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ABSTRACT

THE CONDUCTANCES OF ZINC PERCHLORA TE AND POTASSIUM

OCTACYANOMOLYBDA TE (IV) AND THE TRANSFERENCE

NUMBER OF ZINC SULFATE IN AQUEOUS SOLUTION AT 25°C.

by Mary Patricia Faber

An outline of the history of the method of conductance and trans-

ference number measurements, as well as a history of the interionic

attraction theory of electrolytic solutions is presented.

As a test of the theoretical expressions which have been developed

for the description of the conductance phenomenon, an attempt was made

to fit the conductance data of zinc sulfate. Three parameters are in-

volved, one of which is the equivalent conductance of zinc sulfate.

To reduce the number of arbitrary parameters, the equivalent ionic

conductance of zinc ion was sought by an independent measurement of

the equivalent conductance of aqueous zinc perchlorate. The conductance

of this salt was found to deviate markedly from the Onsager equation

even in dilute solution. Attempts made to explain this behavior on the

basis of ion-pairing, hydrolysis and purely electrostatic interactions

were entirely unsatisfactory.

As a further test of the theory the transference number of zinc

sulfate in water as a function of concentration was measured by the

moving boundary method at 25° C.

The conductance data for zinc sulfate can be adequately fit by

either the Fuoss-Onsager theory including ion association or by including

terms of the electrophoretic equation which are usually neglected.

The former treatment also gives a fairly suitable limiting form for

transference numbers. However, when the limiting ionic conductance

for zinc ion from measurements on zinc perchlorate is used, it is much

too high for either theory to describe the behavior adequately.



Abstract Mary Patricia Faber

We conclude that zinc salts do not form typical dilute solutions

but that, perhaps due to the covalent bonding tendencies of the zinc

ion, there are deviations from any theory which is based on the assump-

tion of hard, non-polarizable ions.

While the primary objective of determining X0 for zinc ion thus

could not be achieved, the new phenomenon observed will require a

new approach to this conductance problem. It also indicates that not

all electrolytes can be treated in the conventional fashion.

In addition to these considerations, the equivalent conductance

of potassium octacyanomolybdate (IV) was determined. Large deviations

from the limiting equation of Onsager occur, so that the limiting ionic

conductance could not be accurately determined by the methods now

available. We attempted to obtain the transference number of this salt

from the moving boundary method. No reproducible transference

number could be determined. It was concluded from examination of

much self-consistent data that perhaps some immediate decomposition

was occurring even in freshly prepared solutions.
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I. INTRODUCTION

The modern theory of the nature of solutions of strong electro-

lytes is based on the following model which was deve10ped into a

practical formulation by Debye and Hiickel (1). The electrolyte in

solution consists of individual ions which are free to move about inde-

pendently. In the neighborhood of each ionof a given charge is a

local excess concentration of ions of opposite charge. These ions exert

a net force on the central ion whenever the spherical symmetry of this

'ionic atmOSphere' is destroyed by motion of the central ion. Onsager

and Fuoss (2, 3) have used this model to construct a general theory of

irreversible processes in electrolytic solutions, which allows the

prediction of the conductance of these solutions at low concentrations.

Bjerrum (4) had shown that the existence of tightly boundrpairs of ions

of opposite charge in equilibrium with free ions may noticeably reduce

the conductance, especially in solvents of low dielectric constant.

Onsager and Fuoss (8, 9, 10, 11) made additional extensions to the theory

. e3pecia11y dealing with the "time of relaxation" effect in conductance.

The idea of "ion pairs" was later incorporated into the treatment by

Fuoss (5, 6, 7).. The resulting theory now is applicable to symmetrical

electrolytes in solvents of dielectric constant higher than about twenty.

Onsager and Fuoss have neglected powers of concentration higher

than the first for both practical and theoretical reasons. However,

Dye and Spedding (12) have shown the importance of these terms for

unsymmetrical electrolytes in water. Also Karl and Dye (13) have con-

sidered the contribution of these terms. to the conductance of symmetrical

electrolytes in water and dioxane mixtures.



The Fuoss-Onsager theory for symmetrical electrolytes has

been tested with favorable results, on the conductance of 1—1 electro-

lytes in water. It seemed desirable, then, to further test the accuracy

of the theory in predicting the conductance of 2-2 electrolytes. Zinc

sulfate was chosen since accurate conductance data already were

available (14).

An attempt to fit the conductance data alone by the Fuoss-Onsager

method would require three parameters: (1) the limiting equivalent

conductance of zinc sulfate, (2) the ion size parameter 5, and (3) the

ion-association constant IE. In order to reduce the arbitrariness of fit,

it was decided to determine the limiting equivalent conductance of zinc

ion by measuring the equivalent conductance of zinc perchlorate as a

function of concentration. The limiting ionic conductance of sulfate

ion is already known accurately (15). The perchlorate salt was chosen

since the limiting ionic conductance of perchlorate ion is also known (16)

and the- ion itself is stable and unhydrolyzed.

To further test the theoretical expressions, the transference

number of zinc sulfate was determined as a function of concentration.

The only data available for transference numbers are those of Purser

and Stokes (17) based on the E. M.F. method, and of Gold (18) based on

the Hittorf method. These methods are subject to rather large errors

and we employed the more accurate moving boundary method.

The success of Dye and Spedding (12) using the extended electro-

phoretic correction to conductance of unsymmetrical electrolytes, led

to interest in the investigation in this laboratory of other higher charge

electrolytes. ‘ Potassium octacyanomolybdate (IV), a 1-4 electrolyte was

chosen as an example of this charge type. For successful application

of theory it was necessary that the salt exhibit a minimum tendency to

form ion-pairs, undergo no hydrolysis and be sufficiently soluble so

that measurements could be made over a range of concentration.



II. HISTORY

A. Method of Conductance Measurements

The transfer of electrons involved in the passage of electricity

is accomplished by mechanisms which may be distinguished in two

limiting cases: (1) metallic or electronic conduction and (2) electrolytic

or ionic conduction. In electronic conductors, conduction takes place

by direct migration of electrons through the conductor under the influ-

ence of applied voltage. Electrolytic conduction involves the migration

of both positive and negative ions which results in the transfer of

matter, as well as electricity, from one part of the conducting solution

to another.

The earliest measurements employed'the same d. c. methods as

were used for determinations of resistance in metallic solid conductors

(19, 20, 21). Since the passage of current causes changes in the electrolytic

solution such as concentration gradients and the setting up of back e.m. f.

due to polarization at the electrodes, it appeared to early investigators

that Ohm's law, valid for metallic conductors, was not obeyed by

electrolytic solutions. I

The resistance (or its reciprocal, the conductance) should depend

only on the temperature and on the area and distance between the electrodes

of the measuring cell.

 

(1)Conductance =% = = LS — ohm

where R is the resistance of the solution, A is the area of the electrodes,

_1_5is the distance between electrodes, p is the specific resistance, which

is equal to the inverse of LS, the Specific conductance.



Kohlrausch (22), believing that polarization was due to adsorption

of gas on the electrode, began using alternating current sources and

an a. c. Wheatstone bridge for measuring resistances. To further

reduce the effect of polarization, he plated the platinum electrodes

with finely divided platinum black. The dimensions of the cell were

measured to determine the cell constant ls/A = k. It was soon apparent

that it is more convenient to employ a secondary standard of known

specific conductance in the cell and calculate k, the cell constant. The

specific conductance of potassium chloride was measured by Kohlrausch

(22) to be used as a standard. Between 1868 and 1880, Kohlrausch

made a long series of carefully controlled conductivity measurements

over a wide range of concentrations, temperatures and pressures.

His data, eSpecially on potassium chloride, are still accepted today.

Kohlrausch defined the quantity called the equivalent conductance A.

A is defined as the conductance of a volume of solution containing one

equivalent weight of dissolved substance between parallel electrodes

one centimeter apart, large enough to contain all of the solution between

them. The quantity, A, is never measured directly but is calculated

from the specific conductance

A _ 1000 Ls

_ __.*.__C (2)

where 3* is the normality of the solution. Another quantity, A0, was

defined as the equivalent conductance at infinite dilution. The value of

A0 cannot be obtained directly from experiment, but is obtained by

extrapolation of a suitable function of equivalent conductances and

concentrations. Kohlrausch (23, 24) also determined that A0 was the

sum of the equivalent ionic conductances, x3, of the cation and anion

such that

A0 : A0+ + Ag - (3)



The work of Kohlrausch disclosed the many sources of error in

prior work and hence the accuracy of any earlier results is very

questionable. Improvements in conductance measurements since the

work of Kohlrausch have been limited to better design of equipment

rather than method change.

The most important and extensive work in this line was carried

out by Jones (25, 26, 27, 28) and co-workers who published a series of

papers concerned with the problem of eliminating errors from conductance

measurements. Jones made an experimental and theoretical study of

the design of the conductance bridge. Resulting from this analysis were

recommendations on the design of resistance boxes, shielding of

bridge components, sources of alternating current, detector circuits,

oscillator circuits and bridge grounding. This latter was a modification

of a method developed by Wagner (29).

The use of oil rather than water as a thermostat liquid was

recommended following the discovery of the sensitivity of the resistance

measurements to the presence of water, a conductor, near the cell.

The use of oil gave results independent of the resistance being

measured, of the specific conductivity of the bath liquid and of the

frequency.

Experimental work by Wien (30), Taylor and Acree (31), and

Kraus and Parker (32, 33) indicated that an increase in conductance

with moderate increase in field strength can occur. Jones and

Bollinger (27) investigated these phenomena to determine whether

variation was due to experimental error or failure of Ohm's law.

The results of this investigation indicated that there was no measurable

variation of the resistance with change in applied voltage if proper

experimental precautions eliminated (l) heating, (2) polarization, and

(3) secondary effects of conductance and capacitance.



In 1923 Parker (33) observed that in many cases cell constants

varied with the resistance and frequency being measured. In 1930

Shedlovsky (34) investigated the design of conductance cells as an

approach to the problem of the 'Parker effect. ' He designed a four

electrode cell to determine whether cell constant variation would be

eliminated if similar electrodes were included in two arms of the

bridge during measurements. The following year Jones and Bollinger

(35) continued this study of cell design. Analysis of the cell reactance

as a function of frequency, resistance, amount of platinization, and

size of electrodes led to the proof that the Parker effect was due, for

the most part, to faulty design of conductance cells. The error was

due to a series capacitance and resistance shunt built into the cell by

constructing the filling tubes and mercury contact tubes parallel and

too close together. Shedlovsky,(36) following the recommendations of

Jones, constructed a cell for the high dilution range which was

independent of frequency.

Some of the Parker effect was deduced to be due to polarization.

The platinization of electrodes to minimize polarization was studied

by Jones and co-workers who published papers in 1935 on this subject

(37, 38). Summarized, the results of this investigation were:

(1) Polarization resistance is inversely proportional to the square

root of the frequency.

(2) Polarization may be treated as a capacitance which decreases

with increasing frequency, in series with the cell resistance.

(3) Both polarization capacitance and resistance are dependent

upon the metal used for electrodes, the electrolyte and the

temperature, but independent of the current density and

degree of electrode separation.

(4) Platinization from a solution of chlorOplatinic acid with a

small amount of lead acetate can reduce polarization to a



negligible amount. However, in very dilute solutions

platinization must be reduced greatly or eliminated

altogether.

(5) Sufficiency of platinization may be ascertained by plotting

resistance versus the square root of the frequency, the inter-

cept on the resistance axis giving the true resistance. The

difference between the apparent resistance and the true re-

sistance gives the error due to polarization. If the error thus

determined is negligible for the purpose of the. measurement,

then platinization is adequate.

Kohlrausch had used standard potassium chloride solution to

determine cell constants. Later workers continued to use this as a

reference salt since it was easily purified, non hygrosc0pic, soluble

and stable. However, several definitions of the standard reference were

accepted at the time when Jones, Bradshaw and Prendergast (39, 40)

began investigation of this problem. This study resulted in a definition

of a standard reference solution of potassium chloride in terms of

weight in grams per kilogram of solution corrected to vacuum. They

then determined the specific conductance of standard potassium chloride

reference solutions at 00C, 180C, and 250C. The cells were first

calibrated with mercury, a primary standard of resistance. Nearly all

subsequent work in this field is now based upon these standards.

In 1959 Fuoss and co-workers (135) published a recommendation

for calibration of the cell over a range of cell resistances rather than

the previous method of calibrating at one resistance only with a solution

prepared precisely to a predetermined value. The now rather well—

developed theory for 1-1 electrolytes furnishes a method of extr0plat-

ing linearly from the Jones and Bradshaw 0.01 demal solution to ’lower

concentrations. Fuoss has presented an equation which permits the

calculation of the conductance of potassium chloride in water at any



concentration up to about 0. 012 N. They recommend the use of this

equation for cells with constants of the order of unity, for calibration

at several high resistances of the magnitude encountered in actual

experimental work.

B. Method of Transference

When an electric field is applied to an electrolytic solution the ions

experience a force and are initially accelerated toward the anode or

cathode according to the sign of their charge. Their final velocity is a

result of this acceleration and the counter force of friction with the

surrounding solvent molecules. This directed motion is superimposed

on their random Brownian movement and therefore the net transfer of

ions is due only to the applied field. The ionic mobility of an ion is a

quantity characteristic of the given ionic Species and is dependent upon

temperature, pressure, type of solvent and concentration.

Experiments by Daniell (41, 42) using a three compartment cell,

showed the concentration changes that would be expected with a migration

of ions. He also found the first indication that positive and negative

ions in a solution do not carry equal amounts of the total current. The

fraction that each ion carries of the total is defined as the transference

number of the cation or anion. - Since the ions in a solution must carry

all of the current, the sum of the transference numbers of the ions in

solution must always be unity.

Conductivity measurements yield the sum of the ionic mobilities

of an electrolyte, but individual values cannot be obtained from these

measurements alone. They can be evaluated from a knowledge of the

concentration changes which take place around the anode and cathode

during electrolysis. » Hittorf (43, 44, 45) first utilized this fact and began

an extensive study of transference numbers which continued from 1853

to 1903. It is particularly interesting that many of these measurements

were made before the ionic theory of Arrhenius was formulated in 1884.



The experimental methods available for measuring transference

numbers are divided into three types: (1) the Hittorf method, (2) the

electromotive force method (E. M. F.) which depends on the measure-

ment of the potentials of cells with and without transference, and

(3) the moving boundary method.

The Hittorf apparatus consists essentially of an electrolysis cell

divided into an anode and a cathode compartment which are separated by

a third compartment. Initially, the concentration of electrolyte is the

same in each compartment. Electricity, measured by a coulometer in

series with the cell, is passed and the change in composition of the

anode and cathode compartment is determined. Assuming that conditions

are met so that the central compartment concentration does not change,

the change of equivalents in the anode or cathode compartments after

electrolysis will give the transference number calculated from the

expression (45)

_N0+N-Nf

Ti“ N

 
(4)

where N0 is the initial number of equivalents of the jt_lr_1_ ion per gram of

solvent, Nf is the final number of equivalents of that ion and N the

number of equivalents of ion that are introduced into the solution (or

correspondingly deposited) by electrode reaction. Early measurements

contained several sources of error making uncertain the validity of the

results. This early work has been summarized by McBain (46) and

Noyes and Falk (47).

The application of the Hittorf method is limited principally by

three factors; (1) at least one, and preferably both electrodes must be

reversible, (2) mixing of the electrode and middle compartment solu-

tions during electrolysis must be prevented, and (3) the analytical

procedure must be highly accurate. More recent work by Jones and

Dole (48) MacInnes and Dole (49) Jones and Bradshaw (50) and Steel and
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Stokes (51) gave quite good results. More accurate data obtained more

speedily have been obtained by the moving boundary method.

A potentiometric method for the determination of ran-sference

numbers was first prOposed by Helmholtz (52). A concentration cell

with transference of the form:

A2+ X2" (c2) 1 MX — M (5)
2+ 2..

M MX I AV‘l‘ Xv- (CI) V+ V_

where M-MX represent electrodes reversible to )3. ions and concen-

tration 21 is greater than concentration 22. When one faraday of

current is passed through the cell, Et will be the electromotive force,

accompanied by the transfer of T+ equivalents of salt from _c_1 to 2;.

A concentration cell without transference of the type

I -.

2+ 2- : ~ ' 2+ 2 -_‘ -
M-MX I Av+ Xv_ . A(Hg)X - A(Hg)x : AW: Xv“ I MX M (6)

involves the reversible transport of one equivalent of salt from concen-

tration £1 to £2 per faraday of current passed, with an electromotive

force of E. Combination yields the result that

T : ——
(7)

which gives a method of direct calculation of the transference number.

The transference number thus obtained is a mean value and can therefore

only be valid if the number is constant in the concentration range C] to ca.

When the transference number varies rapidly with concentration,

graphical methods or empirical fitting of the data have been used.

The E.M.F. method has been studied with some success by Pearce and

Mortimer (53) and MacInnes and Beattie (54) investigating lithium ion;

MacInnes and Parker (55) and Jones and Dole (48) studying potassium ion.

In most cases the method does not yield as accurate data as obtained by

either the Hittorf or moving boundary method.
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The moving boundary method depends on the phenomenon described

as follows. Two solutions can be placed in an electrolytic cell so that

a boundary is observed between them, due to differences in color or

refractive indices. The solutions may or may not have a common ion,

but for the purposes of this work it is sufficient to consider the case of

two electrolytes Mié: and N_+A_' with the common anion A“, forming a

boundary at 3:3 in Figure I. As O coulombs of electricity are passed

through the cell the boundary between the solution will move to a position

represented by 2:13. The effect of the passage of current is to replace

the solution of M+A-, of volume V milliliters, in the region between the

two positions of the boundary, by a solution of N+A-. M+A" is

designated as the "leading" solution and N+A‘ as the ”indicator" or

"following" solution. For a solution containing c equivalents per liter,

then cV/1000 equivalents of M+ pass through a given cross section of

the tube and carry cVF/1000 elementary charges. This is also T+Q =

(T+ it) coulombs of electricity passed. Therefore

 

. cVF

T+1t—-1000 and

(8)

T : cVF

+ 1000 i t

This is the fundamental equation for the moving boundary method.

 

   

M+A'

b ------- . b

a or ----- k a

N+A'

+

Figure 1. Schematic representation of transference cell.
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Lodge (57) in 1886 made the first studies of the motion of indi-

vidual ions. A gelatin gel held both the ion being studied and an

indicator ion with which it formed a precipitate or colored complex.

Assuming that the potential gradient was constant throughout the gel,

he measured the velocity of the boundary formed. In 1893 an error was

pointed out by Whetham (58, 59) who showed that the gradient was

dependent upon the conductivity of the ionic species and was not the

same on both sides of the boundary. Both Whetham and Nernst (60)

began observations on boundaries between colored and uncolored ions

in solutions without gelatin. Masson (61) in 1899 delineated the condi-

tions necessary for quantitative work with moving boundaries.

Kohlrausch (62) in 1897 published the first theoretical treatment

of moving boundaries. He deduced that in order to obtain a stable

boundary it is necessary that

_Ti_ __ (Ti)f

c Cf (9)

where T+ and E refer to the transference number and concentration,

respectively, of the leading solution and (T+)f and Ei t0 the same

quantities of the following solution. This relationship is known as the

Kohlrausch ratio.

Diffusion and mixing of the two solutions in contact must tend to

occur, but in actual practice there is a self-sharpening mechanism

operating so that it appears that no diffusion occurs. The leading and

following solutions are chosen such that the mobility of M+, the leading

cation, is greater than that of N+. The following solution is in a region

of higher potential than the leading solution because of its higher

specific resistance. If any M+ ions lag behind, the higher potential

gradient will increase their velocity until they again enter the leading

solution. The converse process will take place if the following ions
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N+ diffuse ahead of the boundary. Extensive investigations by MacInnes

(63, 64) and co-workers have experimentally proven the existence of

such a mechanism.

According to the Kohlrausch treatment the concentration of follow-

ing solution immediately behind the boundary will adjust to the concen-

tration given by the Kohlrausch ratio under the influence of an electric

field. There is no such effect on the leading solution. This permits

the transference number to be ascertained accurately even if conditions

set by the Kohlrausch ratio are not fulfilled. However, studies by

MacInnes and Smith (65, 66) showed that, while theory sets no limits on

the concentration of the following solution, the concentration adjustment

can take place properly only if the following solution is within three to

eight percent of the Kohlrausch ratio. The properties necessary for

an indicator solution have been summarized by Dye (67) as follows:

(1) The solution must not react with the ion under investigation.

(2) The transference number of the following ion must be less than

that of the leading ion.

(3) The following solution must be less dense than the leading

solution for falling boundaries and of greater density for

rising boundaries.

(4) There must be a sufficient difference in properties of the

solutions, such as color or refractive index, to permit the

boundary to be observed and its movement followed.

In order to observe boundary motion it is, of course, necessary

to form a sharp stable boundary between two Species. The first very

successful boundaries not in a gel were observed by Steele (68, 69) in

1901. Steele formed the boundaries by using a gelatin gel plug. The

boundaries were allowed to move into a gelatin—free tube where they

were observed.
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The formation of a boundary by the "autogenic" method was first

used in 1904 by Franklin and Cady (70). This method consisted of

placing the solution to be observed in the cell over a metal plug or disk.

serving as the anode. The metal must form a soluble salt in combi~

nation with the anion of the solution. When current is passed the

boundary between these ions will move up the tube. The concentration

was automatically adjusted to the Kohlrausch ratio by the electric field.

In 1906 Denison and Steele (71, 72) made significant advances in

measuring the boundaries between two uncolored solutions. The boundary

was illuminated with a light from behind and viewed with a telescope as

in the method used today. They replaced the gelatin plugs used by

Steele (68) to form the boundary by a cone covered by a membrane of

parchment. This method was later simplified by MacInnes and Smith

in 1923 (65) who replaced the cone and parchment paper with a flattened

glass rod and soft rubber disk. A sharper initial boundary was obtained

two years later by MacInnes and Brighton (73) who used a "shearing disk"

apparatus. The technique was further simplified by Spedding, Porter and

Wright (74) using a hollow-bore stopcock to form the boundary. These

methods may be used with either a rising or falling boundary.

Early workers in the field considered the possibility that electrode

reactions which occur with the passage of current, might be accompanied

by significant changes in volume. These would affect the observed move-

ment of the boundary. Denison and Steele considered the effect neglig-

ible, which conclusion was proved to be in error by the calculations

first made by Lewis (75). Unlike the Hittorf method which measures

the transference number of an ion with reference to the solvent, the

moving boundary method measures the motion relative to a fixed mark

on the tube. The computation of the volume change, AV, is simplified

if one side of the cell is left open to the atmosphere and the other side

closed. Then only the changes which occur between the boundary and
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the closed side need to be considered. An example of this computation

is to be found under the experimental section of this work. The volume

change AV means that the boundary has swept out a volume V' + AV

such that

Vobserved : V' + AV (10)

where V' is the volume swept out by the boundary corrected for any

change due to electrode reaction. The expression for the transference

number then becomes

c*AV

1000

 

(11)(n) a r+ -
COI‘I‘.

The validity of the correction has been experimentally demonstrated by

two independent methods (64, 76) which are briefly described by

MacInnes (77).

In 1932 Longsworth (78) proposed an additional correction to

correct for the experimental fact that the sum of the cation and anion

transference number was not exactly unity. He deduced that this was

due to the small fraction of the total current which was carried by

solvent impurities, and derived the following expression to correct for

these impurities:

T+ (L L t)A T : SQ ven (12)

+ (Lsolution)

where A T+ is the correction to the transference number 2+ and

Lsolvent and Lsolutjon are the specific conductances of the solvent

and of the solution respectively. The final expression for the trans-

ference number is then given by:

FcV _ cAV + T Lsolvent

1000 i t 1000 + Lsolution

  'r+ = (13)

The transference numbers thus determined agree with those obtained by

the Hittorf method within the limit of the experimental error.



III . THEORY

The foundation of the theories and investigations which ultimately

led to the present concepts of interionic theory, were laid by Arrhenius

(79). The then current theory, based upon the earlier work of Faraday

and Hittorf, viewed the applied E. M.F. as the cause of the splitting up

of the molecules of the solution into ions which could carry current.

Since Ohm's law was found to be obeyed by electrolytic solutions, it

had to follow that some small fraction of the solute existed in an ionized

state. This fraction of "active" molecules were assumed to be short-

lived basic and acid radicals of the solvent, free to move in an electric

field.

‘ Arhennius' own work on mineral acids and vanvt Hoff’s study of

the colligative properties of solutions supported the ideas Arhennius

advanced in his theory of ionic dissociation which is summarized as

follows:

(1) An electrolyte upon dissolving, dissociates into ions.

(2) The degree of dissociation,a, depends on the ccncentration

and in infinitely dilute solutions the dissociation is complete.

The extent of dissociation is indicated by. the deviation'from

van't Hoff's laws.

(3) The degree of dissociation can be calculated from conductivity

measurements by means of the relationship:

A

A0

 

(14)

where A is the equivalent conductance of the solution and A o

is the equivalent conductance at infinite dilution.

There was some agreement between values ofa calculated from

equation (14) and from methods depending upon colligative properties,

16
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gaining much support for the theory. The relationship expressed by

equation (14) involves the assumption that ion mobilities do not vary

with concentration. Rarely can this be true, as accurate data obtained

on transference numbers could later show. In addition it was found that

the law of mass action apparently obtained for electrolytes that are only

slightly dissociated. If one considers the partial dissociation of

M+A" 2 M+ + A', the law of mass action implies that

+ _ .

K : [-—L—]M3 A (15)

[M A']

If M+A', whose concentration is c, is dissociated to a degree a then

upon substitution in equation 15 and also combination with equation 14,

_ A20

K- Acme-A) (16)

which is a form of Ostwald's dilution law. This relationship involves

the assumption, not then considered, that concentration and "active

mass" are equivalent. Equation 16 was tested for constancy of If by

a number of workers. ‘ In strongly associated solution (weak electrolytes)

early work appeared to be in close accordance with the equation.

However, the later, very accurate work of MacInnes and Shedlovsky (80)

showed a small change of l_(_ with concentration. For intermediate and

strongly dissociated electrolytes, Ifwas shown to be less constant (36, 81).

It was concluded that the Ostwald dilution law was true only in the

limiting case, an infinitely weak electrolyte. The failure of the highly

conducting solutions to follow the dilution law was for some time known

as the "anomaly of the strong electrolyte. "

There were two explanations advanced for the anomaly; (1) all

electrolytes obey the dilution law but this is obscured by disturbing

factors such as complexion and unstable ion-hydrate formation, and

(2) equation (14) is not valid and a fundamental change was needed in



18

the ionization theory for strong electrolytes. Fruitful pursuit of the

latter led to modern theory. J. J. van Laar (82) first recognized that

coulombic forces between ions must affect such properties of a solu-

tion as conductance, freezing point depression and osmotic pressure.

Noyes (83) and Jahn (84) attacked the assumption that the mobilities

of the ions are independent of concentration, pr0posing that the electro-

static charges on the ions must alter the properties of the solvent and

affect ionic speeds. That strong electrolytes should be considered as

totally dissociated was suggested first by Sutherland (84) and Lewis (85).

The latter felt that "additive" properties of salts, which show no

physical properties for the undissociated portion, should lead us to a

theory of complete dissociation. The evidence that concentration was

not equivalent to "active mass" led to the conception of "activity"

and "activity coefficients" of Lewis (87). Only in an ideal solution

would the activities of the ions be equal to their concentrations. Sutherland

(88) made calculations which were only approximate, on the magnitude 1

of the coulombic force between ions assuming complete dissociation,

and showed that these forces could produce the observed decrease in

conductance with concentration. ' In an attempt to account for the variation

of activity coefficients from unity on the basis of interionic attraction

and repulsion, Milner (89) developed a mathematical theory based on

statistical methods. This theory was essentially correct in the light

of present day ideas, but the difficult mathematical analysis prevented

its wide use. He did show that at low concentrations the deviations

from ideal behavior should be proportional to the square root of the

concentration.

The first considerations of ionic interaction assumed that the

ions formed a lattice not unlike a crystal lattice. The lattice energy

would simply be reduced by the effect of the dielectric constant of the

solvent. However, the theory neglects the effect of thermal motion
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which would break down any structural configuration the ions might

tend to assume. They do, however, tend to have a limited structural

arrangement brought about by the interionic attraction which causes

the mean distance between ions of like charge to be greater than that

of oppositely charged ions. ’ In a time average there would be more

negative ions in the region of a positive ion and more positive ions

in the region of a negative ion. This "ionic atmosphere" can be regarded

as a Spherical region around a given ion having a charge of sign opposite

to that of the central ion. The attraction between the ion and its atmos-

phere gives rise to the deviation from ideal behavior because it imposes

a slight degree of order on an otherwise random system. Debye and

Hiickel in 1923 (1), following‘Milner's formulation, deve10ped their

theory of interionic attraction upon this model. The assumptions con-

cerning the solution involved in the development of the theory may be

summarized as follows:

(1) Strong electrolytes in solution exist as ions with no undissociated

salt present at any concentration.

(2) The solutions would show ideal behavior if there were no

interionic attraction.

(3) The ions can be regarded as point charges, unpolarizable

and possessing a symmetrical coulombic field.

(4) Only coulombic forces are important in interionic attraction;

any other intermolecular forces are negligible.

(5) The dielectric constant of the solution is the same as that of

the solvent.

(6) The interionic attractive coulombic energy is small compared

with the energy of thermal motion.

In the theoretical consideration of the interionic attraction the

fundamental statistical property is the distribution function (corre3ponding

to the equations of motion in a simple mechanical system). The distribution
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function defines the distribution of ions in the ionic. atmosphere. The

desired distribution function for this system may be defined by

f.. :n.n..:f

J1 J J1 nij (1‘7)ij-ni

where iii is the time average distribution of i — ions in the vicinity of El

central j-ions. The quantity Edi gives the number of iwions in the

vicinity of a central j-ion. Since material must be conserved in the

system as a whole, the converse expression for iii may also be written.

.51 and Eli depend, in general, upon the location in solution of the central

j-ion as well as the position relative to the central ion at which the concen—

tration of i-ions is Specified.

* In the special case where there are no impressed forces on the

system, this distribution will be Spherically symmetrical and independent

of location in solution. It can, therefore, be written as a function only

of distance r from the central ion. Knowledge of this fundamental

property would provide the basic equation for computing the. limiting

laws of equilibrium properties such as activity and osmotic coefficients

and, subsequently, partial molar heats of dilution and heat capacities.

In the more general case when there is present a perturbing force

such as an impressed E. M. F. causing conductance, the distribution

will not be spherically symmetrical. Then, it is necessary to consider

position in solution and position relative to the central ion.

The early Debye-Hiickel theory presented below, considers only

the former case of the unperturbed ionic atmosphere and is therefore

applicable only for the calculation of those properties dealing with

equilibrium processes.

In order to calculate an equilibrium value of the function 51 one

may set up a differential equation. The forces between the ions are

coulombic in nature and it may be reasonable, for the distances we are

considering, and taking a time average, to treat the distribution of ions
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as a smooth charge density function. The appropriate equation would then

be the Poisson equation of electrostatics:

-4

vzip = D" p <18)

For our system we can identify 1]) with I’ll; (r), the Spherically symmetrical

 

equilibrium value of electrostatic potential in the neighborhood of a central

j-ion. 2 is the dielectric constant of the solution. Q is defined, then, as

pj’ the charge density function in the neighborhood of the central j-ion which

can be written in terms of Boji and summed over all the kinds of ions in the

solution as

S S

2 n°-- e- = z n°.. z- e (19)

: i:
pj: 1 J]- 1

1

where 31 is the charge on the ion of type i, s is the magnitude of the charge

on the electron and ii is the valence of the i-ion. It can be seen that upon

substitution of pj of equation (19) into equation (18) both {I}; and pj are

unknown functions of position and charge and therefore equation (18) is not

completely defined.

There are two independent lines of reasoning which allow us to write

pj as a function of 1,1) g which would result in a differential equation with

’2/13? as the only unknown function.

(1) Considering the fact that the ionic atmosphere is the result of

electrostatic attraction opposed by random thermal agitation, one might

assume that the distribution is governed by the Maxwell-Boltzmann law.

This would depend on the energy 931 of the "atmosphere" ions as a function

of their separation from the central j-ion as

ngi : ni exp ( - Ugi/kT) (20)

where 21 is the average concentration of i-ions computed assuming uniform

distribution. I331, moreover, can be approximated by ei 1}} J9" which is the

energy the i—ions would have, subject to the equilibrium potential function I]? .
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2501 reduces to 5 when separation between i and j-ions goes to infinity (i. e.

when 1’)? goes to zero). Finally, then

pj=

8

1:

1 eini exp(-ei 1V3 /kT) (21)

(2) The second alternative proceeds from the nature of the Poisson

equation itself. If p1, p2 and p, are three charge density functions and

2}!“ 1}! z and W3 the corresponding potential functions obtained by solution

of the Poisson equation, and if p, = p1 + pz, then W 3 turns out to be equal

to 7,111 + 1}} 2- Hence, since p is actually a function of 1," then

01(W1)+Pz(¢z)=03(1/’3)=D3(W1+9Uz) (22)

This is the defining relation for a linear function; hence p ac 1P .

Since the first alternative leads to an exponential relationship between

p and I]! , and the second alternative to a linear relationship, the two

methods are obviously not compatible. Since both contain approximations,

(1) that U31

valid for the times and very small distances involved, neither solution

= ej 1P 3’ and (2) that a smooth charge density function is

gives unequivocal results. These difficulties can be circumvented by

expanding the exponential function in equation (21) as a power series in

the exponent eiWR/kT and retaining only the first two terms, i. e. the

constant plus the first linear term. Because of charge neutrality,

s .

23 n.e. = 0 and substitution into equation (21) results in
i=1 1 1

_ 1 8 z 0 £2 8 2 0

pj‘kr 1’51 niei W5 ' ( kT {'1 “1‘1”“ (23)

Substitution of this equation into equation (18) gives the result

v‘vi = x.‘ W3 ”‘4’
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where

4 1r 6 z 3 z .

Z : —— .

X. DkT £1 nlzi (25)

The term X. has the dimensions of cm’l. The length l/x, is called the

radius of the ionic atmosphere.

The solution of the differential equation (24) is shown in detail by

Harned and Owen (90). The final result is given by

xa

which for point charges reduces to

IF; = ej e' xr/Dr (26a)

From equation (20) and the discussion following it,

o _ é
nji — ni exp ( - ei Wj/kT (27)

This exponential function may also be expanded in a power series and

retention of only the first two terms yields,

_ o

nji - “i (1 - 8, "l’j/kT (28)

Substitution in equation (17) forthe values of n31 and w; given by

equations (28) and (26) respectively, yields the final expression for the

distribution function characteristic of the equilibrium case considered,

f0 — (1_'_°if.'°xa‘ ° Elli) ‘(z9)

ji ‘ njni Dk'r'(f+xa) r

On the basis of equation (29) Debye and Hiickel computed successfully the

limiting law for the'activity coefficient. The Debye-Hfickel theory gave a

, theoretical basis for the concept of ionic strength which had been derived

empirically by Lewis (87). The interionic attractions postulated would

be expected to be even more effective in determining the properties of
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solutions at high concentrations but, as the theory has been developed,

its validity is limited to dilute solutions. . The ratio of the coulombic to

the thermal energy of the ions must be small i.e. ei I}! 3’ <<kT. ‘ This

will not be true if the ions are very small or highly charged or if the

dielectric constant is very low. In such cases higher terms in the

expansion of equation (21) should not be neglected. The first modification

to the evaluation of the potential was made by Miiller (91) and by Gronwall,

LaMer and Sandved (92). Miiller obtained the solutions of the integrals

by a graphical method rather than by means of a series expansion.

Gronwall e_t 11' expanded the series and kept higher terms. They were

able to account for some experimental results on solutions of highly

charged electrolytes with relatively small ions. The mathematical dif-

ficulties associated with this method led Bjerrum (4) to suggest a much

simpler improvement. In part the concept may be considered to represent

a real phenomenon and in part to circumvent inherent mathematical

inadequacies.

Bjerrum suggested that all oppositely charged ions within a certain

distance of one another, possessing sufficient energy to be a stable

physical entity, are associated into ion-pairs which act as a single unit

in solution. Two ions which are closer than a critical distance apart are

considered to form an ion-pair. Bjerrum chose this distance, q, to be

I Z122' 62

Z DkT

(30)

At this distance the electrostatic potential energy of the oppositely charged

ions is ZkT. Bjerrum arrived at this value for 3 by computing the time

average probability of finding an oppositely charged ion in any point within

an infinitestimal spherical shell of thickness 93. and radius r as a function

of r, the distance from the reference ion. He noted that the function has

a minimum at r = q. This involved the assumption that the number of

oppositely charged ions per unit volume would follow the Boltzmann
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distribution function

nji = ni exp( - ei IIIj/kT) (31)

where Z/lj was taken to be the simple coulombic potential of the central

10H

W.) = zj G/Dr

On the basis of this he calculated (1 - a.) the degree of association, and"_I_{_,

the association constant, as a function of a, the distance of closest approach

and I_), the dielectric constant of the solvent. Calculations showed that

ion pairing makes a significant contribution to the behavior of an electro-

lyte when the ion size is small (including'the solvation sheath) and/or the

dielectric constant is low. This has been experimentally substantiated by

the study of lanthanum ferricyanide in various solvents (93, 94, 95) and the

investigation of tetraisoamylammonium nitrate in water-dioxane mixtures

by Kraus and Fuoss (96).

Fuoss (97) has suggested a modification of the approach by redefin-

ing the criterion for an ion-pair. Two ions areto be considered as an ion-

pair only if they are in contact without intervening solvent molecules.

While Bjerrum's treatment gives good results in solutions of low dielectric

constant, in general, the theoretical expressions for 5 have proven

unreliable. As a result, the constant is now treated as an adjustable

parameter chosen to give the best fit.

’ Debye and Hiickel were also able to make an. important contribution

to the theory of electrolytic conductance (98). This problem becomes

more difficult since the equilibrium condition will be destroyed and the

ions will move under an applied E. M. F.

The equivalent conductance of a solution has earlier been defined by

A = 1000 L/c. (32)

A is also obtained by summing the ionic conductances over all types of
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ions in a given solution. The equivalent conductance M of a given ion

may be defined as the current produced by one gram equivalent of the

ion under a potential gradient of one volt per centimeter. )‘j is related

to the ionic mobility 3.1

hj = 96, 500 uj (33)

The mobility of an ion is its velocity under a potential gradient of33.

one volt per centimeter whereby

uj = vj/3oox (34)

where E is the electric potential gradient expressed in the appropriate

cgs units. It then follows that

_ _ 96,500
A-pxj— 300}, r]: vJ (35)

To obtain a value for the mobility experimentally, the limiting equivalent

ionic conductance at infinite dilution is obtained from measurements of

the conductance at a number of concentrations. A suitable extrapolation

function will give the conductance at infinite dilution. The problem in

the conductance theory which is evident from equation (35) is to determine

a value for the average ionic velocities. The knowledge of the distribution

of the ions relative to each other, the electric potential at any point in

the solution and the hydrodynamic equation of continuity are used to

derive a theoretical expression for the conductance of a solution.

Debye and Hiickel, using their distribution and electrical potential

function as a basis for this new theory, found average ionic velocities

by considering the perturbation caused by an applied E.M.F.

Onsager and Fuoss in a number of papers from 1927 to 1958 have

developed a conductance theory along the same lines as the original Debye-

Hiickel theory. In presenting this theory here, we will follow the develop-

ment as it is now known and used, indicating the points of deviation from

the historical pr e s entation.
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Two underlying physical concepts concerning a central ion and its

surrounding atmosphere were first considered by Debye and Hiickel.

As ions move in the field of a perturbing electric force those of opposite

sign will be moving in opposite directions. Since each tends to drag some

solvent molecules with it, the overall effect will be a local solvent flow

in the direction opposite to that of any particular ion. The average speed

of all ion types will then be lowered. This is called the electrophoretic
 

effect.
 

A second effect may be considered when there is an applied E.M. F.

As the ion travels through the solution, its ionic atmosphere of opposite

sign must be tending to move away from it, and will therefore no longer

possess a spherically symmetrical structure. A finite time is required

for the atmOSphere to build up and then decay about the moving central

ion. This is known as the time of relaxation. The net effect will be an
 

excess of oppositely charged ions behind a given central ion and can be

considered an opposing force to the applied force. The applied force is

the product of the ion charge and the potential gradient if The'small

restoring force is described in terms of a correction to the field, _A_X_,

called the relaxation field. The result is a lowering of the ion's mobility.
 

Both of these effects depend upon the density of the ionic atmosphere.

In addition to these two effects, Onsager and Fuoss (11) recently

modified the concept to include consideration of a kinetic effect. Due to

the time of relaxation a larger number of ions are behind the central ion

than are in front of it. Thermal motion will cause the central ion to be

struck more often from behind than from in front, resulting in an in-

creased velocity of the central ion. This effect then acts as a force, A P,

in the direction of the field, and is considered as an osmotic pressure

on the reference ion which moves it with the field.

The original model used considered the solvent as a structureless

continuum. However, at finite concentrations there will be ions of solute



28

which will act as obstacles to the moving ion. This effect was treated by

Fuoss (5) as an additional correction to the physical concepts conceived by

Debye and Hiickel. It can be treated as a correction to the viscosity,

which is inversely proportional to the conductance itself.

Following the method of Fuoss (7) we would like to write in symbolic

form the conductance equation derived from considerations of the four

effects described above. An isolated j-ion in a solution to which an E. M. F.

is applied will move with a velocity 1’.) proportional to the applied force

field 1X, where the proportionality constant is the reciprocal of the co-

efficient of friction of the ion.

VJ: QJIGJIX (36)

Due to the relaxation and electrophoretic effects, the average velocity of

the j—ion will be reduced. If st is the retarding velocity of the solvent

in the neighborhood of the j-ion resulting from the electrOphoretic solvent

drag by j-ions, and the actual force felt by the ions is _e_‘j (X + A X) then

vj = wj I ej I (X + AX) - Ivjs) (37)

Combination of equations (35) and (37), considering only one ion, gives

_ 96, 500 96, 500

x}. — 300 wj Iejl (1+ AX/X) 3OOX Ivjsl (38)

At infinite dilution where there would be no interacting ions present,

AX/X and X“ are both zero and therefore
JS

_ 96,500 _ _ ,

where 33’ if the limiting equivalent conductance at infinite dilution.

Since st, the solvent velocity, is dependent upon the velocity of the

i-ions and therefore is proportional to the applied field (X + AX), the last '

term on the right-hand side of equation (38) may be written as
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96,500 _

m )Vjs I — (Ahe)j (1 + AX/X) (40)

where (A xe)j is the electrophoretic contribution to the conductance.

Summing equation (38) over all kinds of ions in the solution one obtains

the total equivalent conductance as

AX

A: (A0 -AA.) (1+7- (41)

where AAe is the term due to the electr0phoretic effect and AX/X the

' term due to the time of relaxation effect. The contribution of the kinetic

effect, a force in the direction of the field, and the viscosity correction

which is inversely proportional to the conductance, results in the final

form of the conductance equation,

AX A P
(Ac-me) (1+ x + 32')

A: 1+Fc (42)

 

An outline of the considerations involved in the derivation for

each of the expressions which appear in equation (42), following the pro-

cedure used by Fuoss and Onsager, will be presented here.

I. The Electrophoretic Effect

The electrophoretic correction has been calculated in two ways.

One method is based on the use of Stoke's law for the moving ions and

is described fully by Harned and Owen (90). The second method is that

of Onsager and Fuoss (19) which was later slightly modified by Fuoss

and Accascina (99). This method proceeds by way of a calculation of the

solvent velocity as a function of position about the central ion. The basic

hydrodynamic equation for the flow of solvent is

z '—-s “‘
nv Vjs= vP-F (43)

where Q is the viscosity of the solvent, st is the solvent velocity at a
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distance r from a particular ion and p is the pressure. F is the force

per unit volume of the solution due to the electrostatic force on the ions

contained in it. Its magnitude may be written in terms of the field

strength and the charge density F = X p, in the direction of the impressed

The solution of this differential equation is found in the original

paper (10) and has been discussed in some detail by Karl (13). We are

u—h

Vjs

the calculation of the time of relaxation effect, and in the component of

interested only in the radial component of which will be needed in

3335 along the direction of the applied E.M.F. The latter is of interest

because its value at a distance a, repreSents the velocity of solvent in

contact with the ion in question and therefore the velocity of the ion itself.

The radial component is given by

22 I x(a-r) z
_ Xe cos 9 x, a x3a3 2e (1 - xr) R

Vr_ 4 1T 77 [2 [1+ xa + 2 + 6 ]- Xyr3 (1 + 7(a) - 3r3 (44)

  

g is the hydrodynamic radius of the ion and is set by Fuoss and

Accascina (99) equal to a.

The velocity X in the direction of the applied field, evaluated at 5

equal to a, is given by i

V (a) : V ——j——xe — xejx

x 61Tna 61Tn(1+)<a)

 

(45)

The first term on the right-hand side of equation (45) represents the

Stoke's law limiting velocity of an ion subject to an impressed forCe iii.

and moving in a medium of viscosity 3. The second term, a retarding

velocity, must represent the correction to the velocity due to the electro-

phoretic effect. It has been shown that

96, 500

i: 300x Vi (35)

and the refore
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96 500 ej 96 .500 2.1L.
: __’._ ._._.._... _ —.’__— 4

kj 300 ( 61Tna) 300 ( 61rn(l + )ca)) ( 6)

which may be written as

. = 9 - . 47xJ iJ (A 16)) ( )

where

_ 96,500 . >c
(A). e)J - 1800“ n I eJ I H Xa (48)

For point charges where a = 0 the correction may be written

96 500 ,.
- = - —-—’-———~— . )L = - . ~( g

(A )‘eb l800fr n I eJ ' - fiJ C (49)

The total correction to the conductance Me can be obtained by summing

over all kinds of ions.

II. The Time of Relaxation Effect

The relaxation effect is mathematically more difficult to evaluate.

It will be recalled that the electric field due to the ionic atmosPhere may

be expressed as X = “V’Wj' The quantity Y/IJ. is equal to ’4); + 1p},

where w; is the Spherically symmetrical equilibrium potential function,

and '2'!le is the asymmetric contribution to this function. Hence, the

relaxation field _A_X_,_ evaluated at the central j-ion and due entirely to

this asymmetric portion, is given by

AX : " v ”w; (50)

14}; must be obtained by solution of a differential equation formed by the

following series of steps.

(1) Since we can write the distribution function fji = £31 + fji'.

Poisson's equation can be applied simply to the asymmetric quantities as

‘~ A ~ 4 'n‘ S
2 . | = _ _ fl .. . . 1
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(2) To find fji' we need the hydrodynamic equation of continuity for

stationary states (100) namely,

2 _ —‘ .. "H -
v _ (fji vji) + V1 — (f1J vlJ) .. o (52)

(The total distribution functions are used in this equation.)

31

from the general expression for the relative velocity,

(3) We now need the quantities v" and 9’15 and they can be obtained

‘31 = R735 + mi (Kji - kT V2 1n fji) (53)

where is is the solvent velocity in the neighborhood of a j-ion

in is the force on an i-ion in the neighborhood of a j-ion.

kTvz 1n fji is a term that was not considered by Debye

and Hiickel, which arises from the. Brownian motion of the ions. Onsager

considered this a restoring force to the symmetry of the ionic distribution.

The remaining terms have previously been defined. A completely

—.8

analogous expression may be written for $ij' The force Kji may be

further defined as a sum of three forces

_.8 A I

Kji = eiXi - einIPi (a) - ei V2 Wj (54)

The first term is the x-component of the applied external force. The

second is the force of its own atmosphere on the central i-ion. The

third is the force on this i-ion due to the neighboring j-ion and the

atmOSphere of this j-ion.

Combination of the equations discussed above results in a very

complicated. differential equation, the method of whose solution we will

briefly indicate. This equation is solved subject to the following four

boundary conditions:



33

(1) The gradient of the potential function of the central ion must

become zero at an infinite distance from this ion.

(2) and (3) Both the potential and its gradient, the field strength,

must be continuous at the surface of the central ion where r = a.

(4) At the moment when two ions strike each other the radial

component of their relative velocity must be zero because they

are considered to be rigid spheres. This latter condition was

introduced by Falkenhagen (101).

The terms of this differential equation were then classified by

Fuoss according to the power to which ‘X. will appearin the unknown

solution. For the first order solution he retained terms of order )6 ‘

and for a second order solution terms giving X 5, neglecting any higher

order terms. The problem was then further'limited to a single electro-

lyte with only two kinds of ions.

A first approximation to the solution for the asymmetric distribution

function is then found ignoring the higher order terms, as follows:

We set

I

"I’j = 11% + Pj (55’

and

f.. = F.. + g.. (56)

where W and Fji are the first order approximate asymmetric potential

and distribution functions. The contributions of higher order terms are

A , '

denoted by pi and 3ji° The functions 14/5 and fji are related by Poisson's

equation. The solutions for \Fj and Yi are identical and are denoted

by \If . The exac‘t’”‘55cpression for if is shown in the original paper (102).

The relaxation field is found from

- vxw= AX (57)

For the first approximation we consider only the case of point charges
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and thus obtain A X0, which was the result first obtained by Onsager in

1927. Since i = l and j = 2 then

 

AXO _ €162.qu _ a(_*'

x ‘ 3DkT(1+q) ' ° C (58)

The next approximation, which gives AXl, is made when the ions are

considered as hard spheres of radius a, instead of point charges. This

approximation is expressed as a correction, -AX0A1, to the previous

solution. This results in the expression

  
 

AX, : AX0(1 - A1)
(59)

where

X3.(1 + q) xa<1 + 91 xZaZ
z

A z + + 3 60

1 P3 (1 + X81) pr3 p3(1 + X8.) (q q /) ( )

where

_ 16182)

a DkT

p3=1+qxa + qu} az/3

NOW é—iX—l-z - (IN/C (l-AI)
(61)

A second order approximation could now be made by substitution of the

known value of I? and Fji into the original differential equation to obtain

pJ- and gji and so obtain the exact correction to AX. The mathematical

complications involved thereby led Fuoss (10) to approach a solution in

another way. He divided the contribution gji into a sum of four terms

and devised a method for deriving the second order approximation for

AX directly, without computing ’1}! j. as an intermediate step. Of the

four terms thus obtained, one, AXV, requires knowledge of the radial

component of the solvent velocity which has been previously given by

equation (45). The contributions from the other three terms are all

\

proportional to A X0 and are combined as
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AXB o. AXa+Axm= AXOAZ (62)

where, for symmetrical electrolytes

(1+ 9) xa ‘

- 2132(1 + Xa) (63)

 

_ 'b(1+q)xa 114—131

92-10mm: J[z4p.p.3*Ts + FM]

A complete description of the rather complicated terms involved inthis

expression and for the three terms on the left-hand side of equation (62)

are given by Fuoss and Accascina (103). The part of the relaxation term

due to the velocity field is given by

'—*

I

where A3 is included in the description by Fuoss and Accascina (103).

The complete relaxation term can now be expressed as,

_-—=e'\(_*(l-A1+Az++13%, (65)

III. The Viscosity Correction.

The viscosity correction is only applied when large ions are involved.

"Bulky" ions interfere with-motion of a particular ion through. the solvent

which, in effect, increases the viscosity of the solvent. . The mobility of

the ion is inversely proportional to the viscosity of the solvent medium.

Since the equivalent conductance is proportional to the mobility we con-

clude that it is also inversely proportional to the viscosity. In order to

estimate the correction, Fuoss (5) used. the Einstein viscosity expression

n =no(1+5¢/2) _ (66)

where i is the ion volume fraction, 31 the solvent viscosity and a the

viscosity experienced by the ion. ' If we assume the ion to have a radius

5, then

¢ _ i n R3 (N (#100015; c (66)

‘ 3
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Let 55/2 be equal to F. Then the conductance equation becomes

AX

. Ww—

IV. The Kinetic Correction.

The kinetic term of Fuoss and Onsager (1 1) has already been

described as an increase in probability of collision from behind due

to the asymmetry of the annosphere of the reference ion. ‘ Alternatively,

it can be considered a local osmotic pressure at the reference ion. If

the distribution function is given by the approximation

_ 0

then the osmotic pressure 1r, due to the field is given by

n = FJ.i kT/ni (69)

The force A P is given by the directed component of the osmotic

pressure 1T integrated over the surface of the sphere of radius _a_. The

resulting A P for a symmetrical. 1-1 electrolyte is

AP = X(xza:2£b'1)) (70) 

The ionic velocity then becomes

VJ. = (x + AX + AP) ( ej wj) - vjs (71)

The conductance equation (67) with this additional term then becomes

the complete conductance equation,

AX AP

_ (/\-A/\e)(1+—+—)

1‘5 0 x X (72) 

l + Fc

This conductance equation is limited in application to symmetrical

electrolytes and to concentrations of less than 0. 1 normal. No less than
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two adjustable parameters, the limiting equivalent conductance/\o

and the distance of closest approach a, are contained in the equation.

The ion-pairing constant K may also appear as an adjustable parameter.

Fuoss and Accascina (104) have shown that equation (72) may be

eXpanded with the use of several approximations, to a convenient form

of

A = A0 - S N] c"‘ + Ec’ilog c* + Jc’:< - FAD c* (73)

where expressions for the constant S, E, J and F are summarized by

the same authors and are also discussed later in this thesis. Equation

(73) has two familiar limiting forms. At low concentrations in solvents

of high dielectric constant it reduces to the Onsager limiting law

A: A0 ' S‘VC (74)

Onsager derived this in 1927 from a general treatment of the motion of

ions. In solvents of low dielectric constant where considerable ion

pairing might be expected, it reduces to Ostwald's dilution law. Fuoss

feels that this equation (73) "bridges the gap between systems with

negligible association and those with marked association and provides a

mathematical description of the transition. "

Empirical Extensions of the Onsager LimitinLLaw.
 

While Onsager's limiting law adequately described the behavior of

many dilute l-l electrolytes up to 0. 001 normal, several attempts were

made in the succeeding years to modify the equation to represent data

at higher concentrations and for higher charge-type ions. Shedlovsky

(105) proposed an equation to be used for extrapolation by simple re-

arrangement of Onsager's limiting equation. The latter may be written

in the form

./\= [\o-(a../\0+fi)~(c
(75)
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which Shedlovsky rearranged to

_(/\‘U§~(C_)_ '
Ao-(l-GN/c— ):/\0 (76)

Since the fraction above varies almost linearly with concentration he

defined an extrapolation function/\o . Then/yo is plotted versus

concentration and extrapolated to zero concentration. The values ofA;

should become constant through the concentration range in which

Onsager's equation is valid and should therefore have zero slope near

zero concentration. Its intercept with the A; axis should be the true

value of A o-

Onsager (2) and Onsager and Fuoss (3) in 1932 proposed an em-

pirical extension by adding two terms to the limiting law such that

_/\_=/\‘0-S(M\/c +Aclogc +Bc (77)

The constants are evaluated by rearrangement to

AL-A.

C

 

= Alogc+B (78)

followed by plotting the left-hand side of equation (78) against log c.

The value oon must be adjusted and/\L recalculated, until a straight

line is finally obtained giving the slope A and intercept B. Owen(56)

used this method extensively and with marked success for such salts

as potassium, barium, and lanthanum chlorides. The method has

subsequently often been referred to by other authors as the Owen

method or Owen plot.

It is noteworthy that equation (73) now gives some theoretical justifi-

cation for use of the additional terms of the form used in equation (77).

Dye and Spedding (12) found that much better agreement with theory

was obtained for certain higher charge-type electrolytes if higher terms
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in the distribution function were retained in considering the complete

electrophoretic effect. It will be recalled that the potential function

obtained by consideration of equilibrium systems was

 

o eje xa e‘ xr 26

vi _ D(1 + xa) '7 r ( )

and that

njoi = ni exp( - ei ch/kT) (27)

The exponential was then expanded in a power series to be substituted

into the final expression for the distribution function. Dye and Spedding

alternatively suggest using the complete exponential so that the expression

for the distribution function becomes

-eieie xa e' Xr

DkT(l + )ta) r

 

(79)
0 ~ 0 -fji - nan exp (

It is this distribution function which is then used in the treatment of the

electrOphoretic effect. From the Stoke's law development of this effect

the ionic velocity correction due to electrophoresis is known

.0

Av.=— £1.er (nji-ni)ei]dr (80)

Since nji = fJ-oi /nj, the new distribution function is substituted into this

expression. The correction A X j to the conductance is

96,500 A v- (81)

A”: 300x J

Considering an electrolyte which dissociates into only two kinds of ions

and defining

p : Xr

X = xa

P = Xex/DkT (1 + x)

M _ 96, 500 D k T
 

1800 n n€(,|z+| + I z_|)
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and using the relationships that

 

 

Hz... cNe v,z-c N6

: d _ _ :

n+e+ 1000 an n e 1000

I ”+Z+ l = I V-z- I

Dye and Spedding obtained

00 z —p -

A).+= pr [exp[ -z+ Pe ] -exp[IZ1ZzIPep]] ap (82)

X

p p

and an analogous expression for A X_ where Z_ is used instead of Z+.

Experimental conductances of unsymmetrical rare earth electrolytes

were found to have much better agreement with theory using this extension.

Karl (13) has also evaluated this effect for univalent electrolytes in water~

dioxane mixtures.

A test of any interionic attraction theory may be made through

experimental measurements of the transference numbers. ' Transference

numbers are simply related to the individual ionic conductances so that

a correct conductance theory should yield correct transference numbers.

The transference number of the j-ion is defined as

Tj = ——é—i—— (83)

Z :1.

i=1 1

where —ij is the current carried by the j-ions and 2 ii is the total current

i

carried by all ions in the solution. The transference number may also

be expressed as

Tj = fl = EL = 3:1. (84)

izpi izxi A

We can write therefore, using equation 40,

T. = (x2- (AmiHli-AX/X) _ x3 (Ax.e)j

3 ATP AAeY (1 + AX/X) " A, _ AAe (85)
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Simultaneous with the development of the conductance theory

described, two other effects were theoretically investigated, based upon

the interionic attraction theory. The limiting law for the viscosity of an

electrolytic solution was deduced by Falkenhagen (106, 107). This

verified the conclusions reached experimentally that the viscosity of

the solution was proportional to the square root of concentration.

It was also shown by Onsager and Fuoss (3) that, to a first approximation,

the relative increase in the viscosity is proportional to the ratio of the

radius of the ion to that of its atmosphere. The viscosity increase due

to large solute particles was explained by Einstein (108) as due to the

interference of particles to the flow of an ion. This has been dealt

with earlier in this paper.

The second effect was the influence of high intensity fields upon the

properties of solutions. This is known as the Wien effect. Under very

high potentials, ions move so quickly that the ionic atmosphere does not

have time to form completely or, in fact, may not form at all. Wilson

(109) has obtained a complete solution for this problem in the case of

electrolytes which dissociate into two kinds of ions. Onsager (110) has

shown that at high field strength the ionization constant will increase

and has obtained an equation relating this constant to the field strength.

As this brief survey has indicated, the interionic attraction theory

has been applied with some success to equilibrium and irreversible

proces see in solution.



IV . EXPERIMENTAL

A . Materials

Zinc sulfate: Mallinckrodt analytical grade reagent was recrystallized
 

twice from boiling conductivity water and once from cold conductivity

water. From this, stock solution was prepared. The stock solution

was filtered and the pH determined as 5. 8. The pH of the unrecrystallized

salt solution was 5. 1. Concentration of the stock was determined by

ignition to the anhydrous sulfate at 4000C as recommended by

Cowperthwaite (111). The samples were also ignited to the oxide at

8600C. for twenty-four hours in a furnace which had previously been

calibrated. A somewhat higher temperature can give a yellow modifi-

cation of the oxide. Molality of the stock solution was found to be 0. 2297 j;

.03%.

Lithium chloride stock solution was prepared according to the method
 

of Scatchard and Prentiss (112). A solution of lithium carbonate c.p. in

conductance water was treated with hydrochloric acid and flushed with

nitrogen until the pH was 6. 5. The solution was then filtered and aliquots

were taken to be analyzed by the silver chloride gravimetric method.

Normality was found to be 1.747 i=0. 5%. Subsequent solutionswere

prepared from this stock solution by weight dilution.

Potassium chloride was prepared from Baker c.p. reagent by recrystal-
 

lizing twice from conductivity water followed by fusion in platinum ware

under a stream of nitrogen, following the recommendation of Pinching

and Bates (113). The resulting salt was dissolved in carbon dioxide free

conductivity water. Subsequent solutions were made by weight dilution

of the stock solution.

42
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Tetra-n-butylammonium sulfate was prepared by the conversion to the
 

sulfate of the iodide salt. The iodide salt was recrystallized once from

conductivity water. It is only moderately soluble in water. Silver

oxide was prepared from seven grams of sodium hydroxide and twenty-

three grams of silver nitrate. The oxide was washed about thirty times

with hot water and was then added to the tetra-n-butylammonium iodide

solution. This was mixed under a nitrogen atmosphere for 15 hours

to give the tetra-n-butyl ammonium hydroxide. The solution was then

filtered through sintered glass and titrated with standard sulfuric acid

to a pH of 7. 0 as recommended by Fowler it 2.1“ (114) to convert to the

tetra-n-butylammonium sulfate. The most concentrated solution we

were able to prepare was 0. 04867 N. Volume dilutions were made as

necessary.

Zinc perchlorate stock solution was prepared from G. F. Smith Chemical
 

Co. salt, recrystallized three times from conductivity water. The stock

solution was analyzed by adding sulfuric acid to weighed aliquots, and

evaporating to fumes of 503. The residues were dried to both zinc

sulfate at 400°C. and zinc oxide at 860°C. Molality of the stock solution

was determined as 0.4450 i 0. 09%.

Conductivity water was prepared by the distillation of demineralized
 

water from alkaline permanganate solution. This distillate was subse-

quently redistilled under nitrogen. The water was transferred under

nitrogen pressure directly to the conductance cells or solution flasks.

The exit from the distilling receiver was fitted with a stopcock followed

by a piece of tygon tubing which could be connected directly to a con-

ductance cell. The Specific conductance never exceeded 7. 3 x 10'7 ohm"1

cm'l.

Potassium octacyanomolybdate prepared according to the method given
 

in "Inorganic Synthesis, " was obtained from Dr. F. B. Dutton (115).



44

The salt was then recrystallized from conductivity water by the addition

of ethanol. Stock solutions were made up by weight dilution. The

concentration was checked by titration with standard ceric sulfate solu-

tion. This was standardized by the method of Willard and Furman (116).

The concentration was in agreement to within ' j; 0. 06%.

B. Apparatus
 

l. Transference. The transference number of zinc sulfate was
 

obtained using the sheared boundary technique (64). A modification of

the equipment used by Spedding, Porter and Wright (74) was employed.

The transference cell consists of an anode compartment fitted to the end

of a Pyrex hollow-bore stopcock at which the boundary was formed. The

stopcock was connected through a middle opening to a two millimeter

Corning measuring pipette. The pipette was connected to the cathode

compartment through another hollow-bore stopcock, which permits use

of the same cell with a rising boundary. The anode and cathode com-

partments were provided with female ground glass joints to accommodate

the male joints into which the electrodes were sealed. Side arms with

stOpCOCkS were attached to the electrode compartments. Removable

glass cups were used to prevent the products of the electrode reactions

from contaminating the measuring tube. The measuring pipette was

marked by a diamond stylus with fine semi-circular cuts, with a gap

left both front and back to facilitate accurate and reproducible timing.

The tube was calibrated three times with mercury as recommended by

Longsworth (78). The measuring pipette was filled with clean mercury

and mounted vertically with a stopcock at the bottom to allow mercury to

be withdrawn into a weighing flask. A cathetometer was used to measure

vertical distance in the pipette and was fitted with a micrometer

microscope with 900 crosshairs. The vertical position on the graduated

scale was measured by means of a vernier which was in no particular
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units and henceforth will be referred to as 'turns.‘ The temperature

variation with time (in the constant temperature room) was plotted along

with the variation in meniscus reading with this temperature fluctuation.

Since maximum and minimum of temperature and meniscus height occur

together, we recorded the temperature simultaneously with each reading

made on the pipette. Later a temperature correction was made and will

be described. Calibration was done from top to bottom of the pipette

starting with the first split mark. The mercury was run out to just

slightly above the first mark and the weighing bottle weight recorded.

The microsc0pe crosshairs were then set on the split mark with the

vernier on the zero position. - The turns necessary to bring the crosshairs

to the level of the mercury mensicus were determined. These were

recorded as positive turns. The temperature was recorded.

The mercury was then allowed to run into the weighing bottle until

the meniscus was just below the split mark and the new weight of weighing

bottle recorded. The vernier was then returned through zero and the

crosshairs again aligned with the meniscus. This reading was recorded

as negative turns. The temperature was recorded at the same time.

The mercury was then run out to just above the second mark and the

procedure repeated. Typical data are shown in Table 1.

Since it was necessary to make a temperature correction, a relation-

ship between the number of turns and the temperature was derived as

follows:

The coefficient of thermal expansion for mercury is

AV1

v ' KT- ‘86)
a:

where A T is 250C minus the temperature at the time of reading, and V

is the volume of the mercury. The total volume Y_ is 2. 90 milliliters-

at the zero mark. The volume may then be expressed as

V : 2. 90 — (0.10) (number of the mark) (87)
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The quantity AV is then expressed as

AV=C1VAT=AhA . (88)

where h is the height of the mercury and A is the cross sectional area

of the tube. If r is the number of turns and k_. is equal to the turns/inch,

then

Ar=Ahk= Av=-1%1-VAT (90)

>
|
W

but A V is also equal to A m/p , where 111- is the mass of the mercury

and B is the density. Following from this we can write therefore

D m
— 91p ( )

and

k/A = p A r/A m (92)

The number of turns (uncorrected for temperature) and the weight,

enables one to calculate an average value for A m/Ar, grams per turn.

This value was used to give a first approximation to k/A. Then, by

successive approximationsJ an expression forA r was determined where

Am/A r = 0.0156 grams per turn. From equation (90)

_ pAr
Ar— Am aVAT (93)

where_p_ is 13. 53 grams per cubic centimeter and g, is 0.1817 x 10'3 deg'l.

The final eXpression then for A r is

Ar=0.157VAT (94)

This correction on the number of turns, r, was made for each reading

and tabulated in Table l. The number of grams per turn was calculated

and averaged for all three of the calibrations.

It is now possible to calculate what the weight of mercury would

have been had the meniscus been exactly at the zero mark for each

reading, as follows.
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Table 1. Data Used in Calibration of Transference Tube.

  

 

 

Corrected

Mark Turns Weight Temp. Turns gm/Turn

O +7.922 20.6413 23.35 +8.67 0.0153

0 -5. 100 20.8491 24.65 -4.94

l +3.798 22.1364 22.50 +4.89 0.0165

1 -3.077 22.2625 24.50 -2.66

2 +8.155 23.5113 23.00 +9.00 0.0157

2 -3.843 23.6928 22.00 -2.58

Average Wt

at Zero Interval Wt. Interval Vol.

0 20. 7743 1.4426 .1066

1 22. 2169 1.4353 .1061

2 23.6522 1.4338 .1059

3 25.0860
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Weight of mercury with meniscus +8.67 turns above zero - 20. 6413 gm.

+ 8.67 turns x 0.0156 gm/turn .1353 gm.

Weight of mercury with meniscus at zero 20. 7766 gm.

The same procedure was followed, by subtracting the amount of mercury

from the amount that was actually weighed:

Weight of mercury with meniscus - 4. 94 turns below zero - 20. 8491 gm.

-4.94 turns x0.0156 gm/turn .0771 gm.

Weight of mercury with mensicus at zero 20. 7720 gm

These two values were averaged. In the same way, average values were

obtained for each mark. The difference between two successive marks

are listed in Table l as the interval weight. Since the density of mercury

is known at 250C, the correSponding interval volume was calculated and

tabulated in Table l.

The boundary between two solutions of different refractive indices

can be detected by placing a light source behind and slightly below this

boundary and viewing the tube from the front. The light source used was

a vertically mounted fluorescent light covered by a cloth shield with a

one quarter inch horizontal slit. This shield was lowered or raisedto

position the slit as the boundary movement was followed, by attachment to

the drive shaft of a 110 volt reversible d. c. motor. The boundary was

viewed through a thirty power telescope placed about 10 feet from the

cell. Constant temperature was maintained in the cell by placing it in an

aquarium-type water bath where the temperature was maintained at

25. 000C 1 0. 05°C as determined by. a platinum resistance thermometer

calibrated by the National Bureau of Standards. The calibration was

rechecked by determining its resistance at 0°C. This was'done by im-

mersing the thermometer in a Dewar flask containing conductivity water

in equilibrium with ice made from the same water. The constant

temperature bath was stirred by a Gorman-Rupp pump fitted with glass

tubing intake and exhaust. A 150 watt infra—red bulb was used as a heat
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source. A constant head of water fed to copper coils was used for cooling.

A precision Micro-set Differential Range thermoregulator was used to

control the temperature.

The boundary movement was timed by two stopwatches mounted in

a stand with an adjustable hinged t0p so that one watch could be simul-

taneously started while the other was stopped. The watches were checked

with the standard WWV time signal and were accurate to three seconds

over a twenty-four hour period.

Constant current was obtained with an electronic controller and

balancing motor. A complete description and adiagram of the current

controller is given by Karl (13).

The entire apparatus was checked at intervals by measuring the

transference number of potassium chloride followed 'by lithium chloride.

These results agreed with published values to within 0. 05%.

2. Conductance. Conductivity measurements were made using a
 

bridge designed by Thompson and Rogers (117) modified by the addition

of a Wagner ground circuit. The source of the alternating current to

the bridge was supplied by the oscillator shown in Figures 2A and 2B,

designed to produce essentially sinusoidal wave forms from 400 to 4000

cps. The unbalance signal from the bridge was amplified by the narrow

band amplifier shown in Figure 3. The output of this amplifier was

applied to the vertical input terminals of a cathode ray oscilloscope.

The horizontal input of the oscilloscope was driven by a signal of adjust-

able phase taken directly from the oscillator. The power supplies for

these circuits are shown in Figure 4.

Because the two fixed resistors R1 and R2, in the bridge circuit

shown in Figure 5 are equal, the bridge is balanced when the impedance

of the cell is equal to the impedance of the parallel R-C arm consisting of

R3 and C1. Thus, at balance, the resistance of the cell is equal to R3,

which is read directly on the decade dials on the face of the instrument.
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The noise level in the unbalance signal is minimized by the Wagner

ground circuit which allows the point B to be set at ground potential

without being connected to ground. By successive balancing of the

Wagner ground circuit with switch SI in position 2, and of the bridge

circuit with S, in position 1, a balance point is achieved where Rcell =

R3, Ccell = C1, and points A and B are both at ground potential.

The set of decade resistors, R3, was calibrated internally by the

method prescribed for internal calibration of Mueller Bridges. It was

not necessary to perform an absolute calibration of the bridge against

external resistors, for the conductance cells were always calibrated

with standard potassium chloride solutions.

The constant temperature bath was filled with transformer oil to

minimize capacitive effects. The temperature was maintained at

25. 000°C 1 0. 015°C as determined by a platinum resistance thermometer.

The bath was shielded by c0pper screen encircling it, the screen being

at ground potential. A metal baffle covered with black baked-on enamel

was placed towards the edge of the circular bath to facilitate stirring,

which was done with a Gorman-Rupp liquid pump. For work at low

concentrations, conductivity cells were constructed from Leeds and

Northrup type "A" cells, by sealing the cell into a 500 milliliter

Erlenmeyer flask as shown in Figure 6. Modifications from similar

cells used by Kraus e_t 11. (118) included a side arm with a stopcock as

well as a stopcock exit in the cap. This arrangement allowed conductivity

water to be pumped directly into the cell from the receiving vessel of

the still. i It also provided a means of insuring an atmosphere of nitrogen

over the solution in the cell during the further addition of solute. To re-

duce polarization effects caused by the alternating current, the electrodes

were very lightly platinized according to the recommendations of Jones

and Bollinger (28). The electrolytic platinizing solution was about three

percent chloroplatinic acid and 0. 02 percent lead acetate. ‘ About twenty



Figure 6 . Conductanc e C e11.
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milliamperes of current were used, withlthe polarity reversed every

ten seconds for a. total period of forty seconds. The cell showed very

little Parker effect upon calibration over the same range of resistances

as were used with the samples.

C . Procedure
 

l. Transference. The transference tube was cleaned with
 

alcoholic KOH and acid cleaning solution after every four or five determinw

ations. After thorough rinsing with distilled water it was allowed to

stand with water for twelve hours to insure removal of the acid from the

glass. Between other determinations it was thoroughly rinsed and allowed

to stand with distilled water in it. Silicone grease was used on the StOpw

cocks. The cell was rinsed several times with zinc sulfate and then

filled, the electrode cup and the silver-silver chloride electrode inserted

and the side-arm stopcock closed. The anode compartment was then

shut off by the upper hollow-bore stopcock, rinsed with water, followed

by tetra-n-butyl ammonium sulfate solution made up to the concentration

given by the Kohlrausch ratio with an estimated value of the transference

number of the zinc ion. When the cadmium electrode was in place, the

cell was completely rinsed on the outside with distilled water. The sides»

arm stOpcocks were then opened until temperature equilibrium could

be reached.

The cell was checked for electrical leaks to the bath by a vacuum

tube ohmmeter and aligned vertically with the light and telescope. The

Leeds and Northrup potentiometer was balanced against the standard

cell, the leads connected, the hollow-bore stopcock opened and the

current turned on. The current was adjusted to allow about 170 to 250

seconds for the traversal of the volume between approximately . 1 ml.

markings. Temperature equilibrium was reached by the time the

boundary reached the first mark since this always took more than one-half
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hour. The side-arm stopcock in the cathode compartment was left open

during the run, the anode closed. Only the volume changes which occur

between the boundary and the closed side then need to be considered.

Stopwatches were used to determine the time for the boundary to pass

each mark.

The zinc sulfate solutions were made up by weight dilution of a

. 2298 molal stock solution. Densities of three solutions were measured

in a 50 ml pycnometer. The equation of the line giving density as a

function of molality, m, was found to be:

p = .9970 + .1607 m (96)

This equation allowed calculation of the normalities of the solutions from

the known molalities, as well as evaluation of the partial molar volume

of zinc sulfate.

2. Conductance. A standard resistor, about 24K ohms, enclosed
 

in glass and immersed in the oil bath, was permanently mounted so that

it might be connected in parallel with conductivity cells when their

resistances were very high. The resistance of this standard was recorded

with each run, through a range of 400 to 4000 cycles per second. The

conductance cells were cleaned with detergent and water, followed by

rinsing with distilled water, conductivity water and oven drying. When it

became necessary to replatinize the cell, it was cleaned with fuming

nitric acid followed by rinsing with water before platinizing. The cell

afterwards was then rinsed about thirty times before proceeding as before.

The cells were calibrated with potassium chloride solution using

a technique described below which was later used with both zinc perchlorate

and potassium octacyanomolybdate (IV).

The stopcocks of the dried cool flask were coated lightly with Dow

Corning High vacuum grease. The cell was then weighed and conductivity

water was forced into it under nitrogen pressure. The total weight was
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then determined and, from this, the weight of water, which was then

corrected to weight in vacuum according to the equation

weight(vacuum) = Weight(air) + k Weight<air) /1000 (97)

where k for brass weight and solution density of approximately one, is

1. 06 (119).

The cell was then placed in the oil bath in parallel with the standard

resistor. Occasional gentle mixing was found desirable to shorten the

time required to attain temperature equilibrium. - Care was taken that no

water or solution was ever allowed as high as the side arm outlet since

additional mixing would then be difficult and solution strength inaccurate.

The equilibrium point was determined by the constancy of the resistance

measurement. When a constant value was obtained, the resistance of

the standard resistor was then recorded for frequencies of 400, 600,

1000, 2000 and 4000 cycles per second. There was always a small

amount of frequency dependence of the resistance so that resistance

versus the reciprocal of the square root of the frequency was plotted and

extrapolated to infinite frequency following the method of Jones and

Christian (37). - Reasonably straight lines were thus obtained as shown

in Figure 7. The uncertainty of the extrapolation is estimated as less

than i O. 02%. Whenever the value of resistance at infinity differed from

that at 400 cps by more than 0. 3% the cells were cleaned and replatinized

and the cell constant redetermined.

The resistance of the water was then'measured and calculated from

the relationship

1/Rtotal : 1/Rwater + 1/Rstandard (98)

The cell was then removed from the bath and connected to the nitrogen

line, with the cap off. Stock solution was added from a weight burette

while nitrogen was flowing through the cell. The cell was then closed
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off and the solution thoroughly mixed before returning it to the bath.

Repeating this procedure gave resistance readings over a range of

increasing concentrations.

All weights used were previously calibrated against a ten gram

National Bureau of Standards calibrated weight.

The potassium chloride solutions which were used for weight

dilution were prepared according to the method of Jones and Bradshaw

(39). They contained 0. 74526 grams of potassium chloride per kilogram

of solution in vacuum.

D. Results

1. Sample Calculation to determine a cell constant.
 

Weight of water in vac. 341. 72 g.

Weight of solution in first addition 9. 12 g.

Total solution weight 350. 84 g.

Weight of solute added 2 g—l‘lJiOg-Lé— x 9.1237 = 6. 7995 x10"3 g.

Total solution weight 350. 84 g.

Solute weight 0. 01 g.

Solvent weight 350. 83 g.

_ gm. of solution 1000
 Molalit of ne solut'o -

y w 1 n molecular wt. of solute weight of solvent

2. 5995 x 10" moles/1000 gm of solventm

The molarity, 2' of the solution is related to the molality E by the

relationship

c : m(do - Am + Bmz) .
(99)

where the constants are given by Harned and Owen (120) as

do = 0.99707, A = 0.0284 and B = 0.0003 for KCl at 25°C.

It then follows that

c = 2.5914 x 10-4 equivalents/liter
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The value of A was then evaluated from an empirical expression of

Onsager (3)

A: A0 - SM) Kf—c— + Ac logc + Bc (77)

where

A is the equivalent conductance of KCl

A0 = 149. 87, the limiting equivalent conductance

c = molarity of the solution

A = 31.8 (reference 121)

B = 144 (reference 121)

S”) = 0*A0 + [3* where Q* .2289 (reference 122)

(3* 60. 19 (reference 122)

From this A = 148. 35 ohm'1 cmz equivalent'1

The specific conductance of potassium chloride is

LKC1 c A /1000

2.5914 x 10-4 x148.35/1000 (2)

3. 8448 x 10-5 ohm'1 cm" '

We know that

(Lsolution) (Rsolution) : k = (LHzO) (RHZO) (100)

where Lsol and LHZO are the Specific resistances of the solution and of

the water reSpectively, and R501 and RHZO are the re31stances of the

solution and the water respectively, and k is the cell constant.

 

Then

LHZO = (L501) (R501) / RHzo (101)

But Lsol = LKCI + LHZO (102)

It then follows that

L _ LKc1 _

sol ‘ R (103)

1 _ sol

RI—Izo

_ 3.8448 x10"5 5 1 ‘
 2 6483x10r = 3.8919x10- ohm- cm-

1'2.0400 x106
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From equation (100) it then follows that

k = (3.8919 x10'5) (2.6483 x104): 1.0307

The water which was added in the stock solution from the weight burette

was at equilibrium with the carbon dioxide of the air and its conductance

was found to be about 1 x 10'6 ohm-1 cm'l. To correct for the added

conductivity due to this impure water, the Specific conductance of the

pure water was calculated, using the approximate _1_<_ obtained above.

L = 1.0307 / 2.04 x106 = 0.5 x10"6 ohm”l cm“1
HZO

The correction A k on the cell constant was then

wt of solution added .
 

A k [ ( Limpure water)'(Lpure water” ( total wt. of solution (104)

- .. -6 1.1.23 4 _ -4
(R801) —. (l .5) 10 (341.7) (2.6483x10)— 3.5x10

Therefore the correct cell constant becomes k + A k

= 1.0307 + 0.0004 = 1.0311
COI'I'.

The results of the cell constant determination are shown in Table 2.

Figure 8 shows graphically the scatter in determining the constant of

cell 2. A check on the cell constant determination was made with one

of the cells using standard barium chloride solution. The equivalent

conductance was determined for five different concentrations. These

agree well with the results of Shedlovsky and Brown (123) on the same

salt. The equivalent conductances they obtained at the same concentrations

are shown with those determined in this laboratory in Table 3.
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Table 2. Conductance Cell Calibration with KCl.

 

 

Run No. N x104 k

1- ceu 2 3.0325 0.25028

5.2551 0.25028

7.6917 0.25013

9.8326 0.24998

11 2.4124 0.25031

3.9681 0.25017

5.7619 0.25026

7.8759 0.25023

10.0597 0.25007

111 1.8854 0.25009

3.9054 0.24995

6.4277 0.24995

1 — cell 3 4. 1094 1.0339

6.8161 1.0365

10.216 1.0357

12.409 1.0356

15.841 1.0341

11 5.8979 1.0336

10.652 1.0347

17.393 1.0362
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Table 3. The Equivalent Conductance of BaClz.

4

NICE“ x 107‘ A Shedlovsk A. This Lab.
Y

 

1.83 136.76 136.44

2.196 136.06 136.06

2.49 135.55 135.57

2.95 134.72 ' 134.63

3.30 134.10 134.06
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2. The Equivalent Conductance of Zinc Perchlorate.
 

The equivalent conductance of zinc perchlorate was determined

using the same experimental procedure used to determine the cell constant.

Since the cell constant_1_<_was known, the Specific conductance of water

and of each solution could be calculated from the relationship L = k/R,

where I; is the resistance in ohms of the solution. The density of zinc

perchlorate was determined using a fifty milliliter pycnometer. This

enabled the conversion from molality to normality to be made. The

density change with molality can be represented by the equation

p = 0.99707 + 0.1985 m (105)

Sample calculations
 

Weight of flask + water 612. 92 g.

Weight of flask 291. 90 g.

Weight of water 321. 02 g. = 321. 36 in vacuum

Weight of first addition of stock solution = 0. 3818 in vacuum ‘

The molality of the resulting solution can be found from the relationship

 

ms g

m: (106)

1+m M
A

g+w( 1000 )

where 13 is the molality of the new solution, Ins is the molality of the

stock solution, g is the weight of stock solution added, w is the weight of

pure water in vacuum and 111 is the formula weight of zinc perchlorate.

m = 0°03798 (0°3818) = 4.3575 x10"5 moles/

.3818 + 321.36 (1+ ”3738206419”

 

 

1000 grams solvent.

The normality of this solution can then be calculated from the relationship

. _ 31‘ __ 2p m

normality - c — :I—n-m (107)

1000

where p is the density of the solution

c*= 8.6896 x 10'5 equivalent/liter.
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1.0350

1.420 x106 ohm

= 9%104 ohm = 1'1209 x 10-5 °thI

Now L = k/R = = 0.729 x10"6 ohm'l
H20

and Lsol = k/Rsol

_. _ -5 -1
Then LZn(C104)z — (L801) - (LHZO) — 1.0480 x 10 ohm

The specific conductance of the bulk of the water was much lower than

that of the water in the stock solution which was in equilibrium with carbon

dioxide in the air, and had a Specific resistance of 1 x 10'6 ohm‘l. For

this reason a correction, A L, was made on the L of Zn(C104)2 as follows:

Lcorrected : Lmeasured _ A L (108)

where

A L 2 (L of water in stock) - (L of solution water)

. (109)

(weight of stock solution water)

(total weight of water)

 

AL=(1-.7)10' —‘—— = .00008x10'5

-5 -1
Lcorrected (1.0480 - 0.000004) x 10 ohm

1.0480 x10"s ohm"1

This correction is negligible here and only becomes significant

at higher concentrations.

I"'corrected 1000 1.0480 x 10‘5 x 103

ZMCIO‘)?‘ = c = 8.6896 x 10" :

  

120.60 ohm‘l cm“Z equivalents‘1

The extent of hydrolysis of zinc perchlorate was checked in two ways.

(1) The pH of the stock solution and several dilutions were determined

using a Beckman Model B pH meter. (2) These solutions were acidified

to pH of 3 with perchloric acid and were titrated with standard sodium

hydroxide. The equivalence pH was determined graphically by plotting

A pH/A ml versus pH . The maximum in the curve, where the slope
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is equal to zero, is the equivalence pH. This method was used because

there was no sharp break apparent in the titration curve of milliliters

versus pH. The two methods agreed to within 0. 05 pH units, indicating

little or no free acid in the zinc perchlorate samples. The average

value of the hydrolysis constant corrected for activity coefficients, for

the equation, Zn++ + H20 : ZnOH+ + H+, was found to be 0. 94 i . 03 x

10"). This is only approximate because of the irreversibility of the glass

electrode and the uncertainty arising because of” the chloride-perchlorate

junction potential. Kolthoff and Kameda (124) using a hydrogen electrode

obtained a value of 2. 65 x 10‘10 from measurements on zinc sulfate.

A hydrolysis correction, AA, was then made on the basis of their

hydrolysis constant. The method of this correction is developed below.

Correction of A of Zn(C104)z for Hydrolysis
 

 

A corrected : A " AA (110)

To derive expression for AA :

Zn++ + H20 :2: ZnOH+ + H+ . (111)

_. _ [ZnOH‘U [Hfl _
K .. KC Ky .. [zn++] .. K7 (112)

using K = 2.65 x 10-1° from Kolthoff and Kameda (124)

K7 : 7H+ 'YZDOH'.

yZn'H'

 

(113)

then log K7 = log 7H+ + log YZnOH+ - log 7211“.

but for dilute solutions

.2,['—"

10g 7i: -AZL P ’3: -A ziz NH" (114) 

therefore we may now express

log K722A'JT’

and
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1.0350

1.420 x 106 ohm

_ 1.0350 _

501 _ 9. 234 x104 ohm .-

Now L = k/R = = 0.729 x10”6 ohm"
H20

and L501 = k/R 1.1209 x 10*5 ohm"

-. _. -5 -1
Then LZn(C104)z - (L501) - (LHZO) — 1.0480 x 10 ohm

The specific conductance of the bulk of the water was much lower than

that of the water in the stock solution which was in equilibrium with carbon

dioxide in the air, and had a Specific resistance of 1 x 10“6 ohm“. For

this reason a correction, A L, was made on the L of Zn(C104)z as follows:

I"corrected : I"measured _ A L (108)

\a'he r e

A L (L of water in stock) - (L of solution water)I!

(109)

(weight of stock solution water)

(total weight of water)

AL: (1 - .7) 10"6 %§%§—;— 2' .00008x10“5

(1.0480 - 0.000004) x 10'5 ohm"1
corrected -

1.0480 x10'5 ohm"

This correction is negligible here and only becomes significant

at higher concentrations.

Lcorrected 1000 1.0480 x 10"5 x 103

c = 8.6896 x 10‘5

 

120. 60 ohm"1 cmz equivalents‘1

The extent of hydrolysis of zinc perchlorate was checked in two ways.

(1) The pH of the stock solution and several dilutions were determined

using a Beckman Model B pH meter. (2) These solutions were acidified

to pH of 3 with perchloric acid and were titrated with standard sodium

hydroxide. The equivalence pH was determined graphically by plotting

A pH/A m1 versus pH . The maximum in the curve, where the slope
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is equal to zero, is the equivalence pH. This method was used because

there was no sharp break apparent in the titration curve of milliliters

versus pH. The two methods agreed to within 0.05 pH units, indicating

little or no free acid in the zinc perchlorate samples. The average

value of the hydrolysis constant corrected for activity coefficients, for

the equation, Zn++ + HZO :L" ZnOH+ + H+, was found to be 0. 94 i . 03 x

10's. This is only approximate because of the irreversibility of the glass

electrode and the uncertainty arising because of" the chloride-perchlorate

junction potential. Kolthoff and Kameda (124) using a hydrogen electrode

obtained a value of 2. 65 x 10'10 from measurements on zinc sulfate.

A hydrolysis correction, AA, was then made on the basis of their

hydrolysis constant. The method of this correction is deve10ped below.

Correction of A of Zn(C104)z for Hydrolysis
 

 

A corrected 2 A ' AA (110)

To derive expression for AA :

Zn++ + H20 :: ZnOH+ + H+ ~ (111)

_. _ [Zn0H+1[Hfl _
K - KC K7 —- [Zn'H’] - KY (112)

using K = 2.65 x 10-10 from Kolthoff and Kameda (124)

K7: iVIE-1+ I'YZII'1.()I'I-|I

YZn‘H'

 

(113)

then log K,y = log 7H“" + log YZnOHl' - log 'yZnH.

but for dilute solutions

.2,’

logyi=-Azl P 2.“ “4212 «11" (114)

1+Bai'vr‘

 

therefore we may now express

log K~’/=2A'\}|'1

and
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P = 531...;

A = 0.509/Nl—2__ (reference 125)

and Czn++ = Csalt = C*/2

and Cc1o,-= 2cm“: c*

Then 11 = 3/2 c*

and log K7 = 1.247 N} c' (115)

For charge balance the total charge before hydrolysis must equal the

total charge after hydrolysis.

(1) Before hydrolysis

 

Species (conc)(charge)

Zn++ 2CS

H+ Kw/Z

OH_ -Kw/2

(2) After Hydrolysis

Zn“ 2(cs - [Zn0H+] )

znOH+ [ZnOH+]

H+ [H+]

OH‘ -[0H']

Then

2cs = 2cs - 2 [ZnOH+] + [Zn0H+] + [13*] - [OH‘]

[ZnOH+] = [11"] - Egg]

12n0H+11H+1 -- [n+1- Kw

But from equation (112)

++

[ZnOH+1[H+1= 322977]— 1’ E155—

and ther efor e

(116)

(117)
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[H]: \/K———S——+ Kw (118)

= 0 o o + 0Now A, 1H+ + xOH_ + xZnOH+ 1211+,

The total conductance per liter is

2: X9C.*21000L = c *A
1 1 1 S

3:: ’1‘

then c AA = E 1. g (c - Z k t{(cf)

i i
i )hydrolyzed unhydrolyzed

0 ++ 0 + 0 -

2kzn++ [2n ]hyd.. + )‘H’r [H] hy/d. + )‘OH" [0H1hyd.

o + _ o H+ _ o _

+ )‘2n0H”ZIIOH ] hyd. xH+ [H ]unhyd. )‘OH- [OH ]unhyd.

0 ++
" Z XZn‘H' [ Zn ]unhyd'

However,

++ ++ _ +
[Zn 1 hyd. ' [Zn ]unhyd. ‘ ' [ZnOH ] hyd.

+ _ - _ -7 0[H ]unhyd. — [OH ] lyd. — 10 at 25 C.

Then

’1‘ = o + o o oc A/\ xH+ [H Jhyd. + 10H[0H] hyd. + “mom 2 1211+.)

+
-

[ZnOH ]- (#131, + x‘bH-) 10 7 (119)

We know that

M121. = 350 (reference 23)

XEDH' = 200 (reference 24)

)‘OZnH': 53 (reference 14)

k0 +

ZnOH = 32 (reference 14)

Therefore
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From equation (100) it then follows that

k = (3.8919 x10'5) (2.6483 x104): 1.0307

The water which was added in the stock solution from the weight burette

was at equilibrium with the carbon dioxide of the air and its conductance

was found to be about 1 x 10'6 ohm'1 cm'l. To correct for the added

conductivity due to this impure waterJ the Specific conductance of the

pure water was calculated, using the approximate 15 obtained above.

.. 6 _ -6 -l -1
LHZO—1.0307/2.04x10 _ 0.5x10 ohm cm

The correction A k on the cell constant was then

, )-(L )1 ( wt of solution added

impure water pure water total wt. of solution

 A k --[ ( L

(104)

9.124

341.7

 (R501) : (1 - .5) 10-6 ( ) (2.6483 x104): 3.5 x10'4‘

Therefore the correct cell constant becomes k + A k

=1.0307 + 0.0004 =1.0311
COI'I'.

The results of the cell constant determination are shown in Table 2.

Figure 8 shows graphically the scatter in determining the constant of

cell 2. A check on the cell constant determination was made with one

of the cells using standard barium chloride solution. The equivalent

conductance was determined for five different concentrations. These

agree well with the results of Shedlovsky and Brown (123) on the same

salt. The equivalent conductances they obtained at the same concentrations

are shown with those determined in this laboratory in Table 3.
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Table 2. Conductance Cell Calibration with KCl.

 

 

Run No. N x 104 k

I - cell 2 3.0325 0.25028

5.2551 0.25028

7.6917 0.25013

9.8326 0.24998

11 2.4124 0.25031

3.9681 0 25017

5.7619 0.25026

7.8759 0.25023

10.0597 0.25007

111 1.8854 0 25009

3.9054 0.24995

6.4277 0.24995

1— cen.3 4.1094 1 0339

6.8161 1.0365

10.216 1.0357

12.409 1.0356

15.841 1.0341

11 5.8979 1.0336

10.652 1.0347

17 393 1.0362
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Table 3. The Equivalent Conductance of BaClz.

 

 

«169* x 102 A Shedlovsky A This Lab.

1.83 136.76 136.44

2.196 136.06 136.06

2.49 135.55 135.57

2.95 134.72 134.63

3.30 134.10 134.06
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2. The Equivalent Conductance of Zinc Perchlorate.
 

The equivalent conductance of zinc perchlorate was determined

using the same experimental procedure used to determine the cell constant.

Since the cell constant_1_<_was known, the Specific conductance of water

and of each solution could be calculated from the relationship L = k/R,

where R is the resistance in ohms of the solution. The density of zinc

perchlorate was determined using a fifty milliliter pycnometer. This

enabled the conversion from molality to normality to be made. The

density change with molality can be represented by the equation

p = 0.99707 + 0.1985 m (105)

Sample calculations
 

Weight of flask + water 612. 92 g.

Weight of flask 291. 90 g.

Weight of water 321. 02 g. = 321. 36 in vacuum

Weight of first addition of stock solution = 0. 3818 in vacuum '

The molality of the resulting solution can be found from the relationship

 

msg

m: (106)

1+mM
____.S.__

g+w( 1000 )

where rig is the molality of the new solution, tag is the molality of the

stock solution, g is the weight of stock solution added, w is the weight of

pure water in vacuum and M is the formula weight of zinc perchlorate.

m = 0°03798 (0°3818) = 4.3575 x10'5 moles/

.3818 + 321.36 (1+ ~037?gg%64.29))

 

 

1000 grams solvent.

The normality of this solution can then be calculated from the relationship

. >'.< 2p m

normallty = c =

mM (107)

H 1000

where p is the density of the solution

>:<

c = 8.6896 x 10"5 equivalent/liter.
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1.0350

1.420 x106 ohm

_ 1.0350 _

sol " 9.234 x104 ohm ‘

Now L = k/R = = 0.729 x10"6 ohm"
H20

and L$01 = k/R 1.1209 x10“5 ohm"l

.. _ -5 -1

The specific conductance of the bulk of the water was much lower than

that of the water in the stock solution which was in equilibrium with carbon

dioxide in the air, and had a specific resistance of 1 x 10"6 ohm". For

this reason a correction, A L, was made on the L of Zn(C104)2 as follows:

Lcorrected : I"measured - A L (108)

wher e

(L of water in stock) -— (L of solution water)D l
" 11

(109)

(weight of stock solution water)

(total weight of water)

AL: (1 -.7)10-6 g-g—Eg— = .00008x10"5

_. -5 -1
Lcorrected — (1.0480 - 0.000004) x 10 ohm

1.0480 x 10"5 ohm"1

This correction is negligible here and only becomes significant

at higher concentrations.

Lcorrected 1000 _ 1.0480 x 10"5 x 103

ZMCIOQZ = c _ 8.6896 x 10"5 :

 

120. 60 ohm'1 cmz equivalents'1

The extent of hydrolysis of zinc perchlorate was checked in two ways.

(1) The pH of the stock solution and several dilutions were determined

using a Beckman Model B pH meter. (2) These solutions were acidified

to pH of 3 with perchloric acid and were titrated with standard sodium

hydroxide. The equivalence pH was determined graphically by plotting

A pH/A ml versus pH . The maximum in the curve, where the slope
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is equal to zero, is the equivalence pH. This method was used because

there was no sharp break apparent in the titration curve of milliliters

versus pH. The two methods agreed to within 0.05 pH units, indicating

little or no free acid in the zinc perchlorate samples. The average

value of the hydrolysis constant corrected for activity coefficients, for

the equation, Zn++ + HZO : ZnOH+ + H+, was found to be 0. 94 i . 03 x

10“). This is only approximate because of the irreversibility of the glass

electrode and the uncertainty arising because of the chloride-perchlorate

junction potential. Kolthoff and Kameda (124) using a hydrogen electrode

obtained a value of 2. 65 x 10"10 from measurements on zinc sulfate.

A hydrolysis correction, AA, was then made on the basis of their

hydrolysis constant. The method of this correction is developed below.

Correction of A of Zn(C104)z for Hydrolysis
 

 

Acorrected : A " AA (110)

To derive expression for AA :

Zn++ + H20 :12 ZnOI-I+ + H+ - (111)

_. _ [ZnOH‘Ll [HJ'] _
K .. KC KY _ [zn++] - KY (112)

using K = 2.65 x 10"10 from Kolthoff and Kameda (124)

yZn'H'

 

(113)

then log K7 = log 7H"‘ + log YZnOH+ - log TZn‘H'

but for dilute solutions

.2,’

log 7i: - A z, P 1’ - A ziz VI" (114)
 

therefore we may now express

log K7=2ANJF

and
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p = $1 ciziz

A = O.509/~./—Z__ (reference 125)

and CZn++ : Csalt : C*/2

and (300,-: 2csa1t= c*

Then H = 3/2 (3*

and log Ky: 1.24748“- (115)

For charge balance the total charge before hydrolysis must equal the

total charge after hydrolysis.

(1) Before hydrolysis

 

Species (conc)(charge)

Zn++ 2CS

H+ Kw/Z

OH_ -Kw/Z

(2.) After Hydrolysis

Zn++ .2(cS — [zn0H+] )

ZnOH+ [ZnOH+]

H+ [H+]

OH' -[0H']

Then

2c:S = zcs - 2 [ZnOH+] + [Zn0H+] + [H+] - [OH']

[ZnOH+] = [H+] - an (116)

[mm-1+1 [Hfi = [14*] - Kw

But from equation (112)

++

[Zn0H+1[H+1= 33%]- ’-‘-’ 515°“ ‘1”)

and therefore
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[H+]= f—J—+ Kw (118)

= 0 o 0 0

Now A0 xH+ + xOH_ + xZnOH+ + 7‘an

 

The total conductance per liter is

z x9c.* = lOOOL = c *A
1 1 1

S

* 0 a}:

1(Ci )hydrolyzed ' 713 x i(ci )

>1: _ 0

then C AA - 21: )x unhydrolyzed

- 0 ++ + o _
_ zxan [Zn ]hyd.. + [H] hy,d-. + xOH [OH ]h d

o + _ o + _ 0 OH"

+ xZn()H++[Zf10H ] hyd. XH+ [H ]unhyd. KOH" [ ]unhyd.

0 ++
- 2. Kzn++ [ Zn ]unhyd.

However,

++ ++ _ +

[Zn 1 hyd. ’ [Zn ]unhyd. " ' [ZnOH ] hyd.

+ _ - ._ -7 0[H ]unhyd. _ [OH ] lyd. _ 10 at 25 G.

Then

* _ o + o o o
c A/\— x H+[H]hyd.+)‘OH [0H]hyd+ ()‘Znorr' 2xZn++)

+ .-

[ZnOH ]- (>414. + x‘bH-) 1o 7 (119)

We know that

x114. = 350 (reference 23)

XEDH': ZOO (reference 24)

onn++= 53 (reference 14)

x° +
ZnOH =32 (reference 14)

Therefore
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c* A/\. = 350 [H+] + 200 [OH'] - 74 [Zn0H+] - 550 x10'7 (120)

and

1 2

AA = .9 [3,50 [H+] + 2.0 [OI-1'] - 0.74 [ZnOH+] - 5.50 x10"7]

c

(121)

Since [OH-] = Kw/ [H+] and using equation (116)

10’- _
AA: T [2.76 [14+] + 2.74 Iii—v- - 5.50 X 10 7]

C [Hfi
 

+

Now defining [H+] : LEI—J— (122)

«JK
W

K = = Kx 1014 (123)

Combining these expressions and equation (118) we have

 

E3] = \ngs—YI: +1 (124)

and finally

 

2.74

AA = L9; [2.76 [HT] +

C [H+]

- 5.50] (125)

The values of A for zinc perchlorate were corrected for hydrolysis

using equation (125) above. The equivalent conductance, A , the

hydrolysis correction, AA, and A (corrected) as a function of concen-

tration are given in Table 4. The equivalent conductance A as a

corr’

function of conc entration,is shown graphically in Figure 9.

Since the conductance measurements were undertaken to determine

l

k0++ for zinc ion, the limiting equivalent conductance/\o, was calculated

from the Onsager equation

I

where the calculated A ois distinguished from the usual A 0 obtained

by extrapolation to infinite dilution.
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50‘) '—‘- 0*AJ ‘1' [3*

 

 

where (1* = 0.2289 00' Q

0* = 60.19 «0*

1

and 00' 1' zlzz(|z1zz| v/2)T : 3.464

>:<

Q: q

.2929( 1+ «(qr )

and q*= |Z1Zzi/\o o o

(1Z11+|Z2|)(1Z11 >‘2'1'14'52.| x1)

= 0.42776 where 71?: 67.3

1;} = 53.2

A, = 120.5

then Q: 0.8829 andu*= 0.70005

'5: (Iz1|+ 1221) (MHfi-z 2.598and 01:

2 2

:’

hence 06 = 156.37

A' = A + 170.22 0? (126)
° corrected

[\0' as a function of concentration is given in Table 4 and shown graphically

in Figure 10.

An estimate of the precision of the experimental data in dilute

solution was obtained from examination of the experimental points below

9 x 10‘4 normal. The standard deviation of these points from the Onsager

equation (77), repeated here for clarity, was determined.

A: A0 - S )'\(C'I‘ + A c* logC* + Bc* (77)

(1

By rearrangement and substitution this may be expressed as

l

_/_\_c1_‘_../_§_o_c : Alog c* + B (78)
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v

The constants A and B were evaluated from the plot of W

versus logc*, the slope and intercept of the best line drawn through

the experimental points yielding A and B resPectively. A preliminary

value of A0 and therefore also of (1*, is obtained from the simple

extrapolation of A versus c*. This value was used to calculate the

first approximation of/\:,. The value oon was then altered until the

resulting computations yielded a straight line. A was thus determined

to be 5,130 and E 14,120 for a corresponding A0 = 122. 70 cm2 ohm'l

equiv'l. The standard deviation of fourteen experimental points involving

three runs and two different cells is 0.06/\. units. The accuracy is

limited by the analysis of the stock solution, four determinations giving

a standard deviation from the mean of 0. 10%.

3. Transference number of zinc sulfate.
 

The transference number of zinc ion was measured using tetra-n-

butyl ammonium sulfate following solution (abbreviated [(Bu)4N]ZSO4).

In order to obtain a stable boundary Kohlrausch. (62) deduced that the

condition expressed by the relationship c"‘/c’°‘f = T.|_/T+f must be met.

3* and Eff are the concentrations of the zinc sulfate and [(Bu)4N]zSO4

solutions respectively, and T+ and T+f are the transference numbers

of the zinc and tetra-n-butylammonium ion respectively. ' In order to

determine the desirable concentration, the cation transference numbers

of both leading and following ion were estimated from the limiting ionic

c onductanc es wher e

2’ 1+ 0f Zn "-’ 53 (reference 14)

i— X_ of $04= 2:. 80 (reference 126)

11+ of (Bu)4,N+ 2 19.5 (reference 13)

then T+ for Zn++:‘_’ 53/133 2’ 0.397

T+ for (Bu)4N+:.’ 19. 5/99. 5 21.197
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This enables one to calculate the ratio of various concentrations of

leading to following solution.

The moving boundary method, which measures the motion of the

solution relative to a fixed mark on a tube, must have a correction

made for any change in volume caused by electrode reaction since the

bulk of the solution would move to accommodate any volume change.

The computation in this case was simplified since one side of the cell

was left open to the atmosphere and the other side closed. Only the

volume changes which occur between the closed side'and the boundary

need then to be considered.

We employed a falling boundary between zinc sulfate and [(Bu)4N]ZSO4.

The cathode, with the silver-silver chloride electrode, was open to the

atmOSphere. The volume changes which take place between the boundary

and the closed anode with the cadmium electrode during the passage of

one faraday of electricity are:

0.
(l) -%- mole of Cd 1510812 A Vl = - VCd/Z

1 - _ 1 ‘-
(2) 2- mole of CdSO4 IS formed A V; — TVCdSO4

(3) é-T+ moles of ZnSO4 are lost A V3 = - 713- T+ V

anO4

VCdSO4 and 17 are the partial molar volumes of cadmium and zinc

211504

sulfate respectively. This thermodynamic property may be defined in

general by the expression

". All.
VJ ($nj)P,T,n1,nz,....,

Summing the volume changes (1) through (3) above, the total volume

change between the closed side and the boundary is

szé— T+ v v (127)
[VCdSO4 ' 2nso4 ' Cd 1

The volume change AV means that the boundary has swept out a volume

V' + A V, such that
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=V' + AV (128)

where Vob is the measured volume in milliliters, and V' the volume
5

swept out by the boundary, corrected for any change due to the electrode

reaction. To compute A V we used the value V = 13.0 ml. (reference

Cd

78). The partial molar volumes of CdSO4 and ZnSO4 were calculated

from the equation derived below. The density, p, of the solution is

given by

nlMl + nzMz

1000 V

 (129)

where 21 is the number of grams of solvent, 11; the grams of solute,

1:41 and Liz are the molecular weights of solvent and solute respectively

and X is the volume in liters. Rearranging and then differentiating at

constant temperature and pressure

dnz — P

 

Since 21 is equal to 1000 grams than 312 is equal to the molality r_r_1.

The volume V may be expressed in cubic centimeters v, where v =

 

 

1000 +

p szz. The partial molar volume in cubic centimeters per mole

is then

p2

The partial molar volume V, of zinc sulfate was then determined

using equation (131) and equation (96) for the relationship between density

and molality .

— _ (l61.39)(1.0057) - (1000 + 161.39 (0.05015) (0. 1607))
 

ZnSO4 ‘ (1.0057)?-

: 0.3 cm3mole"1

The density of cadmium sulfate as a function of concentration was taken

from the International Critical Tables (127). The concentrations were
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converted from percentage to molality and can be expressed by the

 

equation

p = .99862 + 0.2037 m (132)

Then V _ (208.48) (1.00454) - (1000 + 0.02895 (208.48) (.2037))

CdSO4 - (1.00454)z

= 4. 5 cm‘a’mole“l

From equation (127) then,

A V = i- [4.5 -13.0 — 0.4(0.3)] = -4.6 cm3mole'l

In addition to the volume correction it is necessary to make the solvent

correction proposed by Longsworth (78). It may be recalled that, since

impurities in the solvent carry some small fraction of ’the total current,

A T+ = T+ (L (12)

s olvent /Ls olution)

The average value of the specific conductance of the solvent was 2 x 10'6

ohm'l. The Specific conductance of zinc sulfate was obtained from the

work of Owen and Curry (14).

Sample calculation for the transference number of zinc sulfate.
 

For each experimental determination of the transference number,

the time that the boundary took to pass each volume mark was recorded.

The entire run was done at constant current, the value recorded in

milliamperes. The volume between each mark had previously been

determined. These were grouped together in larger volume increments

of 0-8, 1-9 . . . 9-17. For each of these sub totals the correSponding

total time was determined. A T_+ value was then calculated from

_ F c* v _ 96, 500 (.009692) (0.8552) =

T+ ‘ 1000 it ' 1000 (1.10) (1899.8) 0'387‘7
 

This calculation was repeated for each volume increment. The value of

T+ for the run was taken as the average value from the results thus



81

obtained, which, for this example, was equal to 0. 3825.

The volume correction was then made to this average transference

number from the evaluation

c*Av _ 0.009692 (- 4.6)

1000 ' 1000

particular concentration, and, therefore, for this example no correction

  = 0.000044, which is negligible at this

was necessary. The value of the solvent correction at the same concen-

tration is found from

( 2x10'6)

._— 0'38 (0.78 x10‘3)
T (L
+ solvent) / (Lsolution)

= 0.97 x10"3 20.0010

Therefore the corrected transference number is

TJr = 0.3825 + 0.0010 = 0.3835

The transference number of zinc sulfate as a function of concentration,

with the solvent and volume corrections, is given in Table 5. The

transference number versus concentration is shown graphically in

Figure 11. It proved to be a linear function of the square root of the

normality. The least squares equation was determined to be,

.1.
2T+ = 0.3900 - 0.0628 (N) (133)

with a standard deviation of 0. 07% for ten determinations. For those

concentrations in Table 5 involving duplicate runs, the current and/or

indicator concentration differ by 10 to 20 percent. The results of Purser

and Stokes (17) based upon the E. M. F. method are also given in

Figure 11 for comparison.
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(E.M.F. Method)

6

,4 3

“380*” This Work

0

B

c

a

QB

. 370 1 4 1

0 0.1 0. 2 0. 3

0T1—

Figure 11. Transference Number of Zinc Sulfate versus 0N

compared with Various Theoretical Curves.
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4. Equivalent Conductance of Potassium Octacyanomolybdate (IV).
 

The conductance of K4Mo(CN)8 was determined using the same

experimental procedure as that described for zinc perchlorate.

The densities of the K4Mo(CN)8 solutions were determined using a

fifty milliliter pycnometer. The relationship between density and concene

. 0 . .

tration at 25 C may be eXpressed by the linear equation,

p = 0.99707 + 0.2505 m (134)

ifésing this equation, the normalities of the solutions were calculated.

The Specific conductance of water. was determined with each run and used

to correct for the Specific conductance of the salt. A correction was also

:‘2.:1.;1e for the added contribution to the conductance by the water which

was added with solute. This water was at equilibrium with the carbon

dioxide of the air and the correction is analogous to that made for zinc

perchlorate.

The equivalent. conductance, A , as a function of concentration is

given for three separate runs in Table 6 and shown graphically in Figure

1.3. Extrapolation to infinite dilution gives a value of 188. 5 cm?‘ ohm”It

ecylinxalent'1 for/\ o. If the Onsager equation is obeyed, it is possible

to express the equivalent conductance by the equation

A2Ao'%‘(a*/\O+B*) VC' (75)

Rearranging this equation, following the method of Shedlovsky (105) and

using experimental values of /\ from equation (75), it is possible to

calculate values of /\ 0 which we designate A'o to distinguish them from

the limiting conductances obtained by extrapolation to infinite dilution.

Equation (75) then becomes,

A; 2 A+ i— ( c1. */\_0 + (3*) «I e’-" (135)
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Table 6. Equivalent Conductance and A0 for K4Mo(CN)8 as a Function

of Concentration.

 

 

4

N x 104 (17x 10‘2 :cljrrected A A,

0.45219 0.67245 0.083467 184.58 187.62

1.7798 1.3341 0.32189 180.86 186.89

4.0222 2.0055 0.71090 176.74 185.80

5.3133 2.3051 0.92967 174.97 185.38

6.7887 2.6055 1.1754 173.14 184.91

8.0381 2.8352 1.3811 171.82 184.63

10.020 3.1654 1.7018 169.84 ‘184.14

8.8095 2.9681 1.5081 171.19 184.60

.3.195 3.6325 2.2087 167.39 183.80

17.293 4.1585 2.8446 164.49 183.27

20.982 4.5806 3.4041 162.24 182.93

23.967 4.8956 3.8526 160.75 182.86

27.035 5.1995 4.3035 159.18 182.67

32.422 5.6940 5.0822 156.75 182.47

39.239 6.2641 6.0451 154.06 182.35

50.972 7.1395 7.6574 150.23 182.48

7.5185 2.7420 1.2964 172.43 184.82

10.3603 3.2187 1.7567 169.56 184.10

16.5437 4.0674 2.7251 164.72 183.09

22.2890 4.7211 3.5915 161.13 182.45
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where A0 = 188. 5 which was the value obtained from the simple

extrapolation of A versus c*

).3’ = 73.4 (reference 128)

X0 = 115

0* = . 2289 w'Q and [3* = 60.19 w* (reference 122)

where w', Q and w* have previously been defined.

For potassium octacyanomolybdate (IV), the value of (1* is 2. 2680 and

8* is 475. 86. The resulting equation then becomes,

1

A0 =A+ 451.69 «lc3 (136)

The values of /\0' thus obtained from equation (136) as a function of

concentration are given in Table 6 for three different runs. These ex-

trapolate at infinite dilution to the same value of A0 (188. 5 cmz ohm"l

equivalent-’1) with a somewhat less steep curve, as shown in Figure 11.

It is also possible to try the Onsager function (3) to determine the

limiting value of the equivalent conductance of K4Mo(CN)8. This equation

has the form as shown before

_/\:/\_° -%—S\/c: + Ac*1ogc*+ BC* (77)

which can be rearranged as shown previously in equation (78) to permit

evaluation of the constants A and B. These are obtained by plotting

A; -/\(,/c>:< versus H, finally yielding a straight line whose slope

is A and intercept B. The value of /\ 0 first tried was 188. 5.

A preliminary value of 0* was then calculated. The value of/\.o was

then altered until a straight line was obtained. The best line was for

A0 equal to 188.0 cmz ohm"l equivalent‘l. This results in a value of A

equal to 4217 and B equal to 8811. This is shown in Figure 13.
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DISCUSSION OF RESULTS

A . Zinc perchlorate.
 

It may be recalled that the conductance measurements on the zinc

perchlorate system were undertaken to determine the limiting ionic

conductance, 1.3+, for zinc ion, so that this parameter could be used

to calculate the theoretical conductance curve for zinc sulfate.

As shown in Figure 10, the minimum in the curve shows the very

marked deviation from the Onsager equation. If the system obeyed the

Onsager limiting law A; would be constant. While such deviations

occur for many higher charge type electrolytes such as K4Fe(CN)6 and

Co(en)3Cl3 (129) they had not been found previously for 2-1 electrolytes.

A slight effect of this type was observed by Jenkins and Monk (15) with

sodium and potassium sulfate. They attributed this behavior to ion-

pair formation. A pronounced deviation of this type has been found for

Kth(CN)4 (130). It appears then, that this effect is not unique to the

zinc perchlorate system.

The most obvious choice of explanation for this behavior involves

the assumption of ion-pair formation of the type ZnClO4+. There are,

however, several difficulties involved in making this calculation for this

salt which are not present in calculations for simple symmetrical

electrolytes. The first of these is the lack of knowledge of the behavior

to be expected of a completely dissociated 2-1 electrolyte. One method

is to arbitrarily select some conductance curve to represent the com-

pletely dissociated electrolyte. All deviations of the electrolyte from

the hypothetical salt are then considered as resulting from incomplete

dissociation. Some knowledge of the activity coefficient of the electro-

lyte as a function of concentration is also required. While 7+ would

89



90

be known for the salt under investigation the value for the ion-pair would

have to be estimated. The other difficulty is that the ion-pair carries

a charge and therefore contributes to the total conductance of the solution.

The selection of a mobility for the ion-pair involves assumptions of

uncertain validity as to size and shape of the ion and the amount of solva-

tion. In spite of these difficulties, by following the method of Davies

(131)) it should be possible to obtain a reasonable value for IE, the associ-

ation constant.

Inspection of the A; curve of Figure 10 shows that a value of no

less than 123 conductance units is required for Zn(ClO4)2, which gives a

value of 56 or greater for 1.3+ of zinc ion. Using three points from the

conductance curve at concentrations lower than that giving a minimum

in the/“1.; curve, trial values of 56 and 59 conductance units for 113+ of

zinc ion, with 1?.“ for Zn(C104)+ arbitrarily set at 30 conductance units,

values of _l_< were determined as described below.

Consider the equilibrium

+

zn++ + c1o,‘ —-- ZnC1o4 (139)
‘__

The association constant E for this system is

a C

K = +1 = ____.__+1 . K 7 (140)
3+2 a-1 (3+2 C'l

 

where the subscrips denote the species of corre8ponding charge, a

their activities and c their molar concentrations. K'y denotes the activity

coefficient ratio

_ 7+ (7+ )i-l

K7 — -—1- = —-T— (141)

7+2 7'1 (7i )2'1

where (7i)ij is the mean ionic activity coefficient of a salt of charge-

type i-j calculated by the Debye-Hiickel theory. The Debye-Hiickel

limiting law for activity coefficients in its most general form is

4?.—
S

108 7i = - (7) (142)

l + aA «(F



91

where 8(7) has been shown to be (132)

 

P 6
. 10

s( ) = -1... ,Eflj zjz 1 283 )5, (143)

7 V 1:1 (DI-a)?

This reduces to 0. 3582 for a 1—1 electrolyte and is equal to 2(0. 3582)

for a 2-1 electrolyte at 250C. The quantity A is expressed as

A = 353,7- : 0.2325 at 25°C (reference 132)

(D'r)T

The ional strengthJ P , of the solution is defined by

P = 2 C1212 (144)

1

The distance of closest approach_a_. for the salt and the ion-pair were

considered to be equal, and a value of 4. 5 Angstrom units was chosen.

The quantity E”) may then be obtained from

_ 4(0.3582) \(r'

10g K7 ’ 1+ 4.5(.2325) .j'r'w‘ (145)

1

The values of 137 are given in Table 7 with the values of PT and the

three correSponding concentration points which had been chosen.

lf_c_ is the stoichiometric molarity, then the concentrations of the various

species may be expressed as

 

[an104+] : CZ

[Zn++] = c - ca (146)

[ClO,,'] 2 2c - c2

and then the association constant 1i is given by

K = C2 . 147
1C - 02) (3C ' C2) K7 ( )

The concentration 92 may be found from a consideration of the conductance

data. The total specific conductance may be expressed as

LT = 1Zn++ + 1004- + 1 anIO,+ (148)
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since A: 1000 LT/c* it follows that

2(C - C2) )3";- + (2C ' C2) x ' + C2x£

LT : 1000 1000 1000
 

CZ (X+ - )x_ - Zk++) + 2C(>\+.t + X-)

T “ 1000

 

L (149)

The ionic conductances at various concentrations can be calculated with

a knowledge of the limiting ionic conductances from the equation

 

 

1

Xj = X0 - SO) I—‘ T (reference 133) (150)

‘Nhere

o

6 *
28.98 2-

(DTF
q

where T = 298.160C

D = 78.54

71 = . 008949 poises

.
o o

>k_ IZIZZI
(Al + X2)

 

q ‘ (1211+ IZzl) ' (122M? + 12.16)

+ +
A value of 30 was assumed for x° of ZnClO4 and both 56 and 59 for Zn +.

The value 67. 36 was used for X0 of C10: (16)

For C10; and ZnClO4+ ions then

s =o.161oz .° +21.161

(x) ’5 .

++ 0

and for Zn where )t = 56 then 50‘) = 58.348

where x° = 59 then s = 59.207

(X)

The value for xj for each of the ionic species was then calculated at each

concentration from equation (150) and the resulting values are shown in

Table 7. Also shown in the same table for convenience are the values of

Acorr and A), from Table 4 for the same concentration points.

Solving equation (149) for c; and making the substitution 2c/\. =

1000 LT we obtain the expression



_ 2c/\. - 2c

94

(M4 + x-)
 

1+ ' L ' 314+

(151)

Calculated values of ca at the three concentrations are tabulated in

Table 8.

Table 8. Concentration of ZnClO4+ With Varying Concentrations of

Zinc Perchlorate.

 

 

C2

4 _ ..

c x10 in — 56 in — 59

4.0316 1.4608 x10'5 3.0055 x10'5

1.2648 3.5357 x10"6 8.3595 x10‘6

0.2778 3.0079 x10"7 1. 3700 x10"6

 

Subsequent substitution into equation (147) for the values of g, 22 and 57

yield the values of E tabulated in Table 9.

Table 9. Association Constants for Zinc Perchlorate as a Function of

 
 
 

 

Concentration.

K

>:: 104 :: "" :2

c x 1211 56 xzn 59

8. 0631 55.4 121

2. 5296 120 300

0. 5556 206 998

 

This four-fold variation of E over a narrow range of concentration shows

that simple ion-pair formation is not entirely re3ponsib1e for the deviation

observed. Although _I§ is rather large for ion association it must be borne

in mind that a value of 5 of about 100 correSponds to having 3% of the ions

associated when the concentration is about 1. 2 x 10"4 molar.
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The type of behavior observed here could be expected of system

undergoing extensive hydrolysis according to

+ +
Zn ++ H20

 

+

ZnOH + H (152)
__

However, all data already had been corrected for hydrolysis (see

experimental section). It is possible to calculate an "hydrolysis constant"

which would bring the conductance data in accord with the Onsager

equation at low concentrations. Using trial values of E in equation (125)

a value of AA is obtained for various concentrations. A0 minus

this new A/\. is shown in Figure 9 as the lower curve. This is unsatis-a

factory since the hydrolysis constant required to give this curve has a

value of l. l i“. . l x 10"8 while that obtained by pH measurements averaged

11.094 x 10'8 and the value obtained by Kolthoff and Kameda was 0. 0265 x

10‘s. This discrepancy in lg values is very large and essentially eliminates

hydrolysis as a cause of the deviations from the Onsager equation. Only

if some mechanism were operating which greatly suppressed hydrolysis

at higher concentrations could these results be compatible. The value of

*/\‘0 given by this "hydrolysis constant" is 120. 55 which gives a value of

53. 19 for X14. for zinc ion.

Another possible explanation for these deviations from the theory

is the inadequacy of this theory to deal with unsymmetrical electrolytes.

The neglect of pair-wise interaction implied by the linear distributibn

function is partially compensated for by the introduction of Bjerrum's

ion—pair concept. Karl (13) has shown that deviations from the Fuoss-

Onsager conductance equations which previously had been attributed to

ion-pair formation, may possibly depend upon higher order terms of

the concentration. The significance of higher order terms of the electroe-

phoretic correction to the conductance has been pointed out by Dye and

Spedding (12). As was indicated earlier, it is possible to make use of

the Owen function (56) to fit the data below the minimum. This gave a
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value of 122. 70 cmz ohm“l equivalent'1 for A0 and 55. 34 for x3” of

zinc ion (see experimental). Owen and Curry (14) obtained the much

lower value of 52. 8 for kg") of zinc ion using the assumption of ion-pair

formation. Alternatively, the assumption of hydrolysis gave us a value

of 53. 19. It is obvious we do not obtain the unequivocal value of limiting

conductance of zinc ion which was sought.

The Fuoss-Onsager extended equation is not applicable to an

unsymmetrical electrolyte so that it can not properly be used for an

extrapolation function. Direct use of equation (73) as if it were valid for

unsymmetrical electrolytes does not eliminate the upswing. Since the

correction given by electrostatic theory is very small in dilute solutions,

it is doubtful whether this approach would be helpful even if the correct

equation were known. The result is that we have no theoretical extrapo-u

lation function to use to evaluate A o-

B. Zinc sulfate.
 

It is possible in several ways to treat theoretically the zinc sulfate

transference data using an adjustable A0 and the conductance data of

Owen and Curry (14). The standard Fuoss-Onsager calculation (5, 6, 8,

9, 10) was first made using the conductance equation as given earlier in

this paper by

A=(Ao-A/\e)(1+ 9X1) (41)

This was combined with an ion-pair constant. The idea of ion association,

first suggested by Bjerrum (4), involves the postulation of an equilibrium

caused solely by electrostatic interactions between "free” ions and neutral

ion-pairs according to the equation

c:+ + A' ———K- (c+A')° (155)
V___

This leads to an expression for the association constant 5,
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__ (1 - v)
_ m,— (156)

where l is the fraction of ions which are free andi is the ionic activity

coefficient given by the Debye-Hiickel expression. The activity coefficient

of the neutral Species is assumed to be unity. The concentration terms

in the Onsager expression refer to ion concentrations. The presence of

pairing equilibrium means that the average concentration of ions is

less than the stoichiometric amount, and that c* everywhere in the con-

ductance equation should be replaced by the ion concentration Ei where

c1: 7 c (157)

The ion-pairing constant K is treated as a parameter chosen to give the

“best fit to the data. The ionic conductance is then given by

= ——
(158)

where/\is the experimental equivalent conductance for the solution.

From equation (156)

 

1 1 1 K 2_: +\/ +4 cf
(159)

'y 2

where log f; 2:. - NI 2 SH) Ci

(1+.Xa)

 

and Sm = 0.5091 at 25°C

a is the distance of closest approach

*

Ci 2 'y c* where c is the normality of the salt

X is defined earlier in this paper. In this case it

reduces to the expression, X = 0.46466 N} Ci

Equation (41) may be rewritten

A1 = (A..- AA.) (1+ 9535) (160)
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where Ai is defined by equation (158), AAe is the electrophoretic

correction given by equation (48) which is repeated here for clarity

A : -96,500(|eil+leil )x 48

A e 180017n(1+ X3) ( )

which for this case reduces to

_ 170.44 ~/ . t
A A8 = C1 (161)

1+ ){a

 

The term AX/X has previously been defined by equation (65) as

—— = - [emu-A1 + A.) + aged—5",- ](65)

A0 ‘

The values of A1, A2 and A3! were calculated by IBM 704 computer

for varying concentrations and distances of closest approach, 3.

These values and the resulting AX/X values were calculated and tabulated

for use in these calculations. ‘ Equation (160) then contains three adjustable

parameters, a, K and 1: To find suitable values of these parameters

we first assumed trial values of each and then computed a new 7 = 7',

according to equation (159) for a particular value of_c_. Then, 7' will

give a new value for Ci = ci', from equation (159). Using this ci' we

again computed a new 7 = 'y". This procedure was repeated until

successive calculations yielded constant values for 1.

To choose the best value for I_{_, we first assumed a value for a.

. I
Then various values were assumed for K, and for each value a A0 was

computed from equation (160) rearranged to

A' = -—'/—>‘—1— + AAe (162)

0 1 4. fix—

X

where Ai is obtained from the Owen and Curry (14) data for A using

equation (158). Three different concentrations were used for each value

I

of K that was tried. K versus [\0 was then plotted and lines were drawn

1

through points (K, [\o ) for the same value of concentration. The three
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lines nearly cross (minimizing variation in A; with concentration) at

a 5 value of 51.

Then, with _K equal to 51 we assumed various values ofg. For

each value of_a we calculated and plotted A; for three concentrations.

Again lines were drawn through points (a, A3) for the same concen—

tration to determine where the spread was a minimum. The value of 3

equal to 3.6 was chosen for the best fit. - Using a K of 51 anda of 3.6,

the average value of A; was calculated to be 132. 24. This was taken

as the value for A0 in equation (158) from which A1 was then calcu-

lated. A value of A was then determined using equation
calculated

(158). The values of/\_ for various concentrations are given in
calc.

Table 10 column 11. The values of A from the data of Owen and Curry

(‘14) are also shown in Table 10 for comparison. The fit of the conductance

data is too close to be shown graphically. It is now possible to calculate

a transference number for zinc ion. From equation (85) we know that

+

ho -%‘ AAC

T+: Ao-AAC

(163) 

where AAe is defined by equation (49), A0 = 132. 24 and A: =

[\0 - ROI“. The value of x; for sulfate ion is 80.02 (reference 126).

The calculated transference number is given in Table 10 Column 111, and

is shown graphically in Figure 11 (A).

The Fuoss-Onsager treatment does not take into account the

possible dependence of conductance upon higher powers of concentration

than the first. Dye and Spedding (12) pointed out the significance of the

higher terms of the electrophoretic correction to the conductance.

Accordingly, the Fuoss-Onsager calculation of the time of relaxation

effect was combined with the calculation of the higher electrophoretic

terms. This calculation involved two adjustable parameters a and A 0°

The final expression for A A e as deve10ped by Dye and Spedding

(12) are integrals which are functions of the charge type, dielectric
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constant, viscosity, temperature, concentration and distance of closest

approach. Their derivation has been discussed earlier in this thesis.

The evaluation of the electrophoretic integral was done by IBM 704

computer and tabulated tables prepared of the resulting AAe with

varying concentrations and a values. The Fuoss-Onsager functions

were calculated for 2-2 electrolytes in water at 25°C for varying ion

size also using the IBM 704 computer. These results were combined

with the electrOphoretic correction. Using equation (41), with AAe

redefined according to Dye and Spedding (12), various combinations of

A0 and a values were tried. The best fit for the data was obtained

for a of 4. 3 and A0 of 131.5. The results are shown in Table 10

column IV. The transference number of the zinc ion was again calculated

from equation (163) using the redefined A A e‘ The results are given

in Table 10 column V and are shown graphically in Figure 11 (B).

It is seen that both treatments satisfactorily can reproduce the

conductance behavior of zinc sulfate and that the theory using the

extended electrophoretic terms gives a fairly suitable limiting form for

the transference number. However, as soon as the zinc perchlorate

data are examined one can see that the xg+for zinc ion is much too high

for either method alone to fit conductance or transference data for zinc

sulfate. The transference data yields a value of 51.16 for x? of zinc

ion. Using the value of 55. 34 as the limiting equivalent conductance

for zinc ion as demanded by the perchlorate data, it is possible to fit

the conductance data only at the lowest concentration by a combination

of the two treatments just described. The procedure to find K is not as

complex, however, since the limiting ionic conductance was fixed and

therefore also A0. The best fit was obtained for an_a_ of 6.0 and a K

of 95. The results are shown in Table 10 column VI and the fit is not

good. The transference number is also given in Table 10 column VII

and shown graphically in Figure 11 (C).
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One should not overlook the possibility of inadequacies in the theory.

It might be interesting in this connection to briefly review the fundamental

assumptions and approximations inherent in the "Poissom— Boltzmann"

equation, which is the basis of the ionic atmosphere treatment. The

Boltzmann distribution function is based on a statistical model in which

the number of particles able to be accommodated in a given energy state

is unlimited. This assumption is not in accord with the physical system,

however, for an "exclusion principle" exists - not a quantum mechanical

one, but a volume exclusion. Consider, for example, the energy level

corresponding to the distance r = a between the central ion and an

atmosphere ion. In this energy state, the number of particles is limited

to the number of ions that can be accommodated on a sphere of radius a,

at..-out six. Further, the Boltzmann function is here used in its simplest

form, without a weighting function. This implies that all energy levels

are equally likely to be occupied, which is not necessarily the case.

Also implied by the Boltzmann distribution function is a fixed,

continuous set of energy levels which exiSts independently of the distribue

tic-11 of particles (ions) among them. This energy level continuum is,

in the equilibrium case, related by a smooth function to the distance

from the central ion. Hence, the equation does not take into account the

fact that Uji depends not only on E but also on the presence of other

atmosphere ions in the vicinity; i. e. the energy level system is altered

according to its state of occupancy. This approximation is stated more

specifically when Uji is related to the potential function by Uji = ei Wj-

Here, ’L/JJ. is defined as the average potential due to the central ion

and the other atmosphere ions. The assumption is made that the

presence of a given atmosphere ion does not alter the distribution of the

other atmosphere ions. This is commonly called the ”linear super-

position of fields approximation. "
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The Poisson equation, which is used to relate the potential function

to the charge distribution, involves the idea of a continuous distribution

which, in view of the discrete charges carried by the ions, must be

meaningful on the time average only. The time of averaging, then,

must be short compared with the time spent by a given ion in the atmos-

phere of a chosen central ion. For example, if at some concentration,

a given atmOSphere ion is the only ion in the vicinity of the central ion,

it is meaningless to speak of its being in the presence of the continuous

charge distribution of an ionic atmosphere.

Finally, the Poisson equation applies strictly only to static charge

distributions, since it ignores the magnetic interactions produced by

moving charges. Hence, difficulties might be expected when the equation

is applied to non-equilibrium situations.

C. Potassium Octacyanomolybdate (IV).
 

Conductance measurements as well as transference number

measurements were made on K4M0(CN)8 to provide experimental data

for comparison with theoretical calculations. The fact that high charge

unsymmetrical electrolytes show deviation from the theoretical Onsager

conductance equation is not altogether unexpected when one considers

the form of the distribution function that is used. This has also been

observed in experiments by Grove (130) and Wynveen (134). The equi-

valent conductance data shown in Figure 12 show a curvature which would

appear to introduce considerable error into the value of A0 found by any

extrapolation of this curve. The data were also treated by the method

of Shedlovsky which allows A; to be calculated directly from individual

values of A . The Onsager relation should, of course, be more valid

as one approaches infinite dilution. The slope is less steep as shown in

1 andFigure 12, but the same intercept ofA 0 of 188. 5 cmz ohm"l equiv. "

X64 of 115. 0 is obtained. In comparison, the Owen plot results in a A 0

value of 188.0 and if of 114.5.
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Grove has also determined the value of if for Mo(CN)3"4 ion from

the conductance measurements of [N(Me)4]4 Mo(CN)8. Using the simple

linear extrapolation of A versus _c_, he obtained the value of x)?“ of

114. 9 and with an Owen plot the value of 112. 5 It can be seen that the

simple extrapolation gives good agreement within the limits of accuracy

which could be obtained by this procedure. The great variation given

by the Owen method indicates that this is not a suitable function for this

extrapolation. This deviation may be a function of ion size or mobility.

Again it appears that we have no theoretical extrapolation function which

can be used generally.

The neglect of higher order terms of the distribution function may

introduce considerable error in the theoretical calculations of the con-

ductance behavior of this electrolyte. The higher order terms have a

strong dependence on the ion size parameter 3. Since one appreciable

difference between K+ ion and N(Me)4+ ion is the ionic size, then perhaps

a decided factor in the variation of conductance behavior observed is

due to the neglect of higher order terms.

We attempted to obtain transference numbers of K4M0(CN)8 using

the moving boundary method, without success. Each transference run

yielded data of good internal precision but they were not reproducible.

Solutions freshly prepared were run immediately but no trend could be

observed in over thirty determinations. It is possible that the difficulty

is due to the decomposition of the Mo(CN)8'4 ion.

Atkinson and co-workers (136) have shown that the 2-1 salts sodium

and potassium m-benzenedisulfonate, seem to behave more "normally"

than zinc perchlorate. They show curvature at higher concentrations

similar to the zinc salt but there is no indication of an upswing at low

concentrations. Their data in general do not extend to as low concen-

trations as the zinc perchlorate data, but our observed upswing begins

well above their lowest point. It is interesting to comment in this
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connection that Owen and Curry (14) remark about an effect of similar

nature which they encountered in zinc sulfate, "It may be significant,

however, that our points of CZO. 000087 (molarity) would cause the

plots to curve abruptly upward and increase the intercept by about one

conductance unit. " It would also appear from the data of Atkinson (136)

that the 3-1 salts, sodium and potassium 1, 3, 6-naphthalenetrisulfonate,

are behaving normally.

The problem with zinc sulfate in common with other 2-2 salts

which have been investigated, is the lack of knowledge of how the salt

would behave in conductance if it were completely dissociated. A 2-2

electrolyte which would obey the extended theory with reasonable para-

meters would be a basis for the discussion of association in salts like

zinc sulfate. Atkinson (136) reasoned that if the negative-two charge on

an ion were separated by a large inert framework the short range

interactions of the higher charged ion would be reduced while maintaining

the long range properties of the divalent ion. This resulted in the

experimental work on the salt copper m-benzenedisulfonate, which

appears to show completely dissociated behavior according to our previous

criterion for an undissociated electrolyte, i. e. , that the conductance

curve should approach the limiting law tangent from above.

It would be desirable in the future to examine the behavior of zinc

m-benzenedisulfonate. This study should indicate whether the zinc ion is

indeed as atypical as we believe it to be.

Combination of the m-benzenedisulfonate anion with a similarly large

cation, such as tetramethylammonium ion, might yield interesting infor-

rnation on 1-2 electrolytes. If this should turn out to be a well behaved

salt, this would indicate that the trouble with [N(Me)4]4Mo(CN)8 lies

with the Mo(CN)8'4 ion.



SUMMARY

An outline of the history of the method of conductance and trans-

ference number measurements, as well as a history of the interionic

attraction theory of electrolytic solutions is presented.

As a test of the theoretical expressions which have been developed

for the description of the conductance phenomenon, an attempt was made

to fit the conductance data of zinc sulfate. Three parameters are in-

volved, one of which is the equivalent conductance of zinc sulfate.

To reduce the number of arbitrary parameters, the equivalent ionic

conductance of zinc ion was sought by an independent measurement of

the equivalent conductance of aqueous zinc perchlorate. The conductance

of this salt was found to deviate markedly from the Onsager equation even

in dilute solution. Attempts made to explain this behavior on the basis

of ion-pairing, hydrolysis and purely electrostatic interactions were

entirely unsatisfactory.

As a further test of the theory the transference number of zinc

sulfate in water as a function of concentration was measured by the moving

boundary method at 250C.

The conductance data for zinc sulfate can be adequately fit by

either the Fuoss-Onsager theory including ion association or by including

terms of the electrophoretic equation which are usually neglected.

The former treatment also gives a fairly suitable limiting form for

transference numbers. However, when the limiting ionic conductance

for zinc ion from measurements on zinc perchlorate is used, it is much

too high for either theory to describe the behavior adequately.
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We conclude that zinc salts do not form typical dilute solutions

but that, perhaps due to the covalent bonding tendencies of the zinc ion,

there are deviations from any theory which is based on the assumption

of hard, non-polarizable ions.

While the primary objective of determining x0 for zinc ion thus

could not be achieved, the new phenomenon observed will require a

new approach to this conductance problem. It also indicates that not

all electrolytes can be treated in the conventional fashion.

In addition to these considerations, the equivalent conductance

of potassium octacyanomolybdate (IV) was determined. Large deviations

from the limiting equation of Onsager occur, so that the limiting ionic

conductance could not be accurately determined by the methods now

available. We attempted to obtain the transference number of this salt

from the moving boundary method. No reproducible transference

number could be determined. It was concluded from examination of

much self-consistent data that perhaps some immediate decomposition

was occurring even in freshly prepared solutions.
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