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ABSTRACT

SPATIAL AND TEMPORAL DATA MINING WITH

APPLICATIONS TO EARTH SCIENCE DATA

By

Haibin Cheng

Recent progress on computer and sensor technology has generated huge amounts of spatial and

temporal data in the Earth Science domain including climate observations, land cover time series

records, ground level pollution measurements, etc. Combined with historical climate records

and predictions from ecosystem models, it offers new Opportunities for understanding how the

earth is changing, for determining what factors cause these changes and for forecasting future

changes. Spatial and temporal data mining provides innovative solutions for mining Earth Science

data by incorporating spatial and temporal dependencies into standard data mining techniques.

Although there has been substantial research in spatial and temporal data mining, there are still

many technical issues that need to be addressed. This includes issues such as processing massive

high resolution data, reducing the effect ofnoise, fusing data from heterogeneous sources, etc. We

develop a class of efficient and robust spatial and temporal data mining algorithms in this thesis to

overcome these challenges. First, we develop an integrated localized prediction framework based

on Support Vector Machine to incorporate spatial and temporal dependencies. Efficient algorithms

are also proposed to reduce its computational overhead. Second, we study the error accumulation

problem in multi-step time series prediction and develop a novel semi-supervised multivariate

time series prediction algorithm for long term forecasting. A covariance alignment method is also

proposed to reduce the inconsistencies between historical and future climate data when applying

the algorithm to fitture climate projection problems. Third, we propose a graph-based framework

to detect and categorize different types of anomalies in multivariate time series data. We applied



the framework to the problem of detecting and characterizing ecosystem disturbances in Earth

Science data. While the spatial and temporal data mining techniques proposed in this thesis have

been applied to many problems in the Earth Science domain, they are also applicable to spatial

and temporal data in other application domains such as traffic analysis, image processing, network

monitoring, etc.
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CHAPTER 1

Introduction

Advances in sensor technology, online mapping services (such as Google Earth, Yahoo Maps,

and Microsoft Virtual Earth), and location-aware computing have generated massive amounts of

spatial and temporal data that can be potentially mined to uncover valuable knowledge about a

particular domain. Spatial data refers to a set of observations characterized by a spatial location

in addition to other attributes. Examples of spatial data includes crime data, housing price data,

and vegetation cover data collected for various locations. Temporal data corresponds to an or-

dered series of observations, where each observation is associated with a time stamp. Examples

of temporal data include climate time series, sensor data streams, and telecommunication alarm

sequences. Spatio-temporal data refers to data with both spatial and temporal components. Exam.-

ples of spatio-temporal data include cyclone trajectories, mobile user tracking data, and dynamic

brain images, etc. The thesis will investigate some of the outstanding issues in mining spatial and

temporal data with applications to the Earth Science domain.

1.1 Earth Science Applications

With the growing concerns about the impact of climate change, climate study has become an

increasingly important area of research. Figure 1.1 shows a substantial increasing trend of global

temperature since the mid-twentieth century [181], which is believed to be partly caused by a

steady increase of the global atmospheric concentrations of C02, CH4, and N20 due to the fast

growth of industrial activities [113]. According to a recent assessment by the lntergovemmental



Panel on Climate Change (IPCC) the projected temperature increase by the end of the century

is expected to range between 1.1°C and 64°C. Due to global warming, numerous long term

changes in climate have been observed at continental, regional, and ocean basin scales. Some

of these include widespread changes in temperature, precipitation amounts, ocean salinity, wind

patterns, and the frequency and severity of extreme weather conditions, which lead to adverse

consequences such as the melting ofpolar ice caps, rising of sea level, diminishing of fresh water

supplies, decreasing of rainfall, increasing number of ecosystem disturbance events, and so on.

Most of these events have a direct or indirect impact on human life, e.g. cities close to the coast

may disappear due to rising sea level, grth of crops is strongly affected by the diminishing of

fresh water. Thus developing new techniques to explore the cause and impact of climate change

has become an important research topic for scientists in various disciplines.

To help better understand and project fiiture climate changes, scientists have collected a huge

amount ofdata by utilizing the latest sensor technology and computing systems to measure various

aspects of land surface, atmosphere, oceans, and other components of the Earth system, which

provides new opportunities for answering some important questions in Earth Science, e. g. (1) how
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Figure 1.1. An illustration of increasing global mean temperature from 1850 to 2000 (relative to

mean temperature from 1961 — 1990 (from Global Warming Art [181]).



Table 1.1. Some Examples of Earth Science Data and their Applications.

 

 
 

 

 

 

[Example of Earth Science data I Applications 1

Climate observations (6. g. precipitation) Projection of future climate scenarios

Remote sensing data (e.g. FPAR) Detection of ecosystem disturbance

Earth environment measurements (e.g. Ozone) Prediction of the ozone alarm

Trajectory data (e.g. cyclone tracks) Clustering of extratropical cyclones    

the earth is changing, (2) what factors cause these changes, and (3) how to forecast fiiture changes.

Data mining and knowledge discovery techniques can aid this effort by discovering patterns that

capture complex interactions among ocean temperature, air pressure, surface meteorology, and

terrestrial carbon flux. Table 1.1 shows several examples of Earth Science data and their potential

applications.

0 Projection of future climate scenarios such as forecasting the frequency and amount of rain-

fall or the number of frost days is beneficial to climate-dependent industries such as agri-

culture, tourism, recreational and commercial fishing, etc [105].

0 Discovery of anomalous patterns fi'om historical vegetation cover data can be used to detect

ecosystem disturbances such as forest fires, droughts, and hurricanes [170].

o Localized prediction with spatial and temporal dependencies could be used to predict the

burned area of forests for an unknown region [54], or to classify the days in which the

ground-level ozone reaches a dangerous level [224].

o Clustering ofthe trajectories oftropical cyclone tracks is important for improving the ability

to forecast the location and timing of hurricane landfall [86], which in turn, may help to

mitigate the hurricane damage.

1.2 Challenges

Despite its wide range of applications, mining Earth Science data is not a trivial problem because

of its intrinsic spatial and temporal nature, which makes the direct application of standard data

mining methods and algorithms problematic. As an example, the prediction of climate for a

region depends strongly on the local topographic conditions of the field. Traditional data mining



algorithms fail to give special consideration to inherent spatial and temporal dependencies. This

has led to the development of numerous spatial and temporal data mining algorithms for different

tasks such as prediction, clustering, anomaly detection, change detection, etc. Here we formally

define spatial and temporal data mining as:

Definition 1. (Spatial and Temporal Data mining) Spatial and temporal data mining is a task of

discovering useful knowledge in data set with spatial, temporal, or spatio-temporal dependencies.

In addition to the spatial and temporal dependencies, there are still many other technical chal-

lenges that need to be addressed, particularly in the context ofmining Earth Science data. First, the

deployment of high-resolution earth imaging satellites has generated huge amounts of Earth Sci-

ence data in very high spatial resolution. For instance, satellite-derived vegetation cover data such

as FPAR (Fraction of Photosynthetically Active Radiation Absorbed by Vegetation), are available

at a spatial resolution of 500m x 500m, which makes it impractical to perform exploratory data

analysis in real-time fashion. Second, Earth Science data may involve many variables, among

which strong correlations may exist. For example, the change of global vegetation cover could

be caused by the disturbance events in climate variables such as temperature, precipitation, sea

level pressure, and so on. Third, Earth Science data is mostly noisy. For example, satellite obser-

vations are distorted because of sensor noise or cloud blocking. Fourth, Earth Science data may

come from different sources. For instance, there is climate simulation data from GCM (Global

Climate Modeling) or RCM (Regional Climate Modeling) in addition to the true observation data

from sensors. Fifth, acquiring early historical data in Earth Science is not only difficulty but also

impossible due to the unavailability ofthe sensor technology in previous years. Last but not least,

Earth Science data is not evenly distributed across different time periods or spatial locations. For

example, forest fires happen more frequently in regions with dry weather or in years with less

rainfall. Solving these issues by inventing new spatial and temporal data mining techniques and

algorithms is critical to fiilly utilize the Earth Science data in helping understand or predict the

potential impact of climate change.

1.3 Contributions

In this thesis, we investigate these problems mainly in three aspects:



o Localized prediction with spatial and temporal dependencies.

0 Long term time series forecasting.

o Anomaly detection, anomaly characterization, and visualized exploration.

1.3.1 Localized Prediction with Spatial and Temporal Dependencies

Prediction is one of the most popular tasks in data mining and machine learning. It typically

consists oftwo aspects: classification and regression. The task of classification is concerned with

the prediction of predefined discrete labels, while the task of regression aims to predict contin-

uous target values. Prediction with spatial and temporal dependencies is an important problem

in mining Earth Science data with many applications. For example, environmental scientists are

interested in predicting the the burned area of a potential forest fire [54] for a given region such

that prevention measures can be better organized to reduce the damages. The spatial and temporal

dependencies in Earth Science data may indicate a non-even distribution of the data across dif-

ferent spatial locations and temporal timestamps, which has posed a great challenge for building

an accurate prediction function. As an example, Figure 1.2 shows the forest fire distribution by

month in Cuba from 1981 — 1996 [93]. Apparently, forest fires happen more frequently from

February to May in Cuba.

To address the challenges, one must first decide whether to use global learning or local leam-

ing approaches. Global learning tends to build a sophisticated single model using the global

characteristics of the training data. Auto-regression and Kriging are two popular global learning

techniques widely used for spatial and time series prediction [29][96][103]. However, they are

both least square methods for linear prediction. Recently a large number of algorithms have been

proposed to solve the prediction problems in data mining and machine learning literature, which

consist of various objectives and are capable of modeling complex nonlinear decision surfaces

[221][32][179][130]. Among them, one of the most effective algorithms is the nonlinear Support

Vector Machine (SVM), which learns a prediction function by maximizing the margin in clas-

sification or enforcing function flatness in regression, and employs a kernel to model nonlinear

decision functions. One of the main difficulties found in global learning methodologies is the

model selection problem. More precisely, one needs to select a suitable model and its parameters
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Figure 1.2. Forest Fire distribution by month in Cuba 1981 — 1996 [93].

in order to represent the observed data. For example, a nonlinear SVM must employ sophisti-

cated kernel functions to predict data sets with complex decision surfaces. Determining the right

parameters for such kernel functions is not only challenging [84], the resulting models are also

susceptible to overfitting due to their large VC dimensions [32]. This problem is even more severe

when applying nonlinear SVM directly to Earth Science prediction problems due to its disregard

of the spatial and temporal dependencies. Instead of fitting a global model to the entire training

data, another strategy is to use local learning by constructing multiple models using the local char-

acteristics of the data. Recent research has demonstrated that local learning is superior to global

learning especially on data sets that are not evenly distributed [28][223][89][l32]. A well-known

classification technique that employs such a strategy is the K-nearest neighbor (KNN) classifier

[55]. The advantage of using KNN is that it does not require making a biased assumption about

characteristics of the data nor about the decision surfaces [11]. Nevertheless, KNN performs

not very well in high dimensional data and because of its lazy learning strategy, classifying test

examples can be computationally expensive.

We first developed a framework known as Localized Support Vector Machine (LSVM), consist-



ing of Localized Support Vector Classification (LSVC) and Localized Support Vector Regression

(LSVR), which leverages the strengths of both Support Vector Machine (SVM) and K—nearcst

neighbor (KNN). Instead of fitting a sophisticated kernel function to build a global model for the

entire training data, LSVM builds multiple linear SVM models by considering the training exam-

ples located in the vicinity of each test example. We empirically show that such a strategy would

lead to significant performance improvement over global nonlinear SVM and avoids the thorny

issue of model selection.

However, since LSVM builds a unique model for each test example, it is impractical when

the number of test examples is large. To overcome this limitation, we develop an eflicient imple-

mentation of the algorithm, known as Profile Support Vector Machine (PSVM), consisting of both

Profile Support Vector Classification (PSVC) and Profile Support Vector Regression (PSVR). The

intuition behind this algorithm is based on the premise that many test examples with similar neigh-

boring training examples tend to share a common set of support vectors. The PSVM algorithm

is therefore designed to exploit this property by employing a supervised clustering algorithm to

partition the training data into clusters and training a local SVM model for each cluster. After con-

structing the local models, a test example will be classified by finding its nearest cluster centroid

and invoking the corresponding local SVM model. Our experimental results show that this strat-

egy enables PSVM to maintain the high performance of LSVM without its costly computational

overhead.

We also extend the LSVM and PSVM framework to Earth Science data, which consists of strong

spatial and temporal dependencies. Recent research on local learning for spatial and temporal

prediction has demonstrated the significantly improved performance of building multiple local

machine learning models compared with global machine algorithms [89][l32]. The neighborhood

information of examples is defined in terms of the temporal and spatial attributes in LSVM and

PSVM. The experimental results on real-word Earth Science data sets demonstrate a significantly

improvement of the performance by the proposed LSVM and PSVM algorithms compared with

global nonlinear SVM as well as KNN.



1.3.2 Long Term Time Series Forecasting

Time series prediction aims to predict the future values for a target variable of interest based on

its historical observations or other related information. It has been an active area of research for a

long time with many applications, e.g. weather forecasting [75] [40], stock market analysis [215],

network monitoring [27], and transportation planning [107][158], etc. Most of these problems

focused on single step or short term prediction. Recently, there has been an increasing interest

on long term time series forecasting for strategic planning and decision making. For example,

Earth scientists are interested in projecting the future climate to assess their potential impact on

the ecosystem and society. Figure 1.3 shows such an example ofprojecting the global temperature

for the next 100 years by simulating different climate scenarios [182], e. g. CCSR/NIES, CCCma,

and NCAR PCM. Despite its wide applications, long term time series forecasting is a challenging

problem because of several issues. First, an extensive amount of historical time series data is

required in order to build a reliable predictive model for long term time series prediction. However,

collecting historic data in the early days may be not only difficult but also impossible due to the

unavailability of facilities at that time. Second, most existing long term time series forecasting

methods are extended from the single step prediction method by repeatedly invoking a model that

makes its prediction one step at a time. However, since the model uses predicted values from the

past to infer future values, these approaches may lead to the error accumulation problem, where

the errors made from one prediction step will be propagated to the next prediction step. Alternative

methods such as independent prediction also have their own problems. Third, potential concept

drifting in many domains makes the long term time series forecasting even more difficult. For

example, to predict rainfall in the next 100 years, one should certainly consider the increasing

trend of global temperature around the world as illustrated in Figure 1.3. Last but not least, using

data from different sources to aid the long term time series forecasting is a challenging problem

since they may follow different data distributions. For instance, GCM data in climate projection

as shown in Figure 1.3 is generated by computer systems driven by a set of emissions scenarios,

which may assume greenhouse gas concentrations that are different fi'om those observations in

the historical climate record.

To address these issues, we employ a multivariate time series prediction method in this thesis to
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Figure 1.3. Climate model predictions for future global temperature (00) until 2100 under the

SRES A2 emissions scenario relative to global average temperatures in 2000 (from Global Warm-

ing Art [182]).

preform long term time series forecasting instead of predicting the future values of a time series

based on its historical values alone. The time series for a set ofpredictor variables are fitted against

the time series for the response variable. This strategy avoids the requirement for long periods

of historical data; however, it is contingent upon the availability of future values of the predictor

variables. Such values can be obtained from computer-driven simulation models in many domains.

For example, in climate modeling, outputs from global climate models (GCMs) in future periods

[75] are often used as predictor variables to determine the climate of a local region. Potential

concept drifting in the future has been incorporated into the GCM data by simulating different

climate scenarios. However, current approaches utilize the simulation data mostly in a supervised

learning setting, where a predictive model trained on past observations is used to estimate the

future values. Such an approach fails to take advantage of information about the future data

during model building. A semi-supervised learning framework is proposed for long term time

series forecasting based on Hidden Markov Model Regression (HMMR). Our approach builds an

initial HMMR model from past observations and incorporates future data to iteratively refine the

model. Since the initial predictions for some of the future data may not be reliable, we need to



ensure that they do not adversely affect the revised model. We developed an approach to overcome

this problem by assigning weights to instances ofthe future data based on the consistency between

their global and local predictions. This approach also helps to ensure smoothness of the target

function [227]. We demonstrated the efficacy of our approach using data sets from a variety of

application domains.

When applying the semi-supervised HMMR to climate modeling problems, we must consider

the potential inconsistencies between the training and future data since they come from different

sources. Previous work on semi-supervised classification has shown that combining labeled and

unlabeled data with different distributions may degrade the performance of a classifier [199].

We encountered a similar problem when applying the semi-supervised HMMR method to climate

projection. A data calibration technique is developed to transform the data sets in a way that aligns

their covariance structure while preserving most of the neighborhood information. Experimental

results for modeling climate at a number of locations in Canada showed that semi-supervised

HMMR with data calibration outperforms the conventional (supervised) HMMR method.

1.3.3 Anomaly Detection, Characterization, and Visualization

Anomaly detection is a valuable data mining tool for discovering patterns significantly different

than the rest of a data set. Recently, there has been an increasing interest on time series anomaly

detection in many applications, e.g. to detect unusual events such as ecosystem disturbances in

Earth Science data. While numerous algorithms have been developed for detecting anomalies

[121, 141, 16, 122, 212, 220] in time series data, most of them are applicable only to univariate

time series.

The detection of anomalies in multivariate time series is more challenging due to several rea-

sons. First, it is difficult to establish a concise definition of an anomaly. Analogous to univariate

time series, some anomalies may correspond to abnormally high (or low) values or unusual sub-

sequences (discord [121]) in one or more time series. In addition, the multivariate anomalies may

correspond to unexpected changes in the relationships among a set ofvariables [42]. For example,

the time series for vegetation cover at mid-latitude locations in the United States typically varies in

a 12-month cycle, peaking during the warm summer months and dropping to its minimum during

the cold winter. Ecosystem disturbances such as wildfire and drought can be potentially detected

10
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Figure 1.4. FPAR and Precipitation time series at (latitude = 54.85N, longitude = 114.20W)

with possible anomalies.

based on the unusually low values ofvegetation cover observed in the summer. We consider such

anomalies as “local” (as opposed to global anomalies) since their values are abnormally low only

when compared to the average values during the summer months. Second, the performance of a

multivariate anomaly detection algorithm is highly susceptible to the presence of noise in one or

more time series. Therefore, a multivariate anomaly detection algorithm must be robust to noisy

measurements in order to improve its detection rate and false alarm rate.

Multivariate time series anomaly can also be used to characterize the types of anomalies found

in a target time series. For example, Earth scientists are interested in detecting wildfires by mon-

itoring the anomalies found in vegetation cover data derived from NASA’s Earth observing satel-

lites. However, analyzing the vegetation cover data alone is insufficient to distinguish between

man-made wildfires from those induced by extreme climate events (such as lightning strikes from

severe thunderstorms). Therefore, a key challenge is to combine the time series from other related

variables (e.g., temperature and precipitation) to help explain the anomalies found in a target time

series (vegetation cover).
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Furthermore, previous work on ecosystem disturbance detection mainly focused on low reso-

lution FPAR data, which can only detect sustained disturbance events that alter the structure of

vegetation cover significantly for a sufficiently large region and result in an overall decline in the

average annual vegetation levels. Smaller scale disturbances could have been missed when using

the coarse resolution AVHRR data. With the recent availability ofhigh resolution vegetation cover

data from the moderate resolution imaging spectroradiometer (MODIS) instrument on board the

NASA TERRA satellite, smaller scale disturbances can be potentially uncovered. However, be-

cause the size of the data has grown by 4 orders of magnitude, applying the disturbance event

detection algorithm to such massive data sets is computationally expensive. The problem is fur-

ther exacerbated by the fact that a disturbance event detection algorithm (or anomaly detection

algorithm, in general) requires specification of one or more thresholds to determine whether a

detected event should be flagged as a real disturbance. The thresholds are determined by users

through a trial and error process during the exploratory data analysis phase. Because of the large

amount of data that must be processed, performing exploratory data analysis on the high resolu-

tion MODIS data in a real-time fashion is computationally infeasible. The massive size of the data

also produces more events for scientists to validate. This necessitates the development of innova-

tive data mining approaches that can assist Earth scientists in real-time exploration of global scale

coo-climatic data.

To address these challenges, we propose to develop a robust graph-based algorithm for detecting

anomalies in multivariate time series data. Our algorithm captures the dependence relationships

among variables in the multivariate time series using a kernel matrix alignment approach. The

alignment helps to eliminate noise and retains only anomalies in the target time series that can be

explained by anomalies observed in other time series. The time series anomalies are detected by

performing a random walk traversal on the graph induced by the aligned kernel matrix. Since a

kernel matrix can be constructed from each time point or subsequence in the time series, our algo-

rithm is flexible enough to handle various types of time series anomalies including subsequence-

based and local anomalies. The effectiveness of our algorithm is demonstrated by using a number

of synthetic and real data sets. We have also conducted a case study to show the ability of our

algorithm to detect and characterize ecosystem disturbances in Earth Science data.

A visualizing system is further developed for detecting anomalies in Earth Science data inter-
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actively. We illustrate the use of clustering to group together regions with similar incidents of

ecosystem disturbances. This approach provides an unsupervised way to categorize the events

and helps reduce the number of events that need to be validated. We also present a multi-level

indexing scheme based on clustering to aid the discovery and visual exploration of ecosystem

disturbances. We show how the indexing scheme can be used to enable users to quickly focus

on regions of interest during the exploratory data analysis phase. While clustering-based methods

have been proposed for spatio-temporal indexing and for data reduction purposes [34, 19], none of

them are specifically designed for detecting anomalies (such as ecosystem disturbances) in spatio-

temporal data. In this work, we evaluate the effectiveness of using clustering-based methods for

exploratory analysis of ecosystem disturbances. Our disturbance event detection and clustering

algorithms have been integrated into an interactive system we developed. The system enables sci—

entists to explore the data in real-time fashion and to visually inspect clusters of locations where

similar types of disturbance events were observed.

1.4 Outline of the Thesis

The rest of this thesis is organized as follows. Chapter 2 provides a literature survey for spatial

and temporal data mining. Chapter 3 presents a localized prediction algorithm based on the Sup-

port Vector Machine. Chapter 4 investigates the problems in long term time series forecasting and

proposes a semi-supervised method based on Hidden Markov Regression to improve the predic-

tion accuracy. Chapter 5 discusses a graph-based time series anomaly detection algorithm, kernel

alignment based anomaly characterization technique and a visualization system for exploratory

analysis of large scale spatial and temporal data. Finally, Chapter 6 concludes with a summary of

the thesis and suggestions for future research. Note that the techniques developed in this study are

potentially applicable to other spatial and temporal domains such as sensor networks, intelligent

transportation systems, image processing, and biogeography.

13



CHAPTER 2

Spatial and Temporal Data Mining

Spatial and temporal data mining is a subfield ofdata mining and knowledge discovery that refers

to the extraction of interesting patterns in spatial and temporal data, which consists of spatial,

temporal, or spatio-temporal dependencies as illustrated in Section 2.1. Research on spatial and

temporal data mining has received significant attention in the past decade by researchers in the

statistics, data mining, and machine learning communities. As illustrated in Figure 2.1, we pro-

vide a literature survey on spatial and temporal data mining particularly in three areas: spatial

data mining as introduced in Section 2.2, temporal data mining as discussed in Section 2.3, and

spatio-temporal data mining as presented in Section 2.4. Each area consists of several mining

tasks including prediction, clustering, association rule mining, anomaly detection, etc. For spatio-

temporal data mining, an additional survey on visualization is also presented, which is useful for

studies on large scale Earth Science data. Finally, the scope of research directions for this thesis

is given in Section 2.5.

2.1 Spatial and Temporal Data

Here we give a simple notation of the spatial and temporal data used throughout this thesis in

terms of spatial data, temporal data, and spatio-temporal data.

Definition 2. (Temporal Data) Temporal data corresponds to an ordered series ofobservations,

where each observation is associated with a timestamp.

Note that we do not consider sequences ordered by other indexes such as text, protein sequence,
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Figure 2.1. Survey on Spatial and Temporal Data Mining.

etc. as temporal data although there has been such definition [135] in the literature. An example

of temporal data is formulated as:

[051.31% (132,932), (111331)]T

where t, is the tirnestamp for example 2:, and l is the size of the temporal data. One popular

class of temporal data is the time series data with numerical values ordered based on timestamps.

Time series analysis is important for many applications such as weather forecasting, stock market

analysis, sensor data analysis, etc. Another category of temporal data is a sequence of events with

categorical values ordered based on their timestamps, e.g. telecommunication alarms/events, web

server logs, online transaction logs, etc. In this thesis, we are mostly concerned with time series.

which are widely available in Earth Science data. Time series data consists of univariate time se-

ries and multivariate time series according to the number of available variables. A univariate time

series is an ordered sequence of real values for a single variable. When the temporal information

t,- represents nothing more than an order from 1 to n as t,- = i, the univariate time series data can

be simply represented as:



A multivariate time series is a vector of time series involving more than one variable. To accom-

modate different applications, we use two notations here to represent a multivariate time series

with 1 data examples and p variables. One formulates a multivariate time series as a vector of p

variables:

[X1,X2l "'3 Xp]

where X,- represents it}, time series variable with length 1; another formulates a multivariate time

series as a vector of l data examples:

T

331. m2. 1 $1]

where £13,: represents ith example with p attributes.

Definition 3. (Spatial Data) Spatial data corresponds to data characterized by a spatial location

and other non-spatial attributes.

Here we use 0,- to denote location feature for the example sci. A spatial data set with 1 data

examples is represented as:

[(01,31). (02,502), (01,931) ]T

A popular representation ofthe spatial features in Earth Science data are the latitude and longitude

o,- = (lati, loni), which determine the locations of the various places on planet earth.

Definition 4. (Spatio-temporal Data) Spatio-temporal data corresponds to a set ofobservations

with both spatial locationfeatures and timestamps.

Using similar notations introduced above for spatial data and temporal data, a spatio-temporal

data is represented as:

T

[(151.01431), ($2.021332), 01,01,920]

where (ti, 0,) constitutes a space-time index for each data example 93,. Examples of spatio-

temporal data include vegetation cover or climate time series recored in different regions, objects

moving across different space and time, spatial events or phenomena evolving over time, etc.

16



2.2 Spatial Data Mining

Spatial data mining is the process of discovering interesting and previously unknown, but po-

tentially useful patterns from large spatial datasets. Mining spatial data is very useful for many

applications, ranging from remote sensing, to geographical information systems (GIS), computer

cartography, environmental assessment and planning, etc. There has been a long history of spa-

tial data mining in the statistics, geography, data mining, and machine learning communities

[80][78][2][190][126]. We identify some representative work in the literature for a number of

different tasks such as spatial prediction, spatial clustering, spatial association rule mining, and

spatial anomaly detection.

2.2.1 Spatial Prediction

Spatial prediction builds a predictive model from the data in observed locations and predicts the

target values for unobserved locations. Previous work on spatial prediction mostly focused on

regression but is applicable to classification problems. Spatial prediction has a rich literature in

geostatistical analysis. Among them, one of the simplest is the spatial auto-regression model

(SAR) [96], which is similar to auto-regression in time series prediction. It builds a global linear

regression model to model the spatial dependencies from the entire observed locations and uses

it to predict the unobserved location. Parallel formulation of the SAR model is also developed

by Kazar et al. [117] to speed up this method. Markov random fields is another popular model

that incorporates spatial autocorrelation in the Bayes framework for spatial prediction, which is

believed to make less restrictive assumptions than the SAR model as discussed by Shekhar et al.

[189]. As spatial data are often influenced by various local phenomena, the idea of using local

models was also developed for spatial prediction problems. Geographically weighted regression

(GWR) [83] is a local version of spatial regression that estimates parameters taking into account

the spatial proximity between training and testing examples. Kriging is a group of geostatistical

techniques to interpolate the value of a random field at an unobserved location from values at

observed locations [58][68], which is also known as Gaussian process regression in the statistics

community. Both the Kriging and SAR methods are linear methods based on least square es-

timation. Recently, there has been increasing interest in applying more sophisticated nonlinear
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machine learning models to spatial prediction, e.g. Neural Network [l6l][130] provides mod-

els of relationships between inputs and outputs through highly interconnected “neurons”, Support

Vector Machine [89] learns a nonlinear decision firnction by minimizing the prediction error while

maximizing the margin, Decision Trees [222] algorithm builds a tree-like structure of predictors,

etc. However, building global machine learning models is not suflicient, especially for data sets

with spatial and temporal dependencies. There has been some work on building local machine

learning models for such data, e. g. Gilardi et al. proposed to build a local Support Vector Regres-

sion or local Neural Network for each testing example from the training examples in its spatial

neighborhood. However, their method is very slow and has the difficulty in selecting a suitable

number ofnearest neighbors.

2.2.2 Spatial Clustering

Clustering ofspatial data aims to group together observations with similar spatial and non-spatial

attributes to identify the underlying structure of the data. Spatial clustering has been used to

discover “hot spots” in geostatististics [94], e.g. mapping of hot spots for criminal activities or

diseases in a city. Spatial clustering algorithms can be classified into three categories: parti-

tioning based method, hierarchical based method, and density based method. Partition based

methods try to divide the data into a given number of clusters. The K—means [114], K-medoids

(PAM)[116] and EM algorithms [66] are three examples of partition based clustering methods.

K-means algorithm finds the clusters by estimating the centroid to represent each cluster and as-

signing each data point to its closest centroid iteratively. The K-medoids algorithm is similar to

K-means except that the data point closest to the centeroid is utilized to represent the cluster. The

EM algorithm assumes that each cluster follows a mixture ofGaussian distribution and data points

are assigned to the clusters with probability. These methods perform poorly on large scale spatial

data. To overcome this problem, a sampling based clustering method CLARA (clustering large

application) is proposed by Kaufman et al. [116] to run the K-mediod algorithm on a randomly

sampled subset of the data. Although CLARA is more efficient, there is a problem when the true

mediods are missed during sampling. An improved algorithm CLARANS [155] is proposed by

introducing some randomness in each sampling step and taking advantage of some eflicient in-

dexing technique such as R-tree [81]. These methods can only find clusters with spherical shapes
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and they require the number of clusters to be predefined. Hierarchical clustering algorithms such

as BIRCH [225] and CHAMELEON [115] build a dendrogram to split the data set into smaller

subsets. Two strategies are usually used: agglomerative algorithms build the tree in the bottom-up

manner, while divisive algorithms build the tree in the up-bottom manner. Hierarchical clustering

is powerful in discovering arbitrarily-shaped clusters but is expensive for high dimensional data.

Density based methods such as DBSCAN [79] assume a data point in high density belongs to

a cluster. GDBSCAN [183] generalizes it to cluster data points with both spatial attributes and

non-spatial attributes. DBSCAN and GDBSCAN are useful to find arbitrarily-shaped clusters and

to distinguish outliers from clusters. However, they are not very efficient for high dimensional

data and need a predefined parameter such as radius. Bethi et al. proposed another density based

method called CLIQUE [20], which divides the space into grid cells whose density is computed

and grid cells with high density are merged to form clusters. It is more eflicient but less effective

than DBSCAN for high dimensional data.

2.2.3 Spatial Association Rule Mining

The task of spatial association rule mining is to discover spatial relationships between objects

or events in one location with those in other locations [127]. For example, a rule like “most big

cities in US are close to the coast” is a spatial association rule. Spatial association rule min-

ing has been applied to many applications such as geographic information system [127], image

analysis [109], census analysis [142], etc. The earliest algorithm for mining spatial association

is to apply standard associate rule mining algorithm such as Apriori [3] method to spatial data

points whose spatial relationships satisfy some user specified task [127]. As a result, it separates

spatial computations from the process of generating spatial association rules. Recently, there has

been increasing interest on mining co-location patterns [l49][150][186][226], which are spatial

associations dedicated to capturing neighboring relationships. Morimoto [149] and Shekhar et

al. [186] proposed an algorithm to discover clique co-location patterns, which requires all in-

volved objects to be close to each other. Finding co-location patterns are very time consuming.

To solve this problem, Zhang et al. [226] implement a partition-based optimization strategy to

find co-location patterns more efliciently; however, it requires all spatial objects to be data points.

Xiong et al. [218] propose co-location mining for extended spatial objects such as polygons and
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line—strings. Most of these work on spatial association rule mining consider short-range depen-

dencies only. Mining spatial association rules describing long-range dependencies remain an open

research problem.

2.2.4 Spatial Anomaly Detection

Spatial anomaly detection, also known as spatial outlier detection, identifies spatial locations

whose non-spatial attributes are significantly different fi'om the values of their neighborhoods

even though they may not be significantly different from the entire population [1 87][1 39]. Spatial

anomaly detection approaches were first studied in geostatistics, which can be generally grouped

into two categories: graphical approaches and quantitative tests. Graphical methods are based

on the mapping of spatial data that highlights spatial outliers, e.g. variograrn clouds and pocket

plots [98][201]. These methods require a domain expert to detect the spatial anomalies visually.

Quantitative methods use statistical tests to identify spatial outliers from the remainder of data

such as scatterplot proposed by Han et a1. [95] and Moran scatterplot approaches developed by

Anselin et al. [9]. Data mining methods have also been applied to detect spatial outliers recently.

Shekhar et al. [188] introduced a method for detecting spatial outliers in graph data sets based

on the distribution of the difference between an attribute value and the average attribute value of

its neighbors. Lu et al. [139] also proposed two methods, one is non-iterative algorithm that uses

median as the neighborhood function, another is an iterative algorithm that identifies only one

outlier in each iteration and modifies its attribute value to prevent negative impact on subsequent

iterations. The false alarm rate of these algorithms are still relatively high. Reducing the false

alarm rate of spatial outlier detection needs further investigation.

2.3 Temporal Data Mining

Temporal data mining is concerned with extracting interesting and previously unknown, but po-

tentially useful patterns from large scale temporal data sets. There has been increasing interest on

mining temporal data during the past several years [135]. Most previous work can be categorized

into several major tasks including classification, clustering, time series forecasting, anomaly de-

tection, and temporal association rule mining. Here we present a brief review of the techniques
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and algorithms in terms of different temporal data mining tasks.

2.3.1 Time Series Forecasting

The task of time series forecasting aims to predict the future values of a time series based on its

own historical values or information from other related variables. Extensive studies have been

conducted for the problem of time series forecasting in the statistics, data mining, and machine

learning communities. These approaches typically use a sliding window to create a training set

from the historical data to build a predictive model. The auto-regression (AR) model [29] is

the earliest and simplest predictive model, which is designed to predict the future values of a

stationary time series [29][41][101] based on a linear combination of historical values using least

square linear regression model [118]. A more complex linear model such as ARIMA [147] is

also invented for the modeling of non-stationary time series, which has been widely applied to

financial stock analysis. Another popular alternative model to the AR model for modeling non-

stationary time series is the piece-wise linear regression model, which breaks the time series into

a series of stationary pieces and learns a separate linear regression model. A similar approach

is also found in the Hidden Markov Regression [85] for time series prediction, which assumes a

stochastic process on a set of states, each associated with a separate linear regression models. In

addition to those linear models, nonlinear regression models are also used to model the time series

data. For example, Recurrent Neural Network [90], Support Vector Regression[157], Gaussian

Process [17], and Decision Trees [138] have been applied to model nonlinear time series for

future forecasting. However, these works mostly focused on univariate times series prediction.

These works mostly utilize a recursive prediction methodology, where the outputs from the last

prediction are used as inputs for the next prediction, and thus fails for long term time series

prediction. Although an advanced model was proposed by Herrera et al. in [104] to improve

the long term time series forecasting by using a noiseless one-step-ahead prediction for recursive

training, their method did not address the error accumulation caused by model bias and variance.

Chapados et al.[39] deveIOped augmented functional time series representation and a forecasting

algorithm based on Gaussian processes to avoid point estimation. However, the prediction window

of their algorithm is still relatively short and the error caused by the biased estimation of the

posterior distribution will still be accumulated for long term time series prediction.
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Multivariate time series forecasting [138] predicts the firture values ofa time series by utilizing

not only its own historical values but also information from other related time series. Methods for

multivariate time series prediction are usually extended from univariate time series prediction by

including related time series as predictor variables. For example, Popescu et al. [169] proposed to

use independent component analysis to decompose the multivariate time series into independent

components and perform univariate forecasting for each component separately whose predicted

results are recombined at the final stage.

2.3.2 Classification of Temporal Data

Temporal data classification assumes that each sequence or time series belongs to one of the

predefined classes or labels and the objective is to automatically determine the class or label for a

given sequence. Temporal data classification has been investigated widely in many applications,

for example, speech recognition tries to transcribe speech signals into their corresponding textual

representation [174] [92]; gesture recognition classifies the human body motions into messages

people want to express [61] or some sign language [192]; handwritten words recognition tends to

recognize the words from a sequence of pixel columns and segments extracted form the image of

handwritten texts [43][151][211]. The methodologies used in these works can be categorized into

pattern based and model based. Pattern based methods align the given sequence to a collection

of prototype sequences and find the closest match using certain sequence similarity measures

such as dynamic time warping (DTW) [123][50][50] and longest common subsequence (LCSS)

[62]. Model based methods assign labels to a sequence according to a classification model that

is learned from a set of training sequences. Examples of model based methods for temporal data

classification include Hidden Markov Model [15][203], Neural Networks [216][195], Support

Vector Machine [72], etc.

2.3.3 Clustering of Temporal Data

Clustering of temporal data aims to group together a collection of temporal data based on their

similarity. Clustering is important for mining temporal data since it provides a way to automati-

cally reveal the intrinsic structure of the data and helps people to better understand the data. For
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example, it would be interesting to cluster gene expression time series [76], stock time series [33]

or trajectories ofmoving objects [64], whose trends and variations behave similarly. Many differ-

ent models has been proposed to cluster temporal data. For example, mixtures of ARMA model

[219] or Hidden Markov Model [7] have been utilized for the clustering oftime series data; Sebas-

tiani et al. pr0posed the Bayes model [185] and Law et al. proposed a rival penalized competitive

learning method [133] to cluster sequence data. A number of different similarity measures such

as dynamic time warping (DTW) [123][50][50], longest common subsequence (LCSS) [62], etc.

have also been proposed to cluster time series data using standard clustering algorithms such as

K-means [156], density based [64], and hierarchical clustering algorithms [180].

2.3.4 Temporal Association Rule Mining (Frequent Pattern)

Temporal association rule mining is designed for discovering frequent sequential patterns

[208][4][88], which comprise temporal order information between elements, in the collections

of temporal transactions. The Apriori [3] method has been adapted for mining temporal asso-

ciation rules by counting the fraction of all the sequences, in which rules are contained, in the

temporal database. One extension of frequent pattern mining in temporal data is frequent episode

mining, which is to extract subsequences that repeat a sufliciently number of times in the given

long time series or sequence [l44][10] [l3][136][10]. Temporal episode mining has many useful

applications such as analyzing alarm streams in a telecommunication network [144] or mining of

data from Walmart transactions [10]. Furthermore, time dependence is also incorporated explic-

itly into the frequent sequential pattern mining or frequent episodes mining. For example, Lee et

a1. [38] proposed to incorporate the duration of the events into frequent sequential pattern mining

and Ozden et al. [160] introduced cyclic association rules that hold with a fixed periodicity along

the entire length of the sequence of time intervals.

2.3.5 Time Series Anomaly Detection

Time series anomaly detection aims to discover data points or subsequences that are significantly

different than the other parts of the time series. Numerous algorithms have been proposed to dis-

cover anomalous patterns in the univariate time series. For example, Keogh et al. [121] proposed
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an algorithm for mining time series that contain subsequences with largest nearest neighbor dis-

tance. Mahoney and Chan [141] employed a path and box feature trajectory approach to model

the time series. Anomalous subsequences are detected based on their deviation from the trajectory

path. Bay et al. [16] utilized local AR models to transform the data into its corresponding param-

eter space and anomalies were detected based on distances computed in the parameter space.

Frequency-based methods [122, 212] are designed to discover unusual subsequences who happen

less frequently than other patterns. Immunology-based method [63] uses given normal pattern to

detect anomaly patterns as templates and uses these templates to find unusual pattern in a new

time series. Probability based method [220] calculates the anomaly score for any given data as

its deviation from the learned probabilistic AR (Auto-regression) model from the historical data.

These methods mostly focused on anomaly detection in univariate time series.

Recently, there has been considerable interest in developing anomaly detection algorithms for

multivariate time series. One category of the methods utilize time series projection [87] and in-

dependent component analysis [213] to convert the multivariate time series into univariate time

series. One potential limitation of these methods is the loss of information incurred when pro-

jecting the data into l-dimensional space. Despite the rich literature on time series anomaly

detection, there are few works on characterizing the discovered anomalies. Lakhina et al. [131]

proposed an approach to characterize anomalies in network traffic flows. Their work, however,

simply performs a separate anomaly detection for each variable without focusing on any specific

target variable. Potter et al. [171] used association analysis to relate extreme climate events with

ecosystem disturbances. However, it is achieved by a separate postprocessing step.

2.4 Spatio-Temporal Data Mining

Spatio-temporal data mining is an emerging research area dedicated to the development and ap-

plication ofnovel computational techniques for the analysis of large spatio-temporal data sets, e. g.

climate time series recorded for different locations in Earth Science data or moving objects tracked

at different locations and time. Compared with spatial data mining or temporal data mining, stud-

ies on spatio-temporal data mining are limited. Recent studies on spatio-temporal data mining

mainly focus on two strategies. One is to decompose the spatio-temporal data mining into two
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independent sub-problems: spatial data mining and temporal data mining [146][21][167][168].

Another strategy is to extend techniques in spatial or temporal data mining directly to the mining

of spatio-temporal data [l62][l45][77][145]. Similar to previous sections on spatial data min-

ing and temporal data mining, we present a brief review on the latest work on spatio-temporal

data mining methods in terms of spatio-temporal prediction, spatio-temporal clustering, spatio-

temporal association rule mining, and spatio-temporal anomaly detection. An additional survey

for the indexing and visualization of large scale spatio-temporal data is also provided.

2.4.1 Spatio-Temporal Prediction

Spatio—temporal prediction is to build a predictive model from the observed data with space-time

information and predict the target variable at an unobserved location and time. Most spatio-

temporal prediction techniques are extended from spatial prediction or time series forecasting

models. One example is the spatio-temporal auto-regression model proposed by Kelley et al. [162]

for real estate price prediction, which formulates the auto-regression model with both spatial and

temporal neighborhood information. Markov Random Field [145] and Kriging [77] have also been

extended from spatial prediction to spatio-temporal prediction as well. Another family of spatio-

temporal prediction methods decomposes the problem into two separate steps. For example, a

two-phase spatio-temporal auto-regression model was proposed by Pokrajac et al. [l67][168],

which models the spatial data first and then adjusts the prediction by incorporating autoregressive

modeling of residuals in time.

2.4.2 Spatio-Temporal Clustering

Spatio-temporal clustering tries to group together the spatio-temporal data points with similar

behavior, which is often used to extract interesting groups of trajectories. Most spatio-temporal

clustering algorithms are simply extended from the spatial clustering algorithms discussed in Sec-

tion 2.2.2. For instance, the partition based method K-means is utilized to cluster the climate

variables indexed by both space and time to extract time varying climate regions [106]; the den-

sity based method DBSCAN is applied to cluster trajectories of moving objects [145] and the

hierarchical agglomerative clustering algorithm is adapted to group together similar trajectories
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[152]. Other spatio-temporal clustering techniques such as spatial scan has also been developed

by Kulldorff et al. [129] for epidemiological data to extract spatio-temporal cylinders (e. g. spatial

circular shapes that remain still for some time interval) where the rate of disease cases is higher

than outside the cylinder.

2.4.3 Spatio-Temporal Association Rule Mining

Spatio-temporal association rule mining aims to discover how objects move between regions and

over time. The most straightforward technique for spatio-temporal association rule mining is

conducted by mapping spatio-temporal data into a transaction table and to use the standard Apriori

approach to extract spatio-temporal rules [146]. A more concrete definition of spatio-temporal

rule is first given by Tao et al. [198], which explores the association between objects or events in

different regions over time, e.g. the rule (2', Vt, p) => (j ) means if an abject appears in region i at

time t, it will appear in region j at time t + Vt with probability p, which is discovered by a simple

brute force method. A more advanced method to mine such spatio-temporal association rules was

proposed by Verhein et al. [205][204] to deal with the spatio-temporal semantics such as area

effectively throughout the mining process and prune the search space as much as possible. It also

defines a series of special patterns to describe important temporal characteristics of regions, e. g.

stationary regions where many objects tend to stay over time and high traffic regions where many

objects tend to move in (sink), move out (source), or move through (thoroughfares). There is also

some work on the discovery of other interesting spatio-temporal association rules. For example,

Marnoulis et al. proposed a technique to mining periodic patterns [143], represented by objects

moving between regions and following the same routes approximately over regular time intervals.

Mining spatio-temporal association rules is slow for large scale data. Wang et al. proposed an

eflicient disk based algorithm for mining the events changing over space and time [209].

2.4.4 Spatio-Temporal Anomaly Detection

Spatio-temporal anomaly detection is to detect data points significantly different than other data in

their spatio-temporal neighborhoods. A simple strategy is provided in [49] by Cheng eta1., which

defines spatial outliers that are not always present in consecutive time frames as spatio-temporal
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outliers. The temporal dimension is not well treated, since it can only compare spatial outliers

between immediate time snapshots. Lu et al. [140] introduced the time dimension by linking

the center region outliers in different time frames, which can be used to detect moving outliers.

Similarly, Birant et al. [21] proposed to detect spatio-temporal outliers from large scale data

sets by clustering data first followed by procedures of checking spatial and temporal neighbors

separately. Basically, all these approaches define spatio-temporal outliers by incorporating time

information into the spatial outliers. Sun et al. [196] gave a more general study by defining two

kinds of spatio-temporal outliers: time period outliers given a region, and region outliers given a

time period; however, mining spatial and temporal data for anomalies are mostly treated as two

separate sub-problems.

2.4.5 Exploratory Analysis and Visualization of Spatio-Temporal Data

Spatio-temporal data sets are often very large and difficult to analyze and display. Since they

are fundamental for decision support in many application contexts, recently a lot of interest has

arisen toward data-mining techniques to extract relevant subsets of very large data repositories

and effectively display the results by addressing many challenges such as indexing, representa-

tion, querying, mining, etc. Compieta et al. [52] proposed a complementary, dual 3D visualization

environment for mining spatio-temporal data sets, which is composed of a Google Earth system

to display the mining outcomes and a Java3D-based tool for providing advanced interactions with

the data set in a non-geo-referenced space, such as displaying association rules. Olga et al. [159]

developed a system that enables users to query clusters of time series with similar geometric

shapes. These systems have mainly focused on the visualization aspect and do not consider issues

such as large scale or high resolution data. Techniques such as wavelet tree [137], R—tree [153],

and aRB-tree [164] are some of the well-known indexing techniques for online analytical process-

ing. Camossi et al. [34] presented a multi-level indexing technique based on spatial and temporal

granularity. However, it does not consider the similarity between data points when constructing

the index. Their technique is also especially designed for clustering tasks. Bertolotto et al. [19]

developed an approach to use clustering for data reduction purposes, which is similar to our work.

However, they did not consider the problem of choosing representative samples for a specific data

mining task such as anomaly detection. Denny et a1. [67] presented a multi-level technique for
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exploratory data analysis of hot spots. While there are other works on multi-level techniques [70],

they are not directly applicable to our disturbance event detection problem.

2.5 Scope of Thesis Research

In this chapter, we reviewed some related work on spatial and temporal data mining in terms of

three research areas: spatial data mining, temporal data mining and spatio-temporal data mining.

The contributions and limitations ofa number ofalgorithms and statistical models proposed in the

literature for different mining tasks as clustering, prediction, anomaly detection and association

rule mining were discussed. Despite the broad scope of research areas in spatial and temporal

data mining, this thesis will mainly focus on the following research areas that are motivated by

the problem of mining Earth Science data: spatial and temporal prediction, anomaly detection,

anomaly characterization, and visualization.
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CHAPTER 3

Localized Prediction with Spatial and

Temporal Dependencies

Prediction is one of the most important tasks in data mining. Consider a training set:

Pr. = {XLaYL} = 10131.91), (932.92). - - - . ($1.yi)lT.

and test set:

T

DU = {XU} = l$l+1a931+2~ - . - vml+ui

the task of prediction is to build a predictive model from the training set DL that maps input to

output as:

f:X—>Y

The constructed model is then used to predict the target y for any given test example a: E XU as:

y=f(=13)

Generally speaking, a prediction task can be divided into classification and regression tasks de-

pending on the format of target value y. Classification task predicts a predefined discrete class

label. For example, y E {—1, +1} for a two class problem. Regression task tries to predict a

continuous target 3] E ’R..

In this chapter, we explore a localized method for the prediction problems in mining Earth

Science data with spatial and temporal dependencies. The main contributions of this chapter are

as follows:
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o We develop an integrated localized prediction framework based on Support Vector Machine

by incorporating the neighborhood information between the test examples and the training

examples.

0 The localized algorithm proposed is slow due to requirement of learning of one model

for each testing example. A more eflicient algorithm profile Support Vector Machine is

proposed based on supervised clustering to reduce the computational cost in learning.

0 Experiments on a number of real and synthetic data sets demonstrate the efficacy and ef-

ficiency of the proposed algorithms compared to K-nearest neighbor and Support Vector

Machine. The applicability of our algorithms on Earth Science data is also investigated by

incorporating spatial and temporal dependencies.

The remainder of this chapter is organized as follows. Section 3.1 introduces the problem

of localized prediction and some background. Section 3.2 proposes the general framework of

our localized Support Vector Machine. Section 3.3 presents the profile Support Vector Machine

algorithms. We extend our algorithms to incorporate spatial and temporal dependencies in Section

3.4. The experimental results on both benchmark and Earth Science data sets are shown in Section

3.5.

3.1 Preliminaries

One of the most important questions in building a prediction model for a data set is whether to

use a global learning or local learning framework. Global prediction learns a global predictive

model f : X ——+ Y fi'om the entire training set 271,. The formal definition of global prediction is

given as following:

Definition 5. (Global Prediction) Global prediction learns a single classy'ication or regression

model, which is applicable to all the test data, using the global characteristics ofthe entire train-

ing data.

Many classification and regression algorithms have been proposed in the data mining and ma-

chine learning literature including Support Vector Machine [32][191], Decision Trees [222][221],
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Neural Network [22], Hidden Markov Model [40][85], etc. They typically fall into the global pre-

diction framework. In this work, we mostly focus on the Support Vector Machine algorithm. A

detailed description of the Support Vector Machine algorithm will be discussed in Section 3.1.2.

Localized prediction algorithms tend to build multiple local prediction models instead of one

global prediction model as: {f1, f2, . . . , fk} where each local model f,- is associated a local subset

of the training set. A formal definition of local prediction is given as following:

Definition 6. (Local Prediction) Localprediction constructs multiple classification or regression

models, each ofwhich is applicable to the corresponding local part ofthe test data only, using the

local characteristics ofthe training data.

Localized prediction attempts to adjust the training system locally to the properties of the train-

ing set in each area of the input space, and thus has the potential to outperform global prediction

especially when the data is non-evenly distributed [28]. The simplest localized prediction meth-

ods proposed in data mining literature is the K-nearest neighbor algorithm [177], which will be

discussed in Section 3.1.1.

In this work, localized prediction is applied to Earth Science data with strong spatial or temporal

dependencies. Given a training set with spatial and temporal features:

T

73L = 101.01.931.91),02.02.332.112), - . - , 01.01.331.90] .

localized prediction with spatial and temporal independences builds multiple local prediction

models from the data by incorporating the spatial, temporal, or spatio-temporal neighborhood

information.

3.1.1 K-nearest Neighbor Prediction

The K-nearest neighbor [55] [177] (KNN) predicts the target of a test example based on the

distribution of training examples in its local neighborhood. Among the appealing features of the

KNN learning include its simplicity and flexible modeling scheme. Nevertheless, it is susceptible

to the curse of dimensionality [18] problem and is sensitive to the choice of neighborhood size K

[97]. When K is too small, the KNN model may overfit the training data. On the other hand, a

large K may also hurt the performance of the classifier by incorporating training examples that
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(a) K-nearest Neighbor Classification. (b) K-ncarest Neighbor Regression.

Figure 3.1. K-nearest Neighbor Prediction.

are unsuitable to the prediction of a test example. To overcome the difliculty of choosing K, the

weighted K-nearest neighbor [102] model was introduced. In this method, the influence of each

training example a),- is weighted by its similarity to the test example 3:. Thus, it is important to

define a a similarity measure to determine how closely matched two given examples are for the

K-nearest neighbor algorithm. One of the most popular similarity metrics between two examples

:2), and 203- is using Radial Basis Function [165]:

._ .2

131.31] (35,,Set. as.) = exp [— a,

where a is a user-specified parameter to control the spread ofthe function values. Throughout this

thesis, RBF function is used to measure the similarity between two examples.

In K-nearest neighbor classification as shown in Figure 3.1(a), the probability that a test

example belongs to class y is computed as follows:

E 5(y. yi)S(wi. cc)
(1:,- e!)K (m)

“'9'” = 2 5mm)
mieQK(a:)

 (3.2)

where QK(:1:) is a subset of observations in ‘DL that correspond to the K-nearest neighbors of the

test example a), S(sci, :13) denote the similarity between 2:,- and a), 6 (y, 31,-) as follows:

,,_ 1 Wy=w
60.0.) —{ 0 otherwise (3.3)
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In K-nearest neighbor regression as shown in Figure 3.1(b), the continuous target value y for

a test example a: is computed as follows:

E y.,-S ($1, at)

(13,; 69B4113)

y : 2 50132313)
w.,-ettK(:z:)

 (3.4)

The similarity matrix S is often normalized so that its values range between 0 and 1. One pop-

ular choice for the similarity measure is the radial basis function (RBF) kernel [165] introduced

in Equation (3.1).

K-nearest neighbor methods are simple and easy to understand. However, they have limita-

tions. For example, they fail to produce accurate prediction results for high dimensional data,

which is known as the “curse of dimensionality” problem; they are slow especially when the

number of test examples is large; and they have difliculty in choosing the appropriate value for K

[97], etc. Several variants of the nearest-neighbor classifier have been proposed in the literature

to overcome some of its present limitations. Hastie and Tibshirani [100] attempted to address the

curse of dimensionality problem by estimating the effective metric for computing the neighbor-

hoods of the test examples. [69] also proposed a feature weighting scheme to alleviate the curse

of dimensionality problem. Vincent and Bengio [206] developed the HKNN algorithm to fix the

missing sample problem, which was shown to introduce artifacts in the decision surfaces produced

by regular KNN. Both of these methods, however, are still computationally expensive when the

number of test examples is large.

3.1.2 Support Vector Machine

Support Vector Machine (SVM) is a supervised learning method that can be applied to classifica-

tion or regression tasks. Consider a training set ’DL and test set DU, a nonlinear Support Vector

Machine builds a classification or regression model f with form:

f(-’v) =< W. 95196) > +b

where w is the coeflicient vector [1121, 102, - . - ,wp] , b is the bias and 1,0(a3) is a function that maps

a: to the higher dimensional feature space so that decision function will be linear.

Support vector classification (SVC) learns a global decision boundary by maximizing the

classification margin and minimizing the empirical classification error on the training set [32].
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(a) Support Vector Classification. (b) Support Vector Regression.

Figure 3.2. Support Vector Machine.

For brevity, Support Vector Classification is discussed based on a two-class problem based on a

discrete class label y E {—1, +1}. Figure 3.2(a) shows a SVC decision boundary learned from a

two—class training set, where the margin is defined as the minimum distance between the training

examples and the hyperplane f(m) = 0 generated by the decision function f (:13) The objective

firnction of nonlinear Support Vector Machine is shown as below:

l

, 1

mm §IIW||3+CZa (3.5)
w

i=1

3. t y,(< w,cp(a:,-) > —b) 2 1 — €23

€120,i=1,2,...,l

where 5,- are slack variables introduced as an allowable error for misclassified data examples, C is

a parameter that controls the tradeoff between the classification margin and cost of misclassifica-

tion on training data. The preceding optimization function can be transformed into its dual form

using the Lagrange multiplier method:

l l1 .

max 042'. — - Z Ottajytyjflwz'wj) (3-6)

almal i=1 2z'j==1

l

S. t. 2 (1,31,; = 0

i=1

OSaiSC,i=1,2,...,l
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where o is the kernel function used to compute the dot product of two examples in a high dimen-

sional space as: ¢(a:,-, mj) -—- <p(a:,-) - 99(3)) and a, is Lagrange multiplier or also called “support

weight” assigned to each training example 50,-. Once the weights are determined, a test example a:

is classified as: l

y = Sig"(zaiyi¢(mamil) (3-7)

i=1

Note that examples with large support weight a,- are called support vectors, which are essential

examples to determine the decision boundary. Three examples of support vectors are shown as

gray data points lying on the dotted lines in Figure 3.2(a).

Support Vector Classification can be extended to handle multi-class problems [108] using one-

versus-all [178] method. Given a data set with N classes, one may construct N binary SVC

models {f1, f2, - - - , fN}, where each f,- is trained to separate training examples that belong to

class i from all other classes. The class label of a test example a: can be predicted by applying the

N binary SVC models and choosing the class i that yields the highest output value f,(:r:). Other

strategies such as one-versus-one and error correcting code [6] are also available.

Support Vector Regression (SVR) learns a prediction firnction f from training examples by

enforcing two constraints: one is to guarantee the prediction f (23,-) has at most 5 deviation from

the actual continuous response value y,- for all the training data; another is to make the prediction

function f as flat as possible [191]. Figure 3.2(b) shows a simple illustration of a Support Vector

Regression model, where all the training examples fall into a tube with width 6. The optimization

problem of nonlinear Support Vector Regression is formulated as:

i
. 1 .

nwn §IIW||3+CZE<0+ED (3.8)

1:

Min-KWWWD>WMR+&

(< w, am) > +0) — y..- s e + £2“

g,-,g;‘20,1=1,2,...,t

where {11:36: are slack variables with similar properties to those in SVC and C controls the tradeoff

between minimizing prediction error and maximizing function flatness. To simplify the computa-
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tion, the problem is transformed to its dual form as follows:

l

1 * :1: I

max —§i§;1(ai— oi,- )(aj — aj)o(:c,-, 51:3) (3.9)

1,:

l

S. t. 2(07; - 0:) = 0

OSGi,a:SCl=1,2,...,l

where o is the kernel function and (a,- — 0;“) is the weight assigned to the training example mi.

Once the weights have been determined, the response value for a test example a: is predicted in

the following way:

ll

w = 2m,- — a:)c,9(a:,-), thus ,2 = 2(0, — ark/atria) + b

i=1 i=1

As it indicates, the coefficient vector w is represented as a combination of the training data 93,.

Finding the right kernel for global nonlinear SVM given a data set can be quite a challenging

task. On the one hand, a simple kernel may not capture all the intricacies of a complex decision

surface. On the other hand, a kernel that is too flexible is susceptible to model overfitting. Al-

though there have been several studies devoted to kernel learning [12], the proposed methods are

generally expensive and do not scale well to very large data sets.

3.2 Localized Support Vector Machine

In this section, we present a framework called localized Support Vector Machine algorithm

(LSVM), which integrates K-Nearest Neighbor with Support Vector Machine by incorporating

the neighborhood information directly into SVM learning. The localized Support Vector Classifi-

cation and Regression is formulated separately in Section 3.2.1 and Section 3.2.2.

3.2.1 Localized Support Vector Classification (LSVC)

We first discuss the classification case when 3; e {—1, 1}. For each test example (n+8 E ’DU, 3 =

1, 2, . . . ,u, we construct a local Support Vector Machine from all the training examples whose
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allowed misclassification errors 5,- are weighted by their similarity to the test example. This idea

can be formulated as the following optimization problem:

I
. 1

mgn Ellwué+CZS<xtmnna (3.10)
i=1

S-t 9i(< W.<p(wi) > 4921-62»

Et20,i=1,2,...,l

Compared with regular SVC in Equation (3.5), the constraint 5,; on misclassification error for

training example ac,- is weighted by its similarity to the test example n+3. As a result, training

examples close to the test example are promoted, while training examples located far away from

the test example are penalized. The prediction of the test example is determined mostly by the

training examples in its local neighborhood.

To further appreciate the role of the weight firnction, consider the dual form of the preceding

optimization problem:

I 1 l

,ggl§}n—§§jmeaauawn (M0

i=1 i,j=1

l

S. t. Z aw,- = 0

i=1

030i,“ SCS<$£,$1+3),7:= 1,2,...,l

where a linear kernel Mari, raj) = 2:,- -a:j is employed for the LSVC. The details of the derivation

can be found in the Appendix section. Unlike the optimization problem given in (3.6) for global

nonlinear SVC, the upper bound for a,- has changed from C to CS(03,-, 031+3).

3.2.2 Localized Support Vector Regression (LSVR)

For the regression case when y E R, we construct a local Support Vector Regression model for

each test example 21+3 6 Pg by solving the following optimization problem:

I

. 1 ,

mgn 511w113+czls<mm+a<e+9) (3.12)
z:

S-t 315i - (< W. M931) > +19) S €+§t

(< W.<.0(-'I=i) > +b> —y.- s we

artzai=latus
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This is analogous to the LSVC approach given in Section 3.2.1, where weight matrix S is used to

weight the slack variables 5,- and q. The LSVR formulation can be transformed to its dual form

as follows:

1 I

max —- Z (a; — 0;)(aj -— a;)05(a:,-,a:j) (3.13)

i,j=1

l l

- 620%“ +0?) + 21%sz - 0t?)

' 1 i=1

5. I.

V
i
e
w

(at *0?) =0

1. 1

0 S (1,50,: S CS(a:,-,a:1+s), i=1,2,...,l

where is d) is a linear kernel. Note again the upper bound for 012,01; has changed from C to

CS(:1:,-, 1314-5) in localized Support Vector Regression compared with global nonlinear SVR in

(3.9).

3.2.3 Discussion

Comparing the objective functions of LSVM (LSVC in Equation (3.11) and LSVR in Equation

(3.13)) to the nonlinear global SVM (SVC in Equation (3.6) and SVR in Equation (3.9)), the

only difference is that the constraint on the upper bound for a,- of LSVC and aha; of LSVR has

changed from C to CS(23,-, 1111+ s). The resulting effects of such modification is two-fold:

1. Some of the support vectors for nonlinear SVM are no longer support vectors for

LSVM. As previously noted, a support vector for nonlinear SVM corresponds to a training

example with positive support weight (a,- > 0 for LSVC and o,- - a; > 0 for LSVR) while a

non-support vector has zero support weight (a,- = 0 for LSVC and a,- — a; = 0 for LSVR).

Since the upper bound CS(031”, 513,-) decreases to zero when 501+s and :13,- are dissimilar, a

support vector for nonlinear SVM that is dissimilar to the test example will have an upper

bound close to zero, converting it into a non-support vector for LSVM.

2. Some of the non-support vectors for nonlinear SVM become support vectors for

LSVM. As the support weight (a,- for LSVC and oz,- — a; for LSVR) for support vec-

tors that are dissimilar to the test example reduces to zero, some of the training examples
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that are similar to the test example will be assigned weights larger than zero to ensure that

the equality constraint (2:121 only, = O for LSVC and 2L1 (a, — of) = 0 for LSVR) is

preserved.

There are two variants of LSVM considered in this study. If S is a real-valued similarity mea-

sure defined on the closed interval [0, 1], the resulting algorithm is called Soft Localized Support

Vector Machine (SLSVM). We employ the RBF kernel as our similarity measure for SLSVM,

similar to the approach taken by weighted KNN (see Equation (3.1)). On the other hand, if S

is a binary-valued function, the resulting algorithm is called Hard Localized Support Vector Ma-

chine (HLSWVI). The similarity measure S(021+3, 3,) is equal to 1 if 11:, is part of the K nearest

neighbor list for 2214.3, and 0 otherwise. For HLSVM, the upper bound constraint for support

weight is equal to C. Basically, it constructs a local SVM model for each test example based on

its K-nearest neighbors [166]. This approach is equivalent to the KNN-SVM algorithm proposed

by Zhang et al. [223]. This algorithm, which is a straightforward adaptation ofKNN to SVM, has

several limitations. First, the performance of the algorithm depends on the choice of K. Second,

the model is not that flexible because it uses the same neighborhood size for each test example. Fi-

nally, the algorithm does not consider the similarity between the training and test examples when

constructing the local SVM models. Once the nearest neighbors have been found, it will identify

the local support vectors by solving the optimization problem given in (3.5). The performance of

this algorithm is not as good as SLSVM according to our experiments.

One issue about LSVM is that it must build a local SVM model for each test example. Applying

it to large data sets can be very costly. In the next section, we will present an algorithm to improve

its efliciency.

3.3 Profile Support Vector Machine (PSVM)

Profile Support Vector (PSVM) algorithms reduce the computation cost of Localized Support

Vector Machine by reducing the number of local SVM models that need to be built. To under-

stand the intuition behind this approach, consider the optimization problem given in Equation

(3.13) and Equation (3.11), which must be solved separately for each test example n+3. No-

tice that the optimization problem is nearly identical for each test example, except for the up-
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per bound constraint for a,- of LSVC and 015,01; of LSVR, which depends on S (11:1... 3, 3,). Let

S(:1:1+3) = S(:cl+s,a:1),S(a:,+3,a:2), . . .,S(:1:l+3,a:n)]T denote a column vector of simi-

larity values between a test example 2:1,.3 and the set of training examples {113,1}§=1. Since a,

determines whether 2:,- is a support vector, we expect test examples with highly correlated similar-

ity vector S to share many common support vectors. For such test examples, it may be sufficient

to build a single LSVM model to predict them. To achieve this, a simple strategy is to group

the training and test examples using standard clustering algorithm such as K-means. However,

building local models for such clusters will be problematic, e.g. one cluster may contain examples

from one class only for the classification problem.

3.3.1 Supervised Clustering Algorithms: MagKmeans and Vaereans

We have developed supervised clustering algorithms called MagKmeans and Vaereans,

for LSVC and LSVR respectively, to determine the set of training examples that can be

trained together and the set of test examples that can be predicted together. Let S =

[S(a:l+1) S(a:j+2) . . . S(a:l+,,)] be an l x 11 matrix, where l is the training set size, a is the test

set size, and the (i, j)-th entry of the matrix denote the similarity between the training example :13,

and the test example $l+j- The goal is to find K. clusters from S such that K. < < l.

MagKmeans: A Supervised Clustering Algorithm for LSVC

We consider the classification case when 3; 6 {—1,1} in this section. Our clustering task is

somewhat different than conventional unsupervised clustering. First, the data to be clustered is

S, which contains the similarity between every training-test example pair. Second, conventional

clustering methods consider only the proximity between examples and ignore their class distri-

butions. As a result, some clusters may not contain enough representative examples from the

different classes to construct a reliable local Support Vector Classification model.

The MagKmeans algorithm extends regular K-means [114] by considering the class distribu-

tion of training examples within each cluster. Let Y = [y1, yg, . . . ,y,]T be the class labels of the

training examples. The objective function for MagKmeans is:

K. n. l

22Zinn- — 33.11% + R 2 21.0. (3.14)

j=1 i=1 j=1 i=1

R.

min

X,Z
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where X,- is the i-th row of the similarity matrix S, 73- is an 1 x a row vector representing the

centroid ofthe jth cluster, R is a non-negative scaling parameter, and Z is the cluster membership

matrix, whose (i, j )-th element is equal to one ifthe ith training example belongs to the jth cluster,

and zero otherwise. The first term in the objective function corresponds to a cluster cohesion mea-

sure. Minimizing this term would ensure that training examples in the same cluster have highly

correlated similarity vectors. The second term in the objective fitnction measures the uniformity

of class distributions in each cluster. Minimizing this term would ensure that each cluster contains

a balanced number of positive and negative examples.

The cluster centroids 7 and cluster membership matrix Z are estimated iteratively as follows.

First, we fix the cluster centroids and use them to determine the cluster membership matrix. Next,

the revised cluster membership matrix is used to update the centroids. This procedure is repeated

until the algorithm converges to a local minimum. To compute the cluster membership matrix Z,

we transform the original optimization problem into the following form using it slack variables

if

10 l it

minzm. 2:2,,jnx, —X,||§+Rzi, (3.15)

' j=1 i=1 j=l

n

S. t. —tj S ZZz'J‘yi S tj

i=1

thO, OgZngl

K.

ZZar=1
i=1

The preceding optimization problem can be solved using linear programming [184]. When the

cluster membership matrix is fixed, the centroids are updated based on the following equation:

_ 21:1 22'.in
_ _l___

Here R serves as a scaling parameter to handle the tradeoffbetween the two terms in our objective

—,- (3.16)

function: cluster cohesion and class imbalance. For our experiments, R is set to Us times the

diameter of the data set.

Figure 3.3 illustrates how the MagKmeans algorithm works. The initial cluster (the left fig-

ure) contains only positive examples. As the algorithm progresses, some positive examples are

expelled from the cluster and replaced by the nearby negative examples (the right figure). By
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Figure 3.3. An illustration of the MagKmeans clustering algorithm. The cluster in the left figure

contains only positive examples. After several iterations, some of the positive examples will be

expelled from the cluster while some negative example are absorbed into the cluster to achieve

balance in the class distribution (the right figure).

 

Algorithm 1 MagKmeans algorithm

Input: Similarity matrix S, class vector Y, and number of clusters n.

 

Output: Cluster membership matrix Z and the centroid matrix A?

1: Randomly initialize the centroid matrix 7.

2: repeat

3: Update the cluster membership matrix Z1,,- by solving the linear programming problem

given in Equation (3.15).

4: Update the centroid matrix K using Equation (3.16).

5: until convergence

 

ensuring that the cluster has almost equal representation from each class, a local SVM model can

be constructed from the training examples. A summary of the MagKmeans algorithm is given in

Algorithm 1.

Vaereans: A Supervised Clustering Algorithm for LSVR

Next we consider the case for regression. Similarly to the MagKmeans algorithm proposed in

Section 3.3.1, the Vaereans algorithm proposed in this thesis modifies the objective function

of the K-means algorithm to consider the variance of the response values in the training examples

of each cluster. The data used for clustering consists of two parts: (1) the weight matrix S and (2)
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Figure 3.4. An illustration ofthe Vaereans clustering algorithm. The left figure plots the cluster-

ing results by K-means on the data set. The right figure plots the clustering results by Vaereans

on the data set. Vaereans produce much better clusters for learning three linear regression

segments.

 

the response values Y = (y1, . . . ,y,)T. The objective function for Vaereans is:

N 1 it I , —, 2

. , — .-= Z'.'(I’.'—l -

ngn__ Exhdnxi—Xjng—RZZ‘ 1 71'] ‘ 3) (3.17)

Z X” j=1 i=1 j=1 21:1th

where 7(— is the centroid matrix for predictor variables, 17 is the centroid vector for response

variable, and R is again set to 1 /n times the diameter of the data set.

Note that the first part ofthe objective function groups data points together based on the similar-

ity of their predictor values, while the second part maximizes the variance of the response values

in each cluster. We employ an EM-like algorithm [66] to optimize the objective function given

in Equation (3.17). More specifically, we first search for the optimal cluster membership matrix

Z by fixing the centroid [K], 73-] for all j. We then search for the Optimal centroid X3,73]

by fixing the cluster memberships Z. These steps are repeated until the algorithm converges to a

local minimum.

When X], 73-] is fixed, the cluster membership matrix Z can be computed efficiently using

linear programming. To do this, we transform the original optimization problem into the following
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Algorithm 2 Vaereans algorithm

Input: Similarity matrix S, Response vector Y, and number of clusters 1»:

 

Output: Cluster membership matrix Z and the centroid matrix K, 7

1: Randomly initialize the centroid matrix K, 7-.

2: repeat

3: Update the cluster membership matrix Zifij by solving the linear programming problem

given in Equation (3.18).

4: Update the centroid matrix 7 using Equation (3.19) and 7 using Equation (3.20).

5: until convergence

 

form using it slack variables tj (j = 1, - - - ,1:):

H. l H.

minzw. :sz-(X, —X,-)2 41th (3.18)

j=1 i=1 j=1

m P

M
N

1

Zt,j(Yi - 7j)2 2 tj Z Zr.)

1 i=1

j>aogZ~gr

N
.

‘
9
-

1,]

K

22,5,- :1

K
)

p
—
d

When the cluster membership matrix Z is fixed, the following equation is used to update each

centroid Xj,7j]:

l
T. _ 22:121..th
, _ 3.19)

J z , (

21:1 41.3

l
_ ._ Z-.-Y-

Y,=—————Z’;1”“1 i (3.20)

By ensuring that the cluster has almost uniform distribution ofresponse values, a local SVR model

can be constructed from the training examples. A summary of the Vaereans algorithm is given

in Algorithm 2.

We illustrate the difference between the clustering results produced by regular K-means and.

Vaereans using the synthetic data set shown in Figure 3.4. The data set contains a data set in

the shape of a nonlinear regression line with three linear segments. The figure in the left shows

the results of regular K-means, whereas the figure on the right shows the results of Vaereans,
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which produces clusters that contain more widely spread response values in the Y-axis. The latter

clustering is clearly more desirable for constructing local linear SVR models.

3.3.2 Profile Support Vector Classification (PSVC)

After clustering the data using our MagKmeans algorithm, a local LSVC model is constructed for

each cluster. The SVC model for the kth cluster is obtained by solving the following optimization

problem:

1 l

1

max Ei- — — 5a -1 33:1: 3.215 :2 .2” 1Jy1.J_]tj ( )

2:]. 2,321

l

S. t. 25,3” = 0

i=1

USER'S/321k, i=1,2,...,l

Since Zak E {0, 1}, only the training examples assigned to the cluster will be used to build the

local LSVC model.

 

Algorithm 3 Profile SVC algorithm

Input: Training set ’DL = {(m,, y.,-)}§___1, test set ’DU = {wl+j 84:1, and number of clusters is.

 

Output: Class labels for the test set {111453-2421

1: Compute the l x 11 similarity matrix S.

2: (Z, Y) «— MagKmeans(S, Y, n.)

3: fork= l tondo

4: SVC), «— Build_Local-SVC(’DL, Z, k)

5: end for

6: for each test example 001+,- E ‘DU do

7: k = arg mirror—Xm-

8: 91+) = SVC/c(33l+j)

9: end for
 

To classify the test set, we need to determine the local SVC model that should be invoked for

each test example. Let K be the K: x u centroid matrix produced by the MagKmeans algorithm.

Since the (i, j )-th element of the centroid matrix indicates the average similarity between the test
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example m1+j and the training examples in cluster 2', we assign 1:13”- to the cluster with highest

similarity. We then apply the local SVM model associated with the cluster to predict the class

label of 931+j. The procedure for model building and test of the PSVC algorithm is summarized

in Algorithm 3.

3.3.3 Profile Support Vector Regression (PSVR)

Similar to PSVC, we construct a local SVR for each cluster after clustering the data using the

Vaereans algorithm. More specifically, the LSVR model for the kth cluster is obtained by

solving the following optimization problem:

I
1 ~

max —5 Z (a, — 042' )(aj " ajlmia’j

i,j=1

l l

— 62(az+a:)+zyi(az_az)

:21 £21

I

st. Zen—5,) =0

For hard clUstering, since Zi,k E {0, 1}, the above optimization problem is equivalent to build—

ing a linear SVR using only the training examples assigned to the cluster. In turn, the n LSVRs

constructed from the clusters form a piecewise decision boundary with A: linear segments.

Now comes the testing step. We need to decide which local model should be used to predict a

test example. To do this, we refer to the centroid matrix 7 obtained by the Vaereans algorithm.

Since the (i, j )-th element of the centroid matrix indicates the similarity between a test example

:cj to cluster 1', we assign the test example to the cluster with highest similarity. Finally, the

response value of the test example is determined by applying the corresponding LSVR model

for its assigned cluster. The procedure for model building and testing of the PSVR algorithm is

summarized in Algorithm 4.

3.3.4 Summary

In short, to avoid training a separate LSVM model for each test example, the PSVM algorithm

partitions the data into 10 clusters and trains a local SVM model for each cluster. it is typically
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Algorithm 4 Profile SVR algorithm

Input: Training set ’DL = {(3), y,-)}£=1, test set ’DU = {m)+j}3*:1, and number of clusters 1:

 

Output: Predictions for the test set {y)+j }}‘:1

1: Compute the l x a similarity matrix S.

2: (Z, 7, XY) <— Vaereans(S, Y, n.)

3: fork= l tondo

4: SVR;, <— Build_Local_SVR(’DL, Z, k)

5: end for

6: for each test example :13)“: 6 By do

7: k = arg max?”-

8: 91+) = SVRklIBHj)

9: end for
 

chosen to be considerably smaller than the number of test examples a to reduce the computational

COSI.

3.4 LSVM and PSVM for Spatial and Temporal Prediction

According to a statement in [28], building multiple local models performs better than one global

model, especially for data that are not evenly distributed. There has been some recent research on

local learning for spatial and temporal prediction, which demonstrated the superior performance

of building multiple local machine learning models compared with global machine algorithms

[89][132][128][l25]. For example, a similar approach to KNN-SVM has been applied to spatial

prediction problem by Gilardi et al. in [89] for data sets with strong spatial dependencies.

This section describes how our LSVM and PSVM formulations can be extended to prediction

problems with spatial and temporal dependencies. For temporal data, each example is associated

with a time stamp and the prediction ofa test example is often influenced by recently arrived train-

ing examples. Let 31+3 be a test example that arrives at time n+3 and a), be a training example

that arrives at an earlier time t,. We may define a temporal similarity function S (13,-, tl+S) to mea-

sure the proximity between two examples in terms of their time stamp. Such timing information

can then be incorporated into LSVM by constraining the upper bound for a,- of LSVC and aha:
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ofLSVR from C to CS(t.,-, n+3).

Spatial dependencies can be incorporated into the proposed framework in a similar manner. Let

371+3 be a test example located at 01+, and 2:,- is a training example located at 0,. The spatial prox-

imity between the examples is given by the spatial similarity function S(02-, 014.3). The function

can be incorporated into LSVM by changing the upper bound for 01,: ofLSVC and ago: of LSVR

from C to CS(o,-, 0)”).

Our approach is also flexible enough to accommodate data with spatio-temporal dependencies.

Let 31+, be a test example located at 0”,, with time stamp tl+s and 11:,- is a training example

located at 0,; with time stamp t,. The spatio-temporal proximity between the examples is given by

the spatio-temporal similarity function S([t, 0.)], [131+S 01+3]). The function can be incorporated

into LSVM by changing the upper bound for a,- of LSVC and aha; of LSVR from C to CS([t,

Oil, [tl-l-s 01+sl)-

Specifically, the modified optimization problem for LSVC in Equation (3.11) with spatial, tem-

poral, or spatio-temporal constraint becomes:

max Za. — —:2 mannerawas) (3.22)

i.i=—1

S. t. Zaiyi = 0

'—1

OSaiSCS,’l=1,2,...,l

where:

S(t,, n+3) temporal

S= S(o,-,o)+3) spatial (3.23)

sat.- 0.1.0.1.. 01+sl) spade-temporal

The optimization problem for LSVR in Equation (3.13) is modified similarly as:

max

$
.
l
e

I

—Z(arat) aaj—agntawj) (3.24)

9:1

l

— eZ(a.-+a;‘) +Zata.
1321 i=1

1

s. t. :(ai — a?) = 0

i=1

Saga: SCS, i=1,2,...,l
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where S is defined in Equation (3.23).

A PSVM formulation can also be developed to incorporate the spatial or temporal dependen-

cies. Unlike its original formulation, clustering is performed on the spatial similarity matrix

S = [S(o.,-, 0l+slir temporal similarity matrix S = [S(t,-, tl+s)l: or spatio-temporal similarity

matrix S = [S([t, 0,], [n+3 01+3])] Depending on whether a prediction task is classification or

regression, one could use MagKmeans or Vaereans to partition the training and test data. A

local SVM model can then be constructed for each cluster partition. The experimental results

demonstrate the successful application of spatial and temporal LSVM and PSVM to the Earth

Science data.

3.5 Experimental Results

This section describes the experimental results obtained by applying the proposed algorithms to

a variety of data sets. The proposed LSVC and LSVR algorithms are implemented by modifying

the CH code for the LIBSVM tool developed by Chang and Lin [37]. For LSVC, the tool is

applicable to multi-class classification problems using the one-versus—all approach as described

in Section 3.1.2. To support PSVC and PSVR, we have also implemented the MagKmeans and

Vaereans algorithms to cluster the similarity matrix S. Our experiments were conducted on a

Windows XP machine with 3.0GHz CPU and 1.0GB RAM. The main objectives of the experi-

ments are:

1. To compare the difference between the support vectors and decision surfaces obtained using

LSVM and nonlinear SVM (Section 3.5.1).

2. To compare the relative performance of KNN, SVM, LSVM, and PSVM on a variety of

real-world data sets (Section 3.5.2).

3. To illustrate the application ofLSVM and PSVM to Earth Science data sets with spatial and

temporal dependencies (Section 3.5.3).

4. To perform sensitivity analysis on parameters of the pr0posed framework (Section 3.5.4).

To assess the goodness of a prediction algorithm on the test set DU, two metrics are used in

this thesis. The accuracy ofclassification model is measured by the percentage of unlabeled data
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Figure 3.5. Comparison between LSVC and nonlinear SVC. The left diagram shows the support

vectors obtained by nonlinear SVC; whereas the right diagram shows the support vectors obtained

for three test examples using LSVC.

whose labels are accurately predicted:

l+u A

Z Mil/1,311)

Accuracy = 1:1“ (3 .25)

u

 

where y, is the true label, 37,; is the predicted label for text example 2:,- and 6(y,-, 1],) is defined

similarly as in Equation (3.3).

R-square can be used to evaluate the goodness ofthe learned regression model, which is defined

as the ratio of the sum of squares explained by a regression model and the total sum of squares

around the mean:

l+u A 2

213591-311)

2_ _ t=+
R _1 1+“ _ (3.26)

2 (y,—y,;)2

i=l+1

 

where y,- is the true value, if,- is the predicted value for text example as, and y, is the expected

value (usually it is the average of the true values in the test data). Note that a regression model

with larger value of It2 fits the data better.

3.5.1 Comparison between LSVM/PSVM and Nonlinear SVM

For this experiment, we use synthetic data sets to demonstrate the difference between the support

vectors and decision boundaries found by LSVM/PSVM in contrast to those found by nonlinear
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Figure 3.6. Comparison between LSVR and nonlinear SVR. The left diagram shows the support

vectors obtained by nonlinear SVR; whereas the right diagram shows the support vectors obtained

for two test examples using LSVR.

SVM. As previously mentioned in Section 3.2, LSVM may reduce the influence of support vec-

tors (for nonlinear SVM) that are far away from a test example while converting other training

examples in its vicinity into support vectors.

A. Comparison of Support Vectors

Consider the synthetic data set depicted in Figure 3.5 for a two class classification problem. The

left diagram shows the data distributions for the two classes, represented as - and +, respectively.

The support vectors found using a nonlinear SVC with an RBF kernel function are represented by

the symbols 0 and EB. Observe that the support vectors are located along the whole boundaries

between the two classes. The right diagram ofFigure 3.5 shows the corresponding support vectors

found by LSVC for three selected test examples. The locations of the test examples are marked

by the symbol x while their support vectors are represented with three different symbols. We

can see that those support vectors found by LSVC lie closer to their corresponding test examples.

A similar phenomenon is found in Figure 3.6 for a regression task. The left diagram shows a

synthetic data set represented as - and the support vectors found using a nonlinear SVR algorithm

denoted as Q surrounding the whole data set. The right diagram demonstrates two individual test

examples marked by the symbol x and the support vectors found for them by LSVR algorithms.

Again, the support vectors moved closer to those test examples.

Upon comparing left and right diagrams in both Figure 3.5 and Figure 3.6, it is clear that some
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Figure 3.7. The diagrams in the top panel show the distribution for two synthetic data sets. Each

data set comprises of two classes marked by 0 and at, respectively. The diagrams in the bottom

panel show the decision boundaries generated by PSVC. Each symbol represents one of the clus-

ters produced by the MagKmeans algorithm.

support vectors for nonlinear SVM are not chosen as support vectors for LSVM because they

are far away from the test examples. In the meantime, some non-support vectors for nonlinear

SVM have become support vectors for LSVM because of their proximity to the test examples.

Furthermore, the test examples marked as 2 and 3 in Figure 3.5 share several common support

vectors because of their close proximity to each other. Even though their support vectors are not

exactly identical, they have the potential of sharing the same decision surface, whichjustifies our

motivation for using clustering to reduce the computational cost ofLSVM.
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Figure 3.8. The diagrams in the top panel show the distribution for two synthetic data sets. Y-axis

represents the response and X-axis represents the predictor. The diagrams in the bottom panel

show the regression generated by PSVR. Each symbol represents one of the clusters produced by

the Vaercans algorithm.

B. Effect of MagKmeans and Vaereans in PSVM

Two synthetic data sets are generated for classification as shown in the top panel of Figure 3.7.

The bottom panel shows the corresponding decision boundaries generated by PSVC. For the first

data set shown in the left diagram of Figure 3.7, the horse-shoe shaped decision boundary is

approximated by 11 piecewise linear decision boundaries. For the second data set shown in the

right diagram, the spiral-shaped decision boundary is also approximated by 11 piecewise linear

decision boundaries. In summary, the results of this experiment demonstrate the ability of PSVC

to fit a complex decision boundary using multiple piecewise linear segments.

We generate another two synthetic data sets for regression tasks as shown in the top panel of

Figure 3.8. The bottom panels shows the regression function learned by PSVR. For the first data

53



Table 3.1. Description of the 18 UCI datasets used for classification.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Data # Instances # Attributes

Breast 699 10

Glass 214 9

Iris 1 50 4

KDDCup 1015062 38

Physics 171017 10

Yeast 1484 8

Robot 173841 26

Ecoli 336 7

Arcene 200 10000

Arrhyth 452 279

Balance 625 4

Car 1 728 6

OptDigit 3477 64

Contrace 1473 9

Dermatology 366 34

Sonar 208 60

Gisette 6000 5000

Krkopt 28056 6  
 

 
set in the left diagram of Figure 3.8, M-shape regression function is approximated by 5 piecewise

linear regression lines. For the second data set shown in right diagram, the sin wave regression

function is also approximated by 5 piecewise linear regression lines. The results of this experiment

demonstrate the ability of PSVR to fit a complex regression function using multiple piecewise

linear segments.

3.5.2 Performance Comparison on Real-World Data

In this experiment, we conduct several experiments on real-word data to compare the performance

of LSVM and PSVM against other supervised prediction methods.

We use 18 data sets (described in Table 3.1) from the UCI repository [154] to compare the

classification performances of HLSVC, SLSVC, and PSVC against KNN and nonlinear SVC in

terms of their accuracy. Some of the data sets such as “Breast”, “Glass”, “Iris”, “KDDcup IDS”,

“Physics”, “Yeast”, “Robot”, and “Ecoli” are multi-class prediction problems. Since the clustering

part of our proposed PSVM algorithms are designed for binary classification problems, we divide

the classes for these data sets into two groups and relabel one group as the positive class and
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Table 3.2. Description of the 18 UCI datasets used for regression.

 

 

 

 

 

 

 

 

 

Data # Instances # Attributes

AutoPrice 205 25

AutoMpg 398 7

Cancer 699 9

Concrete 1030 8

Hardware 209 8

Servo 167 12

Abalone 41 77 8

Stock 950 9     
9, ‘6

the others as negative class. For some of the large data sets such as “KDDCup , Physics”, and

“Robot” we randomly sample 4500 examples from each class to form the data sets. Another 8 data

sets are collected from UCI repository [154] to compare the regression performances of HLSVR,

SLSVR, and PSVR against KNNR and nonlinear SVR in terms of their R2. The data sets used

9, ‘6

here are “AutoPrice”, “AutoMpg”, “Cancer , Concrete”, “Hardware”, “Servo”, “Abalone”, and

“Stock” (described in Table 3.2). The attributes for every data set have been normalized so that

their range goes from 0 to 1. The experimental results reported in this study are obtained by

applying five-fold cross validation on the data sets. To make the problem more challenging, we

use one-fifth of the data for training and the remaining four-fifths for testing. Each experiment is

also repeated ten times and the final results reported are obtained by averaging the results over ten

trials.

A. Model Selection

Each prediction algorithm investigated in this study has one or more parameters that must be

specified by the user. For the KNN prediction, this corresponds to the number ofnearest neighbors

to be considered for each test example. For nonlinear SVC and SVR with RBF kernel (Equation

(3.1)), the user must specify the kernel width 0 to control the model complexity. Scaling parameter

C in SVC controls the tradeoff between classification margin and cost of misclassification on the

training set, while in SVR it controls the tradeoff between flatness of regression function and

prediction error. The same parameter C is also used in HLSVM, SLSVM, and PSVM. There

is an additional particular parameter c for SVR, HLSVR, SLSVR, and PSVR, which is used to

specify the width of the tube. Both SLSVM and PSVM also employ the RBF kernel to define the
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Table 3.3. Classification accuracies (‘70) for SVC, KNNC, HLSVC (KNN-SVC), SLSVC, and

PSVC on the 18 UCI datasets.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Data SVC KNNC HLSVC SLSVC PSVC

Breast 94.57 95.70 95.42 . 96.85 96.52

Glass 64.33 54.30 62.67 66.39 66.91

Iris 92.75 89.75 74.71 96.42 97.06

KDDCup 98.14 95.21 98.01 99.71 99.29

Physics 82.98 67.82 83.57 86.42 85.57

Yeast 92.31 93.36 94.62 96.00 95.83

Robot 85.35 78.64 85.87 87.23 86.23

Ecoli 93.41 93.30 93.33 94.89 94.44

Arcene 63.90 68.94 70.06 72.30 71.93

Arrhyth 68.78 66.74 68.45 70.22 69.86

Balance 89.10 88.70 90.62 92.02 89.94

Car 79.16 78.24 75.90 81.65 79.22

OptDigit 97.76 96.98 98.18 99.31 98.42

Contrace 69.85 69.01 71.79 75.01 72.44

Dermatology 97.65 97.37 98.41 98.68 98.72

Sonar 73.29 69.58 72.57 75.21 74.79

Gisette 85.91 78.53 85.93 88.14 86.99

Krkopt 69.04 69.09 68.16 72. 15 71.44       
similarity between training and test examples. For HLSVM, the similarity measure S(921+S, 23,-)

is equal to 1 if the training example (1:,- belongs to the K-nearest neighbor list of the test example

581+,» and 0 otherwise. For PSVM, the ntunber of clusters 10 is another parameter that must be

determined. Throughout our experiments, the parameter values are selected using ten-fold cross

validation on the training set. For example, the parameter K for the KNN classifier is chosen

based on the number of nearest neighbors that yields the highest accuracy according to ten-fold

cross validation on the training set. The same approach is also used to determine the parameters

a, C, K, 6 and/or is for nonlinear SVM, SLSVM, HLSVM, and PSVM. For our experiments, is

usually takes a value between x/l/2 and \/l.

B. Comparison of Classification Accuracy

The experimental results reported in this study are obtained by applying five-fold cross validation

on the data sets. To make the problem more challenging, we use one-fifth of the data for training

and the remaining four-fifths for testing. Each experiment is also repeated ten times and the accu-
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Table 3.4. Regression R2 for SVR, KNNR, HLSVR (KNN-SVR), SLSVR, and PSVR on the 8

 

 

 

 

 

 

 

 

 

UCI datasets.

Data SVR KNNR HLSVR SLSVR PSVR

AutoPrice 0.8934 0.8491 0.9166 0.9221 0.9209

AutoMpg 0.9425 0.9592 0.9580 0.9681 0.9643

Cancer 0.9126 0.8600 0.9423 0.9491 0.9584

Concrete 0.9039 0.9396 0.9473 0.9477 0.9424

Hardware 0.8274 0.8147 0.9078 0.9219 0.9262

Servo 0.6625 0.7109 0.7455 0.7986 0.7962

Abalone 0.9400 0.9367 0.9422 0.9438 0.9424

Stock 0.9757 0.9914 0.9901 0.9910 0.9963        
racy reported is obtained by averaging the results over ten trials. Table 3.3 summarizes the results

of our experiments. First, observe that, for most of the data sets (14 out of 18), nonlinear SVC

outperforms the KNN algorithm. One example is the “Physics” data set, in which the accuracy

for SVC is 82.98% whereas the accuracy for KNNC is considerably lower at 67.82%. Second,

the accuracy for PESVC does not seem to show significant improvement over nonlinear SVC. In

fact, the accuracy for HLSVC is worse than nonlinear SVC for the 8 of the 18 data sets: “Glass”,

“Iris”, “Car”, “Sonar”, “Ecoli”, “Arrhyth” and “Krkopt”. For “Iris”, the classification accuracy

drops from 92.75% (for nonlinear SVC) to 74.71% (for HLSVC). One possible explanation for

HLSVC’s poor performance is the difliculty in choosing the right number of nearest neighbors

when there are limited training examples available. Unlike HLSVC, the SLSVC algorithm con-

sistently outperforms nonlinear SVC. With the exception of“KDD Cup”, the difference observed

in their classification accuracies can be shown to be statistically significant based on Student’s

t-test. This should not come as a surprise because SVC can be considered as a special case of

SLSVC by setting the kernel width of similarity matrix S to 00. Finally, we observe that PSVC,

which is an eflicient implementation of LSVC, achieves comparable accuracy as SLSVC but still

outperforms nonlinear SVC for all the data sets.

C. Comparison of Regression Performance

Table 3.4 summarizes the results of regression performance on 8 data sets. It is observed that

SLSVR outperforms nonlinear SVR, KNNR, and HLSVR on most data sets with significantly

higher R2. The only exception is the “Stock” data set, where KNNR seems to perform slightly
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Figure 3.9. The left panel shows the runtime comparison among SVC, KNNC, HLSVC, SLSVC,

and PSVC in terms of classification task. The right top panel shows the amount of time spent for

MagKmeans clustering by PSVC (i.e., PSVC-Clustering) as opposed to the amount of time spent

for training LSVC and applying them to the test examples (i.e., PSVC-LSVC). The right bottom

panel compares the time spent by each algorithm to predict the class labels of test examples.

better than SLSVR. HLSVRperforms better than KNNR and SVR on 6 ofthe 8 data sets, however,

it is worse than SLVSR on all the data sets. The performance ofPSVR is comparable with SLSVR

and better than other methods on most data sets except the “Concrete”. PSVR even outperforms

SLSVR on the data set “Cancer”, “Hardware” and “Stock”. For example, the R2 for PSVR is

0.9584 on “Cancer”, which is higher than 0.9491 for SLSVR.

D. Runtime Comparison

The purpose ofthis experiment is to compare the efliciency ofLSVM against PSVM. Recall from

Section 3.2 that the main limitation ofLSVM is its high computational cost since a unique LSVM

model must be constructed for each test example. PSVM attempts to overcome this limitation

by partitioning the training examples into a small number of clusters and building a linear SVM

model for each cluster. Figure 3.9 shows the computational time (in seconds) for training and
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testing difierent classification models using the “Physics” data set. To evaluate its performance,

we choose the two largest classes ofthe data set and randomly sample 600 records from each class ‘

to form the training set. We then apply LSVC and PSVC separately on the data set, while varying

the number of test examples from 600 to 4800. The diagram on the left panel of Figure 3.9

shows the total time spent by each algorithm for building models and testing. Notice that the

time consumed by SLSVC, HLSVC, and PSVC grows linearly with the number of test examples.

However, the run times for both HLSVC and SLSVC are considerably longer than PSVC. We may

further decompose the runtime for PSVC into two parts: PSVC-Cluster, which is the time needed

to apply the MagKmeans clustering algorithm, and PSVC-LSVC, which is the time needed to

build a separate model for each cluster. The diagram on the top right panel of Figure 3.9 shows

that most of the computational time for PSVC is spent on clustering. If the clustering time is

excluded, the remaining time needed to build a linear SVC model for each cluster as well as the

time to evaluate each test example is considerably shorter than the overall training and testing

times for nonlinear SVC, as demonstrated in the bottom right panel of Figure 3.9. Although we

only show the results for the classification task here, regression is expected to behave similarly

since it uses a similar optimization procedure.

E. Summary

The SLSVM algorithm generally outperforms both SVM and KNN but at the expense of longer

computational time. PSVM helps to improve its computational efficiency, while achieving com-

parable accuracy as the SLSVM algorithm.

3.5.3 Application of LSVM and PSVM to Earth Science Data

In this experiment, we applied our LSVM and PSVM algorithms to Earth Science data sets with

spatial and temporal dependencies. Four prediction tasks are considered, two for classification

and another two for regression. All these four data sets are downloaded from the UCI machine

learning repository [154]. A summary of the data sets and their associated prediction tasks is

provided in Table 3.5, while the details are described as follows.
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Table 3.5. Description of data sets used for prediction with spatial and temporal dependencies.

 

 

 

 

 

Data # Instances # Attributes Prediction Task Dependencies

CoverType 581012 54 Classification Spatial

Ozone 2536 73 Classification Temporal

Elnino 178080 12 Regression Spatio-temporal

ForestFire 517 l 3 Regression Spatio—temporal       

o The CoverType data set is used to predict the types of forest cover [22] of an unknown re-

gion. It is an important classification task to help natural resource managers obtain basic

descriptive information of forested lands to support their decision-making ecosystem man-

agement strategies. A set of cartographic measures are used as predictor variables such as

soil type, hill shade, slope, etc. Spatial information such as the distance from a region to

water surface or roadway is available to be incorporated to the LSVM models, which makes

it a spatial prediction problem.

0 The Ozone data set is used to classify the days in which the ground-level ozone reaches a

dangerous level [224]. Studies have shown that elevated ground-level ozone is harmful to

human health, e.g. it causes asthma, chest pain, coughing, and decreases in lung function

[71]. It also has negative effects on vegetation and ecosystems, leading to reductions in

agricultural and commercial forest yields, and increases in plant’s susceptibility to disease,

pests, and other environmental stresses. A number of climate variables such as wind speed,

solar radiation, temperature, and precipitation are used as the predictor variables. The tem-

poral neighborhood is defined based on the day and month in which the measurement was

taken. As a result,it is a temporal prediction problem.

0 The Elnino data set is used to predict the sea surface temperature [124] in equatorial Pacific.

It is a regression task that can help in the understanding and prediction of El Nino/Southem

Oscillation (ENSO) cycles, which caused many problems throughout the world, e.g. de-

structive flooding from increased rainfalls in Peru and the Unites States and the drought

and devastating brush fires in western pacific areas. The data set contains oceanographic

and surface meteorological attributes such as wind speed, humidity etc., which are recorded

from a series of buoys positioned throughout the equatorial pacific. Both spatial (latitude

and longitude of the locations for bouys) and temporal information (day/month/year read
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Table 3.6. Classification accuracies (%) for SVC, KNNC, HLSVC (KNN-SVC), SLSVC, and

PSVC (using spatial or temporal dependencies) on the 2 Earth Science data: CoverType and

Ozone.

 

 

 

 

Data SVC KNNC HSVC SLSVC PSVC

CoverType 86.21 67.40 73.33 89.12 89.43

Ozone 93.35 92.30 91.56 94.80 94.38       

Table 3.7. Regression R2 for SVR, KNNR, HLSVR (KNN-SVR), SLSVR, and PSVR (using

spatial or temporal dependencies) on the 2 Earth Science data: Elnino and Forest Fire.

 

 

 

 

Data SVR KNNR HSVR SLSVR PSVR

Elnino 0.9215 0.9692 0.9437 0.9817 0.9893

ForestFire 0.0810 0.0034 0.0914 0.1 124 0.1 103       

from the bouys) is available to be incorporated into LSVM models, which makes it a spatio-

temporal prediction problem.

a The ForeFire data set is used to predict the burned area of possible forest [54] fires for a

given region. It is a regression task that can help to reduce the damages that can appear if

fire occurs by improving the organization ofprevention measures and storage offirefighting

resources. Meteorological information such as wind speed, relative humidity, temperature

etc. are available as the predictor variables. Both spatial (x,y spatial coordinate) and tempo-

ral (day of the week, month of the year) are used for “localization” in LSVM model, which

makes it a spatio-temporal prediction problem.

Table 3.6 presents the classification results for the CoverType and Ozone data sets. For the

CoverType data, PSVC performs the best with highest accuracy 89.43%. SLSVC performs better

than nonlinear SVC, KNNC and HLSVC. For the Ozone data, SLSVC is the best with 94.80%

accuracy. PSVC is slightly worse but still comparable to SLVC, and it is better than SVC, KNNC

and HLSVC. Table 3.7 shows the R2 of regression on the Elnino and ForestFire data sets. PSVR

performs the best with R2 = 0.9893 on the Elnino data set. SLSVR performs the best on the forest

fire data set with R2 = 0.1124, while PSVR second it with comparable R2 = 0.1103. Both results

shows the advantage of LSVM and PSVM on predicting Earth Science data by incorporating

spatial and temporal neighborhood information.
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Figure 3.10. Effect of varying the number of clusters K. on the performance of PSVC.

3.5.4 Sensitivity Analysis

The number of clusters n is an important parameter in PSVM. In this experiment, we perform

sensitivity analysis on this parameter using the “Robot” data set. We sampled 4500 records from

each class of the data set and varied rt from 2 to 46. For each value of re, we perform 10-fold

cross validation, using one-tenth of the data for training and the rest for testing. The experiment

is repeated ten times and we reported their average accuracy. Figure 3.10 shows the accuracies

of PSVC for each n‘ along with those of SVC, KNN, SLSVC, and HLSVC. The accuracy of

PSVC increases rapidly until 5 reaches 5. PSVC outperforms HLSVC after is = 15 and becomes

comparable to SLSVC when n is sufficiently large. We also recorded the computational times

for SVC, KNN, HLSVC, SLSVC, and PSVC in Figure 3.11. The results confirmed our earlier

observation that PSVC spends considerably less time than SLSVC and HLSVC. Furthermore, the

computational time for the training and testing parts of PSVC (PSVC-LSVC) is more efficient

than regular SVC when n g 30, as shown in the right panel of Figure 3.11. Although we only

present experiments here for the classification task, our conclusion applied to PSVR too.
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Figure 3.11. Classification runtime comparison among SVC, KNNC, HLSVC, SLSVC, and

PSVC when varying the number of clusters n in PSVC.

3.6 Summary

Prediction tasks such as classification and regression for regular data sets have been studied for

decades in statistics, data mining, and machine learning. Prediction with spatial and temporal de-

pendencies remains a challenging problem, especially for data sets that are not evenly distributed

across different time periods and locations. In this chapter, we proposed a localized prediction

algorithm to address this issue. The main contributions of this work are:

c We proposed a localized Support Vector Machine framework for both classification and

regression, which incorporates the neighborhood information between examples into SVM

learning and testing such that those training examples that are close to the test example

contribute more to the development of local model. This framework has several advantages

compared with standard Support Vector Machine and K-nearest neighbor algorithm. First,

by building local linear Support Vector Machine model for each test example, the difficulty

in choosing an appropriate kernel function for learning global nonlinear Support Vector
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Machine is avoided. Second, building multiple local SVM models performs much better

than one global SVM model as demonstrated by experiments on a number of real-world

data sets.

However, building a separate SVM model for each test example is computationally infeasi-

ble for large scale data sets. To address this limitation, we developed a more efficient im-

plementation of the algorithm called profile Support Vector Machine. PSVM first extracts

a small number of clusters from the data set using supervised algorithms called MagK-

means and Vaereans, for classification and regression tasks respectively, which extend

the K-means algorithm to maximize the variance of the labels or response values inside

each cluster. After applying the supervised clustering step, a local model is trained for each

cluster. Our experiments on real data sets showed that PSVM reduces the training cost

significantly while maintaining a comparable accuracy to LSVM.

We further extend the LSVM and PSVM frameworks to spatial and temporal prediction

tasks by incorporating the spatial, temporal, or spatio-temporal neighborhood information.

The extended methods are applied to Earth Science data sets and the results demonstrate

the success of our proposed algorithm with better performance compared with K-nearest

neighbor and Support Vector Machine algorithm.



CHAPTER 4

Long-Term Time Series Forecasting

Time series forecasting is a particular prediction task that is concerned with predicting the future

values of the time series based on its historical observations or information from other variables.

The formal definition of time series prediction is given as follows:

Definition 7. (Time Series Forecasting) Given a time series XL = [2:1, 3:2, of with 1

historical values, the task of time series prediction is to predict its future ’11. values XL =

T

l$l+1i $l+2i ---. $l+ul -

A typical time series prediction technique first constructs a training set (as shown in Table 4.1)

by running a sliding window of length p + u (p is the training window and u is the prediction

window) along the historical time series as illustrated in Figure 4.1. Then a regression model is

built from the training set and is further applied to predict the future it values. When the prediction

window it is long, we called it a long term time series forecasting problem.

In this chapter, we investigate the long term time series forecasting problem with applications

to climate projection. The main aspects of the work are summarized as follows:

0 We first discuss the existing issues in multi-step ahead time series prediction by investigat-

ing three prediction frameworks: multi-stage prediction, independent value prediction and

parameter prediction. Their advantages and disadvantages are compared with each other

from both theoretical and empirical perspectives.

o A semi-supervised multivariate time series prediction method is proposed to alleviate the

error accumulation problem in long term time series forecasting. Extensive experiments
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Table 4.1. Traning Set D = X x Y

 

X’ = [X1, ...,X,] Y = M, ...,Yu]
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have been conducted on a variety of data sets to demonstrate the effectiveness of the pro-

posed algorithm compared to other supervised learning methods for long term time series

forecasting.

o A covariance alignment method is also developed to deal with the inconsistencies between

historical observation data and future simulation data of the predictor variables in climate

projection. Experimental results show significant improvement by semi-supervised predic-

tion with data calibration.

The rest of this chapter is organized as follows. Section 4.1 introduces some notations and con-

cepts for time series forecasting. Section 4.2 presents a study on the issues of the long term time

series forecasting. Section 4.3 demonstrates the value of unlabeled data for regression. Section

4.4 proposes the semi-supervised multivariate time series prediction algorithm with data calibra-

tion technique for long term forecasting. Section 4.5 presents the experimental results on both

benchmark and Earth Science data sets.

4.1 Preliminaries

This section presents some background on time series forecasting.

4.1.1 Single Step and Multi-step Time Series Forecasting

Time series prediction can be categorized into single step time series prediction and multi-step

time series prediction based on the number of prediction steps. The problem of single step ahead

prediction is to the predict only the next value 3314.1 with u = 1 while the multi-step time series

prediction problem is to predict the fiiture u > 1 values [1121“, 1:143, ..., xl+u]T. Multi-step time

series prediction with long prediction window is identified as the long term time series forecasting

problem. In long term time series forecasting, the length of prediction window can be as long as
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Figure 4.1. A sliding window is used to create the regression training set D=X’+Y.

the length of historical data or even much longer. The prediction error for multi-step ahead time

series forecasting is evaluated using the R-square method described in Equation (3.26).

4.1.2 Univariate and Multivariate Time Series Forecasting

Time series forecasting can also be categorized into univariate time series prediction and multi-

variate time series prediction. Univariate time series forecasting [29] predicts the future values

of a variable [12:1+1”_l+u]T by building an auto-regression model f on its own historical values

]T

[Jilml such as:

xii = f(xt—1’$t—2, ' ' ' amt—p) (41)

As illustrated in Figure 4.2, multivariate time series prediction [138] predicts the future values of

the target time series by utilizing not only its own historical values but also information from other

related time series. A formal definition of multivariate time series prediction is given as:

Definition 8. (Multivariate Time Series Prediction) Let DL = {XL, YL} be a multivariate

time series oflength l andppredictor variables, the objective ofmultivariate time series prediction
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Figure 4.2. Multivariate time series prediction.

is to predict thefuture values ofthe response variable XU-

In the above definition, XL = [m1,:z:2, ...,azl]T is a p-dimensional sequence of values for

the predictor variables, which can also be represented as XL = [X1,X2, ..., Xp]. YL 2

JT

1311. yg, y; is the corresponding values for the response variable. Multivariate time series

prediction learns a target function f from the historical data ‘DL as:

316 : f(x1t’$2t7 ' ' ' Expt7 ' ° ) (42)

The model is applied to the fiiture unlabeled data XU = [w1+1, an”, ..., ml+u]T and predicts the

future values of the response variable, YU = [yl+1, yl+2, yl+u]T.

4.1.3 Regression Models for Prediction

Before we get into the problem of long term time series forecasting, we first introduce three widely

used regression techniques: Multiple Linear Regression, Recurrent Neural Networks and Hidden

Markov Regression. These methods can be used for both univariate and multivariate time series

prediction.

A. Multiple Linear Regression

Multiple Linear Regression (MR) models the relationship between the response variable y and

the predictor variables X = [X1 , X2, ..., X1,] using a linear equation:

P

y = sz‘Xi +100 +6

i=1
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Figure 4.3. A simple example ofElman Network to model AR(3) model for univariate time series.

, where 6. corresponds to a random noise term with zero mean and variance 0?. The coefiicient

vector w is estimated using the least square method by minimizing the sum of squared error on

the training data with solution:

w = (XTX)—1XTy

The variance is estimated using SSE/u, where u is the size of the prediction window. For uni-

. . . . . . T
variate time series prediction, we use mt as the response variable and [33.4, 94-2, xt-p] as

the predictor variables, which corresponds to the auto-regression model. For multivariate time

series prediction, the predictor variables come fiom other related time series.

B. Recurrent Neural Networks

Recurrent Neural Networks (RNN) has been successfully applied to noisy and non-stationary time

series prediction. In RNN, the temporal relationship of the time series is explicitly modeled using

feedback connections [91] to the internal nodes (known as hidden units). An RNN model is trained

by presenting the past values of the time series to the input layer of the Elman back propagation.

network [73]. The weights of the network are then adjusted based on the error between the true

output and the output predicted by the network until the algorithm converges. Figure 4.3 illustrates

a simple Elman network of AR model with order 3 for modeling a univariate time series. Before
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Figure 4.4. Hidden Markov Regression Model.

the network is trained, the user must specify the number of hidden units in the network. and the

stopping criteria of the learning algorithm. RNN have the strength ofmodeling complex nonlinear

regression models.

C. Hidden Markov Regression

In Hidden Markov Model Regression, a time series is assumed to be generated by a doubly stochas-

tic process, where the response variable is conditionally dependent on the values of the predictor

variables as well as an underlying unobserved process. The unobserved process is characterized

by the state space 1" = {31, 32, - - - ,sN} and is assumed to evolve according to a Markov chain,

QL = [q1,q2, ql]T, where q,- E P (as shown in Figure 4.4). The transition between states is

governed by a N x N transition probability matrix A = [dz-j]. Each state 3,- E I‘ is associated with

an initial probability distribution 7r,- and a regression function fi(a:t). For brevity, we consider a

multiple linear regression model, f,;(:r:t) = win); + diet, where (wi, 02-) are the regression pa-

rameters, and Ct ~ N(0, 1). Given a set of predictor variables rat at time t, the response variable

yt is generated based on the following conditional probability:

(yt — thmtTl2

2

20%

 

_1

Pqtlytlwt) = (27.03,) 2 exp - (4.3)

The likelihood function for the sequence of labeled observations in ’DL = {XL, YL } is given
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by

l

L = ZHPqt(yt|$t)p(QtIQt—1)

 

QLtzl

l T 2

——- 2:11.. eerie. —— aw...)(It—lqt ‘Qt p 202
QLtzl (It

The model parameters

N V N

A = (H. 14.3“”) = ({Wi}i=1s{aij}in=1a{0i i=1.{Wi}i=1)

are estimated by maximizing the above likelihood function using the Baum-Welch (BW) algo-

rithm [14]. The model parameters can be estimated iteratively using the following quantities,

which are known as the forward (0.) and backward (6) probabilities:

with?) = Mum/2, - ~ .yt.9t == Z'IXL)

__ 7rii'DiCl/ilml). ift = 1;

[2le a.-. man] no.) otherwise.

p(yt+1.yt+2. . -- .3/ll(1t = 2'. XL)

1 'ft = i-
{ ’ l ’ (4.5)

(4.4)

6.90)

N , . .
23:1 aiij(yt+1)t3t+1(J). otherWISe.

Further details on the derivation of the parameter update formula using these quantities can be

found in [85]. Upon convergence of the BW algorithm, the HMMR model can be applied to the

unlabeled data XU in the following manner. First, the probability of each hidden state at a given

future time step is estimated as follows:

2i 0 (i)a.- . .

T174. , ifm = 1;

p((ll+m = SleL) = { la! 1)

2i aikP(Qt+m-1 = SiIYL). 1 < m S u.

Next, the future value of the response variable is estimated using the following equation:

fq,(a:t) = E[yt] = Zine-mint... = em) (4.6)

4.2 Problem Study on Long-Term Time Series Prediction

In this section, we studied the issues for long term time series prediction using traditional pre-

diction methods. Three approaches: multi-stage prediction, independent value prediction, and.

parameter prediction, are used to solve the multi-step ahead time series prediction problem and

compared with each other. These methods are described as follows:
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Multi-stage Prediction is a direct extension of single step time series prediction. It predicts the

future values of a time series in a step by step manner. We first predict n+1 using the previous

p values, [r1+1_p, ..., $14, :14]? We then predict a21+2 based on its previous p values, which

includes the predicted value for 1:1“. The procedure is repeated recursively until the last value,

3.7+”, has been estimated. In this approach, it is sufficient to construct a single model for making

the prediction.

Independent Value Prediction predicts the value at each time step using a separate model.

Given the initial data set shown in Table 4.1, we first create it training sets, each of which has the

same input X, but different output Y. We use Y(1) as the output variable for the first training set,

Y(2) as the output variable for the second training set, and so on. By learning each training set

independently, we obtain it regression models {fzy'i = 1, 2, - - - ,u}. The models are then used to

predict the next it values as follows: 2.3+, = f,(X),i = 1, 2, ..., u.

Parameter Prediction transforms the problem of predicting u output values into an equivalent

problem of predicting d + 1 parameters. For each record in Table 4.1, we fit a parametric function

g to the output vector Y. Let [00,01, ---th] denote the parameters of the function 9. We then

replace the original output vector Y = [Y(1), Y(2), ..., Y(ii.)] with a modified output vector Y’ =

[c0, c1, ..., CdJT. We now construct d + 1 regression models {f,-,i = 0,1,2, - - . ,d} one for each

output column 1”. The models are then applied to predict the d + 1 parameters of a test sequence.

The test sequence is reconstructed by substituting the predicted parameters into the parametric

function 9. While this methodology is generally applicable to any family of parametric functions,

we use polynomial functions in our experiments.

4.2.1 Error Accumulation

Error accumulation refers to the propagation of past prediction errors into future predictions. To

gain a better insight into this problem, we employ the bias-variance decomposition for squared

loss functions. Consider a time series generated by the model:

113:: f(17t—1.$t—2. - " .‘It—p) + 6(0.02)
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Let [331,1r2, . . . ,xdT denote the historical values and [yl+1, y1+2, . . . ,yl+,,]T denote the future

T

observed values, and [pf+1, yz“+2, . . . man] be the values generated by the deterministic model

f. In other words,

312' = y; + 6(0. 0'2).

We use the notation [391+1,,t)1+2, . . . ,Ql+u]T to denote the values predicted by a regression model

g. The MSE (mean square error) at each step can be decomposed into the following three

components[26]:

MSEU) = Elli/j - mg]

= (1307.) - if)? + Elttj - Eta-n2] + Eltyj - .921

The first term represents the squared bias of the model. The second term represents the variance

of the model. The third term represents the variability due to noise. The following example

illustrates the error accumulation problem for the noise term. Consider AR(2) model:

It+1 = a133t+ a2-73t—1 + 6.

with 6 ~ N (0, 02 ). Suppose we were able to model accurately the coefficients using MLR. For

the multi-stage approach, we have:

yi+1 = (1.12:, + a2351-4 + C1 = 914.1 + E1

yi+2 = all/1+1 + 0231 + 62 = 3314.2 + (0161 + 62)

For independent value prediction, we have

yz+1 = “111+0'2$l—1+€1

311+2 = (Oi1L a2)r1+ (WWW—1 + (61161 + 62)

The preceding example shows the accumulation of errors due to noise for both multi-stage pre-

diction and independent value prediction as the prediction step increases. Thus it is unavoidable.

To analyze the error accumulation due to the bias and variance of a model, we generate the

following time series: Xt = 0.418Xt_1 + 0.634Xt_2 + 6, 6 ~ N(0, 0.1). The length of the time

series is set to 1000 and the prediction window is u = 50. To ensure there is sufficient bias in

the model, we set p = 1. The bias and variance of the models are estimated by generating 500
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Figure 4.5. Bias and variance for MLR (left) and HMMR (right).

bootstrap replicates of the training set ’D and inducing a model 9 from each bootstrap replicate.

The models are then applied to the test sequence to obtain 500 estimated values yjj for each pre-

diction step j. The empirical bias is computed by taking the average value of the 500 predictions

E(323-) and subtracting it from the value predicted using the deterministic model. The variance

of the models can also be estimated as follows: var(j ) = E[(3% — E(fij))2]. Figures 4.5 illus-

trate the bias and variance for multi-stage and independent value predictions (using MLR and a

HMMR as the underlying regression methods). Both figures show that the bias and variance for

multi-stage prediction grows steadily with increasing time steps, whereas the bias and variance

for independent value prediction do not appear to be propagated into future predictions.

4.2.2 Learning Difficulty

Multi-stage prediction builds a single model to fit the entire time series. In contrast, we need to

build it models for independent value prediction and d+ 1 models for parameter prediction, which

means they are more expensive.

For parameter prediction, the learning difficulty depends on how easy it is to find the appropriate

function that fits the output vector. To compare parameter prediction against independent value

prediction, we apply them to the monthly milk production data using it = 12 and w = 12. For

parameter prediction, we use a polynomial function to fit the output vector and vary the degree of

the polynomial from 0 to 11. We then employ MLR to predict the parameters of the polynomial.

The bottom diagram of Figure 4.6 shows the results of 1 — R2 for different degree. Observe that
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Figure 4.6. Prediction Results (p=12,u=12).

the 1 — R2 for parameter prediction drops dramatically when the polynomial degree increases to

3 and decreases slowly thereafter. This results suggest that it is sufficient to fit a polynomial of

degree 4 to the output vector and achieves comparable accuracy as independent value prediction.

4.2.3 Smoothness of Prediction

Another factor to consider is the influence of noise on the prediction approaches. To do this, we

conduct an experiment using a simple, stationary time series, i.e., white noise, as shown in the

left panel of Figure 4.7. The right panel of Figure 4.7 shows that multi-stage prediction tends

to smooth out the time series to its mean value after p time steps. Such a smoothing effect is

not present in independent value prediction, which makes spurious predictions around the mean,

because the prediction at each time step is modeled independently. This method may suffer from

overfitting as it tries to capture the fluctuations ofthe noise time series. For parameter prediction,

the best fit model ofthe data is found to be a polynomial ofdegree zero. Even though the parame-

ters are predicted independently, the smoothness ofthe time series is guaranteed by the parametric

function used to fit the output vector.
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Figure 4.7. White Noise WN(0,0.5) (left) and predicting Results (p=12,u=100,d=6)(right).

4.2.4 Discussion

The study in this section discovered that present multi-stage prediction framework suffers from

error accumulation problems when the prediction period is long and the historical data is relatively

short. Independent value prediction and parameter prediction can slightly alleviate this problem;

however, they have their own issues such as difficulty in leaming and sensitive to noise. Their

performances are further compared in Section 4.5.2 on a number of real data sets.

Fortunately, there are alternative ways to improve long term time series forecasting by multi-

variate prediction that utilizes information from other related time series. Future data of predictor

variables can be generated by simulating potential scenarios using computer-driven models, such

as global climate models. However, the data generated by these models are currently utilized

in a supervised learning setting, where a predictive model trained on past observations is used

to estimate the future values. In the rest of this chapter, we present a semi-supervised learning

framework for long-term time series forecasting based on Hidden Markov Model Regression. A

covariance alignment method is also developed to deal with the issue of inconsistencies between

historical and model simulation data. We evaluated our approach on data sets from a variety

of domains, including climate modeling. We start by discussing the value of unlabeled data on

regression in the next Section.
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4.3 Values of Unlabeled Data on Regression

There have been extensive studies on the effect of incorporating unlabeled data to supervised clas-

sification problems, including those based on generative models [56], transductive SVM [112],

co-training [25], self-training [229] and graph-based methods [24] [230]. Some studies concluded

that significant improvements in classification performance can be achieved when unlabeled ex-

amples are used, while others have indicated otherwise [25][51][57][l99]. Blum and Mitchell

[25] and Cozman et al. [51] suggested that unlabeled data can help to reduce variance of the

estimator as long as the modeling assumptions match the ground truth data. Otherwise, unlabeled

data may either improve or degrade the classification performance, depending on the complexity

of the classifier compared to the training set size [57]. Tian et al. [199] showed the ill effects of

using different distributions of labeled and unlabeled data on semi-supervised learning.

Recently, there has been growing interest on applying semi-supervised learning to regression

problems [228][30][53][23l]. Some of these approaches are direct extensions from their semi-

supervised classification counterparts. For example, transductive support vector regression is pro-

posed in [53] as an extension to transductive SVM classifier. Zhou and Li developed a co-training

approach for semi-supervised regression in [228]. Their algorithm employs two KNN regressors,

each using a different distance metric. Another extension of co-training to regression problems

was developed by Brefeld et al. [30]. Graph based semi-supervised algorithms [24][230] utilize

a label propagation process to ensure that the smoothness assumption holds for both labeled and

unlabeled data. An extension of the algorithm to regression problems were proposed by Wang et

al. in [210]. Zhu and Goldberg [231] developed a semi-supervised regression method that incor-

porates additional domain knowledge to improve model performance. Since all of the previous

approaches ignore the temporal dependencies between observations, they are not well-suited for

time series prediction problems.

This section provides an example to illustrate the value ofunlabeled data for regression analysis.

Consider the diagram shown in Figure 4.8, where the x-axis corresponds to a predictor variable

and the y-axis corresponds to the response variable. The data set contains 10 training examples

(labeled 1 — 10) and 3 unlabeled examples (labeled 11 — 13). The diagram on the left shows the

results of applying supervised linear regression while the diagram on the right shows the results
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Figure 4.8. The value of unlabeled data for regression analysis

  

 

of applying semi-supervised linear regression. The solid line 1) indicates the true function from

which the data is generated.

The dashed line a in the left diagram corresponds to the target function estimated from training

examples. In the right diagram, the response values for the unlabeled data are initially computed

using the values of their nearest neighbors. The target function, represented by the dashed line

c, is then estimated from the combined training and previously unlabeled examples. Clearly,

augmenting unlabeled data in this situation helps to produce a target function that lies closer to

the true function. This example also illustrates the importance of using local prediction methods

(such as nearest neighbor estimation) to compute the response values of the unlabeled examples.

If the unlabeled examples were estimated using the initial regression fimction instead, then adding

unlabeled data will not change the initial model.

It is worth noting that current research in semi-supervised learning suggests unlabeled data are

valuable under two situations. First, the model assumptions should match well with the underly-

ing data. Second, the labeled and unlabeled data must be generated from the same distribution.

Otherwise, incorporating unlabeled data may actually degrade the performance of a predictive

model [199][57].

78



4.4 Semi-supervised Multivariate Time Series Prediction

This section describes our proposed semi-supervised Ieaming algorithm for HMMR and a data

calibration approach to deal with inconsistencies between the distributions of labeled and unla-

beled data.

4.4.1 Semi-Supervised HMMR for Long Term Time Series Forecasting

The basic idea behind our proposed approach is as follows. First, an initial HMMR model is

trained from the historical data using the BW algorithm described in Section 4.1.3. The model is

then used, in conjunction with a local prediction model, to estimate the response values for future

observations. The local model is used to ensure that the target function is sufficiently smooth. The

estimated future values, weighted by their confidence in estimation, are then combined with the

historical data to re-train the model. This procedure is repeated to gradually refine the HMMR

model.

We now describe the details of each step of our algorithm. Let A0 be the initial set of model

parameters trained from the historical observations DL. We use A0 to compute the initial estimate

of each response value in YU:

fit = ZPW = SilYL)Wz'$lr, t= l + 1,---,l +11,

2

which is similar to the formula given in Equation (4.6).

A principled way to incorporate unlabeled data is to require that the resulting target function

must be sufficiently smooth with respect to its intrinsic structure [227]. For regression problems,

this requirement implies that the response values for nearby examples should be close to each other

to ensure the smoothness of the target function. We obtain an estimate of the local prediction of

the target variable y for a future time step t as follows:

2 Sort) mj)yj

ijQk(mt)

yt = Z S($t,mj)

‘L'jEQkCCtl

 
,t=l+l,...,l+u

where 91((930 is a subset of observations in XL that correspond to the K-nearest neighbors of

the unlabeled observation mt and S(mt, mj) is the similarity measure between two observations.

79



Based on their global and local estimations, we compute the weighted average of the response

value at each future time step t as follows:

Qt=tt27t+(1—u)§t,t=l+1,...,l+'u. (4.7)

The parameter ,u controls the smoothness ofthe target function; a smaller weight means preference

will given to the local estimation.

The newly labeled observations from the fiiture time period will be augmented to the training set

in order to rebuild the model. As some of the predicted values gt may deviate quite significantly

from either the local or global estimations (depending on ,u), incorporating such examples may

degrade the performance of semi-supervised HMMR. To overcome this problem, we compute the

confidence value for each prediction and use it to weigh the influence of the unlabeled examples

during model rebuilding. Let ct denote the weight assigned to the value of gt:

1 t=12~- l'
= 3 . 1, ,’ 4.8

Ct {exp[—dt], t=l+1,l+2,---,l+u. ( )

where (it = [fit — ytl/(gjt + gt). Equation (4.8) assigns a weight of 1 to each historical obser-

vation YL- This is based on the assumption that there is no noise in the historical data. Even if

such an assumption is violated, our framework may accommodate noisy observations by applying

Equation (4.8) to both training and future observations. The weight formula reduces the influence

of future observations whose predictions remain uncertain. After the model has been revised, it

is used to re-estimate the response values for the future observations. This procedure is repeated

until the changes in the model parameters become insignificant.

We now describe the procedure for estimating the parameters of the semi-supervised HMMR

model. Let Y", denote the estimated response values for the unlabeled data obtained from Equation

(4.7). The likelihood fimction for the combined data is:

L = Z PA(YL, Yu, leL, XU)

q

l l+u

= 2(HGQt~lthQt(ytlwt) H aqt-1qtpqt(3]t§ctlmt))

 

 

Q t=1 t=l+1

l T 9

—1 (w -W CB )‘._ 2 (If, t

— 2(Haq._1q.<2mq.> [— ]

l+u . T 2
_1 c (2 —w :1: )

2 tJt Qt t
x H aqtm19t(27mqt) Zexp [— 202 ])

t=l+1 Qt
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Algorithm 5 Semi-Supervised Hidden Markov Regression for Time Series Prediction

Input: Labeled multivariate time series for the historical period, ’13L = {XL, YL} and unla-

 

beled multivariate time series for the future period XU-

Output: Future response YU

1: Learn the initial HMMR model A0 = (H, A, 2, W) using the training data DL.

I
Q

: Perform local estimation ofYU as in Equation (4.7)

3: repeat

4: Perform”global estimation ofYU using the current parameters in A as in Equation (4.6)

5: Calculate the final estimation ofYU as in Equation (4.7)

6: Calculate the confidence of the predicted values in YU as in Equation (4.8)

7: Combine (gt; ct) estimated in steps 4 and 5 with the training data to re-train the HMMR

model A’ = (H’, A’, 2’, W)’.

8: until Convergence (HA’ — All << 6)
 

where
T

Ct(3/t _ thl't )2

_ 2

2%:

 

1
c 2 _

Pqt(3/t§ Ctlict) = (ZWth) 2 exp

with Ct = 1 for historical observations. Unlike the supervised learning case, the weights are used

to determine the least square error (:9, — wqtm; ) for each future observation. To maximize the

likelihood function, observations with large weights will incur higher penalty if their response

values disagree with the predictions made by the current HMMR model. Such observations are

therefore more influential in rebuilding the HMMR model.

To determine the model parameters that maximize the likelihood function, we introduce the
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following auxiliary function:

0(A, A’)

= ZPA(YL,Yu,Q|X) IHPAI(YL)Y’UAQ|X)

(I

N l+u

= Z Z (2122.1:=222=2)PA(YL,Y2,QIX)ma;,
q 2}sz—=1t

+ 22(1q1=-2)PA(YL2Y22,Q|X)11m;
(49)

q 2': 1

N l+u

+ 222022:2)PA(YL,Y2,QIX)1np(.,;,,w;)(2z;c21222)
q 22:12=1

whereX = [XL;XU] and

1,_ 22, ift=1,---,z;

Jt‘ 2),, ift=l+1,---,l+u.

It can be shown that maximizing the auxiliary function will produce a sequence of model param—

eters with increasing likelihood values. Taking the derivative of 0(A, A’) in Equation (4.9) with

respect to each model parameter in A’, we obtain the following update formula:

 

 

T930210 7'1021'1 7"-73023320 T230227
w; = . . . X .

TIL‘p,.’II0 Tip.$1 ' ' ° T$p,$p 7.151),?)

I 1 l
2 T 2

02- : 1+” 26% Ct’yt WW2)

Z at('l)/3t() 2:1
2:1

(+22

+ 2 04(2))'3t(2') ~w2mtT)2}

t:[+1

1 1—1

I . .

023' = 2+22—1 ' . Zat(2)az'j1)j(02+12yt+1)fit+1(])

Z at(z)/3t(")

2:1

l+u 1

+ Z at(i)az'jpj(ct+12fit+1>fit+1(j)}

t=l+1

7r,- _ a1(i)fi1(z)

1 — N

2: 02(1)

i=1
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where:

(.) { 7T2P2(U’12y1),ift =1

at Z
. .

[23:1 at—1(J)aj2'] Pi(Ct,yt),lft > 1

. 1 Vi, ift = 1

23%?) = { N .. _ 23 . ’f 1

23:1 023P](Ct+12yt+1)2 t+1(])21 t>

[+22

7212222]- : that(i)fit(i)mtimtj

2:1

1 [+12

712,4, = Zetat(i)l32(i)$t2yt+ Z Ctat(i)./32(i)$t2l)2

 
Pj(ct,2yt) = (27ragt) 2 exp [_ 2 22

042

The overall procedure for our proposed semi-supervised algorithm is summarized in Algorithm

4.4.1. After estimating the model parameters A, the response values for future observations are

predicted using Equation (4.6).

4.4.2 Data Calibration

The previous section described our proposed algorithm for semi-supervised time series prediction.

The underlying assumption behind the algorithm is that the predictor variables for labeled and

unlabeled data have the same distribution. This may not be true in real-world applications such as

climate modeling or urban growth planning, where the unlabeled data are obtained from a different

source (e.g. model simulations) or their distributions may have been perturbed by changes in the

modeling domain (e.g. increase of population growth or greenhouse gas concentration).

Several recent studies on semi-supervised classification have suggested the negative effect of

unlabeled data, especially when a classifier assumes an incorrect structure ofthe data [5 7] or when

the labeled and unlabeled data have different distributions [199]. None of these studies, however,

have been devoted to regression or time series problems. Our experimental results demonstrate

that, while in most cases, semi-supervised HMMR indeed outperforms its supervised counterpart,

for the climate modeling domain, where the historical and future observations come from different

sources, semi-supervised Ieaming do not significantly improve the performance of HMMR. To

overcome this problem, we propose a data calibration technique to deal with the inconsistencies

between historical and future data.
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A straightforward way to calibrate XL and XU is to standardize the time series ofeach predic-

tor variable by subtracting their means and dividing by their respective standard deviations. The

drawback of this approach is that the covariance structures for XL and XU are not preserved

by the standardization procedure. As a result, a model trained on the historical data may still

not accurately predict the future data since the relationship between the predictor variables may

have changed. In this paper, we propose a new data calibration approach to align the covariance

structure of the historical data and future data. Our approach seeks to find a linear transformation

matrix ,8 that is applicable to the future unlabeled data X-U such that the difference between their

covariance matrices is minimized.

Let A denote the covariance matrix ofXU and B denote the covariance matrix ofXL1

A = E[m ~ E<XL>)T(XL — mm]

B = E[(Xu — E<XU>>T<XU — E(XU))]

The covariance matrix after transforming XU to XU,6 is

B' = E[(XUfi — E(XUfi))T(XUfi — Ema»)

= aTBa

The transformation matrix ,6 can be estimated using a least-square approach:

arg minJ = arg min “A — B'llfj); (4.10)

fl 26

= argngn HA — [Herald

The optimization problem can be solved using a gradient descent algorithm:

2+1_ 2'_ 3_J

where:

31 T T T
% 4(Bfifi B fi-BfiA )

and 17 > 0 is the learning rate.

Although the preceding data calibration approach helps to align the covariance matrices of the

data, our experimental results show that the transformation tends to significantly distort the neigh-

borhood structure of the observations. Since our semi-supervised HMMR framework performs
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local estimation based on the nearest neighbor approach, such a transformation leads to unreliable

local predictions and degrades the overall performance of the algorithm. An ideal transformation

should preserve the neighborhood information while aligning the covariance structure. To accom-

plish this, we create a combined matrix X = [XLi XU], and compute the covariance matrix B

using the matrix, i.e.,

B = E (X — E<X>)T(X — E(X>)

After calibration using the gradient descent method described previously, both XL and XU will

be transformed as follows:

X’ = XLfi X’U = arm.

The transformed data XIL and X[U will serve as the new training and test data for the semi-

supervised HMMR algorithm.

4.5 Experimental Result

We have conducted several experiments to evaluate the performance of proposed algorithms for

long term time series prediction. All the experiments were performed on a Windows XP machine

with 3.0GHz CPU and 1.0GB RAM.

4.5.1 Experimental Setup

First, we compared the relative performance among multi-stage prediction, independent value

prediction and parameter prediction on 21 real data sets. The real datasets are obtained from the

UCI Machine Learning Repository [154] and the Time Series Data Library [110]. All the time

series used are univariate time series with length recored in the last column of Table 4.3. The

parameters for the prediction approaches include the order of regression model p and the degree

of polynomial fit d (for parameter prediction). We use Akaike’s final prediction error (FPE) [5]

as our criterion for determining the right order for p in the MLR model. The same criterion is

applicable to estimate the degree of the polynomial function used in parameter prediction. To

determine the correct order for RNN, we employ the method described by Kennel in [119] by

choosing a value for p such that the number of false nearest neighbors is close to zero.
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Table 4.2. Description of the UCR time series data sets for Semi-HMMR

 

 

 

 

 

 

 

 

 

 

Data Sets Length # Variables

Dryer 867 6

Foetal 2500 9

Glass 1247 9

Greatlake 984 5

Steam 9600 4

Twopat 5000 129

Logistic 1000 101

Leaf 442 15 1

C12full 43 10 l 66      
Second, we conducted several experiments to evaluate the performance of our proposed semi-

supervised algorithm. Table 4.2 summarizes characteristics of the time series used in this experi-

ment. The time series are obtained from the UC Riverside time series data repository [120]. We

divide each time series into 10 disjoint segments. To simulate this as a long term forecasting prob-

lem, for the k-th run, we use segment k as training data and segments k + 1 to k + 5 as test data.

The future period is therefore five times longer than the training period for each run. The results

reported for each data set are based on the average R2 for 5 different runs. We also consider three

other competing algorithms for our experiments: (1) univariate autoregressive (AR) model, (2)

multiple linear regression (MLR), and (3) supervised HMMR.

There are also several parameters that must be determined for our semi-supervised HMMR,

such as the number of nearest neighbors K, the number of hidden states N, and smoothness

parameter )2. To determine the number of nearest neighbors, we perform 10-fold cross validation

on the training data using the K-nearest neighbor regression method [99]. There are various

methods available to determine the number ofhidden states N. These methods can be divided into

two classes—modified cross-validation and penalized likelihood methods (such as AIC, BIC, and

ICL). In this work, we employ the modified 10-fold cross validation with missing value approach

[36] to select the best N. For each fold, we randomly select one-tenth of the observations to be

removed from the training data. The likelihood function will be estimated from the remaining

nine-tenth of the training data (while treating the removed data as missing values). The number of

states N that produces the highest R2 will be chosen as our parameter. To ensure smoothness in

the target function, )2 should be biased more towards the local prediction. Our experience shows
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Table 4.3. R2 of three methods on 21 data sets using Multiple Linear Regression

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Multi-stage Independent Parameter length

Milk 0.9267 0.9295 0.9172 168

Temp. 0.7224 0.7041 0.7064 216

PET 0.9581 0.9586 0.9381 216

PREC 0.9690 0.9683 0.9466 216

Solar 0.8782 0.8764 0.7868 216

Appb 0.7026 0.6196 0.6197 78

Appd 0.7848 0.7605 0.7234 64

Appf 0.6853 0.7555 0.7009 108

Appg 0.1358 0.0657 0.0782 114

Deaths 0.2691 0.4440 0.4367 72

Lead 0.5805 0.5793 0.5794 150

Sales 0.6813 0.6363 0.6363 150

Wine 0.7262 0.7098 0.6791 142

Seriesc 0.0641 0.0155 0.0155 224

Odono 0.5774 0.5269 0.5288 1 l4

Qbirth 0.4550 0.5207 0.4769 300

Bond2 0.4774 0.41 14 0.41 16 309

Daily 0.7994 0.7863 0.7863 500

Food 0.8005 0.8071 0.8050 1 17

Treerin 0.1071 0.1193 0.1182 948

Pork 0.0538 0.2052 0.2082 99      
that this can be accomplished by setting p. somewhere between 0.1 to 0.3. We fix the smoothness

parameter )2 = 0.1 throughout our experiments.

4.5.2 Comparative Study on Multi-step Prediction

A general comparative study on the three prediction approaches using real datasets is performed

in this section. A Win-Draw-Loss Table is created to compare the relative performance between

two prediction approaches when applied to a number of data sets. We use the criterion of 0.01

difference in R2 to determine whether one approach wins or loses against another approach. For a

stricter evaluation, we also apply the paired t significance test to determine whether the observed

diflerence in R2 is statistically significant. To do this, we first calculate the difference (AR) in

the R2 obtained from two prediction approaches on each data set. The means TR and standard

deviation SAR ofthe observed differences are also calculated. To determine whether the difference
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Table 4.4. R2 of three methods on 21 data sets using Recurrent Neural Network

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

Multi-stage Independent Parameter

Milk 0.9267 0.9295 0.9082

Temp. 0.7224 0.7041 0.7064

PET 0.9581 0.9586 0.9381

PREC 0.9690 0.9683 0.9466

Solar 0.8782 0.8764 0.7868

Appb 0.7026 0.6196 0.6197

Appd 0.7848 0.7605 0.7234

Appf 0.6853 0.7555 0.7009

Appg 0.1358 0.0657 0.0782

Deaths 0.2691 0.4440 0.4367

Lead 0.5805 0.5793 0.5794

Sales 0.6813 0.6363 0.6363

Wine 0.7262 0.7098 0.6791

Seriesc 0.0641 0.0155 0.0155

Odono 0.5774 0.5269 0.5288

Qbirth 0.4550 0.5207 0.4769

Bond2 0.4774 0.41 14 0.41 16

Daily 0.7994 0.7863 0.7863

Food 0.8005 0.8071 0.8050

Treerin 0.1071 0.1193 0.1182

Pork 0.0538 0.2052 0.2082

is significant, we compute their T-statistic:

t = 272

SAR/W

 
which follows a t-distribution with u — 1 degrees of freedom. Under the null hypothesis that

the two prediction approaches are comparable in performance, we expect the value of t should

be close to zero. From the computed value for t, we estimate the p-value of the difference,

which corresponds to the probability of rejecting the null hypothesis. We say the difference in

performance is statistically significant ifp < 0.05 and highly statistically significant ifp < 0.001.

We apply the three prediction approaches to 21 real data sets to compare their relative perfor-

mance. The R2 value for each data set is obtained by 10-fold cross validation. The size of the pre-

diction window is set to u = 24. Table 4.3 summarizes the R2 for the three prediction approaches

using MLR as the underlying regression method. Their relative performance is summarized in

Table 4.5 in terms of the number of wins, draws and losses. We also test the significance of the
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Table 4.5. Win-Draw-Loss results for MLP

 

 

 

 

     

 

 

 

 

 

Multi vs Indep Multi vs Param Indep vs Param

0.01 diff 10-6-5 14-2-5 8-12-1

t value 0.1496 0.8761 2.7299

p value 0.8826 0.3914 0.0129

Table 4.6. Win-Draw-Loss results for RNN

Multi vs Indep Multi vs Param Indep vs Param

0.01 diff 7-0-14 5-2-14 13-1-7

t value 2.6396 3.3884 0.3012

p value 0.0157 0.0029 0.7664      

difference using paired t-significance test. The results show that the observed difference between

the R2 of multi-stage and independent value prediction is not that significant. However, the per-

formance of parameter prediction is significantly worse than independent value prediction. This

is because MLR may not be suitable to fit the parameters of the function, which have nonlinear

relationships with the time series values.

Tables 4.4 and 4.6 show the results using RNN as the underlying regression method. Observe

that the independent value and parameter prediction approaches perform significantly better than

multi-stage prediction (p < 0.05). For multi-stage prediction, the R2 for RNN is lower than

the R2 of MLR in 10 out of 21 data sets, which suggests the possibility of model overfitting

when using a flexible regression method such as RNN. Nevertheless, we still find 17 data sets in

which independent value prediction with RNN outperforms all the prediction approaches using

MLR and 12 data sets in which parameter prediction with RNN outperforms all the prediction

approaches using MLR. The results suggest that, using nonlinear regression methods such as

RNN, the independent value and parameter prediction approaches may achieve better performance

than multi-stage prediction. Moreover, for parameter prediction, most of the data sets require

d < 5, which makes it more efficient to build compared to independent value prediction (which

requires building 22 = 24 models).

4.5.3 Performance Comparison on Semi-Supervised HMMR

Table 4.7 compares the R2 of our proposed framework (semiHMMR) against the univariate

AR (UAR), multiple linear regression(MLR), and supervised Hidden Markov Model Regression
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Table 4.7. Average R2 for UAR, MLR, HMMR and SemiHMMR on UCR time series data sets.

 

 

 

 

 

 

 

 

 

      

Data Sets UAR MLR HMMR SemiHMMR

Dryer 0.4347 0.6253 0.6797 0.7105

Foetal 0.1221 0.7762 0.7782 0.8014

Glass 0.0019 0.2319 0.2543 0.5170

Greatlake 0. 1367 0.5840 0.6047 0.6846

Steam 0.2850 0.5027 0.5237 0.6808

Twopat 0.0877 0.1739 0.1465 0.1774

Logistic 0.0195 0.0212 0.0232 0.0246

Leaf 0.2063 0.7382 0.7421 0.7897

C12full 0.1621 0.6840 0.7031 0.8263
  

(HMMR). First, observe that the performance of univariate AR is significantly worse than mul-

tivariate MLR and supervised HMMR model. This is consistent with the prevailing consensus

that multivariate prediction approaches are often more effective than univariate approaches be-

cause they may utilize information in the predictor variables to improve its prediction. Second,

we observe that HMMR generally performs better than MLR on most of the data sets. This result

suggests the importance of learning models that take into consideration the dependencies between

observations. Finally, the results also show that semi-supervised HMMR is significantly better

than HMMR on the majority of the data sets. The improvements achieved using semi-supervised

HMMR exceed 10% on data sets such as “Glass”, “Greatlake”, “Steam”, and “C12full”.

4.5.4 Value of Unlabeled Data for Semi-Supervised HMMR

We further show the value of incorporating unlabeled data into the model retraining phase of

the semi-supervised HMMR algorithm. The average R2 for each iteration before convergence

is plotted in Figure 4.9 when applying the semiHMMR algorithm to the “Foetal” data set. The

R2 of semiHMMR algorithm increases from 0.7782, which is the same to the R2 achieved by

HMMR, to 0.8014 after several iterations. The performance of local KNNR estimation algorithm

is 0.6951, which is considerably worse than HMMR and semiHMMR algorithm. The R2 obtained

by a linear combination ofKNNR and HMMR with p. = 0.1 is 0.7216, which is also much lower

than the R2 of the semiHMMR algorithm. This experiment demonstrates the effectiveness of

retraining the model using unlabeled data in the semiHMMR algorithm.

Another experiment is conducted to show the value of unlabeled data when there is limited
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Figure 4.9. The performance of SemiHMMR by each iteration compared with KNNR, HMMR

and KNNR+HMMR on the data set “Foetal”.

training data. We have used the “Steam” time series for this experiment and vary the ratio of

unlabeled to labeled data from 1 to 5 by changing the size of labeled data and report its average

R2. As shown in Figure 4.10, when the ratio is 1, the R2 for MLR and supervised HMMR

are nearly the same as that for semi-supervised HMMR. However, when the ratio increases to

5, the performance of both MLR and supervised HMMR degrades rapidly (R2 from 0.67726 to

0.5027 for MLR and from 0.6884 to 0.5229 for HMMR) whereas the R‘2 for semi-supervised

HMMR decreases only slightly, from 0.6924 to 0.6807. The results of this experiment show that

semi-supervised HMMR can effectively utilize information in the unlabeled data to improve its

prediction, especially when labeled data is scarce.

4.5.5 Semi-Supervised HMMR with Covariance Alignment on Climate

Prediction

Here we apply the proposed semi-supervised HMMR algorithm to the climate projection problem

by combining historical observations with GCM data. The GCM models are developed based on

the basic principles of physics, chemistry, and fluid mechanics, taking into account the coupling
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Figure 4.10. The performance of MLR, HMMR and SemiHMMR when varying the ratio of

unlabeled to labeled data

between land, ocean, and atmospheric processes. Although the outputs from these models suf-

ficiently capture many of the large-scale (2 150-300 km spatial resolution) circulation patterns

of the observed climate system, they may not accurately model the response variable at the local

or regional scales (z 1-50 km) needed for climate impact assessment studies [214]. As a result,

the coarse-scale GCM outputs need to be mapped into finer scale predictions, a process that is

known as “downscaling” in the Earth Science literature. Regression is a popular technique for

downscaling, where the GCM outputs are used as predictor variables and the response variable

corresponds to the local climate variable of interest (e.g. precipitation or temperature).

For this experiment, we downloaded climate data from the Canadian Climate Change Scenarios

Network Web site [35]. The data consists of daily observations for 26 climate predictor variables

including sea-level pressure, wind direction, vorticity, humidity, etc. The response variable cor-

responds to the observed mean temperature at a meteorological station. In short, there are three

sources of data for this experiment: (1) Mean temperature observations from 1961 to 2001 to be

used as response variable, (2) Reanalysis data from NCEP (National Center for Environmental

Prediction) reanalysis project from 1961 to 2001 to be used as predictor variables for training
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Figure 4.11. Perforrhance comparison between HMMR, SemiHMMR, and CSemiHMMR on

Canadian climate data

data, and (3) Simulation data from HADCM3 global climate model from 1961 to 2099 to be used

as predictor variables for future data. Since the mean temperature for the future time period is

unavailable, we conducted our experiment using NCEP reanalysis and the observed mean temper-

ature data fiom 1961 to 1965 for training and HADCM3 simulation data from 1966 to 1991 for

testing.

The main purpose of this experiment is to investigate the effect of data calibration on the per-

formance of semi-supervised HMMR when applied to climate prediction. We show that data cali—

bration is useful when the historical observations and future data come from different sources. To

compare the relative performance of supervised HMMR, semi-supervised HMMR (SemiHMMR)

and semi-supervised HMMR with data calibration (CSemiHMMR), we applied the algorithms

to predict the mean daily temperature for 40 randomly selected meteorological stations (another

criterion for choosing a station is that the time series must be complete, i.e., it has no missing val-

ues). in Canada. The bar chart shown in Figure 4.11 indicates the fraction of locations in which

one algorithm has a higher R2 than the other. Unlike the results reported in Section 4.5.3, the

bar chart seems to suggest that the performance of semi-supervised HMMR is only comparable
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Table 4.8. Comparing the average R2 values for MLR, HMMR, SemiHMMR, and CSemiHMMR

on the Canadian climate data.

 

 

 

 

 

 

     

(Lat°,Lon°) MLR HMMR SemiHMMR CSemiHMMR

(48.65N,123.43W) 0.6038 0.6144 0.6392 0.6356

(48.95N,54.58W) 0.3276 0.3447 0.4187 0.4350

(52.18N,113.89W) 0.3555 0.4591 0.4538 0.4732

(48.33N,71W) 0.4843 0.4842 0.4776 0.4982

(82.52N,62.28W) 0.4982 0.5456 0.5875 0.6277
  

to supervised HMMR (55% versus 45%). This is actually consistent with the conclusions drawn

in [57, 199] for semi-supervised classification in which it was suggested that unlabeled data with

different distribution may not improve the performance ofa semi-supervised algorithm. However,

with the calibration method developed in Section 4.4.2, CSemiHMMR actually performs better

than HMMR on 72% ofthe data sets. This result confirmed the effectiveness of incorporating the

covariance alignment technique to our semi-supervised learning framework. We also illustrate the

R2 values for five ofthe selected stations in Table 4.8. The latitude and longitude for each station

is recorded in the first column of Table 4.8. Though the performance of semiHMMR appears to

be worse than supervised HMMR at (52.2°N, 113.9°W) and (48.3°N 710W), the R2 values for

semi-supervised HMMR with data calibration is clearly superior for both locations.

In Section 4.4.2, we argued that aligning XL with XU (we call this calibration technique 1)

may not be as effective as calibrating XL with the combined matrix XC' = [XL2 XU1 (we call

this calibration technique 2). This is because the former may result in significant loss of nearest

neighbor information, thus degrading the performance of semi-supervised HMMR (note that the

results shown in Figure 4.1 l are based on calibration technique 2). To measure the degree of align-

ment and loss ofneighborhood information using the calibration techniques, we define the follow-

ing two measures: RCovDiff and NNLoss. Let A0(XA2 X3) denote the difference between the

covariance matrices constructed from XA and XB before alignment, and A1(XA, XB) denote

the corresponding difference afier alignment. RCovDiffmeasures the reduction of the covariance

difference before and after alignment, i.e.:

|A0(XL2 XU) - A1(XL2 XU)|
 

 

RCovDiffl =

A0(XL2XU)

- |A0(XL2XC) - A1(XL2XC)|
RCovDrfi2

A0(XL2 X0)
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Table 4.9. Comparing the degree of alignment and loss of neighborhood structure information

using calibration techniques 1 and 2.

 

 

 

 

 

 

      

(Lat°,Lon°) RCovDiffl RCovDiff2 NNLossl NNLossZ

(48.6N,123.4W) 0.998 0.785 0.994 0.186

(48.9N,54.6W) 0.993 0.714 0.998 0.116

(52.2N,113.9W) 0.989 0.728 0.995 0.108

(48.3N,71W) 0.992 0.703 0.996 0.086

(82.5N,62.3W) 0.993 0.702 0.991 0.096
 

A calibration technique with larger RCovDiff will produce covariance matrices that are better

aligned with each other. We also measure the loss ofneighborhood structure due to data calibration

in the following way. Let M0(XA2 XB) denote a 0/1 matrix computed based on the l-nearest

neighbor of each example in XB to the examples in XA before alignment and 1141(XA2 XB)

denote the corresponding matrix afier alignment. The NNLoss measure is defined as follows:

|Mo(XL2 XU) - M1(XL2XU)1

M0(XL2XU)

 

NNLoss =

Unlike RCovDifi‘, the same equation is applied to both calibration techniques 1 and 2. Table 4.9

compares the results of both calibration techniques. Although calibration technique 1 produces

more well-aligned covariance matrices, it loses more information about its neighborhood struc-

ture. This explains our rationale for using calibration technique 2 for semi-supervised HMMR.

4.6 Summary

Time series forecasting is an important task and has been studied for a long time in statistics, data

mining and machine Ieaming literature. However, most previous work on time series forecasting

focused on single step or short term prediction problems, which are not sufficient for many appli-

cations. Although there has been some work extending single step time series forecasting methods

to long term prediction, it suffers from problems such as error accumulation. In this chapter, we

first investigated the issues in the long term time series forecasting and then proposed a semi-

supervised multivariate time series prediction algorithm to improve the prediction accuracy. The

main contributions of this work are:

0 We first investigated the issues associated with long term time series forecasting problem by

studying the advantages and disadvantages ofthree prediction approaches both theoretically
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and empirically. Using the bias-variance decomposition framework, our analysis shows

that multi-stage prediction suffers from the error accumulation problem, especially when

the prediction window is long. Independent value prediction alleviates this problem by

making predictions independently at each time step. However, it has its own problems.

First it is more expensive since it has to learn a separate prediction model for each step

in the prediction window. Second, it has difficulty in learning the appropriate function

when the prediction window is long because the true function becomes more complex with

increasing prediction time steps. Third, this approach does not smooth out the effect of

noise, unlike multi-stage prediction. Parameter prediction smooths the effect of noise by

fitting a function over the entire output sequence and avoids the error accumulation problem

by making independent predictions. It is more eflicient than independent value prediction

when the parameter set is small. However, finding the appropriate parameter function to fit

the output values can still be quite a challenging task.

We further investigated a multivariate time series prediction method to improve the pre-

diction accuracy for long term forecasting by utilizing information from other related time

series. The future data of the predictor variables can be collected by simulation in many

domains such as climate modeling; however, it is used in supervised fashion in traditional

methods. In this work, a semi-supervised multivariate time series prediction framework

based on the Hidden Markov Regression model was proposed to obtain a .better model by

utilizing both historical and future data in training. The experimental results on benchmark

time series data sets demonstrate the superior performance of the semi-supervised HMMR

algorithm compared with other supervised methods.

However, applying the semi-supervised HMMR to climate projection problem by combin-

ing the historical reanalysis data and GCM future data did not show much improvement,

which demonstrated that the inconsistencies between training and test data may not im-

prove the model’s performance. To compensate for this problem, we proposed a covariance

alignment data calibration method that will transform the training and test data into a new

space before applying the semi-supervised HMMR algorithm. The semi-supervised HMMR

with data calibration technique clearly achieves considerable improvement according to our
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evaluation using the climate data sets.
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CHAPTER 5

Anomaly Detection, Characterization, and

Visualization

In this chapter, we discuss methods that are used for the detection, characterization, and visualiza-

tion of anomalies in time series data. Give time series data ’D with length l, the goal of anomaly

detection is to discover the timestamps at which the measurement values for one or more variables

have deviated significantly from their nominal behavior. The nominal behavior represents the ex-

pected value of a time series based on its its own history as well as its relationship to other time

in ’D. The major innovations and contributions of this chapter are listed as follows.

0 We present a graph-based algorithm and some extensions to detect different types ofanoma-

lies in time series data. The graph-based method is applied to Earth Science data to detect

ecosystem disturbance.

o A kernel alignment technique is further proposed for the detection and characterization of

anomalies in noisy multivariate time series data, which is used to discriminate the ecosystem

disturbances in Earth Science applications.

0 A clustering-based framework is proposed to aid the visual exploration and detection of

anomalies from large scale time series data in high spatial resolution, e.g. to explore the

ecosystem disturbances in global FPAR time series data.

The rest of this chapter is organized as follows. Section 5.] introduces some preliminaries on

time series anomaly detection. Section 5.2 presents the graph-based based time series anomaly
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detection algorithm. Section 5.3 proposes the kernel alignment based method for multivariate

time series anomaly detection and characterization. Two extensions of the graph-based anomaly

detection algorithms are discussed in 5.4. Section 5.5 introduces a clustering-based visualization

system for the exploratory analysis of anomalies in Earth Science data. The evaluation of our

algorithms and system is given in Section 5.5.3.

5.1 Preliminaries

Here we present some background for the problem of time series anomaly detection.

5.1.1 Anomaly Detection in Time Series Data

Anomaly detection in time series data can be categorized into point-wise anomaly detection and

subsequence anomaly detection . A formal definition of point-wise anomaly and subsequence

anomaly in time series data is given as follows:

Definition 9. (Point-wise Anomaly) Point-wise anomaly refers to the timestamps at which the

observed values are significantly diflerent than the rest ofthe time series.

Examples of point-wise anomalies includes peak or valley anomaly whose values are signifi-

cantly larger or smaller than the rest of time series.

Definition 10. (Subsequence Anomaly) Subsequence anomaly is defined as a segment oflength

d < 1 that does not match any other other segments in the time series.

An example of such type of anomaly is shown in Figure 5.9(a), where there is an unusual shape

of subsequence in the time series.

In both cases, the anomalies can be characterized as global or local anomalies, depending on

how the nominal behavior is determined. The nominal behavior for global anomalies is com-

puted from the entire time series whereas for local anomalies, the nominal behavior is determined

with respect to some local neighborhood, which can be defined in several ways using temporal

information. One way is to consider the time-based neighborhood:
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Definition 11. (Time-based Local Anomaly) A data point at time t is considered a time-based

local anomaly if its value is significantly dtfierent than the values within the time interval [t -—

k,t + it]. An example ofsuch anomaly is shown in Figure 5.10(a).

Another category oflocal anomaly for time series with periodical patterns is cycle-based defined

as:

Definition 12. (Cycle-based Local Anomaly) Let k be the periodicity ofa time series. A data

point at time t is considered a cycle-based local anomaly ifits value is significantly dzflerent than

the values measured at times t — k,t — 2k, - 2- andt + k,t + 2k, - - -.

The above discussion applied to both univariate and multivariate time series.

5.1.2 Moving Average Time Series Anomaly Detection

Moving average is the simplest anomaly detection method for time series data. In this approach,

a time series was first detrended using a linear adjustment. For example, this is necessary to

minimize the possibility that, in cases where there is gradual but marked increase in monthly

FPAR over the time series data, any potential disturbance events occurring relatively near the end

of the series are not overlooked. Then the detrended time series was subsequently deseasonalized

by computing the moving average time series to remove the dominant seasonal oscillations.

When applied to detect ecosystem disturbance in FPAR time series, the domain experts hypoth-

esize that a “sustained” disturbance event could be defined as any decline in average annual FPAR

levels (at an assigned significance level) that lasts for a temporal threshold value ofat least 12 con-

secutive monthly observations at any specific location [173]. The logic used here is that an actual

disturbance involves a sustained decline in FPAR because the structure of the vegetation cover has

been severely altered or destroyed during the disturbance event, to a magnitude that lowers FPAR

significantly for at least one seasonal growing cycle, after which time regrowth and recovery of

the former vegetation structure may permit FPAR to increase again. Significant declines in aver-

age annual FPAR levels can be defined to be greater than 1.7 standard deviations (SD) below the

19-year average FPAR computed for any specific location. The threshold of 1.7 SD was chosen

based on the 95% confidence level in rejecting the null hypothesis using a one-sided statistical

t-test.
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(a) Detection of ecosystem disturbance by moving av- (b) Detection failure of ecosystem disturbance by mov-

erage due to Hurricane Elena (during September 1985) ing average due to Chisholm wildfire.

from FPAR time series data.

Figure 5.1. FPAR time series at two different locations and their anomaly scores learned by

moving average.

Figure 5.1(a) shows an example of an ecosystem disturbance event recorded at 29.61°N and

89.78°W. The event coincides with the timing of Hurricane Elena (September 1985) while its

location is near the vicinity of the landfall points of the storm. In addition to this example, this

method successfully detects documented landfall points of other tropical storms including Hur-

ricane Alicia, Gloria, Gilbert, and Hugo. For an extended discussion that includes coverage of

droughts, heat waves, cold waves, and blizzards, see [172].

While this approach can successfully detect many large-scale disturbance events in Earth Sci-

ence data, it also has several limitations. First, the timing of the event may vary since it uses

12-month moving average to deseasonalize the time series. Second, it may not be able to detect

small scale anomaly events in which the vegetation structure of the region recovers in less than

one growing seasonal cycle. Third, it has problems detecting certain special kind of anomalies

such as local anomalies. Finally, it fails to explore the relationship between different variables,

e.g. the correlation between climate and FPAR time series. Figure 5.1(b) shows the failure of

this approach to detect the disturbance event in Chisholm, Alberta where a major wildfire had

occurred in May 2001.
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5.1.3 Anomaly Detection and Characterization in Multivariate Time Series

Data

A multivariate time series D = {Xilf=1 is a collection of time series that corresponds to the

measurements of p real-valued variables spanning the same time interval. For some application

domains, one of the variables Y 6 D may be designated as the target variable of interest, while

the remaining D — {Y} variables are known as the predictor variables. In this study, we consider

two types of multivariate time series anomaly detection problems: general and target specific.

For general multivariate time series anomaly detection, all variables in D are considered

equally important when detecting anomalies. For example, in network intrusion detection, anoma-

lies can be detected based on the deviations observed in one or more time series—e.g. the unusu-

ally high number of connections originating from the same IP address (for a denial of service

attack), the wide range of port numbers used (for a port scan attack), or the abnormally large

number ofICMP packets sent (for a ping flood attack).

In contrast, target specific anomaly detection attempts to find anomalies in the time series for

a target variable that are correlated with the deviations observed in the predictor time series. An

example application can be found in the Earth Science domain, where scientists are interested

in identifying ecosystem disturbances such as wildfires from satellite observations of the global

vegetation cover data (i.e., the target variable). By correlating the anomalies found in the veg-

etation cover data with those found in climate variables such as temperature and precipitation,

this may help scientists to distinguish between climate-induced anomalies fi'om human-induced

anomalies. As a result, target specific anomaly detection can help characterize the anomalies in a

target variable using the anomalies observed in predictor time series.

5.1.4 Anomaly Exploration in Large Scale Time Series Repository

Anomaly detection in a very large time series database is challenging because of the computation

cost for process all the data. For example, huge amounts of time series such as FPAR remote

sensing data are available in high spatial resolution in Earth Science application. Scanning all the

time series across all the locations for anomalies becomes really expensive, not to mention that

most anomaly detection algorithms require the adjustment of one or more thresholds. Visual data
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mining is defined as the use of interactive visual representation of the abstract data to amplify the

pattern discovery process. The goal ofthe visualization is to reduce the complexity ofa given data

set by presenting only small portion of the massive time series at a time, while at the same time

minimizing the loss of information. Interaction is a fimdamental component of visualization that

permits the user to modify the visualization parameters, browsing the data or querying for results.

Anomalies are discovered interactively between the user and the visualized anomaly exploration

system.

5.2 Graph-based Time Series Anomaly Detection

This section presents the graph-based anomaly detection algorithm for time series anomaly detec-

tion. This method first constructs a kernel matrix from the given time series data and then run a

random walk to obtain the anomaly scores for each data point or subsequence.

5.2.1 Kernel Matrix for Time Series Data

Here we introduce the kernel matrix to measure the similarity between data points in a time series.

Let 2' and j denote a pair of timestamps in the time series. Each timestamp is associated with a set

of measurements for p variables (Note that p = 1 for univariate time series and p > 1 for mul-

tivariate time series). Although there are numerous similarity measures that have been proposed

in the literature (e.g. cosine and correlation), few of them are applicable to both univariate and

multivariate time series. In this study, we measure the similarity between two timestamps using

the RBF firnction:

 (5.1)

r)

2221(171221— irkj)‘

02
m2, j) = exp [—

where 132k is a data point at time 2' for time series variable lc. The RBF function can also be

generalized to measure the similarity between two subsequences of width (1 as follows:

 

P d—l 2
,_ _ :1: 2 ' — I17
k_123_.0( hfl'l'S kJ'i'S) ], (52)

K(i2j)=expl:- 0.2

where 2' and j are the starting timestamps for each subsequence. Based on the similarity measure,

we may construct a non-negative, symmetric matrix K to capture the pairwise similarity between
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Figure 5.2. A weighted graph representation of a kernel matrix.

every pair of timestamps (or subsequences) in a given time series. K is also known as a kernel

matrix (or a Gram matrix). The next section describes a graph-based algorithm to detect anomalies

by utilizing the information in a kernel matrix.

5.2.2 Random Walk on Graph for Anomaly Detection

A kernel matrix can be transformed into a weighted graph representation, 9 = (V, E), where V is

the set ofnodes and E C_: V x V is the set of edges. Each node in the graph corresponds to a data

point (or a subsequence) in the time series whereas each edge is weighted by the similarity value

encoded in the kernel matrix K. Because an anomalous node is highly dissimilar to other nodes,

the weights of its connections to the rest of the nodes in the graph are generally small. Such a

node will be rarely visited when performing a random walk traversal on the graph. This is the

fundamental idea behind our graph-based anomaly detection algorithm. For example, node a in

Figure 5.2 is an anomalous node due to its low connectivity compared to other nodes in the graph.

To estimate the connectivity value of a node, we view the graph as a Markov chain on the state

space V with a transition matrix S, whose (i, j )2]: element denote the transition probability from

node 2' to node j. The transition matrix is obtained by normalizing each column of the kernel

matrix.

K 2', '

The connectivity value of each node is computed iteratively by applying the following recursive
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Table 5.1. Connectivity values obtained by applying a random walk algorithm on the graph shown

in Figure 5.2. The lower the connectivity value, the more anomalous a node is.

 

a b c d e

0.05 0.23 0.28 0.14 0.32

 

       

equation:

c = d/n + (1 — d)S’c, (5.4)

where d is the damping factor and c is a connectivity vector for all the nodes in the graph. This

iterative procedure can be viewed as performing a random walk on the Markov chain, where given

the current node 21., there is a probability 1 — d ofvisiting one of its neighboring nodes according to

the transition matrix S and a probability d ofvisiting any random node in the graph. This approach

is equivalent to the the formulation used by the PageRank algorithm [163]. Upon convergence,

nodes with high connectivity c are considered normal whereas those with low connectivity are

declared as anomalous. As an example, Table 5.1 shows the connectivity values of the nodes

given in Figure 5.2. Node a is successfully detected as an anomaly because it has the lowest

connectivity value.

5.3 Anomaly Detection and Characterization in Noisy Multi-

variate Time Series

This section investigates the problem of anomaly detection and characterization in noisy multi-

variate time series. We start with an introduction of multivariate kernel alignment method.

5.3.1 Multivariate Kernel Alignment

As previously noted in Section 5.1.1, the nominal behavior of a multivariate time series can be

determined based on the historical evolution of each time series as well as their relationships

with each other. A kernel matrix may capture the similarity between measurements at different

timestamps but not the relationship between the different time series. To apply the graph-based

algorithm described in the previous section to multivariate time series, the kernel matrix must
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be adjusted to capture the dependence relationships among the time series in D. This can be

accomplished by “aligning” their corresponding kernel matrices.

We begin with a discussion of how kernel alignment works when one of the time series corre-

sponds to a target variable of interest. An extension of the framework to more general multivariate

time series problems, where all the time series are equally important, is described in Section 5.3.2.

Let K be the initial kernel matrix constructed from the set of predictor variables X 6 D (using

Equation (3.1)) and Ky be the corresponding kernel matrix computed from the target time se-

ries. The objective of kernel alignment is to derive an adjusted kernel matrix K0, from K that

maximizes its correlation to the target kernel matrix Ky, i.e.:

< Ra, KY >1?

ngrx A A (5.5)

\/< K...Ka >F< Ky,Ky >F

 
 

where < A, B >p: Zij Aij Bij is the Frobenius product between two matrices. The aligned

matrix Ka is obtained by first decomposing K into a set of basis vectors {'01, v2, - - - ,vn} and

learning the corresponding weights 02.,- associated with each basis vector:

P I
< ._ a-v-v- K >

maax Zz_1 ’l 'l 21 Y F ’ (56)

m\/< 2:le aim-2);, €21 aivivg >p

 
 

where m =< Ky, Ky >F- The resulting aligned matrix is:

A P

I

Ka = Z 02,21,222-

i=1

We consider two ways to decompose K into its basis vectors. The first approach extracts

the normalized eigenvectors of K by solving the eigenvalue equation Kv = /\v, subject to the

constraint vgvj = 1 if 2' = j and zero otherwise. As a result, kernel alignment reduces to the

following optimization problem:

72 I

ax 22:1 012' < v2v22KY >F
 ma (5-7)

m\/ 2le 922

or equivalently,

12 n

moax 2a,- < v,v§,Ky >1: —p[Za,2 — 1] (5.8)

i=1 i=1

which has the following closed form solution [60]:

< v-vh, K >

a, = Z '1 Y F (5.9) 
 

\/Zi < viv§,Ky >%,
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One potential problem with this formulation is that the constraint 2,- az-z = 1 may overfit Ky and

loses its similarity to the original kernel matrix K. To overcome this problem, we propose a new

objective function:

22 n

111ng a,- < vivg, Ky >F —p[i:zl(ai —— My] (5.10)

where M, v,- are the corresponding eigenvalues and eigenvectors ofthe kernel matrix K. With this

modification, the aligned kernel matrix K will preserve as much information in K as possible.

The weight parameters a, can be computed in closed form as follows:

< 1121);, KY >F

2#

 
(5.11)02i=/\z'+

The preceding equation shows that a,- increases when there is strong positive correlation between

'02-'02 and the target kernel Ky. Furthermore, if p ——> 00, a,- —-2 /\,-, which reduces K back to the

original kernel matrix K.

An alternative approach to using eigenvectors is to simply replace 2: by the time series for each

predictor variable, i.e., v,- = Xi. In this case, the objective function to be maximized is

P

I

mngai < XiXiaKY >17

1,:

P P

-4222.” < x,x;,x,x;. >1. -1

i=1j=1

For brevity, we choose )2 = 1 for our experiments. Taking its derivative with respect to 0‘22 we

obtain:

P

< X,X;,KY >12»: :22,- < X,X;,ijfj >F (5.12)

i=1

The weight parameters 023- can be estimated by solving a linear regression problem. Since a]-

is associated with the original variable Xj, a large weight of aj indicates a strong correlation

between Xj and the target variable Y.

Once the weight parameters have been determined, the aligned kernel matrix KO, = 2 (1,22in

is constructed. Note that elements of K0, may become negative when there are negative values

in the basis vector. Although the random walk approach is still applicable in such a case, the

kernel matrix Ka can no longer be interpreted as a transition matrix. Our strategy is to make all
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Algorithm 6 Multivariate Time Series Anomaly Detection

Input: Multivariate time series D.

 

Output: Connectivity vector c.

1: ’12,, 2— KernelAlign(D)

2: S +— Normalize(Ka)

3: c +— RandomWalk(S)

 

the elements of K0 non-negative by adding a sufficiently large number to each element of the

matrix. This is equivalently to adding a constant weight to every edge in the graph. However,

if the added weight is too large, then the weights for all the edges will become close to uniform

values after normalization. To avoid this problem, the elements of the matrix are shifted such that

the minimum value of the matrix becomes zero:

Ka <— Ka + Imin(Ka)|,if min(Ka) < 0

The graph-based algorithm described in Section 5.2.2 will applied to the shifted aligned kernel

matrix to detect anomalies.

5.3.2 Multivariate Time Series Anomaly Detection and Characterization

Algorithms

Here we propose our multivariate time series anomaly detection algorithms. A high-level sum-

mary of the algorithm is shown in Algorithm 5.3.2. There are two variations to the proposed

algorithm. The first variation is designed to identify anomalies in a target time series whereas

the second variation is designed to identify anomalies in a general multivariate time series, where

each variable is equally important. Their difference lies in the way K0, is computed.

For target specific anomaly detection, we first align the kernel matrix derived from the predictor

variables with the kernel matrix of the target variable, as described in Section 5.3.1. To perform

the alignment, the original kernel matrix K can be decomposed into its basis vectors before

applying Equations (5.11) or (5.12) to determine the weight parameters a. We then construct a

transition matrix S from the aligned kernel K by normalizing the columns of the matrix. Finally,

a Markov chain random walk algorithm is performed on the graph associated with the aligned

kernel matrix to obtain the connectivity values of each node (which may represent a timestamp or
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subsequence of the time series). Since the connectivity values depend on the similarity measure,

number of nodes, and other factors, we normalize the connectivity scores by subtracting their

means and dividing their standard deviations._ Nodes that have the connectivity scores below

certain threshold are declared as anomalies. The impact ofkernel alignment step for target specific

anomaly detection in multivariate time series is two-fold:

o It tends to extract the components in the predictor time series that are most related to the

anomalies in target time series at the same time period. In this way, the anomalies found

in the predictor time series after alignment can be used to characterize the corresponding

anomalies in target time series.

0 The components in predictor time series that are not related to target time series will be

removed afier kernel alignment, which leads to two effects: first, the anomalies in predictor

time series which are independent of the target time series will be degraded; second, the

impact of noise in the multivariate time series will be reduced.

In such a way, the anomalies found in predictor time series can be used to characterize the anoma-

lies discovered in target time series.

For general multivariate time series anomaly detection, where D = [X 1, X2, . . . ,Xp] , we

consider each variable X,- as a target and learn an aligned kernel matrix K,- between the target and

all the remaining variables in D. After alignment, this produces p aligned kernel matrices. The

overall aligned kernel matrix K0, is computed by taking the Hadamard product of the individually

aligned kernel matrices Ki:

Ra=flof€2mof€p (5.13)

Once the overall aligned kernel has been computed, the remaining steps are the same as those

taken for target-specific anomaly detection. Again, the noise in multivariate time series is removed

after kernel alignment such that false alarm rate can be reduced.

5.4 Extensions of the Proposed Algorithm

This section describes two extensions of the proposed algorithms: (1) to detect local anomalies in

time series data, and (2) to discover subsequence-based anomalies. Although we discuss it in the
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framework of multivariate time series anomaly detection, it is also applicable to univariate time

series.

5.4.1 Sparse Kernel for Local Anomaly Detection

Our aligned kernel matrix is used to construct a graph 9 upon which a random walk algorithm

is applied to identify anomalous nodes in the graph. 9 is a completely connected graph whose

edge weights depend on the values of the kernel matrix Ka. As a result, the anomalies found

correspond to global anomalies whose values are significantly different than the rest of the time

series. Our proposed algorithm can be extended to detect local anomalies by sparsifying the kernel

matrix prior to constructing the transition matrix S.

As mentioned in Section 5.1.1, we have implemented two ways to define the neighborhood of

a node for local anomaly detection. The first approach, time-based neighborhood, is implemented

by removing the edges between all pairs of nodes 2' and j in which |2' — jl > k. Thus, a local

anomaly observed at time t has significantly different values than other observations within the

time interval [t — k, t + h]. For the second approach, i.e., cycle-based neighborhood, we sparsify

the graph by removing all edges in g in which |2' — j| mod k > T. For example, setting 7 = 0

would compare an observation at time t to other observations at times t — k,t — 219,- - - and

t + k, t + 2k, - - - , where k is the known periodicity of the time series. Cycle-based approach has

great applications in non-stationary time series data with periodical patterns. For example, it can

be used to detect anomalies in the monthly FPAR or climate time series by comparing the values

for the same month in different years.

5.4.2 Subsequence Anomaly Detection

In addition to point-wise anomalies, our algorithm can also be extended to discover subsequence

anomalies (also known as discords). Let Y be the target variable and X be the set of predictor

variables. Assume T is the length of all the time series. A sliding window of predefined size d

is used to extract all the subsequences of length d from the multivariate time series. The corre-

sponding predictor and target variable subsequences are represented as X and 7, respectively.

The number of subsequence windows created from the time series data is T -— d + 1. Each element
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ofX and 7 is a subsequence with length d, which is denoted as:

3723' = {1323' $-2,j+12 - - 2 2152',j+d—1}

31) = {yj,yj+12~-.yj+d——1}

The kernel matrices K and Ky are constructed by applying the following Equations:

 
. - 2p.— Hip—EMF

K04) = exp(—- 1‘1 a; J )

d—l

 = exp(- )
0.2

and

d—I

Ky(i,j) = 92?; = ZM—i—syj-i-s

=0

The (2', j )th element in the kernel matrix represents the similarity between two subsequences (i.e.,

sliding windows) of length d starting from the timestamps 2' and j. Similar to the approach de-

scribed for point-wise anomaly detection, the kernel matrices can be aligned before applying the

random walk algorithm to detect the anomalous subsequences. While the approach presented in

this section assumes a fixed window size (1, it can be easily extended to deal with variable length

time windows as well as other similarity measures for subsequences.

5.5 Visual Exploration of Ecosystem Disturbances

In previous sections, we have introduced a graph-based method for anomaly detection and char-

acterization in multivariate time series data. However, applying these methods for ecosystem

disturbance detection in large scale Earth Science data directly is very expensive because of the

massive data size and the requirement for parameter tuning. Visual exploratory analysis provides

a way to alleviate this problem by presenting only small portion of the data each time and enable

user interaction during the mining process. Here we present a visualization system for the mining

and exploration of ecosystem disturbance in Earth Science data. We first present a system to clus-

ter the regions of similar disturbance events. Then a multi-level indexing framework is proposed

to aid the expiatory analysis of ecosystem disturbance in the global FPAR time series repository.
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Table 5.2. Features for clustering disturbance events

 

 

 

 

Features Description

Location Latitude and longitude of a location

Period Number of months of consecutively low FPAR values

First month Month in which disturbance event was detected
 

FPAR (During) Minimum and range of FPAR values during period of disturbance event

FPAR (After) Minimum and range of FPAR values after period of disturbance event

Climate Precipitation and temperature values at the onset of disturbance event

Land cover Land cover type at the location

 

 

     
5.5.1 Clustering of Ecosystem Disturbance Events

Clustering is the task of partitioning data into groups of similar objects. In Earth Science studies,

clustering has been applied for various applications including land cover classification [202, 207],

classification of synoptic-scale circulation patterns [59], and discovery of climate indices [193].

Clustering can also be used to aggregate related (and possibly nearby) data points that have similar

characteristics (e. g. climate conditions, landscape variability, etc). Since it does not require any

labeled examples, clustering is considered an unsupervised learning task, as opposed to supervised

Ieaming tasks such as classification and regression.

In this work, we apply clustering to group together locations that exhibit similar types of dis-

turbance events. The clusters may help users to automatically categorize the different types of

disturbance events (e.g. wildfires, insects, deforestation, etc) based on characteristics of the eco-

climatic time series during or afier the event has occurred. Since there are no labeled examples

available, a key challenge is to determine which attributes are appropriate to characterize the dif-

ferent types of disturbance events. Table 5.2 shows some of the attributes available to describe

the characteristics of disturbance events. The user may cluster the data points using any subset of

these attributes. Since each attribute can have a different scale, we need to normalize the attribute

values before applying the clustering algorithm. Otherwise, the similarity computation between

data points will be dominated by attributes that have a large range ofpossible values. Continuous-

valued attribute are normalized by subtracting each attribute with its minimum possible value and

dividing it by the range of its possible values. For each discrete attribute, we normalize it by cre-

ating a binary attribute for each attribute-value pair. Normalization allows each attribute selected

for the clustering task to be treated equally important during similarity computation.
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Figure 5.3. Clusters of ecosystem disturbance events detected in the North Carolina region (each

symbol corresponds to a different cluster).

5.5.2 Clustering for Exploratory Data Analysis

The methods described in the previous section had been successfully applied to the FPAR time

series data from AVHRR. With the availability of the higher resolution MODIS data, applying the

disturbance event detection algorithm on all the data points can be very expensive. For example,

with the 4 km x 4 km MODIS data, there are more than 1.3 million data points for North America

alone. The total number of FPAR time series for the entire world is more than 10.1 million.

Although the disturbance event detection algorithm scales linearly with the size of the data, it still

takes more than a few minutes to process the data for North America. Repeating the analysis using

different thresholds will take a considerable amount of time, making it infeasible for real-time

exploration of the data. The runtime will increase considerably if the analysis is to be performed

on the 1 km x 1 km MODIS data or using more sophisticated (and expensive) anomaly detection

algorithms. Techniques must therefore be developed to reduce the amount ofprocessing time.

For this experiment, we have performed K-means clustering (with k=20) on all disturbance

event locations in North America using precipitation and temperature as data attributes. Figure
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FPAR at lat = 33.36, lon = -80.24 FPAR at lat = 33.21. lon = -80.01
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(a) FPAR at 32.85°N and 79.84°S (cluster 1) (b) FPAR at 33.21°N and 80.01°S (cluster 13)

Figure 5.4. FPAR time series at different locations.

5.3 shows clusters of disturbance events found near the region of North Carolina. Each colored

pixel corresponds to a location where disturbance event has been previously detected. We have

also labeled each colored pixel according to its cluster ID. Our preliminary results suggest the

possibility of distinguishing the different types of ecosystem disturbance events in the region

according to their cluster assignment. For example, Figure 5.4 shows two FPAR time series for

one data point assigned to each cluster #1 and #13, respectively. Further investigation revealed

that the data points assigned to cluster #1 are associated with disturbance events due to Hurricane

Hugo (which occurred in September 1989). Although the disturbance event found for the data

point shown in Figure 5.4(b) also occurs in 1989, it appears earlier in the year, compared to the

disturbances found in cluster #1.

A. Preposed Clustering Framework

In this work, we propose to develop a clustering-based framework to reduce the number of time

series that needs to be processed in order to facilitate interactive exploration ofthe large-scale data.

Specifically, our strategy is to build a multi-level index on the MODIS FPAR time series by ap-

plying clustering on the time series and choosing representative samples from the clusters at each

level of the index hierarchy. Therefore, instead of applying the moving average or graph-based

disturbance detection algorithm on the entire time series, we would approximate the frequency

distribution of disturbance events in each region by applying the algorithm to the selected sam-
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Figure 5.5. A multi-level approach for visual exploration of ecosystem disturbances.

ples. This helps to reduce the amount of processing time considerably, thus allowing the user to

tune the thresholds of their algorithm and to observe the changes in the results in real-time. It will

also help the user to focus on a particular region of interest during exploratory data analysis.

Figure 5.5 shows an example of how the multi-level indexing scheme works. Specifically, we

use the multi-level index to monitor the fi‘equency distribution of ecosystem disturbance events

in North America. We use North America for illustrative purposes only. Multi-level indices for

other continents are also created. At the top level, the entire continent is partitioned into a 7 x 10

grid box, where each box contains 256 x 256 pixel locations. Next, each of the 7 x 10 boxes is

further divided into smaller 4 X 4 grid boxes, where each of the smaller box now contains 64 x 64

pixel locations. At the next level, each of these smaller boxes is partitioned into another 4 x 4 grid

boxes, each of which now contains 16 x 16 pixel locations. A final partitioning of each grid box

produces a square region that contains 4 x 4 pixel locations. A map displayed at this level will

show the actual locations where disturbance events have been observed. At all other higher levels,

the map displays the frequency distribution of disturbance events in each grid box (region).

For example, in Figure 5.5, the map at level d displays the frequency distribution of disturbance

events for each region in North America. As can be seen from the map, the Baja California

peninsula, the midwest region, and Canada appear to have highest concentration of disturbance

event locations. The user may decide to focus only on these regions and may click on the grid

box that corresponds to one of these regions (say California) for further analysis. The map for the

California peninsula will now be displayed (level d — 1). The region is now divided into 4 x 4

smaller regions; this allows the user to examine the regions where there is a dense concentration of

115



disturbance events (e.g. the dark region in the lower right hand comer of the map). This process is

repeated until it reaches the lowest level of the index, where the map displays the actual locations

where disturbance events have been detected for that particular region.

B. Sampling Representative Time Series from Clusters

The multi-level indexing scheme described above allows the user to explore the data interactively

in a hierarchical fashion. Computation time can still be very expensive because the number of

time series in each grid box grows quadratically from one level (m) to the next level (772 + 1). For

example, there are 256 pixel locations in each grid box at level 1 and 65,536 pixel locations in

each grid box at level 3. To reduce the computation time at higher levels of the index, instead of

applying the disturbance event detection algorithm to all the time series in the grid box, we apply

the algorithm on samples of time series for that region. The key challenge here is to determine

which time series should be selected to obtain a representative sample. A better representative

sample must capture more disturbance events in the region. Another issue to consider is the

tradeoff between coverage and processing time, which depends on the sample size. If the sample

size is large, this will provide a good coverage for the region but at the expense of increasing the

processing time. Our experiments on the 4km x 4km MODIS FPAR data suggest that a sample

size containing 100 points per grid box will produce reasonable coverage and processing time.

If N time series must be sampled from a given grid box, we perform clustering on all the time

series located in the grid box to obtain 1: clusters. We then select [N/k] representative time series

from each cluster to form the sample for the region. We investigate several sampling approaches

in this study. For example, two basic sampling technique is considered:

0 Closest Sampling would sample time series that are closest to the cluster centroid.

o Farthest Sampling would sample time series that are farthest away from the cluster cen-

troid.

Since we are interested in the detection of anomalous events, farthest sampling may be useful to

focus on time series that deviate significantly from others in the cluster.

During the construction of the multi-level index, the pixel locations of the sampled time series

are stored in the index structure. The samples are retrieved when the grid box is selected by the

116



 

 
 

     

 

  
"m m in run In- ner-anus :I

u—n. ‘ run. ‘ ' turn-1?.- ‘3.

 

Figure 5.6. An interactive visual data mining tool for detection and characterization of ecosystem

disturbances.

user during exploratory data analysis. The disturbance event detection algorithm is then applied

to the samples and their results will be displayed on the map (as shown in Figure 5.5.

To evaluate the effectiveness of the sampling strategy, we compute the fraction of disturbance

events missed due to sampling:

d

1 N (12.-:9) — N..(b~9)
Loss: —2 : E : —“—‘.,~———”— (5.14)

d [21W]! .~,(b,, 6)

where d is the number of levels, Q; is the set of grid boxes at level I, 6 is the event definition

threshold, Na(b,:; 6) is the actual number of disturbance events in the grid box, and Ns(b,-; 6) is

the corresponding number of disturbance events in the sampled time series.

5.5.3 A User-Interactive System for Disturbance Event Detection

Figure 5.6 shows a snapshot of the interactive system that integrates the disturbance event de-

tection and clustering algorithms developed in this study. The algorithms and user interface are

developed using the Matlab programming language. Initially, the map will display the frequency

distribution of disturbance events for the selected continent (e.g. North America, as shown in

Figure 5.6). The continent is initially divided into a 7 x 10 grid box. The color ofthe pixels on the

map represents the fraction of locations in each grid box that contain disturbance events. The user

may decide to select a grid box that contains a high percentage of disturbance events for further

exploration. The viewer will zoom in to the selected grid box and scanned all the subgrids for
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Figure 5.7. Target specific anomaly detection.

that region in the next higher resolution level. Also, our viewer enable users to retLu'n to the last

level by right clicking the map and choosing a different grid at a lower resolution level. Users

can repeat this process until the highest level is reached where each grid represents a true location

with latitude and longitude. At the highest resolution level, users can click a single location and

the viewer will plot the time series and return anomaly score for each temporal data point.

5.6 Experimental Result

We perform several experiments to evaluate the performance of our proposed techniques in this

work.

5.6.1 Target Specific Anomaly Detection

The objective of this experiment is to illustrate the effectiveness of applying kernel alignment for

target specific anomaly detection in multivariate time series. We simulated three equal length time

series as shown in Figure 5.7(a). The top diagram represents the target variable Y whereas the

bottom two time series correspond to the predictor variables X1 and X2. Both X1 and Y are

generated by interjecting large amplitude pulses to a periodic sinusoidal time series. The time
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Figure 5.8. General multivariate noisy time series anomaly detection.

series for X2 is generated by interjecting large amplitude pulses and modifying the local shape of

a random time series generated from the normal distribution N (t, 0.8). The diagram clearly shows

that two of the anomalies in the target variable Y (at timestamps 20 and 40, respectively) can be

explained by the anomalies found in X1. The third anomaly in the target variable Y (at timestamp

60) is unrelated to any anomalies observed in the predictor variables X1 and X2. Furthermore,

the anomalies at timestamp 90 of the predictor variable X1 and at timestamps 70 and 80 of the

predictor variable X2 do not correspond to any anomalies in Y.

Figure 5.7(b) shows the results of applying our target-specific anomaly detection algorithm on

the aligned (K0) and unaligned (KX) kernel matrices derived from the combined predictor vari-

ables, X1 and X2. Anomalies are detected based on the timestamps at which the connectivity

values are below a certain threshold (after standardization). The results clearly demonstrate the

effectiveness of applying kernel alignment to learn the dependence relationship between the pre-

dictor and target variables. Without kernel alignment, the correlated anomalies at timestamps 20

and 40 are indistinguishable from other timestamps in the time series, which may lead to high

false positive or false negative rates (depending on the threshold chosen). By applying kernel

alignment, anomalies that are correlated with those observed in Y (at timestamps 20 and 40) are

amplified, which suggests that they can be used to characterize the anomalies found in the tar-

get variable. The anomalies found at timestamps 70 and 80 in the predictor variable X1 and the
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anomaly found at timestamp 90 in predictor variable X2 are degraded since they do not align with

the target variable Y. Similarly, the anomaly at timestamp 60 in the target variable is also not

detected because it cannot be explained by any anomalies in the predictor variables.

This experiment uses the original predictor time series as the basis vectors for the aligned kernel

(see Section 5.3.1). The weights associated with the predictor variables are 021 = 0.9964 and

a2 = 0.0844, respectively. These parameters suggest that X1 is more correlated to the target

variable Y than X2, which is consistent with our observation.

5.6.2 General Multivariate Noisy Time Series Anomaly Detection

The purpose ofthis experiment is to demonstrate the effectiveness ofapplying kernel alignment on

anomaly detection for multivariate time series without a target variable. Figure 5.8(a) shows two

simulated time series X1 and X2 with a pair of anomalies at timestamps 20 and 30, respectively.

A Gaussian noise (N(0, 0.3)) is also added to each time series to distort the signals.

The resulting anomaly score is plotted in Figure 5.8(b). Without kernel alignment, the random

walk algorithm has difficulty in discriminating the anomalies at timestamps 20 and 30 from other

noisy signals in the time series. By applying kernel alignment (using Equation (5.13)), the random

walk algorithm can successfully detect both anomalies in the noisy time series. This experiment

suggests that kernel alignment helps to improve the kernel matrix used by the anomaly detection

algorithm by reducing the effect of noise.

5.6.3 Subsequence Anomaly Detection

The purpose of this experiment is to demonstrate the effectiveness of our algorithm for finding

unusual subsequences in a multivariate time series. We simulated two time series X1 and X2 as

shown in Figure 5.9(a). A Gaussian noise (with mean zero and standard deviation 0.1) is used

to distort both time series. Anomalous subsequences are then added to the time series two time

series.

We compare the results of applying random walk anomaly detection algorithm on kernel matri-

ces constructed from the subsequences to those constructed from individual time points. In both

cases, the kernel matrices are initially aligned before applying the random walk algorithm. The
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Figure 5.9. Unusual subsequences detection.

subsequence-based kernel matrices are constructed using a sliding window of length 6. Figure

5.9(b) compares the anomaly scores obtained using the aligned subsequence-based kernel matrix

(top diagram) to those obtained using the aligned point-wise kernel matrix (bottom diagram). The

results obtained using subsequence-based kernel are clearly more superior.

5.6.4 Local Anomaly Detection

This experiment compares the results of applying the full versus sparse kernel matrices for detect-

ing local anomalies. First, we illustrate the results of detecting time-based local anomalies. Figure

5.10(a) shows the two simulated time series used in our experiment. One of the time series, X1,

contains both a global anomaly (at timestamp 100) and a local anomaly (at timestamp 170). We

apply the random walk anomaly detection algorithm on the graph induced by the sparse kernel

matrix (using time-based neighborhood with k = 20), as described in Section 5.4.1. The resulting

anomaly scores are plotted in Figure 5.10(b) and compared against those obtained by using the

full (global) kernel. The results show that a firll kernel may miss the local anomaly because its

value at timestamp 170 is similar to other observations in X1. In contrast, the sparse kernel is

capable of detecting both global and local anomalies.

Next, we illustrate the results of detecting cycle-based local anomalies. The two simulated time

series used for this experiment are shown in Figure 5.11(a). Both of the simulated time series
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Figure 5.10. Time-based local anomaly detection.

contain a local anomaly at timestamp 20 and have a periodicity equals to 6. Clearly, the values

of the variables at timestamp 20 are not unusual from a global perspective. As a result, standard

distance-based and density-based anomaly detection methods fail to detect such anomalies. Our

random walk algorithm using the full kernel matrix also fails as shown in the bottom panel of

Figure 5.1 1(b). However, by sparsifying the kernel matrix based on the cycle-based neighborhood

approach, the anomaly at timestamp 20 is successfully detected as shown in the top panel ofFigure

5.11(b).

5.6.5 General Performance Comparison

In this experiment, we compare the performance of our general multivariate time series anomaly

detection algorithm against several baseline algorithms using benchmark data (the data was orig-

inally created by Dasgupta et al. [111] and obtained via a CD from Eamonn Keogh). from the

University of California Riverside time series data mining archive [120]. The benchmark data,

which is used to test the performance of anomaly detection algorithms, contain 38 distinct time

series data. Each time series data has a separate training and test sets. The training set contains

a pair of “normal” time series of length 1000. The test set also has a pair of time series of length

1000 in addition to a class label vector that indicates whether a data point in the bivariate time

series is anomalous.
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Figure 5.11. Cycle-based local anomaly detection.

We compared our general multivariate time series algorithm (denoted as Al ign) against 4 other

competing methods—random walk without alignment [148], probability based [220], LOF [31],

and K-distance based methods [176]. Note that the probability based method trains a classifier

from the training set and thus is a supervised methods. All other methods, including Align,

are unsupervised and do not use the training set. The performance of the algorithms is measured

in terms of their area under ROC curve (AUC) [82]. Figure 5.12 shows the AUC values for all

the methods on the 38 data sets. The results suggest that Align significantly outperforms other

existing methods for the majority of the data sets. As an example, Figure 5.13 shows the ROC

curves for all the methods on one of the data sets in which our random walk algorithm on the

aligned kernel matrix has the largest area.

5.6.6 Ecosystem Disturbance Detection

This section describes the results of applying our algorithm to the problem of detecting ecosys-

tem disturbances such as wildfires in Earth Science data. Specifically, ecosystem disturbances are

detected by monitoring changes in the vegetation cover data (called FPAR [200]) obtained from

satellite observations. The monthly FPAR data is available at 4km x 4km spatial resolution cov-

ering the time period between 2000 and 2005. The objective of this study is to detect ecosystem

disturbances using our proposed algorithm and to correlate them against the anomalies observed
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Figure 5.12. Performance comparison using 38 data sets from UC Riverside data repository.

in climate data (such as precipitation, temperature, and sea-level pressure). The FPAR time series

is treated as the target variable, whereas the climate time series are used as the predictor variables.

To detect anomalies, we align the kernel matrix constructed from the climate variables against

the kernel matrix for FPAR. The aligned kernel is then sparsified using the cycle-based neighbor-

hood approach with k = 12 and r = 1. The anomaly scores for the multivariate time series are

then computed by performing a random walk on the graph induced by the kernel matrix.

Using this approach, we were able to detect several incidents of large-scale FPAR disturbance

events that correlate with extreme climate conditions. One example is given in Figure 5.14(a),

which shows the FPAR time series at a location in Alberta, Canada (latitude=54.85N, longi-

tude=114.20W) along with its anomaly scores obtained by applying the random walk algorithm

to the kernel matrix constructed from the FPAR time series. The timing and location of the FPAR

disturbance event coincide with the Chisholm wildfire event on May, 2001 as reported [194]. It has

also been reported that dry condition was one of the factors causing the severity of the wildfire.

Figure 5.14(b) shows the monthly precipitation for the location along with the anomaly scores
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Figure 5.13. An example of ROC curves for all the methods on the 7th data set.

computed from the aligned kernel. Observe that the FPAR disturbance event is well-aligned with

the occurrence of a low precipitation event. Our analysis also suggests the possibility of another

FPAR disturbance and low precipitation event in Spring 2002, however, more analysis is needed

to validate this event.

As another example, Figure 5.15(a) shows the FPAR time series and anomaly score for a lo-

cation in South Dakota (latitude=35.31N, longitude=l 11.21W). The timing and location of the

disturbance event co-incide with the Antelope wildfire [197] reported in August, 2002. The FPAR

anomaly is also associated with a low precipitation event, as shown in Figure 5.15(b). Although

there are other unusual precipitation events during this period, only one of them coincides with

the FPAR disturbance.

A third example is given in Figure 5.16(a) for the FPAR time series at a location in Honduras

(latitude=15.68N, longitude=87.57W). A sudden drop in FPAR was observed at the end of 2001,

which correlates with a sudden drop in sea level pressure (see Figure 5.16(b)). According to

a report by the National Oceanic and Atmospheric Administration (NOAA) [134], the FPAR

disturbance event coincides with the timing of Hurricane lris.
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(a) FPAR and its anomaly score. (b) Precipitation and its anomaly score.

Figure 5.14. FPAR and Precipitation time series at (latitude = 54.85N, longitude = 114.20W)

and corresponding anomaly score by random walk.

5.6.7 Ecosystem Disturbance Exploratory Analysis

We verify our viewer with several examples of fire events that happened between 2000 to 2005.

Figure 5.17(a) shows a subregion in the highest resolution level, which is close to the Pike-San

Isabel National Forest, 30 miles southwest of Denver, Colorado. According to a report published

in [1], a forest fire hit this region around June 2002. Figure 5.17(b) shows one example location

picked from dark color locations in Figure 5.17(a). The raw time series and the anomaly score by

moving average method is plotted. Continuous low FPAR-Low events lasting 12 months is suc-

cessfully detected at those two locations with latitude and longitude (39.45°N, 105.0005). Figure

5.18(a) shows another subregion in the highest resolution level close to the Alberta, Canada. Ac-

cording to a report published in [194], the Chisholm Fire hit this region around May 2001. Figure

5.18(b) shows an example location picked from dark color locations in Figure 5.18(a). The raw

time series and the anomaly score by graph-based method is plotted. Continuous low FPAR-Low

events lasting 3 months is successfully detected at those two locations with latitude and longitude

(54.88°N,114.18°S).

Since all our results are computed on the fly, users can adjust the parameters whenever they

want to. For example, he can change the length of the sliding window or the threshold in moving

average method accord to his/her own purpose as well as the parameters in random walk approach.
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(a) FPAR and its anomaly score. (b) Precipitation and its anomaly score.

Figure 5.15. FPAR and Precipitation time series at (latitude=35.31N, longitude=11 1.21W) and

corresponding anomaly score by random walk.

5.6.8 Multi-Level Indexing Performance Evaluation

Here we would like to evaluate how different aggregation methods will affect the results during

the exploratory analysis on the high resolution FPAR data. The configuration ofthe system in this

evaluation is based on 3 level indexing and 50, 100, 100 samples for level 1, 2, 3. We first evaluate

how the system performs when aggregating data from high resolution level to low resolution level

using difl‘erent definitions of samples. Two types of samples are used for K-means clusters: 1.

data points closet to the cluster centroid, 2. data points farthest away from the cluster centroid.

The metric in formula 5.14 is used to calculate the sample effect when data is aggregated from

high resolution level to lower resolution level. We include the results for these methods as well

as the random sampling and uniform sampling in Table 5.3. It shows that the loss for random

and uniform sampling is more than 77%, which is considerably higher than farthest sampling.

This result suggests that, by sampling the time series that are considerably different than the

Table 5.3. Comparison of sampling loss for different strategies.

 

 

 

 

 

     

Level 1 Level 2 Level 3 avg

Random 0.7679 0.7319 0.8356 0.7784

Uniform 0.7699 0.7196 0.8213 0.7703

Closest 0.7595 0.7008 0.7994 0.7532

Farthest 0.7527 0.6956 0.4243 0.6242   
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Figure 5.16. FPAR and Sea level pressure time series at (latitude=15.68N, longitude=87.57W)

and corresponding anomaly score by random walk.

cluster centroid, we are more likely to sample time series that contain anomalies (i.e., disturbance

events).

5.6.9 Multi-Level Indexing System Efficiency Evaluation

Table 5.4 shows the total runtime for computing all the disturbance events at different levels using

the moving average and random walk methods. The number of grid boxes and the number of time

series to scan at each level are also recorded. Level 0, which represents the highest resolution

where each grid box is a 4km x 4km location, requires nearly 1.5 hours to scan the entire land

points in North America for moving average method. It is even more expensive for random walk

method, which requires around 5 hours. Clearly, this is infeasible for exploratory data analysis.

After the data is aggregated to level 1 with 50 clusters in each grid box, the time needed to scan all

the sampled time series at this level reduces significantly to only 10 minutes for moving average

Table 5.4. Runtime (in seconds) needed to compute disturbance events at each level for North

America.

 

Level 0 l 2 3

Total Time (MV) 5418.8 661.7 98.4 10.9

Total Time (RW) 17710.0 1839.6 254.6 56.0

#Grids (70x) 48 44 4T 1

#Points (70x) 48 44 x 50 4 x 100 100
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(a) Disturbance locations distributed in the regions of (b) Examples ofFPAR time series for the Hayman Fire

Hayman Fire Event at the highest resolution level. Event at 39.45°N and 105.00°S and the anomaly score

obtained by moving average (First month = 6/2002,

Count = 12).

Figure 5.17. Hayman Fire Event.

method. This was further reduced to as few as 10 seconds at the lowest resolution level 3, which

makes exploratory analysis feasible.

The preceding table shows the amount oftime needed to process all the time series at each level.

However, during exploratory data analysis, a user selects only one grid box to process as he/she

drills down from one level to another. The run time needed to compute disturbance events for

each grid box is shown in Table 5.5. Since all the grid points needed to be scanned at the lowest

resolution when the explorer first appears, the time consumed is equal to scan all the data points

at level 3, which is about 10 seconds for moving average method. When a region at level 3 is

selected, the sample time series for that region will be computed for disturbance event detection.

The response time at this level takes only about 1.4 seconds to compute. In turn, it takes another

0.59 seconds to drill down from level 2 to level 1 and 0.3 from level 1 to the highest resolution

level 0. The same effect is also observed with the random walk method.

Table 5.5. Response Time For Drilling Down From Low Resolution To High Resolution.

 

 

 

 

1—0 2—1 3—2 3

Avg Time(MV) 0.3 0.59 1.4 10.9

Avg Time(RW) 3.24 10.04 18.1 56.0

#Points 44 42 x 50 42 x 100 70 x 100      
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(a) Disturbance locations distributed in the regions of (b) Examples of FPAR time series for the Chisholm

Chisholm Fire Event at the highest resolution level. Fire Event at 54.88°N and 114.18°S and its anomaly

score

Figure 5.18. Chisholm Fire Event.

5.7 Summary

Anomaly detection in time series data has been studied extensively in the literature. However,

there are still many challenging problems for existing methods especially when applying to Earth

Science data, which consists of a large number of multivariate time series in high spatial resolu-

tion. In this chapter, we discussed various techniques to detect and characterize different types of

anomalies in multivariate time series data and developed a visualization system for exploratory

analysis of ecosystem disturbances in Earth Science data. The main contributions of this work

are:

c A graph-based method was first proposed for anomaly detection in multivariate time series

data, which learns the connectivity score for each node by nmning a random walk on the

graph constructed fi'om the kernel matrix of the time series data. This method was further

extended to detect different types of anomalies in time series data. First, local anomalies

such as time-based or cycle-based anomalies can be detected by sparsifying the full kernel

matrix to local kernel matrix, which consists of similarity values between data points in

time-based or cycle-based local neighborhood only. Second, subsequence anomalies can

also be detected by constructing kernel matrix between subsequences of the time series.

Experimental results on both real FPAR time series and syntactic data sets demonstrated
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the superior performance of this technique compared with other methods such as moving

average, LOF, K-dist, etc.

A kernel alignment technique was further discussed for anomaly discovery in multivariate

time series, which involves more than one related variables. Two problems were investi-

gated. One airns for the detection of anomalies in general noisy multivariate time series,

which learns the anomaly scores for every data point or subsequence by running a random

walk on the combination of the aligned kernel matrix among different variables. The align-

ment procedure will reduce the impact of noise significantly and thus decrease the false

alarm rate. The effectiveness of this technique is demonstrated by experiments on a number

of data sets. Another problem aims for the detection of target specific anomalies in multi-

variate time series, which learns the anomaly scores for every data point or subsequence in

target time series and predictor time series by running a random walk on the their aligned

kernel matrices. Anomalies in predictor time series that are most related to corresponding

anomalies in target time series are detected and thus used to characterize the anomalies in

target time series. This method is successfully applied to associate anomalies in climate

events such as low precipitation with disturbance events in FPAR time series such as forest

fires.

Despite the success of our proposed graph-based technique for anomalies detection in time

series data, it is very expensive to apply to large amounts of Earth Science time series in

high spatial resolution, not to mention the requirement of tuning thresholds or parameters

frequently in real applications. A clustering-based framework is proposed to assist the ex-

ploratory analysis of the FPAR time series repository for ecosystem disturbance detection.

The clustering approach was first applied to cluster regions with similar ecosystem distur-

bance events to help the user in categorizing different types of disturbance events. Then

it was used to build a multi-level indexing system, which is integrated into an interactive

viewer that enables scientists to explore the data in near real—time fashion. The effectiveness

and efficiency ofour system are demonstrated by our evaluation.
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CHAPTER 6

Conclusions and Future Work

The primary objective of the work presented in this dissertation is to develop new spatial and

temporal data mining techniques to address the challenging problems in mining Earth Science

data.

6.1 Contributions

We focused on three interesting but challenging research problems related to spatial and tempo-

ral data mining: (l) localized prediction in the presence of spatial and temporal dependencies;

(2) long term time series forecasting; and (3) detection, characterization, and visualization of

anomalies. Preliminary results of this thesis have appeared in several conference proceedings

[46][47][45][48][42][44]. In this section, we summarize the main contributions of this thesis.

The localized prediction work described in Chapter 3 has made the following contributions:

0 Integrated Localized Support Vector Machine Framework:

An integrated framework for localized Support Vector Machine (including LSVC and

LSVR) is proposed, which incorporates neighborhood information between training and

testing examples into the SVM (including SVC and SVR) objective function. We tested the

proposed framework on a number of real-world data sets and showed its superior perfor-

mance over both KNN and nonlinear global SVM.

o Supervised Clustering Algorithms and Profile Support Vector Machine:
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LSVM is expensive to compute since it requires training a separate SVM model for each test

example. To address this limitation, we developed a more efficient implementation of the

algorithm called Profile Support Vector Machine. PSVM reduces the computational time by

extracting a small number of clusters using supervised algorithms called MagKmeans and

Vaereans, for classification and regression respectively. Our analysis showed that PSVM

achieved comparable accuracy as LSVM but is much more computationally efficient.

o LSVM and PSVM with Spatial and Temporal Dependencies:

We demonstrated the effectiveness of the pr0posed algorithms on data with spatial only,

temporal only, or both spatio-temporal dependencies. The spatial, temporal or spatio-

temporal neighborhood information is incorporated into the LSVM and PSVM fi'amework.

Our algorithms achieved significant improvement when applied to a number of prediction

tasks on Earth Science data sets with spatial and temporal dependencies.

The long term time series forecasting work described. in Chapter 4 has made the following

contributions:

0 Empirical Study on Multi-step Time Series Prediction:

An empirical study is conducted on three prediction approaches for multi-step ahead time

series prediction. Our theoretical and empirical analysis showed that current multi-stage

prediction tends to suffer from error accumulation problem when the prediction period is

long. Independent value prediction is less susceptible to this problem because its predictions

are made independently at each time step. However, it has difficulty in learning the true

model and filtering the effect of noise. Parameter prediction handles noisy data by fitting a

function over the entire output sequence and also tends to be more efficient than independent

value prediction when the number ofparameters to be fitted is small. However, finding the

appropriate parameter function to fit the time series is quite a challenging task.

0 Semi-supervised Hidden Markov Regression Model for Multivariate Time Series Pre-

diction:

To alleviate the error accumulation problem in long term time series forecasting, an altema-

tive strategy is adapted to perform multivariate time series prediction by utilizing informa-
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tion from other related time series. A combination of local prediction and global prediction

methods is developed to estimate the response values for the future data. A semi-supervised

time series prediction approach is developed based on Hidden Markov Model Regression

(HMMR) to learn from both historical and future data. Experimental results on a number

of benchmark data sets shows the superior performance of our proposed semi-supervised

algorithm compared with supervised algorithms.

o Covariance Alignment for Data Calibration:

We showed that the inconsistencies between historical and future data may actually hurt

the model’s performance when we apply our semi-supervised HMMR for long term cli-

mate prediction. To compensate for this problem, we proposed a covariance alignment data

calibration method that will transform the training and test data into a new space before

applying the semi-supervised HMMR algorithm. Experimental results on the climate data

sets clearly demonstrate the improvement of the semi-supervised HMMR algorithms when

the proposed data calibration technique is used.

The anomaly detection, characterization, and visualization techniques described in Chapter 5

have made the following contributions:

0 Graph-based Time Series Anomaly Detection Algorithm and Its Extensions:

A robust graph-based method is proposed for anomaly detection in multivariate time series

data, which performs better than other methods such as moving average, LOF, K-dist, etc.

Our algorithm is also very flexible in that it can be extended to detect unusual subsequences

or local anomalies. Our method was successfully applied to detect ecosystem disturbance

in Earth Science data.

0 Kernel Alignment for Multivariate Time Series Anomaly Detection and Characteriza-

tion:

A kernel alignment method is proposed to improve the anomaly detection in noisy multivari-

ate time series data. This method can also be utilized to associate the anomalies in predictor

time series with anomalies in target time series, e.g. to characterize the ecosystem distur-

bance such as forest fires detected fi'om FPAR time series with climate anomalies such as
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dry weather detected from precipitation time series. Extensive experiments have been con-

ducted on synthetic and real Earth Science data sets to demonstrate the effectiveness of our

algorithm.

0 Visualization System for Exploratory Analysis of Global Ecosystem Disturbances:

We also developed an interactive viewer that enables scientists to display the FPAR time se-

ries at locations where disturbance events have been detected. A clustering-based technique

is adapted to group together regions with similar disturbance events to be presented to the

user. The clustering method is further used to build a multi-level indexing structure of the

large scale high resolution FPAR time series data such that the user can explore the data in

near real-time fashion. The effectiveness and efliciency of the system are demonstrated by

our evaluation.

In addition to the Earth Science domain, the algorithms and techniques developed in this thesis

would be beneficial for many other real-world applications including traflic analysis, network

monitoring, geographical information system, and stock market analysis, etc.

6.2 Future Research

In this section, we discuss some of the future research directions on spatial and temporal data

mining motivated by this thesis.

0 Prediction of Extreme Events:

Most time series prediction predicts smooth future values first by constructing a regression

function and then adds possible noise. The forecasts will exhibit less variability than the

actual values, which implies a regression to the mean problem [23]. In many applications,

people are interested in predicting extreme events. For example, Earth scientists are in-

terested in knowing the distribution of droughts in the future which may have substantial

impact on the ecosystem and agriculture of the affected region. Prediction of such extreme

events is much more difficult compared with traditional time series prediction problems.

First, although there has been some work on extreme value theory [74], modeling extreme

events is still a challenging task, not mention to predict their future occurrences. Second,
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extreme events usually happen more rarely than normal events and thus require much more

data for model training. Third, because of pattern evolvement in long term time series such

as climate change, the behavior of extreme events may change substantially compared with

the history. Extending current methods or developing new techniques for extreme events

forecasting is a very interesting problem to be addressed in future work.

Pattern Discovery in Spatio-temporal Database:

It this thesis, we have examined the detection and characterization of anomalous patterns

in time series data. However, the method we proposed focused on temporal patterns only.

There are still many interesting pattern discovery problems remaining for future research in

Earth Science data. For instance, to detect anomalies in spatio-temporal data or to discover

spatio-temporal associations between anomaly patterns in spatio-temporal data. Mining

other interesting patterns such as frequent patterns or periodical patterns and their spatio-

temporal association is also an interesting and challenging problem for future research.

Developing new techniques to solve these problems for Earth Science applications would

definitely help people better understand the interaction between the global climate, ecolog-

ical, and economic systems underlying different observed phenomenons.

Distributed and Parallel Data Mining:

In this thesis, we have proposed a multi-level indexing system by sampling from high res-

olution spatio-temporal Earth Science data for exploratory analysis of the ecosystem dis-

turbances. One limitation of our visualization system for mining ecosystem disturbance in

large scale spatio-temporal data is that only parts of the data are processed each time. It

was able to facilitate the task of exploratory analysis but did not solve the scalability issue

directly when we need to process a very large data set. Recently, large scale computing

systems such as cloud computing have been developed, which utilizes a large number of

machines to solve a problem efliciently. Thus another interesting research direction that

may worth future exploration is to develop parallelized algorithms in large scale distributed

computing system such as map-reduce framework [65]. For example, to develop the paral-

lelized version of the graph-based anomaly detection algorithm for ecosystem disturbance

detection in large scale Earth Science data.
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0 Learning from Heterogeneous Data:

As discussed in Chapter 4, data in Earth Science may come from different sources such

as climate observations and global climate simulation. Heterogeneous data sets are usually

generated from different distributions, which may degrade the performance of most stan-

dard supervised or semi-supervised Ieaming algorithms. We have proposed a covariance

alignment method in our work to calibrate the data from different sources. However, our

solution only aligns the first and second order of the data. Higher order alignment of the

data using kernel statistics would be a possible research direction. Another interesting re-

search problem would be to apply transfer learning methodology [217], which learns from

small amounts oftraining data and large amounts of low quality auxiliary data with different

distribution. However, transfer Ieaming typically requires the auxiliary data with different

data distribution to be labeled, which is not true for the future data in time series forecast-

ing problem. Recently, Raina et al. [175] and Ando et a1. [8] proposed transfer learning

framework to learn from unlabeled data, which may serve as the foundation for our future

work.

0 Multi-scale Anomaly Detection:

The proposed anomaly detection techniques in Chapter 5 only consider anomalies at the

same spatial and temporal scales. In the Earth Science domain, ecosystem disturbance

events may happen at different spatial or temporal scales. For example, ecosystem distur-

bance events such as wildfires may happen at a large spatial scale whereas other events

caused by human activities such as construction of a housing subdivision or a golf course

may happen at a small spatial scale; some disturbance events may last several months

whereas others may last only a short period of time. Detecting anomalies at different spa-

tial and temporal scales may help reveal the intrinsic spatial and temporal structure of the

anomaly patterns and can be used to characterize different types of anomalies.
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APPENDIX A

Proof of the Dual Form for Localized

Support Vector Machine

Let ’DU = [m1+1, ml”, ..., ml+u]T be a set ofu test examples and S'(:1:,-,a31+s) be the similarity

between the training example 1:,- and the test example (131+s. For each ml.” 6 ’DU, we construct

its primal local SVM model by solving the following optimization problem:

I

, 1

rrgn EIIWIIE +fiZS(%wz+s)€7 (A1)

i=1

5. t y,(< w,<p(a:i) > —b) 2 1 — 52',

We introduce the Lagrangian multiplier a, for each inequality condition yz-(< w, M337) > —b) 2

1 —— £1, and u,- for 6,- 2 0. As a result, the Lagrangian for the optimization problem can be written

as:

1 l

L = EIIWIIE + a2 son.» mas.
i=1

1 l

- Z ai(3’i(< W, 99(332‘) > —b) - 1 + £1.) - 211167. (A2)

i=1i=1
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Then, taking deritives of [I with regard to w, b, (52-, we obtain the KKT conditions for the primal

problem:

I

(9L3

-—— =0=>W=Zai$iyi

(9W 7:1

1

BL

b—b =02— ;alyz=0

813
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11767 = 0
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(A7)

(A8)

(A9)

(A10)

(A.11)

From the last two KKT complementarity conditions,we can determine the threshold 0. Further-

more, if a, < [35(232', 7:), then g, = 0. So any training point in which 0 < a,- < (35073,, 7:) can be

used to compute b. By replacing Equations (A.3)—(A.5) into the objective function in (A2), the

optimization problem can be reduced to:

L = —:2 aiajyiyjmz-mj +2(or,- +117)€

271,7:1 7:1

I l
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(A. 1 2)

Thus, we obtain the dual form of the LSVM optimization problem, which is given as follows:

27,j=1

s. t. Z aw, = 0
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