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ABSTRACT

ASSOCIATION AND DISCRIMINATION OF DIESEL FUELS USING

CHEMOMETRIC PROCEDURES FOR FORENSIC ARSON INVESTIGATIONS

By

Lucas James Marshall

The identification of an ignitable liquid in fire debris is indicative of an

intentional fire and hence, is significant evidence in arson investigations. Currently, gas

chromatography-mass spectrometry (GC-MS) is the conventional analytical technique

used for the identification of ignitable liquids through chromatographic pattern matching.

Chemometric procedures such as Pearson Product Moment Correlation (PPMC)

coefficients and Principal Components Analysis (PCA) provide a more objective method

to statistically associate and discriminate burned and unburned diesel fuels based on

chemical composition in both the total ion chromatograrn (TIC), as well as extracted ion

profiles (EIP) corresponding to characteristic compound classes in the diesel samples.

Data pre-treatment options, such as retention time alignment and area normalization,

were also investigated in order to determine their effects on the Chemometric results.

The association and discrimination of burned and unburned diesels was also

examined. Diesels were spiked onto different matrices commonly found in the home

(cotton cloth, magazine, and carpet) and burned in order to simulate arson conditions.

The burned diesels were extracted using solvent extraction procedure and analyzed by

GC-MS. The data generated from the burnings was compiled into the same set as the

data generated from the neat diesels so that PPMC and PCA could be applied to the entire

data set. The potential for the association and discrimination of the burned diesels using

these procedures was investigated.
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Chapter 1

Introduction

1.1 Arson

Arson is defined as the deliberate setting of a fire with the malicious intent to

cause damage [1]. The United States Fire Administration (USEA) estimates that more

than 30,000 intentional structural fires were set in 2006, which resulted in more than 300

civilian deaths [2]. These intentional fires were reported to have caused approximately

$755 million in property damage. An estimated 20,000 vehicle fires were also set. which

caused an additional $134 million in damages. Arson is a destructive and expensive

crime, yet only a small number of cases ever result in an arrest or a conviction. The

Federal Bureau of Investigation (FBI) reports that in 2002 only 16.5% of arson cases

were closed [3]. This low rate of closure demonstrates the difficulties encountered in

arson investigations and fire debris analysis, and indicates that research into the

improvement of the methods in place is essential for advancements in this field.

1.2 Ignitable Liquids

Ignitable liquids are commonly used as accelerants in arson cases. The presence

of an ignitable liquid, which is used to increase the rate and spread of a fire, may indicate

that the fire was intentionally set. Common ignitable liquids frequently used as

accelerants include petroleum distillates, such as gasoline, kerosene, and diesel fuel, and

other hydrocarbon products, such as aromatic products and oxygenated solvents.

The American Society of Testing and Materials (ASTM) has developed a

classification scheme for ignitable liquids based on chemical composition [4,5]. Nine

classes have been differentiated for the characterization of ignitable liquids based on



composition: (1) gasoline-all brands, including gasohol, (2) petroleum distillates, (3)

isoparaflinic products, (4) aromatic products, (5) naphthenic paraffinic products, (6)

normal alkanes products, (7) de-aromatized distillates, (8) oxygenated solvents, and (9)

others-miscellaneous. These classes are further divided into three subclasses based on

the range of carbon content present in the liquid. The first subclass covers the light

carbon range of C4-C9, with no components present above C”. The medium carbon

range includes C3-C13 compounds, with none present below C7 or above C14. The heavy

carbon range includes compounds at C9 and above, with the typically observed range of

C9-C23. It should be noted that these demarcations are not rigid, and that often samples

are reported as “light to medium” or “medium to heavy” when the observed carbon range

fits both profiles. The details of the ASTM classification scheme, including examples of

common ignitable liquids that are representative of each class, can be found in Appendix

A [4,5].

1.3 Analysis of Fire Debris

At a fire scene, ignitable liquid residues (ILRs) are most likely to be found in the

area where the fire started, known as the origin. ILRs are also commonly found in pour

patterns known as trailers, which occur when an ignitable liquid is poured in a constant

stream from room to room in order to force the fire to spread throughout the entire

structure. For evidence collection, the fire debris most likely to contain ILRs are those

with porous surfaces, because the liquid may soak into them and thus be protected to

some extent from the heat of the fire. Similar debris types that are not suspected to

contain ILR are collected as control samples, which are necessary to prove that, if an ILR

is detected, it is not a natural component or pyrolysis product of the debris matrix itself.



The laboratory analysis of fire debris encompasses the identification of both

suspected neat liquids and ILRs extracted from burned and unburned substrates in the

debris. The current protocols in place in forensic laboratories follow the ASTM

standards that have been established and are maintained by the technical committee

E3001, which is the criminalistics subcommittee of the committee on forensic sciences

[6]. ASTM standards are in place for both the analysis of ignitable liquids and the

extraction of ILRs from debris.

In order for a suspected neat ignitable liquid to be analyzed, it is simply diluted in

an acceptable solvent and then analyzed by gas chromatography-mass spectrometry (GC-

MS). The analysis of fire debris for the presence of ILRs is similar to the analysis of a

neat liquid. The difference arises in the need to extract the ILR from the debris in order

for it to be analyzed by GC-MS. A variety of extraction techniques can be used, though

each has its advantages and disadvantages. Five common extractions are listed by ASTM

for the separation of ILRs from debris: steam distillation, solvent extraction, passive

headspace concentration with activated charcoal, dynamic headspace concentration, and

passive headspace concentration with solid-phase microextraction (SPME) [7-11].

Currently, the most frequently used extraction technique in crime labs is passive

headspace concentration with activated charcoal strips, though solvent extractions are

still valuable in some cases.

The ASTM standard E1412-07 details the procedure for the passive headspace

extraction of ILRs from fire debris using activated charcoal [9]. The activated charcoal is

suspended inside the submitted evidence container, and the container resealed. The

container is placed in an oven and heated to a temperature of 50-80 °C for 2-24 hours.



The temperature and time heated is sample dependent, as higher temperatures and longer

durations may be necessary to promote sufficient adsorption of less volatile compounds

in the debris. After the adsorption step, the activated charcoal is washed with 50-1000 pL

of an appropriate elution solvent, typically carbon disulfide, n-pentane, or diethyl ether.

The eluate is collected and then analyzed by GC-MS. This procedure is capable of

extracting ILRs across a wide range of concentrations with an extremely high level of

sensitivity. It is considered a nondestructive technique for the extraction of ILRs from

fire debris.

Solvent extractions, though less frequently used, can provide significant

additional information in analyses when activated charcoal extractions are limited by

volatility. Solvent extractions offer a more complete extraction that is representative of

the entire range of compounds in a sample, whereas activated charcoal extractions are

biased against less volatile compounds and those that are not selectively adsorbed onto

the carbon strip. The ASTM standard E1386-00(2005) details the specifics of solvent

extractions [8]. A suitable organic solvent, typically carbon disulfide, pentane, petroleum

ether, or diethyl ether, is added to the debris. The solvent-debris mixture is thoroughly

agitated for approximately one minute. The solvent is poured off and then filtered if

particulates remain in the decantate. The extract is evaporated to approximately 1 mL

and then analyzed by GC-MS. This technique is very sensitive, and is especially useful

for the extraction of nonporous surfaces or when a small amount of sample needs to be

extracted. The major disadvantage of solvent extraction is the concurrent extraction of

interferences from the burned matrix. It must also be noted that some of the lighter

classes of ignitable liquids may be lost in the evaporation phase of the procedure. The



ASTM standard suggests that, because solvent extraction is a destructive technique. it

only be used in tandem with another extraction procedure. For example, if the results of

an extraction with a charcoal strip indicate a heavy petroleum distillate, then a solvent

extraction may also be performed in order to overcome the volatility bias in the charcoal

strip extraction and to obtain a more representative chromatogram.

Both neat ignitable liquids and ILRs extracted from fire debris are analyzed by

GC-MS per ASTM Standard El6l8-O6el [4]. The GC-MS is operated under conditions

that are capable of adequately separating a test mixture consisting of common ignitable

liquid constituents. The typical test mixture contains the even-numbered normal alkanes

from C3 to C20, as well as toluene, p-xylene, o-ethyltoluene, m-ethyltoluene, and 1,2,4-

trimethylbenzene. This test solution is usually prepared at a concentration of 0.005%

(v/v) per component to ensure the sensitivity of the instrument [4,5].

Once a chromatogram has been obtained of neat ignitable liquid or extracted ILR.

the pattern of its peaks, as well as the relative peak ratios, are used to determine whether

or not it is consistent with a common ignitable liquid. In order for an ignitable liquid to

be identified based on the aforementioned ASTM classification scheme, certain criteria in

the chromatographic patterns must be met for each ignitable liquid class [4,5].

Information about the specific characteristics observed in the chromatographic profiles

for each defined ASTM class can be found in Appendix A [4,5].

In addition to the chromatographic patterns, the mass spectral data are also used to

identify the questioned sample. Extracted ion profiles (EIP) are generated for specific

compound classes that are common to ignitable liquids. Table 1.1 lists the major ions

that are used to create these summed profiles [12]. The patterns of the EIPs are also



Table 1.1 Major Ions Included in Extracted Ion Profiles for Ignitable Liquids [12]

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound Class Ion Mass-to-Charge (m/z) Ratio

Alkane 43, 57, 71, 85

Cycloalkane and alkene 55, 69

n-Alkylcyclohexane 82, 83

Aromatic 91, 105, 119; 92, 106, 120

Indane 117,131;118,132

Alkylnaphthalene 128, 142, 156, 170

Alkylstyrene 104, 117, 118, 132, 146

Alkylanthracene 178, 192, 206

Alkylbiphenyl/acenaphthene 154, 168, 182, 196

Monoterpene 93, I36

Ketone 43, 58, 72, 86

Alcohol 31, 45
 



utilized in the identification of the questioned sample.

The method described above for the identification of ignitable liquids is

subjective in nature, and is often based on the analyst’s experience. The pattern

recognition is not statistically based and frequently is not straightforward [4,5]. The

questioned sample and reference samples used for comparison seldom correlate perfectly.

In fact, the chromatograms of the questioned samples can be skewed due to weathering or

insufficient recovery. Intense heat exposure from the fire can cause the loss of more

volatile components at the beginning of the chromatogram. Interferences from the

pyrolysis of substrate materials indigenous to the collected fire debris can create

additional peaks in a questioned chromatographic profile. A fire debris analyst must be

aware of these possible complications when making ignitable liquid identifications in

order to prevent false positive identifications.

1.4 Current Literature Review

Fire debris analysis and ignitable liquid characterization is well represented in the

literature [13-25]. Because the current method of ignitable liquid identification is

subjective, research into more objective methods, such as association and discrimination

by Chemometric procedures, is essential for the advancement of fire debris analysis.

Current research primarily discusses the utility of multivariate statistical methods in the

association and discrimination of ignitable liquids [16-20, 23]. The importance of data

processing prior to Chemometric analysis is also discussed [26,27]. In addition to

chemometrics, interferences and burning conditions have also been studied to determine

their effects on fire debris analysis [28-32]. Although gasoline is the most commonly

encountered ignitable liquid in arson cases [1 3] and most often discussed in the literature,



diesel fuel was selected as the ignitable liquid for this research project. Diesel was

chosen because it is a complex petroleum distillate with a number of components that

span the boiling point range, and it is less frequently discussed in the literature.

1. 4.1 Statistical and Chemometric Analysis ofPetroleum Distillates

Statistical comparisons of chromatograms produced from the analysis of various

ignitable liquids have been limited to an evaluation of peak area ratios of specific

components or to Chemometric procedures performed on small sections of the

chromatogram. Mann employed a method of comparing peak area ratios for eight

components from the n-pentane to n-heptane region of the chromatogram to successfully

discriminate gasoline samples [13]. Barnes et al. utilized a similar approach in which

normalized peak area ratios of various aliphatic and aromatic constituents present in the

headspace (e. g. substituted cycloalkanes, alkylbenzenes, and alkylnaphthalenes) were

used to associate unevaporated gasoline samples to those from the same source that had

been evaporated to 75% and 50% [14]. More recently, Sigman and co-workers described

a statistical technique called covariance mapping in which gasoline samples could be

distinguished based on distance metrics calculated between covariance matrices of

replicates of both the same and different samples [15]. It should be noted that in a blind

study of two unknown samples from a set of ten, one of the two was determined to be

statistically different from its known source. It was suggested that evaporation of the

sample between analyses could explain this Type I error. However, the presence of a

Type I error, which is defined as a difference identified by the technique when one is not

actually present, significantly limits the utility of the proposed identification

methodology.



More advanced multivariate statistical techniques have also been utilized to

associate and discriminate ignitable liquid samples. Sandercock and Du Pasquier used

Chemometric procedures such as linear discriminant analysis (LDA) and principal

components analysis (PCA) on GC data collected using selected ion monitoring (SIM)

for the C0-C2 naphthalene components in order to group similar gasoline samples based

on grade, country of origin, and the season in which the sample was collected [16-17].

They employed similar methods to link evaporated samples to unevaporated samples

[18]. Tan et a1. utilized PCA and a soft independent model classification analogy

(SIMCA) approach to differentiate GC-MS-SIM data of various ignitable liquids spiked

onto wood and carpet as background matrices [19]. Successful classification was

achieved for all ignitable liquids in the presence of wood and carpet using the developed

SIMCA model. Doble et al. demonstrated the use of artificial neural network (ANN)

algorithms to successfully classify 88 gasoline samples as either regular or premium

grade based on the percent peak area of 44 compounds that were identified in all samples

[20]. Similar ANN algorithms were also reported to distinguish the gasoline samples

based on their season of collection with a 97% success rate.

While the majority of the forensic literature focuses on the identification and

classification of gasoline samples as ignitable liquids, other more complex petroleum

distillates such as diesel fuel have been discussed in the environmental science literature

with respect to the association of samples collected from oil spills to their likely source.

Environmental literature tends to focus on the use of unique classes of compounds in

diesels in order to discriminate samples. In two recent studies, Wang et al. researched the

ability of the sesquiterpane and diamondoid compound classes to potentially discriminate



diesel samples by analyzing more than 100 crude oils and refined products by GC-MS

[21,22]. Diagnostic peak area ratios of several compounds from both the sesquiterpane

and diamondoid classes were determined in an effort to identify the ratios that would

provide the most discriminatory information. Ultimately these diagnostic ratios were

effectively applied to a case in which the source of an oil spill was determined based on

these two compound classes alone. The discriminatory potential of the sesquiterpane

class was further investigated by Gaines et al. in which fourteen diesel samples were

analyzed by GC-MS and extracted ion chromatograms (EIC) for 22 different

characteristic compound classes were generated [23]. The peak ratios of several

compounds within each of the 22 classes were determined and PCA was performed in

order to select the ratios that generated maximum discrimination among samples. Results

illustrated that full discrimination of all samples was possible with only nine peak ratios

from the alkylbenzene, alkylphenanthrene, and sesquiterpane classes, and two samples

from an actual oil spill were differentiated by the model developed.

More novel analytical methods have also been discussed in oil spill identification.

Another study by Gaines et al. employed a qualitative and quantitative GC x GC

approach to analyze a controlled oil spill [24]. By comparing two-dimensional ordered

chromatograms, they observed that the patterns of alkanes, cycloalkanes, alkylbenzenes,

alkylnaphthalenes, and anthracenes/phenanthrenes were useful in comparing the oil spill

to one of its two potential sources. Quantitatively, four panels of integrated peak area

ratios of the abovementioned compound classes were used to compare samples. Using

both these methods a controlled oil spill was correctly matched to one of two potential

sources. A study by Wang et al. showed a novel procedure for the visualization of GC-
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MS data as a two-dimensional separation that is valuable in specific compound class

separation when a nonfragmentation ionization technique is used [25]. This method was

demonstrated on complex petroleum fractions, so that even compound classes at low

abundances can be utilized for characterization.

1. 4. 2 Chromatographic Pre-processing

The need for pre-treatment of the chromatographic data prior to statistical and

Chemometric analysis has been more recently discussed in the literature, although it has

yet to be applied specifically in a forensic science context [26]. Some pre-treatment

processes, such as area normalization and mean-centering prior to PCA have long been

demonstrated [27]. Another more significant pre-treatment is that of retention-time

alignment of chromatograms to correct retention time drift anomalies caused by column

degradation and random fluctuations in analysis conditions. Retention time alignment is

an important step prior to PCA, since PCA maximizes the variance among a sample set.

If the sample chromatograms contain multiple shifts in retention time, the PCA will focus

on those differences in the samples instead of actual chemical variation.

Johnson et al. proposed a peak matching algorithm for the retention time

alignment ofGC peaks in order to reduce retention time shifts among several

chromatograms [26]. This approach applies an estimation of the first derivative

throughout the chromatograms and searches for zero crossings to identify peaks in a

specified target chromatogram and the sample chromatograms. Peaks in the samples are

matched to those in the target within a set window size and are then interpolated to

include either more or less data points in the retention time axis so that the retention times

of the peaks in the sample will be equal to those in the target. The authors demonstrated
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the utility of this approach by analyzing a set of diesel samples by GC with a flame

ionization detector (FID) and then subjecting them to the proposed algorithm followed by

PCA. The unaligned set of 60 chromatograms exhibited differences in retention times up

to 300 ms, but after alignment, the variation was only 17 ms with a relative standard

deviation of 0.003%. PCA demonstrated that the alignment did not cause a decrease in

chemical selectivity, but instead the resolution of clusters of different samples was shown

to be greatly improved after alignment [26].

I. 4. 3 Burn Conditions and Matrix Interferences

The analysis of ILRs extracted from fire debris is not straightforward. In fact. the

burning conditions and contributions from the burned matrix can hinder chemometric

analysis. Artifacts present in the chromatogram from sample weathering or matrix

interferences may cause samples that are actually similar to be difficult to associate

because of the extraneous components. These issues have been moderately discussed in

the literature, though most studies only look at the matrices alone without any ignitable

liquid present, much less an ignitable liquid that has been burned as would be the case in

an actual arson situation [28-32].

Bertsch examined potential interferences from carpet samples in the identification

of ILRs, specifically gasoline, from fire debris [28]. It was observed that when carpets

and carpet paddings were burned that some amounts of alkylbenzenes and naphthalenes

were produced. These same compounds are typically used as markers in the

identification of gasoline. It was determined, however, that by observing EICs of the C2-

C5 alkylbenzenes (m/z 106, 120, 134, and 148) and the methylnaphthalene isomers (m/z

142), the relative amounts of these compounds observed in a gasoline versus that
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produced by the pyrolysis of carpet is distinguishable. It was noted, however, that when

the carpet has been freshly manufactured some remnants of petroleum-based products

used in the manufacturing process may still be detectable. In addition to these remnants,

carpets treated with petroleum-based water-proofing agents or insecticides may also

produce a gasoline-like chromatogram. The use ofEICs in this case is not beneficial for

the identification of gasoline because the petroleum product is inherent to the carpet

itself. In a similar study, Cavanagh et al. examined carpets and mats from cars of

unknown history, and a small percentage of these carpets exhibited a chromatographic

profile similar to that of evaporated gasoline [29]. The authors suggested that inherent

interferences from car carpets are uncommon, which would increase the evidentiary value

of the presence of a more concentrated ILR sample or one that does not compare with an

evaporated profile.

Lentini et a1. presented a study in which several commonly encountered materials

were shown to produce petroleum-like chromatograms [30]. Several samples of different

matrix types were analyzed using passive headspace concentration followed by GC-MS.

The matrix types analyzed included clothing, shoes, household products, building

materials, paper products, cardboard, and adhesives. Many of the substrates examined

exhibited TICs or EIPs very similar to those of ignitable liquids, though patterns

consistent with gasoline were much less frequently observed than those of medium of

heavy petroleum distillates. It was concluded that, because of these potential sources of

interference that are likely due to the regular use of petroleum products in the

manufacturing, cleaning, and treating processes, control samples are crucial as a

reference in fire debris analysis. In another similar study, Almirall and Furton analyzed
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common household products that had been burned in controlled conditions and also

reported consistency in composition with ignitable liquids [31]. They determined the five

most frequently encountered compounds in these substrates that are also observed in

ignitable liquids are toluene, styrene, naphthalene, benzaldehyde, and ethylbenzene. In

addition, Almirall and Furton analyzed several of the same samples using pyrolysis GC-

MS to characterize the products formed during burning. These pyrolysis products, most

frequently toluene, naphthalene, styrene, and ethylbenzene, may serve as another source

of interference in the identification of ignitable liquids extracted from fire debris.

Borusiewicz et al. studied several factors that may influence the collection and

detection of ILRs, and, unlike the previous studies mentioned, actually included the

spiking of ignitable liquids onto the matrices being analyzed [32]. By reproducing burn

conditions and visually comparing chromatograms, the authors were able to examine how

the ignitable liquid type, burned matrix type, burn time, and air availability affect the

ability to detect ILRs. They concluded that the material being burned (e. g. wood. carpet.

etc.) is the most significant factor in ILR analysis. The other parameters were determined

to be less significant, even when compared to random variables in fire debris analysis that

are difficult to replicate in a laboratory setting, such as ignitable liquid dispersion or the

arrangement of the material when burned. The disadvantage of this study is that the

ignitable liquids analyzed were not actually burned; instead, they were only spiked onto

already burned matrices.

1.5 Research Objectives

In the preliminary work of this project, conducted throughout the summer and fall

of 2006, neat diesels were analyzed by GC-MS and characterized using PPMC and PCA
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[33]. 25 diesels from eight different brands of service stations were collected for analysis

and characterization. In addition to the TICs, EICs were generated for representative

compounds of both aliphatic (rn/z 57) and aromatic (m/z 91 and m/z 141) constituents

present in the diesel samples. PPMC coefficients were generally observed to be higher

between diesels from the same brand and lower between those from different brands. A

wider array of PPMC coefficients were observed in the EICs, especially for m/z 91,

which suggests that the aromatic composition of the diesel may be the source of the

variance between those diesel samples. PCA scores plots typically showed four diesel

sample clusters, three that contained only samples from one brand and one with the

remaining samples. This trend was generally observed for both the TIC and EIC data.

The PCA loadings plots, which demonstrate the contribution of each component to the

variance in the data set, suggested that the relative aliphatic and aromatic composition,

similar to that observed by PPMC calculations, was the most significant source of

variation among the samples.

The fundamental objective of this research project is to expand on the previous

work and study the possibility of linking ignitable liquid residues extracted from fire

debris to a neat liquid sample. Again, diesel fuel was selected as the ignitable liquid for

this project because it is more chemically complex than other ignitable liquids such as

gasoline, and because it is less frequently discussed in the literature. Basic statistical and

more advanced chemometric procedures, such as PPMC coefficients and PCA, are

implemented to associate and discriminate both neat diesels and those that have been

extracted from burned debris based on their chemical composition. Data pre-treatment

issues, which include chromatographic alignment and normalization, are also considered.
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This project expands on the current research described in the literature by

focusing primarily on the ability to link an unburned diesel sample to a diesel sample that

has been extracted from burned debris. This project examines data from the entire

chromatogram instead ofjust peak ratios or sections of the chromatogram as reported in

the literature. Using the entire chromatogram may increase discrimination capability, and

no information needs to be known or assumed about the samples in question. EIPs of

several potential characteristic compound classes (e. g. aliphatics, aromatics, polynuclear

aromatics, and indanes) are also used for comparison. Again, this project implements the

entire EIP to further enhance discrimination. The increased chemical information from

the full TICs and EIPs may potentially show more significant association and dissociation

of diesel based on chemical composition in chemometric procedures. The chemometric

procedures may overcome the changes produced in the diesel sample due to burning as

well as matrix interference contributions so that a burned sample can be accurately

associated with its neat counterpart, which minimizes the risk of false positive ILR

identifications. This research, which is applicable to almost any petroleum product with

potential as an ignitable liquid, serves as the groundwork for future projects. and could

ultimately conclude with scientific validation for use in a forensic laboratory setting.
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Chapter 2

Analytical and Chemometric Theory

2.1 Gas Chromatography-Mass Spectrometry

Gas chromatography-mass spectrometry (GC-MS) is a well developed analytical

technique that has become commonplace in forensic laboratories because of its wide

application range. The combination of chromatographic and mass spectral results offers

a multidimensional analytical tool. It is commonly used in forensic laboratories for drug

analysis, toxicology, environmental contamination, and explosives detection. It is also

the standard technique used for ignitable liquid identification and fire debris analysis. In

fact, as previously described in Chapter 1, a standard method has been developed by

ASTM for the specific use of GC-MS in the analysis of ignitable liquid residues in fire

debris extracts [4].

Chromatography is a technique in which separations of mixtures are driven by

interactions of individual components in the mixture with a mobile and a stationary

phase. In gas chromatography, the mobile phase is an inert carrier gas, typically helium

or nitrogen. A GC system consists of several individual components: a heated injection

port, through which the sample is introduced, a column housed in a temperature regulated

oven, where the separation takes place, and a detector. Several different types of

columns and detectors are available for use based on the sample and the type of

separation required. In GC-MS, the typical column is a capillary column with the

stationary phase coated on the inner walls, and the mass spectrometer serves as the

detector. In order to analyze a sample by GC-MS, it must be volatile and thermally

stable.
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In a GC—MS system, the sample must be introduced in the vapor phase. Liquid

injections, however, are commonly performed, because the injection port is sufficiently

heated (250 °C and above) to immediately vaporize the sample. The mobile phase

constantly flows through the system and sweeps the vaporized analytes onto the column.

The column, as mentioned before, contains the chromatographic stationary phase to cause

separation. The stationary phase is usually coated directly on the interior surface of the

capillary column, though it can also be coated onto particles that are used to pack the

column. The affinity of the analyte for this stationary phase dictates its retention on the

column. For example, if a component has a significant affinity for the stationary phase

(e. g. a polar component with a polar stationary phase), it will interact more with it than a

component with a lesser affinity (e. g. a non-polar component with a polar stationary

phase). The component with a higher affinity will be more retained and will elute later

than the component with the lesser affinity. The parameters of the column, such as

length, diameter, and stationary phase thickness, as well as the composition of the

stationary phase itself, have an effect on retention and ultimately the quality of the

separation.

The positioning of the column in a temperature regulated oven allows for it to be

heated to facilitate analyte separation. In an isothermal analysis, the oven is held at a

constant temperature throughout the course of the run. This temperature is typically at or

just above the boiling point of the sample to be analyzed. For samples that contain

components with a broad range of boiling points, a temperature programmed analysis

provides better resolution, quicker analysis time, and minimal band broadening in

comparison to isothermal conditions. In a temperature program, the oven is held at some
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initial temperature in order to initiate the separation as well as to prevent condensation of

the analytes on the top ofthe column. The temperature is then ramped over the course of

time to a final temperature. The rate of the ramp is dependent on the sample. A slower

ramp rate is ofien used when components that have similar boiling points need to be

separated, such as in a complex mixture like diesel. Faster ramp rates, however, provide

quicker analysis times, thus ramp rates are often selected to provide sufficient resolution

in the minimal amount of time. The oven is then held at the final temperature to ensure

complete analyte elution.

The column passes through a heated transfer line into the ionization source of the

mass spectrometer detector. The transfer line must be maintained at a high temperature,

typically 300 °C, in order to prevent condensation of the separated analytes during

transfer into the director. From the transfer line, the analytes are introduced directly into

the ionization source where they are ionized and fragmented. Several types of ionization

sources are available, each with its advantages and disadvantages. Electron impact (El)

ionization is the most common in most bench-top GC-MS instruments used in forensic

laboratories for fire debris analysis. In El, a filament with electric current running

through it is heated in order to produce high-energy electrons (70 eV). These electrons

interact with the vaporized analyte molecules to produce molecular ions that are

fragmented through further collisions. These positive molecular and fragment ions are

then transported by a series of focusing lenses into the mass analyzer, where they are

separated based on their individual mass-to-charge (m/z) ratio.

As with ionization sources, several types of mass analyzers are available for use.

but the most common in bench-top instruments is the quadrupole mass analyzer. The
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quadrupole consists of four parallel conducting rods, with one pair connected to the

negative terminal of a DC source and the other pair connected to the positive end. Each

pair is also connected to a radio frequency (RF) AC source. These four rods define a

cylindrical region through which the ions travel. Under the influence of the electric field.

the positive ions are attracted to the negatively charged rods. As the ion begins to move

toward the negative rod, the potentials on the rods are switched, and the ion moves

toward the opposite rod that is now negative. As the potential is varied, the ion travels in

an oscillating pathway through the quadrupole and on to the detector. At a given DC/RF

ratio, only ions of a narrow m/z value will travel an oscillation path that allows them to

pass through the region defined by the rods without hitting the rods. Ions of other m/z

values will travel a wider path that will cause them to come in contact with the charged

rods, become neutralized, and therefore not be detected. A full mass scan is obtained by

increasing the DC and RF potentials while still maintaining a constant ratio between the

two. As the ions pass through the quadrupole, they are directed to a transducer, typically

a continuous conversion dynode. The positive ions contact the highly negatively charged

conversion plate, which causes the release of secondary particles, of which electrons are

included. These electrons then enter the continuous dynode electron multiplier, where

they strike the multiplier plates, which are coated with a substance the readily emits

secondary electrons. This release of electrons caused by the contact with the plates

results in a cascade of electrons that reach the end of the multiplier where they are

detected.

GC-MS results are two-fold. The retention time of a component, as well as its

mass spectrum, are used in making comparisons among samples. In a conventional GC-
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MS analysis, the entire mass range is scanned during detection and a total ion

chromatogram (TIC) is generated. The TIC is a plot of intensities of m/z values in each

scan versus time. From this TIC, a specific m/z ratio can be selected as a filter so that

only the signal from that ion is retained while all signal from all other ions is eliminated.

The result is an extracted ion chromatogram (EIC) in which the abundance for a

particular ion is plotted against retention time. Ele can be useful to reduce highly

complex and convoluted samples to a more manageable format for interpretation. In fire

debris analysis, EICs are beneficial to reduce a petroleum distillate, which is a very

complex mixture of many components, to only those components of a specific compound

class, such as aliphatics or aromatics. The amount of aliphatic and aromatic components

present in an ignitable liquid is valuable information for ignitable liquid classification. In

fire debris analysis, several individual EICs are summed to generate an extracted ion

profile (EIP) of multiple representative ions of a characteristic compound class. These

EIPs are at higher abundance levels and contain more characteristic features than EICs

alone.

2.2 Data Pre-treatment

Data pro-treatment is necessary prior to the application of chemometric

procedures in order to correct for any variation among the diesels not actually due to

differences in chemical composition. For example, minor shifts in retention time can

occur between sample injections due to instrumental drift in the GC-MS. Retention time

alignment procedures can correct for these nominal variations in retention time. Another

source of variation among the samples includes slight differences in injection volume. A

normalization process can correct for these slight differences. Data pre-treatment
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procedures are essential in order to ensure accurate results from the PPMC coefficients

and PCA.

2. 2.1 Retention Time Alignment

The first data pro-treatment step that must be taken after the raw data is collected

is a retention time alignment. The alignment is necessary to account for normal

instrumental drift, such as slight changes in temperature, pressure, and flow rate, from

run to run. Retention time shifts can also be caused by the natural aging process of the

column, which degrades over the course of several runs. A retention time alignment

algorithm can correct for these inevitable sources of retention time drift. The algorithm

used in this work was developed specifically for diesels and is available in the literature

[26]. Figure 2.1, which highlights the decane peak for Diesels 1-5, illustrates the effect

of the application of the retention time alignment algorithm to the raw chromatographic

data. The decane peak in Diesel 2 is severely shifted when compared to the other diesels,

but the algorithm is capable of correcting for that shifi.

In the algorithm a representative target chromatogram is chosen by the user from

the sample set to be aligned. The first algorithm function is to perform a baseline

correction on the target and sample chromatograms. The baseline correction factor is

determined by a linear regression through the first few points and the last few points of

the chromatograms. This correction is applied to account for minor changes in the

baseline from run to run, though it is contained in a sub-routine in the algorithm and is

easily edited or even removed if deemed unnecessary. The algorithm then cycles through

each chromatogram in turn and estimates the first derivative of the chromatogram by

calculating the difference in signal strength between consecutive data points. Once this
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difference exceeds a threshold for baseline noise defined by the user, the data points are

considered to be the leading edge of a chromatographic peak. The algorithm then

searches for a zero crossing, or a change in sign, within this first derivative estimation.

which indicates the apex and tailing edge of a chromatographic peak. The algorithm then

interpolates the subsequent retention time at which the first derivative is equal to zero.

rounds that retention time to the nearest integer value, and then adds that retention time to

a list being generated for that chromatogram. Once the retention time tables for each

chromatogram have been compiled, the algorithm compares the peaks present in each

sample with the peaks identified in the target chromatogram. If the sample

chromatogram contains a peak within a user-defined window size to that of the target.

then it is considered a match and the retention time axis will be interpolated to include

more or fewer data points so that the sample peak has the same retention time as the

target peak and the peaks align. If the target chromatogram contains a peak that the

sample chromatogram does not, or vice versa, those peaks are not considered in the

retention time axis interpolation, which allows the alignment to accommodate samples

that contain varying numbers of peaks.

Prior to implementation, however, certain user-specified parameters of the

alignment algorithm need to be investigated in order to ensure optimal alignment. The

selection of the target chromatogram must be done carefully so that it contains as many

peaks present in the chromatograms to be aligned as possible. It is also important that the

peaks in the target chromatogram are relatively centered in terms of retention time and

peak symmetry in comparison to the peaks from the sample chromatograms. A poor

target selection will lead to a greater propensity for misalignments. Another factor
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defined by the user that must be considered is the baseline noise threshold for peak

identification. The noise of the chromatogram is determined from the first several data

points in the chromatogram by default. However, because diesel chromatograms contain

features within those first points, in this research the algorithm was amended to calculate

the noise from the last several points in the chromatogram where a baseline was

discernible. The standard threshold for determining the presence of a peak is five times

the standard deviation of the calculated noise. The last user-defined variable that requires

investigation is the window size. This last parameter dictates the magnitude of retention

time shift of a peak in a sample chromatogram that is still determined a match to the same

peak in the target chromatogram. Ideally, the window size, which the algorithm defaults

as five, is large enough to account for normal retention time drift, but smaller than the

average distance between adjacent peaks. A brief examination of these parameters can

lead to fewer errors and improved alignments.

Even after optimization of these variables, the alignment algorithm is not devoid

of limitations. Peaks with small signal-to-noise ratios are often not identified because

they still fall below the optimal baseline noise threshold. These smaller peaks also tend

to be noisier, which can result in the determination of multiple zero crossings and leads to

peak misidentifications. Another limitation of the alignment algorithm is that the peak

identification method of first derivative estimations is entirely dependent on the scan rate

of the mass spectrometer. Smaller peaks are often overlooked by the algorithm’s peak

finding function when the scan rate is too rapid because the first derivative is not

substantial enough to exceed the noise threshold. The alignment algorithm also lacks any

method for the determination and alignment of shouldered peaks. Their identification
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depends on the size of the shoulder in comparison to its parent peak, so that some

shoulders are well aligned while others are not. Despite these limitations, the alignment

algorithm has been demonstrated in the literature to be adequate for GC peak alignment

of diesel samples [26]. The user, however, must be aware of the consequences of these

limitations not only on the alignment itself, but on the ensuing chemometric analyses as

well.

2. 2. 2 Area Normalization

In addition to retention time alignment, other pre-treatment steps are necessary to

minimize sources of variation in the chemometric analyses introduced by the analytical

technique or injection method. Minimizing artificial variation ensures that the results of

Pearson product moment correlation (PPMC) coefficients and principal components

analysis (PCA) are based on the true sample variation. Normalization is performed in

order to account for minor differences in injection volume from run to run. In a basic

normalization process, each chromatographic peak is ratioed to a reference that is present

at a consistent concentration throughout every analysis. In many cases, the reference

peak is a purposely added component known as an internal standard that is not inherent to

the sample being analyzed. However, because diesels are complex and contain numerous

components that cover a broad range of boiling points, the choice of an internal standard

that would not co-elute with a native component is difficult. Therefore in this research.

an area normalization process was used instead. In this method, the areas of all peaks

present in a chromatogram are summed, and the individual peak areas are then divided by

the total area. In this research, however, the entire chromatogram is analyzed, not just the

areas of each peak. In order to area normalize the individual data points of the full
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chromatogram, the total area underneath the chromatographic curve is calculated to serve

as the reference. The individual data points are then divided by the total area. The data

points are then multiplied by an average of the total areas of all sample chromatograms in

the data set in order to return the chromatograms to the original order of magnitude so as

to maintain discernible features for further data analysis.

Figure 2.2, which shows the same decane peak of the five diesels as before,

demonstrates the results of the area normalization process. In the aligned data only. it

appears that little similarity exists among the five diesels in the concentration of decane

present. However, once the data is normalized, clear associations can be made for

Diesels 3 and 4 as well as for Diesels l, 2, and 5. These two sets are easily differentiated

based on the concentration of decane present.

2.2.3 Mean-Centering

Another pre-treatment step, mean-centering, is performed specifically in

preparation for PCA. In this process, the mean of an individual variable (in this case. the

abundance level at a single retention time) is calculated across the entire data set. This

mean is then subtracted from each value so that the resultant sum across the sample set

equals zero. Figure 2.3 shows the same decane peak of the five diesels as before, but

now the data has been aligned, normalized, and mean—centered. The same diesels are

associated as before, only in the mean-centered plot, Diesels 1, 2, and 5, which were

lower in decane concentration, exhibit a negative peak. Diesels 3 and 4, on the other

hand, remain positive. It should be noted that the two positive peaks are greater in

magnitude than the three negative peaks, a characteristic that is observed because the

means have been mathematically forced to sum to zero.
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Mean-centering is an important step prior to PCA to ensure that the maximum

variance described by the principal components selected does not contain any deviations

from the mean. Oftentimes when PCA is performed on data that has not been mean-

centered, the primary principal component reflects how the samples deviate from the

mean, not necessarily how they inherently vary. Upon mean-centering, the variance

becomes centered around the origin so the principal components are allowed to describe

actual sources of variation among the samples.

2.3 Pearson Product Moment Correlation Coefficients

The PPMC coefficient (r) indicates the degree of linear correlation between two

samples. The correlation coefficient is calculated by dividing the covariance between the

two samples by the product of each sample’s standard deviation as shown in Equation

2.1:

ZtX, 500’, 47)
r:

[201 -§)2‘/Z(Y, 4‘02

Values for r range between -1 and l, where a correlation of 1 indicates a perfect positive

 

 

Equation 2.1

linear relationship and a correlation of -1 indicates a perfect negative linear relationship.

It has been suggested that correlation coefficients between 0.8 and 1 indicate a strong

correlation between samples, while coefficients between 0.5 and 0.8 indicate a medium

correlation. Coefficients less than 0.5 imply a weak correlation [34]. Correlation

coefficients close to zero signify a lack of any correlation.

To assess the correlation between two diesel samples, coefficients are calculated

as in Equation 2.1, where the X variables denote abundances at individual retention times

for one diesel, and the Y variables correspond to abundances at the respective retention
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times for the other diesel. In order to determine the strength of association between two

diesels, the standard convention mentioned above is not applicable because of the level of

inherent similarity of the samples being compared. The conventional model relates to

samples that range significantly in their chemical composition. Diesels, however, are

very similar in their basic composition, so their correlation coefficients would be

expected to be closer to unity. Therefore, although differences in correlation coefficients

between diesels will be smaller, these differences may still be significant.

A more appropriate guideline for samples like diesel that are already so similar is

the range of coefficients between several replicate analyses of the same sample.

Replicate coefficients, which represent the highest possible level of similarity, should be

close to unity. If correlation coefficients between samples that are not replicates fall

within the same range as the replicates, then those samples must be considered very

similar. Diesels with correlations outside that range can be considered less similar due to

differences in chemical composition. With the application of this guideline, PPMC

coefficients are useful in assessing the association and discrimination of diesels based on

chemical composition.

Another application of PPMC coefficients is method precision. As previously

mentioned, replicate analyses should result in correlation coefficients of unity if the

instrumental technique and manual injection procedure are repeatable. Because of

random instrumental and analyst variations, perfect correlation coefficients "are unlikely;

however, coefficients very close to one should be attainable between replicate analyses.

Therefore, average correlation coefficients of replicates can serve as an indicator of how

precise the instrument and the manual injection process are.
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2.4 Principal Components Analysis

PCA is a multivariate statistical technique most commonly used to reduce larger

data sets to dimensions that can be easily visualized by standard procedures while still

retaining the most significant information. PCA, on the most basic level, determines the

sources of maximum variation among samples in a data set and clusters the samples

based on their relative contribution to these sources of variation. It is a clustering

technique that is capable of associating and discriminating samples based on how they

are correlated.

PCA consists of several steps of complex matrix mathematics. The first step is to

generate the covariance matrix, which consists of covariance calculations between all

dimensional pairs in the data set. The covariance between a pair is calculated by

Equation 2.2:

cov(X, Y): Z (X’ _ YXY‘ _ )7) Equation 2.2

(n - 1)

The covariance matrix for a data set of n dimensions contains n!/(n-2)!*2 different

covariance values, as well as commutative repeats [cov(X,Y) = cov(Y,X)] and covariance

identities [cov(X,X)], which are equal to the variance of that variable [35]. These

commutative repeats make the covariance matrix symmetric about the forward diagonal.

The next step in PCA is to calculate the eigenvectors and eigenvalues of the

covariance matrix. Eigenvectors are derived from the basic properties of transformation

matrices. A vector that, when multiplied by a square matrix, results in a reflection of

itself is considered an eigenvector of that matrix. Any multiple of that vector is also

considered an eigenvector because the directionality of the vector is not affected, only the

length. In simpler terms, an eigenvector a is a vector that satisfies the following
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relationship with a square matrix A: O. * A = k * a, where it is a nonzero number known

as the eigenvalue. In PCA of a multidimensional data set, computerized iterative

algorithms are often employed to calculate all the eigenvectors and their associated

eigenvalues of a covariance matrix. The eigenvectors are then ranked in descending

order by their respective eigenvalue. The maximum eigenvalue corresponds to the most

significant eigenvector. It should be noted that eigenvectors are orthogonal to one

another, and that n eigenvectors are calculated for a matrix of n x n dimensions.

For PCA, the eigenvector with the largest eigenvalue is the first principal

component (PCl). This primary eigenvector can be thought of as the axis on which the

original data can be projected that results in the maximum amount of spread among the

samples in the data set. Additional PCs, positioned orthogonally in the sample space to

the previous PC, describe lesser amounts of variation corresponding to the magnitude of

their eigenvalues. The amount of variation afforded by each PC is represented as a

percentage of its eigenvalue to the sum of all eigenvalues. Often, only two to three PC3

are needed to describe 85-90% of the variance among the data [27]. The dimensional

reduction property of PCA is reflected in the significant eigenvalues. If a complex data

set of many dimensions can be accurately described by only two or three dimensions.

which are capable of being plotted and visually observed, the analysis of that data set

becomes much easier by conventional methods.

Once the eigenvectors and eigenvalues have been determined, they are utilized to

calculate scores for each sample. Scores are calculated for each sample by a simple

matrix multiplication of the original data (in columns) by the eigenvectors (in rows).

This multiplication results in a single score for each sample for each principal
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component. A scores plot usually consists of an x-y scatterplot of the PCI score versus

the PC2 score for each sample. Three-dimensional plots of the scores for the first three

PCs are also frequently used. In these scores plots, the samples will cluster based on how

they are each affected by the eigenvectors selected. For diesels, the eigenvectors

correspond to individual chemical components that are the most variable among them.

Therefore, the scores plots cluster diesels based their similarities and differences in

chemical composition. A plot of the individual eigenvectors, known as a loadings plot,

indicates those components that contribute the most to the variance. If a component

loads high, then it contributes more significantly to the score of a sample than other

components do.

Although clustering patterns observed in scores plots can be used for sample

association, PCA is an unsupervised technique, because the method is not guided by or

modeled after a known training set. Instead, PCA clusters samples in a data set solely on

how those particular samples vary. As samples are added or removed, the clustering

results may change. For this reason, empirical classification by PCA is difficult; instead,

it is more useful to discuss how the samples fall into the clustering patterns by degrees of

association with and discrimination from one another.
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Chapter 3

Association and Discrimination of Neat Diesels Using PPMC Coefficients and PCA

3.1 Introduction

The fundamental objective of this research is to investigate the potential of linking

ILRs extracted from fire debris to the corresponding neat liquid sample using

chemometric procedures, specifically PPMC coefficients and PCA. The initial step,

however, is to demonstrate that similar neat ignitable liquids, diesel fuel samples from

different service stations in this case, can be associated and discriminated based on

differences in their chemical composition. This preliminary work is essential in order to

show that PPMC and PCA are capable of distinguishing diesel samples that are known to

be very similar in their basic chemical composition. If the neat diesels cannot be

differentiated, then burned diesels will be nearly impossible to discriminate, because they

will have lost the more volatile components, and hence some discriminatory information,

during the burning process.

Although diesels have a similar basic composition, some amount of variation is

introduced through the refining process. Diesel is a heavy distillate fraction collected

from the refining of crude oil. Oil refining is a multistep process that includes a

temperature-based fractional distillation, several chemical processing steps (thermal or

catalytic cracking, and hydrocarbon unification or alteration), and multiple purification

and product blending phases [36]. Refineries may also include various additives in their

final product blends to improve their quality and performance. Refineries differ in how

they complete these processes to produce their final diesel fuel product, which adds some

amount of variation to a distillate fraction that is generally similar in composition.
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The differences in the refining process allow for potential association and

discrimination of diesels based on how they were produced. However, it must also be

noted that the refining process itself is variable, so that even products from the same

refinery may vary. In addition to random variations in the refining process, diesel fuel

products must be transported to a distributor and then finally a service station for

purchase by the consumer. While some service station brands such as Marathon refine

their own oil to sell, other brands such as Speedway or Meijer purchase their products

from a regional distributor [37]. Some stations have long-term contracts with distributors

so that they always receive similar products, while others purchase their products on a

need basis from the most cost efficient distributor. Therefore, it is impossible to generate

a database of diesel samples from different service stations because of these constant

changes. This variation must be considered in the interpretation of the PPMC and PCA

results for the association and discrimination of diesel samples.

In order to examine a neat diesel data set, diesel samples were collected, analyzed

by GC-MS, and subjected to both PPMC and PCA in order to assess the degree of

association and discrimination achieved among them.

3.2 Sample Collection and Analysis

Ten diesel samples were collected from various service stations located within the

surrounding area of Lansing, Michigan. Table 3.1 lists the samples, which were

numbered consecutively, and the details of their collection. It should be noted that five

brands of service station (Sunoco, Speedway, Meijer, Marathon, and Mobil) are

represented in the sample set. Diesel samples were collected from two different locations

of each of the five brands in order to have a representative but diverse data set.
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Approximately one-half gallon of diesel was collected from each station in a five gallon

yellow diesel container (Wedco, Willowbrook, IL). The containers were cleaned with

hexane (reagent grade, Mallinckrodt, Phillipsburg, NJ) between sample collections.

After collection, the diesels were brought to the laboratory, transferred to

previously acid washed 250 mL amber bottles, and stored in a refrigerator. Immediately

prior to analysis, the diesels were diluted 200:1 with dichloromethane (CH2C12,

spectrophotometric grade, Sigma-Aldrich, St. Louis, MO) in clear glass vials (Kimble

Chase, Vineland, NJ). One uL of the sample was injected into the GC-MS running the

Diesel.M method, which employs the following temperature program: initial temperature

50 °C, 2 °C/min ramp to 150 °C, 3 °C/min ramp to 280 °C, hold for 15 minutes. For the

MS, a heated transfer line (300 °C) was positioned in an electron impact (El) ionization

source operating at 70 eV. A quadrupole mass analyzer scanning the 40-550 m/z range at

a rate of 2.94 scans per second. Each sample was analyzed in triplicate to assess the

precision of the instrument as well as the injection technique.

For each diesel sample, the data files of the TIC were extracted as Comma

Separated Values (CSV) files, along with the data files of the individual EICs for

aliphatic compounds (m/z 57) and aromatic compounds (m/z 91). Once all diesel

samples were analyzed, their individual data files were compiled into one set for the TIC

and one set for each EIC using Microsoft Excel spreadsheet software (Redmond, WA).

The Diesel.M method contains a 15 minute hold at the final temperature to serve as a

cleaning step between runs and to prevent carryover. Prior to data analysis, the data

points corresponding to this extended hold, from 80.51 minutes to 108.33 minutes. were

removed from the files since they contained no information about the samples

38



themselves. Once truncated, each chromatogram, both TIC and ElC, contained 1.3.531

data points, all of which were used in subsequent data analysis.

3.3 Data Pre-treatment

The compiled data sets for the TICs and each EIC were taken through a series of

pro-treatment steps prior to data analysis. These pre-treatments served to minimize any

artifacts in subsequent data analysis procedures resulting from retention time shifts and

slight differences in injection volume.

First, individual data sets were subjected to a peak matching alignment algorithm

available in the literature [26]. A discussion of how the alignment algorithm functions

can be found in Chapter 2. The alignment was applied in order to account for minor

drifts in retention time from run to run that can be caused by routine column degradation

and nominal differences in the flow rate of the carrier gas. The alignment algorithm

required a target chromatogram to be selected from the data set. The target was chosen at

random to eliminate any potential bias from its selection. Once chosen, the target

chromatogram was inserted into the data spreadsheet, and the entire file imported into

Matlab (Version 7.4.0, The MathWorks, Natick, MA). After the file was imported, the

target and data columns were designated variables within the Matlab workspace and the

algorithm was performed. The aligned data was extracted from Matlab into spreadsheet

form in Microsoft Excel for further pre-treatment.

After alignment, the data sets were normalized to overcome for slight differences

in injection volume from run to run. An area normalization procedure, as described in

Chapter 2, was selected as the most practical for the diesel samples. For each diesel

sample, the abundance values at each retention time were summed in Microsoft Excel to
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obtain'the total area under the chromatogram. These sum totals were then averaged to

obtain a mean area. Then, for each diesel sample, every individual data point was

divided by its respective area sum, and then multiplied by the mean area sum. The

multiplication by the mean was performed only to return the abundance values to the

original order of magnitude.

A final pre-treatment step, mean-centering, was performed on the aligned and

normalized data specifically prior to PCA. Mean-centering is applied so that the

variation described by the calculated principal components is centered about the mean as

discussed in Chapter 2. The aligned and normalized data was taken in Microsoft Excel,

and the mean was calculated for the abundances of all samples at each individual

retention time. The respective means were then subtracted from each data point to obtain

the mean-centered data.

3.4 Data Analysis

Once the data sets were pre-treated, several data analysis steps were performed to

determine the precision of both the instrumental technique and the injection method.

Precision was assessed through both relative standard deviations (RSD) of select peak

areas and PPMC coefficients.

For RSD calculations, eight peaks across the entire retention time range were

selected to represent the wide array of boiling points of components contained in a diesel

sample. These peaks were identified using a mass spectral search program from the

National Institute of Standards and Technology (NIST, Version 2.0d, Gaithersburg. MD).

The peaks were integrated in order to determine their area, which corresponds to the

concentrations of the components present. The peak areas were then imported into
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Microsoft Excel and normalized to the total area under the chromatographic curve, and

the individual RSD values were calculated using the mean and standard deviation for

each peak. For replicate analyses, peak areas should be consistent with less than 5%

relative standard variation [3 8].

PPMC coefficients were also used to gauge precision. In order to calculate these

coefficients, the aligned and normalized data spreadsheet was imported into Statistical

Analysis Software (SAS, Version 9.1, The SAS Institute, Cary, NC) and the default

internal PCA function was run. This default function performs PCA on the correlation

matrix of the data instead of the usual covariance matrix, and part of the output of the

function is a table of PPMC coefficients. This table was exported into Microsoft Excel

while the rest of the data was discarded. For smaller data sets (less than 15 samples), the

PPMC coefficients were also calculated in Microsoft Excel using the CORREL function.

For the actual association and discrimination of diesels based on their chemical

composition, the PPMC coefficients calculated for the precision determination were

utilized. In addition to PPMC coefficients, PCA was performed on the data sets, since

PPMC coefficients only allow a pairwise comparison, while PCA allows the full data set

to be assessed simultaneously. The data was aligned, normalized, and mean-centered

prior to PCA. The pre-treated data was then converted from spreadsheet form to a CSV

form and imported into a temporary workspace on the Michigan State University High

Performance Computing Center (HPCC) servers. From this workspace, Matlab was

accessed on a powerful cluster of computers from which the default PCA function (using

the covariance matrix) was performed on the data. Use of the HPCC was necessary due

to the large CSV file size generated from several replicate samples, each containing more
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than 13,000 data points. Once PCA had been performed on the data, the scores,

eigenvalues, and first three eigenvectors were saved in ASCII format in the HPCC

temporary workspace. Only the first three eigenvectors could be saved due to storage

space complications. The first three PCs, though, typically describe 85-90% of the

variance of the sample set; thus, they are sufficient to allow association and

discrimination among the samples. Once saved, the PCA files were transferred back to a

personal computer where they were converted into a usable spreadsheet form in

Microsoft Excel. The scores values for PCI and PC2 for each sample were then plotted

using an x-y scatterplot in Microsoft Excel. For 3D scores plots, Origin Pro graphing

software (OriginLab, Version 8, Northampton, MA) was used to plot the scores values

for PCI, PC2, and PC3 for each sample.

3.5 Results and Discussion

3. 5. 1 Initial Data Set

Initially, the ten diluted diesel samples were analyzed in triplicate in order to

examine the reproducibility of the analytical method. RSD values were first calculated to

assess precision. For normal error distribution, a 5% error rate indicates that the

measurement falls within two standard deviations from the mean. Therefore, a threshold

of 5% RSD or less is typically considered acceptable for analytical precision [38]. Peak

areas that fall outside of the normally accepted range indicate imprecision in either the

instrument or the injection method.

Table 3.2 lists the RSD values for eight peaks across the retention time range

from the triplicate analysis of the ten diesel samples. Though some RSD values fall

below the normally accepted 5% error threshold, several do not. GC-MS is widely
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Table 3.2 RSD Values for Eight Peaks Across the Retention Time Range

for Ten Diesel Samples Analyzed in Triplicate

 Rt t'
”n 10“ Potential Peakldentity Diesell DieselZ Diesel3 Diesel4 Diesels Diesel6 Diesel7 Diese18 Diesel9 Diesel 10 Average

 

 
Time (min)

20.784 dodecane 7.7% 5.9% 5.7% 0.6% 6.9% 3.3% 12.7% 4.6% 22.1% 4.8% 7.4%

26.207 1’2’3’4‘tetrahydm'8' 5.9% 4.4% 13.3% 6.8% 2.1% 3.3% 9.6% 3.2% 13.2% 5.5% 6.8%
methylnaphthalene

27.064 tridecane 4.7% 2.9% 2.7% 2.2% 4.0% 0.7% 5.8% 2.5% 11.1% 0.4% 3.7%

31.782 2,6,10—trimethyldodecane 4.2% 15.6% 12.4% 11.9% 10.2% 6.0% 14.9% 11.7% 9.3% 8.5% 10.5%

33.251 tetradecane 3.4% 2.2% 2.4% 2.4% 6.9% 2.4% 6.8% 3.6% 3.9% 2.3% 3.6%

39.211 pentadecane 2.0% 7.9% 4.6% 2.1% 4.2% 3.5% 4.0% 4.4% 10.5% 1.4% 4.5%

44.905 hexadecane 3.3% 6.9% 2.8% 2.5% 3.9% 2.5% 12.2% 4.8% 14.4% 8.2% 6.2%

50.327 heptadecane 4.9% 5.8% 9.8% 3.5% 7.1% 2.7% 16.9% 4.9% 15.9% 4.2% 7.6%
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known for its analytical precision, as its instrumental errors tend to be insignificant.

Therefore, it is more likely that the error observed in the RSD values is being introduced

in the manual injection process.

An alternative method to examine reproducibility is to consider PPMC

coefficients among replicates. These correlations offer some measure of the similarity

between two samples. For two replicate injections of the same sample, correlation

coefficients should be very close to one if both the instrument and injection method are

precise. Table 3.3 shows the combinations of PPMC coefficients for the replicate

analyses of the ten diesels. It should be noted that the correlation coefficients range from

0.7769 to 0.9886, with an average of 0.9581 :t 0.0519. While the minimum correlation is

low (0.7769) for a replicate analysis, the average is reasonably acceptable by normal

convention, in which a coefficient greater than 0.8 indicates a strong correlation [34].

But upon further consideration, this mean indicates that replicate injections of the same

sample are only 95.81% similar on average, when in fact a higher degree of correlation

should be attainable.

The unacceptable RSD values combined with poor correlation coefficients among

replicates suggest that the analytical methodology is not sufficiently precise. Because of

the well known precision of GC-MS, it is feasible that variation in the method of

injection is responsible for the lack of precision. Further evidence that the injection

procedure was imprecise showed in a preliminary scores plot from PCA of the ten

triplicate diesels. The three replicates of each diesel should have been tightly clustered;

instead, considerable spread was observed in the replicate clusters (data not shown). The

consistently poor precision of the data analysis results compelled a closer look at the
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Table 3.3 PPMC Coefficients for Replicate Sets of

Ten Diesel Samples Analyzed in Triplicate
 

 

 

 

 

 

 

 

 

 

 

 

 

Diesel Sample Replicate Pair PPMC Coefficient

1 and 2 0.9815

Diesel 1 1 and 3 0.9748

2 and 3 0.9808

1 and 2 0.9768

Diesel 2 1 and 3 0.9824

2 and 3 0.9854

1 and 2 0.9540

Diesel 3 l and 3 0.9585

2 and 3 0.9877

1 and 2 0.7896

Diesel 4 1 and 3 0.7769

2 and 3 0.9868

1 and 2 0.9805

Diesel 5 1 and 3 0.9747

2 and 3 0.9845

1 and 2 0.9673

Diesel 6 1 and 3 0.9867

2 and 3 0.9664

1 and 2 0.9326

Diesel 7 1 and 3 0.9466

2 and 3 0.9688

1 and 2 0.9785

Diesel 8 1 and 3 0.9886

2 and 3 0.9881

1 and 2 0.8903

Diesel 9 l and 3 0.9465

2 and 3 0.9650

1 and 2 0.9761

Diesel 10 1 and 3 0.9797

2 and 3 0.9876

0.9581

Standard Deviation 0.0519
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chromatograms of the replicate samples themselves. Figure 3.1 depicts two sections (9-

10 minutes and 50-51 minutes) of three overlaid chromatograms, all of which are

replicate injections of Diesel 9. The chromatograms have been aligned and normalized.

In the 9-10 minute range of the chromatogram (Figure 3.1a), the components in the

second replicate are most abundant, while those in the first replicate are the least

abundant. In the 50-51 minute range (Figure 3.1b), however, the opposite trend is

observed. This change in the composition distribution among replicates is surprising,

since component levels should remain constant throughout the entire range of the

chromatogram. It is possible that, as seen with the high RSD values and low PPMC

coefficients, an error in the manual injection method is causing this undesirable change in

composition distribution. Hence, further investigation of the injection method was

warranted.

Because the components found in diesels cover a very broad range of boiling

points (approximately 70-400 °C), their vaporization differs in the injection port. In a

normal injection technique, one pL of sample is drawn up into the syringe, which is

placed into the inlet, and the sample immediately injected. This rapid injection does not

allow the syringe needle to be sufficiently heated to the temperature of the inlet, which

causes the less volatile components to be insufficiently vaporized. For these reasons,

using the normal injection method for diesel samples introduces variability in the

distribution of the compounds present by preferentially loading the column based on

volatility. For example, the more volatile components in the diesel may be completely

vaporized and passed onto the column while the less volatile components are only

partially vaporized. The vaporization of all components is linked to both the current
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temperature of the injection port and the time the needle spends in the port, so that the

loading preference varies with each injection as demonstrated in Figure 3.1. To

overcome the volatility bias, the injection procedure was amended to draw one uL of air

first, then one pL of sample, followed by another 11L of air. These surrounding air

pockets protect the plug of sample from the heat of the injection port until it is actually

injected. The injection procedure was also changed to include a two second delay after

the insertion of the needle in the inlet prior to actual injection. This timed injection

allows the needle of the syringe to come to temperature without beginning to vaporize

any of the sample, thus ensuring reproducible vaporization.

3. 5.2 Data Set using Timed Injection

After it was determined that the original method of injection resulted in

unacceptable precision in the first data set, five of the diesels were re-analyzed in

triplicate using the timed injection method described above. The data was pre-treated and

analyzed in the same manner as before in order to investigate the precision of the

modified injection method.

The RSD values for the data from the timed injection method are listed in Table

3.4. For the same eight peaks that were examined previously, the RSD values were

improved for the timed injection compared to those from the previous injection

procedure. Only the RSD value for the 2,6,10-trimethyldecane peak at 31.782 minutes

exceeded the 5% error threshold in all five diesels, whereas for the previous injection

procedure, five of the eight peaks had unacceptable RSD values.

In addition to RSD values, PPMC coefficients were also calculated. Table 3.5

lists the correlations among replicates for the five diesels. The range of correlation
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Table 3.5 PPMC Coefficients for Replicate Sets of Five Diesel Samples

Analyzed in Triplicate Using a Timed Injection Method

 

 

 

 

 

 

 

 

Diesel Sample Rgrlicate Pair PPMC Coefficients

1 and 2 0.9884

Diesel 1 l and 3 0.9870

2 and 3 0.9878

1 and 2 0.9898

Diesel 2 1 and 3 0.9852

2 and 3 0.9831

1 and 2 0.9870

Diesel 3 1 and 3 0.9659

2 and 3 0.9599

1 and 2 0.9821

Diesel 4 1 and 3 0.9700

2 and 3 0.9445

1 and 2 0.9850

Diesel 5 1 and 3 0.9721

2 and 3 0.9846

Average 0.9782

Standard Deviation 0.0131
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values among replicates, 0.9445 to 0.9898, is narrower compared to that observed in the

data collected using the previous injection procedure. The average correlation value,

0.9782 3: 0.0131, indicates that the timed injection generally provides improved precision

throughout replicate analysis. However, an average correlation coefficient of 0.9782 is

still lower than would be expected among replicates. Although the timed injection did

improve the precision of replicates, any manual injection carries the opportunity for

analyst error.

3. 5.3 Improving Abundance Levels ofTIC and EICs

Once the precision of the injection method was established, further data analysis

was performed in an effort to begin associating and discriminating the diesels based on

their chemical compositions. However, through the course of this data analysis, it

became obvious that the level of association and discrimination demonstrated in the

PPMC coefficients and PCA results was being limited by the relatively low abundances

of the chromatograms. The TICs, though low in comparison to abundances achieved

through standard crime lab protocols (~106-107) [39], were at least sufficient for analysis

(~104-105), but the real limitation occurred in the data analysis of the EICs. Because ions

of a single m/z value were extracted from an already low TIC, it became difficult to

differentiate peaks in the EIC from the noise level in the background. When abundances

are significantly high, the variation in the baseline is insignificant, but at these low levels,

any variation can create artifacts in the subsequent data analysis. In order to achieve

meaningful results from the PPMC and PCA, especially from the EICs, as well as

potentially improving further upon the precision of the technique, adequate abundance

levels must be reached.
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In order to improve the abundance levels in the chromatograms, two steps were

taken. First, the dilution factor was decreased from 200:1 to 50:1 to prepare the diesel

samples for GC-MS analysis. This more concentrated sample yielded TICs

approximately five times more abundant than the previous 200:1 dilution. These

increased abundances in the TIC allowed for more abundant EICs, though some amount

of variation was still discernible in the baseline. Therefore, the second step to improve

abundances was taken specifically for the EICs. The particular EICs were chosen in

order to represent compound classes that are characteristic of petroleum distillates. It was

determined that instead of using only a single m/z value from each compound class,

multiple values from each characteristic class could be used to improve the signal-to-

noise ratio for the extracted ions. The many individual ions from each class were

summed to create extracted ion profiles (EIPs) for the specific compound classes. The

following ions were summed to create the EIPs for their respective classes: alkane — 57 +

71+ 85 + 99; aromatic— 91 + 105 +119 + 133; indane— 117 +131 +145 + 159; olefin-

cycloparaffin (OCP) - 55 + 69 + 83 + 97; and polynuclear aromatic (PNA) — 128 + 142 +

156.

The EIPs offer a significant amount of additional information in comparison to a

single EIC. Table 3.6 illustrates this fact by showing PPMC coefficients between single

extracted ions from the same compound class and their summed EIPs for the alkane.

aromatic, and indane profiles. The correlations among the individual alkane ions, as well

as the correlations among the individual ions and the summed EIP, are all relatively high,

which indicates that few differences exist between them and additional information is not

obtained using the alkane EIP. On the other hand, the correlations for the individual
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Table 3.6 PPMC Coefficients for Individual m/z Values and Their

Summed EIPs for the Alkane, Aromatic, and Indane Profiles

 

 

 

 

 

 

 

 

 

Alkane Profile m/z Values

57 71 85 99 EIP

57 1.0000 0.9917 0.9876 0.9689 0.9971

71 1.0000 0.9897 0.9758 0.9972

85 1.0000 0.9794 0.9949

99 1.0000 0.9797

EIP 1.0000

Aromatic Profile m/z Values

91 105 119 131 EIP

91 1.0000 0.4333 0.2943 0.2558 0.7288

105 1.0000 0.2255 0.1249 0.8040

119 1.0000 0.2875 0.6470

131 1.0000 0.4171

EIP 1.0000

Indane Profile m/z Values

117 131 145 EIP

117 1.0000 0.3990 0.2892 0.7160

131 1.0000 0.2846 0.7599

145 1.0000 0.7429

EIP 1.0000
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aromatic ions and the summed EIP are very low, which suggests that the EIP contains

more information than the single ions themselves. The same trend is observed for the

individual indane ions and the corresponding EIP. These differences confirm that

additional information concerning chemical composition is garnered from the EIP in

comparison to a single EIC. These two final improvements to the method resulted in a

sufficiently optimized analytical methodology and data analysis procedure.

3. 5. 4 Final Neat Data Set

The modifications made to the experimental and data analysis methods

throughout the course of the preliminary trials were taken into account when a final neat

diesel data set was analyzed. By applying the improved method, any random variations

or artifacts in the results of the PPMC calculations or the PCA would be negligible. The

final neat data set consisted of all ten diesels, previously described in Table 3.1, re-

analyzed in triplicate. The data was compiled for the TICs, as well as the EIPs for the

five characteristic compound classes (alkanes, aromatics, indanes, OCPs, and PNAs).

For the TICs, RSD values were calculated of the same eight peaks as before. For the TIC

and each EIP, PPMC coefficients were calculated and PCA was performed.

3.5.4.1 RSD Values

Table 3.7 shows the RSD values for the ten diesels analyzed in triplicate. As

previously, RSD values for all eight peaks except the 2,6,10-trimethyldecane peak at

31.782, were lower than 5%. In fact, the RSD values for the less dilute samples were, on

the whole, even lower than before. It is possible that the shape and size of the 2,6,10-

trimethyldecane peak is more variable than the other peaks investigated because it is a

small, shouldered peak, which would explain RSD values greater than 5%.
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Table 3.7 RSD Values for Eight Peaks Across the Retention Time Range

for Final Neat Diesel Data Set Analyzed in Triplicate Using a Timed Injection Method

 

 

 

132:?222) Potential Peak Identity Diesel 1 Diesel 2 Diesel 3 Diesel 4 Diesel 5 Diesel 6 Diesel 7 Diesel 8 Diesel 9 Diesel 10 Average

20.784 dodecane 2.6% 3.7% 1.2% 2.8% 5.2% 1.6% 4.2% 3.7% 4.7% 7.2% 3.7%

26.207 1’213’4'tetrahydm'8' 1.6% 0.6% 1.6% 3.2% 6.1% 2.6% 2.0% 2.2% 1.5% 3.3% 2.5%

methylnaphthalene

27.064 tridecane 3.3% 1.7% 0.7% 2.1% 0.4% 0.5% 1.7% 0.5% 0.7% 0.4% 1.2%

31 .782 2,6,10—trimethyldodecane 20.0% 8.5% 1.6% 5.8% 1.7% 0.7% 11.8% 2.3% 4.6% 2.7% 6.0%

33.251 tetradecane 2.1% 0.7% 0.6% 2.4% 2.1% 1.0% 2.5% 1.4% .3% 1.1% 1.4%

39.211 pentadecane 1.5% 0.8% 0.8% 1.6% 2.3% 0.7% 2.3% 1.5% 4.2% 1.0% 1.7%

44.905 hexadecane 1.3% 1.2% 0.4% 3.3% 2.2% 0.6% 4.1% 0.3% 2.1% 3.5% 1.9%

50.327 heptadecane 5.6% 0.5% 1.2% 8.2% 5.5% 0.2% 7.6% 1.8% 3.5% 2.5% 3.7%
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3. 5. 4.2 PPMC Coefficients

The PPMC coefficients for triplicate analysis of the ten diesel samples were

utilized to determine the range of correlations that corresponds to diesels of known

similar origin. Correlation coefficients between two samples of different origin must fall

outside this range in order to be considered statistically distinguishable from the

replicates. Table 3.8 lists average correlation coefficients and observed ranges among

replicates for the TICs and each of the EIPs. It should be noted that correlations are

highest among replicates in the TICs (0.9895 :t 0.0072), which may suggest that its

potential for discrimination is higher than that of the individual EIPs. The average

correlation coefficient for the TICs is higher than the previous correlation coefficient for

the TICs (0.9782 i 0.0131), which indicates that the amendments to the injection method

and the dilution factor improved precision. The average correlation coefficients for the

EIPs are lower than that of the TIC, which could be caused by a number of factors. It is

possible that the abundance levels are still problematic though they have improved. From

later data analysis, it became clear that the lower correlations for the ElPs are, however,

more likely due to errors in the alignment algorithm, as discussed in the next section.

The average and standard deviation of correlation coefficients among replicates

serves as a benchmark in the interpretation ofPPMC coefficients for samples that are not

of similar origin. Using these values, a 90% confidence interval (CI) can be calculated

for the means of the PPMC coefficients for replicate samples as well as for sample pairs

of different origin in order to assess statistical similarities among the diesels [27]. A

confidence level of 90% was selected instead of the more conventional 95% due to the

small sample size. If the 90% CI calculated for the PPMC coefficients for different
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Table 3.8 PPMC Coefficients for TIC and EIPs

for Replicate Sets of Ten Diesel Samples (Final Data Set)

 

Standard

 

Data Set Average . . Minimum Maxium

Devratron

TIC 0.9895 0.0072 0.9649 0.9963

Alkane 0.9824 0.0146 0.9299 0.9945

Aromatic 0.9791 0.01 15 0.9376 0.9922

Indane 0.9690 0.0171 0.9157 0.9881

OCP 0.9631 0.0142 0.9271 0.9778

PNA 0.9513 0.0389 0.8163 0.9884
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diesels overlaps the CI for the replicate samples,then those samples are considered the

same statistically at a 90%confidence level. If the CI does not overlap that of the

replicates, then the samples are considered statistically different. The CI for the PPMC

coefficients is more useful than the empirical range of correlation coefficients for all

replicate measurements. The minimum correlation coefficient calculated between two

replicates for the TIC, for example, is 0.9649, which is well outside the defined

confidence interval (09800-09989). With the opportunity for occasional disparity in the

manual injection, outliers, though rare, have to be anticipated.

Using the confidence intervals for each data set, the PPMC coefficients for

samples ofknown different origin could be assessed for any potential association and

discrimination capabilities. The complete PPMC tables for each data set are shown in

Appendix B. Again, for some sample pairs, such as Diesels 6 and 8, the correlation for

the TICs (09875-09944) is similar statistically to that of the replicates (09800-09989),

which indicates that those two samples are not statistically different. However, Diesels 2

and 3 (08859-08976) are less correlated than the replicate TIC samples, and those are

statistically different. It should be noted that the range of correlation coefficients

observed are typically wider for the EIPs. For example, the minimum correlation among

the TICs is 0.8668. While the minimum for the alkane EIP is similar (0.8727), the

minima for the other EIPs are considerably lower (aromatic —- 0.7440, indane — 0.7594.

OCP — 0.8380, PNA — 0.6675). This wide range of correlation coefficients may indicate

that these compound classes are more discriminatory than the TIC as a whole. However.

the average correlation coefficients for replicates based on these EIPs are much lower

than that ofthe TIC, which limits the statistical discrimination capabilities to those
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samples that fall below that decreased range. These two contradicting properties place

some amount of question on the validity of the application of PPMC coefficients to ElPs.

If still low abundance levels or misalignments are indeed the sources of error for the

EIPs, then it is possible that they can be corrected and more reliable information can be

gained from the EIPs. Currently, however, any data interpretation is limited to the lower

average correlation thresholds established by the replicates.

3. 5. 4.3 PCA

PCA was also performed on the final data set using the TIC and each EIP. The

scores plots for the TIC are shown in Figure 3.2. In Figure 3.2a, PCl is plotted against

PC2, where PCl accounts for 35% of the variance, and PC2 31%. This plot affords a

moderate amount of discrimination among the samples while still maintaining tight

clustering of replicate samples. Diesels 1 and 2 are separated from the rest of the large

cluster of samples in PC2, as PCI appears to only distribute the samples while exhibiting

very little discrimination. The separation afforded in PC2 indicates that explicit

differences in chemical composition contribute to the variance described by that principal

component, whereas the even distribution in PCl indicates that a uniform range of

variables contributes to its described variance. However, even within PC 1 , some amount

of sample discrimination can be determined. For example, although Diesels 5 and 6 fall

within that large group, they are significantly different in the first principal component.

Other samples, however, such as Diesels 9 and 10, are very close to one another within

that large grouping, so it can be reasonably concluded that these samples are not

sufficiently distinguishable. With the addition of PC3 in the three-dimensional (3D) plot.

firrther discrimination is observed. The third principal components accounts for 16% of
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the variance, for a total of 82% described by all 3 PCs. Diesels 1 and 2 are still separated,

but the addition ofPC3 allows for differentiation within the larger cluster observed in the

two-dimensional (2D) scores plot. Diesels 5, 6, and 8 are moderately separated in PC3.

On the other hand, Diesels 3 and 7 remain closely associated with one another, as do

Diesels 4, 9, and 10. The diesels in these two clusters are not distinguishable from one

another, and thus are considered to be very similar in their TIC content.

Additional information about how the individual diesel samples cluster can be

garnered from the scores plots of the five different EIPs. The scores plots for the alkanes

are shown in Figure 3.3. The 2D plot, in which PCs 1 and 2 describe 45% and 12% of

the variance respectively, does not offer any further discrimination than the TIC. While

Diesels 1 and 2 are still reasonably separated in both PC] and PC2, the rest of the

samples are scattered amongst themselves. Even the replicates are less tightly clustered,

as PC2 tends to spread them. For example, the replicates of Diesels 4 and 7 are so widely

spread, it would difficult to even associate them with one another. When PC3 is also

included for the 3D plot, an additional 9% of the variance is described, for a total of 66%.

PC3 does nothing to further associate or discriminate samples. In fact, it causes

additional spread in the replicate diesels. Similar trends are observed in both the 2D and

3D scores plots for the indane and PNA profiles, which are shown in Figures 3.4 and 3.5.

Diesels 1 and 2 are still somewhat separated from the main cluster, but the spread in the

replicates is even worse (again, likely due to misalignments in the EIPs). It is possible

that the diesel samples do not vary greatly in their alkane, indane, or PNA content, which

would explain the lack of discrimination in the scores plots. A brief visual comparison of

overlaid chromatograms for different diesels for each profile indicated that some amount
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of variation is noticeable, while some areas are very similar. It is likely that the

differences are not significant enough to be isolated by PCA, which would imply that

these compound classes are not useful for determining association and discrimination

among the diesels.

The other two compound classes, however, do provide discrimination of the

diesels in their scores plots. The scores plots for the aromatic profiles, Figure 3.6, show

tight clustering for replicates. In the 2D plot, Diesels 1 and 2 are still isolated from the

main cluster, but in this case, that main cluster is not spread about the first principal

component as it was in the TIC. Instead, the eight other diesels are very tightly clustered.

which suggests that they are all very similar in their aromatic content. The 3D plot

demonstrates the same trend, though PC3 spreads the tightly clustered eight diesels, as

Diesels 5 and 7 begin to be separated from the larger group. The differentiation in PC3 is

difficult to discern, however, it only describes a small amount of the total variance (3%)

in comparison to PCs I and 2, 75% and 8% respectively. The scores plots from the OCP

profile, shown in Figure 3.7, afford a considerable amount of discrimination than the

other profiles. Replicates are still closely associated in the 2D plot, with the exception of

Diesels 2 and 8, which are spread in comparison to the other replicates. This spread

could be caused by a number of different factors, though the most likely source is

possible misalignment. Individual diesel samples, most notably Diesels 1 and 2, are

beginning to be isolated in the 2D plot as well, though it should be noted that their

separation is only due to 48% ofthe total variance of the data. The 3D plot, which

includes an additional 10% of the variance, exhibits similar traits to the 2D plot.

Replicate spread worsens in PC3, though on a minor level, some diesels are more
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separated. For example, in the 2D plot, Diesels 4 and 8 are closely associated, but in the

3D plot, they are more separated in PC3. Based on these results, the aromatic and OCP

profiles are more useful in associating and discriminating diesels than the alkane, indane.

and PNA profiles.

In addition to the scores plots, PCA also provides information about which

components in the samples contributed most to the determination of each principal

component. This eigenvector, which can be displayed in a loadings plot, determines how

the score of a sample is calculated. The loadings plots for the first and second principal

components of the TICs are shown in Figure 3.8. It is clear that, while the alkane

components dominate the loadings for the first PC (Figure 3.8a), a mixture of compounds

from other characteristic classes is responsible for separation along the second PC (Figure

3.8b). The fact that the alkanes dominate PCl does not necessarily indicate that they are

the primary source of variation among the diesels. In fact, the diesels are not clearly

separated along PC] in the TIC as shown in Figure 3.2; they are relatively evenly

distributed by their differences in alkane content. The lack of sufficient clustering of the

diesels in the scores plot of the alkane profiles also indicates that the alkanes alone are

not adequate for associating and discriminating the samples. The presence of

components other than alkanes at lower levels in PCI and at higher levels throughout

PC2 implies that some combination of aliphatics and non-aliphatics is responsible for the

discrimination among the diesels demonstrated in the scores plots for the TIC (Figure

3.2).

The loadings plot is not only useful for determining the components contributing

the most to the eigenvectors, it can also highlight any anomalies caused by the analytical
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technique or the data pre-treatment steps that can potentially contribute to the sources of

variation observed in scores plots. For example, in the loadings plot for the first two PC5

of the alkane EIP, shown in Figure 3.9, several derivative-shaped curves are noticeable.

In fact, these derivative-shaped peaks dominate the second eigenvector (Figure 3.9b).

Not normally observed in loadings plots, these peaks are indicative of an artifact in the

samples. Because these peaks are not observed in the loadings plots for the TICs, it is

possible that the artifact causing them has been introduced in the data pre-treatment steps.

The most likely source of error is in the alignment procedure. Figure 3.10 overlays three

replicate chromatograms of Diesel 1 around the peak with a retention time of

approximately 33 minutes, which corresponds to derivative-shaped curves in the first two

PCs as shown in Figure 3.9. It is obvious that this peak has been misaligned for this

sample. Further inspection revealed that this peak has been misaligned throughout the

alkane EIP data set, and this introduction of error in the data pre-treatment stage has

propagated through to the data analysis results. The increase in range for the correlation

coefficients of the replicates, as well as the spread observed among the replicates in the

scores plots, can most likely be attributed to significant misalignments. It can be

concluded that the alignment algorithm is by no means perfect, and misalignments must

be considered when the PPMC and PCA results are being interpreted.

In the analysis of a neat diesel data set, several obstacles were encountered and

overcome. A precise manual injection method was developed, and sufficient abundance

was achieved for accurate PPMC coefficients and PCA results. It was then demonstrated

that PPMC coefficients and PCA were sufficient for the association and discrimination of

neat diesels based on chemical composition.
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Chapter 4

Association and Discrimination of Burned Diesels Extracted

from Fire Debris Using PPMC Coefficients and PCA

4.1 Introduction

The substantiation of the principle that diesels can be associated and

discriminated based on variation in chemical composition by chemometric procedures

(PPMC coefficients and PCA) was demonstrated in Chapter 3. These procedures,

however, possess the potential for applications past the association and discrimination of

neat diesels alone. The next step in the research then is to investigate the associative and

discriminatory potentials of these chemometric procedures for diesels that have been

burned and extracted from fire debris. These conditions are more similar to those

encountered in an actual arson case, and are therefore more practical in a forensic

laboratory setting.

When ignitable liquids are utilized as accelerants, they are often poured

throughout the structure and then ignited in order to start the fire and guarantee its spread.

The ignitable liquid can be affected in many ways both during the fire as well as while

the fire is being extinguished. While much of the ignitable liquid is consumed in the

burning process, it can also be absorbed by the substrate on which it was poured, where it

remains protected to some extent from the heat of the fire. More porous substrates, such

as wood and carpet, have a greater potential for retention of ignitable liquids, and these

substrates are frequently sampled in fire debris analysis.

Although the ignitable liquid can be absorbed by porous substrates and shielded

from the fire, the intense heat is still capable of causing the loss of the more volatile
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components present in the ignitable liquid. For these reasons, the chromatograms

obtained from the GC-MS analysis of ignitable liquid residues (ILRs) extracted from fire

debris are often skewed toward the less volatile components—that is, the chromatograms

contain more of the less volatile components and little to none of the more volatile

components. This distortion in chemical composition may lead to a misidentification of

an ignitable liquid when a visual assessment of chromatographic patterns is performed.

However, the application of chemometric procedures such as PPMC coefficients and

PCA to associate and discriminate the burned ignitable liquids is more objective in

nature, which could potentially overcome the subjectivity issues of a visual assessment.

These procedures can be performed on not only the TIC, which may potentially be too

skewed to be associated to its neat counterpart, but also on the ElPs of the characteristic

compound classes of ignitable liquids. The classes that consist of mostly low volatile

compounds may be more discriminatory than the TIC or other compound classes that are

more significantly affected by the burning process.

In order to investigate the potential for associating a burned diesel extracted from

fire debris to its unburned counterpart, a complete set of burning experiments was

performed on a newly collected set of diesels. Since a new instrument was used for this

part of the research, the precision of the instrument as well as the injection method was

re-assessed with the analysis of a new set of neat diesels. These diesels were analyzed in

triplicate to examine the association and discrimination observed among the new sample

set. Prior to conducting the burning experiments, Diesel 21, chosen at random, was

spiked onto three different matrices (cotton cloth, magazine, and carpet) and a series of

spike and recovery studies were performed to examine the efficiency of the solvent
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extraction procedure selected. Then, Diesel 21 was subjected to a series of burning

conditions on the three different matrices. For each matrix, five analyses were performed

in triplicate: unburned matrix, burned matrix, unburned then spiked (50 uL) matrix,

burned then spiked matrix, and finally a spiked then burned matrix to simulate actual

arson conditions. The final phase was to perform a blind association study in which two

diesels that had been previously analyzed were treated as unknowns. The blind diesels

were spiked separately onto each of the three matrices and then burned. The debris was

extracted and analyzed in an attempt to associate the blind diesel sample to its neat

counterpart. PPMC coefficients and PCA were used to associate and discriminate the

diesels, both burned and unburned, based on chemical composition.

4.2 Analysis of New Set of Neat Diesels

4. 2.1 Procedure

Five of the previous ten diesel samples (Table 3.1) were re-collected from various

Lansing service stations during the winter. Table 4.1 lists the samples and the details of

their collection. After collection, the diesels were stored as described previously in

Chapter 3.

The five neat diesels were analyzed in triplicate by GC-MS, using a newly

purchased instrument. The GC was the same make and model number (Agilent 6890

GC) as previous, while the MS was a newer version of the previously used MS (Agilent

5975 MSD compared to Agilent 5973). After initial analyses of the freshly collected

diesel samples, it was observed that, in order to obtain chromatograms of similar

abundances to before, a different dilution (10:1 in CHzClz instead of 50:1) of the neat

diesels was necessary. The higher abundance levels in the TIC are essential in order for
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the peaks present in the EIPs to be sufficiently distinguished from baseline noise. The

sensitivity discrepancies between the two instruments are most likely due to minor

discrepancies in the mass spectrometer, such as the position of the column in the

ionization source or the voltages of the accelerating lenses. It was also concluded that the

previous temperature program used was too long (108.33 minutes) to be practical in a

forensic laboratory setting. The temperature program employed by the National Center

for Forensic Science (NCFS) and the Technical Working Group for Fire and Explosions

(TWGFEX) to generate the Ignitable Liquid Reference Collection (ILRC) was used

instead [40]. This temperature program (NCFS.M) was as follows: initial temperature

50 OC, hold for 3 minutes, 10 °C/min ramp to 280 °C, hold for 4 minutes. The total run

time was reduced to 30 minutes. All other instrumental parameters were the same as

described in Chapter 3.

Preliminary assessments of the chromatograms, both of the TIC and each EIP,

indicated that the change to the temperature program did not noticeably sacrifice any

chemical features. The increase to the ramp rate, however, offered a significant

improvement in total analysis time which, in turn, allows for the methodology to be

practical in the traditionally backlogged setting of an operating forensic laboratory. This

compromise between improved analysis time and retention of discriminatory chemical

features is a necessary consideration in the development of this methodology.

Once the neat diesel data were collected and analyzed, the TIC and the ions used

to generate the five EIP sets were extracted into Microsoft Excel as described in Chapter

3. The shorter temperature program, however, eliminated the need for truncating the end

of the chromatograms. For the diesels analyzed by the NCFS.M method, each
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chromatogram consisted of a total of 4702 data points (compared to 13,000 data points

previously), all of which were considered in subsequent data analysis. The data were pre-

treated as described in Chapter 3. RSD values and PPMC coefficients were also

calculated for the TICs in order to demonstrate the precision of the new GC-MS

instrument. The TIC and EIPs were also analyzed by PPMC coefficients and PCA in

order to evaluate the association and discrimination of the neat diesels based on chemical

composition.

4. 2.2 Results and Discussion

Initially, RSD values were calculated to demonstrate the precision of the

instrument. Table 4.2 lists the average RSD values for eight peaks throughout the

chromatographic range for triplicate analyses of the five diesels. For the same eight

peaks as selected in Chapter 3, average RSD values were well below the accepted

threshold of 5% [3 8]. For previous average RSD values for the timed injection, one of the

eight peaks still exhibited an RSD of greater than 5%. The lack of precision for that peak

has been eliminated in this data set. It should be noted that the RSD values for Diesel 21

are higher than those of the other samples, which could indicate an aberration in the

timed injection procedure for one of the replicate analyses for Diesel 21. However, all

the average RSD values were below 3% which indicates that the instrumental technique

and the injection method are precise.

PPMC coefficients were also calculated to assess precision among replicate

analyses. Table 4.3 lists the PPMC coefficients for the replicate analyses of the five

diesels based on the TIC. Correlation coefficients for the replicate analyses ranged from

0.9780 to 0.9975, with an average of 0.9921 i 0.0061. This correlation is higher than
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Table 4.3 PPMC Coefficients for the TIC of Replicate Sets

of Five Diesel Samples Analyzed in Triplicate

 

 

 

 

 

 

 

 

Diesel Sample Replicate Pair PPMC Coefficients

1 and 2 0.9941

Diesel 21 l and 3 0.9962

2 and 3 0.9975

1 and 2 0.9879

Diesel 22 1 and 3 0.9841

2 and 3 0.9899

1 and 2 0.9908

Diesel 23 l and 3 0.9836

2 and 3 0.9780

1 and 2 0.9969

Diesel 24 l and 3 0.9967

2 and 3 0.9969

1 and 2 0.9955

Diesel 25 1 and 3 0.9973

2 and 3 0.9956

Average 0.992 1

Standard Deviation 0.0061
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that of a previous data set run on a different instrument (0.9895 :1: 0.0072) as described in

Chapter 3. This high correlation indicated that the new instrument was precise.

As discussed in Chapter 3, 90% confidence intervals (CI) for the average PPMC

coefficient for replicate analyses for the TICs and EIPs were used as the threshold for the

comparison of samples from different origins [27]. If a CI for a diesel pair of different

origin overlaps with the CI defined by the replicates, then that pair would be considered

statistically indistinguishable. On the other hand, if the CI for that pair did not overlap

the CI as determined by the replicates, then the diesel pair could be considered

statistically distinguishable. The average correlation coefficient and respective standard

deviations are given in Table 4.4 for the TIC and each EIP set for triplicate analyses of

the five diesels. It should be noted that, on the whole, a higher level of association

among replicates for the EIPs is observed as compared to previous data sets (Chapter 3).

This narrow range for replicates improves the discrimination capability afforded by each

EIP.

Data analysis was initially performed on the neat diesel data set in order to

determine the sources of variance in chemical composition among the new set of five

diesels. PPMC coefficients were calculated for all diesel pairs in the TIC data set as well

as each EIP compilation (alkane, aromatic, indane, OCP, and PNA). Each data set was

also subjected to PCA, and scores plots were generated to assess the natural clustering of

the diesels based on their inherent chemical composition.

The complete PPMC coefficient tables for each data set are shown in Appendix C.

The 90% CI for the replicates for the TIC was calculated to be 0.9813 — 1.0029. When

examining Cls for different diesel pairs, Diesels 21 and 23 (0.9688 — 0.9934), Diesels 21
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Table 4.4 PPMC Coefficients for TIC and EIPs

for Replicate Sets of Five Diesel Samples

 

 

Data Set Average Standard Minimum Maximum

Dev1at10n

TIC 0.9921 0.0061 0.9780 0.9975

Alkane EIP 0.9729 0.0384 0.8788 0.9971

Aromatic EIP 0.9813 0.0145 0.9597 0.9984

Indane EIP 0.9960 0.0019 0.9916 0.9987

OCP EIP 0.9869 0.0086 0.9682 0.9973

PNA EIP 0.9910 0.0064 0.9772 0.9985
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and 24 (0.9692 — 0.9818), and Diesels 23 and 25 (0.9809 — 0.9889) exhibited overlapping

ranges with the CI established by the replicates, which indicated that these three pairs

were statistically similar. All other sample pairs did not exhibit CIs that overlapped with

the replicates, which indicated that they are statistically different. Similar observations

concerning statistical similarities between diesel pairs can be made for the ElPs as well.

PCA was also performed on the neat data set using the TIC and each EIP. Only

2D scores plots are shown for these data sets for ease of comparison. The scores plot for

the TIC is shown in Figure 4.1. In this plot, PCI accounts for 53% of the variance, while

PC2 accounts for 26%. The replicates for each diesel are well clustered, though the

replicate clusters for Diesels 21 and 23 exhibit minor spread in PC2. For the five diesels,

89% of the variance for the first two PCs reasonably separates all five samples. Diesel 22

is significantly positive in PC], while Diesel 24 is negative. The other three diesels are

all relatively close to zero in PCI. Diesels 22 and 24 are negative in PC2, and Diesels 23

and 25 are positive. The combination, then, of PCI and PC2 is sufficient for separation

of the replicate clusters of each diesel.

Additional information about how the individual diesels cluster can be garnered

from the scores plots of the five different EIPs. Figure 4.2 shows the scores plot for the

alkane EIP, in which PCl accounts for 51% of the variance and PC2 24%. The same

general clustering trend as observed in the TIC scores plot can be seen in PC 1 in the

alkane plot. Diesel 22 is positive, Diesel 24 is negative, and Diesels 21, 23, and 25 are

close to zero. However, in PC2, most sample scores are close to zero, with the exception

of one triplicate analysis of Diesel 23, which is significantly distant from its replicate

cluster. As discussed previously, this separation of one replicate analysis from the others
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is often due to a misalignment introduced in the data-pretreatment steps. The alkane EIP

has been prone to misalignments as seen in Chapter 3, and the fact that PC2 describes

24% of the variance indicates that a considerable misalignment, or potentially more than

one misalignment, has been introduced in the data pre-treatment steps for that particular

replicate sample. Therefore, association and discrimination for the alkane plot can only

be accurately assessed in the first principal component.

The aromatic scores plot, shown in Figure 4.3, indicates that Diesel 22 differs

significantly in aromatic content than the other four diesels. In fact, the other four diesels

appear to be highly similar in their aromatic content. It should be noted that the

clustering of the samples in the aromatic EIP is almost completely dictated by PC 1. Very

little spread is observed in PC2. Because of the considerable amount of variance

described by PC] (87%) as compared to PC2 (5%), it can be assumed that PC2 does little

to separate the diesels based on chemical composition. Therefore, clustering in the

aromatic profile is only considered as based on PCI.

The indane scores plot, shown in Figure 4.4, shows a similar trend in PC 1 to the

aromatic scores plot. Diesel 22 is largely positive in PCI (which describes 83% of the

variance), while the other four diesels are each slightly negative and are not well

separated from one another. However, unlike in the aromatic scores plot, PC2 (which

describes 8% of the variance) contributes to the natural clustering of the samples. Diesels

23 and 25 are separated from each other in PC2, as well as from Diesels 21 and 24;

however, due to minor spread in the replicate clusters in PC2, Diesels 21 and 24 cannot

be reasonably separated from one another and are likely similar in indane content.

The OCP scores plot, shown in Figure 4.5, is similar in its cluster patterns to the
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alkane scores plot (Figure 4.2). In PC] (which describes 62% of the variance), Diesel 22

is positive, Diesel 24 is negative, and the other three diesels center around zero.

However, in the alkane plot, differentiation in PC2 is potentially due to a misalignment

instead of actual chemical variation. In the OCP plot, differentiation in PC2 is not

characteristic of a misalignment, and it can be assumed that any discrimination is likely

caused by differences in chemical composition. In PC2, Diesels 21, 23, and 25 are

separated, while Diesels 22 and 24 are similar in PC2. Again, the combination of PCI

and PC2 allows for moderate separation of the five diesels in the OCP scores plot.

In the PNA scores plot, Figure 4.6 PCI accounts for 50% of the variance, and

PC2 accounts for 17%. The five diesels are somewhat separated in PCI, where Diesel 22

is negative, Diesel 21 is around zero, Diesels 24 and 25 are slightly positive, and Diesel

23 is slightly more positive. PC2 also causes separation of the samples, with Diesels 22.

23, and 25 being negative and Diesels 21 and 24 positive in PC2. When combined with

the separation caused by PC 1 , the five diesel replicate clusters are reasonably separated

from one another.

It should be observed that, with the exception of the misalignment in PC2. the

clustering of the diesels in this data set is significantly improved over prior data sets,

most likely due to improved precision in the manual injection method that comes with

analyst experience. For example, in the final neat data set described in Chapter 3, the

alkane, indane, and PNA plots were deemed less useful because they demonstrated

spread in the replicates and a lack of natural clustering among the samples. In this data

set (analyzed using a new instrument), however, the TICs and EIPs provide considerable

association among replicates and discrimination among samples for all five diesels. This
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association and discrimination capability demonstrates the utility of PCA, not only for the

TIC but also for characteristic EIPs, for comparing neat diesel samples.

4.3 Efficiency of Solvent Extraction Procedure

4.3.] Procedure

After the analysis of the neat diesels, the next step was to perform the burned

studies. First, however, a method to extract the diesel residue from the charred debris

was investigated. Of the ILR extraction procedures maintained by ASTM, passive

headspace using activated charcoal is more commonly used [9]. However, because it is a

headspace method, it can be biased against heavier, less volatile components. Diesel is

considered a heavy petroleum distillate because it contains high carbon number

compounds; therefore a headspace method has the potential to disproportionately extract

the less volatile diesel components. For this reason, a solvent extraction is the preferred

extraction method for diesel and thus was selected as a more representative procedure.

Via preliminary studies, the solvent extraction method chosen was to add 5 mL of

carbon disulfide (C82, spectrophotometric grade, Sigma-Aldrich, St. Louis, M0) to the

matrix to be extracted in a 50 mL round bottom flask, which was then attached to the

rotary arm of a Rotovap (R110, Btichi, Switzerland). The arm, which during normal

operation of the Rotovap sits in a heated water bath, was positioned outside the water

bath to prevent evaporation. The rotary function was adjusted to a setting of 4 out of 10.

and the extraction mixture was allowed to agitate for 5 minutes. The solvent was then

removed with a glass Pasteur pipet and, if necessary, filtered through a disposable syringe

(Becton Dickinson & Co., Franklin Lakes, NJ) with a 25 mm, 0.2 pm pore size PTFE

membrane syringe filter (Grace Davison Discovery Sciences, Deerfield, IL). The filtrate
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was then analyzed by GC-MS using the same temperature program and instrument

parameters described previously (Section 4.2.1).

In order to demonstrate the efficiency of the solvent extraction method, a spike

and recovery study was performed for the three matrices (cotton cloth, magazine, and

carpet) to be considered in the burned studies. The cotton cloth was taken from a white

cotton wash cloth (100% cotton, Wholesale Merchandisers, Grand Rapids, MI). The

magazine was cut from a copy of ESPN The Magazine (20 pages including cover and

glossy pages, ESPN, New York, NY). The carpet was taken from a roll of unused nylon

carpeting (origin unknown). A series of standard solutions containing 1,3,5-

trimethylbenzene (98%, Aldrich, Milwaukee, WI), decane (99+%, Aldrich, Milwaukee,

WI), indane (97%, Aldrich, Milwaukee, WI), dodecane (99+% olefin free, Matheson,

Coleman, & Bell, Norwood, OH), and tetradecane (99%, Aldrich, Milwaukee, WI) were

prepared in dichloromethane (CH2C12, spectrophotometric, Sigma-Aldrich, St. LOuis,

MO) at different concentrations: 0.01 %, 0.03 %, 0.05 %, 0.07 %, and 0.10 % (v/v).

These components were selected to represent the common compounds classes present in

diesels that span the retention time range. One mL of each calibration standard was first

spiked with no matrix present, i. e. straight into the round bottom flask. It was then

subjected to the extraction procedure as if a matrix were present and analyzed by GC-

MS. The peak areas were integrated using the ChemStation software (Agilent, Santa

Clara, CA) and plotted against mass injected (calculated using density) to create a

calibration curve for each component in the calibration standard. The same extraction

procedure was then performed with the matrix present for all concentrations of the

calibration standard solutions. The mass of each component recovered was determined
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by substituting the corresponding peak area into the appropriate calibration equation.

The calculated mass was then divided by the theoretical mass in order to determine a

percent recovery and hence assess the efficiency of the extraction procedure for each

component at each of the spiked concentrations.

4.3. 2 Results and Discussion

The first spike and recovery study was performed for the cotton cloth matrix. The

calibration curve for the neat standards by mass injected (no matrix present) is shown in

Figure 4.7 for all five components of the calibration standard. All five linear regressions

show R2 values of greater than 0.9900. Table 4.5 shows the percent recovery values of

each calibration standard from the cloth. With the exception of the 0.01% (v/v) standard

solution, all recovery values are approximately 90% with a standard deviation of less than

0.5%. The higher than average recovery for the 0.01% (v/v) standard is most likely due

to the fact that it is at the lower end of the linear range, where the theoretical mass to be

recovered is already small. In fact, the linear regression equations alone nominally

accounted for a significant portion of the recovery because the x-intercept values for each

were close to the theoretical recoveries for the 0.01 % (v/v) standard. It should also be

noted that the low standard deviations for each calibration standard indicate that the

solvent extraction procedure does not preferentially extract one type of component.

Figure 4.8 shows the calibration curves for the neat standards by mass injected

(no matrix present) prepared for the day in which recoveries were examined for the

magazine matrix. Again, R2 values of greater than 0.9900 indicate a linear calibration

curve for the standard solutions. Table 4.6 lists the recovery values for each calibration

standard from the magazine. Similar trends to the cloth recovery values are observed.
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Table 4.5 Extraction Recoveries from Cloth for Each Calibration Standard

(1,3,5-TMB = 1,3,5-trimethylbenzene, C10 = decane,

C12 = dodecane, C14 = tetradecane)

 

 

 

Standard Concentration! Percent Recovery Average Recovery

0% v/v) 1,3,5-TMB C10 Indane C12 C14 (V0)

0.01 106.33 101.89 105.16 101.27 101.76 103.28 :1: 2.30

0.03 87.86 87.92 87.54 87.27 87.19 87.56 :1: 0.33

0.15 87.65 88.29 88.02 88.33 87.71 88.00 i 0.31

0.07 87.35 87.96 88.11 87.26 87.21 87.58 :t 0.42

0.10 92.97 93.09 92.78 92.97 93.00 92.96 i 0.11       
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Table 4.6 Extraction Recoveries from Magazine for Each Calibration Standard

(1,3,5-TMB = 1,3,5-trimethylbenzene, C10 = decane,

C12 = dodecane, C14 = tetradecane)

  

 

 

Standard Concentrat’ Percent Recovery Average Recovery

(70 V/V) 1,3,5-TMB C10 Indane C12 C14 (%)

0.01 115.78 111.98 114.44 110.62 116.21 113.81 $2.43

0.03 98.35 97.74 97.85 98.28 99.53 98.35 :1: 0.71

0.05 86.35 86.66 85.83 86.38 87.29 86.50 a: 0.53

0.07 104.22 105.04 104.54 105.56 106.04 105.08 :1: 0.74

0.10 99.13 99.95 99.51 99.86 100.54 99.80 a: 0.52      
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The 0.01% (v/v) standard is higher than average, while the rest of the standards show

recoveries all greater than 85%. Even though the recovery value for the 0.07% (v/v)

standard is slightly higher than 100%, it still falls within an acceptable range for

recoveries (5% error, or a range of 95-105% recovery) [3 8]. As before, the low standard

deviations indicate no compound bias in the solvent extraction procedure from the

magazine matrix.

Figure 4.9 shows the calibration curves for the neat standards by mass injected

(no matrix present) prepared for the day in which recoveries were examined for the carpet

matrix. R2 values are also above 0.9900 for the linear regression equations. Table 4.7

lists the recovery values for each calibration standard from the carpet matrix. Again, the

same trends as for the cloth and magazine are observed. In this instance, however, the

recovery value for the 0.05% (v/v) standard is low by comparison with other recovery

values. In the corresponding calibration curves, however, it appears that the peak areas

for the 0.05% (v/v) standard are lower than the expected peak areas determined by the

regression equations. It is possible that the standard was poorly prepared. It could have

been omitted from the calibration curve entirely, but because acceptable R2 values were

still attained, the 0.05% (v/v) standard values were retained even with the disparity. Since

the same standard that was used for the neat calibration curve was also used for the spike

and recovery from the matrix, it is feasible that, if poorly prepared, this standard would

project low in the recovery rates as well.

The results of the spike and recovery studies using a representative standard

solution indicate that a five minute extraction by agitation in five mL CS; is likely to be

sufficient for the extraction of diesel from the three matrices investigated. The recoveries
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Table 4.7 Extraction Recoveries from Carpet for Each Calibration Standard

(1,3,5-TMB = 1,3,5-trimethylbenzene, C10 = decane,

C12 = dodecane, C14 = tetradecane)

  

 

 

Standard Concentrat Percent Recovery Average Recovery

(% vlv) 1,3.5-TMB C10 Indane C12 C14 (W

0.01 135.02 133.22 136.10 137.25 138.01 135.92 :1: 1.89

0.03 97.39 98.13 97.37 99.53 100.41 98.57 :1: 1.35

0.05 73.40 74.78 73.10 75.29 75.55 74.42 t 1.11

0.07 90.72 92.25 89.77 92.84 93.43 91.80 :1: 1.52

0.10 81.68 82.39 80.34 83.43 84.20 82.41 :t 1.50       
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are certainly not optimal; however, they are adequate for the purposes of this research

project, especially since fire debris analysis is typically qualitative and not quantitative in

nature. The more important feature of the solvent extraction procedure is that it is not

biased toward any particular component or compound class in diesel, as any preference

would skew the results of the PPMC coefficients and the PCA. Due to the sufficiency of

the results of the spike and recovery studies, the solvent extraction procedure was deemed

appropriate for subsequent extractions of spiked diesels from burned matrices.

4.4 Analysis of Burned Diesels

4.4.1 Procedure

Three matrices (cotton cloth, magazine, and carpet) were investigated for the

extraction and analysis of burned diesels. Each matrix was subjected to a series of

burning conditions, with and without diesel present, in order to examine the matrix

interferences and burning effects on the diesels. All substrates were cut to three

centimeter squares, placed in a glass petri dish, spiked with diesel as necessary, and then

burned. All GC-MS analyses were performed using the previously described NCFS.M

method.

First, the unburned matrix was extracted using the solvent extraction procedure

and analyzed in order to identify the presence of any potential interferences inherent to

the matrix itself. Next, the matrix was burned, extracted, and analyzed to determine any

pyrolysis products created during the burning process that could also act as potential

interferences. To burn the matrix, a butane grill lighter (BIC, Shelton, CT) was used to

ignite it, and it was allowed to burn until self-extinguished. If after extinguishing, the

majority of the surface was not charred, the substrate was re-ignited until significant
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charring had occurred. Next, 50 11L of Diesel 21 was spiked onto the unburned matrix,

which was then extracted and analyzed in order to examine recovery of the diesel and

potential interferences. The same conditions were repeated for a burned matrix, i.e. the

diesel was spiked onto the burned matrix, in order to assess the efficiency of the diesel

recovery from the burned matrix. The final conditions examined were those most similar

to an actual arson case. Diesel 21 was spiked, again 50 11L, onto the matrix, which was

then ignited. The debris was extracted and analyzed by GC-MS in order to assess the

potential for the association of the burned diesel to its unburned counterpart.

After Diesel 21 was used to carry out each burning series for all three matrices.

two other previously analyzed samples were treated as blind unknowns and analyzed in

an attempt to assess the potential for the association of a burned diesel extracted from fire

debris to its unburned counterpart. A colleague selected two diesels and placed them in

vials labeled “A” and “B”. These two blind samples were then spiked (50 11L) onto each

of the three matrices, burned, and finally extracted and analyzed by GC-MS.

For the data sets collected for this portion of the research, the need for data pre-

treatment is the same as described before, though some minor adaptations were necessary

to accommodate the alterations to the chromatograms effected by both the burning

process and the extraction procedure, such as loss of volatiles and variation in extraction

efficiency. The TICs from the burned diesel data set (the samples that were spiked onto

the unburned matrix and then burned) were similarly compiled and retention time

aligned, though a window size of five was insufficient for their alignment (the algorithm

failed with a window of five). For that reason, the burned TIC data set was aligned using

a window size of seven. Targets were selected at random for each data set. The ElPs
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were similarly compiled and aligned. For some EIPs, the same parameters used to align

the TIC were sufficient for alignment. However, other EIP sets required a manual

selection of the noise threshold for peak identification as opposed to using the default

calculation applied by the alignment algorithm. Both the indane and PNA profiles

required a threshold of 100, while the OCP profile required a threshold of 300.

Normalization and mean-centering were also performed in the same manner as detailed in

Chapter 3, though each data set was treated separately. For example, the burned diesels

were normalized and mean-centered separately from the neat diesels. Separate treatments

were necessary because of the differences in abundances between a 1:10 dilution of a

neat diesel and an extracted 50 11L diesel spike that had been burned.

After pre-treatment, the TICs and EIPs were then analyzed as described in

Chapter 3. PPMC coefficients were used to determine the level of correlation among

sample pairs. PCA was performed in order to observe the natural clustering of the diesels

based on chemical composition. It should be noted that PCA was not actually performed

on the bumed diesels. Instead, the eigenvectors calculated for the neat diesel data set

were used because they represent the chemical components that are the sources of

maximum variance among the five diesels. The eigenvectors were used to calculate a

score for the diesels that were extracted from the burned matrices. This score was

calculated in Microsoft Excel by multiplying each point in the eigenvector by its

respective point in each mean-centered chromatogram. These products were then

summed to calculate the score for that diesel corresponding to that specific principal

component. The objective was to associate and discriminate the samples based on their

chemical composition, not on changes introduced in the burning and extraction process.
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If the diesels from the burning trials were included in the PCA, then the PCA would

specifically search for any differences among the neat and burned samples instead of

associating and discriminating them only on their inherent composition.

4. 4.2 Results and Discussion

4. 4. 2.1 Assessment ofPotential Interferencesfrom Unburned and Burned Matrices

Figure 4.10 shows sample chromatograms from the extraction of the three

unburned matrices. In the cloth matrix, no peaks of interest were observed—in fact. the

chromatogram resembled that of a blank solvent injection. In the magazine extract,

however, a relatively significant peak eluted at approximately 16 minutes. A mass

spectral library search tentatively identified this peak as a long chain ester, likely from

the ink used to print the magazine. Other peaks at lower abundance are also present in

the unburned magazine. In the carpet extract, two significant peaks were observed after

20 minutes. Mass spectral library searches indicated that these two peaks were bi-

naphthalene products, potentially from the carpet backing, adhesives, or a chemical

treatment such as water repellant or stain resistant. Again, smaller peaks are also

observed throughout the chromatogram. These smaller peaks, however, are at such an

insignificant abundance compared to the abundances expected for the diesel components;

therefore, it is unlikely that these smaller matrix peaks will interfere in anyway with the

results of the chemometric procedures.

Figure 4.11 shows sample chromatograms from the extraction of the three burned

matrices. Again, the cloth extract contains no significant peaks. The magazine and

carpet extracts contain the same peaks as observed in the unburned extracts, though at

higher abundance. These increased levels could be due to variation in the extraction
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efficiency, or even differences in injection volume. It is possible that these peaks could

interfere in the chemometric results if they remain significant in abundance in

comparison to the presence of a diesel sample.

It should be noted that no significant peaks that could be attributed to pyrolysis

products (that is, peaks present in the burned matrix but not in the unburned) were

observed for any of the three matrices. It is possible that pyrolysis product formation is

limited in these three matrices, or again that the pyrolysis products are volatilized and lost

to the environment during the burning process. It is also possible that the solvent

extraction procedure is not selective for any pyrolysis products present, i. e. the pyrolysis

products may not be soluble in the solvent. Whatever the reason, the lack of interfering

pyrolysis products is advantageous for the accuracy of the results of both the PPMC

coefficients as well as PCA.

4. 4. 2. 2 Solvent Extraction ofDieselsfrom Unburned and Burned Matrices

Figure 4.12 shows sample chromatograms from the extraction of the three

unburned matrices spiked with 50 1.1L of Diesel 21. All three chromatograms show

similar diesel chromatographic patterns. No extraneous peaks are observed that could

potentially interfere with the chemometric results. Figure 4.13 shows sample

chromatograms from the extraction of the three burned matrices spiked with 50 1.1L of

Diesel 21. Again, a similar chromatographic pattern is observed, and no interference

peaks are obvious. The lack of any interference peaks in either the unburned or burned

matrices indicates that the diesel is present at a sufficient concentration that inherent

hydrocarbons from the matrices do not make significant contributions to the

chromatograms. The consistency in the diesel peak pattern from the extracts of both
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burned and unburned matrices also signifies that the presence of the matrix does not

negatively affect the solvent extraction of the broad range of diesel components.

4. 4. 2. 3 PPMC Coefficients ofNeat and Burned Diesels

Sample chromatograms for the extraction of spiked and burned diesels from each

of the three matrices are shown in Figure 4.14. PPMC coefficient tables for the compiled

neat and burned data can be found in Appendix D. For the TIC PPMC coefficients, the

burned Diesel 21 replicates (spiked on unburned matrix, then burned) were assessed for

precision of the burning process for all three matrices. The average correlation

coefficient for each matrix was as follows: cotton cloth — 0.9847, magazine — 0.9344. and

carpet — 0.8411. These correlations, which are lower than observed for neat diesel

replicates, indicate the degree of uncertainty introduced by the burning process, which

appears to be matrix dependent. The cotton cloth yields higher PPMC coefficients for

Diesel 21 when it is burned and extracted in comparison to the other two matrices. The

higher level of correlation for cotton cloth indicates that either the burning process is

more reproducible for the cloth matrix, or that the solvent extraction procedure is the

most efficient for diesel from the cloth. The replicate spiked and burned extracts from

the magazine are less correlated, most likely because of the way the magazine itself

burns. Unlike the cloth, which only chars, the magazine becomes ashen. This difference

makes the surface area of the burned matrix variable, and thus introduces variability in

the PPMC coefficients. The magazine is also less absorbent than the cloth, and is less apt

at shielding the diesel from the burning process. The carpet yielded the least precise

correlation coefficients for the replicate spiked and burned extracts of Diesel 21. This

imprecision is most likely due to the relatively high retention of the diesel by the carpet.
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This increased retention may protect the diesel from the fire, but it can also hinder the

solvent extraction procedure. The carpet also has a greater surface area than the two

other matrices due to the height of the carpet fibers from the carpet backing, as well as

the presence of multiple fibers. This additional surface area can lead to a more variable

burning process. The difficulty in extraction and imprecision in the burning process may

prevent replicate burnings of diesel on carpet from being precise.

In addition, PPMC coefficients were utilized to associate the burned Diesel 21 to

its neat counterpart. However, the highest correlation for none of the three matrices

corresponded to Diesel 21. The cloth extracts were on average more closely associated

with Diesel 23 (0.8840) than Diesel 21 (0.8657), the magazine extracts from the

magazine with Diesel 25 (0.8183) instead of Diesel 21 (0.7977), and the carpet extracts

with Diesel 22 (0.6203) instead of Diesel 21 (0.6028). These differences, however, are

not statistically significant at the 90% confidence level, which indicates that the extracts

are as well correlated with Diesel 21 as with the other neat samples. Several steps were

taken in order to improve the correlation coefficients between Diesel 21 and the three

matrix extracts, which included the selection of different target chromatograms for the

alignment algorithm, the alteration of the user defined window size for the alignment

algorithm, and the statistical examination of replicate samples for outliers. These

changes, however, did not affect the trends observed for the correlation coefficients

calculated for the matrix extracts.

For the blind samples, it should first be noted that the correlations for the TICs of

the magazine and carpet extracts for Blind B (Appendix D) are all either poor or negative.

which indicates a complete lack of correlation to any of the neat diesels. It is possible
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that these samples are insufficient for comparison due to poor recovery by the solvent

extraction procedure. The cloth extract for Blind B has highest average correlation with

Diesel 25 (0.9076). The three extracts for Blind A all have maximum correlations with

Diesel 22 (cloth — 0.8665, magazine — 0.8575, and carpet — 0.8339). This regularity in

maximum correlation indicates that Blind A is most consistent with Diesel 22.

Closer examination of the PPMC coefficients for the EIPs reveals similar trends

to those observed in the TIC. The burned Diesel 21 extracts are somewhat correlated

with neat Diesel 21. However, extracts from all three matrices for Blind A consistently

have a maximum correlation with Diesel 22, and the cloth extract for Blind B

consistently maximizes when paired with Diesel 25.

The PPMC coefficient results for the burned diesels indicate that the burning

process itself is highly variable. This variability inevitably affects the precision of the

PPMC coefficients and can impede the association of burned diesels to their unburned

counterparts. This variability also seems to be dependent on the features of the matrix

being burned, which include how the burning affects the surface area of the matrix, and

how the matrix retains the diesel and shields it from the heat of the fire. On the other

hand, a consistency was observed for the maximum correlations of the blind diesel

samples to a neat diesel sample, which implies that some amount of association is still

possible even after the effects of the burning process, even though association was not

demonstrated for the replicates of Diesel 21.

4. 4. 2. 4 PCA ofNeat and Burned Diesels

Initially, the burned data was concatenated with the neat data, all of which was

carried through the previously described data pre-treatment processes. The mean-
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centered data was then subjected to PCA and a scores plot generated for the TICs. This

scores plot, shown in Figure 4.15, demonstrates the data set dependency of the PCA

procedure. PCA is designed to calculate the variance among the given data set. PCA as

an unsupervised procedure is incapable of associating a neat diesel and one that has been

altered during burning based on chemical composition, because obvious differences exist

between those chromatograms. In the scores plot, the neat diesels are clustered on the

negative side of PCI, while the burned diesels are clustered on the positive side. Thus.

PCA is not a feasible option for a compilation of neat and burned samples.

When considering PCA as an associative and discriminatory tool, the nature of

the samples to be associated and discriminated must be determined. In this research, the

objective is two-fold: to discriminate burned diesels of different origin from one another,

and to associate burned diesels to their unburned counterparts. In order to achieve this

objective, the factors that are capable of associating and discriminating neat diesels based

on chemical composition (i. e. the eigenvectors from the neat diesel PCA) can also be

applied to burned diesels from the same data set in order to associate and discriminate

them based on chemical composition. The assumption is that sufficient significant

features of the diesels persist through the burning process to still associate and

discriminate them based on the eigenvectors calculated for the neat diesel set. It is also

possible that a specific compound class is more likely to remain after burning. so that the

EIPs may provide more discriminatory information than the TIC alone.

Once the scores were calculated for the first two principal components for all the

burned samples for the TIC and the EIPs, they were added to the scores calculated for the

neat diesel set, and a new scores plot was generated. Each blind sample was consolidated
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Figure 4.15 Scores Plot for the TIC of the Neat and Burned Diesels
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into a set of scores for all three matrices. However, an initial assessment of the resulting

scores plots indicated that the scores for the burned diesels all seemed to center around

the origin. Exemplary scores plots for the TIC and alkane EIP can be found in Figure

4.16. It was first thought that this location of the scores for the burned data was

indicative of a lack of chemical features in the burned chromatograms. However, a closer

look at the scores calculation method revealed that significant disparity in relative

abundances between the neat and burned diesels would lead to a difference in the

magnitude of their respective scores values. More explicitly, the eigenvectors were

calculated for the normalized abundances of the neat diesels. These same eigenvectors

were then multiplied by the less abundant chromatograms of the burned diesels and

summed to calculate a score. Therefore, these scores were lower in magnitude based on

the differences in abundances between the neat and burned diesels.

This discovery is an important revelation when considering the applicability of

this method to actual arson cases. It seems some method of correction is necessary for

samples that differ greatly in abundance levels in order to apply pre-determined

eigenvectors to calculate scores. In this case, it appeared that the neat diesel

chromatograms were approximately an order of magnitude larger in abundance than the

burned diesel chromatograms, so a correction factor of ten was applied. The normalized

burned data was multiplied through by ten, and the data was again mean-centered and the

scores calculated. It was observed that this multiplication of ten to the normalized data

led merely to an approximate ten-fold multiplication of the calculated scores values, so

henceforward the already calculated scores were simply multiplied through by ten. The

score plots were re-generated, and observations were made about their probative value
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for the association and discrimination of the neat and burned diesels.

Figure 4.17 shows the TIC scores plot containing the neat and burned diesels.

The first observation is the obvious spread in the replicates of the burned diesels as

compared to the replicate analyses of the neat diesels. The spread occurs in both PC1 and

PC2, and because these eigenvectors correspond to actual chemical differences as

suggested by the discrimination of the neat diesels, it is likely that the spread in the

replicates is caused by genuine dissimilarities in their chromatograms. These

discrepancies can be attributed to variability in both the burning process and extraction

efficiency; therefore, any interpretation of the association and discrimination among

samples must be prefaced with this potential for variability.

The scores for Diesel 21 spiked onto the three matrices and extracted are only

moderately close to the scores for neat Diesel 21. Two replicates of Diesel 21 spiked

onto a magazine and burned are more closely associated to the neat diesel than those

extracted from the other two matrices, though one cloth replicate is close as well. The

carpet replicates are not remotely close to the neat diesel. This trend is sensible, as the

magazine is less absorbent than the cloth and carpet matrices. Neither of the blind

samples can be logically associated with a specific neat diesel cluster. For Blind A, the

carpet extract is located in the proximity of the Diesel 22, which is consistent with the

PPMC coefficients results, while the magazine extract is closer to the Diesel 21 cluster.

The cloth extract is located between the other two extracts and cannot reasonably be

associated with any neat diesel cluster. For Blind B, the cloth extract is located within

the cluster for Diesel 21, which is inconsistent with the PPMC coefficients results, while

the magazine and carpet extracts are far from any neat diesel cluster in the upper left
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quadrant of the scores plots.

The alkane scores plot for the neat and burned data, shown in Figure 4.18.

exhibits similar traits to those observed in the TIC scores plot. The replicate analyses for

burned Diesel 21 are inconsistent and barely associated with their neat counterpart. For

Blind A, the cloth and the carpet extracts are associated with the clusters for Diesels 21,

23, and 25, while the magazine extract is more closely linked with Diesel 24. For Blind

B, the cloth extract is associated with the Diesel 24 cluster, while the magazine and

carpet extracts are again not remotely close to any other clusters. In fact, they are not

shown because their scores values are considerably different from the scores values of the

rest of the data set.

At this point, it became obvious that the magazine and carpet extracts for Blind B

were extremely different from the cloth extract and the rest of the data set being analyzed.

An examination of their chromatograms revealed exceptionally low abundances as

compared to the other samples. The TIC for the cloth extract of Blind B exhibited an

abundance level of approximately 500,000, whereas the TICs for the magazine and carpet

extracts exhibited abundance levels of approximately 70,000. The burned samples are

already low in abundance, and these aberrant values for the magazine and carpet extracts

prevent them from being scored on a similar level as the other samples. It is possible that

these two samples were poorly extracted. It does not seem feasible to use a different

correction factor for these samples in order to maintain consistency for all the samples

throughout the data analysis procedures. Whatever the reason, any interpretation of their

association to a neat diesel will henceforth be omitted.

The aromatic scores plot for the neat and burned diesels is shown in Figure 4.19.
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Greater precision among the burned replicates is observed than for the other scores plots.

and the burned Diesel 21 scores for all three matrices fall in the four diesel cluster

observed in the neat aromatic scores plot that contains Diesel 21 (as well as Diesels 23,

24, and 25). The cloth extract for Blind B also falls in that same cluster, which also

contains Diesels 23, 24, and 25. An interesting feature to observe is the location of the

scores for the three extracts of Blind A. The three extracts are separated from the four

diesel cluster along PC1 toward Diesel 22. The carpet extract is the closest to Diesel 22.

while the cloth extract is the furthest away. The relative precision among replicates

within this plot suggests that the identity of Blind A is potentially Diesel 22, whereas no

reasonable conclusions could be drawn from the other scores plots.

The indane scores plot for the neat and burned diesels is shown in Figure 4.20.

As before, significant spread is observed among the burned replicates, though in this case

the majority of the spread is along the second principal component. Again, little

consistency with the neat sample is observed for the burned Diesel 21 replicates for all

three matrices, though the magazine extracts are closest yet again. For Blind A, the

extracts from the three matrices are generally closest to the cluster for Diesel 22, though

by no means are they close enough to be considered statistically similar. Then again,

Diesel 22 is the only neat sample that is positive in PC 1 , and the Blind A extracts are all

significantly positive in PC1; therefore, it is plausible that some degree of association can

be suggested by these similarities between the two samples. The carpet extract is once

again the closest to Diesel 22. The cloth extract for Blind B is again located in the large

four diesel cluster centered about the origin.

The OCP scores plot for the neat and burned diesels is shown in Figure 4.21. The
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same trends are observed for the known burned Diesel 21 scores. Few are actually

associated with Diesel 21, and the replicate analyses are imprecise as observed by the

lack of clustering. The extracts for the three matrices for Blind A are again most closely

associated with Diesel 22, with the cloth and carpet extracts located the closest. The

cloth extract for Blind B is most closely associated with the clusters for Diesels 21 and

23.

The PNA scores plot for the neat and burned diesels is shown in Figure 4.22, and

again the same trends are observed for the known burned Diesel 21 scores. The blind

samples, however, are more informative in this plot. The cloth and carpet extracts for

Blind A are reasonably associated with the Diesel 22 cluster. The magazine extract is

located farther from the Diesel 22 cluster, though it is still negative in PC 1 just like the

other Diesel 22/Blind A scores and unlike the other neat diesel samples. The cloth

extract for Blind B is not associated with any neat diesel cluster.

4. 4. 2. 5 Identification ofBlind Diesels

Through the PPMC coefficients and minor corroborating evidence from the PCA

scores plots, it was determined that the identity of Blind A was Diesel 22, and that the

identity of Blind B was Diesel 25. Although these were the correct assignments, the

identifications were not capable of being made with sufficient statistical confidence. Too

much variation is present throughout the PPMC coefficients and the PCA results in order

to conclusively identify the blind samples. Instead, only the most likely candidates could

be determined. However, with the considerable level of variability involved in the

extraction procedure and the burning process itself, the identification of a likely candidate

among samples that are so inherently similar is useful as a preliminary assessment. The
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potential exists for a greater confidence level when associating a burned diesel to its

unburned counterpart if diesels were compared with a larger set of different classes of

ignitable liquids due to more significant differences in chemical composition.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

5.1.1 Association and Discrimination ofNeat Diesels Using PPMC Coefficients and PCA

Throughout the initial analysis of the neat diesel samples, several obstacles were

overcome in order to improve the precision of both the analytical method and the

chemometric procedures, as well as the significance of the results obtained. It was

determined that a two-second timed injection of a one nL sample encased in a pL air

pocket is necessary to ensure consistent vaporization of all components in the diesel in

the heated injection port. This consistency is imperative to the precision of the injection

method. It was also determined that a less dilute sample is essential in order to achieve

sufficient abundances in the chromatograms, so as to ensure that any variation in the

instrumental background is inconsequential in comparison to the variation among the

diesels. However, poor abundances were still observed in some of the EIPs, which

indicates that further investigation into the abundance issue is necessary. In addition to a

less dilute sample, it was determined that summed EIPs are more informative than a

single BIC for improved signal-to-noise.

Once these improvements were applied, a final neat diesel data set was analyzed

to investigate the potential for association and discrimination based on chemical

composition. PPMC coefficients illustrated that, on a pairwise basis, the diesel samples

can either be associated or discriminated based on a comparison of their correlation

coefficient to that of replicate samples. The ranges of correlation coefficients for both the

replicates and for samples that are different in origin based on ElPs extend further than
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those for the TIC, which suggests that the EIPs could provide additional discriminatory

information. The PCA results for the TICs demonstrated that the diesels are relatively

well differentiated, and that replicate samples are tightly clustered. The PCA of the

alkane, indane, and PNA profiles did not provide any additional discrimination

capabilities compared to the TIC. It should be noted that errors in the retention time

alignment were observed in both the scores plots and the eigenvectors for the

aforementioned profiles. These errors cause the results to misrepresent the variation

among the samples based on chemical composition alone, so that the discrimination

capabilities of these profiles carmot be fairly gauged until these errors are corrected. The

PCA results for the aromatic and OCP profiles did, however, offer some additional

association and discrimination among the samples. These profiles did not exhibit the

same alignment errors as were observed in the alkane, indane, and PNA profiles, which is

most likely due to higher abundances and improved peak shapes for the aromatic and

OCP EIPs as compared to the other EIPs.

The results from the analysis of this neat diesel data set have shown that it is

possible to associate and discriminate diesel samples based on their chemical

composition using both PPMC and PCA. The fact that any amount of discrimination is

possible among diesels, which are so inherently similar in chemical composition. is

significant for the progress of this research. This potential for association and

discrimination indicates that it may be possible to apply the same instruniental techniques

and chemometric procedures to associate and discriminate diesels that have been burned

and extracted from fire debris.
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5.1.2 Association and Discrimination ofBurned Diesels Extractedfrom Fire Debris

Using PPMC Coeflicients and PCA

The objective of this part of the research was to examine the potential of PPMC

coefficients and PCA for the association and discrimination of burned diesels that have

been extracted from fire debris. In order to accomplish this objective, neat diesel samples

were analyzed for comparative purposes. This sample set was analyzed on a new

instrument, and it was determined the sensitivity of the new instrument required a

dilution of 10:] instead of 50:1 in order to achieve comparable abundance levels to prior

data sets collected on another instrument. It was also determined through RSD

calculations and PPMC coefficient determinations that the precision of the neat diesel set

was improved over prior data sets. The five diesels in the data set were associated and

discriminated based on chemical composition in not only the TIC, but in each of the EIPs

as well, which indicates the utility of both the TIC and EIPs in association and

discrimination determinations.

Once the neat diesel set had been analyzed, a series of spiking and burning

experiments was performed on three common household matrices: cotton cloth,

magazine, and carpet. A solvent extraction, consisting of agitation of the matrix in five

mL of C82 for five minutes, was selected first based on a set of spike and recovery

studies that demonstrated acceptable efficiency of the extraction. It was then determined

that, although some unburned and burned matrices exhibit potential interference products,

in the presence of a diesel, the interference peaks are masked by the components of the

diesel itself. Finally, a set of spiked and burned diesels (two of which were treated as

blind samples) was analyzed in an effort to simulate actual arson conditions. First, severe
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spread was observed among replicate burnings in both the PPMC coefficients and scores

plots from PCA, which confirms that the burning process is variable. Secondly, for PCA.

it was determined that abundance plays a significant role when attempting to project

scores for burned samples from eigenvectors calculated for a neat data set. In this case. a

correction factor was applied to remedy the disparity in abundances between the neat and

burned diesels. Ultimately, PPMC coefficients were a better marker for the identification

of the blind samples, as differences in abundances did not affect the correlation

coefficients. While it was possible to associate burned diesels to their neat counterparts

using PCA, the association could only be made with minimal confidence. The PCA

results for the EIP sets also showed promise for the association of burned samples to their

neat counterparts. Overall, it is important to note that the diesels contained in the data sat

are, by nature, very similar chemically. As a result, the ability to begin to make

associations between neat and burned diesels, even at low confidence levels, is promising

for the utility of the described methodology. It is likely that associations between burned

samples and their neat counterparts can be made with higher confidence when the

methodology is applied to a range of ignitable liquids that greatly differ in chemical

composition.

5.2 Future Work

The future direction of this project lies mostly in the optimization of the already

developed methodology. A few issues in both the analytical technique and the data pre-

treatment and analysis phases must be addressed. It was concluded that a reproducible

injection method is crucial to the precision of the technique, and consequently the

accuracy of the results of the chemometric procedures. PCA is a procedure that focuses
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on differences present in the chromatograms, which should be only due to actual

differences in chemical composition. An imprecise injection method can introduce

artificial variations in the data set, and thus lead to erroneous results. Although an effort

was made to standardize a manual injection method, an investigation into a programmed

injection method performed by an autosampler could improve precision and further

reduce the chance for the introduction of artifacts.

The other obvious issue that needs to be addressed is the retention time alignment

procedure. The current alignment algorithm is prone to misalignments, especially in the

EIPs due to lower abundances as compared to the TIC. This particular peak-matching

algorithm could be amended, with full optimization of all user-defined parameters, in

order to be more appropriate for these specific diesel data sets. However, the fault in the

alignment may be in the method with which the alignment itself is performed. More

recent work published on retention time alignments suggests that piecewise alignment

algorithms or warping algorithms may be more effective and less likely to result in

misalignments than more basic peak-matching algorithms as was used in this research

[41-44].

The last issue to be dealt with is the abundance problem in the scores projections

for the burned diesel samples to be associated and discriminated. It was determined that

significant disparities in the chromatographic abundance levels between the burned,

extracted diesels and the neat diesels from which the eigenvectors were calculated can

cause the scores for the burned data to be significantly different from the neat diesel

scores. In this case, a correction factor was applied to the scores for the burned diesels

based on average differences in abundance levels. However, no investigation was made
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into the correction factor process, and in order for it to be a valid step, further study is

required. Different or even multiple correction factors may be necessary in order to

better represent the burned data, especially in actual arson cases when the abundances for

the chromatograms collected from extracted fire debris will be so variable.

Once these aspects of the research are sufficiently remedied, more broad

objectives can be addressed. Diesel was the ignitable liquid chosen for this study because

of its complex chemical composition, but in reality diesel is rarely seen in arson cases.

Typically, the lighter petroleum distillates like gasoline and lighter fluid are the more

frequently encountered ignitable liquids. When applied to different classes of ignitable

liquids, the methodology could prove more useful as an associative and discriminatory

tool. Further investigation into matrix interferences is also essential before this

methodology can be adapted into a forensic laboratory setting.

With further research, this methodology could be beneficial in the fire debris

analysis section of a forensic laboratory. At the moment, ignitable liquid identifications

are purely subjective in nature. The chemometric procedures offer a more objective

approach for the determination of ignitable liquids. The methodology has the potential

for complete automation, from the actual instrumental analysis all the way through the

data analysis stage. Coupled with an extensive reference collection, this methodology

could provide a powerful statistical method for the identification of ignitable liquid class.

and potentially even the association of a burned ignitable liquid to its unburned

counterpart.
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ASTM Classification Scheme
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Table A.l ASTM Ignitable Liquid Classification Scheme [4,5]

 
Medium (Cg-C 13) Heavy (Cs-(320+)

 

 

 

 

 

 

 

 

 

Class Light (C4-C9)

Gasoline-all

brands, . . . .
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gasohol

Petroleum Ether Some Charcoal Kerosene

. Starters D1esel Fuel

Petroleum Some Cigarette . .

. . . . Some Paint Thmners Some Jet Fuels

Distillates L1ghter Flu1ds .

. Some Dry Cleaning Some Charcoal

Some Camping Fuels

Solvents Starters

Some Charcoal

Isoparaffinic Aviation Gas Starters Some Commercial

Products Specialty Solvents Some Paint Thinners Specialty Solvents

Some Copier Toners

Some Paint and Some Automot1ve

. Parts Cleaners . .

Varnish Removers S ecial Cleanin Some Insect1c1de
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Products Parts Cleaners . . Industrial Cleaning
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Some Charcoal . .
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De- Some Charcoal Some Charcoal

Aromatized Some Camping Fuels Starters Starters

Distillates Some Paint Thinners Odorless Kerosene

Alcohols, Ketones Some Lacquer

Some Lacquer Thinners

Oxygenated Thinners Some Industrial

Solvents Fuel Additives Solvents

Surface Preparation Metal Cleaners/

Solvents Gloss Removers

Single Component .

Products Turpentme Products Some Blended

Some Blended
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Some Enamel Products
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Reducers
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Table A.2 Chromatographic and Mass Spectral

Characteristics of ASTM Ignitable Liquid Classes [4,5]
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Isoparaffinic abundant, n-

Products alkanes absent Absent Absent Absent

or strongly

diminished

A t' Abundant

roma 1c Absent Absent Abundant (depending on

Products . .

borlmg range)

Branched

Naphthenic $323123? n-

Paraffinic ’ Abundant Absent Absent

alkanes absent

Products

or strongly

diminished

n-Alkanes Abundant Absent Absent Absent

Products

De- Abundant, Present, less Absent or Absent or

Aromatized Gaussian abundant than strongly strongly

Distillates distribution alkanes diminished diminished

nglgfelmtsw Composition may vary, presence of oxygenated organic compounds
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Appendix B

PPMC Coefficients for the TIC and EIPs of Ten Neat Diesels Analyzed in Triplicate
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DIA

DlB

Dl(‘

DZA

Table B.1 PPMC Coefficients for the TIC of Triplicate Analyses of Diesels 1—10

 

 

 



 

DlA

D6C

D7A

D7B

D7C

DSA

D813

D8C

D9A

D9B

D9C

DIOA

D10B

DIOC
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Table B.2 PPMC Coefficients for the Alkane EIP of Triplicate Analyses of Diesels 1-10

 

 



 

DlA

D10C

Table B.3 PPMC Coefficients for the Aromatic EIP 0f Triplicate Analyses of Diesels 1-10

  

 

   



 

Table B.4 PPMC Coefficients for the Indane EIP of Triplicate Analyses of Diesels 1-10

D9B

D9C

DIOA

DIOB

DIOC

 

    



 

Table B.5 PPMC Coefficients for the OCP EIP of Triplicate Analyses of Diesels 1—10

  
 



 

 

DIOA

DlOB

DlOC

Table B.6 PPMC Coefficients for the PNA EIP of Triplicate Analyses of Diesels 1—10
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Appendix C

PPMC Coefficients for the TIC and EIPs of Five Neat Diesels Analyzed in Triplicate
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PPMC Coefficients for the TIC and EIPs of Compiled Neat and Burned Diesels
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Table D.1 PPMC Coefficients for the TIC of Neat and Burned Diesels (Cloth A-C = Replicates of Burned Diesel 21 from
Cloth, Mag A-C = Replicates of Burned Diesel 21 from Magazine, Car A-C = Replicates of Burned Diesel 21 from Carpet,

B-A = Blind A, 8-8 = Blind 8, C1 = Cloth, Mag = Magazine, Car = Carpet)

D22C

 

 

  



 

8
9
1

Table D2 PPMC Coefficients for the Alkane EIP of Neat and Burned Diesels (Cloth A-C = Replicates of Burned Diesel 21

from Cloth, Mag A-C = Replicates of Burned Diesel 21 from Magazine, Car A-C = Replicates of Burned Diesel 21 from

Carpet, B-A = Blind A, B—B = Blind 8, C1 = Cloth, Mag = Magazine, Car = Carpet)

D23A

8—A

B-A 
D21A

D21 8

D21C

022A

D228

022C

D23A

D238

D23C

D24A

D248

D24C

DZSA

0258

D25C

Cloth A

Cloth B

Cloth C

Mag A

Mag 8

Mag C

Car A

Car 8

Car C

B-A Cl

8—8 Cl

B-B

B-A Car

B-B Car 
  
 



 

Table D.3 PPMC Coefficients for the Aromatic of Neat and Burned Diesels (Cloth A-C = Replicates of Burned Diesel 21

from Cloth, Mag A—C = Replicates of Burned Diesel 21 from Magazine, Car A-C = Replicates of Burned Diesel 21 from

Carpet, B-A = Blind A, 8-8 = Blind 8, C1 = Cloth, Mag = Magazine, Car = Carpet)
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9
1

Table D4 PPMC Coefficients for the Indane EIP of Neat and Burned Diesels (Cloth A-C = Replicates of Burned Diesel 21

from Cloth, Mag A-C = Replicates of Burned Diesel 21 from Magazine, Car A-C = Replicates of Burned Diesel 21 from

Carpet, B-A = Blind A, 8-8 = Blind 8, C1 = Cloth, Mag = Magazine, Car = Carpet)

D25A D258

 
  



 

9
‘
5
1

 

 

Table D.5 PPMC Coefficients for the OCP EIP of Neat and Burned Diesels (Cloth A-C = Replicates of Burned Diesel 21

from Cloth, Mag A-C = Replicates of Burned Diesel 21 from Magazine, Car A-C = Replicates of Burned Diesel 21 from

Carpet, B-A = Blind A, 8-8 = Blind 8, C1 = Cloth, Mag = Magazine, Car = Carpet)

D22A D228 D23A

  

 

   

  

   

  

  

Cloth 8

Cloth C

Mag A

Mag 8

Mag C

Car A

Car 8

Car C

B—A Cl

B-B CI

B—A

B—B

B-A

8-8

8-8

B-A Car

8—8 Car 
  



 

A
S
I

  

Table D6 PPMC Coefficients for the PNA EIP of Neat and Burned Diesels (Cloth A—C = Replicates of Burned Diesel 21
from Cloth, Mag A-C = Replicates of Burned Diesel 21 from Magazine, Car A-C = Replicates of Burned Diesel 21 from

Carpet, B-A = Blind A, 8-8 = Blind B, C1 = Cloth, Mag = Magazine, Car = Carpet)

D218
D238

D24C D25A
D21A

 B—A Car

8—8 Car
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