DESIGN AND PERFORMANCE OF FAN VENTILATION IN POULTRY LAYING HOUSES ‘ Thgsis for the Degree of MS. MICHIGAN STATE COLLEGE Jacques Albert Choiniérr'e 1953 ' ”7..-“..5...” Rum-M ,r . ‘r. r J v I .‘ This is to certilg that the " thesis entitled I T 'Lesign exfi berfcrmznce «f Jcn n we { Ventilrtic in {CWltry LayinL Hc.rcs‘ ;' It a . presented bg ll ’ 4 l ' ’ " Jacqu 5 I. nginiere '. l, "I. ‘ if ‘ ' has been accepted towards fulfillment 7} ' I l . . I of the requirements for I ' I . . mm- ”www— -, .1 ; ‘ I __,~...J. degree In -‘ g.- JC‘un/lz w I ' Lnfincering .- .v I ' ' - _’\ . , ‘ I’t‘ I" -_ ‘ 2 ‘V ' “ ‘ _ . g V .. Major professor I K‘ ,' .V . , ‘a " ‘ v ‘ ‘ 07169 I ,. .-. I l t I "i '—"’ :3; ‘3, s .31 .«J L. “fir‘ nvy vr w‘fia‘pnn‘rqfiffif‘ ni A ... I 4'- .A..V.T) I 4_v-,L.‘7~I'- ”‘1. .‘JL‘J ‘J 7* 'F’WTH Tnm n Y T‘7 T" Y "1"." F1“. I JAC_IJL§_-I“ II .Lnu 0 TL I . \--k’ L.-.» ‘T n Y‘ ‘ r-N :~ v’(‘ *1 “J. lll‘q -.C'Ux ‘L‘Ju lpv .IJ Jacques Albert Choiniere Subnifited to the State 0011079 5.) in fifirfiial Dobertvent F in fi¥stract School of Grqflua+e Studies of . c; of Agriculfure and Applied Science fulfillment of the requirements in new 7% h n'rm'fir‘ .. . ‘ a" S‘JLJJ-:(JA'_II of Agricultural Tnginoering 1953 I “ _ I, I A I l '\ Ct: lflt'ppr Oved w dial“ ) l/ t &/L ., .- ’r“ -—h ———-‘..-’m ‘-\ \rfi I 1m - a n H - f“ 1 “ID ‘pwr'x‘—~.m ‘ q" q n-‘lntw'firj ‘. ‘ e“ Ho‘s ‘ d‘” )"' . r " “"“ *"" h t J l‘ J V '—L()LJ - . i-‘/ .t L, -4 A A\ O l ’ — . 9’ u \ ).- I ~-.. .. . " I . -‘ ~ 0 s “ _I ‘ u .7 - ’7 “"n 07 rm“7‘: :‘ ”'a‘ V ‘,‘ ' '15: ill "‘u’KTn‘b"? , .‘ t- L- ,Ht‘ . Of) 1‘ .w‘r . II' .‘1‘ Lil—'1‘: ‘ ‘ I. A .. E"‘.’§r‘ " I‘, Pl’ " F.“ J fim‘. ’5‘," . T'V‘fi‘ ,’\V“ 7": l\ V. 37‘?" ”n“ I")?"" 'If'lj"""‘ T“ 9",.‘1 VI_ “(4' ., -— 1..)t ' I . ~. ‘. . ~ n- . . N. L - n ' .v n , .. .. . P'\\f" («4-1 11 »7\’-.-- J: npfi~sr~wnnc r.‘f (“.134 mi A.y-} (‘v‘y‘ ‘\ 1‘57“; 7-, +‘. N 7 (34‘ ‘ “C. y’.‘ :3 fjrijy In!“ r-\y-H A .h. \n l ‘ - —~ . in ) A I >1 . .lt, . > _‘ '1 a ‘1 u . _. 1 w A A y" “3! n: véioloc *0 he 1” '09) ;. l ‘ ) lfi . - o v A .u l ' . - (“ls stud" V“: ”file 1n t“”oe ”1’ 0“ofi+ “"V‘f. ”1“r* ““ oxlerfied . - b . .. : . 0 w. ,1 .0 +1 "1:; -4“ . “ll-l. ts ‘ J1 t‘ 4‘ ‘w ' 4. g I. H _ _. “ _ r~ R 1'9 VI . f1 -\ .9 m w ‘ 4 T‘?"1"?‘..' W S .- F ‘ . " . t , - Q t , 1 S f) .. u : J: .C 11w ,0_Lr\,.1_u 0. pro—- 1 . n .T Q . \- - ‘ Q - '1 L "a w 7 ~ 1' 1'. '. “A + > u . huetlon 0. .ufirlly lOtS oft to nwr; o+trw~. “”10 won “1": 1 a O O O O _ “ecwvo or hovlfry ks“"o 1wcul°*1or on” vehfigloflrw. P‘ a o -oeofi9 :F'rfs fin‘ fiofiozrfirfis pTesenfijd ornvmously to “"“"]1¢" ’30 n ! . OTlP“) " '1,~111nL‘-iq“ A .T «\thO‘ 134-."‘* 1- ‘--w’ o-\~~1‘r-' . - ~‘ "’J_ “ ~-:“. \~ ‘- z .4. - ». A'A- _ : -- J 4 - _ . _ fiv‘l" : J . <- A ‘, .o,~‘ ‘~ 1 ‘ -., . , _: . T _. -e~wrl*ulc¢ mcr' x‘.~lwnnl. Allle vale: ”C“‘ :lco FT‘IfirlJ rFlIH 7:? v;- I . ’ . ‘ .¢-‘ 1‘ u « ‘ ‘ .. j--.vv~, .-1-~ P I 110v;d *o *0 vorv nirvefitunt 4O? w«e find at £42 sumo .Luo ”Ire dccvr=fo t4 . ,,..1- ‘ ... - ‘ . +. t 921 Ilarv-,3‘.,-ts :ntt r,J.§. ..; e t‘.t rt.L. 'fl‘: 1 P I" t‘ -1-.21 L'V— J..-‘- ’ J... '79. .— t‘tr , ""*"~l “s“ o“mo““c 1‘ 1n thllLflhlln s:s.~n¢ 1n eto poul r; t . ‘V- _1 ‘_ _0 s“ “L. ~‘J, \ A uoflsos “n8 c¥n ind ”fit howl zed l? ornwr *o monorre Feffltufi wjuh flawso 14-h' .. _' - ”‘1. .. 4.1 “.1. ‘5 , 4.7“ - .’ .L‘ C; :tnol .n cslorlfiefior tests. FICA ago d on collectel, wlq frond lo 4., i» ‘I ,- "t ‘ ...,.‘<‘V 1,. ‘. .. -,..-.,.' -. .L‘n . "L .L w+ol T‘Hfilolfi no“? 1.‘tln-lc he? ‘Fn res aleTmLU¢fl fugn,nor ”11% {go fre“d in *“o not ¢¢“Slkl“ “SFE eohfh: ”“n” senondqry soureos (V"** frC“ - I 1-2 4. “.L' 0-14. I. My - t- _ Np ‘V'! q‘ _ ‘1 V‘ q ‘ " T" 1 " s V + or decfltp“swu*cn, SJH, 11 Ass, F 0.). Ilare so ~i”-1L FOISTCC-.l ‘1“ L ' D ' ‘x AA I. ‘3 a ‘ _ ‘ . H, "“ me I 3“. Vere Juand Lo .9 equ~l +o - .‘3 -£u war hozr, F”? 703 "5 nOOJ. LWJS 1-” 4» ’_ _ c ‘ ‘_ 41- . _ "V _ 5 WV’ g-ije q ,l}1f:“ I S Vi'g?rfi:' 112?:{1 y-v 1 1'“ f‘ “‘3 J 1“ f? l-‘TLIS (3? I flap-LCJL)“ PH? Kr'O):. fir—11%;: L (3 f 1v. l'L:-1 4'--:t .A -‘.\~~ wu.s.¢- '. w P ~ Q1‘-. 0 ‘L -‘ ‘3‘. ' - nutqnlo: 0* no 1.“.n,.oly lo‘r CdnlC ‘30” bar Llnufie, for hon-wore I. ~ , ' V . o 1 Q o — Q 1 -“Til 53¢:r' l; for role 1ro removal 1n notu ”ell lfiSPl"fiCP and vo'or"+el* U -; “c"‘ "- r A ‘f~ 1 4‘ 1 4“" W‘. '- r- .' ‘r‘ I‘ 1‘ " ‘I'I ' “ " J' ‘. ‘ ‘ r J‘ —-§ pf 34 ,owm,rj ”u-¢o.. ;, J‘s also loan” ”Jet 9.0 twree nos” lnportzne f‘ ‘ v.- l"; '1 . 4‘ . V '. D s I. r ‘ - n L ' \ '- l-s -: «J» ~ -~rs 1n .He 9 icesslnl Werformdneo of loh Vihtllhulhn n4 taC mthucnanO .44 -I -- / _.. E“: ‘hn" l‘r’t” "’5 v V J- ' 1 r “’7 ‘ql I‘ n .‘ -\ 1. .j ‘ 1 " wfi‘r h V'\ “q ’I ;# l -. 1 2 . I V ‘ . .1. - - ov~~~ . an VMqr‘jiwnd-‘i 3“ 2...,‘Lr. L'. . t ._,3,1 “‘1‘ 41 '- K'I "“p H ‘74 ‘.‘ v . .- I~ ‘. t’. _I' .‘nc: 3-.“ ‘ p t ‘\ ‘ ~ . ‘fi e w - s w w s » WA. A “ u-Ir -——-' r‘-"a .- ’. I"! L -' ~ a} .: J- \f-‘Nq'xl' \fi J' n . I. L .l x .n-~¢ I;n ~w.. nm'1~r 2.. . .1 ‘ ‘ l 2‘ ALL- . wk "1‘ r» 1- x ‘l’ " -1 o l “1!) J.1 .,J.ut IICJI Ix II .t) 'o('I&v t q AL: Au,“ " 3 A v-v‘r“\1 firs-z J. \ _., ~ -_ __l 1 " I .rxL,‘ or man" ‘1.) F" ‘ ‘ 5 ‘_ t h - 1 --.I \~\ "1 _r 1-.0 3.!!A. Silll .' .4 05er y~~f\-.. -‘L\ '5‘.“ ‘L I . .,~ LL .1 I! _l A ,J.‘ «A l J J U H t n \ 1 A ,‘,. o \ l‘ J r) - _n , ‘- . n '0 . - p" - , ‘ tne IKQLfin «no perfolmance v: p. ' “uh; n _ __W 1 *\ ‘I‘ "t."" .1 \~ Wr— “W. .v-f _ , Afiv ‘lhq ‘1‘ ‘ ‘ .‘ g 2 ~ ‘ "l ‘\ (‘1li "‘ | H ‘ ‘If "V "I Tj-vrp, vxwanrl‘ 1n)- n. . \IK - .4 ~/ J."‘ . fl": ‘ (\L +fi‘w‘ “~"\H n‘x‘ r~.\~ (1 fi 7’F‘\‘ v.7»? 'u . ‘ _ II l I1 _ v I I J - . -.. -‘_-s -1 t4- - A. x .7 .,. '._.. . I Edefiors flrodteifi; ”V? l’+fi* .7 . » ‘ s, A _. Ix lb“ A f‘f-‘l. .t :11?" ' At " L.‘ w. . re A... L ‘_ .L ' n‘ T' ,‘J 1 ‘ IE I, . , ' .. . t u V V N u 1 lfil" r‘I'L .«i-o J , J ”V‘q‘ ‘7 w .7 (1 I -‘ K ,t .4 . q 1 A” t J“ -' I . .- ' . r ’1 V“ 7 r " ‘ ‘ . . l_.l (t3 t . _ -1 w a V V ,‘y- 1“."1 ~\ a h I « liq ' 1ft t ‘ ' ‘ lio+lmn‘ ,-~.r-. q .. ~ A I A. on asaL n r- \_/.A I .4 . Yir‘ “of‘ut‘oll er: gt corn ‘3“ ”a V r a (r.vs (‘1‘ o I fi‘” 1! ‘IT‘P L . L_,‘ ‘ s). ‘7-L a..- -AJU a v 1. Qr‘ - «— 1‘.\~J. 1 t- ' w - p .,' (=3. L ‘ I) L to L7.’ "7"IQT A7? TTEFOTYIYZ? “F TIT TENTILATION IN POULTR LAYIIG HOUSE by Jacques Albert Choih13re A Thesis Cubnifited to fire Tckool of Graduate Studies of Vichigan f‘ utfite College of Agriculture and Applied Science in partial ful?illnent of the requirements for £59 degree of EASTER OF SCIENCE iepnrtment of Agricultural Engineering 1953 - -—v‘.. TH U. U‘ I'— I- ‘,-,,{ A ~- .- - ‘ Q ' ‘ I '1‘ .3 - 1 . ‘ n h<‘.. »‘v. «v- r‘ if: \ «-— ..»-§,.. ~ f‘ \- r \ _. >¢ ,7 V 3‘ . n e" ,. A . ’. . . - w W A ‘Vfi“'\fi f "to: ~~‘ ' -v\»‘qr A‘fi—L-~-‘\'\‘ ‘ ~ ~«n 1 a l H yn At!" \ \ tax-L ~,\\‘l fir \ _ «‘\,4. I .‘ '_/ .. ', . J ,. 1 « - _L _ 1 I A. x . , _._ a q o ‘ g lfi-wt. ‘11“ 'l“1“"5 fi",“‘ ‘1 V 1": 3‘- n‘ “"~“ '- '- _L ’1“ 2 r « "s "! “Y"t ‘1‘ , I a ‘ s I ' :1, - 11 ‘ -,. t n 4‘ . r \- ...-L......1 flaw... - 3“»“I— .- ,L “A-“ 1 . )3 Y"). .‘ ‘ H )1 -o o - cw, t . - .4. . _ r . t _, ‘-' Arl‘T-- ls 1 us -. .1 ’r' m.« L‘ '. 1 -«\~ ~\ -‘14L ‘ 1- : Asa A“: J» 14' 1‘ cw. 'vvl-n L : A a ‘7' mm ‘ ." .L b v‘ ‘11 a 1’ V ' l _ - .n ".1" ' l ' vi, e: .; ‘.~;,.~\-.t J Aim T‘ [t ‘1'— --— .. my -- . _ -. L. ' ¢ ?\ I‘ I“ ‘ "x Y h_"..'_:" ' vr ‘T‘r _“ J... _ m" 7 . n " ‘ A IN“ 5‘ 1“ . lady. jqfl‘ ’7. S 0' o —-.L .'.'H.'._, I o J' in? A H "l - o o - J‘.‘ v'.’ 'Lr'l ,, . ' A ‘ .L‘ .0. .1. 1-‘ _ r" t ' 1.. 3- V? 1 ‘ N v~ |‘ \Q . a 3 _ A, "‘ 4 r‘ \ l yr w on” 7“.”31, hr‘lpitl 5: 11-30". 1." s ..ro J .o 1., ”1"? fl .2 c. - .1, r‘ s. ‘ -l‘a 'th—‘l‘ ? V.‘ T: ”V‘l‘ ”\Nf‘t .-\an J-‘n-‘fl Cr! ‘V’1r\"" ‘erHj/T Y FH’SAP‘ «f 7" Jylrilfl " A‘l‘ _ -;O »__‘,-_r g 0. ~,_ .. ' . “ .3 ._. '.,~ . .1. . t, (2": W -- .\—._:, . p‘1l (—‘gra.ann~" 3' .\}1c :31 L‘Af‘ I‘A‘Ifijlwywm,\\\t a!‘ n r1n17;nr\ fi/‘Y‘ ‘L‘wxn J'1\\‘fi [\‘fl (NI "‘1f‘lfi’fiv‘ 7 .._ , _. » . . _. . _‘__, . I . ‘.-‘-v .. x- 4 '__ I .I . A 0" 9—1150 . .l. "n F.” " ' ~14. a“; V "'1...'J.n Pr 1.1V. "flow...“wc‘. *‘fiwfiy. "(vb)“..v n.‘ .. 144,". \J -1. .4. o L .‘ ~ ‘ o - . V J's; ._' '. ' - S . w 1. »‘ .3 .1, LJl ‘ vl“ . . . -.. q, . A- 1 .: . L.2. .. n . ‘71 -- .1. ,~~.A--"~ . L... “1" --. . ,. f. in lo” no 1.. 1 h r. w “I. __- it, '-_, "J - U A A, ‘+O\J- .1 . W‘l ”:5 ‘1‘ .,.a ,4_ ..,~ | a. .. - -- t . , ‘ .2 J. re. 4 l |., ‘7 u‘ +1 5 ll‘. ,.aT‘v‘-:‘ ‘.H,- naL,\ \ ns‘y) “-1. VA Tfir.:4c:. "._ Q I? f- 01 W 0 A '1‘“ C .Lr o -’.-::- ’.-t"? V.LA.LL).'.$‘. " ‘— 1 , l " r .M. lie) ' 7'4 ON: "'1“., and I'L-l'wfl 4* LI“— .. .-.-... _.- --". r.” . u . ‘ -3\ 3'. A 11' I‘ J.‘. L , "IL -- r‘ . ' fl ftsjfls‘r’ h a» ."j_-_r p.3‘1“. la“ I-('I“.¢‘DS , ‘ A J'.\ a.“ v~~'r\ 7“,“L.’ "QO ‘0‘ w--.-- w.._ , ""‘fivu- .‘ “h “‘V"\ - L.‘ .A ’....~;. ii VqH- V‘ ‘. VITA JncoueF-i. Choini3re w.s born on Vehrnory 7th, 1995, in Granny, Province of Wueoec, Cnnafla. Fe ntfiended at. Stanislas Vigr School in Hontreal, from 1950 to 1?L3 and at the same time took two winters of night ’ . ' 1 'L . 1- . ."Y Q VF L r so; , . oounees 1n innn~,rfinl ”r1*1nq. “91% h- spenf four genre euu‘aing n5r10n1~ tnre qt Tontrenl University nni in 19L? got his 3.9. degree in agricnltnre with 2 major in agricultural engineering. During this four year courqe, he oenunied his summer vaee+ione working for a dairy form, an horticultural farm, a rural electri”ieation oohpany (5uebec Power inmnnny, Quebec) and a dairy mooninery eomnnny (Ce Imvnl Comnnny, Kon+real). He also Worked nart of this time in the construction field. After his grafunfiion from Ibntreol University, he did one year of field crop infl statistical stnfiy at InV°l University. After thin, he was farm edi- tor for the French monthly rflgnzine "La Ferme", located in VOntreal. Heinz infierected in firm otruetnres, in 19h? he npplie4 to the Form gtrucfurn Diviaion, Gnebec Department of Agriculture. After nine months of‘brncticnl experience in tha draring of plznr or” visiting farme he asked fhr 2 leave or nhrence in order to aneoinlize in his fiel”. He chore "ichignn Ftfite College because of the proximity and the great— er similarity o? o1imq+e as nonpnred to moot other states. the recognified authorify of Nichignn “tote Agricultural Engineering Denort— 1 fient in ‘59 field of farm etrnofuree. fifter two veers study fit lichignn fi£~+~ College He'wdr nwwroed fihe “.”. in fierieulturol Inginooring at rho 1’ l onfl of fine winter term 1752. After that he stortei work tower. the raster degree. Tech summer he returned t his Connfiinn position of employment in order to gnin more practical knowledge. In conversations with extension agrirnilturiste, agricultural angineere, and Farmers, he found that one of Th~ -—~— H--‘- i .1 J. (J the moat confrovereinl Rubieots “on tho of nonltrv house fnn ventilation T‘or thi c rvnon thn nuhhor ‘wcwo intermited in the during ‘3‘ o "inie". I. v- stnld; . poultry houeo Vnnfiiln+ion pronlen or” rode it {he snbjeet oi The author in 9 nearer of the 7uehec Sorpornfiion of Lgriculturists, orpornfion hf ProPensionnl anin-ere of Duchee and fine Agricultural itute of Cnnain. Ye T130 7: n efufient renoer of +he Sngineering In— l Ptihute of C.na41, one on ns=ooi°te hooker of fhe American Cociefy of Agri c 111 in 11"» 1 Eng ine er 8 . >.—< -_-- - ..._ "‘* -- .~..._ ‘ — *E“ TAVLT CT TCVfi‘"TC J . “an in )e T‘ "'1‘ upfir T "HTP \ T -7. _L...'V'_'.. -1_,‘_\..-00.000000000000000000000000000000000000000000000. l 13 ., f" f.‘ w ‘- ., ‘ Y . . A nocofig 'hy unnoqq1'l .oul,ry :otoo Ion.: lotion , .' I \ k- j.(“.\::Lffi-c“+.-I'JO Obt'lin 000000000000000000000.000’°." {\JH U #75“: '7 .. r “4.: 4.: c, . 1 1.: n. 1% .L. I .LCY]S “Q )‘l'reen JOAL1JK?“ , . A . L W ‘ .‘1 ,‘ " I” ClimatolociC”l zones of the United ”,etes (Kelley) (58)... Climn+oloqicnl zones of the United Qtfltes (Ashby, Miller et 31) (h) ............................................... Climatological zones of Canada (quhfleisch and White) (57) ..................................................... Average Janunry +'Fm""r?”""‘t“3‘e2 United States (U.S. Yearbook 0f Agricvikure, TONI) (21) .6.COO...OOOOOOOOOOOOOOOOOOOOOO Nee. tennernture for the three winter months, North Gen- trnl RQ‘tion (CO’VIQS ,‘JY‘d Imn) (23) 0000000000000000000000 Venn nunher of days per year with minimum tempereture below 00? kCovles enfl Irvin) (23) ........................ I’ ivereve Janunrv temeerqture Lichiran U.F. Yearbook of . .3 u . ’ ) Agriculture, 19h1)(?1) 00000000000000000000000000000000000 Outside oir\temnerntures for heating estim"tes (National Term Air Venting and Air Conditioning issociation) (77) .. Lowest toroorntures ever observed, United States (U.3. Yenrimnk Of Aginlllture, linil) (21) 0000000000000000000000 Isotherms or winter outdoor design tonnernture (Heating Ventilfiting Air Conditioning Guide, 1950) (S) ............ Average annual minimum temperature United States (U.S. T‘V‘DZ‘T‘bOOk 0f Agri-Clllture, 19".1) (213 00000000000000.0000000 Average relative humidity — 8 a.m. (3.8.T.), Jenuiry, Uni‘ed States (U.¢. Yeerhook of Agriculture, 19hl) (21) .. fiveraqe relfi+iVe huniiity — Ioonl noon, January United fitntes (U.?. Yoerhook of Agriculture, 19hl) (213 ......... Average relfitive humidity — C p.m. (3.¢.T.), Jnnunry, United States (U.7. Yearbook of Agriculture, lth) (91) .. Venn relative humi”ity'Por Janun-j,;North Central Region ('JO‘TleS qnd Ifldn) (23) .0O...0..OOOOOOOOOOOOOIOOOOOO...O. Average number of hours of sunshine, dailyS Winter, United SthrDS (U080 Yef‘J'bOUk Of AgriCilltu-re, 1921]- (21) 000000000 Percentage of possible sunshine, Winter, United States (U.°. Yearbook of Agriculture, 19h1) ') Tate A v ‘v 1 ‘4) V1 \0 “J 99 100 3.01 102 105 106 107 108 112 113 3,11 115 119 (21) 00.0.00000000000120 ‘ fic—~”~‘ - "‘ ‘- a s. ‘_ woun... * . 19 2O 21 K- Percent gossihle susnshine for January, North Central Region (wOWlOS and Irwin, (23 n°ys clear during the fine cold months, North Central negion (Coulee and Irwin) (73) ......................... Strallan V'Jl‘ltilrition CEIar-t <99) 0000000000000000000000000 Barre and Sanmet ventilation chart (10) ................ . . ,J Stapleton and Cox ventilation chart (9?) ............... HQIITGS 23‘28 Oliver Irelltilation Charts (95) 000000000000000000000 Figure 29 Giose and Bond ventilation chart (35) .................. Fieure 3O Giese and Bond chart for heat exchanger design (35) .... Figure 31 Shier chnrt for the insulation value required for tcm~ Derature contr01 (92) 0000000000000000000000000000000000 Figures 32-33 Ryan and File chart for determining the (vernge Figure Figure Figure -'1 to - igure 3h 35 36 37a inSu-lntion 88) 000000000000000000000000000000000000 Plate-type hent exchanger (Giese and Bond) (35) ........ End views of exchanger with end plate removed (fliese and Bond) (35) 000000000000000‘000000000000000000000000000000 laboratory test arrangement for plate-type heat exchanger (Qiqse and mnd) (3S)-OOOOOOOOCOOOOOOOT0.0......00...... Local heat transfer coe t; 9 heat exchanger (35 Blower norformnnce refluirements for Giese and Bond nlfitc- 13313311891; e:cc}lp.nger (35) 0000000000000000000000000000000 Giese a-ncl Bond vanti]~nti0n Cziart (3S) .0 O. O O O O O O. O. O O O O O Gieoe and Bond chart for heat exchanger design (35) .... Edgar chart for wall—surface condensation (29) ......... Insulation Board Institute chart for wall-surface conden- sation (119) .00..OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOIO. Heat transfer coefficients (surface conductance) for different materials and air speeds at 20°F mean temper— ature (Heating, ventilating, Air Conditioning Guide, 1950) S COOOOOOOOCO0.00.00...00.000.000.000...0.00.... Temperature and vapor nressure in an insulated‘wall (R'Irre and Samet) (11 00000000000000000000000000000000 fficients for Giese and Bond plate- ) Page 121 1&1 1th 150—151 260 263 268 29h 303 ‘7"! "1 1 (J “ H (,0 F5. tn Ire Figure Figure Figure Figure I'lgmre ngure mSure h7b L8 M9 50 52 S3 Kl I l 55 cs for typical connorcinl inlets i . (1(W6).0...COOOOOOOOOOOOIOOOOOOOO Air—flow chorecterist ,1" (fl (molten and :7rague) Air—flow'charactoristics for typical 6 x 30-in, Iptype inlet and connarison with other sizes of b—type inlets and nany other horernde inlets (Walton and Sprngue) (10(3) 0.00.00.00.00...00......OOOOOOOOOOOOOOCOOOOOOOOO lir-flow characteristics through cracks in a rough I“ I" / lumber wall panel (Inlton and sprague) (lOc) ......... Front view of Hr. Joseph Roh.aalter's poultry house, 015977105, 20111-101, T'iChj—San.0.0......COOOOOOOOOOOOOOOCC a '3 3nd View :nd rear View of 7r. Joseph uohmwalter's p0ul+’r:}' hallse O...0.0..0.COO...OOOOOOCOOOOOOOOOCOOOOO. Floor diagram showing the location of thcrnOCOUples .. "he recordinq strip-chart potentiometer located in a corner of the house .................................. A continuous wet bulh instrument built according to plans by Henderson (Ll) .............................. Circuit dingrnn of a time of operation instrument using thelmlocouple as the Sear-inf: element 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 View of one of the three fans with its tine of operation instrument connected in parallel with the fan motor windings (shielding door closed) ..............;...... View of a tine of onorntion instrument with its alu— minum shielding door Opened .......................... Close up view of a tine of operation instrument ...... Temperature, relative humidity and time of operation Aata 000000000000000000000000000.00.00.000000000000000 loention th“e litter sample No. l was taken ......... Y location'*here litter sample to. h was taken ......... Relation between inside and outside temperatures (any +Jimfi of +2116 (1:13,) OOOOOOOCOOOOOOOOOOOOOOCOOOOOOCOOOOOOO ielation between outside temperature and the rate of ventilation (711'er +1119 Of the (1:12;?) 00000000000000000000 Relation between outside temperature and the rate of ventilation (111:; time Of the 71713,) 00000000000000000000 Page 329 383 38h 385 388-397 \399 boo not hOS “—vw.‘- . ‘7 I—o‘p‘,“4. 0 1 -. -r— .‘od “ 7Figure Figure F‘irmre Fiwure .3 Fit mm 62 63 6h 65 Re T ..»_, on bet-teen outeide tennereture and the rate of Jen ile ion (Hens on rooS,) .......................... 1'- ,‘ A . ‘ (‘1 “a 1 5 3r. 1 lhert lpv‘SS-olr‘ S no Ilt '3; house e2 . “.1 301%, from. . I U . ince o“ ”-aue‘nec, Terrace. 2.01.1531’113 '.'ieW) ................ InSi fie vi 9,"! of 1'1". llbe rt Levns S. eur' s nowfllltry house .. ...e 1.? inch fen end its "not (Ilr. Albert Levasseur's Oxiltrtf h01lse) .00....0...O...O'COOOOOOOCOOOOOOOOOOOCO :3 '33 'm‘e h”"rot“errnoc'rwn end the tire of Operation instru— ment uSed inside T‘r. filbert LeVnsseur's poultry house .. The outside meteorological shelter with an hygrogrnph, a thernograph and e. maxi-“rim minimum thermometer ...... Temoereture, relative hlmidity and time of Operation data 0.0.0.....0.0000000000000000000000.0.00...0...... 7‘ worm J 2107 hill; I 11,2 5 MB 529 h32 fie-” w~§—_‘-_ KM \f'l 7n [‘0 N I”? OF V7"MTTI”IP" CTARTQ, Nflrqplf‘flfi fi"' ELI?“ RULES I 7wY7'T‘TT AMT/WY (”TIA mo ‘32.. -7. ‘14-".1 -J. '-.LL) [‘5 — Strehen ventiletion chSrt (99) ................................. BSrre end Sennet ventilntion chSrt (10) ........................ nleton Snd Cox ventiletion chSrt (95) ....................... Clivzr voltiln ion chSrts (73) ................................. CieSe Snd Bond ventilation chSrt (35) .......................... B - VTVTIIKTION WOFHGRAPPS PSrI:er' S nonogrnph for determininc the vent lat ion rote required -or moisture renoVSl (W ......,...................... and 2b Choiniere nonozrenhs for deterring the ventilation rate rejvired for moirture removal ........................... PSrI:cr' S none erpII for deternnnSnS the ven til.Stion rate required for+qrnorn+,11:e non+1r01(po) 0.0.0.0...0.0000000000000000000000. Choiniere nomogrnnh for determining the ventilStion rate re- finired for tefineratnre COfltrOl coocooooooooo00000000000000.0000. C - VT“TILQTION COFPOGITW QEARTS Coldrich connoeite chSrt for determining the ventilStion rate required for PIOqu-‘Ilre PPZ1OVF‘1(38) c.0000.ooeooooooooooooeooo... Choiniere con posite ehSrt for determining the ventilation rete reouired for moiStml removal 00.00.000.000.00000000000000.0000. Geldrich composite ehSrt for interninSnS the ventilStion rS Ste refinirEd f0“ tempormnu‘c conwOl (3O) coo.OOOoooooeeoooeoooooooo Choiniere compSSite chart for determining the ventilation rate r87uired for temperature COfitTOl 0.000000000000000000000.0000... Golirich heSt Snd moisture bnlSnce connosite chart (36) ........ D — LI;ITA.TION SLIDT RULES Hide rules for determining the eXpired moisture producS d by birds and the .otSl moiS+ ure to be removed from the house (hourbr) 00000000000000...00000000000000.coe-00000030000000.0000 glide rules for determining the expired moisture produced by hirdS and +he total moiSture to he removed from the house (dpij-b) .OOOOOOOOOOOOOOOO0.00...0..OOOOOOOOOOOOOOOOOOOOOO0.0..0. 160 170—171 34 (v: 68 .—~ a-.--. ‘ —.—1_.__ ‘ au—fi. mo -—— ._. -, i“ h”.- -. Slide rule for determininj the net sens hle heS of Birds -t u o _ o l ‘ and the net Seneihle bent availfihle 1n the henne ................ AporoxinSte slide rule, orhitrarily corrected, for determining the ventilation rate reenired for noiStnre renovnl (design 07113,.) 90000000.0000.00.00.00.00000000000000900000000000000000000. Slide rule for rir'ater"S:'..ninrj the specific volume of moiSt Sir ..... 231 I Erect Slide rule for determining the ventilation rate required for noiStnre renovnl (deeign only) .............................. ;/¢ Glide rule for deternininfl the moiSture enrrrin: eSeeeity of A L \ Ollj'lflif§e 11j-I. 0.00.0000...OOOOOOOOOOOOOO0.00.0000...OOOOOOOOOOOOOOO TXSet Slide rule for deternining the ventilStion rate required for noiStnre renovel (design Snd analysis) ...................... Approrinete Slide rule for determining the rate of ventilation reouired for tenncrntnre control (design only) .................. 2L9 Corrected Slide rule ”or determining the rate of ventilation reouired for temperature eontrol (deSiqn and nnnlysis) .......... 253 Slide rule for determining wall Surface condensation ............ 296 Table Tnble Table Table Table TSble vTahle 10 -_~-. . . / n . ‘ Floor snace rennired for laying hens \Parre and cannct) (11) .................................................. Trend in feed consumntien of §~lh lSying hens as erf. by environmental temperature (Otn, Server and Ashby) (79 .00.0.0.000...000......00.000.000.00...0.00.0.0... Trend in feed consumption increase of 5—lb laying hens as aftected hv environmentSl temperature (Ota, Garver and Asliby) (79) .O.................................0... Trend in feed consumption increase of S—lb laying hens as affected by environmental temperature (Ota, Garver and AShW) (79) .0.0000....0.0..0......OCOCOOCDCOOOCCOO Trend in egg production of S-lb laying hens as affected by environmental temperature (Ota, Garver and Ashby) (79 OOOOOOOUOOOOOOCOOOIOO0.00..OOOOOOOOOOOOOOOOOOOOOO. Recommended design temneratures for poultry lSying houses (AShbDf’ Hill?!“ et 81) (h) 000.000.000.00.000..00 Basal heSt produced by hirds of different weights (Mitchell, Card and Haines) (71) ...................... Basel heat producer by birds of different weights (3“fit0hell, Cfll'd and MaineS) (71) .00....0000..000000000 Basal heat produced by birds of different weights at different environmental tenneretures (Barott and I’1‘i-rl\gle) (8) OOOOOOOOOOOOOOOOIOOOOOO0.0.0.0...0000000000 Basal water expired by birds of different weights at different environmental temperatures (Barott and Pringle) 8 000.0.00000000....00000000000000.0...00000 Total heat produced by hirds of different'weights and breeds (HitCh911 and KGlley) (73) 00000000000000.000000 Total heat produced by birds of different'weights at different environmental temperatures (Ota, Garver and Asth) (79) 00.00.00.000...0.00.00.000000000000.0000.00 Total heat produced by birds of different'weights at different environmental temperatures (Ota, Garver and AShW) (79) .....................U...0......OOC........ Total heat produced by birds of different weights (73) and (79) .0.0..COOOCOOOOOOOOOOOCOOOOOOOOOOOOOOOOOO Percentage of lStent heat as affected by environmental temperatllres (11113011911 and Kelley) (73) 0 0 0 0 . . 0 0 . 0 . . 0 0 . 6 17 l? 19 20 27 37 38 39 " “-v-v— ——--———-o-—u—~.__. Table Table Table Tahle Table Table Table Table Table l? 20 22 23 2h 25 26 27 28 Total latent heat produced hy birds h—lh birds at dif- ferent environnental tenperatures (Cta, Server and AShhy) (79) 0.000.00000000000.0000.00.000.0000000000000 Total oorcenta~c of latent hoot at different environ— n mentalltnmperatures (pin, T and ASth) (79) ---°°- Water expired by active non-producing birds of dif— ferent weights and breeds at an environmental tem- ppral-I‘LII‘GS Cf 82°F. (,(iflnllell 11'1"}. ECQlleyI) (73) o o o o 0 0 o 0 0 Tater expired hy hirds of different weights at dif- ferent environmental tenperatures (Iitchell and }C01182'r) (7.3) .OOOOOOOOOOCOOIOIOOOOOOCOOOOOOOOOOOOOOOOOO Total amount of water evaporated for S—lb birds at different environmental temperatures (Ota, Garver and ASth) (79) 000.000.000.00.00.....000000000.00.00000... Water expired by birds of different weizhts at different environmental temperatures (79) and (73) .............. Water expired by S—lb hens at different environmental temperatures (73) and (79) 0.000000.00000.0000.000.0000 Liquid water eliminated in the excrements of birds of different weiggts and breeds at an environmental tem- perature of 82 F. (Hitchell and Kelley) (73) .....,... Trend in feed and water consumption of S—lb laying hens as affected by environmental temperatures (Ota, Carver and ASE-1W) (79) 00.0.0...OOOOOOOOOOOOOOOOOOCOOOOO00.... Water taken out in eggs ............................... Total anount of water eliminated by laying hens at dif- ferent environmental tcnperatures, for an assumed rate of egg production equal to 70% (Ota, Garver and Ashby) (79 .................................................. Liquid water eliminated in the droppings of laying hens at different environmental temperature, for an assumed rate of ega production equal to 70% (Ota, Garver and Asth) (795 C.00....OOOOOOOOOOCOOOOOOOOOOOOO0....0.0... Water to be evaporated from the droppin s of laying hens at different environmental temperature and for an as- sumed rate of egg production equal to 70%), in order to maintain a litter moisture content of 35% (Ota, Garver and Ashby) (79) ................................ Page hl h2 h5 to \R C\ 57 58 59 ' ~—....-_ ‘- Table Table Table Table Table Table Table 31 33 3h 35 36 37 ’ y Tof€ l .t e- H II. vr _ \ {It 8203‘. (3; 3,101]. {121:} hCllCJ’) (73) 0.0000000000060000. flotal enount of voter to be removed from poultry houses at ci?ferent environmental tenneroture (and for an as— sumed rate of egg production equal to 70%), in order to maintain e litter moisture contenc of 35; (Ota, Garver and Ashby) (79) ................................. Net availonle heat proiuction (Giose and fieCornick) 3!; .OOOOOOOCOOOOOO00.0.0.0...00......0.000.000.0000... Net sensible heat produced by birds of different weights at different environmental temperatures (Ote, Server and AShby) (79) oooococooncoo.coo-ooooooooooooooooooooo. Specific hent and heat ospaeity of snne building and in- sulnting materials (Allen, Talker and James) (1 ....... Heat viven o‘f Hg the hunon bo”y under various conditions (in n room at 70 P) (Allen, Walker and James) (1) ...... Climatological zones of the United Qtntes (Yelley) (58),. Climfitologicel zones of Canafia (Kelbfleisch and White) (S‘- 00......OOOOOOOOO'OOOOOOOO0.000000IOOOOOOOOOOOOOOCC Eol~tionship between locel lowest temperatures and the tenperatures zsed for design of heating systems (Allen, ‘.'r911-er flnF‘JflV‘loS) (1) .0.0.0.0.0.000...OOOOOOOOOIOOOOOO. Computitiou of the ouESide design air temnereture for 3931’! Lansing 0000000000000.00.00OOOOOOOOOOOOOOOOOOOOOOOO Average wine velocity and direction of nreveiling wind for a few selected localities (Allen, Jalker and James) (1) 00.000.00.000...OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO. Air chanves By infiltration and ex’iltrotion in different kinds of rooms (Allen, Walker and James) (1) ........... Air infiltration sue to Windows of various types (A.S.H.& VI.E. G111(‘e 195,0) (5) .‘O.........‘..................... Number of sir chonjes required to secure the minimum relative humidity end value of these minimums (Cropsey) 4 (EU) 000.0000.alocoooooooooooooooooooOOOIOOOOOOOOOOOOOOO Heat available for heating ventileting air, as affected by environmental temperature (Oliver) (78) ............. l-‘T7"'7CifiC VOJJJIle Of 1781.; air 00.000000000000000.000.00.... rage }.J (3 \u 110 ll? 1? 12h 1? Q -—~...._- Page 51319 E? T:rv o? l.lJL.§‘ rut re*‘n“is oerljrr‘ o i.vrwensi“c L) tthk’lQSS '5' inshl1+ion ((O'Hir‘00n) (/2 ) 000.000.0000.. 256 ”g‘fl}? It‘d :Jomn"7~ipofl of nvnrqfle imam] 'zi-iv1~ v41 mac, W‘QC'va-_ mandations to" Ohio nnd ”innroo 1 poll‘ry ho =Fs (F‘3‘q1ier, ()6) (“;.r:~n.1n«‘1‘i-.-e, ‘1) ooooooooooooooooooooooo 26* T231]? L7 Itjnjljfilfivwr' ‘rfi?"""‘ "‘t3"‘-",“'l“.-l-" 1‘1 '31)”; '11’1‘] (‘I‘ijinvg in the dif:e"3nt elir“ic sense 0? Vnited >t1tes < §‘b": , 7-. f). ‘11?“1‘ 3t ”1» (14/ 000.000.00.000.oooooooooooooooooooooo L'h thtn h? Insul1+ir~ V1lu1s requ 'red for poxltrv hem? es +0 mei“— tqin 1n ins de tenoer1tu‘e o 390 F. (The Insulation %fir(a IYISJ-‘i +flu+e> (119) .0...O...OOOOOOOOOOOOOOOOOOOOOOOO 7“~2/) Table h? Ufteet 0? inside air filn he1t transfer coefficient on the criticol rel1tive Humidity dentin? condensotion on f V5711 ”VIA. "011]..le 9’17"?.".C‘33 coo.coco-0000000000...ooooooo PO) T”H1Q SO PCP“013111 ty of V1rious “1te“i1ls to J1+er V1por (-.S.K.& TY.'..‘. “tide lot-JO) (S) cooooooooooooooooooooooooooooooooo BOO Thole 51 Permeability of verions n1terinls tO'water vapor (Barre) (9) O....0.0.00.0.0...OOOOOOOOCOOO0.0000COOOOOCOOOOOOOO 301 Efifle S2 Hoisture holding nhility of litters (Charles, TOPPQT et :11) (19) 00......OOOOOOOOOOOOOOOCO0.00.0.0...OOCOOOOOOO :10 Tehle 53 Pressure ‘ifforences throth inlets on very still rays ("'rnlton and: :prfimye) (10(1) .OOOOOOOOOOOOOOOOO0.0.0.0... 321 Table Sh Fan canacfi+,y and 1ir in+11ke nre1 recommend1tion for di fferent sizes or poultry helses (T over 1nd Blic okle) (68) Oooo00000000000000.9000...0.0.000.oooooooooooooooo 39:0 m snBIe SS F1n c111c*+y anlt to al air int1ke area recommen: ntion for ii Pnpren“ 517 :95 of poultry flocks (Bell {17151 I-lOO“€) (1)1) 3’41 - 0.0.0.0000...00.00.000.000.0.00.00.00.000000000000 /' m 0 f o '0 o Lehle 56 Amperage of overload sw1tch (Lelbfleisch and Ihite) (S? COOOOOCOOOIOOOCO0.0...COOOOOOOOOOOOOOOOOOOOOOOO... 3511 ‘”b19 57 ”set losses from floor 1nd ceiling ventil1 tors (Ifnj‘Jb plats-”(31‘ “hr-l '%j-+'e) (S?) 0.00.00...OOOCOOOOOOOOOOOO 355 7‘1 . . . ‘”°10 58 “re1 1nd dinnnSJor s of duct for f1ns of different capacity nnfl 3113171040,? (F1irb1n3:s 7‘11“ (30753713171) (31) o... 357 Table 5 r‘ 3- - r- 1 + ' 9 aunm1ry of the oonpu,1tions JOT tee tonal heat loss of Mr. Joseph Rohmwalter's poultry house, Okemos, Route I, lfi‘ChiEan OOOCOOOOOOOOOOOOOOOOOOOOOOI0.0.0.0... 370 AC vnlue 0’ Hr. Joseph Rohmwalter's poultry house, Okenos, Route 1,}filChngn cocoa-00.00.000.000.00.0.0... 371 Table Table Table Table Table Tnble T1b1e 67 68 69 70 71 72 Vointure content of fly. Joseph Hohnwvlter‘s poultry “ i . YO“BQ 114.1138? 0.00.0000...00......OOOOOOIOOOOOCOOOOOOOOO Tenner1tnre of the soil nni deep litter of “r. Joseph }10}WT‘rq-lter's pOUJ-{LIq-‘Ir 2:01:88 .OOOOOOOOCOCOOOOOCOOOOCOOCOC Relationship between inside end outside temperature ... Relptionship Between inside temnersture,nnd rate of venf’ilqtion OOOOOOO...0.000......OOOOOOOOOOOOOOOOOOOOOO Trend in the total sensihle he1t available for purpose of house tenoerntnre control (fans running contin- 11011813,.) 0.0.0.0...0..00....O...OOOOOOOOOOOOIOOOOOOOOOO. Trend in total sensihle host evoilehle for purpose of hOWCe temperature CONtTOI no.0.00.00.00.0000000000000oo Trend in tot°1 sensible heat nvnil1hle for purpose of house tennoratnre control ............................. istimnte of the amount of sensible heat coning from secondary sources (eny time of the day) ............... 5.1- J- Compnrison of the moisture remoV1l capacity of the three fans considered individually .................... fivernge amount 0? total water removed by the fans, fer different ranges of average daily outside temperatures. Comparison of the total moisture removed canneity of the fnns during morning and afternoon periods ......... Summery of the computations for the total heat loss of Hr. labert Levasseur's poultry house, St.Albort, P.Q., Ci‘nada 000000000000000000.000.00000000000000000.00.0000 l ”are bll hll h12 hlS hlo bl? L26 '7\ \N'fiw ’fi 1’1"?“ urn PREP“ "v.53 01‘ .o L; nxUDY The purposes of this study were as follow: l-To review all the literature published on poultry'house fan ventilation, in order to critically enalyze each Factor contributing to the success of its use, esneciellr the niintennnce of dry litters. 2~To point out the fiiscreoqncies in basic assumptions and Show the wide difference of Opinion existing regarding some of the most important fec- tors nffecting ventilation design. 3-To present some nomogrnphs, composite charts and slide rules to solve the moisture removal and temperature control formulas without introducing any of the limitations contained in the different types of charts presented PPQVious to this date. 1, o «eTo conduct performance tests on actual poultry houses in order to obtain 3 be+ter understanding of the theoretiCnl nnalysis and, if possible, to bring some light on the ventilation problem. ,4 Dr'I'O indicate the need for further research on the many aSpects of the DDultry house ventilation problem. mw.»ww-__ _ .-.—.‘ ‘Mvo.._ I. IHTROUUCTION A v-~‘ " a w. d- - . A. Reasons Shy succestul Poultry Nels» ventilation is Tifficult to Obtain The decicn o? noultry house ventilation is more difiicult of dairy barns because of the three follOVing reasons: l—Excess headroom, cubage and wall exnosure as compcred to dairy harms; ?—?clotively small emount of heat produced hy ihi Birds; f—Tolet rely largo emcunt of moisture produced by the oirds. 1. Excess headroom, cuhsge and wall exposure as comoared to dairy barns. The nrohlem of knot loss in noultry houses, as Compared to dairy ‘mrns, is greatly aggravated because poultry houses are constructed for Convenience of +he worker rather than actual requirements of the poultry. Hill (h3) illustrates the riiieulonsness of the situation by consid- ering that if human dwellings were built along similar lines ceilings Wfiuld be from forty to fifty feet in height. Kable (75) mentions that since heat tends to bank at the ceiling, the hen must heat a column of air eight to ten times her height before the benefits at floor level from a rise in temperature. Strahan (100) calculated the ratio of space requirements to be h.8 cubic feet per pound of birdllive weiJht’as compared to 1.7 cubic feet Der pound of cow’live weight. It is seen therefore, that the volume of air to be heated and the 9”"3Te teet 0? radiation curtace in'walls and roof are greater per animal unit than for any other type of livestock shelter. It should be noticed t3)- ‘ , ”t the square feet of wall and roof surface per can also increeses as -. - — ”o-..’ "7 .I-v ‘0“.--~ -‘w' v. the size of house diminishes, so small houses are harder to heat and to ventilate. “no-story poultry ho"ses {or multi-story poultry houses} are an ef- ficient may of reducing both the construction cost and the scuare feet of radiation or erpesed surface per bird. In one story houses, some gain can be made in house warmth and reduction of material cost by reducing front and rear walls heighths. 2. Relatively small amount of heat produced. In designing poultry house ventilation and housing We must also con- sider the fact that the hen is a relatively small heat—production unit. Ashby, Miller et al (L) illustrate this by saying that twenty-five hens occupy more floor space than one dairy eov’hut emit only one—third as much heat. Here detailed study of the heat and moisture production of 5irds Will be presented in a later section. 3. Relatively high amount of moisture produced. The third factor to consider is the quantity of moisture produced. One cow produces about fifteen to twenty pounds of expired moisture per day, The moisture in the excrement is not too much of a problem since in standard dairy barns the excrement is removed from the barn every day. On the other hand, twenty-five hens will produce approximately'eleven pounds of total moisture per day (the moisture eliminated in the excrement is added here since in most cases the litter is allowed to accumulate). This is less than for an equal floor area in a dairy barn, but the fact that only one-third as much heat is produced by the birds makes the problem of moisture removal more difficult in poultry houses than in dairy barns. W. helations Between Ventilation and Insulation Poor insulation or lack of insulation in the poultry house may make ”lmost useless what otherwise would be an excellent ventilation system. *“v - ' us -_ ~ '~ ‘“__._ The nain value of insulation lies in the important protection it gives againct sudden temners ure chanues, {herehy, tending +o maintain a constant tenoorature. The result is a greater moisture holding C(nacity of the air inside the poultry house and a lower relative humidity value, both factors eating for a minimum of condensation on the walls and ceiling, and the main- tenance of a drier litter. There are rather wide differences of opinion as to how much insulation would prove economical in a laying house. Recent arguments seem to favor houses where temperatures are above freezing except for very short periods. It is probable that preventing a drop in egg production, plus saving in feed and labor, will combine to make the added investment in insulating Pmterials a profitable one, particularly in the case of the large enter- prise. Otis and Thite (PO) concluded from their tests on a commercial poult ‘1 I o o o o c . . -©use: "it :3 Significant that this uniformi,y of egg production was done with- out heat other than that produced by the birds. Temperature control by “9”“5 of abundant insulation was probably responsible to a greater extent than Ventilation for satisfactory humidity conditions." These results and many Other similar ones help to substantiate the contention that the problem of DOUItry house ventilation becomes simple when satisfactory temperatures are maintained by adequate insulation. Recommended insulating values to provide the greatest possible degree of control over inside temperature and relative humidity in cold-weather COnsistent with good building investment economy will be presented in a later section. - .- ...- _ h "%._~.‘ _ a..- . 1.---.- h 7. Functional Requirements of a Foultry T’ov so "lflznthl'1 tion firstem " A poultry house ventilation system must meet at least eight functional requirements. These functional requirements are as follow: 1. Prevention of excess condensation on walls and ceilings. A dry house is desirable because it results in an increase in the use— ful life of the building itself and the poultry equipment inside it. no detailed set of rules can he given at this stage concerning the max— imum relative humidity to he maintained in a poultry house if condensation on walls and ceilings must be prevented. However, it can be said that main- tenance of a relative humidity below 60% generally is satisfactory in ordinary Winter urea ther (h). 9. Maintenance of dry litter. One of the greatest problems the poultryman has is keeping the litter dry. If he is successful in keeping it dry, he can eliminate the problem of changing the litter, reduce the nunher of dirty eggs, and provide a more mvfitary condition for the birds. A general recommendation is to limit the nmisture content of litter to below boz, wet basis (h). According to Oliver (78), "maintaining a low relative humidity in the house prevents the absorption of moisture from the air by the litter." He adds: "Most litter material will remain relatively dry where the relative 1lumidity of the air next to the litter is 80% or less, and will-still be quite serviceable where 90% relative humidity prevails part of the time." 3- Eaintenance of reasonable indoor temperature. The removal of excess moisture must he done without lowering the temper— ature sufficiently'to interfere with egg nroduction or the health of the birds: ‘ o s'. . Ventilation system: Hill be used throughout this text although some authors are using both "ventilation system" and "ventilating system" (11, page 175). “‘v‘-- . ——..... l . -—-¢—-.- H, .— .\ " II vdthout unduly increasing feed consumption for maintaining body heat, and "dthont making the house uncomfortable, or cold enough to freeze water pipes. According to Ashby, Filler et al (h) in ordinary weather, the temper— ature of the poultry house should always be maintained above 32°F, but in extreme weather, the house can be allowed to go as low as ISOF. The writer believes that such low tonneratures are undesirable and the houses should be constructed to maintain a temperature as much as possible above 32°F, in ordinary weather, and as close as possible to 32°F, in extremely cold'weathor. In general, desirable indoor temperatures will be maintained only if the house is adequately insrloted and if the ventilation system provides some Teens of partial or complete restriction during extremely cold weather. h.Thintenance o: air_purity and removal of objectionable odors. fiarly standards of ventilation attached great importance to carbon dior- ide concentrations. However, it has since been proven (11) that birds are Eneatly tolerant in this respect and that no injury results from the higher concentrations of carbon dioxide produced by temporarily'restricted ventila— . tion. Therefore, it is assumed that in removing the excess moisture objection— A ; ‘fifle odorS'will also be removed and an adequate supply'of fresh air provided. 5- Eeduction in labor requirements. Another functional requirement of a ventilation system should be to redUce the labor recuirement to a minimum by eliminating: a) the necessity Of'Opening and closing window curtains, dampers or slots one or more times a day;'b) frequent litter changing or addition; 0) the necessity of cleaning t°0 deny dirty eggs. 6 . . ' Aveidanee of draft and excessive air change. A.draft may be defined as a stream of air of relatively higher velocity ens «r ' so, lover temperature than the SHTTOUNdlnSSO .—-_. -__ V. -—. n- ‘_--I ‘w.~._p-‘- 1 A-.." One of to basic recrirr-nants of any ventilation system is to provide uniform air movement through ":hc louse "-rithout drafts, especially in the roosting area. The re" son is "hat hish air welocitj,r accelerates the rate of ‘rreat trens,“er from the body by convection; if it is uneven or local- ized as in a "draft", the result appears to be a derangement of the home— othermic mechanism (ll) with a suhseduent decrease in resistance to infec— tions such as cold and pneumonia. These infections are always accompanied by a drop in egg production and therefore draft should be avoided. by prOper Spacing, location and. size of intakes as will be discussed in a later SQC‘tion. 7- Reduction of the floor space rem'iremenLner bird. General floor space recommendations are roughly three square feet for Shell breeds and four square feet for large breeds. However, Barre and garnet (11) state that although age and breed are the principal factors in determining necessary floor space, the space requirement is less per bird in well insulated houses and in large pens than in poorly insulated houses and in small pens. He presents the information in Table l as a Smmnary of general practice. r‘.‘ I . gable 1. TQOOI‘ Space I‘Ci’illler for qulng hens * (A surmary of general practice) M R Breed size Number of hen Floor space2 N per hen per hen, ft 9min breeds 25 h ( mte Leghorn) 100 3.5 ' 200 3 1100 2.75 W FoLk eedSTPlymouth 29 1,. 5r ,5 C 8: Fhode Island 100 h ued) 200 305 boo 3.25 \ an. From data by Ashby, Miller et a]. (h) .— fl. ‘- 4—»..— -‘-'. ‘ o Lanpnan (65) reports that the use of good ventilation maintains drier houses and makes it possible to reduce the floor space from four square feet 'to as little as 2 l/h to 2 1/2 square feet per bird. The production of the e3rtra number of hens in a well insulated and ventilated pen is believed‘hy nurnw'farmers to pay quickly for the cost of the insulation and the venti- lrrting equipment. Overcrowding should however be avoided as an aid to dis- eaese control and as a means of reducing cannibalism. 8. fHaintenance of more confortable housing conditions during_the hot summer months. -——____. The ventilation system should also help in maintaining more comfortable ‘Kr2~ing conditions during the hot summer months. Bfldwell (15) states that the use of h cm*per hen relieved bird during hot; spells and reduced the loss of many of them because of the heat. He adds 4tT'ir'it."the total cost of operating these fans per month did not cost as much aS two birds that would die because of the tremendous heat." Before instal- 1ation of the fan, as many as fifteen birds had been lost in one night when *3N3 temperature became unbearable. Kable (55) also recommends the summer Use Cd'the fan on still, hot days and says that ventilation by windows should IKBIJSed at other times. Finally Oliver (78) reports that during summer months ‘flkni the litter is quite dry"... a ventilation system helps to remove the dust frOTTI'the air, again helping to minimize the disease problem." D. Advantages and Disadvantages of Natural Gravity Systems There was a time where natural gravity flue systems had one big advan- tage over forced systems, that of being cheaper. * . 'y . cfm, 4111 be used throughout this text as an abbreviation for cubic feet P“r minute. With the actual high price of lu'nl-er, this advantage does not hold anymore and Sty—when and harsh (97) Mention t‘vi'it forced ventilation reduces the first cost by more than half. It is true that natural gravity Flue systems were successful. Put however, successful they have been, they have always been subject to a number of serious objections. Strahan and Marsh (97) point out three of the major objections: l-Large awkward flu-es must be installed. 2—They are expensive, whether they be manuf'zctured or home—built. 3—The season during whi ch they render merimum servi ce 1' s limited by climatic variations. Richardson and Huber (9E3) speaking of natural gravity systems in general mention that the greatest difficulty is in avoiding moisture and. frOst on floors, wall s and ceilings, since "when the weather is extremely 0Old and the wind blows hard they 'pull' the hardest - just when they Shouldn't." In other words they have the great diadvantage of depending upon a number of factors over which no control can be exercised - such as the outside temperature, the direction and velocity of the wind and the amount of heat given off by the poultry. Iempman (65) Cites a very good example of the greater labor require- mom; or natural ventilation as compared to forced ventilation: "The labor saving Feature with the modernized improvement has been very striking. In our Case at the Fbcperiment Station, with the many small pens involved, it takes only a few minutes a week to do the necessary checking of the pens that have thermostatically controlled flue ventilation. In the same pens it Was estimated that in the past with the old system it required at least twenty minutes daily, or ten hours per months, to make the frequent adjust- he . _ . . nts of the numerous Windows and intakes involved. The litter W111 be _$‘hfm '3 " . .9' *“HI‘B _‘ ' _"- T‘nnved oply noon 3 year with this qystem is compared wifh cleonin: at least every two weeks during vintcr under the old reyire." Adventnqes of I-‘o’r'cer1 Ventilation Fhrced ventilation has many adventnges over nqturnl ventilation. These ‘7??? he sumrnrised as follow: 1-1+ nrovidos fresh drv sir, removes moisture and ammonia gases, 1nd "Hairfimins 1 rather constant inside tempersture (when n thernostnt is used), ‘thuereforc, nehing for better producing end Working conditions. 2-It helps to keep the litter dry and loose, resulting in n decresse and to clean eggs, and resulting also of? the labor recrired to remove litter ir1 2 saving of litter material. 3—It hrengyfg draft: and eyngqsivq sir Chance duo in wind 0? sudden Vfilflfi‘lfifis in ovhaige téfihérflflure, {Herqfiorg providing healthier conditions. hpIt reduces the formation of moisture on the house walls end ceilings, ‘Tith.the result of a longer useful life of the building. S-It is automatic, therefore elimineting the labor otherwise recuired t0 Icegulste curtains, windows, damners and slots. 6-Flues are entirely eliminoted or at least very much reduced in size ”“4 sinolified in construction. 7-The fan can be adjusted to most any window opening. 8~It may he used with profit to make the house more comfortable during th . . . . ‘9 h0+;summer months, resultwng in a decrease in mortality and an increase .—— J.». l e ' 1"! ”WEI. egg prOdllCthno 9~Jl is more effective, cheaper and more reliable than most netural flay-1+3, systems. —' —~.~-... ”a”.-- 10 F. Actual Trends Toverd Vechsnicnl Vontilntion of Poultry houses In the lost Few years there hos been 9 ripid increase in the number cx’ electrically Operated ventilition systems. This trend comes from a need *flozc a more positive and e?”cctive Operation, thet is, a system fulfilling two the highest degree possible_*he functional requirements of a ventilqtion sz'ssten as described previously. Because of its advantages, electric fen ventilation, although at first lirnited to large poultry houses, is now applied in houses of any size and Teri manufacturers are providing fans in all sizes even as low as 120 cfm.* Stanleton (9h) compnring naturnl gravity flue ventilation to fan venti— leixion states: "It does not profane the attainments of Rutherford and King tfi’ Say that, had exhaust fans and rural electric service been available when 1. o . o O ‘ 'I . 'dfirs dairy stable ventilation Proolen needed qO-LUtIOT‘: thOY'WOUld “Qt have lrxflcea twice at a hay mow flue. They took whet was at hand and nude some- thiKQgcfi‘it that worked, when properly installed. But if we farm building Ventijgtion people are going to keep on worshipping the glories of Rutherford mri Ping, it will be a little While before there will be any progress in f. o o o 0 ‘ -}H7n ventilation. Rather shouldn't we use the sine ingenuity ns Rutherford W1 King, take the results of fifty ‘7 N J. . o . ~91} [11132431011 problem? I thlnk 500 N G. Ventilotion end Air Conditioning Defined Ventilation is the process of removing air from and supplying fresh air to ‘I o O O I O ”W? enclosed space by mechanical or natural means. Air conditioning, on the 4. . . v<>fi1er hand, is the control by natural or mechanical means of * a” " Ch“. Jill be used throughout this text as an abbreviation for cubic feet per rill mite 0 years of progress and adopt them to this ll l-The csnposition (or purity) Q—The tennereture 3-The humidity N The movement «11‘ the air**ithin fin enclosed space, to produce eni nointein environmentil (nettditions which will nroo‘uce desirei effects upon the occupents of the ‘rcyorlor upon meterinls stored or handled in it (5) (32). lccording to Fairbanks (32), mechanicnl ventilation with its automotic Conifmol is doing more than only ventiloting, it is also providing reel air Ccvrditioning of animol shelters: " hen A.H. Goodnen and I started our work 511 dairy stnhle ventiletion (that was what we celled it and still co el¥hough flue term is not correct), I worked at first with two thoughts in mind: air chsunge and moist re removal. This was not satisfacto ' for the dairy stable. It gradually becane evident thet since I was not satisfied, I had better try to find‘what to do about it. 33 have found out some things and I do not hesitate today to say that we are nir conditioning animal shelters. You do not elwrys have to have a mechanical heating system or a mechanical refrig— qrfitirgrgyghqm to sir condition on nninil shelter. You can do it with animal heet, insulotion, and a properly designed ventilation system. we now control L‘“ O o o o ' 0 ”“9 r70?.‘1positior1 (or purity), tenpcreture, humidity, and motion of the air ‘2 ~°~n8 into animal shelters: t 1~Conposition or purity control: This is controlled by size of outtakes * and intakes, location and design of outtahes end intakes, and Wall construction. ?—3enporeture control: This is accomplished through design of outtakes and intakes, wall and ceiling construction, and animal heat. * , ,. Ohttoke : Will be used throughout this text in P1309 0f exhaust, even though exhaust may be a most common term for many engineers. B—IIILr‘idif,;' control: This is influenced ‘15: 4‘he design of ventilation system, the well end ceiling eon trnction, end the animal heat end noietnre profiuction. h—Air motion control: This is controlled by the design of the venti- l letion system, the well end coiling; construction, and the animal heat di stri bntion', H It should he noted that although there are some cases where mechanical her-at is necessary to obtain the desired results, for exrmple in breeder iuoxnees, in most other types of animal shelters nrtif'ciel heat is not re- C‘I‘lred. Fairhants (3?) eonelnfios by saying: "Let's put ventilation in the hack- gnwnxnd and still nee it as one o” the tools with which we work. Let's not give so much publicity to ventilation of farm buildings. But let's put the conditioning v ’Wflfilesis on nir conditioning. let‘s explain clearly what air 13, and "re "rill then have more 91“} we \W‘Cl ”o in this fielii." The writer's opinion is that Mr. Fairbanks is completely right when he states that with mechanical ventilation, thermostat control, proper size ”“d distribution of Air intakes, proper wall end ceiling insulation and -“—-—. ._ adequgfie eninel population we are doing a real job of air conditioning. 7 “bwevruy the writer believes we should still continue to use the name "venti- ‘i,+. o . o o u o o ~4vlorfl'1nstead of the name "air conditioning", because in the mind of to —-.. - _.. . _ -l “-0. w - Tmny People the name "air conditioning" would take the meaning of something ”+11 9 o o I o o o r*'£3' eXpensive like a "residence eir nonditioning unit." w-“ II. stunt? or? 73"}: WT‘7'“II."-_TIOII E! POULTRY Luise Horses 8: fJ- The purpose of this second pert 31.;30 review 311 the literature published on the design of poultry house fan vwerrtilation, in order to critically analyze each fector contributing to the snuzcess of its use, esnecially the maintenance of dry litters. EL-Tho stress the discrepancies in hasic assumptions and the completely dif— crnent opinions existing regarding some of the most important teeters. :3—Tk>:how the limitations of the different types of poultry house ventiletion CLVTPts published to date. h-To nresent. monographs, composite charts end slide rules for the si‘Tplifi— cation of poultry house ventilation design and analysis. Because of the many factors involved, the writer found it preferable to ixmlude the review of literature under the study or each factor instead of gznuping it confusedly in a separate section. The factors to be considered are: Flmsiological requirements of hens. ° Heat and moisture production of hens. Secondary sources of heat and moisture in poultry houses. Design outside weather conditions. Tfethods of standardization of poultry house ventilation. Poultry house ventilation formulas. Thriltry house ventilation charts. it Poulimy house ventilation monographs. 15 Poultry house ventilation composite charts. J. - Ponltryhouse ventilation slide rules. "iiIIIIIIIIIIIIIIIIIIIIIIII::_____——————————————————————————————————————————————————— ‘wnw ‘H-‘——-_ , . v...‘o‘.._.‘.-_ v. P3 The prohlen o? temporeture control. L. The problem of condensation on walls and ceiling surfaces. 3 The problem of condensation within walls and ceilings. ‘3 The prohlem of condensation on the interior surface of cold attic walls. C). The wet litter problem. i”. Design of the intake system. :3. Design of the outtake syst n. A. Physiological Requirements of Hens :1. Environnentil temperature a. Low critical temperature for hens. The so—called "low critical +xrnnernture" is defined as the environmental temperature at and below which tine heat proiuction of a warm blooded animal will increase to prevent a lxrvering of body temper"ture. For laying hens on full feed and normelly active, Lipnincott and Card 065) give the critical temperature as being approximately 15°F. They also “9n+ion that the critical tenncrature of the sane hens while on the roost at Ffight is about MOOF, since the "activity increment" of heat production is rmfl.available. (For fasting birds at rest it would be about 62°F). Discussin: the economic aspect of the low critical temperature, the same authors (66) make the following statement: "Since the animal is both producing heat and losing bent to its surroundings, it is essential that there hm some sort of adjustment between these two processes in order to fin . V! O Intajn a constant body temporfiture. dhen the enVironmental temperature 1“- ”bove Hw In. e critical point the heat radiating capacity of the body is varied irr+1 . . . . . . . . . ~ ~40 so-called phySical regulation; wnen it is below the critical pOint 1,939+ r‘ o o 0 ‘ ‘“ Pr0:uction is varied by the so—callod ChOfllC“l regulation to meet the he ‘ o o ed-S of the body. The energy renuired fer the increased heat production ml." . o - ' ' . '“r ~UCh conditions can cone only from the feed. Hence in the interest 0...“... -, _ w 1.4 \JI 1‘othof‘ econorry and sustained egg: production it is desirable to lzeop the temperoture of loying houses above the Orifice]. p05 nt.” b. Optimum poultry house tenrergture. The optimum poultry house temper— eivure 1: defined as the tempereture or tenpornture range within which egg rncoduction is not aftected adversely, end poultry house menegenent is not ccyrplicated by any special problem such as freezing of water system, etc. Summarizing the work of meny researchers, Barre and Snmmet (lO) rec— <3nunend the renee of 30 to YOOF as being the desirable working range of irndoor tennernture. They say: "The optimum temperature for poultry pro- dinetion is not Pnown. There is ernerinentcl evidence to indicate that prwvduction is not effected adversely at tenpereture as low as 10°F. At +319 lot-fer tanner-"turn, h0‘-"(’-‘-’°r: {MTG 59 "m“ dnnger that combs and Wettles Temperetu“es below freezing (32°F) are a considerable *is- alvnntoce with reenect to labor ef’iciency and the freezing of water systems. -A u c—u—‘v Table E. Trend in egg production of G—lb laying tens as affected by environmental tcnnerature"'L _—. .— Taviroruvnztal 350 ho° hSO “0° fl, fio° 65° 70° 75° 80° 96° 90° temperature »f , « fl of egg Droiuction 52 59 7h 77 78 77 75 73 57 ”2 S7 50 _Eex L '* 7lor data Tu: 0t“, Carver and Ashby (79) The Insulation Board Institute (h?) citing some results obtained at Iowa State College state thct hens in insulated houses laid s’xteen more eggs per bird and reouircd one pound of feed less to produce each dozen of eggs. 0 v C l o — . ‘1‘ .. -. .‘ r‘, x - ,- 1”, a. L 'Q on ___+,~3;"f': .M N1 ‘P V '-\ -5 .A ~ A 1‘ o— » 1 -‘§‘ “ ' Lg.- .. l {ye-i ban h OLA . -I N -‘ ‘ I‘ n- .1 u . :-- . - c_- r. 1‘ v. . a“ — . e- - r ‘1 — -—- ,-(vv~ ..-. *“ ' " “ — WV- ’. -‘ .wfitm 'r: ‘ "t :1. 1.x 7“ l‘ ' H E‘ .. +' -§ " ‘ ' --?'.' ‘ ..,'..L .. E ‘- «sul—hJ _.. Lr-v. .L-J .- .. poultry hn“ces subject to very wide fluctuations of temperature. Horeovcr, if lower environmental temperatures really results in lower egg production as Tonnd by Ota, Carver and Ashby (79) and Iowa Stite College (h9), the proper insulation of laying houses more than pays for itself, and should ‘fihly recommended because of the additional benefit it may bring to L4.” b—q-A be the poultrymen. c “cs'"n poultrz house temperature. The dcsirn poultry house temper- ature is defined as the minimum temperature below which the house Will not be permitted to fell in cold veflthdr- Ashhy, Viller et al (h) recommend to mcintain +h0 indoor t93T°r9ture nuction with ordinnry feeding. ’ .« e“ l 1‘7 “.f" revet‘.‘“€‘ P’hbeblv Offset A _ , _ w .‘ !_‘ A, J ‘ .—‘l _ A ‘ ‘ «A a..._ ‘. P9 (J m w 7‘) _ ‘ ‘ ., n " ‘ mule 6. neeorr'ended FEC‘FTlfil“. temperatures Jor poultry laying houses “ "‘ ‘4 Temper: tur e Grr‘i nn ry Extreme zone "‘ (0F) (OF) cone 1 32 15 one 2 L0 20 Zone 3 1:5 25 Zone I; 50 32 it- A map of these temperature zones will be presented in section D dealing with design outside weather conditions. 3* 3|! From Ashby, T-Tiller et a1 (1;) Strahan (100) recognizes that design poultry house temperature is a management decision, and involves a question upon which opinions vary. He recommends 35°F (:1 temperature just a little above freezing) as being prob- ably the most economical temperature. It is also the opinion of the writer that houses should be constricted to maintain a temperature as much as pos- sible above 32°F, in grdinary weather, end as close as possible to 32°F, in extremely cold weather. The insulation values to wet these requirements will be discussed in more details in section K dealing with the problem of temperature con— trol. 2. Enviromnental relative humidity a. Optimum poultry house relative humidity. The optimum poultry house relative humidity is defined as the relative humidity or relative humidity range within which production is not affected adversely, and poultry house management is not complicated by aw wecial problem such as excessive condensation, excessive dust, etC. 21 is a conclusion of his seven years of research in eight poultry houses, Smith (93) reported that "no correlation was Found hetween humility and winter egg production." G*tteridge et a1 (39) also reported in the same way: "Restriction of ventilation to a minimum, all ventilators heing completely closed with a resulting temperature of 119.6% and very high humidity and. carbon diomde content of the air had no detrimental effect upon egg production." Nutter ct a1 (L7) reporting on their tests state that "Relative hu- midity, ranging from hCfi, but never remaining above 90%, longer than 2h hours, seemed to have no effect on pen conditions or on the activity of ire birds throughout this test." In their text book, Poultry Production, Lippincott and Card (66) do not agree with the above reportS. They say: "There is no condition under which poultry is kept, unless it is a state of starvation, that is more surety and quickly fatal to profitable production than dampness in the roosting and scratching quarters." They add: "Damp air compels fouls to increase their already'rnpid respiration. It is not uncommon to see ' chickens confined in a damp house, panting on a day'that is rather cold. That such a condition is undesirable is so obvious as to need no argument. Relative humidity'in an ideal poultry house would never exceed 75, or perhaps 80%." ‘ Barre and Sammet (10) state that: "it undoubtedly is true that poultry can adjust satisfactorily to a considerable range of’relative humidity". However, they add: "If the relative humidity is too low, it may result in excessively dry and dusty litter, which may'contribute to respiratory irri- tation." They consider a range of 70 to 80% relative humidity to be desir- able during the winter months (11). h. Design poultry he on relative humiiity. Design poultry house relative humidity is defined as the maximum relative humidity above which the honpq will not Dormitted to go in cold weather. Since the main reason of this maximum limit is the avoidance of con— densation on walls and Ceilings, and perhaps also in the litter, this max— imum limit depends on the insulfition value of the walls and ceilings. This question'yill he explained in more detail in section L dealing with the insulation requirements to prevent condensation and some charts and slide rules will he presented to find rapidly the value of this maximum or design relative humidity. However, it can he said that in general relative humidity below 80% in ordinary weather and around 90% during short cold spells is not detri— mental and is considered satisfactory. Ashby, Killer et al (h) state on this respect: "To minimize moisture condensation on walls and ceilings and to avoid Odors that might affect egg quality there should be enough air change through the house to keep the relative humidity below 80% in ordi- 1 nary winter weather." 3 . Air purity ' : a. Carbon dioxide. Early ventilation standards attached great im- portance to carbon dioxide concentrations. Discussing the work of other researchers, Barre and Sammet (ll) state: "Concentrations as low as 0.02 to 0.07%'were not held to be injurious but were previously considered indicative of a dangerous accumulation of "crowd.poisons". It was mainly on such opinion that King (63) established smandards of ventilation that were followed for many years. The physio- logical effect of high carbon dioxide, concentrations is to increase the rate of respiration, but this result rarely is harmful. Kelley (58) re- ports that studies subsequent to King's indicate a high tolerance with 4 ‘ ~——_—__. 'H" .. - Inn-II“. ' V"—-¢~» -. b-u—o.‘~_ ’4‘-“ respect to carbon dioxide, concentrations as high as 20 to 303 having been breathed for several hours Without injurious effect. This tolerance of carbon dioxide may not hold for incompletely developed organisms, chick embryos, for example, are affected adversely in concentrations of carbon dioxide greater than 1.5%." The general conclusion of Barre and Sammet (ll) is that ventilation required for other purposes usually is great enough to eliminate carton dioxide as a significant environmental factor. b. Odors. Very little infornation is available on the physiological effect of odors on hens. According to Barre and Sanmet (11), large accu- nulations of odors affect comfort and may have an adVerse effect on the Quality of product, as it does for milk. Fairbanks and Goodman (31) also 'A nigh in moisture and ammonia and low in oxygen is Ffote fihrt: "air that is unpleasant to breathe and is not healthful." Here also it can be said that ventilation required for other purposes usually is greet enough to eliminate odors as a significant environmental factor. h. Air velocity oHigh critical air velocity. High "critical air velocity" is defined as the air velocity at and above which the birds may be subject to cold or pneumonia in extremely cold weather. High air velocity results in a dangerous draft when the outside air temperatzre is very cold. For this reason, it is generally recommend to use many air intakes, well distributed around the house and of a total area such as to give a reduced air velocity. The maximum air velocity used in C O O O O I # eonputing the size of air intakes is cons1dered as 700 fpm or 8 mph by ”* fpm and mph: Will be used throughout this text as an abbreviation of "feet per minute" and "miles per hour" respectively. r.“ -- v .. _—__.. r)! ‘Y 733' tchell (7(3) anti 8’70 fpm by Birre non-f? Samet (11). finch 375.1" V9100- in ities seem to he the maximum sn’e velocity for protection ngainst cold and pneumonia. The design of air intakes to meet these requirements and avoid dan- gerous drafts will he discussed in more detail in a special section. 5. Litter moisture content a. Optimum poultry house litter noi~ture content. Optimum poultry house litter mointure is defined as the litter moisture content or moisture content rnnqe Within which the hires enjoy the greatest comfort and are least susceptible to disease, nnd poultry management is complicnted by no speciel problem (such is excessive number of dirty eggs, too frequent ed- ”itions or changes of litter required, etc.). Barre and Sammet (10) discussing the optimum relative humidity for hens report that: "if the relntive humidity is lam, it mmy'result in ex- cessively dry one dusty litter, which may contribute to respiratory irri- tion." Lippincott and Card (6’) state that excessive relative humioity, even to the point of continuous wet litter, while not desirable, need not in itself profluce detrimentnl results When the temperature is moderate and Ihirly constnnt, however, they and that: "there is no coniition under which of starv~tion, that is more surely poultry is kept, unless it is in a stete and quickly fatal to profitable profluction than dampness in the roosting find scratching euirters. It makes the birds uncomfortable and renders them quite susceptible to disease." tn Design poultry house litter moisture content. Design poultry house litter moisture content is defined as the maximum litter moisture content nbovewhich the moisture content of the litter Will not be permitted to go in cold weather. DJ 3 :3 ,4 Ti 5 *‘1 0 L5 (9 r? J U) r. o o o O I_ ' ‘ L much a mnXimum is given in orier no reiace .uu o o y 'I I - ~ ' . 1 and the frequency of additions or onentes of litter \RRJdction in loner - I O C ‘\ sue metericl renuiremeuts}. A Q“nernl reconiendntion is to 11¢ t the moisture content of litter to Below hfih wht bns2_ ‘--—« ’...— q .W— -'-—-_—- ”— H" .0 .~ -4-“ _.._. I, R. Heat and Voicturc Production of Hens l. Basel heat end moisturewproduction of birds The bssnl beet production of an snimsl is its minimum energy expend— iture. This factor deternincs the minimum requirements for food energy, and apneirs to be one of the most constant of biological measurements. fiinc fiitchell and Yellev‘s (73) estiuntes of the heat production of birds .L.&‘.4 .. o are based on enrly tests on the basal metabolism (71), a review of the lit- ereture will be made to see if there is reasonable agreement in the results obtained. 2. Mitchell, Card and Hoines basal heat values. In 1927, Mitchell, Card and Heines (71) presented some bnsnl heat data on White leghorn and 7hite Plymouth Rock chickens up to one year old. These data were obtained by submitting the birds to a fast of fortyeeight hours and then placing them in a cylindrical animal chamber of appropriate size, where they were subjected to a respiration test of twenty—two to twentyethree hours du— ration. The temperiture of the laboratory, unfortunately, varied widely during these tests and it may be suspected that the heat production of the birds was raised to some extent above the basal, during the coldest uenther. Eh“ following table (Table 7) conteins the group averages obtained from their experiments. It is interesting to note that while the basal heat production per square meter of body’surface'was remarkably constant for all age groups, except the youngest cockerels, the basal heat production per kilogram of body weight decreased continuously with advancing age. ' "' ---... -_ ‘_._____—..- “.- -‘-— Tnhle 7. Vqsnl heit produced hy hirds o” dit’orent Weifttsl‘ I‘J N3 Thinher A210 "Jew: (”fit “H‘wf‘r 739 13,. .. .q 5 02+ TTf‘F- awplj 73.“. (1;. ll-" '0? fire“ ”V?G?II.T7§:TTTFT§"31 TYH'? were notcrr Birds ‘ hodv reifiht ho“? sur_nce Says) (Crone ( r. (n1.) (7els)** Ciels)' (C215, ”. ‘1". “Mo-I 3-17}; h 37 2P3 326 h? 166 1hh1 6 76 693 783 65 96 832 S 12 132h th 103 81 th 5 19h 1928 1‘05 13g 7 859 6 2L2 2705 1979 71 63 06h 6 3h0 7728 198 169 62 PS6 PV"ISTS 7 9b 735 32h 63 ES 788 6 128 10h2 1030 79 75 760 n 6 192 1h50 1290 113 77 061 5 251 1933 1523 120 62 785 6 355 218h 16h0 129 60 796 it From data by Mitchell, Card eno Heines (71) *-4I Cnls: Will he "sod throughout this text as an abbreviation for calories m In previous eXperinents with nineteen mature diode Island Red cocks and twenty-eight non-laying hens, Vitohell and Heines (7h) found average values of 804 calories for the cooks and 703 calories for the hens, Which is lower than the values obtained for the young White Plymouth Books (352 calories for cookerels and 805 celories for pullets). this fact, Witchell, Cord and "mines (71) made some tests with four mature White Plymouth Rock hens. 50 minutes) and were taken when the birds were completely at rest. Seve ernl determinstions were node upon eoch hen end an average value of 628 calories was obtained which is still lower with the Rhode Island Red mature non—lnying hens. The periods of observations were short (30 to According the difference is probably due to a less degree of activity. "It appears that the values obtained for the young White Plymouth Rock In order to verify than the value of 703 obtained to the authors, They concluded: w." 28 . '5‘5 data was presented on the basal production of expired moisture. ‘ O t V ( fIbr convenience, the folio-ring: table (Treble 8) presents the above . ‘v 2 m in units 01' pounds (1 pound - 153.6 grams) and in units of Btu ' El 3h: .- 252 Calories): , . .. knights 3. Basal hent proouced by birds of Airfarent weights" ‘ V . COCKERELS 13mm: ‘ Weight Basal heat Age ”Height Basal heat (Total) Total) , (Lb) (Btu/Hr,bird) (Days) (Lb) (Btu/Hr,bird) 0.623 7.79 9b 1.62 10.75 - . 7.1.503 10.75 128 2.29h 13.07 ' \ 2.811; 17.86 192 3.191; 18.70 ' h.25 22.80 251 b.26 19.85 ‘ 15.96 28.30 395 11.82 21.33 2 01 27.90 31788.1 heat and moisture values. In 1937, Dukes (28) reported T« to twenty-two months of age. He concluded: "The average fete of mature hens, after a fast of approximately twenty- 1.3-duration was not far from 57.6 calories per kilogram _re basal metabolism for mature Rhode Island Red (703 Apr per day). ' the heat loss due to Vaporization of water 35° 25, of the total heat loss, at 77°F, and *0 -uoue “Alan... *‘M ——.—_< - - ‘- 2..- 1....—o 4. - ~_ c. Farott and Frinjle heat ”oi moivture values. Parott one Pringle (o) oresented in IThG some of their results on the basal metabolism of Rhode Isl°n4 Red female birds ns ohtoinefl hy the use of the resnirotion colorineters of Peltsville, Vorylnnd (Table 9). The original values were in calories per hour per gram of liveweight. The writer converted them to Btu per hour nor hon hy *he use of the conversion formula: VtU/Hr, hen a Calories/Yr, gram of liveweight x Grows of livewetght 972 colories/fitu In general, these values compare reasonably well with the Nitchell, Cerd and Hoines h9871 hoot values (71). One very important observation is the effect of the environmental tonporqture on the total basal heat produc— tion. l-For birds below two pounds, the basal heat production at the high ex— . o treme is shout hclf o' thnt at ho F. E-For birds between two and Tour pounds, the basal heat production at the . . 0 0 h1gh extreme is about two-thirds of that at to F, 3-For birds shove four pounds, the basal heat production is nearly con- stant, being at the high extreme from 85 to 95% of that at ho°p, -w..-.~ - .. ~—-—~_.__ _ ~-.—~.. wu—-—H- _.__~-_' 3O A3 .333 was 305m .3. 3.3 Bonn e 1:25.: I no.mm oo.mm om.>w oo.eN oo.om oo.om no.5N om.hm m¢.mw oo.om oo.on 09.0 no I oa.¢m 0H.¢m an.nm ,na.mw mo.mm nb.nm 0H.#N oo.¢w no.0m 0N.>N aflomm an.# an I b.HN no.0m «H.0m es.oa bb.ma «H.0m nb.om 0*.HN mo.mm $0.9“ no.0m «H.§N ou.n OH I #H.®H No.ma wo.ma $0.0H mb.oa .o¢.pd o¢.mH &§.0H m0.o~ mo.mm mm.nw 0H.nm oom.m MA I oe.HH mn.aa oe.HH nN.NH nb.mH 05.na n§.¢d oo.md on.bd m§.md oo.om mm.HN mom.d 0 I na.o na.o mn.w oo.o mo.> w¢.w 0H.o Oo.o no.0H DH.HH nn.HH I Nun.o m an.m nm.w N¢.N om.m nH.n nm.n 50.» em.n I I I I I mad.o a ow.o 05.0 «0.0 om.d v¢.« He.a mm.d nm.a I I I I I mobo.o HIO OOH no 00 am om me Oh no on on on 0* 0* 3.: 3...: - in. 2383an . 23°; .3 iaenfin .um\sumv .moudaauomEou Hepaoafionapqe anououuau we unawaoe anououuwc no neufin an eooseona anon Hanna .0 eanufl Worott ond Fringle (F) presented data on the nois— In the cone p1per ture expired hyh. rds anolyzed for 59511 motn‘volism (Table 10). The orig— inal volues were in niligr‘ns of vote? per hour per gram of livevcight. The writer converted them to pounds per day per one hundred hens by the use of the conversion formula: Lb/UflY, 100 hens - ngs/Tr, Srem o” livewei"h+ -. grfims 0f 1iV8W9i3“t X 2h X 10 1000 mgs7hrnm x 4h§3.5 grows/l‘o 1;) One i terestin" ohs erv ti_on conccrns the rouge of tempcr“ture over 1) vtich *he F1311 ezpirod moictu re'wes found to rem1in consten l-For Chickens less than one week old, the rate std. s to increase at 950? Q-For chickens two weeks old, the rate starts to increase at 85°F. 3-Vor Cr;iC’ers from this age up to twelve weeks, the rat0 starts to ----- incre1se at 80°F. hpTor birds one yeor ol‘, the rate of oosql expirol moisture is constant fronl C +061350 and it storts to increase ouite rnpidly, efter a temp1r— 01 . qtnre of 90 r is reached. At these higher temperatures, the incre1sc in exnired moisture is for purpoce of cooling. It should he noted thot +his moisture production by the birds is for 4] _._I fasting birds (no feed nor water) being stuuied for bnscl metabolism. It is probable thet such values do not 1pply readily to active birds in pro- duction. v_._ ._ ' ‘1 “hm if k Ill! \ IH‘\I v Itlr‘ III 1‘1“; 4| 1 AlJl..1Ifl| Q.- i I! ‘ i i . ‘. i ‘l ‘i II‘III ‘l‘ulllil.‘lv|lll\r'l\l ‘l‘l‘K l u|llln .l 2 3 .3 93.55 as. $88 .3 38 loan » P78 ozSRufiz. but; win. #2....th . ‘ ’ .. 86... 3.1. 3.8 8.3 2.6 8.1«1—«5. «S. «.3. «p... «p... 2.... a. 3.... «a u 8.6 2.2 $6. 86 86 86 l 86 S6 86 86 .. ,1 Sn... 3 ... .. $64 a... 8.... $6 2... 5... 56 56 36 36 u u 254 a . .._.... i .1._,.,. 3... on... $6 84 84 84 mm; 84 84 8.4 no; a - «$6 a swan... .35.... 024 «SA 686 «26 «2.6 «2.6 «2.6 «2.6 . .. - u u «36 u .. ..C 990.0 090.0 090.0 090.0 090.0 090.0 090.0 090.0 I I I I I 92.0.0 H10. 03 on no 8 9. 0‘. no on ., :0. 5909095..— A-«ualugaruo £3333 on 350‘. a 7L The totcl He1+ nrofluction of birds ' . - .1 .1 V The b1scl notebolism of birds hes been She ubflfiCt of much study, out total heat production of birds hes not been so widely'iuvestigwg.,ed 1m‘5h a velue of first interest for use in the ‘osign of poMIJ rv l‘.ouevcn5i1ation. filthe ebsence of test ”ate, cone estinetes were made by Kit ohcll and Telley (73) as early es 1933. These estin1tes 1lthough probably in error ‘mve been very useful +0 eucinecrs in the p15t and are still used by many incense the results from celorincter tests are still incomplete and un— yfijgfagtory. Pn+h ac*1mc*cs 1n'J c1lorine+er tests dete will be presented end discussed here. ."itchell and Kelley values. In 1933, Hi chell 1nd Iel lay (73) presented the first practic1l eni comprehensive estimate of the heat pro- timtion of birds for use in the design of poultry house ventil1tion systens. The general nroceiure followed in n1king the estin1tes has been to factor mn,1nd to assess es scour1tely 15 possible all of tie items contributing in the energy recuircnents «n6 expenditures of the birds and then to into— gnnte these factors for birds of different weights. T1151; COIISldel‘e-d +1.16 +otn1 hey}- prot not ion as 60111,“. O the sum Of: These v1lucs were taken as suml to that renorted by‘hitchell, Cord and neines (71) in ,he inves ti- gation discus. ed previously. Qgghe energy;e§p3njej in_nus£ulnr activity: These velues were as— 'uned as ecual to one half the besql beet. The justificetion of this re— lation for chickens is discussed fully ”Dy i chell, Carded;1emilton (75). 3f2h2 hegt_inc£enent_due_to feed: ine heating effect of the feed was taken as 68 c1lories per one hundred grams of dry matter, this being the heat increment of wheat for chickens (59) (60). In the use of this value of 68 calories, no allowence for a variable heating effect of feed as the “—4 u- “-'-0.--, _ wr~‘w*-_ 3h level a" feeding is V1ried 1oulfi he n1de in the absence of infornation on this yoint. However, it had been found th1t the heating effect on chickens Hr’ 1') n - ~ . a» 1~ L~ : a per xr1n o corn fed 1e nuci the ssne 'neuier naey are eating _0 or grnns of corn d1ily (72). h-The adul+1on1l energy re1uirenen+ for ecg nrodLm tion: The three precedent heat elements are for 1et,ive non-produ sing hens. For a female hird in production, the net energy recnirenents are increased as are also +he cc n1 umn ion of food 1nd W1+1r and neat production increase for a pullet producing aaaaaaaa . \ one egg a day of average size (2 ounces}, to he equal to 3.8 Btu/hr. The writer used only 3 Btu however, sin1e it is evident that not all hens “rule lay each d1y. The Velues nr es-1nted by Nitchell and Kelley (73) were expressed in A calories. The rriter chm e3e” them to Btu hy using the following conver- sion 1“ormula: Tit‘d/Hr, hire = C1lorics/Way, hen 2R hrs v. (1.25% C1.lories7Btu J The results are shown in Table 11. It 1hould he noted th1t "itchell and Kelley assumed the total heat production of birds to be eon1t1nt and not affected.hy the environmental tennercture. the elimination of heat and noieture. ‘ —--«-n—. . . , ‘ .qp ~ . a I. p \ 1‘ 1lr; . 7"“; r73 “ bn-QC‘ thlfi 11. Totnl heat ppnlwcoi bJ h11ds of «if.nroqu -21,.ns .Jd ore, 0. Breed gfifiytt A39 (7och) Potal heat prm4nct50n (“tn/Hr. hen) 1vm121 —- ~ ~ Halos Fonnles fictive nvn— Active Birds (lb) producing birds producing 3333 .‘JI’Ihite‘ loghorn O. 077 O, O O. O 1. 66 __ “hIC‘cns 0.9 u.o u.u 13.56 - 1.0 6.0 ?.2 19.13 - 1.5 9.5 11.5 21.82 - 2.0 12.5 1h.8 25.62 — 3.0 18.2 22.h 32.07 35.07 h.O 2S.u 38.3 3fl.?5 h1.85 500 3300 - 1150ng 1190115 Bffifite Plymouth 0.077 0.0 0.0 1.6 - Rock chickens 0.5 h.6 h.6 13.56 - 1.0 4.6 A07 1-9018 "" 1.5 8.7 8.9 22.3 - 2.0 9.7 10.7 25.3 - 3.0 12.h 1h.9 33.0 36.0 1100 15,07 19011 3903 ,'203 .S.0 19.3 27.h h5.3 h9.2 6.0 2303 " 5102 51io2 700 "' " SFOS " i! From data by Mitchell <9: Kelley (73) b. Warre and finnnet Value. Barre and fannet (ll) computed the total heat production of a four pound laying hen to he 60 Btu per hour which is fifty percent more than the volue of Hitchell and Kelley (73) for an active nonsproducing hen fed at the rate of 72 grams of dry matter per day (39.3 Etu per hour). They say: "For birds producing at the average rate of 220 eggs per year, the quantity of feed consumed'would be considerably'grenter. It would be still greater during the periods of highest production. Since the high production occurs fluring the cold months, when ventilation for moisture removal is most critical, 3 production rate of 275 eggs per year is chosen for purpose of analysis. At this rate of production the feed requirement is estimnted by'Jull (53) as being 109 grams. If heat pro— @KMfion is assumed to be proportional to the total dry matter fed (an a,.-—.-—-. “.0 36 awaitedly rough assumption), the total heat generated is equal to: Ln Ptu x 109 grans a 40.0 peg my qweroxinately 60 Qtu for a four pound hen”. 73gnms The heat increment due to feed constitutes only a part of the total heat production as mentioned previously, the other perts being the energy eXpended in basal netabolisn, the energy expended in muscular activity and the additional energy requirement for egg production. Since eggs are col— lected and taken out of the poultry house every day, they do not constitute a reserve that the hird can utilize as a source of heat for its basal me- tabolism or its nusculnr activity. Therefore, the 3h grams of additional feed required to produce an egg are only partially effective in as much as the heat production of the bird is concerned. Only the heat increment value of these 3h grams of additional feed must be considered. As pre- viously'nentioned, the heat increment due to feed is equal to 58 Calories per one hundred grans of dry matter, therefore in terms of Btu the addi— tional energy production due to the laying of an egg is: 3); (fans 2: 68- Cal_ories}-’1003rers - = 3.1. Btu/Hr (73). 100 grams x 2h hours x 0.352 Calories/Btu Barre and Finnet (ll) found in their assumption a value of 60.6 - to - 20.6 Btu per hour as compared to ihis value of 3.8 Btu per hour. It should be noted however, that Barre and Sammet value (60 Btu/Hr, hen) although based on a wrong assumption may be used for design if one considers it as including not only the heat given off directly by the birds, but also the heat from secondary sources such as the litter and the sun. c. Strahan value. In their original table Mitchell and Kelley (73) gave only the heat production of active birds not in production. Many people did not read Mitchell and Kelley's article carefully'enough and thought that the heat production qiven‘was for laying hens in production. 3trnhan (99), who wrote extensively'on poultry house ventilation, always *1 -...-. q. -—--——... ‘—~v-r._... “mo—i“.--- ku «I used the non—corrected values from Vitchell and Kelley (73) and seems to have mislead many people who tooks his values and didn't refer back to the original article of Nitchell and Kelley. d. Ota, Garver and Ashby values. Ota, Server and Ashby (79) presented in March, 1953, their preliminary results from the study conducted with the poultry respiration calorimeters at Boltsville, flaryland. There calorimeters measure 5 feet by 7 feet by 6 feet high and accommodate ten hens. The authors specify that their report must be considered as prelim» inary: "indicating trends rather than absolute values, since it was based on tests with a total of only twenty hens, at somewhat varying air flow rates". However, their results are nresented here (Table 12 ) since the rriter believes that they are very probably more exact than Hitchell and Kelley's estimates (73). Table 12 . Total heat produced by S-lb birds at different environmental temperature5‘* Environmental Total heat produced temperature by S-lb birds (0F) . (Btu/Hr, hen) ho 53.5 145 520 50 51.0 55 119.0 60 h7.0 65 115.0 70 h3.0 75 hO.S ‘30 37.3 8 33. ‘*'From data by Ota, Garver and Ashby (79) One important consideration in their findings is the considerable dr0p in total heat production'with an increase in temperature: At hOOF, the total heat production of a five pound bird is 53.5 Btu per hour, per hen, as compared to only 33.5 Btu at 85°F. This reduction of nearly hofl is an aspect of the - -‘ a ""‘-rfl.. --.. —-.—-—.~ .- . *fi—n—m- *. 38 i on that not considered in mtchell and Kelley's estimates (73) , was not evident mm Barott and Pringle's (8) basal heat data. , -hflmr consideration is the lack of data for temerature below [10°F ~.‘ . 1 3 ) . L 1 _ I r , . m these are the temperatures with which the farm structure engineer '- 5143 concerned when designing for extremely cold temperatures. It is hoped "that heat and water production will be determined soon for temperatures as . 3 low as 25°F or even lower. - 9. Modified Ota! Garver and Ashby values. Since Ota, Garver and Ashby . . Values (79) were given only for five pound birds, the writer interpolated m for hens from 3 to 6.5 pounds by using the relationship that heat pro— ‘mm is directly proportional to the 0.73 power of the liveweight (6h) -. 3:50. The results are shown in Table 13 . '35». 13 Total heat produced by birds of different weights at ’ different environmental temperatures (Btu/Hr, hen) Bird liveweight (Lb) 375 11.0 11.5 5.0 9.5 5.0 5.5 f 9. 5355 5775‘ 51.? 6137! 36.2 ' 110.11 1.1.6 118.? 52.5 56.2 59.9 63.5 2 35.1 39.3 1.3.3 117.3 51.0 51..7 58.2 61.7 .‘_ 33.8 37.8 1.1.8 1.5.1. 1.9.0 52.5 55.9 59.2 5.73.32.11 36.2 39.9 13.5 17.0 50.3 53.7 56.8 ' ' 31.7 38.2 1.1.7 1.5.0 18.2 51.1. 51.1. 33.1 36.5 39.8 h3.o h6.1 h9.1 52.0 p 31.2 311.3 37.5 1.0.5 113.1. 116.2 119.0 '. 28.9 31.8 31.7 37.5 110.2 112.8 15.11 . «25.8 28.11 31.0 33.5 35.9 38.2 110.5 a w 0&ij and Ashby (79) by the writer from the relationship that heat is 101131 to the 0.73 power of the livéweight :0; -<-* 51- 1 _)>_- .L ."3 -.m‘.“. fi—“g “A. -2 4 . M ,¢.--n.‘w n--- .1 . _. 4.», AA __ o ‘ i ‘ . The FollCWLng tnsie \.mch 1;) is pres"nted For the purpose 0” eonpering Q r L'“ "(‘r’ "in: (”'1 r‘vsvfi'r‘v‘ '1“, f. 1-“‘-\‘r "17“rx-e "m ‘1‘-.'\ “ft-"1 nc‘:"-wvm-- P: ’L‘A‘H 31 . ’ ‘, L. .A ’-l- .... ' '- AJ-‘ . .4 ..4 ~ V, J,.<-..' a.) K»... »‘.\'lnbe._ . ' Q «Hi “I"“v, :" ‘, J‘ _ (v. ‘1" g P v ' RH ; -Clb.f8 wehle 1h. Totil heat produced by hirds of ”i feront ‘ Hodified Ute, Carver end Ashby Hitchell and Kelley Weight total heat values (79) total heat values (73) (Lb) At LOOF At 60°F At any temperature 3.0 36.9’ 32.h* 33.0 11.0 :LSJL‘ 39.9 * 39.3 S00 5305¥* 317$)“ 1";(0? 6.0 61.1”! 53.7 51.2 * * Ihmridnta hv Otn, Carver and Ashby (79) nlculsted by the writer from the relationship that heat is irectly proportionfil to the 0.73 power of the liveweight 6h) (14.) From this table, it may he concluded: -¥ G d ( l-Thet modified Ota, Gerver and Ashb,y total heet values at 60°F correspond very closely to tint from Nitchell and Kelley (73) for any temperature. 2—Thnt modified Ota, Carver and Ashby total heat values at hOoF are from 10 to 20% higher than that from Hitchell and Kelley (73) for any temperature. 3-That the total heat production of birds at temperatures of 35, 32, 30, 25 and 20°F is probably'still higher than that given by Ota, Gnrver and Ashby at hOOF. Some research is required at these lower temperatures, since these are the temperatures usually used for design. The writer believes that modofied Ota, Garver and Ashby's total heat Vilnes ("ehle 13) based on Bel+sville calorimeter tests, although not final, should probably he used instead of 7"ite‘mll and Kelley's values I,“ ,_ . . ' . (Tuhlo 11) which do not consider the effect of environmental temperature. c...,. “ ¢~u_- "‘ "o.-—..- 3. Latent to total heat ratios for birds The total heat production of birds is composed of two elements: l—the sensible heat and 2—thc litent heat of vaporization. The ratio of these two elements to the totel heet production will be discussed here. a. Mitchell and Kelley values. Analyzing experimental data on geese (b0) and some data on other animels, Hitchell and Kelley (73) found a rap- idly increasing percentage of heat lost as vaporized water as the environ- mental temperature increased. This relation appears to be a logarithmic one, end the authors derived the tollovinq iormuln to represent it: 0.0/h38 t L I 7.121 8 ) where L = Percentage o” the total heat produced by the bird that is dissipated es the heat of vaporization of water (g). t - Environmentel temperature (CG) From this equation, the latent heat may'be computed for the range of L. 32 to 1060?, using five degree intervals. The results of these computations are presented in Table 1?. l Tablejul, Percentage of latent heat as affected by environmental temperatures i“ ‘ Ehvironmental Corresponding temperature Latent Remarks femperature for use in the formula heat _ (OF) .(°c) (L =5: 32 , O 7.1h Below 70°F the'increese 35 1.7 8.00 in latent heat is slow. 110 11.11. 90 L17 hS . 7.2 11.32 50 10.0 13.53 E 12.8 16.26 60 15.6 l9.h7 65 18.3 23.1h 70 21.1 27.70 75 ' 23.9 33.20 Above 70°F the increase 80 25.7 39.88 in latent heat is fast. 85 29.h h7.30 90 32.2 56.60 95 35.0 67.70 100 37.8 81.10 106 1.1.1 100.90 'Wm a a by Mitcholf and Kalle-yin) y. 0 O O ‘ f b. Warre and enmet value. ”0 Sinplify conputations Vnrre and .anmet "\ J' h ‘ 07) considered the latent neat of veaerization to be constant at 10b ior Pll tetheratures helm? 50°F. Here is what they say: "Since poultry house ventilation for moisture ventilation is not critical at hither tenneratures, and the enalvsis is necessarilv approximate, the assunption of a constant ratio of latent to total heat appear to be a justifiable simplification". c. a, Server and ishhy values. In the paper described in the pre— vious section, Ota, Carver and Ashby (79) presented some latent heat fig- gures (TA BLE 16). For-waver, +hese values include not onlsr the heat of ve- porization of the expired moisture given off hy the birds bu also inc ude +he heat of vaporization of +he water evaporated from the litter and drink— ing fountain. Table 16. Total latent heat produced by fi—lh hirds at different environmenta tanner? tures * "' Environmental Latent heat produced by temperature 5-1?) bird 3 * (OF) (Btu/Hr, hen) 1 ho 21.0 5 MS 91.5 50 22.5 55 23.0 3 ~ 60 23.5 ‘ ‘ 65 2h.0 70 25.0 75 26.5 8 27.5 85 28.5 4* From data by Ota, Garver and Ashby (79) g #r These latent heat figures include both the moisture from the chickens and that evaporated from the lit+er and drinking fountain Expressed in unrccntnce of the totcl Font production for the given nnvironnentsl teflnernture the total latent heet nroduction is as follow: 9 . (Tihle 17). Table 17. Total percentage of latent heet at different environmental temperature 8 * Temperature 33’ latent heat ** 3&0 3903 hg Ml.O 50 Lh.1 SS h7.0 60 50.0 (:5 53.3 70 59.1 75 (”So/C; 8O 73.h 85 85.1 * From data by Otn, flervcr and Ashby (79) e * These latent heat figures include both the moisture from the nhichens and thct evaporated from the litter and drinking fountain It is interestinv to note that although the total heat production de— eneqses by 37.h§ in nwssing from LO to 85°F (Table 12) the percentcge of Intent (birds, litter and drinking fountain) to total heat is increased Twre than two times its original value (Table 17). It should he noted that the comhined or total latent heat values Ufirds, litter and drinkin fountain) presented by Ota, Gnrver and Ashby (”U are somewhat more variable than plain latent heat values (birds only), fine, it is probable that the nmount of water evaporated from a litter at agfivcn environmental temperature may he affected differently from one Wflfltry house to qnether according to such factors as: the type of litter, fluedepth of litter, the age of the litter, the amount of water spilled fitnund the wnterers, the frequency of stirring of the litter, the use of ~ _ -7.” “—— “‘a _. ~o—- ‘ — _ me . recirculntinf fine, the snnlicction o? line, etc. The writer feels that, if noscihle the n“o“uction of exnired moisture and that evwnornted from - the litter on” drinhinq ”ountsin should he senornted in the nresentotion of such date. The production of erpired moisture is probably less var- ifihle for n given environncntnl tennereture and would prove more handy in computations. d, Hodified Otfi) Garvey and Ashhy vnlues. From the above review of literature, it can he seen that the only true latent heat production (Heat eouivalent to the moisture exoired hy the hirds) is that given by Mitchell and Kelley (73). 9ince,hncnure of the assumptions on which they are based, these percentages hey he in error, sone actual dn,a are still awaited from the calorineter tests Beltsville Narvlqnd. ) u However, for use until such data are nvnilihle, the writer suggests the use of Pitchell and Kelley latenl heet percentages (Table l5) in con— .5. hinotion with the modi?ied 0th, @srvnr nnd Ashby total hoot values (Table 13). ~s— co-.. ‘ f“ C I - _ I ¢. ,ypired noicture pro‘uoed hy Virds Vince noi~ture is the twin protlem in n poultrv house, it is impor— tant to know how much o? it is produced if the ventilation system is to V a 9' I o n on de31gncd properly. leicture is excreted hy the hirds in two ways: a pert is evaporated or expired hy the lungs end nnother port is cvqcusted Ventilotion systems should be of s‘Pfi- L in a liquid form in eroroments. to renove at ell times both the expired water in the air It cient especitv and the liquid water in the litter. hhey should also be equipped with controls to restrict or completely stop +he ventilation at the lowest temperatures. Gone authors believe thnt ventilntion should he restricted sonewhat)hut continuous even at very low temperatures, in order to remove iJo at least the expired moisture. RY so doing excessive rise in the relat ve humidity of the house would be ovo'ded and would prevent condensation on the rolls nnd ceilings. The amount o" expired moisture produced hy Birds will he anslyzed here. a. Mitchell and Kelley's volues. The total heat production and the percentage of latent heat being known, T'itohell and Kelley (73) values for the expired or evnporited voter are given by the following formula: we ' Qt X L X 100 2 Lh of moisture/Hr, lOO hens ’th3 or We = qt x L x 100 x 2h . Lb c? moisture/Day, 100 hens 10H} where W5 - Water expired per hour at a given (lb/bib 100 hens) Totnl heat produced hy one bird (Btu/Ur, hon) :9 ll L - Percentage of lntent heat corresponding to the given environmental temperature (3) 10}3 : Latent heat of vaporization of one pound of water at skin tennureture or opproxinntely 86°F (Dtu/Lb of water at 86°F) environmental temperature o—ua.‘ q—- . :— U1 100 a To convort +he V“7UO to 10¢ hons 9h - To conrcrt the voluc from ono hour to a day Yitcholl and Ycllcy's voluos (73) ire shown in the folloving table (Tchle 15). The original values were expressed in grons. The writer con- verted these volucs to nounfis by the use of +ho following conversion for— Lb/RWY, 100 hcns a “r“Ws/Wny, hen X 100 hens h53.6 grams/Lb Tnhle 18. Water expired by active non—producing hirds of different woights and broods at an environméntol temperature of 82°F.* Breed Body Age (Weefis) Moisture expired by weight birds at 82°F (L 2 h3.5§) (Lbs) rains Females (Lb/Day, 100 hens) A)Zhite Leghorn 0.077 0.0 0.0 1.5h chickens 0.5 h.0 h.h 12.32 1.0 6.0 9. 16.75 1.5 .5 11.5 90.05 2.0 10.5 1%.“ PJ.6 3.0 1?.? 2?.h 29.5 h.0 25.h 33.3 35.7 [:00 3300 "' 112.7 D)Vhite Plymouth 0.077 0.0 0.0 1.5h Rock chickens 0.5 h.o h.6 12.32 1.0 {‘0‘ (.7 16.75 1.5 0.7 8.9 90.5 9.0 9.7 10.7 2N.9 3.0 1?.h lh.9 30.h 1’.O 1171.7 1-9013- 3(01 5.0 19.3 25.h h2.5 6.0 2303 "' 1:701 7.0 " - 5,307 "‘ From data by Mitchell and Kelley (73) Mitchell 9nd Kelley (73) found the amount of'water expired by the birds to be mainly affected by the environmental temperature. Assuming that the latent to total heat ratio holds true for birds of any age, both non-productive and productive and using the three Btu of heat increrent due to egg proorction, the writer computed the expired moisture for active birds not in profluction find for active birds in production (Table 19). The range {a la 3: 03.30 a 3333: B 33 500 .. C 0n20; . 00.00 00.00 00.00 00.0. 00.0. _0 .0. 00.0 0.0 .000 «.naa 0.00 00.00 ma.0m 00.00 00.00 00.00 00.0a 00.00 00.0 00.0 o.0 0000:0000 0.00 0.00 00.00 00.00 00.00.. 00.0H 0H.0H 003:. h0.0.0 8.0 00.0 0.0 00.0.3 0.00 H.00 00.00 0a.0a 00.0a 00.0a 00.aa 00.0 00.0 00.0 00.0 0.0 o>apo2 fij.2 LOX" “ * MO 62 6 15,5 £5 59 7h :?.1 So 58 77 50.2 55 27 78 max Max “9.0 00 57 7 *9 0 Min 65 56. Min 7 .1; ) 70 57 73 :0'2 80 62 $2.2 85 58 57 52.7 From data by Ota, Carver and Ashby (79) * i * C1lculate& by the writer on the pssumption thht the total water elininfited by the birds is roughly equal to the amount of fountain wntor consumed by the birds minus *he water taken out in eggs (36) (12) «'i * Maximum for the range of temperatures studied BY subtracting the total amount of water eliminated Table 26) from the amount of expired water Profiuced by five-pound lfiying hens (Tnhle 21), the amount of water excreted in the litter was computed and is pre- sented in the following table (Table “7). -‘-—~.. ._ . TflXj-l—n'. ’37. ”raver? in ].i"‘.1-:,J V-Irf\4-lnsa 01;“.‘7 -.‘.' Jrln‘i :13 {-710 ‘7ronfij_j’v.:q of E’“1}) .-: .. .. - J' 5‘ » ° \ -- A J. 7“. r‘. "our. at r 1 i‘err, wt 071’.'3.1‘071r-‘71+.fi.l tn‘lp'rrfi. -,11w:s Environmcntnl I‘rcn-i in ‘o‘cl “we.“ I“-Tsi.r'c02m¢ mm 0... mmDthOZ 445.0% memwwmmmmwwmmmwmmmwmmmmmmmmmwmm WOOOQIIIIIILLL 222112222133.3&3 h»: . . 2 o m. m. ...... u a We .mzu: ca. 5.3.: _ cup»... .2: :05. omh<¢2<>u we 9. 3:55: 9:0... ... figmd4m_:-Wq:qdjqw:qd%:d.u:—:qudA:.—ddq~—::%.:qd:.q—.:fi1fi:144._.«:~«4:—4z.1.2:4.q-«qqd_.:——:q4~::—1:<— 0 3 8|“qu 0 amzuI CO. .91:va mzwI MI... >m owoaooma Wm:...w.01 cum—axw w m m w w w m m m m m ._. o _ _ _ . .—.. . r— ...-f Ehexp»? Cr __.___#ph:: ph-Z.fl_tp. Tb . .PPPafl..Id—..pp—_a L fl . ji— d« «444 _4<4-4_1fl4 «A q — q <40 ouoaooca h02mm mm OH mmDFQOE 4.39. ME. oZ_Z:>Em::mo mod mjsm woflm T 622.. 02.2.33. umao: 9:. some 3522. no 2. 35.5.0: .25» wmm w m a w a m e m s m a m 62 O 5 m w m “a. W a W “a mu. 8 w 3.5: 02533.:— ¢ut3 u...» :2: 325.25 mm 8. 95.562 2:0... 9.. 4.441134%...:JJJ.11_:J._.1_JJJJ._._J:_41_::;41_:;€17:_:.1_:._._.113__4.4- u s m w m u m a w a m a w was 3.3: 09,253.: mzu: 3: >0 30:35. 3353: unmixu a 3 4 5 6 7 8 9 m w m n2. w u“ w “a W a w P. .tb »_:—rrC—::_ r» r_ .bpb.—L_.—LL»— . . . p_ P.b . —:.-—::—::_::—PE E-JrLfiPIfiid 4 . . 1— . _ .dq_«~.—d—._q_4_.%d_..d...__.:.—2.;.L__:___:=_:=_ L . 5 m m... 2 a w “a. w H. w u“ w A m. 5 m a w umemam“. .zuzifnwn. mzu: 3 20.532... in: .25... OT \ . < ‘ I . I . ‘ . . . ‘ A‘ r , . .n \ 1. ,. ... . . ., .. i ,L Jr >7 . ..,:u.. , ab. . .9 ‘ .. .. . ~ 1:! . ..,r~ . . _ ..F~..‘.I)‘ J.V.£Vfl‘. Kw (Riv .5 .AMflF. VI: Phi-rut", P .oqufap’fl‘nv'uul". yfllwh’ {lul- u. m w’m)l.4.n 4., “‘4‘! [F . ll ‘ G g b I! 7. Net sensible heat of hircs and net availahle scucihle heat in the house The net sensible heat of hirfls is thfit part of the total heat produced by the birds which own he used for (l) evrporation of noioture from the lit— ter and drinking fountains, (2) compensation for the heat loss through the building materials, and (3) heating of the cold incoming air (ventilation and in’iltration). When deep litters are need it is customary to consider 'the heat produced by litter decomposition to be sufficient to evaporate the moieture from the droppings. In such cases, the net sensible heat of birfls is therefore usefl only for purpose of (1) compensating the heat loss through the building and (2) compensating the heat loss through the ventilation sys— tem and through the infiltration by the cracks. It is also customary to add a certain amount of heat to take care of the heat gain from the sun and other secondery bent sources. The totnl 0f the net cencible heat from the birds find there secondary heat sources is calleé the totcl avnilwble heat produced in the house nnfl is represent by Q8 or Q n the formula for temperature control: atotai i o _ 60 V - ”stotal ‘ 5 A00 (To be explained later) a. Hitchell and Kelley values. Mitchell and Kelley values (73) for the net sen"ible heat of birds may be obtained by rabstracting from the tOtal heat production, the product of the total heat production and the D“Fcentage of latent heat for the given temperature. 3y referring to ”aetinne 2 and 3, these values will be found. The writer will present at thfi and of the present section a slide rule which giVes readily the amount Vof net sensible heat produced by the birds. This slide rule can be used "0t Orfly'for Hitchell and Kelley values (73) but also for Ota, Garver and Nifixv values (79) or for any d”ta to h” obtained in the future. A ~— ._-...‘ rim ‘- _. b. Gieee wnfl YcCornick vnlvne. In 1933, fliers on“ HcCormick (BM) re- ported 3n the heat production of poultry under honoinq conditions as found The experiments referred to nt the Iowa Agriculturel *xperiment Wtfition. were conflucted in two tiers of five pens each. Each pen wns 7 feet by 5 feet 6 inches in plan and 3 feet 6 inches in height. Ten White Leghorn birds were confined in each pen or one bird for each 3.85 square feet of floor «nnee. Thie battery was entirmly inoloeed within another building to eliminate the ef‘eot of cunliezht. It mp3 Feasible to add feed nnfl water @nfl to remove the egge through stoppered pipes nnfi small felt—sealed doors with prrctieelly no eifect on the interior confiitions. Five of the ten pens were open to natural ventilation. The quantities appliei to the five pens with controlled air eupply were 0.05h, 0.15, 0.70, 2.63 and 9.93 cfm oer hen per minute. According to their computations based on daily, weekly and monthly av- erages of the intake and outtake air bent and moieture content, (a) the net gen— siblc heat available would vary considerably'with the outside temperature and.(b) the amount of water vaorizei from the birds and the litter would be refluced considerably at lower outside temperature because of the greater emount of heat used for the building nnd ventil ere eumnnrized here (Table 31). nting losses. Their results ‘r-‘fi n-.—. ._ g ‘ o o ' \* Tahle 31. Net nvcjlthe heit production (Stu Tr, CF, hen; _—_ Outside Total hast characteristic of the house a temnereture Vuilcinn loss + Ventilation loss range (Btu/hr, 0F, hen) (0F) 1 1.5 2.0 2.5 3.0 3.5 h.0 0_10 35.0 52.0 (3.0 72.5 77.0 - - 11—20 32.0 h5.5 5P.5 67.0 71.5 - - 21-30 29.5 h0.0 52.0 60.0 6h.5 07.0 — 31-h0 25.0 35.0 L§.5 53.0 57.0 50.0 - hl-SO 18.5 30.0 39.0 h7.0 51.5 Sh.5 56.5 51-66 15.5 25.0 33.5 39.0 u5.0 h8.o 51.0 * From data by Giese and McCormick (3h) 0. Ota, Gnrver and Ashby values. Ota, Carver and Ashby (39), in their nanny described previously, oresentefl the net sensihle heat production of hirfis at ditferent environmental temperatures (Tnhle 32). These values Aiffer from the total sensible heat nroAuction'which includes in addition, the heat nranced as eensihle heat by +he hirfls but lnter used for the va- porizntion of voter from the litter one drinking fountains. This net sen- sible hent usable for temperature control is for the ten hen calorimeter neefi in the test and may not he reoresentntive of actual poultry houses conditions, or at least not representative of all of them. The net sensihle heat of a five-pound bird is found to decrease from 32.5 to 5.0 Btu/hr, hen, for an increase in temperature from hO to 85°F. Table 32. Net sensible heat produced by S-lb laying hens at different environmental temperatures "‘ Net sensible heat produced Temperature by S-lb 19.1 ng hens ** (0F) (Btu/hr, hen) hO 32.5 L 31.0 50 28.5 55 26.0 60 23.5 65 21.0 70 18.0 75 1,100 80 10.0 85 5.0 * From data by Ota, Carver and Ashby (79) I: 4* 'T'his n-t seneible heat was obtained by subtracting the total latent heat (birds, litter and drinking fountains) from the total heat production d. Slide rule for determining net sensible heat available in the house. rule to Find the net sensible heat sihle heat availahle in the hon"e. loving formulas: 1) q=1 the net sensible heat of hirds and the The writer has prepared a slide produced by the birds and the total sen- This slide rule is based on the fol- qt - qt 1 L - qt (1 — L) 8 qt x S and 2) Q8 2 (131+ q32 where q31 = Sensible heat produced by the birds (Btu/Hr, hen) Qt L S (152 .‘3 Totnl heat produced by the birds (Btu/hr, hen) Percentage of latent heat produced by the birds (% Percentage of sensihle heat produced by the birds (%) Secondary sources of net sensible heat produced in the 1101176: Litter, Sun, etc. (Btu/Hr, hen) Total available net sensible heat produced in the house (Btu/Hr, hen) ' ‘r‘ ‘-‘ - ~-~«—~.1- c... mm.»— ‘0‘- .— m- . - mun rsvet qoqntinn Mn: cunngad to the rollowjnv logarithmic form: . ._ ~ +(log qt) - (O)+-(log “) - (log q31) = (O). anuoc of lo: 9 were plotted nnfl volues of 105 L were snhg‘ituted for them. i niAdle surnort was re- ruirefl for the conversion of log q31 to or”innry vnlnos of q91' given the form:-+(q81) - (O).>(q32) — (Q3): (0). Tfie cecond comation was final vwlue obtained for :5 is thit to be used in the formula for temper— I I Cs = 60 V3 - ACD (To ”0 ex?l°i““d 1at°r) r S. As an illustration of the nee of this slide rule, coneider the two following ”P“1icgti°n3’ fipflli"fition No. l r7‘o’c-‘il heat proivction of the birds = h2 Btu/Hr, hen. Percentage of latent hefit profluced by the birds = 13% Given: Qeoonflnry sovroee of net avrilnble sensible heat (sun, litter, etc) = 7.5-Btu/Ur, hen. The total available scnoible hoat produced in the houco Janted: Solution: l-Put the first arrow onnonite qt = L2 and read gal = 35.50 opyocite L = 13% Z-Put the second arrow 0pp0°it6 q81 = 36.50 and read Q: a hh.0 OPUOF‘iitC (132 = 7.5 o fiPRlicitiofl E0; 3 Given: Total heat production of the birfis = 33 Btu/Hr, hen. Percentnve of latent heat profluoed by the birds = 7.5% ".3 Seconflary sources of not gensible heat (sun, litter, etc.) a 50 S Bill/III" hen. Vented° The total aVfiilthe sensible heat profluccd in the house "201“tion: l—Iut the first arrow 0p“o¢ito qt : 37 ”Nd T0°fl qsl = 30.59 a v" [I . P‘ ‘n O C) 0-?ut the second ar“ow opnoéiio qs : 3“.5O and read Q5 = 3~ ' l f. . v-’ opn031fie qs? = 5.) o T719 ”170‘,“ («WI-«lag s‘lnlje Co1l-Lr1 He enqj 13' Cflfinbi‘qffr] “City! the “1.4130 r1116 prepared to Folvo the ficfipqrntnre Control fgrnulq, This sooonfl slide rule rill be presentefl in a later section. "W—n. -—-v- 5 7 JOEHZOQ MEDENEMEEMH mow. mom}: _<>< bdrm: mjmfizmm IZHOF mIH OZ_Z_( him: wJszwm hwz .J¢br_. ..—_—pb._.—. _..__—._.___.p.—p—.b.—._._~_.—b_._._._.—.—._._.—...—L._.w —: n q d — 4 a a. — q a u .- A—aduq —q¢¢‘—d< u—-<‘-—-d-—-¢.<—<<<‘—<144HU11-1°— L w w w a w w w a w m .0. . 7E mzw... >0 owoaooxa ._. V93 L~l Btu nor rauare foot of insulating glass nor no; 'thh horresnonls to 20 Btu our square Foot per hour. I I "he heat loss through insulating winfiows is mostly by conouction since these minions are fixed and the heit losses by infiltration or crock leak- at are negligible. Taking +he U Value ”or inrulating glass as equal to {\53 nnfl using an average temnerature ”iiference o? 2“ iegrecs Auring the “inter of 1952—53, Winkle (hh) found the average heat loss to be 11.6 Btu T“? sonare foot of insulating glass per hour. Te therefore calculated the ’Werage net heat ghin as being equal to 1h - 11.6 = 2.h Btu per scuare fmfiJOf insulating glass per hour. For a clear atmosphere the not heat Emhlwould he 20 — 11.6 = P,h Btu par sonire foot per hour. Accorfling to the same author (hh) if fixed single glazed windows are ugmiinotead of insulating glass windows, the amount of heat intake is in— c 6 . . r’q>?fl a small amount while the heat loss is about douhled. The solar "0, I'll". M‘— a“. u. .» _-_ - ._. ‘ ——-‘_~._.._, -.‘" fi—o- - .__4 1. . ‘ . “\‘/‘ N ‘ ~r: . Q l‘ . - a .I' rawlation neqt giin tuaodgn non n iniov ”or -n ihlustriil atmcnohere ’3 16 Btu 3“? F”W’Tfi 700i “fir hour “n” t*n heot lonc throufifi the "'03-, r? ’v "n"e “infiow‘rould ewuol about 3?.9 Btu nor aqnwro Foot pnr hour. The J ~11 per recnlt wouli there?ore be a nst heat loss of 2°.8 _ 15 : g.2 crunre foot of fixei cinqle glazei Window her Merv 73 comonred to i net gain of 2.L Btu per admire foot per hour for the insulating glass. For a clear atmosphere the heat gain of a fixed single glazed winflow would etual to 20 x 16 = 2h.6 Btu per square foot per hour, be apnroximntely .L; leaving a net gain of 2h.6 - 22.8 = 1.8 Btu per square foot per hour. In flou"lu°ion, with fixed if'ulwtin: 31999 in on in”u~trinl or ecuiv- ilnnt "tuoephere, 9n hourly fiverfifie o” 7.6 aiflitionsl Btu are m~de “voil- able For litter flryihq and tewonrfiture *ontrol for onoh square foot of Glass as nompfired to Vixci fiiufiln @1325” ”inflows. For a clear ntnoqphere, the cx+ra befit n.3e nvqilnb e wouli He cual to on v ‘ 6 Btu nor sruare .1 . Q ~ - J O 1 ‘oot o” iuculnting glass bfir hour as compared to Pixnd single glazed win- dwvs, For ordiufiry glnz‘d Winlows (not fixed), the difference would be still greater because in ouch a case the main source of hewt loss is due to infi - tration of cold nir aroun4 the wiufiows (n9 much as 110 cubic feet u“? hour nor foot of crack). Tovever, with thermoctnticnlly controlled fans, thie factor is 0? little nonqequenoe “inoe it only reoults in having +‘n fan onflrn*ion r-Auned by fin ”mount ecual to the infiltrntion volume. Stnpleton and Cox (9?) con”ucting n hefit balance test on a poultry hou~g Cthuficd an wveragc of 99.2 Btu of qolnr gain for fiafih square fOOt 0f Ordinary'glnsst "Tle solhr radiation W9: determined from rea4ings at t3.) 0 r. r ~9 Blue Hills Observatory located at fi-lton, hassnchusetts. These shoved q~t0‘ta1 of 1490 fitu/Kr. actually incident on the outside surface of the ‘—~—-—.. -———. ‘-——-—_- —~. ---- "‘ - 50-.“ . ‘0.“— ‘H __...III-___ ________ ___ <.l‘ glass. Lois is based on an av-roce o9 2V0.l 3. oil. h~"r so. c. oer hour a -. A‘ H - (‘A r‘ r~ - UCCG”W°P 1h, "/43 to ychruiry, l9h9. 0f the lGUO ”bu, pirL ,fi to be :bcowbed by the glass, port trinsuitked through the 3 J) ) O .3 J r J ' '3. ’3 *‘3 ’3 ’W glass and port reflected. Handbook sources indicnte that for the prevail— ing conflitions, lh42 Rtu per hour woul” hove penetrnted 2 clean gls‘s. light meter reniings were used to deterninc the rsJuction in trnnsnissivi,y Rue t0 Gust. Thee" move n Pinnl determinstion of l?76 Btu per hour input from colcr sources." The glaag area was h3.7 scuore feet, Which made on average of 29.2 Btu of sol°r grin for each sousro foot of Grainury glass. . is is about 1.8 tines more than the 15 Btu per scuere foot of ordinary L :3 loss per hour computed by Winkle (hh) for on influstrial atmosphere, and m shout 1.? tines more than this value of 2h.6 Btu for a clear atmosphere. In a nersonsl letter to the writer, Hinkle node the following state— ments: "The area around the Blue Hills Observatory is usually snow covered during parts of the winter and the atmosphere is clear. - th of these factors will increase the amount of radiition coming into a south facing Vdniou. Iansing on the other hand has more cloufls and the overall results give an atmosphere comparable to that of Chicago or Pittsburg. Added to this was the fact that even though my calculitions csn be extended to fit 8.Clcar "tmosphcre as you did, snow cover curing the winter of my tests j ‘ r4- Was about one half of average. Thus if .here had been an average snow cover, {‘3 my results would have sporonched the 9 Btu per square foot nor hour ob- s I 4- ' n a e . e - unined by vtnpleton 0nd box. On this basic say'thnt their calculations are as valid as mine. They both have the some fault, however, th7t they tnfl-Ysppl‘y to just one particular Winter. The Sun Angle Calculator was (J. c e g . Veslgned primarily for summer use IOr air conditioning calculations and m . O I ikes no compensation for a snow cover. Thus the results from this instru- m‘} o o ‘ “t are also only apprOXimnte. The agreement between the three of us is , v ”3' good however." ‘ - I u 7 _ ‘0 1v. “1 ‘} 1 \ F. ‘ o _ 3 —,\ 4 1 r~ -. "“‘" v I“ ('1 1"?“1'HV‘ A V ..l .ons o in e ', _., ‘ ‘v-cl. “r“\ “KP ': “ PI“ . ‘1‘ -: V‘ - r j A n(- :1‘\ ‘n -'\ o ‘ v\“r~‘o~ ‘ 'vfinar‘ 0 I- "A I‘-I~ . ’._ ~‘x3 -ll ..‘ -- " ‘.‘4. Ca 5‘ V I“ v 1 pt 0 V U L, 'i'b‘ -- r- x \ v-:, ‘\ ~ . “ V’ I ' " ' “ “ : 1--Y = L Ru u‘.r ‘3 .", "“ -rafiL ‘ , s L“ 90‘ l ‘- . rc‘ '- \v-qv J- ~ L‘\ .L‘ -- «w -. . r. v‘ - T v" 'H' 'a'r‘ 1r: .\.oro.,v,v-:*q H9"! 1,-‘9 7‘", Yr"? .r’I‘M ‘ ”n. in- ‘ycno. r- ~-~ -,. _'.'1,.L' : '1: ‘-— 1.. .- x‘ , A”. “$0.2“3r u.’.?.'}_ 3' f ';.1_Ofi ‘ S q1_t~2‘i,)-L_k {3'1 1"" 0 IJ‘E' . V. - _ A ' o ‘ should oitcr no n4v1wtnvc over ixef fiiu"cus. . 0 ' 3 -.. “inter nonths, ?‘*c% ”,n five Houlfi hive 1, 1, crocu lcn etc. I‘m,» .7». an adventnnc “O \J, ‘ - 1""; 7‘ 4' Q .4 s-fi.’.a .Jll‘ \. ~rn~AL<'7 + - .v -ns A n ‘I‘ f2"??? I.-:‘;..___;-.-"_:llflf: sill-0.38 (a V .. . *rx ‘ ‘11 ‘ \ 7 -. -" QI.1_ ‘1: ‘1vfi-K‘ . -‘ 111-. ‘~ /-.» .Q ‘ 1" --\ U—- 131 2 €1H4$JAJHL1 MN‘ OT‘!§_Z§ .). Lififiq LLU‘B 1H)w WA] 1.1.Mrtit-'i7fiéfl, PHI ‘T (Lh— - ° ‘ ' J— .I. ‘ 3 J- . '. ° . .Ll - v .1. . 1" 1.1V . ‘ ' ‘ f‘ [A . _q -‘ ‘ ’ ' ‘ r “‘ 1'. _ ,, 3T??? ‘o3“.g 103 71d T‘o‘- 1:31;?.321U jj“ ’7},Q.?1ejlflfi “lb l.7TV?‘TT ‘2 O (X! ie C 1 - ' hm . a“ < r n *- an- lALt). f‘ - on s ’1 -. VP - 11-. 1 e l- “1-‘-§57r ‘y Q _'.‘~. A V" viefcw‘tc"u‘c :3 quq ‘ ,njcl- '1“‘vn' ‘c°.;1i; :3 pcg-g,i‘ :ro r“on. um.hrvci, ' ‘ .. T 7 — ~. .-‘ ' -f‘- «I. .' .\ - l 1 conclusions 1 on! 2 foul/7. pro ”I ‘1; To l.f0?"0?1u, hint-c .tozj n.,1;_r~es QI‘O u- 1 . 11- L 1 .--L1 . 1 -“t .w J. -- A . 1 L]~ 1 - a l -. I "‘“-pur cfrfic-iutcin3h f.; .i n.K-“rto. . C_L;CIVTJC t;“73 s xuin .,;c .1of,s ru c :1 ltircr ‘to :3 out o? the house. In conncrcinl poultry houccs, inside the ”99 o? ’Vufinoc at all tinoc «#4 a 9 ”nount of force? vcntilotion unless sown 0? {RBH 3? EV“? o” nunncr ventilation. h Color Font rein cnfi Pent loss throuch we .5 , O J - o “ + 4.1 4. 4.1 - ' . n .L 1- i J- : ,3 .L 1 >\ . M - V' . ‘fx Vfi V‘ “A -8 Jive A" use :xgyiritJ o. “Ac neo1,;“4lr Us to It. Mfi“r“" 1 n «- 1L 0 t \< a a. ». “(1 uvrn rx-L'\ '\ fl - H fin ,fi‘n 7L - “\J. _|_ r )1} 801‘ J:\ J a ’7“- f I" .‘1 O.‘ o, .\1 1}. s 4: h).._‘f‘, v‘lS VJ, ”an; ' o . ..u lnnlng. ‘1 any, thcrctore rcducihm the tent on” iyefl winfiows wouln rocuirc c romovod for rVVi°+3F‘8 IIFOvhiéideh '- 1 . ’3‘ ‘. fix h“ 71T’l3 firm, E50 1 1:011? considerihlo the pur- Thilc it rol"r rniintion will he .I. ' ‘ on ‘a. I » ! (1.1:) la I 4‘ ‘4 fir othcr Pcrts of the structure such as dur— I’,’:3 ." P g . - y . . - -: r\ I ': . ”w .clls, roofs chi "inflovs oriented in other Jlrcctious. gain (90) undo cone cotinctions o? the hoot which could he goincd 1n? hl . ~~5ck Moll fccififi fiohfih: QBOVt ‘0 Bbu P”? 5‘ a the nin+er months through flitfcrcnt types of walls. Kc founi that Foot For will he gained for —n—.-..__.__ ‘ ovcry 1‘30 itu :’ Pint T"i: *‘r “CI“V‘ ”oat CT jinn? tin; ’lcsr. Tcr n Wnll Which for“: 07?; “r'cht L“? 'o"* '1: on!” P“ob"uly 5c “8 low is 77 Wtu :cr sh“cro “not. "“10 "'iufmr «7“? “not *‘i: thrr‘ts‘h n roof is ovcn hordcr "1o estimate hccouco of the rlonc o? the roof. ”inhle (Vb) strtss thnt: "7n ectinntiou c for Polnr loot throurh a south facing wall would 1 J.‘ I .- hoscc on “# oc'ifin ions , prohqbly locctc tho “+1 I r’ w—l north or” corth at snout 29 ntu nor square foot for cvury lOQO nli nor ' ‘i . L ‘ -- -. . ' . n H' 4.7 A 1. 1. r SO‘IQT‘G Toot nf jj“ c1-_ w 1r, 1qu if)- irin‘frs a, Jig 8011,11. .. ”173:. C1112. act: I . g: ‘ s. V a 0 i h amen roo* orinluj to the “out: ”oul9 Prohnhlf fro "”Tt loss t3? 5 ntu W”r .0 .0- -. H- \n 7‘4. n A ° , H4... . o .2. .. SQ“src loot .cr or2rd lQLe s.u for squire -oet cf ins; rein” glass lacing "*cn ell *ho ot‘or nnnrn"i“~‘ on" c? hectiu‘ o“lcul~t ions are con— stuttli. '2 v. 1 ' 1‘: 1‘ A .. - - . ,1 1H ,3 51-9 on t-is .n_a Jfiln ’ mr 1th 1 Shoo roof coula :e neglected." ’7‘ ' 'L . ‘ . vP‘. ‘ I H ‘r 'I (\1 r a ‘7": '1' . "P ' . eccnj invcsainuioqs gsvc riorn thee, on n :10 r “in or nihht, radi- . DP ' _' .. S‘lJlClQJt to .L' - L1 v - s A ' ' ' ' scion to ,ie sky from ‘hc r1r?q_c no; tnle place at n rate cool a buillinr surfocc, nirticulnrlv the roof, to a tcnucrnturc 10 to 150” felon the air fonnornturc" (11). kc “rdi rg to Aug strom (3) fi‘” 7V‘T“‘e T”‘ -1 4-1-14». r'm’fe Of 70 +0 LS B'Lu p01“ ition loss at right for a clenr sky is in ._, ins . c 1 H mumre foot nor hour. It shoulc he notcd that the amount 0? cloud covering Ion losscs it night can he iust cs inportnnt as the amount of cloud ‘ , rndint* I“ + ‘fi . ‘1! -. w +‘ r (' (‘4’: I') c vering on ,ot,1 rn ntion gains wiring+ no M3 3 L . Becnusc of the lack of exact en's, the solar heat gain through Wills and roofs flu ing the ony and the rndintion heat loss of these areas to the Horst night are usuvlly not considered for dot c.151 purposes. 0. en+ ~ennra+ofl in the ljt+or. Parlcr's Opinion (8.?) concerning the l o o Hafitfpncrated in the lit+,cr is as follows: "Little information is avcilable on Hrzheat produced in deep litter. Undoubtedly this factor'would vary'con- : A o e ‘V ° 8.. “315513" '-’*]_+_,H 11+.th finnnqehf‘flt. Hm“! 8115111017 lit :81“ 570113-"? PTOduce very ‘e-__ .- -H.—._ _ 1’--.“ .__‘ _ fl-- I I 3 n 3 _. g V g '1 ‘ . .77 41,] n ‘ no *“ ‘ P on". '7” mw‘nrnw‘p’ "‘. 6‘ ‘r‘V'W'L’ 'T'i‘j“’:f§, ,f7"’7'C F‘fr“! '7 31;“, “e S Con- —-— ,_ J ~ -~_ ..~ - _ -‘ 4 o . -» ~ ¢ - t- -- \-~--- A - -. VA . - .1 , n J. p n .L n Y' ‘ : . m‘. - ,. ‘- - H . 1,. Cl “r"‘ on n 373 xu‘rm Silo,?. "7 “loo 1748. JYWJ“Z ”Olfiffllzlsy Ln, s” o . a 9 d in in”iltrnfe unflor 5%? floor, £12 sir teu~ ’ ‘H J . H‘thlPe 1P ‘fio L‘0‘”? rall Ho no} or FFfin *zo tnnfiorn*U°o of inc 1 3ior3 ‘ 1 V , ‘n . ~ ‘ . _: s ‘ _o Lhnvn€cr9, no fil‘nvnndq cwonl~ 50 v6”? ‘or tnnns’or 0? ffifit io -gC lififio ’ ”“WO *3“ cinnifile ‘ont nvfiil- I r‘, 54" :1 . pl.lo s. ll-u, l“ for *“o hol-“or‘i' ”0°17“ *"r'ors is 5“”rn “r *ho ronsiblo hofi5 PVCFnéed "‘L Q R n r, F‘ \Q .\ ' --: - u: ‘\ -»‘ -. Lnnlpfinw wni Jox (9,) :o{“Itflld' n 492% Rnlq‘oH test on a poLlfiny L 1" " ‘x‘_) W ' ‘ _ _ ~ A ‘. n O A / Y\ Wov°o Conélvflofl tgnfi 1% an "Virago ‘"W‘firfitfl?1 a? H‘.§ F., 43.hu “tu‘wns H ' ' . .' H .4 ' 1 .‘h ' 7 “ hro‘“ooi in £5“ lfitflor hor mach Sir—pound ban in finm henna of wwion 11.10 1" 1' 4L ‘ J- r- F L‘ .J-J- ya“ j/‘ -7 ‘J'. . n “s 1»53P, Moot Ho 3*; .io lia or Tin lO.Jo nos 1,1lizv4 ior won ufilizefl 0 I Q 1 flown Twin“o confrol. In fihoir nonpfiintions f??? U8?d n total noit oru l , O D O O f ,O‘ of 52 Ttu fir nix-pound “ird as given by Vvtohnll and Lolloy \33) for no- ?nrvnr nnd lanky (79), how; J ‘3. cl J J i) J ”3 ) S L .J + ,J .4 J J Q .1 J \- L n _‘ I ‘Yffl Vfl,‘\$ y'- 1 ~1n~ t, r? "' I J .A\ ;.1-t)T O- ‘\\IJ.:‘1. 1.- I a I ’n a fiver, 1n31c~5os n nrnhnhle finnt nrqdnnfiion of 5g.2 “in v0? hour by a Six— pcunfi Bird at 500?. If in th*rn“0“o ponrihle fihht fihoir ?in ing be a liitle . ~ ’ ‘ H‘. ‘ wv . . -v iv .v- 1. n q +on P1;H nlfinov.i fwn : ,9? in 51¢ orn efinerinont (£0 50 Cisouscod aHlo_) ”ownfl *Fe iofinl “aflf Prom snconflfiry sources £0 Me very clone to fihat fonnd ' ét"ploton nnfl Cox. k.) QJ Goldrich (36) downi‘nrs fiho knit proouction of docp lifltnrs as :qur— _. . p .2 ' . .L - , . L' ' l . ' .2.‘ m, H all} r1_?uoin~ ‘o ovvnir‘fc nae noi'fixro l“ ,zi excro;énts nnl CVun 303- 1L.- ~‘. '1. l: - .. .. H- ‘ 7!. 1.‘ 3 ° ..~ 4 ' .L n slinrs 1H n5 HlVlny Owt Ffild extra .314 to qup in ’10 Loin,en nae oi fine i?"iflo fonoorqinre. Mki‘fi 9“” 3P5””“t98 (107) Dh"orvoi +hnt in fan? well inculated Vin- ithor hecnve obfincfiionnBly vet unfil Built-up necofn lqyinv Wounds the l k.‘ L 1 _o . J‘ r O a A 1 . v _I no lntbor ronfiined in voon conlition as com— g.‘ 4 L t O 7~-3“T‘W1€ fined. After fihlg I q J._l. “1r honhos using shallow litter, where the litter had to be 1"“?9‘3. +0 or ‘°nfied every fibree to five weeks. idnc?lon -~.--,- ‘ “nu-4.. 4* Q ""17"“ 1‘1’) Jr‘. .‘7‘ TIIN‘i f‘f‘ ' . vfl, -L~ ". J J v 'rm‘! A "11. ~a~ l ,1,“ “my“. r' " L . U"C‘JT‘. «2“ l.‘ '1 '2 1‘: u{ ‘f‘ "' ‘1'.- r “’_‘ 1‘ ‘A' ~-‘ 'C‘ la . 1'- : - ‘V‘ "H,“ “A T 1 .L in... H""“.'L‘T","l‘ 1' 7-. . . . H1 . H H q . . V . f} 7‘" n\\ 3“ ' w- l— f": ,~‘,. urr a“! a 7r~ll I '7‘,— '- ‘ ’3 ‘, "ln " J‘VK E ‘ " D A ‘ .- - ,, II a g, 1.: , ‘ H A, -. “nu ‘: r. ~ ‘ ~ ‘- -‘ ‘ " 1' ' 'n ‘ l 17‘ J“ "1 . “ L ”r“ “1"" J ‘L “ A “I x ~~~fi *1 r‘ ‘ ‘ . l ' , . . . l _ " ’ 1 H ._ '1 6“‘(‘ P‘- —.~ “1 ‘fi'w- ' -u- ’ ' .I-- . ‘- 9 ,3“ )‘p‘ M‘Vsfilq‘wfl' fi-L q '3 (*1 h I ” .: ;-‘-.. K;.; . ' .- ' l'- '_ - r.)... ,- '- ..' .. ~- 5.. 'd; Av _ x4../.~ LotJ'-"| --/‘/UV"J- ~3“ — l““’JLLL' ‘I" o o ‘ . ‘ ’x C‘ ”AI-"‘_' 11A :1 4' O fab; IN vs --1 - \‘f‘. ‘ ‘ ‘ xx "'14 's ‘ “‘\ r1 1‘ '\“‘V\ "‘ ‘4” 'L“ fl 0 "L , ‘. ‘h ”,3?" “q. 1A7. 3"- ?W C‘ “-5“ (1 ._L n. ' ‘... . . § .' _ mkv “1“ __...a .. n .L L] -\.o bxt 4".J-a¢‘, -.L f, ,U\ \I LLU ‘uL—l... ‘J‘. ‘ II‘AJ ‘--‘VV‘ *‘|.)’ f ' o n I o o Aa¢+annog ”finfl +Ba Pnuw4n+1¢n "7113, 1n :0“: fiyp1Chl nouliry ~+ r4rfinwnnL ‘nnvqnq "'{Vz‘t H0571 06H, ,31 and COVE‘VB‘TQ f‘l’MI‘F. n. "na+ .5nrnp iq pun Huijflfiq: gqgwrjnlg nnfl fhe eanighnnf. The “ext " ~r' n'II'LT- 1" ‘ 21r.~-- ’\ : . ~ 0 I‘ " .‘ "" . “ 519a-¢ J 9. ‘n 4’11‘ ’"Id «“13 18 a thv uso¢u1 DTJ‘CTtJ 11 ih-t 1t uohfis , - *r“! . "r nous» W 1610 38 a sudden ‘- 3‘ A) '3 'L ‘3 : )0 'L 0 1+ :3 J ‘3 J '_ *‘ k :3 O 1 J. U) 3‘5 I1 0 D .j 3 y.‘ (+- 9‘4 .‘ 3 Q 3 < 3‘ Q :L .0 "3 5—15 ,3 '2 J 1 ‘J D 3 3 I ‘ f? {50 “fiié?5fil *0“ unifi vo‘“fi. +Hnt if fihe “fist “cahssary to 'p- v '7". ”3.” '15". . “‘ise +30 ‘04P“”"£”“é of one cu*ic fact of fihfis ”nterifil fhrongh one degree 9_/ ’ a I :nhronfieit. yr ‘ __('O ~ 3 f". 1 _ r. ~ _‘ >0 ” I‘I ‘ ,clzss u afi“bn 1? tn~i 5w; ~n~t “hwncxfi, for SOV5T“1 bfil,fi A U x I A . . jfiqfi’AJ-{u-w ""+.f'r;A-yl‘ q awn N4 ".""'T'X in "1‘“ 4‘01? fi'af‘" tfiifl‘n (rjfijjlf‘ 7,3 /' b.7157 shod - -. ‘ - , as. .2 l' », —'.. -—. .a a -‘ ‘ ._..v L 4 .~_ . .\.. '—- ‘._J - .-~- 0 .—' uh ~J ' ._ -. I - . 3:: .‘zllcn, 3'51??? Ni” (“ms (1) A- -.—.A -—-..,___ _ ‘—‘<__. c< \_,‘\_I Tnhlq 33. Frnqific Laqi «a» ynq+ nnn¢ni+y of some BuiIHing I‘E‘r“ 4‘1fiV7‘. ,.-‘_; y«,-‘ 'r1fi+ n‘n': '1‘ S '34- fisfl'i 0‘1 ’1'.'\"‘\:-D’;f\ [A1]“ siraiap TVA"! .q\-‘r‘v-.~: f-vr A. .-" i _. H ' Y -. - -. ( 4.. __O'1'{" (‘r‘\1filt‘r /" . T‘, 077! / ‘- /1 .1. / 7 .. x . 1-1 \-4‘L/L“3 1‘) \IVV fl‘.r . \jfi~v/J oi-H430 ) fi‘il‘i”? Mai/“Tl 1 fi”-'." n 0’ ‘ n mm- ark ~..1,~r.0 10mm 11.33 A ,2 Vfi"0nry ' .‘030 3p0.0 3“.O h- " ‘ " , “'4 A " * 1r]... ‘\).': 7O “5 .\J 1;. Gr: A fir, \ V r’ \Jfik no .00 3300 I? Lo.) ’1 ."1 AFN—7 n}. q 44-688 n.1.,’.‘( 1 Lgoo ? -.1‘2 In-u‘afiinr finfifi“5blfi2 31*sh wool “do“ "001 Corkvoprd (Hr’r M HI ,) z.“. ncsia Corrugatai asbestos p“p0r .ood fiberbsard ‘ g “ Ooi.l7 'Lo :03 (x / O 27“.) lf/‘o \J ’501 . v r' , 0.?Mp l/.O L.2 , - \ 1 " 3.341 l“.§ 3.0 TYov \1?en, Talkor fin” Jnmes (1) fl Ufién moirturc Vapnr conchSés .- 9. Lpfifinf Fdfifi F”om conAdnsinr moisturv. on " hurface, .ore lainnt Refit is «J \l¢..;.xJ fivcn off. Towcvcr, it is C‘IfiLom.¢ry to ’ The reasons for so floing neglev+ *%‘e nnount of Refit for purpnnc of &csx:,. ('11 rt .3 °- 1- ”A ”mn“n+. n donranfilhf water 9-"uch cf thn Iatnnt hnafi JG r-” .4 turn onnflonses nnfi 5s firnnsferrnJ tkrondh +T g lent From ligfifi Bulbs 62? 0*.“nr Goufipna... is fliffinuit {o nefindte amend on fihn n035 snrfaflo ”“fivc £19 mois- 10 ”all or Winflow £0 tho owF- _de. P‘ V31f from li¢3t bulbs ‘ o 935 ofihdr equipm¢nfi can he inclufied “y the ”asignc if desired. The formula for conpxtir.g it: v.“lun is as follow: QLK - 32W X 30h13 where QL & E = Weht zivon off By light bulbs and other 3.h13 equipment (Ufiu/Hr) Tofifil whtfnfie of the light bulbs and ecuipment (Jatts) Wont equivvlcnt of one electrical watt -' '.“’—~ .—m. h--- - n“... Ts ’Vfifil- PW—vr. "_'\~-1afiw~«fiw H'An4 p34..qya1 3-7‘v\ s-x‘;* “‘ C(7"~1""V‘1 —\ r.$‘1 "1"“ ‘Nzn an~“V\fi'F-nr4 :1. = ,4‘ ; -" - VA , .J_. x. ‘ .- JV; ' r. ‘ ,. §»‘— . k- . .a- AV_V,‘.__ _. Q o - ‘ o 1‘ — I ‘. s _ 9‘ _‘, _ _. _ a 4...“ ‘2'," rwnfv—L.p Ja~ ~ av, V”" \°*+ r‘"“fi 0” w’ ”a nuidn $0 3 Vi? 73 $.41 ,ue ‘ <-- . ---- _‘- -- ‘ ‘-' " ' "‘ ’ ' 'I.‘ . y ‘ r" l ‘. .L . A 7. .1- "no? 1—‘--. v r A." \‘n r, a («'1er ’1 C105 ‘ fl 1 CO‘T' j 41 -1. in "I I‘O‘f". " ‘ .' . .- , 14". yr ’17." ~ 5; , -.) ‘.L.| “I"; 4-11 Ami-1]., /~ 1 \ , o " ~ V 3-- , ' ‘ 7°“1 7“ «na* "4"““ P9” “" *‘o ‘v~~n in nnlcr Vnrlcfs - 4 ;., - , .- __. _; .._ _ . _..a .- . .4 . . _ r. '_ '- O fin“’1:: :“V‘ (4“ rs Wmfivw J'fi““"I’”'L_Hs~_n 3'“!- 70 F)* 'v'. . ._ ‘4. 4- t) ‘ u.. - . ' _. ...' .. _-.. .4 ~- I . 500-1200 ,V u.— 9 q- \ *xEYW1fillan, :filPhr nun .rres (1) q / UN ”710151108011 (101) tacit; :1 Va '12:: nf‘ 7M0 .«Jtu W13“ 7101:? Drr man For all tem— J I ' . ’._‘ qr. .D - 3"." narnfix“es, wifh " latent hart hnrcejtprn rfinglng from fig 0” * LC fiofal ‘ 0"? 1. 1. F’l n I.“ J. T’Oh at in J to “,ouJ qufl 0 .Q unfinl 7t 91 L. . f- ‘I - . ~v. L p /2 -.‘ ‘ r iu . -~‘nf‘f“\.'}fi"‘" (fi.\“‘y\";fin f“ n V“/~\: fil-‘wyar‘ V‘MA't“/\‘L:/\“ _. 4-_‘,. _, . ‘ A,. ,_ __ ,_ 1_,__, .\n_ _‘.,'x;... £1:‘ , L‘ ‘:-7 _ .‘W m :. ,H -n n : L.“ " H l - Ml” A r». . J mrh . r—a urns '1 “-1 ‘, ‘ fl .‘1 m .“3 :9: r3, rim 7.. 1. r, 1.: 37.1.4.3". .n 3.5, \J “ '. {Fdrg are sd?dr“l ffiffif””r"f Ov'pcéq Cr 205F552T3‘231312finfu 'jzifié 3T0: - - _ I l- w‘FV "n177n', l~~L alnfi“vl, o“ o"rudr“+1f from +“5 wétérors - ‘_ ‘ .‘ ?— "0? sec “fc ‘.r¢‘ ' ”loovs ”’ .L .. ‘ 4—. ~ J. - .' . ‘n. 3-~°.¢: fro: endtclig filh Mr SQ“4 ‘ -V A- "ngwfi ‘4 D‘fl‘,finr? {-4‘,\Yir\“(¢‘: :7."11 S "' . . ° .0 ‘ n.. " l q. .' ‘ :.-I. / - .. 5—.59 6r *“‘r:3:51‘xt lfw“fi +412 "éé 4. <3 «IfiJhfiLyc ‘ld p,“T‘ \Uffljfifl Hi) 5 ~7fi1r‘ , fl ”4.q.‘ 1. ° 1 rvlw: ~'1fi1 l"_"..ElJr 0A1 0"J8 -. 4AA fij-( 714‘ -L.'- )1.‘ .Le " “I .1. ° ' J. '.. 1.? L," ? .-“. {--fl:0r 11 £50 eavinment dfi.nr1 ~ .19 H,.rn (“o"l;;wnle) 0 yr . . o o I. o o , .- m c*17~"‘ "nh'lnj’w gar: "POT“. ".719 0“"‘1‘7‘1‘179 ',"‘.f‘.+,“." "£571!“ 91.1” 171.4110 “no 11 {fer a fi - o - .la n n -- - “a : L - a V 7—-rlps ;*0m 3911, -1'an hn’ “wkll‘? 4 “TO n0;7 ”loors. lwnnc77776 dr717ngc PTOJWF pie Fndn- **0 7777774 Floors 73nt are on the ground AL. __ Q c-. n A 3‘ . " ulon of EEO Ml :313 Haw anunr H Dre "m‘ru 1709 2 var? inhnvtnnt onwse of 7700797rv covrcn or'wafier. In fact: g . .1» U ‘_ V __ ‘V { ‘W- a”, . -. .. .1. - - .0". A . - .2 , 7 , :71 - 7733 (a!) sin es on good an Forztj .__t 7VT7+1rc an; be rhlted a; C7pll-nr} l . . . nijfit fea+ {Eronqq sandy or yrnvhlly soil, 7nd twice 0T"t5ree +fifvis £577 Hfirfivvn7e ifiywvhfii'kFc Vnnfidxnr #0113. F37 rhcormwans fiho 33". ”V." ,1 770091377: T"fi+,r‘“]"lf‘7 710+.‘JYDP‘1 £170 ”100‘." 71:37’100 , (3 “in 37701171.” he “fling £57 floor 00778 in com— I 953“T*inl in .777L'07Il" DV7v" wazl r" nn“’0 "Prrn tfict 5.1- J. I I 1 l“ H- .. ,. ,7 . .L‘. ,1 :le urnthlvnnvcra7nq:. “”0 UOUltrymnn hhonld He aware a? {h079_ acts nnd i” ‘9 W77+s +0 Solve .. 7.. .2. : .L , 1- , ° ‘ . , ‘-~?u l.filer .rn nblcn, he 3 null “rovifiu for hacqunte dwnlnhge hrnunu an“ 4 ,2" ~ ' ~l—«’ L3 MAJ-‘- J-\ P ~P3-——- ‘ 1L ' l :;l 13; 1n On".ln:;;on .lJ: ”he use al reull Lnucrla s 1’\‘ ,1 CI" 4" n? 1xwv . ._/ {Lib "00"77 77teri7l should ‘ J.- AI' +xfl cfiyfillqry 777577. ACP7rAin7 *7 ”5‘7? (97) v‘ v -Lr)‘;" "' P“ o g I )9 Vahnr-prnof: ”; C V”7 7F V737r—nroof hahcr 1n the floor ”111 not Urn— I "‘1t, 3' I) Q C ' 3 I fiy‘n - 13“ s-‘qu ‘ ‘1 (“ ‘nfi finnr‘ » yqfi~anqfin J- :xp' qm S ~L . I “A, _: L/\,! ’ V.. ,. 'A’ -_ ‘ l ‘ KI' . ..;; ].Si‘\,- .,1.\ '- ‘.l r .. .\ ). 1(2 :5 . I. ‘ V O -,r I. v“, \ 3 .: .- ~ 7rwyvdwqrng ‘57 molcflurn from “7 lng downward fin tan co J7r earth below.” i (I ‘ I -. -- .- v”..— r-n._.- _‘ C ".‘J-“r f‘y\“\"1 ' -‘1 A‘fi’:7‘r' . ""' ;"' ‘ I , J. " . Q - ‘ranfifi fl‘\c«n~-§1§\fiJ-fi,4 '-,‘-v k“ ““ .1..‘~‘A‘~J ""‘L ‘— , -' \‘K.p 'a~~ w-' l .‘ . .:-.‘ ,4. -L' .o o ‘ ,‘. .8- L' _ “EQ"1-“7n er7fiiM€V1-c fiq W‘ 7" VVV innfl 'YV: :qu ” 'A ‘_- ". .‘kr J I. ..' “ t. u‘ .4"~ _‘I‘~- o-Wu "' 7‘ '3. 111 "l" 3110‘?! . O I 0‘ rqi‘,‘ F3.‘,“,, fi.‘,! ('rrVVTJ ".qu“ q,\,“\fi..n “r“ 11 \n 71“,.71 n, _\.' f‘ a I n I .- . . ; *____.- I - -... uh. .-—~.4 - . .’ ' ' ' _."‘- . - . 3 .J , O ‘3 g . p. ‘ .“ fifi ”\_o ‘ o ‘ I o (7. - 7‘ 7*" “r7 "7 _‘ "“771". ‘..‘.:“'\“-"‘-. ‘.."“.'__> 9.. (“3.17-3th 1.11.". " o / ’3‘ (.1- 5 L h C; . "T P 'Y’ ‘ ) A ‘5 ‘~_r‘“q~-: ’5“ R “at,“ ‘1 {VA/l: ‘1’: 1‘.“ s 7“ C,.1 ‘ L-Y A‘.‘ '-/ .1 I ‘7 J - v . .a ._ *4 .. ; \D _ . _.» --.- --. u-.. ".- .4. “0’3"! fiqWPJ’NQ“A-1":q“ J‘AA $“A't~1"""\ 7:! p‘n“r‘f\" -L‘ NQA‘V ‘1 +‘ A 7".731 ~‘ ~ 4- .;| I. -v.1_;_\ ..’ .1ns~- ...\/A 1 1...... .‘ .-_ A ‘¢un\, A . k) '11, c " -- 7 . . , . . . . - 1 .1- l --- ,.. V V / 9 , u‘ . s 7n, ~~=v~~rrvr~wu~n mar-4.7%." 4! 71.‘ ._'_I‘...' +‘A-r‘ +"‘,"|+ r: "““|’,‘\ 7‘:- -(\ (I o_ ,_ I ,‘ ' . A ~ cry-771:: 1:0 vanv I'm—y "'Si’)“, u . -.rr‘g‘1-r1. rnrg‘ngL ,TL-tna‘fl- w‘wfi‘q 711- J-‘ («5“ 4-4, ‘ r in} D “1.“: :6 C’?‘°.."""‘¢"" I Av‘g 1‘55; Pso ~ 4-4“ 7 "2.)0 'UAO-..s.J 7': ‘ .q. 01". i J- .. “ " a .- , .. 4. .2 3 ¢_r “C'nrd 7M7 ian 10w v par :rancwre on“: “u 7.r. '0 O u. -7.:3-':7'11“n 7:)“ ’777-‘2” ”:77“: 7‘37“) (777777, vegzfi-zfiatiqm \..J n \ 0 ~54\ — -‘ .\ f.“ \Q-l.' .‘ -\ 9“ (1 CH“ ‘ Yl' ' - ‘ ‘ T‘ A! ‘II'. A" :1. L .7..1 A ‘.1‘l\‘-¢', W ‘ l ' ‘ , _4 .7“. -L‘-. ‘ . "' n‘v. 1': 5 V} .f‘! ‘I i ‘I 1‘ H 7 n1}. ‘ y r.~~ ‘- a . . .— ",..“ .. , , . --~ - -_ --v.- _-. . . .— H.. . 7x7 “‘1 .-.. . (\1_,.,.. , 7.7.“... I )- I",(IB .7 q‘ A \‘Q‘ ‘ I‘ .. 1 q": a 02.10 -I Ira-.1~LCCV 25.31 ton of 7777*nrn .1 I r ‘ ‘ h. N 7 «P770 7q4.a ..._ I. - ., ”-4, .‘ l .0 J— ‘H O 0‘ .."‘.'1 "" 7‘ 501.8 .71 Q {3311.71, 7-3.7”? ~10, wrzquHG'warr iECiAC as -n rmw:w~ fir. IL\/‘~.l I$‘..t_.4" OIfi/7S, ; :"'- "l.{77?) ‘5 '?w7s n3+.:7777 rnxf‘7fiflx: ’If‘hfi64-‘her1 psan~q 4-775». ."."' r-fi r7», 1"; y. .q-iwr‘n4-1‘17 r74~7 I) "‘2~\’7t-.s-v »'l'.d L.»- ' . .. ~. ~ I . ‘ I .x. - _.:_ ~V"/.4. | _- A o 7- , -- . 1' V V fi.‘,~ ' .l . I . l (I -' ‘V 0511-. ln-I'AI“ fi. Q“ ~1- FI'\-v‘._‘fln+1‘q‘n 13“”; ,7-? *1r J’“"l‘fi O 9‘,‘ 730 “'_ I“..- v—C'. _ . _.‘.5 " ' .. ‘ ~, . . _. ' ‘5.‘ . r k ~'\.'".’ I." A f‘ ‘l ‘4. J 7 A: I. . u . -— . n _- . are, ”tony”. 71m, .7, (.1 mum .zlz‘e +0 ’7. e 170.17-78.27; 17mm. 370.7 3.4.7 k (|" "bjflfl "‘.r'" q “n"-‘ J-Qq-r v‘n‘j . -~. 7 k” . ; ‘ . , . ._ L) l "' “ y l ‘ nnzfi I ‘A 7.03““: 771 7.3;. . in wiring fiifh‘77r77r 3 Afifiur . J. 1 .“ a .1“ -.- : .J< .1— . 1‘ ya I” ‘2',- , ”—301.71” ":1. 7 I". .17.". :' 01531.11??? 0- W1. ,7, 0 ”Us O - A v ~,« 1‘ .,_- ,V, ,..l‘ .\. *, , ,1.'°__°. ‘1 '- -‘t‘.’ L)“ .0 '~ -"lL‘JJ‘C (J :W, "\'(\}] ‘J [1-1-0er“ . .\s. '1 .2”, 7 s 0 ”W. *n7e ”r07 ‘77 77 T77 r07son 1C 7 l 0 Q -3 ‘ 37vors OV77077filon £707 +77 1¢7for Sir o «7 "3c ‘lfl5‘1fin i"“ .L‘v ' ~J . n q ' .0 -v7 0 t1777 ;nr fihé refinval "I,“_r‘+1 L115: Is j_:_’:‘.19r 'leqTfi-zjorqflfi.171e 4-‘7n 17117773: "in‘w: n. .._., :t‘-1.-J- \ V o +.r~ at 7.01 7 ’11?) o 4. s ...I- 7“"7ver, inflir7ct1y i7¢r777c liffier noisfiure A. '11:“, Chill it “7.1077 its . fl -.«___ -..'. A.—‘~ . ': 7- 0": . “N ,7- ~-- r~ »‘-— s4 -: "—1- v ~‘h " ' » a 307-75 >;r bGlHU 17 or, wlln s fh-s 7.r ..mt11rr "71 £0 7bsoro more nelanlo. " ~' ’-7~ ’ 7”“ o' A! ..~ 4‘ m Awnuw-ann .r ‘. A 1 :1'u-V! mm, Mn 1"5‘“? 41*“ own 44*" - ‘ \ _ . . . ‘ . ‘ . ._ A I. I. , J . l . .____ -d A' ’1 Jfi’!”“."," ‘ ' ‘1‘! ' ”‘A'! : r; r‘lfl‘ ’ ‘1 P '1 ‘ '7‘” ’3 1‘q-r n " ‘ “I ""J‘ 7. A ‘ A n “H" . ”J',.7“r‘. frfu‘“ “L“ :‘\ - . --. . 4 _. . . - . . » .. , ' n 1 ‘ w w ‘ q ~ 64v -47~ fiver“ " fflg~-w rv --'~ ~< , 297““ “s “‘1. 12"”: 'EA .12.:anvr V‘v f.'3"_y-\f):“1+ r" n ' .e‘N " I‘m ‘\w ' ’ i‘ ‘ nnn" -"\ fi’t"€‘° ”T“ find—.0 L‘ P‘ ”"r‘""‘\’“' VC“"-‘~" . jl‘ ... x \ v. _. ~ , __' A. I...__ - . .“ U -L-JL‘. .J._,U- ' 7 J L‘ A‘ 1 L —'- . ‘ J’ ,‘ -' AI-p‘.‘\‘1 aL-f ’1A4-4A“ (u—va- ‘- j #- wr, r r a 1 w." a 1 WV‘. 0 (\K‘j‘ :‘ss‘nv‘rfi fin nyfi‘rt q r‘~‘ ' ‘_\__r3, ‘fé‘ ‘14. . J.L . ‘ C‘ Q 1‘. I V‘ . 1‘ ‘7‘ 'L I. - "A‘ '“ U“. ’ " 1‘ 1 ‘WA : J~J v. :0 n 4- ‘Vfi MJ“11 H A 3:1". ... " mm. 0.. ”3““ -.‘. a JD". ‘ _- I, ff; .. W“ .; '1; L .1- . i I “ J. (1’)\ '1 1 1 A ‘ ‘ - 1 ‘ 1" 1.1.. - M . ”—7- ,n f. ,1. \‘f‘ wup - i \ m ‘fi --fi1 . fil'\‘ a y" W ‘1'. _r'\‘1r-"\ O -4 an \,d ,O;.u-Q ifvlulS w ._stc; a 1. adhuu h-“ ”n *1 x-‘~ “A”,~ "J“,fif I 4-‘ "“11. u 'H ,1 L' -- 1 - . ‘ 4.1. .1. L . - a» .~’-\ - A. 5‘“ r 'w , n 1 rv‘ ' ~ «r ”x ,r‘ 3“ ~ ' “\‘HA -0 L;.,Cs “1" -w “T “,.J r _ “LHQ r91“ lJOl; u;v a“ ,r bun 005p ;' 1 1;, .J .' L. 10 5n“ litter finndefl ~ \«4-“ J 1 L .‘(3.n\l.L n 110‘ L. in lifitfir is no -.- -, .LT .1" . P ‘1 03 u—v—_~.—--—._ ._. ' 'h—h.‘ _ m“.-. Olr] ,- ‘ " ‘ 2 ‘5 av . _ a J.-Ai,. .L n, L1 "4“ .. .M. o. .ofino o sci on anor75o lo“ l “V r“ “re ,or -RC .iiFnr zoifils. AV‘ h 1“ . ‘C "sa '1'. ‘x .- A - . n no. -'-- fl . -‘ inc 0 »no 4133.f‘ fi 095 o? ago rl'm»{olo311 l “oblon fio,ho¢ *3 ’“nt iflos~ .' L 1 ° A 'L' 1- ...: V r ‘3‘ 1‘ . ‘ ' . T3£1CDS are boo 01g in~ cover loonliulos of woo E doi; ificrcnt confiitioqs. Tr” +Hi~ reason, *Ho writer holiovos *hht fiiis noihod coul'1 be imorovcd romsrhst bg'toking loosl avoraxe fiomporsfures in1*odfl of climofiologicnl region average fiofiéordtwro. The Insul~tion Ponrd In for laying hou~os based if) Sm 1. ° ,L: ‘1 1-' 'Eo mans :nsul1.ion rcoommon OEIOH Upon.avcr1qc coniiticns For fro several Clirnflic zones is not safe Bocwusc *flle“c is such a wide spread botvocn fiho average and tho teflpcrdtures which “331 9W” ”0 occur ht inEiviHuRl localifiios Within nay given zone. This does "Polters beefiusc larger ”ml? hold true geofirhlly ior othor tyres of livestock n; "lliffisls mske "u“fiicicnt float to cushion Rho effoct of this comparatively 11:i 317 L‘firvznojrfl-Ll~qre ‘99.:‘iabilfi‘tu'r. " ClimfiiOIOSiCRI fisflfiérfiiure data of greater locnl character are pre. oil to underst"nding the locvl climate ’“3**+ed Hare (Figures h t0 7) ES 31 s- Ffilffuld be noticed However, that mothofls c and d are probably more recon- T'W “’3rh%ed for use. c......— ._ ‘- *-,~ a....._ v-“ —fi E __ ,7 T 99 FIGURE 4 AVERAGE JANUARY TEMPERATURE (°F) PERIOD l899-I938 ' (BASED ON 200 FIRST ORDER WEATHER BUREAU STATIONS) tr '°m Climate and Men, us YcorbookongrIcultunJSfl (2n w 1 $92.3”... oz< mflzoo 22...: 03. E. 23%. no 2:6» «P: 293:. 445.23 :Eoz A.mu.._.z<_...uu3 mIHZOE awkz. E, wmIH mTC. mOm wank/Emmzm... z_ om u._<>mm:z. . nomnemsnmozé ,. . m mmso E k m 1 3323;: oz< 3.58 :8... ”Com. o... ocoowm no m¢ con: 20.0mm J mwa m>52 zmwbz_ _m 0... _ .25.: mmuquu024m 4! . _ _ . . . . UI m wmawi ‘ud- 102 FIGURE 7 I AVERAGE JANUARY TEMPERATURE, ‘ MICHIGAN ' . OFROM 'CLIMATE AND MAN“. u.s. YEARBOOK or AGRICULTURE. I94I (2|) ‘ I 193 ‘7 Q V 9 . fl ,- ~‘ 1 r _. I H. I c. metQOfl bosn: on tno lossér loos; tsflnnrAture. in nattin; moo air I ‘I o a O 0 o _ Q. conwfisonimf "'orI-I, it is oustora-‘af'g' to hmze- +1.... firsjrtn tPFI‘V‘I‘fi‘.,Il“e on tne o 1 o _' T _ o o lawovt tnmncrwture on resor3 for the IUVOH ICCflLlifl. fl““*VRT. ibi‘ ”’5‘?“ + . m1. .. ° 1- 1. + 1:07? 1 ,, +1 - L, 1.4., .Mgfltmm, {1X "‘1‘. Ige'nj)n1 'QI‘I‘! e ‘1 F tiff??? F) - leflc J “LI." A. 1". V‘.e __]1.c' qi.’\‘o_..».1 J-d J .L;L- Ala-A \u.’ o ..A.‘_. of the builfling is assnm34 to be sufficient to carry over +r» extreme lows w“ioh or‘innrily occur in tho night Pours. Tho folloving table (Table 37) from Allen, fiolknr and James (1) illus— trates tRe rolotion Between the lownst tempornture ever reported and the ‘4V«J design +onnernture usunlly Choosnn for a few selected localities. I I Table 37. Pelstionship between local lowes+ temporatures and the tenmrnturos user? f‘or design of testing arstens‘fl City Average t erpo r— 1mm st temp er— Do 3i qn tenper- Differ one o between R titre from Oct . 1 aturc ever atnre u small;r lowe st de si gn to May 1 reported assumed temperature (03‘) (°F) <°F> (0F) Atlanta 61.5 — 8 4-10 18 ‘ Boston 39.1 —18 O 13 CFiéRgo 35.h -23 ~10 1h wieveiand 37.2 -17 - S 14 {htroit 35.8 .2h -10 It How York 1:0. 7 -1h 0 1h rnilndelphia h?.7 ~11 0 ll '93 1o . 'ic h3.h —15 o 15 i" From data by Allen, Walker and James (1) Those authors renort that: "since flesign temperatures are generally Snmfified in 90F intorvnls,_it will be observed that these values check cflosely‘with tHo above rule." n—.-.— I - ‘ '“wh—m- 10L Close (7?) also found *“Wt the recommended deoiqn tennerntures for “ectirfl find sir conflitionins checlefl closelv'witr The overar- of Thn min— ,‘V -~.‘ U - .». . . .A,- W.) v . A. a n: .iv -_. - p. ‘1 \4 -_J _a ‘ )1 A irum terporfitures thst have occrrred once each winter for n period from a; 1999 to 1935. However, Barre and Sonnet (11) state that although the outdoor design temperature for heating is usunlly assumed as approximately 15°F higher than the eytrene recorded loner tempereture for the locality, "this guioe connot be applied uniformly". method renarts that "the extreme low temper— 91 Parker (82) discussing +Hi eture for Elccrsburg, Virgiria~nns -2707 on “econher 30, 1917. This would give a tenp‘rRture for desibe of ~120F if the above recommendation were followed. Hovever, he r‘ntes‘thct the recommended residential design temper— . o a a O“ c Q o ature for the locslity is pu~t slightly below 0 r, wh;c makes a difference 5'0 p .... A. * its absolute minimum. As will be shown in the 'ldn'h IL 'LJ‘ cf Rnnrorimntely 2 description of method d, Paner found the design temnernture for poultry So? in this locrlity. This is just slightly more than five houses to Fe degrees hijher then the recommended residential heating design tempcrnture. Eb therefore recommends that: "in the absence of better information it is felt trot five degrees above the recommended residential design temperature ray he used as the outdoor minimum design tenperrture for poultry ventilation systmns in ares: near Blockshurg, Virginia." He adds that: "caution should be taken in applying this general analogy in other areas." The following figure (Figure 8) published by the National Worm Air Thating and Air Conditioning Ass-Ciation (77) gives the OUtSide design temperatures for heating estimntes for many cities of both United States r‘nd Canada. It is believed thot such a table Will be valunhle. For sninal duflter application, these temperatures should however be raised by some— ‘Hdng like S°F or 10°F. Figures 9, 10 and 11 are presented to supplement Figure 8. -.—..-... .u-v“ --._..._- ""m-«n— “w— . - “nu—.4. 105 FIGURE 8 WARMWMIIAMMMO mddhiuw‘goumwcm'hmmngw‘:: umqummmmu-u 3" m nil-I null- Mm up. w ecu-nu dd. mil. mmmhummummum “mu“uuuuumuum Winn. will he mane. low-m. my In hug-um vault“ «III manly tot-hon Tori-tn HM M um-Imwumummmmumcunpu umbalroodflon whoa-«nary. "* "" ~-~«~--~-|° my -.-.«4 common new ...—u .. .... a. --.-. -.-.~...~ .: a. 2:3,“. . m......--....s WA W ._- I """" ” “ .3...:‘:'i. ;::: I». um..- I Mm ........ 8 Immk ~ _ ‘ Mod ..... ..— I Mn - 3 III ‘........ u M' h' Cunt-thaw: Io h‘mfl m—a “"' " -----—-- I'M. ......» II-III- m... i: .m- l: am on“ ”m —‘° $2.12” ".313” .. I Indiana: 3.: Mm" ‘; gubg""jj'_gj_,o Wuhfloc “—u mum loath --II . II...“ .......... 31h“ -: ‘ 1*"- l-It- - I mm"! mm. ............ _u o m ---------- u m --—---— u .lhll NI ........ II wk". m ' . w. .......—2 ”'5 ‘ 2.3. ......... luau .....- “...”. i—u "‘“ II ...... III-III ”...... s. cm -II " Print. (Item ~ I "1"“ MI. ...—.... a mi...- N ’02::- " ’nneo Inn". 8 ID A” II. about ...... : "go-ell Bhutto-lo 3."... FT.” .....u—ll Charlott- ‘ - . ......“ I . ....— IIII —II “'w' In. «II 3m...“ -.. I m I? ...-o [5 I'M” 3.”.* :5 “I. .. I u" ‘ ‘W"' QUEBEC Boot l- ~IO Vernon . -— 5 u - : I...“ -‘” ...... Victoria ll . “Pt-o“.- I“! I. M Ci “”3. KIM-o CR: germinate". .10 “wk-- 13 I- “'1'"- ~ ,4. it “an: "£11333" ”2. arr. .. ::::::::::::.f".'i‘£ CALIWINIA IAN!” M l ..... ~51 Erma.“ “ :3 MI.- . ~10 | 05mm " ‘30 1;: I, ——20 ”I“ .... l8 ION‘I'ANA Duo in .. —10 L‘ r o It! to. ............ u cm "W :: ‘ ‘I “In l‘lon .. -—-2 301“." ........ -—10 M - " M cm ”‘ ' ‘ I .. ‘20 "M - ...“... lam -—IO III-u - . ' a." Pond-u N- 3: ”no ......u—IO . " immu- i. (am: ...". ii: “31‘ ............. ":0 :3: II 1'0"“ mm". m U “'3; mm» um Auu ..—w a: 3'. .... a '51:“ -... 0-- 8 Idol! m 25 Alum ‘ , _3; :‘zch'J’olnI :g: In. Jo- ........ 80 ‘um =iihflhcu’ " :: Chem-nu. lot-don “10 * F _;5 COM Groo- . W fxm Pruitt. _ ——25 his“. Wink ***** M ' ..— “0" Ion-flu -........-l5 rm“ "" : ”an“ 1“ ~18 :33“ :grtg'n ........ J3 Hurting-ton 1‘ ...”. Han-vile - . , ______ _- A ........ —— M _u I015" .- - C M... 'J ll'“"“' Winnm ______ “:2 limb-I'M“ ~30 \m I W _|‘ M|fli~ .... . um "“"‘ —" llO'.“ .......... — . . ”......- m" ill. ~ . H“ . .... h l‘ Igrm leh . 'l‘ M toll.- .. M Pb“. —i: Sand BRUNSWICK use Imnuc ~15 “I. ... LOUISIANA ' hfllur‘ ........ H" ..Auomntkm —-20 P’s-u- ”"13 AHM a Y". "" “m“ airm- . ..... ”i: fulfils: ------ ~15 ”In. “- 1‘ “HAUL UKLAWIA F "up ........ —— I an I _ Morn-ton ....mu Poet .. .....m 30 000mm . M (Rh-I: :: I‘D V “I . :0 A an,“ 5"". “.20 non: Laurior ——25 Ionic-Id — I h“ ~ 5 Hymn-will. . ........ -—Io ....... — ' St. John ....— s In un- .— . Sun-u ............—15 lekt .......... — u m .V .. u Port-x9 do: mm. In". —rlo h 20 ‘ Port Hurrim-—15 west VIRGINA 14"” _ i llll field .- K n ......— out: n“ l: Sumo-III- .. . t in: .. —-lo lath-punt “—40 :IESI'EM?'|H._ 20 l mama-c: " "1"‘31 ........ I" 1 Putter-bur. :——10 it; law's: ~15 t W ......—- fl ' her“... ‘ hnmtidu ~20 WISCONSIN gt. Joghla ....—I‘ All.“ . ...... —20 ‘0- I“. ”- loiI. . -1. 8n. Ana do lulu Chin «to ycl .......—15 l (In-on Bay “—10 Me. | c “—3; Hint-lathe "IS I geldin- .......... —|o “we'd '20 1 '13.“...121232 n... 3135“-“ | ' ""“'° — I SAsKATCRIVIAN i wroumo to“ _ _ 45 i Cup" .......... --2 Emile!“ ......—-30 I Cheyenne ~10 K. .5...—2 lander . —2 rlroomv ........ ~25 . sunk]:- ....... - fl Emu-van .. . Fond (III he —-80 CANADA {runfilh .......... ~ ’6 . ALIII‘I'A rufl‘h. ....... fl ' Lost luv" ....45I .. n — 5 “EH-e ‘ __ 10 _‘ loon- Jo' . —'.‘5 . Irku- -': "‘ "fl“ ,,,,,,,, J: 3"“- " ~ calm-u. ........ II 4: “3&3 All" —:3 s l h.” - . nil‘ . ....w—I. :inonvlllo :: _:o '5'." 1 Branch .A_.~—Il All.” ........... — I non-um ILLINOIS «Hm-.4 noun-u Auburu . ... I m DAIO‘I'A ..—:o “‘32:. m.“ l Mum». ......m—I. law ....— I Bin-w ”-10 30 w— I sum “mart: (Ere-ungu- —Io mt“ nun-II ......— I Am ......-u ...—so “I _u [him i .. .—:: I g: .. _.—" Conrad ...... .-—l°O Huron ...... _: .. —.: ““' . .- In“ ,....-— h f. . . ... .. m .— ...—...— a bar ._ “—10 II o... e on... no. ....—II sun 23 ....—:I moat "a . . i ...-.|. M .7. -_ ‘ in nu ”....._'. 'm Ion-fl m-‘. mm cannula-.4 0 National Warm Air Heating and Air Conditioning Association (77) *M‘” -am. - H'M H- ' ‘IIUI‘ -‘nl II\II1 II lll.-.‘-0 u .l IVIIIOOIIF‘Z 106 FIGURE 9 LOWEST TEMPERATURES EVER OBSERVED (°F) PERIOD I899-I938‘ (BASED ON 200 FIRST ORDER WEATHER EUREAU STATIONS) 'From Climate and Mon,U.S.Yearbook ongricultureJ94I (2|) FIGURE IO ISOTHERNSOF WINTER OUTDOOR DESIGN TEMPERATURED 107 * From Heating Voniiloiinq Air Conditioning Guldo I950 (5) 108 FIGURE ll AVERAGE ANNUAL MINIMUM TEMPERATURE (°F) (BASED ON 200 FIRST ORDER WEATHER BUREAU STATIONS) PERIOD I899— I938“ \‘W- I' /\ , I ' _ '5‘!!! “ . ‘° _ .. no ‘ ‘V I ___""4 _ .1 ' ‘Ur » \‘ 15 301 50.0.50 ‘ FROM"CL|MATE AND MAN". U.8. YEARBOOK OF AGRICULTURE.I94I (2|) ( I I , i I . I ' I' I I ‘h I 54 i i I “' .q i: ‘, I l'-.' I: ‘éi‘f. II I I‘ I' I. . [.JI d. TIcthod oi” local "'Txoectcd f‘“ilures". In 1:772, farm- .5 mended a no"r method called "expected failure method". mhic nothod consists of assuming a design outside tcmpcrature and analyzing the local weather records over a period of as nany years as boscible, to determine the number oP failures that would have occurred during that period. A failure is counted (a) Then the temperature remains in a range of 2 degrees below the assumed design temperature for 10 hours or more (b) When the tempcratnre remains in a range of nore than 2 degrees below the gsguned design tenpcrature for 3 hours or more. The same author (92) made an analysis of twelve year records for Blacksburg, Virginia, and transcribed minimum tenneratures and the amount of time that the temperatures remoined below -§, 0, S, 10, 15 and 20°F. 0 o 9 o Fron the data it appeared that approrina+ely S F 1"mild be a satisfactory outdoor minimum design tonpircturcs. Applying the above definition of a failure, the results shared eight failures in twelve years or an average of two-thirds fiilure per year. Since several of the foilures'were for 2°, 3° and hoF, these failures are prohably not very serious, he concluded thot a minimum outdoor design tenparature of 50F is considered satisfactory for Blacksburg, Virgina. Parker (32) also states: "It was noticed thPt 50F is slightly more than {’i" five degrees higher than the recommended residential heating design empir— ature of Blacksburg, Virginia. Therefore, in tie absence of better infor- rmtion, it is felt that five degrees shove the recommended residential ‘I r d as tho. outdoor minimum zsosign design temporatnre may be usc= tompcrature for poultry ventilation systems in areas near BYB ksburg, Virginia. Caution should be taken in applying this general analogy in other areas." —_————_ ~ ...—.q—n..___ llO The “riter u=ing fartnr's nothol eralyned wia+er terperetures for East Innring for periods fron 19L? to lCCB. Th“ follo in; table (Tahle 3?) shows the nunhor of fdilures n’ieh have occurred hy using design temperature of -lo,.$g -2rww 00?. Tahlc 39. Connrtation 0’ the n“tside denifin air t“V?erature for dast lensing Outside design Winter Kunher of Total number of Average number tennerature failures per failures for the of failures per assumed winter fhur winters winter _lo°F*' l9h9—l950 No failure 1950-l9hl ifo 7""5..lure 1951~1952 Yo failure 1952—1953 No Failure 0 failure 0 failure - 501"” 1910-1950 3'0 failure 19fio—1951 2 failures 19F1-1932 Ho failure 1992-1953 He failure 2 failures 1/2 failure - 2°F"* 19h9-195'O T"o fr? ilure l9SO-l9Sl 2 failures 1951—1952 30 Failure 1952—1953 to failure 2 failures 1/2 failure o°r**“ 1919—19510 2 failures 1950—1951 h failures 1921—1952 2 failures 1952-1953 30 failure ' 8 failures 2 failures *: A failure was counted for each 10 hours the tenperature remained hetween ~10 and ~19 or each 3 hours it rennined b010W’-12 ¥'¥ A failure was counted For each 10 hours the temperature remained between -S and -7 or each 3 hours it remained below ~7 * *h¥ A failure was counted for each 10 hours the temperature remained between -2 and —h or each 3 hours it remained below —h * i ¥:* A failure was counted for each 10 hours the temperature remained between 0 and -2 or each 3 hours it remained belOW'-2 _,_'————' —~ ——- ——.. ._ _ —..fi. ~‘ -rv—-<‘u__ v‘. v-——___._ _ "~‘ '4... ...-.-. lll '1rfl"i:§r>.rntion of” ‘31". shove 75.11310 ("-101le 3‘0) Film’rs that 001" 31" firmmbly a good outside design tonccritnre for Lonsing. Since Lonsing outside design sir tenfrrnture for heating estimates is —lOOF (Figure 9), it seens to the -hst the design outside tenrcrature for animal shelters for most lo- wl-“elai 4|- 07‘ J- cnlities con he safely assumed from S to 10 degrees above the recommended 0 a. residential design locnl temnerntnre tor hosting as nresented in Figure 2. Uesign outside relntive humidity Strahan (99) recommends the nee of an outdoor relative humidity of 100% since "the most difficult conditions for removal of moisture will be when outside air is saturated (100% R.H.) and when under this condition it o o o I O I v ’ 0 is necessary to hold the inside relative humidity at 55% to aVOid conden- sation." Parker (82) also recommends the use of an outdoor relative humidp ity'of 1003 for design during the critical period "since a relative humid- ity'of 100% exists during rainy or fogs" periods_and these conditions may list for several He believes thnt this value should be applicable to the humid east. Barre and Snnmet (11) used an outdoor relative humidity of 803 in the drawing of their air flow chart. Oliver (78) also used an outdoor relative humidity of 70% and 80% in his calculations which cover the outdoor tempor— atnre range from O to hOOF. It looks like each had in mind the estimation of the probable performance under average outdoor weather conditions, rather than computation for the purpose of design under extreme conditions. The writer believes that for critical design analysis 1003 relative humidity should be used or at least a value of 90% or 95%. For general per- formance analysis a value of 80% is satisfactory in most cases. Figures 12 to 15 are presented to give an idea of local January av- erage relative humidity at different times of the day. - v—n..._..... _ '~h- ...-......— F ‘W ‘-_- I- M 112 7 $5 ' FIGURE l2 AVERAGE RELATIVE HUMIDITY—v 80.m(E.S.T) JANUARY (BASED ON 200 FIRST ORDER WEATHER BUREAU STATIONS) PERIOD lass-1938' , r *From Climate and Mon.U.S.Yeorbool( of Agriculture, l94l (2|) 113 FIGURE I3 AVERAGE ‘RELATIVE HUMIDITY— Local noon JANUARY (BASED'. ON 200 FIRST ORDER WEATHER BUREAU STATIONS) PERIOD l899- I938 " *From'CIimate and Marius. Yearbook of Agriculture,194l (2I) FIGURE I4 AVERAGE RELATIVE HUMIDITY— 8 PM.(E.S.T.) JANUARY ( BASED ON 200 FIRST ORDER WEATHER BUREAU STATIONS) PERIOD I899—I938‘ rV—Yn P FROM “CLIMATE AND MAN". U.S. YEARBOOK OF AGRICULTURE, I94I (2|) AmNVZCSE 024 mw43oo 20mm aOmm_ Oh omoowm no mm mo“: 20.0wm J<¢Pzwu Ihmoz >m<324e mo“. 720223: m>_._.mm.rz_ m. HEDGE o\o_m D... Nm uuwzs... 116 3. Resicn firound +ennora+ure mu .: , .. h n . - -L .- .‘I a," mum .-+~ a -' ,. A. ~. 12%.? moistuie content, eOdSlSOCUCJ and 1.04%; Cu‘prlqu Cl 8011 L518--blj effect the ground temperatu“e st vsrious depths but, according to Allen, qqlker and James (1), it can generally he assumed that the ground temper- o s O o e o eture under s hnsenent Floor T111 average “Dout 50 F in most localities. If such a tev_crsture is true for poultry house floors, it can he seen thit ior ho""e tenneretures A? holow ROOF, there vould he s hest Quin fron the soil. ”ownver, Votes (1?) oht"irod the Following nvnrege temper- atures from his oncsweek test on a concrete floor poultry house. These - ,1 1‘ ‘I ‘ tensoretures were taken five feet from the ~13k of the House. l-Outdoor tenpornture 25°F E—Tcmneriture st Jhe surface of the concrete floor 30°F 3-Temncreture in litter tWo inches ihove the floor 39oF o o o ‘ O -A1r tcnpordture immediately shove surface of litter 3h F I The earth temperature under the concrete floor therefore seems to be colder than the air tenpersture 7nd to he a kind of intermediate value between the outdoor temperature end the tcnnersture'of the air in the poultry house. This would neon thet the soil would be receiving some heat from the litter instead of siving some to the house. “he vriter believes thet some resenrch is required to find the ground A»L temnPrRture st different depths around the foundations and under the Floor or litter of animal shelters. The results of such research would show if there is a loss or a goin o’ host and would perhaps nuke possible the de— terninetion of its velue for purpose of design or performance analysis. w-_--_ _ .— “—IP'-‘~ .....- . -.__ I 117 . . . . a O . U ‘ ‘7 ’5 \ L. neglyn Wind cnqelt10ns (Vg Inriltrn¥1on "ii exterior s r“nce ,onductcnce/ The “net losses ere af”eet~d hoth hv the outside temperature and BY fine wind valoeifiy. L1» rnie+ivc inoortence of these two f-ctors varies with the desien o? the huildinc. Allen, Telker and Jemes (l) stete: "If a hnilding rere, say, entirely o” brick, With no Windows, the ef’ect of the Wind would he nerely to in— a minor factor, and the ereese the erterior surface conductance, “hie? is outside ternereture vould control the heat loss. On the other hand, a building with a large nueher of leaky windows would have a much larger heat loss with hieh rind velocity. Here the outside temperature would also be I+ affects the host loss throug. the wells 1nd . ) inoortent for two reasons. gloss, and it afiects the heat loss per cubic foot of infiltration." "he "uthors reconnend the choice of a locel average Wind velocity (Weccrber, Jcnunry end Fehruery) for the purpose of celeuleting the infil— .‘ . o \ buch oversees are presented in the folloning table (Table 39} for a few selected locelities (l). Wirection of prevciling rind is also given. Pity Average rind veloci.y for ir “00. Jan. and Feb. Wine for Dec. Jan. and (mph) Feb. Atlanta ll.h N.W. Boston 11.2 l7 Chicago 12.5 Cleveland 15.0 T‘etroit 1?.7 ~ Yew York 1A, 7 N .17. Philadelphia 11.0 t.fl. “fa shington, W. C . 7. 9 I‘ .17. h *Fron data by Allen, I'Jalker and James (1) _ .- ._._-_.- .-...." a—wy_ m—fio w ...-...... -— 118 I O - O C , ’ A ’18 “3‘1 71)”. sch?” “c 9‘.":?‘,.-"r:c "it”? trclooitj is in :jormrnl suave lc mp 71. 1‘ - J. . ' :w" a 4' r “~L ' ' =0? "1‘. CT"lI“.s_.;.. th" .0171. ace corvi‘ictn, 0‘3, 1., 15 7'71", s pro‘onhl 3r ejqoln ins ""71? , ”iciently accurate to fissure 1 velocity o” 13 hrh . . -- . . 4 \ . ._ .4 . a. . AA- A . Sin 0 thore is actually on incredood heat loss on the windward side of a hwildinq, the question not arise cornernin: tho Onnnrtunity of adding an fillOWrnce for this fnctor. Allen, Inlhor and Jimcs (l) onswer the question "1 ing: "From yocrs o? none—too—reliohle ernerience there has grown - J ~ an allovoncc to the colcnlfitci hes” loss on the sides of nrnctice of n.din% 1 the “nil ing oxnosed to the nrevailir; winter Winds. This oxnosure cllow- L; It is difficult to defend this practice, is nnce, when used, is ordinarily 15:3, in as mucu as the trantnission losses and the infiltration are already fig— ured for a lg—mile, or higher, wind velocity. Exposure allowances are arbi— trary safety factors, which~rere more necessary in forfior years then they are today when methods of calculfltions qre more exact, and the present {I tendenc" is away from the practice." 5. Design solar heat conditions The analysis of solnr hoot as a secondary source of heat has been pre- sented in a previous section and will not be repeated here. However, the i‘ollo—zrinp; figures (Figures 16 to 19) are presented in order to give the designer a better understanding of the solnr conditions 1 ' 1 characterizing the locnl area he is covering. — ...-.—-.-.~__ ___ 119 FIGURE I6 AVERAGE NUMBER OF HOURS OF SUNSHINE, DAILY, WINTER IDEc.- FEB.) (BASED ON 200 FIRST ORDER WEATHER BUREAU STATIONS) PERIOD I899— I938‘ I ,. .—_.-.____ 120 FIGURE I7 PERCENTAGE OF POSSIBLE SUNSHINE, WINTER (DEc.-I=EB.) (BASED ON 200 FIRST ORDER WEATHER BUREAU STATIONS) PERIOD l899—I938' . FROM “CLIMATE AND MAN'. U. s. YEARBOOK OF AGRICULTURE. I94I (2|) W...— ..__ -——.—_._--—.__._.. $82.35. oz< 3438 some 68. or omoomm 5 was» mot 223m 44528 :55: >mmwhz_ $5 9 mmumozé m_ #59... $82.35. 3.4 $.58 22: 38. o» 9.8: ...o 34“..» m9: 29.3: 44523 2:32 32 is; 2 .33 2:202 3... ME“. ME 023:5 mid 9:3. 122 m>5 3 u.._<>mwhz_ 925 as 2 Suuozqm m. manor. 123 pp.- 4. chign air infiltration throufih crn..s Design air intiltrntion through cracks i" affected hy wind and for this reason is classified in this section. Two methods are usually used to Find the sir infiltration value. These neth ds will be described here: a. Air change method. This method of computing the .nount of infil- trntion through the cracks around windows and doors and through construc- tion joints consists of assuming that the volume of sir in the room or huiliing is renewed a certain HUMher of times per hour. The number of sir ckfiflfcs uguglly assumed are given in the following tnhle (Table No) changes by infiltration and exfiltration in T1516 LO. A ferent kinds of rooms“ ir dif Description of the room Changes per hour ”- l—Roons vith Rindow on one or two sides a ?-looms rith Win’ows on three or for sides *- from Hqfia 5v Allen, Valker and Jcncs (1) \4(, ll a This sinple method is sufficiently accvrnte in nnny'cnscs. 5. Length of crack method. & second method which seems preferable (1) is to compute the length of the crack around the windows and to assume an s’.mr.~u.n4-. o? sir lenhnge per foot of crack depending on the window construc- tion, based on tests of window leakage. Th following values (Table hl) abstracted from the A.S.H. & V.E. Guide, ix, I..- o .0 o 0 . 19L) (25) are based on tests by various ilvestigators but are apprOXinntely (f ' 20c less than the actual test results, to allow for the probable reduction lN3~enkage in an actual building due to the building up of pressure within the 1mi1ding. 12h Tohlo hl. Air infiltration due to riniows of various typos *% Tvne of window Wind VQlOCity 5 mph 1h mph 30 mph erouble-hung, Wood-sash Windows (per ft of crack around sash and meeting) l-Vindow unlocked, without weather strips 6.6 39. 3 “ * 103.7 2-Tith weather st ips h.3 23.6 63.h B—DOuble-hlmg, metal sash windows (per ft of Greek around sash and meeting rail) l-No weathcr strips, winJOW'locked 20 70 15h Z-Ho weather strips, window unlocked 20 7h 170 3—Fe1ther strips, window unlocked 6 32 76 3-Rolled-section steel Windows (p“r ft of crack around ventilating sash) l-Industrial type, l/lé" crack 52 176 372 E-Residential type, 1/32" crack 1h 52 128 B-Heavy casenent,type, 1/32" crack 8 38 96 a; From data in the .‘..F‘:.U. 3; v.2. Guide 19h? (25’) According to Goodnen (37) this figdre also supplies to e «r _ roll i‘itte'a doors ‘ince air is rlQMing inward through some of the windows and outward through others located on the opposite side of the buildings, the gener- Ally accepted nethod for rooms having three or four exposed walls is to tote the amount of cracks in the Wall having the greatest nunher, hut in “0 Case less than half of the total cracks. Allen, Walker and James (1) give the followinv considerations concern— ing storm sashes: "Storm sashes are often not very tight-fitting and there— {bre, may not greatly reduce the infiltration it the original window itself ifi‘”¢ll.iitted or is'ueathcr-stripped. But if the window is poorly fitted andiflle storm sash is tight, the infiltration is much reduced by the latter. Ii 13 impracticable to set up any definite standards, but tests indicate that: l—Fbr a loose Wi“oo" “o3 @93fieneo storm sash, fihe rofluotion of infiltration ,. 1 1. v I. /(."- flue'uafno smnWISnsan?fnu qu 2-Fbr fl foirly fith wfiifiow, not wenthnr-stripped anfi a fastened storm . ’1' sash = tFe rofiuction wry he 30”." t “Howli Fe naked fhfit {his “Pfhofl is oopiricsl nni nos vary aoourfitc. .LT.‘ ‘-.: ' - ° 2 it 4. .L ..,.J.\‘ _- 1.1 1 . ° ,3 " CO; itions are so n~ri,u shag no exocs muvlol con x as dawisou. Tovcver, ”u, *be qmount of infiltration obtained by It is a zoo” oracfioe +0 cficok the presont flothod with {55 figures from the air chtngc method. Accorfling to Allen, Tolknr 9nd James (1) the infilfirwfion findlly assumed should not be less thsn the equiVfilent of one-half of an air change per hour. — "w—w~—‘—_.___ ---‘~ -.. ., . C. Hethods of Standsriizqiion of roultry House Ventilotion Becsuse of the great relition existing between insulation of honses and the efficiency of vontilstion systems, certain methods hive been pro— novafl ac a neanq of connrrison in measuring the borfornhnce of ventilation systems in Houses of Wide diffor-nce in design. 1. Tho fiC method "‘io notbod was proposed by 7trahnn in l?h0 (99): "If precise obser— vations could be nsde on porfornwnce in houses with AC coorncteristics ronqing between 0.6 and h.5, find if +bese observations could be studied and results analyzed, fairly definite relotions between the Vilue C and sctufil “orformnnoe should show up that would lead to justifiable recor- mendotions concerning design and management of houses for different cli- matic conditions. Would it not be possible to devolop some sort of coop- erative investigation by means of which data from different sections could be correlated in some fipnropriate central office, ond would it not be rea- sonnble to exnoct thot from such a study there would emerge design recom- rmndotions that could be generally accepted because they would be ration— ”lly booed?" Tbe AC Volvo of a building is obtained by multiplying the ovsrill Q hfifit transfer coefficient f the building C or Uaver ) by the total er- 0 t is therefore: *J. Posed ores nor hen (A). T5“ Ln Btu lost from tie house/Hr 0F hen 9 9 U1 Its range 93 mentioned above by Strahan is usually between 0.6 and h. renS'Would D fbr poultry houses. Considering A as the eXposed area per 100 :nke the AC value vary from npnroximntely 60 to th. 2- 1h: exposure ratio method Barre and Sammet (10) introduced in 19L9 a modification of the AC value, CZflier? the "Exposure ratio." The exposure ratio is obtained by dividing 4‘. -— ..__._ nu— ...,.._ ‘ - the AC value by the total not sensible host nvsiloblo in the house. If A is convidorsd as tho cxnosod area ner hen and Uavcr. is ronlacod by C, the eonation is. Zynosuro ratio = A Uaver. — “KT" ,8 (a (I The unit is thorefore: btu lost from the house/”r, OF, bird, Btu of sensible host to usually in the range of Tinos the a» value is olrondy rathor small, boinfi Pest nukes it ’ractionsl v 0.5 to h.§, dividing it by the total not sensible and of an undesirable character for use in computitions (0.005 to 0.25 approximately). Concidaring A ”S the 9Y?0“95 area For 197 hens would make the value of the exposure ratio vary from npororinntsly 0.5 to 2? which might be of sons advantage as compared to the shall range (0.6 to h.S) or rather wide range (GO to th) of the AC value. The AC mothod is tho one which has been mostly used up to this day, nrobably because of its fixed chsracter for a given house, as compared to the eynosure ratio which may tare any possible value according to the a- sonsiolc heat produced in the houso. mount of > ._—.———.__—_—‘_.. ~._____ ._. ‘. ...—....“ ' --——.—.._ ‘- ».¢.. 4 I "I. m ...... ' Ow 1’30 F. Poultry hence Ventilfition Fbrmulfis R_"’+.‘. 04' {vqnfii‘j_h+i_qn rap/~11; year; {‘07, +,:pv'{rxnrfit1w~ COTT’TI‘OI a. Qtrnhnn formula. In lVLO, Strihin (9?) presented the first rim~ nliPieH formula for r1e"ertu'rxr the rote o? ventilotion renuired to control the ternornture of poultry houces V [:2 (’38 - ACU) ”here Vs : Air flow rate required per bird to control temperature (cfh/hird) Q3 = Net enount of ceneible heat profluced in the house (Btu/hr, bird) D : At = Difference between inside and outside temperature (OF) C = never, = Averige heat transfer coefficient of the building (Btu/Hr, sq. ft., 0F) Total exposed area per bird (Sq. ft/Bird) :3- 0 1 LP . . . . 52 = v - 12’”' n humher of cubic feet of air raised 10? by one 0.2h 0.2h Btu at slightly above freezing temperatures( 33°F and 80% R.H.) V : Snertif‘ic Volume 0’7 the. moint in'flflfi 9111' :: 190,18 Cll.ft., 9'15 r4 0 I 0 33°? and ?OH h.r. (cu.ft/lb Hry Plr) 0.?h = Specific hect of air ht conntent pressure This formula was derived from the following heat balance equation which neglects the seconanry sources of heat losses in poultry houses: Net sensible heet Heat 1035 cue to Heat 1039 due to produced in the = the building .+ the air change poultry houqe (Ventilation and Infiltration) Q8 3 Au; +- Va D 52 * Strahan was using 50 instead of 52,'which corresponds to about 17°F. -.A-_ --~.._V...H_ ‘II—r-w _--_ . ‘- “.... "heck of the units of each t-rn on the right of the last ecuction L \1‘ Gives: AC? : ft2 X Pt} x OF — Wtu/hr, hen En 211‘ OF ft? ft3 x OF 3 5., 1 0*; V ‘ — 'r’ wen - ft- 1 X Btu “tn/hr he «.~'- 20s mar —7-—~=“"’-'“ ft— ‘1 ‘ 3 ft OF 52 ”Eu 0 also Btu/hr, hen. which is in agreement with the left member .,, L) b. Barre and Cannot formula. In l9h9, Barre and Samnct (10) presented a different eouation than Strahan's formula for the same purpose: AU 8 V __ V S - bot-h (AB "as V - Air flow rate required nor bird to control temperature where S _ (th/bird) Q8 _ Net amount of sensible heat produced in the house (Btu/hr,bird) [it = D . ;ifference between inside and outside air temperature (OF) U ever 3 c = Average heat transfer coefficient of the building (Btu/Hr, sq. m, 0?) v - Specific volune of one pound of dry air (Cu. ft/Lb dry air) 0.2h = Specific heat of air at conrt"nt pressure (Btu/Lb dry air) A — Total exposcd area per bird (sq.ft/bird) Tb’analysis and comparison of the two formulos, the writer found this second formula to reduce to fitrahnn formula if Unver. is replaced by C, AtbyD, and v hySZ: V ~S2H3_-AC)Q —f’2(oe AC) 8 - ' 3 _ 2 - Us ‘17" Va = 52 Q3 " ACD _ 52 (Q8 - ACD) (Strahan formula) D -. -..—h- -— - a“... _—---—.. A “ m— 130 It shoulfl he notod here +h“t tho qurc 9nd Samnet formula is just a TCNDliCStiOR 0f rtrfihfifl's, the latter being much easier to remember. If one . . ‘ w r’ keeps 3n,m1nfl that the vclue of v may vary, although usually nrouno :2 .E, If}; ior poul+ry houses, the writer believes that Vtrahan‘s formula is prepar— nbls. “hare greater "ccuracy is wanted, 9trnhan's formula can be slightly changed +0 take the form: V v (38 — AC?) 8 - U. (“L Asza numerical check, con°iflcr the follOWing example: " : ‘. 'unsrlcal chgcl V I. Givfi’n. Inqi’qc tempcra’flur‘e 2 35,0}? Insioe relative hunioity = 80% Outside tenpcrsture = 00? (tempornture differential = 35°F) AC value of the house = 0.75 Wanted: The amount of V“ tilntion allowable for temperature control Solution: A)Use of Strahan formula: Q - ACD Vs : '52 A = '52" "3 ‘ 0" 75 x 35 - 52x Iii-25.25 D 35’ ' 33 5? x 15.75 : 2h.9CO c?h/hen (or O.h2? cfm/hen) V “ the modified Borre and Smmet formula: V3=52(1 - 718:5”:(1 — 0.75) M 215 ”a; ‘55" c = 52 h3 — 0.75) z: 52 (1.229 - 0.75) 2 x 0.1;79 = 211.900 cfh/hen (or 0.1m flu/hen) ll "J-L .. v..——.—-——§—__ —_ —_..___ 131 C)Use of the unmofli’fod Warrv “n4 ¢nmnct formula; 76,009 cfh/hen (or C.h15 cfm/hen) I! \"L P.) O f.) H A f‘ {as l ’3 O ~-q \‘L N w. {b H ‘J'l N {‘0 [—J ‘ —‘ \e‘u I C o ‘1 \31 V fi) : h?.21 x O.h79 : The difference ohtoinefl By the use of the unuoiified Barre snfl Sqmret formula as cornerefl to ?trah°n formula is within hfi error (refer to ppqe ‘0 s 0 Ann) for the rnnje of jnSide tom erotures frfifi 15 to 5007. ml? PHTWQFG ‘ siup‘ifinntion is therefore very satisifictory. D ‘ a 0‘. He'rifrfi, 17:”.1': fi fi 0 I .nte of routilition reouirnd for mOiciuru removal n. “tfianrd formula. The stcnflcrd ventilction formula for moisture T°WOV51 is V _ Voisture proguced in thc house, per hen _ th/hen L . - ' ' (015+urs Cgrnquq ChnnCIty of one pound viqct x o _1 o ' o ' of nutsiwe or incoming Air If the moisture nrofluction is computed in groins per hour per hen and the moisture content of inside and outside air is also considered in grains, the shove equation becomes: V .[grgflysins/hr, hon) -1W"(pr1ins/hr, hen) - TT _ { L r “i ‘351 ’ no so :vs~(grains/hr, hen) x vi - act Formula (1) Ive? 7"- '\..i CD .10) If the moisture proiuction is computed in pounds her hour per one h I, o 9 o o o o ‘Hhred hens and the nolnture content of inside and outSide air is also conci ~ ° -flcred in pounds, the equation becomes. V rr 0 L : “ilééth/hfr) 100 hens?r ~:‘w-T (lbs/hr, 100 hens ui '31, ' “O '30 100 “1 ‘W51 - 10011.o 'Wé viac‘b “l v. 3'act 0 ,...—.—.~.-.—.—.—. - ' fl——-——-—_-———... E‘— ‘u‘ n-v—._ fi_-_ _ “rt-w 1‘ J 3 s x v- - ) lact — vflr(lhs/hr, 100 hens) ‘1 (100 ui “T , - 100 u W3 n ’ 100 X/ Wi .. trio j : TIT (lbs/hr, l ‘I '31 O o ) \ Vi \ act _ 1? lhs .r 100 hens) - l? lbs hr 10? hens x v' _T( /H»’ I _ 'fi / 9 J ) lact : Cfm/hen - 1 no T'I. — lam nor ..-r l \. . .-O r a. Var. - v". vinr‘t (-\r‘ Formula (2) mooning of the symbols are as follows: In these formulhs, the V1 : Vent‘lcuion rate for moisture renovel (cfh/hen) WT — Yoisture production in the house (grains/hr, hen) or (lbs/hr, 100 hens) Degree of saturotion of inside (or outgoing) air (For prac— “i tical purpose usually may be assumed equal to the relative humid :1 t3“) no : Degree of saturation of outside (or incoming) air W31 = Voter content of inside (or outgoing) air when saturated (groins/lb dry air) or (lb/lb of dry air), consistent With H unit 'WSO = Voter content of outside (or inconing) air when saturated (groins/lh dry air) or (lh/lb dry nir), consistent with H unit W1 ; T~+er content of incide (or outgoing) air at the given tenner— nture 1nd relotive humidity, consistent'with M unit ”5 = Voter content of inside (or incoming) air at the given temper» ature and relative humidity, consistent'with M unit V1 : Specific volume of the moist inside air (cu.ft/lb dry air) act — ~-—_.‘_‘__ ————~ __ in... ..‘_ _- nav‘...— - ‘-————__-_ YuneriCil check As o nunericol check or those fornules let it be required to remove Ilh per hen or 11h x 10Q_ : 1.63 pound per hour per 7000 {amine of moisture per hour Icreted water production of four-pound finired and CD 100 hens which is the totvl .1 ° .‘ ' .: [1 hens according to Warre and Fannet (ll). Insioe and outside conditions of 3; and C oa a n n o . " OOF‘and 1u55oe end outside relotive huuidity of CO and 100” are assumed. Formula (1) V _ M (grains/hr, hen) x vi ” (Vi ~‘W ) o ‘ ‘ " V r! I : 1i§‘§”1¢‘{3 = 77.7 cfh/hcn (or 1.395 cfm/hen) (a . 6 X $.55 Fcrnula (2) _ M (lh/hr, lCO hens) X Vi (loo Ni — loo W0) / in C h ,e x i_ - n r,. 1 3 "3 - 77 ‘ ojn/hen (or 1.?95 Cffi/hen) (0.3h09o — 0.07U52) b. Cropsey farmulfl. In 19ml, gropgey (96) presented a mathematical ”nalysis of the ventilation prohlem to show that it is theoretically pos- Sible to obtain dry litter in noultry houses hy choosing the rote of flow .in such a way as to obtain the lowest inside relative humidity. With this idea in wind he derived the following formula for the rela— tive humidity in terns o? “if 95””309: O 30/ C 1.3. 75 Groin—W...” ‘ I. ‘ R.n. : __ 0.1217 (o.oou8 x M30) +((0.000095 x (h “)2 CFUIQI LViSU -, . c . a Q o Where R.H. 3 Relative humidity (Z G lumber of chickens N Number of air changes V = volume of the house (cu.ft.) ° = Exposed area of the house (sq.ft) U = Hover a C . Average heat transmission coefficient for the house (Btu/Hr; sq. ft., °F) " -—- r_— _-.-—_r_- m --.—n.“ -u-xu- ... h——¢_.__ “...- . 13h The assumptions used in the deriVation of this formula were: hOOF and 100% relative hunidity outside conditions and 17 Btu of latent heat nor four pound bird (7ar"e and Garnet Values)/assunptions uhiCh are debatable. 3y further differentiating this equation with respect to N and then solving for N, Cropsoy got the following equation: N = 0.0191 SU lr‘ where N - Number of air chanqes S a Wrnosed area of the house (sq.ft) " Aver. heat trpnsfer coefficient of the house (Btu/hr, sq. ft.,°F) V = Volume of ‘he 110393 (SQ-ft) Which represents the nunher of air chances to secure the minimum relative humidit' It shoula he noted here that his last equation is not an exact . .Lae - LI.) . differential for positive values of U. However, Cropscy in a letter to the writer states: "Practicqlly the formulas for minimum relative humidity has worlred out very vell‘heoause there is only a small difference in relative humidity between twhe formula N u S U (0.0191) and the true minimum. To illus- V trate refer to the tahle below (fable h2)." Table L2. Xunher of air chances reouired to secure the minimum re Etive humidities and value of those mininums:* —_M U N = 0.0191 8U R.r. 11 R.u. V exact minimum 0.05 1.2 6h.6% 1.39 eu.uz 0.10 2.h 81.9% 3.28 81.15 9.20 h.7 92.0% 7.66 90.65 Coho 902'. 96.);3 14.924 9g. :3 * From computations by Cropsey (26) "“e croceoure is first to Vino the numhor of air chcnzes to secure the mininum relative humi”' y cud thon to suhstitute it in the iirst equa- tion to set the voluo o? this minimum rolctive humiiity. Cropsey adis in his letter: "The fornula for the exact minimum is long and cumbersome. ""th the formula above, one con ruickly determine with reosonahle accuracy +he minimum relotivc humioitv ohtoinohlo from a poultry house unfler olmost the hoot coniitions o” ventilstion. Also it will shOW'very quicle'whit ertoct adiitionsl inculotion "ill hive on relotivn humidity." Croosev holicves that hv choosins the nronor decree of vontil°tion, or" litter could he ob,nineo riih the use of a lesser amount of exnonrive insulotion. To verify this stctcuent exocrincntolly he conducted some tests during the vinter of 1950—51 and found the litter of the oxycrincntol ooultry house +o remain Hry~vhen *Ee preper rate of ventiiotion as obtained by the use of his formula wos ippliefl. According to him a check pen of the same size recuired ?ive changes of litter in order to maintain the litter below h0% moisture content. The linitotions of the Cropsey formulas are: l—The tormule is more difficult to solve than the stondnrd formula 2-The assumption of hOOF outside temnoroture does not suit northern states 3"}.‘19 Barre cnfl "omnot's heat Values apnly. formuln is limiteo to four pound laying hens sheltered in houses‘where f 13‘ ?. Poultry Tense Ventilation Shirts In this section the "ritcr's intention is (n) to present in chrono— loficcl order 3 review of all the ventilntion chorts prepared for sinjli~ ficetion of poultry house ventilstion cesiqn, (h) to onnlyuo their hncic assumntions, and (c) to point out their linitetions. l. "trnhen ventiletion chort In 19*0, Vtrnhin (99) presented 1 oerforncncc chwrt (Figure 90) for poultry houses contiining four pound hiris. In the construction of this chirt, he used the totnl heat production for fictive birds not in produc— tion (33.9 Btu/hr) and the percentage of latent heat (7.9fl) ciVen by “itchell end Kelley (73). This percentage of litont heit‘corrcsponis to s noultry house tenperiture 0? 35°F which the author assumes to be con- stant for the range of outside temperatures from S to 300F. The "olid curves renresent the air flow variation required to main— tain a constant temperature of 35°F. The dotted line shows the air flow requirement to remove the expired moisture. This line was computed on the assumption of 85% relctive humidity and 35°F inside conditions and 100; reletive humidity and o renqe fron —S to 30°F outside conditions. In figure 20, it is noted thet the dotted line for rcnoving expired moisture crosses each solid line for tonnernture control at only one point. This dononctretcs the fact that for a given conhinotion of temperature, AC value end outside temperature, only one rate of air flow satisfies both the heat holince and the moisture balance equations. This rote is cnllod critical air flov rate. If the rate of air flow used is bigger than this critical air flow rate the reletive humidity will decrease below 85%. If the rate of air flow used is smaller than this critical rate, moisture will accu- mulate in the house nno condensation will occur if this condition remains long enough. 9 .n-_ .. ‘._ —-.~‘—-—..-- ’_—~ ...—H...“ *'-5- M o . __——___. ._—.._._.- .__ ___ F.’ ‘J Tho limitntions of tho “trnhon chirt are as follows: l-The inside tsnnsroture is conoidored ccnst“nt at 35°F for tho whole ronqe 0,” -§ to 30017 outside. totmr-rnimre, which conditions do not, {firmly to all poultry houses. 2—The curve for moisture removal is “loo hosed on a 35° t-nn-rnture, although nony poultry houses hovo +hsrnostnt sottinqs of hO and even gOOF. 3—Tho totnl hoot production used is for active birds not in production, and do not include hoot from litter decomposition and solir radiation. h—Tho latent heot figure use is for active birds not in production. S-The chfirt is limited to four hound hens. _ —.__—.._———._ .._——— .__‘.__. '-— -—~__~ -v—_—.. AIR CHANGE IN CFH PER BIRD STRA 240 230 2|O 200 ISO 180 IO 35 25 FIGURE 20 VENTILATION CHART (99) FORMULA FOR TEMPERATURE PERFORMANCE CURVES V: TEMPERATURE FERENCE '5 INSQE TEHE RATURESO 35 4° 35 35 35 35 35 35 OUTSIDE TEMPERATURE 20' I5 I0 5 O -5 138 l-J Kg) \0 7. Farre uni Tannet ventilation chort In lFKF, Barre and Carrot (10) prosentcd a different type of ptrform- qfiec chart (Fivure 21) for poultry houses containing four-pound laying hirsq, In the construction of their chart they used their own estimates of tho total heat (40 Btu/hr) and an average percentoqe of latent heat (1 o o OV‘ value of 103 for fhe ranqc of inside temparstures from 30 to 60 r. The inside tennerature instead of heing assumed constant at 35°F, like Strahan did, is srhitrarily assumed to vary from thirty to sixty degrees with changes from -10 to 50°F in the outside temperature: ti 30 35 hO L5 50 55 60 O 10 .20 30 hO 50 to —10 4t Lo 35 3o 2 The dotted curves represent the air flow variation required to mointain K71 20 15 10 The heavy curved lines crossing the dotted the desired inside temperature. lines shows the sir flow reouironent to remove both +he expired moisture and the liquid water eliniuoted in the excrement. This line was computed o ( 4 o o o a o .’ o 0 on the assumptions of 80; inside relotive humidity and 80% outs1de relative humidity. Here also it is noted that For each set of conditions there is only one rate of air flow satisfying both the heat balance and the moisture balance equations. The point of intersection of the dotted lines and the heavy line is called critical air flow rate and has the sane meaning as in Strahan's chart. The above description shows the close relationship between Strahan's Chart and the one presented by Barro and Sanmet. The difference lies.main— 1y in the basic assumptions. However, one improvement was the addition by Barre and Sonnet of a chart for determining the maximum conductange which J Gen he used without excessive condensation in the house. This chart is Shown above the one for ventilation rates determination. The curves for —‘m—-,. —~——.—. “-— o 0 n f‘ f.’ o o _o condonsstion were connuicd on the assumption 0: eOn innidc and outside relative huridities and the relation of inside to outside temperoture previously described. The linitfitions o? the Barre ond Fannct chart are as follow: 1-Th5 relation between inside and outside temncratnre is arbitrarily chosen and does not apnly to all poultry houses. 0 o ,1 f. u o c 7-Thc curve for unisturo ronovnl is based on 80p inside qnd outside rel- ative h'nidities and does not apply'to other conditions. 3—Tno air flow rate is given in pound per hOur per Btu of sensible heat, and for prpctical use has +0 be converted to cfn. h—The total heit production of Birds is based on a wrong assumption as shown in a previous section. f The latent heat figu“es used include both water expired by the birds and Water evapordtod from the litter, although it secns that at very low temper— ature (criticol design tonpornture), a part of this heat will be sod for 4-7 ’ .1. L510 1 bier. mpsrature control rathor than for evaporation of moisture from J-Tne chirt is limited to iour pound hens. ~w~-, -M ____ FIGURE 2| BARRE AND SAMMET VENTILATION CHART (IO) INDOOR TEMPERATURE,‘t.-(°r) 1h1 30 3 40‘ 45 SO 55 60 2.0lvlrvIIFIVIr Irlv111‘1 [v " as ‘3 : / ‘2 s 4 u 0 ‘- / ‘ u z : // 3 4 4m A N 9 I'- - // 72 m g I / Ill]. 5 00.5 _ fl” 0'” :2 z : 00”? o O - . o .. U 0 - 0‘ (Ill/Id E : MAXIM M’U AL ,'/'/',’/ : a; : 0 PREV N D. // If] I q I /, / ’ ‘ 0.20 x ._ ///'////I I 3 - @mg‘é‘b s/ r / I 3 v s l / ///I' 3 r- . O / / / q . \os 4/000 / 3 u— u, 3' A , q . f O.|O u. :’ [I . ,/,/ 1 5/4“ (,4 99’ / 3 .‘5 1 " i/ ‘ <2 4'7 V, ‘/ I ”"0 a 7/! V,/ a MOVAq cuaie : b I fin 111: L111 [LII ljl_l 11¢ 0 -IO O IO 20 so 0 so OUTDOOR TEMPERATURE.to (’F) 40 35 3O 25 20 IS ‘ IO TEMP ERATU RE DIFFERENCE, At (°F) [1% AIR FLOW BASED ON ASSIMPTION w no COI’DENSATION 03. 43 BTU/HR,HEN QL! |7 u u MAXIMUM R.H.a 80 'I- —___ __ fi.__k F. "t “flJvton 'vn‘ jP??‘J“fi*iJ/T5iOTE‘flT“Tt QCT'fi “‘1.“ .1- .....3 .‘v I L" ,. ‘ 1- n 4.. i c. ,. In 1,,O, 4 r1“ on “n ,OX \92 or? cntcn n tuiru ugpc of gcrtorflunce in the chcrt (Tigfirc 2?) Fir ponl+ry honséc contcininfi six hound hens, conc+rvc+ion or *hcir chcrt thcv assumed a totcl hc"t production of 52 Rtu per sir bound hird, cs given by Yitchcll and Holley for cctive non—producing I birds, hut they included alco tho cffcct of nolnr rcdintion and litter de— , conpocition as found in thcir tests. Their ch“rt therefore groups the ef— fect of hint from hirmc, color radi+ion find litter deconpocition. They n1:0 csnuned the wotfil noistxre production '15 being MS pounds pcr day per one hundred hens. Indoor nir was taken at 30% relative hnmidity and out~ side cir fit 25°F and 70% rmlctive humidity. r”Minor“tnrc differential ringe i" from five to twcnty—five degrees (Lit or D): 25’ 25 25 25 10 15’ 20 25 I ‘J1 \I\ At : t' 30 3; h0 fig 50 1 ’7 The chirt has three sections. The henvy lincs in the bottom section : 'rfihrnqnnt +h- cir ”lo" vcriction recnired to maintain the desired tempcr— I ature diiferential. Three curves are shovn for vnlnes of AC = 50, 100 and I . 200, whore A is the total expose area per 100 six pound birds. Other ‘ ’ cvrves C““ be added for different values of AC. This pfirt of the chart can I ‘ :I I he applicd to any outside tmnpnrature condition. ; The heavy lines in the vpocr section of the chart shown the =ir flow i a variation required to remove both the expired moietnre and the liquid water elimincted in the excrement. Since outdoor temperature conditions were assumed to be 29°F and 70% in the compntction of these curves, this section 0f the chart applics only'for these conditions. The dotted line in the lower section of the chcrt represents the ma-— inmm "U" value which can be allowed without excessive condensation. Two *h..- _- , _ 11y measured. The limitations of the Stapleton and Cox chart ore: l—Indoor and outdoor relative l1.idities arc fixed, and the chart does not‘l; apply to other conditions. in Q—The curves for moisture removal are based on 80% inside relative humidity , .‘ and outside conditions of 25°F and 70% relative humidity, and do not apply; .I ‘ to other conditions. .> 3—The curves for maximum "U" value possible without excessive condensation -‘5*. are based on 80% inside relative humidity and outside conditions of (a) 23§EH and 70% relotch hum'dity, and (b) O°F and 70% relative humidity, slthoughilrirw it seem" thct for design conditions an outside relntive humidity of 106%3i615 probably more suitable. .~.'.,., «.... , i )<-¢_,_.44 .L A ..5 I“? :3; cs )v‘. '2; _ 97.35.73 ‘ WATER OU T, LBJOAY T.-TO' .F IO FIGURE 22 STAPLE TON AND COX 1M; VENTILATION CHAR T (95) \ \ cf": AN... 7 1X \ & \ X \ \ ‘\Kro .- \ {.\%o \ \ ‘21 50 I00 ISO 200 250 - 300 350 AIR FLOW, FT.'/MIN. 0.2 0.4 0.6 0.8 I.O I.2 L4 WALL'U'FACTOR ."f 13L.) ;. Clivor vantilntion ohirts. “ISO in 1953, Clivcr (73) nrewonted a fourth t"po of vcntilation short (Fiflureq 73-93) for noultrv houses hnvinn an AC value mouol to one ond "on- I I O I 1 t“ln1fij 108 ”envy brood hone or 133 light brood hens \fonr DOUNG hens). The total hoot production vos token from Barre and Simmet (10) 15 55138 6 total of 7980 Btu *er hour 40 Btu per hour per four—pound hen, which makes a for 133 four-hound hens. The total moisture production (expired and excreted moisture) was taken as LF hounds her d~y be“ 133 four—pound hens. Approx_ imately 2080 Btu per hour are reouired for the vaporization of this Voter which left 5,900 Btu avéilahle rgr Bowen losses on” For honting the ventilating Howover, the author considered 4,000 Btu instead of §,9OO heconse of the solar heat (average of three to five hours of runliqht nor Fay) and the A I heat from the morning 0nd evening lights The house losses in fitu nor ”ny'znd the sonsiblo heit availohlc for ‘ { ventilation in Btu per day are shown here (Table h3) against diiferenoe bctumcn howls: f‘efinn‘rqfnre 1nd OllthLdfl twinernhlre: Tnhle £3. "est nvilohle ior heating ventilating air, as afiocted tw'environnental tonnernture" Differential between Total net Building Heat available son°ible heat losses for heating 1 ventilating air (Btu/hr) Qv hou"e and outside temperature 0F) production (Ptu/hr, 133 h-lh hens)(Btu/hr) _fl_ 5 3b O°F 6000 50F 6000 10°F r4000 20°F 6000 309F 4000 hOOF 6000 0 6000 500 5600 1000 5000 2000 L000 3000 3000 hooo 2000 * From computations by Oliver (78) A"- __ _ -I.—a.~ _ ”OI-— ‘nfi— .. ~ M. . . _: J ' .L . . oh Ana of naa- +hm r'te of ventilotion rovutrou tor tempor— P’f r‘ir‘es “3, ature “ontrol. ‘hroo ”Forts are Hosci on *‘c €071“”Tn7 "finnflflnsz (El bounds o” 0‘“ roo“iroi for *our For tomnorntnro control: n . . I 7 youl s o? n1r/71r, 133 V—lb hon\ : 'v L 1 .Ai - 110 "onnorntnro control: I (b) Tfm of oir rornirefl i0“ (11. air/hr, 133 Mb hens) x (viact) ("’30 ninj - “firt 0’ tho sonnihlo Fest FV“ilih‘e for hoatinq Stu of nir/1337levhens the vontil"tin: nir (Wtu) ' Q ho = 7ntnolnv o? inside #5“ A” .I. 1‘ ' , L w 4. o, t»o given ,on,oraunre 1 on": rolftivo bun“- "ity (Stu/lb dry air) h : Tnthnlpy of outside air nt tho given temperature C O O I O and rolotive humidity (EtU/lb dry air) 11“ : “neoific volume of the moist inside nir (cu.Ft/lh dry wir) Figures 26,27 ond 79 show the amount of moisture removed per day from the house for vnrious conditions of outside tenperoturc and humidity vith different levels of ventilfition, 0nd also the temnernturo thnt will result in the house. These three chorts ore bioed on the folloving equation: (C) Ponnis 0' voter removed por r1my: ' w ’7‘. .L 1 P0117139 of. \rro-hn’r rqqovnfl/r’r‘zsr _ 1b QlT/hr, 133 11-1?) hen X ('11-'70) X 21.! hrs 7000 grains/lb ”HGT: W1 = Grqins of moisture nor lb of inside oir at the given -v--f*firp_t1r“c “T1,? relb+,ive hlmillity J -. L." 30 = Grains of moisture per lb Of'outside air at the given temperature and relative humidity' - -.— _._‘__,__.__ "' ‘_._“ i- ....l I'M—“c “—- ! 1 - '4 > ponn’s for the rel— The nmonnt o? moivtnre removed shoulfl be above '1fxive humidity o” the hence to stay helow the relative humidity assumed in iffy: charts inc for the littcr +0 rennin ”ry. The eonfiitions nssumci for ssfivch 09 these chirts are: Insiie eonfiitions Outside conditions Chart Temperature range R.H.i Temperature rang R.H.o 7T0. 1 e- 110. 1:. 20° to 60°F 905$ 10° to 14001" 7 ,2; v 3 0 fl No. 2 a:- no. 5 20° to 60°F 80;; 10 to 110°: 80% .r r n f 0 + ( O c’ O ‘ 07- 0. 0" «no. 3 V: ”O. 3 20 no )0 F 90,J 10 to 1.10 «L. DON o A . o , o (" Oliver (70) stfites thit Figures 23 and 26 with tneir 70p average out— ”firie relative humiiity are more representative of average Winter conditions In northeastern states, mam: Figures 2);, 25’, -27 and 28 with their 80:; (DTIfxside relative humidity are more representative of the north central states. Oliver's charts hive some very good characteristics as will be seen by a Check of them. Consider to .... 25°F and who = 702: vhile ti = 35°F r d O 0 “31¢! R.H.i = 80p. Reference to a psychrometric chart gives the follow1ng: \ * Tenner— Relative Hoisture content fleet content Specific oture humidity of the air of the air volume (OF) (:5) (Grains/Lb) Btu/Lb) (Cu. ft/Lb) \ inside air 35° (30;: “"1 = 21; hi = 12.1 vim; : 12.53 L: Outside air 25° 70:: we = 11; ho = 8.2 \ 100 Iii-W 0:10 111-110 :3. 9 \ V -4l_——- -‘v- u...- - F..__..~._.. 1-.-..__.- '—".-- can... ... ‘ -— - . _ _————___ N— o s TV ’ I 0 looking in Tnole L3, {or 100$ a 'clue of f,000 Btu/hr is found for {Ixr- RV ‘Dnlicntion of iornulfis (a) (h) and (C), fhfi results obtcined arc: ‘ n (a) Pounds or" sir/”r, 333 h-lh hens ;- "'V = 5000 -_-_- 12572 lb/hr 77E,“ ‘ . / V (b) Cfm of nir 133 b-1h hens _ lo “ir/hr, 133 h-lh ncns x Visct -’h w,’ 9‘ — KiL) hi..th : 198i 3:19.53 2 257 cfm 60 This volue is rear? horizontally from fii'furc 7?}; at the pofnt firhcre 250 carrtside and 35°F inside temrcrntures meet. ‘ «' 1 _ ‘~— I Frc (C) Pounds of water removed/diy': 1b “Ir/hr} 1“3 h lb hens x (31_Vh) x 21 I 7000 grains/lb 1282 x 10 x 2L = 21h lb/day 7000 -nis volue is reed horizontally in Figure 27 at +he! Point where 250 Olrtefde and 35°F inside teppnratuves meet. It should be noticed that this Tvxint also gives oblicuely the nnount of ventilation required for temper- Efaxre control as found from ”inure 2h (267 cfm). Since the amount of un— - 1‘ 1391‘ remover? was fmmfl to be ’11; pounds, one pound will remain in the house efififivdny. According to Cliver (79): "The litter Will have to absorb this Or the air flow end moisture removal cen be increase”, which will produce ‘ (.1 a slight drop in the house and discharne temporature." The author adds thct if the oncunt of water removed per day'is above LS lb/do‘: "... the relative humidity will drop until a balance is reached." The limitations of Oliver's chart are: 1~The AC value of the house is considered equal to l and the charts do not ”poly to houses having different AC values. P¥The total heat production is taken from Barre and Sammet Whose estimate ”We previously proven to be based on a.wrong assumption. 3-0n1y one set of inside and outside relative humidity can be considered for each chart. _ -f’m ~o——_§——-_¥_ v -.-.——f_*_......-_ ‘ — -q—‘cn—m.ml ' ‘w—u—a H- , . , ”4......- ?:_The drawing of each chwrt involves ntmorovs COTRPI‘tatiONS 1 Qumrature of‘ the lires “75‘ ch reouire the plotting 05‘ “”137 points. 5—',"he latent heat 'f‘i-Tme near“ includes Ttoth “Intwr filx'fli‘r‘ed 7W 3'15 s_.rds 9}“ -..;1 tor evaporated from the li+ter, nltho‘zrfh it Rect‘c thct at f? very 107'? tewmrnturc (criticcl Accign termornture) a port of‘ this hoot will be ’18-'11 for tom-eraturo cortrol rothor than for evnpm‘ati on Of mointure from {-116 1:1 tter. fi—The chorte flre for 133 TOUT 13011115 birds or 3.00 heavy breed birds only. — .mu_~% --- ‘..~— - . “fi—g. .co 39 mph—<1 o .!-1I~.U> =38 PIE—$0. 2 .4». ZO_._.<|:._.ZM> m w>30 nun!“ H W WWII nu may A" IN OIAOIII IILII to Mom - .. __ A-hro—Wka———_‘. " ‘yu'lo! Q Minna-n roster ' . f fEWuhI-fi , _,.,-_._V._l , lulu n. nut-nun A" I“ CIA-I. '4'! . ~94 ‘AW "4 nun- IIIVI 00 "Inc noun-v I‘ll! HIM-LVN Hum mu not“. FOUIJQV IOU" “mum . m /' OLIVER "VENTILATION CHARTS (95) .l ~‘~—— V ~—- -———_ f.) \ .P‘\ N S. "tie-Fe and gum: ventilntion czmrt In 1952, Gieoe and Fond (3?) nrcsented fl fifth tyne of nerforncncc \ , n a chnrt (Figure 29/ developed from the date of Kitchell and Kelley (13). The inside This chort is for poultry houses contoining four pound hens. o 1 0“ temperature is nssuneo constant at hO r. The dotted lines ronresent the nir flow vnriotion recujrcd to maintain a Oon8t°nt tgmnnrqtnre of LOOP. The solid line nhows he air flow rccuire— ment to remove the total moisture produced. This line was conrtructcd on 1", O O 0 outside rclntive D :1. O O o o o n t% assumption of 75p intide relative humidity find (0, . . I Pnnnidity; It Will be noted that this chart iv very eimilar to thnt of Strohnn, the di¢ference Being in the basic ascunptions of insido temnerutire end a- ”kyunt of moisture to he removed. CJrnhnn chart Its limitations are therefore "inilor to that of the ”nfl Will not he reoeoted here. Figure 30 is for purpose of heat exchanger fisign and will he discussed in a later section. 0. . .—-——-~- ...-—_~__ ‘fi——.— -- ... —.~ WO-m M . 153 33206.3 mmozqzuxm Em: mo... .5210 028 oz... memo to .wcahdzmaiwh wo.m._.30 O¢ On ON 0.. O 0.. ON. 4 — o... meOI.2_ I / kdwr wmmoxw . I o 1 I. s nu o.“ 1 / . .. u. v e, N I o .1 o~u ... / 8.2.. 1 o. o.» 1 H on.“ A UF/ J 1. 3. . z - a. ... .... _/...»... // m / own i / .u m a o vans kc u: .OOJQ \ ‘6: 0§8VK k. .2 2w!- uEuq e9: u..0¢.0..¢1\3ho / l . o< 2.33.. 54 3.2.30 1.3.2.3. a: 3:0: Zn... 6.. v 1/ O n 00 .08 .5210 zo....<.:...zw> 020m 02.... mme 0? .....umaammazu» 3550 On ON 0.- ‘ \ \ —__..._ \ \ \ £3 \ \ \\ A23. 2230: .2 —_—,_. ~. N \ oE:.o> :4 :36. .52 .82 . —___.,_ K \ ~>-_ __,_ 33039.5» .0. _ mm .3200 .9... .2 ... . .fi: : ... oE:_o> :4 . .5 . ... ..N .0 ¢.< unfit. to no ”OK—D. $0.. ~.§°29§§8\ S 3! 23% 2:31 to: >0 52.531 1.3 zen .¢:\.3._.n $0.. ...dux .0040 - Dc ... 1.4 uofihao re .\....» ....ov ¢_< mono: II. 1 O. N. w. UHI'SB'I - BWO'IOA 8 IV (owe) .1J.....1...WN1JJMH lfih U. Toultry Vonnn Voniiintion Konogrfiphg i l. Tnie of 7*niiln+ion reorirad ‘or noivivre renovpl : { T50 Woifint of dry “ir entering n novltry honsz is consiflored enunl to I fine weight of flry air lonving *Be hows“. 30*9ver, the volumes of nir find I vahor ontering an” lnnving fine house are not equal. This fact makes it ’ l I nncnggary to use two fliff-rnnt equations to Finfi the rate of ventilation required for moisture removal, depending on the tyr‘ of ventilation system used. ~n 1V mu' 1. ~. +k , ~ a a x v .His formu-n wine" .Ho volume of 1) v' _ T _ T Oact J V O I.— 'WHJV — .7_:, . . _ ‘ 1 o 'i "0 air doing in tnrough the blower of a !\ V0201; / . o ,, . 4" blow-1n system or gOing in borough the nir inidPos of an exhnuwt system. 1'? H X v . o u 2) V' _ m lact This formula gives the volume of’air going out through +h~ f~n of on gxhnust ( . system or going out through the air exits of a blowbin system. C". D 0 0 . U1¢1“e xhnuot fans are one” most of tne time in animal shelters, this last eqluation is the most widely used. In theFe two equations, the meaning of the «symbols is as follow: Vi = Venfiilqtion rate required for moiwture removal I c o f. ‘ \Cu. ft. of nOict air/Him.) ' WT __ Rate 0.!” moinfin’r‘fi pr0’1718t10n in the house (lb of moififuro fir) Ibicturo content of inside nir (Lb of moisture/Lb dry air) W H. = W6 = Hoicture content of outside air (Lb of moivture/Th Hry air) Voisture carrying canéoity of outaide air (Lb o? roisture/Lb [>- 14 I dry air) ...- -—-———.—_ .-____ _ o 0 ‘V ’ \ v0 Gran. vol. of the moist outqide 81? (CU. ft/Lh ”TV 31?! act . o o 0 ”V I .. 3 vi = Spec. vol. of the meist inside pzr (bu. ft/Ih or) air) 9.0L 3. Porter's nono~ronh por deterrining the ventil“ti®n rote reouirod O 7‘ I for moicture removal. In 1?5?, rnrker (9?) presented a nonoqriph for de- terrininn the ventilotion rote rewuirod for moisture removal. The theory on which this monograph woo oonotrueted hi? been stuiied by the writer and in fresented here. a ' : o n This nomofropn no? he oonr,4ered as hCan a combination of two coun- tions ennh Contoining three variables: ?. - W _ J1 40 vi = W'T‘ 304w 17h ore AW 1 K? w um J. J-Vr T' 'nJ- v' ' , P v‘c'rl _° ’T1 f '7‘ 'l Jf‘l at?" CPrfl/lng ConCle, O- Ole .126 all" Kim) 0 “(7.8- \/ ture/Cu. ft of moist inride air = Noisture content of inside nir (Lb of noi?,ure/Lb of dry air) Moisture content of outside air (Lb of noifiture/Lb of 3 dry oir) = Specific volume of the moist insifle air (Cu.ft/Lb of J4 dry air) :‘T‘ = Hoisture content of inside air (Lb of moisture/Cu. vi ft. of moist air) =‘Wb : Ho: no practical mooning; is useful only'for the vi nothematieal solution. = Qote of moioture profluotion in the houce (Lb of mois— ture Tr) _. ._ .W—___ H/ /(J ”Vuce the rote of ventilotion From one hour to one ninute. VL : Youtilntion rote recuired for moisture removal (023+... of moist air/"inJ The first of the two equations is really a four variable equation and s not ensily presented in o nonogroph. It would result in a more compli— O .I..\) - 'ndex lines instead of two. In 0 (D H Cited nonoqraph involving the use of thr Vieu'of simpliflying this nonogroph, Perk -duced this equation to s three Variable one(AN, K1, K9) by assuming fixed indoor—outdoor temperature re- L. ations: Outdoor temperature (130)15 2o 25 30 35 no 1:5 50 55 Lssuned indoor tenpersture (ti) 3O 35 b0 hS US 50 55 60 60 (At) 15 15 15 15 10 10 10 10 5 Tonprroture difference ~VuCh assumptions result in on error when these conditions do not hold true. I! j' . g I o ' Jilhever, according to Farmer (02): "If the inside temperature deViotes from the flSSllmyi Value, the error would ‘30. rfli'fl'lfil“ Mill 33‘1"]. may be neglected in it”?cticsl opplicotionsfi The first equation niy be changed to take the form Kl : Kq4-A7'where (— “1. im the result of an addition. BY reference to oi' textbook on nonogrophs I . O O ‘ O (HfS), it can be seen that such on equation con we solved by a chart haVing + n ' ‘I ' -Jtrwee parallel scales. lie two variooles which are added are presented to the: left and to the right and the result is read on the center scoleCtbook on nomozrephs (hG) shows that such an equation can be solved Ir . . . J a”TL-chart composed of two parallel scales and one intermediary oblique 50,1]-8 -'t‘n ‘ ‘ I o 0 ‘~ -3‘.‘ +410 result 0f +106 (llVlSlOTl(vL)o A v-4. -o-‘_, A, ‘W-‘ C's-..— ..__- . .— m Toebininq +3"".‘280 two envetious, ihc result is a five variable e nation givinq the ventilation rnte reouired For moisture removal in a house of ... ——_‘ '___‘ ‘ given design tornercture end relative humidity conditions end of given wa- ter production. V 1:‘s'rn rm _ 1 l _ . L - ——» - cu. ft./M1n. (,0 A2”: 6 / Li -- no) Values of“?O and Wi were tqken from Zimmerman and Levine, 19h5 (110). A1. cn+ed on the nonograph and is checned here: One :ppliCfition is ores rliven: Thm‘oer of hens - SOO ‘- Avcrege weight of hens : 6 lb inount of moisture respired daily‘fiy the total number of birds = h3 lb (From Tsrott and Prinqle) (or 8.6 lb/qu, 100 hens or 0.3593 lb/“r, 100 hens) ‘ Outdoor design tonnernture = 50F minimum t Outdoor desiqn relative humidity ; 100% (critical neriods) Indoor des':n tempcroture = 30°F minimum Indoor design relotive humidity : 80$ (critical periods) .. “*n. .... , _-, ... :“niLGfi: Tl ,' ' t ? .nt‘leti reo ' d t rehov . ir _____:; .ie minimum r1 e oi ve._1l .-on - ‘uire- o l n e respn ed moisture at all times m I 1Pue: nethematical solution: (Zimmerman and LaV1ne, l9hS) (30°F) = 3h.76 x 10'“h lb/Lb dry air (30°F) = 3h.76 x 0.80 g 27.90? x lO‘h lb/L‘b dry air 1 (00F) - 9.322 x 10'“ lb/Lb dry air AW', 18.h86 x lO~11 lb/Lb dry air viact (30°F, 803) = 1?.39 (By use ofslide rule Ho 5) -_-——_—- <——-—-—-—— W6 x vi 0.?535 X l“.39 C 358“ v 1i10 1. act .' ' " A "J’ ‘ 1., /-r VL = .. .: ,‘ A 0 -h= , F‘ o : 0.L49h Gin/marl (one 4.1 (m x 10.1w 1: 10 0.!) x lc ..uco Solution: J. t-.A IL..:. I c o a 0 fl :7 T I l—Find the intersection pOint for to = 50" find 7 o = 100” and project coniitions horizontally to right edge of chert A to 1 I ‘l' 0 Va 7 "' F a\1d ’- 4: — SO!) {InCl ....9. _ 2_Find the intersection point for til: 30 .. . 1 project conditions horifiontslly to right edge of chart 8 to obtain U1 3-Drsw an index line through U0 and W1 and find.AW'at the point I O W O C * where this index line intercepts the AM scale (Pivot line) h—Urnw an index line through the value of.AW found above and WT g h3 lb and reid the answer on the VL scale = 230 cfn (or O.h6 ere/Hen) Percentage of error: O.h6 — O.hh9h lOO c.010b K 100 d =-p2.3n (I p error = x ( OQHh9h is monograph, the In order to check more thoroughly the accuracy of thi = + 0.7411924 7. . 5 O o 0 up 7 \ ’Plizer‘worred out 18 additional applications: (HT : 2.0 lb./hr., 1L0 hens or 1:8 lb./ny, lOO hens) (*Parker did not put graduations on his Wi, W6 snd.Afl'scale, although he could have done SO.) ‘ III‘I‘II o AA heck ti ". “I, to I“. . IT. q W... Thymher '.7L(’?cvtr_a,r:r0;h) VI. ‘1. 1‘. error Of hens Tofigl Per hen Math. so] mt. ) Ito. 1 75 70 60 7O — - - - - " - Yb. 2 AS 80 5'0 50 2% K00 hoo 0.665 0.4615 +0.0035 +0.55% no. 3 60 90 50 90 7M) {’00 7/0 1.52 1.21. +0.08 +5555: 770. ’4 5:0 80 .‘IO (30 3'39- €OO 862 1.?5 1.):hf? +'77.-’)()8 + 0.56;; No. 5’ 5-70 90 ho 100 13L. 300 775 2.58 2.50 0 0;; :2). 6 2.0 {‘0 30 70 12:11 300 720 2..‘-.0 2.).3 —0.03 - 1.2573 Ito. 7 2:0 70 30 :‘0 M}? 100 71.5 7.125 0.11; -O.r.<9 - 8.503 7%. 9 Mo 70 20 70 192 7.00 .025 2.06 2.00 0 0 ‘Io. 9 35 90 30 “.0 23.0 500 31.0 1.08 1.703 -0.023 -1.3':5:$ No.10 3 5’ 80 20 50 23:0 500 910 1.. 82 1. 83 - 0.01 - 0.55;: 30.11 30 90 20 100 9K. 200 975 7:.08 M. 90 -0.02 -0.2._:1;:; 10.12 30 80 10 90 1th 300 86. 9.86 2. 8 + 0. 02 +0.70% No.13 30 90 10 100 m; 300 750 2.50 2.50 0 0 310.11; 30 f" 0 60 17:1; 300 568 1.0 1.06 +0.03 +1.61”; no.15 25 90 10 70 13m 300 820 2.73 2.70 +0.03 +1.16 No.16 25 80 ~20 8 13.1; 300 620 2.07 2.055 +0.015 +0.73% 50.17 20 00 0 8 96 200 7.50 3.753 3.72 +0.03 4 0.81% No.18 20 so -20 90 11.14 300 810 2.70 2.06 +0.01; +1.59; m conclude from the above applimtion .0an checks, it can he sci”) that the accuracy of this monograph is very,r good in general, since of the 18 . o o 9 ,4 q9’31].cratlons chosen at rqn’ion, only 35170 were 1n error by more tnnn 550. CHART A W OUTDOOR RELATIVE HUMIDITY (°/o) O o o o o v LO <9 r~ (D We? 90 mo mlxoogomoms fiHORIZONTALLY T0 RIGHT EDVGVETOF CHART NOMOGRAPH FOR DETERMINING MOISTURE REMOVED CHART B wi INDOOR RELATIVE HUMIDITY (°/°) O O O O O In (D F to (D PROJECT CONDITIONS HORIZONTALLYH TO RIGHT EDGE OF CHART FI‘2‘,95‘fE. I PIVOT LINE Ch 0 \ \ IIIIIIIIIIIIIIIlIIIIIIIII‘IIIIIIIIIIIIIIIIIIIIIIIIlITIIlIIm O :U N 0" O" O 5' 0'1 5 o R: (n a o 3 (II 200 N N 0" N 01 O N N U! 300 MOISTURE REMOVED (POUNDS PER DAY) vf 141 b. Choinicre nonogreph for determining the Ventilation rate required for moisture removal. The writer is presenting here a second tyne of none- granh to solve the generel equations for the rate of ventilation recuired .for moisture removal. This nomograph is a combination of the same equations as the ones Ilsed.hy Parker (82), except that the meaning of the symbols is changed somewhat as shown here: 1) AV = —"""‘. vi Vi ) Vi r11 ' K2 2) ‘vi 3 WT ”T 60 x 100:: on = 6000 m where (SW = "Cisture carrying Capacity'of outside air (Lb. /cu. ft. of moist inside air) W1 . Hoisture content of inside air (Lb./Lb. dry air) W6 = Woisture content of outside air (Lb./Lb. dry air) 'V1 5 Specific volume of the moist inside air (Cu. ft./Lb. dry air) W1 = Hoistnre content of inside air Vi (Lb./Cu. ft. of moist air) K1 ._._ W5 : moisture content of the outside air per cubic Vi foot of moist air, when considered as having the temperature and the specific volume of the moist inside air. This term has a mathematical meaning. However, for convenience it will be called "Heis— ture content of the outside air" (Lb./Cu. ft. of moist air) .___...—- ———-— _-..—————.__. mum.- “--.-._- .~_._ . -“mw ..- -—~ —F .— ....— WT _ Rate of moisture production in the house (Lb/hr, lOO hens) and. (Lb/Thy, lOD hens 60 = To reduce the rate of ventilation from one hour to one minute 100 a To reduce the rate of ventilation from 108 hens to one hen VL : Ventil etion rate reouired for moisture removal (cfm/Fen) FTC-nation l is really a four variable equation and is not easily pre- ..en+ed in a nomognph (it would result in a more complicated nomogreph). In View of reducing the first equation to 7:. three verin‘eles fem, three methods can be used: 1‘331e volume 0' entering eir may he considered equal to the volume of out- going air (i.e. we nay consider that for each cubic foot of inside air 55°ng out, there is a cubic foot of outside air going in). 2‘11 constant v1 value may be assumed 3~A variable v1 value may be assumed, (i.e. we may consider fixed indoor- 01M“floor temperetm‘e relations). The writer computed some typical percentage of expected error which "“T’IL‘Ld he obtained by assuming the volume of entering, air as equal to the vol‘lme of outgoirg air. The results are shown here: (WT : 2 I‘D/Ur, 100 hens, O V v a r 118 15/393”, 100 hens) . Values of ”i and no for these computations were tf . o 3. o e o LlCell from Heating, Ventilating, Air Coneitioning Guide, 1951 (6), and values or , ”'1 were taken from Taele Iih. . n“..- .——— ‘ fl..— ..... _ ,_ ‘~» va.” ya.“ m..-._. 0*.- u-.-— __.-‘ 163 t1 3.1-1.1 to 11.130 At. VL (ch/M) Rifi‘erence Expected True Assumption error math. of equal (0“) (7,) (‘0?) ('1) ('F) solut. volumes ( 7.») 60 70 55 80 5 11.?t 1h.72 -+2.88 +2h.35 50 8 10 2.71 2.95 4-0.2h + 8.9 1.5 .‘30 15 1.81 1.7118 +0.108 + 6.6 to 80 20 1.23 1.298 -+0.068 +-5.5 5o 80 L5 90 5 10.80 11.75 +0.95 + 8.8;5 35 90 15 1.395 2.013 +0.118 «+6.7 25 90 25 1.178 1.22 +0.0h5 + 6.2 15 90 35 0.937 0.963 -+0.026 -+2.77 c) 90 50 0.797 0.809 +0.012 +1.51 to 50 35 90 5 13.07 cs“ °<= .<: 25 100 15 2.938 3.135 +0.19? +6.35 15 100 25 1.699 1.765 -+0.066 -+3.88 5 100 35 1.3h 1.375 +0.035 +2.65 0 100 to 1.2h7 1.275 3+0.028 -+2.2h 30 80 25 100 5 127.1 ac: “=' —<= 15 100 15 3.8h h.0h +0.200 +5.25 5 100 25 9.363 2.hh8 ‘+0.085 -+3.6 0 100 30 2.088 2. h5 +0.05? -+2.73 - 5 100 35 1.912 1.95h +0.0u2 +2.19 2° 90 15 100 5 116.8 ac -<= -c 5 100 15 5.77 0.05 .+Cu28 -+h.8% 0 100 20 b.325 h.h9 '-+0.165 1+3.82 - 5 100 25 3.62 3.728 3+0.108 +2.78 - 15 100 3 2. 91.3 3.00 + 0.057 +1.935 \ Since CXDGCtOd errors above h or 5% could easily be encountered, the pbOVe ' .. u . - _ assumption Ins ”nerefore put aSide. be 0“) The uri+ I‘d-U ‘teined by using constant vi values of 1 er computed next the percentage of expected error which would 2.53 (35°F, 80;: 11.11. (bcyb " 1?, fhfiéfulh). The results are shown here: ) and 12.67 ._ .——,— Hm,--l m“- --—-——.-.- aw“-.— E1.) *1 Vi Difference Expected error (,5) act l—Diff‘erence Q-Difference l—Use of 19.. 5 3 2-Use of 19.57 (03‘) (80%) from 12.53 from 19.67 75 13.75 +1122 +1.08 +-9.2% 8.6% 70 13.51 41.08 * 0.9}; “‘ 9.5 7.11 65 13.1111 +0.91 4- 0.77 + 6.7 6.1 60 13.28 +0.75 * 0.61 + {7.6 I;.8 55 13.12 +0.59 4- 0.55 {21.5“ .3123 50 12.97 +0.88 + 0.30 + 3.8”; 2.87 85 12.82 +0.29 +(t15 ..2.2 1.2 no 12.67 «+0.18 0 ..1.1 0 i <: 1% 35 12.53 0 -0.11: 0 4 1:7; 1‘1! error 32 12.115 - 0.08 “O. 22 " 0.6 error 1.75 30 12.39 —-0.1h -0.28 - 1.1 2.2? 2‘3 12.25 - 0.28 - 0.112 - 2.2 3.3! ?0 12Jl -01e -0¢t ’33. 1:5 is shown in the te‘cle, monographs based on this second assumption would 1 u . . ‘09 1n error by as much as h to 1073 for computitions involiring the use of tamI‘eratures from 50 to 75°F. Put aside. This type of simplification was therefore The third method of simplification consists in assuming a variable Vi Value or in other words in assuming: fixed indoor-outdoor temperature rela- t‘ . 10118, as used previously by Parker (82). Since Parker‘s nomograph seemed t . O O 0 have a rather satisfactory accuracy, the writer choose this method of si . . . . P‘plification as the most reliable one. 13° 55' 60 55 50 1;; ti 70 65 60 6o 55 4t 5 5 5 10 10 12.97 110 35 30 25 50 1L5 ’15 110 10 10 15 15 12.97 12.82 12.82 12.67 The relations used were as follow: 20 35 15 12. 53 It ShOUld be noted '51".th this method involves an error but as mentioned pr evj~Ously by Parker (82) the error will generally be rather smell and me; be 11".” .Dlected in practical applications. War—q..- ‘m' ‘ -— ...—c_.‘ 1 — -.... .._ -..—- .- p4 . 3\ U1 Modified peyohrometric charts for ”i and W0 were computed by the Vi Vi 'writer, using data from the heating, Ventilfiting, Air Conditioning Guide, lififlié). These charts are presented as curved lines, on the nonogronh, for xynrpose of resembling the standard psychrometric charts. Two verintions of the sore nomograph were made. The first one is a singfle monograph requiring two index lines meeting on the Afl'scale as a Ixrvot line. This type or nomograph is cepeciclly suitable when one is in— 'terwested only in finding the minimum rate of ventilation required for nois- tque removal. The second one is made of two separate monographs requiring an index line for each. The advantnge of this type is to give 71. perpen— dlcular V scale with uni”orm grednction which make it possible to make a a-Chsmplete heat and moisture balance nomogrenh as will be done later in Peru: III. In order to illustrate the use of these nonogrnphs, consider the fol- ln“"in5_; apolicntioms' ' 5921203129. EEO; l 235:233: Rate of water pronuction in the house = hS 1h/Day, 100 hens (or 1.875 lh/Hr, 100 hens) Indoor temperature = hOOF. Indoor relative humidity = 80% Outdoor temperature = 00F. Outdoor relfitive humidity = 10073 Werr+ , , . . . , ’ The minimum rate of ventilation required uncer the above con- \Q—g dition to remove all the moisture produced. Tru . . “-Si~jyethemat1cal solution:(Hhating, Ventilating, Air Conditioning Guide, 1951) wisat (hO°F) = 52.13 x 10“11 lh/Lb dry air ‘ Wigog (hoOF) = 52.13 x 0.80 = L1.7oh x lO'h lh/Ib dry air . -. -.......o-...-—o—-.. ...v i 5i‘l ”Togqt (00F) _ 7.515? X 1.0-1 lit/If.) dry air AW'= h1.70h - 7.952 = 33.852 lh/Lh dry air v'a (LOO? 805) = 12.67 (Tron Tnhle ht) 1 ct ” .. Wm K V' VL 1 lact 11 1.875 x 12.6? ..2 1.975 X 12-67»1.1696 cfn/Hen 5-3004?! , 030-3 x 33.752 x 10'“ 0.6 x 33.852 Solution by use of the nonogrqphs: l-Find the intersection point for to = 00F and R.H.o = 100% and project conditions horizontally to rignt edge of chart A to ohtnin W6 = 6.h _-Find the intersection point for ti : hOOF and R'H'i = 80% and project conditions horizontally to right edge of chart A to obtain Wi = 33.0 B—Draw an index line through W0 and Wi and. find AW -_- 26,6311; the noint where this index line interconts the‘AW'scnle h—Urnw an index line through the value ofNAW'= 26.6 found shove and WT hS lb and read the answer on the VL scale = 1.175 cfm/fien. Perla . ..__:ggntage of error. 7 error : 1,175 .. 1,1696 10.0 _+0.005h x 109 : +0.16% l51696 ‘ 1.1596 epnliCSvioe £0; .2. (1‘! V , . JELZEEIE: Rate of water production in the house = hfi lh/Uny, 100 hens (or 1.R75 1b/Hr, 100 hens) A o In oor tcmnernture z 50 F Indoor relative humidity = 80% Outdoor temperature : ZOOF' Outdoor relative humidity = 100% ‘r-.232£: The minimum rate of ventilation required under the above con- ditions to remove all the moisture produced. ‘mpo- I' t‘ [..J 34 o o . . . o q o o o o \ True mathenqtiCZI solutiorn (Heating, Ventilating, Air Londltlonlng Guide, 1971/ "Vim (soar) = 7%.??? x 10'Ll lh/Lh dry air ”1:70;:1 (500?) = 76.58 x 0.20 = 61.261: x lo4‘ lh/Lh er; air ‘x'Josat (2002?) = 21.59. x 10‘21 lh/Lh dry air W = 39.7%.); x 10"11 lh/L‘o dry air (50°F, 90% = 13.9? (From Table hh) Viect t W’ x Vo 1.97: x 19.9" 1.87“ x 1?. I] : T 1not - '/ I J 9? ; 1.0198 cfm/Nen J “6000 .. ‘ Como x 39.7er x 10"If 0.5 x 39.71;): Solludon By use of the nonogrephs: l—Find the intersection point for to = 20°F and R.H.o ; 1003 and project conditions horizontally to right edge of chart A to obtain W6 = 17.3 2—Find the intersection point for ti = 50°F and R.H.i = 80% and project conditions horizontally to right edge of chart 3 to obtain W1 : h7.3 3—Wre‘" an index line through W0 and Ni one find A?! = 30 at the point where this ind x ine intercepts the‘AW scale. h-Wrew an index line through the values ofAW .-_ 30 and VT :: 15 pounds and read the r“rum-{er on the Vi scale = 1.0h cfm/Hen. Pp ' -;I:3:jrteqe of error: 5% error = {it-Oh - 1-0198\' 100 = +0.0202 x 100 -.+1.9e;.;: { 1.0198 / 1.0198 , In order to check more thoroughly the accuracy of these monographs, th 7e: '"riter worked out 18 additional applications: (WT : 2.0 lb/Hr, 100 hens, °r 118 1b/Dey, 100 hens) Wflw.._._,_l __4 _..-. _ H4 . -—-———-——_. ~_ _ - 'm—~o—~——w—H_k ..-_.,_A____ . .1.”- 3h96k ti R'H‘i “E. . to .?—¥.s wfiqe* 13” we V1 Diff. Error ac... - I ~ Tee of True +2319 (MI-13+” (of) (7') ‘ (of) (7.) 4‘ ’ an ofreghm w5101:1113. C") To. : 75’ 70 274.0 '.-‘=‘ mf”t 9.0 om: 0.51;" r‘.-.¢.:>3 .52 ”b. ? f? 80 7f 63 33 29.9 “1.0 2.“ o.fié “.Ksi o 0‘1 0.1“ -?u .3 A0 90 75.] 51 ?o 51.9 23.? 7.0 1.1 1.1;: 0.31 g,7g 3’0. 1'. SO 30 117.2 1:0 (30 234.0 73.3.3 .1) 1.3.3 1,. ‘1 (.011 {1.77 330-; 50 90 333.; 1:0 100 310.: 13.9 72.34:: 2.3.; 0.17 0.51. “0- J ’40 90 32.0 30 70 19.0 1?“ fl 2.1.0 2.}.«12 0.0on ogn ‘30- 7 ’10 70 29.0 30 9O 2h.2 ..7’ (3.0 7.50 “5.30 one 9.9 2b. 8 he 70 29 o 20 70 1?.1 16.9 2.0 1.27 1.965 0.003 v.2 £0. 9 35 90 31.0 30 to 10.8 20.2 ?.o 1 A; 1.€9§ 0.0h5 c.4n 1.0-10 35 80 7.7.); 20 So 8 2.0 1.80 1.79 5qu 1.13 19.11 30 90 25.2 ?0 100 1?.2 8.3 ?.o L.co b.37 0.12 7.78 'c.12 30 “o “2.h 10 9O 9.4 17.R “.0 ?.~3 2.'1 0.e2 P.77 }£:%? 38 20 $2.; 18 198 12.? 1;.2 £.? v.32 2.7efl o.r2r 1.3g :0 15 r) L» 27...; '3 :3: 1i.q 1;") ’13.”. 1‘.“ 0.0...) 1.3) ”0.16 “ 20 LE3."- 10 ‘0 1'0) '11.}.8 “.0 :o\ _ :.'.:‘ ”3.0,? 0.26 10:17 25 h 17.0 ~20 190 3.0 LWe 2.0 ..10 1.1.3 9'923 1,oo 0.18 :0 70 19.0 70 no ..O c.8 2.0 3.70 3.«g 0.11 9.99 a :0 14.0 -—40 100 2.0 11.9 9.0 ?.c2 2.? 7 0.053 1.02 4- Lo/co.n. OF non'sr mi. “0'“ 5* u/ua.’ no It“: From the above epnlicntions and checks, it is seen that Oi" fh- - - u. ".' n 4. ' 1 s nonograph is in general ".1 thin 3 or 11/; ...or ..hc whole ”L"?Pnture from 20 to 7S°r. the accuracy range of inside 90:10 of the advantages of this nonogrnph over anlmr‘s are: 14m "“13 Ventilation rate is given in cfm per hen which makes it very Mutable for purpose of comparison and analysm (To find the fan capacity for a given wh i(3h is :1 sinple operetion) 2-. "7h“- Water production is given hoth in pounds per hour and in pounds per (in y her 100 hens 3m 18 V scale of the second nomogreph presented by the writer is vertical, Whi Q" ‘\4\v "ril 1 he done later. - , thi s velue nun-t he rtultiplied by the nunher of‘ birds in the house, ‘1 Thebes it possible to make a heat and moisture balance nomogreph, as . ~ .._._- ...—....__.> ‘r l -m— u..— .. - "_-‘.'_-—-__ 119 To conclude from Perher's end ”he writer's nomogreph. for moisture removal, it con he eeid thet these nomogrephs are only approximate hecnuse of‘the essunption or fixed indoor—outdoor tcnpereture relrtions on which ‘they are based. ficvcver, es shown hy the numerous checks done for each n, they are accurate enough for most design prohlens. 4—... --.—...— . ... ._. -_-._——- ....“ H—_ ._.-_ __. ...IIII' A .l... III-Ill. u I. ll til-ll“ -' .Iln|| N .mzm: Stefan: 5 O T O 5 . 5 0 mm Wo o n u. 2 2 3. T A M 5 m e o s o 5 s o 5 2 T VLO. sch? 52w... OO_.>02w¢ wmakm52 O \ E c O 0 A0? L a we F m % 9% [WQQRQ O \ O. .m. 6% O 0 % QOQ M E o. so 38¢ DH O. .0 ,0wi DH o co 0 5 E O Anuuunwv \va\ . A WW R / 5‘. T U ...... T e G S e .. 00 .II 0 . O l N O we. .... m .7. 7 w .0. w w .4. m a w a m s cm... H M A—hLPbL—. — ——p—.-—- .P—P» p—.bP>—rp..—..pp—-.-_..-—-.p._p . ——bhp—- pu—ppnn—bb —- .\r . W R A¢-O. x .ku.Do\mv: m3 weakno no >Cobh.—...._... ._...._....—..p.—....—....—...-—. -—...._...._.Pb. 5 l/ ............e /////_/ / / u m w msbmbor I} .. Lh‘. a? / / j? / / / MOISTURE comm T ; uoov R H ) 50 0 TEMPER ATU RE (’F) OUTSIDE N D m H. T N E V C: O E w E H T G ..N. .N: M R E T E D R . 0 rr H P A R G O M 0 N O W .zm1\1mo.. J<>ozwm mm:...w.oz mom omKSme whdm zo....<.__...zu> 0 mwm w m w m mwm w m 5 w w m w , m o nee 0 o a o o o o I n a a a a e m _-b.,.— _ _._._._._>—._p_p_.—... ._._._.—. ._._._._.—.—._.PhL.—._._....._.—.—.._._._._.—._...— .mzu: oozm:\mne L UV 0 5 0 / W 1 2 2. ...-a m ..Ow 0 T-p— _-.—.*._._L_.1—b_p—.—._._—_.~L___Ly—.—.._.—.—.—.—.*.—.—p— R W—_._.—_____q..__...._._.__._._.~._._—____r_.______._a_q._.....__._—...._ E mm % w 5 w “v W 5 3 % m .b m 5 0 DH .mzm: oo_ .>ozmm mm:...w.02 MU Tl .vsgx kufigm... «:4 wewkno no >h_omm_....—p..._....P...._...Pwa.. ..hpfl...._.w.._«....,2-....— . . “w // ,/ . 2 ..,..th...2,, -N.WW».¢0W.;W.QW . . i ._ , . , , ... . Th5 1.3L. . .r 1 h. / . ..,. , .1. 41.1.44 0 . .. ,,. .1. . 211.2... .2,. G . . .RTuQ / ...fl,s,JQ.. , MT.HN.HHO 3“ Is AA///hHHM/LHHW///« n,/////U////N//flu-x/w wnevnr.e_¢,. ,fic INSIDE TEMPERATURE (’F) OUTSlDE TEMPERATURE (’F) \Ii’: -lrl. of vonfilofion requirod For tomonrpfurn oontrol f) rid-Ln ‘. t I :1. FFrPor'e uvuofrnnfi ”or 39*ormiuiuq the ventilnfiou rn+e raouircd por fouroorfiture confirnl. In 934ifiion {0 hi: nomofirfihh ?or foe ro‘cture rerovn]_ formulfi, Forkor (82) proaeuficd a second monograph for determining the‘ven+jlotion rnfic rfifivirod for teHPOriture confirOI. 7%? theory by WhiCh J.‘- ' . ln13‘nomodrnuh was oouctruofied 13 whofin here. .4 . T35° “Gmhfirfiph m“? on oouv‘flnrnfl 2e Hoinn a comb‘ufition 0? two equa- .3 U ~~ - -- ' ~\ ‘-— b . +¢ .- +lous COWffiiuiug U‘ree and four variahle recuectively ) ’8 - P' 4- Q” ...< II J- ‘ V‘- ‘fi-~ 31. . Al‘o'! I ’)r()l»l}lction in ‘1}1(1 it‘ ‘lttv ('< Ju/TYI‘) W - Nunler o? Bir49 in fihe hoUce o / 1' Q3 = . -hle Hoot production per hen (Win/hr, hen) 2) ’23 = "my" Alli-()0 V:3 C At where Q3 = Totdl so «i A = Tofin] exooeod area of fihe house (Sq.ft) U : Overall heat trnnofer coefficient of the house (Dtu/Hr, 3Q.ft., OF) "AU" Hoot loes Characteristic of the house (Btu/Hr, OF) "AU" ’ confliderod here as a whole i.0. 13 d variable .At = Tempuraturo differential between invide and outside air (OF) 60 : fiumoer of minutes in an hour V3 - Ventilation rate required for temperature control (Lb of dry nir/IYinute) Speoi?io heat of air 9t constint pressure : 0.2h as a simole fi-‘w—fi-‘m_— 173 o — .‘~ ~ 1'“ ‘Y f‘ u‘ T‘se ”ir~+. equation nor-3r ‘uo fimuvjo-rl to 5771.1 2,. e Form r. = Us whore qS . . “‘ 4 r j "' ’3 4" “M- resin", 0" '1 oiv‘s‘ou. W1". "2-"“.“'*.T’\"‘ e'm fizmef‘wre be so-._ved 5;, A *\' a ..... , -— _._g,.. s r . * ,‘1. fl. ‘ :m PT—chfirt Cto'r‘fwer1 of‘ ’rrro *mrfillel scales fin-7 one 3.".01‘7’19 JfiI‘)’ ohl_.-(ue «sale 907‘ 1571". res‘flt o.“ the fivision (71). AS ’00 ’65". second, CCU-31310“: 1") seo'zroted inio two emul “arts 91031 oora‘miuing ‘m'ro varlables 1“" made euual to :1 third variable (dummr variable), Thor ifi‘r’vj‘i'pn‘ce K“ ~ Alu At 2b) K = "AU" +60 ’13 X C K _-_ "iU"+i"~O Vq x 0.2}: K -_- ".1“.U"+l}1,}; Vrg V‘ eéuafiion 2: (3'1 5 L3 e forged to tolze Hie form at : CS "rhere At is the 1“! result of n fivigion. T‘rtis nnmtion onn therefore be solved by an FLOW???) "’1’“?! At ”s: Hm oblioue cor-lo. our! 32 :13 2.1.19. scale to the outer rirgrib. In 9°“-”-*ion ’2‘!) K is #31» result 0.” an .m’flition. This e.-u1'~.*,1071 can therefore he "olved by a chnrt having: fhree mrnllel smles, K being the center scale. C‘ o . T . . 3"“1Vlng equntlon 2) for J3 the result 13. VS = Q3 - "AU" At ... lb of dry air required for terrwersfiure ‘6 . <>c At control/225.11. TO covert ”if: t'feiftht o“ '.'eu*.fi'_l“‘-C5."1:’I “5-? to on“ 03:" 111‘, it would be ”mm”? to multiply the .7».th by Vipnt (“pacific vol“m° 0" 0"” P°‘~‘~"“‘- Of "“5“? inside sir at HM. Zi‘fen +emDern+v1re our? relative hmfidi‘bl’)o Since +bi°'V”lue iq Variahle, its inaroAuctinn would couulifinte the “Smograph "ufl. would involve the use of four infiex lines instead of three. In View of sir'mlifi'ing his nomocrnuh, Parker (E72) assmned the anue of v iact to be constant at 12.7? (dry air at 15°F) which corresponds to Z: V . . . . 1 = 12.72 . S3 . F‘auch 'm nporozrlmte conversmn luvolres (an O 51‘? M ' . , 0‘ ‘ However, Parker sentes that: "The small TYISCT'BFZDCY lm'01V9d at ' =‘I‘aturn3 other than 1150.?" may he neleeeted in general application work." ~fi-_-—.._____ "ufifi O—u— . _— .___—.._._—. _ ______.._. ...-I- 3 I }.J “J 1:" Iru orfler to illustrate t' use of this second nomogrnph , consider . . o I A,- n 1‘ . v‘ ‘1 ‘3- rir ‘... . 1‘17 1‘], Q!) '4) 3‘13 6 the folilovinq nnnliontions -.n,o nvnh she sine poult.d Nous” s t on 3‘913Z6Ki nreviously for moisture removal. Application No. 1 Given: Wumher of hens = 500 Average weight of tens = 6 lb ' 1 ,3. -. 1- .1 y... , bird _ cf": c: \nount of sensible neat prOdeEd “on: y J; one i _ ,¢., (From Hitchell & Kelley total heat production and Borott and Pringle latent hefit production) ~Outdoor design temperature : 50F mininum Inooor design tennernture = 30°F minimum "AU" value of the house : lh96 (Hhere A = Total exposed area of the house) ifimtnd: The maximum rate of ventilation required to maintain the above r’_o':fo temhnrnfiur‘e differential (AT : 3O "’ Q — “/ True mathematical solution: v1 (30°F, 80%) -_- 1?.39 (33' use of 511.39 rule No 5) 992 Ptu/Hr, 0?, Hen 12.39 (2.3 - 2.992) 1 0.25 ‘66 _ 17039 X 00692 II _207 7 Cm (:00 110115) - 0.2h x 65' - —O.S9Sh cfm/.en (or , . L /, (The negatiVe sign indicates that it is impossible to maintain a temperature difference of 25°F) -..—~_—— _—.,___A ...—.....- -— uw.-..r--_.-. ...... _ ....— ~v—~.._-m—‘_ -.’—-—— r_J ~a kn fiolutirui‘g'use o” the nonogranh: l—Drrv an inficx line through W = 6 lb (or qs — 57.58tu) and rt the point whore the inflex lino 2-Drnw an index line through the voluo 0? QB foun above and ' At ; 25°F and find K (Aummy varinhle) at the point'shere "the in-n* line intercents the pivot line 3-3raw an index line through the value of K found abov- and 5U _lL9K to find a.- answer. Since the VS scale indicates less than 0 cfn (or - QQD'by extending the scale below 0). This shows that all the heat produced ly the chickens is lost by conduction through exposed huilding surfaces and no heat is availahle for heating the ventilating air. ‘ I 3253233339 of error: d p error = 7.7 " “° u... -...V._—._~.——u—-_._ fl m... , Application Lo. 2 Given~ o __. wane data as for afiplication Yo. l, exceyt that the ”AU" value i Q of the house is given as 900. ! infant, . . . l “er-1. Th“, Flair-um rate of vent/i] Q’fiion requirnd thO maintain '3. tezuper- L thr 74?? ° r 5° 1 f r. Le (.-l.erent1al ol 2; At --~§flllfmthfil solution: ’ V1 (30°F, 80%) z 12 .39 (‘u use oi‘slide rule No S) .. AU, _ 900 ......“ ‘fs = —- ...—... Ci, :7}. D 00 -12.?) $7.,“ —1.8 ”1“ 7.3.7.11, 2,) ( .- 19039 (q. 3 "' 1.8) 1,1“.79 X 0.5 : 0 M3 (girl/Jen , .. 0.7L, - '71714 X (‘0 (or ?l§ ofn/BOO hens) Solution by use of‘ the nnmofi‘r‘nph: 1.83d 2 Same as fhr fippliontion No. 1 ll . . _ . T’P . 1 e 5r7fi 1n inflex lino thr0“3h the V3118 of n iound above and 43': 900 And read the answer on the VS scale : 225 cfm per 500 six—pound hens (or O.L6 cfm nor hen) Percentage of error: 77 ~ “15 100 -+10 x 100 - -rL.655 ...L") .a error- " 215 - 21 £72 1 3.1.03} :10; 2. .EEEQ: Ikrfier of hens - 500 Average weight of hens = 5 1b Amount of sens"1e hoot produced liourl" by one bird : 2 7.5 Btu (From totnl heat production by Hitcholl and Kelley and latent heat production by Barott and pringle) 7 7 Outfloor riemign +¢mD°r7+Ure- - 50? minimum ~ 1 Indoor desirn tenuorotuVe : 30°F’nininum VS = 230 cfn nor 500 six-pound hens (or 0.L6 Cfm per hen) Eflflifll= The "AU" value of the house required to maintain the above tennerature differential : 30 - 5 : 250 (At) True MW ‘““—-___:Datical solution V1 (30°F) 80%) : 12.39 (By use of slide rule No 5) ~—‘Aa‘. . ”won—a.” - . VS : : 0.L( o°n/Vcn C - 60 V AC :3 S D . . - ' l‘ X ‘\l .l r.) T— f-¢; - _ / = ;%P1 ‘6 3 ° _ 2.3 — 0.53h0 ; 1.7‘Sh 4) ;_._) Chlution.by u"6 of the nomozrfl“h‘ l-Urow an inoex lino torough W'; 6 lb (or Q8 3 , N = 500 on“ find 03 at the point where tho index line in~ J. I“ torcopts who Is sow l—I (P ?-Drnw on inflex lino fihrongh the value of Q5 found above and at = 23°F and find K (dummy variable) at the point whore tho_index line intercepts the pivot lino. 3—Draw an inacx lino throuxh the value of K found above and VS = 230 cfn and find the answer on the "AU" 30313 = 900 (or AC = 900 = 1.8) 5 U: s . fEEEZEfiEgngf error: fl .4 . r, ' 4 » error : 1'8 " l‘YQib 100 4-0'03L6 x 100 :-+1.96b * 1.7551; ‘ 1.7651; , .1 Troy‘the above nrplioofions, if con be soid that Parker's nomo- , gran}: 89 .L o « -ems 90 be aocnrgfie enough For mosfi dosign problems. The degree Ofe a xpocted error due to fihe assumption of a constant vi value equal to 'UTEh 53'wi ll.b¢ Presented in the discussion of the writer's nomograph. ._—q—l ~.——..._....._.._ __——_-.—.__.__—.-__~.-_ . ___——-—‘__——__—_— — NOMOGRAPH FOR DETERMINING WINTER VENTILATING RATES AmHDEE mun. hum“. OEDOV 301E m_< O O O O O O O O O O O O O O O O O O O O O 0 V0 a m m w m w. m m w w m / T:;:_;_:;::_::5.FLE:_::_::_:_;_:;:Er:3:;EEEET:__::__:;_:; / / / / // x on / ‘mz: 52; ,,..\,\\700 T: /G A, no 0‘ . 0 OK /N\e IV / xx 0% /. xx 6 IWQ . / \ IV / /. ¢ bxbx / // \Q / / A\ \/O 1V¢s / / // / \NNV‘ / / r/ 5 Q / o / / so / / // a / / / <5 / // H / , E / / R / / U D/ / m C/ F / Wv/ /, / / i/ . / / / , / / / Au0\mDOI\DHmV Hzmrolmmoo zo_mm_2mz< mush—F < b. Choiniare nomoqrnnh for determining the veniil‘tion rfite required for tenpnretnre control. fifter analyzing Parker's nomograph for temper— cture control, the writer thonsht of sore ways of inproving this monograph. 913‘” it W?fi desired to ohtnin the rote of ventilation Der hen, the first equation used in Parkor's nonograph (QB = U x qs) was not considered. The terns of the second eountion were modified as shown here: 3 - Q "1 n < r _ d u C" “-7-“- -—-—-—- )2 D where Q3 = Total sensible heat production per hen (Vim/Tr, hen) 40 — Used to reduce the ventilation rate from one hour to one rinute VS 3 Ventilation rate required for temperature control (Gin/Hen) H“ . 2 '9 0 D = ;o~p1ratqre riflerence ( F) 52 = v = 1?.h8 (where v is the specific volumecfi? one pound of moist air at approximately 33°F and 80% R.H., 1nd 0.2h is fhe specific heat of air at constant nressure) = Yunher of cubic feet of air raised one OF by one Btu. "AC": Hoot loss characteristic of the building (Btu/Hr, 0F, hen) 1‘13 8 equation was senarated into two equal parts each containing two vari , . . . . ”bless and made equal to a. third variable (dun-my variable), for instance . K: 157-0 'T‘hg fikaorzr nf‘ Hm nrrnnxje'ieni‘. of‘ the different moles and their spacing ~will be found. in my textbook on nomogrnphs (1.6). The "Titer computed the ticrcontnge of ezmectod error caused by the assumption of a constmt vi m Vi = ['2 (as used in this nonogrnph) and Vi many other designers). volue. m Computations are shown here for both : v3 (:13 used by Parker and t1 v1(80;5 v1(80?$) Difference Emiected error ()3) ‘Uz‘z'zr‘ 1."'!ii‘f. 2-Diff. l—Use of 52 2—Use of 53 from 52 from 53 (‘v‘i'riter's nomographMPnrker's nomogmph) 80 13.98 58.25 + 6.25 +5.25 -12.o ~10.S 75 13.78 57.1.2 +S.h2 ”1.1.2 -1o.h -— 23.5 70 13.61 56.71 4-11.71 +3.71 - 9.0 - 27.1 65 lBol-lh 56000 +£1.00 +30m ’ 707 - 5.8 60 13.28 55.33 +3.33 + 2.33 - 6.1; .- 55 13.12 Sh.06 +2.66 +1.66 - r: 1 - 3.1 50 12.97 Sh.0h +2.01; +1.01; - 3.92| - 2.0 115 12.82 33.1.2 +1.).2 +0.12 - 2.73 — 0.81, < 1.3 L0 12.67 52.62 +0.62 43.38 - 1.19 + 0.73' error 35 12.53 52.21 +0.2 -o.79 - 0.h0 «1.x +1.52 332 12.. 115 51.87 ' 0.13 -1.13 + 0. 25 error 4 2.17 23 113:3.3; 51.6% 43.3?) -1.3g + 2.3 +3.6; “~02 )100 -009 “'10 + o + g i? 12.12 SCoSO -1.";Q " 2.50 +2.88 +1108 10 11. 990 29.96 4.011 -3.0h 33.92 ,+ 5.8 5 11.855 119.37 -2.63 -3.63 +5.1?J +7.0 0 11. 722 l:.8.83 -3.17 -!;.17 + 6.1 +8.0 ll. 59 1.8.28 -3.72 41.72 + 7.15 +8.9 \ A O “3 Shown in the table, such a nomoarnph would give an error as much as h to 9"” . . . . lo... for computations involving the use of inside tanperatures from 50 to ‘SOOF. However for the renr:e of tomnero tures from 15 to 50°F the amount , - - 9 of expected error is below 2153 and the nomograph can be used safely for this Pa .... , . . . «n ,e of inside temperature, when a greater accuracy is not required. as 13 t1« .e Case with most design Prom-“5' To illuctrnte the use of this nomograph, consider the following appli- 1; -'- _"-—fl~——-. Apnlicqtion r6. 1 .0 — .— .—.. — —— ..— .” .— 0 n o T") . G1vcn: 36551“1° hbfit Uroductior 'ncr her = h? atu/Hr Wcsired inioor tenfororure : MOO? ' 1 .L O “OFlfh Ottroor nonwornture : O F in value of the house : 1.0 17nnted: The moximum.rqte of ventilation required to maintain the above tennnroture dificrence (MO - O = hOOF) TPrue mathematical solution: vi (hOOF, 80%) = 12.o7 (From Table hh) VS: vi (QB—AC 1 = 12.67 (hS _ 1.0) 1 of... m at .._ 12.67 (1.125 - 1.0) 1 = 12.6 x 0.125 3 n 11 fix}: .. ...; 60" 0.221 x 60 ‘ C “’ ‘8 l-Usinp n straight edge, join Q5 ; h: to At = ho and find th J pivoting point on the K scale Q—Toin QC = 1.0 end the pivoting point Found above and find V': 0.11 cfm/Ten on the V scale. pew -_:JZ::ntnge of error: 3’3 error =(o.11 .. 0.110) 100 ._. 07.7. « I . 0.110 Annlicetion Ho. 2 53:11:32: Sensihle heat production P”? hen ' hg Btu/Hr Desired indoor +anornture = hOOF Desired outdoor temnernture : 00F Average oir intiltration rate = 0.20 arm/Hen JEEEIflfigi: The "AC" volue required for the house to maintain this temper- ature differential, with no ventilation other than the infil- tration ~H—_ _--....l , . -' *fi- - +——+._....~. "_'-I-_.. ~- . 172 Tea. mq+aam¢ticp1 solution: vi (MOO?, Egg) = 3,fi7 (Erom Tahle MN) I AC = 08 - «0 VS D Vi j (m _ hS — 60 x 0.20 H5 15.1 5— 757271 f _ 6n x o.20 x 0.?h 12.67 a 1.1250 - 0.2273 = 0.9977 Tn lution: l—Y’sing a straight edge, join Q8 2 hf; to At = h?) and find the pivoting point on the K scale 2—Join V :: 0.20 and the pivoting point found above and find AC : 0.90 on the "AC" scale. Perncntawe of error: ' 0.9977 0.8977 20...; 3:- +ng advantages or this monograph over Parker‘s nomograph are: 3'3 error - (0.90 -— 0.9977) 100 : 1 000023 X 100 : *0'257‘; l-”._'he AC value of the house nor hen is used instead of the total AUavcr ’ 0 value, which makes it easier to compare houses of the same capacity but of a. -1f‘f‘ercnt insulating value. ?‘ v e o o 9 ‘ Th? ventilation rate 1s mven in cm per hen z-rhich makes it very suitable gs -OI‘ purnoses of‘ comparison and analysis. (To find the fan capacity for a 0. . . . "lv‘en house, +3119 value must he multiplied by the number of birds in the 1 fl 7 . . . - 01,319, which is a Simple operailon.) 3"h‘ o 4, ‘ . . . Lila? slope Of the A¢ scale 18 not SO greau, maxing the reading ea31or. ‘- 1‘ :'h n 0 ° ' L “7“ ficnsible heat from litter decomp051tion and from solar radiation may be . added to the sensible heat from the birds. , —— “...—...— . ._..--._.-.._..._ ...; -.—.‘— V-l“_—— 1 ”row rwrlrw's and ii a. . '4' "VU(‘ ‘ P‘ L n hrs-"7 'WT'WI‘H "77"12’ ,0 - ' - .. < v-Y\- C‘. I’VY‘; r. _ m. - ~ -~-— 4+ (\ r) ’3‘” 6"”: 4 t}1,fi_f, {1‘1” SB 21‘ EI'.‘v“(.)-‘)I' I; ‘ . ‘J .. U - l .. J - H " ‘ 4.11” 'Io V " 'qu '! 'I, (\ "(,"" ' " "" r) f} ‘ "" . «h .L‘ln fire }‘41 SP, .. ’ I) . "L . (._."1 4 on Hill" «I- 1y {2‘154 '_~ \ I 1L, 'l‘\ n , .‘ ‘J A ‘3 ~rlt l \ . D 30 mo +4 ° "' - "r .P on rude r will he a’ ve h% For in 1dc ten c.1t.res . on ccted orrO. .n._ J 0‘ ”V C’01" resncctively. th, range of 15 to 50 F and a) to S, ‘ ._.--.——-—— .....- . M... -M~-_-~- . O 5 0 5 O. 5. O 5 ow 5 ,.0 o u. I. 2 2 3. 3. 4 4. 5. C__L b——_-p—rRF———.—.——__—_—P—-_—~___—____—_—p—_—phri_rr_ A AzuI.u_o.mI\ 3.ka mmDOI NIP no o_km_muko<¢ u—O mké _ I. Poultry house Ventilation Composite Charts . are another Way of nrosonting the solution of a Composite cha .r given formula. 'T'hcir main advantage is that they usually recuire a small or 99303 than n°“°¢”““hfi. They ”r9 similar to nomographs in that an eqnation is solved by dre"ing lines from one axis to another; however, their appear- nce is much difi'erent and for this reason the writer is presenting them 3" apart from simple charts and from nonographs. A composite chart is. made by choosing; two variables in the equation to he solve and placing them on a. chart, one as the abscissa scale and the other as a graph line. The comhination of these two independent variables Yields a third dependent vnri ahle "rhich is read on the ordinate scale. This deoendent veriahle is, in turn used as the ordinate scale on an ad— joininn chart in *"hich another of the variahles in the formula is presented . . o as a graph line. This new combi nation yields a second. dependent variable. I210 process is continued until all the variables in the equation have been Used. If two variables are to be added or subtracted, the graph lines will 3 :3 O O O O l -e Rtraight and parallel. If they are to be divided. or multiplied, the graph lines will be straight diver rent lines or curved lines. 1’TEte of ventilati on required for moisture removal 3.. Goldrich composite chart for determining the ventilation rote reQuired for moi stura removal. Goldrich (36) presented in 252:; 1953 a com- \ posite chart to solve the equation for moisture removal. This composite chart may be considered 15 being a combination of two equations each containing t . hree variables: 1) AW = Wi .. 1.70 where AW = Moisture carrying capacity of outside air (Lb of moisture/Lb of dr}r air) ‘. -m*_ _ -—-.-_-..._._ - "'— ......— “ . ” - Voicturs content c? inside air (Lh of moisture/Lb (‘1wa '1:V) t. .- KO : "oicturo contort of outside air (lb of moisture/Lb dry air) 0\ V _ “T ”T‘ “’ L - z ‘ 371 .- El: 3: IO MED [3.7 where VL = Ventilction rete recuirod for moisture removal (Lb of dry air/him, hon) ’" Vote o? noic+ure production in the house (Lb of moisture/Hr, 100 hens) dfi'3 Hoi~ture carrying capacity of outside air (Lb of noictm‘e/Lb dry air) 60 3 Used to reduce the ventilation rate from one hour to one minute 100 3 Used to reduce the ventilation rate from one Hundred hirds to one hird 1‘3" .23, L ss— which 6000 (W1 - W5) 7mc comhinction of these two tornulss gives: Vi : is 't}1e stcndcrd ocuction for moisture removal. ¢ince this Formula includes 0 “012" ‘variahlcs and may be divided into tvo equations involving three vor- io . . . WEfiL“’S 910h (73 FWOTD ahove), fiFO graphs are required to '20.1er, it for V1. w a, _ v , . 0 ““ren in ordcr to Tlni the'vnlues of Ni and J6 corresponding to the filVGH Jib . . o o o o O ‘trlrle and outside tennsrnture and relative humidity conditions, a third snry which is n psychronctric chart with W as the ordinate, graph is eces - l ._J t r: . . . S ‘the abscissa and relative humidity he the graph line. In.order to simclify his composite chsrt, fioldrich (36) assumed that the v ()1me Of dlSChaI‘!'9C‘. air C'Wlal the VOI‘LJG Of enterilw all“. .Lhe above a ‘1 u as ‘ o O Enlhflption.bring the following changes in some of the symbols presented Above = fi—-— -p —-~.-.-—.__.—__,A --.— t ITO -v therefore p”cscnted a modified psychromctric [c4 V ) «J V : Ventilation rate requived for moisture rnmoval L (cmf't. hf‘ moist air/7.7111, hen) 13'. Eloisture content of.‘ inside 1111‘ (Lb of moisture/Cu.ft. of moist air) ‘0 - of waist '31)?) AW : .‘fo‘btm‘c cam‘yf-ng capacity of outsidc air (Lb of moisture/"7:1.ft. of moist air) chfirt giving W in pound per cubic foot of air instead of being in pound per pound of dry air as in the standard psychrometric c}1".rts A sketch of the three graphs to be ccm‘nined is shown here: CHART No \ CHART No 7. Cumm- No 3 V... I VJ. coco AW PS i. ta Aw (“Vt "none-mic can't cwwr 'ro gm," n; cum-r TO vsoue Tue \Dnflm «has» 3") ' E‘Quu‘n‘m _ EQWON y.‘ WT AW“ “'1 V' m Since right An application is presented on the chart and is :hcckcd here: charts Nos. ’2 and 3' have the same abscissa, they must be super- lmpoPed. Chart 1 is to the left and charts 2 and 3 are presented to the 188 Apnli“ntion (Refer to the smart) Given: 129157."! fn‘f‘.‘r"-7"1“11re = (1501? Inside relative hzni’i +y -_173 Cu+siflc temn1rnture : 25°F * Outside relvtive humidity = 85% Etc of mainfure proiurtion in the house - 1.25 b/Hr, 50 birds (or (O 1b/Uny, 100 birds) (or 2.5 lb/Hr, lOO hens) Wentcd: The rate of ventilation reonired for the complete removal of the moisture as soon as it is produced True mathematical solution: (I eating, lentilnting, Air Conditioning Guide, 1951) Wis1t (65°F)-13?.6 x 10‘“ lb/Lb dry air W1 (65°F, 87%) = 139-6 x 377 = 115.362 x 10"’1 lb/Lb dry air an lb/Lb dry air 3,0881} (25°F) : 27.33 X 10 W5 (25°F, 07 = 27.33 x 85 = 23.?30, x 10 h lb/Lh dwy air AW = 115.3620 .. 23.2305 : 92.1315 3: 1o"h 111/11) an air viact (6g0F , 97%) = 13.h6 (Use of slide rule No S) 11 x Viact _' 7.6 x 13.16 2.5 x 13.h6 _ A, 3 = 0.6087 6000 AW moo x 92.1315 1: 10’" 0.6 2: 92.1315 (a) VL : cfm/fien (or 152”. l cfh/fiO hens) 2:3£L_I::tnenatical solution: (himmormnn nnd Invine, lQhS) xvi (65%, 87:3) = 115.352 x 104: Ib/Lb an; air Wesat (25°F)_ 28.26 x 10"h Ib/Lb dry air wo (25°F, 85:1) = 28.26 x 9.5 = 21.021 x 1o"h 113/113 dry air AW = 115.362 - 28.26 : 01.3h1 x 10"14 Ib/Lb dry air t(6) F, 877)=13.h5 (USe Of' Slife rm} e No. S) ‘wn‘-‘~ -.---." -..—m ...—_. .. W. 189 : C. 51’}, .. “ 5 x 13.h6 2.7 x 13.u6 1. ‘ = ___... : _ = (J) IL 4000 A37 (10“) X 91.331]. X 10 J 0.6 3:? 91.3311 non/Von (Fr 17L? cfh/fo hens) Solu+ion By use of *he couposite chart: Goldrich in his illustration (re’cr to the chhrt) found Vg 1°70 orb/C0 Hiras (or 0.0066 cfm/Uen) Percentage of error: 0.60““ - 0 4077 100 1—0.00?0h x 100 ___ /d (a) 7’ crr0r=< f1, ) " 0.33x),a 0.40 0.4087 ’ o '7 l .— 1.27 % _fo,éo£6 - 0.61h 100 ;-c.007h x 109__ (b)’ ermr'\ 0.6111 ' 0.61? ' a,curqcy of Golirich's chart would \ Based on this unique noplicntion, the he very good. However, it should he remembered thqt hecnuse of the assump- tion on which it is besefl, this chart is suojcct to an error. In the dis— cussion 0? his nonograph, the writer has computed the degree of error to These values are summcrized in the followinq table: (fig ; 2 A be expected. lb/Vr, 100 hens or L3 1h/97Y: 100 “v 5) From this table it may be concluded: l—That the percentage of error 1'‘or temperature differences swoller than 10° varies from about 10% up to infinity 2-Thfit the percentage of error for temperature differences from 10 to 350 decreases from 10% to about 2% with an increase of the temoerature differ- 2:106 3-Th1t the percentace 0? error for a temperature difference:fron 35 to 1 ) 50° is around 2%. Since Goldrich‘s application is ”or a temperature difference of’hOoF, this probably explainei the low percentage of error found. It iS probable also that Colfilrich (36) has used Zimmerman and Levine psychrometric table C19h5) although he did not mention the source of his data. ‘ '——-—_.~. _-“——. ‘r. - ...- -— ....._l _ . -‘———..‘.- .w‘ _ H-c—‘W ...- . ._ ti H.H.i to R.Y.O At EXpncged error (;.») :30 70 5.1:? 90 5’ + 2 ‘I. 3:1 50 «“0 10 + 9.9 ’15:,» DO 15 + (ff/J m ".0 20 + 5'. f: {70 (X) “J 90 S 4» KB 33 9O 15 + 5.7 95 9O 25 + 6.2 15 90 35’ + 2.77 o 90 50 + 1.?31 L0 90 35 90 S '<: 2:? 10C» 15 + 6.,33 15 130 25 + 3. 88 5’ 100 35’ + .../>5 0 100 )L0 + (422$ 30 8:) 25 100 5 0C 15 100 15’ 5.273 5 100 25 3.5 O 100 30 2.73 .. 5 100 35’ 2.19 20 90 15 100 5 .c 5 100 15 lugfl o 100 20 3.82 .. s 100 25 (..78 -15 100 33 .935 To conclude, it sfinulfl be $144 khwt the above composite chwrt is only Hpnroximnte; it gives its greaficr accuracy when lfirgo tompornfiuré differ~ ”nCGS (35 to 5099 are inv07ved. It Should probably never be used for small temnerature flifferences (100 and less). . -.-..- ...-«___. A .--; “...-*— ~-< m--—.—-—--—. GOLDRICH COMPOSITE CHART FOR DETERMINING THE VENTILATION RATE REQUIRED FOR MOISTURE REMOVAL(36I 5 F _0 4 Q 00 WATER VAPOR'IN AIR LBS/CU. O.I h —- —————..~—...__ _._ . .. ..—.>—‘__ " -—_.._. _— Ear. ..\ ‘ ‘ h, Ch01n1nrfi cnwrnc1+e chart For worsture removal. The writer 0T0P3T9d \fl ‘ 1 " H , - ‘-~ - . u :1 ' . '1 . 1‘ I“. a. .- ~- “‘1 ‘ 1 v '5 seoom tme r11 3:1..noqite chnw’m ., much is -13.30d on ....1e mule formulas ._.ha.1 H 5 ‘he ones used 5y Goldrioh (Bo) and is using the modified psychromefirie chart prepared by Goldrich (36). One advantage of this new composite chart over Roldrich's is that the ventildtion rare is read in o’m per hird, a value easier to use for COmpdr— However, bes““se it is based, like Goldrich's chart, on - \A dtive annlysis. +he essunpfiion ‘hot +he volume of enfering oir is equal fio the volume of discharged air, ifi is subject #0 the same errors discussed 9or the previous chart. Two applieotions nre presented on the chart and are checked here: Application No. 1 (Refer to the Chart) . . 0 Given: Inside tenoersture : hO F Imejfie relfiiive humidity : 80% Outside tennernture = 00F Outside relotive humidity = 100% Rate 0? untor production in the house = RS lb/Dsy, 100 hens (or 1.873 lb/Ur, lOO hens) flhnted: The rate of ventilation required to remove all the moisfiure as soon as it is produced. True mathemniionl eolution: (Nesting, Ventildfing, Air Condihioning Guide,19§l) W1 t (ho°r) = 52.13 x io'h lh/Lh dry air 33 Viact (1.001; 90,3) = 52.13 x 8.0,: = 11.701 x 10"h 113/113 dry air Wbaat (0°r) = 7.872 x 10"h Ih/Lh dry air AW 3 111.7011 - 7.872 .1: 33.832 x 10""1 lb/Lb dry air viact (hoOF, 80% = 12.67 (From Table uh) WT xviact 1.875 x 12.67 1.875:x 12.67 :: . 11:, _-_ 1.115 ci‘m/Hen 6000 AW 6000 x 33.832 x 10' 0.6 x 33.832 (a) VL -—‘wmnw ,- -..“ wm—_—-_ 4‘ 4. *m-...— -.- WO~ “rue mothoniiicsl solution: (Tinnornon and Livinc, 19h§) , -2 w not (MOOF, 90;) : 31.7Oh x 10 L lh/Lh dry dir i w _I . ”0.1+ (OF) = 9.322 x 10 4 lh/Lb dry air n-.U Afl'z Ll.70h — 9.322 3 32.332 x lO-h lh/Lb dry air Vi (hOOF, 90%) = 19.57 (From Table hu) act W5 x Vi t 1.875 x 12.67 1.975 x 1?.57 (b) VL : fi «'10 " -‘ _fl :3 = 1.167 6000 A?! (2000 1: 2.382 x 10 0.6 x 32.332 Cfm/Hen Solution by use of +he composite chart: Dy refering to the oorposite short, the answer is found to he 1.?0 cfn/Hen. (3.3. = The writer had first read it 1.95 but later revised it and found it to be 1.20 which shows how difficult to scourotely road a composite chart) itiS‘e Percentage of error: (a) g error : 1.20 - 1.115 100 : 0.085 x 100 : +7.5g 01.115 1.115 d _ 1.20 - 1.167 100 _ 0.033 x 100 ; ¢ 2% (b) N error _ 1‘115—v ) _ . ) _.+_.9). Since the true mathematical solution using Zinnerman and Levine data (l9hC) gives a percentage of error closer to the exuected error, the writer believes that Goldrich probahly used Ziunormnn and Lavine psychronetric table although he does not mention the source of his dota. . lication'go: 2 (Refer to the chart) \ . . o 0 ven: Inside temperature = 50 F Inside relative humidity = 80% Outside temperature : 20°F Outside relative humidity g 100% Rate of water production in the house : h5 Ib/qu, 100 hens (or 1.875 Ib/ur, 100 hens) "'"" - - u-nn—Ma— __ a”. — —.__.__ mm _____ Tanted: The rite of voutilvtion required to remove 011 the moisture as soon “8 it is produced. H. . I“ " ( ~ v—nrrfi 191". (111,4. Ln,VlIlO’ l>’4!/ ) h True mathenitical solution: Wisat (50°F) = 78.55 x 10’ 1h/Lh dry air . Wiact (50°F, 80%) = 76.55 x 80% = 61.2h lh/Lh dry air I Wbsat (20°F) = 22.87 x 10"11 lb/Lb dry air I AW = 61.221 — 22.87 = 39.37 1h/Lh dry air (500p, 80%) : 12.97 (From Table ht) , r, o .8” - ’20 V - WT X viact - 1087) X 1?. 97 A -1 (5’ X 1 97 = 1.045, (34‘4/‘31’6‘1. L ' 6000.00' 6000 x 39.37 x 10‘H_ 0.6 x 39.37 viact Solution by use of the composite chart: By refering to the Ch7rt, the answer is found to be 1.10 cfm/Hen (3.0. = The writer had first rend it 1.16 but later revised it ; and founi it to he 1.10, which shows again that composite charts are very difiicult to read exactly). i Efrcentage of error: 4 error___(1.10 - 1.005) 100 _ 0.035 x 100 z..3.28% __— p .. 1.065 1.065 To conclude from Goldrich's composite chart for moisture removal and the sinildr chart presented by the writer, np‘proximate and great care should be taken in their use. The writer believes i f 9 f 2 it can be said that they are only I l t that nomographe and slide rules should he preferred since they are easier : £0 road accurately'nn” are therefore more reliable. --‘____ ‘H- .33.! of an 022.05.. Ma” ...... £433.35 ...: 8.2.3 8 59.3 2.»...3 v.38: F. 22509 1 o e. ... 3 3 8 B 3 8 3 no 3 3 . 0W 2. 8 A 3 n 8 o. 2. on. a . h 1 d . 0| u V\\\\\u\\ ,. a ._ .. - g #0 ‘\ .1 w \ . 8a.. A , 9‘ 1 \ m ...??e 2.....- - . . ...... _ iguana...» .. \0 Sam 228225....- ...-a! \. .00. O”... 1 0611' .. . 93%| .EEEFI .. Mag: 3803...».3.-- 3 ... 0?.- I ho a 82m 9a .. 11333..» 3.“... 3 #99:... w .So ... 8.: t. 3 .893... m s . #8.: on“ n 1. . .- 3131:3318... 3’39 00“" S . . \ ... a. ...-.33”. .5 8a . $8.33 . #3... 8d- 3 so: 1 . . , t .8 ., _ 1 8.» .. 3“ 118132119... 583*- . _ ...-#8 . T.‘ 1- -f‘ 1 1 . P... . H . x. 4 .. a... s1 . £38 .59. 2.3: ... .. ...1 .i .1 8‘ 1.36:”...- ucamaz :9. a! 323...... alupitti a - I 1 a 3:39. 8.54:2“; no ups. “...... .3 92 .... 2.2.1.38 e9. 8 86 uziimuhu cog .5320 ”#595200 5.210 Egg 11.! a. Solarich Composite chart for determining the vontilction rate re- nuired fortenoeratrrm =cntrol.“oldrfich (36) also prepared a composite chart AL 2 x—IA— to solve the eoustion For tonnernture control. This composite chart may be considered as heing e combination of six equations each containing three variables: 1) “Let. : HET x L 2) HS(B) = EXT - “Lat. 3) HS(BL) = “8(8) 50 BL h) H5(0Ls) = H5(731) 50 HS 5) K = 53 II8(BLS) ; 53 C“S Total T t 6)VS=K-53AC where Hint. = Latent heat produced by the bird (Btu/Hr, 50 birds) HfiT = Total Neat given off by the respiratory system L W3 body of ”1" ‘3de (Mitchell and Iteiiev's h. ‘ o curve;(3tu,-r, 50 h1rds) L = Percentage of lotent heat produced ,y the birds (Hitchell 0nd Kelley's curve) (fl) ”8(“) = Sensible heat produced by he birds (Btu/Hr, 50 birds HS(BL) = Sensible heat from the birds-bflet sensible heat from litter decomposition (Btu/Hr, 50 birds) “$031.53) -.-. Q5 Total = Sensible heat from the birds+IIet sensible heat from litter decompositionnpfleat from the sun, lights, etc. = Total sensible heat available for temperature control (Btu/Hr, 50 birds) v-w—w—v—hw-ofi-fi. .._ f-'.« -~ - wan-n.— ___. W *— < a. ......»mk. UL : Yet sensihle heat from litter decomposition (This is the portion of heat from litter de- D eonnosition which is in excess of that used to vaporize the uoicture in the litter). m [7" (5011/ 1.1“, hen) HS = Heft from the sun, lights, etc. (Wtu/Hr, hen) K : Dummy verinble 53 = v : Cubic feet of air raised one ”F by one Btu. UTUh t g ti'to = Temperature difference between inside and outside air (0F) VS 3 Ventilation rate required for temperature cons trol (cfh/50 birds) A0 = Heat loss characteristic of the house (Btu/Hr, 0F, 50 birds) 50 = To convert the rate of ventilation from one to 50 hirds ise conhination of these formulas gives VS = 53 QiTotEl'- 53 A0 A. which is the stcn43rd countion ”or temperature control. A sketch of the seven graphs to be combined is shown here: CHART No \ Can RT No 2 Wk (memos / L- VCIGHT «=asuT /’// Her .1; "iTCHEU. mo kcuuv‘s “item; AND “nu 7‘s 0)th Foe m; 1.735 cunvc FOR “I: Libra“ Hear vacuum». or “an “9151' 910900110! (7.) 1. ~r D—w- ._-_ -__ _ -fi‘U—w-w- ~m ”-0 198 CHART N93 CHART No 4’ CHART N0 5 Ham) Ham.) // ' ”“80 / L/K’ /.. Nb" HS(B\.$) on stunL Cum To SOLVE THE CHART To $°Lvs THE CHM“ To SOL V: THE EQURT‘O“ “‘(g‘- “‘1' ‘ S EQUK‘W’N H‘(B\) : HS‘B)+H'- EQV AT‘ON "'3(.Ls): “S (u) + H5 CHART N06 Caner N07 SSHKILQ t, / VS 01 ‘3 Q79“. V A, ’0 K K Cuba: to some TH! CINAQT To tour we summon K: 53 05197 FQupm'ou Vs: K- 53M (3 An applicntion is nrescnted on the chart and is checked here: Apglicition (Refer to the chart) Given: Inside temperature = 65°F Outside item’Eratm-e : 25°F Inside relative humidity = 87% Weight of ‘nirds; 5 1b Total heat nroduction (HAT) = According to Mitchell and Kelley's curve. Percentage of latent heat (L) - According to Mitchell and Kelley's CUI'V'C . 19? Wet sensible first 4‘row litter decomposition (HL) : 5 “tn/”r, hen Ynet Prot“! the sun, lifihts, “to (HQ) 2 5 Ytu/Yr, hen feet loss characteristic 0? +he house (AC) : 30 Etu/Vr. 0?, 50 hens Wanted: The ventilation rate re uirei to maintain the above tenpernture difference ((50 _ 25° = Moo) True mathennticel solution: I. = 2b? (From Nitchell's curve) 3 = 100— 2h = 76% HAT = 2315 Utu/Ur, 50 birds (Fron Mitchell's curve) ”8(3) : 2315 X 75% : l7g9.h L = 5 Btu/Yr, hird or 2S0 Yin/Hr, 50 birds 5 Stu/Hr, bird or 250 Btu/Hr, 50 birds HS HS(WIS) = 1759.h+-2504-2SO = l7§9.h»»500 = 2259.h Btu/Ur, 50 birds : 13.b5 cu.ft/lb 0? dry air (By use of sliderule No 5) V 1act Vs =15; as Total - ACRE ‘ 0.274 At _ *6.2H no .EU _ 56.0h (56.t85 - 3o) 1 __Sé.oh x 26.hg§::2h.737 aim/50 Birds 50 .' 60 (or O.h9h§h cfm/hird) (or lhhh.? cfh/ SO hires) Solution by use of the composite chart: Goldrich in his illustration (refer to the chart) found vs i.- 1820 cfh/SO birds or 30.33 CPA/50 birds (or 0.6066 cfn/bird) Percentage of error: 5% error _ (0.60666 _ 0.191611) 100_ 11.0.12 3: 109 _ 22 73; " 0.11.9151; " 0.1191151; " ' .-.—...-._——_ - ___V MW“ ”.- _— PO (3 Q . . _ o _ I ' nix “L ’7 . After dhectiné this “pPlicstion “nJ rlqllnfi the blg por””n”qbe Of A - ' n“ na‘. : ‘ L).' “- .1 error involvee, the writer wrote to delirich .'.\crnin3 tne *5 aifPerence. 1‘ A + . V‘. ."xolz‘wj oh ‘th'ufnrfifl Past: "the *.or~~or‘!‘fi.‘.'.‘_1‘.‘e COIT'i-I‘Ol (Ewart nah-W3 COI‘I‘Gu ’10“ A. . ,, -7 ‘. l “_ 1 but will not he done is HitchCIl find Lellea's Jerk \percent 3,7pa and . - 4 , w}'1h ?F can— Btu vs weight) his been made obsolete by some 1nproved “nti 11" {'S o A r‘“ ‘1 ‘1 . -‘ EAC1.I'\..LSQC elated hv the U.C.‘.A. F Beltsville by Ota. The wdgrt Siouul b? - i . 1 ' r1 ' fi' ‘36 V I: using Ota's data but I do no+ MV9 fine time to -0 5° imme la .1“' _ _ ____._._._.__-.——_‘~ V .. ‘h..-_ . ... ___.*~——~.——- r ~.—~ ...—-44F- GOLDRICH COMPOSITE CHART FOR DETERMINING THE VENTILATION RATE REQUIRED FOR TEMPERATURE CONTROLBG) I x 0 II. F 2 “‘ I _ t- I 9. < . I ,, J I : IF'».‘. 5 I. , u : 2‘ w, z: I. " g I: I ‘III‘ ‘6 I I! '- I. s z I - I" s ‘ 4? ~ ‘ I I , Ir ' r l I: \ I I \ I .4 . m I O I J I ’1 o r S 3 a is I I F 'I I ~ I “5 I i‘ > I I 1 , z I II I I e ‘I II 1' I:‘ I i v' ' é . y I 3 ”2 I 13‘ ». I. I 9‘ 9" II c_ ‘ I « I (.1 .I . ~I I D I tit..- . I) (D F») - ' ~ 4.: 1 .L.: ... y. 1. - u D ‘ ”Hm—Hoover ””7"!“ "1- . I_‘au...OL‘ are h.1hoiniere connositc chort ior ceodr_-u;;9 on- x no” .i I ‘ I. n ' 7‘ 1- -’ ~ -~--\- 0% J (3 “WI"? 1., T‘ van/TH: 70:34 Par +~fir1‘,‘el‘ftt13"§ ernfjecl. "‘1”. HOLI‘J‘JJJII bkllflpOuJJJu ‘_‘_ H w ’ r) 3 his Ad... ; 4-. ,. L \r. -.. ,' - '\ Ll . ‘tfl‘l’?+ “‘7. 7A0— :onrziderohle 01’“ “I“, «10 - ,._- P- v . . v‘ —- nv (- + (vir'n temnrntme cortzol see-.1» 10 ..-»w ° u 1 .'1 .V‘ r " In"? 5" 1'! '?nmbi Halli-"‘3 cared n new chart. This new chart no; he nnngjcn ed a L .nfl - o o 0 V" of two eouctions each contnining three var1a»les: I OE where h Dummy variable Q3 : Total sens hle hoot nViilable (Btu/Hr, hen) at : Tennereturn differential (OF) §2 : ‘v : l2.h8 (where v is the specific volumeof one 0‘. .L.-1 pound of moist air at approximately 33°? and 80% R.H. end 0.2h is the specific heat of air i at constant pressure) = Cubic feet of air raised 1017 by l Btu. 2) 60 va ... K — 532 "AC" ; where Vs a Rate of nir flow required for temperature control I (Cfm/hen) N N D'umrv verie hle v = 12.38 = Cubic ft of air raised 10F by ; 00:5 I Uo/h » i l Btu. "AC" = fleet loss characteristic of the building \fi, h.) (Btu/Hr, 0F, hen) 60 number of minutes in an hour 2 5 Q8 - 5’2 AC At Sketches of the The combination of these two formulas gives 50 VS : which is the standard emm’nion f‘or temnnrature control. *r'ro :rr‘phs to he contained are. s’om‘l here: CHART Nol CHAIT No 2. i - / b 52 Q, CHMII' T‘o soLve T“ CHART TD saw: 1»: Fawn-u» K: 23.5%: Eauhfl‘ou \Iss k- 51. AC - Since charts Nos. and have the same abscissa, they must be super- imnosed. Tt-ro applications are nresented on the chart and are checked here. épglicgtiog L10; _1_ (Refer to the chart) Given: Total sensible heat available for temperature control -_-, ho Btu/Hr, hen Inside temperature = LLOOF Inside relative humidity = 8073 Out side temperature : 10°F . Heat 1033 characteristic of the house (AC) 3 1.0 Wanted: The rate of ventilation required to maintain the above temper- ature differential (1:0 - 10 = 30° ) True mathematical solution: viact (10°F, 80%) = 12.67 (From Tame an) ‘M—‘vlule-o-u ... .9” . m, -‘-—‘....-..~..- —-.-.- n - On); (.z.A . o _ q Vs : vlpct 28 A.\ l (5. “h D— [6.0- = 12.67 39 - 1) 1 12.87 (1.333 - 1)—3— c. h 30 ‘50 0.25 00 ..3 0.202 cfm/Hen Solution by use o? the composite chart: nownosito ehdrt, the nnSWOr is foun” to be Percentage of error: e _(b.30 — 0.292) 100_ 0.008 x 100 _ 2.74 / CI'I‘OI‘ _\ 0.292 _+ 0.292 _ 4‘ 1° Applicgtion 30. 2 (Refer to the chart) Given: Total sensible heat av7113blc for temperature control = ho Btu/Hr, hen . on Imelda temperature = L0 P Inside relative humidity = ROS n + . , oh uueSldC tempeiature : 30 n Heat loss characteristic of the house (AC) : 1.0 hunted: The rate of ventilation required to maintain the above temper— ature differential (ho - 30 : 10°) True mathematical solution: vi (LOOF, 80%) = 12.678 (From Table nu) act 0 - I’LC ' ' VS - viact (“8 1 ' 0.2H D 80 _ 12.67 (59 - 1) 1 __ 12.67 (h - 1) 1- ' 0.2L 10 ”""' ‘ 0.2 "36 00 12.67 x 3 = 2.6h cfm/Hen ” i 4—. u-‘~“— ___. h_——— -~W-M.—."_—i -.-... -.—~ v ...—...—. ".‘fl’h M- . -..-— 7 tilt , 205 Solution by use of the coupocite chart: _— Ry reFering to the composite chart, the answer is found to be ?.6 cfm/Hen Percentage of error: VT ___. 2.x _ 9.52., 100., -0.0?: x 100 - -1529; P 0.; _ 7.6L, - ' I -0 One advant.ge of this composite chart over Goldrich's is that the ven— tilntion rate is read in cfn per bird which is a value easier to use for comparative analysis. finothor advantece is that this chart is epplicahle to 9 condition and the sensible heat from litter decomposition end from ny the sun may'he naded +0 the sensible heat from the birds. To conclude from Goldrich's composite chart for temperature control and fhe Similnr one nrnsented by the writer, the writer found out that they are somewhat more compliCcted to read then nonographs because of tho intersecting lines. For this reason, the writer's conclusion is that nonogrtphs fins slide rules should he preferred. - 0—‘_.—._. -_—_. —-__. “ --fl ‘v ~¢—.~. .- ~..-...-- .-.... 206 (“NM up) M ‘aaumoaa N0uv1uN3A so any _u0( .2235 ed"; *2 .a ovnna @N‘E Idxm _u0( N ZUIx’uOOQOu0) Onuo cc 10 Q ....EzSG . D2104!" 9!.0". 1’9" 83.! 2: ya 99.9534. 3.0 .> . 20:53“ uh . O ‘— 4‘on m) “—0 mhl"»u?0 Sou-"1t of insioc air, at situ— sat. ’ ,.f I ° on. H 'y '. n - -4. .1". rqf’j on (l‘jly'l') ... ..) KI] 3. OJ. mljl. _aYlT‘CI/Ull. L ft. of moist air) 7 7 - Torccntsfo of rc7"tive humidity inside the J- . 1 soul “" aousc :5 Vi.) ‘00 - Factor usefl to bring 3.3.1 to a Hecimal value where AW : Thictme cr-rryin-j canacity of outside air ’7 o e o \hh. of moisture/Cu.9t. of HOist air) W. ynieaure con+ent of inside air,nt given reiativc huni‘ity (1b. of moisture/Cu.ft. of moist air) .4. _é__..___.h —A~4-’ - ...- --.. ___Ti _—_‘-.___.Afi i -MH-wo—u—‘. "m .....— . 208 - '5“5’J”I"c “ofi*'““t ’Tp fi‘”‘"lfh9 air‘ "+,f41si{71 1 L' ‘- °‘-4. ’ now" " T' \ (T‘ p rs_".‘to nufit’L," 1“) .n 0. c- .' ./ \" ". :uL‘,./“ n, °J.-° ”W: 'i c/Ju.ft. oi JClbq .ir) ‘ V r ‘Ir “ tr "'1 “'7‘ ‘/ VL - J. = —' ‘- er' ‘ WT lnn X \A X (at? - n (J Au “here VT - Ventil'tisn rc‘e re~1ireo tor moisture “ouovol u _ .. .l . _ . M _ . -h.e , e I l '0 (Qu.?t. or mOict an/Tln, hen) W5 _ Nn+e a? woiefure profiuction in the house (Lb. Of moisture/7r, 100 hcns) 100 - Usod to refuse the ventilation rate from 10“ to one hen NO : Nomi to rofluco *he ventilation rate from one hour to one minute AYT= Toistura carryin: capaCIty of outside air (1%, of moisture/Cu.ft. of moist air) ECWQtiOH l ”“9 ”Elnffiito a logarithmic form: A YT lo; J1 : log “isqt.‘*103 1.n. +(1OT Ticqt ) _ (0)-+(log 3.3.) ~(103 Hi): (0) |-’. O The lo: of fiiqnt 'was slatted ano the values of ti were suhstituted for them. u'~ O " A riddle sU?Part was re uireo on the slifie rule for conversion of log +(..Ti)-— (O)+(—?~ro) - (A37) :: (C) were plotted in” the values of to were substituted for them. Xi values to Hi volucs. flotation 9 was arranged in the following order The V°1U“S of $0 A second midfle supnort was reouirefl for conversion of 1? Values to log W’ values. E oration j} was chanced to the Pollowing logarithmic fOrm: — -———4—_-.- ---- . .‘ “___...“ "u-a~u—..—.4k _. ll -.. ..fi ..-, H“ m~—.m~w log fishn-q-(loc'7 ocwm'> ...(lm: moo AW) .. (0..) + (4.0;: 172) _ (419': V11) ___: (0) ”he location o? the thiro arrow was slightly lowered in orcor to vorticlly correct the assurption none hf fishing +he volune of entering rir as equal to the volume of outfioinfi oi . 7cierencc to any terthook on nomofiraohs an” slide rules (ho) rill ex- plsin how the slide rule "as prcnnred Tron the above equations. In orier to-illustrnte the use of'slido rule No L, consider the fol- lowing apnlicntions For inside tennoratures of 20, 30, hO and 50°F. Application Ho. 1 (ti = 20°F) Siven‘ late 0? Water nroflnction in the house - 1,879 1b/"r, 100 hens I __~ -- -v . . - (or MS lb/Uty, 100 hens) Infloor tennorfiture — 20°F Infloor relative humiflit Outfloor tennereture = -20°u fl~y+rlonr rn1o+1vn h1 Inner}: {fly =100‘“; | fi9n‘edt mhe nininun rate of ventilation rerrir so under the ahove coniition +0 Intro/“Ira «_114‘ 11A moin+yr~n proflvusnd True mathematical solution:(Heating, Ventilating, Air Conditioning Guide, 19h5) -1 Sat. (20°F) = 21.hh x 10 ‘ lb/Lb dry air -h . .1 833 (2002) = 21.hh x 0.85 = 15.216 x 10 lb/Lh dry «1r -h ”1 W lb/Lb cry air 053.130 Aur=19.-1) 9 .625 = 15.58 1b/Lb dry air (-20°F) = 2.625 A 10 A ..-4— -..- tl- - _ Viact (20°F, 85%) = 17.12 (Use of slide rule No S) vi 2 WT x viact 1,275 x 12.1i_2 1.875 x 12.12 : 2 ,29 022/ en 60.00417 o x 7.59 xlTJ'h" 0.6 x 15’. 5’89 ...—*‘ulv-u— .....- v om~ ...—.-.... __fl-. w.‘l.’§l...|rl. . ‘- 210 I? . ,— I. w I an ' 5 ~ V . .oln+1on by n e 01 +‘e oorw bin“ 61100 1nlo:(flron lfi’f £0 rirhfi) J _“ 1' +‘1 : 1n~ ‘,, ' . o w 1vr 1-3U2 . 9 ’. -fi firro onnofiifie ti : 20 F on" r094 “i = 15 71 v' (‘r'r’ 'i-o--o' ‘5- 'J l "' " 7" '5 fl \ ' . "' ~,- , 53-1113. be $111.61.”4 arrow opporiie "i : 15' 51nd 1‘om:’.A..r .—. 1.3.7:"; - l + ‘ 1"? . ‘I R. ' L, -v 3 Puu fine Unird nrrov oppoaitCASW'= 12.7; and read V: = Q.M2 cfn/ncn 1.,0, a” 0, 2,, op 0.1.0 “T = l.u7) (or kg) Percentage of error: )5; Error .1 (I3o‘;2 '- 2.1., 1.29) 100 B — H.009 X 109 = ~0.37F’o’ \ 2101029 72—0229 as compared to+ W3 5 for the non-corrected slide rule. Anmmfion 1'0. 2 (ti ___ 30°F) ,1. . . , / given. Rate of Water production in ihe houne = 1.875 lb/Ur, 100 hens (or L5 lH/znv, 100 hens) Indoor tennoro+ure = 30°F Infloor roldtive huniflity : 90$ Outfloor tofiporfituro = 10°F Outdoor relative huniiity = 100% 2 72.3 . 'P i1n-ed. 10 minimum r1+c o” vw:1ti]“tion requirod unver iho anove con— diiion *o “O“OVC “ll ihe noisturc “Wyn”.r1 Tru. mathoh.fi' . . +'. ° ' 9 / '-“1~1071 901“u133;(Heating, Ventilating, Air Condifioning Guide 1925 (30°F) = 331.39.:10"h lb/Lb 0ry air lsat. 12:. (, I300?) ’ “h a . u 995 \ . - z 3A.39 x 0.90 = 30.951 x 10 lh/Lo dry nir —L "I (10°F) = 13.11 y. 10 115/115 dry air Osat. A?»r a 30.951 — 13.11 = 17.811 x 10" 115/115 dry air . 077‘ R. 59" “.1 1 . vlnct. (30 -, ~9n 4.1.) = 13.3; (Use of slide rule No S) m.— -fi”. ...; .. .... ...—W .. ‘7 .11 x X': 5 JT _ ‘ "r- p ‘I ". 44 - - _ fifl‘f' - j. :’,rJ "’ fifi. “'9 A _ 3-0‘ TY. :r 1 o .1 '1.) _ f) ]:’(\13 C'r‘"'/-.PY‘. - - 1-. .. v a . - -"b‘ ffi‘f\ '" - I A“ ‘ ’W -T .' r f‘ ' ‘1 In "' . K'C' X 17 o i; d: 10 4 ‘1). K) X: l l, 0 UL haififidn b" “-36 n“ ‘7‘“ (15-\1~‘~'1r1+‘~,’3 Fl""‘i"? T‘U‘Q: (From 17:“: +10 Tith) 9 _ l-Tut +fiq Firnfi 1rvng npvnr5fe ti = BOnF nnfl re?fl ”i = 21.» 0p?»":"i_i‘3 I?.’T.i : 9'15) I O 1! (3 y (A, I O—P‘ ‘5“ 4131 f‘ gfir\(fl\)n‘-q firy‘rjfivr Opnf\ (‘1_+0 7 "i = f?) . ! ”WITH Tn'flifl f" = 1 ”)1 .V r. 0:17100‘Oi‘c to : 10°F 3-Put 1%» tfiiri arrow npr11iic‘43 = 13°35 an” read VL = 9'72 ’\ \ (9 0'? “.4'\," ,_ 51051-,30rrgpfiqd) op730°i+fl ...-YT = 1.‘nfl75 (01“ L5,) Tcrénn*1nn of orror: T1703 7.17 :1 ewrnr =(°.11 _ 1.170 ) 100 = 0.06763 x 100 .___ 12.31;; 5.2% for the non—corrected slide rule. 332115313203 Ho. 3 (ti = 11001?) '1 J- ar- ..- :- n ’ . ‘. 1 ' “ T"? 1 ’f' '1 1, hove a .1 or p oflu1*1c. in t1o noise : l.o‘§ 13/.r, 10» Hons '1]. V021: * (or R? 13/713, 10m hens) va(‘nnr +nv~\$\r\fi‘\r\‘+11‘\~ - :‘IOOYI‘ .— - ‘ _ ~ - .l" ' J“‘ J _ Q.‘ L -— g 0 U 0 ’ inHoor r111¥1"e huni‘ity = 90% On‘door +1111r1fnre = 00F 4 Outdoor “cinfiivo humiflifiy = 100% fionfied: 030 niniflnn “1&1 of vo1flii1finn roQuirnfi unaor the obovo con- Hition +0 remove 911 fhe moiwfiurm nroflnced. True nnfhenniical solution: Heating, Ventilating, Air Conditioning Guide, 19%?) h 1+ (10°11) : 61.991, )7 10" 115/115 Ary 1ir 13 ' i 90:3 (310°?) = $71.92; 5: [21°10 .-. 32.1.5552 x 10" Y t.(OC’F) : 7.352 x 10-5 b/Lb dry air 11 115/115 an .5 ir 031.. ( ‘—- -....~-H—_..-, 5 -—-‘-.Il—— v- ”-n-m-nh—‘hq—u-“ .. A - _w*__54—_- A 212 :fi v o a ‘ ' ‘fi . " .olfition 0y fire 0’ +11 onrr1ofnfi 91130 rule: (grow loft to rjrat) .. l ‘IOOT? r“fi,‘7 ~1r‘n,’ if fir) ”r L", _ L.‘ I 1 Duo - ‘ IN *n': Y!!!" ‘7 Y I“ W- J‘ 'L +_‘.4 ,0 --- arrow 09351110 ”i A- -VMM i = 01.1; J 0 “. A" ' OT‘“("‘lir‘ I/OTYOi = p,t|f., A, f'yf" ‘ " / - )2.(,5 and rear? A‘..’ z 73 .2 ’5 7“ J. LL- ,‘ _g --r :-'“» uza F060? arrow onnoolte Li _ onnoriie t — 00F . O .- 3—Tut +31 *Pirfl nwwnw apparite.AW'= 20.? and read VL : 1.17 (1.00 non-Corrocted) OP““"5*G WT : 1.973 (or hS) YD ere"n*age of error: i 1' fl error = (1.17 - 1.1?L9 : 100 :‘Q.OOL9 X 100 :‘Cohgx as compared to +2.lh% for the non—corrected slide rule. 1nn1ic~aion to. h (t, = 50°F) A .. O. - — .— _ .- .. ..- f" ' o I ‘ I rivcn: Yofie of~vn£or nrnflnotion in the honee = 1.875 lb/VT: lam ban (or M: lb/fl1r, 1x“ hens) “A1 I1floor *1rn““1*nre : 500 H 0}) Infloor rcl1oive hunidifiy = C Out‘oor t1nnor1inre - 20°F fln¥4oor rel1fiire humiiity : 100% ”fluted: '1"le 7113117111171 r0410 of ‘."‘T‘.+il"iliOfl rcrfilll‘ftf‘.’ unr°0r 43h") shove COD- “ l flit ons to rono"e all +00 moisfnro proflvnflfl. r1 . v . . 0 11:30 m”thén=ilcnl 'Olfltlnfit (Heating, Ventilating, Air Conditioning Guide, 19h5) -h w. 'J W o *1 t .2001) = 70.20 x 10 0 lb dry air 0 H (50°?) 76.26 x 0.50 = 01.000 lb/Lb dry air I -._._ .-_,___ 44,1 213 17 (700?) = 21.83. x 1044 111/113 dry; air Osat. 2 AW = 311.038 — 91.11.31, ..-.. 3956:”) x 10‘ ‘ lb/L‘o dry air V' (:1110 P, k ([5) ...:- 114'. I)? (f 1"(jA'T: 71:! E )1}? I‘ll—l} ..':3 (‘t l.k}'iS X 16.9; 1.U:’/'K -Lf?.;2 V _ JT x viact _ 1 : :1.0?h3 cfm/Hen L ' .6000 as: ’ {-000 x 39.568 x 10-5 0.6 x 39.568 Solution hv use of the correcfed slide rule: (From left to right) . 0 . l—Put the firsfi arrow opr091te ti = 50 F and read ”1 = h7.1 - v . r" Op..'091te 77.1.1 : 80,0 Z-Put fihe second arrow opposite Wi z b7.l and read AW'= 29.7 oioosife t — “00F 1“. ..' I O — . 3—Put the third arrow opoosite AW = 29.7 and read Vi = 1.0h3 (1.07 non—corrected) opposifie WT = 1.875 (or hS) Percentage of error: 4 (l.0h3 - 1.02%3) 100 0.0187 x 100 _ 41.83% p error = » ' - 1.02H3 “ 1.0283 (25 comoared to -+¥.LGS for the non-corrected slide rule) In order to check more thoroughly the accuracy of this slide rule the writer compufied 10 additional npplicqtions: (WT : 2.0 lb/Hr, lOO hens or 1.8 lb/Day, 100 hens) Check ti 72.11.11.713 1; 2.3.0 AW WT vL Diff. p" Error 0 Ct Use of True slide math.' rule solut. n. 1 50 80 87.1 20 100 29. 2.0 1.118 1.087 «+0.031 ..2.85; no. 2 50 80 h7.1 10 100 36.3 2.0 0.91 0.897 .+o.013 +1.h5 no. 3 5o 80 h7.1 0 100 h0.75 2.0 0.815 0.81 .+0.005 '+0.62 No. b 50 80 117.1 --10 100 113.21 7.0 0.765 0.762 4.0.003 +0.39 Nb. 5 ho 8 32.75 10 100 22 2.0 ‘1.50 1.h78 .+o.022 -+1.h9 No. 6 he 80 32.75 0 100 26.2 2.0 1.25 1.251 -o.001 -0.08 No. 7 no 80 32.75 —10 100 28.85 2.0 1.1h5 1.11 +0.00; +0.hh No. 8 3o 80 22.25 10 100 11.6 2.0 2.8h 2.78 +0.06 7.2.16 88. 9 3o 80 22.25 0 100 15.8 2.0 2.085 2.05 7+0.035 7+1.71 N0-10 30 80 22.25 -10 100‘ 18.5 2.0 1.785 1.763 1+o.022 +1.25 _.- ..-1 . - ...-.... .... -.'-u. ...—.... .—-.—--—- ___. .. 21!; M ' A» V 2" a . ‘~ 1. :4- H ‘s . ~ -. - .rom the eoore applic-tions and cueens, 10 cin we Sflld tint s 1de ‘7 rule LO. h seers to maintiin an seen acy within 0. 3 for the whole range of inside femperoture from 20° to 50°F, and For this reason may be con- sider as given a very satisfactory approximation. A few of the ndvnnfages of slide rule No. h are: l-Little sosce is needed. ?-No sfrnight edge is required. B-No psychrometric chart of any kind is needed. h—The ventilation rate is given in cfm per hen which makes it very suit- able for purpose of comparison. S-The accuracy seems *0 be within 9.53 for the whole range of inside ten— pernture from 20° to 50°F. is..."_-.—_ .— .‘ --——vo-.-—.- ...—.- .m—--mw-m-_ - -... . D I..:-‘l.|\. III It..'.l‘1 ttiI‘ 'I’IJI, . m I_<>O_>_mE mKDHQOE mo“. ommSOmm ZOC. LO m:.Em.rmo m0... MADE mojm 1m... azwxxiun: J<>OZu¢ umnhmai v.0“. Gum-Ddum uhdx .10.... o O O 2 5 w 5 O 5 w W N. W. 3 O O O O O O O W W 5 O 0. 5. v. o n ......mm... o .. .1... _ c _ _ r .. - - 4--tusi!-1n.,lritinltlif 1,7 ... ..-. 7 1!}; . . . . 5 T M. 4 5 S 7 8 9 m ..m m a w w W :4. ..O. M w ..w m 7 _ W 322.. oo..>01wz awk uo PZDOI< 4 (ho... . O O o O 5 . m ... 9 8 m .. w 4 m u... w a m m m M Amenzx a: ....4m to .hu.30\m..: m; mew—.30 owh<¢3hh_o¢¢<0 wzakmai 5 o 5 1 m. 9 m. u m n 7 a w u r ... m e m u m w m ... o o m. .... o s m s 2 a w a m u. . w a w ...... ... T — r... ”E3221“: ”.5550 4 «a 4 q qul‘ ddWfidd‘de‘4dw-4 djqq— 1544h14510q4 dd 1-qdd dhd 01 dhdd ’4 -< 1 d115fiqdi+d qdidq-dd dd. .dd q - —dd d 1—4d d - —qq51-‘Jo—‘dq - 11—11. ..H. H I % W B 8 W. 7 .6 w 5 w u... w w w a z .wm W1. A nuo. x «:4 Ema! .uo ..Pu.30\m.: ¢.< moaz. ....O hzmhzoo umakwai 5 O 6 0 5 5 5 O 5 Hummuseonmumsw ... « ... w a ... ...... r p: ._.__..:_::_: b—.p.L: p. TI. .5 —LLLLP_LLLL._LL Ls—LL ._ . _hbe_FF—EEIIII ...—:uq—iq—1qq—‘:4—<4qc_11:qdq qq—q q 1‘ dd «41—4 1 14 d. .l 0 5 H. M “W 9 w m n m 5 W 9. m «a. m A . . .. R _ 3.. >50 .2 3 I u > F.na 90.na m¢.na an.na m«.na «0.9” oo.ma ss.ma no.ma on.ma m+.ma oe Hm.na mm.na om.ma en.na aa.na no.na ao.ma ss.ma no.ma on.«a ~¢.ma me am.nH eo.ma an.na on.na am.na oo.ma ao.ma we.~a «o.ma on.ma a¢.~a on om.na ao.na an.na sn.na mm.na so.na no.~a os.ma «o.ma am.ma n«.ma on mm.na as.na «m.na, mn.na am.na mo.na no.ma ob.md no.ma an.ma n¢.ma om oo.ma ne.na om.na ov.na «m.na oo.na «a.ma om.ma oe.ma mn.ma «¢.ma no no.9“ ne.na mm.na a«.94 mm.na oa.na no.m4 om.ma oo.ma mm.ma ¢¢.~4 ob oo.na es.na oo.na n¢.na sm.na Ha.na oo.ma am.ma so.ua no.ma «¢.ma as mo.na ms.na Ho.na ¢«.na om.na ma.na so.ma «m.ma so.ma no.ma nv.~a om ao.¢a Hm.na no.na tcv.na o«.oa na.na so.ma «m.ma me.ma «n.ma o«.ma om no.¢a em.na no.9a s¢.na on.na «H.na mo.ma mm.ma mo.ma ve.ma nq.ma om oo.¢a nm.na oo.na m¢.na an.na na.na oo.mw em.~a mo.ma vo.~a o¢.ma no mo.¢a om.na me.na om.na ma.na oa.na oo.na em.ma oo.ma mm.ma o«.ma uooa pom .nns was man now one now oo¢ meme one can . gov 0.2533809 .m.m 1an in na\.nrw.:ov .30 #03 Ho 0a3d0> oahaoomm .3 canes. The writer made a certain number of 222 .J. L .nese are preson.ed “ere. i r ti R.H.i 1-Unthcmatica1 2—Slide rule solution (Table hh) U0 5 h0° 100% 12.69 12.69 too 80% 12.67 12.6? 80° 70% 12.66 12.66 ho° 60% 12.65 12.65 h0° 80% 12.63 12.63 85° 80% 12.82 12.81*' 50° 80:3 12. 97 12. 96 * 60° 70% 13.25 13.25 65° 95% 13.1;8 13. 1.8 65° 75% 13.63 13.h3 709 100% 12.68 12.68 '* Slight deviation (negligible) As a conclusion of these checks,slide rule Ho 5 (for dcterrining the specific volume of air and water vapor mixtures was found extremely satisfactory. “lide rule Ho 6 (for determining the rate of ventilation recuircd for moisture removsJJcnn he considered as being a combination of the four fol- lowing formulas 1) W183“: X nonoi 3 ‘I1 2) Wiact .. 1303.11: +41! 3) K = “T "10575! 11) VI. = K x (713“) ‘55-— W-m.w.v-____l ___—..-..- ,HMW-*‘ ... ._ l 18! .Ill. The combination of these four enuations gives the true mathematical formula for moisture removal: ‘W W \ n T XV“ - T v- — cflm men VL ‘3 K x Viact) : m #_ x 0/ act .30 AW W" III W lact Osat In all these formulas the meaning of the terms are as follow: 179.1301“ vopor con‘tflnt Of 8514.11)???th air at 13131116 temperature (Lb/L5 dry air) R.H.1 = Qelative humidity of inside air (g) 171th = "inter vapor content of moist air (unsaturated) at inside temperature (Lb/Lb dry air) ~ r Vi t = eater vapor content of saturated air at outside Sr'l temoerature (Lb/Lb dry ‘3”) ‘ AW Water carrying capacity of one pound of outside air (Lb/Lb dry air) K = Thmny veriable 3 WT lOOJZfl V}, = Ventilation rate re‘mired for moisture removal(cm/?Ien) viact ' f“138051310 volume of the mixture of one pound of dry air and the actual weight of moisture hold by it at the house temperatmce and relative humidity Cu.ft/Lh dry air) Equqtion 1 was Chang-zed to a logarit‘mdc form: +(log Wisat) - (0) + (log R.H.i) -(log Wiact) =(O) ( q is lsat were plotted and values of ti were substituted for The values of leg 1 them. A middle support was required for conversion of log Wiact values to - u-ooo—uw-h—a- .— - W-- / h'fifi-I— ...—..-. 22h IV- values. Ben tion 2 was nrrnnved in the following order: lact ” w. _ (o)+(‘.u' —(AW) = (O) +'( lact 0set A second middle support was reouired for conversion of 'W volues to 103 W values. The third eouetion was changed to a logarithmic form: +(log 100 A?!) -. (O)+ (-log 37p) — (+log K) = (O) A third middle euphort was rcouired but the some log K scale was used. I) fourth equation was chenjed to n lognrithmic form: +(log K) - (O) + (108 V1)- (log VI.) 2 (0) "735" Reference to nny textbook on nomogrnphs and slide rules (hé) will ex— plain her the slide rule wns prepared from the above equations. Since (a) the lost scele for viact is very small, (b) the variation of the value of viact for a given temperature is very little, and (c) 80% rel— ative humidity is the most common relative humidity percentage encounter poultry houses, the writer thought of modifiying the last scale by substi- tuting ti values for the viact.velues corresponding to 80% relative humid~ ity. Such modification does not impair the accuracy of the slide rule very much and there is no need of finding viact as a preliminary step. Using this ti scnle instead of the viact scale the some degree of accuracy is obtained for the three applicetions given shove. (Accuracy within 0.01 cfm per hen from the true mathematical solution). Values of Wisat and‘flbsat were taken from the psychronetric tahle published in Heating, Ventilating, Air Conditioning Guide, 1951 (6). In order to illustrate the use of slide rule No 6, consider the following applications for inside temperatures of 20, 30, hO and 50°F. Application No. 1 (ti = 200p) Given: Rate of water production in the house - 1.875 lb/Vr, 100 hens (or hS lb/Doy, lOO hens) Indoor tennerature = 20°F ., _-‘--——.9n .L. -’ In order to check more thoroughly the accuracy of this slide rule, the writer Worked out 10 additionel applications: (Wf : 2.0 lb/Ur, 100 hens or he lb/Jnv. 100 hens) Check ti 2.11.1 Wiact t 411' K vL * Diff. % error 0 Use of True . slide math. rule solut. 1 50 80 61.35 20 ho 50 1.09 1.087 +-0.003 «+0.28% 2 50 80 61.35 10 h8. 2 81.3 0.90 0.897 -+0.003 -+0.33 3 50 80 61.35 0 53. 6 37.h 0.813 0.81. «60.003 -+0.37 h 50 80 61.35 -10 7 35.1 0.763 0.762 -+0.001 -+0.63 5 no 80 11.75 10 28 .5 70.2 1.188 1.h78 .+0.01 -+0.70 6 to 80 81.75 0 33. 9 59 1. 26 1.251 +0.009 +0.72 7 10 80 h1.75 -10 37. 3 53.65 1.11 1.16 - 0 8 30 80 27.5 10 11. 5 137.5 2.82 2.78 ~+0.0h +1.hh 9 3o 80 111.75 0 19.8 101.5 2.085 2.05 +0.035 +1.71 10 30 80 81.75 -10 23.2 86.2 1.785 1.763 3+0.033 .+1.25 From the above applications and checks, it can be said that slide rule No. 6 seems to maintain an accuracy within 1 or 2% for the whole range of inside temperature from 20° to 50°F, and since it is based on the true mathematical formula, unmodified, a similar degree of accuracy can be expected for inside temperatures outside this range. It should be ""W ..‘.- u m— 'hfi“m—.—_ _ a. -.’- noted also thet the nee of the upper scele (ti) on the fourth runner from +he left does not impair the accuracy of the solution end since it mates PQFICI‘ .1) nd saves a few steps, the writer recommends use in plece of the lover (Viact). A few of the advantages of slide rule 30. 6 are: l-Little space is needed. Z-Ho streight edge is reenired. B-No psychronetric chart of any kind is needed. L—Tke ventilation rate is eiven in cfh per hen wuich makes it very suit- able for purpose of comparison. S-The accuracy seems to be within 1% for any inside temperature. .Eu .III.‘ i{.¢“l,1.l ..l «I lilrl‘t. | K u ‘v A .I I’n."lllf1113u ill , |.Inlll5||.lllktl|'v’.lll" o -.'... Iiillclal II m3 F902 “_0 m2340> oleam mIH EL wanh<¢ua2uh woaz. l 3 2 T .m? >10 mgxfiujov «.4 wo.mz. hm.oz ...O w1340> 0.....owam C A 1 2 3. 4 s e. 7. a 9 0. .v.m“mummmnmmmmummmmmmmmmeuegunmen —~.C r: __LppL .PpL :pp—:.:_.:g_—ub<:1b1—_wa_¢qpm....J_-»Hk#..p—_dfirdb._—J_“.q Cfik«ficbnvvpd—“w—‘pq—ww.q.._”mw%EI—l smwzawmwwwnmwm .cu . 5 Tu _ CL wxzhdzmac‘wh memz. L. osmwmmmu K u4m<.¢<> E2230 I 2 3 4 5 B 7 8 9 .0- H m a w 5 F p p — . _ _ b p h _ _ p p __ __PL_._.b_b.: ::_::_t:_::__—.p_ L.— »_ __b_ p—p—.—hb__h—»P.—.—.—.—._LLL._.__—-_-flr d44<<“44‘.qqdqq—qqqq—qqqq—u-qq qqfiq—cqq-W . H... w w w w m m w .. R. 3.. 3.91:: 3.2.3:. 352. _ ... a _ q _ _ _ _~_______—._.._....—q.d«~_._.q.‘.qfi::_._.__dqfi._.:._::J—i . o 8 .- ... m ..... m a m u m a a a m e m T \ “ ‘J “\‘ I Ii:.‘l|’ Azuzxzn—ov J<>Ozw¢ WEB—.202 LO £0... aux—dem zo:.¢.:._.z.w> no wk<¢ “2 . J O 5 o 5 0. 5 O 8 7 6 5 A 3 8V6 4 4 3 .a 2. 2 ... I. em 0 o. o. o o o. M r:__..:__:___..b—._._:._.T_L__._.____....—_—.___.—____..;_...._:.__:..___:_::_::_.:__..b.___....._._....— altu —_—._.—._.~W _...._.._.__:Jl . . . . 1 ES. >10 m._\ Fuji N 3345325 wmwwwwz 4:. a w. I m2 352. 5.0: ..u 5' O ..h T M .V..A 362. 7 ~ ~ no w230> wiamaw ; , i i ma.—J‘_. __J__._.m._._.~._d ________:_..._m.:_::_:_._::_:.__Zfi‘:...—.4.:4;_J4._;_:_._fi_._.__..F._._ ._ . _ qfii a m .. m m m w w w m a m - - K w. me >ZZDO O 5 . 2 m m m m m m w w m w a z - m .. i i»- , , -1 , o o o c o H .0 n I, 0.. o . o 5 0 5 W. m a w. w I o o o o o o. o m m m c. . AwZMI OO..mI\va th ZOE“. Ow>02wm mwh<3 no HZDOI< J< 6 7 n w a m m m m w M {IO—x K: >¢D Guzmqv ¢_< ....(w Noah-JO no r.:0¢¢<0 w¢=rm.02 m 0 s 0 w . .I 2 o m m w w w w m m w - - - - i . . 0 ..w w w w a. m u w s .2. m w. m o _mmna .... To C; umapéuazup 3.2.30 5 daiquatj 2:43 T WI A¢u0_x ¢_( >10 DJ\mn: «:4 wo_wz_ no PIP-.200 wmnhm_02 I O 5 w. m u m a m «wsmumnmuwummmw _. _L—._._ _LL_....._b—.___.—._._...—.—...—LL.—..._._._.:_._._..._. __—__..«4—..‘._.44_%<<_4 0 ... WW 3 w :44 x w u... m :7. m u w 19.. o .A H I. 6 3» AQL >.:o . 2:: w> _hjux Ho. m2— _ u q q a — u q u c — c, c u q — q u I 1 — 1 u d # — q u q a — < u 1 q — -‘ Q - - ~ - c Q Q - - filil‘l m 5 w u... 5 0 5 w am 0. E... 33:33.. uewz. fl . I u .‘w. 1| l‘. I.I I.<>o.>_m_m MKDHQOE mo“. owmficum_zo_h. Mo. WEI MIR Ozzie ,r' ‘I II. h.) m K») c. Exact slide rule for design end analysis. For purpose 0; simplifi— cation, the previous two slide rules tor moisture renovel (slide rules nos.h and 5) are based on on assumed outside relative humidity of 100$. This 93— sunption nakesthem fitted for ordinary design purposes, since it is cus- tomary to use 100% relrtive humidity for design conditions. For analysis, however, it is necesenry to deal with outside relative humidity values dif— ferent from soturetion end two slide rules (slide rules Nos 7 and 8) were designed for this purpose. Slide rule No.7 permits finding the moisture carrying capacity of the ou side sir on“ is nosed on the following formulas. 1)‘wiset X R'n°i wiwct (Left portion of the slide rule) , p "I -, x-r - . 2) “Osat. x l.H. : Joact (Left portion of the slide rule) 3) AW = ‘3' — "' (Center portion oi‘ the slide rule) Equation 1 was changed to a logarithmic form: "3'. ’3 T . (7 'f . .. (10g ”18%).. (o) + (log u.-1.1) - (lob llactl‘ (o) The velucs of log'l'fic t were plotted and values of ti were substituted for U9. 0 them. A middle support was reouired for conversion of logWiact values to 27 values iact " Eoustion 2 was chanced to a logarithmic form: - log W .tlog m. ) - <0) +'/10gwi JO} onct 0 \ Bat -\ Tine values of log wheat were plotted an. values of to were substituted for tkuan. A middle support was recuired fer conversion of log Wba t values to c it? V3 1 Oact lies. 4 Ekpiation.3'wns changed to the form: +Qv1m)-m)+-(w )= (o 'Oact WW ...-.-‘ 23h Volues of 1i and T5 .+ were token from the psychronetric table S-Qt. 8". J. I I 0 v o o o o O o O f" published in Testing, fentiliting, Air Conditioning Guide, 19 l. \ o h 0 ,- ‘ 0 _ o . _ ‘ A . o M . O flide rule No. o Pdlfllts Flnding file rite of rentilition iGQUlTed for moisture renovcl once the moisture carrying capacity of the outside iir is known. It is hosed on the follovin~ formulas: h) K WT ' _IUU7BW 5) V: : K x vinct to "hese two formulas are identical to formulas 3) and h) used in the derivation of slide rule No. 6 1nd Will therefore not he explained further. In order to illustrate the use of the above slide rules, consider the same npplicwtions used for slide rule No 5. fierhnps anplicetions with outside relative humidity different from l00fl would have given better illustration of the reel usefulness of these two new slide rules, but more space would have been revuired to present computctions for she true nethe- netienl solution given by the new set of conditionr. ipzlicztioe 250,-. .1. (t1 - 20°F) Given: Rate of water production in the house = 1.875 Ib/Hr, 100 hens (or us lb/Day, lOO hens) Indoor temperature 3 20°F Indoor relative humidity = 85% Outdoor temperature a -QOOF Outdoor relative humidity = 100% Wanted: The minimum rate of ventilction required under the above con- ditions to remove all the moisture produced. True mathematical solution: (Heating, Ventileting, Air Conditioning Guide,19§l) 2.hl9 cfm/Uen (Refer to apolicetion 1 of slide rule No. 6) . *Aowvwn—Hfl. .— "— "w _‘.— n t. ..I‘ . clip“ C3 golution hv use of cli-i‘e rules Yes. 7 end n. Flide rule Ho. 7: (From left to right) - o O ‘vr 1’ -Put the first arrow opposite t 20 F and read Jiact (or Mi): 13.22 i- . :4 Oppo 5.1+}? POILOi : 85/9 Q—Put the third arrow opnosite to = —20°F and reed Whact (or W5): 2.53 3-Put the second arrow opposite W6 t (or W6) : 2.63 and read ac A?! = 15.6 opposite ”Hint (or vi) = 19.22 b. Slide rule N .‘g: (From left to right) l_Put the first arrow opposite A3": 15.6 and read K = 120 onposite WT = 1.875 Q-Put the second arrow opposite K = 120 and read Vi : 2.hl cfm ‘ .. 0“ per Len opposi e ti = 20 u Percentage of error: o L _ o . , :3: error = (..LJ. 0 .-.).19 100 =-0.0D9 X 100 = 0.37.: Lou 20m Application No. 2 (ti 3 30°F) .../“L.- _______ Given: Rate of water production in the house : 1.375 lb/Hr, lOO hens (or 1:5 113/0635 100 hens) Indoor tcnpereture = BOOF Indoor relative humidity': 90% Outdoor temperature 3 10°F Outdoor relative humidity = 100% ..‘," . . o o I ;EEE§§Z= The minimum rate of ventilation reouired under the above con- ditions to remove all the moisture produced. T . . . . . . :EIEleiflhemnticsl solution: (Heating, ventilating, Air Conditioning Guide,19Sl) 2.15 cfm/Hen (Refer to application 2 of slide rule no. 6) - -..... hflqflfl - ‘h~w~h— I. "W “—- - - ‘Illl’t '1. . .016 Tolution hy uwe o? cIide rules Toe. 7 find 8: a. qlide rule “o. 7: (From left to rifiht) (01' I'Yi ): 31. l a o o o w b ' I-Put tn: first arrow ounOSLte t- z 30 2 and read ji “ 1 act - ,, H Op“0"1+'e 30.;01 .7; 9‘3/J . u i e 07"! ‘ w' 37 \ 2—Fut the third arrow opposite to = 10 r one rend Joact (or no): 13.2 opno—ite R.H.O = 100% 3-Put the second arrow opposite‘flbact (or W6) = 13.2 and read AW': 18.0 opponite Wiact (or W1) = 31.1 b. Slide rule No. 8: (From left to right) 1-Put the tirst arrow oppocite AW'; 13.0 and read K = 10h o w 0 S oppOSLte JT 3 1.07 2.1h cfm 2-Put the second arrow opposite K - 10h and read Vi nor hen ounosite ti = 30°F Percentage of error: 3 error a ( imlicrioa 230:. .2 (ti = 10°?) 3 Jo <3 (3 e n: Rate of water production in the houfie = 1.875 lb/Yr, 100 hens (or_h5 1b/Dny. 100 hens) Indoor temperature = LOOF Indoor relative humidity : 80% Outdoor temperature = 00F Outdoor relntive humidity = 100% 22333523 The minimum rate of ventilation required under the above coup ditions to remove all the moisture produced. EEEE_E§EQematical solution: (Heating, ventilating, Air Conditioning Guide,1951) 1.1703 cfm/Hen (Refer to application 3 of slide rule No. 6) own-In.“- .au—fi -¢ ‘ II‘II Folution by une o’ 11i1e rules 708. 7 7nd 83 a, 11.». ”oz. we, 7; (vwem left to right) 15—1311“ {:“n fi-aS-F‘ fir1~p~tr Opnq qi+'e ti = :‘LOOifl find reef-{r1 ‘s'ol'iact (or ”firi): ,_L1.8 . V‘: v If opponlte u.L.i . 90. V" Q-Put +he third nr“ow opposite to = 00? and read “Oact (or 76): 7.88 onnocite 9.x.o = 100% 3—Put the second arrow ooposite W (or W") = 7.88 and read ‘ 0act 0 12 _ '1). OnnOc-itn "7- (0” VI') ' ‘11 8 . .. 2:. t" "J" ' l L 1 - l . act b. Slide rule to. 8: (Free left to right) 1—Put the First arrow opnocite AW'g 3h and read K = 55.5 '1. 1'? O S opnOCl e "T : 1.o7 2_pu{3 1,»,th eqcnnd RTT‘OW opoooite K z: 56.3 and reed VL :3 1.175 cm . 0 per non op“oeite ti = MO F Percentare of error: .1750 - 1.1703) 100 . +_o.oob,7 x 1°9.=..o.u3z % error =(} _ 1.1703 1.1703 inelicz’riozl 210:. 5 (ti = 50°F) Given: Rate of water production in the house = 1.875 lb/Wr, 100 hens (or MS 1b/03y, 100 hens) Indoor temperature = r’00P Indoor roletive humidity : 803 \ Outdoor temperature = 20°F Outdoor reintive humidity g 100% EEEHEEZ= The minimum rate of ventilation required under the above cone ditions to remove all the moisture produced. .3222_flgih§natical solution: (Heating, Ventilating, Air Conditioning,1951) 1.019 cfm/Hen (Refer to application h of slide rule No. 6) ... _fi ~M‘md--A I“) \ Co Solution bv use of slide rules "08. 7 9nd 8: a. Slide rule No. 7: (From left to right l—Put the first arrow opnositc ti : 50°F and rend Wiact (or W1): 61.5 o 1‘. 9? rr,’ ODf‘O“1te f..!..i a 80,) o . O . / 2-Put +he third arrow oppOSlte to 3 20 F and res Whact (or W6): 21.05 opfiOfilte Q.W.o : 100% B-Put the second arrow opnosite W6 * act and read AW = I'D Opposite "Ti-act (or Vi) ;-_ 61.5 b, Slide rule No. 8: (From left to right) l-Put the first arrow opnosite AW' h0 and read K = h6.75 -0pnosi+e WT : 1.875 Q-Put the second arrow opposite K = L6.7S and rend VI = 1.015 cfm rer hen Opposite ti = 50°F Pcrcentnqe of error: 77 g 77—1.015 — 1.012 100_ 0.00h x 100 _ n 3 . IJ error - 1.019 ) — O 1.019 0— 0-9:! In order to check more thoroughly the accuracy of slide rules Nos. 7 and 8, the writer worked out 18 additional applications: (WT : 20 1b/Hr, 100 hens, or L8 lh/Dly, 100 hens) 4-—-....-w.—i i-.i~* m— l kill- A [‘0 m \0 Check ti 1.H.i winct tO “.H.O 15-”; 7f " LL Ulff. k error ‘V “V” Use of True slide moth. / rule solu.. l 75 70 1?? 60 70 77.8 Sh.1 37.15 0.855 F.3h5 +0.01 +1.33 2 a no 100.3 50 50 3P.h 67.9 29.6 0.66h 0.661 +0.003 +0.15 3 63 90 100 50 90 69.1 30.8 (5.5 1.h55 1.hho +0.015 +1.08 1'. SO 80 £1.6‘ ’10 6'0 31.3 30.0 66.3 1.21,)1 J.)LI_L1 -C.OOl -0.07 5 50 90 09.2 10 100 52.1 17.0 117.7 2.5h 7.572 -0.032 -1.25 7 Lo 7 36.h5 30 90 31.15 5.35 37.5 7.95 7.80 +0.15 +1.92 8 L 70 30.15 20 70 15.05 71.3 98 1.982 1.965 +0.023 +1.17 9 35 90 33.85 30 ho 13.8 2L.6 71.h 1.70 1.695 +0.005 +0.30 10 35 to 35.3 2 50 10.8 23.5 85.7 1.782 1.78 +0.002 +0.11 11 30 90 31.1 20 100 21.6 9.75 206 1.29 h.32 -0.oh —0.93 12 30 80 27.65 10 90 11.9 15.7 12 2.63 2.01 +0.02 +0.77 13 30 90 31.1 10 100 13.25 18.0 111 2.28 2.30 —0.02 -0.87 lh 30 80 27.05 0 00 h.75 22.8 89.1 1.82 1.805 +0.01; +0.83 15 95 9O 2%.? 10 70 9.2 15.h 130 2.6h 2.65 -0.0l —O.38 16 25 80 71.9 -20 100 2.03 19.2 108.8 2.13 2.123 +0.007 +0.33 17 20 8 17.2 0 80 6.38 11.0 183 3.685 3.69 «0.005 -O.1h 18 20 80 17.2 —20 100 2.63 18.6 137.3 2.77 2.767 +0.003 +0.11 From the above Applications and check, it ccn be said that the slide rules Nos. 7 and 8 seem to maintain an accuracy'Within l or 2% for the Whole range of inside temperature from 20° to 75°F and since they are based on the true mathemctiCQl formula unmodified, a similrr degree of accuracy can he exoected for inside tenpcrnture higher or lower then that range. Beepuse of the accuracy obtained'with slide rules Nos. L, 6, 7 and 8 end the ense of their use the writer believes: lpThnt they could he need in place 0? any nonoqreph or COHPOSite chnrt Whenever an answer having a degree of accuracy within or near lb is desired. 3-Thnt they should he used to advantage even when no great accuracy is needed, hecnuee they require no straight edge and occupy only a limited Space. ""~'~_v ...-p— ‘ __ \ .....IW‘J 0-- I I .0 WW ma 538 We 9:038 OZEWWS mmsemlOE MIF oZzimmkmo mo“. 9le mojm... o I.» 53.25125 ”.35 So 5 Tu m a m u ..o. a m u m a m w m s o ... n w m. J. m. «LLZLZC;EC_ZZ________.L___________:__.:____:—P_PLWL.._.~___._.__________.______—____ .—___._ o _ 3c 5.5.2:: u>EJu¢ 35.50 m mmw m w w w w ... _ 2.122222: Z. I: :: ___. ___. ___—___— WWWWWWWWWWWWWW. ...... 3 on _ :10; a: is no 32...: a: “3550 no Nzwwzoo $35.02 It I w w w m w m m m w m m m w m w a m o O A (:0. x I: >¢o 5\ an; m..( mo.m.—.DO k0 >.:0¢¢<0 wz:...w.0! W m m m w , w w m. m m 0 o 0 ._ 0 o o o 0 a A I I I I I I I 9 8 7 w . 5 4 3 2 I 0 7. .r m. r e. ... . .o . o o . .w W I I I I I I P. H o N M N C 0 w m m 0 O I B W m m m W W W W W w m A V 0.x ¢_< >¢o to meva ¢_< mo_w2— no ...sz200 mKDPwZv—z ._:_:__:4:___:H#_Lei .____ _. ... _Hrrrrw ___L. ... ....... -.<— ___—q—uq-a—nqqu—4444—4-44—: ‘44‘4 .__..___ _._.w_=_________=___=__=_____.________:_______...n_v m I m m. w w m w w R 3... 55:5: marina 35.2. M _4_..__.dqn_udd..x_.._..0_.._.___._____...fi.___H_I~d4~qq_q~fl._.—_...sfiafifity‘I_JIj m. .7. 7 s s a m a ...... ..W m .2. m ... m ..ll CL w¢3P<¢wa£uh wemz. I: . .1 .. . 1 n2 . . o. 4 . .l I I l I: Int-I.I]! n. .. Iv. In“ 4 . I n .....I. , I.I...PILlrylllln FIII I II 1 n /I- . a .1 I . III-fl . .. .. ...Illln'ul r 4 I I I ll It." I :1 J<>OEmE mmDFQOE mo... . QmEDOmE ZO_._. m . 2 ....O midi MIH 0223.51”...er mod mo 3m mojm l 3352...». 456:9. EMEB: co... 35:3: 5m»: ”2.24:2? VL o 6.. O. 5. O 5 5.. 9. 8. . 7. 6. 5 4. 4 3 3. Z r _ _ ___bt—__LL._._LLbb._.n—L ___ _.;—~—.41fi.n—.FP—._L::_.:po_pr..O_:Lp_Jtp—prpwufltt—::—pppp-b.pbfnfl .I ...... 3:512qu m.w. . . uemz. mww _ M I.—:_ 1a —44 —. fi< ~ . — 4 fiat—21:11:242::.2~3-1a _ ~—::—::—::~:: :d.—:d ___—d J: 1‘; 3:4— - ._._____________ .E. ._ 4.1323333 :W W m m w m m w ~ 0 Km I I . .... . m o udo<.¢(> >1850 m . 5 . WE: _ ___ I m w -m m w a w 2 5 m T w H. O H .0 O. O o. O. O t 5 W a 2 I. I .. o o o . . o M m. m Tmzmz 09.53.: mono: u...» 12:. 351...... cub; no 2.59.2 4.28. o . M H:5:111q1_::-::_d .1. fi.— “4:; _ _q—. 1-4—4. 11¢ _ . :q —:_q_d1-—::—.:.fiql_~:zfiq . q——:q1—_qqqfid—Jq:4—14::~:«4§ m w M W WW::WW:WWWWWWWWW AVID. X x: >¢o 01:3. ".3 Una—.90 no >._._o<¢<0 92.>¢¢ “_O m:.Em.rm5 m0; mij mojw cum-DOum ZO_._. “.0 wt); Azuxxzuov Jomhzoo u¢3h<¢unxwk mo... 5 V 8 7 6 5 4 3 2 I O __h..—..___bh—p—E..—._t_—_b._...__b...—_—_.___.__..»___pr_______..—__—.__..FP Ad...—.‘.__._q._...._....__...—.4nnfiq4An—j#__q__dd I 2 3 4 5 O umDOI 2.: ...o o_hm_¢who *2230 o o o 0 o 8 7 6 5 4 w H“ m H mm .9 8 7 6 5 _...._::_....—::—-:-_th-_..n-—pbuv—..p.—— pulp — ht - — . . - p b L h F _ — b - — p — h F — — - _ b — . _ 1— l1 q — q — q r. d u _ q . . 4 had « _ . Tu _ . ‘haA -.-_..i‘—_.-u—__-._qdq-—.:_h:._::_=:—...1“ . 5 T 5 6 7 9 m I 2 2 m 3 W M m 5 w w m 8 A .mL ”:4 _ wewhso oz< wo_mz_ zwmihmm mozwmwufio wmzhdmwmzm... 11 W..:_:_._::_=:_._:_:=_::_:dfl...-Fqqqdfi.d.___—.. _ «1«. —d _ q _ _ . — _ q — _ q ._ _ d o o o o o 5 w . 5 o 5 S .0: 9 8 7. 6 5 4 4 3 2 2 I W Q AzwI.¢I\Dhmv Jomkzou wmahdxuaimh. mo... me< PdmI me_mzw.m ...mz J 11.0 514$ 10:1:1 OZ_Z_ O 5 . 5. 5 . 2 I. I 8 7 6 5 4 3 3 2 I:—:p>—>bP-—:.L-b>_upp _— phpb— - be p — p P b P _L-—.—L>—-_>~»FL>_E . ___.___._ o . 253 u...~. .C. 0.9 t... 2.345..sz mmw wk. .m. 332. ow w m ; —q41d1fl43—1-4—4-1—q~<4~44—Jfijq—dqfid‘fluudJ—_fiqu—Iquq—Ifij—<_Jl_4—q3 Jud—d—d —1j£§§% m m. 9 8 7 2 5 ... A 3.3.: Sun: 33183:}: JocHzoo ”KP—kmuazuh mow cum—:auc v.2: .....o;<.:hzu> S . , V 8 7 6 5 4 3 2 I _ 0 Tl _lbylbLP—LP-LP—prLFbPthbbhb—pppphP-n.Fer-i—b #pbp..--— . _._:_ZTJ_:._Z . _ C O . I 2 3 4 5 A azux.uo.¢1\3._.ov wwsoz NI». ...o o_.—.m_¢uku222. O a m w w w u w a m m .o. s a 7 a .... _ ___»p—Zt—FL».—»t>»—~>bL—ppbr—pbpp—»¥»P_ phi uh» PL P— b L — L b b p 1— » > p «b 1— P4 4— p b — P — _ —L 1 — . _ 4 _ 4 d 4 — 1d 4 d A q — d 4 . q — q :1— 4 W. . a «My :4 :4 Add—dd: 1:12:21—1j0 d: N 5 6 7 8 9 m m... m ..a 3 m a 5 w w 7 4M. 3... m3. yep—.20 024 wo.mz. zuthwm uozwmuuus wmahgwaq‘wk 13:21:41.4..1—11%1.J.Z£4. .4 _4 q q . ~ dd . a A d A q q — . q _ q — . . . . ~ m. m w w m w s u. w a w a m ... m Azmx.¢1\:h9 JOKPZOU u¢=h<¢wn1mh 10.... 9.54.152 hdu: w..m.mzum hwz ...(hop. . e‘ I:- so. ..wvurwioi .r II‘III... llll.llIIl|.I-Il III I l I Il||||1l 1 1‘ 1.11 11.. .i 1.|IIIII1.II1 {I1 I- \ .IIIIIRIIIII.|IJI-Iallll..llll . a. D 1. I.II.! 1111.1.IIIII1 I I‘ll. -I {I'll} D '1“ . . h. j , 1113 lt , _. I , I 23h T ”“c “rchloh c” Ternoriture Control . ...o; The nrohlem o? tonnercivrc Control Wthc”t LN“ W59 0? RWY ”Vt PlCl 3 - 1 ,1.» . ,1 .- 1 hect L). s related 40 n39y t2c+o35 “non: vhuch ere: VT - A '. un-t '- . l-tse of pron r ins .“»lflfl. \ Use on motho”s to restrict or st“? covclctoly'fine vofit17"tion 3t the lower Y' Inn 4-1 ‘-: ”r.“ L ‘0 .- .~ -.‘ . . , .‘ . fl . . -- ... J- ... . -I“ ,u ‘ I‘- 1 ‘h 3- 33 Tu. ‘“ -n»y.~°u Iulr or (L; n117h3 »vv« 11.611..crtn ;0(M1712nngflimcnt L: ”1"“ 'Lflc. Yr 3 o J_' p . h—tse of oecn li tor cs 3 source 01 secondary heat. rculeted glass (Therropcnc, ctC.). 6-29Aucfiinn or air infiltration to a rinimnn. 7-Uce of hoot exc order. The factors nunhorcd from 2 to a have been or ”111 he riscussed in other L .A‘J "1‘ sections. -nis section rill ”col rith the determination of the prooor amount of inculdtion to use on” With Lhe discussion or the design end use of heat exchnngers ‘1'. 1~Use of proncr insulation o. Tconomicel adventnfies of insnlction. Insul"tion “8 on ’i4 l0 temper— ature control is usually reoofnizcd as hoinz favornhle to egg production (h?) (h) (9?) and feed saving (h?) (79), even though at least one experiment (13) scene to prove greater 2:3 production under uncontrolled ccnditi ns. The Insul“ti0n Coord Institute (39) mentions some results ohtaincd at Iowa State College for demonstration rMord flocks: "Twenty-three of the flocks were housed in insul ted huildin s, and 91 in non-insulcted struc— tures. The following diiteronces are 0? interest: -Hens in insulcted houses laid 14 more eggs per hird. 2—Curinq the year, the hone in insulctcd houses consumed 6.1 pounds of food loss per bird (This corresponds to a ton and a hclf per 500 birds). 2m; 7/ 3-lt took o'm pcv~7 Toss “cod ‘3 frc”vco 0 dozen offs from the hens in ft? ii"nl"*3d “once. h—Invcz‘nox‘ or“ ‘an woe 3” cents more Cor those th3od in incuthcd hnild— 4"}fl‘1q. "(T"”":T‘ J-ll»; c: ..-... “j"fi’f'fl rvfl+;~l‘v"\jjf Offers}: 1‘71? 4-133 fi~fimnrg~r§ nnr ”1’s“ fan-Kola - _ , L , .I n... U 1. 1: o' ...a --. 4.11. . J ,, . 3.- N... .1 ‘. 4 I ‘1 W 1 'n 1"1"“1‘7"'L.‘“A knives-Ha A . _ . . _ . ‘ , ‘ ‘ l .\ “ "0° 3° ccnts loos to“ r, T f.‘ 9 . I I '0 9—1290fic nor Lnn sovrod +o '1 cents wore nor 01rd in irsnlfitcd lofirg ‘ 1 ' I 7 ‘-.° I horses. Id or “otvrnod ;E cents fore nor hour in the ccrc o? virds in l"‘ ": '0"- ‘1 fisnA --"“: f‘I‘ -' ‘0 :""’“"-‘ f. ‘ 1.1 _- .‘Q --3 . - .-‘S ”Ml-3.. C ....1- 1.1/1.1.011. ‘( ,9 I O I Fifi _' f _ W l, ,‘ ‘ . . Hf’ v-‘Y -: ‘ ,- oroy inverted 1r ”.9 .1ockr in survicoex nonscs returned 21” ville only I ' 1.‘ x“ 1 ' ' " 1 H 11.32 12'"? T0“)? 2"?" 0'7. ""1""? ' 'mfifif‘ 1-71 POW—1‘37": ”fed. :1’37.1"°So "Th C 1‘: {51 r} rmnws-l-Lr- an‘m 4- 1'V\d'fir\n ‘3 =01. '51-‘15 '1’:' 'W‘WJ'W " . W.“ ‘- r‘.‘1-'T 4‘? l CI,'_’ . !_ I.I- b) 1-1. J\. ea .1 J1 . ~J L-o— -- J ‘ Je "'C.‘ .13.. ‘n.-. .I I ’- ‘ I»; I‘.~" \’C'q "" ‘ 1“l“.') -..‘1- sulction. 71th feed hrices “ifih, the sevinq of feed olonc would prohshly oszet the initidl cost or inonlction. l h. Cost of insulction. ”cno’its from the use of insulation in in— crcocinfi thic““csccs ”ollcwc the low of dirini"3in: rotn ns, and iron a purely investment stindnoint the rotnrns of the first inch of inonlntion would he grcdicr then tron “P“iticnel thichnosscs. The following tehlc rJ ‘ I o (Tntle hp) fynm unto “y Jnfperfiih (50) shows the reduction in hect trnnsfcr O ncroccinr 1nchcs o? insnlotion or“ added to a standord unincul3tcd A \ "" ’30P “0'1"“? "1" pp! '7: r‘“"" eta-"‘3 ’11“ ° 6 ‘1"? (\‘r‘ pft‘r '- " 1.3 n r~ J L\J ' .1‘31. ‘-' - 3+. b( J...- .. _~\l——VO‘IV¢) \)-.1UI‘AA ‘LV‘ 8 1‘), :.\.)5I eVL— ’ O; §I'\l. LJ 101 u'llc VRK)G . 3 1. ...m.‘ I l»:“- 'I4 I. ' ’1 ' 1 .L'y‘ 1 7 ‘ ... .L‘ 1‘ L1. ° '1 . 1 o? ri"i’ 75"“17 14V iccrds 3* 0“"1n‘ do cost o. no inci’e W000 5 O fin».- I v.1. \. I J. t“ .1 -) I.» J ’ “J 1“ '0 h‘ I _'_: y a n ‘: I ‘ ‘I On o.‘orwise TCngred "1th loose fill corncrcinl inrnlcticn or dr; ShfiVLWCS. figf‘l-I‘T.\jfl J- O " ' 1’)" \s-L '.J '. 5. cm 0 ‘ I O _ apolimw Wo ircreWrin ah Vve noo?’fniont U LTWh"r9r Incuthin DnWrWWWW in "ND 0 c v- 1 flojrlleVTCQ (3f +a13 VWlWP or Eont fiWnWchr ad‘itiOWWl inoh o? rQSlfltWfiCe ‘Alf inPnthiOn W: can- /-\ '7 v-q I \JtU/nr, 0:, pWroJ £0 £h~ ifirst 4’ 1 ‘ ' qn.ft) R = _;_ sq.ft) inch fl) U l- 1711i :1 W111Wied coiling 0.52 1.51 - - 3-Two iWcth of iWruthion H1‘1 :V‘ a h-; Inc ilrlos of 1W9nthion y.gqu S-Four irvfist of incuthion C, On()7 *‘FTOW thW by Jefiorsoh (52) 73w” 0 . t. 1 o WfiviW: 3 Who 0411? ‘L‘ \ WiWilWr ‘11 -. "fi .fi 0‘ o o n Falsiitute for nnW Wroi l liWulWfiion 1W avfiilthe, T") ' VT" _‘ o 40‘ “’ + W05 0? Farm Emil in.' "C- ' J o ‘ ' J- ;: shWWifits Ws WW iWrWanJ. L‘ --2 J- ' ,ngs of WWf ve Wfiyfirlflls ihey offer Wn cconominWl Polniion to fhe prohlcm of "Toad A000“ in: to JCFFWrson (5?): are not sugges+ed n3 1 W. ”ll CWFOS, Wat ..-1- .LL ' 03““. '.;te-"/' " -3, i, .0 1. “ _. <0- “0 oils: "Host oi file on actions frequentl ' V . 4.1 .p - ' "l .L .° 1 . WWWinf ,WW WW: om Wry’mooW SEWViWCs Wnd Clfll-°T WW.Wrins ore not ”PCCSSWrily isW r‘VWWfWges “mt Wre oz3s+WWle o? prejuaicc. T‘ ch of C“av— 13£9 53? ianlWfiioW ”on? WWt _i itself conshibufic W fire hWZWrfl. AlWLWWgh °llViN35 WWW Mr'lWT'WW‘.W WW‘ f ignited Will burn along With Wll the other A. V O rfln llJ P'L Mlethle mchrials iW W frWWn Wuildi_ng, Whey mWy actually be a fire retardo 0’11 +1. 09 there When uccfi in the Wall space, they We spnces nWi retWrd +hc rprend of flames. ‘01" '1 V . ' ‘5 -> 'hi vermin an; more tinW 3, stroy the flue notion Thor: is likcfiiso no ovi- support the objection thit thong iWsuthin materials would hnrbnr +1n come building without this firpe of 257 35;“? (9:), Voter and fili3kle (6C) fifid w»ny other poultry houoo de— si3r3rs st3te tH3t, if 330* s"3vin;s, Ary S3wiust , groind corn cobs or s“op3eA r+rev ere useA 3s insUl3nt, it is hotter to nix one pound of or- Tin3rv hydr3ted line with 330k b3shot of those Anteriels in order to dis— courage rofionts 3nA insects. CH3r *3 r(20) cons3 Aors *h3t “3xin3 the lim with the shavin3s n3kes 3 very irrit3tin3 dust for tno workers. Ne re- connenAs in3t03d (1) putting two to four pounds of line at the Bottom of the studs (% o.enAin3 on th.e spec in'), (2) nAdin3 sh3vings up to the r3iddle (5f 'h‘wo «..’rr‘ll ‘v-lpirc‘tvt, (3) pAslehr: AAMA ~33an I-wrrisaaup 4d Lhe, (1;) at; Rting Sk‘qviielgs Up to the ton, (5) pl3oin3 h3lf 3n inch of line at the top. . d. ?3l3tion het33en insul3tion enA ventil3tion. Insnlntion 3nA venti- l3tion work +oqet‘or rnA it is inpossihle to get 3 good.temnernture and nsulatlon. Ho Hnninity 3ontrol without nroper "he 32r CH3n3e resuired to remove tEe moisture varies with temperi‘ure 3nd rel3+ive hUU3A3tv ou+s ide 3nd insiAe tile house. T3e followin3 example ALW .... shows th3t 3n uni333l3toi house requires a much higher rate of ventilation than an insul3ted house with rosnect to moisture removal. Given: OUt Hi_e tonn3r3ture = 10°F OUtsi orol3tive humiAity = 803 Uninsulated ‘Well insulated house house nside temperature 15°F 35°F 3 I a . . . 0 r] C/ i i Ins1de rel3t1ve humiAity UON 75p rented: Tag r3te of ventilntion required for the removal of 30 hounds h“ ‘ A of moisture per Amy per one hun Wred . ens (or 1.25 lb/Ur, lOO hens). Answer: Uninsulnted house 3 8.76 cfm/hen Insulated house = 1.15 Cfn/hen e, Determinntion of the economicnl insulation requirement for tanger- nture control. he nmount of in sulnt ion rGQU3red to restrict heat losses M +‘\ o 0 ° «urongh the wnlls, ceilings, doors 3nd‘fllnAows can he calculnted so that +U ‘9 inSiAe te mn3r3+1re of the house C3n be n3in+3ined at the desi 3.red point. -..A..- .... . i e insul3t ion reru i renonts first AenenA on the exposed are3 in square 4...? m 6:3 : 1 r‘ _1 -~\ 'fl 1 ‘ 1 “L / ‘ ~v' “'1. 4L ‘ o j‘th DOT '3‘1.._Y“.-"-L. It 7’0 .0. P. S on ‘21“) m, Two-i “CW1 130‘ {no ..Z’po of 71.11-— .J . v n - 3 -‘« w .-.: .... ,. A.” n .L.. r~ ‘: .r‘!‘ “.9. ' , ‘_ ..7 .3 ,_ ' L L" nfil concerned, L. tn? not“ in {e per~.ivu ri,icrct in] ace rcu Jlnh one vaininnm V““*i7“‘i”V“‘=w‘ Awrino evtvewnlv colfl noelfl ZO_._.< mIH oz_z__2mw._.mo mo... .5310 w..:n_ 024 Z<>m Nm mmawi ‘1‘ A"‘I~ ‘J ‘ . .I III- III'IIIIIII. ‘J'III‘ umber rmPJDoa nip 2. mzu: ...—o mmmznz 26313 89 80m OOnN 000 N 009 . 000. 02. m ' :I'OS) o .52? (.L 00rd 0005 Gems 0000 8mm 2.88223. vamwmahdimmEmL. unzmz. Mam/«Emma 2.3.23.2 O._. omowmz w34<> zo_._.< MI... 02.2.2mwkwo EC“. .5310 min. 024 z<>m mm meGI 25h 00. ther reoonnon0o+ions. lehoy, Tiller rt :1 (h) FUng‘t the following insnlefion values (Toble L7) "q wininums for roulfiry laying houees 20' x 20' in eize or larger. Because of the lirger wall area per hon in small I w1nf~r~ 10kt... ‘— £1, +%. Vin-1+ 1nqq now “an 1"! }\~'. fire-r 0""? "va'w‘A'n ‘ififiufi 34-4717 Yffi'17lfi if} rnrqfirnd. , ,_ . z .4. , _ .,_.' ,J .... .. .. - ._. .-.- . - ., _ Table N7. Ineul~+ing annws Heeirnble in Wells anr1 coilin in *Le different Cliwotic zonee of United Ft0+en Climatic zone Desirahle insuloting values Clnlls - Ceiling?) Zone 1 ColJeot parts 10 - 12 or 8 - l§ "farmer parts 5 — 8 or 5 - 12 Zone 2 h — 6 or 3 - 10 Zone 3 and h ' 1.h — h 4* From Ashhy, Ifiller et :11 (h) According to Well ”no Voore (1h) (Viohignn): "For laying houees. a treeintnnoe velue ("R") of at leflefi ten ie reéuired anfl a value of twelve in; fifteen is recommended. The rating of orflinnry insulntion shows a value <1? about 3.05 per inch, on the averdge. -aoreiore, inonlnting to the oerth of‘iflmree to four inches is neoeeefiry on the walls and ceiling of a ”iorignn laying houee." Tre Insulation Vonrd Inefifuie (h?) reoommenos fhe folloWing insuloiing veljres for poultry horfles (“able h9): VINI of” . L..\‘/ I I ; l Tory-Tr! I157. Iw~flqF1'~1_.r woman-re “nr‘lfi‘l‘nfl (”qr ‘mnfl {'r‘y }n‘tqnq f0 mmi~j+ql¥1 “'1 1' “We" qn *AMV‘M‘fln-an‘p 02“ 3‘0? ** "torched. 0 Itci ?e ”or?" rnfnre T;o«--.wi“od :iezrifi‘r": "fill Recon-venom mini— terfinoroture rii’ferenoe “r" 037-111" hoot trenc— mm inmlotins‘i . 0.....\ {‘n “4' 77 a (V‘) ( r ooe7"_” icien , . 1011 ) l) r JEIVCI‘. f . -Le \lht.’ C n f ‘ r1 1E) 20 1.31 ”Hf; (4 1'7 ' Q“ 30 ‘--) (.4! ‘ ’I.I’\_’I \\;1 I- J 3 O H VJ at — d O 4‘0 0.1m 10.00 0 to L“ _ .1 ho 0,001: 050 -10 hS “.053’ "97 -1 So 0.05 * 20.00 t’Pron the In"‘-1'I"+,ion T‘n'tro’ Ino‘i n+e 019,, b0~ed on n he“ I P, nrorh‘ntion of.” 3:. .7 PM “or hour nor hen at 35)? n * ' .‘ i-+ 1,“ oJ-nvvyw] in“; ndOVvS Rd. “S“ 0‘? 4"”! “Omnr’V'W‘Ing arr” e'I-ffln 70:17}: +0 _f‘lfid + in jneifln-Fino' V311”76 — In. — — — —— -c —— O. — ‘ o. —— _o -. — —- o— -- _ .. -- .- — — — — _ rr~"‘*irefi‘. For +.e‘*~.~o.1f'9“.11“e 'ton’irol. “re ”igniwlnffir’e of .‘23'1i-or's shirt and. —————-——-—-i-———-———--—— 'tjmn f1W4. Tile 0‘10r’m if? tI'itt ”Mr: 5?"! 7:003. only for 10121 Conditions or f“m_~ a cert in lini'fled rorjion. ft: to *3“: o‘ltor r'éoormonfl- tion 5 presented I here +3703; are too gen-oral find do not COT‘filf3‘31‘ +310 rwiktion are-1 0nd sir-i- l'ar f‘eotore. ‘n‘or nee shoeii‘ic use, the nonojjrophs on“. Slide rule for deter- minim: "‘he refie of” '..'on+.~'.’.v+.:inn rema—Lrnd f‘nr +oy'1rf‘T‘ni‘Al1‘6 empty-01 314a more qm’hfiwle. "We ro‘ihor‘a of‘ Tin-"in: '"Tte 11.3 vol-me. rel-“erlred 115‘s been descrili’ed in. ‘IT-h" z‘hpr‘lio'*+..1’_ons :10 “.ommrvv‘" *10 so ‘10“0 "ran“; or 313'. der rifle, and "rill not be repeated here. 9. Design and use of heat exchangers in poultry houses “uring periods of low temporntures, the animal hoot alone is often insufficient to vaporize noisture from animols, to offset hedt losses thrqugh builflinq “alls nnfi to warn the reouirod supply of vontilsting nir. Feat sxchpngers are for the purpose of providing a source of supplementary nest, Hy using too ottorwise wosted host energy 0? +ho exhaust air to warm tFe inconinr Fresh air. lhoy are especially suited for areas having rel- «+113er j.’ Col" winter. Tent oxcnongers are reported by Ciese and Vond (35) to have been used vor“ effioctivoly in Both ”Dir? barns and poultry houses. They say: "It was possible to vontilfite horns st iull ventil“tion rsto Tith outside air terreraturos from 15 to 190? lovor than when vontilotefi by some neans in which the inconinf sir wos untempered." ?ent exchangers moy be either of the parallel or of the counterflow principle. 53 to thoir fntrié~tion, it can be varied treneniously. In their review of literature, Giese ans Bond (35) describe some heat ex- changers used in i”om buildings as being built in the following manner. Heat exchanger Warm sir ducts 2 701a air ducts - ' Principle No. 1 An 5" sonar: duct, Four 3—in galvanized Counterflow 20 ft long steel pipes Yo. 2 An 16" square duct, Sixteen 3-in pipes Counterflow 39 ft long To. 3 in 11 x 21" air duct, Sight h—in pipes Parsllel ..I h) ft long They also report that several units were manufactured b the London Ma— chinery Compnny find installed in cooperation-with the Public Service Com— —4—..-~ ‘- . pany of Northern Illinois. These units have proven eminently satisfactory. , i 7\ .\J I 7%o firootost ohstsclo to *Eo uss of Foot ovo11nvors in onimvl shelters is tho or43“orilv low wPnroture ”i-°fcrenti nl existioo ootJO on *“o‘Tflrfl 1 in ... u 1 ”- i-Q . "‘ .5 v '1 ‘3‘ A“ '1.‘ A ~‘: ‘~- . -. a f‘fl'_,: ‘: w. a . '- oitoust 11: 1n tnc cold ;Aco»1rg A11. :n.s couRit-on thUiros ,n1t Hoof}; 4311:7119er 1,0 oomy‘n‘wr pr] by nif-Hnr n lorry: Ton e+ +Y1nhc+”nr mawf‘ncn (‘T‘ 41 very Y11“”1-“1ir volooity. Uinoo tte sir velocity affects the operational cost L 1..-y;4 J in ovorcorin“ ”rio,ion, they concluded that an exsil anger With a large surf cc .u are: voul” soon to to tFo noot econon1ic a1. They thoroforo designed 3 plate type o” Ho1t oxchanrer which is nrsssnteo in Tir;ures BL, 35 nnfl 3/. The id— vontocos tnsy slain tor this “not exchanger are: l—anqe Hoot transfor surfocc 3—10W'oporotino cost 3-low first cost .r-gdse of Fobricotion 5—3259 0? Oporotion' é-9qn11 space roouironcnt Ix} IA ‘1 In the oObstruction of +hi splate— —tyno hoot exchanger (Figures? a, 35:, BGl thoy noofl QK" X 7°" sroets o” “orruzntoi aluminum roofing to serve $8 I ... the plotes or ”luio sepnrot0“5, since aluminum is an col‘oot 107t trous— ?er motoridl find is suits rosistsnt to corrosion. Tre‘quoing between the Funpts 55.nhfininofl By the use of l/h" spacers. Tte nuntcr of skoots to use 11y “9 "my nunoer (?O, 39, hO,eth wondroing to the recuirononts of the oif— i”mow-mt finirol "Eoltors. THO opposite noses of +.hs plotcs are fostoned to .L torn on accordion—like unit With oltornone flow coco” .1. 0 ns through the stoc; he worn on” colfl fluids. The e tire stack is enclosed with shoot metal {1 t '7 OI” ..L \j sri prov1-oed WiH1 Ont“ an,cs 1wi exits ior the worm and cold fluids. All jol- vonizod surfaocs are pointed 1itl1 zinc c1ron-te. A I v I 1 ’ ‘ , I , I A v 268 $321 aw: YS __a VI... ALuumuu 1 27171 . , 111/ 1 EDGE S YUENED F0!| - 5:0. r~AIR VALVE EFT DOUBLE SEMI - I 11 -——.—r—/ 1 1 1» . -1 fl 3| SKETS Ivt' coma ALuM RFG— ‘1 '1 ‘w OILV ‘ swan uUAL { \ / 1 ’ 77 1, '/ AIR VALVE ‘ 1' ' REGULATOR sne' svm ' /1-‘: ‘ 1 , NOYE: Pain! AII Galvanind f ‘. AVE Surhcu with ,A' sun 1 RUBBER In: Chroma!- Fig,34Platc-typc heat cxchangtr or \.y. 0L1! 1'r‘ r0 CR ‘0 theraforv feet‘“" 3 " v'o"r ti fivnt frersfer coefficient of such 2 dfi-ww nn "7"? lgn- n~ ~~ ‘\ q ‘ ~: 1 r‘ f — , > I I} - 2.29L x 10" (T?) ' where h = Tncel heat transfer coefficient on either side . , o of cennretlnq wall, Btu/Tr, sq.ft, F. fluid rate, 112/3:- 0 = Fluid ?lnw nren, 5c, f*, u = Absolufie viscosity of fluid, lb/Hr, ft. The value of he correspondfing tn fihis equation may be fnunfi directly by reference to Figure 37 (Log log graph). Gieae and Bond (35) fovnd out that . , . 1 I! J- .- 1 . \ J ~‘ -'— ‘ ~ ‘ x-u ~— -. A H ' 4‘. "V"‘\‘ V 1 '1 ' .F‘. :‘3 (gr)- +“' ' ‘l-‘ ..-C‘ ’_. F‘! r '.. —' - . ‘31. éAkL-1-'q. th e 8X?6Tiflflflt31 formula given ‘V?1W”C cri‘ ’4' L hc ;_- 3.93 x 10"“ 227 )0.75 CU Lnborqfiorv fierfis °lso sfiowed the static pressure to vary as the square of ihe capacity. Firure 375 W“S plotted from their rcsr ts and shows th characteristic the blercr must meet. t should be remembered that the blower must also overcome any AJAificnel ?riction in any duct~ attached to the exchanger. .' If»?! LOCAL HEAT TRANSFER COEFFICIENT (0R SURFACE cououcnncm IBTU IHR.SO.FT..'F) T «b UIm-qmtoon 03 N 270 FIGURE 37A, LOCAL HEAT TRANSFER COEFFICIENTS FOR GIESE' AND BOND PLATE TYPE HEAT EXCHANGER <3s> I000 2000 3000 4000 5000 IOOG) FLUID RATE PER HOUR AND PER SQUARE FOOT or caoss secnomu. AREA (LB/ mason.) Ol2 271 WT’ETPZ*:.: 37b PILOTER CliiPI‘d‘. KRISTIC REQUIRE‘TZTTT FOP CIPSE AND POND P’ "373 TTPE IECAT IL CHANGER (3") Sr rm‘c PRESS!) no (in. H‘s) AIR voLune (4m) ”v sq, . . , w I ‘3‘ J4 ’ \<\~~~‘-7 nr‘ ,~ r‘ ' fifil n ' '\ 1‘ ‘vv' fi‘! 1"} ‘- -" " 9“ fi' “ I+ yr- " I - . l I. - A 3 - v. - r - 1‘ ' ' r “,’J J v- *1\ “-5 3 L '»-_ fl ~ -74; .. ‘ 1 = H x“ -~ w --\"’ Hr“" «fir! ‘-"\‘4/~ ‘ K ‘ - 1 . ‘ .- - I . - 3.» a ‘ “w ,3 ’ ' "‘ ' I ‘ - ‘ . L n 1 . r, b r- .-R VA '- '- ‘I ~ ' ‘ ' r I f‘ ¢ , 1 ‘I _‘. __ r‘ -y l _" . '. r . , I _ 1 ; I ., ‘ )14.1 e ‘1 n _ «V l x 1 . «q 9 ‘ . ‘ o ‘ V ' p- ‘5 \ < \‘r, —I.( {‘ '\ \w-~ ‘ - ~y ‘II‘. . ‘ \v' I I " I 1nt\‘} I \j ‘ q .I' n * - u . -. . ,, .‘ . ,‘L l . l _ ‘I I n fi' V‘I ‘I ' ‘ fi’l .I 31“ r“ ""‘f‘“ .-1{\. ij‘q‘. ~. I L A n . ‘1 I n.\ v. " ’1,\*13a\ ~~1~~1sa . nfl-‘:~vr~ . .m,‘ .0 . I; - f 4. ' . CL- .~-' I, an V'; Anus} ..5. — .- ~ g o ‘ V ,~ ‘1 n p \ fl _ [F1 \ I y ‘ v ‘Vn111 r- :4- W‘flA I rx'vr 1 I‘“""\\ "w ‘-,--.~r .' - ~',‘n wffi'” 7-"0 '.~ *EEQfi Oxj"14.:Lnr . 1' a, . ... J} .‘ '1 ‘_ .ES _,J- ‘1 . ., I .. f . 1 -' ‘ \I U ' - ‘ ‘ 3 ‘I '1 ;’ _L‘ L '1 ‘ L ‘. v ‘ Y‘"‘ ‘ ~- (.qu ‘ay‘ - 4 _fi .1,‘ <‘_- n <‘ 'r 7 ,‘ ' 7‘ .v ,‘ \r-‘a1 IJLO lq . - . “..‘- A ' :1. ' . v - . A. | -,- ' 'j .J ..‘O.. I): .IA. L .r n O Q 0 Q i' q I _‘_ O '3' “(“15" “-1 74,. r‘ C -' (a r.-‘ r‘ («3‘ 17‘ A a ‘ - rquyq \‘ -‘ f“ '\.,-n -‘ (\ - I‘ "~-- . V‘t ‘1 1‘! _' A ’4--. ' .~ .~ ' ‘ I ‘ .. ~- I-. O _- n D g u - V I . w . FI‘I‘.‘_'1""“:~ [.9 ' nfi‘i ““03 v—‘v- .~ —‘-‘I—"‘ 'v Y1 J ,L-LPQ) '\.\17~~ “7 ‘1‘??? .1 —“ l ""‘ Telle"‘r "“"”‘S (7‘) are le"er fflen .‘1 1'“? LI'ra 'TTT‘_‘1('\".' 1“-3,“"I: 1"“‘1mfi‘fl- . ,E _ ,, ~l , ‘,_ «_. .2 J ‘ * D“*1'L“-”-n '1-‘.-‘.--‘._-V- 'er 1"w~-\ I, 3&4. 'J -.. .; ’ .... ".4 I . C) ., 1 7a \': 3"! q 5 '—:V"‘V‘L er ":L-Lr-.1~v\j.1 _ __ ,. ,‘_‘ b .,I ,_ - . . -..“... ‘ t . u 7‘ ..'- 0 TL V V—\ -‘ ) Y‘ wq .111“ 'V.‘\T\ Ij.‘(‘\1\ .V ‘7 '4. . . .. ' L-~ .I. ‘ 13*) '-I " ‘ \‘hfifi r‘: A"- r} 1“ r‘ ‘t‘, IA: 5 J . H ' z L n v . A b \ V‘: \ _. ' _ I I I— L r‘ n J It“ , I'd ].r‘V 7:“- hf}- 3. “V L .1 .. . rs Ix " 1,.{.‘£:I ’3" “ “"0 LP \Qofimzxwr" ! 1.33 ,‘l n ' ‘ > - .v 1 . m x 1 ' a ‘ . r v I‘.‘! \“-' (‘_ (‘ 'WJW '9.) ' ?. J\‘l| ’A 7" '1 ,1 .1.’ F." , , r ’ \ 1’3 Phi-Irv" {’70. n - ..- ;(. \. \9 ”.\Ln,} .<:L.“fiJ, ~v -71 , r 7r: \v‘p, M “(\"‘J‘ ~1I.l _I L e - .A L'J 1 ~~ -.. “LV1 V\r\‘fi t‘o‘fi“! .J ul.A.on _ ‘. . Al »\*J. ‘ "3 1x . I~r\ 1“ \‘fl; ’1‘ 1'? ‘.. lx‘ ‘,‘-(A1 _ 1 ’ I U ‘L 4. (f. C)".- r‘nv‘L —'-1xn-‘!~ -‘-‘ - . J.‘ l ' . , a - n ' Q . ' a 13 Y. ‘. nfi+ n "\ r‘.‘ hm ~ -‘ x . 1 1 V' -' I‘m -y "fi ‘- FY50.“ ’rv‘fi,'\~l\l 111- $.51" In“-\ '1,~“r‘1 1" irfij-fi" “V“: -‘v'1- _L . IE I | .. . A » » u ._L . l. , > s .a. V ,- U, ,l- L 7“ _ t I 7 - _ ‘ .. J 4. J 3 V. L} > [1 ,figqfiflq '1 ,— ~ \ q \w."\ ‘5. m w .1 .‘ ~~ ~ -r (T! .\A\T.-w V!“f\ r ’f“ h V‘fl V‘ H,. Eh lc. a ,,.. JvHeI-l L . Tee .‘,_. Tee on .u( ascumpclou MJ "rJ “ ' ' j 1 .L. ' ‘ ' X - 1 4 r1 ' 'I u 0 ‘ fi ‘- u 7- J. 1 J ‘9 n 1' —— ”(..‘ p r‘ 51al‘ “A -._V \<‘.qv‘ . -3 -—r n‘\ [W . ()Q1.‘ “‘1 "I y «‘1 ‘\ 4 fifo\ .\113‘s [a if q-\ . - \r\~ir\~ {\‘vje '/.,J 4‘... ,Lxl , J. E- l , l. __ . I ‘-~. 3 .J . v. * ...; .V., V. ,, _- , -\ A_L _Lklr’ ._ " i 5‘“ ~_ ‘ l. I. 14‘“. 0‘ p"\w'\‘.‘L : A 1:v‘:-¢ 1‘11 J ,-‘ I fi‘v~ filx‘ 1A-\-‘I‘; 4- :,— y" ,. A1 LY‘ «as .11 L‘fyn ~‘\r1-,-!- : -{-*r f" n sma-w 0 l‘ I 4“! 7‘ l . . I v , \— L . . l . .. -. . A ..- - .J". .4 ‘ .9. x ..‘L \J L “a 1.5 '3- “ —‘ I- \A ~—-I“~.»i }. ~~r 143-:fi ‘\ 4- N.‘r J-f - s‘+ ”‘7‘“ 441‘“ ‘ f“ ’ v-I Itx ' ‘ fif‘ ‘Vn J In‘ ‘1 A“, no ,r 1 (374 . . . ‘ ...,. ’, ....-. - _ ,- . ‘__ . .. _ .pr ‘ ‘1 DJ~ J. _ 1 J_ 'l \I) 1 ‘i , r ‘r' 3 9 1 * 1‘“- q f,. ‘11' ' ' .~ V *~‘ 7 s "r~ ~ ‘3‘.’ w \ JV ‘ \§V“ "fia V 3 ‘V‘V‘V'u‘ffi, Vs.»\’y~ ‘ k? 'HE. A .1. ' < ' v ‘A ’1- ) .... . . ,' ifi’j ..‘. ' VJ .. W .1 .A(.4 \AJ. IW‘JJ (...)1](/ at “A .-‘; ‘34 A; ~13 “ 7 ‘ 43 ' ' .L l‘ ‘ ‘ V Frv - “1' r N \ fl 1 «1‘33 , p,\ (‘0 - 13‘. VT - \sfi" “."‘. a y «_yu I r" ‘1 .\. - _ .~ xx, ‘\ 1‘ ~’\\‘_(- ‘ .,.- . ..I, 77 q “I" I" ~ ‘ T." _l I) 1) , ‘ I. q, ' U? ll L .7 OJ. . . I... ‘ .' q I Q I 1 "r~ ‘1_fl '! fu- fi_/\' ‘ 0" * \r ‘- 1 -- F‘ W“ '- r‘ an} ’ ‘u’\ 8‘4,‘ 7" x 1- fi. 3“ Axswfi "IQ"L-; q“ '1“ T q, P‘A‘j ,3 7‘0 . A. s»: I __ . -\ I _ L, . T’ .. . ' .r v - ‘ A. A; I L I ;.' '2‘ M'.’ '. -L L. ‘0‘} ..- ‘ 1 I O I a l’ 1 _o u . q q‘ q I ' R... ‘- ~ ~~n-\~nr~r~,'\'- r“? ~j1 ..,~ rx w n ,.‘ a. v — 3 m WI 1 \— "KN ,~-\;;-~~" .‘n-w,»» rs vx .A.‘ . ‘ ‘vJ' A .. ‘.k.z..A. . -._ ‘, -V1.1. .1.. \‘ - t- 1')"; L" f ‘3‘ -»-' ‘1 AW‘ »A S I .— ' 4. - L C C U Q I , aw -\-' -x~.c ‘ qswfi stw -' ~gq< -v|r- r\ .’.H . ; .. .. - p I "' ;- ‘ , '.)_1 ° 7‘ i O 9 I r» . - “_J- V V‘ «H “n ”)F .3 ’7 I ‘a—q“ J. r.‘ p: "4'! J-‘- A, "‘YV'XlLl-I‘H‘ “"y+.'l-‘ '1“.‘.‘1$‘+ ("rs - -~ . —/ ..‘ , . ‘-‘ v’ -' .I .A- ' ~ .- , .‘ Al : 4 V .-.. ' AK) .1. C ‘~ A A; ‘1 ”\f‘ ‘1" “‘"‘$,'1 '1" L _2 ‘~ c ,. ~ ' fi . . . I J VA-‘xL.,.: if) 4"? ~xx..«-:‘.-“+H3}1:~:S (3.?1': I‘P'I‘ .‘A 'n . n 1 U A : .... w z ' IAOW - In v~l.w E, 3. '¥ e Tf‘Tfl s {W' V? ennfxn3vvl at I/.J an” . I L ‘- , _ 1 F a‘ :.~r~’ ‘i‘IfiY'vF‘V'f—‘V .16 f»)an?fi r1(w v . V V '31 ..w -\ ’ -‘ T V ‘1‘ v ' 1". 4 (a. 21.?) I‘J 0 ‘I-‘1 I, a! ‘ L c- 0 ‘7 .~ 5 I ‘ .fi ‘- ‘ , ‘ L - «1‘: -. I g; A n r' 1“; if; “3‘,“ 3:0 j. r‘ 1‘ ‘ —. . A _. a ‘- . - V \ v. . . ,.,f~) hi! ‘Pl :(t‘fi’fl. . .. ."U.(—l . _- l,“ . ‘3 ““ .\fi“‘\ ‘ ‘5 ..L 'w -I To AV-‘f\“\"0 V‘\ n ’fn 1: '\"fl LI”) ‘- y ‘1“; 1‘1 r~ '9‘ “ “ ,-.«-» —" ‘fipfi \ . '- 1 V . - - \r\ “‘I\"I\.'¢.4 f‘“ -.y~-‘ J ‘} T' .L A; T. 7 .§ I K' a A ‘ O f‘.‘ "a" a A aflr>'.. ‘1. 1 1 . \ ( § "\)'ri rxV . >5 7* " vu" r‘ if" ' . .L ‘ - ‘ .. ., W - o ..'“, ~ ~ ..‘ f r 3V1 ‘ '_‘ (_‘1‘ , , - 1 ‘ (a ,l‘.n-\ (\ W4“T‘" J n 43(11 '1‘ "I?!" 4 “ ~ ‘1.— . .L.. - ' v. ‘ . A .J A_ ‘z ' '4. . -1... - ' ‘ v 1 r n“ ‘ ,L , V . P , . "J. 1 H . "’ “u ‘ ‘ ‘ 'fi ' ’ " . W “ ' ‘ fi‘ . ' ' "1‘. 1 fl (‘1‘ ‘ ’1 I m " 1"" 1 . C ' ‘ 1‘ . . ? -._\)\I ‘ .-- .‘I ,‘ (1 Ni- _L A ' .‘Co 4‘7‘\" = “A1 W. '\V" _ - - ... -— - {we 9 - f“ u I 3 w ‘ ‘ (‘J‘_ 0 ll :— 1" ‘rl ‘WI‘-‘ ..‘." \ ‘r‘n » .0 L ' . - . t —.-————- o - ,. ~ ~ 9 v 1 ‘ 1'- "r ,v-u -ur;\ - l ‘- " '\ 1.. .A . 5‘s ‘1‘)fil . ' I - .L ‘.._l - I; 5’ 3' L’ o . q ‘ AV, 7“ "1- 1 ' n q - a (1r.-L “19 . ‘ .1 ~ 1“ r“ 1‘ ~KI s1~1“ - i **“ ' V. {1‘1 (Pfi’l/fivfl ' 'tr‘ '11 I r ‘ ‘ :_. n , ‘ - M‘ ‘- fl, -, A , _ A I r .~r .L. '-11V...,\ ("1\ ‘ ' '. .’ 4. I 0 a 1 n - » ’. ~ Pl ‘ ' ; ' ' ‘ . , - ...) _ . - '. a) x -v n V ‘ - o v O ( "fl —r§ 7n ‘ .— , \ij‘ Lu .j ““7,‘1 ‘--" «1 \Ir\ 1 _ IKWJ l ‘ ' ' ‘ ‘ ’ 1.- J I ' ‘ , 1. [O “* 1‘ "‘ _, ‘1 I ‘ V \j‘v- “ i \ }( 5 )1 r .1 h A -. \ A l - Q = / ‘ . ‘ U‘ ‘ “ ‘ , .L' P _ ‘ - ~ 1' fl 4,3,, A- ~4' "“fl.‘- "\ rr‘ w‘" "\F' ° “‘ ~V~ a" ‘ ‘Y: '~ w I v‘ I' S ‘ ‘)"U_J""'1T~ ’3?“ L W? :‘ ( 1‘ '- 7C)? \l ' ~ . .. , ._ . I \ v A I. I . H \ . - , 2 L k’ “—— ’\ _ 1 _ H L L o . «j _ J ‘ _ 0 ° , . 5‘ a I“. ‘ ‘v " \~ A ' ‘K- ’1 ’1 \‘s -' \ «J ’1- VIA" ' "fl rs - ‘4 ~~' "‘ “,.-1 “ ‘ 1‘] A \ I a. ' . 5 '~ “ t ,C \ I I .L-lp)|‘r (:_'-\J ¢.’\e.( ’ ' .I‘A- t4.‘—hL ‘ ' 1 11 \ ‘flfifi ‘ f1 r‘ ‘ ’3 I ‘P A $5 ‘- q 1r\" 1 'l‘ . (‘1 P—\\ 1 1 . n v‘ \ ‘_ r ~_* ' “V <-x ‘> "'| " . “n n ' ' " ‘ ‘ . ' ,‘fl -..'. k ‘. .a‘ 1‘ F _L] . vs . F..-."'4..(lv'ew- “a" :1 ' m 1‘-“'4 ‘rqu -'-C P: w J- , "‘ 7"“ ' IO . 'J ".5 1 . ..‘; V‘If'} LI “ ‘l . ‘v-V‘~‘ 9‘: ‘4 _P\1 ' “ ‘-"" f] Pr“ ‘3 ‘ " 41"“ ‘ "' ‘ v""' w ,.l‘! I. ., .1 ~- _ ' _" I") ’ £71. _ 1 ".1 ,1110 7.! “7.1. —h— A -' -. m .~ , an“ . -~ A A.—‘ L.“ 'aa_ ’\ fl. J {_‘V‘ 4. L‘ "J! l ‘ ‘ fl , | :0 - .-x . 'r " 7 \ \ '\ 7%. "' v - J r (5“ A _- ' ' “‘ “ "‘3 1"; -T .. _ o . .- 3 ...» .L.; ' on - ,_ I I '1 1‘ r «s “I '~ : 'Qflr‘f- an. - . a J _ _ _ . , _ -.. . ".L r). ”4.- w m -, ... - ”MW; 1 1 _-L . . M .1 m . - a???) _'_- - - ’. "TIL- H“ .. 'N" 1‘9". Ck ’n ' * J- . ’ '_—-. ‘ . . A ‘ O D ‘. I, ' .l \ “(\sa 1 '1 ~‘v.p “HT n, \ J- 10'? "‘A'l? oh.“ \ ‘ \. \ A ‘ ‘1 ' ‘3 I - . L - .L'-‘ _— s r , O — -- . ‘ A " - + ‘ 1.. o ‘ . r} V- ’ , ‘Y ' \ ‘ 7' .‘\v.. ' ' ' 1 , " ‘ - _o a. . . ' ‘ '1 q AA ‘T‘ ' '3 \n 1 - ‘ .. \ ‘t‘ 111 r a'-. Marta; ._ -" 2 v f 3 ;‘~ ~— » n f“. O KVI ‘ T. ‘_1_ , u _ 4_ ”q " J ‘ u ‘ 1‘ ‘rr 3 Q--- L‘ |‘A"4' an O ‘u’ -\ .p‘ Iv‘f‘~ 1".7 yx-nw‘v‘ q~sqI—\g\ ~. ‘,- .‘IAa I.-.\‘ I “q“ n hlfi ‘ f ‘ r q I. i 0 ' . . k . . I. ' . ..- .n \I ' v \ -V ' " - . ‘ § I I f‘ \ p O C _ * A‘Ps \Ixh *3“ q -\--‘ m («1‘705— -\_o ' 1.. fl r‘x 1| ‘ {L _ I, . r.Lu¢. In 1$J ‘ e _LCA.HC‘, IWH. /~ fl \ V ‘ a a I O ""..—\L ‘ r' 7‘ ‘ ‘ fin ' v ' V - [Inc ¢fiu fl .p7( _ o:- Iéi-‘fif,'10fi13 e:h‘”“‘x“n : y. I —— --- ,- .... -q. _n-—-—-- I ‘P“ m\ ‘ t \ ' . 1 - I fi v" .-. ‘ p ‘f I‘- . C? 'L . ‘1..C '11? .L.? “QTMU- “OCT? ,1 bx ) I R » ' 3,, degrees. “ ’7'1'1I' ....r‘ T"\'\""‘o ‘ “v, ‘4‘ fl-h ‘ J" i V s VAU --A._‘-.'~v' The exhaust air is conled ”‘ decrees. 4-————«( LC OF J, ‘1- 7" "}‘ wy L “Q1"— .. o . , ‘ .I V' . - I H‘ ..‘” q ' J '4 w ' ‘r‘ ‘ 1. 1 ’ ‘1 I. ‘1 ‘ , . -. ,,-y :3 ,, o. w a .-’ -.VY ' ~ "'11'1 “‘ "“‘ 1" ‘ ' ' 1r, . .4. I" ./ ~/’ -- g _f I J. . .\. “--..“ 1 9 U “Jr.“ ..‘. .,.\.1,. . _.I‘ “(‘51. ...113‘ C1" (‘r “ _ A h-fl_,fir)l 1,“- 3",. \qu— .A - . \ _ 4 ~. »‘ ‘_’. 1A; 4‘ _. ' V. .r - XL - ( ,.‘ .1 . 4 . u ‘y o 7 . u — . q 1 “ 1 " .‘ -‘ 1" .- -(\v‘ «-»~.\\-. ~, r\ n"1. . q n-xr)‘ r‘ ;\v r. . , - . , J .A J; -l‘ -L :.. . \k ‘A A "l’ -- z -\4 J- v . . ) . ‘ n -‘ ‘~-‘ -\{ A .. , N ‘7 4 -_.- n 4— ‘n4‘ 4-"- " A<'n‘ qwfl "Ar ‘ \w“ ‘./W PJ‘P . - . u ' , . . I ...— . . . a ‘J O w u w fir.‘r'\ ‘ -‘ ‘ -L —> 1“ ~' a: ”In -' ~7‘fi'f‘“"“ 7c ? . ' l ‘ -.'-g, ,-. L. ‘-|'. " -.. .‘ -". ‘1 --‘-- ., .. \ . g ' . I! b “w l 1 '~ 3 J. 0 V! ",".)"I - "1 '-‘r\fl‘ ,2 " ~)YV~--" l—(\ I "f‘l’ -i 71 'v ‘,I n""|‘81’(-I r13 “ J - . Q “ A . ..- ‘J _- 4.; ' '.. ' ' . J Afi‘rA OE ‘ Z ‘ a—- I 3 . “‘f1 ~ ‘— L" :‘f-‘r 4‘11, A‘L) 1ffly~~r3 _ - v -—‘ I . u — 0 r1 5 Q ...-11' ,_ “...,3 .\.”,5 - . .. ~ - I an “Kn”: \ l 'b I A _ ‘ ‘ ‘ I . ‘4'65‘7 H 1 T 'l‘ "H ”m “ """\' “'31 ‘T“‘.-‘ 7“: P‘fl’41Q-"fflnr‘ 0’3‘1 «'ij "I — ' . z/- » ‘ ._ 4. .L a " ~‘.... , A ,I Q | ,J A'J -- " ~ - -' I r‘, _ ' - .40 1.. . . - . . — H - _ - 4‘ y. “r3“. -, +,— ‘1‘ ...m - m...- _ "l _ -L . . . n - ‘— . ' (‘v t. _ C , ,. ‘1 ”Na“ “(2“ . _i’, o o l‘ 1 . 7‘ ml) L“ “r-Dfi‘.‘ ‘\ nwsnnLr‘“? 6'“ " T‘Or'HV- w~-“‘ “.r‘L - p 1 «a firm-6'?" . . ,. V. ‘ _ A . A _ Q "A “ _fi \ f", '5 I r 4 V . ' A‘ -- k n.“ -,‘r- _J.‘I.‘ . A ’\f\ \ O) 1 gl'.‘/C I r I \ v . .- 1 vs. 12/"»~ : ___—"fl _ 1“, -_L 0 ~ . Q (‘4‘- fin “\‘v‘nl‘f‘finfl ‘— 0‘ r\.‘V1v~~~v~Vyvn a 1’31'JL'Q +f‘) ‘qu 4 J. . v . ‘ 4,; ' a“ ‘ A» .4 J— Dwnfivjowrl ' - >v " 7” 0 T31 r) ft.“ A D‘An“‘r\"\ [fin F . . ,, ..) .L'lah-i- J ." ' --s4 4;. - _ f. ‘ . m'w‘ . :--'1 . .\ .. {. ”"/:‘ 5 ‘ fi‘ " I'_."- u) .& -‘. “‘ \ ’J-‘- —'f‘ ‘n. A . u q pa" an L , ’ ‘1»‘2‘ 1:. .KhKTbF'VV? 1r 1Lw11¢13'11«'f1-(“r cruuzgrrflotr ‘I' '- ‘ t N 7‘: , - ~. I Q r-’ «L‘ ‘~ 1»— ': ‘ r F ”VOV, wcrord;n3 +0 JL‘SQ find WOJi (_J), .ne tpza¢n¢1 :» Ph~ ovnfinnwor nnw~:finwnd Hfird nvp "hr” unn~7v “0”“1 ‘ ' - ' . kg" ‘I’x '.)~..\.'*.J ~1 , ,| ' |' ' .V ./ V . V » .l- 1 "U '_‘ i‘t'HJ .. . . . L . _ _I ‘Y 4—1-1WN'L'Tfi r‘nnv‘ Lav-«y ”nan-J ‘1Mn ,4: P n ‘ . . ,-._‘, . ,‘ . .1, .43.... . ... _. .._,1 fCrJALCG, Atnl“: 4"?“ (your: Y} T‘.."~‘.’i'd i7} LIKE... --.;_\-.J. L‘— '* m. - 4n ' , L : an .MD L0 ‘V: JNIC Hahn \?”W rd¥nrb 3; _nrefice Atq,“ 50+v¢nfi Ann fifiuag- ' A ‘ — ~I 4... ~.-A. ..‘ .LU. ¥ ‘ ‘ I ‘M4 i 01.“: ‘-""‘J”\ ’ -.. ‘HA " r 5‘ “q A :- Av‘t'a') L ~ _L . " _ ‘ s- ' ‘ .' ,‘ '. A AAA I. ... A -- ‘I. "' 1‘ IV. ,_ ‘ "L “c - - ‘ r — I ._ _ Q .- p O O . . ‘ V - . - ...... 1 r ." '1 ’3 f... “ ‘7 A." /‘ — :Qy‘J-fi\~r\n 1 1 , , a ..A k. " J.“ - : fir. ‘v‘r , _ v \ 1‘ u ~ 4 P r '. — 'l \A 1 I .‘ fl; Ill ’ — .- - '1 , W C . (I ‘J "n - ' - . “ . 7. "1'NV“""| 2'."\ “ 'Pfiww-Ij ‘*‘l"1- ’- J'~\fiv\~t‘r\7q fl'AffinQfl-v- '\-."\y1+ ' -' . I ‘ ' \ - _._ ‘ , _ ..- .. -' . 0 fi 0 0 =2" AA 0” +31 ’AA‘AZA ’wr +50 AVAAAl; %9A* iT“F“POr coeff1A39r+ r ' ' ‘ l1 . 7“? *fvw'JAAAJ- ‘AQ‘”FJA2AV‘='7” JAA+ EJVNQSLCI‘}5~ 5A1‘*fltc LAIAA VI ..- .q‘ .‘.. .2 ' A .‘ . , J ’ \ —..-—'.- L - z. A.." A An7_ "11? u/‘*' A p“ 4m,s 13 Azinfir A fJJ Ive Cfifiby ‘y—LA L . U T,_ 1 _1-1 ‘ ’2'2 ‘ r’ 77 11 - Y'.- O A “(J - — A [I - T - ..‘ - . ’ / .. C v . I “‘~-‘ L‘ :3 LP, {-11 “CA‘r‘_J" L['\""“ rfi-‘nAlr r—‘Qe'p‘ rn ‘11? Sand n'v' f-IP . i - _ I _ A',J “I - -.- - _- f‘ -. . — n u 1F ~" “-° . H 1 ' O — / , ,-- a “ ‘q"‘,’ "A‘. V111‘H‘Afi1“ 1' P (fl ~-Ar-3q1n(’ 1 “ P."f““ ”‘C‘P‘fi"l‘c ‘nffinqjfilv‘nf‘ - . _ '. V' ' - ' . g ‘ - _ ’ x) . J.) .4. UI-L .. »— 5 7b”; wrnJ-I :0’1 fir J- |qn Pay-"131.! ’1 J‘,—-“ L 1-‘0 njwfi‘JQ‘? .-‘f S+'q riflfi rd 10"f‘ee C, f?“ h 4' ('3 r0? ‘15-‘145‘A‘ ‘n-J 'JIJ A ~ : - — ‘A A ‘ " A u. - TIT- - K! .< L; ._\l 36. ‘ o :J ‘1 ififi+ion fin J-"\n .qw‘4111'1 4» UH J. 4. ' . , M. a +1. ‘1]. I «a u - ADC? .WLLg _s Jufirj 7] 0 irrmt h_3 "SCUTWV3-L; 3 09,5, :w3 pr “Obi fAA AAAAA it3r n? AHA blbwsr 3 ‘ n a -IF L1-1\ ‘.. q. . j .‘ J- — v‘: Q . Q- ‘A A The C Pficlf- 0’ we ~l°€xC¥‘A“AAr'Chfieivn d .4 LIII"; ,..3 ...,\,.‘J- .. -.- A: , ., s “_.,. -1 AF’ -4“, L 0 . *“* ~v we} bx alCSO 144 ouu ()2 c Quayle presswre VAriAd. ‘- - p 4.. 1 ‘N H. L‘f Y") A 4— “7. ‘A-- n 7 I As *1? SQJATQ A ‘10 CAPAC:JJ. we, reiée ,o J; ”19 370 *.All AAA" *“n nanrnnfiAr n+ios ffie blower first meet. f fAn Ar Glover 0A+A7AA‘"A11 ive +»a si.e AAA UAwer rAaWireA for a piriiculnr {1'30”} . I4“ (A “01:51. r4 ‘je 1" ‘3“ 0M1“),firer)‘ 4‘7‘4'3',‘ J-J‘n ufilOV-rer m‘lc‘“) "’1‘ so O‘fer- come any 0Hd‘+lnhw1 ry1n+ inn j_n nny Hucts aTtAAhed to the ox— CFAAAAr. -0.-- 53 zo_mmo mmoz :4 63:25.52 2 :\ \ 1 .Z: \ _>.: \\ _ .N . “.\Z _ 0.“. ___ :Q .3230 .. . .I 32236: .3 .~ 1: 2:30) :4 a .2 _ 2: ‘r 1 _ . ...L _ . ____._.._ «(9338‘ ___. S 3: has. 9.2.: .8: 1 __ :~.o .6 55.53: ___\ 1.4 uofiz. to Inc can II. _a u. 35.: .cxxéo .. mmo; haw: .00.; n 04 1 82. 54 uofipno Ill rasecav .... “go: 2.5 .3 c 1/ , 3.3.5:qu ZO_._.<|:.rzw> 020m 024 mam—0 m. UHI'SB'I - BWO'IOA 8 IV (OBIS) il Ill. ‘1 It'll". 2 '7 7 L. T30 F“ohlem of 7F~WCNFW 1”“ on qujg nnfi '3~115_nvs CUTIWCCS rm C1s'*7CC "'i‘l oat-1311' rm '2. "Cribs": 1:13;:ch “fie dew point temper- 111111: of the 1mm Cir 5C girCCfi-Cr +.‘1.711 “:21 "C211 surface tcmpCrCture 72nd 757.3. CCCVWIC *o OCCur Cniii +124 weirr‘n‘, or" vnnor rlenren «3 Below ”we act- Ewstion- .rrjdify rs'io for "'24’01“ VCpor Ct {he given wall surface Camper— aturC. SinCc surf‘CCe "oCfleCsCtion is C'CCCd by water VCpor cor“ ing into 001+:ct Hit} 135 r11+1riC1s having surface fenpwntwrcs ‘t-Clm' its (in?! point, #10 fictors can he used '20 nvniri. it: (1) Refine qs far as 1‘ Ssible 31'! 5”“?0131‘ 13"“"T34 ’13" 0f the «wrmwmding V'IpCrs (or in o’rhCI‘ "rorfis, refine the vapor conien’r, of +3.1 enir so Cs not to exceed the 'EC’C11rr2.tio11-'nuni.1ii'hy ratio of the 2.19.11 31.13ch: tern— \ oemturc). ’T'CiC is L1C21C173' C21 onCr‘.'1*.i?1;r: ”whim“. Cn') C'm be obtained by c.7_ir'1i':'2.ing 11tmeCCCCnr3' ' .:2.+ '12 spill't ”,0, (211511)}; provir ing effective venti— l/Ction for the rorzmrrzl of mob-52212.». VCoor in the house. The control of ‘ vapor ForCCi ion C11". i’cs elimin'tion from iihe space as soon as possible is 1 fine first CCTHirCCCCt in most Cowonncntion orohlers. (? ) Inert!” "C “.16 +C'11‘C12n4'111‘ns (1“ “1C C111“? :2." as with Which +1.13 v11'mr_ CO'VFPS in Cori-act. ’L’Tii' is :2_ CO22C1‘C‘11C’Cioo rnt‘C-Cr Chem C11 ormrati’ig prohlsm "2:1"? CC: “C obtain-CC”. '11:: 1'2."C‘.i:'1g; i.:1':‘_:1C*io_‘1 “o oufsic‘c ‘1"!113 C11"? ceiling, by ‘52:: Use of double sash "fl'11"‘0'.'.'s ".7124. doors, Cry“. 11;: +he CirC11]-C.‘lo'1 of “Cr?"er "12' over Che "111C”:1Cc. The use. of a direct air stream from :1 fm CgCinst the surface 12180 results: in 32:1 i nCreCm of 'he curf‘ CCC. Coniuc‘mnce and a rais inf; of the surface temperature (11). For ..'2 my 9’3"? (23" tonmrnturc mo humidity Conditions, there is :1 def— Lnite relation >c1‘ "man the cohflnnsntion possLilitics and Ch: insulation (1 1.? “rm owed no- .51 of the sfiruCturcs. 1:155 relation has been presented in "7. 2.5 . V n w r1," ~ J, ‘ 1 . . ' n cflrfnirirvxfiwer *7 ’TR’P£S. ' :7 “"1”,° *V““riovc:; :v )_13 — ' ‘--H- A w, \- «J - ‘ ijc Pr°flfTTd 53 N“ 115 r 37? “fl““P-“W more. I— (Inn? (A'flqr‘L vh)‘ Vr'fl11 nw‘qu-‘n nn~NIIAWflfi+fif~fi _ . ' . 4; -' "._-._- ..’ . . ~, ...: _ A .. 9 ‘ w . ,. 4’ n . 1 -- ..; H 1 fl .. a . 4. 4 ~ 4. In only l/‘Q, .' hr \773 WKRHLVTQ n Inii—siriacc can ennhuién endru \ ' A (Viw"“e NC) hfi~~4 an h¢?n*“flwn*“ié ffih7né "b” *“¢ pai‘fiWfifij Fdrfiuln: “ {.\./l lfIi-to ‘Lt : KW or U 4 ”4 T = Tdtfil raci"*fi1ée of +¥e ”#11 to h0“t trNHsfer : I ‘TT‘ U : Cvnrfill hn“fi fr"nswission ccefficiewt of the 47111 (Thu/372*, 9Q,ft, OF) T, ' 4 ‘ 4+~ 01’ ti : iHCKHO “1r FFUVW‘I ire ( g) .4 . o to : OutSive “1T fnwtérfitu“e ( F) At : W-Tléidfi'0‘14'vSi/19 air 4',QT:1'_'"DI‘"L.‘.‘U"3 (JifferCnCC (OF) tap = td = ts : Jill rurfncc témterhturn corre— sponiing to fihe inciAO flew point a /1 4 4w 4 - -. 4 v.;i : 1r Viin no t firfixnfdr registnnce : 1 I . )5) ’ "I n I o - o o 1.:n = A1? Film né“t trhnsiér coeff101e‘t (Btu/Hr, 0?, smf’c) In fhe coflputhtion a? this chnrt thy overall hcwt firfinswission co—. ef‘Picients (U) ware flowciinwnd ovnr the rdnte from O to 1.45, the outside tmxnpnrfiture over ihe range from-ho to 1000?, and the iqside temperature rvrez‘the rnn-o from 32 to 1000?. With fiha v“1we of tdp compvtcd, the cxvrfirzsnondin: critical relntive huniflity'wns obtained from.a psychromet ic -t°}313 or a pfiychrnwmtric qut, nnfl fihe chnrt WhS plofited. I4. II. 1 Lt]! ("q-fl fi‘\-\5'v+ Mfl-‘r Iqfi A 11.4. \._‘-. ,_ -I .. , A. “I v 4‘3 .. 1‘4 rm - 1.' a. J-- ;irs+.rv1o r712 4 .413? .(T e 4”‘ufinq t; -+. - V __ rip - For :1 (fivon vol‘w of ti mar‘ "4 :‘i'mn Volvo 03" At: t7~o voluo of top ‘ A. ‘L Jo !.Jo n 5+?“ 1 3 “o if“??? ! q | From thie graph if h“i "tdp" By drnWing 1 line from from "U" to +hc firm 1 *Jo 3 his iotorfioctin7 point to "ti". The Reoond abort is .L n I 1"- J. 79 soon ,h i file Ji“rn sfioo A I I”: v‘. , 4‘ ‘ . fl ‘ 1" I {'1’ :1r1.oiwri 1: .»Jo 43“? o rwnioriramirrwi c .n ts. L16 vnrios fht lifio ”iih W 93 c*own in fiho ?017Nfifi¢ firnph, U, CHPRT"TO SOLVE THE E Quh‘hoN he, h _u (91:83 Lb COfiPivfs in fififiing "ti" to "to" and than drfiming w ForiZOital live 1n4 a horizontal line up from dorivod from n psychromctric table or chart. It has td is 03¢ ordinwte and "RH " no the other 7nd "ti" is shown as curved I *1 lines on ,Ae grnoh: momma) PSV CHRONETRVL ChART To Hun m: Run”; Hunwiry AT vm‘cu CON 0'?" SATIN; wiu. ocwu Fovt sin.» 12 AND 1“" VAuns The reconfl step consists therefore in firaviuq n vorticol line down from "tdp" to "ti" on" tton HrSWiug a horizontal line to the loftJfron the intersecting point to "RT". Since this chart is rathor complicoted because of this superposition of two diftcront chorts, the four following aprlic1tions are presented 93 on illustr°tion of its use. Given: Will hodt trtrsfor coeffiCient (U) = 0.36 Inside tenncroture = VMOF Outside tannerature = 60F lfinwted: The critical rolntive humidity which would cause condenrntion on the‘walls Solution: l-quw a line from ti = 7hoF nnd to = ~6°F 0 2-Find tdp 3 57°F bv going horizontally from U'; 0.36 to this line and then vertically from the intersecting point to the ti ( .d c 0 (1h tdp) scale 4.1fllll4 7d71ted: "OIL1Ition: "one rroceflure “9 for nppl‘cwtion KO. 1. ADSWfir : 89” N Gi‘fe‘n: ‘— Citr eh. \. n 4 201 J r ~13 - v’ r'/ I x . o ,_ OT‘ 7 J '7 -i'1"4, 4’ : -.,., if; 701"." ’."‘.Z“.".’:';.'1.. from "ta " : [3.7 l“ to ”..i" -_—_ (.14, ‘ v . ~ \ ~ ‘ -'- ‘ \ ‘ ‘5‘. v - 1 x -\ ' ‘ ‘- -L . a -. (durnci lid“, “2 no: no.i ~‘ v horizo.tnlly from it Curvei line ”or ti = L00? 2 “row a lino “oridortolly from U = 0.0? to tho vorticwl line h Alf-1:1.dr' S j 1". 1‘ V) J g fetirviii3Hi¢Picult ,o rsnenhor the procedure to follow'whcn using altrrraffs 1"1:7’4 2‘15" "0“. ”1’2 : N f.- . fi -‘A—‘QIJ Tu "‘ ‘. ~ JV}?! to = -90“ 39' fiszinnf cxtrcnely tire—Sivin: in this rosnsct. slide rule era iv; a line throuch ti = ho°r and u ’ ) ' intcrsnctung point ”owns in step 7. his the aivzrtnje o? requiring no computstion 1nd of *%a “7“ ' NoWevor, rriter nlnnys it and For this comm trouhlo with all +he irtcrsnctinq limos on it. ”ritor workerJ out a triple slide rule givin: tho same information. J. .11 ° - 4 .0g lPtCT in t“ S SCCt¢Ono f 283 33 zo_._.r¢3rx I IN 1 1 AO’TPC fefifi7rftn"n '11! r. .-_L flfin7iéfi*ini VO. 9 I n =(.|‘O O- .L "J - So L,".r1fi"rn+.‘1y‘q GOO? J 1 ‘O n 3"”? "*5? T'n mgr-‘11 1 L1.— ." » . ' 5045' howsfifiintion. n +51 anfir 3:910 "1% draw a J- 'm ' J- ~ ’-« 0.; 3 90124 Ara? a 11‘ T‘TV '7 ‘r' 12» .1 ’ ‘ _r‘“. ‘11’1‘ '. 1.. - = h‘- 1 1n‘P'g-_"1fi’1rz cn'fi p L-,.-_. ; 1‘1. L ; 1"._|_ ~- A '41.! offers SHWW liW 1‘ n vrlue o cntials of the-nfifnr v‘ o o *nr lNflldP \ 0 sq slidd r17 V n 1‘ .( "ififif‘m'dfuves V“.ryi11g mm"! frfim ould L~ 1' 1° . q 1L1 N1” defithfiO of ifilfifi fins? to r303. inflfinrfi {H0 ivcifle nhonlfi be ‘ LI 1Ffl .553 4 bd 1 “”0 9n"WV~v* £0 fihe Idwer i+y thfit can be car? A I WWW no liwns are Hrde For townérfiiure Sinfie fihn infiifle tfiflfiqrntur“ is iixed ' X r' 3n I1-r 1’ h 1 ..4 O ‘ .7 -1 ’1 VérfiiCWlly to fhn horironfi°lly to the HOY?VQT, it assumed fixed at tufie is I ~ Eiffer- 3 ed only as an aphroximntion. (u 1 3 1 , Edgnr's chnrt or the writer's 286 INSULATION BOARD INSTITUTE CHART FOR WALL SURFACE C(NIINSATION (49) AllOlWflH BALL 1 4(ILJ; J11! . F, 287 “W139 rn1r~4flv«-~~7‘_nwwnnnn nnqtnn~~*1nn u‘» 4 . ‘ ' ~.'; - u A , " "‘ Ah ‘ ' > “‘ .P‘ A r . '. A ‘ ‘ V . V ‘ '0‘ "1 ‘ J‘ . -. ' ‘ _oo.voo o * n on“? 0¢1*j of W"" of urgir's Confit, uh? VTLfior hflnnfht L O J- ‘ I 0 J- O - a ’ - n mfi.‘ O ,. {I 1 O Q n9 vrncon iv” -n1n o or. 1o 6 ~113~ rnlo Jnrn. ..79 31;.e ruuc 18 onond “— flq‘~flfl nfi“r-J-fi.nyfi m \r‘ nvfia “f~"(1 1‘" fif‘i¥fi“. an "In ‘-‘ ‘. t«“‘ ' q .Ir .1 A.’ .4“ ‘~( v.‘ IJ..“' .L . , n r’. {—375 W. 4- J 1 ~ d Ty'oofioifloriflf ti‘tn as hi “1 fo‘At, ?“e owwotion 3o rofluood £0 a for? V"rin3lo qrwniion, ”‘ic eouafion Wfis soonrnfed info t"o eoual W“rts each ooo+9ining £90 v"ri"“los ond 77de equal to a third vorinklc (dummy var- Tho first oqnnfifow to: oHoHHofl £0 a loonrithmio form: P = log 0.51.At - 108 K = O ’4 O U? 3' + (10;; out) -(O)+(—1og 0.41 At) - (+105: K) ...,(o) A mioflle euppo“t wns roouiro4 for conversion of Tog K voluos to K vnluoo, . " ._, " ‘6‘ + o.- - 1" 4—. I) '. .- ‘- . +1“ 1.3. log t1 tdp v(lu,u no t1 tdp valuos. ,qunulon a U18 1rronhed 1n ””3 following order: T, n O - +(..) - (u) +{tl)- (+tdp) _ (0) ed n TF9 voluos of tdp ”Ore plottx .nd fiho values of flap Wore substituted sat. for tFQm. A midglc «upport was reouired for conversion ofW voluos to apaat. 108 wapsat voluos. The the lost mart of the elide rule was completed by O ncing the aquation: p U V ,v.¢5.c = I "r ”lsat. ‘11! .7 ‘F'll ”Q "N where R.?.C Critical relative humidity at which conden— sotion will occur on Will—surfdce ”oistuce con ent of sn turnfed qir at the g d 3 point temocrnture for the wall : Uoisture content of saturated air at tmi inside dir temnerature This equation was changed to a logarithmic form: log R.H. lo”r Vi wdpfifl 513a? ’0 +0053 “hm-940) O:(-1og 17158.5.) -Qog 113%.): (o) The values of log Wiqqt were plotted and the values of ti were substituted . c . C for them. The follo'ing npplic tions are presented in order to illustrate the Use of this slide rule. Application No. 1 Given: Wall heat transfer resistance = 10 Inside temperature = hOOF 4- ' 0 Outside temperature = 0 F 'Wante d: The critical relative humidity which would cause condensation on the walls True mathema.+ 1c 31 solu+ ion: (Heating, Vextilition, Air Conditioning Guide, 1931‘ 0.61 At 0.61 x ho _ o 0 K _ Rt = T — Lohh _ 37.56°F v wisa t. (37.56°F) = h7.2 x 10'“ lb/Lb dry'air (Use of slide rule No.7) W1 wt (hoOF)= 52.13 x 10"4 lb/Lb dry air . _ h7.2 x 100 d ROIIOC CD 52.13 = 900 5/0 tdpg t1 - K g 10 — 2 .hh .I...l1\‘ I; I'll! 289 Solution: 1—Put the 'irst arrow onnosite Rt : 1” 7nd reed t oprosite em = LO Q-Put the second arrow opposite ti'tdn : 2.h2 and read W ‘L ~~ '+ ) 0*." on.051ue ti : 40 J H o o v' ('f 3-yut the third arrow opposite hdp : h7.2 and read W.Y 00.5p ‘ '4. L O OPOOSlue ti = 40 F N.B. - Ry using Edeer's chart, the answer is 90%, and by using the I. \ 7‘. I . 0 O ff Insul“t1ng noerd Institute chart 1t 15 91.5». Percentage of error given by the slide rule = O nonlicntion No. 2 JL no. ———-——00— Given: Well heat transfer resistance ; 10 . 0 Inside temoerature 50 F 0 Outside temperature = O F ‘Vanted: The critical relative humidity rhich would cause condensation on the Wills True nothemfiticnl solution: (Tecting, Ventilating, Air Conditioning Guide, 1951) K = Oof—‘l At __ 0.61 X f:_ 2 3.0510 ‘ 10 tdp = ti - K a 50 — 3.05 a h6.9S°F ”i t (h6.9S°F) = 3?.2 x 10“h lb/Lb dry air (Use of slide rule no.7) 53 o -1 ~ (50°F) = 76.58 x 10 * lb/Lb dry air 1H1 sat a (3.2!; Solution: 1-Put the first arrow opposite Rt a 10 and read ti-tdp : 3.0h Opposite at g 50 2—Put the second arrow opposite ti’tdp g 3.0h and read.Wap : 68 opposite ti 2 50°F o O V" O ‘ B—Put the third “rrom 0p“0”ltfi a CL and read 2.? — C9“ dp= Opnositc ti 50°F 0):. = W? 11"? hr? Aflfiw's clwnv‘t 4‘.-y“r‘s 'WVIm'v'er is 9C1r: find b;? 11". qi‘lg “:10 Irrul tin" o.rd Insti.ute chart i. is 39.5». gpnliC2tion NO. 3 Given: Wall heat transfer resistance 3 S Inside temperature ; 50°F Outside temperature . 10°F Trnted: "he critical rela+ive humidi‘y'vhich would cans e condensation on the'walls True mathematical solution: (Heating, Ventilating, Air Conditioning Guide,1951) K = 0.61 x at = 0.61 x to - h.88° a s " tdp : ti — K z 50 _ b.88 : h5,12°F Wisat. (h§.l2°F) = 3.6) X IO-h la/Lb dry air (Use of slide rule No 7) Wisat (,OOF)= 75.50 X 10_h lb/Lb¢ air R.s.c = 63.65 x 199 = 83.1% 73158 Solution: l—Put the first arrow opnosite R+ : S and read ti -t dp = L' 9 opposite At a LO 2-Put the second arrow opposite ti-tdp : h.9 and read wdp a 63 opnosite ti = 50°F 3—Put the third arro opposite “dp = 63 and read 2.3 'c = 830 opposite ti 3 50°F N.B. ; 3y using Rdgar's chsrt the answer is Chi; and by using the Insul ting Board Institute chart it is 83.5p. p9?“°“£”?¢ 0? cr“or civen hv the slide rule: . , .1 -. I. ". .. 0. (‘ v "F‘: 3 error = ('3 “3'1)1OC- -."1 “ t}? = «0.12% Application No. h W111 heqt transfer resistance = 8 fiiven: Inside temperature a 320F Outside temperature =«280F Wanted: The critical relative humidity which would cause condensation on the wnlls ‘Erue mathematical solution: (Heating, Ventilating, Air Conditioning Guide,l951) K = 0061 X At . Oof’l X {/10 = 3606 :1}; S30 Rt W o tdp z ti _ K . 32 - 1.58 . 27.h2°r wisat. 27.h2°F) = 30.50 x 10"h lb/Lb dry air (Use of slide rule No.7) W1 sat.(3201‘) = 37.88 x 10"L lb/Lb dry air n.z.c : 30.50 x 100 = 90.5% 37.36 SOlution: “ J l-Put the first arrow opposite Rt = 8 and reid ti-tflp = b.28 onnosite At = (’10 2-Put the second.arrow opposite ti-tdp = h.§8 and read‘wdp = 30.7 opposite ti = 32°F 3-Put the third arrow oppositeWdp : 30.7 and read R‘H‘c 3 81% opposite t1 = 32°F By using Edgar's chart, the answer is 81.5%. However, by using the Insulnting Board Institute chart, the answer is 8h.5%. This 3% difference is probably due to the fact that the Insulating Board Institute chart is based on a fixed inside temperature of around hEOF. Per -——~ESEEEge of error given ' the slide rule: 5g error ___, 81 .. 80.5 100: + 0.5 x 100 = +0.62% 80.5‘ 80.5 I" :92 _i . IVI Appli3“ti0fl No. —-————.——-—- Given: ?nll heot trinsfer resistance : 8 Inside téfihernture = 65°F n“+side temrnrnture ; 50°F Wanted: The critical relative humidity which would cause condensation on the Wells True mathematical solution: (Vc1tinq, ventilating, Air Conditioning Guide,l951) K : 0.61 X'At = 0.41 X 15 = 9.15 2 1.130 trip = ti - K .-.- 65’ _ 1.13 = 63.87% U. at (£3,870F) : 196.8 x 10"h Ih/Lb dry air (Use of slide rule No.7) 15 Wi t (65°F) . 132.6 x lO"h lb/Lh dry air 51 . ' R.H.c : 136.8 X 100 = 95.7% 132.6 Solution: l-Put the first arrow Opposite Rt = 8 and read ti-tdp : 1.13 Opposite At = 15 Q-Put the second arrow Opposite ti-tdp = 1.13 and rend wap = 1?4,S Opnosite ti : ésoF 3-Put the third arrow opposite de = 12%.5 and read R.H.c = 95% Opposite ti = 65°F 3:2. = By usirq Edgnr's chart, the answer is 965. It was impossible to use the Insulating Board Institute chart since thigfichart is only for tenneroture differentials of more than ho r. Percentage or error given by the slide rule: «v 95 - 971.7) 100 -0.7 x 100 d error = = :-O.73,a ( I m— . .30 ’7. 293 A few of the advantages of this slide rules are: l-Uo straight edge is rc:uire.. 2—There are no superimposed curves. B-This slide rul- is good for any inside temperature and any inside percent of relative humidity. ngnr's chart, the Insulation Bosrd Institute chart and the writer's slide rule were all prepared on the assumption of an inside sir film heat conductivity of 1.55 or en sir film resistance of approxinntely'0.61. An interesting fact to consider is the effect of variations in the velue of nside surface coefficient on this problem of condensation. H. the Strahsn and Marsh (97) state in this respect: "It has been observed that smooth inside surfaces seem to show condensation more quickly'then conneretively rough ones, In our own experience we have observed this on smooth plaster wells whereas wpparently'similqr conditions did not produce condensation on piinted wood walls." These authors presented some con- densation charts for heat conductivity of 1.6, 1.h, 1.2 and 1.0.. These charts are not presented here because they are limited tO'wells having a total heat resistfince of $.25 nnd do not apply to other walls. According to Strehnn end Harsh (97) a rough W711 (wood) is represented by an approx- imate air film host transfer coefficient of 1.h while a smooth plaster wall is represented by nn.spnroxinnte value of 1.0. Kore specificilly, it can he said that the air film.heat transfer coefficient is effected by the temperature and emisivity of the surface, air velocity, end temperature difference between the surface and the air. Figure h2 gives the heat transfer coefficients (surface conductance) for different materials and air speeds at 20°F mean temperature. AIR FILM HEAT TRANSFER COEFFICIENT (SURFACE 29h FIGURE 42 HEAT TRANSFER COEFFI- CIEN TS (SURFACE CONDUCT“ ANCE FOR DIFFERENT MATERIALS AND AIR SPEEDS (AT 20'F.)' (B TU/HR , 80.FT. ,°F) AIR VELOCITY mm) FROM “Hutnuo.mtu1'lue,mn couomomue OUIIJOSI' (6) Q CON DUGTAN CE) [‘0 \0 ‘UI Yahle (SF) illustrates the effect of air motion by stating: A.W. Clyde found that When the stable air is in motion the condensation point on the ‘walls is from 1 to ho? helow the d.W'point in still air. This may be im- portant if the prevention of condensation is a controlling design factor." Because of the possible variation in the inside air film heat transfer coefficient, the writer included on his slide rule values of hi from 1.0 to 2.0. A comparison is made here (Table h9) of the critical relative humdditv for'walls of 1.55, 1.h, 1.2 and 1.0 air film coefficients, to show the effect of variation of the air film heat transfer coefficient on con- densation. Table A9. Effect of inside air film heat transfer coefficient on the critical relative humidity causing condensation on ‘wall and ceiling surfaces.*' Conditions Inside air film heat transfer coefficient (hi) Maximum 1.65 1.h0 1.20 1.00 difference Inside air film heat transfer resistance as t1 to ‘At 0.606 0.715 0.833 1.00 (z'R.H.) 8 65 50 15 95.5 95.0 9h.2 93.5 2.0 10 L0 0 to 90.5 89.5 87.0 8h.5 6.0 10 50 0 90 89.5 '87.8 85.2 82.0 7.5 S 50 10 to 83.2 82.0 78.5 7h.0 9.2 _* 32 -28 60' 81.2 78 75.2 71.3 9.9 *Computed by use of the writer's slide rule. 6 9 2 C 30.. wo....o.1:z u>.._.<..wm .40....50 m m w m m o w m w a m ... m _IIH=_...._0_:.._.:__....—...._.:L.:P_....—. Fir—.... :_p.l.bbpr.._ .F. P — b . . P— p p P . \— . . F r b L4.fi4‘... .1_ .J4 _: . ..flw n.q....—q...d....fljlfid4.«.L....O‘..<.dd...d..qq—....‘ TI I m. m .../.4 w w w H. w 5 6 6 m _m w .. ...... “.525..sz memz. _ .... ...._......4..4..._. A. 1:41:12._...._::_::_...._...._........._.....fi._._._..__..‘..._._._._ 1:... _—1:._::—...._...J.:J.d11..._.........J— 8ooooooowommm m w... m 5 0.. 7.... p flawsw765mnmum 2 I I a 0 III! I w o ....w. xx... rmoom..o\mm.mj<3 m... we... musings”... .26.. two u...» .... a... 3.55:... “a .2328 .555: nmmsmmmwmemumwfm m m .... w m. s agave... I _.rH.—b—._.—pA—v__._p—p_..—rp..Prp.—..::.:—..:.EPg.____ __.—_—h b. r _.....—D..14—.4s._«..._fi..4Lv....4.. 4.4...Fq.1.d Tn m7mmmswemwwamsm o ...... wz2ktany'leqks as to roqvire no ape oial in+"kos 1r° g1norqlly not " ell enou331 1n~uloted +o jro’i from n. mechanic 1 ventilation S"stom. If in- sulotion is provided first, the houoo'Will become more tight and some spe- H- 3121 n r intol'os will be reo o1: Hod. ly',he Hoe of the "ir Choose netho4, the natural infiltration rate through crooks is usudlly coleul"ted as being nbowt once or twice each hovr. This is far from tho nir flow requirements, espocid y in rela- tiV‘lY'“ilo Wiotor Wenther "inns in such Weather tfie rate of vsotilotion : o? h cffi per hen or 2&5 ofm per hen oorre sp onis to an air connje of 2‘O+ (35 sq.t of floor area x 6' high) = 2hO:-el 5 more than 10 sir chinges per hour. It seems as if 1he use of cracks alone in combindtion 'w'th Poor of h cfm catncity per hen might result in nir volooitios dan- gerous with respect to drafts. Ryan and Pile (38) stote that: "9 good vontil tion svstom provides a definite intake for air to out or the shelter ano a definite outtake through Which the moisture—laden air may escape. Looks and cracks should be elim— ino+ed to mate the system fur iotion efficiently." Shier (92) is also of u‘J’Irl 338 um~ ;‘ u“? or “niliir~ vapor in tho Wolls and tho unp of _- .. | ‘ ., I . . —~; _. _‘ ~o .‘ 1 , tho sown Quinlan: «9 storm sfish nnJ .A A storm ”core on the oponings is csscntiil in controlling nir locrnfn. Yo vantilction sistsm will work sotisffictorily is long as cracg vontilstion is nernittec." Figure hC rcproscnts the finfiinns of Walton nni Sprngue (106) fron their lcborctory investigstion, ini shows the choracteristics of sir in— filtration through crooks in a frfine wall. The wnll panel tested was four feet wide and eight foot long and contained five cracks eight feet long. They concluded: "It can be seen that cracks admit a considerable Quantity of air. One hun”reJ feet of tight cracks (cracks resulting from nailing rough pine boards firmly ng"inst each other)t?ill admit as much air as a stendsrd ‘- x lO-inch Iptype inlet." fley Dlso add in sunnnrizin; their results: "It is evident through all 0? these tests that none of the connon inlets (any kini of special inlot eycluding nq+ural cracks) aflnits a very large quantity'of air. Based upon prescnt recommendations for size and number 0; inlets required for animal shelters, a very large p rcentsge of the fresh air entering an animal shelter nu~t of necessity come through cracks." l 339 60: 3:92am 25 5:23 153 :5» 3&5: case a E 3398 smacks: 25c t< .9. $50.... 993 an»; .2; “£33.... 225 ON. cu. ON. 0.. N... no. 00. oo 00. 2:...» 2E»; ..‘ mxoqco pro; 3 flocw .3 Q\ .1 O \ M \ .I wxoq o :9: 100m N 0 .1 H F N 00¢ a 30 .Q In 10410.. :M Jul 4443 two’s: . w w t can .\ .\. .\ .. \ .y . ) .x n J.-- BhO w A 6'. (“,3 (r‘ f5 +11—.(‘ {)‘1‘L-.+Iql’9 Gerh‘t‘ e71 ,- \ ‘_ I " - l' ‘ ' - . ° .)‘ l. T"o Ankq+~f¥thnar‘es: fontinuOfs vs iu+srnittsrt "”ULijztifln It hos “sen "n” is still a host dehctcd question filethcr ’rriu; "inter, vswtilctft: ””Ws c'o“l’ Fe ofernte” cc tinuously ct s rcstrictec rate, or unicr thcrteststic cectrol to cut off the fen onerction cornl,.el" at \ cart 4301*“: .-’}flfl l/Tur + flWhflrIlJ-qu‘ne. ”J ”I" IV 0 . 0 _ A O Lnrre sni cennet (ll) stete thet: "it is essential that n isture pro- fluced by the hir 5 he rcnoved continuously. Otherwise wet litter will con- trihnte to serio"° losses Tron ”iscese and, in col” weather, severe Garage .-‘.- ,o the structure will result becsure of condensation on the building sur— faces." I? the on+t1ke system consists of several isns, Barre and Sanmet's (ll, Po2h3) reconnenfletion is thet: "at lea st one _‘en shovfl i operate contin— uusl".' Shier (92) Qantas; "A size of fun ghouls he solectefl so thst it cnn run continuously rether th°n sWitching on and off." ih iccoriiug to Strch n (10?) it s s2? eto say tint: "unless enough insu— lation is used to cause the value of AC to be less than 1.0, it ‘oulfl be he ter to revert to the uncontrolled system of management and permit the house ‘cnrcretures to fluctua,e just shout perillel to outside temperatures most of the season." Cristel (27) in the pronince of Quebec (“anndu) considers intermittent ventilation, with i+s res“l_+in3 hr~her inside temperatures, preferahlc to continuous ventilction with respect to moisture removal and the maintenance of dry litter. The writer has visit ed mcny poultry houses using Cristel's reconnendction (one thermostaticnlly Operated fan) enfl found the litter to he remarkably'dry. Such results may be partially explained by the feet thet in iltrntion is probably +he cheanest a d the simplest way to obtu continuous ventilation when the fen is not running. One other reason for ‘— +11!“ rYW' nfixarn': 1- 1. +0~~ n 0 ‘fiffl'fi~ \wfir, vs ‘Afi‘\r-lfl‘p_ln ‘0": J '1‘“ 1 M ifi““‘! " L+h~‘-L Tfn _,__. ‘.\. ‘ \‘u _ : .Lan.U Iv .' .Ld ~J..~... - ,._,. in th“ fact thet in well incnl“tcd houses, moisture end tcnficrsture in— ‘ Q‘- {'wa A.“ ~--""‘ - 1‘ ‘ . ‘n crease stoiu ct e s o rite .on t:o lad ls of;. N C O O I :rom his own tests :31 o SOTV“5?WHS (to be descriied lot or), it is w — -5 A the writer's opinion *hdt in 9 "ill insulated house intermittent ventilntion is satisfectorV. .11 ti” U ‘f‘; s P ,- ,. u” 1. r In, ,1 t‘. nan -e du~~n ”-3 cold nerds oi sue way we i fill J-lq 7‘4» turned to 13% speed or off sud noictu‘o will accunu7“tc, When .ne sun s.ifcs Ow :htrj'nr‘ "no, worn-s)? 1'3“er o“ the :3.er 35""? {“11 “fill ‘7’):“1'1 3+2 {1111 Chpn-Cfi.’ +7? and \J "" - ..- U . .L 1 I nore nois tule‘will he rcnoved.thwn sccunuleted. Thtls over a 2h-100“r period or a pcriod of several deys, equilibrium will be reached, provided suf’icient air flow is ncinteined While the temperature is warm enough to reneve the excess moisture. 2. The use of ortorctic controls n. Honucl vs “utoreiic con+rol. inothcr cucrtion.rhich “is hecn dc— hetcd in ‘50 Fest is ":e‘h r "entile in: f1fl9 s 011 no onormed ninu.elly or under eutoretic control. Tr”1y the trend is toward conplete ittonitic control. I.Mil (57) hid some doubt about the use of automatic controls: "Auto- {4 O t 'J I.) ‘71.: C... {.3 C) c 1" I ndtic control eids uniformity of tom"crcture. Solenoid contro nhle lo“vcrs or n dinner in the outtake flue would he theoreticclly desir— recticclly, however, the additio-m 1 cost and the added me chhniSH to get out of order night nf"cct tho ndventege. Si Wllii ity and ruggedness in farm equipment usually give better results than complicated equipment." Otis end :nziae (? O) reoorted +h~tz "although excellent results were ohteined under conditions of nonnnl ventilition control, it mieht not be g) possihle to obtain such sctiPFectory results with this type of control ‘ I A Where less attention is given to the care of tie flock. Thermostatic con— trol doubtl.ss h 5 possibilities for sc.ving lchor mzen ken pine uniform ' Q .L - so”? .srotures. " 31:2 J" r venti- F" 3??? " “‘3‘. 1.“; 4.‘..AJ. , a n. .-n L 1 :- . L ‘Wni 3)., f) \1‘; I f‘ 1" OS .. U 0" “bani: "L“: O 33"". ._.C(.. _3 .H-1 31"” hr] (3 was} ; .’ .A‘ \.J .. ‘ ‘ . , ‘— “j- ‘. P - \ v I . . is ‘a s "~_as+gr* for +.aa followinfi reasons. (a .- - ~ - now _ l-It raoulres nsrsondl a,t.ntion ny a semi-Snilled ope: ator Q-Thore nust he so c r“ Hi‘)la course of weather riorna‘ion on "hich to ‘33 Se doc". sions 3-lt ”ill to necessary to ha? a“ t the S“me amount of cqui prent as for Tutomatic control L—Trohshly the most in ortont reason is that autonatic controls gives more sntisfnctory results. ?o also adds: "iu+o”a+ic controls vere devoloned, prinsrily, to conpens ate for sudden chanfes in tenparature. in average farncr will not arise at two o'clock in the morning 3nd make the necessary adjustments to his venti- latin system. This chore is unnecessnry'iith a‘tomatic con trols." b. ,Jarwos+at vs hvnifi ft co trol. Tribble (102) concluded from his exnorinent on controls for rsiry birns f n ventilation thfi t: "if the volume of Dir reouired to remove the moisture is greater thn the volume of air resuired to remove the heat, the thermostat should be 11 sed to control venti— lation. On the other hand, if the volume of air reouired to remove the heat is greater than that required to remove the moisture, the hunidistat may satisl; the condition more readily)" He also adds that a humidistat does not readily control temnernture and a great temperature fluctuation results. U. Pitchcll (75) state: "Thermostats are more reliable than humidistats. Thermostats are more rugged, and if rust -re ant ones with enclosed COD? tact points are used they work quite satisfactorily. On the other hand, a stat is rather delicate, especially'thc clement. When used in dairy H- humii barn or poultry house, they work foirly‘well for a time; however, before long the moist dust in the barn collects on the element causing it to be- come insensitive to moisture otanges in the air. The elements are so del- s it is practically impossible to clean them_without damage." 3M3 7’ hurfiyfi'ir~ts n7V'EV‘ setfr’setrvvftin so"e oniivrlrvuis, esneeinlflx' V ,4 v - - . (a u ‘ ' - h .\n ... " ’ . 1,.L v1 1.? ...“: .., ‘ 1 . ... -. ‘ I. _1 02.1.1 1nru.--«ea, .,;_e . er ‘ s F2013 ro :ht he. ever, co:.;r,er?1._;wg toe success 1'! _L‘_‘ O o 11, O‘ “ me ‘ o 7 I I o c: bd91r use in none r3 Low-es. in? main reasons for tile op11m1 on are hosed on ohserV“tions o? t‘e fsct *i1“t poultr" hoz es are so fill ty and the hirrls so nervous ?:-t the elewent of the huniristats would heccxe covered With Aust nnA He’eetive much sooner than in dairy'hnrns. 0. Tree of thernostot suitnhle for animal shelters Reverso fiction \J la. in... . J. .3. . . , .L ,-J_ . .1 .‘ o,“ '_ '1 _ h.nnnos,7is one Isel ;0 co orol fete lJ finin l sneiee‘s. moctfits are set qt 1 hmperet ure such as hOOF, their differential own he ad— - .. . n, . a v 1 fl '0 three Aejrees so tint the ”ens rill start .ch the 301 e tefipcr— ‘- V eture rises +o Ml $0? and will stop “ten the tcnperoture fells to 39.50F, Tternostnts vseA for starting oil hurners on Furneces have a positive ac— . ‘ . ‘ tion sufl connot we used ”or oninel "r 01+.ers. d Thorns "tot sett- - 3“”, n. no thornoetet setting of sinole fAns is ren— __D. L.- erolly hosed on the inculcting velue of the poultry house. In well insu— ‘ I _ leteA poultrT he"."cs, the sc Mtiic noint nev he on Wish as 2 . unile in -00 , - r-e nofierately insul"ted noultry houses, the-setting point is usually oround 35°F. 1:1159363.8871 “7163 1.1] it" (;'7) (bone . Ag) state: "In commercial 3301.13}va L"\“v‘s “here the tenneroture is controlled, thermostets are usually set between t? and 50°F. Well ant Voore (1L), in Hie hi”an ncke the fol lo ing stntqwnnt For poultry house‘: "If the thermostat is set to stert the fen r1t gOOF. - onA stop so p0 r. — it will Ao o good job of cor ntrolling hoth 5““rereture nnA moisture. In some cares (writer's note : TTrinsulfited or Vs“? poorly ineuloteo houses) it right he better to leave the fin running 00’itinuorsl" Aurin: the rinter nonths." ... , ° ' J .- p L l 3'0 ”zen several ions 8.6 usel, lu 15 sonc inc s reconwendex so save a cli— cr to Fave s more ‘1 -'1- LL" .L' J. 4. -‘1 4.:- 4- 4.1- .1. °‘ n .. 3‘ 3"-0261479 von 1?” ,1ot1 2"“,."‘ ,1 - '. m1 -;1 “-7 omrjfio t.o*'1;.-orot,,.rr‘. .,,omo y , _ ‘. ... ' .L. ‘. ..‘ f-‘« w‘ ‘ J.'. .‘- . 1‘ K «I- J- -.L.L°- .. ' 3 ° ‘, . 'L" . A H a V‘ ‘fir. _ \‘ r u . 5w .. |r V'- 1‘ y. ‘ o .; to ouuol “-1~ s ;1 6. -or t'oz 034“” r “-17, 1* "lT. >n11s 71J1 L 0 "n““f‘ '1‘.‘“‘ I“? "on ‘fi‘V'n' .. ‘ .. ()u. -. J . (‘151'03 n.‘:\ ‘nn‘rr‘fi +‘1n 4" 1 finn'ri y'} w. L‘;.,fl$‘\"‘1/' fi+ q+ (fin-L): '2‘ (v ‘ hnW'fififi .r'?"1"":( “ .11 ‘u -~' I " j ‘1-' .V . ~_ - .A ‘ 0L. .- >‘ -_ ..‘.) '-1‘ 1‘ '1 ‘ U -\.) .J ,1 _l"-l- 155 1 C"~.J\" — .Jol ‘ . .,‘4'-\). is l. A ”diry barns ”5th two tons: "Coo fin shouli to orovntoi by n thormootnt o o 7" O ‘ (‘qu «a . ~ 1 H 1* o w -L v-u nl- ‘ '1 . ‘ I‘D ... {,U s ‘ a J- t““ __U‘UH do ,1 ; who oil t.zul u .ov>3 , «a, . . ‘z'ov 1? fuiefidWWfQ “t ll Llflnfi. i;e No.0r—‘T1V0fl Jan is ornuont into .A‘/ --—‘\ ‘s . '3 ~: . w - r‘ be . - a r ya ‘ nee only non flfiflOFDHQTlC xohdufilfi“° 1T0 such ih«fi anViiy rovs out of air is rn+nrdefl or "+oo'o“ ““*i“nlf. ”Fe nflvnnfifes ol°ifi13 “y the monufwc- tavern of‘Jnmesvny ceiling fnns (Bl) are: "... savings in current and a o . Q Q 0 oofiofiont movowevf o” "1r 1d *hn VVilflififi." g. Ymoiro“l"*irj fouq fiquefl. In rooeht g2hrs none emphasis K"s Been p”t on *ho usoffilnoss of ”i? rooiroulfififig f“fis. T30 nfivfifitfigos Claimed ”or fihe woo of such fons are: l-i dryer li+ter ”-1 more unifown inmberfifu“e nnfl rel tivc humi3ity in the house B—A'Wfirfier ’ir +¢foor~+ure fit +50 floor and roost level VI Simon foo orinoiole o” recirculfifiinn inns is Based mninlv on increasin" 1 fihe rnie o” evaporotion of moisture from the litter, this subject mas been fliscnzsgd in fhe section Hehling with: ”The "at litfier problem" and will h. Cannoities of ”an or fons There %~s been and there still is considernole varihtion in the rec— owmonflafions o? f“9 size of fan or fans to use to adequately'ventilate a Y0“? try hOV‘fi. In foot, fliffovenoes are so grezf font there 15 litile wondex'+hnt no flfiny firmers find exfiension man are puzzled and oon't know :flvt .Size £0 recommend or use. \ [fill \ / \ L' :v!““V‘,' I "\ r-sa v-svws.~1"n \ r- Pun r~=$4 “n “134,-. P‘" r-‘Lei'fi 4-,” t 1‘64.-. r JLJ.S K3“, .-'.O.‘ '-' ~L .7 OW'I Cut ~‘ ; ”Ln. ....LJ. I‘ -1 g a 4.0) ..sf. t I . 1 'w the ”en size is us ’7‘" Ffisefl en “enoving one Gin 0” sir For each “en. - - -.‘ V _ _ 4, KeFle (é?) else s*etes the gene emf sees tket cs far as he Pnews, inis is 4 f ! 1: empirical value. The I.L.G. Electric Ventilniiy; Connqny, Uhicnqo knfi) also reconneni one cfn per Firi. Even ere Tile (5?) nenfiion inst followins fhe recommended everige insul°ting velnes ier “ninel ehelters, {be minimum ellewnble volume 0? air chenge un‘cr resorieted venfiiletion ?or Hons is l/h cfm of air (based on g o w. h " o 0 ° ° ,0 rele+ "e hnm1e1+y of {Sp r‘nr1 :ns*fle +ennerefinre of i F, rhen it 13 -15 F ‘r (3 oniside, i.e. fl OF +e=nereifire 4i?“erenee). They nfld: "Then outside tenper— DOA ii will “e fli’Fieult he neinfnin a consfinnt inside uh nfivre rises £0 \0 “ ‘ r, r‘ ,. . V‘: 4 H W i fi'r f‘ tnrjbrefihln of QJOF.’ Mac n e t.“ for lFCd filr LOVeJOWt JOHld CRHSC dr.?ts. d O! “F o o O J li is poss*“le however, fie Pole e fienperetnre difference of ) degrees and I esrnit fee inside *ennereinre to rise to SSOF unfier such mild conditions. To increase ventilation when tennereture rises shove freezing, doors and “inflows may he opened." T3ey finerefere recommend a naximum fen capacity of one cfm of air per hen. Reed (Th) stntes ih“t actually the minimum ventilation required to neinfiein the maximum inside relative humiflity needed teprevent conden- sntion wishi- +he huiliing seems to heve been established by practice as one cfm per four—pound hen. Fe sees: "This quantity of'ventiletion removes exhzled vnnor at low temneretnres, fine at normnl ouiside temperatures also removes finch noisfnre vaporized from excretions." 5 me .nerieen Kechine nnd Yetels, Incorporated, makers of Fan—Pee (2), are recommeniing two efn per hen. ‘t ._ “ ‘ T‘ o a" ..’n .L }. tfl‘ \ : ‘ ‘ 3" L‘.‘ V‘ ‘ ‘L 9 fl} waver i.c JlLCnlc (no) Scluc: "sgperlmcacal trcru on one a cent 01 Ml? re"uired iu“ic2tes that the movenent of l to 2 cfm of sir for in everage nature hird is sufficient with Forced ventilation." However, in their ‘ . I a recemreeefitiens \chle Vb), +hey used 2/3 cfm per square foot of floor nrea, hosed on the finiirts of Turner (103). Table Sh. Fen c‘pieity nni air intake area reconnendetion for (it? ”terent sizes of poultry houses* Floor area Fen delivery ‘ Apnroxinate Total air Number of (sq.ft) reconnenfintion fen eiemeter intake area 60 sq.in. (cfn) . (inches) (sq.in) intakes LOO 240 9 or 10 120 2 800 €30 9 or 12 , 180 3 1200 800 12 300 5 leoo 1200 12 h2o 7 2700 1800 1b 600 11 *‘Trc~ Voyer and Ulickle (68) ‘7 "O .. ultchell (76) mentions that investigations conducted hy the poultry hushendry and agricultural engineering rlepnrtrtents of Cornell Universit' have inflicnted that 2 cfn per hird is satisfactory For light hreeds such as {eghorns nni 2 2/3 cfn per bird is satisfactory for heavy breeds such hooks, in houseS‘uith walls heving e heat resistnnce of about as 137u012+.}1 two. Using the general floor space occupied by these birds, this represents about 2/3 cin per square foot of floor space used by birds. Beirbinks and Goodman (31) also recommend 2/3 cfn per square foot of floor area. Lippineott and Care (66) state thfit such information as is aveilnble sugfiests miximum‘Winter ventilation in the poultry house should he at the rate of eight changes of air per hour. In the average poultry house this would mein about 3 1/3 cfn per hen. I \ \~- I--' Oliver (79) “econrenos n "“Yinum o” it Teost 3 CPH nor hen with 0 Q. \ o n . a C a _u - "A a nininum of l cfn «or n=rd ~“sre O F or helow 1s eonnon ”W1 1.5 s:ere win— *—‘1 o tor weather *5W?°T“*V”“G “7130“ 3° Below 10 £0 20 .. ‘r / \\ o '- o - '3] Well an” score \ll/ 1n Tichigan, reconnend 1 fun copnCIty of gxh to l cuhic i‘oot of “i“ ior ecch s nore foot of floor area or from 7.h to , cfm Der Fen occoroing *0 the size of the house (Tnhle 55): Tnhle 75. Ten cenncitfi 0nd totel sir intake ares recommendation ”or oif?eront size o” poultry F7ook3" ‘. . . I 1.. . - . ‘1ze of flock Fan connoity recommendqtlon \cfm) humoer Total n1r 4n 1.. Totf’,1 Pf)? hen .Ll 1133.1.0 {Wren (sq.in) 100 hirds 300 2&0 300 [.4 fl O U J '1 .1 U) '3 O U.) U) 350 11,3 0 k0 '3 O (3‘ i u .\1 Mn 0 o O :1 720 r3 .3 Q J JJ H '1 «:1. a ”I L) O . .. ‘0 0 U! r.) H l—' H H H‘ W1 0 O 7‘ H. H :1. a H ..> ‘9 u re 0 ‘R 11“ 000 birds 1?00 76, each) 960 1000 birds 2h00 2.h 3 (800 cfm each) lth * Fron Sell and T'oorc (1h) Cristel (23), in the province of Quebec (Canada), recommends as much 9s h cfm per hen on the hisis thfit fan ratings are usually given in cfn of free sir which is a higher value than the actual performance of fans on ‘rinfly days, or when ducts are useo. The writer has visited nony poultry houses using Cristel's reconnen‘otion and found the litter to he remnrkrhly dry. In the above review of literature, the writer did not intend to in- indlnde all the recommendations'which have been puhlished. ”is main ob- hective is to show the Wide variety of Opinions existing on this debated his?“ —" ;‘ suhficct. In Lhe sections decli“fl with the nciunl periornnnce of ton venti— lotion in poultry ho cos, *“e writer will present his own conClusions on this suhject. V. Yechenicnl protection of fans ogninst Wind, rnin nnd snow To safegunrd the fonsfrom Whether (rnin, snow) and to prevent hock— drfiftiug (Wind), it is necessqry thot fon openings in the well he protected Ky n hood. ”uch n hood is especinlly necessnry Where the fan is installed on the win‘wsrd side of the huilding in areas having strong prevailing Winds. The radius of the hood con be chosen generally ns two inches more than the diameter of the fan (91). ixhnnet louvers (else celled shutte s) are also provided on all inter— mittent operation fins. These louvers will close autonnticnlly against inoouing sir pressure but will Open readily when the fen goes in action. It is usually rre’erahle to in°tnll them inside of the house, since those instnlled on the outside e*orvr’rair'zes freeze Open or shut so the air flow connot he reguleted. Kalbfleisch and Thite (57) state: ”Louver: normally consist of a number or smell notnl tlnps thnt 7T9 connected by a rod so that all the flaps op- erate together. This connecting rod should he removed to allow each flap 'to operate independently because the lower flap is sometimes frozen closed." Tliev add: "In regions thit have relatively'mild winter weather louvers may lxe placed on the outside of a born. In colder regions (Zones C or D), the Ilouvers should.he placed on the inside of the barn well while the fan is flooated towards the outside of the well. ITee/wt in the harn.will keep these ‘1ouvers from freezing closed." 5. Fan and motor reguirements Poultry house ventilation fans and motors (usually smaller than l/h hp) must; nce many important requirements it they are to Operate successfully v‘ 1 Q o o 0 . U‘ er the 9°V°FC urone *3“? T’0“7V93 1.6. l? 75”? m”‘£ OFGrcte twenty-four hours o Hey, do: c”ter day *hnouth s whole season'without any attnntion, exhausting dust, moisture, 0nd r"*onin fumes ill of which mcy cause damage to the "o+or—'ind*:g, noveble parts Pni blades. These motor reruiremcnts toy be listed as follow 1—”otors suc“1i he enclosed in” protection igninst a moist dirty thnsphere B—Yotors should hove hearings 7nd a luhricntion system which require only infrequent attention (Either hnll or sleeve—hearing motors will perform sstisfnctorily providing the luhricntion system is as near foolproof possihlc, Pan} ed nernnnen tlv l_nhrwnn+ad heorings are proferihle) 3-Kotor type should he such as to insure imme.i1+e sto srting‘whenever the current is turned on, ev-n a ter long per ods of disuse under poultry house conditions. N. 'i tchell (76) 3+.ntes +hat: "Ecosuse of their unstable speed characteristics and low stilling torque, sm aded pole motors are not suit ,2 . hle for this applicntion. ?plit-p*ase or capacitor motors hove proven to he sntistnctory." h—Thormnl protections should b.e provided to preiude a. possibility of over- hent'ng and fire in case o? stalling. (Protection against motor burnouts) Overload switches on electric lines feeding each motor are considered essential for the prot ec+ion of the motor and the building. A S'fl tch witi as IOW'an amperage rating as possibler hould be used to obtain the grentes (1"? nnount of protection. '{nlhfleisch and .hite ) recommend the {Olloning size of overlo d sn;,c h: (Tnhle 96 ) iit“, 7' I 315*- T9519 go. 5““orsqo of ovrrlosd s'5'.":7.i:.0h"6 7ismoter Torso Hotor Capacity of Voltage of Amperage of 0? fan power of speed fan (cfm supply overload (ioches) woior rpm free air) line switch I 8 1/20 1725 Koo 110 _ I 12 1;1 1725 1100 110 1/2 smp 12 1/8 500 110 1 amp 10 , 1/h 1725 2600 110 amp 3 15 1/3 1725 3000 110 5 amp 18 1/3 1725 3600 110. 5 amp 220 PO amp 1/2 1725 MOOO 110 C afip 220 3 afip "From Kn1br1nisch and White (57) All sloctricnl wiring for nofioro, switches, and thermostats should be _instnlled by a compotcnt electrician and proworly inspected. Scparste fuses should be provided for the motors and all wiring should conform to local electrical standnrds. As to fihs hlsdes, fihcir rcqriroments are: l-Tho hlodos shoulr1 he of such design that the motor cnnnot be overloaded and cxcessivcly hes+ed by changes in oneroting pressures. 7—Tho blades should be brotcoted against rusting anfi corrosion. 3—The blades should be shnpcd so ns to accumnlstc a minimum of dust (Self- cleaning). h—The fan wheel and motor should he dynamically balanced to assure long bolnring life. n. T» Lhn Pan finn+ reallv hélniul nnd races r'fl 550 Tqin PUTPOFC 0? ' 1... Winter ventilsiion is o rcrove 'ois‘nre st tie e"pense of the smOlles nfiovnt of ho°t possikle. Knlbfleisch and VMite (SC) ioiw: research on dairy 911‘17“ vo‘ 11""‘r1 cone to tro conclusion that the use of iucts c: ienfl Hi1g to the floor is slth 1y Lism vsntigoous with resnect to moisture romovol. In other words, tho use of ducts results in 1 smill increqse in the heat loss tVrovgh the ven+ilstion system for the removal of given nmount of fiol.011e The follo 'nv tihle (”intl le 57) shovs the soving of “cot tztcy founi Hy the use of air T‘enmr'wl nt coiling level as compared to floor level. . . . *' T31110 57. ”cni losses 1‘ron ”loor end CQIlln" ven+1ln+ore (Btu loss oer 10” vrsin.s of mojctvre removed sf floor and ceiling outlets) Untsifié' level of' *IESSJQ conditiong‘ Ebifi 13EE‘per 1W6 lC ctioniorfi diving in tenoer- n r remove“ mper— 'Zffl} 100 grains of he: t loss by air removal fiture nl «tvre 'water removed at 0e iling J from the barn (Btujloo 1) (OF) (OF) (E) (Utu/IOO grains) grains) I - 9 Floor h7.§° 75 h6.577 ,4 Ceiling 51.90 73 - LL.8 4’l°8 '*h°00” ~11 7100? M90 73 hfi.3 0 w , (LJ Cenlinv gho 76 h3.7 +'i“) +3°D6N -1” Fl, - [:00 8 o, .6 (if 9 7% 1%.5 + 0.6 L ~15 Floor L8.0 75 h5.2 Ceiling 51.5 80 h2.7 + 3'5 +‘°2O° -lr; Floor if£.5 83 112.8 Ceiling 52.5 75 113.8 " 1.0 —2.2 -30 Floor L§.O 81 Ifi.° , Coilinc 5’0. r3 8!; 21.5 * 3'14 ”-10” ‘30 Floor “1.0 81 2£g03 r Ceiling 1.19. S 71; 213.2 ” 2'1 ““8715 “'30 Floor 113. f3 92 112 o h r Ceiling 1.8.0 112.1 * “-3 *0-715 -30 Floor h7.0 9O $3.8 +1 15% Ceiling 51.5 78 13.3 + 0'5 ° I ~30 Floor h9,§ 9’ b?.8 ' Ceiling {113; 8?; 55.3 “ 1‘5 ‘10-'72; ‘30 Floor i‘.h.0 96 11.1.0 “'0 2 _ _1 Ceiling 118.0 90 111.2 ‘ ‘* From data by Kalbfleisch and White (56) 356 ‘ no oir of ponl‘r" hov"os would Behave J d-‘l ' ‘ .. -1., . It shows loqlooi *0 hrs "o 1-1% ‘ 4*. 9 i J. ”5 i. f 3 _J J J _J (“J +B¢ sons 1s ¥Lo 1ir in floiry rorns, oats 1t flho 0%. - s . ‘A 9" Q“ '\ ' ‘ ‘ F ‘ 1 *‘ . 031113: 1s nof “n1? .ot‘or *Fon *no 11r .5 +1o hloor Ant confinins olso a rel— 4-.-. v ‘ fi-L v-n ‘ ‘J- .0 ‘ . . .z ' n . I-. p °u1solfi :79--“r o own. o, “ois*uro on! onionin g.r (3on81tY rothon to SJ. . . . o -, l’. ”1? - ” r7'6"?) h“”fi Foo “ollor Sir ot the floor. Kolb’loisoh ond no fie K"3) _ .l“ " .‘L "1 rosoor"“‘vo274 fihrn moon fins? oven in ponlfry houoor, the construction of o . q c Q vonfilotlon £3137 owr I or nozloonow Without any horn to tho poultry house 3“ '.' ‘l‘ . T w "1 't : J“ L ‘t A -fi . rc‘ ~N ‘2 ~ 2- . '. 1 . n H "on - non". n "’~ *:on o .‘ '1 ”n. Loot sov1n , no insfinliotion of fins ”on 4 he oinpli’ioo find *Foro monlfi Fe a saving of oo+h lohor or” mofiorinl. In Mir? Horns on“? -'v'l“"i*.io“°7 “(7"“1‘5'Vte is oncmfnforof? ‘tlconnso 03" the grontor . uv ‘. , p r‘ 1‘ 3 J-.. i]:r;‘-: - AL. -L-\ ‘ Vo’ V 1ncoo.o21rnce o. Lvnws snr . o ._ .1oulir of loo ,1ng .Len out of t3: “1' I .\., . h"vo to be nested, sinoo in ”Sir? horns the 0 TE? roovo osctrption TCUIH f?“ is ”ireoily noovo a rfifoor ”FT Gonorefio alley instead of being locoted direotly nhovo ‘he Jropoing pit 1s recommended in poultry houses. Pringing 1 r“Vfib‘very close +0 fire wot litfsr or ”of ”ejections in the pin may prove to he more oflvontojeous is Fovn4 oy fitaplovon an: Cox (95) in tho oxpcrinen. described. loter in 1515 soofion. loo writer holioves however fihnt more hosts are rooniroo on fhis n1,ter, sinoe not using a fluct would make the use of Fons still more apponling to pon-trymen. ‘ l I It should He noted that oust: ""v also )e useful if it is desired to aitKad frottle down *he von‘ilntion nir rate by ihe U9. Of a 5hUtt0T 0T “QHPCT- 5. Fan ouofi consfiruction. *Yhnvst ducts for fons con be made of any fifiht buil”inf noferinl (105), such “s Wood, cement oqbeStOS’ or insnlotion oonrd, or of wetnl, such ”5 those commorcially available. A door is built in fihe onct hack of fifio motor so it csn be reached for cleaning and lubri- Cfition “no Opened for milflawoofiher ventilation. The bottom 05 the duct 1‘ J O ‘ . snoulo He 15 to 18 loofios from toe top of the l1tter. IrluI‘. ii? ll'l.’ 33:7 H In q 5wg_fqn gyw¥ow wfi+h thn fins rifle hy side, two Jams n1; he p11¢ed in *30 "0“” tht (33) or "7ce only onA CV ffic two Gin be equipjed'with a auct (105). Exhaust duct Crn°8 r"dtinn“1 area and dimensions can vary consider- ably. Th0 £011OVin: iimfinsions sngqcsfed by Fairhn0ks and Goodman (31) are fireeenficd have 2s a guide. (T201: 33) Tnhln KC firen nnfi fiinensions of duct for fans of different \I . O O capacifiy and diarcter A.“ Capacity of fan Approximate diameter Area of duct Dimensions of duct 0? fan (cfm) (inches) (sq.in) (inches) 270 9 to 10 1hh 12 x 12 hOO 9 to 10 lhh 12 X 12 SRO 645 10 210 1h x 15 to 10 168 12 X 1h \O 800 12 210 15 x 16 1000 12 30b 16 x 19 1200 12 360 18 x 20 1L00 12 396 . 18 x 22 1600 lb h37 19 x 23 1800 11 _ hflo 20 x 2h 2000 16 528 22 x 2h * From Ffim‘mnlm and Goodman (31) 57 ~40 1022t102 c1n i22s TFe gencr2l recownepo2tion 2s to f2n loc2tion is to install them on 2e bfl‘ lfiieg 2wny from *Ie prev wil; nc Wind. Bell 2nd oore(1h), the Side Of; -. s4. F.) TicFigwn, state: "If p12ced on +5e south or e2s+ sifle e, it will not reed to ”or? 232inst tte orevrilinq winds." As in tte ease 0* coiry onrns, the int2kes 2nd f2n (or f2ns) should be located in rel2tien to each other so thfit fresh air will sweep through all warts of the house in trav.1irg from the in 2.kes to the exhaust fluct without 122vin2 213' d“”d 2ir pocke s. AccorAing to Clint r (78): "It seems that the best place from ivlii ch t0 exhnust the 2ir 2n:1 nois*ure is from or ne2r the dropping pit.’ The reason L‘e fives is that: "tfiis is prob2hly the point 0? qre2test moisture concen— tr2tion and it is Jesirsole to firsw the cry 2ir neross the litter first to sint2in r1rv li‘+er 22d 2cross +Y2e dr0p2inws 125+, since an exc ess 0f mois— ture in the dropnings pit Will not cre2te the problem presented by wet ter on the floor." V iii? chell (7o) 22ke 2 siril2r recommen12t101: "In poultry houses 1'. With the perches loC2ted along one side, the fen and exhaust duct should be located about th‘ center of th2t side and +he int21 -.. ‘1- in. 11 “ -.‘}; Ll) . K. ~13 "4‘J"'-"’- "-" -» a ‘-» """’ ‘l C x,‘ ‘: 2- ' . . * .L.: ~ In, . 4.?!“ ‘ A .\.r‘ :.: on ““4. .-.~_.,.‘ ,4 i ,-. ,‘,x.1_._ “V”... ,‘J. unzra ainwg.fi'u.< r 7?; ,t. ,nh .h-,v$sv v; (M L.nrddu Hutjfist,n s.L.MH,,., due. 1‘ 1 V‘ 1. 9 :5V?.CC C0j2h81.0 Cifirt ‘ 1 “pry-1’37"; {‘1’}! f: Yfihfl+ I‘M/'1 “IN-:fl-LVV\‘IF‘ _ . ._, . -— - J .A - ".~." . .4 .AI ’ _ o o q ‘ I or tfidndfitofi twn ?ml‘r137 nnwnmnm¥o n arts \ono for ; . l fi19honrh {he‘Wrif O r‘ O I/ O I ”Ol°+flrfi rnmrvol and one for inmfiora+n”e control), wolflrlch (3») 1n le O”i"i“’1 “fihn? “rnbfifiHnfl nnTV own hnnfi n33 noifitnro bfllfifihJ comp061fe chart \J 4 . ' ' " ‘9 ' ... (”n j ' ‘ n J‘“pc‘\ L~rm '7“: h ‘= “ma-‘- fitwr". 710': n3”. w. 7xn" fi‘n!‘ (‘A‘V‘ no. 4- h1‘1\ rt -: vx-w \;.L 01131.10 ‘3’ ‘ -~‘;,- 1"‘»,, . ,. ..e_ u‘ . .. ; ~0~- 1“,V _1_‘ ..'-1A 6 éJu'J‘. ).,.e ..'.) AT)‘ !\_1_'_.,C ‘,.‘ .3 . “Ls :- . e- .L 1 .L‘, ...L -. A '1‘. J.._ ..° .° 3‘ .. 4. ° 4.1 ..',11. 53.“. ICC. an ...1“. 1'1??un 771,3. “:1 :1. .....13 .1371 £1.31“; 1.3 1.33. 43: JC 1.“. -1110 3. 1‘33“; COI‘IIQI' ., 3 : - TV L8 ’3: - .. .. n w .L‘“ ‘5 ., .M .r' . .L'W -L-‘ , be nred to dnquse EIQOIQFJlelv ”m9 ,fizformnude 01 n fan van31¢2uion sys— tem. (1. V. —.,\‘ 4- fi [Jofi ulVQn: C is-Le unwnnrfitwrc = 2) r A! . ', -A fl 3.. ‘_ ',V':- CLO OJtSLle r颢tiwe Jufilflwy : U/p IHQ340 ififlflirfifure = KSOF jn£n ”f ”“5"fflT9 “*nflucfiion in fhe house : l.?§ Lb./"r, 505ir€s _, «niCFt of birfls = 5 1b J - w o I o 23' r Tofihl cont brofluctlon \UAT) - Accnrfllng to [_mghcll and 10113y15 cuvvc A H Paradntnge of litent hctt (J) = According to Kitchell and Valley's curve B 361 *' 4. .. ".1 1M .._ n w "::- - ma ,. ‘J-‘. T" " 'V‘J- /T' “C; ”A”? .40 ”*1 4rd ;;.fr? 4TOIDUCIU13H {-I) ; 2 qu/:T, hen I w ’ \ v 1 fifi+ “h“nm ' "\ r-“H 7 “4": (“4" (T ) .. Ln '4"‘/ W" ”*1 ‘ “_ . “.\.- 1., l . :C‘ _ / -'./ .’ I) *'nqi ”.\~o rq.nwnn+rw~:a¢:,~ «0 44~n 1“‘~m ’n“\ ‘WN q+ *'~ “79 “q 1‘. - —« ~ ’ ‘. s: " " .-‘ ‘--\J IJ. A x ;.O | ‘/ \-.~/’ = J; 31‘1/ 1., El, _\ :50118 var J- ‘ M‘A‘ ‘. ... o o : ’ ‘ : I O . J. 1’ ‘ V ‘.'1 .Q?;QC: ch findnrc,:chl :an‘c vulc£.vo humidjty No we expected amen w ‘ VI 0 I A. : +§f éwmve tondw+1ons remnlfis 6%? 1CLcnt1y long enough for fifie V ‘ g. o ‘ “ o o o In. ‘ o cwvcc can::flm:s 50 r0133 tho cndlllbrlum or bninncc Unlnt. '4 1 .' 0 I“:171“fincwn+1rril 907n+arv1: ” 1L?H.9 cPh/fifl F4rds (?“cm ~cc+icfi on ccfipccifc c%“*¥3) ifislcr4 n? 150$ c?h/q0 birds n8 shown on the chart (T.“, = ”Na Vénbnrafnwe pwrt a? tkis chart'fins *ounfl to be consid- CTn3ly in error.) In corms of cfm pcr hcn, VS = O.N9P§L cfm/bird as compfircd to 0.50/6 cfm “or “1rd 73 shown on the Chnrt. Vi (45°F, 30% achfied) g 1?.MH (From Tdhle hh) WT x Vi 9.50 x 13.h; 2.30 x l3.Lh 2.50 x_13.hh ’7 - .1__. 6000 VL '(fooo x 0.:19933 2 67.27 (7.2 .3727 x 10"” (65°F) ..., 132.6 x 1044 lb/Lb dry air* "inct. = Wonct.+ “‘7 = 21.02411 .23 .-. 137.25 " r ‘quct. x 10*? 13702) X 100 R0 3!. = 1‘ = 1 afisgt, 132.6 : >100 = 10053 £E?lution by "58 0? £50 hcnt and moisture balance connosite chart fv’referinp to fiho composite chnrt, the answer is found to be 875, . . - . . H A 6 reason for she b1: dlffercnce from the true mathematlcal solutlon (100p) * Mom Zimmerman and Lavina (l9h5) 362 Esmmmzoz oz_>. z<.n_,.n._o m_m>._100 a 100,. 1“' HH'J P.” “"1"“ "‘I‘j.4-nv‘!n ‘snn"? avara “A: (+1-wa5 ‘xmfia‘an‘ n“- [9" -. .. ‘ .\xv, ' _- ,x,‘ .‘u -1 .,_. ._.,~.. 1.1‘ . -.._| x. ‘l' n ...- .Io .- goo rule 1_Uco a? corrootof oliflo rule for temperature control v ‘, YT .‘ / ’5 narroctcd = 0,hh ?_U99 of exact olifln rnlm For moiflture ”onnvql 3 1'7 122 x 10'4 lh/L‘o dry air 1H¢ X lo-h lb/L} (“P“rorinctely, h? irv air C"" n‘fif": 3‘ r‘ 45-Jq. '--..lu-,> +10- 1‘.) O c+ II the scnle) 132 x 1041 1.5/:2: 4w air / ' '1... 1- ‘i - - *2 . \dpproxlmntoly, 3. extonninp the scale) Then ?.N. (650:) 1 >100 ,._ 100:: ”o cincl“'n ”row 230 n5fi"“ d’ocussion in” “ofil'c”‘_onn in no? he C'fd *h"f, mitt n.11?1oi/“Ti‘o YvV‘onfiV1 corqvm“itc :fi”rts, :Kr10“1v:fiio “:1 clifk? rfilréc ?5ll rrv?e inninl in tho future on X: -7 hR-y con ‘0 role the :::t accurate posoihlo (Tho writor‘s efforts hnvc renterYVrontoa +rrrnro ‘9??? coal) .J fi-f’ tore rolinhlo Hrot nnfl moi"tnre Rota nro ohtninoi ..th Prom colorirotor . 4 J- J. .L L _' «I» 1‘- -"“=~S “T".- .-:‘-‘-" " n 6.1.2161 nattwrjr hour‘s J. —- 5— hl ' “_- * .a ‘1‘ D u ‘9‘ I .‘ . ~ ~. ‘ q“ 1 ‘r . fl ‘. 1- B-l no.» Lno.ler'o 19 “cot'reu o, tao fiOCAQEJSfl 72H rate 0; ncsvtvre CVQP- or”fi°3 fTOfi Foultrf Hovce litters at ”ifforent onvironnontnl te”Pcr1trros “if for €‘fforcnt depths on” homogenent of tho litter. Yntil svch onto 2rd ivcilgfi 7, any :21 yfii. o the ttcoroticnl por- iorfiinoc 0’ ion "cn‘ilction will be suo‘cc’e" to co rilorahlo error. ."*"‘ - ‘\""fi~ ' v v - -‘ 1 ' ~\v ‘ ..s.. » umnwsnnqu on may V' rlfinTTnm . ... - 4 ~. - _ . ’ ‘ ... . -_ .4 _ _. ,a‘. fl / ‘.“ 'flr‘ V' .Yr‘r" '\"~‘1~‘,“ T" In”. «3 Inw. 1 n«_,.. ,5 .- l~ _. V A a ‘- - [-— ‘ ‘ f ‘ . A. Itnvv‘se of‘4wie ‘tlhhf mfi~ ‘ w I . v _| ‘V (K 1 i‘lf) Dunn/inns 0‘? +11? 4" 1"" ' t“ "‘1‘. O“. ' ‘ ‘ "“"V ‘ wI' ‘“ ‘ r ' " ,‘5‘; __Olfi’ {- : .—. -‘ :v‘ V‘ r.“‘q ‘- 5nvr 1 .-—--—-. ~a -- .l-‘A vwfiufih on: -~"-‘ ~‘ .1 f: pojjnior: ~ A-_; - A . 'I _.._ "I J .- ‘ ‘ -.1 .. ..ll .. /-—_ —_. l-To determine the trend in the total host nVnilnhle per hen at different onvironnentnl tonnoretnres, under actual honsinv conditions, and to check 3 then ‘-'-'.".‘.‘..h V-"lIICS F""‘{f‘i"" if. l.fi:*7'fet~“ #91}.- 2-To determine the trend in Fhe net sensihle hoot coming from secondary sonwwxzs. 3~To detcrnine the theoretical moisture removal cnpncity of fans and, if possible, to relate it to the total amount of water produced in the house find to the change in the litter moisture content. h—To determine whether or not ventilating rates as nigh as four cfn per hen offer a good recommendation fiwr houses of different insulating value. 5-?0 deternine whether or not intermittent ventilation nny he cpplied suc- Oessfully in houses of relatively high insnlnting value (AC value around 1.0 or lower). 6-70 check the usefulness of ventilation slide rules in analysing test data. 7-To indicote the need for further research. Two poultry honses were studied by the t-iter for actual performancc: (3) Hr. Joseph Rohmwnlter's poultry house, Okemos, Route I, Liniigsn, and (b 13. Albert Levnsseur‘s poultry house, Ft.Alhert, P.u., Canada. A de— scription of the flock", houses nni ventilnting systems will be presented here. The ’irst house'wn. studied for the period extending from February 15, to finrch 17, while the second house was studied only for the period from iecenher 16, to December 20. Each house will he described and analyzed sepnretely then some general conclusions will be drawn from the two tests. ”. lest of Mr dosenh dohmfl‘ltcr's Poultry house / -. ‘ . . \Ohenos, monte I, Vlohigqn) lhe “’rT yopW"°*ion "we tonnoced of 3°23 Leghorn leyinr hens and 100 wales it the neriniin: of the exnrr’nent (February 16), makin a totel of 5028 hirds. it the end of the cxncrinent (Karen 17), the number of hens wee reduced to 1598 raking a total bird population of 197? birds (Unrch l7). ”‘th average woi rjht of‘ the hirds was conpm‘ed on Fehruary the 29th, by W O I» o 0 ~ Iv . a ‘ a i q ‘weign no inW2Vidunlly ?flfl nirds chosen at renoon (approximately 10% of tne h‘rd population), and found to he E,9§ pounds per bird. The range of var— . o (J \ o o a j,"3+,1r\h woe: Pt‘nvn 7.7 4:0 5.9 hannns (thls 15: :1 ‘r‘rn'vz,'7r','«inb7:.}' heavy 11116 Of Foghorn S. r‘ 0 rm. 1 I e o I n n, 11 F"_‘ ..‘- v! {zvx ‘ ,A'v‘ (- hr "-1“ -,—-w --lr‘! nth.) . ' \_.A.“t'~ ..SLII..._I '71“. -1.'.L'r1n=.".CI ..‘ I The house dimensions are 30' x 201'. -iPhtY‘fiV9‘”in””WS are $901“? south (front) and eleven are fecing north (hack). lie nests ere on two tiers alone 5““ 751“ 3‘11s fx’ LT: .er:\"s find 1°fifi9517 ilfs'nrc nhout t7ree .) n x.— feet from this well. A V;shaped metal waterer is "ixed to the front well and extends noquy all its length. Water is continuously flowing in order to mnintnin shout l/h inch 0? water in the hottom o? the V—shnped waterer. Feeders are pieced perpendicular to the Front well at a distance of about four feet from this well. The litter lies lireetly on a sandy soil and is node of baled straw. During the test period its depth varied from 6 to 10 inches 111 over the floor with an evereqe of about 8 inches. _- .....77 77_77__~_ 7 _7 777;, _ . w... II“Hiflarflllfllfllflmflmm 1 - _ Fig. h7a. Front view of Mr. Jo ' house, Okemos, Route I, Michigan. Eighty-fiverdndan face south. From left to right: first, second and third fan as referred to. in the m. This house is 30' by 200' and contains more than 2000 Leghorn hens. 369 ‘ Fig. 1171). End view and rear View of Mr. Joseph Rolnuwalter's poultry house. Eleven windows face north. 370 ". . ' O o o “ "A‘ n v“ 1‘ L ‘\ "I‘ " ‘ 7‘ y- ’ 1 A L — r A w _/. ‘ Q ~ I 1'i“ :rj- ot' .r~~.. 'gJ. fi‘t- “- .l‘\1 j V‘C‘ll. .la 'hév Vbr‘ ~1t10 _nfll F“: ~ ...— J- ' ' 1" 1 I .2", 1-0 _ ": ’fr’fififlv‘v‘fictlnn 1g 3:; _, OIIOWS: 1—Io"er n‘rt o? Tolls = 6 inches hlocks C3"T‘TP’FW‘ Pdrt 0? ”6113 = 7/h inch hoanS, building paper, 7/8 1000 1Jofll‘fls -/I 3-Qoof or ceiling = notwl rootinj, 1 inch Colotox Il'fi.§-\ "..\ "'.\‘f‘ h— andows .-_- L171? 1 one 7 5—Door near the hklrd f0“ = 7/8 inch boards .1. 6-“oor near the ?irst fen = 703V? paper 7-Foundntion we _1 between the feed roon 0nd the pen = 13 inc-e es concrete 3"] he writer conputed the area, heat loss and AC value of each of the con— struction units. T‘ e foL owing tooles (T phles 59 and 60) sunmnrize these Table 59 unnnry of +he conputnt ions for the total heat loss of ohm vrnlter' s poultry house, Okenos Iioute I, 7 Jr. Ioseph 21 Nichigan Unit A . R ‘AU Radiation or Insulation mt loss exposed area value AU = A-E-R (sq. ft) l-Roof 7950.0 3.75 2120.0 2-Inner port of Wall 1050.3 1.89 ' 556.0 lh9.2 1.82 82.0 3JEWVT-rnrt of wall 1061.1 2.26 h69.0 h—fiindows h?9.0 7 0.90 h76.0 5-Doors , 100.0 1.73 57.8 Total 10,738 .7 3,200.8 A total AU total C=Uaver-- m - I'OTBET'Y" '33 Tehle ’0 AC velre of .r. Joseph Behrin‘relter's poultry house, 01::31108, Route 1, fichijen. Ieriod A totsl Iurher A C or U over. AC Radiation of Radiation or valu value area birds exposed area per bird \sq.ft) (SQ-ft) Febr.ll-l? 10,738.7 1928 5.57 0.303 1.686 Fohr.1C-2h 0,738.7 1919 5.60 0.303 - 1.697 Pear.2i-S 10.738.7 1912 $.02 0.303 1.71L rnrch 6-12 10,738.? 1906 5.6 0.303 1.710 Heron 13—17 10,738.? 1898 5.66 0.303 1.71u ”‘1 Per nrncticnl purposes the AC value of this poultry house can he said to be 1.70 for the Tull length of the test. MV‘ _ ‘ v“ o _ _ 11. e fans, ticrm (Tints and nor inf/13.05 -l. . Three 19-—inch Juel-speed fans (1/8 hp, llhO/860 rpm) nenufectured by James hsnufncturing Company, Fort Atkinson, Wisconsin, are spaced 66 feet m .L from each other in the south well. hose fers have a reted capacity of 9950 cfm (high volume) and 1966 cfm (low volume), free delivery. The ther- nostats pro set at 35°F nest of the time. No special sir intehes are pro— vided; some front end rear Windows are opened 1/2 inch at the top to serve es intdhes. However, especially during windy deys, the 10‘ x 10' door in the west end of the house seems to he the nnin source of air inteke heCnnse of the fact thct the frane 0? this door is made of poultry mesh and only pertislly covered with henvy paper. 372 r, *yfistuVWA‘VfiLm;-? ’3‘] l . $.. A. ' A .Z . m'a . L‘ N-I " I 1‘ s" . a- w. J—‘ . 4-3 ‘ L 1. :':“er*w.n1 e . n11 .AL.11.1t.r 131s; 91:1er1 s M' 1 ‘ V I o o A .9 ’ , l. - ‘- . v' ‘. " I u 'I ~ \ N h n. ,_ Terl‘loijrenns "n- -'.'._‘.‘o.':"“.t‘.s. Irev:_o.1s to *he use or. the lb—po1n. -,»ro.m potentiometer rmcerinr, +he writer nine nuwerons tests to fleternine the Hw— ‘ '0 R Q. , ‘r‘ .‘ . - . . L P 4-..' L'v. h ‘ qree 0. ~00 reel enc rn,roru01h:li.y c, .so .nerncgrlnh and three nygro— ~ ‘1 thernosrenhs that were nvcilihle. The results of thi stuiy are sumnnrizcd Y “ere: 1-{11 inrtruncnts seen to give antisfectorily accurate results only in a on or’Oh 1' .L‘ “..‘ H ‘ l’ -“’s ”V\ wv . rt .‘ . a 0 ~ I. . .. . '.~ . .- Tfl'JCTSV-ll ran”: \p~0J~ulJ JV‘J) find 19-2ON 1e10t1VH humidity) nnlf being on each siae 0? tte adjusted tennernture 0r humidity. '11 cf- H. CO I Q-Instrurents nfljus*ed at insice conflitions give results not at all s. fqtory when srhjectel to ontside conditions. 3-furinq 0 heavy rain (fiovemher 15-17), the noximun relative humidity indi— cate by the different instruments were: 3.1. 3112 x . beimm of 100;: for 3. short time then 96:1 for a long time Enct.T. ; Horinum of 83% for 0 long time 032—33 = rtagsnm of 90:: for :1 long time es compared to a maximum of lCFZ for 0 short tine one 96% for 0 Ion: tine rs niven hy the ‘ireort Veqthcr Wurenu. (h.R. = The only'instrunent viving good nerforrcnee Hurinq the rain had on unsatisfactory perfornnnce hefore the rain). h-All n”j“¢tfi9ht8'*fire node with aijuctnent screws or knobs. There ney be some possibility of better corrections by changing linkage lengths but such qfljustnents would require instruction books for each of these different in- struments, and would reouire 2 room with controlled humicity and temperature. g-It is also prohahle that preper cleaning of the hair clencnts might give better results, since sust collected on them may affect their performance. \u -J u '5 1. . 1-1 ._ .. 1, ‘ n 1: ,-' . 1- [J 7 ,1 L -11o Lever.1elcss, 01o sloutl not expect zigaer icerrecy .hcn 3; un or the 1- A ' , .. . .f f n n c o a 1 A j "“ ‘0‘ O C n—oolihrrtien curves seen inpossjble occ use of tee luck of TED?“ «CLnlulty . f ‘ 1 H \‘ . ‘F. r- ‘ - ' up? too reeo for ccn.to.t choc 1n; and adjustment. 7-Tcnporcture recorders, in general, hcve greater reproducibility than rel-. etive humiditr recorders. B-Thesc instruments would have to be checked and adjusted nore thoroughly before boinfi used in research, 0nd interpretation of the results seculd he very cereful. V-Thcrnocoup‘cs for dry bulb temperature should be preferred to these in— struments hecwuse of greater accuracy and reproducibility. ln—Thernoccuplc errengcrents for wet bulb determination should be preferred to these instruments becquse of :rcnter accuracy and reproducibility. As a result of this study, a recording potentiometer was used for both dry bulb end net bulb recording in order to get a greater degree of accu- racy. Recording strip-chart pofentioneter. A 16-point recording potentiometer iros'used starting February 11. The thermocouples Tore node of twenty—six gene copoer and constenten wires. They were instelled by fi“st wrapping then in masking tape end then festcnin; the nesking tipe to the W“ll, roof or posts by the use Of e stsple gun. This method was thoujht preferable to the use of a staple gun directly 1 :15. 3 Ni V (J fi‘ over the +hcrnccouples, since ht possibly'dennge the insuletion end provide undesirable contact between adjacent thermocouples. After their installation was complete, each thermocouple was checked in plcce by the use of an ice water solution in a thermos bottle. The po- tentiometer was first set to record a given point end the recording or print- ing nechenism was stepped. This procedure made it possible to observe the 37h J) ctenues in tenpereture at one point for 9 period of time of any length “ince nhen the recordirg recheni.t is stopped, the some thermocouple remains in coc+nct ell the tine one the indiceting rechenism may be used to show the tensorsture changes for the point considered. The thermocouple junction res then pleced in ”he ice meter solution end the indicated tennernture TfiS checked over 3 neriod of npnroxinotcly one “nd a half minutes after which the recordinq nechcnisn mes set in operation to ellow the printing of that point. The reccr”ing mechanism was stopped again and the procedure nos re- posted for each of the 15 reueining thermocouples. Two thermocouples were found out of order and replaced. Three copper—constantnn thermocoupleS‘Tere recuired for the tine of 0p— eration inctrunents (as Will he shown later), end two for the vet hulh in— struments, eleven thermocouples being therefore left for nonsuring outside on” inside sir tompqrnanre, The use of each thermocouple is presented here. Thermocouple Use Thermocouple No. 1 Time of operation of the first fan. Thermoc uple he. 2 Inside temperature 5' above th? 5100?, near the first fen. Thfirmocouple Ho. 3 7"Yet hulh tempereture, 5' shove the floor, near the first fan. m v 0 ~“°Tmocouple do. h Inside temperature, 1' above the floor, near the first fen. Thermocouple No. 5 Outside temperdture, 5' above the floor, near the first fen, front of the house. Thermocouple No. 6 Time of Operation of the second fan. Thermocouple No. 7 Inside tennernture 5' above the £100? l ’ , near the second fan. lhernoconqfle No. 8 Tine of onerction of the third fan. 1". s :crficcaufilc V . J It*1”c *cwnarnfiure, 5 1 i. 1,, -3 - ,4 fi“71 ch? td;:c fan. -IO . lo ’ .1. e‘ V ‘v‘\“1 H 4- 0'1“ n‘fifi ‘1 , ~._o,' 4 . .‘ “c1” 10 rowple ' abnvc the floor, 1 PH“ Y'“ max 'Or.ficp1310 30.11 vn“e, 5' *Hove 5he Floor, near +59 tFird Pan 3¥0V1~c rowc fcfiwcr“5irca 7' .‘\ ““9 ”7 mar _, - -\ . - . m, v yv T ltfifinocauplc No.12 ,nc iflc ficwccrfifiwre ”fifq#Wficnnnle V 1- _ 0 ‘ > _ hcrr fhc flrsfi fan onck of {fie Ponce. - 1" Yo.13 Cutnzdc temcernturo, 9' share file flnor, A _' ? ‘\ ‘. . nqcr khn fcrsfi "an, 53cm of 5:0 nogsc. my v.7 _g ctorfiocouple ho.1h Innmc “n1” {" _“*mcu0”hxe sceowfl e tcmjprqfure, 1' dfmvc the floor, - ,3? Tnn. 70.13 . L Q ‘5 ". \ ‘ A 1 ‘7‘- J IJ+ufW‘+W?1JQerUTe, 73 L: . 5 ““" ' a ' | ‘ o J'. \ ~ n“ x \P‘ (- Tfl_ r” ."n "cch 7,wfcr, “1r 4 n “TU f n. ‘ O 'n A ‘ TY / A. . thrn0001plc -o.lo Inclfle fiemhernturc Cincc +59 i“"* $.I) I 1' chove the floor, ncfir fhe third fan. “uncnt wns priflting 1 1/2 in h C i / ficmporqfiureo t3ermoccuplcs were connected in such a way to a t_w .ing ‘J. varying as much "5 pnssiole From *%9 nrevious _ ;Ls one. A ..'fc circuit wcujd have Dc"w1*fefl *Hcrmncnvplce .---v~ ‘ r :‘L ‘I' . the use of a °"ficr number of But ROC“W"O cf +ho fiiwe of chcrnfiicn instrumnnts (fio he do- scrihed 1nier), +. 50 cycle Enfi fin he +Mo pfinrfiect pngc€ was fihcrcfore refirrfl 1n "nch fl = 'J’,F‘I:v_ 1“ . ‘r ‘r 1 "q l 1‘! PT"!(I "‘1': “cc inwfirumcwt . r to prlnt 1‘ . i \ ”‘0 4 .\l 1 o ) finmnnrnhures every n mlnntes. is‘ts were mcic to fihc poultry hfififfi in or; 10? to check the i nts inc vvrify'thc howsc conaitions. n o+w~1 --.) VA- L1— v 5"“? L .L .. . ;'._._I 'r8 376 ITJOR TIA?“ Y 3“QWIWQ T37 LOCATIC" OF TUELHO”O UPLES l --‘- {Tot to scale} "HOTT'fO’tfl‘Tf‘j-LC 7 11’1“."1' ”130““ 1071 A“; —.a-——-—~ ‘7 ’_‘°.“ 1" \ -: 1‘ no 1' 1.0 04 0ph““5wcn a; . -‘~-"~-3~» —~ . *Hc fircf ffin. ! . L To 2:1wriflc *éhpflrflfiVTO 5' i a : nhnvr fific ?1cor, ncqr I j ' +110 f‘iI‘QJC Lin-'31.. ; ' ”o 3:7C£ F313 ficfiwcrcffiré fl' ' ”“0"“ fi“c ¢1ccr, ficfir ' Iot é ERL +!--‘(\ ~F‘1 GQC‘L 9:151 J4; . - ...; u .., ; O I I l I FAN " 0¢~~r~~°r7n +r\"“\r.w~r~z"ww~r'\ l? \1-a_~ - '-' J. 8" 14 / 4... _' .4. o‘.‘ 03 1‘ ‘L p1 r r~ “ n20Vc £90 .Lccr, néml +315 ”41‘6‘.‘ P0?” _I , ,_.J-J. '.- __(. L ,_J | ’v o in §3CW£31JC fic:“crnfvrc 5' ' ' ‘ (“17" 4-1"!\ " “ A 3 I'll/~ I -- -'..‘u - mr, ;L€ ‘T‘ ' q p. 4- O L t c.anm,¢1n, ’vwm” l 37. :.,, .D .n A“) 6:T.§_J L’ , \JJ. ‘JP' "I” r.. uiCll ‘3; *‘:C anrl‘ \fif‘} fl1“ l I ’-L‘..A. AL. 1? 0'? o _1 ,J i ‘0 zch°*~c *“Wficrfi.qvo 2' ' acnvc *“c Flfior, ncqr ' . 1 +110 OAO‘W'J 0'13“ '- 0v .4 ._ \ .. ”.... l ’ ‘ ‘7 . . L r** J Z“°.g)fh7bhc cf op cr°+1cn cf .~ FAA) 4-x 4.1 °;.. ‘ r T 7 we 913/7. f“; I I Ha I ”a 9:Tfi¢?”~ fawncratmre 5‘ Q ‘ fl "\ fi 91“!) "2 15:19 fixer, no. :1" ' £30 thirfl fan. -- r" . v I S I’J 10:7”...04- 3‘113“' 1" $01M01fl1-LH1‘1QO " awove tic floor, flew: the fiFird fan, 0 llzfifinrqgc rOOfi ienfijrfifrve ' ' 3 5' aBovc in“ floor. .0 1?:ITR190 +cfifinrqfifire 5‘ '3‘: ' 3 4 I ' 4' nEcVé *‘c floor, n0°r _g 1. . FAN F-._T‘Sfl fan, .\“CL. 1. b [:3 a .; 7’0 13:.’, ...tr: (” terfitwcra't‘mc r' ,‘Ovo £50 floor, 30*? firsfi fdw, ccck I; lh:f“si”i *cflpcrq"vvfi 1' n,wvrc +,e floor, near n6“. '1‘] C‘Afl" ii.‘e -,\,"‘;".CL - -. l ) - .4 Lo 1;: IttC“ tcr“°r~t ‘rc A 'ljwchns‘vflcw'fihé ..’ cw” {filo ’0']? li‘fifi'W“, 337‘. new t‘:r:+ ..‘..ird 9m. 30 36: Insi€9 49m cthHre 1‘ 17’ 1 4‘3“ I} ' 11 «Is 130v f1t:(3r’ O 1 J.‘. - \ I’L‘! ‘f‘fi If? d _fi‘“. d‘LJ -----‘QCC 377 Fig. 119. The recording strip-chart potentiometer was located in a corner of the house and protected by poultry netting. 378 m o 1 g o _ . ~ ‘ h ‘ J ' H _L p . _-n‘_\+,1 ‘\‘?‘, ‘1c -..‘r\-Lb «Y‘w W -‘ ‘5 e Lyg“wf\\-‘+ f‘ ',-\‘,-‘r ‘y ,w:-\ ‘ -It-',‘(-_‘ 3‘ ref} - fl fl< Dbl my." fin 'r".'V"7 .I— A/ .-A. . A .53 ‘ L / »‘. - _~ ..- - I . _'J . . \ ' . ' ' ‘ ‘ ’3- . ' ‘.V]' ‘ — , 7' 'u— -I- u‘ t' r. J; A v ' _f\ ‘. I 1 _’_. ‘ ‘ J. - «L n 1 ‘QQ ‘ ‘0 |_ 1 o q'\\ \ v1“ .1 4 \ “ ,4- .\f‘ .~-r .‘ “v. Q ~ if] V' .' ‘93h- "' ' ‘ 1 A - e _ .r .0 to 3., - o -o ~.~~t .ee ret ‘u a .Lu,e ,ere 141 t ao— f‘ 1 ‘_.l )1 7 3‘ a 1 01% (- 1" ' Y,» -~r’ fi‘fld") ,.l\ '1 }- . " 2:. . C‘ C‘ t'\“'"“ 1. ‘1 ‘lr‘fi': '.' rl-r\ " ‘f‘ Q "‘ "1‘ V" r .- , _E‘ ' l p‘ I .- ..'! l 'd . . e‘ _ _ ‘ r j ‘_ _ ’ ‘ I A ‘D' ‘ ‘ , ¢ - ‘ ). . ”I . 'L-V . “ . L 1. r J.‘ ’L ‘. , . .° . J p -: n w .~' elerend o_ Aeee union Lne;1?en 2 water reservorr mpfle 0. e preee or r-_fim elfise tu“i“3 - %1/' iWe es Ion? ifi This 0h W"ter surrounds n so 110 0,r ;] es u )’ tube 3.fifi"inin: tze therxocouflc. TLis rlass tub3 is 3 1 .a uromeuer add ”its +Fe etfindtri Wet 5213 sock or Wifkine neferiql. It is bent to an ap— “Tori“e5e ”125% °n~le in order to "fl“Wsze ’59 roevwre4 capillory rite. MV_’ ~4_‘ p A. ‘ I o 1.. 1 0 1 ~'o 0‘ o a leew.1 e- she expoee‘ herleontnl 110K 18 "one thTOnlnfluely l 3 h inch q“ - u .1 \v I" : . A 0 . ‘ orfi the afierwocouple 3~1 tron 18 locfltefl about I/u inch from tee end. A 27“ m1 Trienfieyer ansk is need to “oief min the Wefior level in the reusing Q]-.'3."‘.Cnt. '-‘?~.w'_s mien Li‘hy m“ ureter ‘-"."!'= f‘mmr‘. r;U.f‘_‘.‘“.’o,-““ ent f‘or :2 101”] "’90; “f Operation. *‘ to the nervous ehnreeter o? Fens and the levee amount of Aust pr e I | 4 J sent 1n pon‘try house: ffiere is n tendercy for the wot‘u e: to Become flucty 9 Q .' . a-l Vv- L -.' L‘ n g f ‘ ~v cl- I“ J.' ‘, ‘1 «or; reolle. Io -es twererore, .oin? h cesnnr, "o Lrnsh ,ne rot Julbs eve ry 82y (one waver less than onee every other day) in orfler to remove the '1 1‘ r1 . . 0 . . ° vet col-eeted on teem. -np Meier'wes used for thls lurpoee. TLd.il]ed Woler “TS Rhee However in the .rlcrfidyer iii in the 15 “1 tube. The rich ‘were efionded 0‘t +3“ One of cook week of Operetion. Cash unit was inetfll?e4 five feet from the ground end one foot hor- zofitoliy from *“e +hermoétnts oneretitg the first and the third fans. At this level r16 locotion the instruments were believed to give a,‘etter av- erage of the poultry howse humiditz. A fan Wes Hoe” with ooeh of the inotruments in order to increase the rfl‘e of eveno“ntion. The location of these tvo fans tLth re..e wt to the inc+ruflents woe Cho"en in order to get a SUGGd Of nporoximately 500 fee I.- s) ‘ WW “7“11’42, "z‘ i“: (to‘t'W'Yr‘reJ, q, / 1.- I! ~:‘x‘-Wr -\ j‘ . . T'W" 'L‘-\‘\11w.,‘ :‘nnn‘, (3 Q “I" the S’T‘YE? rict’mIJ pwx‘A-‘y N +' pquw u a ,‘ din, ‘,_Al.oup1e-. 1‘ V .r‘ ' 1 od cue :sc o1 a Cllnj psycaroneter. A ,O . g u .5 to 3,: "413‘ “ S W‘ '1 r1 ”Chm” ”or *bc ve‘c*‘vc buni "r“ich "res described enrlf.‘ 379 to fiiuirfze the pfircentnge of 4ft" chsurefient were checked 7 _ r ”or tenvernture conirol re— In 1””ition each unit was checked nearly every day Tue difference wns founfl to vary from sufficiently ncmrwte for the type of gate being taken. L Fig. 50. to plans by Henderson. A continuous wet bulb instrument built according Both a dmr and wet thermocouple are in the fan air stream. 380 ‘« "1: .. v .' ' .. , ’7‘ ... , : , W \ L. -ve o? Wweretleu instwaWerts. :W ecfl'“ to WWVe noss~nlo n23 meet “We Woieture ““5”“ee ‘e orniue‘ on 0W3 tire of onerqtion instrunent was re— 77 Cuire” ”or eech e’ the three tWt—speefl Tens used in the Poultry house. how— ever, onlr one iWstruWeWt Wes WvWilnble for this purnoce. Toreover, this 1 * ,._ A iWstrunent “es W? the on—end—off tvee (Vegnet type) with the result that :terin: tte "eWe soy whether t“e fan was on low or higfix speed. H- it WW3 re? Upon the sueéestion of Frofossor ?.T.‘3ient nnfl graduate student Gerald lsozcs, the writer investig. ed in +he leboratory the possibili v of usine lieht bulbs end thernocouple-s as o neesure of the tire of ouerntion L‘~ fi‘ ‘1' - . . u v - 1‘s.“ . of .ne ens. -ne n itoiple was to connect sons smell matters Uuihs in per- ellel with *he Wotor 1V’Jnes one of using thermocouples to measure th tenteroture chenje accompanying e change in the Opercticn of the fans. Three inctrunent. were built on this principle, each un t cousIctin; of tWo hzlb sockets, tWo 10 Watts - lTO volts bulbs, a holeing panel, and o motel shieli. ”be n“rpoee of the metal shield We: to avoid Wny possible , 0 run A sturbnnee of the U1 r s at nirh . One of the two bulbs was connected in P‘rellel "ith the low sneefi motor riuflinfi and the other with the high sneed Winfling. The two bul s were placed side by side end eretee bye dis— tance of one—helf inch. A thernocouple was then fixed to the bulb in per- 3.4. allel With the high sneed wiuri n3. Th s method gives a bigge r teneernture di fference than W++nchinc the hermocouple on the bull) in parallel With 1 . '41.", 1111111 ‘1r7 J 7 V . ‘__- .. ,_ ~- - v _ v V “ ...: .° ,. the lxrv sperw. .. 1 lw" Ifitn LAW” Peviiuvi. n: Wf;711;h frvvri, the .L‘. _.;A (for house temperntures of 30 end 50°F resuectively). with the fan running at low speed, the temperature recorded Wis from 70 to BOOF (for house tenpe ntures of 30 and 50°F respectively). The big difference is due to the feet that in the first case the thermocouple receives heat by conduction because 0? its direct contact with the light bulb, while in the second case, the - , .1 - '1 LL x . . .. J- 1! .L J. . '~ 9 .1 lr‘fl -' 17‘1““ hie t.er1weeunuc 11 «o e4 to has seen ,e "rucn.e n Jenncre ure ;ro¢ , to «»~: 381 thernocounlo rec i'es hoot only my radiation in” convection the Bulb being one-he“? inch nwoy from it. The temnereture 0f the nhove thermocouxle ironic” to room temperature Whenever the {on turnefl off. In order to oh- tain tine or onerntion iota of most accrrete value, +19 Bro:n potentioneter vos :eereo to its greetest speei in orier to dive the smallest tine inter- vnl nos~ihlé between eeeh cvcle that is four ninut,s. The velnes obtaineo in this Why n“e heliovefl to he more re eliihle then those ohtninod witn most .-L- of the connircinl instrumentsheconse of the feet that the charts of such ' A I a - 1 ‘ 1 o instruments n“st he changed every 9w ionrs, fine else because the t’ne oivcn hv these inst“nn1nts has to he interpoln.ed h” the one“e or e"e “We no grea iefiree o’ “cenrfiey is possihle. Ano t?1rcr 1”"“nii“e 0f the in strr_non+, oe"el— ‘r '. ‘L ‘ ‘x J- . ‘- a - x . r. r -L L . 'r. w . in . ~ oped more .7 .Jnt 1» no “has grouping o; Joe lfixOTiflthn cone e: ning the tine .\- .L' n 1.1... fin J.‘ ...... .1 A —.— .J.‘ ...J- -‘ . ‘» 7 .w-‘l of epvro,1on 0; one 1 n: e“ .12 sumo recurring QHJOU useo for dry'oulo ano 'vet hnlh recor‘ing. This elin inetes there’ore, any possible error iue to "too "low" or "too fist" novonent of the eloek mechanism usuelly used in conniroidl instrunents. Ween the thernortot “00‘1136' changes the Operation of the fen fr n o inmrnrn LH-nn in one speei to another, for cxnnple from fist to slow, the guwy; 1.11c :- neflintely stirtr to enviite from the vertical line of records nnfl the Cycle fluring fihlfih the ohnnge occurs con he re flily determined. 01" “7.“ ‘7'“.9.‘ fivffih) '0 A“ 'A r q H ‘J_‘-. -‘—-— -_.... J - _gn. W‘NYY“ '1 4-4.4 382 ”ANOAL SW ITLH 0': THeanogmf "l — “vm FAN fl oToa THEQNCOWJ 1» 1m: eewxomo Po‘reun'onenaa ’ G : Gnouso SYMBOLS J1 Ls Low S9650 H : WW SPGID I mv‘nfl ~~¢ f\fiv~~ I »« ‘ 0: ‘ z.‘.:?.s‘2"fIQTT ""7-‘ 1.5%.? KING ‘~ “3 :3 w: ‘ Ta"! 3? 4‘ ——- -_ a ‘- a... "Ovours ...) CO IVUE,‘ -.‘-... “— Fig. 52. View of one of the three fans with its time at: operation instrtment connected in parallel with the fan motor windings. The time of operation instrmnents were shielded to avoid am disturbance of the birds at night. ‘. Fig. 53. View of a time of operation instrument with its aluminum shielding door opened. This fan motor had a characteristic different from the two other: one light bulb only was required. This bulb was shining and giving heat more or less according to whether the fan was on high or low speed. The thermocouple is attached to a piece of wood located one-half inch from the bulb. 38h 385 Fig. 51;. The two other required two bulbs in the time of oper one for the. low speed and one for the high spee thermocouple is attached to the bulb which is in parallel with the high speed winding of the motor. 386 8‘ fl . -‘~ 4- q ‘ ‘n . A. H u. -3 r‘ ‘9', “f. . Q ‘ . / 1' i 1‘ ‘—. Q .1. . J— -,. I. «w 81137111” .1. Nr;..-} inctnuvwints. lkw in 1*tuw: ,he TKYLTquC »" : -' J. r‘I ,\ -"r~ 1 ‘r r J- -- » ,‘J . ‘5'... - . s. Q can not of 1 or , sorpl s u%TQ tawen ‘4 th*ec «iiierent iines. ROC“1¢ .0 1-1 h 3. A .L. i J.‘ . ° L ..5. ° -' .. ° 4.1- 1‘ - ' . oi ~ne zen 1 c.4reo.er r? .30 deep lit.er -U1ch ver33n5 in den.» irom 511 to +Telve inches “"h on cu~ro e or about nine inches, separate senoles ) .l'l.o Jt (A.- .‘L psr 9 ”VA“ . 4- ‘- P 7‘ ‘7. L V 1 . - 1 «-PA -- - - .~;c Us on or poro.;"° 017 over: tiree 1.chcs i JOY down to tne :- A Q P ' \,- c. J- ‘ .3 ‘ j e h 1‘ ,--— . 9 -' " grown» err,~~n .:Lor ,‘n l rner. H°lees or _J0 some“ 3011 YGTQ riso tanen v . - - . A : «A . F g “-L in “V -. V A A P in orier to geleffil“. ~.ts .oi.t1re so vent. 4,7h Sglpfifi Y‘S tahen over an ,, -.. r "’1‘. A L ‘v M w. ' J. ...... . A. 1 area of o e s ~ore ioot. -10 1 ue-io1 colieeted was hmon -1Ked nLiOLthj 0 Q \ fl “— _: n v f [J v]. _' s g ’- ‘1 1n n tun, and n so ple varying iron 330 to qu grams was ootained b; the qudrtering nothei. This serple was inmediately weighed and placed tempo- r'r‘r'ilf.’ in a wax coated ‘mx ith a C"‘.'61“. ”be drier fies e levee vote? cabinet electricolly heated rm~ thermo— sticnlly controlled. The temperoturo of ”he cabinet interior'wns riintoined O ’ _ o O _ W, Between 1900 and 200 F. At tho end of the drying period (at least h? hours were reruired) eoch lit+er scmple'fins removed from its cont"iner ind placed v . \ r 4- ~... -: — r P .v 't {‘1 ”7‘ p “. "1" '1' in on open pan no yet its 9r; neibnt. L.C grits 0- Poi .ire evnporeued ‘ ‘ ‘ ‘ I I ‘ I Q A ‘ V | V I1 ‘ “If“ " ”(1“‘7, ‘ ' """ "‘ " ' ‘- .-“ ‘ '. *-' " ':\ wrn‘ ‘ L ‘1 ‘ I‘ ’n r-‘vn' "'3‘“”‘\7 1" {“3 ""‘ r'~~ ' ". ‘ J ‘0 ‘- . i . . I " - --.. u» L‘ , " .- -‘ . . ‘_ \‘ 'r~~'---— I . - ‘ ~--~ _4'“; . I '...‘.i , v ' .,) ' ‘ " 9’ - _ ‘ _ I ‘ , a A ,, 9 ~ _ . t o L ""‘J (‘6‘ v n M w ”7 "" r‘ 75“ “v no ‘ r‘ .7 w - «'- 11‘1'. m' ' ”r A ”76“- ‘ P" "w ‘5 “u " ~-' *' " :L. n. -.- -i I. . - h ' ~ i A ~ .-., f on _ 1'. J “('13 L.‘~—o|,/ I_L,-:.‘- Ct; d. -v v; basis. 87 7. Lrese“Lwtio“ of resulLs “. :p“‘?”LV“e relotive Wfii“iLj flit” end an Oreretion detn. Beequee 0’ {Fe conciierthe enefnt of dLFn collected, 1 grnphicel 1“e“enL Lion of L‘dfi 14‘1"“‘4‘6 1"19- “.nl“ “VJ/3.": “Ln 1W0 4'30 "V'x't‘l‘ ”0""? ‘,1‘ “‘“F‘ {71? ‘l“’”‘ Fir,“ - 1-1 .. -. .. ._ _, r ... ._ ~- a...1_,‘ - A r -- \1—--, ,_4 4 ’,/ ' o In ed‘itionr to the dnLo colleeued EV’the writer, some otter data from the Lnnrin" Tenther Bureau are mcluded. Thes e are: outside relaLLve h‘nid~ it" ”'nd d1rection end ”ind velocity. Ceceuee Of the 1n“el*anlcchfr1eter of “Y"?05”“Tmofraphs when sub- nitLed to the vine rnnLe of relative h1~i_dity enconnnered OJLnide, it we #0:. ,1 '1r~-r> r5712? +40 compute :1 1cnlnte h1L'1ir’.'.?’r,.3' unlucs from the feedings of 1‘0 Il=q'“P 'ent1~r Rnrenn.° ? use n? fen” V'“u*r in. hosed on b C. — E“’~‘TI"1‘:€2 -- ‘1‘1' 11“ L 2.1 ov‘L r’ e .1 ‘;‘:r':1L_1;* 3 :7 L"J_Lu1'3 iri_‘1. "if‘ 1' *1 1““1;‘ ' TN1 "1 *1 ~_H,_ei-,r3r :31": "1173 :"l‘f‘f': it”); Ljy: funninr ‘.‘.-”:."".,7‘. f1“ 1 ":1. 3'11»: “grief‘m‘it 11:2: within one or two 49 3re es for nest e” the reidingn. 0“? Often the rendin:e were Lie '“Mc find o".l in n few occasions won the difference higher then “WW?" "ejfree (1‘01‘5‘1 :s ‘5‘?» #5313“ minutes oft-er the. hour). ._11is sinilerity of tonneriture is inn highly to the reason"blv ""737 zisannee :Jetveen the loe'Lfi on off eponltry h once end thnt of the‘Jenther 3uren11. The Writer assume” that For the.e receons a finiILr resemslanc would exist between $01 n+1 vn hum-1 4: 4 1r “Ll the. '1‘1er1111te used L111iwd5tr obtfi IQ of the two locations and in his eonputctions ined from the'T Lher Rnrenu readings. 5w“ 1(545 75910 IfitlQ. {HI 783/0411 18.545 SA R DM, FEB. 14. 891011 1 OF OPERATION t 1 A mamas; NEAR ‘ ,, gTFAN . r . . ,‘ 5‘11:qu MR, .1, . L . (WK a: “0158)....“ 1‘ new: FlooK—4— ’ 110131101111 “AND V'nME‘oé“ TRY House, oxenfios, ROUTE 1‘, Mpcmean)‘ : .. .. mm...“ ~-: -1vld~’hr ut'kuv mkuwru~,.. . ...1. .V _ 1 -4 ruuevun'o’viu.‘ ) MWALTER‘S (MR. JOSEPH . H. ..‘, _M. ...»_,_.,..._-... ...,ai ,1 . war-in.“ ,, :ak.‘ "try—V , , . z;«,LW.-1w.\—9~,~.,—.........e....,.n. ...; ... _, ,_ .. .7 .N -. _‘m... . .1. .5’45151 I . 7 1(545 769mm 7 83w” M. 9 .6 w. WEDNESDAY 3s. 1s. SATU R DA)’ 769 13545 831911 FEB. 9.3 I FHiDAY Q5. 8. E F V] A AU »\v R U H T 59mm 1 i V 1 'A gel: FILM“ ‘I Y 1" “we . ,1 , 1 1 i $ e '1 910111 s 10H 11: 4 :5 5.39101114545 76910” MONDAY, r5312; TUESDAY. Fem WED NEsDM, Fens OVER/“WON m1 e mu 1 31011 5 3101114545 7159101114545 76910” THURSDAY .11.. a. mom, 7&8 27 mum 1, m 28 A ‘ ’ ? Will 0F OPERAWQN 4:46.555 1 fl 9 u 1 8 Jon 1: 12545 S L’ , €3.18 94 1 Y IMAQQ I“ RDA, F .5“l\1”’\ 1 I MARK“ (2‘ 1 1 769W” 7105““ ') 1 ‘IH 'T‘Iou 1 5910.. 1 3 5 631cm 1: 45 85lol|1£545|69101lltfiqi 769mm "WEDNBDAY‘HANN 11 THURSDAY. F‘“"~¢“5 miDAY\n;-Agu (9 HH 1 ON TE 1"! vjiulcttll‘ ,1 ()IA .. ‘ J‘AI|. . .7 Q I.IA f IVE}; vl;ll;.|l|l|lf.ll ll I Etii"! / \r I . I)! 4. ‘ . ’ 43‘]!!! ’zvvlilfinlr Alix A!{ 1 a ,. 1 TM"!!! p ‘vv \ \ .. l‘l i’l’l‘. fi { l I § I. l ‘IIIIIJIJHI I.‘ L “ ( ‘ ‘ Iht‘llll‘ » 1 Lil! .1i..-’ ll ‘ I ' ’ e910“ 1(545 75940:: 7 910“ 1 exawL it SUNDAY MARLH 8 MOND/‘Y |nna~u 9 PAY. HARM ‘0 OF OPERATION ‘ '3 A N A '7 BID“ 1 , YSSIOH 1t . rv - x ' “z WEDNcéun‘I' rlh"‘-W n. Tali/14'1“”), f'wkut TM? 0F OPE zFN F'G. 551 M - 7 7 ‘U' F_.- _ w —w---—mv— 5 ,_ ‘mfl-H—zfi— i—u ,H HkRLN SATURDAY ‘. 1' : g _- ”H _ . ‘ . T - ‘_ ,,_ ...., 1, '1 w‘ o. , J " ”V?“ f‘fl r” __ -"(j- 7‘ 511%}. _ 535‘ 'I‘ 1‘” 1773‘s ..‘,“9 fit--671 0T1 .- ’5';‘."‘-‘_'21“,r as lo L’. 1‘ ‘ ‘\.J h "5.x . -- .L‘» mun. r'm . - .l- MLMV' r’d- «'m 4 v .. - o *ufiq ’L. o; - r‘or. o , 41. .o nolouuro coa.'dls o ”domed file 318— . A ‘ - rw '7 «4- — \\ y ‘L ' A (5" ' '7‘ '30-- 0’! Pl '1 t . .‘33 S, ' q ‘1‘“ J- '- 1- / "... '. .1 ...L n .. * 'o v . - 37-12 1. .3» 1.? hw;r‘n,om .r..wxmoh umUTfilflér'sjwwflfrv U .“ -. A : s v- . ..‘ s A 7-' . AJ‘ 1 ‘ .o‘ple Loo ¥Loa To .1 A +1re of ”vpofirwn"e hol uUTC oomtcnt s ‘ I ‘p« . -\ v I ~ 1 . fHJCLneac tho snlplc (M'WQJ hfiSls) -/,'.« ..’. - O ' o 5 I I I alwéhhs) (?~H.1h,10fi3 1953 1);3, r! Litter only Fhirly good h2.8 coniition Litfor only Sorcwhot 29. 33.57:’ Hrior Swndy'soil Quito dry 9.3 9.85:» ;.o. 1 Cmr’or "-13.97, in lino with tHc First fan ' wk» Yo. 2 Cen+or alloy, in 1577". "'ift". +_“p enc- r n 01“.}. -1111 Lifter only Quito wot hc.4 Littor only Sommwhnt 27.6 l7.1<3 drior 3y soil Quite dry KO. 3 Canter ~17cy, in 3 Littor or y Quite wet 15:15 '1'i'th +313 3 Iitflnr only Somewhat 2 (0 bob) h) rv _ N ‘1 "H third fan drier Sawfly soil Quife dry 7 O No. I; You“ Hm front Wall Litter only Very mm 53.3 55.6< (cloce fo fhe feeders 3 Litter only Sowewhnt N9 6 =nd waterers), in drier . line with the first 3 Litter only Quite d ' h6.9 h6.§* fan *‘Prao+iofi17y no change 399 Fig. 56. location No. 1 in the center alley. The top of the litter was in fairly ood condition and after analysis was found to contain 112.8% moisture, wet ba'sis. (February 1J4, 1953). .v¢|tlv« ‘‘‘‘‘ I Fig. S7. of the litter was very wet wet b88318. location 0. (February 114’ 1953). hoo l’iOl “. 37*!“Y "“3 ““‘1 ‘”‘“““fi*vrc. T "ormooo“filo (W*~wnooovplo ”0.15) 735 ploeo“ if ‘3“ li*‘"r in V"o oonfior fillef, in lino “ifih the enema“ -13. "“4“ *“P“f“°¢“?7fi “'3 ** “ lo"ol *Hroo iié“°n holov *5? top 5? fiho lffifier ““4 T“""r”oi ?“on Tohv“1fi" 1‘ £0 7"reh 5. TFo rnnf° 0? Vnrfiefiion o” +he Ax] . ‘ . ’ o o 1w++~z~ +~-*n A. 5' “~th "roc- vww (.3. to (:00? :w vrwna 131th 131-10 A: Jan—pa .5.) . i .n - .-‘. fwd; \ - y ‘ 4T .' “ ,n~¢ “ .loor lovel.rtf 6 fall. in; nnnnor. 7 T‘ ‘5’” ‘=“7"‘-*,‘¥*‘e Li’rfior *,o*“'?-'~rn-'j.m‘fi as J“ P- j .‘ ‘, I“ ‘ ~07 ‘y ~f lo;r lovel J inc 5 Welo *3“ L +7 -. 1 p of ).‘:r‘ lh‘ +Jtar I '1 0“ \Or) ( r 37.—‘10 H _HS I 1 A r’n Ff F. u —‘u ;3—/7 .-', H ,4 ‘z "’ ‘ ‘- - . n h ... , ' A. .. 1, in ’“”l+i®fi in +“o non of *F1s fi*ernooonp o 2.3ol railings fCTC thien .. ‘ 74 - L ' .1. .‘LL - . 3 ' ritn noraurv “213 {VonnoneLArsg of Hiffovnni Honing 1n uh? lib 9F aflfi 1n ‘N . I. Y ' V . . . JouL ‘- ... 5«“ °Oll. T50 ’07]? in: fidFle (Tablo'IZ) snows tie inoronso 1n 1:” or .on- '1 1‘s I ‘ 0 _° 1 al- -.. A norefi*ro 1n M~i~*i¢w +0 ¥hu levols at fihion fiho flomncroonres worn t Ron. / . - " Tohlcafig Tdnfi*rq¥fiwd of iho 50:1 “no door litfior of ;r. Joooph 50“.”"7‘15r‘r'q “(THW'FWV “flint-6* t i’ I... 'H"- _.. \‘. J of £ho ittnr Air ionnorituro at or soil Floor level (OF (1“0509) h3 3? Tennown£vné of 5*0 lifiier (CL 1" '\ N J. :3 ~J \1 C\\n.:':' m m H :\ F‘ J1. W 'J\ Tennavntnwe of fihe 89nd? “Oil (OF) /] - 01.1, J 6h . 5:9 ‘J‘LKJJ l-J * (11' n ‘3 n -n r ' .. ’5 n 7' i.oro re “LES“ J05? +nien 1n fie unnter liey, nenr +ho scooni fan. - ‘3 4 -\ — nfifi > "'f\“t\ "1 r!" J r'x‘ 1\*‘ . . ‘. V. ‘. . ' Q - I\‘II§J ~"“\—> ,\ a“ fi- )fir‘ . “ . .~V . - I n -,a ‘A‘Qr‘l “I‘ H ,. ‘:\‘ra - 4" +1-- ,.‘ . - ',... .. q .r‘ 5‘“ P " ‘ ‘ , Vfl'yr)‘ f, . n ' . ' .- rv . i. _‘ ;'.1 » ~ " o I‘/\“ -y". n‘r L AH"'Mn‘-fi‘\nf\ (‘4‘ 1IqOY-P fi'z' - . . \ i ; » I - l . _ , _ . ..'- , ' — ' 1 1 + 9 f1 y s-.-1 ~fi‘vflu V‘ffi Q . ‘ap ‘fln . on m , u r .01 C L ,o 4,. ,. A. [J 1_ _o .. -\‘n fig .fln~-.I ‘fla‘.~.qr-\r\ ('A if --. -\ -..11 . ~av.'.' ---.]. ' ' "‘Q S _L. 0' *‘P‘ea . ~ '9- A( no , V‘ p 5" ..';‘n ._\.. Ar oi UT“ lc,lo“ in, ;_ H ruary 11 to ”~r3; q ”H‘V{VQ‘Ifa fir. 13hr“? ' J __ ‘4. -L.,‘Jq 0“ gang? «aw » +ij 1‘1““ 51%,..." ‘fiq “a 1 .. J. “ ,VL 10.65 ”rm-7v..fire, .'.1.:A ..I_‘_\) ‘JirnAMAV‘L 60%,: ' _ _. ..1 ;.A»/ ;« ;. rfiiAvnq fl . ,1 . (I. u ..4 mks-.A 4 I ' ‘ .7" 'J, J-1\A nvvafivsH'x nwnr‘.‘;10*".f‘- . 1) x...,~.'15 '- .- J 1* " rare: "'31-“ hrwca -..' - . 1 ‘ -v ,. W. qnyr ’qL’}.’fir‘1‘f‘.+l nf‘ reinfnn‘ hm i ' . y as are connorcd. L02 7"!" '1'V-xrfi (7‘5 fi—s\‘" 1- ... .3 i 1' H 1' ‘- C’L‘ .L 3 L '. . l L ’ - - . — «f‘fi >fiu’\w1 I r\.rfifi L, —-\ 4 A‘M . ..I.. -x, . .1-) _ ., __ _— I O i - «,L -‘ noriod $11WACH (is Aunt-I: r "I our. ‘ . v /( P" ‘- n , “H" ow 11.? 95:5 hail} (cog) u l ‘1‘ O cin? 59w. 140 o rzod fofinorfi3wro too VorioWlC ffion one and FIND” m~nrhm+.j‘nn inn {,‘qg 1.1011”??? of .-,.._ .9}. ,r‘ :11" 7"” ($17.31: I}. fionnfirofvre confrol. " L ' \ r: 1.1-r" tonn”r1ftre Aififi ~”“ an." 4- . - 93’1”?“1‘7 Tnble‘3 Inside +nmonr- nfiure (0F) C‘UIO N UIC U1 J :‘3 Z). L» L.) (J 1‘." 17‘ 2‘11 I t" r; O . Q q PF? ml‘ +30 4341+.f‘ ls: .'-lysis of +50 considornble “ol‘ccfnfl was I . r’d "T““W'UE-i"7 T‘ ”“7“ "ll. - ~ ..‘ A ..‘- fimror ,. * w~“p‘ no .n '3‘ 1" ‘ ‘ r’-~ . - — 9 I .9 3 ) '7 J"! “779' ”one and the rolifiionship is T319 henfi ravfiilo’uln '1 V for puTDOfio of V ROB F101} ”.8 inside and outside shown in Figures 1 i ‘ \‘A‘cm "f \Vl—‘i. .. 1:.(‘xauq *— 'fi o-V':\YU.l -‘ o 15-] n - .4 a 'v " ~ ' . - ~‘g.¢ -} x}: ' '- . ... . -‘ a 43.1“. V (\f‘Q ,. A ~ \ -v\~ ‘ 1 row: ‘ia J‘p'ijan ' ' -J I ’I ‘1; '. -¢ '1 .4.“ ‘ jelnfinnship botwpon inoido and outsiflc t fiveroge onfside tennnrefune for occurrence 0? fine :iven ineidc fennernture A-For "ny fiine R—For roorting +h ' of , ‘3 ( 337' Mi h2 36 32 29 19 16 (ti = h?) 13 haviod o AU‘LU‘l (4. H. H Mk0 Lab)??? «100 NNII'W a u. I" O F0 ‘\:1 v Tempnrwtnro difference (At) .‘ c ‘ V ..‘ A-Por any tine B—ror TOOStlh; l.) of fine day 7.53 9 10 11 16 16 poriod*h :' Q \J'L‘Jl .\1 U10 \0 “3 C-‘\O\ \I‘l FHJFJ Fan onorqtion Fans running contin- lonely FFUIS running intermit- fientgz Fans off 0 An nnanSIs I we 3 next nwwmv-‘fi . 'u:L i “lJ:OO or rizo fihono Vfllnos for in. n " A .A-. r‘ to 6: tho Fon vontilntion rn OO A.U. N to and Anne fini €ho rolnfionchip is chomn in Figures 60 and Cl. oufiside temperature data Table -/ 11 id0 nonporninros of 3h, 35, hO, L5: 50 and 550F° 110); o: mm¢9k—‘ . o I F.H-.—o ..—. ). ---JF- —. --0--~ - . _ ---. -.- Hfi—‘fl‘ TH. -.HHiH-.- _,_,_.-_..._.. é ammuad HELL ___dwmt _‘WWV—‘i . ' ? V ' ? _. +—>‘"" AWH1P-C_‘—.‘¥‘ H'4H ' I I54 '4‘” . ’ ? - 1.1 it- ..-r: H 17 p H A H . .5... ...? . H H UH ..HH H H Hit-..-: . .- . . U - .H- H. _ ... HUM . . . _ ~ . . > -.-i,H.--...r:-H-: H. H H H H H H H V H H- H» m.» H . w H r . ,. H H . ... . . . . H , -. . .. . H W H. H H , H H H . H H H. ....HHmrH-.. .- :-H--.,.-:;H....-.--.--H.I-.i1wJH.£EmRu ..HH-H . H , H H H M H/ . 5 .H. 2 H H _ . . 4H . H. _. . .. , w H. H . .l 4H H H .m . _ $92wa H _H H H H /H H. H. HR. 3 . _ -, - . ._ H H H H - . . . : H H H Sign zm>GwH¢Ho Sigma: . H H H n . im H 8 I-I---.Tc-.. --oi IEIILWII T- . AH- - H _r H H , H . .H ... v H H H H H 5.8 MEAS- A $2. 2 m; . - H -_ H. H. H. a H . H H ... . H. H . ... T _ __ . w H . H H . H M ...H ..B _ H . _ i . . . H . H H H . H H V .H. H H;/ Hyé v Tu'l TII - + | - H7 u ' Ilrfltl'llva I ..IToitat-nl llcubiulull. It ..--cl $.o‘fifl all + IliliY .Tn “run-Ill m H n H. . / H_ H . H H H H . 5H . A :1. w - H H H H - H H - H H ..H H . _. . u . _ N H w p P. w .H H H u H H n H H H - H H ,. H . H.- wpint M 9 11:1 ..‘ !¢-il$.n!¢|ll1-ll. n. 11111 lll'd 1‘1! Y'Ill..+1o .iIoI’I. a . gr ..I; 1|..Iu w w . H JH .....w. 1* H H H H H H Hui H H H H H H H H g H: _ H H w H . H . . H H -H H, H H H .. e: H H H. _ . . H H H. H. H. H. H ..H H H H .m- Q; v- ultw- . - I. T! + o .0 i I o- o - c L II 3 vvvvvv Hillel-T413Tnlh . H II“! olanvL $$..IIt'-. a 1. ”i . H. H . .. H . . .m u. ... H . H _ H H . _ . . H H H -_ . . ....a < . H _ H . H H H H H . . H , H _ . m . . H H H H - H H h H b H .Hx! H H H _- 1106 ZO.HP<1H_I»ZM> “.0 whim Anew 0* XV 9v mm 2H 0 Ir 2.... .HHHHHHHZMHunHz-t .3350 233.55 22.2sz . 00 main awn—«Chub?» {NI—I onwFDO On I n 5 - tn n H Na 3 r. a. o p— O— . H. . . .. . .. . ... H t a. a. H. ..H H- H.: .H H-- 143? 37.55” H. HM . ...HH; ...:5. H 7.55... H- 5”. -UHUHH O H. ”_..Hmm CHI .H .. ...- ...H... ...H... . 5. H ..H; ..-: H... H .. .H - . . . .. .. H. .. ..- .... . -.. . -.4. .. . H . .- . “...H ..- ---.H:::.. - -.....H .H...H H H .H. HUT... . - -. . .- . . .H ...HHgH ”.5.-HHS... . . . -HxfiflH1HmH. H 5-HT ..Hfi . H. . -fl-H...H..H.xa..HH-..L...H....... .. “H......KH...».HX.._H.......H . H H .H. , H 3,...H.. .......H............. -........._.H.- . H..H h . . . a . 0 4 .7 .. . .I. . I3»... IoHI . H H pH . . -H. H ...H.H......HH....H-.; H... w -..... .H # H. H . W 1141. 1 H . : H ......HHH-_H.-..TH; . H. H“ Hw H H. j . ... .... a. H H . . .. . H .. _H .HH ...... O H H H . fl .... .H :H J. {FIIHHIIIIIIIIIHI ..H.---.Hfl H -I .H H .... . . HH HH. H H. H I3 H H H H . ..H . - - - .H .H. ... h . H. Li . .. H... .... T. H .5?. H “H... ......H.H V H H . .H ...Hf...” ...H. ..:H ... .H N N. .- .HI H .. ..H._. ; ...H-5.... . .. HiH . -.H 6:5 .. . . H H. , .H_ H. H H - . . . .. . . H H. .. H. H - - -- ... H H. ...H. .H A H H. . . 57.3 H. H H .. . .-.H T. H ... .... .H w H1. ...H-...H 3.. 3 H .H...2o,mHHF.H¢- . . .1 (a H,, : “H I. . ..H H __ ... N I--. . . .:.;. . W. . -H - ..H. H H .. .H - . 1H1... U uaHnHH-Hmu .uHHmoHrSo 2 .. r c. . g ; H] - . H ...H H H H _.-- ,. ..H. 1 H zfizfmwm . s 1H. , H ... H H H «Hr: H..;..HH V . _H - II float}. 9;. < . N H H H... H H H H -H H..;.H...HH... M H. . H .H . ._ .. . ._ . Hwy I o I H . H. H H H H. ...H H ...-.. .5 .H N . H H ... P m m .H H .» .- . H.. I-I H . . . H H H ..H.. H H . 1 H LH H H H H Ll}.- H H H}. H . H H H H H .H H H. H H H . H H .. H .H H H. u .H. H . H H w H m H u M . n a H . a . ¢ _.:-{H n H H H H H H . . H H ... H. H ... .H 4. 1.: -...III. . -13.? I -. HI 1. LH h H -..-I-I»! - H H. H H H H H H H H m H m H H H H . H H .H m 1 . o . a 0 F a H. H .. w . H .. H . a . H H H H H ... . A H J. . . H .. HH . H _ _ a H H m H H H . .. H . . . _ I n.. .. _ . . . . H . H _ H . . . . ..H. a . H - I - a In -1.-I1.II$HIII.!1H.IIIII-H . Isl .. . III .91 I IH -.I III... I.IIIIIHTJ‘I 4.1: -H --III4l H I.I II H h I1IIH+ -III-II.tIl-ILr H M H. _ _ H H H H H H H H H . H H_ H. H _ .. H H . . . _ . H . . .. .. H . I. .. H H H H . .. . H H - H. Azu=\£uuv _. . H _ H H H . H. H . H H H H H H“ HIIII._- I .I. . . H . . . H a H . . . . . .... _. q .-'IHITIIIITIIIIILI.'III:HIIII IIIIHIIII¢IIIIIH4IIIIII¢II » l.¢I¢T+-Il|III|¢IaroI¢I4II .r o_ I1 ..IOI h1IIIIhIIII¢III€IIIILIIII h . m _ H H H H H H H . H H H . . m H H H H“ w I . 4. {H H H I. . . ..H . H H H H H . . . H H H H . H H I. . . U . _ H H H H H H H . H H H H 11?. I I v- I . . H..- I . I'HIII .IHrIIII I3. . I l TIIIIIIVIII til-.IalIlIo . I I I III .Ll I I.I..IinIOlIl. kl .IIIII-A1t4..+l. IOIAIIOIII H... II I I f. M ‘ h .731. H H H H . H H H. H. H H . H H .H H H .. _H . H . H H L H n I III. I H . III. M ‘ \ zoFSFE> no at; 2F 22 2:25;sz 35.50 283.9 zoFfimm. 5 332“. 2L ‘ . . mdopkzmmiw... membao k iv o¢ mm on ma 7 m on m. o— Nouv‘IuNaA NVj JO BLVH 1x08 mrfi-j . ‘ q a . q . I o ““3 5.1. 3 "=7 ‘ 'r‘ 1? “91‘3”“?2‘; " e14“? 4TP.”’§“?I"7+,T‘3"G an”: refe Pf“':d**7'“fi‘e*~ ‘ “L4 1" 0 fi __.. '-'. 431'?" ('0 ,1 1“ 1.4.... \ _ h . . . + -- -Y A O A” "“ “-y TLfinosfilnr fiifie1* Ft” [Ia-“5‘03“- 4- IV. ' _. .~ J. p . L.‘ J _ . .L w“; to A, “v???“ {3 131 e of _;_:1n {:0 At "avez‘n-j'.“ I“??? of fer. Cherfifiinn e ~.«~~+-w-.u ..‘. om. .. . - ,. ,0“ I ~- -u0h ,;M 0C— vehtlxnfilon fer oc— \ x e r'c C0 of fhe jiven our?ence Of the r4 — 1””iI32‘5¢"““re+ure en ifieifle tevfier; ..’ -'. ‘; a I atwre (”1 V' .. F (,ffi,men) Cfm/ en) t. T P) ’ vi 1' t) «' ‘| ." ‘ 1' - - I'J/ :L‘ 0’ A./ #0 L9 5 .309 l‘mflls 2O 4 g. 7 y‘ fi K H . 1‘ .4 3/ ,‘. 41;”; U.) 3.9 rurmlng ‘05) ,- 7‘, a ~ 1* ; J 9 J09 3:.) 7,5 3.9 contln— I12 '32 lo ‘ or .9 — — - 1101-18137 m1 - - - '22 05’ 1 9 r f) .4 I .- .-. 3'9 C ' ll 3.]; A} 10 3. Sr FEES ll / r" ' o ,. 19 la 1.2 ?O l) 1.3 runnlng rJ . ' 0 8 l7 17 O.) lnfnr— 31L 1(3 18 mi ‘r'llfle'HJ- 1;: LA __?h 13 31 23 1h 20 0 Fans offfifi *11:00 me. +.o 6:00 A..".. 7) soon is iho outside From the nhove teH‘e (Takle; :)it is seen thnt as ,. temfiere*u“e reachnd 13 or 150? (At = 21 nna 2OOFO, the fens were shut off “11 {*0 fie“ "n? nan nefwrel infinrfltinn,Wn¢ providing some “ir cennge. {JO‘C*\ ) ‘3 /' T ~ . . 21 0*“ 0 I) .L 'J 0 "10 L (‘f‘ ’ 1 (To " 1:’1+ 3‘01" fin 011-1- nlfle + flm*"‘r"‘ +Vltf‘e ‘ 1910?! J s.‘ (at B 10 ”Dd / . _. ’ *L ‘xr‘. w ~ . J- ‘ .r‘ .L ~ n - ' 4.4. «‘4- -; w‘ ,4 ’3an P ‘vy-n' .~. v non-‘1' {1110110 "' Oi‘r’zlon 0» age :51 fies Interfi1,.ouu «.\,u-.n; ..“\,~,.M- m 9. 'IF . ° .. J“ 4“ +50 P“T5iCYI”T Deulfiry'houee ~fiufllefl, ihe writer errevefi to nne cen- eTvn° L” J n 1 - p°1¢ 1' ' m 11A ‘ "ken *PH 5' LHF Pfifi When .‘_._~‘.-.] on ft") 1; r10 #- - O“ t «e 121- l_'_:"q;l:1.g ”ll" 0‘11“; .)8 e...» ‘,. SL: .1 A . 3 II. I get A. , therefore 4-“ "bl ‘ ' '5 ' f“ {1 C 7,5911 ":011] r? be rufim'an: n‘: he? gh speed for contlnuous Furious, an”. v‘ . 7 . 7‘! 1 0R1Y'” sme¢1 nT’iltrnfion refe of 0.1 cfm DCr hen wns CO eldered. Thls'v 1L3 wind of 10 to adfied to the fan capacity (average of 3.9 Cfm per hen agalnst 3 of h.O cfm per hon. n . 0 ° ' + 13 mlles per hour) glves a mnx1mum ventllatlon rave nd the heat The tem?erntU?e flifference (At), the ventilfltion rate (V)" ' ° '1 e n. ,‘ 1068 Charactefistic of the house. (AC) belng all known for 1n91ne temperature-9 " ' q . r .e.sfb e shove h1.?5C(roosting time) find hQOF (any tree of'HN3CiJO: the tthl ‘711'1 rfirx; slide rules H05. 9 find 10 heat ‘V7i1331c in flhe heuse was cmeUt3d 5? u j rm“ TQSUltS _ V 0.3 AC 1 . “Le VS " 60 and also b? using the standard formUla 2} t . 1 O are presented in Table 65. ;____,_—__—___ ho? Teble f“. “res” in the totel sensible tent fiveilnble for purnose of hence ten“ereture control (Fens runniyt continuously) Time Insiee Cu+°?fie Tenfier. V V VTotal Q5 (Btu/hr, hen) / +enner- tenner— ditf. (Fan (1x’il- ippr. Cor- True et“re “trre (at) only) tretion) s iie reeted rith. rule slide solnt. rule (or) (or) (or) (Cf‘n/Efen) (Ci‘n/"en) (Sin/Yen) T.’o.9 30.10 TV‘KWV ST; E? o 5 To V do? ("of EL. 0 If? 0:): 21?.3 1.7. "8 time 50 L2 8 3.9 0.1 8.0 L’Co) ilkol )9. 3 of the h? 36 9 3.9 F.1 h.0 56.5 55.5 55.7 rkgr L2 32 10 3.9 (3.1 h.0 57.5 63.h 62.h6 8— ES’ 59 6’ 3.9 0.1 L.C* 37.7 35.8 3‘.§§“ Roost» SO hh.S 5.5 3.9 0.1 1.0 hl.0 39.85 39.22 ing hg 37.5 7.5 3.9 0.1 L.0 h7.5 H‘.35 h5.hh +i'"e ‘1.25’ 32 9.25 3.9 0.1 ):.O $805 $7065 57078 All answers obtainefl by use cf sliie rule No. 10 were found to be 'Nithin 13 of the true nathenatical solution and therefore very satisfactory for computations of this nature. For tenneritures e? hOOF and below, computations of the total heat available were difficult sinee fen ventilation was intermittent at these temperatures nnfi there wns no known method to determine the amount of air infiltrfitior. However, the tolloming reasonirg_was used and a few assump— tions made in oreer to arrive at some values. Step 30. l The first assumption made was as follows: "For an inside ten— eerature of LOOP, the difference in total heat availwble is probably very small as compared to an inside temperature of h2°F (any time of the day hl.250F (roost'ng time). Therefore, it is probably safe to assume the sane amount 0? total heat available, i.e. 62.h6 and 57.78 Btu per hour per hen, respectively." Step No. 2 The second assumption used.:my'be stated as follows: "Sines the total sensible heat available at hOOF is 62.L6 Btu per hour per hen- (any time of the day) and $7.78 Btu per hour per hen (roosting time), the total sensible best available at BMQF is probably somewhat higher since the trend is toward higher rate of heat production by the birds and the litter, at the lower temperatures." th (" o o o o o 0 step “e. 3 The third essunption consisted 1n deterwining the average of sir infiltration for neriods durinj which the fans were off continuously. In the rariieuler hon": studied, the writer arrived to the conclusion thet two sir cherges per hour would seem a very reasonable vnlue. This number 0’ sir ehnnge corresponds to en exfiltretion rate of 1.15 Cfn per hen for t’e Fo“ce ecneerned here. Using this v*lue, the total amount of son_ible heet production at BMOF was tonnd by use of slide rules Nos. 9 and 10 and checked netheretieelly hy use of the standard formula V vi Q8 — AC 1 flan-21“ Eb" "he methenntieel results were respectively 53.h3 Btu per hour, per hen (any tine of the day) and 63.29 Btu per hour, nor hen (roosting time). These values seen reasonable since they indicate that the total sensible heat available to increese somewhat wi,h a decrease in the environmental tem— perature, es assumed in step No. 2. SteE_Ho. h A fourth assumption was finally made by considering the total sensible heat eveileble at 35°F to be the same as the heat total sensible Leet et BhOT, i.e. 43.h3 Dtu per hour, per hen (any tine of the day) and 60.25 Rtu per hour, per hen (roosting tine). Step Ho. 5 fiith the total sensible heat (Q5), temoerature difference (at) and heat loss chorneteristie of the house known (AC), it was simple to find the corresponding total rate of ventilotion (vTotal) for inside temperatures of 35 and BhOF'with intermittent fen ventilation. The average rate of ex- «'0 filtret on was obtained in each ones by subtracting the fan ventilation } rate (es given by the time of operation instruments) from the total rate of ventilation. The results of all these computations are presented in the following table (Table 66): moi-30 ",5 H"'r‘ ‘ 7 .“ "si '11 ~.*."o-_;"‘*'l '3 “""J' fi‘."'a41')121n ”4"?“ Y)‘Y‘"TWF»C(‘, (3.9 A A l ‘ a , . L - ~ ‘ ‘ .4 .0. I. . - \ ~ I. ..’ . ~ ‘ ' _ _ ... _e- .4 . _, 4' . , - ,. -, . . I I . w A 1,‘--...--.,.J.-., , J. " ../",. 1,1 M - , O ‘ A ' 3 _ . j C'\' “110.1. \ “u L,‘ --‘. ’ - 0;. Ill s. t t *1 v V~-+- .1 Fans - l O A .L'U' ..'.zl ‘Srpgtfi‘l CDnrgfi-{qn (Tan (f:’ l- Appr. Cor- Trne onlv tr"tfon) slide rected nath. rule s.r. solut. (If‘n/Tign) (CF/Yen) (Cfn/TEenXTo 9 l-To 10 A — Ft ’1‘; 4- -:ML '7' a f t ‘ C ‘ «10.3". H “ 0 VJ . C5 ‘7.7 (.5 3.9 0.1 5.0 H .5 47.u L .68 Fans 70 1%? 3 1.9 0.1 h.0 50.5 h9.l h9.0 running ’ I -. r’ a“ . ’ .‘gE" 3(' 9 309 (\01 Jloo (of), Flt/'0‘; {77.73 COI’I‘ETH— L2 32 10 3.9 0.1 h.O 53.5 5?.h 5?.h6 nonsly vs r'r r - 7 1- Ir *1 MO ?9 11 3.10 0.10 3.)? (9.5 63.: (7.9o :ans 35 19 13 1,? 0,00 2,00 63,8 {3'6 63.n3 rnnning in 1.4 15: 0.8 0.90 1.60 0.8% 63.13 ir-tier- tritflve“rtl:v 3h 13 ?1 0 1.17? 1.15' :5:3 473.v 5;.h3 Fens off 1" I) 1. ° .1... +3. U—nons,1nn lee “-3 1'9 6 1.9 0.1 3;.0 37.7 36.6 335’; :va ’ ' ' , or! “V .fi SO Lucy: {/05 309 001 2100 14100 BQO‘J) 3:0?2 1 3.. 17.3 1&5, 370.5: 705’ 309 00]— hoO ’l709 21(035’ hiked)»; Cfiltln— 11.25 32 9.25 3.9 0.1 L.O 58.5 57.65 57.78 no sly ..‘ ,f # O r T 7"" a 1L0 30 10 /O/‘{) Colo 3'06 Did—5r 570/); 27079, 1‘ ..IzS / . 35 2O 15 1.30 0.75 2.;5 51.0 31.0 93.23 running 3h 1:05 705’ ‘3050 1005 10,)5 (‘100 C-‘:I—.C) 20.2; 177+18r- nittently 3.14 it :30 o 1.1§ 61.0 61.0 60.25? Fans off [.4 O is: ex The next table (Table«37)‘was trefared in order to further summarize the total sensible heat available and compare these values. Table 5? . ‘end in total sensible beet available for purpose T1 of hen e tenberntnre control (Btu/Hr, hen) Environmental Total sensible heat avcilable Difference For house tengorature control tennorature A—Any tine FLRoosting (0F) of the day tine 55 Ila-(’8 3605’s 9013 :‘0 h9,13 39.92 9. 21 415 53.7 h5.1di 9.2L 35 C13 0 L3. "’30 0 2S 3. 18 l * The triter believes that those two values are typical of roosting time and would have been greater if more sanples has been eollected of occurrence of the giVen 'inside tenoerature during daytime. I! ...-Iiia‘d‘ 315:! .l.. _ 'K 1 .L M. . P , 9 r1“ V‘. ch 1' .«.‘. J-Q tax 1‘ L ‘.‘ n nr—wr‘syvi’». _r I" .\.K“: r1"1fi.r§7.)]-c .1r2m (\(fi’v—qj- 1.: ‘ :‘C},: SIN 30:1. '1“) I. ' ‘ ”1‘ ‘ ,“ ‘ 1.‘ , , . . s 1 w \“117 L7~Q "Au (g \ °0Wréés. ‘“ :Vo "'fi“;~29 .Q“E F”C‘V8tlh“ innllnc not (w J ”a“ ; Wul»ln “nfi+ “*vnw «" %v £“o \4r4s Hwt dlso £50 PnnsiFle Mont frow rdcondhry rfivrces u o 0“. ‘ \F~~* ’«nfi 11**qr 3O¢dfiy"njfi1dn, r07“? He1+, grnund héht, ctc.). .ne next +.x1n (”anwp/f‘ ““fi6““fq «w anFiw~*n n” RH? :ansih e hdfif in"ir; ”ram sec— 1 I ‘A'n ..A J ‘- l ‘ ‘ _J k I- I‘ - ‘ - v craww' c~”r¢os: r“ ‘- /O H + 'y .‘J. P L!‘ \—< \ VW+ [34“ (sm "'1‘ n ‘ nq+ pom; v1" 1‘”qu .L.”. 1.6 t . S -.j_ ‘ e n. '-n n lO‘lAK I \l- I) . L7]- '--~.l :1 J‘ -I u A ..h- ‘J -..L~ I f6~¢fi4¢VT rnvrécs. (Any fiine n? the day, S—nound hens) finv4vawHfir?“‘ ”cfii sensible hdnt Nefl sensifile heat Net sen51ble heat *°"““r°fW“e available unier found in calorim- from seéondwry sources }wq1~qlqr‘ CO“ “tions Cf?!“ tGStS * (L1tter9 Bun, etC.) .\ \A‘ . 1‘ _. -- . . - I, T) - Y '7" ' 77+ T Z \01/ §?*q/Lr1 hen)** anyflhy hen) Q Jyflhh¥ben l I /('\ If“; .‘T . ”-8 2<,.O 19.90 / S‘.S CO.;/3 3:, 4.1053 " - V - V r‘ 4‘: V '1‘ '7‘ ‘* Frdfi Otn, Garvor and fifiqaf c 7“?;mctdr t—s s ( 1)) ** 11'2“"??? "k ‘.'.'T";,+,F‘.I"S "“0"" 'lA‘ . “Il\)ll Q ' flavor inv #0 fhown pifigi“f", fhn bo—cnllnfi "secondary sources 0’ heat" ' V, O 0 1 a 1 T" 590% L0 5d mnhh fin“? 1vunrt~nfi fihdn twalr name 1np1y nfid tnen prev10u3;3 thought. 7+ 36 4n+nvnq+4“~ *0 nn*o £hat Cthn76¥on nn4 Cox \Sh~) cowhwted the _ ) __ ‘.| 4. ... ..- ‘ I ‘ ‘ 1 <-L«. - ..‘~ _ - r a r‘ ' V”! to“; 1‘ I) 1F: “- .. 1.,“ 1‘ got-..'! capqv'nffi' fig‘jrcng n 3997', r1, up.) 3 .,O .23 .Hl.../ nth PSI“ ‘04.}? PCT “€11, .- \-J. .05 ..'! .J. - , “hid; nqrce quite clnscfly with fihe writer's finding of 20.63 Btu per hour per Hon at 500?. Furthpr research is rejuired in SWfiller houses vith befificr con— trolled confliiiong, in order to verify ihese findings. Th1 wrificr believes fi‘fifi fihn exheriwentnl hnnnas built hnre for sohsr heat finalysis would fit w] ‘ w?!‘.'\'hv- n'n " ‘ "' v .} - ”l-lg. ' n 4. ' ‘ . ”...“,x.‘ "5"‘fi' [‘0‘ u a- — ' » "‘ I "") Y nd+ fiv\;! ‘V'W‘qu‘fi --' _, . Pl, -\ ‘ mnnqwovn , ‘_,. .‘ A]. q 4".) VJ; K‘ ‘0 an? r‘ ...; ‘ J- -. . A, Juu hlh C, TgJiwo*e n” +bn +“eora+ic~l noifiture ram val afinn“i+f of 5%? fans. fife hm 1%“rp vrwav~_ é‘b“ci*Y of *He fflfis Wis affilfznd 9“? P i0551 0? 99V- nnfenn 9°39. ""‘ ”din “n5 anwsiflnvsfl 4“ ihn finalisis were diSCfirflefi he— cav~e +50y’ Hid not i clfifie Gamblefe and relinulo data Ldr {he fuTI +wrfi— £32-“3”r‘310‘1‘9. 7 "71 *3 nrqnnfivre ?077fi“=fl irl‘fiv“ Tnfilvsis nowsiqfed of ihe fkflJrvfihu: ¢*en«: 1-V~o cf Cfir“{°r'r “Ffirfs 'C—“Nfi and AC-lQQ to find fhe mo‘9tnre confent q c Q o O O O ‘ ‘. 0? ‘”° oufplve 7:” hwfi tfifit 0’ {Ho in¢1de “7r n-fir 10a 0? fine three fans. ?—30mhvf“£inn of *Eo ma§~£fivé CP”rVih” cahqc5fiv of thn outsidn air for each _ "' I. ‘.‘ ..' h '— - 5') L V "VI 0’ +30 *1rc“ ldént_0ns (plfihlfi subtraction) ..’ v IJ 4 ?—Corbn+fifiion 0? {he rfifa a? vnnfiiTntinn 0? each Of the three ffins for the iima n? onnrbtion ronorfls) . . / Hour norr;”orqd {from the h-Vcn n” aha mr4fnr'c sliJn rule To.9 to fib4 +ho moififinre réfinvql cabnnity n” 213'; “tn. . 1h Fhmnl‘ ho nviefi anfi fifep l ccvld He Clnnied by 2913; fhc WT fcr's slide r272 70.7 ifnfinfi” a? fhn Tarvinr Chflrts. 'Ffi; at the tifin this sfufly W65 .7 _< dove, +R‘a 91€fl~ TV70 W39 nnfi fireharefl and, thernfnrn, was not nvnilane. . f . . . - w 79 70 U9 an?s a CO"““?1Snn of fhn mnnhture removal ananLtX of tan \ 71! 5t is 3°9n tfigtjfiu.:gfl i”re¢ f‘fq nnnr‘4,rnfl fihAjviflnn11V, From fi?1fi in , l snvnfitnon flats nfl“1*zdfl +53 rvn“fiwq cnfinhitv n? file fhron an9 considered , L y _ . . . 7 _ ‘ n ..-I '1 .. ‘7’ '3 u .. r7 ~ . .. \’ - . .: A- ., .' 4- .3 ‘ -9 n .10 n was g,.,? hnn.dn ‘flr Tn; nor 103 hens J?llC’CL"”¢Jp:Td Lnd¢f+fl- *—-l ‘5 's n’ _ ~1 9L find 35p re~>:c— 1 - 1‘ r-: q A a) ~ : g. -. .0 V"“ ‘ +Je *'+ S57uNd fin 5*vrr fhn5Jcrc TONOVI“' ?O - ..~ ~ - ""’n'j __4 ’ .L ' - “..., ‘1].VJCLU- . 215 "3512 79,7rnnsrison of the *o*"tur2 n *'"~l asci*" of the three ’”“r~fr“7°ile1ed lrpfsq”"wsllv 7)an 1A1“. gr; "5 *f‘f'rnnjr‘o 5’13““, “.3” (:1. fin 7‘07. '3 {hive ..H'! 1x: 1‘ W‘r'fi‘rbf'nj “" 8‘" '_"_?f“' (53“ ‘ ’19 ‘ T“tnj' itj' .Tsras (l"“, E 0”“ (VéflllV’ilFSWIHEH> {059 fi:) (Ila/1 ;, 1 "‘~~w~\ 'Vers”e, flsnge, fivsrngc, Ton e, First Lesond T} rd Aver: G ”"ly drily ”oily flail; fan fan fan 7, r. 15 7H ‘Ln35 Tl ”A —“l 39.97 75.00 59.31 55.75 ? 19 ll— “5 7’L‘ 50 79 1.33 7VL35 55.10 37;?3* 17 g< 17_L1 4 ;8 50—93 5.50 33.30 h2.2o 38.00*? 5 _ ;oreh 1 20 171-?4 52-91 h7;1o 59.75 68.35 58;uo 58-95 h5.15 1?.25 hh.h5 hh.28* - 38.28 28.05 (1. ho h9.2h ho;92 b .30 6?..10 52.11 —96 29.52 h7.h0 ~5.?O h7.hl f2—97 3h.3o hsgno 62.18 h9.h3 w 71;90 36:10 2. 2 u1;17* 55—77 L1;1o 32.80 0' 22:57* 17.73 no.80 23:35 h;o3* ‘—o1 h2.30 50.20 ' 19 311 Zl-JEB 20 L6 38-53 2% 3h “r -h2 25 31 40.10 ?6 l6 31-h3 27 31 23-35 TD ”79—4 -J ft) -J if 01291-4 w ‘.."L' 0 \IL "L 7\ 3:14 I I is f‘ {:s vawé- '0 —o I “D C}\ . n 2 22 15—27 S 21 14—26 9 28 15-37 10 31 3o 39 11 P0 20- 12- L3 hob/o -q—J~J -<+4;r :ou T'CJ\\"?\\, ‘L. hw~do I) ):n :r _ ’3\ O -. H \O \J‘ V” O {L fir-l \O‘O‘q OHO Nfl ‘47): mm 00 \f13‘5 WI—J-. . . NM QC) \J‘LC\ HM . . \OO\ 00 \J-IJ‘ ivors e of t“e l7 dn"s Ih/Jny, 100 hens h?.51 L9.33 50.7L 7.3 _ f, - (A ’ f4 (,4 analyzed fl 0? the total 309 3hp 35p * Y~ier “nonvol annocity oP the fins below L5 lb,Jny, 109 hens "*6 lowest voistuns rowovsl conscity “ocorded'wns enunl to 39.33 youn”s J. . ‘0‘ ° .2 . .- .... ,. tor »-v nor 1“? Nets. Lte mozsturn removal esrnoft; ins less then LS for . . 5'6""? "5'“ " “‘73". "‘x p :‘fi":‘“"“ " ‘11 ..I‘ 1-'_": 5 fl ,1 7 ; J“'- A ~‘ rJ'r‘ Pfi‘p r~1r\"r\~~ —-‘ -.-H;~ . ”57‘ a , . . . . 2 . _.. ' , _ " .' 2 . . _. ,N , ,l‘.‘ l» , .-‘ ,- 9 - ‘ I .— 1 .1. ./ ‘3'. n 71 .‘ q n 1“” ,fl 1 V“ ‘n'j N V” V‘.’_ d 0' .‘ Ir ‘3 a . u, .“ c., _ ‘1 q' - A“ . , ‘ 1‘ \s r n a ‘l 1 21.-.nt. - ‘nqu'e.. r s: e .U22. ‘0 . ; 0 INS :1:s 1‘s; new ,er -v ..leS 'L-u.r\e;,1r1?,d “0‘1 ‘0 h'L '3'} pyrnyipfra (3'1411' r3174? «4". . -'..‘ ... -‘l‘ ‘ ‘\ ‘. . -I. I e (.2. t toofierd u“? of n T‘s sverdfie snount o? *otsl W~*or rerovod hy the fons for overege daily O“tsfido tenforotrros tron ”C to 39, 39 to £0, end LC to 500? ere shown in T9310 70 . Tor Phe rwu“e of 30 to 30°F, the evoroge amount of moisture rc- noved for the seven ”ifs insluded in this range wee equal to 38.31 pounds per day" per one hundred hens. The amount of water to be removed from a poultry house housing S-pound birds is around hS pounds per day (from Table 30). When the fans remove less than this quanti+ y, the 1 a. L - A). ‘ '1 R t n F ”A s.“ L, ‘ ‘fi w‘p n: saw. \1 v gv'n "' \‘4 3‘) g :7 +1‘n (\VWYTtW"“V‘~1r\$‘\-“ '11 (‘fi$“_‘ . .L -: ffi“ C — ‘ I - \ ’ '- \1 —A-.—-— I. ..-.-..L"1 L-l '.'./"_ l‘ttJ ‘.".l‘ .10- 1““: ~‘ v A ‘ :‘ "u-sfi ~ 1‘.“ : n i ‘ ‘fi ‘ q”. FL “~Vf\ ‘flr\\*\l,'\‘v" 1 (\n "h '1‘: J— -' (\D :4 11¢ IDHYW . I ’ ‘u . a J V : “'. ~. .v , -.‘ . .... A _ . .... , - «- ~,\ “[5 .wvnW‘fi -.f‘ H""““\‘!' ‘ '4 1’ AL "1 ""‘J' 9“ “"Vfi L"fi'(? ‘l"_ L110 DAY.) I‘ J‘ n ' L r >‘ , ‘ ' .u 4- _ ' ' . .. ‘ 1’ ‘ 4 c.’ 5. ‘ S, or I u . V ‘. l d ‘4 4" “A A — — V r P ’0 ,: 4 -‘ »‘ .L - ‘ ‘ ‘ “- M‘- fi" ‘ -' n r~ r 01“.v-\Mn ' Is. :5 _. . .7)" n114‘,f“1 (‘0 "rx’fjfil F.1‘fi.fj‘1vves '1 .. . I .V ‘ ”‘5 .h 'r‘ p n‘r/N“ AY,A|“"'_'B fivfififi‘“4- “_..." q."‘-l— Ar . 11‘.‘1“f\"4 . ‘P ('q‘rc ‘ \.I ’ _ I ;_ - k u ,. 'J .. . . ~‘.. -4 ..- ll i .1 ‘. cl —L- I' ‘4‘ ~ .. ks‘; U fi.--A ‘A: 1" fifiwJ- ~.'\v--r\wr/\-7 1w”? .r'Twn lac-V‘s “7““ ”vhf: ' . .-..| \ . ,- . . ‘ ,.v 1.. . _ -... ‘5‘ _. u_:‘_g, o’ , v. n H: {tn *p‘*'.‘5v‘- .1- .\.!“ ”_n'\‘ A“ nnh-' '1 flqfi““hr?) ' n4. \-- . . ..L. ‘..v~ ' .1 .--L L 64-fijvna (Iii/F5", ]f‘fl hr‘fiq) a“ 1A ‘2’“ ‘7 7 -- .-’ M ‘ w ' a" ..H"- ' fi 1.1.. J. .2. 3 -.L. - 4.]. 9 a“ ‘“ he 71 9"38 “ ?T . ""fin 6. .40 no *1 no; .1~© rdfiOth 9‘7‘cnu3 ~= .. \ .w". ... I‘I_- -.. - I T" _LW - 4. 7 ‘,1“ ”“fif VT: :, fflffi‘fi, “L“ “?+frwmxx1?3‘rlods. :cq‘-iu? sovdfibeca fl“§S "T;- 1 1 '5’ r" 4" u ' ¢ - ' '3. 4. , ,4 ’. V" q»"z"”‘, 3‘..» 0. "O ”fi‘h.fire Wfin rbfié"74 from ficflnlfiiu no menu 'n- L3.nn § - 4 o q 0 ”at “‘flfi"ofl F“om noon fa fifinnlfih5. . U- '3 r . Q J“ ‘ A . to 1‘5?“ -;#fires n“c P" flan “fins Q21, fin. To not 1nclsde dflg wals- ' -: ,1 t - 1-x 0'1 ; J : J. 1 ... . . 4-41 44“,- 4- -.p,‘ ., ...ww'rq can“ 5 6.1+: w . O «:34 I..._ :‘n. j— ,(t ‘H I" '1! m ‘ I'd-q '-,.-n “-1.1. .5 1". ~03 or "-~C-1 L‘ P arr ”' sfi:t:, n ; . -- . ,M w A 1" in -o: +“ +4 . ‘5 “T13 'P‘Q a.JA . - we r ,*_ 371 n- .131: *“ni.~f.v'é ?‘>.r*;¢u ‘1) ‘ r2 O:::$I..A*z,;ru \ “5r “0“74 “6"0 i50“5““¢4 ‘56 Fi“fi“93 fifinfln in Tnhlcs 59, 70 and 71. how9ver L’r‘ Q'F . v “.0 sag-a .. fifi. '3, Va ls“ r‘: 1 J- : ~ .-.—>f I.‘ d . 6*“ s°r héfio nvlfld‘CG ,_ .- 11C_,3C.C CY, J R? CJOTu—C; 731u¢nh “n -.. --.. -\ k a" “d:**:v5,? 7+1?“ my dcnfl bhntq fv 4%“ Fawnrq 7b a rn~ulfi of ffifi poor ': :1 . -n V. ' ° ’ (Lu ..- .. -\. ' . 1 '. “ff-t‘ .\ay-t w. or: ‘ J -“ n 1‘ :Q i V: -'fi.:’qs \ )-.r3 AW 3“ RF. «A. 1, r 3 n 11:17" 'Yf n‘rn-I fijgj‘Jr: ,.:'7 L‘ “1“‘I.; ' I A - 7‘ “ '1 *Ir‘fi q! .‘Lj 1" ‘ _ ..‘ J "A‘ f‘n“ tat-fl ~u'n fl bn-E J— .153 25).“. J‘::" C “i ’: ‘ 7‘3?) e::: T‘“ ‘ ~. '. \‘L n" ‘ ‘ .'* s 1 A ‘ L qr ‘. —'-‘ “'n ‘— n t, “ VP . ‘ -" ‘ . ‘ F L. J K) fill“ -’~- -‘~ r: ‘rlf ._".':.‘1 .L. ‘C Uv‘xA‘ ubn 'J:1D U"."::- 0 ‘ £18 ;!O1’.. 3 :3 .‘Ale ...4— J {JCT ‘ 1 '2 ’5'?» 4-1\ 3- J-‘*‘ ADJ“: A: n“ I. J- ,1 1‘ *1 --v 1 r1. ‘ V n .1 T‘n" 00’! ”‘7d the ‘f‘.?_ . c .71.. n - V __-.__h1., P. ('8 .Ln L\ ‘01].‘J; vufivh. inlcn 71C 4-! _)‘| ‘1. .u‘ I» hovse nonfiifiifins would hnv: Tnefi firinr. Bncvnse of fihe fifirfiinl cf?icinncy o? iho ventiBation svsten; t;e nmflunt of water Carried out by the exfil- trnting air was not added. hl7 "”’Wrs Tl. “mfiv'r‘firn fi’ ‘"‘ *fi*“7 “31"+V“0 “OmnV‘7 7°“"Qity a? 1‘”. ”~jr: “‘“4w-““6vwf‘*“ ”n4 '1“¥h“*vvv1 “HT‘fT‘S 3299 5151;91 tafférrfinre “ff"i n rnldfiive Thter Tonnvnl Capacify of the KO“ Fu“*91?g fans ’"“3: fffizinpqy QSCWm5d\ y 1) \N) u“), 14n;:1ens, .-7.1m:‘r1;;e --'Itlfjé IVrmnge, E 1:25p, f'orrlt'mf; Afternoon T1111 ”wily 52:-" ”211? 5:51? fiPTiOd period flay (Inon to .Knon to rm “fii"%* vfixfii*h. :car, 1: 2h 17—31 71 ff—91 23.32 32.2% “5.76 17 19 11-2J fi“.’ 72-79 13.fi3 15.10 F“.fT‘ 19 “3 11—‘1 f“.° ?0—93 W.F2 32.18 10u10* 19 ?* “l-H? 77.? 62-91 1 .15 13.25 f’.?0 20 hfi 3i—C3 F1 éf—9S 25.56 12.72 32.28* 7h Eh 73-“? 7C 6 -C9 1?.MO 30.7h )T.?H 2: 11 "-L0 79 7L-9h 17.h3 33.53 5”.11 96 35 31—h3 Eh 19-96 15.78 2fi.fl3 31.x 2'1" .21 “‘35, P10 SI 6?_9 ?O.f‘0 ’2'!‘ o ~“'3 "“ ‘01-3 ancL 1 20 11—26 35 27-?6 17.02 29.35 31.17 2 22 1<—27 4’.6 Si-77 L. 9 20.19 2h.¢7* 5 2 1’_2K 7I.P £3-fih 13.23 20.90 3h.o3*' 9 23 17-37 71 $7—31 11.5: 33.?9 h".??* 10 51 :0-39 77 67-39 22.h? 33.63 f'.11 11 ha 29—52 70 hf-C9 21.23 L1.7h fi3.00 12 V? ln—fio 91 73-99 21.fi0 39.70 (3.20 1H 35 Fl-LZ 9O ? 99 ?fi.10 _6.?o §1.90 4f12r2fie o; “'2 17 4215 TF/ 23 1%“ Fans 17.?5 79,96 57,22 “fifiljzcd M of £50 £0591 3/.§fi 53.55 *'12£~? r2on°1 CfiphC‘ty {30 f"“" 5010* MS 15/" T: 10" T‘O‘Ts “ffw-rié tn '7~‘.tlc Cl smes 2.11 ‘incrtnrtc in t 16 nnisfure 12:.t-21";.c:1t a " : I 1-. n d2crnfir2 3:1 . 7 n"'1?1.’"fl A5.‘.4 - *Kc litfér 222? ‘TO First Tan £0T2rd fl? and o " ebrun ry, rfltil. \ “ mo‘sfure contqnt near +he second fan and prqcfiically no \‘rfl'filfl J't-f! *‘flfi.$fl!i r05“. ~ ,g I‘, "T‘fimzld be new-ed {hat {the nren 71.0.")? r 1n. 7 h. 'l rst fan ”as *32 0014225 one and the cold Dir coming throufih the big door at +1~1° nr‘ {‘ +3123 1‘ 11m.) “ 1 '1‘- 1r .1_s ,1d 0. 111 no. 1 p 0.1.11r r- «A r3 \J . k -1 0 {‘5‘ "Ali ,W‘A fin\-,/JA\AO.‘+fi H g. 1‘; 4‘ fin..._/ ‘_I" L -L‘ .J-LO'I strikution a? well-3uilt air intfikos, it is b lieve .bis area “nqu be Conciflflrnbly improvc-. fihfii 550 g m.__ I '“P"“"“‘ " " '3' "a :13 "NRA («If “‘" “‘. 1"" "Y‘r‘ J‘f‘fl' 61"?“ “W" '1 “(3 'nn7 n+w wrn “y‘pA-‘y ‘_ . , .. . ,, - - . 4 . -- - -... . _ “4‘" .H’L" "““. “1" . (‘1‘ (“a "f' 1“ r1 5‘ a“, ."’\ “‘VM‘;"7?+-’ n» ’1“ '"flh y,‘.?-‘ r—s\- ‘m \fi ‘ ~-‘ - 4 - ' ‘ . - -~ L .. I. 4‘} - - ... - w ,J ‘ I ‘: ‘1 --~-‘r~v~-1. p“,fi‘“‘ L" 1 ' ‘—:~-‘ .‘Z-n L‘ qu {t1q+ ‘.\(3"1" 'L“‘N P1.1-‘r14‘ f‘fisfi :7} ram: J-n ,fi-vn - ..L - ._ ‘4 ‘ L. * ‘.‘ ..‘ .- -. .' " . .. c, .1 _~ ~) - _ .’ “___ ‘_' I_ _l r ;)_‘V J", A "A ‘L .L‘ A4- L. f‘ 3r fi~-Vv'\nrnL,‘)-‘n A); '..‘: f. w h, . 'fi '-rr)(‘ -‘fi§"’\ ‘qlfi 1- P51. “5 r) .1. r10" - ~ , ': ;.;.~‘ -1.0C»"1'3.L .- ..1 .1 AL I .1.“ ..1U'. .'.. 90 h 1 17*r22r "22 :02r ?’” fire? ’22. ””12 in 222*i0r hrnfi? 2? #ho neofls for 2 fl L 4.1 " J. " 4. ' n .L‘. : _.: .- : TY , .L' 4-“ . .1 .-1. :4. -:~.,¢T"'té.rifn1-:2n rm 1.x“ _fi7¢7.TL; nir. (n120r 4Y7 we. 61 ‘3TT331f1'Ylb’ 1. v 4‘. ' '~~ :14- 4-‘~ J .1 41* ' 1 1 4»: 7 .L'. thhcnrc tnah 2 '1r 1‘PL.-r2u112 flxrnvxw 130 big annr -nfihunu nnhr .ué P’rfi‘. ”23‘. 21‘193‘98? ‘3‘“ T‘WiS-f nil“ of 4.7:? s lacnf? on toward the 0+,E1or 911"" Cf gl‘qe ‘ _ fl . , - ‘”i“ if” T""r2 if "CCTTHITtOS. dFe 11:? of air irthfin in fhd 32Ck n? the i a I O 0 I 0 o int"fi 022—151 fnéT ""rt of +10 w1r to revnln fitlll Wfi1lc fihd filr COfi;T* 1n Q 0 Q A q 0 1“ vvxw'P-‘N -‘-‘ A 5““-‘1. "'3. V ,‘\"’C‘ 4 F.‘ n""q“€"" 1“"! '\" "‘r\ «.L‘.“ sm- 9:571 ‘\n («“6 “"17"!" A“ 1“th\ - . ---- ..--- .sat‘ ./ ..- (' ‘. ._;J 15.- ' kx'UJ'A v" x'.- J.L.—L . ...I ‘ '1‘1_‘A‘. vJ .- --.J..-1J \J.. /.L I‘. 1‘ 1")" J. ' ' 3 J ° .L- 1 ' J. ‘ "' fin. 1'fi 1 7" f‘ 7“ 11“ ‘3‘ erMAVrn nfijnflw VF ' “cl-_..”! 0-. aka -j- I ~a .LA ' -. -‘\..' - .OJ_» i ‘J ..H c ,1. .¢. I.I) V I ..I' ‘ (1.1; 2]”, . T? £52 writor‘vere*rsrobo~+ "im112r firrdrirfififs, “5 Wnfilfi plncn the Wet ”“3 dry MnWh t32rmocnnplns near i“2 frns insfiend of p7n01ng thém 1n *He afinfér alley. “nah n Jocvtinn woulfl perhaps not be no rnhresfintnfiivo 0’ {To confliiinn in fha bnnno but would normit n heifer esfiirfiuion of the “" 1“ ' G r v- 1.\ I" m.nnn+.c1 ‘Tfffir'ZVTfififCJ,?E"fi.C -ffi19. :“n Urosnnné 0? n02? énfifléfififition was noticed on the walls nnfl nei31ng ' “hm {hm fififinwr-finro n” fifie hnuaq 1robp0d 'bolaw BMOF, Prpnninlly nnnr fkn fhird ffin Wrfirn 952 rn7nfi1ve humidity was fhn highesfi. VOWGVOr, it W23 1mh0¢9451m to fare “my 22%“ on {bib "”35act $1229 fhnsn 10W tnwfiflrnfures “CU211y occvrred 1252 at nivht or early in rhe morning, i n at fiim9r wWeh I ‘ ’ ' -. ’0 the wrifinr wds not dround. The'wrifier obserV2d +Be presence of corflon— Shtinn but never in 2xcossive amount. It is V973 PTnb7bl° t5“t 1; the wifiter had been munn co}dnr fihn nmnunt of condensntfinn m1cht have been \) objectionahln and fnr best results rho wwlls find anilings'wonlfl have to h» inpuléficd more heavily. A highnr 1nculnting Va no and 2 better flistri- hwiion of fi“n incoming nir are the two improvements this rsrticnlqr poultry .1 '1“... ii .11 .TJI. 1L1? A°“”0 “~4H;v° fete imovovowohfq chow?” he Home in "coor4nooe With the roooVfionflofiionq given in ffia soc+ions don] _ng wiih the prOblem of tempor— qtnro conirol 258 #54 fles4gw o? £he intake system. 7otcs 0’ fin vontilofiio” Efifiller tFao the no Uted in fhis povgtr; a7“*e (3.9 cfm por hen) woflll 1“v: resultoo in a somewhat higher house ‘ . .L. -\ “‘1 ,“C rj‘, O ' A . ‘1. toovorfi a“~ on: a Cor .owoon'1h 1v hi 1hr moroture carrylng Cnp£CltJ of the owfn'fie a: . To over, £50 LT flier ‘ol4eves *“of this increase in moirturo carryin" Coon1i+y o4 ifio owfinido nir ”xtAd hovo boon of9oot by tho revue- tion in tho ?nn Cnhnofitv oqoocinllg', 125.4th mavimum rates as low as l or 2 ofn “or hen. If is true that +“o Fons woulfi hzvo run a longer time but sfiill {ho fofinl moi-turn rnmovod oor day would hove been smaller and th ‘ :ofiFQ conditions ref" 1“: from +hose low rites would not have be n so Sit— N ’ .L F- » . v, ..‘ i 1" J. 3 ; J- _ 4" 18-"? olT/. A ldrthnr or uno t lor fhc use on vonullofilrg raves lrom 3 to P‘.‘ z 09% nor hen lies in fhe Toot thofi Whom fho howce flamborfifnre raise s after a cold spell, i flossible to more rapidly remove any'moisture previously d H U) Ta! accumuqued. . Fons with nnf'l 'io on rates 04 Trounfl A Cnm por hen ore also ho“o sotisrnotorv to keep the house cooled, without 2;? manual nt- fien‘ion, durirg the rather qum 4ovs onoo““fi r,d in enrlvm L wring, in late fall and oven rurin" SOfio of the Winter monihs. r‘ n I . u. ,owoluclons "T‘ lie GonolHFions derived from thir exporiflcnt may be summorized follow: l-Thn g0_c“1led "senoodory courcos of heat" (knot from litter ”coonposition, .... sun, lights, etc) soon 50 he much more important than fiheir name implies. .‘u .- ' 0' a n ‘\ "‘"“‘ f‘ ‘Y‘t‘ ‘] fl "fin-L fl~V4-‘ wara < ‘4A‘..\ L, A -. ~ -'- v -: v ~ - L J- * - 7:, 3 . ml 1-;- is, - I \u - '. -.~ .r' 1.x. ..'1105 , COVE???) f“: '3. 31“. 1.377711 "‘3 [“1 oer-“LPG?— ‘ .. v 1 .. . IN ‘ 31’2""? O; 'O\‘ J! ’ "ff"! S PQ’X‘V" n; ‘ 51 +A A . :3 . {1'11 "\ '2'” 1\r “7M fin“ l-lnw. P‘l-‘I n 6 _..r0 ... Vffi‘rm- -_ -1 -' .. l- . v -. ".4... ‘sl v a _. -1. ,1 -.L -\.; ...) . ~--. L .L-... ..‘ -~. .1 -3 '13, W o I “ ..'-A 1 \ur. l ‘ L‘ #1. I. ‘:- ‘A s A '3. “"" (‘ H "L ‘ a PI 1 -.*w Am.1 . o l.l; ”u .QWL. :0 ufrlcbn find Cox 9; , at 1 no}, “_T"‘~r a" v‘t4il"*‘~" ’wn~ *“vnn ‘o ’ovr “9" ‘h* *ofi bro 4oéivono for . .7 J-.. .. v. :1 ' “_.. . p [_j 0 j J- o ‘ ‘ AI" 1 H0\ "TO_;_‘ wr‘ r— 9“ an» a w vs ,. \_ f‘ "A a 4— ‘ q. ‘. -\ ’ a‘ , ' .i. ' ' 'W ,. v - 0 ~ '1 - .-’ . \ h F: - . '5'? H g 3.~‘Lu’~nx.4-n‘ 1.. i r, x-rlfi 1-14 :5 J .- . ‘ \ l . .1 J11 n, - n “'1 J h (A1. p N‘ "I' .'\ .q,“ ~ 'N“ 15 an _L ‘_‘ A “Y’fi ‘q FF“ r... _: (..‘. “-“\ fl fl fifitfiflf‘g .1. w- 1‘ -h _L V” n A 1‘) r‘ h, . . _..~ 1 l , , u, A, 1 ,. “om-.~:.Al-r,,m,g », . . in r ‘ H 4“ 'fi a"'V'\“""‘.a‘n 'H"- -,I" "1‘ 3AM~-’-A ""fifiJ"*n“ fi‘fifi‘I'V'yfi" “r"‘r' «M1 "1 f “' qr) 0“"‘(1’ ' 1 I L .‘ _ , _ _l ,; . s...” L'J' 2 . 'l' .\ v; 2 ..1 .‘O A ..‘ . :-;_ p- ' -L' ..-},J ‘ ." “ fl 0 _’ " 4 V o I Q p'fi“"“i"‘7? 13" “'11:, o“'7“:rfi1 3 .rflazxos *VVYT”“’ Tror1721firugnzu {(1 nocx1 find Ia . -‘ ' V ' " ' ' -.’ {a [J ‘ 1‘ ' I A n u 4- /.;~ 1row noon *o Tllfi‘d; . ') k “,1 1. .J .' ..- , r 3.! n- .2 .L 1- - 1 J. 1 .. 9 -‘~ ,—-1 “ow“.n -o~.,_ W , o ‘4r dflquf figsmofi soows-o Ge ox: o; is? most 3“. A.J. ...J. P J. ' 1.!“ HJ.’ .0 .L {I _p .L .1- ‘I. 1 ahfiw‘flfi - .“G or 1? :5 s4 1? on or? “or ormnooe Of a lfin oys.ofl. I, saouln L4" Thwh‘d‘ ""‘-""" J,"""J', J 1 " “:” “VH'H‘FLcA ‘ ..' J'""‘ ‘h'w “.6 11’1" '.r“.'“r~ .3m 1r“ ‘. r "r-a ’ 1 -« 14-4 ~-- '- w ~ --1 .4». .. .,_, . -. L -. A: _ U. 'u , , :+ “”5" ‘. f "‘"wfi FI‘I""N“"+ “4“4’ fi" I" 4-716 '3‘“(" "7'; h '1'?” '3 l" +‘v'wn fin “r31. (‘7‘ "1‘ r~"' ‘r A .L.. .I 4 .q -3. .‘ ..') ) 3&3... ' 1’ ‘ .1 ./ ..‘,;JO. .-- 1C " _.-,I, __.) ,~-. J C . - .l J—L 3‘11- ..' ‘) I ~°.n —? w .- '3 ,J :r t‘ .7 J. ' J. 1 ° ‘ -. 1",. .0 . .- p'i Arl ‘ €51“ “r" l “A s 9.0" 19 .0 do tfic no? :9 7?C nsx1xl grow 1t. "1“ . . I C -u 0 V— '* ovooor 3fi°”1“+’““ o” L1V~os 3% “oofhor “v“"or" Pro+or 4o oonrzflor 1f ‘ ‘ - - - - -I A _. - - . d— ‘1‘. - - _ - 1 - - - . _A “Q -A I O . Q " - O I ’0 fl 1 O oo= * "4*1rV1‘1r Yo ‘2 .oo5 4o a *nrvjmrfi, 1F ioo no"orrlvvu1¢rdfurc 13 to he m~i"5~5?“d 93o?“ fvoozi“f °V°fi of ”ecixfi or orifiofil owfgi4o *Ofip°vafwre, .1 ' V _- o _1 _- w . . . . 71v 1” 4*“ 1“"1.fi “A“ on' ‘Fo lzffior ore to he holfito1nofi "c 4r? ”3 nos- s13le (air ”ol~*ivo Ffifii414" holow 305 on” 1 4+- - . “J- ., llutor mo1otu“o oo4,o3t below \ ' . 40.», w, Mus}. m .,: a “_‘N ~-, - 1 .. : n J. v - 1.1 - - 7—1.o wrliwr's 3114: halvs orovod to JC vary 3 £.: no»orv 1n .ae :nal;.1s I " ' ‘ _ r w, ,‘ :NAHL,‘ ,3..1., A." -‘ 1-: ,~ ,. , 1‘. o r‘ ‘4: - l 11.,1 n¢ ‘43? alvvi.nunl;'xxi.nore. _ -...«k,a ~.-»J-"-'_‘~ _ a _L. ‘fl 0 . 1 ~_ . nh1olnotolf 1n txo house Gordy / ~r . . . “_rllnM§1£Lgnt v0fif1lo¥1oo soofisronsohohly a 0d (flooorofe inoulfifion) onl would broonoly 1"five provon more safiirfootory H. ‘: n “ .\. 3‘!1F1F ' '1‘ ’ HP .1“. 1: %R“ :1? 1HJ _o 315,0o 1-J boon Dronorly HOSlDUQd. .. L.vn P ~ ..' " . .1. ’ .L .1 ’ . 1' {~le »1'0 0 odorofilon 1a~trufionus dov1sod for UHAS exporlfionfi'woro gonad +10 ’1») wfiirnly so’r,f_v4‘o 1‘1101‘3". @401? permit the grouping 0‘.“ 4.1.3153 +5713”. Of do??? oo 436 pofnnfiofiofor oHfiri, fiexf £0 fiho ”ry Hulk nnd'wot Bulb iomrorfiiure floffi. Q-Tvvffi~r resnnrnh iv reouirod in smollor ”no Heifer oontrolch houses on. in caloriootors of fiho t'po no,d at Boltovillo, K ryldnd, in order to "an “S "W“' ,“ '* ’1 "fi c n*+«-*~' iw *“ic 1vfi‘rivfifii fin” ih nri r i0 fiqLAuwfiu~ : a: b” “‘c erunfifis “77"*04 ‘0 £3" profllcm d? povlfijf 30W”e 1,... ‘;:jn4 ’0“. 7. Ti‘i‘fiJ"“" i” "* f‘vf 3°:::?_F: :‘:5:. Lifi??? “A“4nfis ;? v~li4 dfifn <5mvl‘ 33v? Foam 03— *“5““. TTtK lo: 1? pfiriods ?O‘” in.'3‘+ fiijfit ”“ve b39n j.irai on tHc 3“’7”“"‘C f? 3‘5: fl: :1? temperature below lLOF or above 50°F upon mean - -. \4-- Un“1LW' ’\n-1,-n Lqmfiq“qug“Pc : / ... .-— ; I b . - _, m- 4” In 0‘ r‘ ('11., \ ~ _- . o n r ‘ - -.,-. n'r 1‘*'.‘5. L 3 "lfid1“n 0’ ¢p~¢7nl Box—fiybe air infinfifis fin" Elm thU fi“fi* w “ijfi W¢r0fi"firie of fl?“ incoming hir Wns throvvh the big 10‘ x 10' “-J “6:“ ’0“? in ‘30 Wo—+ ci‘n a? fhe hnfire made *Fis Pauli?" hO“T? uns :tis- A " ""- .i\ M A -- - 1 V" r . '. -: . a. “1“ 1 q ‘ ’“chrj Ll* lqcfid,t to En» pro/Or ‘is+rlbutl.n of n11. l_é andre con— 9:41:07“; ”QC” ‘CAH in '1 Ifir‘m +fi’"":\,"-‘:""'J‘.‘7“7 55'"? “'"1"+F.VP h’TT’li'Jit‘.’ V"”"‘.[Tll‘,l0"1 (- , 5 . ,.‘ .4. J, 'A. v./ Q .« Iv -‘,.v . _ A ., ‘ I 7f‘6ltv",'h““ -|- T» ,2 4.3-: O “HAS (’3? + rte howi‘n ’ I. :11» :11 ,1 .11” all- (.‘f‘ 1111“ "In,“ ”in ~\l n1 va ‘ L 4- : u- VQ‘ : A A _ '_ 5" ‘ p ‘ A fl 0 " O? p‘ “Inn‘s " ‘ ."* £0 error. w poulhr; gfildfl 0; rs lgfir 91:0 and w1t ’: “ "L . . “-!- r .‘ V: 1 ‘I M ‘x 77 ~ . ‘ '3'.':a’7_.‘.»0 .111“ 1.. (‘10.? qua": 11'. ;"'T"'C 3cm“ (21-05021. ..ncrevcr, Pitt-31m, vmg no guca 1.4 ‘ - _I §\ 0 n - ~ .. “ fl} .. 4’ ...-" ’ “ wfitSfi fir“-lhzln in ~ :cn~my<.3w «ls5nwfin {row £10 C“”P“s. w; S“CD “ ‘0 We 1 ‘ V a I . ‘ ‘ . 7‘" '7. ?":°‘,‘; 1n “fife." , 1+. "Wald the harm Dr) age-1 min ",3 14090:? rwnvr‘ Sat. (11": (3+.nri'!~.— ‘. . » . L ~ ., ._.i- w . , ~ ..‘ . - ' - ‘4 . v—~ -A.A - v A‘U -LFWQ 05.3. (\nJ-‘iwvrrxcs F10Qfi‘?‘n\r]. ‘ :1 w" .2 'l 7: 1" r‘ T" I fi‘ 9 1-. ' ‘ ll fi:r-.1 ' f‘ L.‘ FTH’UQ. I’- 9 rd I_ .+,_._Vf3 .-ufili,__‘_t,w(1cztla. JCJMIMJSC OJ. Ugh} {1‘14 0.1-J.'!,k).LS CE in.rL’iC\/\Jr ———_—-~—_—_—* ___ p 11’ Jump A hr _..1q ‘1‘ _.JgJ- J. L“ .I . - p L. ' 144-1- p. w "“0 ‘4 “O"T‘QV) 3 ”0‘1 31.,1’,.H,Cd .0 ml"? ..'l’lC ranrc 0.1 T31“...:l‘."’3 51177." 5.2.4,, V -1 1 cnc0“n+er0h Ostide, it'wns fouvfi wore reliallo to commute 23fi01Uuez.1fljd— L‘- 1fiy val“és from +P~ rodiints of he Lansing'Wedthcr Bureau. law basis for J. 1" +39 use of“ flwae rims is: e: wlfiihev‘: in the pmmn um. ion 01 the resultS. e ”*i+ér vorli 11E= +0 fieh+ion howovnr, that the u»c 01 ‘he Lnnsi“¢_ Téhfihér Ufirénu dfltfi in Chhiricnl and reliable instrumnn.s for outsid” rel— hufii”ity chowli 50 dovelnped or acquired by the Unpflrtflent if any firifinr qfiuiy is to He flown which involves the use of 0u+sido relative L22 'R ‘ J ‘ “- ‘fir‘vw -?-\‘.-?w'.—\-n ' "rar- "‘nflflr‘: (“‘1 i-fi‘h “f'\“p"‘7““\fi"“.fid " rm I - .-. ‘. .' ' . - ', J L I- ..‘..4 “-A.‘. .. ’o‘ - - ..- .4" C ‘-.— 1 IS - — 0' n _ — — — — \ a Q g Q _9 v ‘r H L 0 ‘V' .I u ‘_ 1 ~ 1 (h, '- ' ~ N r '11- fi} -~ fi- o v~ , ‘x a, 1" 3‘ -* ‘fl ' "fifi'h + x *‘ .. q . ,v 3 ~ irtuf an n.3c. 3t ;9 an, mfifiA ”0 °«,F, ,0 . ' ;-~ : ‘ :~ n ; ..,1‘ .. 1 .- J ..t 1‘ 4.1 J. . va.\ IfiQ- 1‘ s f‘ ’Alfi AQ‘ ‘ 9. \‘N van» \ n ‘-\ \A VI ‘ ‘\I'\ I e - h _ , ,_ u .”uA an n at¢n s D r“ U'pe .? ,LL. r~ - ' ‘n‘ r - ”Pr 1 W1 L‘ 1 r ° 1 ‘° v‘ «r A; 0 “ "\ fl '5 '1 ‘ ‘ui AW'I‘J 5-1 'vfiw~v "“P‘fi \ '\ u“ ‘ ' '- s ‘ ~ '1 ..‘ - v‘ -\ » ‘):1.L ,' . S . 1. (I? 4.0 l\.." --- - . .J..‘f\". 5‘) OJ lCJ’- llJ-l- 1"», a: .1 I.“ ‘1'; (3.1- V. 0 0 ‘ " '1 ' J" P J- ' ~ .-. -'~f7 -s N‘IFI‘J' 1 \ vrflj n ‘va- y 4 V‘fl 3 vfi-L J‘ 1“” ”’3‘ f" . fl 7 ‘5“ " . ‘ ' v )r‘. 4 -.1-fl‘~,;l 'J‘ , n 1». p Olllt :3 1n KIA-1C ’n.‘L J- L \‘ 0-. .l ' n 4r"'l\J.L-- WfllQ?‘ n“r¢nr”~an." .v n w-‘J‘ r lfifinf 1 on._13 ‘flfififfi 1‘ Q .v 94‘ 5". ['1 -‘.F\ 'r? 'WQC.L ‘~V‘.b" . an k).1 (N? .TIW"fT+.i “ ’- -. ‘ ..: .\ IlI‘L- -‘!:10:1‘_-- P: +30 o”*nn n5 dnsirefl To "n ‘~ w .v—u:\« .eew 011.;uu 1 O 0 . ‘ ffi CUWUV€¢*1nfiR cvnlnr nnfl more reliable, tn? orwnr— 33163 930313 have been as small as prnchiCfll, crnnks sfimuld ficfi nwfl a iypo 0’ fan wffih COfirfifihfi rir delivery should £31 hoqrn, The poult house not being on the Campus and tha colingn, it th nni pOSSihlc for fihe writer to go as to "6?0 ohservwfions on certain factors such as conden— afifiow on walla Aurin¢ fhw nolfiest unrifids (which usually occur lafie at “lwhfi or efirly ;n **e mnrnifigl .ild n rt1¢u~««1v n4 ‘ ony- |-.-l_ WiW¥nr. _LW . a ' , r—’ 1% Sh0fi14 me salfl flhflt “an 1939—19p3 Whn a —. “‘1 1" _--- In g-‘.'r li‘winfer. {2“ N K») a I" "‘1 -. P .'y‘ ..‘ 11- , 4- I «a a! T‘ ~V1, J- -‘.' T . .7. H, ”J. A n~rq LQVQSSQHI s 4og¢in; dons ('A‘J- ‘1‘\fl§7fi-’- h n 'fir\¥‘Q(‘\fi\ ‘ . _.- ._ w, J. '. ‘) i-‘..a‘.-/ 1 man '=wa --. \) m... ‘h'. '3 ps1 -‘ - . - ~Ir ‘ \ " A "A Ad‘. I‘. . "F" N ‘-P‘-‘ ,‘ . e h r_w r 3”;7t133 “TC nonnuh d h. '“H “H“ t wussfix hens .,fi» an . ...: ’Y‘V‘h'vn ‘1’ -‘ «1“- .I‘ . q‘ A ..‘, n . f‘n. . n ‘V'WO :18. " ('1.‘ ‘. 1~.fi'~‘nr\ ‘1‘...“V‘ : s '— fiv“. is V\ *- AJ‘ fi‘fi“ . - ’ ,b _| ‘fg-Lq.‘ ‘ - L. fir: n_'.". '1‘ ::l. q . 'fi O I ‘ m “,"“ rr.\".r-‘."‘rn‘n"- Tc '5‘ ' V 51H fir‘r‘; ‘1”, .1.\h.'.:+,fir1 fin f’m‘, 4’"~1~n"- n+nr'7‘ U u; .-w , .. --7 ~ ~ . —-J n - ‘-~ ~. -- .---xer’ g:' - d P +qu J‘r‘ "v ‘n ' ‘un ' ‘ t L b"6 “‘4’ '9': 1 '3' ' ' P . “4 4" n n ‘\1 S i '7... .-'fl‘ Yr“? ,0” 3’. 2.: Q I" .' 5'4 J.-- x”? .L-»-I‘U OYIS " X L" Jrqb'dlllg: €<§11U£1" .. I'n .‘J \ .\.. ‘ L - .- 11 --3 ‘3-” 2. .- J-L .. J. 1 ‘ \ "“« J- ert \4rn u; .;< “to cunt; "Lnnwus ffih~ij rerun-IDS” JACK). 'ue n73 3 fire F‘fl J‘,“ . A1 “‘\r- ‘~\ a .r‘z -- n9 ,- a“. .J“ a -‘ ‘ 1 r' : .H d6 * hrr $u . *”6 e_~* 81%? wall “J7 ”“0fiui“fi P 4% are :Wnn‘ t1“ Jae} . \«A. s W“, 11. 'f‘v-rd ’7“. “"11" we “r“ *hyn‘c: <2'f'l- ’37-: n CFITWC+,.".I‘.1'. ] TV“). ”EFT!“ T30 “731*531 "“ \n . r “w r p ’L‘- - Ir '>‘.- P , 'l .t y 1 r q 1- . 1 n H.: .1114? w -.1 pr“ .‘0 130: .s 3110 0; « no 2 1/2 1ncges on concrete 1 U l 0 ovnr 1 Sin"; r011. ”F“ “blllnw Pfi' Ldiiht i) Coven feet. T“e litter is rafle -- --,‘- 4...: 1 -' l ‘ 1-7 ’ ‘.-\ .. ' ,- gw~ r;.;~ngs aaout a foot deep. Pic “?OS 0" .30 hourc are SJOJH 1n Fig. 62. Mr. Albert Levasseur's poultry house, St.A1bert, Province of Quebec, Canada. (Photo furnished by the Shawinigan Water and Power 00., Montreal). ..-_. _.. Fig. 63. Inside view of the pen showing nests, dropping pits, waterere, feeders and location of instruments. (Photo furnished by the Shawinigan Water and Power 00., Montreal); 1125 m.- A r 4 H A ‘ f.“ ’- ‘sn n4- ‘gs 1.4-:’.\‘—‘ a“ .‘ -: -‘(Q‘YTAJ- 4".~ qu-‘w‘n . x _. . ._ ~‘ ». (I. ‘ k .. _ A: "‘ ‘ I ' we now "e nnw-‘Lvnr-Li 1‘01 n c: or: n,q'17(~,“r: - . o . . __- A _ ~' ;‘ .¢. . ~- ’ 3 n r.“ r‘.~~-.- ‘ 3 I. s ”/A ': -’-\‘ n ‘V . ‘. ‘ '- .‘ ' "' — ifi . ~ ‘3 n on = I t w ‘o r”, ntfil 1 g p”,(q3 #4:;1P'ee 613 (_1 “..‘ __ P fir." H In“ .1 A \ aw ‘ 1 , n ;' I“, i ' -1 - ‘ A '0 .A(Lo A .r‘:1 .-\,' '1‘ /“ -.-‘ , , r‘ fi" . x ‘v;\ 7 .J-Ji ‘ 1. M'- ,—J ".G 3 6/- l “A \eor-, t- 32c-,s deep iiuocr on tme senond st ry. ‘ 1: ‘F V' "_ 1 ,,' v.‘ -. 4-.- ; ;.3 a ' ”2-9 1.x'ufs. r} \ - '7 ’6‘ . ‘ o c Q ‘A — n‘r = ;/v infh “flirt, miner, 7 p infin nonrd. r~- ... -' L , , ‘ V ’ a" . .F‘ ‘ _L‘. oer eonn‘ted toe fire“, Refit loss nan A4 V‘lue o; nwoi of ,ne u' v'.n\JA. e - mw ~‘\,\“(-“L~“af\L‘lfivw‘ ‘1‘1-‘+ r- .. __.., .~.- , _V'._ ,* ‘1 v. ~ 1 ['1 VA'Nfifiwfl . ‘A A .. the foi;o inn tdnle (iable 72) 9u.melZO t“;so con— p‘V-‘LfiL’t AY‘F‘ -.: .o 4 x). n O "‘ “..,V - .L‘. ..-..L. , n_ -i - 1‘ .1. 4" ”... “-"7"«' (‘2‘ 51.4! 7(‘."‘.‘Na1p 1“". UT J-JL‘ JJCT-{"11 113.“? J 10 SS O-._ I. .. I I- 'l " ‘1‘” s .1- . O4. '1 . I'\ r. .i ort Lovwscenr's poalwrg hourc, 3,.i.h0rt, P.¢. ' A n ” .J'1*‘q.7a. Vnit A R AU ”dJifition area Insulation 7 at 1039 or eronsei area value A = Aé-R ‘ (sqd‘t) 5' 2'9 l-Zoiling 115? — O Q—fionn”ntion lhh - 0 34.11111 7]:.‘:. 6 11.5 ’4‘ n. . \ '-.'._. k; Ill-"-.‘”:fl‘fiov'rs 111. 5’ O. 90 111/). \f1 F,’—:)Oors 133.09 207 505 Totel Sé.h l°’ ‘. (j. K) A total AU total _ AU total 186.8 u uuuct U (7 II c: '1 S '1 O A = €6hn§20h hens = h.?“ sq.ft radiation or exposed area nor bird I h‘gqafi_cth—~xr\'vfiq1 “Vin" '1“,'\ ’ .t.-.) n- 'J.'>~<4Ao .5 ‘v‘_ - L ‘V N! w x \v'\ ‘ 1A"' -\ *‘ ..e kg“ '1“ d .: FA. 01‘ o*+ . V * ¢ LHL: . Mn..— T‘A'nen 1.1.0:". L v- fi‘fifi“ ; mv's . S F“ ““V‘NAV1+ O« .L“ Mr. ’1’. 1.1 3 '. -.JV.'.J " w for L '" ‘.""rn'.‘ .' .a“'~w"' l“ ‘ > ~\(\-‘ 0“ " . ‘V . .4 l-' ‘ _ . . ‘ U V . 1' -- r7 J f! (.L “ 4"- A g- ,.L.,.,... O n s . r‘ .L. . VMfi .«w '5 «1'4 - L 7. {'2 . CF (wrxsfiLlnyI Op 4"‘(3 17 ifiehos .‘-' 4— 0 "L ‘ »ic once or tITCO ioct "~'~~~m~r~w‘=~ J.',.-wt.-_..,....,1, ,. ' ' ‘ ‘ _S , ..' . . _ 1| 1‘ 1127 a-Lw'v‘ . H ‘~4 Jv- VJC-L Fig. 6b. The 12—inch fan shown delivers more than four cm of air per hen and the thermostat is set at 50°F most of the time. The deep litter is made of wood shaving: and was kept dry and friable all the winter in all parts of the house. (Photo furnished by the Shawinigan Water and Power 00., Montreal). L A . ; Fig. 65. The lvgrothermograph and the time of operation instrument were placed approximately six feet from the floor or one foot from the ceiling -in-order to be out of the farmer's way and to avoid roosting of the birds on the shelf where they were placed. (Photo furnished by the Shawinigan Water and Power 00., Montreal). 1129 -...l‘l. - ....l.‘. ...—...H... Fig. 66. Outside meteorological shelter with an lvgrograph, a thermograph and a maxim and minimum thermometer. (Photo mrnished the Shawinigan Water and Power 00., Montreal . 4 _ fill—,4...— —'—-. .lllrlbl'll Ill-Ill till I.I-{Ill}. Ill- llllllll'll‘l. 111.1! ‘ It'll III-..'! ' III'. II»; 1‘ 1 I] 1131 u I e _ ‘ ‘ ' _ . ‘ 1! “‘CF‘ - --n ‘ cwzcvwnw n‘ --., e . . a \ ‘ r. J ..‘ r‘lfiL wan ~\‘.‘.1-‘~r\ ‘af171 In La. qr} fiqh (\1\\‘,1 #‘jmfi 4'53-“ fl I“ i H‘. “pffifir , _ _ _ ' -- __ -- 4 . - - _A_ ‘ I Q 1 fi _ . n .‘ _o “‘l _‘ ‘lfi’ z ,. -'_ a .- ,.r‘,,,_‘, Q~‘\ ell—.nf‘ ‘1 I“. ‘9’: . : f13'50 ( . . - to _ . . ._ . ' ',: \ \ \:_ vn\ . I O “ I) n -\f-‘ ' E f. fi' ‘ -Vv -. ‘—, L‘- .\. J”, J.'1- A 1"." -? fi‘fi-I “fl... a? L 1.10 C‘P'vfi'nfifij. T1F‘Y11" (, ‘mp’fi‘-"1“CI‘ 1" LI- \ . . . .- .. _. .A _, _ _ - J‘L 1_‘_ __ ;. .-. .... .o . . .. ".11 '. j I... l -.- " ....‘ :2 4.....1- .' - .... . - .L .'07—‘ n 4- .."v {(1. . .-e ... .Je '5 r ixzrncsrfiigrc 'ihwfic .0 {1) r, .cTr nrlcoutxfoie +431— I“ ..1- -. .0 3.10”- , J. o r, 1 4.”... .. .1 L1- .L - .. . -4- .. 4. “WT“ .- one u e e .0 g «A» =;O° . ---.o.31 H.: .nrd.r‘.ur- dropped ”0 ~. s ol .Vfld"v"“fi~‘ Li‘,‘ 1mJ-L‘ A\‘P“ Ln lq'AYr‘ A‘fi V-nA ‘3 -. pat 'L‘ '5 qq'”,\ [-..fi 1‘ I‘\»\" *‘5 ~' '"1‘ 'e-" \4 ~ .A': ‘file'jt " . . - -‘~ll ~I i-a _ /\l‘j ' I - J - ‘.‘.A _ ..., _ ."\_'_‘ .I, I; L‘- i..A’ '. .4 ."_‘ '|". I] H -' -_ ~-..AL ..‘ (At 600) “fi” the ineiie relative humidity inoreaeed only .. u. ... 11 - ' ,4 ..° . 1 “.1 ' ‘- 1" 4.1. n i". '5" V ' A. ' ‘5‘ . .fi$ \ ‘ W ‘ f; . 3‘, . fl IO ‘ - -- — I.“ - One 1. 0,. ' ‘..‘D-.r‘- ‘j .h-n S. .-‘...I.” .‘L ‘1'61 04 . .‘-0.J..."1 ( "Q' \JAL -1?_ ... n.-. m... -. -L .. J.'-. n14- w 1 . .L .r‘ r .-:cr'4 ... , ? -.’ “ tr--.c.1;\1 o- ..e .Kylne 'vir ...e Izrrjo (“worvtu o- 7““. ':" V‘ “5‘". “" J'A'I '1’-“ 1:‘t.)§ ‘ .4.. ' A. 1 ’" r .1-.. ‘—' J. ‘ ' L n.‘ - ‘, . en <0 'v-s Cv.\.\ L V .r‘ - ~ ~ 4 .er n no of wood r‘nVi SS was apvroh- finely one .OCt deep. A1- L , -1, c. .. __.. - .1, , ..J.. -.1. -.n .1». 0.2.1.1 ... ,‘J. -- -_ . - 0,1. H ..,..3. , f Ii? ‘:‘-l . . .0 - ~ "1‘. P 7’). _ .-~_‘u:-u &I._ ~1A.3 .A_.J- U U\_lr "('].S llkJ L) 611L1fl8uh~e('1, 1L} IL Q--L J..£.chd rkfiy... I Marj'fl‘r‘] 3' rlwwr n V‘ " PT; 11“., ‘3’ r1-7:5:1§ .c J-jq O ova—L‘ N‘In 91"“ hale; fl‘jwfil‘z ('171'1 "111r..L-1:. fill {-13 p . - _ -. V. .-- ,. ,II . - ___. \‘-._,.-._._. .. . .. \-) J "i6‘1r eonson). The writer took gone hdrflffile Of this litter Pnd squeezed o q n e .e e 0 new? a... s "wands "'i‘lCh snows that the litter no. "Hire content A u was ”"01 3010W'thn critical point (EOE, wot basis). . o fired-T‘fsis a” “:10 nr-*0‘.‘Y"‘+. on I U ow A N . ‘ U .‘ ensi»le tefit availnole‘was p0331nle be— (0 vwv~e o” the seareit? o? the fiV“iT“51* dike; the some is trre of the mois- “"r ”1 r1. ,‘ T, --- w 4-‘ . . ' J-‘ ‘r r tnre r511V4L Cnhfihllufl .:F “JCT, here is 0V150HC0 “not ‘" system'wns e1— tirely entiepfiotorV. It ic the firiier's intention to do more exteznive . ,‘ a 11"“ var .w‘n. 'W m ‘ n ' . s . snr \‘. fl tests in t:-s 10-. or? si.ll r odes, next ye.r, in orFer to find _Licl eOMhinftion of factors wake the litter and inside air so dry and the fan . .: _L'p .. operation so s"._s.ector}. A 132 .0_ .ON .00 e00 ..OO. A3_._.<1_mm .mm3k4mma2mfi Nw mmDoE >40”: P40_UL ...vwa @— >(omm20w3 ¢_ >_" n _ .\ p r “v . ‘1. ‘ .II» 7.1 -. __ . ~. .--l. O U , 7"hnr€fi“% T°b*nr “W ‘3“ -LA. I If) ~1- —3 h [5* ‘IVV “‘1‘ a “D p H V M n» e ”1(Tzc ficrf0$ vn'c c; fl J“a SLS»C~- ,J ”1‘ ' 1 J— ' 1 ' "J. n 1 ° 4.? ' n J ..A ww~ v A fivsnfix a - \fi “\‘14 4‘ .‘i ’» , 1‘ A A ‘ ~‘ A \vxa 7r 1 n' _—h , . o» r ; L ;od v +1,1.fi 35 a. 30.7 s 15 \na, or :11H.ru *dw,pr :‘f‘ s F‘ff)‘: ""_V“"\ fir. flx'fifir-H:"n .fir‘»\"‘r\‘ nq+':n\fi p Wfi fl/‘IfirnJ'; '1 ‘1‘ ‘Xr‘.r~-L fi‘flf‘ V‘H4‘flj'fi ‘ I g -. , ' _r__ ..‘. 1, .x . “1‘ ”3.1. --L, .10.. 4.1 _v 'U4.'3.; ‘..,. u Lu - »L «’4. .1-" . 1‘ ‘ ..'. .-1- .l .. . .L. L' p ‘ . fifi‘w‘fi fl “’\-§fifi ‘1 , V ‘ “ 1 “‘0 O ”a”. ,.- . .1.e ‘.f,e,01oes. I .‘ 'r' (5‘ Y'. ~ a. «1&1 . 1 11‘ (‘f‘ V" x‘ . \fi] " \ 1"? fl“:'-: fi‘r‘fif‘J" ‘V‘VT . 1.1 RJ ' a ” ‘\ ‘ v ; , ‘ ""1" - ~ w " “‘ ' " . _ 1 “ ‘ ‘ ‘, s— 1; . “.1: 9 fl M ‘.M e 11 .unhHiC“l éJW «,IJ s. *anJUOAJ 1151.“,ww5 . V _' h a ‘,- I.“ \ ‘ "1 V-. \~ L‘,._-. ---..‘1 j a 1‘ .3 ...-..11-‘1y .... ‘31“.‘_. ”‘1 ‘1 “.\. F'.‘ “ __ V_.‘ 1“ €~1~V1j “I : "y“ ‘7"1 Ar' . . . . . -.. .vl , j v ~ ..., ..., .L.‘ .ll.&. -\ ..-- 3 “ ... .' _ ‘-. - u' —. ‘. _.’ .fl — q ..‘ ‘ 1 \ ..\ ‘ n '.| I: .L. ,.s: m: a - l W? , f» _~ rxw>A~z a a v:;a*Wv cact. -- . A _; r.) >3 .‘z +. P J J O - 1.. ’J H 5 O O O t I i-.n¥erw3fiteru Vér£31°*:on fTVns 1 Véry wonfl hérfnrwnncc 13 'v14‘wcll ifirwlh*~4 Hourm '54-‘15 V‘ :ij‘V'j "J‘ “I? '_ ‘JV. I .L--. tkt -‘ .1 — Uv\\ t \»| . h m .- ;e wrifdr's alifle rwje proved to he very'snfiisfnctory in the an°1v"is of exfiérihnnfnl d"ta involvifig t“”p??“+fl?0 bantrol or Wafer refioval. o my. : D I I . J. O O Q ..' Q . V «_.‘o {er n, nhnrhtznn *hfifivumon s ficvlfififl anfl used were Town“ to offer I ._ ... g .L. ' ' rrfinfi ”4V°fi*figfiq ovmr +Hn donmdrnifil fiyhds. ‘l’ul‘ 19:!!! .1“: ll.- lll.» ' 1!]..- ll] Ir‘ 13:” I II {I 1" .Illl' I.I IlllaYl. “‘~‘L‘ - ‘qV‘. I nn70\\-~~ x . A . Qiyfi_‘ d—‘r‘~-ow H 3.} . ssnafiHHQAYA f- “r “1" 4‘~(- lawn wand ‘ l 't ‘,\l *. u ‘ H.;W ‘9‘ n” \‘+.‘ .“’.l] ‘— -5 1-~ t," ‘) -.-J :1. >l3'k -_A‘! V J- '1 1 Yflfififi‘: figs»? 7"} flymn1J-Y-fi‘f‘ Q‘“7'.?I 1),?1‘4-Jffi’lq _mrpvwl'l‘ 1“!le pr: I‘qfi? nfic 1:35 - t q; “,7 4- ,1,»: '1 ‘ ‘,I - ”_KJL“ V ---.4_ “ 1- A ° at 4. 1n, :”r°1n“~, *fi 0‘19? 90 37‘ J h36 spéossrtors Inn FT: V“R TQEPRCH TVs ”Titer Vclieves tht +he folIOWiRS Points are worthy of further rese1rch. A. "eat and "cisture production in poultry laying houses l-"Vat is +': t.t1l :e1t prodnct ion 0’ lasin321ens under different env _ron— ‘ ternorcture ("111‘1 1en e1lorireters9 e :1 3 *4 t is ‘he percentage of latent heat produced'fiy laying birds under dif- erent environmental tenperatures (single—hen calorimeters)? -3 at is +Ve total heat produc ion in poultrv iouses under actual housing onditi ions (small houses for sol1r he1t study ? h—Th1t is the total not sensible heat coming from secondary source under actuol heroin: conditions (snall houses for solar heat study)? 5-73“t is 1‘0 “€11 Wonscip hetween environmental tenperatures and the percent13e cf moisture content of +he fresh droppin3s of la"in3 hens (sin3lo_hen C1lorimeterS/9 ‘- ~1-+ is *Vo relationship between o1V1ronnental temperatures end the total ”1t1r consumed 1nd eliminated by la"in3 hens (ten—hen C1lorimeters and shall 11111235 :'.‘or solar heat stud; )? 7—Uhot is +he rel Lotionship het1reen environment1l tenperstures andt file feed consunption o. laying hens (ten-hen calorimeters and small houses for solar heat study)? 3-. t is +he relationship het"een1c1ve1*1t of lagd n3 hens and their total V.e.t production (sin3le— hen co lorineters)? ' —TV1t is1e rel tionship bet1veen environment1l teipcratures 1nd the heat M1‘11ed by deen litter of dsz efent depth 1nd different mana3enent (ten n-hen lorireters and small houses for solar heat study)? O’Q \O 13- ..... tie tle relah isllip bet1seen environmental temperatures and the ten- per1tnre of deep litter of different depth and different management (ten-hen C1lorineters and small houses ,or sol1r hoot studs) ll-Whnt is die rel1+1ionship between environmental te eratures and the ten— persture of concrete floor and e1rth floor in poultry houses (small poultry houses directly on the ground)? 12—’h1t is the rel1tionship between environmental tenperatures .1ni the h1a ain or heat loss from the earth under the poultry house litter or floor (small poultry houses directly on the ground)? h37 V‘ w .e proTlen o” tennnrntune control in lnring houses . l—*ow Ao host exnfinngers perform in hichigen poultry lfiyin: houses? S—Vow do hint exclqngers conpere with insulation, in Nichignn laying hou— ses, with respect to economy? KO _Jhet are the nininun insulnting vnlues required in Vichigan for houses " r‘i'..‘-‘ferent hird Population nni different BIPORQd (or raciating areas? 3 h—Uhnt :rc the economical advantages of insulation (amount of saving in feei consunption, nnount of ircrense in egg production amount of saving in labor rccuired for egg cleaning and litter changing (ten-hen calorimeters and snnll houses for solar heat study)? S4Whnt are *he environnnetal temperatures desired by Michigan poultrymen ( survey ) ? £.Th~t is the most economical and the safest outside design temperature for Fichiqnn aninnl shelters? 7-Vow does fen ventilation conpnre with the different types of natural ventilation, with resnoct to temperature control (small houses for solar hent study)? C. The prohlen of concensation on walls nng ceiling surfaces l—Whnt is the effect of recirculating fans on the critical relative humid— ity for condersntion? 24Th~t is the effect of a curtain of cold inlet air on the critical rel- ative hunifiity for condensation? 3_Uow horntul is condensntion on‘vnlls and ceiling surfaces with respect to the life and nnintenance of poultry laying houses? 3. The problem of concensetion within walls and ceilings l—hon do poultry houses without vapor barriers compnre with poultry houses having vapor barriers, with respect to temperature control, moisture re- moval, condensation inside ,he walls, duration of the building, etc? Z-Uov much does condensation within wells affect the heat loss charac- teristics of the insulqting neter'al and the amount of hent loss through the walls of laying houses? a. The vet litter problem ln-Vhst is the relative importance of the different fsctors producing dry litters (insulation, ventilation, type of litter, depth of litter, amount of stirring, use of recirculating fans, use of heat exchanger, increase in hird pepulation, frequent cleaning of the drOpping boards, addition of new litter, addition of lime, etc.)? lb4flhat are the most important single factors for the maintenance of dry litters? 1438 ~.‘ c. a - . ' .. 1 ‘ ‘73 -.- f V lC- .nn+ ‘ “(3 11:10 5-131,le fQCtOrS fi.T)FO]-lIl.01:j I CCILiI‘Qx for the .-.-{lln?;0n?_.lCe Of dry litters? Q—T'OW T'Z‘ICH -,.f>~ (3.1031311 +0 li’WFC-I‘ l’lrz’iflf’, is the feeding 0f LTW'IIS d1 TQCtJ-y in +19 1j_¥*er in order ot encourage stirring of the litter h" the Oirds? 3-"ould refular cleaning (binonthly or monthly) 0? +h° drOpping pitls be prefernhle to the gg+ual practice Cf lett ing the drOppings piled throug full the 5911021. h—Yow efficient is the use of mechanical litter stirrers for the main— tenance of dry litters? ..f" I’ " . ,»—;;t)vv t 11' 4 l 4.L? .‘L A J. 9 any, 1.-Y L'f'ser ‘. ent is t.e use of ground limestone for the risintene.nce of F. Design of the intake system 1-1hct is the effect of incre.asing the total air intake area on the tem— perature control characteristics of the horse and the chances of having some intakes act as cuttnkrs? 9-Vnm much infiltration occurs through L—type air intakes and the many other types of air intakes when the fans are off and winds of different speeds are blaring on the walls of the building? 3--1re hin~ed of slidirg door really necessary on the top of air intakes? re tizey really affective in decre; sing air flow during cold spells? h-Now do special air intakes compare with cracks 'with respect to temper— ature control, moisture ran oval, conrlensation, etc? 5-" or Yuch exfil+ration occurs in a poult try h01se with rites of fan ven— til tion from four to zero cfm? G, Design of the exhaust system l-Is the fan duct really helpful and necessa. ' in poultry laying houses? Z—Hhat is the host location for fans in poultry laying house? B—Uow ‘oes continuous ventilation compare with intermittent ventilation with respect to noisture removal, avoidance of condensation on walls and ceilings and Maintenance of dry litter, in houses of different insulating Va 1110 s ? h—Uow does intermitte nt one volume delivery fans compare with intermittent two volume delivery fans (dual-speed moi or or automatic Operated shutter in the duct) :ith respect to moisture remOVal and +enperature control? S-How does ceiling fan system (combined with gravity'systen flue) compare with wall fan system with respect to cost of operation? 1139 K-lre recirculating fans renlly helpEUl end Worth their price? 7-Thnt ere +Fe best thermostat setting for horses of different insulating velues? C-er does maximum fan capacities of l, 2, 3 and h cfm compare with respect to noicture renovnl and temperature control? 9-3ow does +he performance of the second floor and first floor of a two— story pcu‘try house compare, rhen using one fan only'nith the duct ex- +ending to +he first floor and one opening provided in the duct at each floor? lO—Yow ”mes the size of intake ares (manual control on intakes' opening) effect the rcrfornence of the fans? H. Instruuentetion l-Is it possihle to develop a simple cheap and reliable wet bulb instrument “or outside conditions, utilizing a low tonncrnture of freezino liquid insteed cf Weter 93 used in the Henderson wet hulb instrument? 10. 11. I2. 13. lh. 15. th Allen, 3. 3., J. H. "ilter and J. W. Janes. Heating and Air Condi— tionine. New York: 'cGrns—Hill Rook Company, Inc., £9h6, pp. {—52. .c , o r v ’1: _ _ fl \ ‘rcninc in} letels, Inc. (Tie), («skers of Fun—Poe 2cvs:, Test Yoline, Illinois. Fan peek FOUILrY house ventilators. Catalog fir—11L” . 1\ / .J . l '- -‘“ -‘Q~ fi" , -'.‘. is 7'1 ingstron, 1.K. l studv of the rniietion of the atmosphere, based upon ohservetions of the nocturnal radiation durinp expeditions to Algeria and Cslifornis. Snithsoninn Institute. Vol.05, 1915. ishhy, 3., T. A. H. Killer, 3. E. Edick and A. R. Lee. Functional retuirements in designing laying houses for poultry. United States Wepsrtment of Agriculture, fishington, CirC. 738, l9h5. American Society of Heating and Ventilating Engineers. Americsn Society f Nest'ng and Ventilating Engineers_GuideLpl9SO. New York,f1950. finericcn Society'of ”eating and Ventilating Engineers. American Society of fleeting and Ventilating Engineers Guide, 1951. NGW'YErk, 1951. I) -\ ..’ n.er, V. H. Farm Electrical Hendbook.New York: Edison Electric Inst tute, pp. 129:130. Barott, H. 6., and E. H. Pringle. Energy and gaseous metabolism of the chicken from hatch to maturity as affected by temperature. igurnel Barre, H. J. The relstion of wall construction to moisture accumulation in fill-type insulation. Iowa. Agricultural Experiment Station, Research Dull.?7l, l9LO. Barre, H. J., and L. L. Sammet. Air flow in poult house ventilation. Agricultural Engineering. Vol.30, No.7 (July l9hgg, P. 331. Barre, H. J., and L. L. Sammet. Fhrm Structures. New York: John Wiley and Sons, Inc., 1950, pp. 102-271. 4 Bates, D. W. The ventilation of poultry houses with electric fans. Unpublished K. S. Thesis, Cornell University, 1950. Becker, C. F. High altitude poultry'hsing. University of Wyoming, unpublished experimental report, 1952. 1“well, A. J., and J. 1?. more. Ventilation for hichigan laying houses. liichigan State College, Ext. Bull. 317, 1953. Bodwell, J. H. Fenned hens survive heatwave. Electricity on the Farm Engazine. Vol. No. (June-JU1Y'1952), p. IO. (\ l~. 19. 30. 31. Frody, S. ‘ioenerfetics and Growth. Nev York: Rhcinhold Publ. Corp., A~r "*‘"“ l,’L;_.‘. Harness, C. G., and V. R. Tokefield. Cow confcrt’and ventilation. Tlectricity on the Farm Enqazine. Vol.25, No.2 (Tehruary 1952), _fi‘ 1w, 0 ./'_ l, o sfiv‘. ni' Sard, 7. 0., and L. Y. Poore. Artificial heat in poultry houses. .iciigan Agricultural Txperiment Station, Annual Report, 1930. Charles, T. 9., A. E. Topper, W. T. Ackerman, B. J. French, R. C. Durgin and R. B. Halpin. The problem of moisture in poultry house litter. Kev Hampshire Agricultural Experiment Station, Bu11.338, l9h2. er, 3., Constructions avicoles. ministers do l'Agriculture de rJ c, Dull.17l, 1953. Clinate and Man, Yearbook of Agriculture, l9h1. United States Govern— ment Printing Office, 19hl. Close, P. D. Selecting winter design temperatures. Journal of America Society of Heating_and Ventilating Engineers, July 19Hh. Cowless, M. L., and H. H. Irwin. Some factors affecting farm housing. North Central Regional Publication 33, 1952. Cristel, J. P. R. 1e principe de la ventilation électrique et son ap- plication. Conference aux inspecteurs du Bureau de Santé de la ville de Vontréal, January 19h9. Cristel, J. P. R., engineer, Promotion assistant, Commercial and Dis- tribution Department, Shawinigan'later & Power Company, Montreal, Canada. Personal letter to the writer, march 1953. Cropsey, M. G. Simplifying poultry ventilation with mathematics. Agri— cultural Engineering. Vol.32, No.12, (December 1951), pp. 675—676. Venn, A. B. Wet litter in the poultry house. Poultry Science. Vol.3, No.1 (January 1923), pp. 15-19. Dukes, H. H. Studies on the energy metabolism of the hen. The Journal of Nutrition. v01.1t, so.u (October 1937), p. 3L7. Edgar, A. D. A diagram for determining wall surface condensation. Aggi- cultural Engineering. vo1.30, No.7 (July 19h9), p. 336. Fairbanks, F. L. Electric dairy stable ventilation. Agricultural En- gineering. Vol.12, No.12 (December 1931), pp. hh3-hh5. Fairbanks, F. L., and A. M. Goodman. The ventilation of poultry laying houses. Cornell University, Ext.Bu11. 315 (Revised), 1950. DH \‘ ..‘/. 36. ’40 . h]. h3. hh2 Feirhenhs, F. L. Air coniitioning of farm builcings. Agricultural V. n ‘7 ‘, fir’ ‘ , *ol.lo, U .11 (november 1937), p0. avg—uflo. En~inccring. o -.. PeirhnnVS, T P , ens 4. ". Soocnnn. Fairy 9””“19 ventilation. Cornell since, H., and T. J, KcCornick. The howt Jroduction of poultry uneer honcifij coniitions. Agricultural Engineering. Vol.1h, Ho. 3 (fiarch 1933): PP. 67-70. Giese, V., and T. V. Fond. Design Of a plate-type heat exchanger. igriculturnl anincering. V01.33, No.11 (October 1952), pp. 6 7—622. Golirich, W. J. Jr. Dairy and poultry ventilation anilysis. Kinneepolis— Voneyvnll Regulator Company, Research report RD ZShB-Rl. qonsqqn, A. n. The computation of heat leakage into and out of farm buildings. Cornell University, Himeo Bull.39h. Gooinnn, A. M. Recucing heet leakage in firm buildings and dwellings. Cornell University, Ext. Dull.71h, 19h7. Gutteridge, U. S. et al. The effect of heat, insulation and artificial light on egg production and feed con . tion of pullets. Scientific Agriculture. Vol.25, No.1 (September 19th), pp. 3l-h2. Kiri, P. Reitrfige Zum Stoff—und Energieunsatz Der Vogel. Biochem. Veneerson, S. V. A constdnt feed all tcmncrcture wet hulb. Agricultural Engineering. Vol.33, 30.10 (October 1952), p. 5hh. Vienton, T. 3., and J. R. HCCalmont. Forced ventilation for dairy barns and poultrv houses. Apricultural En ineerin". V01o28 No.9 (September 41,1 lg. n 9 191173, pp." 106—103. Hill, 3. R. A consideration of the problems involved in ventilating the poultry house. Poultry Science. Vol.30, No.h (July 1951), pp. Egg-€68. Hinkle, C. N. An environmental study of the use of insulating glass for the housing of swine. Unpublished M. S. Thesis, Michigan State College, 1953. Heynnnr, B. W. The water consumption of hens. Poultry Science. v01.2c, No.2 March 19h1), pp. 18h-187. Hoelscher, R. P., J. N. Arnold and S. H. Pierce. Graphic Aids in En- gineering_Cogputntion. New York: McGraWeHill BOOK Company Inc. 1952. Huttar, J. C., F. L. Fairbanks, and H. E. Botsford. Ventilation of poultry houses for laying and breeding hens. Cornell Agricultural Experiment Station, Bull. 558, 1933. S9. 62. :2\ '4) o 6h vw o v o . iv \ -' T T F ,lectric lentilating Co., ( arkers of I. L. G. fans}, CLICRTO, .... .'. I. \' Illinois. Poultry house ver+ilation9 Pull. 390-9“. Incqquign gogrd Institute. Farm iuildinfi Insulation. ChiCSSO, 19LS. Janes, L. Tine to start built-up litter. The Rural New Yorker. 701.93, 70.5572 (July 7, 19h8), p. bah. Janos Vanufacturing Co., (Makers of Janesway fans). Livestock equipment and housing. Catalog 110. I“ "‘ Jef’erson, ,.a. Weatherproofing Vichigan Homes. Michigan State College, Wxt. Bull. 272, l9ho. Jull, h. A. Poultry Husbandry. New York: ficGraw-Vill Book Co., 1938. Jull, H. A. The moisture problem in laying houses. World's Poultry Science Journal. Vol.5, No.1 (January l9h9), pp. 28-29. (able, G. W. Electric ventilation of poultry houses. Agricultural anaineering. Vol.27, No.2 (February 19h6), pp. 61—66. A Kalbfleisch, W. and J. N. White. Removal of air from dairy stables. Scientific Agriculture. Vol.31 (November 1951), pp. h92-h95. Kalbfleisc., T. and J. 7. Thite. Frinciples of barn ventilation. Canadian Department of Agriculture, Ottawa, Publ.8§9, 1951. Kelley, M. A. R. Ventilation of farm barns. United States Department of Agriculture, Technical Bull. 187, 1930. Yeilholz, F. J. Wheat found less valuable than corn for chickens. Illinois Agricultural Experiment Station, Annual report hO, 1927, pp. 138-139. Keilholz, F. J. Measure heating effects of foods on chickens. Illinois Agricultural Experiment Station, Annual report hl, 1928, pp. 170-172. Kennard, U. C., V. D. Chamberlin and O. G. Bentley. Mineral additions to built-up litter reduce moisture content and ammonia lose. Ohio Agricultural Experimental Station, Farm and Home Research Bull. 273, p. 86, 1951. Kennard, D. 0., and V. D. Chamberlin. Built-up floor litter to data. Ohio Agricultural Experimental Station, Farm and Home Research Bull. 253, p. 130, 19h8. King, F. U. Ventilation for Dwellings, Rural Schools, and Stables. Madison, Visconsin, 1908. Kleiber, h. Rodv size and metabolism. Hilsardia, Vb1.6 (January ,1932). . . . . . W Pcrheley: ”hiverSity of California ‘9. Ianpman, C. 3. UniverS‘tF dnfianEPSPQS labor—saving features in mafowvjviov oj’_otvle poultry house. Idaho Aericultural Science. »- . ; ‘ .. A ‘ U , 1" Vol.37, 30.3 ifhird c"erter 199?). 64. Iin.innn££, r, A., “nd L. 2. Card. Poultry Profluctinn. Philadelphin= \“ ‘ 7‘ o 1 F, Fee a o .ehiger, lPu.. ‘7. Yarcctte Itée. (L.P.). (Takers of Park-Hot fans), VOHtPéal’ “”93930 Ventilation so‘erne. Commercial pamphlet. 3‘. Voyer, n. a., and J, n, Pliekle. Poultry housing in Ohio. Ohio State Vniversity, Full. 353, 1930. ' ‘9. Hillnr, L. 0. Calculating vapor and heat transfer through walls. Heatinf and Ventilating. Vol.3h, No.11 (November 1933), pp. 55-53. _...*~——..—.- 70. Killer, H. J., F. H. Smith, and C. A. Svinth. Underfloor heat for poultry horses, Vashington State College, Poultry Pointer No.13 (revised), 1935. 71. Pitchell, H. H., L. 3. Card, and J. T. Haines. The effect of age, sex and castration on the basal heat production of chickens. Journal of Agricultural Research. Vol.3h, No.10 (May 1927), pp. 9h5-9507-"—" 2’ F'ri-("rf-qo-lla H. H., and'fi. T. Heines. The basal metabolism of mature Chickens and the net cncr”r value of corn. Journal of Agricultural V°"°“?°h- Vol.3h, No.10 Hay 1927), pp. 927-9h3. 73. ”itchell,_V. H., and T. A. P. Kelley. Estimated data on the energy, a"sous, on? water metabolism of poultry for use in.planning venti- Ln lotion of poultry houses. Journal of Agricultural Research. Vo1.a:, No.10 (Novemher 1933), pp. 735:7h8. 7h. Yitchell, d. H., and V. T. Haines. The critical temperature of the chicken. _Journal of Agricultural Research: Vol.3h, No.6 (Karch 1927), pp. 5(19"El')( 0 7S. ”itchell, U. 3., L. 3. Card and T. S. Hamilton. A technical study of the growth of'Thite Leghorn Chickens. Illinois Agricultural Experiment TtWtion, Full. 307, pp. 83-139, 1931. 76. Nitchell, N. Hem developments in poultry and dairy barn ventilating O O V C I \ equipment. Agricultural Engineering. Vol.30, no.1 (January 19h9), ’5 p. 40 ' 77. National Warm Air Heating and Air Conditioning Association. Measuring heat losses. Cleveland, Ohio. manual 3. 78. Oliver, J. H. Poultry house ventilation. Agricultural Engineering. Vol.31, no.3 (March 1950), pp. 119-122. 79. lua, H., H. L. Carver and W. Ashby. Heat and moisture production of laying hens. Agricultural Engineering."Vol.3h, no.3 (march 1953), pp. 163-167. o 1.1. 0") ‘V—. 89. 9O. has Otis, C. K., and U. R. White. Conditions in a 4W0— house. Agricultural insincerinp. Vol.2h, No.12 (we emb r l‘h Paiemcnt, R. J. Les litieres humides. La Ferme (Farm magazine), Wort‘eal, Canada, Oeeember l9h9, pp. 26-29. Parker, B. in analysis oi winter ventilation for poultry laying houses. Unpublished F. S. Thesis, Virginia Polytechnical Institute, 1992. Poultry Committee of the Rutgers University’Farm Buildings Institute. Poultry house requirement. New Jersey Agricultural Experiment Ltation, Pull. 732, l9h7. Reed, 0. H. Procedure for evaluating factors controlling temperature and moisture conditions in farm buildings. Agricultural ungineering. Vol.30, No.10 (October l9h9), pp. hOl-h83. Piohardson, , and Nwher. Poultry House Insulation and Ventilation. University of Heine, Agric. Ext. Bull. 215, 1937. Rowley, F. 3., and C. P. Lund. Vapor transmission analysis of struc— tural insulating boards, University of fiinnesota, Engineering Txper- imentel Qtfition, Bull. 22, 19hh. Rowley, F. 9,, H. H. Lajoy and T. E. Erickson. Vapor resistant coatings ior Structural Insulating Board. University of Minnesota, Engineering Ernorimental Station, Bull. 25, 19h6. Ryan, D. N., and R. W. Pile. Insulation and ventilation of animal shelter buildings. University of Finnesota, Ext. Bull. 253, 1951. Saia, J. Y. F. Barn temperatures as influenced by the location of ventilating equipment. Unpublished M. S. Thesis, Hichigan State College, 1950. Said, I. H. F- An entirete of the thermal conditions caused by the substitution of thermopane for conventional wall area in farm struc— tures in Hichigan during the winter season. Michigan State College, Special report Agricultural Engineering Department (Unpublished), ’1950. Sharinitan Water and Power Co., Hontréal, Canada. La ventilation a la ferns. Folder. Shier, G. R. Control of ventilation and temperature for dairy cows, laying hens, and swine. Ohio State University, Bull. 208, l9h3. Smith, C. W. The relation of environmental conditions in poultry houses to ninter egg production. Nebraska Agricultural Experiment Station, Bull. 2h7, 1930. Stapleton, H. N. Fresh air in farm buildings. Agricultural Engineering. vo1.2o, no.11 (November 1939), p. h26. 99. 100. lOOn. 103. 106. 107. hhé Stenloton, ”. K., and C. Cox. Poultry house ventilation - Theory and ' F 0 ‘3 o I 9 g. 9, 'J \ erectice. Agricultur'l tn inecring. Jol.31, no.3 (march 1950), Fr. 11n_71n, Ctenleton, ”. N. The epnlicntion of experimental deviations to dairy sterle ventila+ion. agriculturel Engineering. Vol.32, No.h (April 1951), pp. ech-eo7. itrehen, 3. L., 914 C. A. Hersh. Ventilating stableS'With electric power. figriculturel anineering. Vol.11, No.h (April 1930), pp. ol 37— 2a. Ytrnhqn, J. L. A temperature control infiex in dairy stable standard— izntion. fivricultural Vnrineering. Vol.13, ho.lC (October 1932), Pp. 2F’1‘t—T.o Strahan, J. L. A rational approach to poultry house design. Aeri- culturel Engineering. Vol.?1, No.9 (Qantenber l9h0), pp. 357-?50. Vtrnhnn, J. L. Feet and ventilation in the design of poultry'houses. Heeting wnd Vertileting. v01.h3, No.7 (July'l9h6), pp. 51.56. Teesdelc, L. V. How to overcome condensation in building wells and others. Venting end Vertilnting. Vol.35, Yo.h (April 1939), pp. Thompson, H. J. Hc t and moisture exetnnge in dairy barns. Agri- cultural Tngineering. Vol.33, No.h (April 1952), pp. BOl—QOh. Trihble, R. T. Mechanical dniry barn ventilation and the location of con rols. Unpublished N. 3. Thesis, Michigan State College, 19h8. Turner, C. N. Ventilete poultry house with electric fans. Farm Research. Vol.13, No.3 (July 19h7). Turner, C. H. Progress report to the New York Farm Electrification Council. New York State College of Agriculture, Department of Agri— cultural Engineering, l9h9. Turner, C. N. The dairy stable ventilation problem. Agriculturgl Engineering. v01.32, No.7 (July 1951), pp. 377-378. Walton, H. V., and D. C. Sprague. Air flow through inlets used in animal shelter ventilation. Agricultural Engineering. vo1.32, No.h (April 1981), pp. 203-205. finite, H. 8., and A. R. Schwentes. Use of insulation bonrd in liying houses. Agricultural Engineering. Vol.28, No.3 (August 19h7), pp. 35h—362. l? . tinier, A. R. I ttcr nannfenent. Flour and Feed. Iol.;1, No.9 / 'I \ 1\kawfi\ny':,'r whghl)’ pr}. 7C.-1]-. A " y “' A "‘ " 'Q ‘1 . .~ " lfix. ~3340k, -. “H” -- w. weer. Ioultry tenure - Its preservation, deo- ”ori26tior and ”icinfoction. New Jersey Agricultural fixrerinont r n - 1 7‘." \f‘. I . 4" +1] 03-1, 31--.L. \ 4' ’ l9llk- . llO. Sinnernpn, D. T., and I. Livine. c“ronetric Tnhlce and Charts. Xenoorcn So ' Industrial Research A Thver, New Hampshire: rvicc,‘l9H§ Services Pay- ‘Ingustrie M17 ‘21,-‘1‘! ...I ,1. ..‘...II. all. ‘1' . -.‘, ‘Ilu . all. ‘1... n r ‘ .‘ I." 4' Ox! . ‘11-... 'ul"..ll ‘ ‘1']... "up 404 3 1293 03046