THE ROLE OF THE BAR IN THE ACQUISITION OF BAR PRESS AVOIDANCE

Thesis for the Degree of M. A.
MICHIGAN STATE UNIVERSITY
Edward Rea Christophorsen
1965

THESIS

LIBRARY
Michigan State
University

ARSTRACT

THE ROLE OF THE BAR IN THE ACQUISITION OF BAR PRESS AVOIDANCE

by Edward Rea Christophersen

A considerable amount of research has been devoted to the bar press avoidance situation in rats. Specifically, numerous investigations have been made in an effort to discover any variable which would account for the relatively poor avoidance performance in the bar press situation as compared to avoidance performance in a wheel-

The present experiment, based upon intensive pilot work, examined the effect, upon performance, of pairing the presentation of a retractable bar with the buzzer (CS). Three groups of six subjects were run in an automated bar press avoidance apparatus. Control group I resembled the typical avoidance schedule in which shocks are presented at fixed intervals unless a bar press is made, in which case the next shock is postponed. The bar, for control group I was always in the extended position.

The conditions for the experimental group were identical to control group I except that the bar was extended with the onset of the CS and retracted with the termination of the CS, i.e., the bar was present only when the CS was being presented.

Control group 2 was similar to the experimental group except that, the bar, in addition to being presented with the CS, was presented irregularly throughout the experimental session.

Subjects were said to have reached Criterion performance when

they avoided 95% of the shocks two sessions in a row.

The results indicated that the pairing of the presentation of the bar with the CS yielded significantly better performance than having the bar present throughout the session. The slowest subject in the experiment group reached criterion one session before the fastest subject in control group 1. It was suggested that these results could be attributed to (1) eliminating bar-holding, (2) eliminating non-reinforced bar presses, or (3) the discriminative stimulus properties acquired by the bar thru repeated pairing with the buzzer and the shock.

A group with an intermittently presented bar was included in an effort to differentiate between the first and third possibilities. The data indicated that the introduction of the bar was a strong cue.

Approved: M. Ray Denny, Mojor Professor

THE ROLE OF THE BAR IN THE ACQUISITION OF BAR PRESS AVOIDANCE

Ву

Edward Rea Christophersen

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF ARTS

Department of Psychology

ACKNOWLEDGMENT

The author wishes to express his appreciation to Dr. M. Ray Denny, chairman of his committee, for guidance and assistance in conducting this research. Also he wishes to convey thanks to Drs. S.C. Ratner and J. Hunter for their helpful criticism and advice.

The author also wishes to express his sincere gratitude to his wife, Nedean, who willingly gave time and energy to the preparation of this manuscript.

TABLE OF CONTENTS

INTRODUCTIO	Ν.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Page 1
METHOD	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
RESULTS .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
DISCUSSION	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	13
REFERENCES	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	16
APPENDIX .																				18

LIST OF FIGURES

FIGURE		Page
1	A comparison of percent avoidance, mean [±] one standard deviation, for the experimental group and control group 1	8
2	A comparison of the number of sessions prior to reaching criterion for the experimental group and control group 1	9
3	Rate of acquisition of bar press avoidance for each individual subject in control group 2	10
4	Rate of acquisition of bar press avoidance for each individual subject in the experimental group	11
5	Rate of acquisition of bar press avoidance for each individual subject in control group l	12

Introduction

Discrimination avoidance procedures are used extensively by the behavior scientist. In such procedures, an animal is trained to perform a response in the presence of a stimulus which signals the occurence of a noxious stimulus, such as shock, noise, wind, or a strong light. The response, which may consist of pressing a lever, or of running from one side of an alley to the other, terminates the signal and prevents the onset of the noxious stimulus, However, the reported difficulty of establishing a discriminative avoidance habit with rats in a lever-pressing apparatus severly limits the use of this favored experimental technique.

Numerous investigations have been undertaken in an effort to identify the variables which account for the poor performance in bar-press avoidance; for example: the role of the tone-shock pairing in warm up, the role of the response in warm up and the role of shock intensity in warm up (Hoffman, Fleshler, and Chorny, 1961); the length of ITI and the length of the CS-UCS interval (Meyer, Cho, and Weseman, 1960); UCS intensity (Stone 1960; Kimble, 1955; Boren, Sidman, and Herrnstein, 1959); UCS duration (Chapamn and Bolles, 1964); CS termination verses UCS termination (Kamin, Campbell, Ryan, and Walker, 1959); the effect of sensory feedback, post-response time, and reduction of the shock density (Bolles and Popp, 1964); systematic variation of the interval between the response and the onset of the pre-shock warning signal (Ulrich, Holz, and Azrin, 1964); avoidance with inescapable shock (Hurwitz, 1964). All of these studies, however,

have yielded essentially negative results.

There has to be some kind of procedural difference to account for good avoidance learning in the shuttle box or jump-out box while avoidance learning in a bar press situation remains so poor. Pilot work was conducted in an effort to find an explanation for this difference by attempting to get good bar press avoidance.

One of the findings of the pilot work was that the rats tended to hold the bar down during the response-shock interval (only the initial depression of the lever counted as a bar press response, holding counted as only one response). A search of the literature yielded a number of studies which reported this same finding. Dinsmoor, Matsuoka, and Winograd (1958) examined bar-holding specificially. Their data supported the hypothesis that holding behavior is maintained in part by its preparatory function, i.e., sequences of behavior in the escape situation indicated that animals turned the shock off more quickly on trials when they were holding the bar down at the onset of shock than on trials when they were off the bar. Anger (personal communication, 1965) has found that rats on a Sidman avoidance schedule hold the bar as much as 60% of the time.

In the avoidance situation, any time the bar is pressed prior to the onset of the noxious stimulus, the noxious stimulus is avoided. But what of the situation where the subject holds the bar down for two trials in a row? The first trial is counted as an avoidance response and postpones the shock, but on the second trial the subject is shocked for essentially the same response (continuing to hold the bar down). The present study was designed to see what would happen if the subject were not allowed to respond without reinforcement during the safe period

Thus, all responses which were made were reinforced. This was accomplished by using a retractable lever. The lever was in the test chamber only when a bar press could be reinforced; its introduction acted, then, as a conditioned stimulus. It was thought that the prevention of bar-holding, coupled with the discriminative properties (if any) of the presense of the bar and the prevention of any "unrewarded" bar presses, would yield significantly better bar press avoidance learning than had previously been demonstrated. Two groups of subjects were run under identical conditions except that, in the experimental group the bar was retractable and in the control group I the bar was present all the time. A third group was run in an effort to differentiate between bar-holding, as such, and the discriminative properties accompanying the introduction of the bar.

Method

Subjects

Eighteen male albino rats, approximately 90 days old, were housed in individual cages and allowed free access to food and water.

Apparatus

The experimental space measured (9" x 10" x 12½" high). Three sides were constructed of wood; the top and the door were of clear plastic, allowing unrestricted observation of the <u>Ss</u>. The top was mounted on switches so that when the subject hit the top, shock was terminated, i.e., a "top hit" served as an escape response. The floor of the compartment consisted of stainless steel rods, 3/32 in. in diameter and spaced .5 in. apart. A G.E. 313 bulb (1.7 amp) on the back wall on the enclosure illuminated the chamber during the sessions. The response lever was a Lehigh Valley Electronics Model 1405M Retractable Lever; it was located 2 in. above the grid floor. A clearly audible non-aversive buzzer served as the warning signal (CS). The CS-UCS interval was 5 sec. The experimental compartment was contained within a sound attenuating chest. A blower served as a masking noise and as a ventilator.

Direct current shocks (100 volts) 1.5 ma in intensity were delivered through the grid floor until the bar was pressed or until 5 seconds elapsed, whichever occurred first. An Applegate constant current stimulator generated the shocks through a polarity scrambling circuit of the type devised by Hoffman (1962).

Bar presses were "rewarded" by termination of the CS and UCS (if on) and also by turning on a safe light $(2\frac{1}{2}$ in. above the bar) which denoted the "safe period", i.e., absense from shock.

Procedure

Experimental Group. During the first four sessions, the subjects (Ss) were trained to respond by placing them in the apparatus with the bar extended. After 25 sec. the buzzer was presented. If no bar press occurred within 5 sec. the shock was introduced. If no bar press or "top hit" occurred, the CS and UCS were terminated at 5 sec., 2 sec. were allowed to elapse, and the CS was presented again. When a bar press occurred, the CS or CS and UCS were terminated, the bar was retracted, and the "safe light" was turned on. The safe period duration was 25 sec., after which the bar was reintroduced, 2 sec. elapsed, and the CS was represented.

On session 5, and all later sessions, the bar was introduced when the buzzer came on, stayed in as long as the buzzer was on, and was retracted when the buzzer was terminated.

The response-shock interval of 32 sec., the shock-shock interval of 7 sec., and the 25 sec. safe light remained constant. The sessions lasted either 2 hours or until 100 shocks had been presented, whichever occurred first.

All bar presses turned on the safe light but only those bar presses occurring prior to the onset of the shock were counted as avoidance responses, i.e., if the bar were pressed while it was being retracted, there was immediate cessation of shock concurrent with the onset of the safe light.

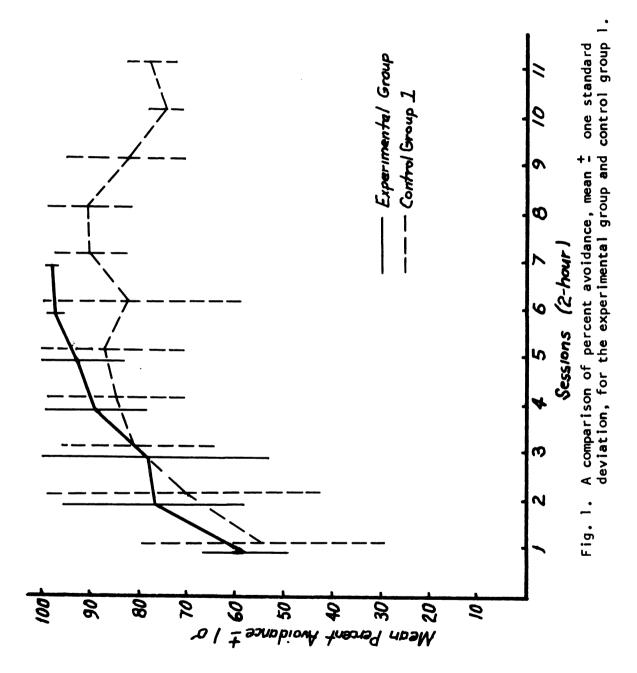
All <u>Ss</u> were run until they had reached the pre-set criterion of 95% avoidance or above for two sessions in a row.

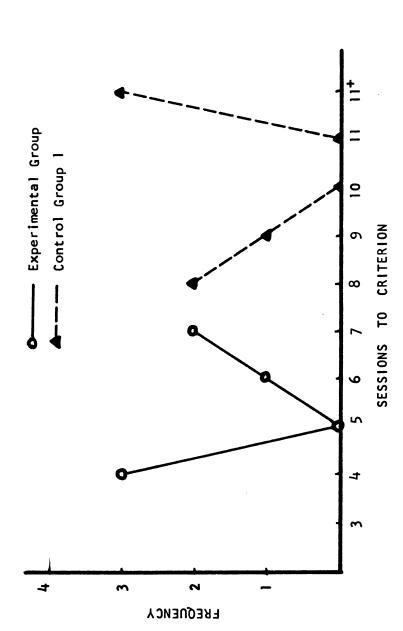
Control Group 1. The treatment was identical to the experimental group except that the bar was always extended, i.e., it was never retracted. All <u>Ss</u> were run until they had reached criterion; those <u>Ss</u> not reaching criterion by the 11th day were discontinued.

Control Group 2. The treatment was identical to the experimental group except that the bar was extended and retracted according to the schedule listed in Table 4 of the Appendix. Also, on every trial, the bar was extended with the buzzer onset and retracted with the buzzer termination. The safe period was divided into 4 sec. segments during which the bar was either extended or retracted according to the schedule.

Both the experimental and the control group subjects also had available, as an escape response, a "top hit". That is, if the subject, while being shocked, hit the top, that shock was terminated.

An additional experimental group was run, at a later date, without the "top hit" escape response. The rate of acquisition, however, was similar to the present experimental group. The difference between shocks prior to reaching criterion was not significant (t=.223, df= 7, .450 > p > .40).


Results


Figure 1 shows the mean percent avoidance ⁺ one atandard deviation for the experimental group and control group 1 (bar always extended). The entire experimental group was avoiding at least 95% of the shocks on the sixth and seventh day. Two subjects of control group 1 reached criterion on the eighth day. All other subjects from control group 1 reached criterion after the eighth session. Figure 2, a frequency polygraph of sessions to criterion, shows no overlap between the two groups. It should be noted that three of the control group 1 subjects had not reached criterion by the 11th session and were discontinued.

A t-test was run on those subjects which reached criterion to determine the significance of the difference in the number of shocks to criterion (t=2.87, df= 10, .010 > \underline{p} > .005). (See Appendix, Tables 1 and 2). The experimental group subjects had significantly fewer shocks prior to reaching criterion.

Figure 3 represents the rate of acquisition of bar press avoidance for individual subjects in control group 2. The subjects with a high level of avoidance were discriminating between the buzzer CS and the introduction of the bar. (See Appendix, Table 3). Excess bar presses were gradually eliminated, over sessions, in these subjects. However, two subjects showed little or no avoidance learning and no discrimination. Because of the high inter-subject variability, control group 2 was not compared directly with the experimental group or control group 1.

Figures 4 and 5 represent, respectively the rates of acquisition for individual subjects in the experimental group and in control group 1.

Each point represents the number of subjects per respective group that reached criterion in that session. criterion for the experimental group and control group 1. Fig. 2. A comparison of the number of sessions prior to reaching

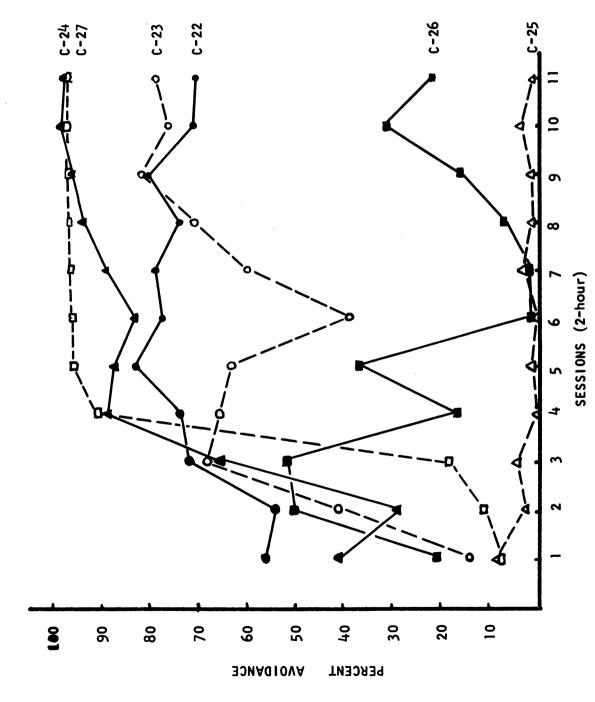
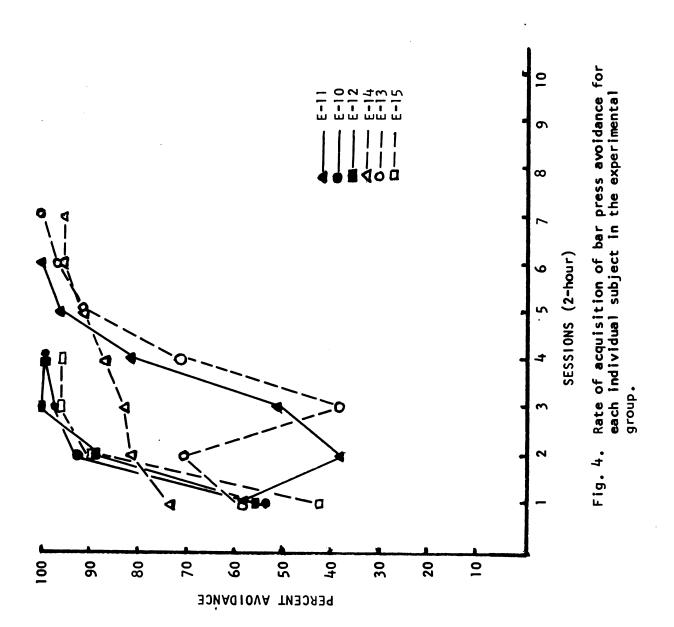



Fig.3. Rate of acquisition of bar press avoidance for each individual subject in Control Group 2.

•

•

•

•

•

.

•

•

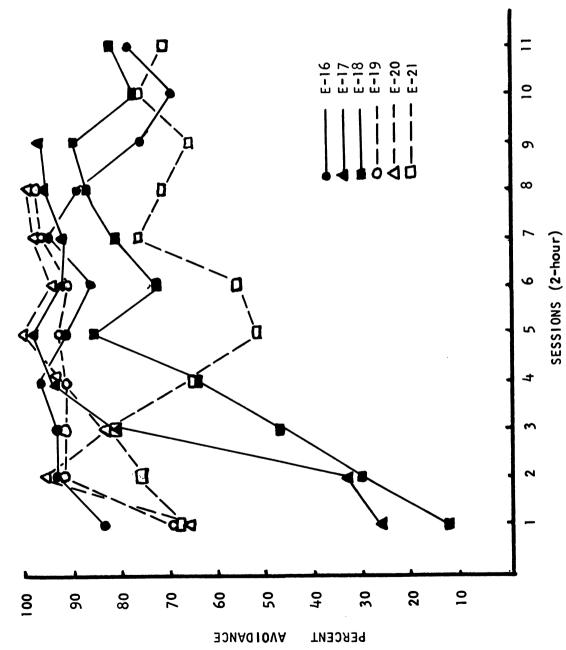


Fig. 5. Rate of acquisition of bar press avoidance for each individual subject in control group 1.

•

.

•

•

• •

. .

•

. 1

• • • •

Discussion

The data reported here have demonstrated that it is possible to achieve a high percentage of avoidance in the bar press situation. The control condition in which the bar was always extended was similar to previous work with bar press avoidance. The method and the apparatus were meant to reflect previous findings that resulted in better bar press avoidance. For example: Myers (1962) demonstrated superior learning with a buzzer warning signal over a light or a tone; Ulrich, Holz, and Azrin (1964) found that the use of a warning signal reduced the number of shocks received; Chapman and Bolles' (1964) data argued for shock durations longer than brief shocks of .2 to .3 sec., hence the present study incorporated a 5 sec. maximum duration; Dinsmoor, Hughes, and Matsuoka (1958) found that learning was better if the subjects were required to released the bar, i.e., holding did not count as a response on the next trial, this was incorporated in the present work; Boren, Sidman, and Herrnstein (1959), found that acquisition of the avoidance response was facilitated by using shocks levels above 1.2 ma hence the present use of 1.5 ma. An additional variable, the 'safe light', was suggested by the findings of Ulrich, Holz, and Azrin, 1964. All of the above mentioned procedural variables were included in control group 1.

The experimental group was identical to control group I except that the bar was extended with the warning signal and retracted when the warning signal terminated. This manipulation clearly facilitated the acquisition of the bar press response in an avoidance situation. This facilitation can be attributed to several possibilities: (1) eliminating bar-holding as a competing response, (2) eliminating non-

reinforced bar pressed, i.e., those bar presses that occur outside of the CS-UCS interval, and (3) the discriminative stimulus properties acquired by the bar thru exclusive pairing with the buzzer and the shock.

The group with the intermittently presented bar was included in an effort to differentiate between the first and third possibilities. The data didn't shed much light on possibilty (1), but did indicate that the introduction of the bar was a strong cue. Further consideration of the discriminative properties of the bar led to the examination of the training procedure for the group that had the bar extention paired with the buzzer. The warning signal came on and the bar was extended. When 5 sec. elapsed without a response. the shock was delivered. The bar remained extended until it was pressed; when pressed, the bar was retracted and the safe light was turned on for the safe period. The bar, in this situation, is used in a way similar to the way Ulrich, Holz, and Azrin (1964) used the warning stimulus, i. e., the warning stimulus stayed on (the bar was in) until the response had been made so that, in agreement with Azrin, Holz, Hake, and Ayllon (1963), the safe period was made contingent upon a specific response and the safe period was selectively associated with the absence of shocks.

The data from the present investigation are handled nicely by elicitation theory. In terms of elicitation theory (Denny and Adelman, 1956) conditional fear or anxiety results from the consistent fashion with which the aut@nomic responses accompany the attempt to escape. Cessation of the aversive stimulation, in this case, the bar press, elicits a relaxational - approach response which is incipiently

and the warning stimuli. With continued trials the relaxationalapproach response is consistently elicited and thereby strongly
conditioned to the stimuli accompanying the bar press. The animal
is not allowed to relax for sufficient time to allow extinction to
occur because the relaxation cues come to be associated with the
safe light. On those trials where the subject continues to relax
after the termination of the safe light, relaxation is punished by
the onset of the warning stimulus and the introduction of the bar.
The present procedure allows the subject to relax, during the safe
light but terminates the relaxation with the beginning of the next
trial.

REFERENCES

- Azrin, N.H., Holz, W.C., Hake, D.F., and Ayllon, T. Fixed ratio ecape reinforcement. <u>J. exp. Anal. Behav.</u>, 1963, <u>6,449-459</u>.
- Bolles, R.C. and Popp, R.J.Jr. Parameters affecting the acquisition of Sidman avoidance. <u>J. exp. Anal. Behav.</u>, 1964, <u>7</u>, 315-321.
- Boren, J.J., Sidman, M., and Herrnstein, R.J. Avoidance, escape, and extinction as functions of shock intensity. <u>J. comp. physiol. Psychol.,1959, 52, 420-425.</u>
- Chapman, J.A. and Bolles, R.C. Effect of UCS duration on classical avoidance learning of the bar press response. <u>Psychol. Rep.</u>, 1964, 14, 559-563.
- Denny, M.R. and Adelman, H.M., Elicitation Theory II: The formal theory and its application to instrumental escape and avoidance conditioning. Unpublished theoretical paper, Michigan State University, 1956.
- Dinsmoor, J.A. Punishment: I. The avoidance hypothesis. <u>Psychol</u>. Rev., <u>61</u>, 34-46.
- Dinsmoor, J.A., Hugher. L.H., and Matsuoka, Y. Escape-from-shock training in a free-response situation. Amer. J. Psychol., 1958, 71, 325-337.
- Dinsmoor, J.A., Matsuoka, Y., and Winograd, E. Bar-holding as a preparatory response in escape-from-shock training. <u>J. comp. physiol. Psychol.</u>, 1958, <u>51</u>, 637-639.
- Hoffman, H.S. and Fleshler, M. A relay sequencing device for scrambling grid shock. <u>J. exp. Anal. Behav.</u>, 1962, 329-330.
- Hoffman, H.S. Fleshler, M., and Chorny, H. Discriminated bar-press avoidance. J. exp. Anal. Behav., 1961, 4, 309-316.
- Hurwitz, H. M. B. Method for discriminative avoidance training. Science, 1964, 145, 1070-1071.
- Kamin, L., Campbell, D., Judd, R., Ryan, T., and Walker, J. Two determinates of the emergence of anticipatory avoidance. J. comp. physiol. Psychol., 1959, 52, 202-205.
- Kimble, G.A. Shock intensity and avoidance learning. <u>J. comp. physiol. Psychol.</u>, 1955, <u>48</u>, 281-284.
- Meyer, D.R., Cho, C., and Wesemann, Ann. On problems of conditioning discriminated lever-press avoidance responses. <u>Psychol.</u> Rev., 1960, <u>67</u>, 224-228.

- en de la companya de la co

- Myers, A.K. Effects of CS intensity and quality in avoidance conditioning. J. comp. physiol. Psychol., 1962, 55, 57-61.
- Sidman, M. Avoidance conditioning with brief shock and no exteroceptive warning signal. <u>Science</u>, 1953, <u>118</u>, 157-158.
- Sidman, M. On the persistence of avoidance behavior. <u>J. abnorm.</u>
 <u>Soc. Psychol.</u>, 1955, <u>50</u>, 217-220.
- Stone, G.C. Effects of some centrally acting drugs upon learning of escape and avoidance habits. <u>J. comp. physiol. Psychol.</u>, 1960, 53, 33-37.
- Ulrich, R.E., Holz, W.C., and Azrin, N.H. Stimulus control of avoidance behavior., <u>J. exp. Anal. Behav.</u>, 1964, <u>7</u>, 129-133.

APPENDIX

		1	2	3	4	5	6	7	
	% Av.	43.9	9. 68	4.96	9.96				
51-3	Shocks	37	20	7	2				
	Trials	3	192	961	147				
	% Av.	74.3	81.0	83.4	87.0	95.6	95.5	95.8	
E-14	Shocks	23	37	25	32	11	10	7	
Ш	Trials	89	195	151	247	231	221	16 9	
	% Av.	58.3	70.2	39.0	71.9	91.1	97.5	100.0	
E-13	Shocks	22	77	001	99	20	72	0	
	Trials	53	258	5 9	232	226	203	167	
	% Av.	56.1	88	100.0	99.5				
E-12	Shocks	3	7	0	_				
	Trials	871	124	222	243				
	% Av.	59.2	39.1	51.2	81.2	9.96	100		
1	Shocks	50	8	65	=	7	0		
	Trials	122	3	133	19	50 ,	223		
	% Av.	54.7	92.7	97.2	7.66				
E-10	Sh o cks	58	8	7	7				
삐	Trials	128	3	251	566				

TABLE 1. Experimental Group. The number of trials, the number of shocks, and the per cent avoidance per subject, per session.

					•	•	•	-	•	
. "										
									-	
	•						•		•	
						•				
	•				·				•	
				-						
										,
* * * * * * * * * * * * * * * * * * * *										
	•	•	•	•	•	•	• ′	• '	•	
									•	
										•
	:							J		
•	•				•	-	•			
					•	•	•	•	• • •	
	•					•			•	
	· ·							C .		
·							- .	-		
				•	•	•	•	•		
							-	•	• "	
1 -	•			•	- 		÷ .			
	•		e.							
•			•						•	
•			•			•	•			
			•				•	•	•	
•			•		•	٠	•		· · · · · · · · · · · · · · · · · · ·	

		1	2	3	4	5	6	7	8	9	10	11	
21	% Av.	67.48	4.77	9.18	64.97	51.9	56.1	7.77	72.6	0.99	76.9	6.07	
C-2	Shocks	80	99	43	69	100	100	99	67	8	57	75	
	Trials	246	248	234	197	208	228	251	245	238	247	258	
OI	% Av.	86.98	95.07	84.45	0.46	7. 86	93.3	95.1	0.76				
C-20	Shocks	74	13	37	=	4	15	12	2				
	Trials	22 ⁴	797	238	184	254	223	243	252				
94	% Av.	68.98	0.46	93.6	93.75	93.2	93.3	1.96	97.3				
61-3	Sh oc ks	9/	15	15	14	7	6	2	7				
	Trials	542	251	236	224	207	287	256	256				
	% Av.	13.8	30.3	47.1	63.7	86.5	74.6	82.7	88.5	90.1	76.9	83.9	
81-3	Shocks	100	101	101	79	54	9	745	29	22	57	04	
	Trials	116	145	191	218	178	236	243	252	253	247	5 48	
	% Av.	27.5	34.2	81.7	7.	99.0	93.0	93.3	%	7.86			
71-3	Shocks	100	00	#	5	7	23	91	10	4			
1	Trials	138	152	240	234	211	258	240	252	258			
	% Av.	83.3	\$.0	7.45	8.76	92.7	1.98	96.1	6.68	76.1	70.8	79.3	
191	Shocks	39	7	13	2	15	33	Q	23	55	7	20	
		_+	œ	ď	_	9	238	9	œ	0	239	=	Ì
	Trials	734	258	249	23.1	206	23	236	238	230	23	241	

Control Groupl. The Number of Trials, the Number of Shocks, and the Percent Avoidance per subject, per session. TABLE 2.

٠.			•	•	•				•	•	•			•
U														
											,			i
	•							•	•			•		•
	•													
														•
	•							-	-					υς
										,			•	
		•	•	•	•	•	٠	٠	•	•	•	•		•
			•	•	•	•	•	•	•	•	•	•		
			•		•	•	٠	٠	•	•	•	•		
		•			•	•	٠	٠	•	•	•	•		
		•		•		•	•		•			•		
		•		•	•	•		•	•	•		•		
		•		•	•	•		•	•	•		•		
			•	•				•	•		•	•		
			•	•				•	•		•	•		
			•	•				•	•		•	•		

		•	-	,	•			•		9		• •	
	% Av.	8.2	11.5	19.3	90.2	96.0	4.96			-			
22-3	Shocks	100	100	00	77	2	Q						
	Trials	109	113	124	247	252	250						
	% Av.	20.6	51.2	52.6	16.6	37.1	0.	1.9	7.4	16.7	32.0	23.1	
22	Shocks	100	100	100	90	90	100	90	100	100	100	100	
	Trials	126	205	211	120	159	101	102	8	120	147	130	
	% Av.	8.2	2.9	3.8	0	o.	0	2.9	တံ့	ð	0	0	
22-3	Shocks	100	100	100	9	9	100	100	100	100	100	100	
	Trials	109	103	<u>\$</u>	90	101	9	103	101	<u>5</u>	100	100	
	% Av.	40.5	29.0	65.2	89.8	87.7	84.1	89.9	₽. 8.	97.2	1.66	1-1-2-2-1-1-	
6-24	Shocks	101	100	81	54	17	38	7,	13	7	-		
	Trials	170	141	233	236	114	240	238	254	249	250		
	% Av.	14.41	41.5	6.89	65.5	63.6	39.3	60.0	71.1	81.3	9.9/	79.3	
2-3	Shocks	101	100	9	70	85	71	33	65	45	26	20	
	Trials	118	171	193	203	234	117	238	225	241	240	241	
	% Av.	55.8	54.2	72.4	4.47	83.2	4.77	79.2	74.3	80.5	71.8	71.0	
22-3	Shocks	ま	95	9	23	32	5	94	9	17	62	\$	
	Trials	213	201	218	233	191	226	222	234	210	220	221	

TABLE 3. Control Group 2. The number of trials, the number of shocks, and the per cent avoidance per subject, per session.

1 2 1 2 1 1 1 1	2 1 1 1 2 2 2 2 2 2 2 2 2	1 2 1 1 1 2 1 2 1 2	1 1 2 2 1 1 2 1 1 1	1 1 1 2 1 1 2 1 2	1 1 2 1 1 2 1 2 1
2 2 2 1 2 1 1 2 2 1 1 1	1 1 2 1 1 2 1 2 1 1	2 2 2 1 1 2 2 1 1 1 1 2 2 2	1 2 1 1 1 1 2 2 2 2 2 1 2 2	2 2 1 2 1 2 2 1 1 1 2	1 1 1 2 1 2 1 2 2 1 2 2
1 1 1 1 2 1 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 1	1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	1 1 2 1 2 2 1 2 2 2 1 2 1 2 2 1 2 2 1 2 2 1	2 2 1 1 2 1 2 2 2 1 2 1 1 2 1	1 2 1 1 2 2 2 2 2 2 2 2 2 2 1 1 1	2 2 1 2 1 2 1 1 1 1 1 2

TABLE 4. Schedule of Bar Presentations for Control Group2. A continuously revolving tape was programmed according to this schedule. The schedule reads from top to bottom, left to right. Each number represents a 4 sec. interval, 1 = bar extended and 2 = bar retracted.

ļ					
ı		!			ı
•		• •	•		
,	4	· ·			i.
•					
		•	•	•	•
,		, 1		ı	
					•
3		I		•	`
		•			
				,	•
		, ,		•	
		•		•	
,					
		· ·			
		· •		· •	
		<u>;</u>		•	
•		•			•
*			•		1 1
•			•		i
í		,		•	
•		•	•		•
,		•		,	•
•		•			
1		, , ,		I	İ
	•	· ·	•		•
,		· ·		,	
		,			`

1	2	3	4	5	6	7
---	---	---	---	---	---	---

E-15	Bar Pres ees	103	410	361	354						
ů.	Bar Pres ent	99	192	196	147					 	
E-14	Bar Presses	147	216	315	301	375	236	198			
	Bar Present	68	195	151	247	231	221	167			
E-13	Bar Presses	90	421	225	596	261	210	173			
iii	Bar Present	23	258	191	232	226	203	167			
E-12	Bar Presses	287	396	262	267						
	Bar Present	148	124	222	243				 		
=	Bar Presses	194	314	341	212	235	280				
E-1	Bar Present	122	991	133	19	204	223				
E-10	Bar Presses	193	328	267	787						
Ш	Bar Present	128	245	251	566						

Experimental Group. Number of bar presentations and number of bar presses per subject, per session. TABLE 5.

Sessions	G-16 Bar Presses	C-17 Bar Presses	C-18 Bar Presses	C-19 Bar Presses	C-20 Bar Presses	C-21 Bar Presses
_	794	222	151	914	308	414
7	410	314	252	298	317	380
m	280	321	322	273	172	365
4	253	306	293	254	199	301
5	232	248	238	238	260	. 526
9	287	307	300	338	256	279
7	258	281	586	295	197	295
&	259	286	297	285	797	290
6	272	298	296			247
10	330		347			277
=	328		303			272

Table 6. Control Group 1. Number of bar presses per subject, per session.

•

- ·-

.

7	•	2	1.	_		_	•	_		
1	2	3	4	5	6	7	8	9	10	-11

_													
12-2	Ba r Presses Bar	267 158	219 116		542 618								
-	Present	20	2	~~			•						
92-3	Bar Presses	88	554	680	335	362	226	259	283	566	465	387	
	Bar Present	201	894	503	285	377	253	237	172	296	350	306	
52-3	Bar Presses	159	183	165	152	140	139	130	114	137	153	288	
4	Bar Present	252	247	259	241	250	247	262	250	249	212	87	
6-24	Bar Presses	279	285	783	777	239	430	355	284	797	258		
	Bar Present	804	355	195	545	546	535	525	248	244	945		
<u>C-23</u>	Bar Presses	138	414	344	487	463	216	399	285	358	326	298	
	Bar Present	234	410	044	475	247	286	531	504	145	145	240	:
77	Bar Presses	759	840	801	816	745	740	793	583	740	731	755	
22-3	Bar Present	529	512	528	247	1 94	523	545	545	495	526	539	

TABLE 7. Control Group 2. Number of bar presentation and number of bar presses per subject, per session.

