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ABSTRACT

DEPENDENCY AND PURITY IN

LARGE-SCALE STATISTICAL SIGNIFICANCE TESTING:

A DNA MICROARRAY PERSPECTIVE

By

Keyur Hemantkumar Desai

Statistical methods for detecting differential gene expression (DGE) in DNA mi-

croarray experiments are discussed. A comprehensive definition of DGE refers to

“statistical dependence” between gene expression levels and biological conditions of

interest, such as differing environments, treatments, time points, phenotypes, or clin-

ical outcomes. The ability to detect genuine DGEs has become crucial in the effort

to understand and cure difficult diseases like cancer, diabetes, and Alzheimer’s dis-

ease. The statistical nature of microarray data necessitates the use of “large-scale

significance testing” to detect DGE. Large-scale testing is qualitatively different than

the usual one-at-a-time testing: implied information from the “other” cases can force

its way into the decision rule. Two prominent attributes of gene expression data,

“inter-gene dependency” and “purity,” complicate the situation even further. The for-

mer refers to the statistical patterns of dependencies among gene expression levels,

and the latter stems from the fact that a great majority of genes show no change in

expression even under changing conditions.

Inter-gene dependency is perceived commonly as a harmful force cluttering the

decision-making. Contrastingly, this research takes a more sympathetic view of inter-

gene dependency when seen together with purity. We argue that their combination

gives rise to not only accurate but also more powerful statistical reasoning. Our effort

to combine the two has culminated in two contributions, each of which has both



applied and theoretical implications. The first is a method for a better assessment

of the number of false positives in the presence of heavy inter-gene dependency and

extreme sampling errors due to exceedingly small sample sizes. The second is a

method for “exploiting” inter-gene dependency to yield substantially more powerful

DGE detection procedures. The empirical evidence from real and simulated test cases

suggests the usefulness of our ideas.
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Chapter 1

Introduction and Background

The objective of this research was to improve the existing statistical techniques of

differential gene analysis. The literature identifies “dependency among gene expres-

sions” as the chief obstacle in drawing meaningful conclusions from micorarray data

and “purity” as its vast untapped resource. This research focuses on understanding,

correcting, and exploiting the effects of dependency by combining it with purity in

a general setting. It has culminated in two major findings pertinent to the general

approach for detecting “statistical linear dependence” between gene expression levels

and measured biological states. The general approach consists of two main steps: (i)

ranking the genes and (ii) evaluating the number of false positives for a significance

cut-off. Our first finding establishes the importance of third moment skewness cor-

rections in estimating the number of false positives. The second finding provides a

general technique to revise a given gene-ranking for better statistical power. A good

starting point is to discuss the role of statistical reasoning in interpreting the gene

expression data.



Organization of the chapter. Section 1.1 reviews the foundations of modern bi-

ology. Section 1.2 begins with a “bird’s eye view” of the problem of differential gene

detection and the potential implications of the present work. An example of two-

state microarray data and a listing on typical sources of within state gene expression

variations are given in Section 1.3. A contrast between one-at-a-time and large-scale

significance testing is drawn in Section 1.4. In Section 1.5, we discuss the possible

scope and the key goals of large-scale inferences and decision-making germane to the

expression profiling data. An outline of the entire dissertation appears in Section 1.6.

A short overview of DNA microarray technology concludes this chapter.

1.1 Foundations of Modern Biology

Before we begin, it is helpful to recapitulate the foundations of modern biology. Refer

to Watson et al. (2004) for a more complete discussion. Hunter (1993) provides a brief

survey of biology for researchers trained in engineering or computer science.

0 Life changes and develops through evolution and that all life forms known have

a common origin.

a The cell is the fundamental unit of life. Cells arise from other cells through

cell division, and in multicellular organisms, every cell in the organism’s body

is produced from a single cell in a fertilized egg and hence contains the same

genotype.

0 Biological form and function are passed on to the next generation by genes,

which are the primary units of inheritance and made of DNA. All information

flows from the genotype, the genetic makeup of the organism, to the phenotype,



the observable physical or biochemical characteristics of the organism.

o The total complement of genes in an organism or cell is known as its genome.

When a gene is active, the DNA code is transcribed into an RNA copy of the

gene’s information.

0 Gene expression refers to the transcription ofDNA into messenger RNA (mRNA)

by RNA polymerase. The mRNA is then translated into protein by the ribo-

some. In gene expression analysis, expression level refers to the amount of

mRNA detected in a sample.

0 Phenotypic differences can ultimately be understood in terms of the regulation

of gene expression.

1.2 Statistical Reasoning in Differential Gene Ex-

pression Detection

Gene expression profiling experiments measuring the expression levels of thousands

of genes at once to create a global picture of cellular function have become a vital

component of modern biomedical research. They let us investigate complex human

diseases—such as cancer, diabetes, Alzheimer’s disease, etc—in unprecedented ge-

netic detail. However, in order to draw meaningful conclusions from the wealth of

gene expression data, we must rely on statistical reasoning for two main reasons.

First, the measurements are based on mRNA molecules drawn from a cell popula-

tion. Second, there are several uncontrollable sources of noise and uncertainty. Con-

sequently, the promise of profiling—better understanding of regulatory mechanisms,

more effective therapeutic targets, accurate (sub) categorization of diseases, superior



clinical diagnosis-prognosis, etc—relies heavily on pertinent statistical methodolo-

gies (Lander, 1999; Petricoin et al., 2002; Singh et al., 2002; Jones and Baylin, 2002).

Surprisingly, despite a major research interest in the statistical methods for gene ex-

pression data analysis, several key issues have remained unresolved due to their rather

difficult and unfamiliar nature (Frantz, 2005).

Statistical methods for detecting differential gene expression (DGE) between two

or more biological samples have attracted considerable attention. The comprehensive

definition of DGE refers to “statistical dependence” between gene expression levels

and biological conditions of interest, such as differing environments, treatments, time

points, phenotypes, or clinical outcomes. In practice, however, “linear dependence,”

also known as “second moment dependence,” is pursued more frequently because its

detection is readily subject to a statistically rigorous approach, and yet its existence

often suggests a phenomenon of scientific interest and clinical utility.

For convenience, the biological conditions are referred as “states.” The term “two-

state” refers to binary valued states, such as healthy versus cancer; “multi-state” to

multi valued states, such as different categories of breast cancer; and “continuous-

state” to continuous valued states, such as the age of the subject or insulin dosage,

etc.

The need for detecting DGE between two states is very common. The methods

customized for two-state is the present focus. Note that even after the common goal

being to detect linear dependence, as per the situation (two-state, multi-state, or

continuous-state), the methods may differ in some mathematical and implementation

aspects. In fact, detecting second moment dependence in a two-state study can

also be interpreted in terms of detecting statistical mean difference between the two

states, and, in turn, dealt more efficiently through the standard (unpaired) t-statistic.



Indeed the t-test and simple linear regression are mathematically equivalent (refer to

Section 2.1) implying that the present ideas for two—state methods are also applicable

to multi-state or continuous-state methods, perhaps with little or no modifications.

Additionally, some of the outcomes of this research also seem translatable to DGE

notions other than “central tendency,” for example fold change (Biotechnology, 2006)

or tail-rank statistics (Coombes et al., 2008; Zheng and Pepe, 2007). These extensions

will be the subjects of future research.

The overarching theme of this dissertation is to develop methods for combining

inter-gene dependency (Section 2.4) and purity (Section 2.5) to improve statistical

decision-making. The former refers to (statistical) dependencies among gene expres-

sion levels and the latter to an abstract notion about the test statistics of differen-

tially expressed (DE) genes not falling in certain intervals. Previous understanding

perceived inter-gene dependency as more of a harmful force cluttering the decision-

making, but now newer understanding suggests that when combined with purity,

they can yield not only accurate but also more powerful statistical inference (Ben-

jamini, 2008; Morris, 2008; Cai, 2008; Efron, 2008; Klebanov and Yakovlev, 2007).

The present scope covers methods which include only the measured expression and

“assigned” state labels; however, the possibility of extending these ideas to integrate

legitimate “prior” knowledge like “gene grouping,” as in enrichment analysis (Subra~

manian et al., 2005), has also shown potential.

Note. To avoid spurious mix-ups, the term “dependence” is reserved for statisti-

cal dependence between gene expression levels and biological conditions, whereas the

term “dependency” is reserved for statistical dependence among gene expression lev-

els. Throughout this dissertation, the words null and non-differential are used inter-



changeably; the same holds true for the words non-null and differential.

1.3 Variability in Gene Expression Data

Table 1.1 shows typical data generated by a two-state study. A distinctive char-

1

acteristic of these data sets is a huge number of cases, a “large m,’ and very few

measurements per case, a “small n.” This particular data set is from van’t Wout

et a1. (2003) who measured the mRNA levels of 7680 genes on 8 separate microar-

rays, 1—4 assigned to healthy cells and 5—8 to HIV infected cells. The challenge for

the statistical methods is to discover the true signal, for example the true mean dif-

ference, in the presence of substantial within state (per) gene expression variations.

There are at least four factors contributing to these within state gene expression

variations. These are:

1. Cross-hybridization noise due to some mRNAs molecules cross-hybridizing to

the probes that are supposed to detect another mRNA.

2. Measurement noise associated with the microarray technology and related bio-

chemical processing.

3. Biological variability: The mRNA molecules are obtained from a cell pOpulation

and the individual cells can have differing gene expression levels due to a vari-

ety of influences including (i) differences in the cells’ micro-environments (e.g.,

nutrient and temperature gradients), (ii) the growth phase differences between

cells in the culture, (iii) the phase variations, and (iv) the periods of rapid

change in the gene expression and multiple additional stochastic effects that



 

   

healthy healthy healthy healthy HIV HIV HIV HIV

gene 1 9.609 7.323 5.328 13.63 8.757 21.72 0.4873 6.364

gene 2 2642 5034 537.2 766.8 1123 961.7 601.7 1016

gene 1000 42.03 13.94 60.91 70.26 84.03 25.91 103.9 99.96

gene 1001 135.1 115.2 111.8 134.1 151.7 145.1 135.9 166.5

gene 4000 1455 513.1 1159 438.1 1806 647.4 1921 759.3

gene 4001 555.2 909.3 216.8 902.8 775.9 1510 492.7 1981

gene 7679 15.31 41.25 16.82 14.23 45.49 55.23 10.16 32.86

gene 7680 47.73 109.7 31.99 151.7 63.14 99.14 33.04 44.3

Table 1.1: An example of two-state comparative experiments. The HIV study of van’t

Wout et a1. (2003).

cannot be controlled (Hatfield et al., 2003; Baldi and Brunak, 2001; Watson

et al., 2004; Alberts et al., 2002).

4. Confounding variables, such as age, sex, race, living style, genotype, etc. in

studies with differing subjects. These can introduce large-scale variation (Leek

and Storey, 2007).



1.4 Testing for Statistical Significance

Due to the unavoidable variability, “statistical” decision-making is necessary to de-

tect DGE. The theory and methods of statistical hypothesis testing deal specifically

with such situations (Lehmann and Romano, 2006), yet testing each gene separately

”

can be very “agonizing. From the beginning itself, the validity of a reference null

distribution (obtained either from theory or re-sampling, see Section 2.1) may pose

a concern. Next, a smaller p-value (defined in Section 2.1) does contradict the null

hypothesis of “no DGE,” however its role as a comprehensive measure of the inherent

ambiguity is often under question (Ioannidis, 2005). Both the celebrated Neyman-

Pearson lemma and the Bayesian decision theory are of limited use as they require

specified knowledge of distributions under the alternative hypothesis. Moreover, the

latter also requires prior distributions of hypotheses occurrence. Maybe the problem

in itself is ill-posed. Berger (2003) and accompanying “follow-up comments” highlight

different point of views in this matter. Fortunately, these conceptual difficulties go

away when considering several thousand genes in parallel. In this case, at least in

principle, there is enough data to infer the null, the possible alternatives, and their

relative proportions.

The statistical framework known as large-scale significance testing (LSST) is a

natural extension of one-at-a-time significance testing. The theory and methods of

LSST deal with thousands of simultaneous tests (Lehmann and Romano, 2006). In

other words, this framework can deal with all rows of Table 1.1 simultaneously. How-

ever, earlier approaches in LSST were limited in their treatment of dependency among

tests. In practice, most microarray data exhibit substantial inter-gene dependency

among expression variations (Owen, 2005), which eventually gets manifested in depen-

dency among tests. There are number of numerical studies which point out that the

 



LSST approaches not entertaining inter-gene dependency properly can lead to highly

inaccurate reporting of the underlying facts (Qiu et al., 2005b; Kim and van de Wiel,

2008)

After deciding that a proper treatment of dependency is a worthwhile research

endeavor, the other alternative which we explored is cluster analysis, e.g., Eisen et al.

(1998). When tailored to report two clusters, then clustering in essence can deal with

dependency through an appropriate similarity metric. The drawback is that clustering

neglects valuable information like assigned state values. Also, the overall framework

itself is not very conducive to deducing precise statistical guarantees. Therefore, this

work focusses on extending existing LSST methods to include dependency.

Specifically, we focus on extending the relevant LSST methods to include com-

monly observed patterns of “inter-gene correlation” in expression variations. Recall

that correlation is a “scale-free” measure of statistical linear dependence also known

as second moment or second-order dependence. The present emphasis is on correct-

ing and exploiting the effects of inter-gene correlation by combining it with purity—a

statistical assumption stemming from the fact that in many comparative studies the

activity of a great majority of genes remains unchanged with respect to the treatment

of interest. This can also be looked as drawing second-order conditional inferences

based on cases that are fundamentally less ambiguous than the others. The scope and

the goals of large-scale inferences germane to expression profiling data are discussed

next.



1.5 Large-scale Inferences

1.5.1 The Scope

0 The tests are related in the sense that the noise and uncertainty associated with

them are of similar statistical nature perhaps due to common origins.

0 We assume: For convenience the statistical reasoning may be done around per-

gene univariate summary statistics, T1, . . . ,Tm, and related null hypotheses,

H1, . . . , Hm; however, that the original measurements are available and hence

inferring the statistical structure among Ti’s is possible.

0 By convention, the rejection (or significance) regions to be considered are “tail-

areas.” Recall that the term rejection-region refers to an interval in the space

of test statistics wherein we are interested in rejecting the null hypotheses.

Both “one-sided” and “two-sided” tail-areas are allowed. Working with tail-

areas naturally yields the methods which are sequential in nature and begin

by ordering the test statistics; for example, see the Benjamini and Hochberg

method described in Section 2.3.

The rationale behind tail-areas is that the evidence for a gene being null

decreases monotonically as we move farther from the intervals wherein most

of the probability mass of the null distribution is concentrated. Methods em-

ploying rejection-regions different than tail-areas are observed to yield results

with certain interpretational difficulties (Storey, 2002b; Rice and Spiegelhalter,

2008).

0 Moreover, the number of genes, denoted by m, may run in several thousands—

for current comparative microarray experiments m typically ranges from 5000 to

10

 



25000. Large-scale methods and algorithms should anticipate and accommodate

computational constraints and statistical convergence issues that are typical to

this range.

0 The methods are customized in the sense that they try to capture the scien-

tific context affecting the data—the present emphasis is on incorporating and

exploiting typical dependency structures by combining them with purity.

1.5.2 The Goals

Broadly speaking, the goal is to reliably identify as many DE genes as possible. To

elaborate on more specific statistical goals, the following terminology is helpful: When

a null hypothesis H,- is rejected, in other words when a gene is declared DE, then a

“discovery” is made; when a gene declared as DE is indeed non-DE, then a “false

discovery” is made. A broader statistical goal is to report as many discoveries as

possible while not exceeding a specified “false discovery proportion.” Sometimes a

“ball park” figure for the number of discoveries is specified and then, the goal is to

minimize the false discovery proportion as much as possible. When recast in the

language of statistical inference, the former amounts to an accurate estimation of the

number of false discoveries for a rejection region and the latter to revising the test

statistics to increase statistical power.

1.6 An Outline

This dissertation is outlined as follows. Chapter 1 introduces the “problem.” Chap-

ter 2 presents a mathematical formulation, reviews the relevant literature, discusses

inter-gene dependency and purity, and underlines our main contributions. The issue

11
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of estimating the number of false discoveries is discussed in Chapter 3, whereas Chap-

ter 4 presents a novel gene re-ranking method. Conclusion and future work appear

in Chapter 5.

At the beginning of each chapter a separate paragraph called “organization of the

chapter” is provided to guide the reader through that particular chapter.

Supplement: DNA Microarrays

A DNA microarray uses the selective nature of DNA-DNA or DNA-RNA hybridiza-

tion. In this process two complementary strands of DNA (sometimes DNA and a

complementary strand of RNA) bind. An array is a collection of microscopic DNA

segments attached to a solid surface, such as glass, plastic, or silicon chip. The affixed

DNA segments are known as probes, thousands of which can be placed in known 10-

cations on a single array (see Fig. 1.1). In a typical experiment, the microarray is

washed with a sample containing fluorescent dyed mRNA transcripts. The probe and

the target sequences will hybridize according to their complementary nature. The

abundance of target molecules can then be identified based on the resulting fluo-

rescence patterns. Typical numbers reported by a microarray appears in Table 1.1.

Based on the way DNA microarrays are fabricated, two distinct microarray platforms

have evolved, each with its own pros and cons.

Spotted microarrays or two-color microarrays. These arrays employ clones or

oligonucleotides that are spotted onto glass slides and two distinctly labeled com-

plementary DNA (cDNA) samples are hybridized together on a single array. The

advantage is that the spotting process is relatively inexpensive and it is easier to

make custom made arrays (Schena et al., 1995). This flexibility however comes at a

12



 

Figure 1.1: An example of an approximately 40,000 probe spotted oligonucleotide

microarray with enlarged inset to show detail.

price: The spotting process is inherently variable. This limitation is circumvented by

reporting relative mRNA expression levels instead of absolute expression levels(Woo

et al., 2004). The relative levels are obtained by co-hybridizing a two-color array with

two RNA samples, namely, experimental and reference. Here, the reference should

not be confused with the control (for example, while comparing normal cells and

their cancer mutants, the RNA sample from the normal cells is termed the control

and from the cancer cells the treatment).

Affymetrix microarrays or one-color microarrays. These arrays employ short (25-

mer) oligonucleotide probes deposited on a silicon substrate through high precision

photolithography (Lockhart et al., 1996). This process is similar to the one used in

manufacturing of electronic microchips and remarkably accurate in producing nearly

identical arrays. However, the flexibility of customization is lost since for every custom

array an expensive mask must be created. One-color microarrays report absolute

13



mRNA expression levels.

Normalization. Measurements reported by two separate microarrays, even if they

belong to a single study, are seldom comparable in their original form. The major

reasons are unequal quantities of starting RNA, differences in labeling or detection

efficiencies between the fluorescent dyes used, and systematic biases in the measured

expression levels (Quackenbush, 2002). A transformation, known as normalization,

is necessary. Robust normalization methods for both one-channel and two-channel

microarray data are available.

Cross-hybridization. Even after perfect normalization, the measured mRNA levels

can still suffer from experimental noise due to cross-hybridization: some mRNAs may

cross-hybridize probes in the array that are supposed to detect another mRNA. This

problem has been alleviated somewhat by a systematic selection of expressed sequence

tags (ETS) with high specificity-selectivity (Li and Stormo, 2001). Both microarray

platforms have evolved to provide very similar data quality (Patterson et al., 2006).
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Chapter 2

Large-Scale Significance Testing

The task of differential gene expression (DGE) detection is often recast as large-scale

significance testing (LSST). Inter-gene dependency among gene expression variations

weakens the LSST DGE detection formulation by introducing substantial dependency

among test statistics. Any other formulation is equally prone to the effects of depen-

dency. However, within the framework of LSST itself, dependency can be understood,

corrected, and exploited by combining it with purity. This chapter lays down the

necessary statistical groundwork to do so. A direct treatment of generic any-order

dependency is impractical, but treating second-order dependency is both useful and

mathematically tractable. A scale-free version of second-order dependency is correla-

tion and how to include inter-gene correlation in the LSST formulation is discussed.

Organization of the chapter. Section 2.1 presents a statistical formulation of the

“problem.” A mapping from inter-gene correlation to inter-test correlation is given

by Eqn. 2.3. Error measures, the false discovery proportion and the false discovery

rate, appear in Section 2.2. Section 2.3 reviews the relevant literature and states

the principal contributions of this work. A discussion on inter-gene dependency is
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provided in Section 2.4. Purity and two related concepts, “identifiability” and “zero

assumption” are discussed in Section 2.5.

2.1 A Statistical Formulation for DGE Detection

There are m + 1 random variables involved in this statistical reasoning: L and

(X1, . . . ,Xm). Here, L refers to “state” defined in Section 1.2, and Xi to expres-

sion level of gene i. Their (unknown) underlying joint probability distribution is

.7:(L, X1, . . . ,Xm). A microarray experiment obtains n independent and identically

distributed samples from this distribution.

A “random” data set is written as (L;X1; . . .;Xm), where X,- = (X21, . . . ,Xz-n)

denotes a random sample for gene i and L 2 (L1, . . . , Ln) the corresponding states.

The subscript i in Xij indexes the genes and j the microarrays. To increase nor-

mality, raw Xij’s are converted to a logarithmic scale. The “realized” data set is

written as (l;x1; . . . ;xm) with l = (l1,...,ln) denoting the “assigned” states and

x,- = (3:21,” .,x,-n) the measured expression for gene i.

The overarching goal is to test whether random variables L and Xi: i = 1,. . . , m,

are dependent. The existence of statistical dependence between L and X,- suggests

that gene i may be crucial to the phenotypic distinctions being studied. A rigorous

treatment of general statistical dependence measures like mutual information (Cover

and Thomas, 1991) is often impractical. Instead most approaches test linear (or

second moment) statistical dependence. A univariate statistic measuring linear de-

pendence between L and Xi can be obtained through simple linear regression between

X,- and L.

The LSST for DGE detection involves m univariate per gene summary statis-
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tics, T1,...,Tm, with T,- corresponding to gene i. These Ti’s are assessed using

H1, . . . , Hm, the null hypotheses of independence between L and Xi: i = 1,. . . ,m.

A T,- is gauged with respect to its null distribution p(T§|H,-): The fact, it is “typi-

cal” under Hi, suggests that L and X,- are uncorrelated. Note, however, that other

forms of statistical dependence between L and Xi may go undetected. Philosophi-

cally the bottleneck is caused by the fact that statistical independence has a concrete

mathematical interpretation, but statistical dependence is just an arbitrary functional

relation between random variables.

The two-state situation can be handled efficiently through the standard unpaired

t-statistic:

Ti = (99,2 — Xt;1)/Sz'. (2-1)

where X23,“ is the mean of gene i in state It and S,- is the pooled within-state stan-

dard deviation of gene i. Mathematically the t-statistic is equivalent to performing

simple linear regression, and hence, in essence it tests linear dependence. The usual

interpretation, i.e., the t-statistic detecting a mean difference and H,- referring to the

true mean difference being zero, is more obvious and well-known. If the additional

assumption of normality of X,- is made, then p(T,-|H,-) can be replaced by the Stu-

dent’s t-distribution. Doing so is not absolutely necessary: Permutation calculations

can estimate a putative null cumulative density function (cdf) common to all genes,

say G0, which may represent the basic facts more accurately (Efron, 2007a).

Dependency among “truly null” genes has profound implications on the “signifi-

cance cut-off,” i.e., the threshold beyond which if a T,- occurs, then its corresponding

gene is declared non-null. Dependency among null and / or non-null genes has pro-

found implications on the possibility of mapping (T1, . . . ,Tm) to (Ti" , . . . ,T;;,) for

better statistical power. Again, a general treatment of dependency among Ti’s is
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impractical, but correlation among Ti’s is tractable, both mathematically and com-

putationally, and will be pursued.

When Ti’S are obtained through simple linear regression, then correlation among

Ti’s is easy to track. Lemma 1 of Owen (2005) states that for Ti’s measuring the “linear

’ is independent ofcorrelation” between L and Xi, if expression of gene 2' and gene i

state L, then

COI(Ti, Ti, I x’i’ Xi’) = fiiil. (2.2)

In Eqn. (2.3) pa, is the “Pearson product-moment correlation coefficient” between

samples x,- and Xi]. It can be verified through computer simulations that the same

fact applies to t-statistics obtained through simple linear regression.

The discussion surrounding Eqn. (2.3) suggests following: When expression of

I
gene i and gene i is independent of state L, and statistics T,- and Ti; are due to

simple linear regression, then

COI'(TZ', T2") =- pz'il, (2.3)

where pii’ is the “theoretical” correlation between gene i and gene i’. For exceedingly

small n, the sampling error in p“, is a concern. This concern, when making inferences

for millions of inter-gene correlation coefficients simultaneously, can be circumvented

through clever data processing (see Section 3.2.2). Owen (2005, Section 4) and Efron

(2007a, Section 2) both adopt a similar point of view.

For analytical convenience, Ti’s can be converted to z-values:

z, = (1,—1 {00cm}, i=1,...,m, (2.4)
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where G0 is the putative null cdf mentioned above and <I>-1 is the inverse cdf of

N(0,1). For “truly null” cases we expect Zz- ~ N(0, 1). Note that Eqn. (2.4) is

a nonlinear order-preserving monotone transformation. The relationship between

Cor(T,-,Tz-/) and Cor(Z,-, Zi’) must be calibrated. In practice, the approximation

Cor(Z,-, Z24) as Cor(T,-,Tz-;) is seen to work well (Efron, 2007a). Methods for direct

estimation of Cor(Zz-, Z24) are discussed by Zou and Hall (2002).

Some DGE methods convert test statistics T1, . . . ,Tm to p-values, P1, . . . ,Pm,

through p(T1|H1), . . . ,p(Tm|Hm). For example, a one-sided p-value corresponding

to T,- = t,- is obtained as Pi = min [Pr(T,- < t,- | Hi),Pr(T,- > t,- | Hill; a two-sided

p-value is obtained as p,- = Pr (ITzI < ItiI I Hi)-

2.2 Role of the Number of False Discoveries in Mea-

suring Quality

Recall the terminology introduced in Section 1.5. When a null hypothesis H,- is

rejected, in other words when a gene is “declared” non-null, then a “discovery” is

made; when a gene declared as non-null is indeed null, then a “false discovery” is

made. Let for a random data set (L; X1; . . . ; Xm) a decision rule report R number of

discoveries. Let V (_<_ R) of these are false discoveries. The ratio V/R, known as the

False Discovery Proportion (FDP) and interpreted as zero when R = 0, is of obvious

appeal, especially in exploratory data analysis where statistical findings form a basis

for further investigation.

Contrastingly, pre-FDP LSST methods focused on V—only-error-rates because the

emphasis was more on confirmatory data analysis and stricter safe-guards against

making erroneous positive statements were necessary. Notice, when both V and
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R are involved, then the decision rule is highly data dependent: If data with less

ambiguity is encountered then “relatively” more findings are reported and vice versa.

FDP and FDR. The usual convention assumes the random variable R as “observ-

able” and V as “unobservable” and hence requiring estimation. In their breakthrough

paper, Benjamini and Hochberg (1995) used an all-null-theoretical-expectation,

m

Er(V) = ZPr (T.- e P I Hi), (25)

i=1

as an estimate of the “realized” 2) for an arbitrary rejection-region I‘. The “dot” in

EF(V) emphasizes the fact that it is an “all null” expectation, which may be contrasted

with EP(V), the true (unknown) expectation for that 1". These two expectations start

deviating appreciably as the proportion of null genes, 7r0, reduces. If the putative null

cdf G0 is obtained through permutations, then Eqn.(2.5) is a part of the Yekutieli-

Benjamini FDP Estimator described in (Qiu and Yakovlev, 2006, Section 3.2).

Benjamini and Hochberg showed that their procedure, which estimates the realized

v/r through EF(V)/r with r referring to the realized value of R, can “bound” the

average FDP, i.e., E(V/R), at an arbitrary prescribed level. The average FDP is now

widely known as the False Discovery Rate (FDR). The bounding of FDR is termed

as “control of FDR” and discussed in the next section.

20



2.3 Literature Review and Contributions of This

Research

2.3.1 Control.

“Control of an error measure” is a concept that developed in the Frequentist-framework

of LSST. Here, the error measures are compound involving a hypothetical data en-

semble which can be generated by the experiment. The goal is to develop methods

that can keep the error measure below a prescribed “level.” Among all the methods

that can do so, the ones with more average power (the proportion of true discoveries

which are reported) are sought after.

Controlling FDR: Independent tests. The sequential p-value algorithm of Ben-

jamini and Hochberg (1995), which controls the FDR at level a, has following steps:

1. Let H1...Hm be the null hypotheses and P1...Pm their corresponding p-

values

2. Order p-values in increasing order and denote them by P(l) . . . P(m)

3. Find R = argmax (P(k)m) 3 (ka), where k is an integer

ngSm

4. Reject all H“) for i = 1,. . .,R.

This algorithm assures that the reported discoveries have an “estimated FDP” always

below a. Benjamini and Hochberg proved the following: When truly null cases are

statistically independent, then in the long run behavior the above procedure guaran-

tees E(V/R) S (1. Storey et a1. (2004) provides an alternative and a more concise

proof. That the equality holds, requires additional assumptions.
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According to Benjamini (2008) the motivation behind their 1995 method was

to deal efficiently with around 100 statistically independent hypotheses in a clinical

setting. Their method is now applied to situations with thousands and sometimes

even millions of cases and yet whenever independency holds there is no reason to

disbelieve its efficacy. By the time it was realized that the method might be critically

susceptible to inter-case dependency was realized, it had become a standard technique.

In DGE detection, dependency is intrinsic because the gene expression data rep-

resent the life process, a fundamentally coordinated activity. Yet the exact nature,

form, and amount of dependency are still being debated—Section 2.4 discusses this

in detail.

This issue of dependency has profoundly affected the LSST research. Despite

strong interest, the issue remains unresolved. Not only very little is understood about

how to exploit dependency, but even to determine the adverse effects of dependency

on methods developed with the assumption of independency has been found very

challenging. In relation to dependency, a major emphasis in the LSST research has

been to establish “validity” of any proposed procedure. Validity refers to the fact that

for a given procedure, the FDR can be bounded below an arbitrarily prescribed level.

Validity: Dependent tests. Benjamini and Yekutieli (2001) show that for tests

with a positive-regression dependency condition, estimating the FDP as EP(V)/r still

ensures validity, and if this FDP estimator is modified as EP(V)-( 27:1 ihl) /r, then

validity is ensured for arbitrary dependency. However, this implies a very conservative

FDP estimation; for example, with m = 25000 a scaling of 1/ 10.7 is performed. A

slightly different but more provocative interpretation is following: in order to ensure

validity in the presence of dependency, the realized data are judged at a much more
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stringent FDP level than what is needed. Benjamini (2008) argues that the real

situations fall between positive regression dependency and arbitrary dependency and

hence a less conservative scaling should work.

Instead van der Laan et a1. (2004) propose to satisfy the probabilistic constraint

Pr (FDP > '7) < a by modifying the existing procedures that satisfy the probabilistic

constraint Pr (V > '7) < a; this conversion does not require independent tests, but

what happens to the average power is not clear. Lehmann and Romano (2005) propose

two more methods to satisfy the probabilistic constraint Pr (FDP > '7) < a under

dependency. The first method can work under an abstract mathematical condition

on dependency structure claimed to be reasonable. The second method can work for

arbitrary dependency but the same problem as in Benjamini and Yekutieli (2001)

with arbitrary dependency persists: The realized data is judged at a more stringent

FDP level than necessary.

Since the existing FDR procedures that are capable of ensuring validity under

an arbitrary dependency are highly conservative, most investigators still rely on the

original Benjamini and Hochberg procedure.

Validity and variance. After proving validity of a procedure, for arbitrary de-

pendency or a special dependency structure of interest, further evaluations are still

needed. An important measure is the variance of the FDP estimation, E(FDP — (1)2;

here, the actual FDP is contrasted with the intended level a. Owen (2005) argues

that this could be a serious issue because inter-gene dependency found in most mi-

croarray data tends to inflate the variance of V considerably compared to what it

may be under independency; in the cases considered by Owen, the inflation is nearly

100 times.
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Therefore, approximating the realized 2) by an all-null-theoretical-expectation for

heavy dependency may be critically unrealistic. A simulation in (Efron, 2007a, Section

5) emphasizes this issue. Qui et a1. (Qiu and Yakovlev, 2006; Qiu et al., 2005a, 2006,

2005b) also explore this effect and warn against neglecting the effect of dependency

on an overall, as well as case-to-case, basis. An attempt to develop a better estimate

of 12 may be worthwhile; however, the ways to do so are not obvious.

Conditional v estimates. Efron suggests “conditional v inferences” to account for

inter-gene dependency. The notion of purity as in Section 2.5 is crucial for condi-

tioning to work. Efron (2004) proposes a technique called “empirical null” to perform

conditioning; this technique works solely on the realized t,- histogram and the depen-

dency observed in the actual data is not entertained.

In a follow-up paper (Efron, 2007a), Efron develops a second moment theory for

“null T,- histogram” to gain insight into the behavior of V. He makes a crucial obser-

vation that under heavy inter—gene correlation the behavior of the null T,- histogram

is highly regulated in the sense that between its tail and its center there is extreme

negative correlation.

Contribution 1. Based on Efron’s observation, this work builds a moment-based

estimator of the number of false discoveries. Sections 3.1—3.3 develop the methodol-

ogy behind the proposed estimator and Section 3.4 uses real and simulated examples

for verification. The key issue, the proposed estimator addresses, is the exceedingly

small n situations as encountered in the HIV example of Section 1.3 where extracting

any useful information about the dependency structure in itself is a major challenge.

A notable feature of the proposed approach is that it naturally leads to an estimate

of the entire probability distribution of the random variable V.
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2.3.2 Power

For the present LSST formulation of DGE, the test statistics T1,...,Tm are “de-

signed” to capture linear dependence between random variables L and X1, . . . ,Xm.

The observation that there might be ways of mapping the original set of statistics

(T1, . . . ,Tm) to a newer set (Ti’, . . . , T3,) for better statistical power is very appeal-

. ing. There are two notable and successful attempts in this regard, both, at some

level, relying on the assumption of independent or weakly dependent Ti’s.

Estimating proportion of null cases. Such attempts can be seen as identically

scaling the original (T1, . . . ,Tm) in terms of their ability to detect linear dependence.

The philosophy behind this adjustment is: if the proportion of null genes (no) is ap-

preciably small, then the case for linear dependence is strengthen accordingly. Storey

(2002a) and Pawitan et al. (2005) present and review successful attempts. Most no

estimators require the assumption of independency or weak dependency among Ti’s.

Borrowing strength. The understanding that a better estimate of variance in the

standard t-statistic [Eqn. 2.1] should yield more power, led to the idea of a “stabilized

variance estimation,” also known as “smooth t-test.” The idea has been reintroduced

in several forms. Baldi and Brunak (2001) use a Bayesian approach to trade-off

between the sample variance for the gene of interest and a combined sample variance

from similar looking samples; it is called a “shrinkage” estimate. Newton et al. (2001)

use a Gamma-Poisson model which achieves a similar effect. The “fudge factor” of the

SAM algorithm, Tusher et al. (2001), is also of the same variety. All these approaches

make an implicit assumption that amount of inter-gene correlation is small enough so

a combined sample variance from multiple genes will not suffer from excessive random
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fluctuations.

Borrowing strength through signal-induced correlation. Tibshirani and Wasser-

man (2006) present a scheme to combine Ti’s using the inter-T,- correlation for ob-

taining Ti*’s with better statistical power. Their scheme averages a T,- with other Ti’s

in its “correlation neighborhood.” They assume that the correlation among Ti’s is

primarily due to the treatment effect. Therefore, “truly” non-null Ti’s would add up

together and map to stronger Cl}*’s by reducing the noise through averaging, and truly

null Ti’s would largely be unaffect by the averaging. Philosophically their idea is to

add-up signal strength among non-null cases through the device of sample correlation.

Storey et al. (2007) present an interesting, more general approach, of accomplish-

ing a similar effect.

Exploiting residual correlation. Microarray samples that are assigned the same

“state” do exhibit a substantial inter-gene correlation which suggests that the source

of inter—gene correlation is more intrinsic since hypothetically there are no treatment

differences for identical states. Therefore, we conclude that the source / sources of

correlation affect both null and non-null genes. However, somehow, the possibility

that this “intrinsic” correlation among Ti’s can be “exploited” to yield a superior

(Tf, . . . ,T,”;,) is unexplored, at least in the LSST formulation of DGE. This work

attempts to do so. Our contribution in this regard is described below.

Contribution 2. The basis of Contribution 1 is to perform conditioning on eviden-

tially more likely null genes and while doing so incorporate the observed inter-gene

correlation. PhiIOSOphically we employ the same idea but this time to yield a better

(T1, . . . ,Tm) —> ( f, . . .,T;';,) mapping. Sections 4.1—4.3 develop the methodology
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behind the proposed re-ranking procedure and Section 4.4 uses real and simulated

examples for verification. The approach relies on the residuals of simple linear re-

gression. This contribution is complementary to the first as the proposed approach

yields gains for moderate n situations, for example the Prostate cancer data of Singh

et al. (2002) as in Section 4.4. If substantial null-null correlation is present and purity

holds, then the gain in statistical power is notable.

2.4 Dependency in Gene Expression Data

Dependency refers to the fact that in a random data set the expression levels Xij

and Xi’j are statistically dependent. Formally,p (Xij’Xi’j) 74 p(X.,;j)p (Xi’j)'

It is helpful to think from the point view of mutual information between Xij and

Xi;3" Recall that the mutual information (Cover and Thomas, 1991) between random

variables X and Y is defined as

“m =//X”“”90gbI__(>py)<y))“d“

That on-an-average how much dependency (or say mutual information) there is be-

tween two gene expressions measurements on a same micorarray, is the topic of a

major scientific debate (Klebanov et al., 2006).

In practice, method-development for general dependency measures like mutual in-

formation is impractical; however, second—order dependency, i.e., correlation between

Xij and Xi’j’

ray data sets implies the existence of substantial on-an-average correlation between

15 mathematically tractable. A careful examination of various microar-

two arbitrary gene samples. Owen (2005) examines four different data sets — (i)

expression levels in different human tissue (ii) a Kidney aging data (iii) human stress
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data and (iv) gene expression in yeast — and concludes the existence of substantial

inter-gene correlation.

Qiu et al. (2005b), Qiu et a1. (2006), Almudevar et al. (2006), and Klebanov et al.

(2006) argue that commonly observed inter-gene correlation is intrinsic and must be

accounted for. However, we can just speculate about the possible sources of inter-gene

correlation, such as co-regulations of the genes, spatially correlated measurement er-

rors (Reiner-Benaim, 2007), confounding variables introducing long-rage dependency

(Leek and Storey, 2007), etc. Klebanov and Yakovlev (2007) call for to improve

statistical inference by incorporating correlation structures.

2.5 Purity, ldentifiability and Zero Assumption

The assumption of “purity” states that we will not discover anything interesting near

the center of the null distribution (Genovese and Wasserman, 2004). Efron (2008),

while working with z-values, rephrases this as the “zero assumption” (ZA):

Zero assumption most of the z-values near 0 come from null genes.

Efron (2006) discusses the use of the ZA in a variety of differential analysis ap-

proaches. It plays a central role in the literature on estimating the proportion of null

genes, as in Pawitan et al. (2005) and Langaas et al. (2005). The ZA is equally crucial

for the two-group model approach developed in the Bayesian microarray literature,

as in Lee et al. (2000), Newton et al. (2001), and Efron et al. (2001). The ZA is also

important for the “empirical null” technique of Efron (2004).

For the purposes of statistical reasoning, purity allows to impose “identity” on null

genes. This is known as “identifiability.” In the present context, this notion refers
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to the act of incorporating the genes with test statistics near the center of the null

distribution as explicitly null in the inference. Here, the premise is that the statistical

risk of imposing identifiability may weigh less than not doing so. Empirical evidence

supports this assumption.

The assumption of purity is more believable if the proportion of null genes no is

huge. For a variety of gene expression studies this seems to be a common situation as

the number of genes behaving differently in closely compared phenotypic distinctions

is thought to be a small proportion. Intuitively, a significant number of total genes are

involved in “basic pathways” that are crucial to the overall functioning and survival of

the cell, and hence, by and large, their expression may remain unchanged with respect

to the treatment of interest. A good part of statistical literature assumes no 2 0.9

for method-development purposes; see (Efron, 2004) and references therein.
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Chapter 3

Estimating the Number of False

Discoveries

The previous chapter emphasized that the number of false discoveries is central to

large-scale significance testing. This chapter discusses the issue of estimating the

number of false discoveries in the presence of substantial inter-gene correlation. In

particular, we focus on exceedingly small sample sizes wherein estimating the inter-

gene correlation structure becomes very challenging. Such situations are very common

in cost-constrained microarray investigations which typically involve only 3-4 repli-

cates per biological state. We lay the statistical groundwork for a method which,

in principle, can estimate an entire distribution of a random variable model of the

number of false discoveries. This distribution is interpretable from both Bayesian

and Frequentist points of view. A distinctive feature of the present method is that it

first summarizes the effect of millions of pair-wise correlation coefficients in a single

parameter ,8, then explicitly incorporates this parameter in the inference. Doing so

offers the possibility of a sophisticated yet practical inferential technique capable of
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handling exceedingly small sample sizes.

Organization of the chapter. Key challenges in estimating the number of false

discoveries and the intuition behind the proposed method appear in Section 3.1.

Section 3.2 develops the method. Algorithm 1 in Section 3.3 summarizes the main

steps. Section 3.4 applies the method to real and simulated test data. A discussion

and potential extensions appear in Section 3.5.

3.1 Overview

Recall the basic “large-scale statistical significance testing” formulation from Sec-

tion 2.1: Genes are represented by summary statistics and corresponding null hy-

potheses,

H1,H2,...,Hm

T1,T2,...,Tm

t1,t2,...,tm,

where T,- refers to a “random value” and t,- the “realized value.” The magnitudes of

the ti’s establish a gene-ranking, and the top r < m genes with the largest t scores

are reported as statistically significant discoveries. The cut-off between non-null and

null genes is determined on the basis of the ratio 22/r, where 2) refers to the number of

false discoveries in r discoveries. This ratio, known as the false discovery proportion,

is detailed in Section 2.2. In Section 2.3 it is pointed out that a key issue in large-scale

significance testing is an accurate assessment / estimation of the unknown quantity

1).
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Similarly to the pair (ti,Tz-), it is also helpful to visualize the quantity 1) as the

realized value of a random variable V associated with a hypothetical data ensemble.

Formally,

V = #{null T,- E P},

where l" is the rejection-region under consideration. Here, “#” is read as “the number

of.” The sample space and the probability distribution of V can be deduced from the

joint distribution of null Ti’s. Since the identity of truly null genes is unknown we

restrict ourselves to a conservative all-null-calculation where all the genes are assumed

to be null. Such “all null treatment” is very common in the microarray literature

in which the goal is to identify a relatively small set of interesting non-null genes.

For example, see Owen (2005), (Efron, 2007b), and Efron (2008); the discussion in

Section 2.5 also has some reference to this point. The “FDR terminology” appears in

Section 2.3.

In their breakthrough paper, Benjamini and Hochberg (1995) used an all-null-

theoretical—expectation, EP(V) = 27-”:1 Pr (T,- E F I Hi): Eqn. (2.5), as an estimate

of the ‘iealized” o. In fact, Benjamini and Hochberg (1995) showed that this intuitive

estimator ensures that the FDR stays below an arbitrarily prescribed level. Note that

when the proportion of null genes is close to one, then E1707) is a good approximation

of the true (unknown) expectation E(V). It was later realized that when null cases

are highly correlated, the variance of V,

Var(V) = E {V — E(V)}2,

is greatly inflated. Owen (2005) presents a mathematical analysis of this fact and

emphasizes that for certain situations the increase can be nearly 100 fold.
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A direct implication of inflated Var(V) is that the realizations of the random

value V deviate substantially from the expected value E(V). Which casts doubts on

the effectiveness of approximating the realized 2) with Ep(V). The recent literature

calls for a better treatment of inter-gene correlation (see Section 2.4 for details).

Therefore, “to build a realistic i) for highly correlated tests” is the purpose of the

research described in this chapter. The symbol 2) should be read as “an estimate of

the realized 1).”

The present emphasis is on exceedingly small sample sizes, only 3-4 replicates per

biological state, similarly to the HIV example of Section 1.3. The inherent difficulty

with small sample situations is that extracting any useful information about inter-

gene correlation structure in itself is a major challenge (Owen, 2005; Efron, 2007a).

Intuitively, the approach draws conditional inferences based on the identifiable

information. Mathematically, if I is the information from identifiability, then we seek

i) = E(VII) Section 2.5 discusses the concept of identifiability in detail. Formalizing

this intuition is not straightforward.

3.2 The Proposed Method

The proposed method models the “histogram binning” of random values Ti’s. While

pursuing this modeling, inter-gene correlation enters into the statistical inference in

a subtle way. For convenience, we work with the z-values by mapping Ti’s to Zi’s

(see Section 2.1 and Section 3.2.1 for details). Efron (2007a) has developed a second—

moment theory for null Z,- “histogram binning” to gain insight into the behavior of

V. At some level, in order to construct a moment-based i), we effectively extend the

“moment framework” by including third moment skewness corrections.
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Due to purity the center of the Z,- histogram will be populated mostly by null

cases. Therefore, we can place a small zero-symmetric bin designated as “center-area”

in the sample space of Zi’s and posit that the count in center-area is primarily due to

null cases. Consequently, the null count in center-area, denoted by C, is observable.

Next, the observed value, say c, of the random variable C can be used to condition

V to yield a theoretically better estimate of v.

The most complete probabilistic relationship between V and C is given by the

joint distribution P(V, C). We estimate this distribution. To do so we estimate the

first three moments of the random variables (V, C) and later fit the maximum entr0py

distribution (maxent) to these moments. Section 3.2.1 discusses the moment estima-

tion and Section 3.2.3 the maxent fitting. Naturally, this approach yields an estimate

of P(Vlc). We claim that the proposed method yields an entire distribution of the

number of false discoveries. The entire distribution is potentially more useful than a

point estimate because of the noisy nature of large-scale inferences (Owen, 2005). If

one wishes to skip conditioning altogether, then this method can report an estimate

of P(V) and is therefore still useful. Compared to purely histogram-curve-fitting

techniques like “empirical null” (Efron, 2004), this approach enjoys the attractive fea-

ture that correlation is separately estimated and later explicitly incorporated in the

inference through the moments of (V, C).

A crucial observation is that for most microarray data there is extreme negative

correlation between random variables V and C (Efron, 2007a). Efron (2007a) pro-

vides an explanation for this phenomenon and then uses the gained insights to build

a Poisson model based second-order i) which is also reliant on the notion of a center-

area. However, an hypothesis of this research was that characterizing the correlation

between V and C using moments could be more helpful in correcting the effect of

34



inter-T,- dependency. Indeed computing the second moments is straightforward, but

unfortunately purely second-order estimators apparently suffer from potentially haz-

ardous “over / under estimation events.” Both the present second moment i) (see the

results of Section 3.4) and Efron (2007a) 23 show this effect.

Three observations explain these estimation issues: (i) the random variable V is

bounded below by zero, (ii) the expectation of V is small, and (iii) correlation causes

the variance of V to inflate. These observations suggest that third moment skewness

corrections are vital. Indeed Owen (2005) encourages further investigation of this

point.

However, a third moment extension under severe sampling error is nontrivial. The

chief contribution of these developments is an inferential technique to estimate the

empirical density of 3 x 3 covariances enabling realistic estimates of third moments.

In effect, it is possible, to within a useful degree, to fix the estimation issues inherent

in second-order approaches.

The present extension of the moment framework, in principle, admits any-order

moments, but computational challenges have prevented inclusion of higher than third

moments. The inclusion of the third moments provides significant improvement for

a range of real and simulated examples (see Section 3.4). Hence, a key observation

relating to u estimation methodologies is that techniques which rely on identifiability

can be enhanced by including third moment skewness corrections if they do not

already do so.

Section 3.2.1 discusses the moment framework and derives the necessary formulae.

Extraction and modeling of correlation information is discussed in Section 3.2.2. The

maximum entropy technique of distribution fitting is described in Section 3.2.3.
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3.2.1 Estimating the Moments

The goal of the work reported in this section is to derive mathematical formulae for

estimating the moments of random variables V and C. This includes the individual

moments (e.g., E(V),E (C2), etc.) as well as the joint moments (e.g., E(VC),

E (V20), etc.). The work required to meet the goal will extend, however, into

Section 3.2.2. Broadly speaking, the approach is to perform a normal theory analysis

of the effect of “pair-wise gene expression correlations” on the distribution of null

counts.

We begin by transforming test statistics T1, . . . , Tm to z-values:

Z.- = 4‘1 {Gown} . 2' = 1... .,m, (3.1)

where Go is the putative null cdf of the test statistic and <1)"1 is the inverse cdf of

N(0, 1). The z-values provide the analytical convenience of multivariate normal form

in describing the joint null statistic behavior. For these calculations it is assumed

that all genes are null

z,- =/v(o,1), i = 1,...,m, (3.2)

so that the theoretical null distribution N(0, 1) is individually correct.

Formally, the quantities of interest are:

V = #{Zi I Zi S 61} (3.3a)

c = #{a = W s 60}. (3.31))

In Eqn. (3.3), the interval [—60,60] coincident with random count C is known as

“center-area” and the interval [—00, 61] coincident with random count V is known as
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“left-sided tail-area.” Mostly to be consistent with (Efron, 2007a) we work with a

left-sided tail-area, however, the alternative choices, right-sided tail-area or double-

sided tail-area, are equally valid. Throughout this work 61 = —2.5 and 60 = 1 unless

stated otherwise.

Central to these developments is the premise of Efron (2007a) that the 21’s falling

in center-area represent null hypotheses, in turn, making count C nearly observable.

A similar assumption plays a central role in the literature on estimating the propor-

tion of null genes (Pawitan et al., 2005; Langaas et al., 2005). The “empirical null”

corrections of Efron (2004) too, rest on a similar logic. The observation of purity in

gene expression data motivates this premise. Refer to Section 2.5 for further details.

In order to use the above premise, the proposed strategy is to:

1. Estimate the moments of (V, C)

2. Infer a P(V, C) based on the above moments

3. Report P(VIC) based on determined P(V, C)

4. Use determined P(V|C) to find a me, i.e., v conditioned on c

Small improvements may be possible by the incorporation of an estimate of the pro-

portion of truly null cases (Langaas et al., 2005; Storey et al., 2004).

Additionally we assume bivariate and trivariate normality of Zi’s. Efron (2007a)

and Owen (2005) in their developments assume bivariate normality, therefore trivari-

ate normality is an added assumption. Through bivariate and trivariate normal as-

sumptions yield a second-order approximation of the “true” p(Z1, . . . , Zm). Since

Zi’s are individual N(0,1), a second-order approximation is useful. The empirical

evidence of Section 3.4 provides support.
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The z—value histogram. It is convenient and computationally efficient to approach

the moments of (V, C) through the moments of the “Z,--histogram.” This is done by

partitioning Z, the sample space of z-values, into K disjoint bins,

K

2 = U zk,

k=1

where the kth bin has center z[k] and width A (constant with k). The histogram

counts are:

Yk=#{ZiEZk}i fork=1,...,K

m

=Zlk[i], fork=1,...,K,

i=1

where 1k [j] is the indicator random variable for the Zj falling in bin k. The moment

expression derived are for “central moments” for convenience in using the maxent

approach.

The expectation of Yk is estimated as:

Md 5 E(Yk) = E Zlklil)

= Z Pr(z,- e zk)

i=1

2:[k]+A

z —-2-

= mA<p(z[k]) + 0(A)

z mAcp(z[k]), where tp(z) = —1—e_z2/2. (3-4)
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The second moment of the pair (Yk, Y1), where k may equal l, is obtained as:

uzlkill = E{(Yk - (Your; - (Yzlll

-.{ (w) (2)}

= ZPrlzz' 6 31:, Zj 6 2,) + 2PM- e Zkv Z.- 6 Zr) — <Yk><Yz>. (3.5)

#i i

If Tz'j models the correlation of a z-value pair (Zi, Zj), then, by adding bivariate

normality, Eqn. (3.5) can be approximated as:

2r,,-z[k]z[z] — z[k]2 — 4112A2

k.1 z ———e — Y Y 1: Y ,
#2I I g27r\/1———rzz; xp( 2(1_Tzzj) ) < k)< l>+ k l< k)

(3.6)

 

where 1k=l equals 1 if k = l otherwise 0.

Now, let g(r) denote the empirical density of the pair-wise correlations of (I?)

(Z1, Zj) pairs. This quantity together with Eqn. (3.6) yield a useful approximation

for the second moments as stated in the following proposition.

Proposition 3.2.1. The (central) second moment of a histogram count pair (Yk, Y1),

where k may equal 1, is given by

#2Ika I] a mzAzcgelki, zlll) - <Yk><n>+1k=z<m

where

 

+1 2 2

g(r) 2mm - x - v
G (x, y) = / ——exp dr

9 -—1 27r\/1 — r2

ande=m(m—1)---(m—k+1).
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The error in the above approximation isof 0(A2).

The third moment of the triplet (Yk, Yl, Yj), where k, l, and 3' may be equal, is:

Mama] = E {at — <Yk>><Yz -— mog- — am}

= E(YleYj) — <Yt><Yl><Yj> — (annual + chunks] + name. ll) ,

(3.7)

where:

E(YkYij) = E{ Zlklpl) (21M) (2 Ijl?‘l)}

=1 q=1 r=l

= Z Pr(zp e zk,zq 6 21,2. e 2,)

prqrr

+1k=j Z Pr(zp e 2k, Z1 6 zj)+1,,=,z Pr(zp e 2k, Zq e 2,)

1975a prq

+ 11:,- Z Pr(zp e 2,, Zq e 2,) + 1k=l=j ZPr(zp e zk).

10754 P

1k=l=j = 1 if k = l = m, else 1k=l=j = 0.

Let

1 Tij Tik

R3fi‘ljtk] = Tij 1 Tjk

Tile Tjk 1

denote the 3 x 3 covariance of the triplet (Zi: Zj, Zk) where i 74 j 74 k. Notice that

this matrix is an element of the space of 3 x 3 correlation matrices, say R3. Notice

that the matrices in R3 are always positive (semi) definite.

Now let h(R3) denote the empirical density of all such R3 [i, j, k] for the true
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p(Zl, . . . , Zm). Together with Eqns. (3.4)—(3.7), this yields an approximation for the

third moment which is again embodied in a proposition.

Proposition 3.2.2. The (central) third moment of a histogram count triplet

(Yk,Yl, Yj), where k, l, and j may be equal, is given by

islets] z m§A3anlktzULzm>

+ m—Z-A2 [lkszg(ZIkla 2v» + 1k=ng(Zlkla 21m + lag-69w]. 4m]

+ 1k=z=j(Yk) - (Yk)(Yz)<Yj> - [lYklu2IlJl + (3’1)#2lk,jl+ (leuzlkllll ,

where

h R _

Hh($,y,2) = [R3 (2W)3/(2|I3{:|1/2 exp (-%Ix.y,ZIR3llx.y,ZIT) 4R3, (3-8)
 

and Gg(x,y) and [1.2 [i, j] are defined in Proposition 3.2.1. The error in this approxi-

mation is of 0(A3).

The integral in Eqn. (3.8) is computed over three dimensions. A kth moment

It

calculation would involve ('5) -D integral and require integration in 72(2).

Next, to get the moments of (V, C) we combine the moments of the corresponding
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Yk’s. For example,

E (v — E(V»2 = Z Hzlk, I] use

{k,z:z,,,z,cr,.}

E (C — (0))2 = Z #2Ika 1] (3.91»

{k,z:zk,z,crc}

E {W — E(V))<C — (0)» = 2 leka ll (39c)

{k,z:z,,cr,.,z,c,rc}

(3.9a)

(3.9e)

In Eqn. (3.9): Pr E [—oo,61], tail-area (also called the rejection-region); I‘C E

[—60, 60], center-area.

The key quantities in Proposition 3.2.1 and 3.2.2 are empirical correlation densities—

obtaining those in the presence of severe sampling errors is discussed next.

3.2.2 Estimating Correlation Densities

Severe sampling fluctuations create technical challenges: The current methods can

recover only g(r), and h(R3) requires informed approximations based on g(r). For this

reason as well as for ease in the calculations of Proposition 3.2.1 and 3.2.2, we seek to

parameterize g(r). Fortunately, for most real examples, a single omnibus parameter ,8

is found to be sufficient. This omnibus measure based approach has an added benefit:

Whenever inter-Z; correlation is inaccessible, due to a complicated definition of the

test statistic, the investigator can still exercise judgement to incorporate correlation

among the test statistics.

Similar to (Efron, 2007a), we also normalize the columns of [x1; . . . ;xm] to mean
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zero and variance one (but not quantile normalized). This is a usual practice to negate

“brightness” disparities among microarrays (Bolstad et al., 2003; Qiu et al., 2005a).

Column standardization forces the sum of covariances to be zero. This allows fitting

a zero centered density on, g(r), which in turn has profound consequences for the form

of h(R3).

To estimate g(r), we require g(p)—the empirical density of (75’) correlation coef-

ficients between gene expression levels. The mapping between Tij and Pij is needed

to calibrate g(r). However, for the usual two-sample t-statistic, assuming the inde-

pendent columns in [x; . . . ;xm], Tij z pij, and hence nearly the same density g(p)

and its extension h(P3) apply to the Zi’s. Here, the symbol “tilde” distinguishes

measurement correlation density from Z,- correlation density. The fact Tij z pij can

readily be verified through computer simulations. See (Efron, 2007a, Remark A) for

a similar discussion. Moreover, recall that this issue of the relationship between r

and p was discussed in detail in Section 2.1.

Obtaining g(p). Let [2,, be the sample correlation coefficient between rows i and

j of the residual matrix [21; . . . firm], obtained by subtracting off each gene’s average

response within each treatment group. The cumulative sampling errors are removed

by transforming to

,.._110 ”iv.
2] — 2 gl‘fiij,
 (3.10)

assuming a translation model Tij = rz-j +5, rij ~ E(T) on this scale; fitting a normal

density N(0, 02) on Iij histogram; letting 8 ~ N(0, 1/(n—3)) on the basis of bivariate

normality (Owen, 2005); recovering E(T) as N(0, 02 — 1/(n — 3)); and transforming

back to the p scale. If necessary the same calculation can be done in the resampling

mode as described in Efron (2007a, Remark A).
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Next, on the p scale, the modified Beta density is fitted:

§(p)o<(1—p2)“=(§(p+1))“(1—§(p+1))“, mg. (3.11)

Efron (2007a) works with (0, a2); The present 8 and Efron’s a are related as:

_ 2__ £32 _1-oz2
Var(p) —a —4(23)2(23+1) éfl— .  (3.12)

The rest of this section pursues h(P3)—a 3 x 3 extension of g(p). For the usual

two-sample t-statistic, h(R3) z h(P3) because Tij z pij. Here, P should be read as

Rho, relating to p.

Obtaining h(P3). To model h(P3), we seek a joint density on ’P3—the space of

all 3 x 3 correlation matrices—such that all the inherent marginal densities (i.e., the

density of pig-(i 75 j), the (i, j)th entry of P3) are equivalent to g(p). Such a density

can be obtained from the inverse-Wishart density whose marginalization properties

are especially helpful while deducing the probability density of a subset of random

variables.

Let the underlying covariance E of X come from the standard inverse-Wishart

density w,7,1(1, u), u 2 m:

fm(2 | 1/) oc I23|_("+”’+1)/2 exp (—tr{2‘1}/2) , (3.13)

where u is the single parameter that characterizes the density. The goal is to relate

V to 6 and deduce the probability density of any 3 x 3 covariance sub-matrices of

2. Recall that while forming a covariance / correlation sub-matrix row and column

selection must be identical. To do so we follow the “separation strategy” of Barnard
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et al. (2000):

E=S-P-S, (3.14)

where S is the diagonal matrix whose ith diagonal element, 3;, is the standard de-

viation of gene i, and P is the m x m correlation matrix of X. By back-to-back

marginalization yields the density of any K: x K; correlation sub-matrix of P:

—(V—m+n)/2

) , (3.15)max. I u) o< IPa<"—'”+*‘“1>(Ml/2'"1 (fi I<P..).-.-I
i=1

where (A),,- is the ith principal sub-matrix of A. The reasoning connecting Eqn. (3.13)

to Eqn. (3.15) follows.

Under the transformation 2 -—> (S, P), the Jacobian is given by 27” (H,- si)m [see

Theorem 3, (Olkin, 1953)]. Thus, after marginalization over S

i

V —(V+m+1)/2 m 0° 7(V+1) Jii ,
fm(Pl )o<|P| £11 [0 s, exp( 232)ds.. (3.16)

where p“ is the ith diagonal element of P‘l. The product occurs because of inde-

pendence of si’s. Similarly to (Barnard et al., 2000), substituting w, = pii/2szz yields

m _V/2 m

fm(P I V) CC lPl—(V+m+1)/2 H p’ii H [00 wgu-2)/2 exp (—wz-)dwz- ,

i=1 i=1 0

(3.17)

which leads to an expression for the probability density of the correlation matrix P:

—u/2
m

fm(P | u) oc IPI(”")(”"1)/2’1 H IPz-z-I . (3.18)

i=1
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where Pi; is the ith principal sub-matrix of P, and pii = |Pz-z-I/ |P|, with |A| denoting

the determinant of A.

For P with probability density Eqn. (3.18), the marginal density of an arbitrary

K x n correlation sub-matrix, denoted by PR, is obtained as follows. Let the K. x

K. covariance sub-matrix 2).; undergo the transformation 2).; —> (SmPn). Then,

due to the marginalization property of inverse-Wishart, 23,; ~ W;1(I, u — m + K).

Steps Eqns. (3.13)—(3.18) for 23,; yield:

—(u—m+n)/2
m

fm(PK;|1/)O( IPK, |(V—m-I-It— 1)((it— 1)/2--1 UK()PK,)‘iiI I:I.

i=1

Substituting n = 2 in (3.15) yields

(u——m1)/2

fm(P2|V)Efm(p12|I/)O<(1—p12) . |p12|31.

which has the same parametric form as Eqn. (3.11). By setting 11 — m = 26 + 1 we

can force the inherent marginal densities of P entries IPij (i 75 j)] to equal g(p)—the

specific aim with which the derivation began. Finally, substituting K. = 3 in (3.15)

gives:

2(8+1)

(1 — Pig _ .033 — Pf3 ‘I‘ 2P12923013)

[(1 — Pig)“ " P33)(1 " Pf3l] fi+2

 h(P3) OC (3.19)

It should be noted that even though for large m inverse-Wishart, Eqn. (3.13),

is a tenuous assumption, its use is strictly to estimate h(P3) from the g(p), there

is no concern for the entire P. Also, since single parameter probability densities

on a positive definite matrix space are very few, this one is chosen for its useful

“marginalization” property. The justification of this choice rests in the fact that
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Eqn. (3.19) is an empirically realistic estimate as evident in the results of Section 3.4.

The “Bayesian correlation priors” point of view (Liechty et al., 2004) was especially

helpful in formulating these ideas. Exploring other ways to obtain h(P3) is a subject

for future research.

3.2.3 Fitting the Maximum Entropy Distribution

P(V, C) is inherently a discrete distribution with support D = {(i,j) : 0 _<_ i S

m, 0 S j S m, 0 S i + j S m}, and any moment based inference would invariably

involve computation over 8. Growing cardinality of D (cc m2) makes dealing with

large m difficult. However, computation can be reduced substantially by truncating

Dto

Dt={(i1j) I Vmin S. 2 S Vmax, Cmin S j S Cmax, O S 2+]. S m}: Where

Vmin = max([(V) — l - Std(V)_|,0), Vmax = min (RV) + l - Std(V)l,m);

Cmin = max (L(C) — l - Std(C)j,0), Cmax = min ([(C) +l - Std(C)l,m).

Here, Chebyshev’s inequality guides the choice of parameter I: For l 2 6, the loss of

accuracy due to truncation is negligible.

Computation can be reduced even further by recognizing the fact that the distri-

butions imposed on the basis of a small number of moment constraints often enjoy a

high-level of regularity and a sparser mesh should suffice. In fact, the computation—

accuracy trade-off is easy to deal with, if the task is changed to learning a continuous

probability density p(x, y) over continuous support

St = {(x,y) : x E range(V),y E range(C), #22 S x +y S 1 — W}.
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(0,0) V ——> (m,0) (“m f C) (1 _%),_—_(n¥))

Figure 3.1: Discrete support Dt (Cl markers) versus continuous support St (solid

boundary). St is standardized to improve numerical stability.

range(Y) is [W,W] (see Figure 3.1).

The above standardization offers numerical stability, but the moment constraints

must be scaled appropriately. Let ’Pc denote the space of feasible p(x,y)’s, then

Vp(x, y) 6 ’PC:

[8 xiyjp(x,y) dx dy = pij, and 0 S i +j s K; (3.20)

t

where ”v = E{(V — (V))’(C’ — (0))1'}/mi+J’ . (3.21)

In Eqn. (3.21) (i, j):(0,0) corresponds to the constraint fSt p(x,y) dx dy = 1, while

(i,j):(1, 0) together with (i,j):(0, 1) imply that Vp 6 ’Pc has mean (0,0).

Selection of a unique p(x, y) relies on the principle of entropy maximization (max-

ent) which seeks a p(x, y) 6 PC with maximum information entropy (Jaynes, 2003).

The information entropy essentially measures the spread of the distribution, and

hence, maxent can be seen as a criterion, which within the knowledge constraints,

chooses a least “assuming” probability density—arguably, a correct approach in the

framework of statistical inference.
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The application of maxent leads to the following optimization problem:

p*(x,y) = argmax {—fs p(x, y) lnp(x,y) dxdy}. (3.22)

tp(x,y)€Pc

The solution takes the following exponential form:

EXP (ZlgHjSK Aijxiyj)

f5, exp (219+ng Atjxiyj) d2: dy

 

1910?, y) = (3-23)

Solving (3.22) requires concepts from the Calculus of variations and Lagrange multi-

pliers. The reasoning leading to the exponential form Eqn. (3.23) and a procedure to

determine optimal Aij’s will now be discussed.

In addition to the fact that information entropy functional is concave (Cover

and Thomas, 1991), the constraints in Eqn. (3.21) are also linear in p(x,y). Thus,

the problem in Eqn. (3.22) is a convex program which can readily be solved in a

Lagrangian dual framework, where one works with an unconstrained upper-bound

(lower-bound if minimization) that is easy to optimize. More importantly, in the

present case, the framework allows the conversion of the original infinite dimension

problem of functional variation into a finite dimensional problem with as few variables

as the number of constraints.

Proposition 3.2.3. The dual \IJ(/\) of the concave optimization problem Eqn. (3.22)

is given by:

\II()\)=ln [Sexp Z Aijxiyj dxdy — Z Aijpzj, (3.24)

t 19+ng 29+ng

where )‘ij is the Lagrange multiplier corresponding to the (ij)th constraint and )1”,
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and i,j, K are defined in Eqn. (3.21).

Proof. By the definition of the Lagrangian dual function, the Lagrangian III(/\) :

311p [- [Stp($,y)1np(x,y)dx dy+ Z An (thiyjpwwwx dy - #2“)

p(x,y)el’ i+ng

(3.25)

Taking the functional variation of the square bracketed term in Eqn. (3.25) with

respect to the unknown density p(x, y) and using the fact that fSt p(x, y) dx dy = 1,

the maximizer of Eqn. (3.25) is obtained,

eXp (219+ng 42739319)
 

1010:, y) = (3.26)

fSt ‘3’“) (219%_<_K Atjmiyj) 611' dy

Inserting Eqn. (3.26) into Eqn. (3.25), yields \IJ()\)

=/Sp(x.y)1n [.9 exp. 2 Win) dandy dxdy— Z w”
t t 19+ng 19+ng

1
I

= In [/ exp ( Z Aiszgfl) d2) dyJ — ZZSi+jSK Aijpzj, (3.27)

5‘ 132+ng

. _ 00 _ 10 _ 01 _.
where the facts fStp(x,y) dx dy u — 0, u — 0, and ,u — 0 from Eqn. (3.21)

have been used. [I

It is easy to verify that the Hessian of Eqn. (3.24) is positive definite and hence

\I'(/\) is convex. Suppose X" is the minimum of \II(/\), then the corresponding pri-

mal solution p” (x, y)——obtained via Eqn. (3.26)—indeed maximizes Eqn. (3.22).

To verify this, let p0(x,y) be the maximizer of Eqn. (3.22), then from Eqn. (3.25)

\II(A) Z ’H{f°(x,y)},V)\. Now from the general optimization theory, the functional
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variation of Lagrangian with respect to p(x,y) evaluated at p0(x,y) must be zero,

which implies p0(x, y) could be written in the form Eqn. (3.26) for some A0. But then,

‘1’(/\*) S ‘I’(/\0) => ‘1’(/\*) S H{f0($, 31)}; consequently, WW) = H{f°($, 31)} =>

X“ = A0; hence va (x,y) is the maximizer of Eqn. (3.22).

What remains is the need for an efficient method of minimizing \II(/\). “Newton’s

method” is used. According to Newton’s method, if a multi-variable function \II(/\)

is twice difl'erentiable and the initial guess point A0 is in the “neighborhood” of X",

then the sequence

n+1 = An — amnion—lawn). n 2 o (3.28)

converges to X". In (3.28) A\II(/\n) denotes the gradient of \II()\) evaluated at An and

H0110171)} the Hessian. The parameter 7 > 0 allows finer control of step sizes to

avoid numerical instabilities. At the nth iteration, \II(/\) is replaced by its second-

order Taylor expansion around An and then minimized exactly, which produces the

minimum An+1. At the (n + 1)th iteration, An+1 becomes the point of expansion

and the method continues until it convergences.

~

The elements of the gradient A\II()\) are given by:

 

~ . . exp :1<'+'<K:\"$iyj ..

6;?) '— / x2?!“ ( J J“ - z]. . ) dads-E” (329)
Z] St [St exp (219+jSK Aiszyj) dxdy

= [S $iyji3($,y)d$dy—Hij =11” w”. (3.30)
t

where [Ii-j denotes the (ij )th central moment of the distribution given by :\ via (3.26).
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Similarly, the elements of the Hessian are given by:

0% Z\ . - ~ ~ . .~

37%;; = / 1"”?“p(x,y) div dy - / Ikylp(x,y) d1? dy - / E’s/319mg) d9: dy
kl 2] St St St

From (3.30) and (3.31) we observe that the gradient calculations are done as a part

of the Hessian calculations which essentially involve terms requiring integration on St.

A plethora of advanced techniques to carry out numerical integration on a quadrangle

like St is available in the literature. An equal-spaced rectangular mesh turns out to

be sufficient for the present purpose. The sequence Eqn. (3.28) is initialized with

A = 0 which implies a uniform distribution over St.
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3.3 Summary of the Method

 

Algorithm 1: Inferring the distribution of the number of false discoveries.

Input: (l;x1; . . . ;xm) (Section 2.1) and 61 [Eqn. (3.3)].

Output: An estimate of P(Vlc), where (random) tail-count V = #{null Zz- E

—oo,6 and center-count c = # z- 6 —1,1 .
1 z

1. Compute 21, . . .,zm: z,- = <I>"1 {Co(t,-)}, Eqn. (3.2). ti’s are linear regression

test statistics (Section 2.1), Q is the test statistic cdf, and (D‘l is the standard

normal inverse cdf.

2. Determine fl, Eqn. (3.12), summarizing the inter-Z,- correlations.

3. Partition [—5, 5], the Zz- sample space, into K = 100 equal width bins (A = 0.1)

and use Eqn. (3.4), Proposition 3.2.1, and Proposition 3.2.2 to compute the first

three moments of the Z,- histogram

4. Use determined 2,; histogram moments to compute the first three moments of

V and C, Eqn. (3.9)

5. Use determined moments with the maxent, Section 3.2.3, to estimate P(V, C)

6. Use the estimated P(V, C) to determine P(Vlc)
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3.4 Test Cases

MATLAB code for the algorithm developed above can be requested via email at

keyurdesai@gmail.com. The approach was tested on two real data sets, both showing

a significant amount of inter-gene correlation and unusual null count behavior. Ca1-

culations below are for 61 = —2.5 and 60 = 1. Comparisons with the second-order i)

of Efron (2007a) are also made.

3.4.1 Real Data

The BReast CAncer (BRCA) study of Hedenfalk et al. (2001) has m = 3226

and n = 15 with 7 samples assigned to BRCAl mutations and 8 to BRCA2. The

study sought to identifying genuine mRNA activity differences between these two

categories. The study used two—color microarrays and hence the measurements are

in terms of “ratios.” The logarithms of these ratios are used to raise normality (Tsai

et al., 2003).

The HIV study of van’t Wout et al. (2003) has m = 7680 and n = 8 with 4

samples assigned to an HIV infected condition and the remaining 4 to the control.

The control (CD4-T cell lines) was infected by the HIV-IBRU virus. This study

reported raw mRNA levels which were also converted to logarithms for the present

purpose.

The approach reduces the entire data matrix to just two parameters: The observed

C and the ,8. As evident in Figure 3.2, the parametrization of Section 3.2.2 is realistic.

For BRCA example 8:17.77 and for HIV )8—351. Additional details are provided in

the caption.

The next step is to compute the moments of (V, C) per Propositions 1 and 2. These
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Figure 3.2: Caption appears on the next page below Figure 3.2.

calculations require m, 8, c, 6, and A. A = 0.1 is selected. A maxent distribution was

fit to these moments. Figure 3.3 reports the moments and the corresponding maxent

distribution for the BRCA data. Here, (V, C) show strong negative correlation of

-0.89; a similar figure is reported by (Efron, 2007a, Table 1). Furthermore, V shows

significant positive skewness, which causes C to show negative skewness. This is not

surprising as V is bounded below by 0 and yet has small mean but inflated variance.

In effect, third-moment provides additional detail about the joint behavior of (V, C).
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Figure 3.2: Effect of sampling fluctuations on the empirical correlation density. (a)

BRCA example (b) HIV example. For each sub figure: Left panel is the histogram

of sample correlations after applying the Fisher transformation (3.10) and a normal

distribution (heavy curve) fit to it; Right panel is the histogram of de-noised corre-

lations and a modified beta distribution fit to it (heavy curve). This summarizes the

cumulative effect of (75”) gene-gene correlations in a single parameter ,6.

During the maxent numerical optimization a 100 x 500 equal-spaced mesh was

found sufficient for the BRCA study; however, for the HIV study, it was necessary to

expand the mesh to 400 x 2000 because of both larger m and heavier (V, C) correlation.

The BRCA Optimization took 30 iterations to converge, whereas the HIV optimization
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Figure 3.3: BRCA example: Estimated (V, C) moments and a maxent distribution fit

to it. Third moment estimate of P(V, C) (left) exhibits finer details than the second

moment estimate (right).

took 70.

Figure 3.4 reports the estimated P(V|c). Second moment and third moment

estimates are shown separately. In the framework of statistical inference, such a

distribution is the ultimate goal. Point estimates and associated confidence intervals
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Figure 3.4: The distributions of the number of false discoveries; Panel (a) the BRCA

study, Panel (b) the HIV study. To show the effect of skewness corrections, the third

moment distribution (solid curve) is compared to its second moment counterpart

(dashed curve). For BRCA the second moment mean estimate is 79 compared to 104

for the third-moment; while for HIV these are 19 and 8. The BRCA panel also shows

50% (solid line) and 75% (dotted line) confidence intervals.
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can be extracted in accordance with a ‘loss function.”

If the mean of the estimated P(Vlc) is used to determine the realized v, then for

the BRCA study, third moment calculations suggests 104 false discoveries versus 79

for second moment. Contrastingly, the “all-null—theoretical—expectation” yields only 20

false discoveries. These numbers must be put in perspective by noting that the actual

2,; count falling in the left-sided tail-area [00, —2.5] is 116. The standard Benjamini

and Hochberg 1995 procedure evaluates the FDP coincident with the left-sided tail-

area [00, -2.5] as 0.1724, the second moment as 0.68, the third moment as 0.9, and

the Benjamini and Yekutieli 2001 procedure as 1 (actually as 1.4759).

For HIV example, third moment calculates 8 false discoveries compared to 19 for

second-moment. Contrastingly, the “all-null-theoretical-expectation” suggests 48 false

discoveries. This time the actual 2,- count in the left-sided tail-area [00, —2.5] is 46.

In this case, the FDP coincident with the left-sided tail-area [00, —2.5] is evaluated

by Benjamini and Hochberg 1995 procedure as 1 (actually as 1.0435), the second

moment as 0.41, the third moment as 0.17, and the Benjamini and Yekutieli 2001

procedure as 1 (actually as 9.94).

That the conservative scaling in Benjamini and Yekutieli 2001 procedure to ensure

“validity” can cause a significant loss in statistical power (Section 2.3), becomes ap-

parent in the HIV example. Whereas “all-null-theoretical-expectation” of Benjamini

and Hochberg 1995 procedure can let through a potentially powerless data set, be-

comes apparent in the BRCA example. However, extensive treatment of inter-gene

correlation combined with identifiability may lead to more realistic conclusions.

The second-order i) developed in (Efron, 2007a) found 77 false discoveries for

the BRCA study. Efron compares that to the results of nonparametric analysis and

concludes underestimation, but the issue is left unexplored. Our main finding is that
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moments higher than second are important in describing the null Zz' histogram.

3.4.2 Simulated Data

It is helpful to test the method on simulated data where the true answer is known.

In simulation below all genes are attributed as “null” and hence no treatment effect is

added. The objective of this all-null simulation is to evaluate the estimation accuracy

of the developed method. The estimated tail-counts are contrasted with the true tail-

counts. In each trial, a 3226 x 15 matrix with entries simulating raw mRNA levels

is generated based on the Gamma-Gamma model described below. First 7 columns

are assigned “state 1” and the remaining 8 are assigned “state 2.” The standard

two-sample t-statistic is used enroute to the z-values, 21, . . . , 23226 The number of

zi’s falling in the tail-area is the “true count” which is compared with the “estimated

count” from the method.

Let the mRNA level Xij of gene i, measured by jth microarray, be

Xij ~ Gamma(k,9i), for j = 1, . . . ,n, (3.32)

where Gamma(k, 6) is the Gamma distribution with the shape parameter k > 0 and

the scale parameter 6’ > 0, similarly to the Gamma-Gamma model in (Newton et al.,

2001). In (3.32) the shape parameter k is common to all genes. Note that the index

variable I: of Section 3.2.1 has no connection with this k. The 6,- scale parameters

characterize the underlying mRNA levels which vary from gene to gene:

6,- i'lé" Gamma(k0, 90), for i = 1, . . . ,m. (3.33)
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The intuition that genes with bigger underlying mRNA levels should have higher

variance is consistent with model (3.32) since the mean of the ith gene is k6,- and

variance is 1062-2. The parameters (10, 100,60) may be chosen on the basis of the overall

gene expression histogram of some real microarray data set.

Three sets of results, (1,0.6, 500), (2, 0.39, 384), and (3, 0.33, 300), are presented.

These numbers were chosen to preserve the total sample variance. These particular

values are based on the HIV data of van’t Wout et al. (2003) which were collected

using Affymetrix microarrays. In particular, case kzl implies that the Xz-j’s are

exponentially distributed, while case 1022 implies a unimodal distribution with heavy

tails and a noticeable departure from Gaussianity. Case 1023 is characterized by a

more normal (Gaussian) looking distribution, however, with slightly heavier tails.

Following technique was employed to add substantial row-wise correlation: Through

the normal cdf, map the entries of a m x n matrix of correlated Gaussian random

variables

20 = LTz, where 2,,- ‘kf’ N(0, 1), (3.34)

to their p-values Pij = <I>(ij), and further map these p-values into Xij’s through the

inverse Gamma cdf’s as in accordance with Eqn. (3.32). In Eqn. (3.34), LTL = R is

the Cholesky factorization of the correlation matrix R in which L is a lower triangular

matrix.

Developing proper correlation matrices for simulation is a challenging problem.

Even the methods described in the comprehensive work of Marsaglia and Olkin (1984)

fail to generate arbitrarily dense correlation matrices for a large m (m > 1000). In-

stead we take a novel approach based on the recent work of Higham (2002) whose

basic idea is to generate a symmetric matrix and covert it to a nearest correlation

matrix based on Frobenius norm minimization. There are many ways to solve the

61



 

300’ (k = 1,160 = 0.6,00 = 500) J

41

250- + 0*

'E

3 + 3’

8 200~ + 1

3

‘5150- 5

.§

iii

“100’

-I

50"   
0 50 100 130 200 230 300

Realized count

(3)

 . . , 1 . +1

300- (k = 2,190 = 0.391, 60 = 384) 1

+

250- +1.? I

’S’ o

8 200- + + 09

"U

‘1’ 5

a 150- 9
)

.§

1‘3 100»

50- .

   
0 50 100 _150 200 250 300

ReaIIzed count

(b)

Figure 3.5: 61 = —2.0. For the caption, refer to panel (c) on the next page.
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Figure 3.5: Simulation experiments comparing conditional estimates: third moment

estimates + marker and second moment 0 marker. This figure corresponds to the

left-sided tail-area with (51 = —2.0. Substantial row-wise correlation is present. The

abscissa is the realized count while the ordinate is the estimated count. For the

significance of different (10, k0, 60)’s refer to the main text. Third moment skewness

corrections enhance the estimation accuracy.

numerical Optimization proposed in Higham (2002); however, recently proposed New-

ton method of Qi and Sun (2006) is noteworthy for its speed and accuracy. Higham

(2002) provides a lucid exposition of the problem of finding the nearest correlation

matrix.

Figures 3.5 and 3.6 compare the second moment estimates versus the third moment

estimates for 6 = —2.0 and 6 = —2.5, respectively. Both cases use 60 = 1 for the

center-area boundary. The choice of a center-area is discussed in Section 3.5. For each

sets of (19,100,190), 800 test data were simulated. On each test data the approach was

applied in its entirety and no additional knowledge was assumed. Throughout the
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Figure 3.6: Left-sided tail-area with 61 = —2.5, else the caption for Figure 3.5 is

applicable.

mean of the estimated P(V/c) was used as the final estimate of the tail-area count.

Note that the all-null-theoretical-estimates are always 20 for 61 = —2.5 and 73 for

61 = —2.0, regardless of the test data analyzed.

For all three sets of (k, k0,190), third moment skewness corrections enhance the

estimation accuracy. Evidently, the third moment estimates are significantly less

prone to “over / under estimation events” than the second moment estimates. A

positive results in three very different simulations emphasize the over-all usefulness

of the developed method.
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3.5 Discussion

Improved DNA microarray technology, refined standardization procedures, and a

careful execution of laboratory protocols collectively lead to testing situations with

individually accurate but strongly dependent null hypotheses. Inter-test dependency

arising from intrinsic gene-gene interactions cannot be circumvented by experimental

design. Therefore, the effects of dependency on the accuracy of decision-making must

be carefully analyzed. In particular, due to dependency, the “realized” v/r may vary

substantially on a case-to-case basis and the control of E(V/R) may no longer ensure

the quality of reported discoveries.

Treating general dependency is impractical, but admitting second-order depen-

dency is possible and widely attempted. The developments in this chapter emphasize

that an “explicit” combination of estimated correlation with identifiability can miti-

gate the unfavorable effects of inter-gene correlation, and that the moment theory of

null statistic histogram allows to do so.

It is tempting to conclude that a large number of vectors drawn from the distri-

bution N(0, R) can yield the required moment estimates and the mathematical work

in Sections 3.2.1—3.2.2 is unneeded. However, such a conclusion neglects excessive

sampling errors that are present in sample correlation coefficients. With substantial

sampling errors, a realistic estimate of the underlying R cannot be obtained but the

quantities g(r) and h(R3) are still obtainable.

Permutation calculations, as in Section 4 of (Efron, 2007a), present an alternative

way to estimate the moments. They too can run into computational difficulties,

especially when the test statistic is computation intensive. An even bigger difficulty

is innate when samples are few: For a two-state study like HIV, 4—4 samples each, only

70 unique permutations are available. Nevertheless the permutation based approach
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is promising as a subject of further research.

When a direct extraction of inter-test correlation is not feasible, the “single om-

nibus parameter models” remain useful: They allow the user to systematically exer-

cise judgement by selecting different values for fl to examine a range of “correlation

effects.”

The distribution of interest P(V, C) tends to have complicated support like ’D

(Figure 3.1), and the maxent algorithm is well-suited to such complicated support

regions. At a more fundamental level, moment is intended to minimize the amount of

unintentional prior information brought into the inference.

For the present approach, apart from the numerical parameters A (bin width) and

the mesh resolution in maxent, the only open choice is 60, the center-area boundary.

The choice 60 = 1 in this work is based on the first eigenvector analysis of (Efron,

2007a) which suggests that (within certain approximations) the interval [—1, 1] has

completely opposite count behavior from the rest of the Z space.

Does more inter-ZZ- correlation translate into more extreme Cor(V, C)? The answer

is surprisingly no. In the BRCA example, Cor(V, C) is —0.89, whereas in the HIV

example it is reduced to -0.75. Further insight into this behavior should be a useful

contribution.

Here, the aim was to mitigate the unfavorable effects of inter-gene correlation

when estimating the number false discoveries. In fact, inter-gene correlation can be

“exploited” to yield a superior gene-ranking. This is the topic of the next chapter.
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Chapter 4

Exploiting Correlation to Improve

Gene-ranking

In the LSST DGE detection formulation (Section 2.1), genes are represented by uni-

variate summary statistics. Moreover, there is correlation among test statistics due

to inter-gene correlation among gene expression variations. The observation that in

high-dimensional inference there can be ways of mapping the original set of statistics

(t1, . . . , tm) to a newer set (t*, . . . , tin) with more statistical power is very appealing.

The research described in this chapter develops a technique to obtain one such map-

ping. The key idea is to combine correlation with purity through a distance metric

that can account for the effect of correlation on the joint distribution of Ti’s. As a spe-

cial case, we develop a method that builds upon the widely used two-sample t-statistic

approach suitable for two-state studies. The method uses the Mahalanobis distance as

the distance metric. An extension accommodating multi-state and continuous-state

studies is also discussed.
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Organization of the chapter. Section 4.1 provides an overview of the proposed

approach. Section 4.2 obtains closed form expressions for the minimum Mahalanobis

distance estimates. Section 4.3 builds on the theory of Section 4.2 to develop the

tEllipsoid gene-ranking method. In Section 4.4, we apply tEllipsoid to the prostate

cancer data of Singh et al. (2002) and evaluate the gain in statistical power. Sec-

tion 4.5 discusses the implications of these results.

4.1 Overview

Detecting differentially expressed genes in the presence of substantial inter-gene cor-

relation is a challenging problem. Research has focused largely on understanding the

harmful effects of correlation on the threshold settings demarcating null and non-null

genes. The research discussed in Chapter 3 developed a method which explicitly

admits the observed sample correlation in the analysis and offers a more accurate

assessment of significance cut-offs. The research described in this chapter shows that

correlation can, in fact, be exploited to share information across tests, which, in turn,

can increase statistical power. The key contributions in Chapter 3 were in part mo-

tivated by the exceedingly small sample situations (72. ~ 5-10), whereas the work in

this chapter is intended to benefit situations with n 2 20.

It is helpful to think in terms of mapping the original set of observed statistics

(t1, . . . , tm) to a newer set (t*, . . . ,tfn) for better statistical power (Section 2.3). The

literature is not devoid of attempts to develop such mappings that exploit correlation

among (the random variable interpretation of these) test statistics, but such efforts

have not produced compelling results. We posit that the limitations of such develop-

ments are due, at least in part, to neglecting identifiabz’lz’ty—the act of incorporating
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the genes whose test statistics fall near the center of the null distribution as explicitly

null in the inference. The statistical risk of imposing identifiability weigh less than

not doing so because of the fact that in most comparative studies the activity of a

great majority of genes remains unchanged with respect to the treatment of interest

(Section 2.5).

This chapter presents a framework to obtain a better gene-ranking by combin-

ing correlation and identifiability through an optimization criterion. The framework

builds upon the widely-used two-sample t-statistic approach and uses the Maha-

lanobis distance as the optimality criterion. Although the initial motivation was to

improve statistical inference in two-state microarray studies, the framework readily

generalizes to multi-states and continuous-states as well as to other multiple compar-

ison applications. The connection between the standard t-statistic and simple linear

regression as discussed in Section 2.1 is crucial to this generalization.

Recall the basic LSST formulation from Section 2.1: Genes are represented by

summary statistics and the corresponding null hypotheses,

H1,H2,...,Hm

T1,T2,...,Tm

t1,t2,...,tm,

where T,- refers to a “random value” and t,- the “observed value.” The magnitudes of

ti’s establish a gene-ranking, and the top 7' << m genes with the largest t scores are

reported as statistically significant discoveries. The investigator can either explicitly

supply r or rely on the false discovery rate (FDR) calculations to find a maximal r

with the allowable FDR. The present discussion assumes that r is fixed.
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The issue of correctly estimating the FDP in the presence of correlation has re-

ceived much recent attention because highly correlated tests increase the variance of

the FDP leading to unreliable results (Owen, 2005). As discussed in Efron (2007a)

and Chapter 3, for “over powered” data sets, there may be significantly fewer tail-

area null counts than expected, while for “under powered” data sets, the situation can

worsen with many more tail-area null counts than expected. Importantly though,

techniques for correctly estimating the FDP do not change the gene-ranking, but

only the size of the reported list.

The research discussed in this chapter was motivated by the notion that, for “under

powered” data sets, it might be possible to exploit correlation among test statistics

to establish a gene ranking that has better statistical power than the original t2-

based ranking. The method that resulted from an exploration of this question indeed

seems to improve the statistical power of all data sets. The proposed method uses,

(i) a vector of the observed statistics t = [t1,t2, . . . ,tm]T and (ii) an estimate of

the covariance matrix of the vector T = [T1, T2, . . . ,Tm]T, to output a substantially

revised version of t, denoted ult, whose corresponding entries can be used to establish

an improved gene-ranking.

The method is summarized as follows. Let T ~ (u, 2). Note that no distributional

information nor higher order statistics of T are assumed. Now based on the observed

value t, we can estimate ult, but while doing so we invoke the zero assumption

(ZA) (Efron, 2008) that the smallest P0(%) of ti’s are associated with null genes.

Based on the ZA, we can set corresponding entries of u to zero. For the remaining

entries of u we obtain minimum Mahalanobis distance (Mahalanobis, 1936) estimates.

Inter-gene correlation causes the vector T to distribute around the center of mass

11 in an hyperellipsoidal manner, and the Mahalanobis distance is a natural way to

71



measure vector distances in such a distribution. In fact, to emphasize the geometric

intuition of tracking the center of an ellipsoid, the method is named as “tEllipsoid.”

Through extensive experimentation with both real and simulated data, it has been

found that for a truly null t,- which happens to be in tail-area, the corresponding uz-It

consistently tends to zero (its theoretical value).

TWO prior research efforts, Storey et al. (2007) and Tibshirani and Wasserman

(2006), were particularly useful in formulating the present approach. Interestingly,

both approaches aim at exploiting the signal structure among non-null tests, whereas

the present approach aims at exploiting the structure among null tests; see Section 2.3

for details.

4.2 The Proposed Method

An m x n matrix of gene expressions, for m genes and n samples, is given. For the

present discussion we assume that the samples fall into two states 19 = 1 and k = 2

and there are ”k samples in group I: with n1 + n2 2 n. The generalization to multi-

state and continuous-state is discussed at the end of the section. We start with the

standard (unpaired) t-statistic:

t2- = ———' (4.1)

where ink is the mean of gene i in group k and s7; is the pooled within-group standard

deviation of gene i. If the ith gene is indeed null, then we expect the random variable

T,- ~ (0, u/ (12—2)). Here, the degrees of freedom 11 is obtained from either the unpaired

t-test theory or the permutation null calculations as discussed in Section 2.1. Note

that T,- is a random variable and t,- is its observed value. If gene i is non-null, then
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we expect T,- ~ (11.2303). For non-null genes, the values of uz- and 0',- depend on the

amount of up / down regulation, the number of samples in each group, and 11.

Without loss of generality, we may assume that the genes are indexed so that

W S |t2| S S ltml- (4-2)

Then, a reasonable way to impose identifiability on null genes is through the ZA,

namely, that P0(%) of the genes—those with the smallest t statistics—are null. Sec-

tion 2.5 provides a comprehensive discussion regarding the rationale behind the ZA.

The use of the ZA is justified in the present situation as long as P0 is sufficiently small

so that the bottom P0(%) genes would almost certainly be declared null for reason-

able FDR’s. Potentially, the statistical risk of “imposing” identifiability weigh less

than not imposing it, especially when purity holds. Empirical evidence of Section 4.4

supports this intuition.

Formally, the ZA is stated as follows: Let c be the largest integer (gene index)

such that c/m 3 P0/100, denoted

c = [0.01mPol, (4.3)

then genes with indices 1,2,. . . ,c are assumed null. Let us partition the set of t

statistics into those corresponding to genes declared null under the ZA, {t1, t2, . . . , tc},

and those for the remaining m — c genes which continue to compete for the non-null

designation, {tc+1, tc+2, . . . , tm}. (The present c is different from the c in Chapter 3.)

For convenience, we introduce the following vector notation,

T T
_ T T _ T T

t - l to town l - l ta» to) l -
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Then the random vector T is distributed in the following way:

T ~ (11, E), (4.4)

where u is the underlying mean vector and 2 the covariance matrix. The correspond-

ing partitions of (u, E) are denoted

u(0) and 2: 2(00) 2(01)

“(1) 23(10) 2(11)

u:

The central hypothesis here is that there is a vector, say ult, whose elements represent

a reordering of the elements of the t, such that gene-ranking represented by u|t has

better statistical power for detecting non-null genes than that based on is itself.

The present effort focuses mainly on the second moment distributional character-

istics of t. However, in fact, if the gene expressions are normally distributed, then,

perhaps, t is described more accurately by the multivariate Student distribution.

Exploitation of this additional structure will be considered in future work.

4.2.1 Choosing a Distance Metric

We are interested in obtaining an estimate of the vector mean 11 based on the obser-

vation t. This requires an appropriate metric in the space of t vectors, with which to

quantify the distance of the observed t from the center of mass 11, say dist(t, u). The

82 norm induces a useful metric between t and u provided that we first decorrelate
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the vector elements as 2—1/2 (t — 11), thus yielding

 

dist(t,u) = \/n>:-1/2(t—u)ll2

= fl; _ u)T2-1(t — u). (M)

 

This weighted Euclidean distance is sometimes called the Mahalanobis distance in

the pattern classification literature as in Deller et al. (1999) and Dejviver and Kittler

(1982).

We can relate t to u through the Mahalanobis distance but while doing so we

invoke the ZA, which, in turn, implies that the first c entries of u are zero. This

yields the estimate

0

u* = , where uh) = argmin (4.6)

1121) 11(1)ElRm_c

T -1

t(0) " 0 23(00) ”(01) t(0) “ 0

to) - “(1) 2(10) 23(11) to) - “(1)

In effect, ufl) combines the identifiability information based on the ZA with the

information about the covariance structure of T which too can be obtained from the

measured X itself. Notably the optimization in Eqn. (4.6) enjoys closed form solution:

1121) = 13(1) — 2(10)2&)}))t(0). (4.7)

The derivation leading from Eqn. (4.6) to Eqn. (4.7) follows.
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Suppose that

.4 -A B .
2 = C D and u(1) = ta) — 11(1). (4.8)

We also have C 2 BT. Substituting these in Eqn. (4.6) yields:

11:1) -_- fiSgEIElE—ctfg’fitw) + zeacqo) + afipam (4.9)

1

In Eqn. (4.9), by setting the gradient w.r.t 11(1) to 0, we obtain:

11),) = —CTD—1t(0). (4.10)

Now for 2‘1, we can appeal to the matrix inversion lemma (Golub and Van Loan,

1996):

”(0%) (1+ 2(01)Q_12(10)2(_0l))) “Zahzwnq'l

_Q*12(10)2(-0%)) Q—l

2‘1:
1

where Q = 201) — 2(10)2(—0%))2(01). Plugging this in Eqn. (4.10) yields:

4 _ _1

Combining Eqn. (4.11) with Eqn. (4.8) provides the desired expression:

*_ —1

“(1) - t0) — 2<10>’3(oo)t(0) '3'-
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4.2.2 An Intuitive Interpretation

If t0) is written as “(1) + e(1), then Eqn. (4.7) can be seen as

2|: —1

Ul(1) : 11(1) + [9(1) ’ 23(10)2(00)t(0)l '

Then, the proposed method is interpreted in the following way: The method uses

the identifiable null cases to predict and, in turn, suppress the “null energy” in the

competing cases.

4.2.3 Estimating the Covariance

Notice that Eqn. (4.7) involves theoretical covariances whose estimates must be ob-

tained from the data set at hand. To estimate the required entries of )3, we make two

observations. The validity of these observations can be established through computer

simulations. An intuitive argument also appears. Note that Eqn. (4.7) does not re-

quire the covariance between two non-null Ti’s. The realization of the fact that the

t-statistic is a “standardized” statistic helps understand these covariance—correlation

relationships.

Observation 1. If genes i and i’ both are null, then

u

COV (Ti? Tzl) % COI‘ (Xi? Xi’) :5 (4.12)

This observation maybe intuitive to the reader from Eqn. (4.1) itself, or it is easily

verified through a computer simulation. Efron (2007a), Owen (2005), and the method

deveIOped in Chapter 3 all use this observation for their respective conditional FDR

calculations.
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Observation 2. Similarly, if the gene i is null and i’ non-null (or conversely), then

1/

’

u—2

 Cov (T,, T,,) 2 Cor (X,, X,,) (4.13)

where Cor(ff'i, X24) denotes the “residual” correlation between gene i and i’. Residual

correlation is the correlation in the fraction of gene expression that is unaffected by

the treatment of interest. For null genes the fraction is one because by definition

the gene expression X,- for a null gene is independent of the state variable L. For a

non-null gene, the fraction is determined by how strongly that gene is affected by the

treatment.

Equations (4.12) and (4.13) suggest to use “residual” sample correlations to esti-

mate Cov(t,-, tiz):

(“22' 55%) (532' 530-)

where :iiz-j denotes the (observed) residual corresponding to the ith gene and the

jth microarray. The scale factors cancel in the terms 200) and 23—1 so that

(00)’

estimating u/(u—2) is not required. These arguments hold for two-state, multi-state,

607! (E,Til) CX , (4.14) 

 

and even continuous-state studies provided the test statistics are obtained through

simple linear regression. Here, the entries of the residual matrix are the differences

between the observed expression values and the corresponding predicted expression

values from regression equations X,- = a + bL + e,i = 1,. . . ,m. Note that the two-

sample t-statistic can be interpreted as simple linear regression with a binary-valued

covariate. The situations where test statistics are not from simple linear regression

will be considered in future work.

78



4.2.4 The Final Equation

In light of Eqn. (4.14), Eqn. (4.7) takes the practical form

62:1) = t0) — C(10)?)(Bbtm), (4.15)

where C is the sample correlation matrix of the residuals. In most cases computing the

. . ~ _1 . . ~ _ 1

full matrix inverse (C(00)) IS not necessary and solvmg the term C(00)t(0) through

an efficient linear solver reduces the computation considerably.

4.3 Implementation Details

This section outlines a self-contained differential analysis algorithm based on the ideas

discussed in Section 4.2. Its name tEllipsoid was coined to emphasize the geometric

intuition of tracking the center of an hyper-ellipsoid.

TEllipsoid takes a gene expression matrix X and assigned biological conditions

and provides a specified number, say r, of the most differentially expressed genes. In

principle, the ranking is based on the set {11;} from Eqn. (4.6). In practice, we rely

on the estimates {212‘} from Eqn. (4.15).

Two-state implementation begins by re-indexing the genes based on their two-

sample t-statistics [Eqn. (4.2)]. Then, based on the ZA, the first c genes are identified

as null, as specified in Eqn. (4.3). By default, P0 is set to 50(%). Although the choice

50% is somewhat arbitrary, this fraction has worked well empirically in the data sets

tested. A P0 as low as 10(%) is found to enhance the power. Future research may

yield more rigorous methods for choosing P0.

In the two-state implementation, in order to nullify any genuine treatment differ-
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ences, X is converted to «It: by subtracting each gene’s average response within each

treatment group. The residual sample correlation matrix C of «l; is computed sub-

sequently. The crucial step is to compute fifll based on Eqn. (4.15). The elements

T

of (1‘1“)T = [03x1 (fi(1)) ] determine the gene-ranking: A gene with bigger li’Zfl is

assigned a higher rank. The first r genes are reported as top r statistical discoveries.

The multi-state / continuous-state implementation beings by re-indexing the genes

based on their simple linear regression t-statistic. The entries of the residual matrix

it" are the differences between the observed expression values and the corresponding

predicted expression values from regression equations X,- = a + bL + e,i = 1, . . . , m.

4.3.1 Numerical stability and Computational Complexity

Because the number of samples n is often less than the number of genes m, the

residual sample correlation matrix turns out to be singular and hence non—invertible.

Therefore, we add a very small correction term (= 10-10) to its diagonal entries to

make it nonsingular, and in effect, invertible. After this correction, tEllipsoid shows

excellent numerical stability.

Equation (4.15) involves matrix inversion, which, if performed in a naive way,

could be a prohibitive operation, since microarray data sets may have several tens

—1

(00)

neous linear equations (Cmmx = tan) is much faster than explicitly computing

of thousand genes. Indeed, solving the term C t(0) as a system of simulta-

C(_0})). In particular, we can employ the Cholesky decomposition to exploit the

fact that the matrix C(00) is symmetric and positive definite. MATLAB imple—

mentation of tEllipsoid uses the in-built linslove with appropriate settings, which,

in turn, uses highly optimized routines of LAPACK (Linear Algebra PACKage—

http://www.netlib.org/1apack/).
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For the Prostate data (used in Section 4.4) with 12625 genes and 102 samples,

tEllipsoid, running on a computer with a 2.2 GHz dual-core AMD Opteron processor

with 8 GB of RAM and MATLAB version R2006b, requires just under 40 seconds

to report the final gene list. For the same settings, the implementation with explicit

matrix inversions takes ~ 10 minutes.

4.3.2 Algorithm for Two-State Studies

 

tEllipsoid: An enhanced gene-ranking for differential gene expression detection

Input: X = Labeled m x n gene expression matrix; r = Size of gene list

Output: The gene list containing top r differentially expressed genes

1. Calculate two-sample (unpaired) t-statistics: t,- = (573,-;2 — fall/3i

2. Reindex genes such that |t1| g |t2| S S |tm|

3. Gather first c : [0.01mP0l ti’s in a vector t(0); By default P0250(%)

4. Convert X to X by subtracting each gene’s average response within each treat-

ment group

5. Compute C 2 the (residual) sample correlation matrix of X

6 Find (fi*)T = T (13* )T where G* : t — C C_1 t
- cx1 (1) , (1) (1) (10) (00) (0)

7. Determine gene-ranking: Assign a gene with bigger |iZ:‘| a higher rank

8. Report top r genes as statistical discoveries
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4.3.3 Algorithm for Multi-State and Continuous-State Studies

 

tEllipsoid: An enhanced gene-ranking for differential gene expression detection

Input: X = Labeled m x n gene expression matrix; r = Size of gene list

Output: The gene list containing top r differentially expressed genes

1. Calculate per gene simple linear regression t-statistics

2. Reindex genes such that |t1| S |t2| g g ltml

3. Gather first c : [0.01mP0] ti’s in a vector t(0); By default P0:5O(%)

4. Obtain the residual matrix X whose entries are the differences between the

observed expression values and the corresponding predicted expression values

5. Compute C : the sample correlation matrix of X

6 Find (fi*)T = T (13* )T where ii" = t — G GT1 t
° cxl (1) , (1) (1) (10) (00) (0)

7. Determine gene-ranking: Assign a gene with bigger Iiifl a higher rank

8. Report top r genes as statistical discoveries

 

4.4 Test Cases

To appreciate the increase in statistical power attributable to “exploiting” correla-

tion, the performance of tEllipsoid is contrasted with three leading techniques. The

first is the raw t-statistic itself and the other two are SAM [Significance Analysis
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of Microarrays (Tusher et al., 2001)] and EDGE [Extraction and analysis of Dif-

ferential Gene Expression (Leek et al., 2006)]. SAM adds a small exchangeability

factor so to the pooled sample variance when computing the two-sample t-statistic:

dz- 2 (53,-;2 — ii;1)/(si + so); Whereas EDGE is based on a general framework for

sharing information across tests (see Storey et al. (2007)). EDGE is reported to show

substantial improvement (in terms of statistical power) over five of the leading tech-

niques including SAM (Storey et al., 2007). The other four are: (i) t/F—test of Kerr

et al. (2000) and Dudoit et al. (2002); (ii) Shrunken t/F—test of Cui et al. (2005); (iii)

The empirical Bayes local FDR of Efron et al. (2001); (iv) The a posteriori probabil-

ity approach of Lonnstedt and Speed (2002). It should be noted that tEllipsoid can

also serve as an additional layer to SAM and EDGE and enhance their power.

To determine the performance quality of various techniques, we focus primarily

on the empirical FDR in the reported gene list: Empirical FDR 2 NoFP /r, where

NoFP 2 the number of false positives. Broadly speaking, smaller the FDR better the

technique.

4.4.1 Case I: Real Data With Induced Differences

Singh et al. (2002) studied m 2 12625 genes on n 2 102 oligonucleotide microarrays,

comparing n1 2 50 healthy males with n2 2 52 prostate cancer patients. The purpose

of their study was to identify genes that might anticipate the clinical behavior of

Prostate cancer. We downloaded the .CEL files from http://www-genome .wi .mit.

edu/MPR/prostate. The software RMAExpress (Irizarry et al., 2003) was used to

obtain high quality gene expressions from these .CEL files. We let RMAExpress

apply its in-built background adjustment, however, the quantile normalization was

skipped. Each gene was represented in the final expression matrix X by the logarithm
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(base 10) of its expression level. Taking the log is thought to increase normality and

stabilize across group standard deviations (Tsai et al., 2003).

Algorithm testing required an expression matrix X with the knowledge of truly

non-differential genes. At the same time, we wanted the inter-gene correlation in

X to resemble that in the real microarray data. These two seemingly conflicting

requirements were satisfied concurrently by row standardizing a real X. The prostate

cancer matrix X was transformed to X by subtracting each gene’s average response

within each treatment group, and by normalizing within group sample mean squares.

That is, for each group k 6 {1,2}, (1/nk) 23- ii,- 2 0 and (l/nk) 23- X12]- 2 1. Here,

the sum runs over corresponding ”k samples only. With this transformation, all genes

have equal energy and yet the same within group inter-gene correlation structure as

the original X.Note. Normalizing within group sample mean squares to unity is not

implemented in the tEllipsoid algorithm.

To generate a test data set from i, its 102 columns were randomly divided into

groups of 50 (2711) and 52 (2n2). Next mu (md) genes were randomly chosen for up

(down) regulation by adding a positive (negative) offset xu (red) to the corresponding

entries in group 2. Various choices of (mwmd, mu,a:d) were tested to represent a

range of differential analysis scenarios encountered in practice.

Two cases were studied. In the first, the proportion of truly differential genes,

say p1, was taken to be relatively small: p1 ~ 0.01-0.05. The second case em-

ployed a larger p1 ~ 0.1. The former simulates microarray studies seeking genes that

distinguish subtypes of cancer, diabetes, etc., whereas the latter resembles studies

comparing healthy versus diseased cell activity.

Results were obtained using the subroutines samr.r from the package “samr” and

statex . r from the package “edge.” Both routines compute their native gene summary
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statistics which, in turn, can be used to determine top r genes.

Case 1 [pl 2 0.025, mu2200, md2100, $1,201, and xd2-0.1]. Figure 4.1(a) shows

plots of the FDRs for 40 different data sets with the size of the reported list, r2300. A

large value of r coincides with an attempt to extract as many differential expressions

as possible, a desired goal especially in microarray studies performed to identify genes

that are to be explored further — experimentally or computationally — to gain better

understanding of underlying gene networks. Since the differential signal $11,201 and

xd2-0.1 is rather weak, recovering a good list is not easy as evident from the results

— among all methods only tEllipsoid achieved sufficiently low FDRs to rescue a few

X’s.

Figure 4.1(b) presents results for 72100. A smaller r would be chosen to identify

high-quality class distinguishing features for gene-expression-profiling-based clinical

diagnosis and prognosis, where the goal is to build accurate classifiers and predictors.

Whereas Singh et a1. (2002) build a classifier around only 16 of 12625 features, they

do discuss the need to include as many reliable features as possible. Remarkably, for

37 out of 40 X matrices, tEllipsoid reports gene lists with no false discoveries at all,

while the other techniques fail to obtain a single gene list with the FDR < 0.5.

Case 2a [pl 2 0.1, mu2600, md2600, xu20.02, and xd2-0.02]. In this set of

experiments, p1 is increased, but the differential signal is reduced. This situation also

proves to be challenging for the existing techniques. However, tEllipsoid provides the

FDR of ~ 0.5 for r21200, and, again for 72300, while it reports most gene lists with

no false discoveries at all.

Case 2b [p1 20.1, mu2600, md2600, $1,201, and xd2-0.1]. This subcase is de-

signed to assess the effects of small sample sizes on performance. n1 and n2 are both

reduced to 20. We randomly chose 20 columns per group from the original prostate
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Figure 4.1: FDRs for Case 1. The number of truly differential gene is 300. Panel (a)

r2300; Panel (b) r2100. “Exploiting correlation” considerably enhances the statisti-

cal power. Square (El) marker 2 tEllipsoid. Lines: solid 2 raw t—statistic; dotted 2

SAM; dashed 2 EDGE.
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Figure 4.2: FDRs for Case 2a. The number of truly differential gene is 1200. Panel

(a) r21200; Panel (b) r2300. “Exploiting correlation” appreciably enhances the

statistical power. Square (CI) marker 2 tEllipsoid. Lines: solid 2 raw t-statistic;

dotted 2 SAM; dashed 2 EDGE.
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cancer X, and then applied the data generation process (including row standardiza-

tion) detailed in Subsection 4.4.1. Reduction in the number of samples is compensated

by increase in the differential signal. The FDRs for tEllipsoid, Fig. 4.3, are excellent

suggesting that tEllipsoid increases power of small sample data sets too.

4.4.2 Case ll: Simulated Data

Before devising the prostate data test setup, tEllipsoid was tested on several simulated

data sets. Below we discuss some simulation results that shed further light on the

small sample behavior.

Let us denote by X“) the ith column of a simulated expression matrix X. We

assume that the random vector X“) is multivariate Gaussian with mean 0 and covari-

ance matrix W. Each such column represents m23226 genes with a covariance matrix

W that introduces roughly the same amount of correlation as found in the BRCA data

of Hedenfalk et al. (2001). We choose mu 2 50, md 2 50, ran 2 1, 1rd 2 --1,n1 2 10,

and n2 2 10. Figure 4.4 shows plots of the FDRs for r250 and r2100. Table 4.1

shows results for some data point from Fig. 4.4(b). Shown are the top 100 values

of it: and each corresponding original t,- with concomitant rank. With smaller 71.,

preeminence of tEllipsoid with respect to existing techniques scales down a bit. Nev-

ertheless, for r250 case, for 25 out of 40 simulated X realizations, tEllipsoid achieves

a low FDR of ~ 0.1 or less.

Interestingly, with a smaller n, SAM outperforms the other two techniques. This

is not entirely surprising as a smaller n can make the noise in the per gene pooled vari-

ance s,- (and possibly the equivalent quantity in the EDGE algorithm) more promi-

nent. Nevertheless, SAM does mitigate this issue in some measure by using the

exchangeability factor so to adjust the effective pooled variance (Tusher et al., 2001).
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1—50 51-100

 

 

 

11,: rank 11’; t,- t,- rank it; rank it”; t,- t,- rank

1 4.22 5.87 1 51 2.18 3.45 23

2 -4.17 -555 2 52 2.17 3.05 42

3 —3.93 -4.26 5 53 2.16 2.80 82

4 -3.74 -4.12 7 54 -215 -257 122

5 -3.58 -4.49 4 55 2.15 1.96 357

6 -349 -334 28 56 -2.14 -147 751

7 -345 -425 6 57 2.13 2.25 229

8 3.35 3.87 10 58 2.13 1.77 486

9 -333 -320 35 59 2.13 1.44 785

10 3.33 3.77 13 60 2.12 2.14 273

11 3.25 3.42 25 61 -211 -1.48 744

12 -3.16 -2.18 260 62 2.10 1.80 453

13 3.14 4.54 3 63 2.09 2.60 114

14 3.10 2.87 65 64 -209 -205 312

15 -3.08 -354 17 65 2.09 2.70 96

16 -3.07 -2.80 80 66 2.09 2.23 237

17 3.06 3.49 20 67 2.08 2.34 188

18 3.02 2.29 213 68 -2.08 -224 232

19 -299 -334 27 69 -2.06 -253 130

20 -293 -3.13 38 70 -204 -211 283

21 -292 -292 57 71 -204 -295 54

22 2.86 3.26 31 72 -2.o3 -3.08 40

23 -2.83 -2.82 74 73 -202 -230 210

24 2.82 2.37 180 74 -2.01 -3.67 15

25 -2.81 -213 276 75 2.00 2.62 109

26 2.81 3.48 21 76 -1.98 -2.38 171

27 -279 -301 47 77 1.98 1.43 795

28 2.70 2.87 64 78 1.96 1.69 549

29 -2.66 -315 37 79 -1.95 -1.47 746

30 -2.58 -3.85 11 80 1.95 1.95 361

31 —2.56 -2.84 71 81 1.95 2.81 77

32 -255 -1.72 524 82 -194 -141 813

33 -254 -2.63 106 83 1.94 3.40 26

34 -254 -2.69 98 84 1.94 1.30 948

35 2.53 2.30 209 85 -1.94 -3.27 30

36 2.48 2.45 148 86 -1.93 -1.11 1190

37 -247 -229 212 87 -193 ~1.37 872

38 -2.46 -321 33 88 -1.93 -3.44 24

39 -243 -244 154 , 89 -1.92 -3.07 41

40 2.43 2.71 94 90 -1.92 4.50 726

41 2.40 2.86 66 91 1.90 3.62 16

42 -234 -2.60 115 92 .1.90 -2.82 75

43 -234 -2.98 50 93 1.89 1.25 1007

44 -233 -3.80 12 94 1.87 3.89 8

45 -232 -2.06 306 95 -l.86 -3.49 19

46 2.29 1.81 444 96 -l.86 -2.08 300

47 -227 -1.17 1110 97 1.85 1.20 1074

48 2.26 1.97 347 98 -1.83 -290 60

49 2.24 3.75 14 99 1.83 1.39 833

50 2.20 3.88 9 100 -132 -195 367
 

Table 4.1: TEllipsoid in action with Top 100 it: ’8. Corresponding ti’s and their rank

are also shown. TEllipsoid 2 22 NoFPs; raw t-statistics 2 68 NoFPs. Truly null

genes are printed in bold—sans typeface.
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Figure 4.3: FDRs for Case 2b. Panel (a) r21200; Panel (b) r2300. The sample size

is smaller than that in Cases 1 & 2a and yet “Exploiting correlation” has apparent

benefits. Square (El) marker 2 tEllipsoid. Lines: solid 2 raw t-statistic; dotted 2

SAM; dashed 2 EDGE.
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Figure 4.4: FDRs for simulated data. Panel (a) r2100; Panel (b) 7250. (Small)

sample sizes: n1210, n2210. Yet, “Exploiting correlation” considerably enhances the

statistical power. Square (El) marker 2 tEllipsoid. Lines: solid 2 raw t-statistic;

dotted 2 SAM; dashed 2 EDGE.
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4.5 Discussion

By allowing researchers to examine the simultaneous expressions of enormous numbers

of genes, microarrays promised to revolutionize the understanding of complex diseases

and usher in an era of personalized medicine. However, the shift in perception of

that promise is palpable in the literature. A 1999 Nature Genetics article (Lander,

1999) is entitled “Array of hope," but a 2005 Nature Reviews article (Frantz, 2005)

is entitled “An array of problems." It is not unusual for impacts of new technologies

to be overestimated when first deployed, then to have the expectations moderated

as the technologies reveal new complexities in the problems they are designed to

solve. In the study of microarray data, the need for exceeding care in the design and

regularization of experiments and data collection are understood to be critical, but

the biggest hindrance to progress has been the data interpretation. In particular, the

biggest challenge seems to be the treatment of intrinsic inter-gene correlation.

In most microarray data there are at least three vital resources: (i) identifiability

(ii) immense parallel structure, and (iii) inter-gene correlation itself. In this light,

tEllipsoid can be viewed as exploiting more than correlation as a means of sharing

information across tests, as it also involves identifiability.

A crucial step in formulating tEllipsoid was the comprehension of the effects of

inter-gene correlation on Cov(Tz-, Til). In light of Observations 1 and 2, the choice of

the Mahalanobis distance was intuitive, as it is already known to give computationally

attractive solutions through the matrix inversion lemma.

Limited time and resources—and perhaps also the necessity for scientific focus—

often require biomedical researchers to work on only a small number of “hot (gene)

prospects.” Even under such highly conservative conditions, however, misleading

results can occur, as evident in the results of Figs. 4.1—4.4. For all their careful
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develOpment and statistical power, even state-of—the—art tools that do not account for

correlation can report spurious gene lists. The extra statistical power available by

exploiting inter-gene correlation promises to further guard against anomalous results

that can have serious consequences for the trajectory of a study of gene function,

causation, and interaction.

In summary, this chapter has reported the development and testing of a novel

framework for the detection of differential gene expression. The framework combines

the exploitation of inter-gene correlation to share information across tests, with iden-

tifiability — the fact that in most microarray data sets, a large proportion of genes can

be identified a priori as non-differential. When applied to the widely used two-sample

t-statistic approach, this viewpoint yielded an elegant differential analysis technique,

which requires as inputs only a gene expression matrix, related two-sample labels,

and the size of desired gene-list r. Empirical evidence suggests that exploiting corre-

lation substantially enhances statistical power. Usually, with increase in microarray

samples, power tends to increase considerably, but, even for small sample sizes, the

performance improvement is noticeable.
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Chapter 5

Concluding Remarks

5.1 Summary and Concluding Remarks

This work has investigated the effects of inter-gene dependency on statistical methods

for differential gene analysis. Differentially expressed genes are pivotal in understand-

ing highly intricate genotype—phenotype relations and devising appropriate therapeu-

tic interventions. The effort focused on understanding, correcting, and exploiting the

effects of second-order inter-gene dependency within the large-scale significance test-

ing formulation for differential gene analysis. It was shown that combining inter-gene

dependency with gene expression purity yields more accurate and powerful statistical

inferences yielding a more accurate list of differentially expressed genes. The main

statistical theme of this work has been to draw second-order conditional inferences

based on cases that are theoretically more likely to be null.

This research resulted in novel ways of combining inter-gene correlation with pu-

rity. A method for mitigating unfavorable effects of correlation on the false discovery

rate calculations was developed. A framework for exploiting beneficial effects of cor-
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relation on gene-ranking enhancement was also discovered. The findings are very

general in that they are applicable to any test statistics obtained using simple linear

regression.

In particular, a novel approach to the false discovery calculations was explored.

The approach has produced an inferential technique capable of handling exceedingly

small sample sizes and reporting an entire distribution of a random variable model of

the number of false discoveries. The technique first summarizes the effect of millions

of pair-wise correlation coefficients in a single parameter, then explicitly incorporates

this parameter in the inference of the number of false discoveries.

The possibility of exploiting correlation to improve gene-ranking was also explored.

This effort culminated in a powerful framework employing statistical distance mea-

sures which can account for the effect of correlation on the joint distribution of test

statistics. The extra statistical power made available by exploiting inter-gene cor-

relation promises to further guard against anomalous results that can have serious

consequences for the trajectory of a study of gene function, causation, and interaction.

The urgency for more accurate differential gene analysis methods motivated this

research. However, the principal contributions are firmly rooted in the fundamental

theory and methods of large-scale significance testing and enjoy broader applicabil-

ity. Large-scale significance testing has become a key statistical tool for exploratory

data analysis in single nucleotide polymorphism detection and other high-throughput

genomic research endeavors. A proper treatment of dependency in most large-scale

significance testing applications seems necessary to draw meaningful conclusions.
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5.2 Future Work

Research topics for future work concerning the FDR estimation method of Chapter 3

are listed below:

1. Further investigation of Cor(V, C) across a range of microarray data sets.

2. Evaluation of the effect of center-area boundary 60 on Cor(V, C) and on overall

accuracy.

3. Extension of the single parameter correlation model to a multi-parameter cor-

relation model to increase modeling accuracy.

4. Exploration of connections between the maxent exponential density and the

exponential parametric form of “empirical null density” as in Efron (2004).

Research topics for future work concerning the gene-ranking framework of Chapter 4

are listed below:

1. Investigation of the role of P0 in overall performance.

2. Empirical and / or theoretical understanding of the relation between the residual

correlation and the gain in statistical power; the eigenvalue spread of residual

correlation matrix seems crucial here.

3. Empirical and / or theoretical understanding of the relation between the number

of samples and the gain in statistical power.

4. Developing false discovery rate estimates for the proposed gene-ranking.

5. Incorporation of prior information, such as “gene grouping” or a priori non-null

identity.
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