These ideas will be worked on and discussed in
the future.

There are still a lot of open problems in this field as well. For example. since
sometimes more recent past moves are more important to the decision, time-weichted
PARP strategy can be constructed and its Hannan consistency can be studied in
the future. Also, in non-symmetric repeated game, construction of PAP and PARP
strategies and their asymptotic properties are very interesting and can investigate in

the future as well.
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