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ABSTRACT
THE CONTRIBUTION OF AN ELASTIC

WALL SUPPORT TO THE DEFLECTIONS
OF A THIN CIRCULAR PLATE

by William V. Brewer

The axially-symmetric problem examined is as follows.
A thin circular plate (or disk) is attached (bonded, glued,
welded) to the wall of a cylindrical shaft (or hole) in a
massive or thick walled solid. The disk and shaft share the
same axis of symmetry.

The generality of the mathematical model of this
problem is limited by the two component theories used in
its solution: classical, three-dimensional, small-strain,
theory for a homogeneous isotropic elastic solid used for
the supporting wall; classical, small-strain, thin-plate
theory without mid-plane forces used for the plate fixed
to the supporting wall.

The other two limitations on the generality of the
theory are: choice of axial-symmetry to obtain a non-plane-
strain solution in two dimensions; selection of the stress
profiles at the boundary shared by the two bodies. Thus
the matching of the slope and displacements at this common

boundary is limited to a single appropriate point.
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Within the above limitations the problem is solved
for all plates without holes or inclusions and having uni-
form thickness and material parameters. Any load g(r) is
admissible. The solution for the wall would allow the other
plate solutions (i.e., with a hole and/or inclusions and
also having variable thickness and/or material parameters)
to be developed in a parallel fashion with comparative ease.

The solution allows the wall and plate to have dif-
ferent material parameters.

The solutions for the shear and the moment applied
to the cylindrical wall are easily used together or separately
to solve a variety of other problems where such a wall is
similarly loaded.

Since the mathematical model for the wall is solved
for all of space and since the solutions all decay with
respect to increasing r and z, these solutions can be used
to approximate those of objects with sufficiently thick
walls having cylindrical cavities. 1In the case of the self-
equilibrating moment, where shear is small, the walls need
not be very thick.

The specific example used to illustrate the solution

procedure sets the load g(r) = g(a constant) and lets the

10 5 2
100’ 100" 100°

ratios the ratio of the elastic moduli of plate and wall

For these

plate thickness/diameter ratio be

is allowed to range from Ep/Ew = 0 to Ep/Ew = 10. For each

of the thickness/diameter ratios, the deflections w(r) based
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on the assumptions of a rigid wall and of a wall and plate
of same material, never differ by less than 300% for any
given r. Similarly the maximum radial tensile stress at
the wall never varies by less than 200%. The effect of
Poisson's ratio varying from .25 to .30 is relatively small
but becomes more significant for thinner plates.

The deflection at the wall is small for thinner
plates, while rotation at the wall is still comparatively
large.

There is little reason to believe that the trends
indicated by this example would change significantly for
other usual loadings and geometries within the scope of

the problem.









THE CONTRIBUTION OF AN ELASTIC
WALL SUPPORT TO THE DEFLECTIONS

OF A THIN CIRCULAR PLATE

by

William V;VBrewer

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY
Department of Mechanical Engineering

1968






ACKNOWLEDGMENTS

In this work, as in all human activity, little
progress would have been made without support.

Dr. R. W. Little suggested the area of study, pro-
vided resource materials, answered essential questions,
~gave encouragement and insisted on a thorough investiga-
tion. Without his help this work would not have been
started or completed.

My thanks to the Guidance Committee, Dr. G. H.
Martin, Dr. R. T. Hinkle, énd Dr. E. A. Nordhaus, who gave
generously of time and knowledge whenever called upon.

My thanks also to Dr. I. N. Sneddon and Dr. J. S.
Frame who contributed measurably to the outcome of the work.
I am indebted to the staff members of the several engineer-
ing and science departments for support of various kinds.

i am grateful especially to my wife and to several
others who helped translate the manuscript into a finished
product.

I would dedicate this effort to my parents who from
the beginning to the end did everything they could to en-
courage an advanced education. Finally, my thanks to God

without whom nothing would be possible.

ii






TABLE OF CONTENTS
Page
LIST OF TABLES & &« &« o o o o s o s o s s o o o o o o o o« iv
LIST OF FIGURES. . « &+ ¢ ¢ o o o o o o o o o o o o o o o V
LIST OF APPENDICES + + v + o o o o o o o o o o o« o « o « vi
Section
I INTRODUCTION 2 ©o « o o o o o o o o o o o o o o « 1

Design and the boundary value problem
Area of interest

II SELECTION AND STATEMENT OF THE PROBLEM . . . . . 3

Symmetry

Coordinates and geometry
Component theories
Boundary conditions

ITI MATHEMATIC DEVELOPMENT . . . ¢ ¢ o o o o o o o o 1

Axially-symmetric isotropic elastic solid

Strain function

Boundary problem and Fourier integral
transforms

The plate

Iv ILLUSTRATIVE EXAMPLE . . . &« « ¢ o o o o o o o« o 28

The plate loading
Limiting cases
Plate geometries
Material parameters
Results

Other results

v SUMMARY . o ¢ ¢ ¢ ¢ o o o o o ¢ o o o o o o « o9 36

Limitations in theory
Applications

iia






TABLE OF CONTENTS (CONTINUED)

Section Page

REFERENCES . L] . . . . . * [ * ° o [ ° . . . © . . . [ 3 8

APPENDICES . [ . 3 . . [ L3 [ L3 . [ . ° ° [ . ° . o . L3 40

iii






LIST OF TABLES

Table Page
1 Table Of symbols . « ¢ o ¢ o ¢ o o o o o o o o Vii
2 Results of the numerical integrations
used in the illustrative example . . . . . . 47

iv






Figure

LIST OF FIGURES

Thin plate with thick wall support . . .
Coordinates and geometry . . . . « . . .

Plate displacements for the illustrative
example L] L] L] . L] ° L] . L] L] e L] Ll L d L] L2

A sampling of wall displacements for
the illustrative example . . . « . . .

Untitled . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o &
Untitled . . « ¢ ¢ ¢ ¢« o ¢« o o o o o o &
Untitled . . ¢« ¢ ¢ ¢« ¢ ¢ ¢ o o« o o o « &
Untitled . . . o ¢ & ¢ ¢ v o o o o o o o«

Untitled . &« ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o o

Page

32

34
48

49
50

51

52






LIST OF APPENDICES

Appendix Page
I Numerical Integration . . . . . . . . . . . . 40
II Computer Programs . . « « « « « « « « « « « « 53

vi






TABLE OF SYMBOLS

English Symbols

A(w), B(w)

a,b
c=2(1-v)

2Eb3

arbitrary coefficient functions of solutions to
vtz (r,z)=0
radius and half-thickness of the undeformed plate

group of constants appearing frequently

D= 3=V plate modulus

D(x)=[x%(K?(x)-1)-c] group of terms appearing frequently in

the displacement solutions

elastic modulus in tension and compression or
Young's modulus

E for the circular plate

E for the wall supporting the plate

vector potential function defined by Galerkin

Elastic modulus in shear G= the Lame' constant u

HP= n/b or ma/b half-period of functions to be integrated in

HPS

HPR

expressions for displacements

starting point for the numerical integrations
expressed in half-period lengths

range of the numerical integrations expressed in

half-periods
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L /' pg(p)dpdpdddy an integral appearing

Iw(xr)= 5
o
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o o

0 -
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in the general solution for the plate displace-
ment w(r)

Iw=Iw(r) at r=a the edge of the plate

Iwr (r) = E%Iw(r)

Iwr = Iwr(r) at r=a the edge of the plate

1 d(rIwr(xr))

Iwrr(r)=; T

Iwrr = Iwrr(r) at r=a
Kn(x) Modified Bessel Functions of the Second Kind and
order n

K(x)=Ko(x)/Kl(x) group of terms appearing frequently

K=K (x) at x=wa

Mr(r) moment resultant per unit circumferential length
applied in the 6-direction (right-hand-rule) to
the r-face of a differential element of plate

material (dr)x(rd06)x(2b)

z=b
M(o)= /S [0, (a,2z)]zdA = S [o+2]z(l-dz) moment resultant per
A z=-b

unit circumferential length applied to the wall
N(x) = [1+xK(x)] group of terms appearing frequently in the

displacement solutions

viii






PHP partition of the half-period HP into PHP equal
parts

Qr(r) shear resultant per unit circumferential length
applied in the z-direction to the r-face of a

differential element of plate material (dr)x(rd6)

x (2Db)
z=+b 2 2
Q(t) = J [t __(a,z)]dA = J 1(l-=) (1-dz) shear resultant per
A rz z=-b b

unit circumferential length applied to the wall
q(r) plate load per unit area applied in the z-direc-
tion to the z-face of a differential element of
plate material (dr)x(rd6)x(2b)
R(r) one of the solutions to V2 gz(r,z)=0 where

Z,(xr,z)=R(r)z(z)

_3%R(xr)
rr odr?2
(r,6,2) cylindrical coordinates
S (x) [§iﬂi§l - Cos(x)] group of terms appearing frequently

X

> .
u=(ur, Y w) displacement vector in the elastic solid
ur(r,z,o,t) displacement in the r-direction

ur(r,z) displacement in the r-direction

us(r,z)=g u_ (r,z,0,0) infinite integrals

r
us(z) = us(a,z) infinite integrals

us = us(a,0) constant

ix
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ut(r,z) = T ur(r,z,O,T) infinite integrals
ut(z) = ut(a,z) infinite integrals
ut = ut(a,b) constant

G aur
uzs(r,z) = 3 57 (r,z,0,0) infinite integrals
uzs(z) = uzs(a,z) infinite integrals
uzs = uzs(a,0) constant

Bur

uzt(r,z)= T 5z (r,z,0,7) infinite integrals
uzt(z) = uzt(a,z) infinite integrals
uzt = uzt (a,0) constant
w(r) displacement of the plate in the z- direction

w(r,z,0,t) displacement of the

elastic solid in the z-

direction

w(r,z) displacement of the elastic solid in the z-
direction

ws(r,z)= g w(r,z,0,0) infinite integrals

ws(r) = ws(xr,0) infinite integrals

ws(z) = ws(a,z) infinite integrals

ws = ws(a,0) constant

wt(r,z) = % w(r,z,0,7) infinite integrals

wt(r) = wt(r,0) infinite integrals

wt(z) = wt(a,z) infinite integrals

wt = wt(a,0) constant

Z(r,z) component of Galerkin's vector potential % in the

z-direction....also referred to as the Love strain

function






Z,(r,z2) satisfies V" 2,(r,z)=0
Z,(r,z) satisfies V2 Z,(r,z)=0
z (z) one of the solutions to V? Z,(r,z)=0

where Z,(r,z)=R(r)Z(z)

_ 02 (z)
Z,= 02
7 = 327 (2)
z2 92z

Greek Symbols

v Poisson's ratio
Opr TGgr O, etc. tensile stress in the indicated directions
(not partial derivatives)
o] maximum 0. on the common boundary between the
plate and wall support
Trn? Trg? Toz shear stress on the faces and in the direc-
tions indicated where Tij= Tji for all cases
considered
T maximum Tyrp OB the common boundary between the
plate and wall support
w separation constant in the solution of

Vzgz(r,z)=V2R(r)Z(z)=0 but considered a

variable in the Fourier integral sine and cosine

transformations

Other Symbols

2_( 92 .1 2 32
V=G * £ or t o5g7)

Laplacian operator shown for the axially

symmetric case

xi
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I. Introduction

Design and the boundary value problem

Design may be defined as the combination of two or
more known techniques or solutions in a new application to
achieve a desired result. Most design problems in mechanics

are in some way concerned with specifications and/or results

at boundaries and therefore may also be interpreted as
boundary value problems. We will combine two solutions in
such a manner as to both match and influence each other at

their common boundaries.

Area of interest

In the area of elastostatics the interaction of
bodies having a thin cross-section with those having massive,
solid or thick cross-sections is often neglected. In such
cases the solid is usually assumed to be rigid and contri-
butions to deflections therefrom are not investigated.

That the solid may contribute to deflections is recognized
even in cases where both bodies are made of the same mater-
ial. A plane stress (strain) case of a beam intersecting

a half-plane body at right angles was investigated inde-

pendently by Weber [1l] and Muskhelishvili [2] who employved






different assumptions. Weber modeled the problem by applying
to the half-plane the linear axial tensile stress distribu-

-bgysb

tion of simple beam theory: ox(o,y) = (Omax) y
-b>y>b

= 0

Muskhelishvili however applied a linear axial displacement
distribution:

-bgy<b

ux(O,y) = (u
—b>y>b

max)y
= 0

It is noted by O'Donnell [3], who compared these solutions,
that even though the latter case results in an infinite

value of stress Sm at y = tb the resultant displacements

ax
obtained due to rotation at the wall differ by only 15%.

O'Donnel chose a cubic stress distribution as a compromise
between the first two models and obtained results between.

He also investigated the effect of shear by applying a

constant shear to the wall: t__(0,y) = T constant -bgy<+b
Xy = 0 -b>y>+b

O'Donnell also investigated the plane stress case experi-
mentally. The various results and comparisons are displayed
in several graphs. More recently Cook [4] generalized this
problem to many evenly spaced beams intersecting a half-
plane.

An investigation of a non-plane-stress problem was
conducted by Brown and Hall [5]. 1In this case a shaft of
circular cross-section intersects a half-space body at
right angles. The problem is modeled by applying the axial
tensile stress from simple beam theory to the half-space.
Deflections are obtained both theoretically and experiment-

ally. Shear stresses were not. considered.




II. Selection and statement of the problem

We will study the contribution of an elastic wall
support to the deflection of a thin plate whose edge is at
every point attached (bonded, glued, welded) to the surface
or cast in one piece with the surface of the wall support.
See figure 1. We will want to be able to specify the ma-

terial parameters of plate and wall separately.

Szmmetrz

The axially-symmetric problem to be examined is as
follows. A thin circular disk or plate is fixed at its
edge to the wall of a cylindrical hole or shaft in a solid.

The disk and shaft share the same axis of symmetry.

Coordinates and geometry

Cylindrical coordinates (r, O, z) are used to des-
cribe the problem with independency with respect to 0 due
to symmetry. The axis of symmetry (0, z) is taken with
"z" positive downward. The undeformed disk is described
in the obvious way, occupying the space -b<z<+b and 0<rga
for all © where a>>b. Similarly the undeformed solid occu-

pies the space =-x<z<+» and r>a where an infinite solid is



chosen to further simplify the problem. The positive direc-
tions of important quantities listed in the table of symbols

are shown in figure 2.

Component theories

The deformed solid is to be described by the classi-
cal three-dimensional elasticity theory for homogeneous
isotropic solids experiencing small strains. The deformed
disk is to be described by classical elastic plate theory
approximating the conditions to be prescribed at the common

boundaries and compatible with the resulting displacements.

Boundary conditions

On the common boundary between the plate and solid
let the radial tensile stress or(r,z) and the shear on the

r" face 1_ (r,z) be assumed to be o_(r = a,-bgz<b) = 0°2z
rz r 2

= - - _z
Trz(r = a,-bgzgb) =1(1 ;7)

where 0 and 1 are constants to be determined. Only the
stress profiles are specified. It is not expected that any
choice of 0 and 1 will produce identical displacement solu-
tions at every point on the common boundary. If however

0 and 1 are determined by requiring displacements and slope
be equal at the plate midplane (a,0) then displacements in
each solution should be close for all coordinate values on
the common boundary except perhaps near points of stress
discontinuity (a,b) and (a,-b). In O'Donnel's [3] discus-

sion of the analogous plane stress (strain) case, where



Figure 1. Thin plate with thick wall support
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shear is neglected, he notes that if a linear displacement
profile or a linear stress profile is assumed the variance
of the general results from experimental evidence is approxi-
mately 15% in either case even though stress becomes in-
finite at (a,b) and (a,-b) for the linear displacement
assumption. The stress profiles imposed are the major
restrictions on the problem.

First, solutions for the wall will be found and
then the requirements of the plate will be examined in

Section III.



III. Mathematic development

Axially-symmetric isotropic elastic solid

In elastostatic problems without body forces the
Navier equation [6, p. 88] becomes

[V + 257 (V)1 4 =0 ,
Galerkin defined a vector function

2G4 = [2(1-y)V2 -V (V+)]F
such that the Navier equation reduces [6, p. 119] to

V'F =0 .
In the case of symmetry with respect to the z-axis the
z-component of Galerkin's vector is particularly important.
Let f = (0,0,Z2(x,y,2)).
If both the elastic body and its loadings are axially sym-
metric the Z is a function of r and z only. Let

Z(x,y,2) = 2(r,2z).
This last function is called the Love strain function be-
cause it was developed earlier by Love [7, pp.274-277]
using a different meﬁhod [6, p. 130]. The displacements
and stresses may be expressed in the following manner (6,

pp. 129-130] as functions of Z(r,z) where Z(r,z) satisfies

the biharmonic equation



vz (r,z) = 0

2
26w = [2(1-)V? - =] Z(r,z)

[\8]

Q)

<
I

0
_ —9%2(r,z)
2Gur = T
2

o, = ;%[(2-v)v2 - %—?] z

z z
o - & (W -23%) 2z
r 0z or?
0= B (V¥ -1 9)2z
9z r or

_ 9 _ 2_32
Tzr © 3?[(1 V)V BZZJZ
Trg = 0
Tog = 0

(3.1)

Strain function

A function §4(r,z) must be found such that
V“§4(r,z) =0 + .« ... . [6, p. 122]

is satisfied.

The solution begins with
V2Z,(r,z) =0

where Z,(r,z) is of the form Z,(r,z) = R(r)z(z).

In cylindrical coordinates the operator V? is

32 1 9 1 92 92
Gz * T 3r YT 3er t 30
2 —_ L =
Then V°(R(r)Z2(z)) = RrrZ + rRrZ + RZzz 0
1 -
and (Rrr + ERr)Z + RZZz = 0.

This equation is solved by separating the variables.



Choice of constant w? and the minus Zzz gives results suit-
able for the application to be made.

The resulting equations

2 2
7 w
R + lR
rr Y r 2

become
29 _—
Zzz+wZ—0
r’R__ + rR_ - r?w?R = 0 respectively.
rr r

They are well known and possess the solutions

Z AlSin(wz) + B1Cos(wz)

R

Azlo(wr) + BzKo(wr)

where Al’ Az, Bl’ and B2

and K0 are Modified Bessel Functions of the first and second

are arbitrary constants and I0

kind and order zero.

Boundary problem and Fourier integral transforms

From section II the conditions required on the two
boundaries of the elastic solid are these:
1. The stresses must be bounded at infinity.
2. The displacement in the radial direction
u, must be zero at (r,z) = (a,o) where the
midplane of the plate intersects the cylindri-

cal wall.
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3. The stresses at r = a on the interior surface of

the hollow cylindrical shaft are

o
a. cr(a,Z) = [Z ~bszeb
= 0 -b>z>b
= -(Zy27 -
b. Trz(a,z) = T[1 (b ] -bgzgb
= 0 -b>2z>b

where 0 and T are the maximum stress wvalues and

p = (plate thickness "t")
2

(3.2)
Consider condition (1) above. It requires that A2 =
0 since I > ®asr > and would lead to unbounded stress
solutions at infinity. Note that solution Z(z) may be
separated into even and odd parts. Condition (3) above
requires only the even part. Therefore let A, = 0.

The desired solution is

Z, = R(r)z(z) = K,(wr)Cos (wz)
It can be verified by substitution that 7z, satisfies vz =
0 when

_ )

Zy T ALy * Br gy I
and since

2K (wr) = -wK; (wr)

srio (wr) = —wK; (wr
then

2, = [AK,(wr) + Burk, (wr)] Cos (wz)

(3.3)

also satisfies V*Z = 0.
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If equation (3.3) is a solution, then any finite
or integral sum of such functions, having different arbi-
trary coefficients A(w) and B(w), is a solution. The A(w)
and B(w) are independent of r and z but will be considered
functions of w in the Fourier transformations to be used
in the solution of the boundary problem. The desired strain
function is given below.

54 = f/g a%[A(w)Ko(wr) + B(w) erl(wr)]Cos(wz) dw
0
(3.4)
Substitution of this function into equations (3.1l) yields

the following expressions (3.5).

2Gw(r,z) = I?ET%[A(w)KO(wr)
0

+ B(w)(erl(wr)—4(l—v)K0(wr))] Cos (wz) dw

2Gu (r,z) = gf% :—]'(E[A(w)Kl(wr)
+ B(w)ero(wr)] Sin(wz)dw
At z = 0 the displacement in the "r" direction

ur(r,O) is zero. Condition (2) is satisfied in
equations (3.2),

aur(r,z)

2G 37

= g%%}A(w)Kl(wr) + B(w)erO(wr)] Cos (@z)dw
Gr(r,Z) = g»/-g[A(w) (Kg (wr) + &Kl(wr))

-B(w)([l—2v]K0(wr) - erl(wr))]Sin(wz)dw

_ 2
Trz(r,z) = g/;‘[ A(w)Kl(wr)

+ B(w)(2[l-v]Kl(wr)-er0(wr))] Cos (wz)dw

(3.5)
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To satisfy the last boundary condition "3" (3.2) let the

general expressions (3.5) for 0. and Trs equal "3" at r = a.

-bszsb &
bl o5 1
= f/:[A(w) (K0 (wa) + ——Kl(wa))
-b>z>b 0| o " wa

-B(w)([l-2v]K0(wa)—waKl(wa))]Sin(wz)dw

-b<zg<b 1(1-[%]2) .
= 12wk, (wa)
o

|
oy
v
N

\
oy
o

+B(w)(2[l—v]Kl(wa)-waK0(wa»] Cos (wz)dw
(3.6)
There are now two equations which may be solved for the two
unknown functions A(w) and B(w). Equations (3.6) may be
expressed in the form

Or(a,z) = X% J[f(w)] Sin(wz)dw
0

T__(a,z) = jzf[g(w)] Cos (wz)dw
rz no
(3.7)
which are already the Fourier Integral Sine and Cosine
Transforms of f(w) and g(w). These transforms possess the
property of being the same as their inverse transformation,

hence if the above equations (3.6) are transformed

/%f?or<a,z)] sin (wz)dz /%f[/%}[f(w)] Sin(wz)dw]Sin (wz)dz
o o o

f(w)
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J%}[Trz(a,z)] Cos (wz)dz J%&[V%}[g(w)] Cos (wz)dwlCos (wz)dz
0 o o

= g(w)
A(w) and B(w) can be determined explicitly by substituting

expressions (3.2) for 0. and Try in the above equations.
b oo

f%f[% 2] Sin(wz)dz + Y2/[01Sin(wz)dz = £(w)
o s

b o
j%f[f(l-(%)z)] Cos (wz)dz + )g&[O] Cos (wz)dz = g(w)
Y b

Integration yields the following results [8,pp. 80-81]

b
/g% [i—zsin(wz)-%z Cos(wz)]l + 0 = £ ()

o
/%'r [z Sin(wz) - 27 (2% Cos (wz) +{f)—i - w—g"-}sin(wz))]:
+ 0 = g(w)
@%tiif%’-’?’— - Cos(wb)] = £(w)
A 2L(SILB) _ o5 (wb) ] = g (w)

Groups of terms that appear frequently will be given a

symbol for brevity.

Let S(wb) = [§£%%22l - Cos (wb)]
then
2 O _
%; m S(wb) = f(w)
£ o S(wb) = gw)

If the expressions (3.6) and (3.7) are used, substituting

for f(w) and g(w), a matrix form of the result becomes
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(K, (wa) + B%Kl(wa)} {-11-2v]K, (wa) + wak, (va)}] [A(w)

{-Kl(wa)} {2[1-v]Kl(wa) - waKo(wa)} B (w)

Let K(wa) = Ko(wa)/Kl(wa) and divide by the factors Kl(wa),

S (wb), and /g, yielding the form

S
w
2T
| w?b
{K(wa) + :-} {-[1-2v]K(wa) + wa} J;'A(“)Kl(wa)
wa S (wb)
{-1} {2[1-v]-waK (wa) /T B, (wa)
8 S (wb)
The functions A(w) and B(w) become
2

Alw) = j; S (wb) [ca(waK(wa) - c)

D(wa)Kl(wa)

+ Bé%%(wzaz - (c-1)waK (wa))]
2

-j:é(wb)
B(w) = T 2ta

D(wa)Kl(wa) [ca + 5555(1 + waK(wa))]
where
D(wa) = [(wa)?(K?(wa) - 1)-c]
c = 2(1 =-v)

(3.8)
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Equations (3.5) become

26w (r,z) =f /%Kl(‘*’r) [A () K (wr)
0] w

+ B(w) (wr = 2cK(wr))]Cos (wz)dw

[e o}

2Gu_(r,z) = f—/?Kl (wr)
(e} w

[A(w) + B(w)wrK(wr)]Sin(wz)dw

2Gaur(r,z) = f—/giKl(wr)[A(w) + B(w)wrK(wr)]Cos (wz)dw
o)

0z

o.(xr,z) = i@xl (wr) [A(w) (K(wr) + -(15?)

- B(w) ([c - 1]K(wr) -wr)lSin(wz)dw

Trz(r,z) = f/g%l(wr)[—A(w) + B(w) (¢ —wrK(wr))]Cos(wz)dw
0
(3.9)

When expressions (3.8) for A(w) and B(w) are sub-
stituted into equations (3.9) we obtain equations (3.10)
valid everywhere in the elastic solid.

Tew(r,z) = *S (wb) K, (wr)
a ’ S
o WD (wa)K; (wa)

[o{ (waK(wa) + ¢c) K(wr) -wr}

2T
wawb

+ { (w?a? - (c-l)waK(wa)) K(wr)

- (1 +waK(wa)) (wr = 2cK(wr))}]Cos (wz)dw

_m _ *s (wb) Ky (wrx)
EGur(r,z) - ng(wa)Kl(wa)

[o{(waK (wa)-c) -wrK (wr)}

+ 27T

wawb{(wzaz—(c—l)waK(wa))

- (l+waK (wa) )wrK (wr) }1Sin (wz)dw
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- Gaur © S(wb)Kl(wr)
-= =z (r,2) = g D(wa)Kl(wa)[o{(waK(wa)—c)-er(wr)}
+ 6%.:)_B{(wzaz-(c-l)waK(wa))

- (1+wakK (wa) ) wrK (wr) }1Cos (wz)dw

T o S(wb)Kl(wr)

1
530 (£r2) = £ D(waﬁ(‘l o) [c{waK (wa) (K (wr) + =)
_(K(wr)+wr+6%)}
27T 2.2 (e _l
+ Sub {(w®a“*-(c-l)waK(wa)) (K(wr)+ wr)
+ (l+waK(wa)) ((c-1)K(wr)-wr) }]
*Sin(wz)dw
-igTrz(r’z)

o S(wb)Kl(wr)

= g D(wa)Kl(wa)[o{waK(wa)-er(wr)}

2T

wawb{(wzaz-(c—l)waK(wa))

+ (1+waK (wa)) (c=wrK(wr)) }]1Cos (wz)dw

(3.10)
The expression for w(r,z) above will be used to examine the
decay of displacement with respect to increasing r values.
This will be presented in Section 1IV.

Of particular importance in this problem are the

values at r = a where the plate is attached to the elastic
solid. Let K = K(wa). The displacement, slope, and stresses

on the boundary become:
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§i£§l_[_2{w2azxz-w2a2+(—c+c)+cwaK}

- _co
gGw(a,z) - g wD (wa) ‘wa

+ ——21——{w2a2K2-w2a2+(-c+c)
w?a?wb

+2cwaK+cw?a?K?}]1Cos (wz)dw

s * S (wb) 21 2202, 224 (_
gGur(a,z) £ BBTBET[OC + BEEE{w a’K?-w?a?+(-c+c)

+cwaKl}]Sin (wz)dw
EGEEE(a z) = ? §i921[0c + —21—{w2a2K2-w2a2+(—c+c)
a o9z ' ! D (wa) wawb

0

+cwaKl}]Cos (wz)dw

T _ ° S(wb) o, 2_2,2_ 2_2_ .
igor(a'z) = £ BTEET[EE{N a‘K?-w?a®-cl}]Sin(wz)dw
m 2 s(wb) \ 2T . 5 5 2_ 2.2_
EETrz(a’z) = [ D(wa)[wawb‘w a’K?-w?a*-c}]Cos (wz)dw

Let x = wa and define N (wa) (l1+wakK (wa)) ,

then dx = adw, w = g, N (x) 1+xK (x), etc.

a” S(gx) N (x) X
Gw(a,z) = O{Ff v [l+cD(x)] Cos(gz) dx}
0
b
2 ®© S (=x) 2
+T{% %é xf‘ [l+cND§§g]Cos(§z)dx}
ac S(gx) . X
Gur(a,z) = 0{—? é X—.DT}-(T Sln('a—Z)dX}
b
© S (=x)
+T{§§2 s g [l+c g%%%] Sin(gz)dx}

0 X
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aur c ® S(gx) X
G—g-z-(a,Z) = O{F .c/; W Cos (-a-Z)dX}
b
© §(=x)
2a a N (x) X
+T{Fs'f x2 [1+cD(x)] Cos(sz)dx}
b.
® S (=x)
or(a,z) = o{% £ i Sin(gz)dx}
b
o §(=x)
_ 4a a X
Trz(a,z) = T{FB g ——;3— Cos(;z)dx}

(3.11)

The above integral equations may be used to compute
displacements on the cylindrical boundary for any magnitudes
of stresses o and T in the prescribed stress configurations.
The results of such computations will be presented in Ap-
pendix I.

When z = 0 in the above expressions, the quantities
in braces are constants and will be designated as indicated
below.

Gw(a,0) = o{ws} + t{wt}
Gu.(a,0) = ofus} + t{ut}

ou
G§E£(a,0) = o{uzs} + t{uzt}

(3.12)
These expressions will be used in Section IV to develop the
plate solution. When z#o the corresponding expressions
will be designated ws(z), wt(z), us(z), ... etc. When

r#a then designate ws(r), wt(r) or ws(r,z), wt(r,z), etc.
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If the expressions for stress are rewritten as

or(a,z) = jg g [J% % (§i%%£§i - Cos(wb))] Sin(wz)dw

Trz(a,z) = Jg S [)% 2 J; (§i§é&§l - Cos(wb))] Cos(wz)dw,

o
op

they are recognized to be the inverse transforms of the
original Fourier integral transformations of the prescribed
boundary stresses and are therefore equal to them by defini-
tion. These may be retained as computational checks.

The solution of the elastic so0lid problem is now
complete. This solution was obtained by applying to the
boundary two stress configurations of arbitrary magnitude.
It may now be mated with any other body that would produce
the same stress configurations and satisfy displacement
compatibility requirements. It is this class of problems,
requiring the matching of two separate solutions, that pro-
vided the motivation for this effort.

Approximate solutions can be found which satisfy
stress equilibrium only in the St. Venant sense and/or are
compatible only at specified points. The mating of this
solid with any plate problem of the class to be described

in Section IV would be an example of such an approximation.

The Plate

In order to match a plate solution to the elastic
solid, the plate solution will be required to have the

following properties:
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a. Axial symmetry (i.e. w=w(r))
b. Negligible radial displacements at the mid-plane
(i.e. z=0)
c. Arbitrary Shear and Moment resultants at the
outer edge. (r=a)
(C.1)
Any solution with these properties can be matched to the
elastic solid at (r,z)=(a,o) by solving the following boundary

value problem.

Let:
plate elastic solid
w(a) = w(a,o)

(B.1)
Require the mid-plane of the plate to intersect the wall

at right angles.

aw (a) - -3u(a,o)
or 0z
(B.2)
Mr(a) = M(o)=z S or(a,z)sz
A (B.3)
Q_(a) = Q(t)=+4# t__(a,z)dA
r A T (B.4)
(such other conditions as the plate
solution requires)
(B.5)

Resulting approximations to the true solution will depend,

of course, on the limitations of the solid and plate theories
used, and also on how well the single point matching at

(a,0) compels the boundary stresses and displacements to

conform to each other over the entire plate thickness
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(a,-b)<(r,z)<(a,+b)
As b+o we would expect improved estimates, at least for
values of r>>a or r<<a since the Principle of St. Venant
assures us that sméll differences in stress distributions
are local and only the resultants are of importance else-
where.

Any solutions satisfying conditions (C.l) and the
classical fourth-order plate equation are admissible.

q(x,y)=[D(wxx+vay)]XX+2[D(l-v)wxy]xy

+ [D(wyy+vwxx)]yy

D = E(x,y) ts(le)

where T2 1V (X, y) ]

v = v(x,y) etc.
(3.13)
but where condition (C.lb) disallows cases involving mid-
plane forces.
For purposes of illustrating the procedure in solv-
ing this type of boundary value problem let us consider only
those cases where E,t,v are constants. The above equation

becomes the familiar
DV*w (x,y)=q (X,y) ,

The theory to be used in describing this plate problem is

the well known "classical" theory governing small lateral

deflections "w" of a thin plate as described in Section II.
The relationships required for the axisymmetric

plate of uniform E,t,v are listed on the following page.
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Q
X _dge
D drv L
9 4 1
r_odl _g(rdw(r))]
D ar - dr
M vl
-—% = [t E vyl
(3.1t
where D= ——2——7— and V2 = (d +L 4 =——) in the axisymmetric
3(1-v%) dr?’r dr Y

case.
To begin the solution, forces are summed in the vertical
direction for the portion of the plate from radius p = a

€0 pf="B

8
IF, = QB(ZWB)+ J a(p) (2mp)dp+Q (2ma)=0
o

_l B
g = gl J palp)dp+Q al

Q

1 B
=hegl é pq(p)dp+Q al

The above differential equation describes the plate solu-
tions under consideration.

Solution of the boundary value problem when the
plate has a hole, inclusions, etc. follows essentially the

same procedure as below but will not be treated here.

l[9, p. 53] Note that differences in sign are due
to choice of positive direction for Q-
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Let a = 0, then for condition B.5 the requirement will be
that solutions must remain bounded at the origin and
Daglr 75 BEHEL 1 = 217 oa(e)de+o

B dB 0=0
Assuming that the necessary functions are integrable over

the range 0Ogpga, then

Y S 8

dw(y) _1 1 L
D & =3 I8 J 3 J/ pa(p)dpdpdé + Ay + YB
0 0 )
r Y $ B 2
Dw(r) = [ L S 8§ S % f pq(p)ddedey+é%— +Bln(r)+C.
o Yo ) 0

Condition B.5 requires that w(r) remain bounded as r-0
which implies that B=0 since ln(r)+«~ as r-0.

There are four conditions B.l to B.4 left to satis-
fy and the four arbitrary quantities o, 1, A, C to specify.

Apply B.1 w(a) = w(a,0)

Y $ B ag?
I pg(p)dpdRdsdy+ —=— + C] =

é[c(ws)+r(wt)]

where ws and wt are the constants in (3.12) and define

6§, B
§ J g I pg(p) dpdpdédy.
0

(o]

r
Iw(r)= [/
0

o ==

1
Y
Then define Iw(r) at r=a to be Iw.

Aa?

Condition B.l becomes Iw + >

+C = g—[c(ws)+’r (wt) ]

(3.15)



24

Apply B.2 dw(a) _ -Bur(a,O)

dy 5
L1l % L dpdgds+Aal = “E[o(uzs) + T(uzt)]
i3 . ’ g pg(p) dpdB al = glo(uzs T (uz

Where uzs and uzt are from (3.12) and define

r Gl B
I 8 J % J pa(p) dpdBdS.
0 0 )

Rl

Iwr(r) =

W

Then Iwr + Aa = -g[o(uzs) + T(uzt)]

(3.16)

where Iwr is defined to be Iwr = Iwr(a).

Apply B.3 Mr(a) = M(o) = [ [or(a,z)]sz
A

From equations (3.14)

v z=+b
—D[wrr(a)+§wr(a)] = £=£gz]z(l-dz)

_ a 8
-[ZZIwr+l(a £ 3/ 0q(p)dpds)+A+2(Iwr+aa)]l = 3b%o.
(0] 0

w

Define

B
J pg(p)dpdB.
[¢]

r

Iwrr(r) = [ 1
0

™

Then

(l-v)l§£ - (1l+Vv)A-Iwrr + %b3o
(3.17)

where Iwrr = Iwrr(a).
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Apply B.4 Q. (a) = Q1) =+ J 1 ,(a,z)dA

i)
A
From summing forces in the "z" direction

_ z = +b
-1 r=2a z2 b
Y Jrq(r)dr = + I[T(l-sr Y1 (ledz) = =1
r=0 z = -b

-3 a
T = 7135 £ rqg(r)dr

Now T is a known constant.

Equations (3.16, 3.17) can be solved for o and A explicitly

D
(+2Iwr-aIwrr) + G (l+v)uztt
% ab? - % (1+v)uzs
(3.18)
_ _(D(@-v)uzs , 2b° D . 2,3
A = (G 3 + 3 ) Iwr + G(+uzs Iwrrx 3b uztT)
% ap? - %(l+v)uzs
(3.19)
From equation (3.15)
2
C = %[o(ws)+r(wt)] - a2A - Iw
(3.20)

Now for O<r<a in the plate

wiry = L /1 ; 5 fGl fB (0)dpdpdsdy + BLZ 4+ €
D’ Y g . PatpIap YTp2- "D
0] (e] (0] (e]
§, B
dw (r) 1 .t 1 Ar
—_— === [ 8§ [ Jpa(p) dpdRds + —=
dr Dr | o B o D
= pE@wir), . v dwir)
Mr(r) - D[dr( dr )+ a dr ]

or
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2
Dw(r) = Iw(r) + é%— + C
DQ%%EL = Iwr(r) + Ar

(3.21)
Two limiting cases are of interest for purposes of compari-
son later

1) Rigid wall support: Gwall >

2) slmp;y supported plate: Gwall+ 0 and terms

involving 1 are neglected.

l) Let G » =

from (3.19)

0- 2b3
A=( 3)Iwr+0=—:‘[_v‘£
2a0% + 0 a
3
from (3.20)
_ a? ,-Iwr _ a?
C=0 - ( Y ) Iw = >3 Iwr Iw
from (3.21) i
Dw(r) = [Iw(r)-Iw(a)] + l§§<a2-r2)
since Iw = Iw(r) at r = a
dw(r) _ _r
D 37 = Iwr (r) aIwr(a)

since Iwr =Iwr(r) at r = a

2) First let 1 0 then multiply numerator and denominator

of (3.18) and (3.19) by g and let G > 0
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A = _(iizglgzi - 0) Iwr + (+uzs Iwrr + 0)
-(1 + v)uzs
- (1-v)Iwr _ Iwrr
(L+v)a (1+v)
_ _a%? (1-v)Iwr _ Iwrr , _
C = [0+0] =3l (T+v)a (1+v)] Iw

from (3.21)

(1-v)Iwr _ Iwrr , (r?-a?)

Dw(r) = Iw(r)-Iw(a)+[(l+v) 2 (145)]

dw (r)

_ (1-v) Iwr Iwrr
D T = Iwr(r) + [

™) a ~ (av) f

2

(3.23)



IV. Illustrative Example

Further investigations and comparisons of interest
would be awkward to carry out in general. The remaining
text will deal with specific loading, geometry and material

parameters.

The plate loading

Let g(r) = q a constant
-3 @
Recall T = Iab J rq(r)dr
o
then
=232
g b 4
Recall
r 1 R
Iwrr(x) = [ 7 I pq(p)dpdp
o 0
then
r 2 2
Iwrr(r) = q [ l‘-(Ei-)de = 9%—
o B
2
and Iwrr = Iwrr(a) = 2%_
r r 3
Twr(r) = =/ 6 Twrr(8)ds = 31 ;s3as = 95
r g 4 r o 16

3

= da
and Iwr TE

o]

28



29

r

r
Iw(r) = é' Iwr(‘Y)d-Y = % é‘ -Y3d.Y = g%rk

= 9 4
64 2

Qgigl may be found by

With the above formuli Dw(r) and D
algebraic substitution. The load g in the examples is a

multiplying factor in the expressions for w(r) and is set
at 100 for all numerical results. First the two limiting

cases in the previous chapter will be examined.

Limiting cases

1) Rigid wall support: equations (3.22) become

Dw(r) = 64 [c*-a“] - %%i(rz-az) = g%[r“-2r2a2+a“]

dgér) = I%[ra-r a?]

which are the classical plate equations for this problem.

D

2) Simply supported plate: equations (3.23) become

- _ ga®, (1-v) _ 1 -
Dw(r) = girt-a®l + BorpfRdls - iyl (e2-a®)
= dt-at) - B3 (r2-a)
dw(r) _ 3+v
dr —%[r - (IR ratl

and again these are the expected solutions.
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Plate geometries

For purposes of illustration three plate geometries
will be used.
(a) Thickness to diameter ratio b/a = 1/10 will
be used to explore the maximum differences be-
tween the rigid and elastic wall assumptions
even though it is recognized that "thin" plate
theory is probably not a very good model for

this ratio.

(b) Thickness to diameter ratio b/a = 2/100 will
be used to explore the differences between the
rigid and elastic wall assumptions for a plate
that "thin" plate theory should describe quite
well.

(c) Thickness to diameter ratio b/a = 5/100.

With the geometry specified the quantities ws, wt, uzs,
uzt from (3.12) can be found using the integration techniques

as explained in Appendix I.

Material parameters

For the given loading and thickness to diameter
ratios the ratio of the elastic moduli of the plate to
that of the wall Ep/Ew will be allowed to range over eight
values from zero to ten where zero represents the plate
built into an inflexible wall. Ep/Ew = o does not repre-

sent the simple support because w(r) # 0 at r = a.
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Each of the above cases will be done for v = .25
in both wall and plate and for v = .30 in both wall and
plate though v in the wall and the plate need not be the

same.

Results

The deflections Dw(r) of the midplane of the plate

together with corresponding maximum stresses o and 1 at

the wall are displayed in Figure 3. It is apparent that
for each of these thickness/diameter ratios, the deflec-
tions w(r) based on the assumptions of a rigid wall and
of a wall and plate of same material, never differ by less
than 300% for any given r. Similarly the maximum radial
tensile stress o at the wall never varies by less than
200%. From a practical viewpoint the latter variation is
on the safe side. The effect of Poisson's ratio varying
from .25 to .30 is relatively small but becomes more sig-
nificant for thinner plates.

As expected the deflection at the wall is small for
thinner plates, while rotation at the wall is still com-
paratively large.

There is little reason to believe that the trends
indicated by this example would change significantly for

other usual loadings and geometries.
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Other results

Also of interest is the behavior of the wall. For
the case where b/a = 1/10 the displacement Dw(r,z) where
z = 0, r>a is displayed in Figure 4. These results are
obtained by using the technique described in Appendix I to
integrate the first of the five equations (3.10). This

equation is shown below.

-Wwr Wwr.
- Sin(ub) © {e"7K, (wr)}

- a -, pocs
G w(r,z)= b £ (Cos (wb) wb )e ma{emaK%(wa))

{emaKo (wa)}
w((ma)z[(—;—*—————

(= })2-11-2(1-\1))
e K, (wa)
1

wa. wr.
.%((wa{e Kolwa)y 4 5oy (fe Kolun)dy _

{e"%k, (wa)} {e“Tk, (ur)}

{e“axo(ma)) {emrKO(wr)}
+

T
w———{ (w?a?- (2 (1-v)-1)uwa
i) (%K, (wa)}  (e“FK (ur)}

{emaKO (wa) } {eerO (wr) }
- (L+wa————) (wr =2(2(1-v)) i
a. r.
{e¥ Kl(wa)} {e” Kl(mr)}

+Cos (wz)dw

where o and 1 are obtained from the previous results and
the exponentials are required in the computational algorithm
for the Bessel functions. Having obtained Gw(r,0) for

various r it is now necessary to apply the scaling factor
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g in each case to obtain Dw(r,0).
3
2ED E_ 4b®(L+v,)
D_ 31UV =(=R) -
= - P B3 1 p +vp)
W
2(l+vw$
> = . -
In this case Vp BV S .25 and b = o
p_ % 2Te0e |, .

In a variety of related problems it would be useful to

know the behavior of specified points in or on the wall
responding to a unit load ¢ or 1. These are essentially
the integrals in (3.10, 3.11, or 3.12) and were used to
obtain the previous results. At the end of Appendix I,
figures 5, 6, 7, 8, and 9 display these results for b/a =
%5’ v = .25 together with the output stresses (3.10, 3.11)
which were used as a computational check. It will be noted
in Appendix I that the apparent uncertainty of convergence
for some of the values is exaggerated in the display which

gives the bounds on the value of the infinite integrals.







V. Summary

Limitations in theory

The generality of the mathematical model of this pro-
blem is limited by the two component theories used in its
solution: classical, three-dimensional, small-strain, theory
for a homogeneous isotropic elastic solid used for the sup-
porting wall; classical, small-strain, thin-plate theory
without mid-plane forces used for the plate fixed to the
supporting wall.

The other two limitations on the generality of the
theory are: choice of axialsymmetry to obtain a non-plane-
strain solution in two dimensions; selection of the stress
profiles at the boundary shared by the two bodies, thus the
matching of the slope and displacements at this common

boundary is limited to a single appropriate point.

Applications

Within the above limitations the problem is solved
for all plates without holes or inclusions and having uni-
form thickness and material parameters. Any load q(r) is
admissible. The solution for the wall would allow the other

plate solutions [i.e., with a hole and/or inclusions and

36
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also having variable thickness and/or material parameters]
to be developed in a parallel fashion with comparative ease.

The solution allows the wall and plate to have dif-
ferent material parameters.

The solutions for the shear and the moment applied to
the cylindrical wall are easily used together or separately
to solve a variety of other problems where such a wall is
similarly loaded.

Since the mathematical model for the wall is solved
for all of space and since the solutions all decay with
respect to increasing r and z, these solutions can be used
to approximate those of objects with sufficiently thick
walls having cylindrical cavities. In the case of the self-
equilibrating moment, where shear is small, the walls need

not be very thick.
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APPENDIX I

Numerical Integration

The integrated quantities in equations (3.10, 3.11,
or 3.12) must be computed for the illustrative example of
Section IV.

Examination of the functions to be integrated re-
veals several things.

1. They are reasonably well behaved at the origin
even though some of the component functions are
not.

2. They have a periodic behavior for large values
of w.

3. They decay for large values of w.

The partial sums of a good numerical integration procedure
should therefore converge within any specified bounds on
the desired value "I" for sufficiently large w and suffi-

ciently small increments h.
Summation formula

A suitable numerical integration procedure is ob-
tained from the Euler-Maclaurin summation formula and is

developed as follows [10].
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The Euler-Maclaurin formula may be stated thus

Ch=h[%f(a) + f(ath)+ f(a+2h)+ . . . +f(b-h)+ %f(b)]
= 2 4 6
Ch- A+ b2h Dl + b4h D3 + b6h D5 +o et
2s
- . .+ Dby 0D, - Ry (h)

(1-1)

Ch is the approximation to A where

b
A= [ f(x) dx
a

h= Eﬁi m is an integer to be specified
k b
b = LEEL J o K)ok a).
dx a
: : 2s+2
RZS(h) is the remainder of order h for small h and
= - -1
b0 =1, bl = 3
n-1
I b _/(n-r)! = 0 for n»2
k
r=0
ol = _ -1
by = 13+ b3 =0, by =755
b2k+l =0 k>0.

"A variety of formulas for numerical integration

are obtained by taking weighted averages of

ch'C(Zh)’C(Bh)’C(4h)’ .« « . with weights chosen to eliminate
certain terms in Dl,D3,D5, 3 3 L ey
In this case the elimination of Dy and D, terms

keep the computation in manageable proportions.
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From (I-1):

15C =15A+ ——(h) D 0(h) D + 3557 (h) D

(h) 30240

-6 2
=-6A+ 12(2h) D= ==—=(2h) D === (2h) D

(2h) 720 3 30240

1

— 1l 2
A+T§(3h) Dl 35240

C(3h)— ===(3h) D +

720 =55+ (3h) D

Adding these equations
6

(15Ch 602h+C h)= 10A+ -

25 l) for s>3

1 . . . .
Then Iﬁ(lsc -6C2h+ C3h) is a good approximation to A if h

h

and D,g-1 are sufficiently small. Note that h and D, _,

are functions of intervals (bi—ai) for sufficiently smooth

f(x) where the required infinite integral I is broken into
n

a sum of integrals I Ai. Also note that the minimum value
i=1

for m is six for this method and it may therefore be con-
sidered a seven point formula. To obtain this formula sub-

stitute the first of equations (I-1) into the estimate A =

1 _
Tﬁ(lsch—6C2h + C3h) and let m = 6.
15C( h)=h[i% f(a)+15f (a+h)+15f (a+2h)+15f (a+3h)+15f (a+4h) ...
(2h)—h[ 2 f(a) -12f (a+2h) -12f (a+4h)...

C (3n)=bI %f(a) +3f (a+3h)
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1
A = 75(15C,-6C, + Cyp)= TR[3£(a)+15£ (a+h)+3£ (a+2h)

+18f (a+3h)+3f (a+4h)+15f (a+5h)+3f (a+6h) ]
(1-2)
If m>6 it must be a multiple 6n and the formula is
the same except that the terms f(a+6ih) are multiplied by 6
instead of 3 when i # 0 or n. This latter form reduces re-
dundant computation where partial sums are not required and

will be referred to as (I-3).

Computation and limitations

The f(x) in this computation has a decaying periodic
behavior owing to the dominance of sinusoidal elements for
large values of x (w in 3.10 and 3.11). It is expected that
the successive partial sums approximating "I" (i.e., I =

A, +A +A3....+An) will exhibit maxima and minima for intervalsl

8 e )

(Bn = an) sufficiently small and that these values bound the
desired value of infinite integrals "I." We choose to con-
trol (Bn-un) by partitioning the sinusoidal half-period (HP)
of equations (3.10), HP = /b, and (3.11), HP = ma/b. For
b/a = T% and 5% the summation began at x = HP and ran in
both directions. We wish to approach limiting values of

component functions Ko(x) and Kl(x) at x = 0 from the right.

Summation formula (I-3) was used for x = HP summing toward

lThe symbols a and b of the discussion "Summation
formula" are changed to a and B to avoid confusion with plate
dimensions (r=a) and (-b<z<b).
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x = 0. In this transient region of f(x) it became necessary
to partition the half period (PHP) into 1000 parts of length
(B-a). This corresponds to an m = 6000 and h = HP/6000.
Summation formula (I-2) was used from x = HP summing toward
x = = because the partial sums are to be used to obtain
bounds on I. A coarse partition PHP = 10 was adequate in

this region. For b/a = E% the summation began at x = T%HP

and for interval 0€XST%HP the PHP = 10,000 was used with
a PHP = 100 used for interval T% HPS<XL®,

The various fortran programs used are listed in
Appendix II.

Note that HP = ma/b in (3.11) is the only period
(or frequency) encountered in solving the integrals for the
constants (3.12) used in solving the boundary value problem
at (r,z) = (a, 0) but that for z # 0 the product of sinusoidal
functions in f(x) produces other frequencies that increase
the difficulty of controlling the bounds on any desired "I".

All component functions needed for the various f(x)
were supplied by the Control Data 3600 machine with the ex-
ception of the Bessel functions. These were taken from

ANL C351

Argonne National Laboratory

3600 Library Routine
This subroutine does not give Kn(x) directly but rather
exKn(x). The machine limits the argument of e* called by
the subroutine to x<709. It can be seen that this restric-

tion imposes limits on the search for improved bounds of
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any value "I". The asymptotic expression Kn(x) >

V772 e */x (for all n) is limited in the same way. Ratio
K(x) = Ko(x)/Kl(x) becomes K(x)=1 using the above asymptotic
expression. The Bessel functions appear in (3.12) in the
ratio form exclusively but D(x) = [xz(Kz(x)—l)-c]approaches
D(w)z[wz(l-l)-c]=[w2(0)-c] which is still indeterminant.
D(x) appears in each expression. Possibilities of other
asymptotic expressions, computational algorithms, extrapola-

tions, or modification of the existing subroutine have not

been explored. This is partly because the expenditure of
computer time required to compute to x = 709 was already
sizable. The bounds obtained for the case where b/a = I%
are displayed in figures 5,6,7,8, and 9 at the end of this
appendix. As the thickness diameter ratio b/a + 0 the re-
striction of x to less than 709 imposes a severe problem.

If for example b/a = Tﬁ%ﬁ then the half period HP = ma/b =
m1l000 = 3141.6 which means that no bounds on any value I

can be found. The values of (3.12) used in the illustrative
example (Figure 3) are given in Table 1 on the following
page together with the bounding values. Since the bound-
ing values for the integrals (3.12) are the maxima and
minima of a simple decaying sine curve, values between can
be selected with the assurance that they are a great im-
provement over the gross maxima and minima and would repre-

sent the true value with less than the large apparent

uncertainty. If great accuracy is required it seems






clear that improved bounds could be established without

further integration.
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TABLE 2.--Results of the numerical integrations used in the

illustrative example

b/a v
.1 .25
.1 .3
.05 .25
.05 .3
.02 .25
.02 .3
upper
bound
.1 .25 -.464
-1 .3 -.436
.05 .25 -.480
005 03 _0450
.02 .25 -.52
.02 .3 -.48

wSs

-.0116
-.0096

-.0060
-.0049

-.0025
-.0020

uzs

value
used

T 457
-.430

-.466
-.436

-.48
-.44

wt

-.14157
-.13575

-.0815
-.0779

-.0386
-.0367

lower
bound

-0450
-.423

—0450
-.423

-.44
-.41

uzt

-.232
-.192

-.241
-.197

-.25
-.20

Values of the upper and lower bounds agree to the
number of places shown unless otherwise indicated.
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% | SN e s et 3 ¥ 11/06/67
NOMERICAL TN TEGRATION FORMULA I-3 COMPUTES
PROGRAM S T WU UZ ____ FQUATIONS J.// FOR HP2X>O
c FRAMES 7 PT

DIMENSION A(1000) &,ji}‘;_’&,ﬁ)‘tho Lo

READ 100,HPS.HPR,PHP, AR, BT, §,T,%WS,4T,U 8,0 T,UZS,UZLs PR,Z
100 FORMATCSFIONI LN S | lplete Thckness " cnileal values i

"’yzacz reiis
AN N\partilior of The half period

half percocl rarnge. 5
H=P1/(R#*PHP) o 4
__K=HPRwOHP

hL([,F:P—;cL,JtﬁJ—t al
HOb=k/6, g

CALL _ FNC (C,RiAR, Z,  HyX, S;T,USsWT,U S,U T,UZ5,UZT, A,%)

e e e AU IO = 14T s Eoegbaet S LB e il b o
uzso=uzs
_UZre=uzr__ e gl ot s O s e — s
DO 900 WN=1,K
e W XSNSHOR core o i b 2 me B Mmooty e =
CALL FNC (C.R,AR, Z, H,X, S,T,WS,WT,U S,U T,UZS,UzZT,
e i e SSTEGINIGH ) o Bl A SN ST S NN
T1=T1e7
o WS1skS1+nS
WTLlzWT1+aT
Lt VS TSNS EAS. e 02 ) goron fr el e el .
U TizU T1sU T
e s e ZSTEUZSERUZS L
UZT1=y7T1+U2T
et NS e P e ol e b S S R ot e UM e
CALL FNC (C,R,AR, Z, H,X, S,T,WS,WT,U S,U T,UZ3,UZT, A,MJ
Lo 83=S2+S .. o A e e e DE0R o
241
Lo - WS2=WS52+4S RO, P S N T SO S S5 SO AU R BN oot 2
WT23WT2+wT
BV - F MG S U S YW ST S O AR S W S S S G- W, L P U SIS S S T N
U T2=U T2+U T
_UZs2=yzs2evzs
UZr2=uzT2+U2T
CEERS T REXSHO G = oot Do i m s, s Shonet ao i bl sl s e v e
CALL (CyRyAR, Z» H,X, S,T,WS,WT,U S,U T,UZS,UZT, A,M)
=B o SERGREgE e e
T3=T3eT
N T o € (I S e e RS S i e
WTS2wT3+wT
e (USSTCS e oSl cm b e L ima B e
U T3=U T3+u T
A 7SI 2SR lA S el Pt g ST SR P ot O i
UZT3=u7T3+U2ZT
et Sl NEXCHOR: 2ot g iain pin g P st Conin I YT i e T
CALL FNC (C,P,AR, Z, H,X, S,T,uWS,uT,U S,U T,UZS,JZT, A,¥)
—82382+5 - . i B

Te=T2+7
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WT2=WT24+4T
U.32=i/-S2+U S
U T2=u T2+U T
o UZS2=U782+UZS — CRC T
UZT2=u7T2+UZT
X=X=H0S& ISP L S - i e o A 2 B
CALL FNC (C,R,AR, Z, H,X, S,T,WS,WT,U S,U T,UZS5,Uz7, A,M)
G {0 (05 SR
Ti=T1+7
— WS123kS1+4S ALt o BR e e
WTLl=WT 1+ T
RSN —Sametl V|, (V- ESRP IR S el O Sy SN - A R i)
U Ti=uy Tisu T
oo o o TIZ69 SY7S T+ U282 - -
UZT1=UzT1+UZT
bl — XEX=HD§ o=
CALL FNC (C,R,AR, Z, H,X, S,T,WS,WT,U S,U T,UZs,UzT, A,M)
SR e S i T S SR S S NS P OSSN S IS U S e i S il e e B
T4=T4+T
ot ol WSAZHSAPWS s tn e e S S
WT4=uT4+xT
— _U.$4zU-S4+U-S oot S atndin e s Lo e b B
U T4=y T4+U T
bt e S e (716 1 ([ 7S it st et G e e B B o e o ey 2 et pt i el
900 ULT4=UzT4+U2ZT
81281415, — e PP YA S
Ti=T1#15,
——————WS81=¥31 15, —
WT1=WT1«15,
- — U - S§12l) S1415, e e e e e e
U Ti1=U T1i=15, :
—eem——UZ81=21751 15, — - e e e
U2T1=UzT1+15, SR ST : ¥ et
——————52=2( 52+ - S0)*3,—— . ———
T2=(¢ T2+ Tu)=3, e
------------ NS2=2( - WS2+ WSH)*3, - : : -
WT2z( WT2+ UTD)I*3, e e b s e
U822 (Y -S24U 500 *3, — - !
b Sl o UZ34EU7S4x6.=3,4025
U2 822 (JZS2+UZSN ) * 3, UZT4zU7Téwb, =3, «U7T b
UZT2=(UZT2+UZT0) #3, ——F=dos/¢PLery
— 83253418, o e e
T3=T3=18,
—eee———WS3zwS3x18, e
WT3=4T3+13,
—————WU-83=U S3«13, =
U T3=U T3#18,
~~~~~~~ —UL83=U733#18, —
UZT3=UZTS*18, DA —— e
e e R e s e S2+  $3+ S4)
T4z Téxb, =3, T et e o TRE2 (O T S TR T 3% T4
e - L R -2 T IS I WS=F34(WS1+ WS2+ 453+ WS4)
WT4z WTeeh =3, » T e WTSF4e(nT1+ WT2+ AT3+ WT4)
Y5420 S8#p,e3,%1) S s U S=F5«(U Si+y S2+U S3+U S4)
Tavhiodiel T U T=F6e(y TieU T2+U T3+U T4)

UZS=F7+(UZS1+U752+U253+UZS4)
UZT=FBe(U7T1+U7T2+4UZT3+UZT4)







Jé

PRINT 600, N,YX, SyT,WS,WT,U S,U T,UzZS,UzZT, N )
_QOO_EQ,RMALLBﬂﬂNf-l 12,3 s ZszlF.lO . 6; X s
C1F10,6,2X,
CI¥10,6,2%X, .
C1F10,6,2X,
e CAF10,6.2X,._ , e - S R

Ci1F10,6,2x,
C1t10,6,2X,. — —
C1F10,6,2Y,
C1¥10,6,2X,

€112) B N .
END ) o e

N5, 34 - _— e e 41406467

———__SUSROUTIME FNC (C,R,AR, Z, HyX, SyT,NSy»WT,U S,U T,UZS,VZ2T, A,M)
DIYENSION A(1Q0C)

— e ___RX=ReY . OO
X2=XwX :

X=X ® XD e
X4=X+4X3

e L X D AT Z . X L A R e e e e et e mee et i e e e o e s
CZ=COSF(ZX0A)

SZ =S INF CZXOA Y e e e
FS=SINF(IX)/RX«CUSF(RX)

e V=0, ; S
N=1

e CALL BESKUX VN A MY et e e e e e e e =
FR=A(1Y/70(2)

_____ e RS ey e
FEBaX2% (F<#e2-1,)~C -

CADBEC o F AR o e L
SCZ=fFS+C7

e S8 2 EF S S . e e e e o e e e e
S =2 § SZsX

o X 3SCIINT _ e
WS =T «(1.,4CA03)

e WY =SC72 201, +C AN A ) /X b o
US=S/FR

UT=SSZ2e (1 o +C A0 /KB o e e e e e e e e e
UZs = SCTZ/F¢E

o UZT2WS R e e e s
RETURN

S - Y Y e

[ a s, 3 -
43 IMARY DECKawa Binirg Deck T BESK] AV A/' ’/" /)

,5,00,000,7, d
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gy )

l

5,38 JUMERICAL ZA//ZG/"AZ/O/‘/,FO/Q/’fd,Al COMPUTES 11406767

PROGRAM 3 8 T W U UZ _ FQUATIONS JG.// FOR MPEX< oo

v €~ FRAMES 7 PT
. DIMENSIOM A(1000) B s s s S e

READ 1n0,HPS,HPR,PHP,AR,BT, S,T,WS,WT,U S,U T,UZS,UZT, PR,Z
400 FORMAT(5F10,0)

R=8T/AR

X=HPS*P1/R

H3P1/(R*PHP)

K=HPR+PHP

TTCALL FNC (C,R,AR, Z, H,X, S,T,WS,WT,U S,U T,UZS,UzT, A,M)

CALL  FNC (C,R,AR, Z, H,X, S,T,WS,WT,U S,U T,UZS,UZT,

AM)

U S2=y s2+uU s

CALL FNC (C,R,AR, Z, H,X, S,T,WS,WT,U S,U T,UZS,uzT,
$2:252+5
293 o ST R Ay P PR R L PPN cRr ] Y e
WS22KS2+4S

_ WT2=WT2#WT b - - - 23

,uZs,uzT,

AyM)

AsM)






TNS, 34 0

s o 143406707

e e 5 SN S NI T N
uT
uzs

L uzr__ s S b

WS2zWSo+aS
WY22KT2+4T

e e 8 0= S 2R ST
U T2=y T2+u T

UZtz=uzr2+uzt

T TTTUZS2=U752+UZS e e e e S

_FNC (C,R,AR, Z, H,X, S,T,WS,WT,U S,U T,UZ5,VzT, A,M)

X=X+H06

T S1=S1+5
TL=T1eT

T KS1ZUS14KS
WT1sWT1enT

caLL FNC (C,R, 4R, 2, HiX,  S,T,HS,WT,U S,U T,UZ5,02T,

Ay M)

U S1=U S1+U S
U Ti=y Ti+0 T

UZTi=uzT1+UZT
TTXEXeHQ6 =

TUs2ss2es
7227247

CALL FNC (C,R,AR, Z, H,X, S,T,WS,WT,U S,U T,UZ5,V2T, A,M)

v g WS2=wS2+4s T ST o B
WT2=WT2+wT
. T uUs2=U Szeu S i o N =
U T2=U T2+u T
o= e “uis2=uzs2+uzs T R R
UZT2=UzT2+UZT
R | . T 1 e S e R S i
Ti=11+15,
T T WS1=zWS1e15, gy e i i S
WTLl=kT1#15,
SRR U e 5 e TR A
U T1=U T1#15,
PR U - T 5 e o e R S
UZT1=U2T1=1
ST RS e o e T IR T
T2 )*3,
Ws2 1+3, = B i e e T e
WT2z( WT2 )*3
U's2=(y s2 =3, Ehi T e i
U T2=¢u T2 1*3,
Uz82 T3, R - IR % i
e e o CUETRSCUZTR L RSN o T P VI
§3=83+18,
ity o e TASTORABE
WS3=wsS3w18, B B o SURESERCLS S
WT3=wT3e13,
R T L L e s g e =







5
TNS, 34 ! 11706767

UZT3=U7T%=18.

P S=Fie( Si+ S2+ S3I)+PS
P T=F2#( T1+ T2+ Té)}PT

PWS=F3e(nS1+ WS2+ WS3)+PWS
PWT= 74‘-(5710'_.«”2{ WT3+PRT

6+ (U T1+U T2+ T3)+PUT

(UZS1+U7S2+UZS3) *F 7+PUZS
PUZT=  (UZT1+UZT2+UZT3)*F8+PUZT

900 PRINT 600,N,X, PS3,PT,PWS, PWT,PUS,PUT,PUZS,PUZT, M
o 800 FORIMAT(3rON=112,3x,2HX=1F10,6,3X, inhey ] o asns
C1F10.6,2x,
o ood B S s CIRA0; 612 X & » N
CiFi0.6,2x,
o Citic,s,2Y, o
C1F10,6,2X%,
Cif1c,6,2x, - ey 5
TGk 10,6, 2%, SHEE CE SO R
e LaF10,6.2x,
C112)
R END o e e

TN5, 34 11706787

SUSROUTINE FNC (C,R,4R, Z, H,X, S,T,WS,WT,U S,U T,UZ5,UZT, A,M)
DIMENSTON A(1000) e S =
RX=Rs X
X2=X»X
XS8=X X2
TX4=XeX3
ZX0A=ZvX/AR
T T T CLECeSF(ZX0A)
SZ=SINF(ZX0A)
T FS=ESINF(RX)/RX~COSF(RX)
-0'
- ——
CALL BESK(X,V,N,A,M)
TUFK=A(Ly/a(2)
FA=1,+x»7fK
T FHEX2w(FAex2-1,)"
CAOB=C.F4/F8
TSCZ=FS«CZ
SS2=F5+57

e T g G e =

botnie, o WESOZANGE Al P S N SO, S VPSS e
WS =T “+(1,+CacH) - -

- WT =SC7Z*(1,+CA0B*FA)/X4

et | TUS=sS/FR ST A S i C R e e

UT=55Z+(1,+CADB) /X3

et 1741 S 5 RN 6

o " R N RN T R i

*2DINAPY DECKews ‘,Zf"Aﬂ,o»»::,D:C(*@Eﬁ(()’ v, /, A,/%,l‘ Do

UN» £,30:900,7,¥






P—"—" —

Pmvs_._;s;’«,,_11/(//%‘.',8/6/1[_ INT EG/?AHOA/ /C-OIQMULA 7 ~3 ..‘.’_,_._;:;‘_*&i’/’o‘:"/éﬁe o
PROGRAM WAFORAZ — COMPUTES THE 1st OF 3./0. .

C =~ FRAMES 7 pT
DIMENSION AC1000) _  __ fOoLe _fMAFZ2X>0o _ _ ..
READ 100,HPS,HPR,P=P,AR,BT, WS,WT, PR,Z,R

100_FORMAT(5F10,0)_ e

C=2,+2,*PR
P1=3,14159265358 _

X-HPS*PI/BT

_ KzPl/(BT*PHP) - e B e

K=HPRePHF
HO6=H/6 R S
CaLlL FNC (C,R,AR,BT+Z, X, WS, WT, AsM)
; WSO WS e e e
WTO=uY
DO 960 N=1,K

X=XeHO6 -

CALL _ FNC (CsR,AR,B7+Zs Xy _ WS, WY,  ApMY
WS1=WS1+WS

R ¢ Sk F 4
Xz=XeHQA

e CALL _____FNC (C,R,AR,BT,Z, X, _ WS,WT,  A,MY _

WS2=WS2+KS -
B . & -2 3" R oL X S

X=X=H06

CALL  FNC (C,R, AR,BT,Z, X,  HWS,WT, YL

NS‘—NSS*WS :

e WY EEW W T
X=XmHQ6 '

. __.._.__-._._,,CALL v,..«,.“,_F‘NC (CAQJARoBT!ZJ X. ,A,NSnNTl . AOM),A
iS2=2WS2+WS

e e WT2BWT2eWT i
=XeMQ6b . R

e CALL . _FNC (C,m,AR,BT,Z, X, WS,WT, AsMY)
WS1=WS1+4S

R (1 1 5 . 1

X=X>H0Q6

CALL _ . ___ FNC (C,R,AR,BT.Z, X, WS WTe AaMy

HWS4=zWS44WS

_ 900 WT4=WTd+dT

WS1=WSi*15, :
e MTi=WTHws5, e R e
WS2=( WS2e WSN)*3,
e W22 WT2¢ HTN) 3,
WS3=WS3*18,
e MT3=WTI3et3,

WSd= WSG#h,-3,» Hf
i _WT4 HWTASE 23, WT
FeHO&/{PI*10,)
F3zARaF
F4a=2,«F/RY
____NS=F3e(WS1+ WS2+ HS3+ WS4)
WT=F4e(WT1s WT2+ WT3+ WT4)
e __PRINT K00, N,X. MS,WT, M , R
€00 FORMAT(IWQON=112,3X,2HX=21F10,56,3X,
__CiFsQ,.6,2%,
CIF!O.)oZX.
R +b 1 25 R
TENDT






f
FTNS.3A

AT}

SUBROUT

IVC FNC (C,R. AR:BToZn Xo NS:W7O

.01/09/768

An?‘l)

DIMENSION A(1010)
RX=R+X B o
X2=yeX
AXZARSY e
AX22AXeAX

e BX=BTeX — e I N
IX=Z+»X

L __C2=COSF(2X e o
‘s=sx~r¢qxa/8x,cosr(axa
vaf, S . o
N=t

e TALL BESKCAX VaN2AMY e e
AKZA(L)/A(2)

e ABEACRY ) o
AXKzAXw AKX

o AATAYKeC e o
AR=AX2+(1,<C)*AaXK

e ACEY (e XK IR )
AD=AX2¢(AKw22wqi,)mt

e CALL BESEANSVIN AR MY
RK=A(13/4(2)

o R2®AL2) o o
RAK=(R2/A2)«(EVPF(AX)/EXPF(RX))

 RC=RX=2,¢C+RK L
SCX=FSeCZ#RAK/(X*AN)

. SCX3=SCX/X2 e
WS=SCXe(AA®RK~X)

L WT=SCX3¢(ASeRK=AC®RCY . ) ) R
RETUSN

e END ,

LOAD _ _

2243 INARY_DECKase ____ SBinos iy Deck =+ [LESK e

RUN,5.00,900,7, M NV







GA__ _ — e

r‘rhsA;:M/CALﬂVIIGRAHO/[EOQMULA 12 01/09s68

. .. PRIGRAM WAFORAZ COMPUTES THE ist OF 3./0
¢ FRAMES 7 PT .
- DIMENSION A(1000) FOR HP<X< co
READ 100,HPS,HPR,PHP,AR,BT, WS, WT, PR, Z,R
100 FORMAT(5F10,0) ,
582,92 *PR
Pl-3.14159265358 L
XzHPS#»P[/BT _
_ H=P]/(5T*PHP) _ _
K-HPR.PHP
F-HOb/(PIoiO,)
— F3=zAReF - e
F422,#F/37
_ ___CALL____ FNC_(C,R,AR,BY,Z, __ X, __ WS, WT, _ A,M)_
DO 900 N=1,K
_HS2=uS

) HT2=wT o S
e XEX KOG

CALL FNC (C,R,AR,BT,Z, X WS, WT, AgM)
__ _WS1suS
WTi=kT
X2XeHQ6

CALL "FNC (C,R,AR,BT,2, X, WS,NWT, AgM)
e i WS23WS2#4S e o
WT2zUT2eWT
e _XEXeHQ06 __ , o
CALL " FNC (C,R,AR,BT,Z, X. WS,HWT, Ay M)
S L MS WS
WY3=WT
. XEX#HO6 o
CALL FNC (C R AR BT, Z. X WS,WT, Ay M)
e __WS2=US2+uS o

WT2SWT2+WT .
— —_ X=XeH06 . . el
CALL FNC (C R, AR BT Z. X, WS, WT, AM)
e e WS1=WS1 WS
HWTLisWTL1#WT
— e _.___X3XeH0D6 e e
CALL FNC (C‘R;AR.BT'Z‘ X. NSQNTD A‘M)
e WS2=2WS2eWS e
RI2=HT2¢AT
I 12 € 112-3 5 5
WTlz=WTi+15,
e __WS2=WS2#3,
HY2= urz-s.
— e ___WS3=4WS3e18, S
. WYI3=WT3I*18,
_PuSzFIe(¥S1+ WS2+ WS3)+PWS
PRTSF4s(WTL+ WT2+ WT3)+PWT
e 900 PRINT 600, N.X, PWS,PWNT, M D
600 FORMAT(¢(3HON=112,3X,2HX=1F10,6,3X,
— oo _CAF10,6,2X, L
CiF10,6,2X,
e e C‘lZl___ . o . L
END
. - ubroutcrge FNVC  on P G/

e e e e s e ot e+ 21+ e < 0+ e 1o @ e e S + o e ot ot e+ 4 e . 52 e =+ v | oo e e = e = = = mamim e e o —— s = o o
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FTIN5.34A

100

90

COMPUTATION OF WI(R) AND W(R,0) ~ =~

PROGRAM WAFURGA

DIMENSION  WSAA(L1A0) »WTGACLU0),RGA(L00).
. READ 100,A,8, _. Qe WSaWT, .

FORMAT(5F1n0,2)
WJsAJ

Kz AK

d=AT 0
DO 90 N=31,!
READ 100,RAAINY,“SHA(NI,wTUACNY
DO 901 M=1,J

READ 1GODPQW,prnE“oEP

POW=EP/EW

T3, *A%3/(6,%2)
A2=A+A

 A3=AsA2

A4sA+AR

B2=65+8B

B3=B«B7?
WAA=CwAR/4,

WA =Q»A3/15,

W =0+A4/64,

- G=EW/(2,+2,*PR )

D=EP+2,%¥83/(3,-3,4tPRP+%2))
DGED/G
P1=1,+FRP

- DGP1=Dnhw*P1

LI

UZTT=UZT+*T

C=2,+A«B3/X, .
S=(2,*WA-A*WAALDGP«*JZTTI/(C-DGPLwUZS)
CAZ(WA+DGw (SvU7S+U7TT) I/ =A)
CC=DA2(SeAS+Te 'T)=32*CA/20~W

PRINT 600,PU% ,PIW,PRP,S,T+AsB

FORMAT(

CiF10,4,2X,

 C1F10,4,2%,

C1Fi1g,4,2X,

CiF10.0,2%,

CiF10,4.2%,

CiF10.4,2¥%,

Ci1fFi10,4)

" R=0,
Rsh/(AK=-1,)
DO 900 N=1,r
R2=k+*R
R3=Kk+R?2

" R4=R+R3

900

901

DW  =C%R4/64,.CA%2/2,+CC
PRINT 400,R,Dw

R=ke+H

O 901 N=1,]
DWSDO*(S*WRGA () +T~WTGA(V))
PRINT mQQ,RGA(),D~

FND

RUN, ,30,900,7,M

T g3s19/68

UZS,ULT, AJsaisAl
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