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ABSTRACT

THE CONDUCTANCES OF ZINC PERCHLORATE AND POTASSIUM
OCTACYANOMOLYBDATE (IV) AND THE TRANSFERENCE
NUMBER OF ZINC SULFATE IN AQUEOUS SOLUTION AT 25°C.

by Mary Patricia Faber

An outline of the history of the method of conductance and trans-
ference number measurements, as well as a history of the interionic
attraction theory of electrolytic solutions is presented.

As a test of the theoretical expressions which have been developed
for the description of the conductance phenomenon, an attempt was made
to fit the conductance data of zinc sulfate. Three parameters are in-
volved, one of which is the equivalent conductance of zinc sulfate.

To reduce the number of arbitrary parameters, the equivalent ionic
conductance of zinc ion was sought by an independent measurement of

the equivalent conductance of aqueous zinc perchlorate. The conductance
of this salt was found to deviate markedly from the Onsager equation
even in dilute solution. Attempts made to explain this behavior on the
basis of ion-pairing, hydrolysis and purely electrostatic interactions
were entirely unsatisfactory.

As a further test of the theory the transference number of zinc
sulfate in water as a function of concentration was measured by the
moving boundary method at 25° C.

The conductance data for zinc sulfate can be adequately fit by
either the Fuoss-Onsager theory including ion association or by including
terms of the electrophoretic equation which are usually neglected.

The former treatment also gives a fairly suitable limiting form for
transference numbers. However, when the limiting ionic conductance
for zinc ion from measurements on zinc perchlorate is used, it is much

too high for either theory to describe the behavior adequately.



Abstract Mary Patricia Faber

We conclude that zinc salts do not form typical dilute solutions
but that, perhaps due to the covalent bonding tendencies of the zinc
ion, there are deviations from any theory which is based on the assump-
tion of hard, non-polarizable ions.

While the primary objective of determining Ay for zinc ion thus
could not be achieved, the new phenomenon observed will require a
new approach to this conductance problem. It also indicates that not
all electrolytes can be treated in the conventional fashion.

In addition to these considerations, the equivalent conductance
of potassium octacyanomolybdate (IV) was determined. Large deviations
from the limiting equation of Onsager occur, so that the limiting ionic
conductance could not be accurately determined by the methods now
available. We attempted to obtain the transference number of this salt
from the moving boundary method. No reproducible transference
number could be determined. It was concluded from examination of
much self-consistent data that perhaps some immediate decomposition

was occurring even in freshly prepared solutions.
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I. INTRODUCTION

The modern theory of the nature of solutions of strong electro-
lytes is based on the following model which was developed into a
practical formulation by Debye and Hiickel (1), The electrolyte in
solution consists of individual ions which are free to move about inde-
pendently. In the neighborhood of each ion of a given charge is a
local excess concentration of ions of opposite charge. These ions exert
a net force on the central ion whenever the spherical symmetry of this
'ionic atmosphere' is destroyed by motion of the central ion. Qnsager
and Fuoss (2, 3) have used this model to construct a general theory of
irreversible processes in electrolytic solutions, which allows the
prediction of the conductance of these solutions at low concentrations,
Bjerrum (4) had shown that the existence of tightly bound pairs of ions
of opposite charge in equilibrium with free ions may noticeably reduce
the conductance, especially in solvents of low dielectric constant.
Onsager and Fuoss (8,9, 10, 11) made additional extensions to the theory
especially dealing with the "time of relaxation'' effect in conductance.
The idea of "ion pairs' was later incorporated into the treatment by
Fuoss (5,6, 7).. The resulting theory now is applicable to symmetrical
electrolytes in solvents of dielectric constant higher than about twenty.

Onsager and Fuoss have neglected powers of concentration higher
than the first for both practical and theoretical reasons. However,
Dye and Spedding (12) have shown the importance of these terms for
unsymmetrical electrolytes in water. Also Karl and Dye (13) have con-
sidered the contribution of these termsv to the conductance of symmetrical

electrolytes in water and dioxane mixtures.



The Fuoss-Onsager theory for symmetrical electrolytes has
been tested with favorable results, on the conductance of 1-1 electro-
lytes in water. It seemed desirable, then, to further test the accuracy
of the theory in predicting the conductance of 2-2 electrolytes, Zinc
sulfate was chosen since accurate conductance data already were
available (14).

An attempt to fit the conductance data alone by the Fuoss-Onsager
method would require three parameters: (1) the limiting equivalent
conductance of zinc sulfate, (2) the ion size parameter _a?, and (3) the
ion-association constant K. In order to reduce the arbitrariness of fit,
it was decided to determine the limiting equivalent conductance of zinc
ion by measuring the equivalent conductance of zinc perchlorate as a
function of concentration. The limiting ionic conductance of sulfate
ion is already known accurately (15). The perchlorate salt was chosen
since the limiting ionic conductance of perchlorate ion is also known (16)
and the ion itself is stable and unhydrolyzed.

To further test the theoretical expressions, the transference
number of zinc sulfate was determined as a function of concentration.
The only data available for transference numbers are those of Purser
and Stokes (17) based on the E. M.F. method, and of Gold (18) based on
the Hittorf method. These methods are subject to rather large errors
and we employed the more accurate moving boundary method.

The success of Dye and Spedding (12) using the extended electro-
phoretic correction to conductance of unsymmetrical electrolytes, led
to interest in the investigation in this laboratory of other higher charge
electrolytes. Potassium octacyanomolybdate (IV), a 1-4 electrolyte was
chosen as an example of this charge type. For successful application
of theory it was necessary that the salt exhibit a minimum tendency to
form ion-pairs, undergo no hydrolysis and be sufficiently soluble so

that measurements could be made over a range of concentration.



II. HISTORY
A. Method of Conductance Measurements

The transfer of electrons involved in the passage of electricity
is accomplished by mechanisms which may be distinguished in two
limiting cases: (1) metallic or electronic conduction and (2) electrolytic
or ionic conduction. In electronic conductors, conduction takes place
by direct migration of electrons through the conductor under the influ-
ence of applied voltage. Electrolytic conduction involves the migration
of both positive and negative ions which results in the transfer of
matter, as well as electricity, from one part of the conducting solution
to another.

The earliest measurements employed the same d.c. methods as
were used for determinations of resistance in metallic solid conductors
(19, 20,21). Since the passage of current causes changes in the electrolytic
solution such as concentration gradients and the setting up of back e.m. f.
due to polarization at the electrodes, it appeared to early investigators
that Ohm's law, valid for metallic conductors, was not obeyed by
electrolytic solutions. |

The resistance (or its reciprocal, the conductance) should depend
only on the temperature and on the area and distance between the electrodes

of the measuring cell.

A = Lg i ohm™!

1s

(1)

Conductance =-11-i = o 1

where R is the resistance of the solution, A is the area of the electrodes,
lsis the distance between electrodes, p is the specific resistance, which

is equal to the inverse of Lg, the specific conductance.



Kohlrausch (22), believing that polarization was due to adsorption
of gas on the electrode, began using alternating current sources and
an a.c. Wheatstone bridge for measuring resistances. To further
reduce the effect of polarization, he plated the platinum electrodes
with finely divided platinum black. The dimensions of the cell were
measured to determine the cell constant l&/A = k. It was soon apparent
that it is more convenient to employ a secondary standard of known
specific conductance in the cell and calculate k, the cell constant. The
specific conductance of potassium chloride was measured by Kohlrausch
(22) to be used as a standard. Between 1868 and 1880, Kohlrausch
made a long series of carefully controlled conductivity measurements
over a wide range of concentrations, temperatures and pressures.
His data, especially on potassium chloride,are still accepted today.
Kohlrausch defined the quantity called the equivalent conductance A.
/\ is defined as the conductance of a volume of solution containing one
equivalent weight of dissolved substance between parallel electrodes
one centimeter apart, large enough to contain all of the solution between
them. The quantity, A, is never measured directly but is calculated

from the specific conductance

A _ 1000 Ls
= s (2)
where _c_* is the normality of the solution. Another quantity, 0y Was

defined as the equivalent conductance at infinite dilution. The value of
Ao cannot be obtained directly from experiment, but is obtained by
extrapolation of a suitable function of equivalent conductances and
concentrations. Kohlrausch (23, 24) also determined that Ao was the

sum of the equivalent ionic conductances, \J, of the cation and anion

j,
such that

No = 2% + 0 (3)



The work of Kohlrausch disclosed the many sources of error in
prior work and hence the accuracy of any earlier results is very
questionable. Improvements in conductance measurements since the
work of Kohlrausch have been limited to better design of equipment
rather than method change.

The most important and extensive work in this line was carried
out by Jones (25, 26, 27, 28) and co-workers who published a series of
papers concerned with the problem of eliminating errors from conductance
measurements, Jones made an experimental and theoretical study of
the design of the conductance bridge. Resulting from this analysis were
recommendations on the design of resistance boxes, shielding of
bridge components, sources of alternating current, detector circuits,
oscillator circuits and bridge grounding. This latter was a modification
of a method developed by Wagner (29).

The use of oil rather than water as a thermostat liquid was
recommended following the discovery of the sensitivity of the resistance
measurements to the presence of water, a conductor, near the cell.

The use of oil gave results independent of the resistance being
measured, of the specific conductivity of the bath liquid and of the
frequency.

Experimental work by Wien (30), Taylor and Acree (31), and
Kraus and Parker (32, 33) indicated that an increase in conductance
with moderate increase in field strength can occur. Jones and
Bollinger (27) investigated these phenomena to determine whether
variation was due to experimental error or failure of Ohm's law.

The results of this investigation indicated that there was no measurable
variation of the resistance with change in applied voltage if proper
experimental precautions eliminated (1) heating, (2) polarization, and

(3) secondary effects of conductance and capacitance.



In 1923 Parker (33) observed that in many cases cell constants
varied with the resistance and frequency being measured. In 1930
Shedlovsky (34) investigated the design of conductance cells as an
approach to the problem of the 'Parker effect.' He designed a four
electrode cell to determine whether cell constant variation would be
eliminated if similar electrodes were included in two arms of the
bridge during measurements. The following year Jones and Bollinger
(35) continued this study of cell design. Analysis of the cell reactance
as a function of frequency, resistance, amount of platinization, and
size of electrodes led to the proof that the Parker effect was due, for
the most part, to faulty design of conductance cells. The error was
due to a series capacitance and resistance shunt built into the cell by
constructing the filling tubes and mercury contact tubes parallel and
too close together. Shedlovsky,(36) following the recommendations of
Jones, constructed a cell for the high dilution range which was
independent of frequency.

Some of the Parker effect was deduced to be due to polarization.
The platinization of electrodes to minimize polarization was studied
by Jones and co-workers who published papers in 1935 on this subject
(37,38). Summarized, the results of this investigation were:

(1) Polarization resistance is inversely proportional to the square

root of the frequency.

(2) Polarization may be treated as a capacitance which decreases

with increasing frequency, in series with the cell resistance.

(3) Both polarization capacitance and resistance are dependent

upon the metal used for electrodes, the electrolyte and the
temperature, but independent of the current density and
degree of electrode separation.

(4) Platinization from a solution of chloroplatinic acid with a

small amount of lead acetate can reduce polarization to a



negligible amount. However, in very dilute solutions
platinization must be reduced greatly or eliminated
altogether.

(5) Sufficiency of platinization may be ascertained by plotting
resistance versus the square root of the frequency, the inter-
cept on the resistance axis giving the true resistance. The
difference between the apparent resistance and the true re-
sistance gives the error due to polarization. If the error thus
determined is negligible for the purpose of the measurement,
then platinization is adequate.

Kohlrausch had used standard potassium chloride solution to
determine cell constants. Later workerscontinued to use this as a
reference salt since it was easily purified, non hygroscopic, soluble
and stable. However, several definitions of the standard reference were
accepted at the time when Jones, Bradshaw and Prendergast (39, 40)
began investigation of this problem. This study resulted in a definition
of a standard reference solution of potassium chloride in terms of
weight in grams per kilogram of solution corrected to vacuum. They
then determined the specific conductance of standard potassium chloride
reference solutions at OOC, 180C, and ZSOC. The cells were first
calibrated with mercury, a primary standard of resistance. Nearly all
subsequent work in this field is now based upon these standards.

In 1959 Fuoss and co-workers (135) published a recommendation
for calibration of the cell over a range of cell resistances rather than
the previous method of calibrating at one resistance only with a solution
prepared precisely to a predetermined value. The now rather well-
developed theory for 1-1 electrolytes furnishes a method of extroplat-
ing linearly from the Jones and Bradshaw 0,01 demal solution to‘lower
concentrations. Fuoss has presented an equation which permits the

calculation of the conductance of potassium chloride in water at any



concentration up to about 0,012 N, They recommend the use of this
equation for cells with constants of the order of unity, for calibration
at several high resistances of the magnitude encountered in actual

experimental work,

B. Method of Transference

When an electric field is applied to an electrolytic solution the ions
experience a force and are initially accelerated toward the anode or
cathode according to the sign of their charge. Their final velocity is a
result of this acceleration and the counter force of friction with the
surrounding solvent molecules. This directed motion is superimposed
on their random Brownian movement and therefore the net transfer of
ions is due only to the applied field. The ionic mobility of an ion is a
quantity characteristic of the given ionic species and is dependent upon
temperature, pressure, type of solvent and concentration.

Experiments by Daniell (41, 42) using a three compartment cell,
showed the concentration changes that would be expected with a migration
of ions. He also found the first indication that positive and négative
ions in a solution do not carry equal amounts of the total current, The
fraction that each ion carries of the total is defined as the transference
number of the cation or anion. - Since the ions in a solution must carry
all of the current, the sum of the transference numbers of the ions in
solution must always be unity.

Conductivity measurements yield the sum of the ionic mobilities
of an electrolyte, but individual values cannot be obtained from these
measurements alone. They can be evaluated from a knowledge of the
concentration changes which take place around the anode and cathode
during electrolysis. Hittorf (43, 44, 45) first utilized this fact and began
an extensive study of transference numbers which continued from 1853
to 1903. It is particularly interesting that many of these measurements

were made before the ionic theory of Arrhenius was formulated in 1884,



The experimental methods available for measuring transference
numbers are divided into three types: (1) the Hittorf method, (2) the
electromotive force method (E.M.F.) which depends cn the measure-
ment of the potentials of cells with and without transference, and
(3) the moving boundary method.

The Hittorf apparatus consists essentially of an electrolysis cell
divided into an anode and a cathode compartment which are separated by
a third compartment. Initially, the concentration cf electrclyte is the
same in each compartment. Electricity, measured by a coulometer in
series with the cell, is passed and the change in composition of the
anode and cathcde compartment is determined. Assuming that conditions
are met so that the central compartment concentration does not change,
the change of equivalents in the anode or cathode compartments after
electrolysis will give the transference number calculated from the
expression (45)

_ Ng+ N - Ny
TJ" N

(4)
where Ny is the initial number of equivalents of the jth ion per gram of
gsolvent, Nf is the final number of equivalents of that ion and N the
number of equivalents of ion that are introduced into the solution (or
correspondingly deposited) by electrode reaction. Early measurements
contained several sources of error making uncertain the validity of the
results. This early work has been summarized by McBain (46) and
Noyes and Falk (47).

The application of the Hittorf method is limited principally by
three factors; (1) at least one, and preferably both electrodes must be
reversible, (2) mixing of the electrode and middle compartment solu-
tions during electrolysis must be prevented, and (3) the analytical

procedure must be highly accurate., More recent work by Jones and

Dole (48) Maclnnes and Dole (49) Jones and Bradshaw (50) and Steel and
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Stokes (51) gave quite good results. More accurate data obtained more
speedily have been obtained by the moving boundary method.

A potentiometric method for the determination of transfsrence
numbers was first proposed by Helmholtz (52). A concentration cell
with transference of the form:

_ 2t w2~ LAzt 2T -
M-MX | ALy Xv_ (cy) ! Av+ XV- (c) ! MX-M (5)

where M-MX represent electrodes reversible to }i_ ions and concen-
tration ¢, is greater than concentration ¢,. When cne faraday of
current is passed through the cell, E; will be the electromotive force,
accompanied by the transfer of T, equivalents of salt from ¢, to c,.

A concentration cell without transference of the type

! A :
i A(Hgly - A(Hg)x | A% X! | MX-M (6)

! v+

M-MX | azt xz-
v v

involves the reversible transport of one equivalent cf salt from concen-
tration ¢, to ¢, per faraday cf current passed, with an electromotive

force of E. Combination yields the result that

T, = —=— (7)

which gives a method of direct calculation of the transference number.
The transference number thus obtained is a mean value and can therefore
only be valid if the number is constant in the concentration range c, to c,.
When the transference number varies rapidly with concentration,
graphical methods or empirical fitting of the data have been used.

The E.M.F. method has been studied with some success by Pearce and
Mortimer (53) and Maclnnes and Beattie (54) investigating lithium ion;
MacInnes and Parker (55) and Jones and Dole (48) studying potassium ion,
In most cases the method does not yield as accurate data as obtained by

either the Hittorf or moving boundary method.
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The moving boundary method depends on the phenomenon described
as follows. Two solutions can be placed in an electrolytic cell so that
a boundary is observed between them, due to differences in color or
refractive indices. The solutions may or may not have a common ion,
but for the purposes of this work it is sufficient to consider the case of

two electrolytes M+A- and N+A' with the common anion é_, forming a

boundary at a-a in Figure I. As Q coulombs of electricity are passed
through the cell the boundary between the solution will move to a position
represented by b-b. The effect of the passage of current is to replace
the solution of M+A', of volume V milliliters, in the region between the
two positions of the boundary, by a solution of NtA©. MTA- s
designated as the ''leading' solution and NtA- as the "indicator' or
"following' solution. For a solution containing ¢ equivalents per liter,
then cV/1000 equivalents of Mt pass through a given cross section of

the tube and carry cVF /1000 elementary charges. This is also T,Q=

(T+ it) coulombs of electricity passed. Therefore

. c VF
T+1t- 1000 and
(8)
T = c VF

t 10001 t

This is the fundamental equation for the moving boundary method.

Mta-
bo--—--1 b
a4-——-—- - a

NtA-

+

Figure 1. Schematic representation of transference cell.
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Lodge (57) in 1886 made the first studies of the motion of indi-
vidual ions. A gelatin gel held both the ion being studied and an
indicator ion with which it formed a precipitate or colored complex.
Assuming that the potential gradient was constant throughout the gel,
he measured the velocity of the boundary formed. In 1893 an error was
pointed out by Whetham (58, 59) who showed that the gradient was
dependent upon the conductivity of the ionic species and was not the
same on both sides of the boundary. Both Whetham and Nernst (60)
began observations on boundaries between colored and uncolored ions
in solutions without gelatin, Masson (61) in 1899 delineated the condi-
tions necessary for quantitative work with moving boundaries.

Kohlrausch (62) in 1897 published the first theoretical treatment
of moving boundaries. He deduced that in order to obtain a stable

boundary it is necessary that

Ty _ (Tps
c cf (9)

where T+ and < refer to the transference number and concentration,
respectively, of the leading solution and (T4)f and c ¢ to the same
quantities of the following solution. This relationship is known as the
Kohlrausch ratio.

Diffusion and mixing of the two solutions in contact must tend to
occur, but in actual practice there is a self-sharpening mechanism
operating so that it appears that no diffusion occurs. The leading and
following solutions are chosen such that the mobility of M+, the leading
cation, is greater than that of N'. The following solution is in a region
of higher potential than the leading solution because of its higher
specific resistance. If any M+ ions lag behind, the higher potential
gradient will increase their velocity until they again enter the leading

solution. The converse process will take place if the following ions
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Nt diffuse ahead of the boundary. Extensive investigations by MaclInnes
(63, 64) and co-workers have experimentally proven the existence of
such a mechanism.

According to the Kohlrausch treatment the concentration of fcllow-
ing solution immediately behind the boundary will adjust to the concen-
tration given by the Kohlrausch ratio under the influence of an electric
field. There is no such effect on the leading solution. This permits
the transference number to be ascertained accurately even if conditions
set by the Kohlrausch ratio are not fulfilled. However, studies by
MaclInnes and Smith (65, 66) showed that, while theory sets no limits on
the concentration of the following solution, the concentration adjustment
can take place properly only if the following solution is within three to
eight percent of the Kohlrausch ratio. The properties necessary for
an indicator solution have been summarized by Dye (67) as follows:

(1) The solution must not react with the ion under investigation,

(2) The transference number of the following ion must be less than
that of the leading ion,

(3) The following solution must be less dense than the leading
solution for falling boundaries and of greater density for
rising boundaries.

(4) There must be a sufficient difference in properties of the
solutions, such as color or refractive index, to permit the
boundary to be observed and its movement followed.

In order to observe boundary motion it is, of course, necessary
to form a sharp stable boundary between two species. The first very
successful boundaries not in a gel were observed by Steele (68, 69) in
1901. Steele formed the boundaries by using a gelatin gel plug. The
boundaries were allowed to move into a gelatin-free tube where they

were observed.
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The formation of a boundary by the 'autogenic'" method was first
used in 1904 by Franklin and Cady (70). This method consisted of
placing the solution to be observed in the cell over a metal plug or disk
serving as the anode., The metal must form a soluble salt in combi-
nation with the anion of the solution. When current is passed the
boundary between these ions will move up the tube. The concentration
was automatically adjusted to the Kohlrausch ratio by the electric field,

In 1906 Denison and Steele (71, 72) made significant advances in
measuring the boundaries between two uncolored solutions., The boundary
was illuminated with a light from behind and viewed with a telescope as
in the method used today. They replaced the gelatin plugs used by
Steele (68) to form the boundary by a cone covered by a membrane of
parchment. This method was later simplified by Maclnnes and Smith
in 1923 (65) who replaced the cone and parchment paper with a flattened
glass rod and soft rubber disk, A sharper initial boundary was obtained
two years later by MacIlnnes and Brighton (73) who used a '"'shearing disk"
apparatus. The technique was further simplified by Spedding, Porter and
Wright (74) using a hollow-bore stopcock to form the boundary. These
methods may be used with either a rising or falling boundary.

Early workers in the field considered the possibility that electrode
reactions which occur with the passage of current, might be accompanied
by signiricant changes in volume. These would affect the observed move-
ment of the boundary. Denison and Steele considered the effect neglig-
ible, which conclusion was proved to be in error by the calculations
first made by Lewis (75). Unlike the Hittorf method which measures
the transference number of an ion with reference to the solvent, the
moving boundary method measures the motion relative to a fixed mark
on the tube. The computation of the volume change, AV, is simplified
if one side of the cell is left open to the atmosphere and the other side

closed. Then only the changes which occur between the boundary and
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the closed side need to be considered. An example of this computation
is to be found under the experimental section of this work, The volume
change AV means that the boundary has swept out a volume V' + AV

such that

v V' + AV (10)

observed ~
where V' is the volume swept out by the boundary corrected for any
change due to electrode reaction. The expression for the transference
number then becomes

cxAV

1000 (11)

(T4) =T, -

corr.

The validity of the correction has been experimentally demonstrated by
two independent methods (64, 76) which are briefly described by
MaclInnes (77).

In 1932 Longsworth (78) proposed an additional correction to
correct for the experimental fact that the sum of the cation and anion
transference number was not exactly unity, He deduced that this was
due to the small fraction of the total current which was carried by
solvent impurities, and derived the following expressicn to correct for
these impurities:

T+ (L )
AT, = =t 1“solvent! 12
+ (Lsolution) (12)

where A T+ is the correction to the transference number T4 and
Lsolvent and Lgolutjon are the specific conductances of the solvent
and of the solution respectively. The final expression for the trans-

ference number is then given by:

_FcVv cav Lisolvent

The transference numbers thus determined agree with those obtained by

the Hittorf method within the limit of the experimental error,



III. THEORY

The foundation of the theories and investigations wkich ultimately
led to the present concepts of interionic theory, were laid by Arrhenius
(79). The then current theory, based upon the earlier work of Faraday
and Hittorf, viewed the applied E.M.F. as the cause of the splitting up
of the molecules of the solution into ions which could carry current.
Since Ohm's law was found to be obeyed by electrolytic solutions, it
had to follow that some small fraction of the solute existed in an iqnized
state. This fraction of "active' molecules were assumed to be short-
lived basic and acid radicals of the solvent, free to move in an electric
field.

“Arhennius' own work on mineral acids and van't Hcfi's study of
the colligative properties of solutions s&pported the ideas Arhennius
advanced in his theory of ionic dissociation which is summarized as
follows:

(1) An electrolyte upon dissolving, dissociates into ions.

(2) The degree of dissociation,a, depends on the ctncentration

and in infinitely dilute solutions the dissociation is complete.
The extent of dissociation is indicated by the deviation from
van't Hoff's laws.

(3) The degree of dissociation can be calculated from conductivity

measurements by means of the relationship:

A
No

(14)

where /\ is the equivalent conductance of the solution and A 0
is the equivalent conductance at infinite dilution.
There was some agreement between values of a calculated from

equation (14) and from methods depending upon colligative properties,

16



17

gaining much support for the theory. The relationship expressed by
equation (14) involves the assumption that ion mobilities do not vary
with concentration. Rarely can this be true, as accurate data obtained
on transference numbers could later show. In addition it was found that
the law of mass action apparently obtained for electrolytes that are only
slightly dissociated. If one considers the partial dissociation of

mta- — Mt 4 A~, the law of mass action implies that

+ - .
M'][A
k- BLIA] (15)
[M"A7]
If MYA™, whose concentration is ¢, is dissociated to a degree a then
upon substitution in equation 15 and also combination with equation 14,
Nc

K= Ao o - 1\) (e

which is a form of Ostwald's dilution law. This relationship involves
the assumption, not then considered, that concentration and "active
mass' are equivalent. Equation 16 was tested for constancy of K by
a number of workers. In strongly associated solution (weak electrolytes)
early work appeared to be in close accordance with the equation.
However, the later, very accurate work of MacInnes and Shedlovsky (80)
showed a small change of K with concentration. For intermediate and
strongly dissociated electrolytes, Kwas shown to be less constant (36, 81).
It was concluded that the Ostwald dilution law was true only in the
limiting case, an infinitely weak electrolyte. The failure of the highly
conducting solutions to follow the dilution law was for some time known
as the "anomaly of the strong electrolyte. "

There were two explanations advanced for the anomaly; (1) all
electrolytes obey the dilution law but this is obscured by disturbing
factors such as complex ion and unstable ion-hydrate formation, and

(2) equation (14) is not valid and a fundamental change was needed in
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the ionization theory for strong electrolytes. Fruitful pursuit of the
latter led to modern theory. J. J. van Laar (82) first recognized that
coulombic forces between ions must affect such properties of a solu-
tion as conductance, freezing point depression and osmotic pressure.
Noyes (83) and Jahn (84) attacked the assumption that the mobilities
of the ions are independent of concentration, proposing that the electro-
static charges on the ions must alter the properties of the solvent and
affect ionic speeds. That strong electrolytes should be considered as
totally dissociated was suggested first by Sutherland (84) aﬁd Lewis (85).
The latter felt that '"additive' properties of salts, which show no
physical properties for the undissociated portion, should lead us to a
theory of complete dissociation. The evidence that concentration was
not equivalent to "active mass' led to the conception of "activity"
and "activity coefficients'" of Lewis (87). Only in an ideal solution
would the activities of the ions be equal to their concentrations., Sutherland
(88) made calculations which were only approximate, on the magnitude |
of the coulombic force between ions assuming complete dissociation,
and showed that these forces could produce the observed decrease in
conductance with concentration. In an attempt to account for the variation
of activity coefficients from unity on the basis of interionic attraction
and repulsion, Milner (89) developed a mathematical theory based on
statistical methods. This theory was essentially correct in the light
of present day ideas, but the difficult mathematical analysis prevented
its wide use. He did show that at low concentrations the deviations
from ideal behavior should be proportional to the square root of the
concentration,

The first considerations of ionic interaction assumed that the
ions formed a lattice not unlike a crystal lattice. The lattice energy
would simply be reduced by the effect of the dielectric constant of the

solvent. However, the theory neglects the effect of thermal motion
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which would break down any structural configuration the ions might
tend to assume. They do, however, tend to have a limited structural
arrangement brought about by the interionic attraction which causes
the mean distance between ions of like charge to be greater than that
of oppositely charged ions. In a time average there would be more
negative ions in the region of a positive ion and more positive ions
in the region of a negative ion. This "ionic atmosphere' can be regarded
as a spherical region around a given ion having a charge of sign opposite
to that of the central ion. The attraction between the ion and its atmos-
phere gives rise to the deviation from ideal behavior because it imposes
a slight degree of order on an otherwise random system. Debye and
Hiickel in 1923 (1), following Milner's formulation, developed their
theory of interionic attraction upon this model. The assumptions con-
cerning the solution involved in the development of the theory may be
summarized as follows:
(1) Strong electrolytes in solution exist as ions with no undissociated
salt present at any concentration,
(2) The solutions would show ideal behavior if there were no
interionic attraction.
(3) The ions can be regarded as point charges, unpolarizable
and possessing a symmetrical coulombic field.
(4) Only coulombic forces are important in interionic attraction;
any other intermolecular forces are negligible.
(5) The dielectric constant of the solution is the same as that of
the solvent.
(6) The interionic attractive coulombic energy is small compared
with the energy of thermal motion.
In the theoretical consideration of the interionic attraction the
fundamental statistical property is the distribution function (corresponding

to the equations of motion in a simple mechanical system). The distribution
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function defines the distribution of ions in the ionic atrmosphere., The

desired distribution function for this system may be defined by
(17)

where fjj is the time average distribution of i - ions in the vicinity of nj
central j-ions. The quantity nji gives the number cof i-icns in the

vicinity of a central j-ion. Since material must be conserved in the
system as a whole, the converse expression for fij may also be written.
f;i and njj depend, in general, upon the location in solution of the central
j-ion as well as the position relative to the central ion at which the concen-
tration of i-ions is specified.

In the special case where there are no impressed forces on the
system, this distribution will be spherically symmetrical and independent
of location in solution. It can, therefore, be written as a fuaction only
of distance r from the central ion. Knowledge of this firdamental
property would provide the basic equation for computing the limiting
laws of equilibrium properties such as activity and osmotic ccefficients
and, subsequently, partial molar heats of dilution and hezt capacities.

In the more general case when there is present a perturking force
such as an impressed E.M. F. causing conductance, the distribution
will not be spherically symmetrical. Then, it is necessary to consider
position in solution and position relative to the central ion.

The early Debye-Hiickel theory presented below, considers only
the former case of the unperturbed ionic atmosphere and is therefore
applicable only for the calculation of those properties dealing with
equilibrium processes,

In order to calculate an equilibrium value of the function njj one
may set up a differential equation. The forces between the ions are
coulombic in nature and it may be reasonable, for the distances we are

considering, and taking a time average, to treat the distributicn of ions



21

as a smooth charge density function. The appropriate equation would then
be the Poisson equation of electrostatics:

-4
VY = e (18)

For our system we can identify ) with ?_}/j" (r), the spherically symmetrical

equilibrium value of electrostatic potential in the neighborhood of a central

j-ion., I_)_ is the dielectric constant of the solution. p_is defined, then, as
pj» the charge density function in the neighborhood of the central j-ion which

can be written in terms of oni and summed over all the kinds of ions in the

solution as

s S
> n%.e. = = n%. z € (19)
1= i=

Py = , Tt ci

where e; is the charge on the ion of type i, € is the magnitude of the charge
on the electron and z; is the valence of the i-ion. It can be seen that upon
substitution of pj of equation (19) into equation (18) both ‘(/Ij and pj are
unknown functions of position and charge and therefore equation (18) is not
completely defined.

There are two independent lines of reasoning which allow us to write
pj as a function of 'l/) g which would result in a differential equation with

’lf}_(]? as the only unknown function.

(1) Considering the fact that the ionic atmosphere is the result of
electrostatic attraction opposed by random thermal agitation, one might
assume that the distribution is governed by the Maxwell-Boltzmann law.
This would depend on the energy I_.Igi of the '"atmosphere' ions as a function
of their separation from the central j-ion as

ngi = n; exp ( - Ugi/kT) (20)

where n is the average concentration of i-ions computed assuming uniform
distribution. I_Jgi, moreover, can be approximated by e 1}1 j°; which is the

energy the i-ions would have, subject to the equilibrium potential function '%0 .
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gjoi reduces to n; when separation between i and j-ions goes to infinity (i.e.

when ‘q)g goes to zero). Finally, then

"Ma

. = - 0
P; e.n, exp( e, wj /kT) (21)

1
(2) The second alternative proceeds from the nature of the Poisson

equation itself. If p,, p, and p3 are three charge density functions and

1}/ 1 '4’ 2 and 1//3 the corresponding potential functions obtained by solution

of the Poisson equation, and if p3 = p; + p,, then w 3 turns out to be equal

to ’L}/, + 7.,U 2. Hence, since p is actually a function of 'w then

P (YY) +Pz(2.vz)=93('¢/'3)=93(1f1+4/z) (22)

This is the defining relation for a linear function; hence p oc l,U .

Since the first alternative leads to an exponential relatiqnship between
p and 'lP , and the second alternative to a linear relationship, the two
methods are obviously not compatible. Since both contain approximations,
(1) that Ugi = ej 7-}) g and (2) that a smooth charge density function is
valid for the times and very small distances involved, neither solution
gives unequivocal results. These difficulties can be circumvented by
expanding the exponential function in equation (21) as a power series in
the exponent eivg/kT and retaining only the first two terms, i.e. the
constant plus the first linear term. Because of charge neutrality,

.21 ne = 0 and substitution into cqua.tiori (21) results in
1=

2 8
2y % o ( =S— 270
1% Y s (R B )Y (23)

Mo

=1
Ps"XT

Substitution of this equation into equation (18) gives the result

Y =R VS (24)
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where
4“628 2

The term 3 has the dimensions of cm=!. The length l/x, is called the

radius of the ionic atmosphere.
The solution of the differential equation (24) is shown in detail by
Harned and Owen (90). The final result is given by

xa
0 e.e - Nr
_ j _ e
wj (x) = D(1 + xa) r (26)

which for point charges reduces to

‘L[Ig = e e” xr/Dr (26a)

From equation (20) and the discussion following it,
0 - 0
This exponential function may also be expanded in a power series and

retention of only the first two terms yields,

Substitution in equation (17) for the values of ngi and ’T,Ug given by
equations (28) and (26) respectively, yields the final expression for the

distribution function characteristic of the equilibrium case considered,

xna - Xr
_ l-ee.e”™. | e :
%i‘%%(nkru+xa ) (29)

On the basis of equation (29) Debye and Hiickel computed successfully the

‘limiting law for the activity coefficient. The Debye-Hiickel theory gave a
theoretical basis for the concept of ionic strength which had been derived
empirically by Lewis (87). The interionic attractions postulated would

be expected to be even more effective in determining the properties of
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solutions at high concentrations but, as the theory has been developed,

its validity is limited to dilute solutions. The ratio of the coulombic to
the thermal energy of the ions must be small i.e. e; ‘l'U g <<kT. This
will not be true if the ions are very small or highly charged or if the
dielectric constant is very low. In such cases higher terms in the
expansion of equation (21) should not be neglected. The first modification
to the evaluation of the potential was made by Miiller (91) and by Gronwall,
LaMer and Sandved (92). Miiller obtained the solutions of the integrals

by a graphical method rather than by means of a series expansion.
Gronwall et al. expanded the series and kept higher terms. They were
able to account for some experimental results on solutions of highly
charged electrolytes with relatively small ions. The mathematical dif-
ficulties associated with this method led Bjerrum (4) to suggest a much
simpler improvement. In part the concept may be considered to represent
a real phenomenon and in part to circumvent inherent mathematical
inadequacies.,

Bjerrum suggested that all oppositely charged ions within a certain
distance of one another, possessing sufficient energy to be a stable
physical entity, are associated into ion-pairs which act as a single unit
in solution. Two ions which are closer than a critical distance apart are
considered to form an ion-pair. Bjerrum chose this distance, q, to be

2

o (30
At this distance the electrostatic potential energy of the oppositely charged
ions is 2kT. Bjerrum arrived at this value for g by computing the time
average probability of finding an oppositely charged ion in any point within
an infinitestimal spherical shell of thickness dr and radius r as a function
of r, the distance from the reference ion. He noted that the function has
a minimum at r = q. This involved the assumption that the number of

oppositely charged ions per unit volume would follow the Boltzmann
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distribution function

nj; = ny exp( - e; zﬂj/kT) (31)

where Wj was taken to be the simple coulombic potential of the central
i0on

'l'U i T % €/Dr
On the basis of this he calculated (1 - a) the degree of association, and K,
the association constant, as a function of a, the distance of closest approach
and D, the dielectric constant of the solvent. Calculations showed that
ion pairing makes a significant contribution to the behavior of an electro-
lyte when the ion size is small (including the solvation sheath) and/or the
dielectric constant is low. This has been experimentally substantiated by
the study of lanthanum ferricyanide in various solvents (93, 94, 95) and the
investigation of tetraisoamylammonium nitrate in water-dioxane mixtures
by Kraus and Fuoss (96).

Fuoss (97) has suggested a modification of the approach by redefin-
ing the' criterion for an ion-pair. Two ions are to be considered as an ion-
pair only if they are in contact without intervening solvent molecules.
While Bjerrum's treatment gives good results in solutions of low dielectric
constant, in general, the theoretical expressions for K have proven
unreliable. As a result, the constant is now treated as an adjustable
parameter chosen to give the best f{it.
| Debye and Hiickel were also able to make an important contribution
to the theory of electrolytic conductance (98). This problem becomes
more difficult since the equilibrium condition will be destroyed and the
ions will move under an applied E. M. F,

The equivalent conductance of a solution has earlier been defined by

/\ = 1000 L/c. (32)

/\ is also obtained by summing the ionic conductances over all types of
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ions in a given solution. The equivalent conductance \j of a given ion
may be defined as the current produced by one gram equivalent of the
ion under a potential gradient of one volt per centimeter. )‘j is related

to the ionic mobility uj

Nj= 96,500 y; (33)

The mobility of an ion is its velocity under a potential gradient of

v,
one volt per centimeter whereby

uj = v;/300X (34)

where X is the electric potential gradient expressed in the appropriate

cgs units. It then follows that

_ _ 96,500
A-?xj- 360 X ? v; (35)

To obtain a value for the mobility experimentally, the limiting equivalent
ionic conductance at infinite dilution is obtained from measurements of

the conductance at a number of concentrations. A suitable extrapolation
function will give the conductance at infinite dilution. The problem in

the conductance theory which is evident from equation (35) is to determine
a value for the average ionic velocities. The knowledge of the distribution
of the ions relative to each other, the electric potential at any point in

the solution and the hydrodynamic equation of continuity are used to

derive a theoretical expression for the conductance of a solution.

Debye and Hiickel, using their distribution and electrical potential
function as a basis for this new theory, found average ionic velocities
by considering the perturbation caused by an applied E.M. F.

Onsager and Fuoss in a number of papers from 1927 to 1958 have
developed a conductance theory along the same lines as the original Debye-
Hiickel theory. In presenting this theory here, we will follow the develop-
ment as it is now known and used, indicating the points of deviation from

the historical presentation.
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Two underlying physical concepts concerning a central ion and its
surrounding atmosphere were first considered by Debye and Hiickel.
As ions move in the field of a perturbing electric force those of opposite
sign will be moving in opposite directions. Since each tends to drag some
solvent molecules with it, the overall effect will be a local solvent flow
in the direction opposite to that of any particular ion. The average speed

of all ion types will then be lowered. This is called the electrophoretic

A second effect may be considered when there is an applied E.M. F.
As the ion travels through the solution, its ionic atmosphere of opposite
sign must be tending to move away from it, and will therefore no longer
possess a spherically symmetrical structure. A finite time is required
for the atmosphere to build up and then decay about the moving central

ion. This is known as the time of relaxation. The net effect will be an

excess of oppositely charged ions behind a given central ion and can be
considered an opposing force to the applied force. The applied force is
the product of the ion charge and the potential gradient X. The ‘small

restoring force is described in terms of a correction to the field, A X,

called the relaxation field. The result is a lowering of the ion's mobility.

Both of these effects depend upon the density of the ionic atmosphere.

In addition to these two effects, Onsager and Fuoss (11) recently
modified the concept to include consideration of a kinetic effect. Due to
the time of relaxation a larger number of ions are behind the central ion
than are in front of it. Thermal motion will cause the central ion to be
struck more often from behind than from in front, resulting in an in-
creased velocity of the central ion. This effect then acts as a force, A P,
in the direction of the field, and is considered as an osmotic pressure
on the reference ion which moves it with the field.

The original model used considered the solvent as a structureless

continuum. However, at finite concentrations there will be ions of solute
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which will act as obstacles to the moving ion. This effect was treated by
Fuoss (5) as an additional correction to the physical concepts conceived by
Debye and Hiickel. It can be treated as a corréction to the viscosity,
which is inversely proportional to the conductance itself.

Following the method of Fuoss (7) we would like to write in symbolic
form the conductance equation derived from considerations of the four
effects described above. An isolated j-ion in a solution to which an E.M. F.
is applied will move with a velocity Vvj proportional to the applied force
field (:,ji, where the proportionality constant is the reciprocal of the co-

efficient of friction of the ion.

vj = wjlejlx (36)

Due to the relaxation and electrophoretic effects, the average velocity of
the j-ion will be reduced. If Yis is the retarding velocity of the solvent
in the neighborhood of the j-ion resulting from the electrophoretic solvent
drag by j-ions, and the actual force felt by the ions is E_j (X + A X) then

vi= o ley | (X+8X) - vy (37)

Combination of equations (35) and (37), considering only one ion, gives

_ 96,500 96, 500
xj_ 250 wjlejl (1 + AX /X) 300 Ivjsl (38)

At infinite dilution where there would be no interacting ions present,
AX/X and Vs are both zero and therefore

96,500 _

20,2590 o= 20
A= Thggm @y el = (39)

J

where _):3’ if the limiting equivalent conductance at infinite dilution.
Since Yigs the solvent velocity, is dependent upon the velocity of the
i-ions and therefore is proportional to the applied field (X + AX), the last

term on the right-hand side of equation (38) may be written as
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96, 500 }
300 X |Vjs | = (A)\e)j (1 + AX/X) (40)

where (A )‘e)j is the electrophoretic contribution to the conductance.
Summing equation (38) over all kinds of ions in the solution one obtains

the total equivalent conductance as

AX
N= No -AA) 1+ =+ (41)
where A/\q is the term due to the electrophoretic effect and AX/X the
" term due to the time of relaxation effect. The contribution of the kinetic
effect, a force in the direction of the field, and the viscosity correction
which is inversely proportional to the conductance, results in the final
form of the conductance equation,
AX AP
No - AN\, (1 + xt )

A\ = 1 + Fc (42)

An outline of the considerations involved in the derivation for
each of the expressions which appear in equation (42), following the pro-

cedure used by Fuoss and Onsager, will be presented here.

I. The Electrophoretic Effect

The electrophoretic correction has been calculated in two ways.
One method is based on the use of Stoke's law for the moving ions and
is described fully by Harned and Owen (90). The second method is that
of Onsager and Fuoss (19) which was later slightly modified by Fuoss
and Accascina (99). This method proceeds by way of a calculation of the
solvent velocity as a function of position about the central ion. The basic

hydrodynamic equation for the flow of solvent is
2 = =
nv? Vs= yp-F (43)

where 7 is the viscosity of the solvent, Yis is the solvent velocity at a
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distance r from a particular ion and p is the pressure. T is the force
per unit volume of the solution due to the electrostatic force on the ions
contained in it. Its magnitude may be written in terms of the field
strength and the charge density F = X p, in the direction of the impressed
E.M.F.

The solution of this differential equation is found in the original
paper (10) and has been discussed in éome detail by Karl (13). We are
interested only in the radial component of '\'f}s which will be needed in
the calculation of the time of relaxation effect, and in the component of
-\735 along the direction of the applied E.M.F. The latter is of interest
because its value at a distance a, represents the velocity of solvent in
contact with the ion in question and therefore the velocity of the ion itself.

The radial component is given by

2.2 3.3 x(a-r) 2
szecose£2[l+xa+xa ; X2 ]_Ze (1 - xr) R

r 4mn 2 6 X3P (1 + xa) 3%

(44)

R is the hydrodynamic radius of the ion and is set by Fuoss and
Accascina (99) equal to a.

The velocity v in the direction of the applied field, evaluated at r
equal to a, is given by

v (a) = Xej _ XejXx
x 6tn a 6mn (1 +xa)

(45)

The first term on the right-hand side of equation (45) represents the
Stoke's law limiting velocity of an ion subject to an impressed force E.j)_(_
and moving in a medium of viscosity n. The second term, a retarding
velocity, must represent the correction to the velocity due to the electro-
phoretic effect. It has been shown that

96, 500

i® T300x% Vi (35)

and therefore
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_ 96,500 |, €j 96,500 , ej X
)‘j_ 300 ( 6 na) B 300 ( 6mn (1l + )(,a)) (46)
which may be written as
- \0  _ )
Xj = )\j (A )‘e)_] (47)
where
_ 96, 500 ) x
(AXe)y= - 1800 ™ n |eJ ‘ 1+ Xa (48)

For point charges where a = 0 the correction may be written

96, 500

(A Xe)j = - 1800 7 71

ey 1% =- N (49)

The total correction to the conductance A/\e can be obtained by summing

over all kinds of ions.

II. The Time of Relaxation Effect

The relaxation effect is mathematically more difficult to evaluate.
It will be recalled that the electric field due to the ionic atmosphere may
be expressed as X = -7 Y;. The quantity 2/Ij is equal to ’wg + ’QJS,
where 1/}3’ is the spherically symmetrical equilibrium potential function,
and 1//; is the asymmetric contribution to this function. Hence, the
relaxation field _AX, evaluated at the central j-ion and due entirely to

this asymmetric portion, is given by
AX = - g Y] (50)

‘lpj' must be obtained by solution of a differential equation formed by the

following series of steps.

(1) Since we can write the distribution function fj; = fgi + g5,

Poisson's equation can be applied simply to the asymmetric quantities as

: - 44 S
2 L ', .
v sz D -21 £ ji ei/n_] (51)
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(2) To find fji' we need the hydrodynamic equation of continuity for

stationary states (100) namely,
2 = . o =
veé= (fji vji) t+ <7, - (fl_] Vij ) 0 (52)
(The total distribution functions are used in this equation.)

(3) We now need the quantities ﬁji

from the general expression for the relative velocity,

and vij and they can be obtained

where ?"js is the solvent velocity in the neighborhood of a j-ion

R‘ji is the force on an i-ion in the neighborhood of a j-ion.

kT, In fji is a term that was not considered by Debye
and Hiickel, which arises from the Brownian motion of the ions. Onsager
considered this a restoring forcé to the symmetry of the ionic distribution.
The remaining terms have previously been defined. A completely
analogous expression may be written for .‘-’\ij‘ The force R‘ji may be
further defined as a sum of three forces
- A !
Kji = e XTI - €YY (a) - e V2 ‘l[)j (54)
The first term is the x-component of the applied external force. The
second is the force of its own atmosphere on the central i-ion. The
third is the force on this i-ion due to the neighboring j-ion and the
atmosphere of this j-ion.
Combination of the equations discussed above results in a very
complicated. differential equation, the method of whose solution we will
briefly indicate. This equation is solved subject to the following four

boundary conditions:
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(1) The gradient of the potential function of the central ion must

become zero at an infinite distance from this ion.
(2) and (3) Both the potential and its gradient, the field strength,
must be continuous at the surface of the central ion where r = a.

(4) At the moment when two ions strike each other the radial
component of their relative velocity must be zero because they
are considered to be rigid spheres. This latter condition was
introduced by Falkenhagen (101).

The terms of this differential equation were then classified by
Fuoss according to the power to which 2( will appear in the unknown
solution. For the first order solution he retained terms of order X *
and for a second order solution terms giving X 5, neglecting any higher
order terms. The problem was then further limited to a single electro-
lyte with only two kinds of ions.

A first approximation to the solution for the asymmetric distribution
function is then found ignoring the higher order terms, as follows:

We set

¥i = T+ (59)

and

f.= F.. + g.. (56)

where \P’ and F.. are the first order approximate asymmetric potential

ji
and distribution functions. The contributions of higher order terms are

]
denoted by Pj and 8ji The functions ’l,Uj and f;x are related by Poisson's
equation. The solutions for '\P‘j and '\F i are identical and are denoted
by \Ir . The exact ®pression for \Ir is shown in the original paper (102).

The relaxation field is found from

- v, = AX (57)

For the first approximation we consider only the case of point charges
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and thus obtain A X,, which was the result first obtained by Onsager in
1927, Sincei=1 and j= 2 then

AXy, _ e e ¥ x _ N
X ~ 3DkT(+q V€ (58)

The next approximation, which gives AX,, is made when the ions are
considered as hard spheres of radius a, instead of point charges. This
approximation is expressed as a correction, -AXy4A,, to the previous

solution. This results in the expression

Axl - AXO (1 - AI) (59)
where
xa(l + q) xa(l + q) x 2a? ,
A1 = + + q%/3 60
P77 ps (T+ %a) Zbps o F %) (@t a3 (60)
where
- lee,l
a DkT
p3=1+qgxa + ¢ x? a?/3
How X : - eV a-ay (61)

A second order approximation could now be made by substitution of the
known value of '\P’ and Fji into the original differential equation to obtain
Pj and g and so obtain the exact correction to AX. The mathematical
complications involved thereby led Fuoss (10) to approach a solution in
another way. He divided the contribution gji into a sum of four terms
and devised a method for deriving the second order approximation for
AX directly, without computing ’l}l j| as an intermediate step. Of the
four terms thus obtained, one, AXV, requires knowledge of the radial
component of the solvent velocity which has been previously given by
equation (45). The contributions from the other three terms are all

proportional to A X, and are combined as
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AXB a Axa+AXz’3= AXoAZ (62)

where, for symmetrical electrolytes

Az=[b(1+q)Xa][11~/-—- 1

(1 +q) xa
(1 + xa) 24 p, p3 4 p; * F()(_a.)] - ) (63)

sz(l + Xa

A complete description of the rather complicated terms involved in this
expression and for the three terms on the left-hand side of equation (62)
are given by Fuoss and Accascina (103). The part of the relaxation term

due to the velocity field is given by

!
where Aj; is included in the description by Fuoss and Accascina (103).

The complete relaxation term can now be expressed as,

SAE s AN (1At %Q—, (65)

III. The Viscosity Correction.

The viscosity correction is only applied when large ions are involved.
"Bulky' ions interfere with motion of a particular ion through the solvent
which, in effect, increases the viscosity of the solvent. The mobility of
the ion is inversely proportional to the viscosity of the solvent medium.
Since the equivalent conductance is proportional to the mobility we con-
clude that it is also inversely proportional to the viscosity. In order to

estimate the correction, Fuoss (5) used the Einstein viscosity expression

n =mno(l+5¢/2) (66)

where ¢ is the ion volume fraction, 7y the solvent viscosity and n the
viscosity experienced by the ion. ' If we assume the ion to have a radius
B, then

o = LTR (N c/1000) =Jc (66)
3
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Let 56 /2 be equal to F. Then the conductance equation becomes

AX

1+ Fc (67)

IV. The Kinetic Correction.

The kinetic term of Fuoss and Onsager (11) has already been
described as an increase in probability of collision from behind due
to the asymmetry of the atmosphere of the reference ion. Alternatively,
it can be considered a local osmotic pressure at the reference ion. If
the distribution funétion is given by the approximation

- ]
£ Fyy + £ (68)

then the osmotic pressure m, due to the field is given by

™= Fji kT/n; (69)

The force A P is given by the directed component of the osmotic
pressure T integrated over the surface of the sphere of radius a. The

resulting A P for a symmetrical 1-1 electrolyte is

222 (b-1) )

X
= 0
AP X ( S (70)
The ionic velocity then becomes
vj= (X + AX + AP) ( ej wj) - Vs (71)

The conductance equation (67) with this additional term then becomes

the complete conductance equation,

A= (No - &N\e) (1 + A—;(-+ 9‘;)

(72)

1+ Fc
This conductance equation is limited in application to symmetrical

electrolytes and to concentrations of less than 0.1 normal. No less than
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two adjustable parameters, the limiting equivalent conductance/\,

and the distance of closest approach a, are contained in the equation.

The ion-pairing constant K may also appear as an adjustable parameter.
Fuoss and Accascina (104) have shown that equation (72) may be

expanded with the use of several approximations, to a convenient form

of

N =Ny -5NcF + Ec*log c* + Jc* - F/\, c* (73)

where expressions for the constant S, E, Jand F are summarized by
the same authors and are also discussed later in this thesis. Equation
(73) has two familiar limiting forms. At low concentrations in solvents

of high dielectric constant it reduces to the Onsager limiting law

AN\= /o - SNc (74)

Onsager derived this in 1927 from a general treatment of the motion of
ions. In solvents of low dielectric constant where considerable ion
pairing might be expected, it reduces to Ostwald's dilution law. Fuoss
feels that this equation (73) '"bridges the gap between systems with
negligible association and those with marked association and provides a

mathematical description of the transition. "

Empirical Extensions of the Onsager Limiting Law.

While Onsager's limiting law adequately described the behavior of
many dilute 1-1 electrolytes up to 0.001 normal, several attempts were
made in the succeeding years to modify the equation to represent data
at higher concentrations and for higher charge-type ions. Shedlovsky
(105) proposed an equation to be used for extrapolation by simple re-
arrangement of Onsager's limiting equation. The latter may be written

in the form

A= No - (eNo+ p) Nc (75)



38

which Shedlovsky rearranged to

(A +pgNc )
No = (Toade )

Since the fraction above varies almost linearly with concentration he
1

/\(; (76)

defined an extrapolation function/\, . ThenAlo is plotted versus
concentration and extrapolated to zero concentration. The values of[\:,
should become constant through the concentration range in which
Onsager's equation is valid and should therefore have zero slope near
zero concentration. Its intercept with the A:, axis should be the true
value of /\ ,.

Onsager (2) and Onsager and Fuoss (3) in 1932 proposed an em-

pirical extension by adding two terms to the limiting law such that
/\_=‘/\0-S(MVC 4 Aclogc + B c (77)

The constants are evaluated by rearrangement to

1
—————Ao -cj\o = Alogc+ B (78)

followed by plotting the left-hand side of equation (78) against log c.
The value of /\, must be adjusted and/\.; recalculated, until a straight
line is finally obtained giving the slope A and intercept B. Owen (56)
used this method extensively and with marked success for such salts
as potassium, barium, and lanthanum chlorides. The method has
subsequently often been referred to by other authors as the Owen
method or Owen plot.
It is noteworthy that equation (73) now gives some theoretical justifi-
cation for use of the additional terms of the form used in equation (77).
Dye and Spedding (12) found that much better agreement with theory

was obtained for certain higher charge-type electrolytes if higher terms
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in the distribution function were retained in considering the complete
electrophoretic effect. It will be recalled that the potential function

obtained by consideration of equilibrium systems was

0 eje xa e~ XT 26
/L/jj - D(1+ xa) - r (26)

and that
njoi = n; exp( - ¢ ’l}l%/kT) (27)

The exponential was then expanded in a power series to be substituted

into the final expression for the distribution function. Dye and Spedding
alternatively suggest using the complete exponential so that the expression
for the distribution function becomes

-e;e:e xXa e~ XTI
DkT(1 + X a) r

£f2 = nn; exp (

4 in; (79)

It is this distribution function which is then used in the treatment of the
electrophoretic effect. From the Stoke's law development of this effect

the ionic velocity correction due to electrophoresis is known

2X -
AVjZW aJ.‘ r[? (nJl-nl) ei ] dr (80)

Since njj = fjoi /nj, the new distribution function is substituted into this

expression, The correction A \ f to the conductance is

AN\ 96, 500 A v (81)

JT T300X j

Considering an electrolyte which dissociates into only two kinds of ions

and defining

p = Xr

X = xa

P= xe*/DkT (1 + x)
M 96,500 Dk T

1800 mnel(lz 1+ 1 2z_1)
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and using the relationships that

v,zy cN € v_,z_c Ne
R S = - -
n,ey 1000 and n_e_ 1000
[V424 1 = 1v-2-|

Dye and Spedding obtained

oo
-p -
Ax = M [ p [exp[ -Z+2Pe ] -exp[|2z,Z,1 Pep]] do (82)
x o P

and an analogous expression for A \_ where Z_ is used instead of Z,.
Experimental conductances of unsymmetrical rare earth electrolytes

were found to have much better agreement with theory using this extension.
Karl (13) has also evaluated this effect for univalent electrolytes in water-
dioxane mixtures.

A test of any interionic attraction theory may be made through
experimental measurements of the transference numbers. Transference
numbers are simply related to the individual ionic conductances so that
a correct conductance theory should yield correct transference numbers.

The transference number of the j-ion is defined as

Tz 3 (83)
=1 1
where _ij is the current carried by the j-ions and = ii is the total current
i
carried by all ions in the solution. The transference number may also

be expressed as

T, = M- N oo M (84)
S VAN
1 1

We can write therefore, using equation 40,

oo (- (ANe)(+ AX/X) A - (Ahe)j

i~ Do - ANe) (1 + AX/X) ~ Ao - AAe (85)
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Simultaneous with the development of the conductance theory
described, two other effects were theoretically investigated, based upon
the interionic attraction theory. The limiting law for the viscosity of an
electrolytic solution was deduced by Falkenhagen (106, 107). This
verified the conclusions reached experimentally that the viscosity of
the solution was proportional to the square root of concentration.

It was also shown by Onsager and Fuoss (3) that, to a first approximation,
the relative increase in the viscosity is proportional to the ratio of the
radius of the ion to that of its atmosphere. The viscosity increase due

to large solute particles was explained by Einstein (108) as due to the
interference of particles to the flow of an ion. This has been dealt

with earlier in this paper,

The second effect was the influence of high intensity fields upon the
properties of solutions. This is known as the Wien effect. Under very
high potentials, ions move so quickly that the ionic atmosphere aoes not
have time to form completely or, in fact, may not form at all. Wilson
(109) has obtained a complete solution for this problem in the case of
electrolytes which dissociate into two kinds of ions. Onsager (110) has
shown that at high field strength the ionization constant will increase
and has obtained an equation relating this constant to the field strength.

As this brief survey has indicated, the interionic attraction theory
has been applied with some success to equilibrium and irreversible

processes in solution,



IV. EXPERIMENTAL

A. Materials

Zinc sulfate: Mallinckrodt analytical grade reagent was recrystallized

twice from boiling conductivity water and once from cold conductivity
water. From this, stock solution was prepared. The stock solution

was filtered and the pH determined as 5.8. The pH of the unrecrystallized
salt solution was 5.1. Concentration of the stock was determined by
ignition to the anhydrous sulfate at 400°C as recommended by
Cowperthwaite (111). The samples were also ignited to the oxide at
860°C. for twenty-four hours in a furnace which had previously been
calibrated. A somewhat higher temperature can give a yellow modifi-
cation of the oxide. Molality of the stock solution was found to be 0.2297 +
.03%.

Lithium chloride stock solution was prepared according to the method

of Scatchard and Prentiss (112). A solution of lithium carbonate c.p. in
conductance water was treated with hydrochloric acid and flushed with
nitrogen until the pH was 6.5. The solution was then filtered and aliquots
were taken to be analyzed by the silver chloride gravimetric method.
Normality was found to be 1.747 £0.5%. Subsequent solutions were

prepared from this stock solution by weight dilution.

Potassium chloride was prepared from Baker c.p. reagent by recrystal-

lizing twice from conductivity water followed by fusion in platinum ware
under a stream of nitrogen, following the recommendation of Pinching
and Bates (113). The resulting salt was dissolved in carbon dioxide free
conductivity water. Subsequent solutions were made by weight dilution

of the stock solution.

42
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Tetra-n-butylammonium sulfate was prepared by the conversion to the

sulfate of the iodide salt. The iodide salt was recrystallized once from
conductivity water. It is only moderately soluble in water. Silver
oxide was prepared from seven grams of sodium hydroxide and twenty-
three grams of silver nitrate. The oxide was washed about thirty times
with hot water and was then added to the tetra-n-butylammonium iodide
solution. This was mixed under a nitrogen atmosphere for 15 hours

to give the tetra-n-butyl ammonium hydroxide. The solution was then
filtered through sintered glass and titrated with standard sulfuric acid
toa pH of 7.0 as recommended by Fowler et al (114) to convert to the
tetra-n-butylammonium sulfate. The most concentrated solution we
were able to prepare was 0.04867 N. Volume dilutions were made as

recessary.

Zinc perchlorate stock solution was prepared from G. F. Smith Chemical

Co. salt, recrystallized three times from conductivity water. The stock
solution was analyzed by adding sulfuric acid to weighed aliquots, and
evaporating to fumes of SO;. The residues were dried to both zinc
sulfate at 400°C. and zinc oxide at 860°C. Molality of the stock solution

was determined as 0.4450 £ 0.09%.

Conductivity water was prepared by the distillation of demineralized

water from alkaline permanganate solution. This distillate was subse-
quently redistilled under nitrogen. The water was transferred under
nitrogen pressure directly to the conductance cells or solution flasks.
The exit from the distilling receiver was fitted with a stopcock followed
by a piece of tygon tubing which could be connected directly to a con-

ductance cell. The specific conductance never exceeded 7.3 x 10”7 ohm~-!

cm"l.

Potassium octacyanomolybdate prepared according to the method given

in "Inorganic Synthesis, ' was obtained from Dr. F. B. Dutton (115).
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The salt was then recrystallized from conductivity water by the addition
of ethanol. Stock solutions were made up by weight dilution. The
concentration was checked by titration with standard ceric sulfate solu-
tion. This was standardized by the method of Willard and Furman (116).

The concentration was in agreement to within ~ + 0.06%.

B. ABEaratus

1. Transference. The transference number of zinc sulfate was

obtained using the sheared boundary technique (64). A modification of
the equipment used by Spedding, Porter and Wright (74) was employed.
The transference cell consists of an anode compartment fitted to the end
of a Pyrex hollow-bore stopcock at which the boundary was formed. The
stopcock was connected through a middle opening to a two millimeter
Corning measuring pipette. The pipette was connected to the cathode
compartment through another hollow-bore stopcock, which permits use
of the same cell with a rising boundary. The anode and cathode com-
partments were provided with female ground glass joints to accommodate
the male joints into which the electrodes were sealed. Side arms with
stopcocks were attached to the electrode compartments. Removable
glass cups were used to prevent the products of the electrode reactions
from contaminating the measuring tube. The measuring pipette was
marked by a diamond stylus with fine semi-circular cuts, with a gap

left both front and back to facilitate accurate and reproducible timing.
The tube was calibrated three times with mercury as recommended by
Longsworth (78). The measuring pipette was filled with clean mercury
and mounted vertically with a stopcock at the bottom to allow mercury to
be withdrawn into a weighing flask. A cathetometer was used to measure
vertical distance in the pipette and was fitted with a micrometer
microscope with 90° crosshairs. The vertical position on the graduated

scale was measured by means of a vernier which was in no particular
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units and henceforth will be referred to as 'turns.' The temperature
variation with time (in the constant temperature room) was plotted along
with the variation in meniscus reading with this temperature fluctuation.
Since maximum and minimum of temperature and meniscus height occur
together, we recorded the temperature simultaneously with each reading
made on the pipette. Later a temperature correction was made and will
be described. Calibration was done from top to bottom of the pipette
starting with the first split mark. The mercury was run out to just
slightly above the first mark and the weighing bottle weight recorded.
The microscope crosshairs were then set on the split mark with the
vernier on the zero position. - The turns necessary to bring the crosshairs
to the level of the mercury mensicus were determined. These were
recorded as positive turns. The temperature was recorded.

The mercury was then allowed to run into the weighing bottle until
the meniscus was just below the split mark and the new weight of weighing
bottle recorded. The vernier was then returned through zero and the
crosshairs again aligned with the meniscus. This reading was recorded
as negative turns. The temperature was recorded at the same time.

The mercury was then run out to just above the second mark and the
procedure repeated. Typical data are shown in Table 1.

Since it was necessary to make a temperature correction, a relation-
ship between the number of turns and the temperature was derived as
follows:

The coefficient of thermal expansion for mercury is

1l AV
v AT

Qa =

(86)

where A T is 25°C minus the temperature at the time of reading, and V
is the volume of the mercury. The total volume V is 2.90 milliliters

at the zero mark. The volume may then be expressed as

V =2.90 - (0.10) (number of the mark) (87)
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The quantity AV is then expressed as
AV =aVAT=AhA _ (88)

where h is the height of the mercury and A is the cross sectional area
of the tube. If r is the number of turns and k_1is equal to the turns/inch,
then

AV = lz_a VAT (90)

>l =

Ar=A4hk=

but A V is also equal to Am/p , where m is the mass of the mercury

and p is the density. Following from this we can write therefore

Am
p

Ar = (91)

IRy

and

k/A= p Ar/Am (92)

The number of turns (uncorrected for temperature) and the weight,
enables one to calculate an average value for A m/Ar, grams per turn,
This value was used to give a first approximation to k/A. Then, by
successive approximations,an expression for A r was determined where

Am/A r =0.0156 grams per turn. From equation (90)

_ pAr
Ar= =F=— aVAT (93)

where p is 13.53 grams per cubic centimeter and a is 0.1817 x 10~3 deg~!.

The final expression then for A r is

Ar=0,157 VAT (94)
This correction on the number of turns, r, was made for each reading
and tabulated in Table 1. The number of grams per turn was calculated
and averaged for all three of the calibrations.
It is now possible to calculate what the weight of mercury would
have been had the meniscus been exactly at the zero mark for each

reading, as follows.
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Table 1. Data Used in Calibration of Transference Tube.
-
Corrected
Mark Turns Weight Temp. Turns gm/Turn
0 +7.922 20.6413 23.35 +8,67 0.0153
0 -5.100 20.8491 24.65 -4.94
1 +3.798 22,1364 22.50 +4.89 0.0165
1 -3.077 22.2625 24.50 -2.66
2 +8.155 23.5113 23,00 +9.00 0.0157
2 -3.843 23.6928 22.00 -2.58
Average Wt
at Zero Interval Wt. Interval Vol.
0 20.7743 1.4426 . 1066
1 22,2169 1.4353 .1061
2 23.6522 1.4338 . 1059

25.0860
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Weight of mercury with meniscus +8.67 turns above zero - 20,6413 gm.
+ 8.67 turns x 0.0156 gm/turn . 1353 gm.
Weight of mercury with meniscus at zero 20,7766 gm.
The same procedure was followed, by subtracting the amount of mercury
from the amount that was actually weighed:
Weight of mercury with meniscus - 4,94 turns below zero - 20.8491 gm.
-4.94 turns x 0.0156 gm/turn .0771 gm.
Weight of mercury with mensicus at zero 20,7720 gm
These two values were averaged. In the same way, average values were
obtained for each mark. The difference between two successive marks
are listed in Table 1 as the interval weight. Since the density of mercury
is known at ZSOC, the corresponding interval volume was calculated and
tabulated in Table 1.
The boundary between two solutions of different refractive indices
can be detected by placing a light source behind and slightly below this
boundary and viewing the tube from the front. The light source used was
a vertically mounted fluorescent light covered by a cloth shield with a
one quarter inch horizontal slit. This shield was lowered or raised to
position the slit as the boundary movement was followed, by attachment to
the drive shaft of a 110 volt reversible d.c. motor. The boundary was
viewed through a thirty power telescope placed about 10 feet from the
cell. Constant temperature was maintained in the cell by placing it in an
aquarium-type water bath where the temperature was maintained at
25.00°C + 0. 05°C as determined byA a platinum resistance thermometer
calibrated by the National Bureau of Standards. The calibration was
rechecked by determining its resistance at 0°C. This was done by im-
mersing the thermometer in a Dewar flask containing conductivity water
in equilibrium with ice made from the same water. The constant
temperature bath was stirred by a Gorman-Rupp pump fitted with glass

tubing intake and exhaust. A 150 watt infra-red bulb was used as a heat
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source. A constant head of water fed to copper coils was used for cooling.
A precision Micro-set Differential Range thermoregulator was used to
control the temperature.

The boundary movement was timed by two stopwatches mounted in
a stand with an adjustable hinged top so that one watch could be simul-
taneously started while the other was stopped. The watches were checked
with the standard WWYV time signal and were accurate to three seconds
over a twenty-four hour period.

Constant current was obtained with an electronic controller and
balancing motor. A complete description and a.diagram of the current
controller is given by Karl (13).

The entire apparatus was checked at intervals by measuring the
transference number of potassium chloride followed by lithium chloride.

These results agreed with published values to within 0.05%.

2. Conductance. Conductivity measurements were made using a

bridge designed by Thompson and Rogers (117) modified by the addition
of a Wagner ground circuit. The source of the alternating current to
the bridge was supplied by the oscillator shown in Figures 2A and 2B,
designed to produce essentially sinusoidal wave forms from 400 to 4000
cps. The unbalance signal from the bridge was amplified by the narrow
band amplifier shown in Figure 3. The output of this amplifier was
applied to the vertical input terminals of a cathode ray oscilloscope.

The horizontal input of the oscilloscope was driven by a signal of adjust-
able phase taken directly from the oscillator. The power supplies for
these circuits are shown in Figure 4.

Because the two fixed resistors R, and R,, in the bridge circuit
shown in Figure 5 are equal, the bridge is balanced when the impedance
of the cell is equal to the impedance of the parallel R-C arm consisting of
R3 and C,. Thus, at balance, the resistance of the cell is equal to Rj,

which is read directly on the decade dials on the face of the instrument.
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The noise level in the unbalance signal is minimized by the Wagner
ground circuit which allows the point B to be set at ground potential
without being connected to ground. By successive balancing of the
Wagner ground circuit with switch S; in position 2, and of the bridge
circuit with S, in position 1, a balance point is achieved where R_; =
R3, CiLe11 = C1, and points A and B are both at ground potential.

The set of decade resistors, Rj;, was calibrated internally by the
method prescribed for internal calibration of Mueller Bridges. It was
not necessary to perform an absolute calibration of the bridge against
external resistors, for the conductance cells were always calibrated
with standard potassium chloride solutions.

The constant temperature bath was filled with transformer oil to
minimize capacitive effects. The temperature was maintained at
25.000°C * 0.015°C as determined by a platinum resistance thermometer,
The bath was shielded by copper screen encircling it, the screen being
at ground potential. A metal baffle covered with black baked-on enamel
was placed towards the edge of the circular bath to facilitate stirring,
which was done with a Gorman-Rupp liquid pump. For work at low
concentrations, conductivity cells were constructed from Leeds and
Northrup type "A'" cells, by sealing the cell into a 500 milliliter
Erlenmeyer flask as shown in Figure 6. Modifications from similar
cells used by Kraus et al. (118) included a side arm with a stopcock as
well as a stopcock exit in the cap. This arrangement allowed conductivity
water to be pumped directly into the cell from the receiving vessel of
the still. It also provided a means of insuring an atmosphere of nitrogen
over the solution in the cell during the further addition of solute. To re-
duce polarization effects caused by the alternating current, the electrodes
were very lightly platinized according to the recommendations of Jones
and Bollinger (28). The electrolytic platinizing solution was about three

percent chloroplatinic acid and 0.02 percent lead acetate. About twenty
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milliamperes of current were used, with the polarity reversed every
ten seconds for a total period of forty seconds. The cell showed very
little Parker effect upon calibration over the same range of resistances

as were used with the samples.

C. Procedure

1., Transference. The transference tube was cleaned with

alcoholic KOH and acid cleaning solution after every four or five determin-
ations. After thorough rinsing with distilled water it was allowed to

stand with water for twelve hours to insure removal of the acid from the
glass. Between other determinations it was thoroughly rinsed and allowed
to stand with distilled water in it. Silicone grease was used on the stop-
cocks. The cell was rinsed several times with zinc sulfate and then
filled, the electrode cup and the silver-silver chloride electrode inserted
and the side-arm stopcock closed. The anode compartment was then

shut off by the upper hollow-bore stopcock, rinsed with water, followed
by tetra-n-butyl ammonium sulfate solution made up to the concentration
given by the Kohlrausch ratio with an estimated value of the transference
number of the zinc ion. When the cadmium electrode was in place, the
cell was completely rinsed on the outside with distilled water. The side-
arm stopcocks were then opened until temperature equilibrium could

be reached.

The cell was checked for electrical leaks to the bath by a vacuum
tube ohmmeter and aligned vertically with the light and telescope. The
Leeds and Northrup potentiometer was balanced against the standard
cell, the leads connected, the hollow-bore stopcock opened and the
current turned on. The current was adjusted to allow about 170 to 250
seconds for the traversal of the volume between approximately .1 ml.
markings. Temperature equilibrium was reached by the time the

boundary reached the first mark since this always took more than one-half
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hour. The side-arm stopcock in the cathode compartment was left open
during the run, the anode closed. Only the volume changes which occur
between the boundary and the closed side then need to be considered.
Stopwatches were used to determine the time for the boundary to pass
each mark.

The zinc sulfate solutions were made up by weight dilution of a
. 2298 molal stock solution. Densities of three solutions were measured
in a 50 ml pycnometer. The equation of the line giving density as a

function of molality, m, was found to be:

p=.9970 + .1607 m (96)

This equation allowed calculation of the normalities of the solutions from
the known molalities, as well as evaluation of the partial molar volume

of zinc sulfate.

2. Conductance. A standard resistor, about 24K ohms, enclosed

in glass and immersed in the oil bath, was permanently mounted so that
it might be connected in parallel with conductivity cells when their
resistances were very high., The resistance of this standard was recorded
with each run, through a range of 400 to 4000 cycles per second. The
conductance cells were cleaned with detergent and water, followed by
rinsing with distilled water, conductivity water and oven drying. When it
became necessary to replatinize the cell, it was cleaned with fuming
nitric acid followed by rinsing with water before platinizing. The cell
afterwards was then rinsed about thirty times before proceeding as before.
The cells were calibrated with potassium chloride solution using
a technique described below which was later used with both zinc perchlorate
and potassium octacyanomolybdate (IV).
The stopcocks of the dried cool flask were coated lightly with Dow
Corning High vacuum grease. The cell was then weighed and conductivity

water was forced into it under nitrogen pressure. The total weight was



59

then determined and, from this, the weight of water, which was then

corrected to weight in vacuum according to the equation
Weight(vacuum) = Weight(air) + k Weight(air)/lOOO (97)

where k for brass weight and solution density of approximately one, is
1.06 (119).

The cell was then placed in the oil bath in parallel with the standard
resistor. Occasional gentle mixing was found desirable to shorten the
time required to attain temperature equilibrium. - Care was taken that no
water or solution was ever allowed as high as the side arm outlet svince
additional mixing would then be difficult and solution strength inaccurate.
The equilibrium point was determined by the constancy of the resistance
measurement. When a constant value was obtained, the resistance of
the standard resistor was then recorded for frequencies of 400, 600,
1000, 2000 and 4000 cycles per second. There was always a small
amount of frequency dependence of the resistance so that resistance
versus the reciprocal of the square root of the frequency was plotted and
extrapolated to infinite frequency following the method of Jones and
Christian (37).  Reasonably straight lines were thus obtained as shown
in Figure 7. The uncertainty of the extrapolation is estimated as less
than X 0.02%. Whenever the value of resistance at infinity differed from
that at 400 cps by more than 0.3% the cells were cleaned and replatinized
and the cell constant redetermined.

The resistance of the water was then measured and calculated from

the relationship

1/Rtota.l = 1/Rwater + l/Rs'ca.ndard (98)

The cell was then removed from the bath and connected to the nitrogen
line, with the cap off. Stock solution was added from a weight burette

while nitrogen was flowing through the cell. The cell was then closed
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off and the solution thoroughly mixed before returning it to the bath.
Repeating this procedure gave resistance readings over a range of
increasing concentrations.

All weights used were previously calibrated against a ten gram
National Bureau of Standards calibrated weight.

The potassium chloride solutions which were used for weight
dilution were prepal;ed according to the method of Jones and Bradshaw
(39). They contained 0.74526 grams of potassium chloride per kilogram

of solution in vacuum.

D. Results

1. Sample Calculation to determine a cell constant.

Weight of water in vac. 341.72 g.
Weight of solution in first addition 9.12 g.

Total solution weight 350.84 g.

Weight of solute added = %‘2—6’- x 9.1237 = 6.7995 x 10-3 g,
Total solution weight 350.84 g.
Solute weight 0.01 g.
Solvent weight 350.83 g.
_ gm. of solution 1000

Molality of new solutio .
4 on molecular wt.of solute weight of solvent

m = 2.5995 x 10~* moles /1000 gm of solvent

The molarity, c, of the solution is related to the molality m by the
relationship

c = m(dy - Am + Bm?) . (99)
where the constants are given by Harned and Owen (120) as

do = 0.99707, A = 0,0284 and B = 0,0003 for KC1 at 25°C.
It then follows that

c = 2.5914 x 10-* equivalents/liter
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The value of /\ was then evaluated from an empirical expression of

Onsager (3)
Aon-S()\)’\)C + Ac logc + Bc (77)
where

/\ is the equivalent conductance of KCl

/No=149.87, the limiting equivalent conductance

¢ = molarity of the solution

A =31.8 (reference 121)

B = 144 (reference 121)

S,y = a¥/ N\ +[3* where a® = .2289 (reference 122)

(\)
[3* 60.19 (reference 122)

From this /) = 148,35 ohm=-! cm? equivalent~!

The specific conductance of potassium chloride is

Lycy = ©/\ /1000
2.5914 x 10~* x 148.35/1000 (2)
3.8448 x 105 ohm~! cm™!

We know that

(L k

) (R = (LHZO) (RHZO) (100)

solution solution) =

where L and LHZO are the specific resistances of the solution and of

cl
the water respectively, and R , and RHZO are the resistances of the

solution and the water respectively, and k is the cell constant.

Then
LHZO - (Lsol) (Rsol) / RHZO (101)
But Lsol = LKCl + LHZO (102)
It then follows that
L B LKCl ,
sol ~ R (103)
1 - sol
RHZO
_3,8448 x 1073 5 1o

2.6483 x 10* 3.8919 x 100 ohm  cm’

1-270400 x 10°
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From equation (100) it then follows that

k= (3.8919 x 10-%) (2.6483 x 10%) = 1.0307

The water which was added in the stock solution from the weight burette

was at equilibrium with the carbon dioxide of the air and its conductance

was found to be about 1 x 10”® ohm™ cm=-!. To correct for the added
conductivity due to this impure water,the specific conductance of the

pure water was calculated, using the approximate k obtained above.

L =1.0307 /2.04 x 10° = 0.5 x 107® ohm™! cm~!

H,0
The correction A k on the cell constant was then

wt of solution added .

Ak Limpure "Va-ter)-(LP‘“‘e water)] ( total wt. of solution
_ - -6 9.124 4y _ -4
(Rsol) = (1~ .,5)10 (——341‘7) (2.6483 x 10%*) = 3,5 x 10

Therefore the correct cell constant becomes k+ A k

=1.0307 + 0.0004 = 1.0311

corr.

The results of the cell constant determination are shown in Table 2.
Figure 8 shows graphically the scatter in determining the constant of
cell 2. A check on the cell constant determination was made with one
of the cells using standard barium chloride solution. The equivalent
conductance was determined for five different concentrations. These

agree well with the results of Shedlovsky and Brown (123) on the same

(104)

salt. The equivalent conductances they obtained at the same concentrations

are shown with those determined in this laboratory in Table 3.
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Table 2. Conductance Cell Calibration with KCl1.

Run No. N x 10* k

I-cell2 3.0325 0.25028
5.2551 0.25028

7.6917 0.25013
9.8326 0.24998

11 2.4124 0.25031
3.9681 0.25017

5.7619 0.25026
7.8759 0.25023
10.0597 0.25007
111 1.8854 0.25009
3.9054 0.24995
6.4277 0.24995

I-cell 3 4.1094 1.0339
6.8161 1.0365

10.216 1.0357

12.409 1.0356

15. 841 1.0341

11 5.8979 1.0336
10.652 1.0347

17.393 1.0362
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Table 3. The Equivalent Conductance of BaCl,.

Nc*  x 10? /\ Shedlovsky /\ This Lab.
1.83 136.76 136.44
2.196 136.06 136.06
2.49 135.55 135.57
2.95 134.72 134.63

3.30 134,10 134,06
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2. The Equivalent Conductance of Zinc Perchlorate.

The equivalent conductance of zinc perchlorate was determined
using the same experimental procedure used to determine the cell constant.
Since the cell constant k was known, the specific conductance of water
and of each solution could be calculated from the relationship L = k/R,
where R is the resistance in ohms of the solution. The density of zinc
perchlorate was determined using a fifty milliliter pycnometer. This
enabled the conversion from molality to normality to be made. The

density change with molality can be represented by the equation

p =0.99707 + 0.1985 m (105)

Sample calculations

Weight of flask + water 612.92 g.
Weight of flask 291.90 g.
Weight of water 321.02 g. = 321.36 in vacuum

Weight of first addition of stock solution = 0, 3818 in vacuum -

The molality of the resulting solution can be found from the relationship

msg
- (106)
l1+m.M
— S
g+ w ( <500 )

where m is the molality of the new solution, mg is the molality of the
stock solution, g is the weight of stock solution added, w is the weight of

pure water in vacuum and M is the formula weight of zinc perchlorate.

0.03798 (0.3818)

3818 + 321,36 (1 T -03733(()%64.29)

= 4.3575 x 107% moles/

)

1000 grams solvent,

The normality of this solution can then be calculated from the relationship

2p m
14+ mM (107)
1000

. *
normality = ¢ =

where p is the density of the solution

c*= 8.6896 x 10-5 equivalent/liter.
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1.0350
1.420 x 10® ohm

_ 1.0350 ) 5
sol = .234 x 10 ohm ~ 1+ 1209 x 1077 ohm

=0.729 x 10-® ohm™-!

- - -5 -1
The specific conductance of the bulk of the water was much lower than
that of the water in the stock solution which was in equilibrium with carbon
dioxide in the air, and had a specific resistance of 1 x 10-® ohm-!. For

this reason a correction, A L, was made on the L of Zn(C10,), as follows:

Leorrected = “measured -~ & L (108)

where
A L = (L of water in stock) - (L of solution water)
(109)
(weight of stock solution water)
(total weight of water)

(.38)

- -5
3z1) - .00008 x 10

AL=(1-.7)10-%

(1.0480 - 0.000004) x 10-% ohm~!

I"corrected

1.0480 x 10~% ohm™!

This correction is negligible here and only becomes significant
at higher concentrations.

I"correc’ted 1000 1.0480 x 10-% x 103

c - 8.6896 x 10->

Zn(C10y), =

120.60 ohm-! cm? equivalents~!

The extent of hydrolysis of zinc perchlorate was checked in two ways.
(1) The pH of the stock solution and several dilutions were determined
using a Beckman Model B pH meter. (2) These solutions were acidified
to pH of 3 with perchloric acid and were titrated with standard sodium
hydroxide. The equivalence pH was determined graphically by plotting

A pH/A ml versus pH. The maximum in the curve, where the slope
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is equal to zero, is the equivalence pH. This method was used because
there was no sharp break apparent in the titration curve of milliliters
versus pH. The two methods agreed to within 0,05 pH units, indicating
little or no free acid in the zinc perchlorate samples. The average
value of the hydrolysis constant corrected for activity coefficients, for
the equation, zn't 4 H,0 — ZnOH' + HY, was found to be 0.94 £ .03 x
10, This is only approximate because of the irreversibility of the glass
electrode and the uncertainty arising because of the chloride-perchlorate
junction potential. Kolthoff and Kameda (124) using a hydrogen electrode
obtained a value of 2.65 x 107!% from measurements on zinc sulfate.

A hydrolysis correction, AA, was then made on the basis of their

hydrolysis constant. The method of this correction is developed below.

Correction of /\ of Zn(C104), for Hydrolysis

I\ corrected = VAR VAN (110)
To derive expression for a/\ :
zn*t + H,0 — znoH' + H' (111)
; _ [znoH'] [HY] _
K = Ko Ky = 2o ] = K, (112)

using K= 2.65 x 10~!° from Kolthoff and Kameda (124)

K, = Yut YznoHt
Yznt+

(113)

then log K’Y = log yy+ + log YznoHt ~ log Yzntt

but for dilute solutions
2
log yi=-§_ﬁ__ NI =~ -Az2 AT (114)
1+ B ai '\j n

therefore we may now express

log K‘y=2.A'\Jl'1

and
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1.0350
1.420 x 10° ohm

_1.0350 _
sol © 9,234 x 10* ohm

Now L = k/R = =0.729 x 10-® ohm™!

H,0

and Lgq) = k/R 1.1209 x 10”5 ohm™!

- _ -5 -1
Then LZn(C104)z = (Lsol) - (LH;_O) = 1.0480 x 10-° ohm

The specific conductance of the bulk of the water was much lower than
that of the water in the stock solution which was in equilibrium with carbon
dioxide in the air, and had a specific resistance of 1 x 10°® ohm=!. For

this reason a correction, A L, was made on the L of Zn(C10,), as follows:

Leorrected = Lmeasured - AL (108)

where
A L = (L of water in stock) - (L of solution water)
(109)
(weight of stock solution water)
(total weight of water)
.38) -
=(1-.7 106 38~ 5000 5
AL=(1 7) (321) 0 8 x 10
- -5 -1
Lcorrected = (1.0480 - 0.000004) x 10-?> ohm

1.0480 x 105 ohm™!

This correction is negligible here and only becomes significant
at higher concentrations,

Lcorrected 1000 1.0480 x 10-5 x 103

Zn(C10,), = c - 8.6896 x 10-°

120,60 ohm-! cm? equivalents~!

The extent of hydrolysis of zinc perchlorate was checked in two ways.
(1) The pH of the stock solution and several dilutions were determined
using a Beckman Model B pH meter. (2) These solutions were acidified
to pH of 3 with perchloric acid and were titrated with standard sodium
hydroxide. The equivalence pH was determined graphically by plotting

A pH/A ml versus pH. The maximum in the curve, where the slope
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is equal to zero, is the equivalence pH. This method was used because
there was no sharp break apparent in the titration curve of milliliters
versus pH. The two methods agreed to within 0,05 pH units, indicating
little or no free acid in the zinc perchlorate samples. The average
value of the hydrolysis constant corrected for activity coefficients, for
the equation, Zn++ + H,0 = Zn0H+ + H+, was found to be 0.94 * .03 x
10, This is only approximate because of the irreversibility of the glass
electrode and the uncertainty arising because of the chloride-perchlorate
junction potential. Kolthoff and Kameda (124) using a hydrogen electrode
obtained a value of 2.65 x 107! from measurements on zinc sulfate.

A hydrolysis correction, A/\, was then made on the basis of their

hydrolysis constant. The method of this correction is developed below.

Correction of /\ of Zn(C10,), for Hydrolysis

I\ corrected = VAR VAN (110)
To derive expression for VAN
zn*t + H,0 — znOH' + H' : (111)
- _ [znoHt] [Ht] _
K = Kc Ky = T = Ky (112)

using K = 2.65 x 10-!% from Kolthoff and Kameda (124)

K, = Yut YznoHt
Yzntt

(113)

then log KY = log yy+ + log Yznout ~ log Yzntt

but for dilute solutions
2. 00
log 'yi=-A—z-LL- = -A ziz N (114)
1+ B a.i '\' mn

therefore we may now express

log K,YzZAN/T"

and
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M= % cje?
=1
A =0.509/N 2 (reference 125)
*
and Cg ++ = Cg 1y = C /2
- B *
and Cg "= 2Csap= C
Then p = 3/2 C*
and log Kvy = 1.247N ¢’ (115)

For charge balance the total charge before hydrolysis must equal the
total charge after hydrolysis.

(1) Before hydrolysis

Species (conc)(charge)
zntt 2Cg

ut Kw/2

OH_ -Kw/2

(2) After Hydrolysis

zntt 2(C, -[znOH"])
ZnOHt [znOH']

Ht [H']

OH™ -[OH™]

Then
2C_ = 2C, - 2 [znOH'] + [znOH'] + [H'] - [OH"]

; [znoH*] = [HY] - Fﬁ}] (116)

[znoH'] [H'] = [H'] - K,

But from equation (112)

++
[znoH™] [H] = 5%17—1— o~ I-(K—:ﬁ— (117)

and therefore
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[HY] = \/ ——5——+ K. (118)

- 0 0
Now AO = H+ + )\OH + )\ZnOH+ + )\Zn++
The total conductance per liter is

T Ac* = 1000L = ¢ *A
1 1 1 S

3 _ 0 %* 0 *
then c A/\. = Z \: (C1 )hydrolyzed -? Xi(Ci )

i i unhydrolyzed
_ 0 ++ 0 + 0 -
=2\ 14 [ Zn ]hYd.‘ Nt [ HY] hyd.. t Aoy [OH]hyd.
0 + -0 gt _ 10 -
M znomt [ ZROHT] oy = agpe [HT] o Norm P8 unhya.
0 ++
-2 )‘Zn++ [ Zn ]unhyd'
However,
++ ++ _ +
I'hya. = [22" ynhya, = - [200H'], 4
(H'lunhya, = [OH ]y g = 1077 at 25°C.
Then
* — 10 + 0 0 0
C A/\-)\H+[H]hyd'+)\ [OH]}d+(x nOH*" 2 Ny 44)
+ -
[ZnOH"] - (\Jj+ + AGy-) 1077 (119)
We know that
)\(I)-1+ = 350 (reference 23)
)‘OOH' = 200 (reference 24)
)\0Zn++= 53 (reference 14)
A\ +
ZnOH" = 32 (reference 14)

Therefore



63

From equation (100) it then follows that
k = (3.8919 x 10-%) (2.6483 x 10%*) = 1.0307

The water which was added in the stock solution from the weight burette
was at equilibrium with the carbon dioxide of the air and its conductance
was found to be about 1 x 107® ohm™ cm-!. To correct for the added
conductivity due to this impure water,the specific conductance of the

pure water was calculated, using the approximate k obtained above.

L =1.0307 /2.04 x 10 = 0.5 x 107® ohm™ cm-!

H,0
The correction A k on the cell constant was then

wt of solution added
total wt. of solution

Ak Limpure water)'(Lpure water] (

(104)
9.124

341 7) (2.6483 x 10%) = 3,5 x 10~*

_ -6
(Rsol) = (1 -.5)10 (
Therefore the correct cell constant becomes k+ A k

=1,0307 + 0,0004 = 1,0311
corr.

The results of the cell constant determination are shown in Table 2.

Figure 8 shows graphically the scatter in determining the constant of

cell 2. A check on the cell constant determination was made with one

of the cells using standard barium chloride solution. The equivalent
conductance was determined for five different concentrations. These
agree well with the results of Shedlovsky and Brown (123) on the same

salt. The equivalent conductances they obtained at the same concentrations

are shown with those determined in this laboratory in Table 3.
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Table 2. Conductance Cell Calibration with KCl.

——

Run No. N x 10* k

I-cell2 3.0325 0.25028
5.2551 0.25028

7.6917 0.25013
9.8326 0.24998

1I 2.4124 0.25031
3.9681 0.25017

5.7619 0.25026

7.8759 0.25023

10.0597 0.25007
111 1.8854 0.25009
3.9054 0.24995
6.4277 0.24995

I-cell3 4,1094 1.0339
6.8161 1.0365

10,216 1.0357

12.409 1.0356

15.841 1.0341

I 5.8979 1.0336
10,652 1.0347

17.393 1.0362
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Table 3. The Equivalent Conductance of BaCl,.

Ne*  x 102 /\ Shedlovsky /\. This Lab.
1.83 136.76 136.44
2.196 136.06 136.06
2.49 135.55 135,57
2.95 134.72 134.63

3.30 134,10 134,06
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2. The Equivalent Conductance of Zinc Perchlorate.

The equivalent conductance of zinc perchlorate was determined
using the same experimental procedure used to determine the cell constant.
Since the cell constant k was known, the specific conductance of water
and of each solution could be calculated from the relationship L = k/R,
where R is the resistance in ohms of the solution. The density of zinc
perchlorate was determined using a fifty milliliter pycnometer. This
enabled the conversion from molality to normality to be made. The

density change with molality can be represented by the equation

p=0,99707 + 0.1985 m (105)

Saniple calculations

Weight of flask + water 612.92 g.
Weight of flask 291.90 g.
Weight of water 321.02 g. = 321.36 in vacuum

Weight of first addition of stock solution = 0,3818 in vacuum -

The molality of the resulting solution can be found from the relationship

m_ g
m = (106)
l1+m.M
— S
g+ w (550 )

where m is the molality of the new solution, mg is the molality of the
stock solution, g is the weight of stock solution added, w is the weight of
pure water in vacuum and M is the formula weight of zinc perchlorate.

- 0.03798 (0.3818) = 4.3575 x 1075 moles/

.3818 + 321,36 (1 T -037‘52&64.29))

1000 grams solvent,

The normality of this solution can then be calculated from the relationship
.o % _ 2pm
normality = ¢ = W (107)
1000

where p is the density of the solution

b3

c' = 8.6896 x 10-% equivalent/liter.
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1.0350
1.420 x 10° ohm
1.0350

- - - -5 «1
and Lol = k/Rs01 = 5235 x 104 ohm - 1+1209 X 1077 ohm

Now L = k/R = = 0.729 x 10-® ohm™!

H,0

- — -5 -1
Then LZn(C104)z = (Lsol) - (LHZO) = 1.0480 x 10-° ohm

The specific conductance of the bulk of the water was much lower than
that of the water in the stock solution which was in equilibrium with carbon
dioxide in the air, and had a specific resistance of 1 x 10°® ohm-!. For

this reason a correction, A L, was made on the L of Zn(C10,), as follows:

Leorrected = I"measured - AL (108)

where

A L = (L of water in stock) - (L of solution water)
(109)

(weight of stock solution water)
(total weight of water)

AL=(1-.7)10-% == = 00008 x 10~%

(1.0480 - 0,000004) x 10-5 ohm=?

I"corrected

1.0480 x 105 ohm™!

This correction is negligible here and only becomes significant
at higher concentrations.

Leorrected 1900 11,0480 x 10-% x 103

c - 8.6896 x 10->

120. 60 ohm-! cm? equivalents~!

The extent of hydrolysis of zinc perchlorate was checked in two ways.
(1) The pH of the stock solution and several dilutions were determined
using a Beckman Model B pH meter. (2) These solutions were acidified
to pH of 3 with perchloric acid and were titrated with standard sodium
hydroxide. The equivalence pH was determined graphically by plotting

A pH/A ml versus pH. The maximum in the curve, where the slope
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is equal to zero, is the equivalence pH. This method was used because
there was no sharp break apparent in the titration curve of milliliters
versus pH. The two methods agreed to within 0.05 pH units, indicating
little or no free acid in the zinc perchlorate samples. The average
value of the hydrolysis constant corrected for activity coefficients, for
the equation, Zn++ + H,0 = ZnOH+ + H+, was found to be 0.94 % .03 x
10, This is only approximate because of the irreversibility of the glass
electrode and the uncertainty arising because of the chloride-perchlorate
junction potential. Kolthoff and Kameda (124) using a hydrogen electrode
obtained a value of 2.65 x 107!% from measurements on zinc sulfate.

A hydrolysis correction, A/\, was then made on the basis of their

hydrolysis constant. The method of this correction is developed below.

Correction of /\ of Zn(C10,), for Hydrolysis

I\ corrected = VAN VAN (110)
To derive expression for A\ :
zntt + H,0 — 2znOH' + H' » (111)
- _ [znoHt] [HY] _
K = K¢ K‘Y = [ZotH] = KY (112)

using K = 2.65 x 10-!% from Kolthoff and Kameda (124)

K, = Yut YznoHt
'an++

(113)

then log K‘Y = log yy+ t+ log Yznout " log Yzntt

but for dilute solutions
N
log 'Yi: -A_?_L___r:_ = - A ziz NI (114)
1+B ai '\J rn

therefore we may now express

log K7=2A'\JT'

and
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M= iél Ciziz
A =0.509/N 2 (reference 125)
and Cg ++ = Cgayq = C*/Z
and  Cg)0 " = 2Cgqyt = c*

Then p = 3/2 C*
and log Ky = 1,247~ c*¥ (115)

For charge balance the total charge before hydrolysis must equal the
total charge after hydrolysis.

(1) Before hydrolysis

Species (conc)(charge)
zntt 2Cg

H' Kw/2

OH_ -Kw/2

(2) After Hydrolysis

zntt 2(C - [znOH'])
ZnOHt [znOH']

HY [H*]

OH" -[OH"]

Then
2C_ = 2G - 2 [znOH'] + [znOH'] + [H'] - [OH"]

[ZnOH+] - [H+] _ éﬁ_] (116)

[znou'] [H'] = [H'] - K,

But from equation (112)

++
[znout] [H'] = 5&%“—7]— ~ KT(;S— (117)

and therefore



71

[HY] = \[——3—+ K o (118)
_ 30 0 0 0
Now /\, Nt t xOH_ N, ot TNt

The total conductance per liter is

0 sk - *
? A e o= 1000 L = cs_/\.

£ _ 0 * 0 E3
then ¢ A/\ = Z Moy Mhydrolyzed - % Mili') unhydrolyzed
0 ++ 0 + 0 -
=2y e (207 ]y g b N THT g+ 0o [OHT g,
0 + 0 ut _ )0 -
* )\Z OH-l-[ZnOH ] hyd. - A gt [H ]unhyd. XOH‘ [oH ]unhyd.
0 ++
-2 )\Zn++ [ Zn ]unhyd.
However,
++ ++ - +
+ _ - _ -7 o
(5" unhyd. = [OH Jyppyq, = 1077 at 25°C.
Then
* N + 0 0
c a/\ x+[H]hd+x [OH]hd”)‘ZOH* 2N 44)
[ZnOH'] - (A + Aby-) 2077 (119)
We know that
)\2_14. = 350 (reference 23)
)\:)H' = 200 (reference 24)
)‘oZn'*"*': 53 (reference 14)
A0 + _
ZnOH™" = 32 (reference 14)

Therefore
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c® A/\ = 350 [H'] + 200 [OH"] - 74 [ZnOH*] - 550 x 10~7  (120)

and
2
A/ = 2 [3.50 [H"] + 2.0 [OH"] - 0.74 [ZnOH'] - 5.50 x 1077]

¢ (121)

Since [OH™] = K,/ [H'] and using equation (116)

102 _
AN = —— [2.76 [H+]+ 2.74 K - 5.50x10 7
c (1]
+
Now defining [HY] = 5 (122)
NK
W
1
K = K . K x 104 (123)
KW

Combining these expressions and equation (118) we have

Hf) = \‘Ci{s_f: + 1 (124)

2.74
[HF]

and finally

- 5.50] (125)

-5
AN = ICOT [2.76 [HT] +

The values of /\ for zinc perchlorate were corrected for hydrolysis
using equation (125) above. The equivalent conductance, /\ , the
hydrolysis correction, A\, and /\ (corrected) @5 2 function of concen-
tration are given in Table 4. The equivalent conductance Acorr' as a
function of concentration,is shown graphically in Figure 9.

Since the conductance measurements were undertaken to determine
)\0++ for zinc ion, the limiting equivalent conductance/\;, was calculated

from the Onsager equation

/\ = /\_; - S()\) ’\[—C— (74)

1
where the calculated /\ ois distinguished from the usual /\ § obtained

by extrapolation to infinite dilution.
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NI G, + p*

*

where a = 0.2289 w'Q

B¥ = 60.19 w*

1
and w' = z;z, (|z122 ] v/2)% = 3.464
b3
Q:q——

2929 (1 + Ng )

and q*= lzlzzl/\o

(lzod+ )22 1) (1 z1) N2+ |z, | \9)

= 0.42776 where \9 = 67.3

53.2
120.5

LY
o

0.8829 and a *= 0,70005

then Q

- 1
and w",: (IZII; lzZI) ( V(';lzzl))z-= 2.598

%*
hence B = 156,37

N, = A + 170.22 WX (126)

corrected

/\_0' as a function of concentration is given in Table 4 and shown graphically
in Figure 10,
An estimate of the precision of the experimental data in dilute
solution was obtained from examination of the experimental points below
9 x 10~* normal. The standard deviation of these points from the Onsager

equation (77), repeated here for clarity, was determined.
N\ = Ao - S()\) 'JC"' + A c* logC* + Bc* (77)

By rearrangement and substitution this may be expressed as

1
éic%{—\i= Alogc* + B (78)



75

L2121 69°G911 S0°0 ¥9°q11 s1e°¢ 9986 01
LT121 26°S11 S0°0 L6°ST1 190°¢ €0LE "6
61°121 2¢°911 s0°0 LE 91T 0¥8°¢ 1€90°8
$Z° 121 IT°L1T 90°0 LT LTT 21 ° L918°¢
1€°121 19°L11 90°0 L9 L1T LGT1°2 s$s9°¥
G121 29°811 90°0 89°811 60L°1 €616°2 o4
69°121 8€ 611 90°0 PP 611 Lye "1 ¥P18°1 9-0T X 62L°0 = T
R A 96°0¢21 S0°0 09°021 22¢€6°0 L6898 " 14
16°121 6S°¥11 s0°0 ¥9° %11 8¢0°¥ 60¢€ "91
¥Z°121 91611 s0°0 12°911 LyS° ¢ 289 °21
Pe 121 8L°G11 s0°0 €8°a11 1¥2°¢ 606 °01
$2°121 1Z2°911 s0°0 92°911 q¢€6°2 8219°8
12°121 69°911 90°0 SL 911 9€9°2 9056 '9
2¢°121 Sy LTI 90°0 16°L11 862 °¢ 1L60°S
¥y 121 22°811 90°0 87°811 6L.8°1 €0€G°¢ z
28°121 09°611 S0°0 G9°611 86Z°1 ¥$89°1 9-0T X 6%€°0 = o m.m,.m
89°221 ov 121 ¥0°0 Py 121 yS¥L O 9649G9°0 €
PP 121 09 '¥%11 s0°0 S9°¥%11 266°¢ €8€6°G1
16°021 LL°GT1 s0°0 28°S11 L66°2 96L6°8
oc 121 09°911 S0°0 99°911 qel? 8Ly L
€2°121 LT°LTT 90°0 €2°L1T 98¢ *¢ 0269°S 2
96°121 £€8°811 S0°0 88 "811 066 °1 9625 °2 9-0T X 1%9°0 =0 m,.m
69°221 26°021 s0°0 L6021 600°1 0610 °1T 4
. 2
81°221 €6°211 ¥0°0 L6211 L6E"S €21°62 9-0T X 0€9°0 =O"H
gL 1?21 86°¢11 ¥0°0 20°¥11 ees ¥ 996 °0¢ 1
.ﬁuoUo./\ 1100\ \JV v N NO0T N ,01 Toqumy uny
s1sA[0apAl

*Y(*O1D)uz 103 BIRQ 2OUBIDLPUOD) ‘§ 9Iqe]



*juelsuod sisAfoapiy

TeonsyjodAy & Jursn pa3daaiod _o/\.Am; 0,52 1% ¥(*01D)uz 103 N N sA .e/\. ‘01 @and1 g

76

0°9 0°G 0°'% o'g VXN 4., 0°1 0
1 | | I I |

]

021

121

—£°121

0°221

16 7221

0°€21




77

'
The constants A and B were evaluated from the plot of /—&—%\‘—"
versus logc™®, the slope and intercept of the best line drawn through
the experimental points yielding A and B respectively. A preliminary
value of /\, and therefore also of o.*, is obtained from the simple
extrapolation of /\ versus c*. This value was used to calculate the
first approximation of./\;. The value of./\o was then altered until the
resulting computations yielded a straight line. A was thus determined
to be 5,130 and B 14, 120 for a corresponding /Ny =122.70 cm? ohm™!
equiv™!, The standard deviation of fourteen experimental points involving
three runs and two different cells is 0.06/\ units. The accuracy is

limited by the analysis of the stock solution, four determinations giving

a standard deviation from the mean of 0.10%.

3. Transference number of zinc sulfate,

The transference number of zinc ion was measured using tetra-n-
butyl ammonium sulfate following solution (abbreviated [(Bu),N],SO,).
In order to obtain a stable boundary Kohlrausch (62) deduced that the
condition expressed by the relationship c’°‘/c’°‘f = T+/T+f must be met.
S.* and E*f are the concentrations of the zinc sulfate and [(Bu),N],SO,
solutions respectively, and T, and T+£ are the transference numbers
of the zinc and tetra-n-butylammonium ion respectively. In order to
determine the desirable concentration, the cation transference numbers
of both leading and following ion were estimated from the limiting ionic

conductances where

++

;_— ApyofZn = 53 (reference 14)
i— \_ of SO.;= ~ 80 (reference 126)
A, of (Bu)4N+ ~ 19.5 (reference 13)

then T4 for Zn' '~ 53/133 = 0.397
T, for (Bu)yN' = 19.5/99.5 =.197
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This enables one to calculate the ratio of various concentrations of
leading to following solution.

The moving boundary method, which measures the motion of the
solution relative to a fixed mark on a tube, must have a correction
made for any change in volume caused by electrode reaction since the
bulk of the solution would move to accommodate any volume change.
The computation in this case was simplified since one side of the cell
was left open to the atmosphere and the other side closed. Only the
volume changes which occur between the closed side and the boundary
need then to be considered.

We employed a falling boundary between zinc sulfate and [(Bu)yN],SO;4.
The cathode, with the silver-silver chloride electrode, was open to the
atmosphere. The volume changes which take place between the boundary
and the closed anode with the cadmium electrode during the passage of

one faraday of electricity are:

(1) & mole of Cd° is lost AVy = - Vy/2

1 : _ 15
(2) 5+ mole of CdSO, is formed A V, = TdeSO4
(3) £+ T, moles of ZnSO, are lost A V3= -% T,V

ZnSO4

VCdSO,, and V are the partial molar volumes of cadmium and zinc

ZnSO4
sulfate respectively. This thermodynamic property may be defined in

general by the expression
V: = (22—
J (énj)P,T,nl,nz,....,
Summing the volume changes (1) through (3) above, the total volume

change between the closed side and the boundary is

=1 .
AV=z VZnSO4 Veal

T, (127)

[VCdSO4 )

The volume change AV means that the boundary has swept out a volume

V' + AV, such that
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\Y% =V' + AV (128)

obs

where V

Vobs is the measured volume in milliliters, and V' the volume

swept out by the boundary, corrected for any change due to the electrode

reaction. To compute A V we used the value V = 13,0 ml. (reference

Cd
78). The partial molar volumes of CdSO; and ZnSO,; were calculated
from the equation derived below. The density, p, of the solution is
given by

nlMl + nzMz
1000 V

(129)

where n) is the number of grams of solvent, n, the grams of solute,
M, and M, are the molecular weights of solvent and solute respectively
and V is the volume in liters. Rearranging and then differentiating at

constant temperature and pressure

dv. M, /1000 - Vdp /dn, (130)
dn, P

Since n) is equal to 1000 grams than n, is equal to the molality m.

The volume V may be expressed in cubic centimeters v, where v =
1000 + m,M . . . .
____p___z_z. The partial molar volume in cubic centimeters per mole

is then

The partial molar volume \7, of zinc sulfate was then determined
using equation (131) and equation (96) for the relationship between density

and molality.

= _(161.39)(1.0057) - (1000 + 161,39 (0.05015) (0.1607))

ZnSO, (1.0057)2

= 0.3 cm3mole™!
The density of cadmium sulfate as a function of concentration was taken

from the International Critical Tables (127). The concentrations were
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converted from percentage to molality and can be expressed by the

equation
p =.99862 + 0.2037 m (132)
Then T _ (208.48) (1.00454) - (1000 + 0.02895 (208. 48) (.2037))
CdsO, (1.00454)%
= 4.5 cm®mole-!

From equation (127) then,
AV=% [4.5-13.0-0.4(0.3)] = -4.6 cm3mole-!

In addition to the volume correction it is necessary to make the solvent
correction proposed by Longsworth (78). It may be recalled that, since

impurities in the solvent carry some small fraction of the total current,

ATy = (12)

T+ (Lsolvent /Ls olution)

The average value of the specific conductance of the solvent was 2 x 107%
ohm=!, The specific conductance of zinc sulfate was obtained from the

work of Owen and Gurry (14).

Sample calculation for the transference number of zinc sulfate.

For each experimental determination of the transference number,
the time that the boundary took to pass each volume mark was recorded.
The entire run was done at constant current, the value recorded in
milliamperes. The volume between each mark had previously been
determined. These were grouped together in larger volume increments
of 0-8, 1-9 ... 9-17. For each of these sub totals the corresponding
total time was determined. A I+ value was then calculated from

_Fc*V _ 96,500 (.009692) (0.8552) _

T+ = 10001t = ~— 1000 (1.10) (1899.8) 0.3827

This calculation was repeated for each volume increment. The value of

T, for the run was taken as the average value from the results thus
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obtained, which, for this example, was equal to 0.3825.
The volume correction was then made to this average transference
number from the evaluation

c*AV _ 0.009692 (- 4.6)
1000 1000
particular concentration, and, therefore, for this example no correction

= 0.000044, which is negligible at this

was necessary. The value of the solvent correction at the same concen-

tration is found from

( 2x1079)

T, (L (0.78 x 10-3)

+ = 0,38

solvent) / (Lsolution)
= 0.97 x 10-3 ~0.0010

Therefore the corrected transference number is

T, = 0.3825+ 0.0010 = 0.3835

The transference number of zinc sulfate as a function of concentration,
with the solvent and volume corrections, is given in Table 5. The
transference number versus concentration is shown graphically in
Figure 11, It proved to be a linear function of the square root of the

normality. The least squares equation was determined to be,

NI—-

T, = 0.3900 - 0.0628 (N) (133)

with a standard deviation of 0.07% for ten determinations. For those
concentrations in Table 5 involving duplicate runs, the current and/or
indicator concentration differ by 10 to 20 percent. The results of Purser
and Stokes (17) based upon the E. M. F. method are also given in

Figure 11 for comparison.
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.410
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.400 L \
T+
A
390 oo Pt L
o4 Vs N4
\ Stokes and Levien
(E.M.F. Method)
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0 0.1 0.2 0.3
N N

Figure 11. Transference Number of Zinc Sulfate versus ~NN
compared with Various Theoretical Curves.
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4. Equivalent Conductance of Potassium Octacyanomolybdate (IV).

The conductance of K\Mo(CN)g was determined using the =ame
experimental procedure as that described for zinc perchlorate.

The densities of the K{Mo(CN); solutions were determined using a
fifty milliliter pycnometer. The relationship between density and concen-

tration at 25°C may be expressed by the linear equation,

p =0.99707 + 0.2505 m (134}

“rsing this equation, the normalities of the solutions were calculated,

The specitic conductance of water was determined with each run and used
to correct for the specific conductance of the salt. A correction was also
n.1de for the added contribution to the conductance by the water which
wzs added with solute. This water was at equilibrium with the carbon
Jioxide of the air and the correction is analogous to that made for zinc
perchlorate.

The equivalent conductance, /\ , as a function of concentration is
ziven for three separate runs in Table 6 and shown graphically in Figure
12, Extrapolation to infinite dilution gives a value of 188.5 cm? ohm !
cquivzlent=! for /\ ,. If the Onsager equation is obeyed, it is possible

to express the equivalent conductance by the equation
N=/No-F (/N +8") NCT (75)

Rearranging this equation, following the method of Shedlovsky (105) and
nsing experimental values of /\. from equation (75), it is possible to
calculate values of /\ y which we designate /\.'o to distinguish them from
the limiting conductances obtained by extrapolation to infinite dilution.

tgquation (75) then becomes,

/\; = N+ & ( a*/\.o + B*)'\J c™ (135)
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Table 6. Equivalent Conductance and /\, for

of Concentration.,
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K4Mo(CN)g as a Function

4
N x 10* NN x 102 ,;"cljrrected /\ ./\.0‘
0.45219 0.67245 0.083467 184.58 187.62
1.7798 1.3341 0.32189 180.86 186.89
4.0222 2.0055 0.71090 176.74 185.80
5.3133 2.3051 0.92967 174.97 185. 38
6.7887 2.6055 1.1754 173.14 184.91
8.0381 2.8352 1.3811 171.82 184.63
10.020 3.1654 1.7018 169.84 184.14
8.8095 2.9681 1.5081 171.19 184.60
£3.195 3.6325 2,2087 167.39 183.80
17.293 4.1585 2.8446 164.49 183,27
20.982 4.5806 3.4041 162.24 182.93
23.967 4,8956 3.8526 160.75 182. 86
27.035 5.1995 4.3035 159.18 182.67
32.422 5.6940 5.0822 156.75 182.47
39.239 6.2641 6.0451 154,06 182,35
50.972 7.1395 7.6574 150.23 182.48
7.5185 2.7420 1.2964 172.43 184, 82
10.3603 3.2187 1.7567 169.56 184.10
16.5437 4.0674 2.7251 164.72 183.09
22,2890 4,7211 3.5915 161.13 182.45
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where /\, =188.5 which was the value obtained from the simple
extrapolation of /\ versus c*

)\j = 73.4 (reference 128)
)\0 = 115
o™= .2289 w'Q and B* = 60.19 w™ (reference 122)

where w', Q and w* have previously been defined.
For potassium octacyanomolybdate (IV), the value of a® is 2.2680 and

3¢

g

is 475.86. The resulting equation then becomes,
1
/\0 =/\+ 451.69 Nc¥ (136)

The values of /\(; thus obtained from equation (136) as a function of
concentration are given in Table 6 for three different runs. These ex-
trapolate at infinite dilution to the same value of /\, (188.5 cm? ohm™!
cquivalent-!) with a somewhat less steep curve, as shown in Figure 11.

It is also possible to try the Onsager function (3) to determine the
limiting value of the equivalent conductance of K(Mo(CN)g. This equation

has the form as shown before
AN\=N° -%- SNc + Ac*logc*+ Bc* (77)

vhich can be rearranged as shown previously in equation (78) to permit
evaluation of the constants A and B. These are obtained by plotting
/\; -/\ o/c* versus Ng* , finally yielding a straight line whose slope
is A and intercept B. The value of /\ , first tried was 188.5.

A preliminary value of o* was then calculated. The value of/\, was
then altered until a straight line was obtained. The best line was for
/\ o equal to 188.0 cm? ohm-! equivalent-!. This results in a value of A

equal to 4217 and B equal to 8811, This is shown in Figure 13.
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DISCUSSION OF RESULTS

A. Zinc perchlorate.

It may be recalled that the conductance measurements on the zinc
perchlorate system were undertaken to determine the limiting ionic
conductance, ng*, for zinc ion, so that this parameter could be used
to calculate the theoretical conductance curve for zinc sulfate.

As shown in Figure 10, the minimum in the curve shows the very
marked deviation from the Onsager equation. If the system obeyed the
Onsager limiting law _/\;, would be constant. While such deviations
occur for many higher charge type electrolytes such as K;Fe(CN), and
Co(en);Cl; (129) they had not been found previously for 2-1 electrolytes.
A slight effect of this type was observed by Jenkins and Monk (15) with
sodium and potassium sulfate. They attributed this behavior to ion-
pair formation. A pronounced deviation of this type has been found for
K,Pt(CN)4 (130). It appears then, that this effect is not unique to the
zinc perchlorate system.

The most obvious choice of explanation for this behaviar involves
the assumption of ion-pair formation of the type ZnClO,t. There are,
however, several difficulties involved in making this calculation for this
salt which are not present in calculations for simple symmetrical
electrolytes. The first of these is the lack of knowledge of the behavior
to be expected of a completely dissociated 2-1 electrolyte. One method
is to arbitrarily select some conductance curve to represent the com-
pletely dissociated electrolyte. All deviations of the electrolyte from
the hypothetical salt are then considered as resulting from incomplete

dissociation. Some knowledge of the activity coefficient of the electro-

lyte as a function of concentration is also required. While vy, would

89
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be known for the salt under investigation the value for the ion-pair would
have to be estimated. The other difficulty is that the ion-pair carries
a charge and therefore contributes to the total conductance of the solution,
The selection of a mobility for the ion-pair involves assumptions of
uncertain validity as to size and shape of the ion and the amount of solva-
tion. In spite of these difficulties, by following the method of Davies
(131)) it should be possible to obtain a reasonable value for 5, the associ-
ation constant,

Inspection of the /\:, curve of Figure 10 shows that a value of no
less than 123 conductance units is required for Zn(Cl1O,),, which gives a
value of 56 or greater for xI" of zinc ion. Using three points from the
conductance curve at concentrations lower than that giving a minimum
in the/'\; curve, trial values of 56 and 59 conductance units for )C:*' of
zinc ion, with )\; for Zn(C104)+ arbitrarily set at 30 conductance units,
values of K were determined as described below.

Consider the equilibrium

+
Zntt + Cl10,~ — ZnClOQ, (139)
~—
The association constant K for this system is

a o]
K= 1 = S W Ky (140)
a+z a-l C+Z C_l

where the subscrips denote the species of corresponding charge, a
their activities and ¢ their molar concentrations. Ky denotes the activity

coefficient ratio

Ky = Yh I 7 o8 (141)
T+, ‘Y'l (‘Yi)Z‘l

where ('Yi)ij is the mean ionic activity coefficient of a salt of charge-
type i-j calculated by the Debye-Hiickel theory. The Debye-Hiickel

limiting law for activity coefficients in its most general form is
S, NP
log ve = - (M _ (142)
1+ aA T
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where S(Y) has been shown to be (132)

1 P 2 1.283 x10°

S = —— T v; 2.
(v) vooj=i 37 (DT);:

(143)

This reduces to 0.3582 for a 1-1 electrolyte and is equal to 2(0.3582)

for a 2-1 electrolyte at 25°C. The quantity A is expressed as

A=223T _ 0.2325 at 25°C (reference 132)
(DT)*
The ional strength, [T, of the solution is defined by
M= = oz (144)
i
The distance of closest approach a for the salt and the ion-pair were
considered to be equal, and a value of 4.5 Angstrom units was chosen.
The quantity Ii(_y) may then be obtained from
_4(0,3582) N T
Y 1+ 4.5(.2325) A\

1
The values of Ky are given in Table 7 with the values of "% and the

log K (145)

three corresponding concentration points which had been chosen.

If ¢ is the stoichiometric molarity, then the concentrations of the various
species may be expressed as
[ZnClO4+] = c,
[zntt) = c-c, (146)
[C10,7] = 2c - ¢,

and then the association constant K is given by

= C2 .
Ko< ~ B (147)

The concentration ¢, may be found from a consideration of the conductance

data. The total specific conductance may be expressed as

Lp=1g 4+ + 1C104' + 1 ZnClO4+ (148)
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since /\ = 1000 L /c* it follows that

L_ = Z(C - Cz) X++ + (ZC - Cz) \ - + C?_)\’
T 1000 1000 1000
C, ()\+ - )\_ - 2>\i—+) + 2C(x+.t + )\_) 14
Lp= 1000 (149)

The ionic conductances at various concentrations can be calculated with

a knowledge of the limiting ionic conductances from the equation

)\j =20 - S()\) mnz (reference 133) (150)

6 * 0 28.98 | Z;
S - 1.970){10 ( q 1ZIZZI \. + ——_Il_'l_l

() (DT)g. 1+ ,\/—q:r) J n (DT)z
where T = 298.16°C
D= 78.54
n =.008949 poises
: 0 0
*_ {ZIZZI (XI + )\z )

(1Z1] + 12210 (122N +  1Z,1N3)

A value of 30 was assumed for \? of ZnC104+ and both 56 and 59 for Zn++.
The value 67.36 was used for \? of C10,” (16)
For ClO4” and ZnClO4+ ions then

= 0.16102 \2 + 21.161
S()\) 6 )5
++ 0
and for Zn where A" = 56 then S()\) = 58.348
where \° = 59 then S = 59,207

(\)

The value for )‘j for each of the ionic species was then calculated at each
concentration from equation (150) and the resulting values are shown in
Table 7. Also shown in the same table for convenience are the values of
/\corr and _/\_'o from Table 4 for the same concentration points,

Solving equation (149) for c, and making the substitution 2c/\ =

1000 LT we obtain the expression
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o - 2c/\ - 2c (N, +\)
z2 - X.*. - )\_ - 2)\++

(151)

Calculated values of c, at the three concentrations are tabulated in

Table 8.

Table 8. Concentration of ZnClO " With Varying Concentrations of
Zinc Perchlorate.

Cz
4 - -
cx10 )‘Zn = 56 )‘Zn = 59
4.0316 1.4608 x 10-3 3.0055 x 10-3
1.2648 3.5357 x 10~ 8.3595 x 10-%
0.2778 3.0079 x 10-7 1.3700 x 10-®

Subsequent substitution into equation (147) for the values of ¢, ¢, and Ky

yield the values of K tabulated in Table 9.

Table 9. Association Constants for Zinc Perchlorate as a Function of

Concentration.
K
* 10* = - =
c x )\Zn 56 )\Zn 59
8.0631 55.4 121
2.5296 120 300
0.5556 206 998

This four-fold variation of K over a narrow range of concentration shows

that simple ion-pair formation is not entirely responsible for the deviation
observed. Although K is rather large for ion association it must be borne
in mind that a value of K of about 100 corresponds to having 3% of the ions

associated when the concentration is about 1.2 x 10-% molar.
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The type of behavior observed here could be expected of system

undergoing extensive hydrolysis according to

zn"t + Ho—— znon' + H

D e

(152)

However, all data already had been corrected for hydrolysis (see
experimental section). It is possible to calculate an "hydrolysis constant"
which would bring the conductance data in accord with the Onsager
equation at low concentrations. Using trial values of K in e|quation (125)

a value of A/\ is obtained for various concentrations. ./\0 minus

this new A /\ is shown in Figure 9 as the lower curve. This is unsatis-
factory since the hydrolysis constant required to give this curve has a
value of 1.1 X .1 x 10-% while that obtained by pH measurements averaged
1.094 x 10-% and the value obtained by Kolthoff and Kameda was 0.0265 x
10-8, This discrepancy in K values is very large and essentially eliminates
hydrolysis as a cause of the deviations from the Onsager equation. Only
if some mechanism were operating which greatly suppressed hydrolysis
at higher concentrations could these results be compatible. The value of
/\ o given by this '"hydrolysis constant' is 120.55 which gives a value of
53.19 for A\y4 for zinc ion.

Another possible explanation for these deviations from the theory
is the inadequacy of this theory to deal with unsymmetrical electrolytes.
The neglect of pair-wise interaction implied by the linear distrihution
function is partially compensated for by the introduction of Bjerrum's
ion-pair concept. Karl (13) has shown that deviations from the Fuoss-
Onsager conductance equations which previously had been attributed to
ion-pair formation, may possibly depend upon higher order terms of
the concentration. The significance of higher order terms of the electro-
phoretic correction to the conductance has been pointed out by Dye and
Spedding (12). As was indicated earlier, it is possible to make use of

the Owen function (56) to fit the data below the minimum. This gave a
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value of 122.70 cm? ohm-! equivalent~! for /\, and 55. 34 for )\:+ of
zinc ion (see experimental). Owen and Gurry (14) obtained the much
lower value of 52.8 for )\:+ of zinc ion using the assumption of ion-pair
formation. Alternatively, the assumption of hydrolysis gave us a value
of 53,19. It is obvious we do not obtain the unequivocal value of limiting
conductance of zinc ion which was sought.

The Fuoss-Onsager extended equation is not applicable to an
unsymmetrical electrolyte so that it can not properly be used for an
extrapolation function. Direct use of equation (73) as if it were valid for
unsymmetrical electrolytes does not eliminate the upswing. Since the
correction given by electrostatic theory is very small in dilute solutions,
it is doubtful whether this approach would be helpful even if the correct
equation were known. The result is that we have no theoretical extrapo-

lation function to use to evaluate /\ 0-

B. Zinc sulfate.

It is possible in several ways to treat theoretically the zinc sulfate
transference data using an adjustable /\, and the conductance data of
Owen and Gurry (14). The standard Fuoss-Onsager calculation (5, 6, 8,
9, 10) was first made using the conductance equation as given earlier in
this paper by

A= (No-ale) 1+ 55 (41)

This was combined with an ion-pair constant. The idea of ion association,
first suggested by Bjerrum (4), involves the postulation of an equilibrium
caused solely by electrostatic interactions between '"free' ions and neutral
ion-pairs according to the equation

chram B (ctay) (155)
f—

This leads to an expression for the association constant K,
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(-1
= c_'yz_f-r (156)

where y is the fraction of ions which are free and f is the ionic activity
coefficient given by the Debye-Hiickel expression. The activity coefficient
of the neutral species is assumed to be unity. The concentration terms

in the Onsager expression refer to ion concentrations. The presence of
pairing equilibrium means that the average concentration of ions is

less than the stoichiometric amount, and that * everywhere in the con-

ductance equation should be replaced by the ion concentration ¢; where

ci= v c* (157)
The ion-pairing constant K is treated as a parameter chosen to give the

test fit to the data. The ionic conductance is then given by
N\, = (158)

where /\is the experimental equivalent conductance for the solution.

From equation (156)

1l _ 1 + N1+ 4Kcf> (159)

v 2
where log f;_ = -N 2 S(f) ci
(1 +%Xa)

and S = 0.5091 at 25°¢C

a is the distance of closest approach

%

ci = v c* where c* is the normality of the salt

X 1is defined earlier in this paper. In this case it

reduces to the expression, X = 0.46466 N c;
Equation (41) may be rewritten

N TN raNg e (160)
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where ./\.i is defined by equation (158), A\ e is the electrophoretic

correction given by equation (48) which is repeated here for clarity

. -96,500 (le;l + lej |l )Ix
ale - 1soonn1(1+.xal) (48)

which for this case reduces to

- 170,44 N c. ‘
AN, = it (161)
1+ Aa

The term AX/X has previously been defined by equation (65) as

== c[aN g (1-a+ 8y + a3 BN ] (65)
/o

The values of A;, A; and As' were calculated by IBM 704 computer
for varying concentrations and distances of closest approach, a.
These values and the resulting AX/X values were calculated and tabulated
for use in these calculations. Equation (160) then contains three adjustable
parameters, a, K and y. To find suitable values of these parameters
we first assumed trial values of each and then computed a new v = v',
according to equation (159) for a particular value of ¢c. Then, ' will
give a new value for ¢; = c¢j', from equation (159). Using this c;' we
again computed a new vy = vy''., This procedure was repeated until
successive calculations yielded constant values for Y-

To choose the best value for K, we first assumed a value for a.

. ]
Then various values were assumed for K, and for each value a /\, was

computed from equation (160) rearranged to

A; - —% + al\e (162)
Mt

where Ai is obtained from the Owen and Gurry (14) data for /\ using

equation (158). Three different concentrations were used for each value
!

of K that was tried. K versus /\, was then plotted and lines were drawn

1
through points (K, /\y ) for the same value of concentration. The three
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lines nearly cross (minimizing variation in A; with concentration) at
a K value of 51.

Then, with K equal to 51 we assumed various values of a. For
each value of a we calculated and plotted ./\:, for three concentrations.
Again lines were drawn through points (a, A;) for the same concen-
tration to determine where the spread was a minimum. The value of a
equal to 3.6 was chosen for the best fit, - Using a K of 51 and a of 3.6,
the average value of /\; was calculated to be 132.24. This was taken
as the value for /\, in equation (158) from which /\; was then calcu-

lated. A value of X\ was then determined using equation

calculated

(158). The values of /\ for various concentrations are given in

calc.
Tabie 10 column II. The values of /\ from the data of Owen and Gurry
{i4) are also shown in Table 10 for comparison. The fit of the conductance
data is too close to be shown graphically, It is now possible to calculate

a transference number for zinc ion. From equation (85) we know that

N -3 al\e
Ny -A/Ne

T, = (163)

where A/\e is defined by equation (49), /\o= 132.24 and A =

N\o - \o . The value of \; for sulfate ion is 80.02 (reference 126),
The calculated transference number is given in Table 10 Column III, and
is shown graphically in Figure 11 (A).

The Fuoss-Onsager treatment does not take into account the
possible dependence of conductance upon higher powers of concentration
than the first. Dye and Spedding (12) pointed out the significance of the
higher terms of the electrophoretic correction to the conductance.
Accordingly, the Fuoss-Onsager calculation of the time of relaxation
effect was combined with the calculation of the higher electrophoretic
terms. This calculation involved two adjustable parameters a and AN 0.

The final expression for A I\ ¢ as developed by Dye and Spedding

(12) are integrals which are functions of the charge type, dielectric
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constant, viscosity, temperature, concentration and distance of closest
approach., Their derivation has been discussed earlier in this thesis,
The evaluation of the electrophoretic integral was done by IBM 704
computer and tabulated tables prepared of the resulting A/\ ¢ with
varying concentrations and a values. The Fuoss-Onsager functions
were calculated for 2-2 electrolytes in water at 25°C for varying ion
size also using the IBM 704 computer. These results were combined
with the electrophoretic correction. Using equation (41), with AAe
redefined according to Dye and Spedding (12), various combinations of
/\, and a values were tried. The best fit for the data was obtained

for a of 4.3 and /\g of 131.5. The results are shown in Table 10
column IV, The transference number of the zinc ion was again calculated
from equation (163) using the redefined A /\ e+ The results are given
in Table 10 column V and are shown graphically in Figure 11 (B).

It is seen that both treatments satisfactorily can reproduce the
conductance behavior of zinc sulfate and that the theory using the
extended electrophoretic terms gives a fairly suitable limiting form for
the transference number. However, as soon as the zinc perchlorate
data are examined one can see that the )\g-+£or zinc ion is much too high
for either method alone to fit conductance or transference data for zinc
sulfate. The transference data yields a value of 51.16 for )\:+ of zinc
ion. Using the value of 55. 34 as the limiting equivalent conductance
for zinc ion as demanded by the perchlorate data, it is possible to fit
the conductance data only at the lowest concentration by a combination
of the two treatments just described. The procedure to find Kis not as
complex, however, since the limiting ionic conductance was fixed and
therefore also /\,. The best fit was obtained for an a of 6.0 and a K
of 5. The results are shown in Table 10 column VI and the fit is not
good. The transference number is also given in Table 10 column VII

and shown graphically in Figure 11 (C).
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One should not overlook the possibility of inadequacies in the theory.
It might be interesting in this connection to briefly review the fundamental
assumptions and approximations inherent in the "Poisson-Boltzmann"
equation, which is the basis of the ionic atmosphere treatment. The
Boltzmann distribution function is based on a statistical model in which
the number of particles able to be accommodated in a given energy state
is unlimited. This assumption is not in accord with the physical system,
however, for an '"exclusion principle' exists - not a quantum mechanical
one, but a volume exclusion. Consider, for example, the energy level
corresponding to the distance r = a between the central ion and an
atmosphere ion. In this energy state, the number of particles is limited
to the number of ions that can be accommodated on a sphere of radius a,
ztout six, Further, the Boltzmann function is here used in its simplest
iorm, without a weighting function. This implies that all energy levels
are equally likely to be occupied, which is not necessarily the case.

Also implied by the Boltzmann distribution function is a fixed,
continuous set of energy levels which exists independently of the distribu-
tion of particles (ions) among them. This energy level continuum is,
in the equilibrium case, related by a smooth function to the distance
from the central ion. Hence, the equation does not take into account the
fact that Uji depends not only on r but also on the presence of other
atmosphere ions in the vicinity; i.e. the energy level system is altered
according to its state of occupancy. This approximation is stated more
specifically when Uji is related to the potential function by Uji = e 'l,uj-
Here, ’I_Pj is defined as the average potential due to the central ion
and the other atmosphere ions. The assumption is made that the
presence of a given atmosphere ion does not alter the distribution of the
other atmosphere ions., This is commonly called the "linear super-

position of fields approximation. "
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The Poisson equation, which is used to relate the potential function
to the charge distribution, involves the idea of a continuous distribution
which, in view of the discrete charges carried by the ions, must be
meaningful on the time average only. The time of averaging, then,
must be short compared with the time spent by a given ion in the atmos-
phere of a chosen central ion. For example, if at some concentration,

a given atmosphere ion is the only ion in the vicinity of the central ion,
it is meaningless to speak of its being in the presence of the continuous
charge distribution of an ionic atmosphere.

Finally, the Poisson equation applies strictly only to static charge
distributions, since it ignores the magnetic interactions produced by
moving charges. Hence, difficulties might be expected when the equation

is applied to non-equilibrium situations.

C. Potassium Octacyanomolybdate (IV).

Conductance measurements as well as transference number
measurements were made on K,Mo(CN); to provide experimental data
for comparison with theoretical calculations. The fact that high charge
unsymmetrical electrolytes show deviation from the theoretical Onsager
conductance equation is not altogether unexpected when one considers
the form of the distribution function that is used. This has also been
observed in experiments by Grove (130) and Wynveen (134). The equi-
valent conductance data shown in Figure 12 show a curvature which would
appear to introduce considerable error into the value of Ao found by any
extrapolation of this curve. The data were also treated by the method
of Shedlovsky which allows A; to be calculated directly from individual
values of /\ . The Onsager relation should, of course, be more valid
as one approaches infinite dilution. The slope is less steep as shown in

! and

Figure 12, but the same intercept of /\ , of 188.5 cm? ohm~! equiv. -
Ao* of 115.0 is obtained. In comparison, the Owen plot results in a /\

value of 188.0 and \y* of 114.5,
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Grove has also determined the value of \y* for Mo(CN),;'4 ion from
the conductance measurements of [N(Me)s]y Mo(CN)g. Using the simple
linear extrapolation of /\ versus ¢, he obtained the value of Aot of
114.9 and with an Owen plot the value of 112.5 It can be seen that the
simple extrapolation gives good agreement within the limits of accuracy
which could be obtained by this procedure. The great variation given
by the Owen method indicates that this is not a suitable function for this
extrapolation. This deviation may be a function of ion size or mobility.
Again it appears that we have no theoretical extrapolation function which
can be used generally.

The neglect of higher order terms of the distribution function may
introduce considerable error in the theoretical calculations of the con-
ductance behavior of this electrolyte. The higher order terms have a
strong dependence on the ion size parameter a. Since one appreciable
difference between K' ion and N(Me)4+ ion is the ionic size, then perhaps
a decided factor in the variation of conductance behavior observed is
due to the neglect of higher order terms.

We attempted to obtain transference numbers of K,Mo(CN)g using
the moving boundary method, without success. Each transference run
yielded data of good internal precision but they were not reproducible.
Solutions freshly prepared were run immediately but no trend could be
observed in over thirty determinations. It is possible that the difficulty
is due to the decomposition of the Mo(CN)g~* ion.

Atkinson and co-workers (136) have shown that the 2-1 salts sodium
and potassium m-benzenedisulfonate, seem to behave more 'normally"
than zinc perchlorate. They show curvature at higher concentrations
similar to the zinc salt but there is no indication of an upswing at low
concentrations. Their data in general do not extend to as low concen-
trations as the zinc perchlorate data, but our observed upswing begins

well above their lowest point. It is interesting to comment in this
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connection that Owen and Gurry (14) remark about an effect of similar
nature which they encountered in zinc sulfate, 'It may be significant,
however, that our points of c2~0.000087 (molarity) would cause the
plots to curve abruptly upward and increase the intercept by about one
conductance unit. ' It would also appear from the data of Atkinson (136)
that the 3-1 salts, sodium and potassium 1, 3, 6-naphthalenetrisulfonate,
are behaving normally.

The problem with zinc sulfate in common with other 2-2 salts
which have been investigated, is the lack of knowledge of how the salt
would behave in conductance if it were completely dissociated. A 2-2
electrolyte which would obey the extended theory with reasonable para-
meters would be a basis for the discussion of association in salts like
2zinc sulfate. Atkinson (136) reasoned that if the negative-two charge on
an ion were separated by a large inert framework the short range
interactions of the higher charged ion would be reduced while maintaining
the long range properties of the divalent ion. This resulted in the
experimental work on the salt copper m-benzenedisulfonate, which
appears to show completely dissociated behavior according to our previous
criterion for an undissociated electrolyte, i.e., that the conductance
curve should approach the limiting law tangent from above.

It would be desirable in the future to examine the behavior of zinc
m-benzenedisulfonate. This study should indicate whether the zinc ion is
indeed as atypical as we believe it to be.

Combination of the m-benzenedisulfonate anion with a similarly large
cation, such as tetramethylammonium ion, rmight yield interesting infor-
mation on 1-2 electrolytes. If this should turn out to be a well behaved
salt, this would indicate that the trouble with [N(Me),];Mo(CN)g lies
with the Mo(CN)g™* ion.



SUMMARY

An outline of the history of the method of conductance and trans-
ference number measurements, as well as a history of the interionic
attraction theory of electrolytic solutions is presented.

As a test of the theoretical expressions which have been developed
for the description of the conductance phenomenon, an attempt was made
to fit the conductance data of zinc sulfate. Three parameters are in-
volved, one of which is the equivalent conductance of zinc sulfate.

To reduce the number of arbitrary parameters, the equivalent ionic
conductance of zinc ion was sought by an independent measurement of

the equivalent conductance of aqueous zinc perchlorate. The conductance
of this salt was found to deviate markedly from the Onsager equation even
in dilute solution. Attempts made to explain this behavior on the basis

of ion-pairing, hydrolysis and purely electrostatic interactions were
entirely unsatisfactory.

As a further test of the theory the transference number of zinc
sulfate in water as a function of concentration was measured by the moving
boundary method at 25°C.

The conductance data for zinc sulfate can be adequately fit by
either the Fuoss-Onsager theory including ion association or by including
terms of the electrophoretic equation which are usually neglected.

The former treatment also gives a fairly suitable limiting form for
transference numbers. However, when the limiting ionic conductance
for zinc ion from measurements on zinc perchlorate is used, it is much

too high for either theory to describe the behavior adequately.

106
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We conclude that zinc salts do not form typical dilute solutions
but that, perhaps due to the covalent bonding tendencies of the zinc ion,
there are deviations from any theory which is based on the assumption
of hard, non-polarizable ions.

While the primary objective of determining Ay for zinc ion thus
could not be achieved, the new phenomenon observed will require a
new approach to this conductance problem. It also indicates that not
all electrolytes can be treated in the conventional fashion.

In addition to these considerations, the equivalent conductance
of potassium octacyanomolybdate (IV) was determined. Large deviations
from the limiting equation of Onsager occur, so that the limiting ionic
conductance could not be accurately determined by the methods now
available. We attempted to obtain the transference number of this salt
from the moving boundary method. No reproducible transference
number could be determined. It was concluded from examination of
much self-consistent data that perhaps some immediate decomposition

was occurring even in freshly prepared solutions.



REFERENCES

(1) P. Debye and E. Hiickel, Physik Z., 24, 185 (1923).

(2) L. Onsager, ibid., 28, 227 (1927).

(3) L. Onsager and R. M. Fuoss, J. Phys, Chem., ié’ 2689 (1932).

(4) N. Bjerrum, Kgl. Danske Vikensk. Selskab., Math-fys., Medd.
7, No. 9 (1926).

(5) R. M. Fuoss, J.Am.Chem. Soc., 79, 3301 (1957).

(6) R. M. Fuoss and C. A. Kraus, ibid., 79, 3304 (1957).

(7) R. M. Fuoss, ibid., 81, 2659 (1959).

(8) L. Onsager and R. M. Fuoss, Proc. Nat. Acad. Sci., 41, 274 (1955).

(9) Ibid., 41, 1010 (1955).

(10) Ibid., J. Phys. Chem., 61, 668 (1957).

(11) Ibid., 62, 1339 (1958). |

(12) J. L. Dye and F. H. Spedding, J. Am. Chem. Soc,, 76, 888 (1954).

(13) D. J. Karl, Ph. D. Thesis, Michigan State University (1960).

(14) B. B. Owen and R. W. Gurry, J. Am. Chem. Soc., ég, 3074 (1938).

(15) I. L. Jenkins and C. B. Monk, ibid., 72, 2695 (1950).

(16) J. H. Jones, ibid., 67, 855 (1945).

(17) E. P. Purser and R. H. Stokes, ibid., 73, 5650 (1951).

(18) R. Gold, Ph. D. Thesis, New York University (1954); Dissertation
Abstr. 15, 998 (1955).

(19) E. N. Horsford, Ann. Physik., 70, 238 (1847).
(20) G. Wiedmann, ibid., 9_9_, 177 (1856).
(21) W. Schmidt, ibid. , 107, 539 (1859).

(22) F. Kohlrausch and L. Holborn, Leltvermogen der Elektrolyte,
Teubner, Leipsig (1898).

(23) F. Kohlrausch, Wied. Ann., 6, 145 (1879).
(24) Ibid., 26, 123, 161 (1885).

108



109

(25) G. Jones and R. C. Joseph, J. Am.Chem.Scc., 50, 1049 (1928).
(26) G. Jones and G. M. Bollinger, ibid., 51, 2407 (1929).

(27) Ibid., 53, 1207 (1931).

(28) Ibid., 57, 280 (1935).

(29) K. Wagner, Elektrotechnische Zeitschrift, 32, 1001 (1911).

(30) M. Wien, Ann. Physik., 85, 795 (1928).

(31) W. A. Taylor and S. F. Acree, J. Am. Chem. Soc., 38, 2416 (1916).
(32) C. A. Kraus and H. C. Parker, ibid., 44, 2438 (1922).

(33) H. C. Parker, ibid., 45, 1370 (1923).

(34) T. Shedlovsky, ibid., 52, 1806 (1930).

(35) G. Jones and G. M. Bollinger, ibid., 53, 411 (1931).

(36) T. Shedlovsky, ibid., 54, 1411 (1932).

(37) G. Jones and S. M. Christian, ibid., 57, 272 (1935).

(38) G. Jones and G. M. Bollinger, ibid., 57, 280 (1935).

{39) G. Jones and B. C. Bradshaw, ibid., 55, 1780 (1933).

(40) G. Jones and M. J. Prendergast, ibid., 59, 731 (1937).

(41) J. F. Daniell, Phil. Trans., 129, 97 (1839).

(42) Ibid., 130, 209 (1840).

(43)N. Hittorf, Ann. Physik. ser. 2, 89 (1853); ibid., 98, 1 (1856);
ibid., 103, 1 (1858); ibid., %, 337 (1859); ibid., 106, 513 (1859).

(44) W. Hittorf, Z. physik. Chem., 39, 612 (1901); ibid., 43, 239 (1903).

(45)G. Kortum and J. O'M. Bockris, '"Textbook of Electrochemistry, "
Vol. 1, Elsevier Publishing Co., New York, N. Y. (1951).

(46) J, W. McBain, Proc. Washington Acad. Sci., 9, 1 (1907).

(47) A. A. Noyes and K. G. Falk, J. Am. Chem. Soc., 33, 1436 (1911).
(48) G. Jones and M. Dole, ibid., 51, 1073 (1929).

(49) D. A. MaclInnes and M. Dole, ibid., 53, 1357 (1931).

{50) G. Jones and B. C. Bradshaw, ibid., 54, 138 (1932).

(51) B. J. Steel and R. H. Stokes, J. phys. Chem., 62, 450 (1958).

(52) H. von Helmholtz, Ann. Physik. ser. 3, 3, 201 (1878).



110

(53) W. T. Pearce and L. Mortimer, J. Am. Chem. Soc., 40,
518 (1918).

(54) D. A. Maclnnes and J. A. Beattie, ibid., 42, 1117 (1920).
(55) D. A. Maclnnes and K. Parker, ibid., 37, 1445 (1915).
(56) B. B. Owen, ibid., 61, 1393 (1939).

(57) O. Lodge, Brit. Assn. Advancement Sci. Rep., 389 (1886).
(58) W. C. D. Whetham, Phil. Trans. 1844, 337 (1893).

(59) Ibid., Z. physik.Chem., 11, 220 (1893).

(60) N. Nernst, Z. Elektrochem., 3, 308 (1897).

(61) H. Masson, Phil. Trans., 192A, 331 (1899).

(62) F. Kohlrausch, Ann. Physik., 62, 209 (1897).

(63) D. A. Maclnnes and I. A. Cowperthwaite, Proc. Nat. Scad. Sci.
15, 18 (1929).

{64)D. A. Maclnnes and L. G. Longsworth, Chem. Rev., 11, 171 (1932).

{65) D, A. Maclnnes and E. R. Smith, J. Am. Chem. Soc., 45, 2246
(1923).

(66) Ibid., 46, 1398 (1924).

(67) J. L. Dye, Ph. D. Thesis, Iowa State College, (1953).

(68) B. D.' Steele, J. Am. Chem. Soc., 79, 414 (1901).

(69) Ibid., Phil. Trans., 198 A, 105 (1902).

(70) E. G. Franklin and H. P. Cady, J. Am. Chem. Soc., _;_6_, 499 (1904).
(71) R. B. Denison and B. D. Steele, Phil. Trans., 205, 449 (1906).

(72) Ibid., Z. physik. Chem., 57, 110 (1906).

(73)D. A. Maclnnes and T. B. Brighton, J. Am. Chem. Soc., 47,994 (1925).

(74) F. H. Spedding, P. E. Parter and J. M. Wright, ibid., 74
2055 (1952); ibid., 74, 2778 (1952).

(75) G. N. Lewis, ibid., 32, 862 (1910).
(76) E. E. Smith, Bur. Standards J. Research, 8, 457 (1932).

(77) D. A. Maclnnes '"Principles of Electrochemistry.! Reinhold
Publishing Corp., New York, N.Y. (1939)

(78) L. G. Longsworth, J. Am. Chem. Soc., 54, 2741 (1932).



111

(79) S. A. Arhennius, Z. physik. Chem., 1, 631 (1887).

(80) D. A. Maclnnes and T. Shedlovsky, J. Am. Chem. Soc., 54,
1429 (1932).

(81) T. Shedlovsky, A. S. Brown and D. A. Maclnnes, Trans. Electro-
chem. Soc., 66, 165 (1934).

(82) J. J. van Laar, Z. physik. Chem., 18 245 (1895).

(83)A. A. Noyes and J. Coolidge, J. Am. Chem. Soc., 26, 167 (1904)
(84) H. Jahn, Z. physik. Chem., 33, 545 (1900).

(85) W. Sutherland, Phil. Mag., 3, 161 (1902); ibid., 7,1 (1906).

(86) G. N. Lewis, Z. physik. Chem., 70, 214 (1910},

{87) G. N. Lewis and N. Randall, '"Thermodynamics, " McGraw-Hill
Book Co., New York, N. Y. (1923).

(88) W. Sutherland, Phil. Mag., 14, 1 (1907).
{59) S. R. Milner, ibid., 23, 551 (1912); ibid., 25, 742 (1913).

(50) H. S. Harned and B. B. Owen, '""The Physical Chemistry of Electrolytic
Solutions, ' Second Edition, Reinhold Publishing Corp., New York,
New York, (1950).

(91) H. Muller, Physik. Z. 28, 324 (1927);_i_bi_d., 29, 27 (1928).

(92) T. H. Gronwall, V. K. LaMer and K. Sandved, ibid., 29, 358 (1928).
(93) C. W, Davies and J. C. Jones, Proc. Roy. Soc., 1954, 116 (1948).
(94) J. C. Jones, J. Chem. Soc., 1094 (1950).

(95) H. S. Dunsmoreiand J. C. Jones, ibid., 2925 (1951).

(96) C. A. Kraus and R. M. Fuoss, J. Am. Chem. Soc., 55, 21 (1933);
ibid,, 55, 1019 (1933),

(97) R. M. Fuoss, ibid., 80, 5059 (1958).
(98) P. Debye and E. Hickel, Physik. Z. 24, 305 (1923).

(99) R. M. Fuoss and F. Accascina, "Electrolytic Conductance, "
Interscience Publishers Inc., New York, N. Y. (1959).

{100) Reference 90, page 23.

(101) H. Falkenhagen and G. Kelbg, Z. Elektrochem., 58, 653 (1954).
(102) Reference 10, equation 4.7, page 671

(103) Reference 99, Chapter 14, page 173,



112

(104) Reference 99, page 195.
(105) T. Shedlovsky, J. Am. Chem. Soc., 54, 1405 (1932).

(106) H. Falkenhagen and M. Dole, Z. physik. Chem., 6, 159 (1929);
ibid., 30, 611 (1929).

(107) H. Falkenhagen, Physik. Z. 32, 365, 745 (1931).
(108) A. Einstein, Ann. Phys., 19, 289 (1906).

(109) W. S. Wilson, Dissertation, Yale University, (1936).
(110) L. Onsager, J. Chem. Phys., 2, 599 (1934).

(111) I.. A, Cowperthwaite and V. K. LaMer, J. Am. Chem. Soc.,
53, 4333 (1931).

(112) G. Scatchard and S. S. Prentiss, ibid., 55, 4355 (1933).

(113) G. D. Pinching and R. G. Bates, J. Research, Natl. Bur. Standards,
37, 311 (1946).

(114) D. E. Fowler, W. V. Loebensyein, P. B. Paul and C. A. Kraus,
J. Am. Chem. Soc., 62, 1140 (1940).

(115) L. F. Audrieth, '"Inorganic Synthesis, " Vol. III, McGraw-Hill
Book Co., Inc., New York, N. Y. (1950), pp. 160-162,

(116) H. H. Willard and N. H. Furman, '"Elementary Quantitative
Analysis," D. Van Nostrand Co., New York, N.Y. (1940).

(117) H. B. Thompson and M. T. Rogers, Rev. Sci. Instru., 57_,
1079 (1956).

(118) H.- M. Daggett, E. J. Blair and C. A, Kraus, J. Am. Chem. Soc.,
73, 799 (1951).

(119) "Lange's Handbook of Chemistry" Handbook Publishers Inc.,
Sandusky, Ohio, (1946).

(120) Reference 90, p. 556.
(121) Reference 90, p. 151,
(122) Reference 90, p. 587.

(123) T. Shedlovsky and A. S. Brown, J. Am. Chem. Soc., 261
1066 (1934).

(124) I. M. Kolthoff and T. Kameda, ibid., 53, 832 (1931).

(125) W. J. Moore, '"Physical Chemistry, ' Prentice Hall Inc., New
York, N. Y. (1950).



113

(126) D. A. Maclnnes, J. Franklin Inst., 225, 661 (1938).

(127) International Critical Tables of Numerical Data, Vol, III,
National Academy of Sciences, p. 51 (1928).

(128) B. B. Owen and H. Zeldes, J. Chem. Phys., 18, 1083 (1950).
(129) I. J. Jenkins and C. B. Monk, J. Chem. Soc., é_g, (1951).

(130) K. O. Groves, Ph. D. Thesis, Michigan State University (1959).
(131) C. W. Davies, Trans. Faraday Soc., 23, 351 (1927).

(132) Reference 90, p. 35.

(133) Reference 90, p. 83.

(134) R. A, Wynveen, Ph. D. Thesis, Michigan State University (1959).

(135) J. E. Lind Jr., J. J. Zwolenik and R. M. Fuoss, J. Am. Chem.
Soc., 81, 1557 (1959).

(136) G. Atkinson, M. Yokoi and C, J. Hallada, ibid., 83,1570 (1961).



