

RELATIVE VALUES OF ROUGHAGE AND CONCENTRATE FOR MILK PRODUCTION

Thesis for the Degree of M. S. MICHIGAN STATE COLLEGE Clarence Chesnutt, Jr. 1953

This is to certify that the

Relative Values of Roughage and
Concentrate for Milk Production
presented by

Clarence Chesnutt, Jr.

has been accepted towards fulfillment of the requirements for

M. S. degree in Dairy

George M. Ward Major professor

Date September 2, 1953

RELATIVE VALUES OF ROUGHAGE AND CONCENTRATE FOR MILK PRODUCTION

bу

Clarence Chesnutt, Jr.

A THESIS

Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Dairy

1953

1154

ACKNOWLEDGEMENTS

The writer wishes to express his sincere appreciation to Dr. George M. Ward for his tireless efforts and constructive suggestions throughout this study and for his aid in the preparation and critically reading of this manuscript. Appreciation is also extended to Dr. C. F. Huffman for making the records available for this study; for his aid in compiling the data and for his critical reading of the manuscript.

Thanks are due Dr. R. H. Nelson for his suggestions in the statistical analysis of the data. Thanks are also due Miss Bicknell for her aid in the preparation and typing of the manuscript and to those anonymous individuals who over the period of years covered by this study aided in the collection and recording of the data.

TABLE OF CONTENTS

	Page
INTRODUCTION	1-2
REVIEW OF LITERATURE	3-10
PROCEDURE	11-13
RESULTS	14-16
DISCUSSION	22 - 25
SUMMARY	26 - 27
LITERATURE CITED	28-32
APPENDIX	° 3-52

LIST OF TABLES

	-	Page
TABLE 1.	Pasture vs. No Pasture for Milk Production	17
TABLE 2.	Effect of Age at Calving on Milk Production	18
TABLE 3.	Effect of Season of Calving On Milk Production	19
TABLE 4.	Effect of Year of Lactation on Milk Production	20
TABLE 5.	Effect of Length of Dry Period on Milk Production	21
APPENDIX	TABLE 1. Individual Data by Lactations	33
APPENDIX	TABLE 2. Total Digestible Nutrient Values for Feeding Stuffs	49

INTRODUCTION

It has long been known that supplementation of the ration of dairy cows with concentrates was necessary if maximum milk production was to be attained. The feeding of roughage as the entire ration usually resulted in low levels of milk production. The feeding of concentrates concurrently with good roughages -- whether hay, pasture or silage -- resulted in greatly improved production. This improved production due to concentrate feeding was explained on the basis of increased intake of total digestible nutrients.

More recently experiments have been performed in which roughage was compared with concentrate on the basis of total digestible nutrient content. Replacement of a portion of the roughage ration of a cow with the same amount of total digestible nutrients in the form of grain resulted in higher level milk production. Attempts have been made to explain this on the basis of insufficiency of the "total digestible nutrient" system for the evaluation of feeds with concurrent attempts to substitute the "calculated net energy" system of feed evaluation to account for variation in milk production in the cases of ration change. Neither system of feed evaluation seems to hold the answer to the question since there obviously are complementary effects amoung certain feedstuffs which affect the "balance of the ration."

This investigation was initiated in an attempt to evaluate mathematically the value of total digestible nutrients in the form of concentrates relative to the value of total digestible nutrients in the form of roughages.

REVIEW OF LITERATURE

Factors known to affect milk production are easily divided into 2 categories -- inherent and environmental. The inherent factors affect milk production through efficiency of feed conversion and level of maximum productive capacity. The environmental factors may be classed as climatic, geographical and managerial.

climatic variations are uncontrollable and influence milk production through variations in quality and quantity of feed available for consumption as well as the comfort of the animals. The geographical variations can not be separated from climatic variations because the latter are an essential causative agent in both. Variables such as plane of nutrition, season of calving, age at calving, length of dry period are managerial in nature and may be controlled.

Several investigators have not agreed on the effect of season on milk production. Ragsdale and Brody (1922) attributed responsibility for seasonal fluctuations to temperature variations. High temperature greatly reduced milk production. Cannon (1933) working with data from 68000 Iowa Cow Testing Association records found that cows calving in November produced more milk than those calving in June.

Woodward (1945) analyzing 15442 Dairy Herd Improvement Association records essentially agreed with Cannon differing only in the low month -- July in this case. Contrary to the findings of Cannon and of Woodward, Wylie (1925) using 2900

Register of Merit records made in one year found that cows calving in June had the highest production. Woodward explained this inconsistancy on the basis of conditions under which the records were made. All of Wylie's data came from records made by cows on unusually high planes of nutrition and concentrate consumption. Arnold and Becker (1935) working with 319 records made in Florida found no significant differences in season of calving. They attributed the lack of significant variation in season to small changes in climatic conditions throughout the entire year. Dloufa and Jones (1948) in a study of 2690 records made in western Oregon found no significant differences in season of calving.

The effect of age at first calving was shown by Reed et al. (1924) to affect milk production. Heifers calving at 2 years of age produced less milk than heifers with similar inherent abilities and environmental conditions calving at 2 1/2 years of age.

Length of gestation during a lactation has been shown to exert a decided effect on production. Gavin (1913) found that lactation curves started dropping off very slightly from normal 4 months after conception. The maximum decline was reached during the fifth and sixth months following conception. Brody et al. (1923) found that cows in America took more time to reach the same point in decline than those in England. They noted that gestation exerted its maximum effect during the latter part of the fifth and

the sixth months. Gowen (1924) stated that the amount of energy needed by the developing fetus was equivalent to 400 to 600 pounds of milk. He also found that gestation exerted the greatest drain on the dam's energy as she approached 5 years of age. Lower nutritive requirements attributable to gestation were found as the cow aged beyond this point.

Another variable which can be controlled to some extent by management is dry period. Klein and Woodward (1943) reported that a 55-day dry period was optimum for cows calving at 12-month intervals. Longer period had much less effect on production. Hammond and Sanders (1923) in earlier work found 80 to 119 days to be the optimum interval. They reported a 13 per cent reduction in milk production following a 0 to 39-day dry period; 2.5 per cent reduction for 40 to 70 days; and over 120-day dry period resulted in a 2 per cent increase in milk production over that of their optimum.

Rations fed to dairy animals vary from an all roughage regime to one nearly devoid of roughage. In the heavily populated sections of the United States heavy concentrate feeding is practiced while in the western section of the country all roughage feeding programs are used by many farmers.

Reed et al. (1924) reported that heifers raised on roughage alone were slower maturing than heifers raised on a combination of roughage and concentrates. Such heifers not only matured later but produced less milk in subsequent lactations.

Numerous investigators have worked with rations

composed entirely of roughages. Willard (1934) reported cows fed only roughage declined from peak production faster than cows fed some concentrates. In an experiment with high quality roughages, alfalfa hay and irrigated pastures, Woodward (1945) found production equivalent to that of cows fed concentrates at the rate of 2 to 12 pounds per day. Haag et al. (1929) studying the physiological effect of an all alfalfa ration noted that cows produced only half as much milk as expected. These workers attributed this to a probable insufficiency of total digestible nutrients. Lindsey and Archibald (1932) comparing low roughage rations with high roughage rations found greater consumption of total digestible nutrients on the former. The low roughage group produced more milk and were in better general physical condition. Efficiency of production was in favor of the low roughage group. Graves et al. (1938) working with an all alfalfa ration and with a full-feed ration found that the alfalfa fed group produced only 57 per cent as much milk and 60 per cent as much butterfat as when fed under a full-feed program. Cows fed alfalfa for 2 consecutive lactations produced 10 per cent less the second lactation than was produced during the first lactation. They found little difference in the efficiency between the 2 rations but that little difference was in favor of the alfalfa. Reed (1937) reported essentially the same results. Cows on roughage produced only 67 per cent as much milk and 62 per cent as much butterfat as when they were fed grain in addition

to roughage. Jensen et al. (1942) in a report compiled from 10 cooperating experiment station herds in a feeding program found that cows fed roughage alone produced only 80 per cent as much milk as comparable cows fed grain at the rate of one pound to 6 pounds of milk. This study in covering 10 states eliminated sectional variations. Graves et al. (1940) experimenting with 4 different rations found that full grain feeding produced approximately 16 per cent more milk than a ration in which barley was the sole concentrate. barley ration was superior to an all roughage ration. Jones et al. (1934) reported that cows on a low-grain ration had very low production while similar cows on a similar ration but with more grain consumed more total digestible nutrients with greater efficiency of production and with less gain in weight. Smith et al. (1945) at the same station found that replacement of 13 to 25 per cent of the alfalfa total digestible nutrients with concentrate allowed cows to produce normally. Woll (1918) working with alfalfa as a sole feed for dairy cattle found that cows produced 45 per cent more butterfat on a mixed ration during the first lactation and 23 per cent more butterfat during the second lactation than when fed an all-alfalfa ration.

Haag (1931) reported that alfalfa crude protein was deficient in cystine. Huffman and Duncan (1942, 1944, 1947, 1949, 1950) in a series of experiments indicated that cystine was not a limiting factor in alfalfa for milk

production. They found in nearly all instances that concentrate in addition to alfalfa increased milk production. To compare different feeding stuffs cows were depleted on alfalfa until milk production leveled off. The feedstuff in question was then added to the ration. They found that cystine corn starch and sugar were all inactive in this regard since these feedstuffs did not increase production of 4 per cent fat corrected milk but iso-caloric amounts of corn and wheat increased milk production significantly. Davis and Kemmerer (1948) in paired feeding experiments found that milk production could be maintained when near iso-caloric amounts of dried citrus perlaners substituted for corn.

Headley (1930) indicated that alfalfa hay and grain were equally efficient for butterfat production on the basis of total digestible nutrient content. Redman (1952) concluded that roughages and concentrates are not freely substitutable but are complimentary. Milk was produced more efficiently when some grain was fed. He agreed with Jensen et al. (1942) that milk production was a curvilinear function of feed consumed. Increasing increments of feed were required to produce the same amount of four per cent fat corrected milk at higher levels of production. Headley (1943) indicated that a logarithmic function existed between total digestible nutrients and 4 per cent fat corrected milk. Baker and Tomhave (1944) found a straight-line relationship between total digestible nutrient intake and milk production. Borland et al. (1942) found that the milk yield per pound of grain

decreased as the amount of grain increased. Tennant and Fowler (1941) noted that annual production of 4 per cent fat corrected milk increased approximately 90 pounds for each 100 pounds increase in grain. Autrey (1941) reported significant differences in milk production when cows were fed roughage elone, limited grain and full grain. Searinen et al. (1951) reviewed work of other investigators and found that isocaloric amounts of grain substituted for roughage were not equivalent "calculated net energy" values. They designed an experiment using "calculated net energy" as the basis for substitution of concentrates for roughages. Results of their experiment indicated corn was not superior to roughage on the "calculated net energy" basis formilk production. Moore et al. (1952) studied the relationship between the "total digestible nutrient" system and "calculated net energy" system for feed evaluation. They found that the difference between the two systems became progressively greater as the feedstuff total digestible nutrient value lowered and that variations "up to 100 % difference in the energy value of 1 lb. of TDN, depending on the feed" could be expected.

Huffman and Duncan (1952), in rebuttal to the proponents of the "calculated net energy" system of feed evaluation for the solution of this problem, showed that the inclusion of abnormally large amounts of indigestible organic matter, "ballast", in the ration did not cause a depression

in milk production as long as the balance of the ration was maintained. This group of workers (Huffman et al., 1952a) further substantiated their position by demonstrating that the inclusion of oakwood meal, wheat straw or peanut hulls in a balanced ration did not depress milk production. They demonstrated further that immature alfalfa and timothy hays had milk producing power not accounted for on the basis of coefficients of digestibility, starch equivalent, total digestible nutrient, or calculated net energy content (Huffman et al. 1952b). These workers indicated that the values of feeds were not necessarily additive in all cases, especially in the case of grain supplementation of a hay ration.

Davis et al. (1953) indicated there are no unidentified factors in concentrates for milk production. They explained the increased production on increases in productive energy consumed and "balance of the ration."

PROCEDURE

The data used in this study were those accumulated from 1934 to 1953 in the Michigan State College Experiment Station dairy nutrition herd. The study was made on 323 lactation records from 78 cows; 285 records made by 63 Holsteins, 26 by 6 Jerseys, and 12 by 9 scrubs.

Lactations of less than 250 days were not included in this study and those of more than 305 days were terminated at the 305-day point. The monthly fat test used was an average of 3-day composite tests for the month. Four per cent fat corrected milk was computed for each month by the use of Gaines' (1928) formula. The records were neither corrected for age of cow at calving nor for length if less than 305 days in duration.

June 1 to May 31 was selected as the feeding year.

The year was divided into the seasons suggested by Cranek
(1952). These were December, January and February in Group 1;
March, April and May in Group 2; June, July and August in
Group 3; and September, October and November in Group 4.

Lactations were grouped for age-at-calving analysis by 6-month intervals. The first group included all cows which calved prior to 2 years of age. Cows 12 years old and over were grouped in the last group. The procedure of dropping 15 days or less and adding a month to the age for 16 days or more was followed.

Weight changes were calculated for each lactation

of each cow. Three patterns were followed for obtaining cow weights during the time covered by this study. For periods when cows were weighed on three consecutive days each month, the first such weighing after calving was taken as the initial weight. The final weight was the weighing closest to the end of the lactation period. In cases where daily weighings were made, the initial weight was an average of the weights for the first month after calving and the final weight of the weighings for the last month of the lactation period. For records where weighings were made every third day, the fourth, fifth and sixth weighings after calving were averaged and used as the initial weight. The final weight was an average of the last 3 weighings before the end of the lactation.

Daily feed records were totaled for each lactation. The total digestible nutrient values for feed consumed were calculated using the values for each feed listed in the Appendix Table 2. The table was compiled from data compiled by Huffman (1953), Morrison (1948) and Schnieder (1947). Corn silage was separated into roughage equivalent and concentrate equivalent by using 1bs. corn silage X 80.1 for total digestible nutrients of corn grain and corn silage total digestible nutrients minus corn total digestible nutrients for hay value of the corn stalk-portion of the silage.

Bartlett's test of homogeneity of variance (1937) indicated that the data were sufficiently homogenous to be

analyzed. Statistical analyses for the effect of pasture, age at calving, season of calving, year of lactation and length of dry period were carried out according to patterns set forth by Snedecor (1946). Analysis of variance for each variable with 4 per cent fat corrected milk production was run without taking into account any other variable.

Correlation coefficients and regression equations were calculated for:

- 1. FCM vs. total TDN
- 2. FCM vs. Roughage TDN and Concentrate TDN
- 3. FCM vs. Roughage TDN, Concentrate TDN and Weight Change.

Since it was necessary to know the entire total digestible nutrient consumption during each lactation, 42 lactations during which the cows were on pasture for 2 or more days were eliminated from the analysis.

RESULTS

Three hundred-twenty-three records made by 78 cows were analyzed. The average number of lactations per cow was 4.14. The mean lactation, the 3.69th, indicated a predominance of first lactations as well as cows with unusually large numbers of lactations. First lactations comprised 22.3 per cent of the total. Seventy-five per cent of the lactations were 300 days or more in length with the average being 298 days. Individual records ranged from less than 4000 pounds to more than 15000 pounds of 4 per cent fat corrected milk. Bartlett's test was employed and indicated that the population was homogenous.

An analysis of variance for the effect of pasture on milk production (Table 1) indicated no significant difference between the averages of the 2 groups.

The analysis of variance for the effect of age at calving on milk production may be found in Table 2. The F test indicated significance at the 5 per cent level of probability.

The analysis of variance for the effect of the season of calving on milk production is recorded in Table 3.

The seasonal differences were significant at the 5 per cent level of probability. The season of calving for maximum milk production was September, October, and November.

The year in which the lactation took place had a highly significant effect on the milk production level

(Table 4). The F value of 4.281 was highly significant at the one per cent level of probability. The average yearly production was significantly larger during the early years of this study.

The analysis of variance for the effect of length of previous dry period on milk production did not approach significance in this study (Table 5). The dry periods ranged in length from one day to nearly a year. Only 2 lactations were preceded by dry periods of 30 days or less.

The amount of concentrate total digestible nutrients received by cows in this study ranged from one to more than 6000 pounds. Roughage total digestible nutrient intake ranged from approximately 2000 pounds to approximately 7000 pounds. The total digestible nutrient intake ranged from approximately 4000 pounds to approximately 9000 pounds.

Age at calving, season of calving and year of lactation, variables which exerted barely significant effects on 4 per cent fat corrected milk production, lost their identity with redistribution of data and were not included as variables in the correlation analyses.

Necessarily lactations during which the cows were on pasture were not included in these analyses, leaving 281 lactations available with complete feed data.

The correlation coefficient, 0.817 ± 0.020, between 4 per cent fat corrected milk and total digestible nutrients was highly significant. The predicting equation for the

relationship between these two variables was found to be FCM = 1.716 TDN - 2272 + 1316 pounds.

The multiple correlation coefficient, 0.843 ± 0.017, between fat corrected milk and roughage total digestible nutrients and concentrate total digestible nutrients was highly significant. The predicting equation for this relationship was found to be

FCM = 1.783 conc. TDN + 0.858 rough. TDN + 1358 + 905 pounds.

An analysis of variance in the regression showed that both regression coefficients were highly significant as well as being highly significantly different from each other.

The multiple correlation coefficient, 0.844 ± 0.017, between 4 per cent fat corrected milk and roughage total digestible nutrients, concentrate total digestible nutrients and weight change was highly significant. Since the inclusion of the fourth variable, weight change, had practically no effect on the multiple correlation coefficient it was assumed that any relationship between weight change and 4 per cent fat corrected milk was not significant.

TABLE 1
Pasture vs. No Pasture for Milk Production

A. Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F
Groups	1	2340796	2340796	0.414
Individuals	321	1702101451	5302497	
Total	322	1704442247		

B. Comparison of Groups

Groups	Cows	Records	Average
	(no.)	(no.)	(1b.)
Pasture	23	42	7176
No Pasture	6 5	281	7483

Standard Deviation = 2302 pounds of 4% FCM.

TABLE 2

Effect of Age at Calving on Milk Production

A. Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F
Groups	21	191324662	9110698	1.812*
Individuals	301	1513117585	5026968	
Totals	322	1704442247		

B. Averages for Each Age Group

Age Group	Records	Average	Age Group	Records	Average
(yr.)	(no.)	(lb.)	(yr.)	(no.)	(1b.)
under 2	5	5425	7 - 7 1/2	18	7153
2-2 1/2	35	6782	7 1/2-8	15	8627
2 1/2-3	28 .	6532	8-8 1/2	9	7808
3-3 1/2	22	7748	8 1/2 - 9	13	8475
3 1/2-4	29	7233	9-9 1/2	4	70 95
4-4 1/2	21	8119	9 1/2-10	10	7205
4 1/2-5	21	7283	10-10 1/2	2 5	7297
5-5 1/2	17	8198	10 1/2-1	1 3	9377
5 1/2- 6	20	8260	11-11 1/2	2 7	6524
6-6 1/2	16	7744	11 1/2-12	2 4	6290
6 1/2-7	12	8194	12 and or	ver 9	5730

^{*}Significant at the 5 per cent level of probability.

Standard Deviation = 2242 pounds of 4 per cent FCM.

TABLE 3

Effect of Season of Calving on Milk Production

A. Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F
Seasons	3	58995789	19665263	3.813*
Individuals	319	1645446458	5158139	
Total	322	1704442247		

B. Season Averages for Production

Season	Average
	(lb.)
Dec., Jan., Feb.	7585
Mar., Apr., May	7323
June, July, Aug.	6852
Sept., Oct., Nov.	8120

^{*}Significant at the 5 per cent level of probability. Standard Deviation = 2271 pounds of 4 per cent FCM.

TABLE 4

Effect of Year of Lactation on Milk Production

A. Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F
Years	18	360745018	20041390	4.5342**
Individuals	304	1343697229	4420057	
Total	322	1704442247		

B. Average Lactation by Years

Year	Records	Average	Year	Records	Average
	(no.)	(1b.)		(no.)	(1b.)
1934	8	8733	1944	18	8181
1935	7	10030	1945	19	7799
1936	5	10821	1946	22	8025
1937	11	6601	1947	26	6113
1938	11	7892	1948	25	6695
1939	17	9653	1949	17	6598
1940	15	7963	1950	25	6272
1941	23	7131	1951	20	6729
1942	27	7144	1952	6	7130
1943	21	7865			

^{**}Significant at the 1 per cent level of probability.

Standard Deviation = 2106 pounds of 4 per cent FCM.

TABLE 5

Effect of Length of Dry Period on Milk Production

A. Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F
Periods	4	15733773	3933443	0.695
Individuals	247	1397109229	5656312	
Total	251	1412843002		

B. Averages for Dry Period Length

Period	Records	Average
(day)	(no.)	(lb.)
0 - 59	71	7828
60 - 89	101	7510
90 - 119	51	8125
120-149	15	6835
150 and over	13	7281

Standard Deviation = 2378 pounds of 4 per cent FCM.

DISCUSSION

In the process of evaluating the effect of total digestible nutrients in the form of concentrate separate from that of total digestible nutrients in the form of roughage it was necessary to establish that the data were homogenous in nature. The use of Bartlett's test established this point and opened the way for further analysis of the data.

It was deemed necessary to determine significant environmental sources of variation in milk production other than those connected with feed intake in the barn. Lack of significant variance due to the effect of pasture and to length of dry period eliminated these as factors to be considered. Variance due to age at calving and season of calving was barely significant. The year in which the lactation was made exerted a highly significant effect on milk production with the early years of the study having the higher level of milk production. Inspection of the feed intake data indicated that this effect was largely due to the level of concentrate intake during those early years and would be included in the analysis of nutrient intake.

Separation of the total digestible nutrient intake into 2 catagories, roughage and concentrate, increased the correlation coefficient between nutrient intake and milk production from 0.817 to 0.843. This indicated that roughage and concentrate total digestible nutrients did not exert equal effects on milk production in the group of lactations

studied since a greater portion of the variance was accounted for by regression when the nutrient intake was separated into the 2 categories. The addition of a fourth variable, weight change, to the analysis resulted in no increase in the correlation coefficient indicating the insignificance of weight change as a factor affecting milk production in this study.

The simple regression equation calculated from the data indicated that when the total digestible nutrient intake was used as a single criterion that a pound of total digestible nutrients would produce 1.716 pounds of 4 per cent fat corrected milk after the constant for the equation was sat-Since no attempt was made to correct the feed intake for it, the maintenance nutrient requirement appeared in the form of the constant, -2272 # 1316 pounds of 4 per cent fat corrected milk or its equivalent in total digestible nutrients. This indicated theoritically that the cow had to eat nutrients equivalent to this amount of milk before milk could be produced. It is entirely possible that the relationship might be more curvilinear if zero milk production were app-Insufficient data were available in this study in roached. the very low levels of production to make any definite prediction regarding the maintenance total digestible nutrient requirement of the cows.

The relationship between nutrient intake and milk production has been reported to be curvilinear (Headley, 1943: Jensen et al., 1942: and Redman, 1952). The data used in

this study were not analyzed for curvilinearity. However, it is highly improbable that the relationship is more than slightly curvilinear since 66 per cent of the variance is accounted for by linear regression. The range of points from which this regression equation for these 2 variates was calculated was so narrow that curvilinearity might well be masked.

tionship between 4 per cent fat corrected milk and the separated categories of total digestible nutrients, roughage and concentrate, indicated that total digestible nutrients in the form of concentrate were approximately twice as efficient for milk production as were those in the form of roughage. It is probable that roughage total digestible nutrients were penalized for milk production by the maintenance requirement of the cows. The fact remains, however, that the regression coefficients for roughage nutrients and concentrate nutrients were highly significantly different from each other, 0.838 and 1.783, respectively.

The results of this study, that concentrate total digestible nutrients are more efficient for milk production than are roughage total digestible nutrients, are in agreement with those of Huffman and Duncan (1947, 1949, 1950, 1952, 1952a), Lindsey and Archibald (1932) and Smith et al. (1945). All of these studies were made with the roughage concentrate ratio greater than 1/1. In each investigation the substitution of concentrate for roughage on the basis

of total digestible nutrients resulted in more efficient milk production. It is entirely possible that this relationship might not continue to hold if the above ratio were much smaller than 1/1. It is well known that cows are unable to tolerate very small roughage/concentrate ratios, very little roughage and the remainder of the nutrients as concentrate.

Redman (1952) has attempted to explain the apparent inconsistencies in the results obtained from the feeding of equal amounts of total digestible nutrients from different nutrient sources with varying results in lactation experiments. His explanation recognizes the need for a "balanced ration" including optimum quantities of all nutrients for maximum production and proposes that "roughages and grain are not perfect substitutes for each other, but possess a degree of complementarity." Davis et al. (1953) attributed the increased productivity of rations after the addition of grain on better "balance" in the ration and on greater intake of "productive energy". The need for concentrate to complement or balance roughage is indicated by the results of this study and agrees with the results of Huffman and coworkers (Huffman and Duncan, 1952; Huffman et al., 1952a).

SULL ARY

A study was made on 323 lactation records accumulated from 1974 to 1953 made by 78 cows predominantly of the Holstein breed.

Variance of 4 per cent fat corrected milk due to the effect of pasture, length of dry period, age at calving, season of calving and the year in which the lactation was made was insignificant, insignificant, significant, significant, and highly significant, respectively. Inspection of feel intake data indicated that the significance of the year in which the lactation was made was largely due to the level of concentrate intake during the early years of the study.

The 231 lactation records with complete feed data (no pasture) were subjected to correlation and regression analyses. The correlation between 4 per cent fat corrected milk production and total digestible nutrient intake was 0.817 with the corresponding regression equation FCL = 1.716 TDN = 2272 ± 1316 pounds. The correlation coefficient between 4 per cent fat corrected milk production and roughage total digestible nutrients was 0.843, indicating advantage in the separation of the 2 categories of nutrients for the analysis. The regression equation for this relationship was FCM = 1.783 cone. TDN + 0.838 rough. TDN + 1358 ± 905 pounds. An analysis of variance of the regression indicated that both coefficients of regression were highly significant as well as being highly significantly different from each other. This

equation indicated that total digestible nutrients in the form of concentrate were more efficiently used for milk production than were those in the form of roughage. The possibility that roughage total digestible nutrients were penalized by the maintenance nutrient requirement of the cows was discussed. The addition of a fourth variable, weight change, added nothing to the multiple correlation.

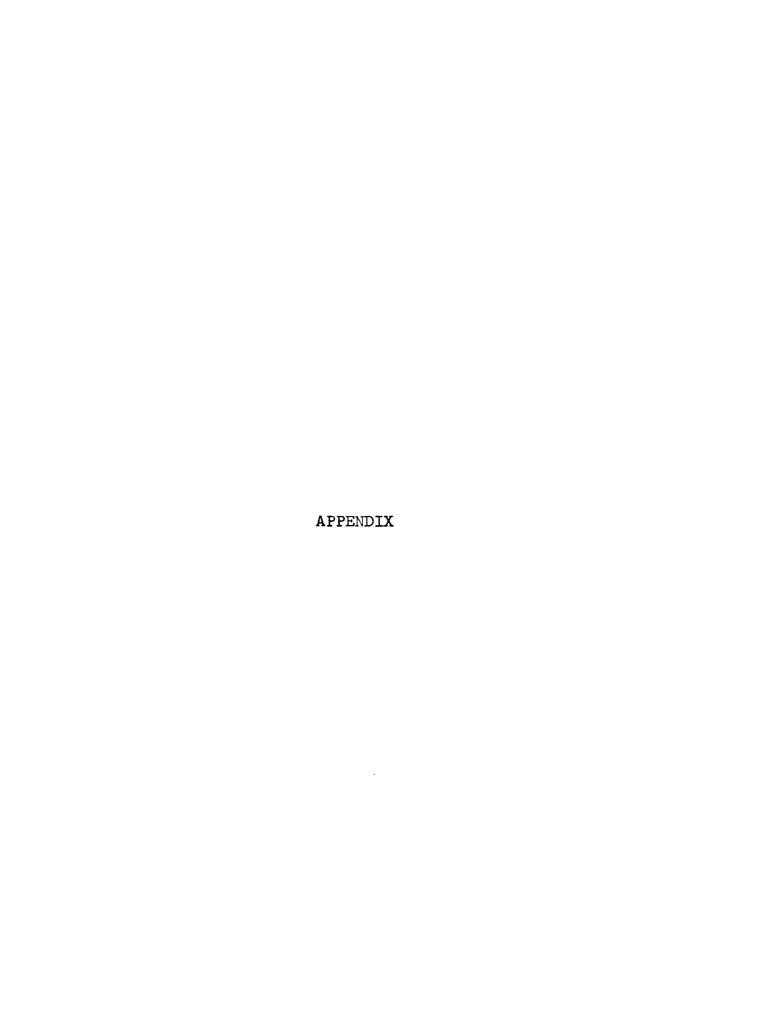
The need for a "balanced ration" for milk production and the complementarity of concentrate and roughage were discussed.

LITERATURE CITED

- Arnold, P. T., and R. B. Becker.
 - 1935 The Effect of Season of the Year and Advanced Lactation Upon Milk Yield of Jersey Cows. J. Dairy Sci., 18:621-627.
- Autrey, Kenneth.
 - 1941 The Physiologic and Economic Efficiency of Rations Containing Different Amounts of Grain when fed to Dairy Cattle. Ia. State Col., J. Sci., 16:10-14.
- Baker, T. A., and A. E. Tomhave.

 1944 The Intensity of Feeding as Related to Milk Production. Del. Agr. Exp. Sta. Bul., 248:1-15.
- Bartlett, M. S.
 - 1937 Some examples of Statistical Methods of Research in Agriculture and Applied Biology. Suppl. J. Royal Stat. Soc., 4:137-170.
- Borland, A. A., A. L. Beam and P. D. Jones. 1942 The Relation of Grain Feeding to Milk Production. Penn. State Col. Agr. Exp. Sta. Bul., 424:1-9.
- Brody, Samuel, A. G. Ragsdale and Charles W. Turner.

 1923 The Effect of Gestation on the Rate of Decline of
 Milk Secretion with Advance of the Period of Lactation. J. Gen. Physiol., 5:441-777.
- Cannon, C.Y.
 - 1933 Seasonal Effect on Yield of Dairy Cows. J. Dairy Sci., 16:11-15
- Cranek, L. J. Sr.
 - 1952 Genetic and Environmental Factors Affecting the Red Danish Cattle in Michigan. Ph. D. Thesis. Michigan State College, East Lansing, Mich.
- Davis, R. F., J. K. Loosli and R. G. Warner.
 1953 Are there "Unidentified Lactation Factors" for Cows?
 J. Dairy Sci., 36:581.
- Davis, R. N., and A. R. Kemmerer.


 1948 Lactating Factors for Dairy Cows in Dried Grapefruit
 Peel. J. Dairy Sci., 31:973-975.
- Gaines, W. L.
 - 1928 The Energy Basis of Measuring Milk Yield in Dairy Cows. Ill. Agr. Exp. Sta. Bul., 308:1-33.

- Gavin, William.
 - 1913 Studies in Milk Records: The Influence of Foetal Growth on Yield. J. Agr. Sci., 5:309-319.
- Gowen, John W.
 - 1924 Intrauterine Development of the Bovine Fetus in Relation to Milk Yield in Guernsey Cattle. J. Dairy Sci., 7:311-317.
- Graves, R. R., G. Q. Bateman, J. B. Sheperd and G. B. Caine. 1940 Milk and Butterfat Production by Dairy Cows on Four Different Planes of Feeding. U. S. Dept. Agr. Tech. Bul., 724:1-36.
- Graves, R. R., J. R. Dawson, D. V. Kopland, A. L. Watt, and A. G. Van Horn.
 - 1938 Feeding Dairy Cows on Alfalfa Hay Alone. U. S. Dept. Agr. Tech. Bul., 610:1-47.
- Haag, J. R.
- 1931 The Physiological Effect of Rations Restricted Principally or Solely to the Alfalfa Plant. II. Cystine as a Limiting Factor in the Nutritive Value of Alfalfa Proteins. J. Nutrition, 4:363-370.
- Haag, J. R., J. S. Jones, I. R. Jones, and P. M. Brandt.
 1929 The Physiological Effect of Rations Restricted Principally or Solely to the Alfalfa Plant. I. The Calcium, Phosphorous and Nitrogen Metabolism of Dairy Cattle. J. Dairy Sci., 12:445-455.
- Hammond, J., and H. G. Sanders.
 - 1923 Some Factors Affecting Milk Yield. J. Agr. Sci., 13:74-119.
- Headley, F. B.
 - 1930 Feeding Experiments with Dairy Cows. Nevada Agr. Exp. Sta. Bul., 119:1-21.
- Headley, F. B.
 - 1943 Mathematical Relationship between Production of Dairy Cows and Nutrients Consumed. Mimeo. Nevada Agr. Exp. Sta.
- Huffman, C. F.
 - 1953 Personal Communication.
- Huffman, C. F., and C. W. Duncan.
 - 1942 The Nutritive Value of Alfalfa Hay. I. Cystine as a Supplement to an All Alfalfa Hay Ration for Milk Production. J. Dairy Sci., 25:507-515.

- Huffman, C. F. and C. W. Duncan.
 - 1944 The Nutritive Value of Alfalfa Hay. II. Starch and Glucose as Supplements to an All Alfalfa Hay Ration. J. Dairy Sci., 27:821-833.
- Huffman, C. F., and C. W. Duncan.
 - 1947 Unknown Dietary Factor or Factors needed by Lactating Cows Depleted on Legume Hay Alone. Federation Proc., 6:409-410.
- Huffman, C. F., and C. W. Duncan.
 - 1949 The Nutritive Value of Alfalfa Hay. III. Corn as a Supplement to an All Alfalfa Hay Ration for Milk Production. J. Dairy Sci., 32:465-474.
- Huffman, C. F., and C. W. Duncan.
 - 1950 The Nutritive Value of Alfalfa Hay. IV. Beet Pulp, Corn Gluten Meal and Soybean Oil Meal as Supplements to an All Alfalfa Hay Ration for Milk Production. J. Dairy Sci., 33:710-720.
- Huffman, C. F., and C. W. Duncan.
 - 1952 Unidentified Dietary Factors in Dairy Cattle Nutrition. I. **Digestibility** of Peanut Hulls and Their Use in "Ballast" Studies with Milking Cows Depleted on Hay Alone. J. Dairy Sci., 35:30-40.
- Huffman, C. F., C. W. Duncan and C. M. Chance.
 - 1952a Unidentified Dietary Factors in Dairy Cattle Nutrition. II. Further Evidence of an Unidentified Factor (s) in Grain Needed to Balance Roughage for Milk Production. J. Dairy Sci., 35:41-50.
- Huffman, C. F., S. T. Dexter and C. W. Duncan.
 - 1952b Unidentified Dietary Factors in Dairy Cattle Nutrition. III. The Nutritive Value of Immature Alfalfa and Timothy Hay for Milk Production. J. Dairy Sci., 35:1001-1009.
- Jensen, E., J. W. Klein, E. Rauchenstein, T. E. Woodward and R. H. Smith.
 - 1942 Input-Output Relationships in Milk Production. U. S. Dept. Agr. Tech. Bul., 815:1-88.
- Jones, I. R., P. M. Brandt, and J. R. Haag.
- 1934 Studies with Alfalfa Hay for Milk Production. Oregon. Agr. Exp. Sta. Bul., 328:1-30.
- Klein, John W., and T. E. Woodward.
- 1943 Influence of Length of Dry Period upon the Quantity of Milk Produced in the Subsequent Lactation. J. Dairy Sci., 26:705-713.

- Lindsey, J. B., and J. G. Archibald.
 - 1932 Two Systems of Feeding Dairy Cows. Mass. Agr. Exp. Sta. Bul., 291:1-15.
- Moore, L. A., H. M. Irwin and J. C. Shaw.
 - 1952 Relationship between TDN and Energy Values of Feeds. J. Dairy Sci., 35:502.
- Morrison, F. B.
 - 1948 Feeds and Feeding. The Morrison Publishing Company, Ithaca, New York.
- Oloufa, Mohamed M., and I. R. Jones.
 - 1948 The Relation between the Month of Calving and Yearly Butterfat Production. J. Dairy Sci., 31:1029-1031.
- Ragsdale, A. C., and S. Brody.
 - 1922 Seasonal Variations in Percentage of Fat in Cows Milk. J. Dairy Sci., 5:544-554.
- Redman, John C.
- 1952 Economic Aspects of Feeding for Milk Production.
 J. Farm Economics, 34:333-345.
- Reed, O. E.
 - 1937 Report of the Bureau of Dairy Industry. U. S. Dept. Agr. 17-34.
- Reed, O. E., J. B. Fitch, and H. W. Care.
- 1924 The Relation of Feeding and Age of Calving to the Development of Dairy Heifers. Kan. Agr. Exp. Sta. Bul., 233:1-38.
- Saarinen, P., M. A. Sami and J. C. Shaw.
 - 1951 The Adequacy of an All-Alfalfa Hay Ration for Milk Secretion. J. Dairy Sci., 34:287-294.
- Schneider, B. H.
 - 1947 Feeds of the World. Their Digestibility and Composition. West Va. Agr. Exp. Sta., Morgantown, W.Va.
- Smith, V. R., I. R. Jones and J. R. Haag.
- 1945 Alfalfa With and Without Concentrates for Milk Production. J. Dairy Sci., 28:343-354.
- Snedecor, George W.
 - 1946 Statistical Methods. Iowa State College Press, Ames, Iowa.
- Tennant, J. L., and H. C. Fowler.
 - 1941 The Economic Relationship Between Feeding and Milk Production in Rhode Island. State Col. Agr. Exp. Sta. Bul., 279:1-23.

- Willard, H. S.
 - 1934 Grain vs. No Grain for Dairy Cows. Wyo. Agr. Exp. Sta. Bul., 202:1-24.
- Willard, H. S.
 - 1940 Roughage Feeding of Dairy Cattle. Wyo. Agr. Exp. Sta. Bul., 237:1-25.
- Woll, F. W.
 - 1918 Alfalfa as a Sole Feed For Dairy Cattle. J. Dairy Sci., 1:447-461.
- Woodward, T. E.
 - 1945 Some Studies of Lactation Records. J. Dairy Sci., 28:209-218.
- Wylie, C. E.
 - 1925 The Effect of Season on the Milk and Fat Production of Jersey Cows. J. Dairy Sci., 8:127-131.

APPENDIX TABLE 1

Individual Data by Lactations

Cow	In		Fat				TDN		ate	Dry	Age of	Weight	
Lact.	Milk	M11k	Test	Fat	FCM	Rough.	conc.	<u> Total</u>	Calved	Period	Cow	Change	Pasture
99	(days)	(1p.)	(%)	(1b.)	(1b.)	(1p.)	(1p.)	(1b.)		(days)	(yrmo.)	(1p.)	(days)
	297 300 305	6431 6204 5354	7.04 1.1.0	330 317 244	7517 7017 5806	3823 2608 3407	1927 2461 973	5750 5069 4380	10-21-41 11-2-42 5-4-45	67 79 322	3-10 4-11 7-5	865 866 866 866 866 866 866 866 866 866	000
5 ⊣ a w≠ rv/	wwww. 000000 ₩₩₩₩	5851 7888 5646 5383	44444 0.04.000	200 200 200 200 200 200 200 200 200 200	6326 8591 5824 56743	3170 3428 3907 3391	1352 2117 463 2916 773	45228 4370 6307 3918	12-19-37 2-19-39 5-30-40 6-11-41	101 71 65	99000 F	901 901 901 901	00000
6 77 1 2	\circ	25 25 17 17		- $+$ $+$	な 66 86	07 28 07	りらせ	32 14 02	-22-4 -11-3 -1-38	33 91	1 1 1	r u	00
0 W⇒ №	302 304 305 305 305	5278 7818 4311 5313	でです す	280 405 243	6311 9183 4883 5749	3982 2615 3097 2904	276 3190 702 2076	#2805 2799 4980	12-9-39 3-12-41 3-9-42 3-4-43	8070 8040	գ ւ//o /- 	-13 10 35	0000
5 -1004	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5974 9794 5443 7820	4444 ~~~~	270 439 362	6435 10509 5927 8552	3411 4173 4474 4039	1725 3044 303 2531	5136 7217 4777 6570	12-14-37 10-17-39 10-20-40 9-29-41	34 075 0470	04 700 1111 6111	-159 139	0000
17 .0 0.17	000	05 05 58	• • •	w o o	972	79 79 87 87	000	35	-19-4 -2-43 -6-45		1 1 1	7	000
O Firs	t lactati	tion.											•

APPENDIX TABLE 1 (continued)
Individual Data by Lactations

Cow Lact.	In M11k	M11k	Fat Test	Fat	FCM	Rough.	TDN Conc.	Total	Date Calved	Dry Period	Age of Cow	Weight Change	Pasture
1	(days)	(1b.)	(%)	(1p.)	(1b.)	(1b.)	(1b.)	(1b.)		(days)	(yrmo.)	(1b.)	(days)
3	0	2004	• (QΨ	01	36	212	57 67	-3-38		1 1	87 85	00
) W	-0	69	•	ÓΟ	8	00	5	9	7-42-	S	1		0
⇒ u	0	65	•	-1	23	03		מע	-25-4	~ ~	1 1		00
nω	o	54	• •	20	77	27	۲	27	2-10-4	1	1		0
~	0 00 100 100 100 100 100 100 100 100 100	10820	w. w.≠	378	10001	2788 3927	3143	5931 6696	2-20-45 2-27-46	103 118	90	071	00
6 290	0	067	•	-0	16	05	67	72	-25-4	0	1	-134	0
_	0	94	•	Q	69	13	1084	21	-30-	-	ı	53	0 (
0 r	\circ	9 9 9	• •	g m	ω ω	78 47		787	3-4-30 9-6-40		2-5 -11	<u>-</u> 4-	00
)4	0	10:	• •) (V	18	39	8	9	-22-4		- 1	86	0
ഹ	305 305 305	8543 9887	m 0 m 0	300	40	4270 3883	1890 1962		2-31- 3-21-	ന വ		200	00
284		Ċ		(,	ī	9		1	c		_	c
	900 2001	12330	ა დ 4. დ	450 462	11310 12388	2994	4500 4868	7862	5-21-41	089	74 00	617 76	00
285 1	0	56	•	∞	86	99	28	76	-5-3	0		43 8	0
ı (N	0	988	• •	S	928	13	8	m m	9-6-41	4		9	0 8
Μ≄	\circ	9018	ທູດ ທູນ	3254 409	8411	3948 3392	2434	6382 .8113	10-12-42	00 00 00 00 00 00 00 00 00 00 00 00 00	6-7 7-7	-18 -248	၃ ဝ
. ιυ,	0	950	•	١٦١	851	12	58	90	44-2-2	38		ω	0 (
<i>م</i>	305 237		ω α.ο		N	4	391 0	α	-51-	* 0 0	o 0	ν 4 0	3. o o
-ω	0	0	0	0	0	0	0	0	0		0	0	
σ	7	4300	3.3	143	3858	4109	644	4558	3-7-49	157	11-10	189	0

APPENDIX TABLE 1 (continued)
Individual Data by Lactations

COW	In		Fat				TDN		Date	Dry	Age of	Weight	
Lact.		Milk	Test	Fat	FCM	Rough.	Conc.	Total	Calved	Period	Cow	Change	Pasture
880	(days)	(1p.)	(X)	(1p.)	(1p.)	(1p.)	(1b.)	(1p.)		(days)	(yrmo.)	(1b.)	(days)
3			0	0	1				-23-	*		,	0
, ω≄	304 305	6175 17618	ოო ოო	202 578	5487 15641	4911 2645	526 6038	5437 8683	4-2-42 4-17-46	94 75	# 80 8 - 80 8 - 80	164 -19	00
289	305	11869	0.4	481	11968	3334	3100	4849	2-12-40	0	2-4	63	0
) r	30 1 289	10616 6240	33.7	360 194	9591 5390	2120 5123	2166	4286 5294	1-1-43 1-14-44	0	64 6-1	. 1 8 4 8	163 0
412 1	00	50		90	11.8	17	43	61 07	-19- -7-4		1 1		00
€4	307 307 307	8728 7899	ww w a	306 269	8073 7203	3320	1685 1172	5005 5713	4-16 6-21	93 105		-8 <mark>-</mark> 92	00
	$\circ \omega$	30		$\infty \circ$	96	42 86	2	10 50	-17-4 -18-4		1 1		0 27
419 1	00	91	• •	$-\infty$	10	37	1 66	38	-7-43	0	, j. i	- 204 704	00
I M=	00	יט ל יטעו	• •	ココニ	000	01	ν α	100	-92- -92-	49	1	132	00
t rU/	\circ	ָטַת מיע	• •	t O 1	200	-82	500	900	7+-01-0 9-8-47	- t- (1 1	\sim 1	28.0
4 0	ဝစ္	4 0 0 0	•		6 6 7 8		ω	25	-83- -6-4-	υ 42	77	6). 130	၁ ႙
-ω σ	100 00 100 101	9635	ั กับส	383	8696	3768	1846	5614	1-21 7-1-1	 	10-01	- m c 	00
* Inco	ete	ta	• •) [2		1]	3	\ 	!)	4	3	36)

APPENDIX TABLE 1 (continued)
Individual Data by Lactations

Cow Lact.	In M11k	Milk	Fat Test	Fat	FCM	Rough.	TDN Conc.	Total	Date Calved	Dry Period	Age of	Weight Change	Pasture
1	(days)	(lb.)	(%)	(1b.)	(1b.)	(1b.)	(1b.)	(1b.)		(days)	(yrmo.)	(1b.)	days)
7	268 305 264	4362 8331 4666	333 337	151 317 172	608 8091 4014	4056 3843 3157	443 1709 372	4499 5558 3589	8-24-47 8-18-48 12-10-50	137 121 109	97-5	24 -95 71	0 15 31
t t λ ω4τνον-ω	305 305 305 305 300	9593 12207 6188 5636 8435 7585	wwwwww 447.040	200 200 200 200 200 200 200 200 200 200	6941 5906 5231 7682 6994	5887 3579 4591 4740 5323	2420 2450 458 488 189 251	6691 66029 4649 5228 5512 5562	9-19-46 11-19-47 12-27-48 12-10-49 12-1-50 1-3-52	62 61 63 73	40000 40000	4 0, 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000
10 KH 4	305 305 405 405	6590 7078 6887 6838	~~~~ ~~~~	213 238 237 251	5825 6400 6304 6504	4050 4005 4624 4429	612 0 585 668	4662 4005 5209 5097	8-18-46 10-13-47 1-29-49 6-27-50	0 54 74 118	2-6 3-8 4-11 6-4	121 94 10 10	0000
1 0 1 0 1	305 291	9480 10049	33.5	300 312	8288 8697	3985 4209	2168 2034	6153 6243	5-6-48 6-13-49	51	2-9 3-10	127 160	00
<i>n</i> 1	3099 3099 3059	9068 5759 8377	0.00	329 219 302	8560 5591 7873	4145 3666 6053	1894 737 1	6039 4403 6054	3-22-49 3-28-50 6-1-51	0 33 128	ი W4 ი.ი.დ	1 0004 0000	000
	304 302 279 256	9986 12491 8691 6701	0.400 0.400	293 391 247 200	8394 10867 7173 5571	5268 4720 5212 4408	1599 2769 1647 860	6867 7489 6859 5268	2-25-35 2-3-36 2-25-37 3-22-38	114 37 84 112	2-11 3-10 5-0 6-0	177 107 213 160	37 0000

•

r

APPENDIX TABLE 1 (continued)
Individual Data by Lactations

COW	In	-11	Fat	4	NO E		TDN	, , , , , , , , , , , , , , , , , , ,	Date	Dry	Age of	Weight	-
	(days)	(1b.)	OF BE	(1b.)	(1b.)	(1b.)	(1b.)	(1b.)	럾	(days)	(yrmo.)	(lb.)	(days)
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000	10112 111133 14100 11460 18997 8194 11923	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	######################################	8811 9614 10053 15745 8026 7463	4 0 4 0 4 6 0 6 0 0 0 0 0 0 0 0 0 0 0 0	11279 1276 1276 1273 1273 1273 1268 13068	64798 686113 67536 67536 67536	4-2-34 2-15-35 2-12-35 10-11-39 11-14-41 3-23-43	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	こう4 らて8 りょっ	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000
10 10 10 13 13 13		9453 945 9381 927	•. • • •	20 mooi	745 757 757	1 1 600		50 10 10 10 10 10 10 10 10 10 10 10 10 10	21				000
A-7 -7 653 4	$\circ \circ \circ \circ \circ \circ$	200 005 200 005	• • •	טועט ססר	200 040 000 FF0	700 004 700 1000	TOH HOR	7004 7004 700 700 700	7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			71 N N N N	000 000
A - 8 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	333 8895 300 8865 3005 3055	8827 6966 111702 8273 8806 9902		2007 300 401 461 463	7644 6079 10164 9512 10489	4891 4637 4106 2741 3311 3723	2579 2579 2784 2784 3231 3238	65429 65429 65429 65429 65430	98-199 9-189 9-189 9-189 16-3	101 74 74 57	4-10 4-11 4-14 7-10 7-10	102	38 0000 000

39

APPENDIX TABLE 1 (continued)
Individual Data by Lactations

1	Pasture (days)	000	00	00000	000000000
Weight	Change (1b.)	138 194 0	, 49 0	151 154 154 130	157 153 153 154 158 158 158 158 158 158 158 158 158 158
Age of	Cow (yrmo.)	0-0 0-0 0-0	2-9 0-0	2-1 4-7-7-11 8-3 8-3	2-6 4-11 7-0 7-0 11-0 12-2 13-1
1	jod ys)	0 m	*	0 119 105 91 70	21484869 21484869 21484869
	alved	9-18-34 8-26-35	6-29-35	10-30-34 3-5-36 5-6-37 7-21-38 9-30-39 1-10-41	12-7-37 12-25-38 4-10-40 4-15-41 6-7-42 11-11-43 3-5-45 6-2-46 7-10-47 6-13-48
	Total (1b.)	5920 6372 0	5281 0	6856 8693 9216 7460 6069 7408	5100 4753 7453 75376 5911 5908 4479
TDN	.Conc. (1b.)	2598 1912 0	1107	3112 3764 4234 2327 124 3103	1561 185 119 2639 773 788 788 439
	Rough (1b.)	3322 4460 0	4174 0	44000 4900 49000 501000 4050 6050	33 4 4 6 6 3 3 4 6 6 9 3 3 6 6 9 3 8 6 9 8
	FCM (1b.)	8662 7581 0	0 0	9747 14689 15324 13752 7566 11453	7347 7038 7447 9992 6977 11804 6994 5150
	Fat (1b.)	304 266 0	268	40 40 40 40 40 40 40 40 40 40 40 40 40 4	1138489388 11386464 1094098 001109
Fat	Test	a a a a o	† .	0,000,000 0,000,000	$\frac{1}{2}$
	M11k (1b.)	10597 9041 0	6115	13277 17096 17516 16137 8601 13167	8143 7711 8142 10824 7500 12363 7695 10004 5569
In	Milk (days)	303 280 110	305 132	99999999999999999999999999999999999999	88000000000000000000000000000000000000
Cow	니	J	1	-1 -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

APPENDIX TABLE 1 (continued)
Individual Data by Lactations

			at				TDN		te	İ	Age of	Weight	
Milk Milk (days) (lb.)	다. [일 [일		Test	Fat (1b.)	FCM (1b.)	Rough.		Total (1b.)	ಡ [Period (days)	Cow (yrmo.)	Change (1b.)	Pasture (days)
05 1178 05 1457;	78 57	0 M	9.0	342 421	8549 12208	3989 3862	2542 4144	6531 8006	9-11-38 10-23-39	52	8-14 14-14	157	00
05 658 05 719 05 7618 05 9938	58 159 93 93	തയയാ	യയയയയ യയ± സസ	217 235 261 274 352	5887 6438 6950 7200 9282	4554 5149 6175 5717 4621	918 110 108 281 2304	5478 5259 6283 5998 6925	4-1-38 5-27-39 8-8-40 8-28-41 11-4-42	383 383 383 383 383 383 383 383 383 383	2-5 3-7 4-10 7-10	126 29 102 77 34	00000
005 005 005 005 005 1000 1000 1000 1000	000400F000	0		10000000000000000000000000000000000000	6043 6693 7368 7368 7368 6768 5937 5937	2489 2672 2672 2672 2676 2672 2672 2672 2773	1411 6584 1001 10014 10059 1021 346	4400 33233 33233 45561 45561 3119	6-16-39 6-12-40 6-12-40 7-11-40 11-19-44 11-19-44 3-49-46 3-49-46	1200578411	1109876549 11109876949	120 120 120 130 130 130 130	1111188 1011188 1011188 10111
7055535 11695339 71695339	\dot{D}			しょく はくりんし	4000001	. 844448 . 900008	\Rightarrow Q \square Q Q Q	7084883	1 1 2 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	\$ WW0.00	08760		140 0000000

APPENDIX TABLE 1 (continued)
Individual Data by Lactations

COW	F		Fat		-		NOT		Date	Dry	Age of	Weight	
Lact.	M11k	M11k	Test	Fat	FCM	Rough	.conc.	Total	Calved	Perlod	COW	Change	Pasture
	(days)	(1b.)	(%)	(1b.)	(1b.)	(1b.)	(1b.)	(1b.)		(days)	(yrmo.)	(1b.)	(days)
A-23	•	• ,	• •	,	•	•	•	•		,		•	•
,~	305	9169	3.7	257	1199	2470	749	3219	4-25-40	0	3-6	ر -	157
A-24	ı												
	0	77	•	N	34	52	m	35	0-3-3	0		ლ <u>-</u>	81
a	0	16	•	m	90	89	_	2	4-4-	1 9	1	ŗ	Н
m	0	932	•	ω	79	52	₹	37	-11-4	4 6	1	181	<u></u>
1	0	2	•	9	7	70	575	62	-9-43	28	1	47	151
'n	0	S	•	σ	8	33	N	36	-21-4	89	1	9-	~
9		18091	3.1	561	15653	1881	σ	3077	4-29-45	86	. 1	52	~
<u>~</u>	305	CA	3.0		05		586	9	-25-4	2	9-5	70	0
C		0	0	0	0	0	0	0		*	Ī	0	0
72-W		0		_=	70	g	MGE	ر بر	ת נ –	c	أ	ПП	c
4 (\	2 2 2 3 3	6817		יי סרכ	6017	000 000 000 000 000	790	4758	3-15-41	, , ,	36.	77) C
۳ ۱	νœ	37	•	1 ~	70	る	865	8,	-1-42	52	ı	110	0
) - ‡	0	74		ı I~	- 7 .	\ \	さ	45	-15-	16	1	95	0
r.	0	S	•	- [~	イグ	3	39	3,	-1-44	93	1	\@ \%(0
ω.	0	19	•	ഹ	7	45	3766	20.0	-23-	55	_ 1	<u>6</u> 1	0
_	0	97	•	0	7	70	47	51	-7-46	77	1	-47	0
∞	∞	る	•	N	2	56	497	75	-6-47	72	0	153	0
σ	ထ	38	•	Q	93	33	848	18	-27-	2	11-0	96	0
10	0	†	•	ന	23	43	1843	8	1 -9-	85	12-0	92	0

APPENDIX TABLE 1 (continued) Individual Data by Lactations

COW	In		Fat				TDN		Date	Dry	Age of	Weight	
Lact.	Milk	Milk	Test	Fat	FCM	Rough	.conc.	Total	Calved	Period	COW	Change	Pasture
90-4	(days)	(lb.)	(%)	(1p.)	(1b.)	(1p.)	(1p.)	(1p.)		(days)	(yrmo.)	(1b.)	(days)
1	0	79	•	œ	25	8	9	07	4-6-	0	_1	Ŋ	0
a	0	93	•	<u></u>	32	15	75	96	1-4-	9	- 1		0
Υ-	0	8	•	2	120	52	2	63	24-2-2		1		0
- † Մ	10	41	•	3) (7)	2 Q	ひな	<u>' </u>	מאַה	-1Ω-1 -1Ω-1		1 1		0 0
70	-ω	95		7	20	9	- B	200	-7-46				0
_	9	ő	•	0	9	63	9	49	-3-47		Ţ		0
∞ α	305 205	9525	ພຸ ພໍ=	330	8754	4300	2204	6504	5-27-48	57	10-8	†† ††	0 (
A-27	0	\mathcal{C}	•	χ	Ş	1	ω	<u>+</u>	1.0-		- - -		>
	305	7525	ω, ω,	249	6743	3907	1130	5037	0=	Οα	0-0 0-0	mα	00
u (r	\circ	89	•	വ	5 6	75	<u> </u>	34,4	1-25-	840	י אין	7 L	00
) - ‡	0	57	• •	10	/ω IW	67	ıσ	26	1-14-4	51	- 1		0
ι.	0	42	•	9	75	42	1 9	07	2-28-4	! ~	7		0
9	Q)	556	•	0	121	Ż	70	29	94-6-	108	1		0
~ (9	8	•	9	01	8	75	₹.	-25-				0
∞ (m,		-				(((0		0
	ÒΛ	5988	დ. #. (200 200 100 100 100 100 100 100 100 100	5375	3382	#α †	3866	2-28-49	117	1	87	0 (
	9	У (•	\mathcal{L}	400	٦ .	4 ひら	S C	-8-50 -00-	~	, N) (
T (\circ	Š	•	S) (# - -	\circ	7	-12-5		ب س:		13
	\circ	7	•	٥	2.	ς C	α	34	-13-5		4-		0

APPENDIX TABLE 1 (continued)
Individual Data by Lactations

COW	In		Fat				TDN		l d	Dry	Age of	eigh	
Lact.	뷔	M11k	Test	Fat	FCM	Rough.	Conc.	Total	Calved	되	3	Change	
A-29	(days)	(lb.)	(%	(lb.)	(lb.)	(lb.)	(1p.)	(lb.)		(days)	(yrmo.)	(1b.)	(days)
ì	0	35	•	SO I	56	23	73	97	-1-4	0	Ţ	77	
a	0	30	•	9	5	46	87	31	-6-43		1	21	9
℃ -	0	53	•	9	34	42	15	57	-13-4		1	-124	156
†	0	Q O	•	œι	22	20	59	g.	8-13-4	~	. 1	4 9 9	0
יטת	305 267	8246	m m	270	7352	4770 0880	777 28 !! r	5547	10-28-46	105 201	φ <u>(</u>	58 - - -	00
A-30)	V V	•	Ú	†	3) -	2)	ı	- -	>
)	0	40	•	S	31	53	Н	53	-11-4		- 1	Ó	0
N	305	7183	3.1	219	6126	6150	٦	6151	1-16-43	186	↑− †	153	0
(0	48	•	Ñ	37	03	-	03	-31-4		1		0
A-31	((() د	(-	1	ا	•			(
⊣ (\circ	טינ מינ	•	\supset a	9 6	$\mathcal{L}_{\mathcal{L}}$	1,73	77	9-1-41		1		0 0
ν (\mathbf{c}	$\sum_{i=1}^{n} c_i$	•	o (7 6	2 5		Z Z	-77 -		•		> (
Y) <u>-</u>	$\supset c$	δ	•) لا	<u>ي</u> و 2	$\frac{1}{2}$	+ +	0;	2-1-43		1)
- † I	\circ	9	•	Č -	2 4 1	$\frac{\alpha}{\alpha}$	219	25	-15-4		Ī	1	0 (
Λı	\circ	4	•	寸 :	7.4	64	O :	S S	-1α-4 -1α-4		ρį)
9	∞	17	•	~ (75	50	⇒	75	-14-4		. 1		
~ 0	272	5259	ω.α 4.4	181	4972	3279		3279	2-14-48	Ž 1	თ (თ (81	α Ω (
Ċ	_	7	•	0	N O	S S	707	Ŋ	120-4		ı		
A-52		ō			(7		ά	1, 70	c			-
۱ ۵	כ ע	7 7 7 7 7 7 7		ν ν ν	- 0 - 0 - 0 - 0 - 0	1103	25 25 25 25 25 25 25 25 25 25 25 25 25 2	2007 2007 2007	1-12-	ر ا	! I	165 165	1 C
۳ ۱	۱ (۲	`	•))	ł ł	-)	7-71-	2)	`
)4) Q	0	0	0	0	0	0	0	4-80-	*	1	0	0
. rv	262	8469	ж т.	290	7710	3537	221	5748	4-17-46	132	6- 8	17	0
9	Q	Ð			0		0		- 7-4	ı	ı	0	43 0

APPENDIX TABLE 1 (continued)
Individual Data by Lactations

ght nge I	(Ib.) (days)	ന	υ·	-1 m	65	99	136	N	38 0	118 169 131 150	ָ רַ	0 48-	20	37 -	† C		79 0 299 0
of	(yrmo.)	1	~	1 1	7	1	101 101 101	-	2-2	1-10 2-10		3-7	•	1	1. 1		2-1 3-6
~ 다	(days)	0 -	χ. 4. ()	2 1 8	125	81	16i	2)	0	0,00	, (5 0 0	287	10	o *	177	0 194
Date Calved		-23-	7-7-7 7-0	-12-	2-26-4	-16-4 -06-4	5-8-50	-13-	9-2-45	2-21-42 2-8-43	α τ	12-27-43	94-4-	-20-	700	-31-	9-28-43
Total	('qT)	52	$\mathcal{L}_{\mathcal{L}}$	27 05	6	43	6154 6154	٥	4287	1723 2563	, 1	5041	39	77	2	4700	4668 4787
TDN.	(Tp.)	H 6	တ္တ '	-11		ထဝ	2141	O	Н	431 765		1509	44	50	O	816	2193 2736
gh Rh	(Tp.)	52	$\mathcal{G}_{\mathcal{G}}$	27	6	34	4010	9	4286	1292 1798	, 0	3532	95	なる	2	3884	2475 2051
FCM	(Tp.)	58	$\mathcal{L}^{\mathcal{L}}$	10 10	る	41	9117	ひ	3670	5661 6967	עע	7890	25	800	8	4218	5076 4112
Fat	(Tp.)	~	$\supset 0$	m a	SO(യം	### ### ###	_	139	214 271		289 289	284	142 0.10	ή γ γ	154	201 156
Fat	(%	•	•	• •	•	•	ນ ພ. 4	•	3.4	3.5			•	•	•	3.3	ო დ ი
M11k	(Ip.)	9	g;	₹	.00	8 1	245k 9957	<u></u>	4081	6023 7265	רכ	8869	8	89	8	4713	5220 4424
In M11k	(days)	305	305 205	, , , , , ,	300	305	900 100 101	305	305	291 305	, d	900 000	305	305 305	007	264	305 305
Cow Lact.	A_22		ω (∽≠	. rv	9 1	~ ∞ (9 A-34) (A-35 1 2	A-37	- N	ന.	⇒ † ι	מע	(A-39 1 2

APPENDIX TABLE 1 (continued)
Individual Data by Lactations

Cow Lact.	In	M11k	Fat Test	Fat	FCM	Rough	TDN	Total	Date Calved	Dry Period	Age of Cow	Weight Change	Pasture
≂	(days)	(lb.)	8		(1b.)		(1b.)	م ا		8	(yrmo.)	\	days)
)	000	924 913 913	• •	$\alpha \circ \alpha$	860 817	82 31 43	οσα	73	7-8-	0 7 2 73			000
ي .	1 80 80 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11248 11474 3953	uwww n≠wwo	385 376 129 0	10231 10231 3515 0	74 M4 74 M2 74 M2	2897 3453 311	7037 6955 4695 0	1-24-47 3-9-48 8-21-49 8-6-50	118 124 0	164100000000000000000000000000000000000	-86 -80 -760 -160 0	00#00
A - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	305 305 295 271	6959 8478 8096 3932	๛๛๛๛ ๚๛๛๛	236 278 269 141	6393 7545 7266 3718	400 400 400 440 50 60 60	2603 2060 2143 348	5574 65748 7435 7985	7-5-44 8-23-45 8-19-47	0488 0488	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	161 183 187	0000
-	0000	000 000 010	• • • •	2204	\$ 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	~ 824	288 288 52	-30-4 -11-5 -6-51 -17-5	122 188 95		מיעת מי	0000
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3005 3005 3005 3005 3005 3005	8741 9213 7684 10830	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	264 293 248 355	7451 8088 6771 9659	3718 4823 4968 4854	2296 1989 1194 1961	6014 6812 6162 6815	8-1-45 11-2-46 12-27-47 12-11-48	109 111 49	ო დ + დ 1 1 1 1 ო დ ბ	118 121 104 125	0000
7 P	305	7852	3.5	273	7237	5126	276	5405	2-24-51	31	7-8	48	0
	3339 3009 3009 3009	7885 10919 8662 11448	<u>a</u> anwa oooo	231 317 256 338	6621 9130 7311 9649	3579 4075 4647 4501	2168 2634 1322 2022	5747 6709 5969 6523	7-24-45 8-31-46 9-29-47 11-1-48	984 0090	1-11 3-0 4-1 8-2	155 95 18 114	45 0000

APPENDIX TABLE 1 (continued) Individual Data by Lactations

၂ ၅																46
Pastur	(days	15	000)	00	00	000	>	00	•	00	0	0	00	0	00
Weight Change	(1b.)	9 1 86	4 M	†0.T	7				22 93		206 168	0		н С	∞	75 182
Age of Cow	(yrmo.)	1 1	100	ı	3-6 3-6	1 1	1 (7)	•	9-4- 		2 - 8 - 8 - 8	Ī	Ĩ	ΪÌ		9 8 7-1 7-4
Dry Period	(days)	108	41 60 60		0 &		138		J,O		5 80			200		37
Date Calved		8-1- 0-29	-23-	-51	5-23 5-29	-30-4	3-18-5	(-)-	7-17-46 9-8-47	-	5-11-46 5-13-47	-16-4	-10-4	-23-5 -23-5	-10-5	4-23-47 3-29-48
Total	(lb.)	4229 6774	73	א כ	5733 6701	22	たる	t 7	6274 4646)	6415 6474	72	95	のなって	77	6539 5879
TDN Conc.	(1b.)	2831 2183	9 H 6	Ō	2079 1388	87		+	1882 875	-	1839 1229	82	05	פֿלַ	23.	1851 2127
Rough	(1b.)	3812	90 g	r D	3654 5313	191	120	ς γ	4392	-	4576 5245	89	92	30	17	4688 3752
FCM	(1b.)	9955 8628	4 0 0 0	9	6668 7721	15	202	5	7400 4931)	7604 7683	75	34	13	92	7906 4299
F4	(1b.)	371	מ ועַ־	4	249 292	НÒ	$\nu \omega c$	U	269 180)	265 268 268	4	9	$\omega \infty$	(287 249
Fat Test	8	4.4.	• •	•	w w 4 rv.	•	• •	•	ر رو رو	•	0,0 0,0	•	•	•	• •	ა. შ.∓.
Milk	(1b.)	10981	867	Ž,	7343 8364	67 05	000	۲ ر	8417 5563	`	9073 9172	23	213	202	8	9021 7348
In Milk	(days)	305	ω	O	276 305	<u>~</u> c	∞ o	u	305 250	١	305 2985	0	0	\circ	σ	296 260
Cow Lact.	Δ -48	-	m⊐t ι	A-49	ч а	M⊐	- יטע	A-50	н 0	A-53	ч и	().	⊅ ۱	ᡣ	7	

APPENDIX TABLE 1 (continued)
Individual Data by Lactations

Fat Town Date Milk Test Fat FCM Rough.Conc. Total Calved S) (1b.) (1b.) (1b.) (1b.) (1b.)	tDN Date st Fat FCM Rough.Conc. Total Calved (1b.) (1b.) (1b.) (1b.)	t FCM Rough.Conc. Total Calved b.) (1b.) (1b.) (1b.)	TDN Date Rough.Conc. Total Calved .) (1b.) (1b.) (1b.)	TDN Date ough.Conc. Total Calved lb.) (1b.) (1b.)	Date calved (1b.)	Date all Calved .)	ved	1 ' ' 1	Dry Period (days)	O T	4 8 5	Pasture (days)
05 5920 3.2 189 5209 4283 1257 5540 05 7132 3.4 240 6454 4529 528 5057 05 7789 3.3 260 7020 4026 1715 5741	.2 189 5209 4283 1257 554 .4 240 6454 4529 528 505 .3 260 7020 4026 1715 574	9 5209 4283 1257 554 0 6454 4529 528 505 0 7020 4026 1715 574	209 4283 1257 554 454 4529 528 505 020 4026 1715 574	283 1257 554 529 528 505 026 1715 574	257 554 528 505 715 574	55 74 74 74		8-12-47 1-10-49 8-15-50	0 75 235	a≠rv 0 a 0	219 29 149	
05 7702 3.4 262 7018 4314 1451 5765 72 7350 3.5 259 6818 4085 1363 5448	.4 262 7018 4314 1451 576 .5 259 6818 4085 1363 544	62 7018 4314 1451 576 59 6818 4085 1363 544	518 4314 1451 576 818 4085 1363 544	314 1451 576 085 1363 544	451 576 363 544	76 44		7-4-48 7-17-49	5,0	2-10 3-11	32	00
78 5021 3.3 164 4465 2675 261 2936 96 5927 3.3 198 5343 4619 34 4653 05 5287 3.5 187 4914 4212 557 4769 05 10380 3.5 365 9621 3260 2763 6023	.3 164 4465 2675 261 293 .3 198 5343 4619 34 465 .5 187 4914 4212 557 476 .5 365 9621 3260 2763 602	64 4465 2675 261 293 98 5343 4619 34 465 87 4914 4212 557 476 65 9621 3260 2763 602	465 2675 261 293 343 4619 34 465 914 4212 557 476 621 3260 2763 602	675 261 293 619 34 465 212 557 476 260 2763 602	261 293 34 465 557 476 763 602	9 9 9 9 9 9		2-26-48 2-7-49 1-23-50 2-20-51	8244	0 60 4 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	82 161 121 88	8 0000
305 3620 3.2 116 3187 2578 291 2869	.2 116 3187 2578 291 286	16 3187 2578 291 286	187 2578 291 286	578 291 286	91 286	S		4-26-48	0	2-3	53	86
305 6296 3.3 210 5674 4500 145 4645	3.3 210 5674 4500 145 464	10 5674 4500 145 464	674 4500 145 464	500 145 464	191 5	ф9		7-20-50	0	2-11	119	
105 5162 3.5 183 4810 4513 1346 5859 188 6494 3.9 252 6378 3408 1684 5092 104 9160 3.8 346 8907 3462 1896 5358	.5 183 4810 4513 1346 585 .9 252 6378 3408 1684 509 .8 346 8907 3462 1896 535	83 4810 4513 1346 585 52 6378 3408 1684 509 46 8907 3462 1896 535	810 4513 1346 585 378 3408 1684 509 907 3462 1896 535	513 1346 585 408 1684 509 462 1896 535	346 585 684 509 896 535	85 99 35		ω ≠ r¢	0 41	1-13 1-2-4 1-2-3	14 99 133	000
9799 3.7 358 9295 3918 1676 559 7831 3.7 291 7493 2814 2335 514	.7 358 9295 3918 1676 559 .7 291 7493 2814 2335 514	58 9295 3918 1676 559 91 7493 2814 2335 514	295 3918 1676 559 493 2814 2335 514	918 1676 559 814 2335 514	676 559 335 514) (((((((((((((((((((9-22- 9-19-	4 C	1 1		00
05 4404 3.9 171 4330 4556 1171 5727	.9 171 4330 4556 1171 572	71 4330 4556 1171 572	330 4556 1171 572	556 1171 572	171 572	72		6-28-48	0	1-11	133	0
05 8028 3.3 267 7222 4956 300 5256 05 8168 3.4 280 7473 6092 1 6093 01 10801 3.2 341 9441 5030 1705 6735	.3 267 7222 4956 300 525 .4 280 7473 6092 1 609 .2 341 9441 5030 1705 673	7 7222 4956 300 525 0 7473 6092 1 609 1 9441 5030 1705 673	222 4956 300 525 473 6092 1 609 441 5030 1705 673	956 300 525 092 1 609 030 1705 673	0 525 1 609 5 673	25 09 73	_	10-4-49 6-14-51 8-1-52	0 273 71	647 100	1 99	47 000

APPENDIX TABLE 1 (continued)
Individual Data by Lactations

Pasture	(days)	000	0	00	00	00	0	00	ľνΟ	0	43 0
Weight Change F	1	0 64 117	88	76 112	180 69	108 70	125	120 42	74T	-111	m
Age of Cow	mo.)	0 6 4 0 4 - 0 0 8 - 1	2-4	9.8 5.5	3-8 3-9	9 P -65	7-5	9-0	1-9 2-9	2-2	5-6
Dry A	ł	0* 168 65	0	082	0 218	0 68	0	95	0 W	0	0
Date I		12-21-49 12-16-50 1-25-52	6-18-50	8-1-50 9-17 - 51	7-14-50 2-21-52	11-6-50 12-7-51	8-5-52	8-5-50 10-4-51	5-16-51 5-16-52	4-23-52	8-2-52
Total		0 4488 5719	4734	3917 5498	4440 6421	3903 5266	3965	3474 5122	3790 4153	4757	4322
TDN.	(1b.)	0 698 1641	1156	413 1825	1103 2014	326 198	755	452 1866	1173	1874	1089
Rough	(1p.)	0 3790 4078	3578	3504 3673	3337 4407	3577 5068	3210	3022 3256	2617 2882	2883	3233
FCM	(lb.)	6482 8334	6040	5173 7153	5590 10195	5125 5794	5949	4877 8001	5704 4248	6554	6405
Fat		245 308	227	194 268	216 392	196 220	230	186 306	220 163	250	251
Fat	(%)	, 0 m 0 m	3.4	ωω 4.4.	3.67	33.6 3.5	3.7	99. 99.	3.67	3.7	3.8
M11k	(1b.)	0 7009 9269	6597	5689 7833	5868 10 789	5462 6264	6240	5227 8515	6201 4488	6857	6592
In M11k	(days)	189 305 305	305	305 305	305 305	304 305	592	305 305	305 299	305	268
Cow Lact.	۔ ا	A-(1 12 38	A-72 1	A-(3 1 2	- 1	1	A - (y	4 -00 - 10 - 10 - 10 - 10 - 10 - 10 - 10	ı	7 = 7 - 7	T - 1

APPENDIX TABLE 1 (continued)
Individual Data by Lactations

Dogting	(days)	က	33	00	0	00	0
Weight	(1b.)	56	<i>L</i> 9	137	95	187 91	. 66
Age of	(yrmo.)	2-5	2-3	3-6	5-6	1-9 2-10	2-2
Dry	1	0	0	590	0	0	0
Date	Carved	6-4-52	4-14-52	4-3-51 3-28-52	4-5-51	7-30-51 9-2-52	8-29-51
<u> </u>	(1b.)	4410	980#	3391 4867	3992	4102 3703	4720
TDN	(1b.)	1377	1254	1 1839	1228	1178 954	1481
NOL Apriod	(1b.)	3033	2832	3390 3028	2764	2924 2749	3239
Ę Z	(1b.)	9959	6909	4724 7071	5494	4225 4401	4804
₽ 4	(1b.)	276	258	184 272	217	150 155	168
Fat Test Det	(%)	9.4	4.7	99	3.8	33.	2.9
71 - 17	(1b.)	6909	5498	694L 4064	5664	4926 5200	5732
In	(days)	305	305	297 282	305	285 268	305
COW	ב ה ה ה	1-7 1-7	7 6 1 6	- α - α - E	-H	ر د د د	1-10

APPENDIX TABLE 2

Total Digestible Nutrient Values for Feeding Stuffs

Feeding Stuff	TDN	Reference
	(%)	
A7's grain	75.0	Н
Barley	77.7	M
Beets, sugar	9.8	S
Beet tops, sugar	50.9	S
Beet pulp	67.8	M
Bran, wheat	67.2	M
Butter oil	214.0	H
Buttermilk powder	85.3	S
Casein	87.0	S
Chickery	57.0	H
Corn	80.1	M
Corn and cobmeal	73.2	M ę
Corn Gluten meal	80.2	M
Corn Starch	87.6	M
Corn cobs	45.7	M
Corn oil	214.0	H
Corn and shavings	3 8.0	H
Corn and peanut hulls	46.0	H
Corn gluten meal and peanut hulls	46.0	H
Complex No. 2	75.0	H
Cottonseed oil meal	70.6	M
Dried Molasses	54.0	H
Linseed Oil	214.0	H
Linseed oil meal	77.2	M
Liver meal	96.7	M
Meat Scrap	69.6	M
Molasses	54.0	M
Oats	70.1	M
Palm Kernel oil meal	76.5	M
Peanut hull mix	46.0	H
Rye malt	70.1	H
Ration no. 1	76.3	H
Ration no. 2	74.4	H
Semi-synthetic concentrate	46.0	H
Skim milk	8.8	S
Special mix	46.0	H
Solubles mix	46.0	H
Soybeans	87.6	M
Soybean oil	214.0	Н

APPENDIX TABLE 2 (continued)

Total **Di**gestible Nutrient Values for Feeding Stuffs

Feeding Stuff	TDN	Reference
Soybean oil meal Sugar Synthetic Corn Synthetic Corn and Corn Gluten Meal Velvet beans Wheat Yeast	(%) 78.5 90.0 46.0 46.0 81.7 80.0 70.5	M H H H M M
Hay 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 Ladino Clover Corn Silage	51.88 49.55 48.55 48.17 49.86 49.67 50.49 50.74 50.75 51.84 49.75 51.84 50.75 51.75 51.75 51.75	H H H H H H H H H H H H
1934 1935 1936 1937 1938 1939 1940 1941 1942	18.21 15.79 15.38 17.37 15.83 20.49 18.29 18.40 17.70 17.52	H H H H H H H H H

APPENDIX TABLE 2 (continued)

Total Digestible Nutrient Values for Feeding Stuffs

Feeding Stuff	TDN	Reference
	(%)	
Corn Silage (continued)		
1944	16.20	H
1945	19.44	H(Ohio M-15)
1945	11.80	H(Eureka)
1946	21.16	H
1947	20.88	H
1948	19.13	H
1949	17.26	H H
1950 1951	19.06 18.88	H H
1952	21.27	п Н
Alfalfa-brome silage	21.21	
1937	8.8	_H 3
1938	16.8	H
1939	12.4	H
1940	15.5	Н
1941	17.3	H
1942	.17.4	H
1950	22.0	Н
All analyses	15.74	H
Clover-timothy silage	16.7	H
Ladino clover silage	17.9	M
Alfalfa-pea silage	17.0	H
Oat-pea silage Green oats	16.8 16.9	H M
Stalk silage	13.1	M M
Sudan grass silage	14.7	M

H Huffman (1953) M Morrison (1948)

- 1 No corn silage analyses were made in 1941. The value used for 1941 is an average of analyses for these data.
- 2. Two different corn varieties were ensiled. Ohio M-15 was an early maturing variety with a relatively large number of ears. Eureka was a later maturing variety with unusually large stalks and relatively few ears.
- 3 The alfalfa-brome silage had an unusually high butyric acid content.

S Schneider (1947)

ROOM USE ONLY FOR 2829M USE ONLY

