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ABSTRACT

TRANSLATIONAL BIOMARKER STUDIES OF ALZHEIMER'S DISEASE AND
MILD COGNITIVE IMPAIRMENT

By

Igor O. Korolev

INTRODUCTION: Alzheimer's disease is a degenerative brain disorder and the most common
cause of dementia, affecting more than 5 million Americans and 30 million people worldwide.
In this dissertation, | describe two studies investigating imaging and non-imaging biomarkers
for the diagnosis of Alzheimer's disease (AD). Two groups of patients were studied:
individuals with a clinical diagnosis of AD and individuals with mild cognitive impairment
(MCI), an intermediate state between normal cognitive aging and AD. Patients with MCI have
an increased risk of developing dementia (annual incidence of 5-15%), particularly secondary
to AD. Although many MCI patients develop dementia, other individuals with MCI stay

cognitively stable or even regain normal cognitive status.

METHODS/PRINCIPAL FINDINGS: In the first study, diffusion tensor imaging (DTI) was used
to study the effects of AD and MCI on the integrity of limbic white matter pathways. Declines
in the integrity of the fornix and the descending portion of the cingulum bundle were
detectable in both AD and MCI patients. Decreased integrity of the descending cingulum was
associated with decreased glucose metabolism in the posterior cingulate cortex (PCC), the
earliest detectable sign of AD on positron emission tomography (PET) scans. These findings
suggest that the integrity of limbic white matter pathways, as measured by DTI, may serve as
a useful biomarker for the diagnosis of AD. These findings also support the "disconnection
hypothesis" as a mechanism for the PCC hypometabolism observed in patients with incipient

AD. In the second study, we used statistical pattern classification methods and data from the



Alzheimer's Disease Neuroimaging Initiative to develop a prognostic model of dementia for
patients with MCI. More than 750 variables spanning clinical, magnetic resonance imaging
(MRI), and plasma proteomic data were considered as potential predictors of progression
from MCI to dementia. A model based on a small number of clinical and MRI predictors was
found to have good predictive performance. | describe the characteristics of the model,
including its advantages and limitations. The prognostic model of dementia developed here
provides a non-invasive, cost-effective approach that can be used to (1) improve the selection
of MCI patients in clinical trials and (2) identify high-risk MCI patients for early anti-AD

treatment.

CONCLUSION: It is now recognized that Alzheimer's disease may begin years prior to the
onset of dementia, emphasizing the importance of early diagnosis and timely therapeutic
intervention. This dissertation describes promising biomarker approaches for the diagnosis of

Alzheimer's disease.
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CHAPTER 1

Introduction



The goal of this introductory chapter is to provide a general overview of
Alzheimer's disease (AD) and mild cognitive impairment (MCI), with an emphasis
on clinical and neurobiological aspects of these conditions. Then, | describe the

motivations behind the studies presented in Chapters 2 and 3.

1.1  Alzheimer's Disease (AD)
1.1.1 Alois Alzheimer and Auguste D.

The German psychiatrist and neuropathologist Dr. Alois Alzheimer is
credited with describing for the first time a dementing condition which later
became known as Alzheimer's disease (AD). In his seminal 1906 conference
lecture and a subsequent 1907 article, Alzheimer described the case of Auguste
D., a 51-year old woman with a “peculiar disease of the cerebral cortex”
(Alzheimer, 1907; Maurer et al., 1997). Remarkably, the clinical observations and
pathological findings that Alzheimer published more than a century ago continue

to remain central to our understanding of AD today.

1.1.2 Dementia

AD is the most common cause of dementia, with up to 70% of dementia
cases estimated to be due to AD in the United States (Plassman et al., 2007).
Other types of dementia include vascular dementia (10-20%), dementia
secondary to Parkinson's disease, dementia with Lewy bodies, and
frontotemporal dementia. Dementia is a clinical syndrome (a group of co-

occurring symptoms) that involves progressive deterioration in cognition. Various



cognitive abilities can be impaired with dementia, including memory, language,
reasoning, decision making, visuospatial function, attention, and orientation. In
individuals with dementia, cognitive impairments are often accompanied by
changes in personality, emotional regulation, and social behaviors. Importantly,
the cognitive and behavioral changes that occur with dementia interfere with
work, social activities, and relationships and impair a person's ability to perform
routine daily activities (e.g. driving, shopping, housekeeping, cooking, managing

finances, personal care).

1.1.3 Epidemiology of AD

AD is a critical public health issue in the United States and many other
countries around the world, with a significant health, social, and financial burden
on society. An estimated five million Americans have AD, with a new diagnosis
being made every 68 seconds (Thies and Bleiler, 2013). In the U.S., AD is the
fifth leading cause of death among older adults, and ~$200 billion are spent
annually on direct care of individuals living with dementia. Worldwide, it is
estimated that ~35 million people have AD or other types of dementia, and ~65
million people are expected to have dementia by 2030 (115 million by 2050)
(Prince et al., 2013).

AD is a multifactorial disease — with no single cause known — and several
modifiable and non-modifiable factors are associated with its development and
progression. Age is the greatest risk factor for the development of AD; the

likelihood of developing AD increases exponentially with age, approximately



doubling every five years after age 65 (Ott et al., 1995; Querfurth and LaFerla,
2010).The vast majority of individuals suffering from AD are age 65 or older; this
is known as “late-onset” or “sporadic” AD (>95% of all cases). Family history of
AD and rare genetic mutations are associated with the development of AD before
age 65; this is known as “early-onset” or “familial” AD (<5% of all cases)
(Holtzman et al., 2011). People with familial forms of AD have an autosomal
dominant mutation in either one of the presenelin genes located on
chromosomes 1 and 14 or in the amyloid precursor protein (APP) gene. The
genetics of sporadic AD are more complex and less well understood. It is known
that the epsilon 4 allele of the apolipoprotein E (APOE) gene located on
chromosome 19 is a risk factor for the development of sporadic AD (Reiman et
al., 2005). The prevalence of AD is higher among females than males, reflecting
longer life expectancy of women (Hebert et al., 2001). Lower educational
attainment has been associated with increased risk of AD dementia (Ott et al.,
1995), consistent with the idea that education serves to increase a person's
cognitive reserve and resilience to AD pathology (Stern, 2012). A large body of
evidence suggests that cerebrovascular risk factors play a significant role in both
the development and progression of AD; people with a history of diabetes,
hypertension, obesity, and smoking have a substantially elevated risk of AD

(Barnes and Yaffe, 2011).

1.1.4 Neuropathology of AD

AD is a progressive neurodegenerative brain disorder that causes a



significant disruption of normal brain structure and function. At the cellular level,
AD is characterized by a progressive loss of cortical neurons — especially
pyramidal cells — that mediate higher cognitive functions (Mann, 1996; Norfray
and Provenzale, 2004). Substantial evidence also suggests that AD causes
synaptic dysfunction early in the disease process, disrupting communication
within neural circuits important for memory and other cognitive functions (Selkoe,
2002). AD-related degeneration begins in medial temporal lobe structures,
specifically in the entorhinal cortex and hippocampus (Jack et al., 1997); this
provides a mechanism for the memory and learning deficits that are classically
observed with early clinical manifestations of AD. The degeneration then spreads
throughout the temporal association cortex and to parietal areas. As the disease
progresses, degeneration can be seen in the frontal cortex and eventually
throughout most of the remaining neocortex. Of note is the fact that AD causes
pronounced damage to multiple components of the limbic system (Bozoki et al.,
2012; Holtzman et al., 2011), including the hippocampal formation and the major
fiber tracts that connect it to the cerebral cortex (fornix and cingulum), amygdala,
cingulate gyrus, and thalamus. This widespread pattern of neurodegeneration,
affecting both limbic and neocortical regions, correlates closely with the array of
cognitive deficits and behavioral changes that AD patients exhibit (Holtzman et
al., 2011). In addition to cognitive impairment across multiple domains (memory,
language, reasoning, executive, and visuospatial function), patients with AD
show an impaired ability to perform activities of daily living and often experience

psychiatric, emotional, and personality disturbances.



It has been theorized that neuronal damage seen in AD is related to the
deposition of abnormal proteins both within and outside of neurons. These are
the hallmark pathological lesions of AD known as “plaques and tangles”, which
were first discovered by Alois Alzheimer (Alzheimer, 1907). The abnormal
proteins are deposited in the cerebral cortex along neural pathways that mediate
memory and other cognitive functions; this protein deposition follows a
stereotypical pattern of spread that parallels neurodegeneration (Norfray and

Provenzale, 2004). “Senile plaques” (SP) are extracellular accumulations of
amyloid protein, and consist of insoluble amyloid-f protein (Af). Normally, cells

throughout life release soluble AB after cleavage of the amyloid precursor protein
(APP) — a cell surface receptor. Abnormal cleavage of APP coupled with activity

of free radicals, which are released from dysfunctional mitochondria, cause

precipitation of Ap into dense beta sheets and formation of SP. Microglia and
astrocytes mount an inflammatory response to clear the amyloid aggregates; it is
believed that in this process, some of the inflammatory products released for
digestion of SP likely cause destruction of adjacent neurons and their neurites
(axons and dendrites) (Norfray and Provenzale, 2004; Querfurth and LaFerla,
2010). “Neurofibrillary tangles” (NFT) are intracellular aggregates of abnormally
hyper-phosphorylated protein tau, which in normal form serves as a microtubule
stabilizing protein and plays a role in intracellular (axonal and vesicular)
transport. It is possible that NFT interfere with normal axonal transport of
components necessary for proper neuronal function and survival (e.g. synaptic

vesicles with neurotransmitters, neurotrophic factors, mitochondria), eventually



causing neurons to die (Norfray and Provenzale, 2004; Querfurth and LaFerla,
2010). Substantial evidence supports the idea that amyloid formation and
deposition in the cerebral cortex is one of the earliest pathological processes in
AD, preceding the clinical onset of the disease by 10-20 years (Holtzman et al.,
2011). Despite this, the temporal sequence of events in the deposition of amyloid
plaques and formation of NFT during development of AD remains open to
debate. In fact, a recent study suggests that the initial formation of NFT may
occur in the brainstem rather than the medial temporal lobe and may precede the

appearance of the first amyloid plaques in the neocortex (Braak et al., 2011).

1.1.5 Diagnosis and Treatment of AD

The gold standard for the diagnosis of AD is an autopsy-based (post-
mortem) pathological evaluation. The presence and distribution of amyloid
plaques and neurofibrillary tangles in the brain is used to establish the diagnosis
of “definitive” AD and stage the disease (Braak et al., 2011). However, in living
individuals, AD has been diagnosed using standardized clinical criteria for the
past three decades (McKhann et al., 1984); the clinical diagnosis is referred to as
“‘probable” AD and is less definitive than the pathological diagnosis. The clinical
diagnosis of AD is largely based on medical history, physical and neurological
examinations, and neuropsychological evaluation. Brain imaging is used only for
investigational purposes or as an adjunct to the clinical criteria, particularly for
ruling out structural brain lesions or in the differential diagnosis of dementia in

more difficult patient cases. Laboratory testing of blood and cerebrospinal fluid is



similarly performed for research purposes or to rule out alternative causes of
cognitive impairment but not to establish a diagnosis of AD.

There is no cure for AD, and drug therapy for the disease is still in its
infancy. Approved medications for the treatment of probable AD help to control
the symptoms of AD but do not slow down the progression or reverse the course
of the disease itself (Holtzman et al., 2011). Several clinical trials of disease-
modifying AD drugs are currently being conducted, although no such drugs have
been approved for use yet. At present, the mainstay of AD therapy are drugs that
target neurotransmitter systems in the brain. AD primarily damages glutamate-
and acetylcholine-producing neurons and their associated synapses, and this
damage correlates well with early cognitive symptoms of AD (Selkoe, 2002).
Acetylcholinesterase inhibitors (e.g. donepezil) help improve memory function
and attention in AD patients by interfering with the breakdown of acetylcholine,
thereby increasing the levels of the neurotransmitter at the synapse. Memantine
belongs to a different class of drugs and helps improve cognitive function in AD

patients by modulating NMDA-type glutamate receptors (Holtzman et al., 2011).

1.2  Mild Cognitive Impairment (MCI)
1.2.1 The MCI Concept

MCI is a syndrome characterized by memory and/or other cognitive
impairments that exceed those expected due to age-related decline in cognition.
MCI is often regarded as a precursor to dementia or a transitional state between

healthy cognitive aging and dementia (Figure 1.1). In clinical practice and



research studies, MCI has been defined most commonly using the clinical criteria
proposed by Petersen and colleagues (Petersen, 2004). These criteria are as
follows: (1) a subjective cognitive complaint, preferably corroborated by an
informant; (2) objective memory and/or other cognitive impairments that are
abnormal for the individual’'s age and education as documented using
neuropsychological testing; (3) cognitive impairments that represent a decline
relative to the individual’s previous abilities; (4) normal ability to perform activities
of daily living; (5) absence of clinical dementia. Researchers have also proposed
several subtypes of MCI based on distinct neuropsychological profiles (Petersen
et al., 2009), including amnestic MCI (aMCI), which refers to MCI involving
memory-only impairments; non-amnestic MCI (naMCl), which refers to MCI
involving only impairments in cognitive domains other than memory (e.g.
executive function/attention, language, visuospatial); and multi-domain MCI
(mdMCl), which refers to MCI characterized by impairments in both memory and

non-memory domains.

A Normal Cognitive Aging
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'
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Figure 1.1. Progressive development of Alzheimer's disease (AD).
The relationship among pre-clinical, mild cognitive impairment (MCI),
and dementia stages of AD (dashed line) is shown relative to normal
cognitive aging (solid line).



1.2.2 Epidemiology of MCI

Large population-based epidemiological studies (Busse et al., 2006; Manly
et al., 2008; Petersen et al., 2009) in both the U.S. and Europe have estimated
that the prevalence of MCl among adults age 65 and older is 3-24%, with higher
prevalence in older individuals. Prospective longitudinal studies indicate that
patients with MCI exhibit annual rates of progression to dementia of 3-15%, with
highest rates for people in specialty clinic-based cohorts as compared to those in
community-based cohorts (Farias et al., 2009; Mitchell and Shiri-Feshki, 2008).
Overall, rates of progression from MCI to dementia are elevated well above the
annual 1-2% incidence rate of dementia in the general older adult population
(Petersen et al., 2009). Among MCI patients who convert to dementia, AD is the
most prevalent etiology (Busse et al., 2006). However, progression risks vary
according to MCI subtype; aMCI and mdMCI subtypes progress more frequently
to AD whereas naMCI progresses more frequently to non-AD forms of dementia,
including vascular dementia (Manly et al., 2008; Petersen et al., 2009).
Furthermore, patients with mdMCI have a greater risk of developing AD than
those with aMCI (Bozoki et al., 2001). While many individuals with MCI
deteriorate to dementia, a substantial proportion remain cognitively stable or
even improve, reverting to normal cognitive status (Manly et al., 2008). Taken as
a whole, epidemiological research suggests that MCl is a heterogeneous clinical
syndrome (Figure 1.2), due in part to various etiological processes. In addition to
neurodegeneration, other factors have been implicated in the etiology of MCl,

including: cerebrovascular, psychiatric (depression, drug abuse), demographic
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(age, education), lifestyle (smoking, diet), genetic (APOE genotype, family history
of dementia), and other medical conditions (brain injury, anti-cholinergic
medication side effects), which can all potentially affect cognition in the elderly

(Gauthier et al., 2006; He et al., 2009; Petersen et al., 2009).

NORMAL
MCI
(stable)
Non-AD AD
DEMENTIA

Figure 1.2. Mild cognitive impairment (MCI) is a heterogeneous syndrome.
Many patients with MCI eventually develop dementia, either due to Alzheimer's
disease (AD) or other causes (e.g. cerebrovascular). However, a substantial
proportion of MCI patients stay cognitively stable and some even revert to
normal cognitive status.

1.3 Neuroimaging of AD and MCI

In humans, a variety of non-invasive and minimally-invasive neuroimaging
techniques have served as indispensable tools for studying different aspects of
MCI and AD pathology. Volumetric magnetic resonance imaging (MRI) has been
used to study regional patterns of brain atrophy in patients with MCI and AD
(Jack et al., 1997; Rabinovici et al., 2007; Whitwell et al., 2007). Positron
emission tomography utilizing 18F-fluorodeoxy-glucose (FDG-PET) as a
radionuclide tracer is a nuclear imaging technique which measures regional brain

metabolism. FDG-PET has proven to be of value in distinguishing different forms
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of dementia, especially AD versus frontotemporal dementia, and more recently
has also been applied to the study of MCI (Mosconi et al., 2008). Diffusion tensor
imaging (DTI), another MRI-based technique, has been applied to the study of
brain white matter in MCI and AD patients (Bozoki et al., 2012; Zhu et al., 2013).
By measuring the diffusion of water molecules, DTl is able to delineate
microscopic organization of white matter and allows both detailed anatomical
visualization of fiber tracts and quantitative analysis of their integrity (Mori and
Zhang, 2006). Many other neuroimaging approaches are being used to study AD
and MCI, including functional MRI, PET-based amyloid imaging, and
electroencephalography. Two integrative approaches that have great potential for
elucidating the mechanisms of AD and MCI are: (1) the integration of information
from multiple structural and functional neuroimaging techniques (termed “multi-
modal imaging”); and (2) correlation of in vivo neuroimaging with cellular,
molecular, and genetic characterizations of the brain.

Medial temporal lobe (MTL) atrophy, involving the hippocampus and
entorhinal cortex in particular, is the earliest and most prominent MRI feature
evident in AD and predicts progression from MCI to AD (Devanand et al., 2007).
On volumetric MRI, AD patients also show marked enlargement of the lateral
ventricles, portions of which are adjacent to the MTL (Nestor et al., 2008). In
contrast, the earliest sign of AD detectable on an FDG-PET scan is the
hypometabolism of the posterior cingulate cortex and precuneus; such
hypometabolism is also detectable in the MCI stage of the disease (Mosconi et

al., 2008). These structural and functional changes in regions of the limbic
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system serve as biological substrates for learning and memory impairment, the
cardinal symptom of AD. As the disease progresses, atrophy (as seen on MRI)
and hypometabolism (as seen on FDG-PET) develop throughout the temporal,
parietal, and frontal association cortices while primary sensorimotor and visual
cortices remain relatively unaffected. In addition to cortical atrophy, AD is also
characterized by degeneration of white matter within the MTL and subcortical
regions and atrophy of the corpus callosum, as detectable using DTl and MRI
(Bozoki et al., 2012; Salat et al., 2009).

Neuroimaging techniques not only provide a non-invasive approach to the
study of AD and MCI neurobiology but also a platform for the development of
potential diagnostic and prognostic biomarkers. Recognizing the importance of
neuroimaging in the study of MCI and dementia, the National Institute on Aging
(NIA) sponsored the ongoing Alzheimer’s Disease Neuroimaging Initiative (ADNI)
beginning in 2004 (Weiner et al., 2012). ADNI is the largest project of its kind that
seeks to collect longitudinal neuroimaging data along with clinical data,
neuropsychological assessments, and biological specimens (e.g. blood and
cerebrospinal fluid) from MCI, AD, and healthy older subjects. The key goal of
ADNI is to rapidly advance the knowledge on dementia, AD, MCI, and normal

cognitive aging and to develop novel AD biomarkers and diagnostic approaches.

1.4 Motivations for the Present Work
The development of novel diagnostic and prognostic approaches that can
serve as adjuncts to the clinical evaluation of AD and MCI is of major interest to

the biomedical community (Perrin et al., 2009). Early diagnosis of AD and timely
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therapeutic intervention is critical given that the disease may begin years or even
decades prior to the onset of dementia. The importance of early treatment, prior
to the onset of dementia, can be highlighted by clinical trial failures of several
disease-modifying drugs over the last few years (Selkoe, 2011). These failed
phase 2 and 3 clinical trials have typically been conducted in patients with mild-
to-moderate AD dementia, at a stage when the disease process is likely
irreversible and brain damage is too great. As such, greater emphasis has
recently been placed on conducting clinical trials in non-demented people at risk
for developing AD, such as individuals with MCI.

In this dissertation, | describe two studies investigating imaging and non-
imaging biomarkers for diagnosis and prognosis of AD. In the first study (Chapter
2), DTl was used to study the effects of AD and MCI on the integrity of limbic
white matter pathways. We examined whether DTI could be used to reliably
detect alterations in the integrity of the fornix and cingulum (reflecting early AD-
related neurodegeneration of the medial temporal lobe) in patients with AD and
MCI. We also examined whether integrity of the cingulum is associated with
metabolism in the posterior cingulate cortex, the first brain region to exhibit
hypometabolism on FDG-PET in patients with AD. In the second study (Chapter
3), we used statistical pattern classification methods along with clinical, structural
MRI, and plasma proteomic data from the ADNI database (adni.loni.ucla.edu) to
develop a prognostic model of dementia designed to predict future progression
from MCI to AD dementia. Classification studies are important because they

directly assess the diagnostic/prognostic utility of various potential biomarkers at
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the individual patient level and can help advance personalized medicine. The
prognostic model developed here could be used to improve the selection of MCI

patients in clinical trials and to identify high-risk patients for anti-AD prophylaxis.
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CHAPTER 2

Disruption of Limbic White Matter Pathways in Mild Cognitive Impairment

and Alzheimer’s Disease: ADTI/ FDG-PET Study#

“# This chapter is written in the style of a journal article and has been published in the
journal Human Brain Mapping. The content of the article is reproduced with permissions
from John Wiley and Sons, Inc. (Copyright 2011, Wiley Periodicals, Inc). The citation for
the original article is as follows:

Bozoki AC*, Korolev I10*, Davis NC, Hoisington LA, Berger KL. Disruption of limbic white

matter pathways in mild cognitive impairment and Alzheimer’s disease: a DTI/FDG-PET
study. Hum Brain Mapp. 2012;33(8):1792-1802. (*Equal contributions)
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21 Abstract

Background: Alzheimer’s disease (AD) and mild cognitive impairment (MCI) affect the
limbic system, causing medial temporal lobe (MTL) atrophy and posterior cingulate
cortex (PCC) hypometabolism. Additionally, diffusion tensor imaging (DTI) studies have
demonstrated that MCIl and AD involve alterations in cerebral white matter (WM)
integrity. Objectives: To test if 1) patients with MCI and AD exhibit decreases in the
integrity of limbic WM pathways; 2) disconnection between PCC and MTL, manifested
as disruption of the cingulum bundle, contributes to PCC hypometabolism during
incipient AD. Methods: We measured fractional anisotropy (FA) and volume of the fornix
and cingulum using DTI in 23 individuals with MCI, 21 with mild-to-moderate AD, and 16
normal control (NC) subjects. We also measured PCC metabolism using FDG-PET in
AD and MCI patients. Results: Fornix FA and volume were reduced in MCIl and AD to a
similar extent. Descending cingulum FA was reduced in AD while volume was reduced
in MCI and even more so in AD. Both FA and volume of the fornix and descending
cingulum reliably discriminated between NC and AD. Fornix FA and descending
cingulum volume also reliably discriminated between NC and MCI. Only descending
cingulum volume reliably discriminated between MCI and AD. In the combined MCI-AD
cohort, PCC metabolism directly correlated with both FA and volume of the descending
cingulum. Conclusions: Disruption of limbic WM pathways is evident during both MCI
and AD. Disconnection of the PCC from MTL at the cingulum bundle contributes to PCC

hypometabolism during incipient AD.
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2.2 Introduction

Alzheimer’s disease (AD) is the most common cause of dementia among older
adults and traditionally conceptualized as a disease of brain grey matter, with particular
involvement of the medial temporal lobe (MTL), temporoparietal cortex, and posterior
cingulate cortex (PCC). However, studies with diffusion tensor imaging (DTI), an MRI
technique that assesses microstructural organization of white matter (WM) based on
measurements of water diffusion, have demonstrated that AD also involves alterations
in WM integrity. Patients with probable AD have a reduction in the integrity of WM tracts
connecting regions of association cortex, such as the splenium of the corpus callosum,
superior longitudinal fasciculus, and cingulum bundle, while integrity of the pyramidal
tracts (e.g. posterior limb of the internal capsule) is generally preserved (Rose et al.,
2000; Bozzali et al. 2002; Fellgiebel et al. 2008). The likely pathogenic mechanism of
these WM changes in AD is Wallerian degeneration of fiber tracts due to neuronal loss
in cortical associative areas affected by AD pathology (Braak and Braak 1996; Bozzali
et al., 2002).

DTI has also been extended to study older adults with Mild Cognitive Impairment
(MCI), who have an increased risk of developing dementia relative to their healthy
counterparts. Fellgiebel et al. (2005) showed that fractional anisotropy (FA), a measure
of WM integrity, differed significantly between controls and both MCI and AD patients in
regions affected by AD neurodegeneration. They also showed that performance of the
MCI-AD group on the delayed verbal recall test was correlated with posterior cingulum
bundle FA. Other studies have shown that FA of cingulum fibers are significantly

reduced in MCI, and even more so in AD (Liu et al. 2009; Zhang et al., 2007; Choo et
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al., 2008). DTI studies of limbic WM in MCIl and AD show some discrepancy, however.
Kiuchi et al. (2009), using DTI tractography, found decreased FA in the posterior
cingulate fasciculus of MCI patients (relative to normal controls) but no difference
between MCI and AD groups. In contrast, Mielke et al. (2009), utilizing a region-of-
interest (ROI) technique, found FA differences between MCI and AD subjects in a
different region of the cingulum and the fornix but no differences between NC and MCI
groups in these areas. In general, a number of studies in which limbic FA of all 3 groups
are examined (normal controls, MCI and AD) have not been able to demonstrate a 3-
way distinction; either the normal and MCI groups are different from the ADs, but not
from each other, or MCI and AD reveal similar changes in FA, different from the controls.

In addition to FA alone, some recent studies have employed multimodal MRI to
obtain simultaneous measures of FA and volume. The most common way to do this has
been with an ROI-based assessment of FA combined with voxel-based morphometry,
as was employed by Walhovd et al (2009). This study showed that higher diagnostic
accuracy was achieved when multiple methods and ROIs were combined, though in
their hands, morphometry showed the best diagnostic (predictive) sensitivity. In our
study, as in some others (Zhang et al., 2007; Thomas et al., 2008; Mielke et al., 2009), a
tract-based approach is used to obtain the volumetric information as well as the mean
FA of that volume.

WM degeneration has been proposed as a mechanism for the well-documented
functional deficit of the PCC observed on FDG-PET scans, a finding often present
during early stages of AD in parallel with MTL atrophy (Minoshima et al., 1997). This

hippocampal-neocortical “disconnection” hypothesis posits that PCC hypometabolism
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occurring during incipient AD may be due to a distant effect of neuronal dysfunction in
the MTL via disconnection at the cingulum bundle, an idea first put forth in the early
1990s (Jobst et al., 1992) with more recent imaging support from FDG-PET (Nestor et
al., 2003) and combined FDG-PET/MRI studies (Meguro et al., 2001; Chételat et al.,
2008; Villain et al., 2008),. Consistent with this hypothesis, Zhou et al (2008) used DTI
and fMRI to show that there is decreased structural connectivity from both the PCC and
hippocampus to the whole brain as well as a reduction in functional connectivity
between these two regions in MCI and AD. Few studies, however, have tested the
“disconnection” hypothesis directly.

The present study was designed to (1) address the discrepancies from prior DTI
studies of limbic WM in MCI and AD; and (2) directly test the “disconnection” hypothesis
of PCC hypometabolism via a combined structural-functional approach. Specifically, we
hypothesized that patients with both MCI and AD should exhibit decreases in the
integrity of limbic WM pathways, reflective of the neuronal dysfunction and atrophy in
the MTL. We used DTI to investigate changes in FA and volume of the fornix and
cingulum on a continuum from normal aging to MCI to AD. We also investigated the
relationship between integrity of the cingulum bundle and PCC hypometabolism with

combined DTI and FDG-PET.

2.3 Methods

2.3.1 Participants

MCI and AD subjects were recruited from the Cognitive Disorders Clinic at
Michigan State University between 2005 and 2007. Healthy senior participants were

recruited from a database of individuals who volunteered to participate in response to
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fliers and paid advertisements in the Lansing, Michigan community. They were selected
based on demographics in order to match the MCI and AD subjects for age, gender, and
educational attainment. The final group consisted of 23 patients with MCI, 21 patients
with mild to moderate probable AD and 16 normal controls (NC). Table 2.1 shows
demographic information and Mini Mental State Examination (MMSE) scores (Folstein

et al., 1975) for the three subject groups.

NC MCI AD
Age 65.9 (8.5) 70.8(7.9) | 71.6 (10.6)
Gender (M/F) 6/10 12/11 6/15
Education (years) 16.0 (3.3) 15.6 (3.2) 14.3 (3.3)
MMSE score 29.5 (0.7) 26.8 (2.5) 22.0 (4.5)

Table 2.1. Patient demographic information and MMSE scores.

Patients from the Cognitive Disorders Clinic underwent a standardized
assessment for dementia. Based on results of this evaluation, all patients were
classified according to NINCDS-ADRDA criteria for the clinical diagnosis of probable AD
(McKhann et al, 1984; Tierney et al., 1988), and Petersen’s modified criteria for the
diagnosis of MCI (Petersen, 2004). Exclusion criteria included a history of loss of
consciousness for >10 minutes, stroke, psychosis, bipolar disorder, alcoholism, or
substance abuse. For healthy seniors, any neurologic disease was considered
exclusionary; for MCI and AD subjects, neurologic co-morbidities were exclusionary. For
all subjects, a history of depression was acceptable only if the condition was currently in
remission, with or without medication. Medications, including cholinesterase inhibitors,

were permitted. All subjects or their authorized legal guardians provided written informed
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consent. The procedures in the present study were approved by the Michigan State

University Committee on Research Involving Human Subjects.

2.3.2 Image Acquisition

All subjects underwent DTI scans. However, FDG-PET scans were administered
only to MCI and AD patients, for whom the imaging was justified on clinical grounds, but
not normal control subjects, to avoid unnecessary exposure to the radioactive tracer.
Imaging was conducted according to the following protocol.

DTI: General Electric Signa Excite 3 Tesla scanner was used for data acquisition.
For each scan (scan time = 4 minutes 50 seconds), 40 axial slices were collected using
a spin echo EPI pulse sequence with TE = 69.3 ms, TR = 10000 ms, in-plane resolution
= 3 mm, slice thickness = 3 mm, inter-slice gap = 0 mm, 240 mm FOV (80 x 80 matrix),
and NEX = 4. Diffusion encoding was accomplished in six non-collinear directions with
b-value of 1000 s/mm?. DTI images were interpolated on the scanner to a voxel size of
0.9375 x 0.9375 x 3 mm?.

FDG-PET: General Electric Discovery STE scanner was used for data
acquisition. Images were acquired following 10 mCi injection of "®F- fluorodeoxyglucose
(FDG) and 30 minute uptake time using 3-D acquisition over 9 minutes in three 3-

minute dynamic frames. CT attenuation correction was used.

2.3.3 Data Processing

DTI: After transferring raw DTl data to a separate computer workstation, they
were interpolated to an isotropic voxel size of 1.5 mm? using tools from the FMRIB

Software Library (Smith et al., 2004); during this step, DTl data were also converted
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from the native DICOM format to Analyze format. Data were further processed using
MRI Studio (www.mristudio.org) (Jiang et al., 2006) to calculate whole-brain diffusion
tensor and FA maps for subsequent fiber tracking. 3-D reconstructions of the fornix,
cingulum bundle, its associated parietal projection fibers, and posterior limb of the
internal capsule (a control region) were accomplished by using computational
tractography algorithms implemented in MRI Studio. For each tract, multiple 2-D region
of interest (ROI) “seeds”, selected based on a priori knowledge of tract anatomy, were
placed on DTl maps created within MRI Studio (Figure 2.1 a-c); an FA “colormap”,
indicating fiber orientation, aided in the placement of ROl seeds. Fibers were then
tracked voxel-by-voxel along the primary eigenvector (i.e. vector of the largest
eigenvalue), constrained by the ROI seeds. An FA threshold of 20.2 and curvature
threshold of 260° were used to further constrain the course of fiber tracts in the brain.
Some post-hoc “pruning” of tracts was necessary in order to remove extraneous fibers if
they were determined to be inconsistent with known tract anatomy. Figure 2.1d shows
3-D reconstructions of the fornix, cingulum, and internal capsule from a representative
subject. A neurologist (author A. B) checked the tractography results for each subject.
Fiber tracts and FA maps were subsequently re-oriented into standard orientation
relative to the AC-PC and horizontal transverse axes of an anatomical template via 12-
mode affine transformation. These re-oriented fiber tracts and FA maps were then
exported in a binary format for further analysis in MATLAB (MathWorks, Natick, MA),
which was used to “crop” specific tract ROI's based on a standardized set of anatomical

landmarks (Figure 2.1d).
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Figure 2.1. DTI tractography. ROl seeds (white solid lines) displayed on FA
colormaps as used for tracking the fornix (A), internal capsule (B), and cingulum (C).
3-D reconstructions of the cingulum bundle (D, top), fornix (D, bottom), and internal
capsule (D, middle) from a representative normal control subject are shown overlaid
on T1-weighted sagittal MRI, with specific tract ROIs that were defined for
quantitative analysis marked (dotted white line; see text for details). For
interpretation of the references to color in this and all other figures, the reader is
referred to the electronic version of this dissertation.

The landmark boundaries for each ROI, identified on the non-diffusion weighted
DTl image for each subject, were as follows: The fornix body was defined as that
portion of the tract posterior to the fornix columns and anterior to the crura. The

cingulum bundle was divided into three portions: superior cingulum was defined as that



portion of the tract posterior to the genu and anterior to the splenium of corpus
callosum; descending cingulum was defined as that portion of the tract below superior
aspect of the fornix body and above inferior aspect of the temporal horn; parietal
projection fibers were defined as that portion of the tract above superior aspect of the
fornix body and posterior to the descending cingulum. Posterior limb of the internal
capsule was defined as that portion of the tract below superior aspect of the fornix body
and above superior aspect of the midbrain as well as posterior to the genu and anterior
to the splenium of corpus callosum. Then, average FA and volume were computed for
each ROI, as measures of tract integrity, for subsequent statistical analysis. Certain
steps of the processing stream were performed manually (seed placement, post-hoc
pruning of fibers, and definition of ROl boundaries) by an operator (author N. D.), who
was blinded to subjects’ diagnostic group.

FDG-PET: FDG-PET data were analyzed using an automated voxel-based
approach involving the 3-D stereotactic surface projection technique (Minoshima et al.,
1995), as implemented within Cortex ID software (GE Healthcare). Subject images were
first reconstructed using a filter back-projection method (matrix 1282, FOV 30 cm?) to
match the resolution of the program’s age-matched normal subject database. Then,
pons-normalized Z-scores (representing standardized glucose metabolism) were
computed for posterior cingulate, medial parietal, parietal association, temporal
association and visual cortices for each subject relative to the age-matched, normal
subject database. These regions of interest were defined using a PET atlas based on a
stereotactic localization technique, as developed by Minoshima et al. (1994). Figure 2.2

shows representative MCl and AD subjects analyzed with the above method.
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Figure 2.2. FDG-PET Z-score map of cortical metabolism in
representative subjects with MCI and early AD. Data were analyzed
using an automated voxel-based approach involving the 3-D
stereotactic surface projection technique (Minoshima et al., 1994,
1995). Pons-normalized Z-scores (representing standardized glucose
metabolism) were computed for each MCI and AD patient relative to the
age-matched normal subject database. In the MCI subject's scan,
spatial clustering of Z-scores can be seen in posterior cingulate and
medial parietal cortices. In the AD subject's scan, a more diffuse
hypometabolism pattern can be seen that extends to temporoparietal
and frontal cortices. Images show right lateral (top) and medial (bottom)
views of the brain. Light blue and green-yellow colors represent
pronounced hypometabolism.

31



2.3.4 Statistical analysis

SPSS Statistics (version 17; IBM, Chicago, IL) was used for statistical analysis.
Univariate analysis of variance (ANOVA) and post-hoc t-tests were used to assess the
effect of group on tract FA and volume and PET Z-scores. Receiver operating
characteristic (ROC) analysis was used to determine the discriminative power of
different DTl measurements. Pearson (bivariate) correlations were used to assess the
relationship between tract FA (or volume) and PET Z-scores as well as the relationship
between DTI /PET measurements and MMSE performance. All p-values were adjusted

for multiple comparisons using Bonferroni correction.

2.4 Results

2.4.1 Demographic Information

Age, gender composition, and years of education (Table 2.1) did not significantly
differ among the three groups. As expected, MMSE scores (Table 2.1) differed among
the three groups [F(2,54) = 27.9, p<0.001], with NC exhibiting greater MMSE scores
than both MCI (p<0.001) and AD (p<0.001) and MCI exhibiting greater MMSE scores

than AD (p<0.01).

2.4.2 DTl data

FA and volume: Table 2.2 shows the means and standard deviations of tract FA
and volume for NC, MCI, and AD groups as well as ANOVA results. Figure 2.3 shows
example fiber tracts (fornix and descending cingulum) from the three groups. Although

DTl measurements differed between hemispheres for some regions, this lateralization
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was independent of group membership, and we therefore combined data across both

hemispheres in our analysis.

Fornix: FA differed across groups, with NC exhibiting greater FA than both MCI
(p=0.001) and AD (p<0.001); however, FA did not differ between MCI and AD. Similarly,
volume differed across groups, with NC exhibiting greater volume than both MCI

(p=0.02) and AD (p<0.001); however, volume did not differ between MCI and AD.

Descending cingulum: FA differed across groups, with NC exhibiting greater FA
than AD (p=0.001); however, MCI did not differ in this regard from NC or AD. Volume
also differed across groups, with NC exhibiting greater volume than both MCI and AD

(both p<0.001) and MCI exhibiting greater volume than AD (p=0.004).

Parietal projection fibers: FA did not differ across groups but volume did, with NC
exhibiting greater volume than AD (p=0.001). MCI did not differ in this regard from NC or

AD.

Superior cingulum and internal capsule (control): Neither FA nor volume of these

structures differed across groups.

Age as a covariate: Due to the five-year mean age difference between NC and

MCI/AD groups, we re-analyzed FA and volume data with age as a covariate, and the

results above did not change.

33



Region NC MCI AD | F(2,57) |
FA
Fornix 0.31(0.02) | 0.28 (0.01) | 0.28 (0.02) 12.2**
Superior cingulum 0.40 (0.02) | 0.39(0.02) | 0.38 (0.03) n.s.
Parietal projection fibers 0.35(0.01) | 0.34 (0.02) | 0.33 (0.02) n.s.
Descending cingulum 0.36 (0.02) | 0.34 (0.02) | 0.33 (0.02) 7.3*
Internal capsule 0.51 (0.04) | 0.50 (0.04) | 0.49 (0.03) n.s.
Volume (ml)

Fornix 1.8 (0.5) 1.3 (0.5) 1.1 (0.5) 8.5*
Superior cingulum 3.4 (0.7) 3.3 (0.8) 3.2 (0.8) n.s.
Parietal projection fibers 2.0 (0.8) 1.7 (0.9) 1.1 (0.6) 7.2*
Descending cingulum 4.6 (0.8) 3.5(0.8) 2.7 (0.8) 25.3™
Internal capsule 7.0 (1.4) 7.3 (2.3) 6.7 (1.8) n.s.

Table 2.2. Means and standard deviations of tract FA and volume. F-statistic for
group ANOVA shown (Bonferroni-corrected p-values: * p<0.05; ** p<0.01; n.s., not

significant).

Figure 2.3. Examples of fornix and descending cingulum fiber tracts. Fornix body
(fxb) is shown in red and right descending cingulum bundle (cgb) in green for three
representative subjects, one from each of the groups (NC, MCI, AD). BO DTI image is
shown in the background (midsagittal slice at the level of fornix body and parasagittal
slice at the level of the descending cingulum).
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ROC analysis: Table 2.3 shows the area under the curve (AUC), a statistic
indicating the discriminative power, for tract FA and volume measurements. Both the FA
and volume of fornix, parietal projection fibers and descending cingulum discriminated
between NC and AD groups with moderately high power (AUC range: 0.80-0.96, all
p<0.05). FA of the fornix and volume of the descending cingulum also reliably
discriminated between NC and MCI groups (all p<0.05). Only descending cingulum

volume reliably discriminated between MCI and AD groups (p<0.05).

Region | NCvs.AD | NC vs. MCI | MCl vs. AD
FA
Fornix 0.86* 0.84* 0.56
Superior cingulum 0.67 0.60 0.59
Parietal projection fibers 0.80* 0.73 0.56
Descending cingulum 0.81* 0.62 0.69
Volume
Fornix 0.86* 0.73 0.66
Superior cingulum 0.58 0.57 0.52
Parietal projection fibers 0.82* 0.66 0.69
Descending cingulum 0.96* 0.79* 0.79*

Table 2.3. ROC analysis statistics. Area under the curve (AUC) as a measure of
discriminative power (Bonferroni-corrected p-values: * p<0.05). Asymptotic p-values for
the ROC curve were computed based on an assumption that the AUC distribution is
nonparametric and the null hypothesis that AUC = 0.5.

2.4.3 FDG-PET data

Table 2.4 shows the means and standard deviations of PET Z-scores for MCI and
AD groups. Although Z-scores differed between hemispheres for some regions, this
lateralization was independent of group membership, and we combined data across
both hemispheres in our analysis. Relative to a database of normal control subjects, the
MCI-AD cohort exhibited decreased Z-scores in parietal, temporal, and posterior

cingulate cortices (all p<0.01) but not visual cortex (control region). The AD group had
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lower Z-scores than the MCI group in parietal and temporal association cortices and
medial parietal cortex (all p<0.05, uncorrected), but these effects did not survive after
correcting for multiple comparisons. The AD group showed lower Z-scores than the MCI
group when parietal, temporal, and posterior cingulate ROIs were averaged together

(t(41)=2.4, p<0.05).

Cortical Region MCI AD

Parietal association -1.0 (0.8)* -2.0 (1.6)*
Temporal association -1.1 (0.6)* -1.8 (1.3)*
Posterior cingulate -1.4 (0.5)* -1.7 (0.8)*
Medial parietal -1.1 (0.7)* -1.8 (1.3)*
Visual 0.0 (0.9) -0.5 (1.3)

Table 2.4. Means and standard deviations of FDG-PET Z-scores. Z-scores represent
standardized glucose metabolism relative to the normal subject database (Bonferroni-
corrected p-values: * p<0.01).

Correlation with DTI: We examined the relationship between posterior cingulate
hypometabolism (a feature seen early in the course of AD) and integrity of superior and
descending cingulum (major input and output pathways of the posterior cingulate).
Pearson correlations (Figure 2.4) across the combined MCI-AD cohort revealed that
posterior cingulate PET Z-scores (i.e. metabolism) correlated with both FA and volume
of the descending cingulum (both r=0.35, p<0.05) but not with that of the superior
cingulum. To further examine the specificity of this structure-function relationship, we
asked whether descending cingulum FA and volume correlated with PET Z-scores of
any other closely associated regions involved in AD. As shown in Table 2.5, descending
cingulum integrity (FA and volume) selectively correlated with posterior cingulate Z-
scores and not that of the medial parietal, parietal association, or temporal association

cortices.
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Figure 2.4. Posterior cingulate hypometabolism is associated with descending
cingulum integrity. Scatter plots show correlations between posterior cingulate PET Z-
scores and descending cingulum FA (A) and volume (B) in the MCI-AD cohort. Both
r=0.35, p<0.05 (Bonferroni-corrected). Fit lines are shown. Group centroids are shown
separately for MCI (blue diamonds) and AD (green stars) subjects.

Descending Cingulum
Regional PET Z-scores FA Volume
Parietal association 0.11 0.17
Temporal association 0.20 0.15
Posterior cingulate 0.35* 0.35*
Medial parietal 0.15 0.23

Table 2.5. Relationship between descending cingulum integrity and regional
metabolism. Pearson correlation coefficients are shown, indicating strength of the
relationship between descending cingulum FA / volume and regional PET Z-scores for
the posterior cingulate, parietal, and temporal cortices (* p<0.05, Bonferroni-corrected).

2.4.4 DTl and PET correlation with MMSE performance

For regional measures of tract integrity and metabolism that exhibited differences

across groups, we tested their association with MMSE performance. Specifically, MMSE
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scores correlated with fornix FA (r=0.42, p<0.01) and volume (r=0.45, p<0.01),
descending cingulum FA (r=0.45, p<0.01) and volume (r=0.52, p<0.01), parietal
projection volume (r=0.48, p<0.01) as well as posterior cingulate (r=0.38, p=0.06),
parietal association (r=0.43, p<0.05), temporal association (r=0.50, p<0.01) and medial
parietal (r=0.41, p<0.05) PET Z-scores. Figure 2.5 shows scatter plots for some of these
relationships. We also asked to what extent PCC metabolism and descending cingulum
integrity independently predicted MMSE performance. Partial correlation analysis
revealed that the relationship between MMSE scores and descending cingulum FA
(r=0.37, p<0.05) and volume (r=0.45, p<0.01) remained significant after controlling for
PCC metabolism. In contrast, the relationship between MMSE scores and PCC

metabolism was not statistically significant (r=0.23, p=0.2) after controlling for

descending cingulum FA and volume, even when using a more liberal a-level of 0.1.

30 30 30
o
o 25 25 | 25
A .
l-lw-l 20 20 | , ‘ 20 | ,
=
= 15 15 15
w0 Je0l " Jol_
0 2 4 6 22 .26 .30 .34 -4 -2 0 2
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Figure 2.5. MMSE performance is associated with limbic tract integrity and
cortical metabolism. Scatter plots show correlations between MMSE scores and
descending cingulum volume (A; r=0.52, p<0.01), fornix FA (B; r=0.42, p<0.01) and
temporal association cortex PET Z-scores (C; r=0.50, p<0.01) in the MCI-AD cohort.
Fit lines and Bonferroni-corrected p-values are shown. Group centroids are shown
separately for NC (red circles), MCI (blue diamonds) and AD (green stars) subjects.
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2.5 Discussion

The results of this study suggest that fornix integrity declines during the transition
from normal aging to MCI. In contrast, descending cingulum integrity declines during
both the transition from normal aging to MCI and the transition from MCI to AD. The
posterior limb of the internal capsule, which is part of the motor system, did not show
significant changes in its integrity across the normal-to-AD continuum. Similarly, the
superior cingulum, which is also part of the limbic system but less intimately associated
with the MTL memory system, was also unaffected. Thus, our results indicate that white
matter degeneration shows selectivity during early-to-moderate stages of AD, affecting
pathways which mediate memory function (i.e. fornix and descending cingulum) more
prominently than pathways related to non-memory function (e.g. superior cingulum and
internal capsule). This is consistent with previous findings that intracortical (e.g. limbic)
projecting fibers are affected preferentially early in the course of AD, at a point in time
when extracortical fiber tracts are still relatively preserved (Braak and Braak, 1996;
Teipel et al.,2007). Furthermore, our ROC analysis indicates that the integrity of fornix
and descending cingulum (measured as FA and/or volume) can distinguish among NC,
MCI, and AD groups. Our findings are consistent with other recent DTI studies that have
reported declines in fornix and cingulum FA in both MCI and AD patients (Xie et al.,
2005; Teipel et al., 2007; Zhang et al., 2007; Kiuchi et al., 2009; Liu et al., 2009; Mielke
et al., 2009).

Our DTI findings are consistent with the idea that degeneration of the fornix and
cingulum bundle, which serve as major input and output pathways of the hippocampal

formation (Duvernoy, 1998), likely occurs secondary to progressive hippocampal
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damage in MCI and AD. Furthermore, the observed decline in fornix and cingulum
integrity on a continuum from normal-to-MCI-to-AD was further corroborated by
significant positive relationships between fornix/cingulum integrity and MMSE scores, as
a surrogate of disease severity.

Although we found differences in PET metabolism between the combined
MCI/AD cohort and the normal subject database, we did not see robust differences
between individual patient groups. We believe that this is related to the heterogeneity of
our MCI sample, which included amnestic and non-amnestic MCI individuals, as well as
those with multi-domain deficits. We deliberately sought to include all MCI subtypes
both because it better reflects the actual patient population with this condition, and
because it is far from clear in the existing literature whether these subtypes represent
different underlying etiologies.

Results from the DTI-PET correlation analysis indicate that PCC hypometabolism
is, at least in part, related to descending cingulum integrity in the combined MCI/AD
cohort (Figure 2.4). In our study, this structure-function relationship exhibited anatomical
specificity (as opposed to being a global effect) given that such a relationship was
absent for the superior cingulum and parietotemporal regions (Table 2.5). This finding
lends support to the hippocampal-neocortical “disconnection” hypothesis of PCC
hypometabolism in early AD, which posits that PCC hypometabolism may be due to a
distant effect of neuronal dysfunction in the MTL via disconnection at the cingulum
bundle (Jobst et al.,, 1992; Meguro et al., 2001; Nestor et al., 2003; Chételat et al.,

2008).
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Nevertheless, the structure-function relationship between descending cingulum
and PCC was modest in the present study, accounting for ~12% of the variance
(r=0.35). This implies that there may be other concurrent mechanisms contributing to
PCC hypometabolism, independent of its connection to the MTL via the cingulum
bundle. Local damage (i.e. neuronal dysfunction and/or atrophy) in the PCC serves as

one such alternate mechanism for causing PCC hypometabolism (Baron et al., 2001;

Chételat et al., 2002, 2009). Damage in the PCC may result, for instance, from local B-
amyloid accumulation that reaches critical levels during early stages of AD, as
measured by PET imaging (Buckner et al., 2005; Sperling et al., 2009). Interestingly, we
found that descending cingulum integrity predicted MMSE performance independently
of PCC metabolism but not vice-versa. This suggests that the association between
cognitive decline (as measured by MMSE performance) and PCC dysfunction in our
study was secondary to disruption of the descending cingulum, consistent with the
“disconnection” hypothesis.

To our knowledge, few studies have tested this hypothesis directly by correlating
measurements of the cingulum bundle with either structural or functional properties of
the PCC. Villain and colleagues (2008; 2010) used voxel-based morphometric analysis
of volumetric MRI data and FDG-PET to show that hippocampal atrophy was related to
cingulum bundle atrophy, which itself was associated with PCC hypometabolism in MCI
and early AD patients. Our findings complement those of Villain et al. by providing DTI-
based evidence for the disconnection hypothesis. Similar to our study, Choo and
colleagues (2008) also investigated the disconnection hypothesis using DTl in MCI and

AD patients, but they used volumetric MRI to assess structural damage in the PCC.
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They found associations among atrophy of MTL structures, cingulum FA, and PCC
atrophy. In contrast to the purely structural imaging approach used by Choo et al., we
provide evidence for the disconnection hypothesis using a structural-functional
approach correlating DTI with FDG-PET, which is widely used in the clinical setting for
differential diagnosis of AD.

Limitations: DTI data were acquired without suppression of the CSF signal, which
can contribute to partial volume effects, particularly in WM adjacent to ventricular
spaces (Concha et al., 2005). This limitation, coupled with a relatively limited 6 gradient
direction and 3 mm2 in-plane resolution acquisition likely contributed to our inability to
map the crura of the fornix, thereby restricting our analysis of the fornix to the fornix
body. Future studies will proceed with improved technical acquisition parameters as well
as CSF signal suppression in order to improve the SNR of limbic DTl data. Another
limitation of the present study is its cross-sectional, case-control design, which will limit
the generalizability of findings and interpretation regarding causal mechanisms. Follow-
up longitudinal studies can help confirm our findings. Finally, we chose to limit this
analysis to limbic tracts that are directly related to the hippocampal formation and
posterior cingulate gyrus, but an analysis that included a more extensive array of
structures from the Papez circuit might have yielded additional results. Although the lack
of PET data in normal control subjects could be viewed as a potential limitation, the
Cortex ID program uses an age-matched (in 5 year increments) normal subject
database to generate Z-scores, and thereby “builds in” a control population, albeit not

one with local population demographics.
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In conclusion, our results indicate that disruption of limbic white matter pathways
occurs during MCI as well as in early-to-moderate AD in a selective manner. This
disruption occurs in a graded manner, with more severely affected individuals having a
greater degree of fornix and descending cingulum damage. In addition, our results
provide evidence in support of the disconnection hypothesis as a mechanism
contributing to PCC hypometabolism during incipient AD. Furthermore, this relationship
between PCC and descending cingulum is anatomically specific, not involving adjacent

cortical regions implicated in AD.
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CHAPTER 3

Predicting Progression from Mild Cognitive Impairment to Alzheimer's Dementia

using Probabilistic Pattern Classification#

# Data used in this study were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (http://adni.loni.ucla.edu). As such, the investigators within
the ADNI contributed to the design and implementation of ADNI and/or provided data
but did not participate in analysis or writing of this chapter. A complete listing of ADNI

investigators can be found at: http://adni.loni.ucla.edu/wpcontent/uploads/how_to_apply/
ADNI_Acknowledgement_List.pdf
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3.1 Introduction

Alzheimer’s disease (AD) is the leading cause of dementia in the aging
population, affecting more than 30 million people worldwide (Barnes and Yaffe, 2011).
AD is a degenerative brain disorder that causes a progressive decline in cognitive
function, most notably memory loss, and other behavioral changes (Holtzman et al.,
2011). Individuals diagnosed with mild cognitive impairment (MCI) have a substantially
increased risk of developing clinical AD, and MCI is often considered to be a transitional
phase between healthy cognitive aging and dementia (Petersen et al., 2009). Thus, MCI
represents a key prognostic and therapeutic target in the management of AD. However,
MCI is a heterogeneous syndrome with varying clinical outcomes. Although up to 60%
of MCI patients develop dementia within a ten-year period, many people remain
cognitively stable or regain normal cognitive function (Manly et al., 2008; Mitchell and
Shiri-Feshki, 2009).

Increasing efforts have focused on building predictive models of dementia and
the MCI-to-dementia progression using pattern classification methods based on clinical,
imaging, genetic, and fluid markers (Chen and Herskovits, 2010; Haller et al., 2011; Kioppel
et al., 2012; Perrin et al., 2009). Prognostic classification of MCI at the individual patient
level has the potential to improve clinical trial design, identify patients for early
treatment, as well as guide clinical and patient decision-making. In this study, we
develop a multivariate prognostic model (Steyerberg et al., 2013) for predicting MCI-to-
dementia progression using baseline data from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) (Weiner et al., 2012). We focus on using widely available, cost-
effective, and minimally-invasive data sources, including: (1) clinical data, such as risk

factors and cognitive / behavioral assessments; (2) morphometric measures derived
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from a structural magnetic resonance imaging (MRI) scan of the brain; and (3) blood
plasma-based proteomic data. Much of this data is routinely collected during the clinical
workup of dementia and clinical trials.

We used a kernel-based classifier to predict future dementia status of MCI
patients by incorporating heterogeneous (clinical, MRI, and proteomic) data. Kernel-
based learning algorithms use “kernel functions” to encode the degree of similarity
between examples in a dataset based on their features (Ben-Hur et al., 2008; Hofmann
et al., 2008), such as individual MCI patients described by their unique biomarker
patterns. We applied an extension of this methodology, known as multiple kernel
learning (MKL), which allows integration of complementary information derived from
different sources or representations of the data using separate kernels (Génen and
Alpaydin, 2011). Recent studies suggest that multiple-kernel classifiers may integrate
heterogeneous data more effectively than conventional single-kernel classifiers,
improving classification of AD and MCI subjects by as much as 3-11% {(Hinrichs et al.,
2011; Zhang and Shen, 2012a, 2012b)}.

The prevailing approach in the literature has been to consider prediction of MCI-
to-dementia progression as a non-probabilistic binary classification task, where all
patients are unequivocally assigned to either the progressive MCI (P-MCI) or the non-
progressive MCI (N-MCI) group (Cui et al., 2011; Davatzikos et al., 2011; Hinrichs et al.,
2011; Westman et al., 2012; Zhang et al., 2011). Sir William Osler (1849-1919), a pre-
eminent physician of the 20th century, is credited with stating that “medicine is a science
of uncertainty and an art of probability” (Westover et al., 2011). In this spirit, we adopt a
recently proposed implementation of MKL that generates probabilistic predictions using

Bayesian inference (Damoulas and Girolami, 2008). The probability associated with
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each individual prediction can be used as a measure of confidence, which in turn can be
used to withhold the decision about future dementia status for ambiguous (“low
confidence”) MCI cases. This approach is often referred to as classification with a “reject
option” {(Herbei and Wegkamp, 2006)}. Alternatively, a probabilistic classifier could be
used to develop a predictive model that allows risk stratification at the individual patient
level. Thus, we propose that a probabilistic classification approach for predicting MCI-to-
dementia progression has greater utility in the context of clinical decision-making than a
non-probabilistic approach.

The objectives of this study were to determine: (1) whether clinical, MRI, and
plasma protein biomarkers capture complementary information regarding short-term
progression from MCI to dementia; (2) if this information is more effectively learned
using a multiple-kernel classifier as opposed to a single-kernel classifier; (3) how robust
our predictive model is in light of patient heterogeneity; (4) to what extent model
performance can be improved when only “high confidence” predictions are allowed; and
(5) whether the model's probabilistic predictions reflect any information about the time-

to-progression for P-MCI patients.

3.2 Materials and Methods

In this section, we describe the ADNI and the subjects who participated in this
study. Then, we describe data collection and processing procedures. Finally, we
describe our pattern classification approach, the series of experiments conducted, and
statistical analyses. Unless otherwise noted, analyses were done using MATLAB

R2010b (The MathWorks, Inc., Natick, MA).
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3.2.1 Alzheimer’s Disease Neuroimaging Initiative (ADNI)

Data used in this study were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (http://adni.loni.ucla.edu). The ADNI was
launched in 2003 by the National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies and non-profit organizations, as a $60 million,
5-year public-private partnership. ADNI is an observational study with both cross-
sectional and longitudinal follow-up components. The primary goal of ADNI has been to
test whether structural, functional, and molecular neuroimaging, fluid and genetic
biomarkers, and clinical and neuropsychological assessments can be combined to
measure the progression of MCI and early AD. Sensitive and specific markers of very
early AD progression are expected to enhance the development of new treatments and
aid in monitoring their efficacy, and to make clinical trials more time- and cost-efficient.
The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center
and University of California — San Francisco. ADNI is the result of efforts of many co-
investigators from a broad range of academic institutions and private corporations, and
subjects have been recruited from over 50 sites across the U.S. and Canada. The initial
goal of ADNI was to recruit 800 subjects. ADNI has been followed by ADNI-GO and
ADNI-2. To date, these three phases of ADNI have recruited over 1500 older adults to
participate in the research, consisting of cognitively normal (CN) individuals, people with
early or late MCI, and people with early AD. Subjects originally recruited for ADNI-1 and
ADNI-GO had the option to be followed in ADNI-2. For up-to-date information, see

www.adni-info.org.
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In this study, we analyzed baseline visit data collected from MCI subjects who
were initially recruited during ADNI-1. The various datasets were downloaded on or
before the following dates: Clinical data — August 20, 2011; Structural MRI data —
August 3, 2011; Plasma proteomic data — June 16, 2012. All subjects and their study
partners completed the informed consent process, and the ADNI study protocols were
reviewed and approved by the local Institutional Review Board at each ADNI data

collection site.

3.2.2 Subjects

The general eligibility, inclusion, and exclusion criteria for ADNI subjects can be
found on the ADNI website (www.adni-info.org) and are summarized here. Enrolled
subjects were 55 to 90 years old with a minimum 6th-grade level of education; had a
study partner able to provide an independent evaluation of functioning; could speak
either English or Spanish; had adequate visual and auditory acuity to allow
neuropsychological testing; were willing and able to undergo all test procedures,
including neuroimaging; and agreed to longitudinal follow-up. All subjects had no
significant neurologic disease, major depression, history of schizophrenia or bipolar
disorder, recent history of alcohol or substance abuse, and no pacemakers or other
objects deemed unsafe for MRI. MCI subjects met the Petersen (Mayo Clinic)
diagnostic criteria for amnestic MCI (Petersen, 2004) as follows: (1) a subjective
memory complaint; (2) objective memory loss, as measured by age- and education-
adjusted scores on Wechsler Memory Scale Logical Memory I, but without significant

impairment in other cognitive domains; (3) generally preserved activities of daily living;
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and (4) no dementia. MCI subjects also had Mini-Mental State Examination (MMSE)

scores of 24-30 and a global score of 0.5 on the Clinical Dementia Rating (CDR) scale.

Characteristic N-MCI (n=120) | P-MCI (n=139) | p-value
Age, years 748+76 748+7.1 >0.52
Education, years 15.7+ 2.9 156 + 2.9 >0.52
Sex, % female 28.3 38.1 0.097°
APOE &4 carriers, % 41.7 66.2 <0.001°
MMSE score 276+1.7 26.7+1.7 <0.0012

MCI = mild cognitive impairment; N-MCI = non-progressive MCI;
P-MCI = progressive MCI; APOE = apolipoprotein E; MMSE = Mini-
Mental State Examination

P-values for differences between N-MCI and P-MCI are based on
(a) t-test or (b) x2-test.

Table 3.1. Subject characteristics at baseline. Values are shown as
mean + standard deviation or percentage.

From a total of 390 individuals with a baseline diagnosis of MCI who were
recruited for ADNI-1, 289 subjects met criteria for inclusion as part of either the P-MCI
or N-MCI group in this study. Thirty (~10%) of these subjects were further excluded due
to partially missing baseline data. Table 3.1 shows the characteristics of the final MCI
cohort (n=259). Progressors (P-MCI; n=139) included MCI subjects who progressed to
AD-type dementia within 36 months (median: 18 months) of entering the study, as
indicated by the National Institute of Neurological and Communicative Disorders and
Stroke —Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA)
criteria for the diagnosis of probable AD (McKhann et al., 1984). Non-progressors (N-
MCI; n=120) included MCI subjects who had not progressed to dementia within 36

months of entering the study. This group included subjects who remained cognitively
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stable (n=107; did not revert to CN status and did not develop dementia) or those who

reverted to CN status and remained dementia-free (n=13).

3.2.3 Data Collection and Follow-up

At study entry (baseline), all subjects underwent a comprehensive clinical
evaluation, cognitive/behavioral assessments, and a structural brain MRI scan. Subjects
also provided a blood sample for apolipoprotein E (APOE) genotyping and proteomic
analysis. Subjects were then followed longitudinally at specific time points (6, 12, 18, 24,
36 months). The clinical status of each MCI subject was re-assessed at each follow-up
visit and updated to reflect one of several outcomes (CN, MCI, AD, or other). The N-MCI
and P-MCI group designations were based on this follow-up clinical diagnosis and used

as the “ground truth” in our classification experiments.

3.2.4 Clinical Data

We considered a total of 186 clinical variables (features) as potential predictors
of MCI-to-dementia progression in our classification analyses (Figure 3.1). Clinical
features were of two types: risk factors and assessments/markers. Risk factors included
demographic, genetic, and medical data, while assessments/markers included total
scores and sub-scores on several cognitive, functional, behavioral, and clinical scales.
We also included data on the off-label use of AD medications by MCI subjects. Recent
studies suggest that cognitive and functional markers may be at least as effective for
predicting MCI-to-dementia progression as imaging and fluid biomarkers (Cui et al.,

2011; Gomar et al., 2011; Palmqvist et al., 2012).
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The following assessments were administered to the subjects in ADNI. The
MMSE (Folstein et al., 1975) is widely used as a screening test for dementia and
assesses cognitive function in multiple domains, including orientation, language,
attention, calculation, constructional praxis, and memory. The CDR (Morris, 1993) is
administered as a semi-structured interview with both the patient and an informant in
order to assesses the patient's functional and cognitive status in six domains: memory,
orientation, judgment and problem-solving, community affairs, home and hobbies, and
personal care. The Functional Activities Questionnaire (FAQ) (Pfeffer et al., 1982)
assesses the level of independence in performing activities of daily living (e.g. record
keeping, managing finances, shopping, meal preparation, remembering dates,
transportation). The Geriatric Depression Scale (GDS) (Sheikh and Yesavage, 1986) is
a self-report assessment of depressive symptoms and designed to be used as a
screening test for depression in older adults. The Neuropsychiatric Inventory
Questionnaire (NPI-Q) (Kaufer et al., 2000) is an informant-based assessment of recent
psychiatric and behavioral symptoms (e.g. hallucinations, agitation, depression, anxiety,
apathy, disinhibition, irritability). The Modified Hachinski Ischemic Scale (HIS) (Rosen et
al., 1980) assesses the contribution of cerebrovascular disease to cognitive impairment
based on medical history and neurological symptoms and signs. The American National
Adult Reading Test (ANART) (Grober et al., 1991) provides a measure of premorbid
intelligence by assessing pronunciation of 50 irregular words.

In addition, a battery of neuropsychological tests was administered to further
evaluate function in specific cognitive domains. The WMS-III Logical Memory (LM) is a
test of episodic memory function that assesses immediate and delayed story recall

(Johnson et al., 2003). The Alzheimer's Disease Assessment Scale — Cognitive sub-
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scale (ADAS-Cog) (Mohs et al., 1997) assesses multiple aspects of memory and
language function as well as attention, orientation, and praxis. The Rey Auditory Verbal
Learning Test (RAVLT) (Vakil and Blachstein, 1993) involves learning lists of words and
assesses verbal memory. The verbal (category) fluency test (Acevedo et al., 2000) and
Boston Naming Test (BNT) (Zec et al., 2007) assess semantic memory and language
function. The digit span test (Hester et al., 2004) assesses verbal working memory. The
Trail Making Test (TMT) (Tombaugh, 2004) evaluates processing speed (part A) and
executive function (part B). The Digit-Symbol Coding Test (DST) (Joy et al., 2004)
assesses processing speed, visual working memory, and visual-motor coordination. The
Clock-Drawing Test (CDT) (Shulman, 2000) assesses constructional praxis with

elements of visuospatial and executive function.

3.2.5 Structural MRI Data

MRI offers a non-invasive, widely available, and more cost-effective alternative
for obtaining imaging biomarkers of AD-related neurodegeneration (e.g. atrophy
measures) compared to positron emission tomography (PET) (Karow et al., 2010). We
considered 452 region-of-interest (ROIl)-based morphometric measures computed from
individual structural MRIs as potential predictors of MCl-to-dementia progression
(Figure 3.1). We generated MRI features for classification using an atlas-based ROI
method rather than a voxel-based method in an effort to reduce the dimensionality of
the MRI dataset and increase the signal-to-noise ratio of the resulting features.

Subijects received MRI scans at 1.5 Tesla acquired using a variety of scanners
(General Electric, Philips, or Siemens) and a standardized protocol (Jack et al., 2008)

with the following acquisition parameters: T1-weighted sagittal 3-D MP-RAGE sequence
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with 1.25 x 1.25 mm? in-plane resolution and 1.2 mm slice thickness, TR = 2400 ms, TI
= 1000 ms, TE = 3 ms, flip angle = 8°, 240 x 240 mm? FOV, 192 x 192 in-plain matrix
size. Raw MRI data underwent quality control and were pre-processed by the ADNI MRI
Core to correct for image geometry distortion due to gradient non-linearity and image
intensity non-uniformity (see www.adni-info.org for details). In this study, we used these
pre-processed, corrected MRI datasets.

Each MRI dataset was post-processed using FreeSurfer v5.0.0
(http://surfer.nmr.mgh.harvard.edu) (Dale et al., 1999; Desikan et al., 2006; Fischl et al.,
1999, 2002), an image processing software tool for i) automated model-based
reconstruction and segmentation of the brain's cortical surface and subcortical
structures and ii) morphometric analysis. The specific MRI processing steps included:
removal of non-brain tissue (skull stripping); Talairach transformation of the brain
volume into standard anatomical space; intensity normalization; segmentation of
cerebral white matter (WM), subcortical gray matter (GM), and ventricles; delineation
and 3-D reconstruction of GM/WM and GM/CSF (cerebrospinal fluid) boundaries; and
automated topology correction. The cortical surface model was registered to a spherical
atlas and used for segmentation of the cerebral cortex into regions based on gyral-
sulcal anatomy (i.e. cortical folding pattern). The final segmentation and labeling of brain
structures was based on a probabilistic atlas along with intensity and curvature
information. Finally, a variety of morphometric measures were computed across 180
anatomically-defined brain regions as MRI features for classification, including cortical
and subcortical volumes, mean cortical thickness (and its standard deviation), surface

area, and curvature. FreeSurfer-derived morphometric MRl measures have been
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validated in studies of normal aging, MCI, and AD (Desikan et al., 2009; Salat et al.,

2009; Shen et al., 2010).

OEE
=p- 10l

CLINICAL STRUCTURAL MRI PLASMA PROTEINS
Data Source (# features) Description

Clinical Data (186)

Demographic: age, sex, education

Genetic: APOE genotype, family hx of dementia
Medical: CVD factors, BMI, hx of depression, anxiety,
alcohol abuse, head trauma, sleep apnea

Risk Factors (16)

Cognitive, functional, and clinical assessments (total
scores and sub-scores). CDR, FAQ, GDS, NPIQ,
Assessments/Markers (170)  \;\sE  ADAS-Cog, LM, Clock, RAVLT, Digit Span,
VerbFlu, TMT, DST, BNT, ANART, HIS, AD-Meds

FreeSurfer ROI-based morphometric measures:
MRI Data (452) volume, cortical thickness (mean and std), surface area,
curvature

Levels of plasma proteins reported to be involved in
cell-signaling and a variety of disease processes.

Proteomic Data (149)

Figure 3.1. Data sources (features) analyzed in this study. hx = history;
APOE = apolipoprotein E; BMI = body-mass index; CVD = cerebrovascular
disease risk factors (history of diabetes mellitus, coronary artery disease,
hypertension, smoking, hyperlipidemia, stroke); CDR = Clinical Dementia Rating;
FAQ = Functional Activities Questionnaire; GDS = Geriatric Depression Scale;
NPIQ = Neuropsychiatric Inventory Q; MMSE = Mini-Mental State Examination;
ADAS-Cog = Alzheimer's Disease Assessment Scale — Cognitive sub-scale; LM
= Logical Memory; Clock = clock drawing/copying; RAVLT = Rey Auditory-Verbal
Learning Test; VerbFlu = Verbal Fluency; TMT = Trail Making Test; DST = Digit
Symbol Coding Test; BNT = Boston Naming Test; ANART = American National
Adult Reading Test; HIS = Hachinski Ischemic Scale; AD-Meds = use of AD
medications; ROI = region of interest; std = standard deviation.

3.2.6 Plasma Proteomic Data
Plasma-based proteomic biomarkers have been proposed as a less invasive and
simpler alternative for the early diagnosis of AD compared to CSF-based biomarkers

(Graff-Radford et al., 2007; Ray et al., 2007). However, the utility of plasma biomarkers
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in predicting MCI-to-dementia progression remains controversial given the conflicting
findings in the literature (Hansson et al., 2010; Johnstone et al., 2012). Thus, in addition
to clinical and MRI features, we considered 149 features based on plasma protein levels
in this study (Figure 3.1). Plasma samples were analyzed by Rules-Based Medicine
(RBM) (Austin, TX) using their Human DiscoveryMAP multiplex immunoassay, which is
based on the Luminex xXMAP platform (Soares et al., 2012). This immunoassay panel of
190 analytes included proteins previously reported to be involved in cell-signaling and/or
associated with a variety of disease processes, including AD, metabolic disorders,
inflammation, cancer, and cardiovascular disease. The ADNI team, in collaboration with
the Biomarkers Consortium, identified 146 (out of 190) analytes that met quality control
standards. We used the cleaned, quality-controlled (QC) dataset containing these 146
analytes, labelled “ADNI Plasma QC Multiplex 11Nov2010”. Further details about the
RBM immunoassay and QC procedures can be found in the data primer, “Biomarkers
Consortium Project: Use of Targeted Multiplex Proteomic Strategies to Identify Plasma-
Based Biomarkers in Alzheimer’s Disease” (available at http://adni.loni.ucla.edu). We
also used the plasma levels of amyloid-B proteins (AB42, AB40, and the AB42/AB40
ratio), which were assayed by the ADNI Biomarker Core Laboratory at the University of
Pennsylvania. AB42 and AB40 have been identified as the major molecular species
contributing to the amyloid (“senile”) plaques, a pathological hallmark of AD (lwatsubo et

al., 1994).

3.2.7 Data Transformation
We applied a series of transformations to the feature data prior to conducting
classification analyses. First, volumetric and surface area MRI measures were

normalized by the estimated total intracranial volume (Buckner et al., 2004) to correct
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for individual differences in head size. Second, each of the 787 features was scaled to
have zero mean and unit variance across subjects. Third, each continuous and ordinal
feature was discretized into three states (low, intermediate, high) using the mean and
standard deviation to define interval boundaries, as described in (Ding and Peng, 2005).
Discretized features were used only when conducting information-theoretic feature
selection (described below) while non-discretized features were used during model

training.

3.2.8 Feature Selection

Feature selection is an important component of the model development process,
particularly in the case of high-dimensional pattern classification where the number of
features is large and exceeds the number of samples available for classification (787
features and 259 subjects in this study). Many of these features may be irrelevant,
redundant, or noisy. Feature selection is a dimensionality reduction strategy that
involves identifying a small but informative subset of the original features for
classification; it can help avoid model overfitting, improve model performance, and
produce models that are easier to interpret and potentially more time- and cost-efficient
to develop and use (Saeys et al., 2007). Feature selection techniques include filter- and
wrapper-based methods. Filter methods tend to be fast and identify informative features
based on inherent statistical properties of the data, independent of any classifier. In
contrast, wrapper methods evaluate the merit of various feature subsets based on the
performance of a classifier and may select features for classification more effectively,

although at a significant cost in terms of speed and greater potential for overfitting.
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In this study we adopt a combined filter-wrapper approach to efficiently identify a
subset of features that can be used to effectively discriminate between P-MCI and N-
MCI. In the first stage of our feature selection procedure, we defined feature subsets of
different sizes (ranging from 1 to 50 features) using the Joint Mutual Information (JMI)
criterion (Yang and Moody, 1999), as implemented in the FEAST toolbox
(http://www.cs.man.ac.uk/~gbrown/fstoolbox) (Brown et al., 2012). In the second stage,
we evaluated these feature subsets in terms of cross-validated classification accuracy
and determined the optimal feature subset size to be used as a parameter in the final
model.

JMI is a multivariate information-theoretic filter method for feature selection and
has been shown to perform well in terms of both classification accuracy and stability on
a wide range of real-world datasets (Brown et al., 2012). Features are selected based
on their JMI score (J), defined as:

(1)

T )= (X ¥) =g 2 15~ 1 (X, 1Y)

where Xk is the feature being considered for selection, Xj is each of the

previously selected features in feature subset § ,and Y is the outcome/class

variable of interest (future dementia status, in this study). The JMI score for a given

feature Xk is defined as a linear combination of three mutual information terms [

each of which describes the amount of information shared (or the dependence) between

two random variables; these terms correspond to relevance [(Xk ; Y) :
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redundancy [(Xk ; Xj> , and class-conditional redundancy ](Xk ; Xj| Y)

(Brown et al., 2012). Thus, JMI-based feature selection favors features that are
maximally relevant to the classification task while being minimally redundant and

maximally complementary with previously selected features.

3.2.9 Classification Approach

In this study, we use the probabilistic multiple kernel learning (pMKL)
classification approach proposed by Damoulas et al.
(http://www.dcs.gla.ac.uk/inference/pMKL) (Damoulas and Girolami, 2008, 2009a,
2009b) to build several prognostic models of dementia. pMKL is a kernel-based
classifier similar to the widely used support vector machine (SVM) (Ben-Hur et al., 2008;
Hofmann et al., 2008). Kernel classifiers rely on the use of kernel functions to map the
original feature data into an inner product space that encodes similarity between
examples (e.g. patients). The algorithm learns to classify new examples based on this
similarity information. Different kernel functions can be used to provide varying

definitions of similarity. In this study, we build models with both linear and nonlinear

(polynomial and Gaussian) kernels. The similarity between a pair of examples ¢ and

b , described by their feature vectors X, and X, ,can be defined according to

each kernel function K as:
K(x,, x,)=x,x, (inear) 2)

K(x,, x,)= (xa-xb—l-c)d (polynomial) (3)
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2 :
K (x,.x,)=exp(—yllx,—x,|[") (aussian @
where ¢ is aconstant, ¢ is the degree of the polynomial, and y is the kernel width.

While an advantage of the linear kernel is that there are no kernel parameters to set,
the linear kernel is unable to capture more complex patterns in the data, as can be done
by using non-linear kernels.

The pMKL classifier, like an SVM, can be used in either the single-kernel mode or
the multiple-kernel mode. In the latter case, referred to as multiple kernel learning
(MKL), separate kernels are used to encode information from different sources

(representations) of the data (Gonen and Alpaydin, 2011). For illustration, consider a

dataset with N/ examples and §' sources of the data, with each example described

by the feature vector x‘:z and discrete class (outcome) label YnE{ 1 ) eensy C}

where p=1,...,N . s=1,..., 5 .and C isthe number of classes

(outcomes). pMKL integrates this information by learning an optimal linear combination

of the multiple kernels (Damoulas and Girolami, 2008), such thatthe N X N

composite kernel is defined as:

S

K" (x,, x,)= B, K" (x},x}) (5)

s=1

In Eq. (5), [35 is the kernel weight describing the relative contribution of data source
s and es is the kernel parameter that controls the amount of data smoothing (e.g.

degree ( of the polynomial kernel or width y of the Gaussian kernel).
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The overall pMKL classifier is based on a Generalized Linear Model (GLM)
regression framework using the multinomial probit likelihood (Damoulas and Girolami,

2008) given by:

P(Y,=ilw K°)=E [1®(u+(w—w,;) k)

J#i

where [J is the expectation with respect to the standard normal distribution

p(u) :N(O, 1) and @ is the cumulative distribution function. Eq. (6)

computes the probability P thatexample 7 belongs to class/outcome | (as

opposed to class ] ) given the feature data (in the form of a kernel matrix kig )

and regression coefficients JJ/ . The regression coefficients reflect the weight with

which training examples used to construct the model vote for a particular

class/outcome. The posterior probability P is determined using Bayesian estimation

methods (for details see Damoulas and Girolami, 2009b) and captures the uncertainty
or the degree of confidence associated with each prediction. Non-probabilistic
classification can be achieved by predicting the class/outcome with the largest posterior

probability (>50% for binary classification).

3.2.10 Experimental Design
We built and examined the following series of predictive models, each designed
to classify individual patients as belonging to either the N-MCI or the P-MCI group. In

experiment 1A, we built a set of models designed to assess the predictive utility of
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different data sources, alone and in combination. For this experiment, we built
classifiers utilizing the linear kernel. First, single-kernel, single-source classifiers were
constructed separately for clinical risk factors (model 1; 'CRF'), clinical assessments /
markers (model 2; 'CAM'), MRI markers (model 3; 'MRI'), and plasma proteomic
markers (model 4; 'PPM'). Second, a single-kernel, multi-source classifier was
constructed where all features across the four data sources (CRF, CAM, MRI, and PPM)
were concatenated and considered jointly during feature selection and kernel
computation steps (model 5; 'CONCAT"). Third, a multiple-kernel, multi-source classifier
was constructed, with a separate linear kernel used to encode the most informative
features from each of the four data sources (model 6; 'MKL-Linear"). In experiment 1B,
we built a set of multiple-kernel, multi-source classifiers by incorporating different
nonlinear kernels in order to capture information regarding more complex interactions
among features and to integrate potentially complementary representations of the
feature data. These classifiers were constructed by considering all features and data

sources and included: i) a three-kernel classifier with a linear, polynomial (d=2 and c=1),

and Gaussian (y=1/D) kernels, where D is the number of features (model 7; 'MKL-LPG');

ii) a classifier with five polynomial kernels (d=1, 2, 3, 4, 5 and c=1) (model 8; 'MKL-

Poly'); and iii) a classifier with five Gaussian kernels (y=10'2, 107", 10°, 10", 102) (model
9; 'MKL-Gaussian').

In experiments 2 and 3, we studied the best performing model identified in
experiments 1A and 1B. In experiment 2, we examined the extent to which patient
heterogeneity affects model performance. Specifically, we examined the effects of age,
sex, educational level, APOE genotype, cerebrovascular risk factors, use of AD

medications, and time-to-progression. In experiment 3, we examined the trade-off
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between predictive confidence and accuracy, and the proportion of MCI patients for
whom predictions can be made at varying degrees of confidence. Predictive confidence
was defined as the difference between the predicted probabilities for the two
classes/outcomes (N-MCI and P-MCI). We also examined whether there is an
association between the predicted probabilities and time-to-progression for P-MCI

patients.

3.2.11 Statistical Analysis and Cross-Validation

For each model (1-9), we report cross-validated accuracy, sensitivity (Sn), and
specificity (Sp) as measures of predictive performance (Altman and Bland, 1994a), and
the area under the curve from receiver operating characteristic analysis (AUC-ROC) as
a measure of class discrimination (Altman and Bland, 1994b). We used the balanced

accuracy rate (BAR) as the primary measure of model performance, where

BAR=(Sn+Sp)/2 .We also assessed model calibration as a secondary
performance measure. Calibration is an important measure of performance for
probabilistic classification models and assesses the reliability of the predicted
probabilities (Bouwmeester et al., 2012; Kim and Simon, 2011). The probability interval
(0-100%) was divided into 10 equal sub-intervals; then, the predicted probability of MCI-
to-dementia progression (generated by the pMKL classifier) was compared to the actual
probability of progression (fraction of subjects belonging to the P-MCI group) for each of
these 10 sub-intervals. The agreement between predicted and actual probabilities was
quantified using the concordance correlation coefficient (CCC) (Lin, 1989); the CCC can
range from +1 (perfect agreement) to -1 (perfect disagreement), with values of CCC

near zero indicating weak or no relationship between predicted and actual probabilities.
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By using the 10 probability sub-intervals (minimum recommended in Lin, 1989) we
obtained a robust estimate for the CCC while keeping the sub-intervals sufficiently large
to maximize the number of subjects within each sub-interval.

Cross-validation (CV) (Kohavi, 1995) refers to various data partitioning
techniques commonly used in statistics and machine learning fields when developing
predictive models and assessing their performance. The key goal of CV is to obtain an
unbiased estimate of a model's predictive performance in circumstances of limited data
availability. In essence, CV allows one to estimate how well a model can be expected to
make predictions in real-world settings on new data.

We used a nested stratified cross-validation procedure (Figure 3.2) to avoid
model overfitting and optimistically-biased estimates of model performance (Cawley and
Talbot, 2010; Smialowski et al., 2010; Varma and Simon, 2006). The procedure
consisted of two nested CV loops, each implementing 10-fold stratified CV: an outer
loop, designed to obtain an unbiased estimate of model performance, and an inner loop,
used for model (parameter) selection. In 10-fold stratified CV (Kohavi, 1995), the
dataset is randomly partitioned into 10 mutually exclusive parts (folds) of equal size,
preserving the proportion of samples in each class as found in the full dataset. Nine out
of 10 parts are used to train the classifier, which is then evaluated on the remaining one
part. This is repeated until each fold of the dataset has been used once for evaluation,
thus resulting in 10 performance estimates per one run of 10-fold CV. During each fold
of the outer CV loop, the full dataset (n=259) was split into a 'model development set'
(90%) and a 'test set' (10%), which was held out for final model evaluation. Feature
selection, model (parameter) selection, and final model construction were repeated

independently for each fold of the outer CV loop and based only on the 'model
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development set'. The inner CV loop was designed to determine the optimal feature
subset size for use in the final model. During each fold of the inner CV loop, data from
the 'model development set' were split into a 'training set' (90%) and 'validation set'
(10%). Then, JMI-based feature selection was performed based only on the 'training set'

to identify subsets with the top D most informative features for discriminating between

N-MCIl and P-MCI, where D€{1,3,5,7,10,15,20,30,40,50} .Aclassifier was
then constructed for each of the ten feature subsets using the 'training set' and
evaluated on the 'validation set'. The subset size resulting in the highest 10-fold CV

accuracy on the 'validation set' was then selected as the optimal feature subset size,

DopTiMAL. The final model classifier was constructed using the top DopT1imaL most
informative features (selected via the JMI method) based on the 'model development
set' and evaluated on the 'test set'. For better replicability, the above nested 10-fold CV
procedure was repeated 10 times, generating 100 performance estimate values for
significance testing. We used a modified paired sample t-test with 10 degrees of
freedom calibrated for 10x10 CV experiments (Bouckaert, 2003) to test for significant
differences in performance between model pairs. All statistical tests were considered

significant at the P < 0.05 level.
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Figure 3.2. Nested 10-fold cross-validation (CV) design for model development
and evaluation. See text for details. JMI = Joint Mutual Information; pMKL =

probabilistic multiple kernel learning; DopTimaL = optimal number of features.
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3.3 Results
3.3.1 Subject Characteristics
The N-MCI and P-MCI groups did not defer in terms of age, education, or sex

distribution, although there was a trend toward a greater proportion of females among

P-MCI subjects (Table 3.1). As expected, there was a greater proportion of APOE ¢4
allele carriers in the P-MCI group compared to the N-MCI group (P < 0.001). P-MCI
subjects had slightly lower baseline scores on the MMSE than N-MCI subjects (P <
0.001); nevertheless, the vast majority of MCI subjects in both groups had baseline

MMSE scores considered to be well within the normal range.

3.3.2 Predictive Performance of Single- and Multi-Source Models

Table 3.2 and Figure 3.3 summarize the predictive performance of models 1-9.
The predictive accuracies (T-BAR) of all four single-source models (1-4: CRF, CAM,
MRI, PPM) exceeded chance-level (all P < 0.01, one-sample t-test), although they
varied from a low of 53.2% for PPM to a high of 76.1% for CAM. The CAM model
outperformed the other three single-source models (all P < 0.001, paired-sample t-test).
The CAM and MRI models were well-calibrated, as indicated by high positive
concordance correlation coefficients (CCC) (both P < 0.001) while the PPM model
showed poor calibration (CCC not different from zero, P > 0.3). The single-kernel, multi-
source model 5 (CONCAT), in which all features across the four data sources were
considered jointly, outperformed all single-source models 1-4 (all P < 0.001, paired-
sample t-test), attaining a predictive accuracy of 80.0%. The calibration of the CONCAT
model, as measured by the CCC, was statistically similar to that of CAM and MRI

models (both P > 0.3) and better than that of the PPM model (P < 0.001).
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Model V-BAR (%) T-BAR (%) Sn(%)  Sp(%) AUC-ROC _ccC  Doprima/Total
Single Source

1. CRF 620+14 61.8+7.7 65.3+12.7 58.3+11.70.61+0.12 # 1+0/16

2. CAM 779+14 76.1+72 769+95 753+11.20.83+0.070.92+0.03 15+10/170
3. MRI 714+16 69.1+85 685+11.8 69.6+12.40.76+0.090.91+0.03 10+5/452
4. PPM 56.0+2.7 53.2+10.0 51.2+12.9 55.3+14.10.54+0.110.10+£0.31 40+10/149

Multi-Source

5. CONCAT 79.7+14 80.0+7.3 80.3+10.6 79.8+10.90.86+0.070.93+0.02 10+3/787
6. MKL-Linear # 749+6.7 746+11.7 752+11.90.84 +0.070.88+0.04 74 +18/787
7. MKL-LPG 802+15 79.7+72 81.0+9.8 78.3+12.30.87+0.070.94+0.02 10+0/787
8. MKL-Poly 80.1+14 795+75 822+10.2 76.8+12.40.87+0.070.94+0.02 10+3/787

9. MKL-Gaussian 80.3+1.3 799+68 834+99 764+1230.87+0.07095+0.01 10+3/787

CRF = Clinical Risk Factors, CAM = Clinical Assessments/Markers, MRI = Magnetic Resonance Imaging, PPM
= Plasma Proteomic Markers, MKL = Multiple Kernel Learning

# Robust estimate of CCC could not be obtained for model 1 because only <10 probability sub-intervals could
be defined when conducting calibration analysis.

## Since no inner CV was necessary other than what was done in models 1-4 to determine the optimal feature
subset size, V-BAR was not calculated for this model.

Table 3.2. Cross-validated performance estimates for models 1-9. For each model, several measures of
predictive accuracy are shown, including balanced accuracy rate on the validation set (V-BAR) and the test set
(T-BAR), sensitivity (Sn), specificity (Sp), and area under the curve from receiver operating characteristic
analysis (AUC-ROC). The concordance correlation coefficient (CCC) is a measure of model calibration and
quantifies the agreement between the predicted and actual probabilities of MCI-to-dementia progression. All
performance measures, except V-BAR, indicate how a model performed on the test set, which was not used
during feature selection, model (parameter) selection, or model training steps. D(optimal) is the optimal

number of features, a parameter determined via cross-validation (see text); the total number of potential
features considered when building each model is shown for reference. Cross-validated performance measures
are shown as mean % standard deviation. D(optimal) is shown as median + median absolute deviation. Model

9 (MKL-Gaussian) was selected as the best performing model and studied further in subsequent analyses.
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Next, we compared the predictive performance of multiple-kernel, multi-source
models (6-9: MKL-Linear, MKL-LPG, MKL-Poly, MKL-Gaussian) relative to that of the
single-kernel, multi-source CONCAT model. In terms of predictive accuracy (T-BAR;
Table 3.2 and Figure 3.3A), the CONCAT model performed similarly to MKL-LPG, MKL-
Poly, and MKL-Gaussian models (all P > 0.3, paired-sample t-test) and outperformed
the MKL-Linear model (P < 0.001). While MKL-LPG and MKL-Poly models were as
equally well-calibrated as the CONCAT model (as indicated by the CCC; both P > 0.2),
the MKL-Linear model was less well calibrated (P < 0.01) and the MKL-Gaussian model
was better calibrated (P < 0.05; Figure 3.3B) than the CONCAT model.

Based on its predictive accuracy and calibration, model 9 (MKL-Gaussian) was
selected as the best performing model to be studied in subsequent analyses. Figure 3.4
shows a series of performance curves that further characterize the predictive
performance of the MKL-Gaussian model and complement the information presented in
Table 3.2 and Figure 3.3. Figure 3.4A shows how model accuracy evolves with
increasing number of features. The accuracy increases rapidly and peaks when there
are 10 features in the model, with a gradual decline in accuracy observed upon the
inclusion of additional features. Figure 3.4B shows the ROC curve and Figure 3.4C

shows the calibration curve for the MKL-Gaussian model.
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3.3.3 Predictors of MCI-to-Dementia Progression

Figure 3.5 shows the top 10 features that were most frequently selected as
baseline predictors of MClI-to-dementia progression for each of the single-source
models (CRF, CAM, MRI, PPM) and the multi-source MKL-Gaussian model. Figure 3.6
shows the topography of the brain regions selected as predictors in the MRI and MKL-

Gaussian models. Among the features considered for selection in the clinical risk factor

(CRF) model, only the number of APOE €4 alleles was selected with a high degree of
consistency, with a selection frequency (SF) of 0.87. Other candidate CRF features,
including age, were selected infrequently (SF < 0.20). The features most frequently
selected in the CAM model included total scores and sub-scores on three assessments:
ADAS-Cog, FAQ, and RAVLT (SF range 0.67-1.00). In the MRI model, the most
frequently selected features included volume and cortical thickness measures for
several brain regions within temporal and parietal lobes (SF range 0.52-1.00). In the
plasma proteomic markers (PPM) model, the most frequently selected features included
proteins associated with vascular processes, immune function and inflammation, and
lipid metabolism (SF range 0.76-0.95).

In the multi-source MKL-Gaussian model (where the optimal number of features
selected was 10 + 3; Figure 3.4A), only CAM and MRI features were selected as
predictors (Figure 3.5). CAM features included the 13-item total score and
constructional praxis sub-score on the ADAS-Cog, the total score and memory question
sub-score on the FAQ, as well as the sum of scores across trials 1-5, trial 5 sub-score,
and trial 6 sub-score on the RAVLT (SF range 0.70-1.00). MRI features included left
hippocampal volume, left middle temporal cortical thickness, and left inferior parietal

cortical thickness (SF range 0.67-0.96; Figure 3.6).
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Clinical Risk Factors (CRF) Clinical Assessments/Markers (CAM)

* Number of APOE &4 alleles (0.87)

* APOE e4 allele carrier (0.17)

* Body mass index (0.07)

Age (0.06) . * FAQ “Writing checks..." question (0.71)
Cerebrovascular disease factors (0.03) e RAVLT 30 minute delayed recall score (0.68)
Sex (0.02) ® ADAS-Cog 11-item total score (0.67)

History of depression (0.02)

Education (0.01)

Parental history of dementia (0.01)

Maternal history of dementia (0.01)
D G N A S R A T A N N N N N

s ADAS-Cog 13-item total score (1.00/1.00)
ADAS-Cog constructional praxis score {0.95/0.83)
FAQ total score (0.98/1.00)

FAQ “Remembering...” question (0.97/0.89)
RAVLT trials 1-5 score sum (0.88/0.88)

RAVLT trial 5 score (0.88/0.70)

RAVLT trial 6 score (0.95/0.97) '

NONE

Multi-Source Model
(MKL-Gaussian)

* |eft hippocampus VOL (1.00/0.96)
¢ Left middle temporal gyrus CT (0.93/0.95)
' ¢ | eft inferior parietal cortex CT (0.79/0.67)

NONE

* von Willebrand Factor (0.95)
e Left entorhinal cortex VOL (0.83) e E-selectin (0.89)
e Left entorhinal cortex CT (0.59) e Tenascin C (0.86) _
¢ Right entorhinal cortex CT (0.54) ® Macrophage inflammatory protein 1-a (0.88)
® Left amygdala VOL (0.72) ® Interleukin-16 (0.77)
¢ Left fusiform gyrus CT (0.59) e C-reactive protein (0.76)
e Right inferior parietal cortex VOL (0.63) * Apolipoprotein CllI (0.89)

e |eft precuneus CT (0.52) * Apolipoprotein E (0.87)
e Apolipoprotein All (0.83)
* Apolipoprotein Al (0.78)

Magnetic Resonance Imaging (MRI) Plasma Proteomic Markers (PPM)

Figure 3.5. Top 10 most frequently selected features as baseline predictors of
MCI-to-dementia progression. Features are shown separately for each single-source
model: CRF (blue), CAM (green), MRI (red), PPM (yellow). A subset of these features
was selected as part of the multi-source MKL-Gaussian model (shown within the dashed
area) and included only CAM and MRI features. The selection frequency across 100
trials of the 10x10 cross-validation experiment is shown in parentheses as: (#) for
single-source model only or (#/#) for both single/multi-source models. APOE =
apolipoprotein E, VOL = volume, CT = cortical thickness, ADAS-Cog = Alzheimer's
Disease Assessment Scale — Cognitive sub-scale, FAQ = Functional Activities
Questionnaire, RAVLT = Rey Auditory-Verbal Learning Test.

78



Middle Temporal Gyrus

Hlppocampus
Precuneus

Fusiform Gyrus - Entorhinal Cortex /

Figure 3.6. Regional MRI predictors of MCI-to-dementia progression.
Morphometric measures (volumes and cortical thickness) for brain regions shown in
both warm and cool colors were selected as predictors in the single-source MRI model.
Morphometric measures for a subset of these regions, shown in warm colors (red,
orange, yellow), were also selected as predictors in the multi-source MKL-Gaussian
model. Regions of interest are overlaid on top of 3-D model reconstructions of the
brain (gray). Top row: lateral view of the cerebral hemispheres. Center: close-up view
of the hippocampus-amygdala complex. Bottom row: medial view of the cerebral
hemispheres.
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As a confirmatory analysis, we compared N-MCI and P-MCI groups on each of
the baseline predictors identified in the MKL-Gaussian model (Figure 3.7). As expected,
there was a robust statistically significant difference between the two MCI groups for all
predictor variables (all P < 0.001, independent sample t-test). P-MCI subjects were
more cognitively and functionally impaired at baseline than N-MCI subjects, as indicated
by higher scores on the ADAS-Cog and FAQ. Relative to N-MCI subjects, P-MCI
subjects had a more pronounced verbal memory impairment at baseline, as indicated
by lower scores on the RAVLT. P-MCI subjects also showed signs of atrophy in temporal
and parietal brain regions at baseline, as indicated by reduced hippocampal volume as
well as reduced middle temporal and inferior parietal cortical thickness relative to N-MClI
subjects.

In this study, we used data from 259 out of 390 MCI subjects in the ADNI-1
database to develop and evaluate predictive models of dementia. The other 131 MCI
subjects (~34%) were excluded from the study because they either did not meet our
inclusion criteria or due to partially missing data. To examine a potential selection bias
that this subject exclusion can introduce into the predictive model, we compared the
included and the excluded MCI subjects on each of the baseline predictor variables
(Figure 3.8). The included subjects were statistically similar to the excluded subjects on

all predictor variables (all P > 0.4, independent sample t-test).

3.3.4 Influence of Patient Characteristics on Model Performance
To better characterize the best-performing model in this study (MKL-Gaussian),
we examined whether the model's predictive accuracy varies as a function of age, sex,

education level, APOE genotype, off-label use of AD medications, presence of
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cerebrovascular disease risk factors, and history of depression (Figure 3.9A-G). Overall,
the model tended to make more accurate predictions about future dementia status for

patients with the following characteristics: older age; female sex; higher educational

level; APOE €4 negative genotype; not using AD medications; history of a greater
number of conditions considered to be cerebrovascular disease risk factors; or a history
of depression. However, the particular effects on the sensitivity and specificity of the
model were more complex and depended on the patient characteristic being
considered. In the case of P-MCI subjects, predictive accuracy was inversely related to
the time-to-progression from MCI to dementia (Figure 3.9H): 0-6 months (93.1%), 6-12
months (89.3%), 12-18 months (87.6%), 18-24 months (74.8%), 24-36 months (71.3%).
There was a large difference in terms of accuracy for MCI patients progressing to

dementia within 18 months (89.4%) and those progressing after 18 months (73.3%).

3.3.5 Probabilistic Classification and Staging of MCI Patients

We investigated whether probabilistic outputs from the pMKL classifier could be
used to improve the predictive accuracy of our prognostic model by permitting only "high
confidence” predictions to be made. Figure 3.10 shows how the predictive accuracy
varies as we require different levels of confidence to make predictions. As we raise the
level of confidence required to make predictions, the accuracy of the model gradually
increases. However, this increase in predictive accuracy comes at a cost; with
increasing minimum levels of confidence required, the model is able to make such "high
confidence" predictions for an increasingly smaller proportion of patients. For example,
requiring a minimum predictive confidence level of 0.4 (equivalent to a predicted

probability of 0.70), improved model accuracy from 79.9% (83.4% sensitivity, 76.4%
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specificity) to 87.4% (91.7% sensitivity, 83.2% specificity). This improved accuracy was
achieved by allowing predictions to be made only for the top ~73% most confident
patient cases, while designating the predictions for the other ~27% of patient cases as
ambiguous or low confidence. We also examined whether probabilistic outputs from the
pMKL classifier reflect the time-to-progression information for individual P-MCI subjects,
and thus, could potentially be used for staging where along the MCI-AD continuum an
MCI subject is. Correlation analysis revealed that there was a small but statistically
significant negative association between the predicted probabilities of P-MCI and the
time-to-progression (i.e. larger probability of P-MCI| was associated with shorter time-to-

progression; r = -0.20, P < 0.05, Spearman correlation).
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Figure 3.7. Comparison between N-MCI and P-MCI groups on
baseline predictor variables. Error bars are 95% confidence intervals.
Significant group differences were present for all predictor variables (all
P < 0.001). Vol. = volume, CT = cortical thickness, ADAS-Cog =
Alzheimer's Disease Assessment Scale — Cognitive sub-scale, FAQ =
Functional Activities Questionnaire, RAVLT = Rey Auditory-Verbal
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Figure 3.9. Effect of patient characteristics on predictive accuracy. The
predictive accuracy of the model (MKL-Gaussian) was not uniform across various
patient characteristics. Accuracy varied with baseline demographic (A-C), genetic
(D), and clinical (E-G) characteristics. Panel E shows a comparison of MCI
patients who were taking medications for Alzheimer's disease (AD) off-label
versus those who were not. Panel F compares patients according to the number
of pre-existing conditions in their medical history that are considered to be
cerebrovascular disease (CVD) risk factors, including diabetes mellitus, coronary
artery disease, hypertension, smoking, hyperlipidemia, and stroke. The predictive
accuracy of the model varied inversely with time-to-progression for P-MCI
patients (H). The overall accuracy of the model (as found in Table 3.2) is shown
for reference as a dashed line. Error bars represent 95% confidence intervals
across cross-validation trials. BAR = Balanced Accuracy Rate, Sn = Sensitivity,
Sp = Specificity, y/o = years old, H.S. = high school, APOE = apolipoprotein E,
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3.4 Discussion

In this study, we developed and evaluated several prognostic models for
predicting MCI-to-dementia progression during a three-year period. For this task, we
analyzed clinical, structural MRI, and plasma proteomic data collected from a large
prospectively-followed cohort of 259 MCI patients who were recruited through the
collaborative, multi-site Alzheimer's Disease Neuroimaging Initiative (ADNI). We
highlight the most important findings from the study, discuss the advantages and

limitations of our methodology, and point out some future directions for this work.

3.4.1 Predictive Utility of Clinical, MRI, and Plasma Proteomic Biomarkers

Among the four data sources examined, clinical assessments proved to be the
most accurate for predicting MCI-to-dementia progression. Similar to our findings,
Gomar et al. (Gomar et al., 2011) showed in a series of logistic regression models that
cognitive markers outperform volumetric MRl and CSF biomarkers for predicting
progression to dementia over a two-year period. Using SVM classifiers, Cui et al. (Cui et
al., 2011) also demonstrated that cognitive and functional measures were more
predictive of progression then MRI and CSF measures. Of the four data sources,
plasma proteomic biomarkers had the lowest predictive accuracy that was only
marginally better than chance level. In addition, the median number of plasma
proteomic features selected was substantially larger than the number of features
selected for the other data sources (40 versus 15 or less). This suggests that as a
potential source of biomarkers, plasma proteomic data has a low signal-to-noise ratio
and limited predictive utility for predicting MCI-to-dementia progression. Consistent with

our findings but using a different pattern classification strategy, Johnstone and
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colleagues (Johnstone et al., 2012) showed that plasma-based proteomic measures
could not reliably discriminate between progressive and non-progressive MCI subjects.
The predictive utility of structural MRl measures and clinical risk factors was found to be
intermediate between that of clinical assessments and plasma proteomic measures.
Among the nine models examined in this study, the model that yielded the best
predictive accuracy (MKL-Gaussian) was comprised of clinical assessments and MRI
measures, but none of the clinical risk factors or plasma proteomic measures. The
combination of clinical assessments and MRI measures outperformed using either
source alone for classification of N-MCI and P-MCI subjects, indicating that these
sources of data provide complementary information regarding MCI-to-dementia
progression. The optimal subset of predictors included baseline total scores and sub-
scores on two cognitive tests (ADAS-Cog and RAVLT), a measure of functional status
(FAQ), and morphometric measures for three brain regions (left hippocampus, middle
temporal gyrus, and inferior parietal cortex). The inclusion of ADAS-Cog scores as
predictors in the model, in addition to the RAVLT, suggests that baseline deficits in
multiple cognitive domains are predictive of future progression to dementia. This finding
is corroborated by previous reports that MCI patients with both memory and non-
memory deficits have a greater risk of progression to AD dementia than patients who
have memory-only deficits (Bozoki et al., 2001). The inclusion of brain regions in
addition to (and outside) of the hippocampus as predictors of MCl-to-dementia
progression is consistent with the known pattern of grey matter atrophy
(neurodegeneration) associated with AD. The atrophy is known to begin in the medial
temporal lobes and, as the disease progresses, spreads to affect the temporal and

parietal association cortices. The preferential selection of morphometric MRI features
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involving left but not right-sided brain regions suggests that baseline atrophy of left-
sided regions is more predictive of MCI-to-dementia progression than atrophy of right-
sided regions. Right-sided brain regions appear to provide redundant information about
progression. This preferential selection of left-sided temporoparietal brain regions as
predictors of progression is consistent with evidence that AD-related atrophy occurs at a

faster rate in the left hemisphere (Thompson et al., 2003).

3.4.2 Effect of Multiple Kernel Learning on Model Performance

In this study, the effect of MKL on model performance was modest. Specifically,
multi-source, multiple-kernel classifiers did not outperform the multi-source, single-
kernel classifier in terms of predictive accuracy. However, we found that the MKL-
Gaussian classifier (using five Gaussian kernels) modestly improved the calibration of
the resulting model relative to the single-kernel classifier. We used a relatively small
number of kernels in our MKL models, and this could account for the limited benefit we
observed with MKL. Using a larger number of kernels, as done in some recent studies
(e.g. Hinrichs et al., 2011), could yield additional improvements in predictive

performance.

3.4.3 Statistical Considerations: Overfitting and Selection Bias

Validation and test accuracies (V-BAR and T-BAR in Table 3.2) were within 3% of
each other for all models examined in this study, and in many cases <1% apart,
indicating that model overfitting was minimal and that our nested cross-validation
procedure was effective. We evaluated feature subsets containing up to 50 features,

which corresponds to a sample-to-predictor ratio of ~2:1 (based on the smallest class,
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N-MCI, with n=120). From a classical statistical viewpoint, however, at least 10 samples
per predictor are often recommended to minimize difficulties with model estimation and
overfitting (Bouwmeester et al., 2012). Thus, a model with 15 or less predictors would
be preferred given the sample size of our study. The MKL-Gaussian model, designated
as the best performing model, met this recommendation with a median of 10 + 3
features being selected as predictors. We also assessed for potential selection bias that
may have occurred secondary to our exclusion of 131 (out of the 390) MCI subjects who
did not meet the inclusion criteria or due to missing data. No differences were found
between included (n=259) and excluded (n=131) subjects on any of the predictor
variables in our model. This null finding provides reassurance that a selection bias due
to the exclusion of subjects in this study is unlikely, at least with respect to the predictors

of interest.

3.4.4 The Importance of Patient Heterogeneity in Pattern Classification

The best performing model for predicting MCI-to-dementia progression (MKL-
Gaussian) did not contain any clinical risk factors, as they were deemed uninformative
or redundant in the presence of clinical assessments and structural MRl measures.
Nevertheless, we found that many of these patient characteristics have a substantial
effect on the predictive accuracy of the model. For some patient characteristics, such as
age and educational level, the effect on predictive accuracy was similar for both
sensitivity and specificity. For other characteristics, such as APOE genotype, the effect
on accuracy was limited to the specificity. Yet for other characteristics, such as sex,
there was an opposite effect on the sensitivity and specificity. Overall, these findings

suggest that the predictive performance of our model is highly nuanced and depends in
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part on patient heterogeneity. In addition, we found that the model could identify P-MCI
patients who progressed to AD dementia during the first 18 months after the baseline
visit with substantially higher accuracy than patients who progressed after 18 months.
Thus, clinical assessments and structural MRI biomarkers can detect AD-related
changes most reliably up to 18 months prior to the onset of overt dementia. This finding
is consistent with the AD biomarker model proposed by Jack and colleagues (2010),
which states that different biomarkers have unique temporal trajectories and may be

optimally sensitive to AD-related changes during specific time periods.

3.4.5 Probabilistic Pattern Classification

A unique aspect of this study is our adoption of a probabilistic kernel-based
classifier (pMKL) for the prediction of MCI-to-dementia progression. As a kernel-based
classifier, pMKL has a few advantages over the SVM (Damoulas and Girolami, 2009a,
2009b). While by design the SVM is a non-probabilistic binary classifier, pMKL directly
produces probabilistic predictions without relying on ad-hoc methods to transform
classifier outputs into posterior probabilities (e.g. Platt, 1999). Calibration analysis
showed that the predicted probabilities of progression, as generated by the pMKL
classifier, were in strong agreement with the actual probabilities of progression. This
indicates that the probabilistic predictions produced by our model are reliable and could
have practical application when predicting future dementia status in patients with MCI.

We investigated whether probabilistic outputs from the pMKL classifier could be
used as measures of predictive confidence to improve the accuracy of the model. When
using the classifier in the conventional, non-probabilistic mode, where no information

about predictive confidence was taken into account, we obtained an overall accuracy of
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79.9% (83.4% sensitivity, 76.4% specificity). The estimated risk of progression from
amnestic MCI to dementia is 7-15% per year (Mitchell and Shiri-Feshki, 2009; Petersen
et al., 2009). By assuming a 30% risk of progression over a three-year period (~10%
annually) as the pre-test probability, a prognostic test with this level of sensitivity and
specificity would yield a positive post-test probability of 60.2% and a negative post-test
probability of 8.5% (via application of the Bayes' rule; Westover et al., 2011). When we
used the classifier in the probabilistic mode, where predictions were allowed to be made
only for the top ~73% most confident patient cases, the predictive accuracy was 87.4%
(91.7% sensitivity, 83.2% specificity). A diagnostic test with this improved level of
sensitivity and specificity would yield a positive post-test probability of 70.1% and a
negative post-test probability of 4.1%. This means that 60.2% (non-probabilistic version)
and 70.1% (probabilistic version) of amnestic MCI patients for whom our prognostic
model makes a positive prediction will progress to dementia within a three-year period.
In a clinical trial, the use of our prognostic model to enrich the MCI patient sample would
result in more than a 50% reduction in the required sample size to detect a drug effect.

This would result in a substantially more time-and cost-efficient clinical trial.

3.4.6 Limitations

The present study has a few limitations, some that apply to the ADNI in general
and some that are specific to this study. First, our predictive model was designed only
for patients with amnestic MCI. The amnestic MCI subtype comprises 2/3 of all MCI
cases, and in addition, patients with amnestic MCI have a substantially elevated risk for
developing dementia of the Alzheimer's type compared to patients with non-amnestic

MCI. From this perspective, it is reasonable that the ADNI — as the first such study of its
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kind — focuses on these higher-risk patients. Second, we considered only clinical,
structural MRI, and plasma proteomic data in this study, as minimally-invasive, less
expensive, and more widely available sources of data. Our pattern classification and
analytic strategy could be applied to additional data sources, including PET, DTI, and
functional MRI data, CSF and other fluid biomarkers, and genetic expression data.
Third, in this study we focus on binary classification, attempting to accurately
differentiate between patients who progress to a AD-type dementia and those who do
not. For clinical application, a prognostic model of dementia would have a greater utility
if it also could predict progression to other types of dementia (e.g. vascular dementia,
frontotemporal dementia, dementia with Lewy bodies). In addition, many cases of
dementia do not have a single underlying cause but rather are mixed dementias, with
contributions from multiple disease processes (e.g. Alzheimer's disease mixed with
vascular dementia). In these more complex cases of mixed dementia or where
differential diagnosis of dementia is sought, a multi-class classification approach would
be more appropriate. The pMKL classifier adopted in this study can naturally be
extended to these more challenging prediction tasks. Finally, nested cross-validation
procedure allows internal validation of a model (developed and evaluated using the
same dataset), as done in this study using the ADNI dataset. Prior to real-world
application of the predictive model developed in this study, it must be externally

validated on independent datasets (Bouwmeester et al., 2012; Steyerberg et al., 2013).
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41 Summary of Key Findings and Significance

Alzheimer's disease (AD) is the most common cause of dementia among older adults
and has been classically viewed as a neurodegenerative disorder that affects the brain's gray
matter, with earliest atrophy seen in medial temporal lobe (MTL) structures. In the first study
(Chapter 2), we used diffusion tensor imaging (DTI), an MRI-based technique that measures
water diffusion within tissues in vivo, to show that patients with clinically diagnosed AD exhibit
decreased integrity within two major limbic white matter pathways (fornix and cingulum). We
also showed that these structural connectivity changes within the limbic system can be
detected as early as during mild cognitive impairment (MCI), considered to be a transitional
phase between healthy cognitive aging and dementia. Hypometabolism within the posterior
cingulate cortex (PCC) is the earliest sign of incipient AD detectable using positron emission
tomography (PET). We showed that this metabolic change is directly related to the structural
integrity of the cingulum bundle, which connects PCC and regions of the MTL. Thus, our data
support the “disconnection hypothesis” of PCC hypometabolism in AD. Finally, this work
suggests that limbic white matter integrity, as measured by DTI, could serve as a potential
biomarker for the early diagnosis of AD. Future prospective, longitudinal studies in MCI and
cognitively normal subjects will need to be conducted to investigate this possibility further.

In the second study (Chapter 3), we used statistical pattern classification methods and
data from the Alzheimer's Disease Neuroimaging Initiative to develop a prognostic model of
dementia for patients with MCI. More than 750 variables spanning clinical, magnetic
resonance imaging (MRI), and plasma proteomic data were considered as potential predictors
of progression from MCI to dementia. A model incorporating the performance on three clinical
assessments as well as morphometric MRI measures for three temporoparietal brain regions

was able to predict progression to dementia in individual MCI patients with ~80% accuracy.
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The accuracy of the model could be improved further by taking into account the confidence of
the predictions. The prognostic model of dementia developed as part of this dissertation
provides a non-invasive, cost-effective approach that can be used to (1) improve the selection
of MCI patients in clinical trials and (2) identify high-risk MCI patients for early anti-AD
treatment. In the case of clinical trials, use of the prognostic model can help enrich the MCI
subject cohort to include only high-risk individuals, resulting in significant cost and time
savings for the trial. The model can also be used as a first-line tool to establish a prognosis
for patients with amnestic MCI. Based on the model prediction, the patient can be informed
whether they belong to the high-risk or low-risk MCI subgroup and can use this information
with their healthcare provider to choose a course of action (e.g. treatment or watchful waiting).
In cases where the model cannot make a confident prediction, the clinician can then order
additional biomarker studies. The model can also serve as a reference standard against
which researchers can evaluate the prognostic utility of novel, more invasive, and/or more

expensive biomarkers.

4.2 Predictive Models of Dementia: Challenges and Future Directions
4.2.1 Clinical Assessments and Clinical Diagnosis of AD

Consistent with prior research, clinical assessments were more predictive of MCI-to-
dementia progression than other types of markers. A possible explanation for this finding is
that the baseline clinical assessments are to some degree correlated with the clinical
outcomes in patients with amnestic MCI. In ADNI and the majority of other clinical studies of
AD and MCI, the criteria used for diagnosis of AD and determination of MCI-to-AD conversion
largely rely on assessing the cognitive and functional status of the patient. In some sense,

then, it may be logical to expect that patients who are more cognitively and functionally
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impaired at baseline are also the ones that are more likely to progress from MCI to dementia.
On the one hand this correlation between baseline clinical assessments and clinical outcomes
can be viewed as a confound. On the other hand, it encourages a discussion about the
seemingly "blurry" line between amnestic MCI and probable AD. The findings in this
dissertation suggest that subtle but reliable baseline differences in cognitive and functional
status are detectable in individual patients with MCIl who are destined to progress to AD
dementia. Some researchers have proposed that MCI represents the early stage of AD
(Morris et al., 2001). Given the large body of evidence on the heterogeneity of MCl as a
clinical condition, this position may be extreme. As a compromise, the prognostic model of
dementia based on clinical assessments and MRI markers developed as part of this
dissertation could be used to refine the widely used 1984 clinical criteria for the diagnosis of
probable AD (McKhann et al., 1984). Specifically, patients diagnosed with MCI (according to
the Petersen criteria) and for whom the model assigns the progressive label could be
reclassified as having mild probable AD. MCI patients for whom the model assigns the non-
progressive label could then retain the diagnosis of MCI. A recently proposed revision to the
diagnostic guidelines for AD by the National Institute on Aging-Alzheimer's Association
workgroup also recognizes the limitations of the 1984 clinical criteria and emphasizes the
incorporation of biomarkers such as MRI measures of atrophy (McKhann et al., 2011).
Another challenge in building predictive models of dementia is the reliance on the
clinical diagnosis of AD as the "ground truth" (gold standard). The clinical diagnosis of
probable AD has an accuracy of 70-90% relative to the pathological diagnosis (Beach et al.,
2012), with greater accuracies being achieved in specialty settings (e.g. memory disorders
clinic). This has two implications for the development of pattern classification models. First,

models that are developed with data based on the clinical diagnosis of AD cannot be more
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accurate than the clinical diagnosis itself. The predictive accuracy of 80-87% for predicting
MCI-to-AD dementia progression obtained in the second study is approaching this theoretical
limit. Second, the relative inaccuracy of the clinical diagnosis likely introduces additional noise
into the model development process. Therefore, it is critical that future research on predictive
models of dementia incorporates not only clinically diagnosed AD cases but also
pathologically-verified cases in an effort to raise the upper bound on the predictive accuracy

that can be achieved using pattern participation methods.

4.2.2 Building the Optimal Prognostic Model of Dementia

Discrimination between progressive and non-progressive MCI patients at the individual
level is a significantly more challenging prediction task than discrimination between normal
control and AD subijects. It is becoming increasingly clear that no single marker or source of
data is adequate to achieve early diagnosis of AD, and that different biomarkers and/or
sources of data capture different aspects of AD pathology during different time periods (see
(Jack et al., 2010). As a demonstration of this, the prognostic model based on the
combination of clinical assessments and structural MRI markers (from the second study)
outperformed models based on either source of data alone. Further progress in developing
predictive models of dementia/AD can likely be achieved by using both pathologically-verified
data sets in combination with multivariate/multimodal modeling approaches.

Of the current biomarker approaches being investigated, the addition of a biomarker
data source that can serve as a window into the functional integrity of the brain would be the
most likely to further improve the predictive ability of the model developed in this dissertation.
A promising functional neuroimaging approach that should be investigated as a potential

biomarker for early AD diagnosis is resting-state functional MRI (rs-fMRI). While both FDG-
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PET and rs-fMRI measure brain function/metabolism, rs-fMRI is unique in that it can be used
to assess the functional connectivity or coherence among multiple brain regions (Zhu et al.,
2013). This technique may be particularly appropriate as a potential biomarker because AD
causes a disruption of various brain networks important for memory and higher cognitive
function. Biomarkers that capture the molecular aspects of AD pathology are likely to also be
complementary to clinical assessments and structural/functional neuroimaging. PET-based
imaging of amyloid deposition in the brain may provide such complementary information, and
studies of its diagnostic utility are currently ongoing. However, imaging of in vivo tau
pathology will likely offer more specificity for diagnosis of AD when such techniques become
available in the future. Functional neuroimaging and molecular amyloid/tau biomarkers may
be particularly important for improving the model's ability to identify MCI progressors who
develop AD more than 18 months after evaluation, when clinical assessments and
morphometric MRI measures appear to have relatively limited predictive value. This is
consistent with the idea that subtle functional alterations in the brain likely precede overt AD-
related neurodegeneration and that abnormal protein deposition is one of the earliest
pathological events in AD.

To enhance the practical utility of the prognostic model, future work should also
incorporate both amnestic and non-amnestic MCI cases and develop a model that can predict
progression to both AD- and non-AD-type dementia. Moreover, the prognostic model of
dementia should be extended in the future to asymptomatic individuals. Another useful
extension of the prognostic model would allow the model to stage MCI patients in terms of
where along the MCI-to-AD dementia continuum the patient may be. Although the
probabilistic predictions generated by the model in this dissertation were associated with time-

to-progression, this was a rather small effect. For staging purposes, a model would need to
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be explicitly trained to accurately predict time-to-progression, as opposed to training it to

classify progressive versus non-progressive MCI subjects (as done in the present work).

4.2.3 Patient Heterogeneity

Finally, the findings in this dissertation suggest that patient heterogeneity is an
important consideration when developing predictive models of dementia. It was found that the
predictive performance of the model (based on cognitive/functional assessments and
structural MRI measures of atrophy) varied with several patient characteristics, including age
and APOE genotype. This interaction between predictive accuracy and patient characteristics
occurred regardless of whether a given characteristic was selected as a predictor in the
model. This dissociation can be explained if the patient characteristics are viewed as
moderator variables.

Age, the strongest risk factor for the development of AD, was not informative of MClI-to-
dementia progression at the individual patient level nor was there a difference in age between
progressive and non-progressive MCI groups. A possible explanation for this is that age may
be a strong risk factor for the development of amnestic MCI rather than the subsequent
deterioration from MCI to AD dementia. Despite the fact that age was not selected as a
predictor of MCI-to-dementia progression, model accuracy tended to be higher for older
subjects. There is, however, evidence to suggest that aging itself causes brain atrophy and a
decline in cognitive abilities (Raiji et al., 2009; Stricker et al., 2011). Thus, aging and incipient
AD processes likely interact and jointly may exert a complex influence on cognitive
performance and brain structure. In the case of APOE (a well established risk gene for AD),
the model made less accurate predictions for MCI subjects who were carriers of the epsilon-4

allele, and this effect was present only for specificity (percentage of non-progressive MCI
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cases correctly identified) but not sensitivity of the model. APOE epsilon-4 positivity is
associated with regional temporal lobe atrophy in normal control subjects (Wishart et al.,
2006), an effect that occurs independent of whether or not the individual develops AD
dementia. Thus, the model likely tends to become confused when asked to classify a non-
progressive MCI patient who is an APOE epsilon-4 carrier (and thus has greater baseline
brain atrophy than the typical non-progressor might).

The effect of patient heterogeneity on model performance must be characterized in
future studies that attempt to develop predictive models of dementia. This will help
researchers and clinicians better understand the strengths and limitations of the published
models. The issue of how to effectively correct for the patient heterogeneity remains an open
question. The use of pathologically-verified patient cases for model development and
incorporation of multiple, diverse biomarkers may make the models more robust in the face of

patient heterogeneity.
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