COMPUTER AIDED OPTIMIZATION OF NONLINEAR SERVOMECHANISMS EMPLOYING A drected search of multiparameter component librarles and statistical. TOL.Erancing

Thesis for the Degree of Ph. D. MICHIGAN STATE UNIVERSITY BRUCE: ALLEN CHUBB

1969

This is to certify that the

thesis entitled

Computer Aided Optimization of Nonlinear Servomechanisms Employing A Directed Search of Multiparameter Component Libraries And Statistical Tolerancing.
presented by

Bruce Allen Chubb

has been accepted towards fulfillment
 of the requirements for

Date ofer.19, 1962

ABSTRACT

COMPUTER AIDED OPTIMIZATION OF NONLINEAR SERVOMECHANISMS EMPLOYING A DIRECTED SEARCH OF MULTIPARAMETER COMPONENT LIBRARIES and Statistical tolerancing
by Bruce Allen Chubb

Techniques are developed to automatically select from computerized libraries the components that satisfy a given system specification at minimum dollar cost. This is accomplished by defining an object function to be the system cost which in turn is a function of the probability that the design will be successful in meeting the performance specification. Starting with an initial set of component part numbers, the total system cost is minimized by iterating the component part numbers using a directed search technique. The manufacturing tolerances associated with the component parameters are considered in calculating the probability of success.

Comparisons are made between the Monte Carlo and the directed search procedure which illustrate that the directed search technique has considerable advantage. Several examples demonstrate that such a computer program can result in considerable cost savings.

The techniques are developed around an instrument servomechanism as a specific example. Four component libraries are established to list the part characteristics for the followup, amplifier,
stor-generator,
assigned performa:
and time response
couloab friction,
the effect of fini
performance. Equ:
backlash without
step inputs, and
motor-generator, and geartrain. Combinations of up to eight preassigned performance specifications in the areas of damping, accuracy, and time response are considered. The nonlinear effects of backlash, coulomb friction, and amplifier saturation are considered as well as the effect of finite geartrain stiffness in evaluating the system performance. Equations are derived for calculating, 1) the allowable backlash without a limit cycle, 2) the nonlinear overshoot for large step inputs, and 3) the effective bandwidth for sinusoidal inputs.

COMPUTER AIDED OPTIMIZATION OF
 NONLINEAR SERVOMECHANISMS EMPLOYING A
 DIRECTED SEARCH OF MULTIPARAMETER COMPONENT LIBRARIES
 AND STATISTICAL TOLERANCING

By

Bruce Allen Chubb

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Electrical Engineering

6-25-69

The author
an of the Electr
Michigan State Un tions during the
we to my associa
especially Mr. G.
and thorough read
ciated.
In addition, tent of the Instr sponsorship of the facilities, in pa
their support thi

Thanks are a
Durkin for their
almerous revision

Finally the
vife, Janet, for
sraduate program.

ACKNOWLEGEMENTS

The author wishes to thank his advisor, Dr. H. E. Koenig, chairman of the Electrical Engineering and System Science Department, Michigan State University, for his guidance and many helpful suggestions during the preparation of this thesis. Special thanks are also due to my associates at Lear Siegler, Inc., Instrument Division, especially Mr. G. Garvelink and Dr. R. Wierenga. Their assistance and thorough reading of the complete manuscript are gratefully appreciated.

In addition, the author expresses sincere thanks to the management of the Instrument Division for their financial support, for their sponsorship of the work done on this thesis, and for the use of their facilities, in particular the analog and digital computer. Without their support this work would not have been done.

Thanks are also given to Miss Anna D'Angelo and Miss Loretta Durkin for their patience in typing the complete manuscript and its numerous revisions.

Finally the author wishes to express his appreciation to his wife, Janet, for her interest and encouragement throughout this graduate program.
2.3 System
2.4 Variabi
3. DEIELOPMENT
3.1 Basic A
3.2 Generat:
3.3 Calcula
3.4 Object
3.5 Design

TABLE OF CONTENTS

Page
LIST OF TABLES vi
LIST OF FIGURES viii
LIST OF APPENDICES x

1. INTRODUCTION 1
1.1 Statement of Problem 1
1.2 Example System 2
1.3 Survey of Present Techniques 4
1.4 Scope of Investigation 6
2. DEVELOPMENT OF ANALYSIS PROGRAM 9
2.1 Basic Approach 9
2.2 Formulation of System State Equations 10
2.3 System Specifications and Design Equations 15
2.4 Variability Analysis Techniques 27
3. DEVELOPMENT OF COMPUTER OPTIMIZATION DESIGN PROCEDURE 32
3.1 Basic Approach 32
3.2 Generation of Object Functions 35
3.3 Calculation of Rejection Ratio 38
3.4 Object Function Derivatives 46
3.5 Design Program Strategy 53
4. EXAUPLE DES
4.1 Compone
4.2 First
4.3 Second
5. CONCLUSIONS

LIST OF REFEREXIC

TABLE OF CONTENTS (cont.)

Page4. EXAMPLE DESIGN PROBLEMS 68
4.1 Component Libraries and Search Matrices 68
4.2 First Design Example 74
4.3 Second Design Example 85
5. CONCLUSIONS AND RECOMMENDATIONS 98
LIST OF REFERENCES 148
2.1 System par
2.2 Component
2.3 State equa
2.4 System spe
2.5 Component
6. 6 Location 0
4.1 Followup
4.2 Amplifier
4.3 Motor-gene
4.4 Geartrain
4.5 Followup s
4.6 Amplifier
4.7 Motor-gene
4.8 Geartrain
4.9 Intermedia example
4.10

Best desig
design
4.11 Directed s for fir
.12 Directed for firs
4.13
local mini
Table Page
2.1 System parameter definitions for state model 12
2.2 Component parameter definitions for state model 12
2.3 State equations for calculating nonlinear overshoot 23
2.4 System specifications 24
2.5 Component parameter definitions for library 26
2.6 Location of F functions 27
4.1 Followup library data 69
4.2 Amplifier library data 70
4.3 Motor-generator library data 71
4.4 Geartrain library data 72
4.5 Followup search matrix 75
4.6 Amplifier search matrix 76
4.7 Motor-generator search matrix 77
4.8 Geartrain search matrix 78
4.9 Intermediate Monte Carlo printout for first design 80 example
4.10 Best design obtained using Monte Carlo for first 81 design example
4.11 Directed search with initial guess underdesigned 82 for first design example
4.12 Directed search with initial guess overdesigned 84 for first design example
4.13 Local minimams obtained for first design example 85
4.14 Best des first
4.15 Intermed desig!
4.16 Best des second
4.17 Directed for s
4.18 Directed for s
4.19 Directed local
4.20 Local mi
4.21 Best des secon
B. 1 Vonlinea displ
B. 2 .ionlinea displ
B. 3 .ionlinea displ
C. 1 Nonlinea satur
C. 2 Nionlinea Case

LIST OF TABLES (cont.)

Table Page
4.14 Best design obtained using directed search for 86 first design example
4.15 Intermediate Monte Carlo printout for second 88 design example
4.16 Best design obtained using Monte Carlo for 89 second design example
4.17 Directed search with initial guess overdesigned 90
for second design example
4.18 Directed search with initial guess underdesigned 91
for second design example
4.19 Directed search resulting in an unsatisfactory 93
local minimum
4. 20 Local minimums obtained for second design example 96
4.21 Best design obtained using directed search for 95
second design example
B. 1 Nonlinear overshoot calculations for 0.1 radian 132 displacement
B. 2 Nonlinear overshoot calculations for 0.2 radian 133 displacement
B. 3 Nonlinear overshoot calculations for 0.35 radian 134
displacement
C. 1 Nonlinear bandwidth calculations with friction and 142 saturation
C. 2 Nonlinear bandwidth calculations for zero friction 143 case

Eigure	
1.1	Schematic servome
1.2	A simplifi
2.1	Nonlinear servome
2.2	, Sonlinear
2.3	Phase-plar
3.1	Computer 3
3.2	Design prd
4.1	Comparisor
A. 1	Sonlinear servome
A. 2	Backlash-f
1.3	Backlash
A. 4	Effective
A. 5	Backlash-
A. 6	System
B. 1	System re:
B. 2	Analog cos^{1}
B. 3	Nonlinear
8.4	Phase-pla:
8.5	System re
8.6	Typical s

LIST OF FIGURES

Figure Page
1.1 Schematic diagram of motor-generator instrument 3 servomechanism
1.2 A simplified design flow diagram 7
2.1 Nonlinear state model diagram for an instrument 11 servomechanism
2.2 Nonlinear function definitions 13
2.3 Phase-plane diagram showing piecewise linear regions 22
3.1 Computer aided design program flow chart 33
3.2 Design program simplified logic diagram 63
4.1 Comparison of Monte Carlo and directed search 94
A. 1 Nonlinear state model diagram for an instrument 103 servomechanism
A. 2 Backlash-friction diagram 102
A. 3 Backlash describing function 108
A. 4 Effective gain of friction vs. frequency 111
A. 5 Backlash-friction ratio vs. frequency 113
A. 6 System response curves for various friction values 114
B. 1 System response on phase-plane diagram 117
B. 2 Analog computer diagram used for transient analysis 118
B. 3 Nonlinear overshoot logic flow diagram 126
B. 4 Phase-plane interpolation diagram 129
B. 5 System response on phase-plane diagram 135
B. 6 Typical system response curves 136

Figure
C. 1 Xonlinear
C. 2 Effective zero-t
C. 3 Analog cor

LIST OF FIGURES (cont.)

Figure Page
C. 1 Nonlinear bandwidth flow diagram 141
C. 2 Effective bandwidth as a function of input 145 zero-to-peak amplitude
C. 3 Analog computer diagram used for bandwidth analysis 146

LIST OF APPENDICES

Appendix Page
A Derivation of Backlash-Friction Slope Equation 101
B Derivation of Nonlinear Overshoot Equation 116
C Derivation of Nonlinear Bandwidth Equation 137
a) $\mathrm{A} S$
b) A ba
thes
c) A se
tion

The basic pro
satisfies the

Automate
for a system
qultitude of
the problem o1
amplifier conf
tions. If one
should be appr
and designated
standard resis

1. INTRODUCTION

1.1 STATEMENT OF THE PROBLEM

The system engineer operating within the framework of a typical manufacturing organization operates from the following basic information and constraints :
a) A set of customer specifications to be met,
b) A basic system configuration to be used in realizing these specifications,
c) A set of standard components that fit into this configuration.

The basic problem is to determine the collection of components that satisfies the given specification at minimum total dollar cost.

Automated techniques for selecting the optimum set of components for a system are necessitated by today's competitive market and the multitude of candidate components available. As an example, consider the problem of selecting an optimum set of components for a fixed amplifier configuration to meet a given set of customer specifications. If one extrapolates data from a 1964 survey [1], today there should be approximately 60,000 semiconductor devices manufactured and designated by part number. If one adds to this, the number of standard resistors, capacitors, transformers, etc., it becomes obvious
hat manual tect camonent select

The same s: where the confis anents are ava of course, be s analysis prograr for any candida priate part num retrieve the da various perform signer for each

The goal o
ecinniques, pro puters in autoproblem.
1.2 EXAYPLE SY

The techn:
servomechanism
tially the same
techniques deve.
The exampl
device, electro
and geartrain.
tion using thes
that manual techniques cannot come close to yielding an optimum component selection.

The same situation exists in every area of system engineering where the configuration is "fixed" and a multitude of candidate components are available. The characteristics of these components can, of course, be stored in computer libraries by part numbers and an analysis program can be written to systematically analyze the system for any candidate set of components by merely inserting the appropriate part numbers. Such computer programs are structured so as to retrieve the data for each particular component, proceed with the various performance calculations and display the results to the designer for each set of part numbers manually selected.

The goal of this study is to go one step further and develop techniques, procedures, and programs for the effective use of computers in automating the solution to the above class of design problem.

1.2 EXAMPLE SYSTEM

The techniques presented are developed around an instrument servomechanism as a specific example. The design problem is essentially the same as that discussed in references [2,3]; however, the techniques developed are believed to be much improved.

The example instrument servomechanism consists of a follow-up device, electronic amplifier, drive motor with feedback generator, and geartrain. A pictorial diagram showing a fixed system configuration using these components is shown in Figure 1.1.

Fig

It is
up to eight accuracy,
lished to
a) FO
b) $A n_{:}$
c) Mo
d) Ge

Even though
small, the
namely: 25

The op
satisfies
total cost'

Figure 1.1. Schematic diagram of motor-generator instrument servomechanism.

It is assumed that the design of this configuration must meet up to eight preassigned specifications in the areas of damping, accuracy, and time response. Four component libraries are established to list the part characteristics as follows:
a) Follow-up - 25 part numbers
b) Amplifier - 50 part numbers
c) Motor-generator - 25 part numbers
d) Geartrain - 25 part numbers

Even though the size of each demonstration library was purposely kept small, the number of theoretical possible candidate systems is large, namely: $25 \times 50 \times 25 \times 25=781,250$.

The optimum collection of components is defined as "the one that satisfies the given specification in a manner resulting in minimum total cost".

Three
1.3 SURIEY

Literal and describe scre compreh Yost of this geter values

Scalar funct
parameters

Three
following
a) Ra

Three ancillary problems considered in the thesis have their origin in the fact that design equations did not heretofore exist for calculating the allowable backlash, large step overshoot, and bandwidth for a nonlinear instrument system. Solutions to these three problems represent significant advancements in the field of servomechanism design, and are presented as Appendices.

1.3 SURVEY OF PRESENT TECHNIQUES

Literally thousands of articles have been published which list and describe work that has been done in optimization. A few of the more comprehensive publications are listed as references $[4,5,6]$. Most of this work is concerned with finding that set of n parameter values, $X_{1}, X_{2}, \cdots, X_{n}$, which maximizes (or minimizes) a given scalar function $F\left(X_{1}, X_{2}, \cdots, X_{n}\right)$, subject to constraints on these parameters which limit their range to realizable values.

Three of the most popular techniques are centered about the following three basic approaches:
a) Random Experimentation Although crude forms of this method are as old as design technology itself, the best early formal documentation as given in 1958 [7] uses repeated solution of the system design equations with random selections of the input parameters generated through Monte Carlo methods. In its simple form, a large number of computer solutions are required to achieve good results. When for reasons of computer costs, only a few runs can be justified, a partitioned
who
or stratified form [8] usually provides better efficiency. In general, improved results are obtained most often if some form of strategy or learning can be employed to adjust the frequency distributions representing the parameters to be selected.
b) Steepest Ascent

This method was introduced by R. R. Brown in 1957 [9] and further improved in 1959 [10]. Today there are many computer programs available for general use which employ this technique. The Steepest Ascent methods calculate the partial derivatives $\partial F / \partial X_{1}, \partial F / \partial X_{2}, \cdots, \partial F / \partial X_{n}$ usually numerically, and then proceed along the gradient until a maximum is obtained. Since the result represents only a local or relative maximum, various starting points are used in an attempt to find the global maximum. GREAT [11] is one example of a highly effective program that is based on this method.
c) Direct Search

The Direct Search technique is attributed to Hook and Jeeves who presented the unconstrained case in 1961 [12]. This was modified in 1965 by Weisman and Wood [13] to include constraints. In direct search, the minimum is found by the sequential examination of a finite set of trial values. The result of each trial is compared with the best previous trial and the new value accepted if an improvement is observed. This series of exploratory moves, in which each
variable is individually adjusted, is used to determine the "best" direction for a successful move. This move, in which all parameters are changed, is called the "pattern move'. Each pattern move is followed by a sequence of exploratory moves to revise the pattern. The sequence is repeated until the scalar function can be increased no further. A good application of this type of algorithm is LOOK[14].

1.4 SCOPE OF INVESTIGATION

A logic flow diagram representing an effective design procedure is shown in Figure 1.2. As indicated, there are two design iteration loops. One loop concerns changes in the basic system configuration (e.g. component interconnection) and the other changes in component selection. Only the problems associated with automating the component selection are considered here.

If each component could be represented by a single parameter, the solution would be quite straightforward. One could arrange the components in the library in ascending order of its single parameter and use a modified form of either the steepest ascent or direct search method to find the optimum. However, the general solution is far more difficult, since libraries consist of multiterminal components, and several parameters are required to describe each component. These parameters are associated only with the component part number, and there is no natural ordering between components.

Figure 1.2. A simplified design flow diagram.

The pr
is concerne
formulation
of the sys
tions and
This effor

The
design 100
necessary
component
This effo

Sect
oped prog
presents
lines $f 0$

The problem is analogous to A. M. Gleason's Search in the N-Cube [15]. Gleason states "It is entirely clear that there is no certain method of finding the maximum, short of computing the function at each point of the set in question". This exhaustive search for our particular design problem, however, is out of the question. For example, if we consider 30 seconds to be required for each analysis using a high speed machine, it would take 6510 hours of computer time to solve the problem in question. There must be a better way!

The problem can be divided into three aspects. The first aspect is concerned with developing an effective analysis program, including formulation of the necessary nonlinear state equations, codification of the system specifications, developing the required design equations and a method of handling the component parameter tolerances. This effort is presented in Section 2.

The second task is to incorporate the analysis program in the design loop by adding an optimization procedure. To this end it is necessary to formulate the object function to be minimized, set up component libraries, and to formulate the optimization strategy. This effort is presented in Section 3.

Section 4 of this thesis presents the application of the developed program to typical hardware design problems. Section 5 then presents the conclusions of the study and provides suggested guidelines for future work.

2. DEVELOPMENT OF ANALYSIS PROGRAM

2.1 BASIC APPROACH

The analysis section is the starting point of any computer-aided or automated design program. Optimization, in the design context, is derived from an efficient use of iterative analysis techniques. Devoid of a good analysis capability, the designer has nothing. Its presence provides a powerful tool in itself. In this case, however, it is simply a means to an end - Automated Design.
"But what are the requirements for an effective analysis program?" First, and primary, is the fact that it must accurately represent the hardware. This requires a significantly detailed model, including often overlooked nonlinearities, and a realistic consideration of component tolerance effects. This means that the programmer is faced with the solution of nonlinear differential equations, and that system parameters, instead of being constants, must be treated as random variables. Second the outputs of the analysis program must have a one-to-one correspondence with the list of system specifications. That is, if the customer specifies overshoot, response time, accuracy, etc., then the program must have the capability of calculating the performance characteristics in this form. Third and last, since the analysis is to be repeated many times in an iterative fashion, the solution time should be a minimum.

2.2 FORMULATION OF SYSTEM STATE EQUATIONS

A most effective method of obtaining the response of a system is by using the state variable model [16]. Much work has been done in the effective application of this approach to the analysis of physical systems $[17,18]$. Many aspects of the particular problem considered here are presented in reference [2]. However, in the interest of continuity a limited development is repeated here.

The example system under consideration consists of a followup, amplifier, servomotor with an integral mounted feedback generator, geartrain, and load. The load is made up of inertia and coulomb friction. Experience had demonstrated [2] that geartrain resilience, along with the nonlinearities of gear backlash, amplifier saturation, and coulomb friction, must be considered.

The state model diagram of the system is shown in Figure 2.1 and the system and component parameters are defined in Tables 2.1 and 2.2 , respectively. Four state variables are required to define the system. These are the outputs of the 4 integrators of Figure 2.1 and correspond to motor velocity, motor position, load velocity, and load position. It should be noted that the motor velocity and position have been reflected to equivalent values at the load (i.e. the hardware values are simply those given by Figure 2.1 times the gear ratio, N). The amplifier saturation is represented by an equivalent torque saturation (i.e. the torque level is set at a value equal to that of the amplifier voltage level times the product of the motor torque gain and gear ratio).

Figure 2.1. Nonlinear state model diagram for an instrument servomechanism.

Table 2

Symbol
B_{M}
J_{L}
J_{M}
K_{i}
K_{T}
T_{L}
$\mathrm{T}_{\text {SAT }}$

Table 2.

Table 2.1. System parameter definitions for state model.

Symbol	Defining Equation	Name	Units
B_{M}	$N^{2} \mathrm{~B}_{\mathrm{m}}$	Reflected motor damping	02-in/rad/sec
J_{L}	$\mathbf{J}_{\ell}+\mathbf{J}_{\mathbf{g}}$	Load inertia	oz-in/rad/sec ${ }^{2}$
$\mathbf{J}_{\mathbf{M}}$	$\mathrm{N}^{2} \mathrm{~J}_{\mathrm{m}}$	Reflected motor inertia	$\mathrm{oz}-\mathrm{in} / \mathrm{rad} / \mathrm{sec}^{2}$
K_{G}	$K_{g} K_{a g} K_{m} N^{2}$	Generator damping coefficient	oz-in/rad/sec
K_{T}	$K_{f} K_{a f} K_{m} N$	System torque constant	oz-in/rad
T_{L}	$T_{\ell}+T_{g}$	Load friction	oz-in
$\mathrm{T}_{\text {SAT }}$	$K_{m} E_{\text {sat }}$	System torque saturation	02-in

Table 2.2. Component parameter definitions for state model.

Symbol	Definition	Units
B	Geartrain backlash	radians
$\mathrm{B}_{\text {m }}$	Motor viscous damping	oz-in/rad/sec
$E_{\text {sat }}$	Amplifier saturation level	volts
J_{8}	Geartrain inertia	oz-in/rad/sec ${ }^{2}$
\mathbf{J}_{ℓ}	Load inertia	oz-in/rad/sec ${ }^{2}$
$\mathbf{J}_{\text {m }}$	Motor-generator inertia	02-in/rad/sec ${ }^{2}$
$K_{\text {af }}$	Auplifier gain to followup	volts/volt
$K_{\text {ag }}$	Amplifier gain to generator	volts/volt
K_{f}	Followup gain	volts/rad
K_{g}	Generator gain	volts/rad/sec
${ }_{\mathbf{K}}$	Motor torque gain	oz-in/volt
K_{s}	Geartrain spring constant	oz-in/rad
N	Gear ratio	
T_{g}	Geartrain friction	oz-in
$\mathrm{T}_{\boldsymbol{\ell}}$	Load coulomb friction	02-in

The nonlin rectly from

$\because 10$			
\sim°	\sim^{∞}	$3^{\text {® }}$	3^{∞}

The nonlinear functions representing backlash (N_{1}), coulomb friction $\left(N_{2}\right)$, and saturation $\left(N_{3}\right)$ are defined in Figure 2.2.

BLOCK diagram	EQUATIONS(Where: $\operatorname{sgn} \theta=\theta / 1 \theta \mid$)
	$\begin{aligned} & T_{r} \cdot K_{L}\left[\left\|\theta_{u}-\theta_{L}\right\|-B\right] \operatorname{son}\left(\theta_{u}-\theta_{L}\right) \\ & \text { for }\left\|\theta_{m}-\theta_{L}\right\| \geq B \\ & T_{r}: 0 \\ & \text { for }\left\|\theta_{\mu}-\theta_{L}\right\| \leq B \end{aligned}$
N_{2}	$\begin{aligned} & T_{t}=\left\lvert\, \begin{array}{l} T_{L} \mid \operatorname{son} \dot{\theta}_{L} \\ \text { for } \dot{\theta}_{L} \end{array}=0\right. \\ & T_{f}=-T_{r} \\ & \quad \text { for } \dot{\theta}_{L}=0 \end{aligned}$
	$\begin{aligned} & T_{m}=K_{T}\left(\theta_{1}-\theta_{L}\right)-K_{0} \dot{\theta}_{M} \\ & \quad \text { for }\left\|K_{T}\left(\theta_{1}-\theta_{L}\right)-K_{0} \dot{\theta}_{u n}\right\| \leq T_{B A T} \\ & T_{m}=T_{\text {mar }} \sin \left[K_{T}\left(\theta_{1}-\theta_{L}\right)-K_{0} \dot{\theta}_{M}\right] \\ & \quad \text { for }\left\|K_{T}\left(\theta_{1}-\theta_{L}\right)-K_{0} \dot{\theta}_{M}\right\| \geq T_{\text {Bar }} \end{aligned}$

Figure 2.2. Nonlinear function definitions.

The nonlinear state model for the system can be obtained directly from Figure 2.1 as:
$\frac{d}{d t}\left[\begin{array}{c}\dot{\theta}_{M} \\ \theta_{M} \\ \dot{\theta}_{L} \\ \theta_{L}\end{array}\right]=\left[\begin{array}{cccc}-\frac{B_{M}}{J_{M}} & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{c}\dot{\theta}_{M} \\ \theta_{M} \\ \dot{\theta}_{L} \\ \theta_{L}\end{array}\right]+\left[\begin{array}{l}\frac{1}{J_{M}}\left(T_{m}-T_{r}\right) \\ 0 \\ \frac{1}{J_{L}}\left(T_{r}-T_{f}\right) \\ 0\end{array}\right]$

The cor
$N_{1}=1$ for
$N_{2}=1$ for
$\frac{d}{d t}\left[\begin{array}{l}\dot{\theta}_{M} \\ \theta_{M} \\ \dot{\theta}_{L} \\ \theta_{L}\end{array}\right]$

In the speci
finite (i.e.
$\frac{d}{d t}[$
where f_{T}
generator and
and in a like

The corresponding linear approximation is obtained by setting $N_{1}=1$ for zero backlash; $N_{2}=0$ for zero coulomb friction; and $N_{3}=1$ for no amplifier saturation.

$$
\frac{d}{d t}\left[\begin{array}{c}
\dot{\theta}_{M} \tag{2.2}\\
\theta_{M} \\
\dot{\theta}_{L} \\
\theta_{L}
\end{array}\right]=\left[\begin{array}{cccc}
-\frac{\left(B_{M}+K_{G}\right)}{J_{M}} & -\frac{k_{S}}{J_{M}} & 0 & \frac{\left(k_{S}-K_{T}\right)}{J_{M}} \\
1 & 0 & 0 & 0 \\
0 & \frac{k_{s}}{J_{L}} & 0 & -\frac{k_{S}}{J_{L}} \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
\dot{\theta}_{M} \\
\theta_{M} \\
\theta_{M} \\
\dot{\theta}_{L} \\
\theta_{L}
\end{array}\right]+\left[\begin{array}{l}
\frac{k_{T}}{J_{M}} \\
0 \\
0
\end{array}\right]
$$

In the special case when the geartrain stiffness is considered infinite (i.e. $K_{s}=\infty$) the linear state model becomes

$$
\frac{d}{d t}\left[\begin{array}{c}
\dot{\theta}_{L} \\
\theta_{L}
\end{array}\right]=\left[\begin{array}{cc}
-f_{T} /{ }_{T} & -\mathrm{K}_{T} /{ }^{J} T \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
\dot{\theta}_{L} \\
\theta_{L}
\end{array}\right]+\left[\begin{array}{c}
\mathrm{K}_{T} / J_{T} \\
0
\end{array}\right]{ }_{\theta_{i}}
$$

where f_{T} is the total effective viscous damping from the feedback generator and motor. This is

$$
\begin{equation*}
\mathrm{f}_{\mathrm{T}}=\mathrm{B}_{\mathrm{M}}+\mathrm{K}_{\mathrm{G}} \tag{2.4}
\end{equation*}
$$

and in a like manner J_{T} is the total system inertia given by

$$
\begin{equation*}
\mathrm{J}_{\mathrm{T}}=\mathrm{J}_{\mathrm{M}}+\mathrm{J}_{\mathrm{L}} \tag{2.5}
\end{equation*}
$$

For a
a somewhat
plication, th
the computer

Equation (2.3) may be written also in the convenient form

$$
\frac{d}{d t}\left[\begin{array}{c}
\dot{\theta}_{L} \tag{2.6}\\
\theta_{L}
\end{array}\right]=\left[\begin{array}{cc}
-2 \zeta \omega_{N} & -\omega_{N}{ }^{2} \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
\dot{\theta}_{L} \\
\theta_{L}
\end{array}\right]+\left[\begin{array}{c}
\omega_{N}{ }^{2} \\
0
\end{array}\right]{ }^{\theta_{i}}
$$

where ζ and ω_{N} are the damping ratio and natural frequency as normally defined for a second order system. For the particular case under consideration

$$
\begin{align*}
\zeta & =\frac{f_{T}}{2 \sqrt{K_{T} J_{T}}} \tag{2.7}\\
\omega_{N} & =\sqrt{\frac{K_{T}}{J_{T}}} \tag{2.8}
\end{align*}
$$

2.3 SYSTEM SPECIFICATIONS AND DESIGN EQUATIONS

The first step in realizing a design is to establish a thorough understanding of the set of performance specifications that the system must satisfy. The second step required is to develop a set of equations that enable one to evaluate a potential design in relation to the specifications. This section is devoted to the accomplishment of both the above tasks.

For a computer program to be effective in design, it must cover a somewhat general set of specifications. Then, for any given application, the user may choose the particular desired set and instruct the computer to ignore the others. A set of eight specifications is
selected for
They are rep
comercial

Instrument

Michigan.

The eig
the correspo
design.

1) Sta
selected for the example program developed as part of this study. They are representative of those listed in numerous military and commercial specifications for such systems as manufactured by the Instrument Division of Lear Siegler, Incorporated, Grand Rapids, Michigan.

The eight specifications are now discussed one at a time, with the corresponding design equations used to evaluate a proposed design.

1) Static Accuracy

Static accuracy is unquestionably the most often specified requirement for any instrument servo. It is simply a measure of the magnitude of the error that can exist between the command input and the indicated output of the system under static conditions. Contributions to this error include followup tracking error, amplifier and generator null offsets, motor starting voltage, and gearing and load friction. By taking each of these error sources and dividing by the corresponding dc gain back to the error angle, and summing, the following equation is derived for the static accuracy (ε_{A}).

$$
\begin{equation*}
\varepsilon_{A}={ }^{\theta_{f}}+\frac{E_{a n}}{K_{f} K_{a f}}+\frac{K_{a g} E_{g n}}{K_{f} K_{a f}}+\frac{E_{s}}{K_{f} K_{a f}}+\frac{T_{g}+T_{\ell}}{K_{f} K_{a f} K_{m} N} \tag{2.9}
\end{equation*}
$$

where

$$
\begin{aligned}
\theta_{f}= & \text { followup tracking accuracy (rad) } \\
\mathrm{E}_{\mathrm{an}}= & \text { amplifier output null voltage (volts) } \\
\mathrm{E}_{\mathrm{gn}}= & \text { generator output null voltage (volts) } \\
\mathrm{E}_{\mathrm{s}}= & \text { motor-generator no-load starting voltage } \\
& \text { (volts) }
\end{aligned}
$$

and all other notation is defined in Table 2.2.
2) Resolution

Resolution is a measure of the total dead-zone in an instrument servomechanism. It therefore represents the maximum amount that the input can be displaced without noting any motion at the output. This deadzone results from the fact that a certain amount of error must be built-up to overcome the motor starting voltage and coulomb frictions. Thus, the total deadzone or resolution $\left(\varepsilon_{R}\right)$ is given by

$$
\begin{equation*}
\varepsilon_{R}=2\left[\frac{E_{s}}{K_{f} K_{a f}}+\frac{T_{g}+T_{\ell}}{K_{f} K_{a f} K_{m} N}\right] \tag{2.10}
\end{equation*}
$$

3) Velocity Lag

Velocity lag is a measure of the servo's accuracy under constant velocity conditions. It is defined as the steadystate positional difference between the command input and the indicated output with the input rotating at a constant velocity. Since the resulting lag error is a function of the input velocity, the latter also must be specified.

The velocity lag (ε_{L}) may be calculated using the equation (see reference [2])

$$
\begin{equation*}
\varepsilon_{L}=\left[\frac{N^{2}\left(B_{m}+K_{g} K_{a g} K_{m}\right)}{K_{f} K_{a f} K_{m}^{N}}\right] \dot{\theta}_{i n}+\varepsilon_{A} \tag{2.11}
\end{equation*}
$$

where $\dot{\theta}_{\text {in }}$ is the input velocity at which the lag error is to be measured or calculated and ε_{A} in the static accuracy as defined by (2.9).
4) Followup Rate

Followup rate is a measure of the maximum velocity that the servo is capable of producing. If there were no friction loading, it would be simply the motor no-load speed divided by the gear ratio. However to account for the load, one can calculate the followup rate ($\dot{\theta}_{L}$) using the equation: (see reference [2])

$$
\begin{equation*}
\dot{\theta}_{L}=\frac{\dot{\theta}_{m}}{N}\left[1-\frac{T_{g}+T_{\ell}}{N T_{s}}\right] \tag{2.12}
\end{equation*}
$$

where the symbols are as defined in Table 2.2 except for the additional ones which are

$$
\begin{aligned}
& \dot{\theta}_{m}=\text { motor no-load speed }(\mathrm{rad} / \mathrm{sec}) \\
& \mathrm{T}_{\mathrm{s}}=\text { motor stall torque }(\mathrm{oz}-\mathrm{in})
\end{aligned}
$$

5) Damping Ratio

Damping ratio is the most often used measure of system
stability. This is unfortunate since its definition applies only for a linear 2nd order system. However if one makes this linear approximation, then the damping ratio equation may be obtained directly in terms of the component parameters by substituting the definitions of Table 2.1 into Equation (2.7). Thus:

$$
\begin{equation*}
\zeta=\frac{N^{2}\left(B_{m}+K_{g} K_{a g} K_{m}\right)}{2 \sqrt{K_{f} K_{a f} K_{m} N\left(N^{2} J_{m}+J_{g}+J_{\ell}\right)}} \tag{2.13}
\end{equation*}
$$

6) Null Oscillation

Null oscillations are small amplitude steady state oscillations (limit cycles) that exist about a null and are a result of backlash being present in the geartrain. A typical specification states that "no such oscillation shall exist." In Reference [2], it was established that the amount of backlash that a given design can tolerate without such a limit cycle is proportional to the amount of coulomb friction on the load side of the backlash. In this study, we shall derive the equation for the proportionality constant (derivation in Appendix A) thereby obtaining the equation for the allowable backlash as follows:
$B($ allowable $)=M 1 \frac{N}{0<\omega<\sqrt{\frac{L_{T}}{J_{L}}}}\left\{\frac{3.2}{\pi\left[N_{1}(\omega)+.4\right] \omega N_{2}(\omega)} \sqrt{\frac{\left(K_{T}-J_{M} \omega^{2}\right)^{2}+\left(f_{T} \omega\right)^{2}}{\left(N_{1}(\omega) K_{s}-J_{M} \omega^{2}\right)^{2}+\left(f_{T} \omega\right)^{2}}}\right\} T_{L}$

As
a
7) Ove
where:

As long as the actual backlash B is less than $B(a l l o w a b l e)$
a limit cycle will not exist.
7) Overshoot

Overshoot of the system's output to a step command input is the most often used measure of servo response. If the servo is linear and of second order, the overshoot is defined by the damping ratio (ζ) given by the equation (see Reference [2])

Overshoot $=\left[e^{-\pi \zeta / \sqrt{1-\zeta^{2}}}\right] \theta_{\text {step }} \quad$ for $\zeta<1$

$$
\begin{equation*}
=0 \text { for } \zeta \geq 1 \tag{2.17}
\end{equation*}
$$

However, because of system nonlinearities, mainly amplifier saturation and coulomb friction, the size of the actual overshoot is not proportional to the step size and is not given by a simple relationship such as (2.17). The actual overshoot could be obtained by a direct simulation of the nonlinear state model, Equation (2.1), however such a numerical solution is quite time consuming on a digital computer. For this reason, the nonlinear state equations are solved explicitly (see Appendix B for solution), thereby
enabling a much more direct calculation for the overshoot. This is accomplished by using piecewise linear solutions over the regions shown in the phase plane diagram of Figure 2.3. This illustrates a response trajectory of a typical system and the corresponding overshoot. As can be seen, there are three regions of operation. In region 1 , the servo has negative torque saturation, while in region 2 the servo is unsaturated, and finally in region 3 there is positive torque saturation. The solutions for the system state vector, as derived in Appendix B for each region, are summarized in Table 2.3. By solving the first equation at the saturation boundary, using the result as initial conditions for the appropriate second equation, and again finding the next boundary conditions, one can proceed from boundary point to boundary point along the trajectory until the overshoot is obtained. The actual logic used to obtain the boundary conditions is summarized in Appendix B.
8) Bandwidth

Bandwidth is a measure of the systems ability to follow sinusoidally oscillating inputs. It is normally defined as the frequency at which the output response is attenuated to 0.707 times the input (-3 db). For a linear second order system this bandwidth frequency $\left(\omega_{B}\right)$ is given by

$$
\begin{equation*}
\omega_{B}=\omega_{N} \sqrt{1-2 \zeta^{2}+\sqrt{2-4 \zeta^{2}+4 \zeta^{4}}} \tag{2.18}
\end{equation*}
$$

where ω_{N} is as defined in (2.8)

Figure 2.3. Phase plane diagram showing piecewise linear regions.

Table 2.3. State equations for calculating nonlinear overshoot.

Region 1 (Negative torque saturation)

Region 2 (Unsaturated)

Region 3 (Positive torque saturation)

The sumnarize
number
tion is
specifyit
formance
servo is
study,
coulomb

However, because of system nonlinearities; namely, saturation and coulomb friction, the actual system bandwidth is a function of the amplitude of the input sinusoid. The necessary procedure for including this nonlinear effect is developed as part of this study. The development is included as Appendix C and is based on the use of describing function approximations to obtain effective values for ω_{N} and 5.

The eight system specifications that have now been described are summarized in Table 2.4. This table lists the name, symbol, and number assigned to each specification, tells whether the specification is an upper or lower bound, and the units used. In addition to specifying any desired combination of the above described eight performance requirements, the user must also define the load that the servo is to drive. For the example program developed as part of this study, the load is represented by an inertia (J_{ℓ}) and a nonlinear coulomb friction (T_{ℓ}).

Table 2.4. System specifications.

Name	Symbol	Boundary	Units
Static accuracy	S_{1}	upper	degrees
Resolution	S_{2}	upper	degrees
Velocity lag	S_{3}	upper	degrees
Follow-up rate	S_{4}	lower	deg/sec
Damping ratio	S_{5}	lower	-
Allowable backlash	S_{6}	upper	minutes
Overshoot	S_{7}	upper	degrees
Bandwidth	S_{8}	lower	hertz

The analysis problem can be now defined mathematically by letting S, Y, and X be vectors, defined in general as:

$$
\begin{align*}
S & =\left[S_{1}, S_{2}, \cdots, S_{k}\right] \\
Y & =\left[Y_{1}, Y_{2}, \cdots, Y_{k}\right] \\
X & =\left[X_{1}, X_{2}, \cdots, X_{n}\right] \tag{2.19}
\end{align*}
$$

where

$$
\begin{aligned}
k= & \text { number of performance specifications } \\
n= & \text { number of component parameters } \\
S_{i}= & \text { numerical value for the } i^{\text {th }} \text { specification as } \\
& \text { defined in Table } 2.4(1 \leq i \leq k) \\
Y_{i}= & \text { system performance function corresponding to } \\
& i^{\text {th }} \text { specification }(1 \leq i \leq k) \\
X_{j}= & \text { numerical value for } j^{\text {th }} \text { component parameter } \\
& (1 \leq j \leq n)
\end{aligned}
$$

Thus one can write in general that

$$
\left[\begin{array}{l}
Y_{1} \tag{2.20}\\
Y_{2} \\
\vdots \\
Y_{k}
\end{array}\right]=\left[\begin{array}{l}
F_{1}\left(X_{1}, X_{2}, X_{3}, \cdots, X_{n}\right) \\
F_{2}\left(X_{1}, X_{2}, X_{3}, \cdots, X_{n}\right) \\
\vdots \\
F_{k}\left(X_{1}, X_{2}, X_{3}, \cdots, X_{n}\right)
\end{array}\right]
$$

It is only necessary, at this time, that the X vector contain the elements as required to calculate the system performance function vector Y. However, it is convenient to include the component costs as part of the X vector [even though they will not show up explicitly in (2.20)] since they are required to calculate the
optimization function that is introduced later. Following this practice for our particular example, $k=8$ and $n=23$, where the X vector is defined in Table 2.5. Likewise, the F functions are defined in Table 2.6.

Table 2.5. Component parameter definitions for library.

COMP	VAR	PARMMETER NAME	SYMBOL	UNITS
F \mathbf{O} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{W} \mathbf{U} \mathbf{P}	$\begin{aligned} & x_{1} \\ & x_{2} \\ & x_{3} \end{aligned}$	Cost Gain Accuracy	$\begin{aligned} & \mathbf{c}_{\mathbf{f}} \\ & \mathbf{k}_{\mathbf{f}} \\ & { }_{\theta_{\mathbf{f}}} \end{aligned}$	dollars volts/rad minutes
A M \mathbf{P} \mathbf{L} \mathbf{I} \mathbf{F} I \mathbf{E} R	$\begin{aligned} & x_{4} \\ & x_{5} \\ & x_{6} \\ & x_{7} \\ & x_{8} \\ & \hline \end{aligned}$	Cost Gain to Followup Gain to Generator Output Saturation Level Output Null Voltage	$\begin{aligned} & \mathrm{C}_{\mathrm{a}} \\ & \mathrm{~K}_{\mathrm{af}} \\ & \mathrm{~K}_{\mathrm{ag}} \\ & \mathrm{E}_{\mathrm{sat}} \\ & \mathrm{E}_{\mathrm{an}} \\ & \hline \end{aligned}$	dollars volts/volt volts/volt volts volts
	$\begin{aligned} & \hline x_{9} \\ & x_{10} \\ & x_{11} \\ & x_{12} \\ & x_{13} \\ & x_{14} \\ & x_{15} \end{aligned}$	Cost Stall Torque No-load Speed Inertia Starting Voltage Generator Gain Generator Null	$\begin{aligned} & \mathrm{C}_{\mathrm{m}} \\ & \mathrm{~T}_{\mathrm{s}} \\ & \dot{\theta}_{\mathrm{m}} \\ & \mathrm{~J}_{\mathbf{m}} \\ & \mathrm{E}_{\mathbf{s}} \\ & \mathrm{K}_{\mathrm{g}} \\ & \mathrm{E}_{\mathrm{gn}} \end{aligned}$	dollars oz-in rpm $\mathrm{gm}-\mathrm{cm}^{2}$ volts volts/1000 rpm millivolts
	$\begin{aligned} & x_{16} \\ & x_{17} \\ & x_{18} \\ & x_{19} \\ & x_{20} \\ & x_{21} \end{aligned}$	Cost Inertia Stiffness Friction Backlash Gear Ratio	$\begin{aligned} & \mathrm{C}_{\mathrm{g}} \\ & \mathrm{~J}_{\mathrm{g}} \\ & \mathrm{~K}_{\mathrm{S}} \\ & \mathrm{~T}_{\mathrm{g}} \\ & \mathrm{~N}^{2} \end{aligned}$	dollars $\mathrm{gm}-\mathrm{cm}^{2}$ oz-in/rad oz-in minutes
$\begin{aligned} & 0 \\ & \text { A } \\ & \text { D } \end{aligned}$	X_{22} X_{23}	Inertia Priction	$\begin{aligned} & \mathrm{J}_{\boldsymbol{\ell}} \\ & \mathrm{T}_{\boldsymbol{\ell}} \end{aligned}$	$\begin{aligned} & \mathrm{gm}-\mathrm{cm}^{2} \\ & 02-\mathrm{in} \end{aligned}$

Thus
Vector (Y)
equation as
cept for one
the X vect
in a particu
For this reas
method for de
2.4 VARIABIL

Variabil
the ability
while its
ts

Table 2.6. Location of F Functions.

Function	Location
$\mathbf{F}_{\mathbf{1}}$	Equation (2.9)
$\mathbf{F}_{\mathbf{2}}$	Equation (2.10)
$\mathbf{F}_{\mathbf{3}}$	Equation (2.11)
$\mathbf{F}_{\mathbf{4}}$	Equation (2.12)
$\mathbf{F}_{\mathbf{5}}$	Equation (2.13)
$\mathbf{F}_{\mathbf{6}}$	Actual backlash (X ${ }_{20}$)
$\mathbf{F}_{\mathbf{7}}$	Table 2.3 with logic from Figure B.3
$\mathbf{F}_{\mathbf{8}}$	Equation (2.18) with ω_{N} and \quadreplaced by effective values as defined in Appendix C

Thus (2.20) can be used to calculate the system performance vector (Y) given any component vector (X). By programming this equation as presented, one obtains the desired analysis program except for one deficiency. That is, due to manufacturing tolerances, the X vector varies from unit to unit, and we are interested not in a particular value of Y but what spread or limits to expect. For this reason, the next section is devoted to selecting a suitable method for determining this tolerance spread.

2.4 VARIABILITY ANALYSIS TECHNIQUES

Variability Analysis refers to the methods used to determine the ability of a system to continue to give specified performance while its component parts change value within specified limits.

One met the specifie analysis.

 spect to eac parameters 'rorst-case'

For mul
aethod becom
?uter, due
Even if the
unrealistic
same system
throughout
ance require
resulting

The app
design probl
istic pictur
duction.
Shewhart in
Products"
in the early
the statistic
articles and
and

One method of insuring that a given system design meets all of the specified performance critera is to use some form of worst-case analysis. An example of this type of procedure is MANDEX which is a worst-case circuit analysis computer program [19]. Using this program the first derivative of all the output variables with respect to each of the input parameters is used to set each of the parameters to their "worst-case" tolerance extreme, so that a "worst-case" condition exists at each of the circuit outputs.

For multivariable systems, the application of the worst-case method becomes very time consuming, even when using a high speed computer, due to the multitude of possibilities that must be considered. Even if the worst-case stackup can be found, the resulting design is unrealistic since it assumes that everything is at worst-case on the same system at the same time. Using this criteria consistently throughout the whole design invariably results in component tolerance requirements that are so tight the cost is prohibitive. The resulting system is greatly overdesigned.

The application of statistical tolerance theory to iterative design problems overcomes this difficulty and provides a most realistic picture of the control system behavior to be expected in production. Statistical tolerance theory was first introduced by Shewhart in his book "Economic Control of Quality of Manufactured Products" [20]. Following this, S. S. Wilks of Princeton University in the early 1940's published two papers [21], [22] that developed the statistical foundation for tolerance theory. However these articles and those that followed [23], [24], [25] up until as late
as 1963 conce: problem of as:" chanical part
only to the s
tion of the c
system perfor
parameters an
The Yonte Car
zay be applie
sented and $t r$.
by Mark and

The Mont
under invest
A system is
randomly fror
each componer
Then each pa:'
tion is obta
in a tabulat
output varia:
can be calcu

The Mom:
about the me
terms of the
partial deri
component
pa
as 1963 concerned themselves almost universally with the design problem of assigning tolerances to the physical dimensioning of mechanical parts. From a systems point of view, this case applies only to the situation where the system function is a linear combination of the component parameters. In general, and for this example, system performance is a complex nonlinear function of the component parameters and the simple root-sum-square technique is not adequate. The Monte Carlo and Moment methods developed in the last few years may be applied to handle this problem. Both techniques are presented and the merits of each are compared by D. G. Mark [26] and by Mark and L. H. Stember [27].

The Monte Carlo technique assumes that each component parameter under investigation can be represented by a frequency distribution. A system is simulated mathematically by choosing each parameter value randomly from its frequency distribution. After parameter values for each component in the system are selected, a solution is obtained. Then each parameter value is again chosen as before and another solution is obtained. This sequence is repeated many times, resulting in a tabulation of data representing the distributions of the desired output variables. From this, the resulting mean and 3 sigma values can be calculated.

The Moment technique makes use of an expansion of the function about the mean parameters using a Taylor series. The higher order terms of the series are usually neglected. This requires taking the partial derivative of each performance variable with respect to each component parameter. Assuming that the component performance
parameters are independent and noting that the $\partial Y_{i} / \partial X_{j}=0$ if X_{j} is a component cost, the mean value of Y_{i} is given by the equation

$$
\begin{equation*}
\left.Y_{i}(\text { mean })=F_{i}\left[X_{1} \text { (mean }\right), X_{2}(\text { mean }), \cdots, X_{n} \text { (mean) }\right] \tag{2.21}
\end{equation*}
$$

and the standard deviation of Y_{i} is approximated by the equation:

$$
\begin{equation*}
\sigma_{Y_{i}}=\sqrt{\left[\left(\sigma_{X_{1}}\right) \frac{\partial Y_{i}}{\partial X_{1}}\right]^{2}+\left[\left(\sigma_{X_{2}}\right) \frac{\partial Y_{i}}{\partial X_{2}}\right]^{2}+\cdots+\left[\left(\sigma_{X_{n}}\right) \frac{\partial Y_{i}}{\partial X_{n}}\right]^{2}} \tag{2.22}
\end{equation*}
$$

where $i=1,2, \cdots, k$ and the partial derivatives are evaluated while all other parameters are held at their mean value.

Since the higher order derivatives are neglected, the Moment method prediction is considered less accurate than the Monte Carlo method, but still adequate for most purposes. The Moment method has the advantage that it provides information that is extremely useful to the designer in pinpointing sensitive areas and reducing this sensitivity to parameter variability. Because of this latter advantage and the fact that satisfactory results can be obtained with a lesser number of computer runs, the Moment method is used here.

As can be seen from (2.22), the use of the Moment method requires that we calculate the partial derivatives of each system performance function with respect to each component parameter. The matrix of these partials is the Jacobian

$$
J=\frac{\partial\left(Y_{1}, Y_{2}, \cdots, Y_{k}\right)}{\partial\left(X_{1}, X_{2}, \cdots, X_{n}\right)}=\left[\begin{array}{ccc}
\frac{\partial Y_{1}}{\partial X_{1}} & \frac{\partial Y_{1}}{\partial X_{2}} \cdots & \frac{\partial Y_{1}}{\partial X_{n}} \tag{2.23}\\
\frac{\partial Y_{2}}{\partial X_{1}} & \frac{\partial Y_{2}}{\partial X_{2}} \cdots & \frac{\partial Y_{2}}{\partial X_{n}} \\
\vdots & \vdots & \vdots \\
\frac{\partial Y_{k}}{\partial X_{1}} & \frac{\partial Y_{k}}{\partial X_{2}} \cdots & \frac{\partial Y_{k}}{\partial X_{n}}
\end{array}\right]
$$

Approximation of these partials is easily obtained numerically by programming (2.20) and using a subroutine to make the following steps:

1) Set all the X_{i} 's equal to their mean value $\left(\bar{X}_{i}\right)$, and the calculated Y vector is taken to be the mean value \bar{Y}.
2) X_{1} is replaced by $\left(\bar{X}_{1}+\Delta X_{1}\right)$ and the corresponding value of Y is calculated with all other X 's at their mean value. From this, we obtain the first column of the Jacobian matrix using
$\frac{\partial Y_{i}}{\partial X_{j}} \simeq \frac{Y_{i}-\bar{Y}_{i}}{\Delta X_{j}} \quad$ for $\quad i=1,2, \ldots, k$ and $j=1$
3) Step 2 is repeated for each X_{j} for $J=1,2, \cdots$, n thereby obtaining the complete Jacobian matrix.
3. D
3.1 B.LSIC

Use of
vious sect
method, ne
computer.
the compu
toward op
component
system.

Fig
in a $d y$
for all
data ca
only
e.g., u
retrif
libra
guide
desi
prec

3. DEVELOPMENT OF COMPUTER OPTIMIZATION DESIGN PROCEDURE

3.1 BASIC APPROACH

Use of the computer-aided design procedure developed in the previous section, although many times more effective than any manual method, nevertheless represents only a passive use of the digital computer. That is, the engineer makes all the design decisions and the computer only serves as a fast calculator. The next logical step toward optimized design is to use the computer to determine how the components should be varied to converge on the desired minimum cost system.

Figure 3.1 illustrates in general, how a computer could be used in a dynamic sense. The prerequisite to design is to input the data for all components. This is accomplished by loading in the component data cards pre-punched in a prescribed format. This need be done only the first time and thereafter only if that data is to be changed, e.g., updated. These data are then stored by part number in an easily retrievable form on magnetic disk and are referred to as the "component libraries." In order to provide the mainline design program with a guide as to part number selection, some ordered array of these is desired. This is accomplished by using a "search matrix library," the precise working of which is explained later. Thus, immediately

Figure 3.1. Computer aided design program flow chart.
after generation of the component libraries, the computer calculates the component search matrices and stores these in a second block of data -- the search matrix library. Now the program is ready to be used. The designer inputs the system specifications, fixed production labor cost, and any initial set of components of his choice. The latter item could be made a random selection if desired. In either event, the computer retrieves the component data from libraries and proceeds to calculate the system performance. The component parameters are then perturbated one at a time and the partials of each system performance function with respect to each component parameter are determined. Once this is completed the partials are stored in the form of a Jacobian matrix. The calculated performance limits are then compared to the specification limits. The fraction of the units produced that statistically fall outside of the specification limits is then calculated as the "rejection ratio." From this rejection ratio, the fixed labor cost, and the summation of the parts cost, the total cost is calculated. A printout is then made so that the user can follow the steps that the computer makes. Following this, some method must be employed to determine if cost is a minimum. If it is, then a final printout can be made. If it is not, then an option is shown as to how one wants to optimize. This can be accomplished by the user reading in another set of part numbers or the computer automatically can select a set in the manner described in Section 3.5 using the search matrix library. This procedure is repeated in an iterative manner until the optimum design is reached.

There are many associated details that are not shown in Figure 3.1. This diagram, however, gives the general outline of the procedure.

3.2 GENERATION OF OBJECT FUNCTIONS

The first question that must be answered in an optimization problem is, "What is to be optimized and what is optimum?" Often, this is not a trivial problem in itself since there are many separate and usually conflicting factors; i.e., minimum cost, maximum accuracy, small volume, best response, etc. These factors may be considered simultaneously by defining a scalar F of the form

$$
\begin{equation*}
F=\sum_{i=1}^{k} A_{i}\left(Y_{i}-D_{i}\right)^{2} \tag{3.1}
\end{equation*}
$$

where:

$$
\begin{aligned}
\mathrm{F}= & \text { object function to be minimized } \\
\mathrm{k}= & \text { number of desired properties } \\
\mathrm{A}_{\mathbf{i}}= & \text { weight factor selected to give the } i^{\text {th }} \\
& \text { property the desired priority } \\
\mathbf{Y}_{\mathbf{i}}= & \text { current value of } i^{\text {th }} \text { property } \\
\mathrm{D}_{\mathbf{i}}= & \text { desired value for } i^{\text {th }} \text { property }
\end{aligned}
$$

A serious difficulty inherent in this approach, however, consists in finding a set of weighting factors $A_{1}, A_{2}, \ldots, A_{k}$ such that scaling between the various terms is properly considered in order to maintain sensitivity and obtain good convergence. Considering

$$
1=
$$

properties such as accuracy, weight, cost and response, these weight selections often become subjective in nature.

It is proposed in this thesis that an entirely different object function shall be used. It is founded on the competitive philosophy that the manufacturer wants a design that fulfills the customer requirements at minimum overall cost. With this result, he can either maximize his chances of competing or if his sale price is "fixed" he maximizes his profits. Using this minimum cost philosophy, an appropriate object function can be generated in the following manner.

The total cost to build a given number of systems is represented by the equation

$$
\begin{align*}
& \text { Total } \tag{3.2}\\
& \text { Cost }
\end{aligned}=\begin{aligned}
& \text { Number } \\
& \text { Built }
\end{align*}\left[\begin{array}{l}
\text { Labor } \\
\text { Cost }
\end{array}+\sum \begin{array}{l}
\text { Component } \\
\text { Costs }
\end{array}\right]\left[\begin{array}{l}
\text { Overhead } \\
\text { Ratio }
\end{array}\right]
$$

However, the number that must be built for a given contract is given by

$$
\frac{\text { Number }}{\text { Built }}=\frac{\text { Number } \text { Required }}{\left[\begin{array}{ll}
\text { Rejection } \tag{3.3}\\
\text { Ratio }
\end{array}\right]}
$$

Thus, we have for the total cost

Since the number of required units and (1+overhead ratio) are product terms which are not functions of the components, one obtains the same cost minimizing set of components using the function

$$
\text { Cost }=\frac{\begin{array}{l}
\text { Labor } \tag{3.5}\\
\text { Cost }
\end{array}+\sum \begin{array}{l}
\text { Component } \\
\text { Costs }
\end{array}}{1-\begin{array}{l}
\text { Rejection } \\
\text { Ratio }
\end{array}}
$$

Equation (3.5) is the object function used in this thesis for what is defined later as "the fine search mode." When it is at a minimum, the desired optimum set of components has been defined. However, one problem may exist in the early portion of the iteration cycle. That is, the design can be so far away from specification that, for all practical purposes, the rejection ratio is unity, the denominator of (3.5) goes to zero, resulting in infinite cost. As long as this occurs, (3.5) has no practical value. In fact, one loses all sensitivity in calculating partials, and there is no way of telling if one design is better than another. For this reason, a "coarse search mode" is defined. Its corresponding object function is:

$$
\begin{equation*}
F=\sum_{i=1}^{k} A_{i} R_{i}\left(Y_{i}-S_{i}\right)^{2} \tag{3.6}
\end{equation*}
$$

where
$\mathrm{F}=$ object function to be minimized
$k=$ number of specifications to be met
$A_{i}=$ weight factor for $i^{\text {th }}$ specification
$R_{i}=$ rejection ratio for $i^{\text {th }}$ specification

$$
\begin{aligned}
Y_{i}= & \text { calculated system performance } 3 \text { sigma } \\
& \text { limit corresponding to } i^{\text {th }} \text { specification } \\
S_{i}= & i^{\text {th }} \text { specification limit }
\end{aligned}
$$

It should be further noted that

$$
\begin{aligned}
& Y_{i}=\bar{Y}_{i}-3 \sigma_{Y_{i}} \text { if } S_{i} \text { is a lower limit, and } \\
& Y_{i}=\bar{Y}_{i}+3 \sigma_{Y_{i}} \text { if } S_{i} \text { is an upper limit. }
\end{aligned}
$$

Since Equation (3.6) is used only in the coarse search mode, selection of the weight factors is not too critical. For this study, A_{i} was set at $1 / S_{i}{ }^{2}$ except for the case when S_{i} equals zero and then A_{i} was arbitrarily set equal to unity.

In the coarse search mode, cost is neglected in an attempt to determine the performance such that the rejection ratio becomes less than unity. The incorporation of the R_{i} term in (3.6) greatly aids in the accomplishment of this condition. First it nulls each term in the summation which represents an overdesigned condition (i.e. $\mathrm{R}_{\mathrm{i}}=0$) and secondly it applies a. linearily increasing weight on the others according to their significance.

Once each of the R_{i} 's is driven less than unity, the cost becomes finite, and the optimization process is switched from the coarse to the fine search where (3.5) is used as the object function.

3.3 CALCULATION OF REJECTION RATIO

Let s_{1}, \cdots, s_{k} be the k specification limits for a given design, e.g., static accuracy, overshoot, etc. There corresponds
1
then, k random variables Y_{1}, \cdots, Y_{k} that represent the actual performance to be expected. Since these are a function of the n component equations, one can write as before that

$$
\left[\begin{array}{c}
Y_{1} \tag{3.7}\\
Y_{2} \\
\vdots \\
Y_{k}
\end{array}\right]=\left[\begin{array}{l}
F_{1}\left(x_{1}, \cdots, x_{n}\right) \\
F_{2}\left(x_{1}, \cdots, x_{n}\right) \\
\vdots \\
F_{k}\left(x_{1}, \cdots, x_{n}\right)
\end{array}\right]
$$

Looking at small perturbations

$$
\left[\begin{array}{c}
\Delta Y_{1} \tag{3.8}\\
\Delta Y_{2} \\
\vdots \\
\Delta Y_{k}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
& & & \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{k 1} & a_{k 2} & \cdots & a_{k n}
\end{array}\right] \quad\left[\begin{array}{c}
\Delta X_{1} \\
\Delta X_{2} \\
\vdots \\
\Delta X_{n}
\end{array}\right]
$$

where the $k \times n$ matrix has the general element $a_{i j}=\frac{\partial Y_{i}}{\partial X_{j}}$ and it therefore is identical to the Jacobian matrix (J) as defined in (2.23).

The joint density of the Y's is given by:

$$
\begin{equation*}
f_{Y_{1}}, Y_{2}, \cdots{ }_{Y_{k}}\left(y_{1}, y_{2}, \cdots y_{k}\right)=\frac{\left.e^{-\left[(Y-\bar{Y}) M_{Y}\right.}{ }^{-1}(Y-\bar{Y})^{T}\right]}{(2 \pi)^{k / 2} \sqrt{\left|M_{Y}\right|}} \tag{3.9}
\end{equation*}
$$

where:

$$
(Y-\bar{Y})=\left[\left(y_{1}-\bar{y}_{1}\right),\left(y_{2}-\bar{y}_{2}\right), \cdots,\left(y_{k}-\bar{y}_{k}\right)\right]
$$

and the $(k \times k)$ covariance matrix M_{Y} is

$$
\begin{equation*}
M_{Y}=J M_{X} J^{T} \tag{3.10}
\end{equation*}
$$

Since the component performance parameters are assumed independent and $\sigma_{X_{i}}=0$ if X_{i} is a component cost, one can write the component covariance matrix M_{X} as

$$
M_{x}=\left[\begin{array}{cccc}
\sigma_{x_{1}}{ }^{2} & 0 & \cdots & 0 \tag{3.11}\\
0 & \sigma_{x_{2}}{ }^{2} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & \sigma_{x_{n}}{ }^{2}
\end{array}\right]
$$

Since the total rejection ratio R is the probability of a design falling outside of the specification, and assuming that the specification limits are constant, it is given by
$R=1-\int_{L_{11}}^{L_{12}} \int_{L_{21}}^{L_{22}} \cdots \int_{L_{k 1}}^{L_{k 2}} f_{Y_{1}}, Y_{2}, \cdots,{ }_{Y_{k}}\left(y_{1}, y_{2}, \cdots, y_{k}\right) d y_{1} d y_{2} \cdots d y_{k}$
where:

$$
\begin{aligned}
& \left\{\begin{array}{l}
L_{i 1}=-\infty \\
L_{i 2}=S_{i}
\end{array}\right\} \quad \text { for the } i^{\text {th }} \text { specification an upper bound } \\
& \left\{\begin{array}{ll}
L_{i 1}=S_{i} \\
L_{i 2}=\infty
\end{array}\right\} \quad \text { for the } i^{\text {th }} \text { specification a lower bound }
\end{aligned}
$$

and

$$
f_{Y_{1}}, Y_{2}, \cdots, Y_{k}\left(y_{1}, y_{2}, \cdots, y_{k}\right) \text { is given by (3.9). }
$$

In order to evaluate R using (3.12), one must evaluate the multiple integral of dimension k where $k=8$ for the example in this study. This can be accomplished using numerical techniques [28], and [29], however, the process is very time consuming. In the interest of minimizing computer time, three alternate procedures are considered.

First one could use the upper bound on R which is simply

$$
\begin{align*}
R(\text { upper bound }) & =\sum_{i=1}^{k} R_{i} \quad \text { if } \sum_{i=1}^{k} R_{i}<1 \\
& =1 \quad \text { otherwise } \tag{3.13}
\end{align*}
$$

where R_{i} is the individual rejection ratio corresponding to the $i^{\text {th }}$ specification and is calculated as

$$
\begin{equation*}
R_{i}=1-\frac{1}{\sqrt{2 \pi \sigma_{Y_{i}^{2}}}} \int_{L_{i 1}}^{L_{i 2}} e^{-\frac{1}{2}\left(\frac{{ }^{y-\mu_{Y_{i}}}}{\sigma_{Y_{i}}}\right)^{2}} d y \tag{3.14}
\end{equation*}
$$

where the limits of the integral are as defined for (3.12).
Equation (3.14) can be evaluated by using the standard error function

$$
\begin{equation*}
\operatorname{ERF}(z)=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-u^{2}} d u \tag{3.15}
\end{equation*}
$$

for the upper limit case

$$
\begin{align*}
R_{i} & =0.5\left[1-\operatorname{ERF}\left(\frac{S_{i}-\mu_{Y_{i}}}{\sqrt{2} \sigma_{Y_{i}}}\right)\right] \quad \text { for } S_{i} \geq{ }^{\mu_{Y_{i}}} \\
& =0.5\left[1+\operatorname{ERF}\left(\frac{{ }^{\mu} Y_{i}{ }^{-S_{i}}}{\sqrt{2} \sigma_{Y_{i}}}\right)\right] \quad \text { for } \quad S_{i}<{ }^{\mu_{Y_{i}}} \tag{3.16}
\end{align*}
$$

and for the lower limit case

$$
\begin{align*}
R_{i} & =0.5\left[1+\operatorname{ERF}\left(\frac{s_{i}-\mu_{Y_{i}}}{\sqrt{2} \sigma_{Y_{i}}}\right)\right] \quad \text { for } \quad S_{i} \geq{ }_{Y_{Y_{i}}} \\
& =0.5\left[1-\operatorname{ERF}\left(\frac{{ }_{Y_{i}}-S_{i}}{\sqrt{2} \sigma_{Y_{i}}}\right)\right] \quad \text { for } \quad S_{i}<\mu_{Y_{i}} \tag{3.17}
\end{align*}
$$

A second possibility for approximating the total rejection ratio R is to use the lower bound given by

$$
\begin{equation*}
R(\text { lower bound })=R_{j} \tag{3.18}
\end{equation*}
$$

where:

$$
R_{j} \leq R_{i} \quad \text { for all } \quad 1 \leq i \leq k
$$

Since (3.13) represents an overdesigned case and (3.18) an underdesigned case, it would be wise to have available an approximation that lies between these extremes. A quantity which has this property is

$$
\begin{equation*}
R(\text { independent })=1-\prod_{i=1}^{k}\left(1-R_{i}\right) \tag{3.19}
\end{equation*}
$$

which is equal to the true R for the case when the $Y^{\prime} s$ are independent.

For the example program, the user is given the opportunity of selecting either the R (upper bound) or R (independent) approximations. The R (lower bound), although readily available, is eliminated as a choice since it is never on the safe side.

One difficulty remains since (3.16) cannot be used to calculate the rejection ratio for the null oscillation specification. This specification that no null oscillation shall exist is converted by the computer to a specification limit on the actual backlash. This limit is not a constant but a random variable computed as described in Appendix A. Therefore, the rejection ratio must be computed by examing two frequency distributions, namely that of the allowable backlash and that of the actual backlash of the geartrain being considered. Thus a separate subroutine was written to calculate R_{6} the derivation of which is explained in the remainder of this section

For this derivation only, the random variable Y is used to represent the actual backlash and S the allowable backlash. Since both are assumed to be normally distributed their density functions are defined as

$$
\begin{align*}
& g_{1}(y)=\frac{1}{\sqrt{2 \pi \sigma_{Y}^{2}}} e^{-\frac{1}{2}\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)^{2}} \tag{3.20}\\
& g_{2}(s)=\frac{1}{\sqrt{2 \pi \sigma_{S}^{2}}} e^{-\frac{1}{2}\left(\frac{s-\mu_{S}}{\sigma_{S}}\right)^{2}}
\end{align*}
$$

and the corresponding rejection ratio is given by the probability that $Y>S$ as

$$
\begin{equation*}
R_{6}=P(Y>S)=\int_{-\infty}^{\infty} \int_{-\infty}^{y} g(y, s) d s d y \tag{3.22}
\end{equation*}
$$

and since Y and S are independent

$$
\begin{equation*}
g(y, s)=g_{1}(y) g_{2}(s) \tag{3.23}
\end{equation*}
$$

By using (3.23 in (3.22) and substituting in for $g_{1}(y)$ and $g_{2}(s)$ using (3.20) and (3.21), and simplifying, (3.22) can be written as

$$
\begin{equation*}
R_{6}=\frac{1}{\sqrt{2 \pi \sigma_{Y}^{2}}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)^{2}} \frac{1}{\sqrt{2 \pi \sigma_{S}^{2}}} \int_{-\infty}^{y} e^{-\frac{1}{2}\left(\frac{s-\mu_{S}}{\sigma_{S}}\right)^{2} d s d y} \tag{3.24}
\end{equation*}
$$

Letting

$$
\begin{equation*}
A(y)=\frac{1}{\sqrt{2 \pi \sigma_{S}^{2}}} \int_{-\infty}^{y} e^{-\frac{1}{2}\left(\frac{s-\mu_{S}}{\sigma_{S}}\right)^{2}} d s \tag{3.25}
\end{equation*}
$$

where $A(y)$ can be evaluated by using the standard error function as before, one obtains

$$
\begin{align*}
A(y) & =0.5\left[1+\operatorname{ERF}\left(\frac{y-\mu_{S}}{\sqrt{2} \sigma_{S}}\right)\right] \quad \text { for } y \geq \mu_{S} \\
& =0.5\left[1-\operatorname{ERF}\left(\frac{\mu_{S}-y}{\sqrt{2} \sigma_{S}}\right)\right] \quad \text { for } y<\mu_{S} \tag{3.26}
\end{align*}
$$

and since one is interested only in the region inside the 3 -sigma limits, R_{6} is evaluated as

$$
\begin{equation*}
R_{6}=\frac{1}{\sqrt{2 \pi \sigma_{Y}{ }^{2}}} \int_{\mathrm{YMIN}}^{Y M A X} A(y) e^{-\frac{\left(y-\mu_{Y}\right)^{2}}{2 \sigma_{Y}^{2}}} d y \tag{3.27}
\end{equation*}
$$

where $A(y)$ is evaluated using (3.26) and YMAX and YMIN are taken to be $\mu_{Y}+3 \sigma_{Y}$ and $\mu_{Y}-3 \sigma_{Y}$ respectively.

3.4 OBJECT FUNCTION DERIVATIVES

It is of necessity that the partial derivatives of the object function be calculated in the steepest ascent method of optimization. If these derivatives were somehow known for the direct search technique, it would be of advantage since one could then conduct exploratory moves in descending order of importance. In our case, it would be a major task to perturbate each of the component parameters again and calculate the resulting change in the object function to obtain the partial derivatives. It is shown, however, that these can be obtained directly from the Jacobian matrix which is already available from the tolerance calculations, namely, Equation (2.23). This is accomplished in the following manner as derived first for the fine search and then for the coarse search.

The object function used in fine search, Equation (3.5), can be written as

$$
\begin{equation*}
C(X)=[K+f(X)][1-R(X)]^{-1} \tag{3.28}
\end{equation*}
$$

where

$$
\begin{array}{ll}
X & =\text { component parameter vector }\left[X_{1}, X_{2}, \cdots, X_{n}\right] \\
C(X) & =\text { total system cost } \\
K & =\text { labor cost } \\
R(X) & =\text { rejection ratio } \\
f(X) & =\Sigma \text { component cost }
\end{array}
$$

Taking the partial derivative of C with respect to X_{i}

$$
\begin{equation*}
\frac{\partial C}{\partial X_{i}}=\frac{\partial f(X)}{\partial X_{i}}(1-R(X))^{-1}+(K+f(X))(1-R(X))^{-2} \frac{\partial R}{\partial X_{i}} \tag{3.29}
\end{equation*}
$$

and expanding to include all X_{i}

$$
\begin{align*}
& {\left[\frac{\partial C}{\partial X_{1}}, \frac{\partial C}{\partial X_{2}}, \cdots, \frac{\partial C}{\partial X_{n}}\right]=\frac{1}{1-R(X)}\left[\frac{\partial f}{\partial X_{1}}, \frac{\partial f}{\partial X_{2}}, \cdots, \frac{\partial f}{\partial X_{n}}\right]} \\
& \quad+\frac{K+f(X)}{(1-R(X))^{2}}\left[\frac{\partial R}{\partial X_{1}}, \frac{\partial R}{\partial X_{2}}, \cdots, \frac{\partial R}{\partial X_{n}}\right] \tag{3.30}
\end{align*}
$$

The latter vector ($\partial R / \partial X$) can be obtained by making use of the Jacobian defined by (2.23). Thus

$$
\left[\frac{\partial R}{\partial X_{1}}, \frac{\partial R}{\partial X_{2}}, \cdots, \frac{\partial R}{\partial X_{n}}\right]=\left[\frac{\partial R}{\partial Y_{1}}, \frac{\partial R}{\partial Y_{2}}, \cdots, \frac{\partial R}{\partial Y_{k}}\right]\left[\begin{array}{cc}
\frac{\partial Y_{1}}{\partial X_{1}} \cdots & \frac{\partial Y_{1}}{\partial X_{n}} \tag{3.31}\\
\vdots & \vdots \\
\frac{\partial Y_{k}}{\partial X_{1}} \cdots & \frac{\partial Y_{k}}{\partial X_{n}}
\end{array}\right]
$$

Substituting (3.31) into (3.30) one obtains the desired matrix equation for the fine search cost derivative vector as

$$
\begin{align*}
& {\left[\frac{\partial C}{\partial X_{1}}, \frac{\partial C}{\partial X_{2}}, \cdots, \frac{\partial C}{\partial X_{n}}\right]=\frac{1}{1-R(X)}\left[\frac{\partial f}{\partial X_{1}}, \frac{\partial f}{\partial X_{2}}, \cdots, \frac{\partial f}{\partial X_{k}}\right]} \\
& \quad+\frac{K+f(X)}{(1-R(X))^{2}}\left[\frac{\partial R}{\partial Y_{1}}, \frac{\partial R}{\partial Y_{2}}, \cdots, \frac{\partial R}{\partial Y_{k}}\right]\left[\begin{array}{cc}
\frac{\partial Y_{1}}{\partial X_{1}} \cdots \frac{\partial Y_{1}}{\partial X_{n}} \\
\vdots \\
\vdots \\
\frac{\partial Y_{k}}{\partial X_{1}} \cdots \frac{\partial Y_{k}}{\partial X_{n}}
\end{array}\right] \tag{3.32}
\end{align*}
$$

where:

$$
\frac{\partial f}{\partial X_{i}}= \begin{cases}1 & \text { if } X_{i} \text { is a component cost } \tag{3.33}\\ 0 & \text { otherwise }\end{cases}
$$

and the vector

$$
\frac{\partial R}{\partial Y_{1}}, \frac{\partial R}{\partial Y_{2}}, \cdots, \frac{\partial R}{Y_{k}}
$$

is referred to as the "rejection ratio derivative vector" and given the notation $\partial R / \partial Y$.

The calculation of the $\partial R / \partial Y$ vector, as required for the fine search mode, depends on the particular equation used in approximating the rejection ratio R [i.e., (3.13) or (3.19)]. Consider first the case where R is approximated by the upper bound. Since in the fine search mode

$$
\sum_{i=1}^{k} R_{i}<1
$$

one has

$$
\begin{equation*}
R(\text { upper bound })=R_{1}+R_{2}+\cdots+R_{k} \tag{3.34}
\end{equation*}
$$

and since R_{j} is a function of Y_{i} only for $i=j$

$$
\begin{equation*}
\frac{\partial R \text { (upper bound) }}{\partial Y_{i}}=\frac{\partial R_{i}}{\partial Y_{i}} \text { for } i=1,2, \ldots, k \tag{3.35}
\end{equation*}
$$

and only the partials of the individual rejection ratios are required. This is also shown to be the case when R is approximated by using the case where the Y 's are assumed independent as given by

$$
\begin{equation*}
R(\text { independent })=1-\left(1-R_{1}\right)\left(1-R_{2}\right) \cdots\left(1-R_{k}\right) \tag{3.36}
\end{equation*}
$$

Again using the fact that R_{i} is only a function of Y_{i}, one obtains

$$
\begin{equation*}
\frac{\partial R(\text { independent })}{\partial Y_{i}}=\frac{\partial R_{i}}{\partial Y_{i}} \prod_{\substack{j=1 \\ j \neq i}}^{k}\left(1-R_{j}\right) \tag{3.37}
\end{equation*}
$$

The task remaining, then, is to obtain expressions for $\partial R_{i} / \partial Y_{i}$.

For the case where the specification limit is a constant, the magnitude of $\partial R_{i} / \partial Y_{i}$ is given by the Y_{i} density function evaluated at the point $y_{i}=S_{i}$ and the sign of $\partial R_{i} / \partial Y_{i}$ depends on whether S_{i} is an upper or a lower bound. That is

$$
\begin{equation*}
\frac{\partial R_{i}}{\partial Y_{i}}=\frac{ \pm 1}{\sqrt{2 \pi \sigma_{Y}^{2}}} e^{-\frac{1}{2}\left[\frac{S_{i}-\mu_{Y_{i}}}{\sigma_{Y_{i}}}\right]^{2}} \tag{3.38}
\end{equation*}
$$

where

$$
\begin{aligned}
S_{i} & =i^{\text {th }} \text { specification limit } \\
{ }^{\mu_{Y_{i}}} & =\text { mean value of } Y_{i} \text { distribution } \\
\sigma_{Y_{i}} & =\text { standard deviation of } Y_{i} \text { distribution }
\end{aligned}
$$

and the + sign is taken if S_{i} is an upper limit and the - sign is taken if S_{i} is a lower limit.

For the case where the specification limit is not a constant but a random variable (e.g., S_{6}), the corresponding equation is

$$
\begin{equation*}
\frac{\partial R_{i}}{\partial Y_{i}}=\int_{-\infty}^{\infty} g_{1}(z) g_{2}(z) d z \tag{3.39}
\end{equation*}
$$

where the density functions $g_{1}(\cdot)$ and $g_{2}(\cdot)$ are defined by (3.20) and (3.21) respectively. The solution to (3.39) is approximated in the example design program by using numerical integration over the region from $\mu_{Y_{i}}{ }^{-3 \sigma_{Y_{i}}}$ to ${ }_{\mu_{Y_{i}}}{ }^{+3 \sigma_{Y_{i}}}$.

In summary, Equation (3.32) gives the required partial derivatives of cost with respect to each component parameter. The necessary elements of the rejection ratio derivative vector are obtained using either (3.35) or (3.37) and with the $\partial R_{i} / \partial Y_{i}$ entries furnished by either (3.38) or (3.39) as the requirements dictate. A similar development is presented now for the coarse search mode.

The object function used for coarse search is of the form [see (3.6)]

$$
F(X)=A_{1} R_{1}(X)\left[Y_{1}(X)-S_{1}\right]^{2}+A_{2} R_{2}(X)\left[Y_{2}(X)-S_{2}\right]^{2}+\cdots+A_{k} R_{k}(X)\left[Y_{k}(X)-S_{k}\right]^{2}
$$

where for the case of the example program the value used for S_{6} is taken to be its mean value.

Taking the partial derivative of F with respect to X_{1}

$$
\begin{align*}
\frac{\partial F}{\partial X_{1}} & =2 A_{1} R_{1}\left(Y_{1}-S_{1}\right) \frac{\partial Y_{1}}{\partial X_{1}}+A_{1}\left(Y_{1}-S_{1}\right)^{2} \frac{\partial R_{1}}{\partial X_{1}} \\
& +2 A_{2} R_{2}\left(Y_{2}-S_{2}\right) \frac{\partial Y_{2}}{\partial X_{1}}+A_{2}\left(Y_{2}-S_{2}\right)^{2} \frac{\partial R_{2}}{\partial X_{1}} \\
& +\cdots+2 A_{k} R_{k}\left(Y_{k}-S_{k}\right) \frac{\partial Y_{k}}{\partial X_{1}}+A_{k}\left(Y_{k}-S_{k}\right)^{2} \frac{\partial R_{k}}{\partial X_{1}} \tag{3.41}
\end{align*}
$$

Thus, in total vector form:

$$
\begin{align*}
& {\left[\frac{\partial F}{\partial X_{1}}, \frac{\partial F}{\partial X_{2}}, \cdots, \frac{\partial F}{\partial X_{n}}\right]=2\left[\begin{array}{c}
A_{1} R_{1}\left(Y_{1}-S_{1}\right) \\
A_{2} R_{2}\left(Y_{2}-S_{2}\right) \\
\vdots \\
A_{k} R_{k}\left(Y_{k}-S_{k}\right)
\end{array}\right]\left[\begin{array}{ccc}
\frac{\partial Y_{1}}{\partial X_{1}} & \frac{\partial Y_{1}}{\partial X_{2}} \cdots & \frac{\partial Y_{1}}{\partial X_{n}} \\
\frac{\partial Y_{2}}{\partial X_{1}} & \frac{\partial Y_{2}}{\partial X_{2}} \cdots & \frac{\partial Y_{2}}{\partial X_{n}} \\
\vdots & \vdots & \vdots \\
\frac{\partial Y_{k}}{\partial X_{1}} & \frac{\partial Y_{k}}{\partial X_{2}} & \frac{\partial Y_{k}}{\partial X_{n}}
\end{array}\right]} \\
& +\left[\begin{array}{c}
A_{1}\left(Y_{1}-S_{1}\right)^{2} \\
A_{2}\left(Y_{2}-S_{2}\right)^{2} \\
\vdots \\
A_{k}\left(Y_{k}-S_{k}\right)^{2}
\end{array}\right]^{T}\left[\begin{array}{ccc}
\frac{\partial R_{1}}{\partial X_{1}} & \frac{\partial R_{1}}{\partial X_{2}} & \frac{\partial R_{1}}{\partial X_{n}} \\
\frac{\partial R_{2}}{\partial X_{1}} & \frac{\partial R_{2}}{\partial X_{2}} & \frac{\partial R_{2}}{\partial X_{n}} \\
\vdots & \vdots & \vdots \\
\frac{\partial R_{k}}{\partial X_{1}} & \frac{\partial R_{k}}{\partial X_{2}} & \cdots \\
\frac{\partial R_{k}}{\partial X_{n}}
\end{array}\right] \tag{3.42}
\end{align*}
$$

Using the further relationship that:

$$
\left[\begin{array}{cccc}
\frac{\partial R_{1}}{\partial X_{1}} & \frac{\partial R_{1}}{\partial X_{2}} & \cdots & \frac{\partial R_{1}}{\partial X_{n}} \tag{3.43}\\
\frac{\partial R_{2}}{\partial X_{1}} & \frac{\partial R_{2}}{\partial X_{2}} & \cdots & \frac{\partial R_{2}}{\partial X_{n}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial R_{k}}{\partial X_{1}} & \frac{\partial R_{k}}{\partial X_{2}} & \cdots & \frac{\partial R_{k}}{\partial X_{n}}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{\partial R_{1}}{\partial Y_{1}} & \frac{\partial R_{1}}{\partial Y_{2}} \cdots & \frac{\partial R_{1}}{\partial Y_{k}} \\
\frac{\partial R_{2}}{\partial Y_{1}} & \frac{\partial R_{2}}{\partial Y_{2}} \cdots & \frac{\partial R_{2}}{\partial Y_{k}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial R_{k}}{\partial Y_{1}} & \frac{\partial R_{k}}{\partial Y_{2}} \cdots & \frac{\partial R_{k}}{\partial Y_{k}}
\end{array}\right]\left[\begin{array}{cccc}
\frac{\partial Y_{1}}{\partial X_{1}} & \frac{\partial X_{2}}{\partial X_{2}} & \cdots & \frac{\partial Y_{n}}{\partial X_{n}} \\
\frac{\partial Y_{2}}{\partial X_{1}} & \frac{\partial Y_{2}}{\partial X_{2}} \cdots & \frac{\partial Y_{2}}{\partial X_{n}} \\
\vdots & \vdots & \vdots \\
\frac{\partial Y_{k}}{\partial X_{1}} & \frac{\partial Y_{k}}{\partial X_{2}} \cdots & \frac{\partial Y_{k}}{\partial X_{n}}
\end{array}\right]
$$

and noting that $\frac{\partial R_{i}}{\partial Y_{j}}=0$ for all $i \neq j$, and substituting (3.43) into (3.42), one obtains

$$
\left[\frac{\partial F}{\partial X_{1}}, \frac{\partial F}{\partial X_{2}}, \cdots, \frac{\partial F}{\partial X_{n}}\right]=2\left[\begin{array}{c}
A_{1}\left(Y_{1}-S_{1}\right) R_{1}+\left(Y_{1}-S_{1}\right)^{2} \frac{\partial R_{1}}{\partial Y_{1}} \\
A_{2}\left(Y_{2}-S_{2}\right) R_{2}+\left(Y_{2}-S_{2}\right)^{2} \frac{\partial R_{2}}{\partial Y_{2}} \\
\vdots \\
A_{k}\left(Y_{k}-S_{k}\right) R_{k}+\left(Y_{k}-S_{k}\right)^{2} \frac{\partial R_{k}}{\partial Y_{k}}
\end{array}\right]^{T}\left[\begin{array}{ccc}
\frac{\partial Y_{1}}{\partial X_{1}} & \frac{\partial Y_{1}}{\partial X_{2}} \cdots \frac{\partial Y_{1}}{\partial X_{n}} \\
\frac{\partial Y_{2}}{\partial X_{1}} & \frac{\partial Y_{2}}{\partial X_{2}} \cdots \frac{\partial Y_{2}}{\partial X_{n}} \\
\vdots & \vdots & \vdots \\
\frac{\partial Y_{k}}{\partial X_{1}} & \frac{\partial Y_{k}}{\partial X_{2}} \cdots \frac{\partial Y_{k}}{\partial X_{n}}
\end{array}\right]
$$

Equation (3.44) gives the desired partial derivatives of the coarse search object function with respect to each component parameter in the system. Again, like (3.32), it is in terms of the already available Jacobian matrix and no further parameter perturbations are required.

3.5 DESIGN PROGRAM STRATEGY

The design program developed as part of this study has two basic operating options - analysis and directed search. When operating with the analysis option, the four component part numbers required for each analysis may be either read in from cards or selected at random by the program. In either case, as many consecutive runs are made as requested and a final printout is provided summarizing the best design obtained. Thus the engineer can make a rapid evaluation of a selected number of designs of his choosing, or, he can perform Monte Carlo runs by letting the computer select the part numbers at random.

With the directed search option, the computer program uses the object derivatives in connection with search matrices to direct the next component selection in an attempt to reduce the object function. This process is repeated in an iterative fashion until a local minimum is obtained. Since there is no guarantee that this condition is the absolute minimum, numerous starting points are employed and the one with the lowest cost is assumed to be the best design. The starting points for each search may be specified by the user or otherwise selected at random by the program.

The generation of the search matrices is a prerequisite to a directed search. A separate search matrix is used along with each component library and their generation automatically follows each library update. These matrices consist of an ordered array of the component part numbers defined by

$$
S_{i}=\left[\begin{array}{cccc}
s_{11} & s_{12} & \cdots & s_{1 \ell} \tag{3.45}\\
s_{21} & s_{22} & \cdots & s_{2 \ell} \\
\vdots & \vdots & & \vdots \\
s_{m 1} & s_{m 2} & \cdots & s_{m \ell}
\end{array}\right]
$$

where
$\begin{aligned} \ell= & \text { the number of parameters used to describe the } \\ & i^{\text {th }} \text { component }\end{aligned}$
$m=$ the number of part numbers for $i^{\text {th }}$ component stored in the library
$s_{n j}=a$ component part number for $1 \leq n \leq m$ and $1 \geq j \geq \ell$

Each column of S_{i} corresponds to a particular parameter of the $i^{\text {th }}$ component and the entries of that column consist of all the $i^{\text {th }}$ component part numbers arranged in ascending order of the mean value of that parameter. That is, let the $j^{\text {th }}$ column of S_{i} correspond to the $k^{\text {th }}$ component parameter of the X vector. Then $s_{1 j}$, $s_{2 j}, \cdots, s_{m j}$ are chosen such that

$$
\begin{equation*}
\overline{X_{k}\left(s_{1 j}\right)} \leq \overline{X_{k}\left(s_{2 j}\right)} \leq \overline{X_{k}\left(s_{3 j}\right)} \leq \cdots \leq \overline{X_{k}\left(s_{m j}\right)} \tag{3.46}
\end{equation*}
$$

where

$$
\begin{aligned}
\overline{X_{k}\left(S_{n} j\right)} & \text { signifies the mean value of the component parameter } \\
& X_{k} \text { for the part number stored in location } s_{n j}
\end{aligned}
$$

In order to explain the strategy used by the design program to conduct a search, the following definitions are established:

Thus a search is made up of many sub-searches and each of the latter are in turn made up of numerous exploratory moves. Each exploratory move consists of changing one component part number while keeping the others fixed at the base point. Once an exploratory move
results in "success," the move is defined as a new base point and a new sub-search is started. This process is repeated until all the exploratory moves of a sub-search are exhausted and no success is found. The base point for this last sub-search defines the local minimum.

The following ten steps describe the general pattern of the program's search strategy:

1) The object function being minimized is SCALAR [defined as F in Equation (3.6)] while in the coarse search mode and COST [Equation (3.5)] while in the fine search mode. The program is in the coarse search mode as long as the total rejection ratio [Equation (3.13) or (3.19)] is equal to unity, once less than unity the program switches to the fine search mode.
2) Each time a lower object function is found, the corresponding part numbers are stored as a new base point.
3) At each new base point, calculations are made to establish the object function derivative vector using Equation (3.44) for the coarse search mode and (3.32) for the fine search mode.
4) Priority and direction vectors are established as the bases for making exploratory moves. The priority vector (IPAR) consists of a re-ordering of the component parameter numbers (i.e., subscripts of the X parameter vector) such that

$$
\begin{equation*}
\left|\frac{\partial \text { object }}{\partial X_{\text {IPAR }_{1}}}\right| \geq\left|\frac{\partial \text { object }}{\partial X_{I P A R_{2}}}\right| \geq \cdots \geq\left|\frac{\partial \text { object }}{\partial X_{\text {IPAR }}^{m}}\right| \tag{3.47}
\end{equation*}
$$

where m, the dimension of IPAR, equals the number of component parameters excluding the load (e.g., with the vector defined in Table 2.5, $m=21$). The direction vector (IDEX) is defined by

Thus

$$
\begin{aligned}
\text { IDEX }_{\text {II }} & =+1 \text { if the } I^{\text {th }} \text { parameter should be increased } \\
& =-1 \text { if the } I^{\text {th }} \text { parameter should be decreased }
\end{aligned}
$$

in order to achieve a reduction in the object function.
5) A "sub-search progress number," denoted by the symbol II, is used by the program as the subscript for the IPAR and IDEX vectors. It is initialized equal to unity (i.e., II = l) at the beginning of each sub-search and incremented under program control as the sub-search progresses. As II is increased from 1 to m, IPAR $_{\text {II }}$ corresponds to the component parameter numbers having decreasing sensitivity values with respect to the object function. Likewise, IDEX $_{\text {IPAR }_{\text {II }}}$ corresponds to the desired direction the IPAR $_{\text {II }}$ parameter is to be changed.
6) Each exploratory move is initiated by calling a subroutine, named SEARCH, to select the new part number which is to be investigated. This is accomplished using the statement:

$$
\text { CALL SEARCH[IDEX } \left.{ }_{\text {IPAR }}^{\text {II }}, \text { IPAR }_{\text {II }}, I \mathrm{IPN}_{J J J}, I B O U N D\right]
$$

where

and for this example, the JJJ subscript is established from Table 2.5 as

$$
\begin{aligned}
\mathrm{JJ} & =1 \text { for } 1 \leq \mathrm{IPAR}_{\mathrm{II}} \leq 3 \\
& =2 \text { for } 4 \leq \mathrm{IPAR}_{\mathrm{II}} \leq 8 \\
& =3 \text { for } 9 \leq \mathrm{IPAR}_{\mathrm{II}} \leq 15 \\
& =4 \text { for } 16 \leq \mathrm{IPAR}_{\mathrm{II}} \leq 21
\end{aligned}
$$

The SEARCH subroutine takes the IPAR ${ }_{\text {II }}$ entry which corresponds to the subscript of the X vector and seeks the corresponding column of the appropriate search matrix. This column is then searched until the currently used part number is found $\left(I P N_{J J J}\right)$. Once this occurs the subroutine increments either down or up one location depending on whether IDEX is +1 or -1 and replaces the old part number with the new one found. If the old part number happens to be on a
boundary such that a new part number cannot be obtained, the subroutine sets IBOUND to 1 and returns with the old part number. If this occurs, no further minimization can be obtained considering the $I P A R_{\text {II }}$ parameter, therefore one returns the part numbers to the base point and increments to the next most significant parameter by increasing the sub-search progress number (II) by 1 and step 6 is repeated.
7) For each new component selected by SEARCH a library subroutine, named LIBR, is called to retrieve the corresponding parameter data. This is accomplished by the statement

$$
\text { CALL LIBR[IPN } \left.{ }_{\mathrm{JJJ}}, \mathrm{XMAX}, \mathrm{XMIN}\right]
$$

where

$$
\begin{aligned}
& \mathrm{IPN}_{\mathrm{JJJ}}= \text { part number for which data is desired } \\
& \mathrm{XMAX}= \text { a vector containing the mean }+3 \text { sigma values } \\
& \text { for the total } X \text { parameter vector } \\
& \mathrm{XMIN} \mathrm{=} \mathrm{a} \mathrm{vector} \mathrm{containing} \mathrm{the} \mathrm{mean}-3 \text { sigma values } \\
& \text { for the total } X \text { parameter vector }
\end{aligned}
$$

The LIBR subroutine takes the part number (IPN $_{J J J J}$) and searches the appropriate component library, stored off-line on magnetic disk, until the part number is located. Once located its associated parameter data is read back and inserted in the proper locations of the XMAX and XMIN vector. Thus by calling the LIBR subroutine with a part number, one is able to automatically update the 3 sigma limits for the X's corresponding to that part leaving the others unchanged.
8) After the new data is obtained for the exploratory move, the program checks for the existence of two conditions before the system performance is evaluated. The first is used to control the extent that the program explores changes based on a given parameter before it moves on to the next parameter. This is accomplished by calculating a normalized distance (DIST) according to

$$
\begin{align*}
& \text { DIST }=\frac{\operatorname{XMIN}_{i}}{\operatorname{XMAXS}_{i}} \text { for IDEX }{ }_{i}>0 \\
&=\frac{\operatorname{XMINS}_{i}}{\operatorname{XMAX}_{i}} \text { for IDEX } \tag{3.49}\\
& i
\end{align*}
$$

where $i=$ IPAR $_{\text {II }}$
XMAXS $=$ a vector containing the mean +3 sigma values for the total X parameter vector for the base point. XMINS $=$ a vector containing the mean -3 sigma values for the total X parameter vector for the base point.

This normalized distance is then compared to a program input parameter XNN. For XNN >1, one is assured that the $X_{I P A R}^{I I}$ random variable has been varied so that its frequency distribution inside the 3 sigma limits lies outside the distribution for the corresponding base point parameter. Thus by selecting the value of XNN , the program user can control the extent to which exploratory moves are made. A value of $\mathrm{XNN}=1.5$ was found to give satisfactory results
and is used for the examples presented in this thesis. By making XNN larger one explores more possibilities at the expense of increased computer time. Thus for DIST > XNN the program returns the part numbers to the base point, increments to the next most significant parameter by incrementing the sub-search progress number by 1 , and returns to step 6 above by calling SEARCH. If DIST < XNN, the program continues to make the second check.

This second check consists of calculating the estimated change in the object function based on its first derivative vector using the equation

$$
\begin{equation*}
\text { sobject }=\sum_{i=1}^{m} \frac{\partial \text { object }^{\partial X_{i}}}{\left[\text { XNOM }_{i}-\text { XNOMS }_{i}\right]} \tag{3.50}
\end{equation*}
$$

where $X N O M$ and $X N O M S$ are the mean component parameter vectors corresponding respectively to the exploratory part number vector and the base point part number vector. Since the $i=I P A R_{I I}$ term in (3.50) is negative, one knows that if Δ object turns out to be positive, the summation of the changes caused by the parameters in $I^{2} N_{J J J}$ other than $I P A R_{\text {II }}$ have resulted in an estimated increase in the object function. Since an increase in Δ object is undesirable, one returns to step 6 above, when Δ object >0 and calls SEARCH keeping the same sub-search progress number (II). If Δ object ≤ 0, a complete system performance analysis is made using the exploratory move part numbers.
9) If the exploratory move turns out to be "a success" (i.e., the object function is reduced) one returns to step 2 above and the process is repeated. If it is "a failure" (i.e., the object function is not reduced) one returns to step 6 and the next exploratory move is investigated.
10) The optimization procedure terminates once all the exploratory moves made from a given base point are completed "without success." This base point defines the local minimum.

Figure 3.2 is a simplified logic flow diagram for the total design program. For simplicity sake, only the logic fundamental to the directed search option is included. The path used to update the component libraries, and to calculate and store the search matrices is shown by the single dashed line. The linkage between the design program and the component and search matrix libraries via the above subroutines is illustrated with the double dashed lines.

In order to describe the operation of the program, the following additional program logic variables must be defined:

MODE $=1$ for the first analysis using the initial part numbers for each search
$=2$ for all following analyses in coarse search mode
$=3$ for all following analyses in fine search mode
$=4$ for final analysis of each search
ICOUNT $=$ number of analyses that have been conducted as part of each search

ISER = search number

Figure 3.2. Design program simplified logic diagram.

NUMRUN = specified number of searches to be made in an attempt to find the best design

IMAX = a maximum allowable iterations per search

A design begins by the user inputting the system specifications, labor cost, and the required program logic after which the program initializes numerous parameters as shown in Figure 3.2. The program then branches according to whether the input is to be from cards or selected at random. Once the part numbers are obtained, the program is at point 20 and the desired component data is retrieved from the component library using the LIBR subroutine. Since MODE was initialized $=1$, the program branches to point 200 and the system performance is calculated, the component parameters are then perturbated one at a time, and the system performance is re-evaluated. This process is repeated, using the steps described in Section 2.4, until all the entries in the Jacobian have been calculated after which the program calculates the rejection ratio, scalar, and cost (providing the later is finite).

At this point, a decision is reached whether or not to make an intermediate printout. In either event, ICOUNT is incremented by 1 and a check is made to see if it equals the maximum allowable value. Assuming the answer to be no, the program goes to the mode direction block. Since MODE $=1$, it branches to point 1 and sets MODE $=2$ (coarse search), branches to 41 and checks to see if the rejection percentage is less than 100. Assuming the answer to be no, the program stays in the coarse search mode, sets OBJECT = SCALAR and compares OBJECT to SAVE. If OBJECT < SAVE, as it is the first
time and thereafter anytime a lower object has been found, the last analysis is considered to be "a success" and the program branches to point 54 in order to store the data as a new 'base point." For the cases when OBJECT > SAVE, the last analysis is considered to be "a failure" and the program continues on with the search using the old base point via point 58.

At point 54, the new base point is established by storing the part numbers in a vector named IPS, the object function as SAVE, and the mean ± 3 sigma component parameter vectors as vectors XMAXS and XMINS respectively.

Following the establishment of each new base point, the elements of the $\frac{d R}{d Y}$ vector are calculated using (3.35) or (3.37) along with the object derivative vector which in the coarse search mode equals the scalar derivative given by (3.44). The priority and direction vectors IPAR and IDEX are then established as defined by (3.47) and (3.48). After this, the sub-search progress number (II) is initialized to unity and the program is at point 57 of Figure 3.2 ready to begin a sub-search by making exploratory moves to look for a smaller object function.

At point 57, the program checks to see if ∂ object $/ \partial X_{I P A R}^{I I}=0$. If it is zero for a given progress number II, the program declares the base point to be a local minimum. This is accomplished by branching to point 63 , setting MODE $=4$ and returning to point 20 to terminate this search by repeating the best run obtained.

Consider now the case where for any given progress number II, the derivative is not zero. The program branches to point 58 and the SEARCH subroutine is called to select a new part number. Upon return from SEARCH the parameter IBOUND is examined to determine if one is at a boundary condition. If the answer is yes, no further minimization can be obtained considering the IPAR $_{\text {II }}$ parameter, therefore the program branches to point 59, returns the part numbers to the base point and increments to the next most significant parameter by increasing the progress number II by 1 . If II is then greater than 21 , the program has exhausted all possible parameters and therefore branches to 63 declaring the base point as the local minimum and terminates the search. If II ≤ 21, the program returns to point 57 and the exploratory moves are continued with the next least significant parameter.

Returning to point 40 and assuming that the new part number selected by the SEARCH subroutine is not on a boundary, the program branches to point 20 and the new component data is retrieved from the library and the program branches to point 64.

At point 64, the program strategy checks for the existence of two conditions before an analysis is made. The first is to compute DIST as given by (3.49) and compare it to the program input parameter XNN. If DIST > XNN, the program branches to point 59, the part numbers are returned to the base point and the sub-search progress number is incremented to explore based on the next parameter. If DIST < XNN, the program branches to point 67 for the second check by calculating Δ object (3.50). If $\Delta o b j e c t \leq 0$, the program branches
to point 200 and an analysis is made, while if it is not, it branches to 58 and the SEARCH subroutine is called to make another part number selection.

The above described coarse search procedure is repeated until R becomes less than 100% at which time the program branches to point 32 and sets $M O D E=3$ (for fine search) and OBJECT = COST and continues on as before at point 54, the only difference being that the object derivative vector is taken as the cost derivative (3.32).

The program continues in the fine search mode until either the object derivative is equal to zero or all m parameters (this case $m=21$) have been considered and the search is terminated via point 63. Execution of this termination is obtained by setting MODE $=4$ and repeating the system analysis using the part numbers resulting in the lowest cost for this search (i.e., the base point), the latter being defined as a local minimum.

Since this time MODE $=4$, the program branches to point 43 and ISER is compared to NUMRUN. As long as the number of searches is less than the number requested, the program branches to point 73 where the cost is compared to the best local minimum. If the new cost is less, the vector IPBEST is updated with the new part numbers and BEST is updated with the corresponding cost. In any event, ISER is incremented by 1 and a new search is started. This process is repeated until ISER $=$ NUMRUN whereupon the vector IPN is set equal to IPBEST and the analysis is repeated for the best local minimum. Upon exiting at point 43 (ISER > NUMRUN), the final printout is obtained at point 36 . The results obtained using the above described program are described in the next section.

4. EXAMPLE DESIGN PROBLEMS

Abstract

4.1 COMPONENT LIBRARIES AND SEARCH MATRICES

The components selected to make up the libraries for this study, chosen so as to provide a broad base of design, are typical of those used throughout the serwomechanism industry. The actual component parameter values used are listed in Tables 4.1 through 4.4 which consist of the "component libraries." Referring to these tables, the design problem is simply explained as "picking the one part from each table such that when combined in a system, they meet a given specification at minimum dollar cost."

Each column of the library data is labeled with the appropriate X-vector notation; i.e., $X_{1}, X_{2}, \ldots, X_{21}$ each of which is assumed to be a random variable with a normal distribution defined for each component by the mean ± 3 sigma limits given by the MAX and MIN values shown. The variables X_{i} for $i=1,4,9,16$, and 21 , which are the individual component costs and the gear ratio and have no manufacturing tolerance, are still treated as "random variables" but having zero variance; i.e., $X_{M A X}^{i}=X M I N_{i}$. It should be noted that many of the numerical units of measure for the variables are purposely included as an inconsistent set (e.g., min of arc, rpm, oz-in, $\mathrm{gm}_{\mathrm{cm}}{ }^{2}$, etc.). This is done to place them in one-to-one correspondence with what is normally given in vendor catalogs and component specification sheets.

Table 4.1. Followup library data.

	X VECTOR NOTATION				
	X_{1}	X_{2}		X_{3}	
PART NO.	$\begin{aligned} & \text { COST } \\ & \text { DOLLARS } \end{aligned}$	FOLLOWUP GAIN (VOLTS/RAD) MAX. \qquad		ACCURACY (MIN OF ARC) MAX MIN	
1001	300.00	23.600C	21.4000	1.0	0.0
1002	24.00	12.700C	10.3000	10.0	0.0
1003	35.00	24.80CC	2 C .2000	7.0	0.0
1004	200.00	0.5050	0.495 C	30.0	0.0
1005	600.00	0.5025	0.4975	10.0	0.0
1006	28.00	24.8000	20.2000	15.0	0.0
1007	40.00	12.100C	10.9000	3.0	0.0
1008	36.00	12.100 C	10.9000	7.0	0.0
1009	22.00	12.7000	10.3000	15.0	0.0
1010	30.00	0.5050	0.4950	120.0	0.0
1011	95.00	11.7000	11.3000	2.0	0.0
1012	90.00	0.5050	0.4950	60.0	0.0
1013	300.00	0.5050	0.4950	15.0	0.0
1014	60.00	24.850C	20.2000	3.0	0.0
1015	16.00	12.7c0C	10.3000	30.0	0.0
1016	30.00	25.9000	19.1000	10.0	0.0
1017	260.00	11.7000	11.3000	1.0	0.0
1018	150.00	23.6000	21.4000	2.0	0.0
1019	20.00	27.0000	18.0000	30.0	0.0
1020	28.00	0.515 C	0.5050	180.0	0.0
1021	26.00	5.5000	4.5000	10.0	0.0
1022	30.00	5.25 CO	4.7500	5.0	C. 0
1023	20.00	5.5000	4.5000	15.0	0.0
1024	28.00	5.2500	4.7500	7.0	0.0
1025	18.00	5.5000	4.5000	30.0	0.0

Table 4.2. Amplifier library data.

	X VECTOR NOTATION								
	X_{4}	X_{5}		X_{6}		X_{7}		X_{8}	
PART NO.	$\begin{gathered} \cos \\ \text { ODLLARS } \end{gathered}$	AMPLIFIF TLI FOLLO (VOLTS) MAX.	$\begin{aligned} & \text { R GAIN } \\ & \text { WUP } \\ & \text { VGLTI } \\ & \text { MIN. } \\ & \hline \end{aligned}$	$\begin{gathered} \text { AMPLIf I } \\ \text { TO GENE } \\ \text { IVOL TS } \\ \text { MAX. } \end{gathered}$	$\begin{aligned} & \text { R CAIN } \\ & \text { AIIR } \\ & \text { VOLII } \\ & \text { MINO } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SAT © } \\ & \text { I VOL T } \\ & \text { MAX. } \\ & \hline \end{aligned}$	EVEL MIN.	$\begin{gathered} \text { OUTPU } \\ \text { IVOL } \\ \text { MAX. } \end{gathered}$	NULL N_{2}
2001	20.00	12.	8.	12.	8.	20.0	16.0	1.00	0.0
2002	75.00	55.	45.	110.	90.	25.0	17.0	0.50	0.0
2003	85.00	1150.	850.	1150.	850.	78.0	20.0	2.00	0.0
2004	200.00	55.	45.	11000	9000.	28.0	20.0	3.00	0.0
2005	140.00	11.	9.	1100.	900.	25.0	17.0	1.00	0.0
2006	250.00	105.	95.	10500.	9500.	28.0	20.0	2.00	0.0
2007	170.00	5250.	4750.	10.	9.	26.0	18.0	1.00	0.0
2008	107.00	550.	450.	55.	45.	25.0	17.0	1.00	0.0
2009	220.00	5500.	4500.	11000.	9000.	28.0	24.0	2.00	0.0
2010	150.00	11500.	8500.	575.	425.	2月.0	20.0	?. 00	0.0
2011	160.00	55.	45.	5500.	4500.	26.0	18.0	1.00	0.0
2012	90.00	105.	95.	53.	48.	25.0	17.0	1.00	0.0
2013	185.00	1050.	950.	5250.	4750.	28.0	20.0	1.00	0.0
2.014	180.00	105.	95.	5250.	4750.	26.0	20.0	2.00	0.0
2015	50.00	55.	45.	11.	9.	23.0	17.0	2.00	0.0
2016	75.00	11.	9.	110	90.	23.0	17.0	0.50	0.0
2017	175.00	5500.	4500.	110.	90.	28.0	20.0	1.00	0.0
2018	220.00	1100	900.	11000.	9300.	28.0	24.0	2.00	0.0
2019	180.00	11000.	9000.	11.	9.	26.0	18.0	1.00	0.0
2029	170.00	11000.	9000.	1100.	900.	28.0	24.0	2.00	0.0
2021 2022	200.00 170.00	550. 1050.	450. 950.	11000. 105.	9000. 95.	28.0 76.0	20.0 18.0	3.00 1.00	0.0 0.0
2023	250.00	10.	9.	10500.	9500.	26.0	18.0	?.00	0.0
2024	60.00	110.	90.	11.	9.	23.0	17.0	2.00	0.0
2025	180.00	525.	475.	525.	475.	26.0	18.0	1.00	0.0
2026	142.00	55.	45.	1100.	900.	76.0	18.0	1.00	0.0
2027	170.nc	5500.	4500.	550.	450.	78.0	20.0	1.00	0.0
2028	130.00	1100.	900.	55.	45.	26.0	18.0	1.00	0.0
2029	170.00	550.	450.	5500.	4500.	28.0	20.0	2.00	0.0
2030	170.00	11000.	9000.	5500.	4500.	78.0	24.0	3.00	0.0
2031	185.00	11000	9000.	53.	45.	2R. 0	20.0	1.00	0.0
2032	130.00	110.	90.	1100.	900.	26.0	18.0	2.00	0.0
2033	165.00	5500.	4500.	1100.	900.	28.0	20.0	2.00	0.0
2034	70.00	53.	48.	53.	48.	23.0	17.0	2.00	0.0
2035	130.00	53.	48.	525.	5.	25.0	17.0	1.00	0.0
2036	165.00	5500.	4500.	55.	45.	26.0	18.0	1.00	0.0
2037	110.00	550.	450.	1100.	900.	28.0	20.0	3.00	0.0
2038	105.00	550.	450.	11.	9.	25.0	17.0	1.00	0.0
2039	160.00	11.	9.	5500.	4500.	26.0	18.0	3.00	0.0
2040	110.00	550.	450.	110.	90.	26.9	18.0	1.00	0.0
2041	170.00	5500.	4500.	5500.	4500.	28.0	24.0	1.00	0.0
2042	160.00	11000.	9000 .	110.	90.	28.0	20.0	2.00	0.0
2043	85.00	11.	8.	575.	425.	25.0	17.0	2.00	0.0
2044	100.0n	110.	90.	550.	450.	26.0	18.0	2.00	0.0
2045	160.00	1050.	950.	10.	9.	25.0	17.0	1.00	0.0
21746	70.00	110.	90.	110.	90.	25.0	17.0	1.00	0.0
2047	30.00	12.	$8{ }^{8 .}$	60.	40.	23.0	17.0	1.00	0.0
2049	130.00	1100	900.	550.	450.	28.0	20.0	2.00	0.0
2049 2050	300.00 250.00	10500. 306.	9500.	10500. 306.	9500.	32.0 26.0	24.0 20.0	?. .00 $? .00$	0.0 0.0

Table 4.3. Motor-generator library data.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \multicolumn{11}{|l|}{x VECtor notation} \& \\
\hline \& \(\mathrm{x}_{9}\) \& \(\mathrm{x}_{10}\) \& \(\mathrm{x}_{11}\) \& \& \& \(\mathrm{x}_{1}\) \& \& \& \(\mathrm{X}_{14}\) \& \& \(\mathrm{X}_{15}\) \& \\
\hline P4RT NO. \& \[
\begin{array}{c|c|}
\hline \operatorname{cosT} \\
\operatorname{DOLLARS}
\end{array}
\] \& \[
\begin{gathered}
\text { STALL-TCRGUE } \\
\text { COUNCEEINCHES } \\
\text { MAX. } \\
\hline
\end{gathered}
\] \& \[
\begin{array}{|l|}
\hline \text { NC-LOAC SPEEU } \\
\text { RAEV/KIN) } \\
\text { NAX. } \\
\hline
\end{array}
\] \& \({ }_{\text {ckich }}^{164}\) \& \[
\begin{aligned}
\& T 1 A \\
\& M S O R I \\
\& M I N \\
\& \hline
\end{aligned}
\] \& \& \[
\begin{aligned}
\& \mathrm{vant} \\
\& \mathrm{TSOL} \\
\& \text { MiN. }
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 70 R \text { GAIN } \\
\& 00 \text { RPM, } \\
\& \text { MIN. }
\end{aligned}
\] \& \[
\begin{gathered}
G \in \operatorname{NER} \\
\text { MIL } \\
M A X
\end{gathered}
\] \& \& \[
\begin{aligned}
\& \text { CONTROL } \\
\& \text { VATAGE } \\
\& \text { (RATEDI }
\end{aligned}
\] \\
\hline 3301 \& 4 \& C.13ne j.1Jce \& 157 CO .143 CC. \& \(0.1{ }^{1}\) \& \(0 \cdot 88 \mathrm{C}\) \& 0.80 \& 0.40 \& \(0 \cdot 0\) \& C.C \& \& \(0 \cdot \mathrm{C}\) \& \({ }^{38.30}\) \\
\hline 33022 \& \(32.0 n\)
39.00 \& 0.2 ccc 0.1000 \& \({ }^{\text {ragac. }} 700 \mathrm{C}\). \& 1.330 \& 0.45c \& 2.50 \& 1.25 \& - 36230 \& C. 27630 \& 1 c .00 \& 0.0 \& 26.00 \\
\hline (3003 \& 49 \& \& 7000. 50000. \& - 1.150 \& 1.680
1.650 \& 2.50 \& 1.25 \& - 38577 \& C. 21939
0.31490 \& 10.00
15.00 \& 0.0
0.0 \& 26.00
26.00 \\
\hline 3305 \& 79.30 \& -.150c 0.12cc \& t600. 56.0. \& 0.930 \& 1.870 \& 1.00 \& 0.50 \& c. 21940 \& c. 16679 \& 5.00 \& 0.0 \& 33.90 \\
\hline 3006 \& 52. \& 0.6020 \& 8, 000 . bsoc. \& 1.700 \& 1.500 \& 0.90 \& 0.50 \& 0.54170 \& 0.39720 \& 7.00 \& 0.0 \& 22.90 \\
\hline 3307
3008
308 \& 29.30
40.00 \& - \& \& 0.140
1.100 \& 0.080 \& 1.50
0.75 \& 0.65
0.35 \& 0.0 \& \({ }_{\text {c. }}^{\substack{0.31340}}\) \& O.0
\(15 . c 0\) \& -0.0 \& 26.90
20.00 \\
\hline \begin{tabular}{l}
3008 \\
\(3) 00\) \\
\hline
\end{tabular} \& 40.00
96.00 \& \& \& 1.c50 \& 0.93 C
0.44 c

0 \& 1. \& 0.35 \& O. 315 \& 0.31340
0.49540 \& \& -. 0 \&

\hline 3317 \& 54.00 \& 0.75nc n.503c \& 890¢. 6302. \& 5.932 \& 2.008 \& 0.90 \& 0.45 \& 0.65940 \& C. 48530 \& 15.00 \& 0.0 \& 26.00

\hline 3311
3312
3 \& 53.00 \& 3.1600 0.130 C \& 7500. 76000. \& O.830 \& 0.684 \& 1.30 \& 0.0 \& -22030 \& C. 16070 \& 5.00 \& 0.0 \& 33.00

\hline | 3312 |
| :--- |
| 3013 | \& 7100 \& 0.250c 0.1900 \& 7900. 790000.5000. \& ¢, $\begin{aligned} & \text { 0.500 } \\ & \text { 900 }\end{aligned}$ \& 0.40 C

2.000
0.0 \& 1.20 \& 0.60 \& 0.03319 \& 0.0236 \& 4.80
16.00 \& 0.0 \& 24.00

\hline 3)14 \& 52.0 C \& -180c c. 11000 \& 10000. 8¢сС0. \& 1.10 \& 0.900 \& 1.50 \& 0.75 \& 0.57490 \& 0.47380 \& 15.00 \& 0.0 \& 26.00

\hline 3315 \& 33.28 \& 2.2500 $0.170 C$ \& P200. 6500. \& 0.170 \& 0.070 \& 1.31 \& 0.50 \& $0 \cdot 1$ \& \& \& 0.0 \& 26.00

\hline 3015
3015
3017 \& 35.00
67.00 \& 0.25cc
0.1293
$0.122 c c$
0.0742 \& \& 1.800
0.100 \& 0.850 \& 1.30 \& C.50
0.50 \& 0.36830 \& C.27080 \& 40.00
0.0 \& 0.0
0.0 \& 23.00
23.00

\hline 3018 \& 75.20 \& 1.1294 0.6743 \& 7597. 6908. \& 0.120 \& 0.08 C \& 1.30 \& 0.50 \& . \& 0.0 \& \& 0.0 \& 23.00

\hline 3319 \& - \& 0.128c 0.07cs \& 7592. 6917. \& 0.110 \& 0.08 C \& 1.00 \& 0.50 \& 0.0 \& 0.0 \& . \& 0.0 \& 23.00

\hline 3327
3321 \& 125.00
35.00 \& \& 11000. 90cc. \& 1.700 \& ${ }^{1.30 C}$ \& 1.10 \& 0 \& O. 50980
0.0
0.0 \& 0.07900
0.0 \& 12.00 \& 0.0 \& 32.00

\hline | 3321 |
| :--- |
| 3022 | \& 35.03

44.00 \& O.33Jc
$0.27 c c$
$0.277 c$
c.25cc \& \& 1.000
$n .400$ \& $\xrightarrow{0.89}$ \& 1.30 \& 0.0 \& 0.n \& c.
0.0 \& 0.0 \& -0.0 \& - 20.30

\hline 3323 \& 43.0 C \& 0.160c 0.12cc \& 7500.5600. \& 0.860 \& 0.500 \& 1.00 \& 0.50 \& 0. 20030 \& 0.09800 \& 15.00 \& 0.0 \& 33.00

\hline 3324
$3>25$ \& ${ }_{4}^{36.06}$ \& \& \& P. 600
$0.2 n 0$ \& 1.500
0.100 \& 2.50 \& 1.25 \& \& 0.0 \& 0.0
0.0 \& 0.0 \& 28.00
15.00

\hline
\end{tabular}

Table 4.4. Geartrain library data.

	X VECTOR NOTATION									
	X_{16}	X_{17}		X_{1}				X_{20}		X_{21}
PART NO.	$\begin{gathered} \text { COST } \\ \text { DOLLARS } \end{gathered}$	$\begin{aligned} & \text { INERT } \\ & \text { IGM-CM } \end{aligned}$	$\begin{aligned} & \text { TIA } \\ & \text { MSORI } \end{aligned}$	STIFF IOUNCE-	NESS INCHESI	FRIC IOUNCE	CHESI	$\begin{array}{r} \text { BACKL } \\ \text { MIIN OF } \end{array}$	$\begin{aligned} & \text { ASH } \\ & \text { ARC) } \end{aligned}$	$\begin{aligned} & \text { GEAR } \\ & \text { RATIO } \end{aligned}$
		max.	MIN.	Max.	MIN.	MAX.	MIN.	MAX.	MIN.	
4001	250.00	82.5	67.5	3300.	2700.	0.250	0.062	3.0	1.5	50.0
4002	50.00	69.0	37.0	2052.	1548.	0.240	0.040	15.0	7.5	50.0
4003	325.00	1040.0	960.0	26800.	19200.	0.500	0.160	3.0	1.5	200.0
4504	300.00	336.0	264.C	5750.	4250.	0.300	0.100	3.0	1.5	100.0
4005	60.00	210.0	190.C	2625.	2375.	0.400	0.250	15.0	7.5	100.c
4005	42.00	220.0	180.0	26750.	23250.	0.800	0.310	45.0	22.5	200.c
4007	49.00	222.0	198.C	12840.	11160.	1.000	0.200	30.0	15.0	200.0
4.008	135.00	1575.0	1425.0	129600.	110400.	2.000	0.500	7.0	3.5	500.0
4009	34.00	60.0	52.0	2268.	1932.	0.180	0.050	45.0	22.5	75.0
4017	53.00	732.0	668.0	4200.	3800.	0.800	0.200	30.0	15.0	500.0
4011	65.00	186.C	174.0	46200.	41800.	0.600	0.150	15.0	7.5	200.0
4012	350.00	2184.0	2C16.0	5400.	$3600 \cdot$	1.000	0.250	3.0	1.5	500.0
4013	38.00	76.0	68.0	3605.	3395.	0.200	0.070	45.0	22.5	100.0
4014	30.00	13.0	11.0	1040.	960.	0.050	0.020	45.0	22.5	50.0
4015	120.00	139.C	125.0	35400.	24600.	0.500	0.160	7.0	3.5	100.0
4015	70.00	1050.0	95C.C	¢890.	6110.	1.500	0.300	15.0	7.5	500.0
4017	127.00	451.0	$369 . c$	1248.	1152.	0.300	0.070	7.0	3.5	200.0
4318	45.00	87.0	77.0	16800.	13200.	0.300	0.100	30.0	15.0	100.c
4319	112.00	$113 . \mathrm{C}$	107. C	84800.	75200.	0.370	0.180	7.0	3.5	75.0
4020	37.00	$26 . C$	24.0	6540.	5463.	0.150	0.030	30.0	15.0	50.0
4.21	225.00	193.0	143.C	1456.	1144.	0.150	0.050	3.0	1.5	75.0
4022	95.00	52.0	48. C	10700.	9300.	0.200	0.100	7.0	3.5	50.0
4023	41.00	8t.C	$78 . \mathrm{C}$	1650.	1350.	0.170	0.050	30.0	15.0	75.0
4024	55.00	116.C	108. C	8560.	7440 -	0.200	0.100	15.0	7.5	75.0
4025	46.00	423.C	377.C	6148.	5452.	c. 900	0.290	45.0	22.5	500.0

The conversion factors required to go from the units shown to the consistent set, as shown in Table 2.2, are included as part of the computer program.

Also, with respect to the motor data, the effective values of stall torque (T_{s}) and no-load speed ($\dot{\theta}_{\mathrm{m}}$) are functions of the voltage capability of the driving amplifier. In order to account for this effect, the values used in the program are obtained from the rated condition given in the library by the equations

$$
\begin{align*}
& \dot{\theta}_{m} \text { (effective) }=\dot{\theta}_{m} \text { (rated) } \frac{E_{s a t}}{E_{c}} \tag{4.1}\\
& T_{s} \text { (effective) }=T_{s} \text { (rated) } \frac{E_{s a t}}{E_{c}} \tag{4.2}
\end{align*}
$$

where E_{c} is the rated control voltage of the motor and $E_{\text {sat }}$ is the amplifier saturation level, both of which are included as part of the library data. Although (4.1) and (4.2) are not exact [see reference (2)] they are considered adequate for this study. In addition to the above, the motor torque gain (K_{m}) and damping coefficient (B_{m}) are terms that are used by the systems engineer and are required as part of this study; however, they are normally not provided directly by the vendor. They must be calculated from what is normally provided; no-load speed ($\dot{\theta}_{\mathrm{m}}$), stall torque (T_{s}), and rated control voltage (E_{c}). The equations used are

$$
\begin{align*}
& K_{m}=\frac{T_{s}(\text { rated })}{E_{c}} \tag{4.3}\\
& B_{m}=\frac{T_{s}(\text { rated })}{\dot{\theta}_{m}(\text { rated })} \tag{4.4}
\end{align*}
$$

The search matrices are generated immediately after the library data is stored in the computer system. These search matrices are shown as Tables 4.5 through 4.8 and consist of the component part numbers arranged in an ordered array as previously explained in section 3.5.

The computer program developed as part of this study has been tested on several design problems, each employing different specification sets. Each one has met with about equal success; however, the two that have received the most comprehensive study are presented here as examples and comprise the rest of this section.

4.2 FIRST DESIGN EXAMPLE

In order to demonstrate the application of the program in its most comprehensive form, a customer requirement is assumed which makes use of all eight specifications. The particular set is:

1. Static accuracy $=1.0$ degrees
2. Resolution $=0.5$ degrees
3. Velocity 1 ag for $90 \mathrm{deg} / \mathrm{sec}$ input $=5$ degrees
4. Followup rate $=90 \mathrm{deg} / \mathrm{sec}$
5. Damping ratio $=0.3$
6. Null oscillation $=$ none allowed
7. Overshoot for 10 deg step $=2.0$ degrees
8. Bandwidth for 2.0 deg peak sinusoid $=5$ hertz

The assumed labor cost is $\$ 200.00$.

First to be considered are the results obtained by using the above specification set and the program operating in the Monte Carlo mode.

Table 4.5. Followup search matrix.

COST	K-F	THETA
1015	1010	1017
1025	1005	1001
1023	1004	1018
1019	1012	1011
1009	1013	1014
1002	1020	1007
1021	1024	1022
1006	1021	1024
1024	1025	1003
1020	1022	1008
1022	1023	1021
1010	1015	1005
1016	1007	1002
1003	1011	1016
1008	1009	1013
1007	1017	1006
1014	1008	1023
1012	1002	$10 C 9$
1011	1014	1015
1018	1006	1025
1004	1003	1019
1017	1018	1004
1013	1016	1012
1001	1001	1010
1005	1019	1020

Table 4.6. Amplifier search matrix.

COST	K-AF	K-AG	SAT	NULL
2001	2001	2001	2001	2002
2047	2043	2045	2047	2016
2015	2047	2019	2034	2027
2024	2023	2024	2015	2036
2046	2039	2015	2024	2008
2034	2016	2038	2016	2028
2016	2005	2007	2046	2022
2002	2015	2012	2035	2012
2003	2011	2047	2005	2019
2043	2026	2008	2012	2001
2012	2034	2036	$20 C 2$	2047
2044	2004	2034	2045	2013
2038	2002	2028	2043	2007
2008	2035	2031	2008	2031
2040	2032	2040	2038	2025
2037	2044	2022	2007	2046
2028	2006	2017	2028	2045
2048	2046	$20 C 2$	2026	2038
2035	2014	2042	2022	2005
2032	2012	2016	2011	2040
2005	2024	2046	2040	2011
2026	2050	2035	2023	2041
2010	2029	2050	$2 C 19$	2035
2011	2025	2027	2036	2017
2045	2021	2025	2044	2026
2042	2040	2048	2025	2015
2039	2038	2044	2032	2029
2036	2037	2010	2039	2014
2033	2008	2043	2014	2003
2030	2028	2026	$205 C$	2050
2007	2013	2003	2031	2048
2029	2003	2020	2029	2024
2027	2048	2005	2027	2006
2022	2045	2037	2013	2023
2041	2022	2033	2048	2044
2020	2018	2032	$20 C 6$	2010
2017	2007	2030	2003	2020
2014	2027	2029	2042	2049
2025	2041	2014	2021	2018
2019	2009	2013	2010	2009
2031	2036	2011	2037	2042
2013	2017	2041	2004	2043
2021	2033	2039	2017	2034
2004	2031	2049	2033	2033
2018	2030	2006	2030	2032
2009	2049	2023	2041	2030
2050	2042	2021	2020	2021
2006	2020	2018	2018	2039
2023	2010	2005	2009	2037
2049	2019	2004	2049	2004

Table 4.7. Motor-generator search matrix.

$C O S T$	$T-S$	$T-M-D$	$J-M$	ESTART	K-G	NULL
3017	3025	$30 C 3$	$3 C 15$	3011	3024	3022
3002	3003	3005	$3 C 19$	3022	3022	3001
3015	3019	3012	$3 C 17$	3021	3007	3018
3016	3017	3004	3001	3004	3017	3007
3021	3018	3008	3018	3008	3021	3015
3024	3004	3011	$30 C 7$	3020	3001	3025
3003	$30 C 1$	3023	3025	3001	3015	3021
3022	3008	3013	3022	3010	3025	3024
3004	3009	3010	3012	3006	3019	3019
3001	3005	3015	$30 C 9$	3015	3018	3017
3025	3014	$30 C 6$	3023	3023	3012	3012
3023	3023	3018	3003	3005	3023	3011
3008	3020	3019	3011	3018	3005	3005
3014	3007	3017	3005	3017	3011	3006
3006	3011	3002	3021	3016	3003	3003
3011	3002	3025	3008	3019	3020	3002
3010	3015	$3 C 09$	$3 C 14$	3012	3002	3020
3017	3016	3022	$30 C 2$	3009	3016	3009
3012	3012	3014	$3 C C 4$	3025	3008	3014
3018	3022	3007	3016	3007	3004	3023
3019	3021	3021	3020	3014	3006	3010
3005	3013	3016	3006	3013	3009	3008
3009	3010	3020	3024	3024	3014	3004
3013	3006	3001	3013	3003	3010	3013
3020	3024	3024	3010	3002	3013	3016

Table 4.8. Geartrain search matrix.

$C O S T$	$J-G$	$K-S$	$T-G$	B	N
4014	4014	4014	$4 C 14$	4001	4001
4009	4020	4017	$4 \cap 20$	4012	4022
4020	4022	4021	$4 C 21$	4021	4020
4013	4002	4023	4023	4004	4014
4023	4009	4002	$4 C 09$	4003	4002
4006	4013	4009	$4 C 13$	4017	4023
4018	4001	4005	4002	4015	4009
4025	4023	4001	4024	4008	4019
4007	4018	4013	$4 C 22$	4019	4024
4002	4019	4010	4001	4022	4021
4010	4024	4012	$4 C 17$	4011	4015
4024	4015	4004	4018	4024	4013
4005	4021	4025	$40 C 4$	4005	4005
4011	4011	4020	4019	4002	4018
4016	4006	4016	$40 C 5$	4016	4004
4022	4005	4024	$4 C 15$	4007	4007
4019	4007	4022	4003	4023	4003
4015	4004	4007	4011	4020	4011
4017	4025	4018	4010	4010	4006
4008	4017	4003	4006	4018	4017
4021	4010	4006	4025	4014	4025
$40 J 1$	4003	4015	$40 C 7$	4013	4012
4004	4016	4011	4012	4025	4010
4003	4008	4019	4016	4006	4015
4012	4012	4008	4008	4009	4008

This is accomplished by instructing the computer to make multiple analysis runs selecting the component part numbers at random. Table 4.9 illustrates a typical program output by showing the first 50 lines of intermediate printout. Each line represents an analysis run and lists the cost (3.5), scalar (3.6), total reject (3.19), the four component part numbers used, and the individual specification rejection percentages $\left[\mathrm{R}_{\mathrm{i}}\right.$ using (3.16) or (3.17) for $\mathrm{i}=1, \cdots, 8$ excluding R_{6} which is given by (3.27)] arranged in order as R_{1}, R_{2}, \cdots, R_{8}. For this example, the total percentage rejection was calculated using the assumption that the Y 's are independent [i.e., Equation (3.19)]. As shown, 43 out of the 50 runs illustrated have 100% rejection and therefore an infinite cost (shown as **** when cost $\geq 1 . \times 10^{6}$ dollars) while run number 20 with a cost of $\$ 663.28$ and a percent rejection of 37.88 is the best of the 50 . A total of 467 Monte Carlo runs where made (about 1.5 hours of computer time on an IBM 360 model 50). The lowest cost unit found was $\$ 374.02$, with a zero percent rejection, using part numbers 1008, 2015, 3008, and 4006. Table 4.10 is the final output sheet obtained summarizing this design.

The results obtained using the program in the direct search mode now are illustrated in detail for two searches. The first, shown in Table 4.11, is a case where the initial guess fails completely to meet 4 out of the 8 required specifications, thus resulting in an infinite cost. Twenty-seven iterations are required by the program to minimize the scalar object function to the point where the cost becomes finite and the program switches from the course to the fine search mode. It should be noted that for this run and most subsequent computer runs,

Table 4.9. Intermediate Monte Carlo printout for first design example.

RUN MO.	cis		PERCENT beject	COMPONENTS SELECTED F OUP AMP MOGEN GRIM				-00****INOIVIOUAL			SPECIFICATIUN				
	000000000	O41E +0	100.00	1011	2049	3005	4005	100	0	O					
2		508	100.00	1022	2033	3025	4020	0.	0.0	0.0	0.	100.00	100.00	100.00	0
3	**	1.8505 .02	100.0	1023	$2 \mathrm{C47}$	3017	4007	100.00	100.00	100.00	0.00	0.0	0.0	0.0	100.00
4	-0******	$2.3011+04$	100.00	1003	2021	3002	4012	0.00	0.0	100.00	75.53	0.0	0.0	0.0	100.00
5	-00******	3. $780 \mathrm{t}+03$	100.00	1004	2116	3010	4010	51.34	99.91	100.00	100.00	0.0	0.0	0.0	100.00
8	********	3. 783 t +01	100.00	1019	2028	3017	4014	0.0	0.0	0.0	0.0	100.00	100.00	100.00	0.0
7	********	$3.657 t+01$	100.00	1009	$2 \mathrm{C4O}$	3018	4001	0.0	0.0	0.0	0.0	100.00	0.0	100.00	0.0
8		1.047E.00	100.00	1022	006	3004	4016	99.70	0.00	100.03	100.00	0.0	0.0	0.0	100.00
9	- $4 * * * * *$	1.409E.02	100.00	1014	2039	3024	4021	33.91	100.00	0.0	0.0	100.00	0.0	100.00	0.0
10	-	$3.451 t \cdot 01$	100.00	1002	045	3015	4022	0.0	0.0	0.0	0.0	100.00	63.50	99.98	0.0
11	-0******	4.944500 O	100.00	1702	2028	3018	4010	0.0	0.0	0.0	95.13	100.00	100.00	0.0	0.0
12	-0******	1.636 t -02	100.00	1022	044	3016	4001	93.82	92.35	100.05	0.0	0.0	0.0	0.0	100.00
13	-88******	5.7515001	100.00	1002	2001	3020	4021	99.89	100.00	59.41	0.0	31.34	0.0	50.46	100.00
14	-*******	8.530 E 02	100.00	1018	2009	3009	4002	0.0	0.0	0.0	0.0	0.0	100.00	0.0	0.00
15	-0*******	8.438E - 04	100.00	1006	2042	3016	4006	0.0	0.0	0.0	0.0	100.00	100.00	100.00	0.00
16	-********	1.186E * 04	100.00	1917	2014	3002	4018	86. 01	0.00	100.00	0.0	0.0	0.0	0.0	100.00
17	- *******	5.040E-0才	100.00	10 Cb	2012	3005	4009	0.0	0.0	0.0	0.0	100.00	99.13	93.34	0.0
10	37928.44	2.266F-01	98.81	1019	$2 \mathrm{C48}$	3002	4016	0.0	0.0	0.00	17.36	0.0	61.08	0.0	86.48
19	-0.0*	1.222E 0 S	100.00	1008	2004	3 COO	4005	99.70	67.82	100.00	0.0	0.0	0.0	0.0	100.00
20	663.28	5.1506 *00	37.88	1021	2046	3017	4007	0.0	37.88	0.0	0.00	0.00	0.0	0.0	0.0
21	-6******	2.3278 -02	100.00	1023	2034	3013	4012	0.65	95.52	100.03	100.00	0.0	0.0	0.0	100.00
22	**ece****	1.221E*01	100.00	1001	2031	3015	4017	0.0	0.0	0.0	0.00	100.00	100.00	0.0	0.0
23	113664.19	4.1296 .00	99.56	1021	2046	3017	4008	0.0	0.04	0.0	99.56	0.0	0.0	0.0	0.02
24	-000*****	$6.974 \mathrm{~F}+01$	100.00	1019	2016	3024	4004	7.18	100.00	0.0	0.0	100.00	0.0	100.00	0.00
25	-*******	2.1746 00	100.00	1005	2003	3014	4019	92.41	99.94	100.00	0.0	0.0	0.0	0.0	100.00
26	-********	- .110t 033	100.00	1003	2011	3004	4021	96.05	0.00	100.00	0.0	0.0	0.0	0.0	100.00
27	-********	$1.0015 * 01$	100.00	1015	2040	3013	4010	0.0	0.0	39.38	100.00	0.00	3.48	0.0	100.00
28	-0.0.0*	9.324t.00	103.00	1022	2050	3023	4007	0.0	0.0	88.29	0.00	0.00	0.0	0.0	100.00
29	-********	1.464E -01	100.00	1022	2007	3003	4022	0.0	0.0	0.0	0.00	100.00	100.00	100.00	0.00
30	-0*******	$8.316 t \cdot 04$	100.00	1016	2004	3009	4022	98.98	2.17	100.00	0.0	0.0	0.0	0.0	100.00
31	-0*******	$5.791 E^{+01}$	100.00	1010	2021	3018	4014	99.93	100.00	0.00	0.0	100.00	0.0	100.00	0.0
32	-0*******	1.221E+03	100.00	1018	2011	3070	4024	91.68	0.00	99.99	0.0	0.00	0.0	0.0	100.00
33	3918.51	2.140f:01	83.74	1021	2008	3010	4001	0.0	0.0	0.0	0.0	0.13	0.0	83.72	0.00
34	-0.*****	3.317E*00	100.00	1025	2012	3005	4006	0.00	45.55	99.63	1.00	0.0	0.0	0.0	100.00
35	********	8.918E * 01	100.00	1010	2009	3001	4020	66.39	0.0	0.0	0.0	100.00	0.0	100.00	0.0
30	-00******	1.4155.04	100.00	1012	2032	3016	4001	99.97	100.00	100.00	0.0	0.0	0.0	0.0	100.00
37	-0*******	2.3075004	100.00	1017	2 Cl 8	3016	4016	51.81	0.0	100.00	0.00	0.0	0.0	0.0	100.00
38	-4*******	2.190 F 05	100.00	1001	2023	3011	4021	99.93	100.00	100.00	0.00	0.0	0.0	0.0	100.00
39	183335.81	1.321E*UI	94.67	1018	2040	3009	4010	0.0	0.0	0.0	18.69	0.0	98.43	0.0	0.06
40	-04******	5.194 E -00	180.00	1000	2040	3022	4007	0.0	0.0	0.0	0.00	100.00	100.00	0.0	0.0
41	- *******	1.408t 01	100.00	1003	2027	3014	4012	0.0	0.0	0.0	11.97	0.0	100.00	0.00	89.73
42	2185.52	$2.1700^{0} 01$	69.71	1021	2033	3008	4021	0.0	0.0	0.0	0.0	0.0	69.71	0.00	0.0
43	-10060***	1.020 t 011	100.00	1022	2017	3007	4011	0.0	0.0	0.0	0.0	100.00	99.70	0.00	0.0
44	-********	4.478601	100.00	1014	2029	3019	4022	0.0	0.0	0.0	0.0	100.00	1.12	100.00	0.0
45	-0******	2.3465 *02	100.00	1015	2012	3024	4022	0.00	0.0	0.0	0.0	100.00	100.00	100.00	0.0
46	- + - 0 eet*	$0.449 t .00$	100.00	1020	2019	3005	4003	A5.41	0.0	0.03	0.07	100.00	21.11	0.26	0.00
47	129559.62	4.2461 .00	99.56	1008	2035	3017	4008	0.0	0.00	0.0	99.50	0.0	0.0	0.0	0.0
48	********	$1.430 t-02$	100.0 C	1017	2040	3024	4024	0.0	0.0	0.0	0.0	100.00	100.00	100.00	0.0
49	*******	1.0031 *01	100.00	1017	2017	3018	4007	0.0	0.0	0.0	0.0	100.00	100.00	0.0	0.0
50	-********	1.1865.04	100.00	1017	2014	3002	4018	A6. 81	0.00	100.00	0.0	0.0	0.0	0.0	100.00

Table 4.10. Best design obtained using Monte Carlo for first design example.

Table 4.11. Directed search with initial guess underdesigned

the intermediate printout is eliminated for all iterations where the scalar (cost when in fine search) is not reduced. These are considered "failure iterations" as is the case for numbers 6, 10,13 , and 16 through 26 for the course search in Table 4.11.

Once the program is in the fine search mode, the cost is minimized up to run number 60 where it is reduced from $\$ 1060.21$ to $\$ 340.70$. As shown, an additional 13 iterations are required, according to the termination procedure, as explained in section 3.5, in order to establish that part numbers $1015,2015,3015$, and 4013 establish a local minimum.

Table 4.12 illustrates the results obtained from the second search. This case represents the opposite condition where the initial guess is overdesigned; i.e., all eight specifications are met to the extent that the cost is higher than required. Thus for this search, the program begins in the fine search mode and the cost is minimized. After 75 iterations, the program has reduced the per unit cost from $\$ 475.00$ to $\$ 340.70$-- a savings of $\$ 134.30$ per unit! This was accomplished at a computer run time of 23 minutes on the IBM 360 model 50 .

By comparing the $\$ 374.02$ given in Table 4.10 with the $\$ 340.70$ obtained above, it is seen that the directed search provides a cost savings of $\$ 33.32$ per unit over the Monte Carlo with a computer run time of only 25% of the latter.

A total of ten such searches were made at a cost of almost 5 hours of computer time. The resulting local minimums obtained and their frequency of occurance are summarized in Table 4.13.
Table 4.12. Directed search with initial guess overdesigned

Table 4.13. Local minimums obtained for first design example.

Number Times Occurred	System Cost	Rejection	Component Part Numbers			
1	$\$ 634.99$	19.37%	1022	P_{1}	P_{2}	P_{3}
1	$\$ 475.00$	0.0%	1003	2026	3002	4015
1	$\$ 380.61$	0.42%	1025	2003	3003	4020
2	$\$ 346.43$	2.72%	1015	2015	3007	4006
5	$\$ 340.70$	1.09%	1015	2015	3015	4013

Based on the results listed in Table 4.13, the system obtained using part numbers $1015,2015,3015$, and 4013 is assumed to be the best design at a cost of $\$ 340.70$ per unit. The final computer printout sheet summarizing this combination is shown as Table 4.14.

4.3 SECOND DESIGN EXAMPLE

The specification set for the second example is chosen such that the computer solution time per analysis is minimized thereby enabling more example runs per dollar. This is accomplished by considering a customer requirement to consist only of the first five specifications:

1. Static accuracy $=\mathbf{0 . 3 5}$ degrees
2. Resolution $=0.3$ degrees
3. Velocity lag for $300 \mathrm{deg} / \mathrm{sec}$ input $=5$ degrees
4. Followup rate $=300 \mathrm{deg} / \mathrm{sec}$
5. Damping ratio $=0.5$

Since the last three specifications are not included, the calculation of Y_{6}, Y_{7}, and Y_{8} as well as R_{6}, R_{7}, R_{8} and S_{6} can be bypassed

Table 4.14. Best design obtained using directed search for first design example.

(i.e., set equal to zero). With this alteration to the program, the computer time is reduced from approximately 18.0 to 0.3 seconds per solution -- a factor of 60.

For this specification, two sets of Monte Carlo data were obtained each comprising 4000 runs. The first 50 lines of data obtained from the first set is shown as Table 4.15. As can be seen, only 4 of the 50 have a finite cost, the best being $\$ 517.00$. It should be noted that the individual rejections for the last 3 specifications are zero since no specification exists. The total rejection for this example is calculated based on the upper bound approximation; i.e., Equation (3.13). Out of the total 8000 Monte Carlo runs made, which took about 40 minutes of computer time, the lowest cost design was found to be $\$ 375.00$ obtained using part numbers $1006,2003,3002$, and 4014 with a percentage rejection of zero. A summary of this combination is shown in Table 4.16.

The results obtained using the program in the direct search mode now are illustrated in detail for three searches. The first, shown in Table 4.17, illustrates the condition where the initial guess at first hand looks like a "reasonable design"; i.e., the rejection is only 0.77\%. However, after 74 iterations in the direct search mode, the cost has been reduced from the original design value of $\$ 555.30$ to only $\$ 374.27$-- a savings of $\$ 181.03$ per unit! The computer run time was less than one minute!

Table 4.18 illustrates the opposite condition where the initial selection of part numbers yields a system that fails completely to

Table 4.15. Intermediate Monte Carlo printout for second design example.

Table 4.16. Best design obtained using Monte Carlo for second design example.

Table 4.17. Directed search with initial guess overdesigned for second design example.

Table 4.18. Directed search with initial guess underdesigned for second design example.

	 씽ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅡ 1000000000000000000000000000000 	
		ล̃ \sim_{\sim}^{\sim}

meet 3 out of the 5 specifications. It takes the program 55 iterations to obtain a finite cost and switch to fine search and then 147 more to reach a cost of $\$ 374.27$ which is the same local minimum.

The third search is shown in Table 4.19 where this time the initial parts result in a design which fails completely to meet 5 out of the 6 specifications. After 55 iterations, the program has reduced the scalar from $59,610,000$ to 3.396 and only one specification remains a complete failure; however, this point turns out to be a local minimum and no further reduction is obtained.

Figure 4.1 illustrates the convergence of the directed searches as compared to the results obtained from the two Monte Carlo runs by showing a plot of improved system cost versus iteration number. The two directed searches reach the minimum in 74 and 202 iterations respectively while the Monte Carlo runs employ 4000 solutions each and neither has found the minimum.

A total of 15 searches were made and the local minimums found and their frequencies are summarized in Table 4.20. Based on the results listed in Table 4.20 , the system obtained using part numbers $1009,2003,3002$, and 4014 is assumed to be the best design. The final computer printout sheet summarizing this combination is shown as Table 4.21.
Table 4.19. Directed search resulting in an unsatisfactory local minimum.

Table 4.21. Best design obtained using directed search for second design example.

Table 4.20. Local minimums obtained for second design example

Number Times Occurred	System Cost	Rejection	Component Part Numbers			
1	∞	100%	1016	2004	3024	4025
1	∞	100%	1022	2006	3015	4017
1	$\$ 410.01$	0.25%	1023	2008	3006	4014
1	$\$ 394.63$	1.43%	1009	2003	3002	4002
1	$\$ 394.29$	0.07%	1009	2012	3006	4014
9	$\$ 374.27$	1.41%	1009	2003	3002	4014
1						

The validity that the above $\$ 374.27$ local minimum is also tne absolute minimum can be checked, for this example, by using the procedure explained as follows. The lowest possible cost for a system made up of any collection of components is the summation of the individual component costs and the labor cost since if there are rejects, they only increase this cost. Therefore to test if a local minimum is also the absolute minimum, one need analyze only the subset of the total combinations for which

$$
\begin{equation*}
\text { labor cost }+\sum \text { component costs }<\text { local minimum } \tag{4.5}
\end{equation*}
$$

If it turns out that analyzing each system in this subset results in a total system cost higher than the local minimum being investigated, the latter is the absolute minimum.

For the above $\$ 374.27$ local minimum there are 17,835 combinations which satisfy (4.5). This number although large is much less than the 781,250 total possible combinations and it becomes a practical value when one considers the reduced solution time. The 17,835 combinations were therefore analyzed (at a cost of 1.7 hours of computer time compared to 74.4 hours for a complete exhaustive search) and each resulted in a total system cost > $\$ 374.27$ thus proving the latter to be the absolute minimum.

It should be pointed out that the above procedure is not practical for all situations as readily apparent if one considers the $\$ 340.70$ value obtained for the first design example (see Table 4.14). This time there are only 4,249 combinations which satisfy (4.5), however, with the 18 seconds required per solution a proof would take 21 hours of computer time.

5. CONCLUSIONS AND RECOMMENDATIONS

Abstract

The objective of this thesis is to develop techniques to automatically select a collection of components that satisfy a given system specification at minimum dollar cost. This objective has been realized.

The techniques developed are sufficiently general to provide an effective design tool especially when there are significant production quantities and a large number of standard components available. The application of the developed technique is demonstrated by establishing libraries for electromechanical components and writing a computer program to automatically design instrument servomechanisms. The results of this effort are most rewarding. For example starting with an initial design that satisfied a customer specification at a cost of $\$ 475.00$ per unit, the computer program in 23 minutes produces a modified set of part numbers that meet the same specification at a cost of $\$ 340.70$ per unit. This amounts to a cost savings of $\$ 134.30$ per unit, representing a 28.2% cost reduction. In a similar manner, starting with an initial design which failed completely to meet 4 out of 8 specifications, the program brings the design from the "infinite cost condition" down to the same minimum in only 60 iterations.

The optimization techniques developed here, like most others, present no guarantee that the result obtained is an absolute minimum. A method is presented, however, that is practical in some cases for testing whether or not a local minimum is indeed the absolute minimum. This is accomplished by analyzing only a subset of the total number of possibilities which, for some cases, can be reasonably small. The test is made for one of the design examples presented which establishes that the minimum found by the program is truly the absolute minimum.

Comparisons are made between designs using purely Monte Carlo techniques and directed search. These demonstrate that the latter offers a decided advantage in faster convergence to the lowest cost design. The exact convergence time, of course, depends a great deal on the closeness of the initial guess.

In meeting the primary objective, a number of other tasks are accomplished in the area of calculating nonlinear servomechanism performance. An equation is derived for calculating the allowable backlash in a servomechanism without it displaying null oscillations. Heretofore this could only be "calculated" by iterating a direct simulation of the nonlinear state equations until the critical point was found. This could literally take several hours of computer time to obtain when considering nominal values. The thought of including the component tolerance effects was, therefore, out of the question. Wit \mathbf{h} the equation derived in this study, the solution is obtained, with tolerances, in 2 seconds of computer time.

Advantages similar to the above are obtained also in the area of computing the overshoot and bandwidth for the nonlinear servomechanism.

An obvious next step for future work would be to extend the development presented here to include such design specifications as weight, volume, power consumption, and reliability. This would provide the system engineer with an even more effective total design capability.

For applications where the number of parts stored in a component library becomes extremely large, one should consider the use of a "working library" selected by the system engineer from a large "standard library." With this approach, an experienced user could eliminate, on an "a priori" basis, many components undesirable for a given application. Automated procedures would need to be developed to aid in sorting out the components with the desired features.

The search technique as developed in this thesis could be possibly further improved by extending the exploratory move strategy to include simultaneous multiple component changes. However, the added complexity of the control logic required might very well outweigh any advantages gained.

APPENDIX A
 DERIVATION OF BACKLASH-FRICTION SLOPE EQUATION

It is well known that backlash can cause small amplitude oscillations about null. In 1947, A. Tustin [30] presented a graphical method for analyzing the stability of systems with backlash. His work was then extended by others [31], [32], [33], and [34]. However, each of these assume zero load after the backlash (i.e., the output stops instantly each time the motor reverses). For this condition, the backlash is "represented" by a simple hysteresis nonlinearity. However, it can be shown that, for the second order system with hysteresis, the sufficient condition for asymptotic stability is only that the damping ratio (ζ) be greater than one half [35]. But in actual practice [2] and [36], many systems oscillate with $\zeta>0.5$, which can be attributed to the fact that the hysteresis characteristic does not represent the physical facts. References [37], [38], [39], and [40] attempt to circumvent the problem by considering a load which Continues to move after the motor reverses. Each, however, is based on the assumption that the gearing has infinite stiffness (i.e., the impact is perfectly inelastic). However, J. Liversidge [41] in 1951 demonstrated with hardware that low gear train stiffness greatly aggravated the null oscillation problem. Later efforts [42], [43], and [44] demonstrate, at least via simulation, that for an accurate model, gear stiffness must be considered along with backlash.
C. H. Thomas [45] considered this as early as 1954 but made the assumption that there was zero damping at the load. Thus, the general problem, except for direct simulation, has remained unsolved.

In the last few years, there has been considerable discussion [46], [47], [48], [49], and [50] about extending the application of describing functions to handle two separated nonlinearities in a system. The validity of such an approach, of course, increases as the amount of integration effect between them is increased. Since at least one pure integration exists in every path between the backlash and friction blocks of Figure A.1, it was decided to follow this approach.

The null oscillation problem is formulated in the following manner. Consider the 2-space of backlash and friction and some point R that represents the numerical values of each for a particular system (see Figure A.2). From Reference [2] one knows that there

Figure A. 2 Backlash-friction diagram

exists a straight line (A) through the backlash-friction space that is strictly a function of the system linear parameters. If R lies above this line, the system has a limit cycle while if R lies below this line, the system is asymptotically stable. Our problem is to find an equation for calculating the slope (m) of this line in terms of the system linear parameters. The purpose of the remaining portion of this Appendix is to accomplish this task.

Consider again the state model diagram shown in Figure A.1. Since presently only the null oscillation problem is being considered, the saturation block may be ignored (i.e., assume a gain of unity for N_{3}). By inserting for the backlash and coulomb friction blocks their effective gains N_{1} and N_{2}, the autonomous state model can be written as

$$
\frac{d}{d t}\left[\begin{array}{c}
\dot{\theta}_{M} \tag{A.1}\\
\theta_{M} \\
\dot{\theta}_{L} \\
\theta_{L}
\end{array}\right]=\left[\begin{array}{cccc}
-\frac{f_{T}}{J_{M}} & \frac{N_{1} K_{S}}{J_{M}} & 0 & \frac{N_{1} K_{S}-K_{T}}{J_{M}} \\
1 & 0 & 0 & 0 \\
0 & \frac{N_{1} K_{S}}{J_{L}} & -\frac{N_{2}}{J_{L}} & -\frac{N_{1} K_{S}}{J_{L}} \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
\dot{\theta}_{M} \\
{ }^{2} \\
\theta_{M} \\
{ }^{2} \\
\\
\theta^{2} \\
\dot{\theta}_{L} \\
\theta_{L}
\end{array}\right]
$$

The corresponding characteristic polynomial is then given by
$D(\lambda)=\lambda^{4}+\left[\frac{f_{T}}{J_{M}}+\frac{N_{2}}{J_{L}}\right] \lambda^{3}+\left[\frac{f_{1} N_{2}+J_{M} N_{1} K_{s}+J_{L} N_{1} K_{s}}{J_{M}{ }_{L}}\right] \lambda^{2}+\left[\frac{f_{T} N_{1} K_{s}+N_{2} N_{1} K_{s}}{J_{M} S_{1}}\right] \lambda+\left[\frac{K_{1} N_{1} K_{s}}{J_{M} J_{L}}\right]$

The describing function gains N_{1} and N_{2} are given as functions of their respective input zero-to-peak values, E_{1} and E_{2}, by the equations

$$
\begin{align*}
N_{1}\left(E_{1}\right) & =1-\frac{2}{\pi}\left[\sin ^{-1}\left(\frac{B}{2 E_{1}}\right)+\frac{B}{2 E_{1}} \sqrt{1-\left(\frac{B}{2 E_{1}}\right)^{2}}\right] \text { for } E_{1} \geq \frac{B}{2} \\
& =0 \text { otherwise. } \tag{A.3}\\
N_{2}\left(E_{2}\right) & =\frac{4 T_{L}}{\pi E_{2}} \quad \text { for all } E_{2} \tag{A.4}
\end{align*}
$$

with the corresponding range and domains

$$
\begin{array}{ll}
\frac{B}{2} \leq E_{1} \leq \infty & 0 \leq E_{2} \leq \infty \tag{A.5}\\
0 \leq N_{1} \leq 1 & \infty \geq N_{2} \geq 0
\end{array}
$$

Since N_{1} and N_{2} are both real and frequency independent, one can separate out terms in (A.2) and write the characteristic equation in the form

$$
\begin{equation*}
F_{4}(\lambda)+N_{1}\left(E_{1}\right) F_{1}(\lambda)+N_{2}\left(E_{2}\right) F_{2}(\lambda)+N_{1}\left(E_{1}\right) N_{2}\left(E_{2}\right) F_{3}(\lambda)=0 \tag{A.6}
\end{equation*}
$$

where

$$
\begin{align*}
& F_{4}(\lambda)=J_{M} J_{L} \lambda^{4}+f_{T} J_{L} \lambda^{3} \\
& F_{3}(\lambda)=K_{s}{ }^{\lambda} \\
& F_{2}(\lambda)=J_{M} \lambda^{3}+f_{T} \lambda^{2} \\
& F_{1}(\lambda)=J_{T} K_{s} \lambda^{2}+f_{T} K_{s} \lambda+K_{T} K_{S} \tag{A.7}
\end{align*}
$$

Substituting $j \omega$ for λ and defining the real and imaginary parts of each coefficient

$$
\begin{align*}
& F_{4}(j \omega)=\left(J_{M} J_{L} \omega^{4}\right)+j\left(-f_{T} J_{L} \omega^{3}\right) \equiv P_{4}+j Q_{4} \\
& F_{3}(j \omega)=j\left(K_{s} \omega\right) \equiv P_{3}+j Q_{3} \\
& F_{2}(j \omega)=\left(-f_{T} \omega^{2}\right)+j\left(-J_{M} \omega^{3}\right) \equiv P_{2}+j Q_{2} \\
& F_{1}(j \omega)=\left(-J_{T} K_{s} \omega^{2}+K_{T} K_{s}\right)+j\left(f_{T} K_{s} \omega\right) \equiv P_{1}+j Q_{1} \tag{A.8}
\end{align*}
$$

Separating the real and imaginary parts of the characteristic equation

$$
\begin{align*}
& P_{4}(\omega)+N_{1}\left(E_{1}\right) P_{1}(\omega)+N_{2}\left(E_{2}\right) P_{2}(\omega)+N_{1}\left(E_{1}\right) N_{2}\left(E_{2}\right) P_{3}(\omega)=0 \tag{A.9}\\
& Q_{4}(\omega)+N_{1}\left(E_{1}\right) Q_{1}(\omega)+N_{2}\left(E_{2}\right) Q_{2}(\omega)+N_{1}\left(E_{1}\right) N_{2}\left(E_{2}\right) Q_{3}(\omega)=0 \tag{A.10}
\end{align*}
$$

Equations (A.9) and (A.10) provide two of the necessary conditions for a limit cycle in terms of three unknowns N_{1}, N_{2}, and ω. Solving simultaneously the two equations for N_{1} and N_{2} in terms of ω and substituting in for the $\mathrm{P}^{\prime} \mathrm{s}$ and $\mathrm{Q}^{\prime} \mathrm{s}$, one obtains equation (A.11) for N_{1} and (A.12) for N_{2}, in terms of ω and the linear system parameters

Equations (A.11) and (A.12) will be referred to as the frequency relationships as they give the required describing function values as a function of frequency and the linear parameters.

The third necessary condition for a limit cycle is obtained from the fact that the derivation of (A.11) and (A.12) did not place any restrictions on the amplitude requirement that must exist between E_{1} and E_{2}, thus N_{1} and N_{2}. From the state model diagram (Figure A.1) one can derive a transfer function relating e_{1} and e_{2} as

$$
\begin{equation*}
\frac{e_{1}(\lambda)}{e_{2}(\lambda)}=\frac{-1}{\lambda}\left[\frac{J_{M^{\lambda^{2}}+f_{T}}{ }^{\lambda+K_{T}}}{J_{M^{\lambda^{2}+f_{T}}}{ }^{\lambda+N_{1}} K_{S}}\right] \tag{A.13}
\end{equation*}
$$

Letting $\lambda=j \omega$ and by taking the magnitude of both sides and E_{1} E_{2} be the peak values of $e_{1}(j \omega)$ and $e_{2}(j \omega)$,

$$
\begin{equation*}
\frac{E_{1}}{E_{2}}=\frac{1}{\omega} \sqrt{\frac{\left(\mathrm{~K}_{\mathrm{T}}-J_{M} \omega^{2}\right.}{\left(\mathrm{N}_{1} K_{S}-\right)^{2}+\left(\mathrm{f}_{\mathrm{T}} \omega\right)^{2}} \frac{\left.\omega^{2}\right)^{2}+\left(\mathrm{f}_{\mathrm{T}} \omega\right)^{2}}{}} \tag{A.14}
\end{equation*}
$$

Solutions are now required for E_{1} and E_{2} in terms of N_{1} and N_{2}. This is difficult to acconplish for E_{1}. Figure A. 3 shows a plot of N_{1} vs. $2 E_{1} / B$ with and without the third term of

Equation (A.3). This demonstrates that both terms are significant. However, in practice, N_{1} is always close to zero so one could use a slope approximation through $(1,0)$ as

$$
\begin{equation*}
N_{1}=0.4\left[\frac{2 \mathrm{E}_{1}}{\mathrm{~B}}-1\right] \tag{A.15}
\end{equation*}
$$

Using this expression and solving for E_{1}

$$
\begin{equation*}
E_{1}=1.25 B\left(N_{1}+0.4\right) \tag{A.16}
\end{equation*}
$$

and solving (A.4) for E_{2}

$$
\begin{equation*}
E_{2}=\frac{4 T_{L}}{\pi N_{2}} \tag{A.17}
\end{equation*}
$$

Substituting (A.16) and (A.17) into (A.14) and solving for N_{2}

$$
\begin{equation*}
N_{2}\left(\omega, B / T_{L}\right)=\frac{3.2}{\pi\left(N_{1}+.4\right) \omega\left(B / T_{L}\right)} \frac{\left(K_{T}-J_{M} \omega^{2}\right)^{2}+\left(f_{T} \omega\right)^{2}}{\left(N_{1} K_{S}-J_{M} \omega^{2}\right)^{2}+\left(f_{T} \omega\right)^{2}} \tag{A.18}
\end{equation*}
$$

Without the slope approximation, one would be required to use the more general equation

$$
\begin{equation*}
N_{2}\left(\omega, B / T_{L}\right)=\frac{4 T_{L}}{\pi \omega E_{1}} \sqrt{\frac{\left(\mathrm{~K}_{\mathrm{T}}-\mathrm{J}_{M}{ }^{2}\right)^{2}+\left(\mathrm{f}_{\mathrm{T}} \omega\right)^{2}}{\left(\mathrm{~N}_{1} \mathrm{~K}_{\mathrm{S}}-\mathrm{J}_{M^{\omega^{2}}}\right)^{2}+\left(\mathrm{f}_{\mathrm{T}} \omega\right)}} \tag{A.19}
\end{equation*}
$$

and use an iteration of the $N_{1}\left(E_{1}\right)$ equation to evaluate E_{1} given N_{1} - Hereafter (A.19), or the approximate form (A.18), are referred to as the amplitude requirement, since it gives the required
value of N_{2} as a function of the amplitude of the ratio of backlash to friction as well as the frequency ω.

Figure (A.4) shows a plot of N_{2} vs ω for a typical system using equations (A.12), and (A.18) and (A.19). The amplitude curves, from (A.18) and (A.19), coincide for each value assumed for $B / T L$ thus demonstrating that the slope approximation is valid. A necessary condition for a limit cycle to exist is that both the amplitude and frequency requirement be satisfied simultaneously. Thus, the possible limit cycle conditions are represented by the intersections shown in Figure A.4. The lower intersections represent the stable limit cycle condition of interest. The frequency of the limit cycle, corresponding to each of the lower intersections, will be denoted by ω_{0}. It is seen that as the backlash-friction ratio is decreased, ω_{0} decreases, which agrees with observations obtained by simulation. This phenomenon continues until a value of backlashfriction ratio is reached where the amplitude curve becomes tangent to the frequency curve. The value of the backlash friction ratio Corresponding to this tangent curve is therefore the slope m of the desired backlash-friction line. Its value can be found by solving (A.18) for B / T_{L} and substituting in for N_{2} and N_{1} using (A.11) and (A.12). Thus

where $N_{1}(\omega)$ and $N_{2}(\omega)$ are defined as in (A.11) and (A.12). Figure A. 5 shows a plot of the bracketed quantity of (A.20) as a function of w. In general the problem can be solved by using a simple optimization subroutine. The one selected is SGREAT which is the subroutine version of the program described in Reference [11].

Figure A. 6 illustrates transient response curves for a typical system as obtained via a direct digital computer simulation of the nonlinear state Equation (2.1). The system parameters used are identical to those listed in Figure A. 4 except that coulomb friction $\left(T_{L}\right)$ was varied for the various curves. Looking at Figure A. 5 one sees that for low values of friction the system displays a limit cycle. As the friction is increased, the only noticeable change is a slight decrease in the limit cycle frequency (ω_{0}) until finally one goes beyond the critical value and the limit cycle suddenly disappears. Qualitively the results agree exactly with what one would expect from the theory that has been developed (e.g., Figure A.4). Quantitatively, however, Figure A. 6 shows that the critical value of friction is between 0.1 and 0.15 oz-in, say 0.125 . The backlash value used in the simulation was 10 minutes of arc. Thus the corresponding slope of the backlash-friction curve is calculated as

$$
m=\frac{B}{T_{L}(\text { critical })}=\frac{10}{0.125} \simeq 80 \text { minutes/oz-in }
$$

as compared to the value of 49.55 determined using (A.20). The difference is, of course, mainly attributed to the describing function approximation made in the derivation of (A.20). It can be shown, however, that neglecting the harmonics is on the safe side. That

Figure A. 5 Backlash-friction ratio vs. frequency

Figure A.6. System response curves for various friction values
is, if the harmonics had been included, the values of N_{1} and N_{2} would be somewhat higher. This would mean that the real damping effect would be greater and the backlash effect less than calculated in our derivation. Thus the amount of true allowable backlash is always greater than that calculated by (A.20), and the method used is always on the safe side.

APPENDIX B

DERIVATION OF NONLINEAR OVERSHOOT EQUATION

The purpose of this appendix is to derive the necessary equations for calculating the system overshoot for large step inputs. One way this could be accomplished would be a direct numerical integration solution of the nonlinear state model given by Equation (2.1). However, this direct simulation procedure is time consuming on a digital computer. In order to minimize the solution time, the nonlinear state equations are solved explicitly using piecewise linear techniques. For simplicity sake, the system is considered to have zero backlash and infinite stiffness. This approximation is justified when considering response to large inputs since these only add small oscillations about the nominal solution.

The various solutions required are visualized best by looking at the system response on the phase-plane as shown in Figure B.l. The three response curves shown were generated on an analog computer using the simulation shown in Figure B.2. Each curve is for a different initial displacement which was selected so as to demonstrate the three different types of mode switching that can take place up to the first overshoot. Since one is concerned with the response up to the first overshoot, only the portion of the space below the abscissa is of interest. This can be divided up into three regions, in region one the drive torque is negative and saturated, and in

Figure B.1. System response on phase-plane diagram

Figure B.2. Analog computer diagram used for transient analysis.
three it is positive and saturated. Region two represents the portion of the space where the system is not saturated. The piecewiselinear state equations that define the response in each region based on the entering initial conditions are now derived. Once this is accomplished, the switching logic required for an effective solution is presented.

B. 1 SATURATED REGION NUMBER ONE

In the saturated region number one, we have a negative driving torque and with $\dot{\theta}_{o}$ also negative, the state model is:

$$
\frac{d}{d t}\left[\begin{array}{c}
\dot{\theta}_{0} \tag{B.1}\\
\theta_{0}
\end{array}\right]=\left[\begin{array}{cc}
-2 \zeta_{M^{\omega} N} & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
\dot{\theta}_{0} \\
\theta_{0}
\end{array}\right]+\left[\begin{array}{c}
\left(\mathrm{T}_{\mathrm{L}}-\mathrm{T}_{\mathrm{SAT}}\right) / \mathrm{J}_{\mathrm{T}} \\
0
\end{array}\right]
$$

where

$$
\begin{align*}
& \zeta_{\mathrm{M}}=\frac{\mathrm{B}_{\mathrm{M}}}{2 \sqrt{\mathrm{~K}_{\mathrm{T}} \mathrm{~J}_{\mathrm{T}}}} \tag{B.2}\\
& \omega_{\mathrm{N}}=\sqrt{\frac{\mathrm{K}_{\mathrm{T}}}{\mathrm{~J}_{\mathrm{T}}}}
\end{align*}
$$

The corresponding solution is then

$$
\begin{equation*}
\theta_{0}(t)=e^{P t} \Theta_{0}(0)+\int_{0}^{t} e^{P(t-\tau)} Q d \tau \tag{B.3}
\end{equation*}
$$

where

$$
\boldsymbol{\theta}_{0}(t)=\left[\begin{array}{c}
\dot{\theta}_{0}(t) \\
\theta_{0}(t)
\end{array}\right], P=\left[\begin{array}{cc}
-2 \zeta_{M_{N}}{ }_{N} & 0 \\
1 & 0
\end{array}\right], \quad Q=\left[\begin{array}{c}
\frac{T_{L}-T_{S A T}}{J_{T}} \\
0
\end{array}\right] \text { and } \boldsymbol{\theta}_{0}(0)=\left[\begin{array}{c}
\dot{\theta}_{0}(0) \\
\theta_{0}(0)
\end{array}\right]
$$

The eigenvalues are found from the characteristic polynominal

$$
\begin{equation*}
D(\lambda)=|\lambda U-P|=\lambda\left(\lambda+2 \zeta_{M}{ }^{\omega} N\right) \tag{E.5}
\end{equation*}
$$

thus

$$
\begin{align*}
& \lambda_{1}=0 \\
& \lambda_{2}=-2 \zeta_{M^{\omega}} N \tag{E.6}
\end{align*}
$$

The state transition matrix is given by

$$
\begin{equation*}
e^{P t}=z_{11}+z_{21} e^{-2 \zeta_{M^{\omega}} N^{t}} \tag{B.7}
\end{equation*}
$$

Substituting the above into (B.3) and simplifying

$$
\boldsymbol{\theta}_{0}(t)=z_{21}\left[\boldsymbol{\Theta}_{0}(0)+\frac{Q}{2 \zeta_{M}{ }^{\omega} N}\right] e^{-2 \zeta_{M} N^{t} t}+\left[z_{11} Q\right] t+\left[z_{11} \boldsymbol{\theta}_{0}(0)+\frac{z_{21} Q}{2 \zeta_{M}{ }^{\omega} N}\right]
$$

where the constituent idempotent matrices are calculated as

$$
\begin{align*}
& z_{11}=\frac{\lambda_{2} U-P}{\lambda_{2}-\lambda_{1}}=\frac{\left[\begin{array}{cc}
0 & 0 \\
-1 & -2 \zeta_{M^{\omega}} \mathrm{N}
\end{array}\right]}{-2 \zeta_{M^{\omega} \mathrm{N}}} \tag{B.9}\\
& z_{21}=\frac{\lambda_{1} U-P}{\lambda_{1}-\lambda_{2}}=\frac{\left[\begin{array}{cc}
2 \zeta_{\mathrm{M}^{\omega}} \mathrm{N} & 0 \\
-1 & 0
\end{array}\right]}{2 \zeta_{\mathrm{M}^{\omega} \mathrm{N}}}
\end{align*}
$$

Substituting (B.9), and (B.4) into (B.8) and simplifying
which is the desired state equation for the saturated region number 1 .

B. 2 UNSATURATED REGION NUMBER TWO

In the unsaturated region (region number 2) for $\dot{\theta}_{0}$ negative we have the state model

$$
\frac{d}{d t}\left[\begin{array}{c}
\dot{\theta}_{0} \tag{B.11}\\
\theta_{0}
\end{array}\right]=\left[\begin{array}{cc}
-2 \zeta \omega_{N} & -\omega_{N} 2 \\
1 & 0
\end{array}\right] \quad\left[\begin{array}{c}
\dot{\theta}_{0} \\
\theta_{0}
\end{array}\right]+\left[\begin{array}{c}
T_{L} / J_{T} \\
0
\end{array}\right]
$$

The corresponding solution is again given by

$$
\begin{equation*}
\theta_{0}(t)=e^{P t} \theta_{0}(0)+\int_{0}^{t} e^{P(t-\tau)} Q d \tau \tag{B.12}
\end{equation*}
$$

where

$$
\boldsymbol{\theta}_{0}(t)=\left[\begin{array}{c}
\dot{\theta}_{0}(t) \tag{B.13}\\
\theta_{0}(t)
\end{array}\right], P=\left[\begin{array}{cc}
-2 \zeta \omega_{N} & -\omega_{N}^{2} \\
1 & 0
\end{array}\right], Q=\left[\begin{array}{l}
\frac{T}{J_{T}} \\
0
\end{array}\right] \text { and } \theta_{0}(0)=\left[\begin{array}{c}
\dot{\theta}_{0}(0) \\
\theta_{0}(0)
\end{array}\right]
$$

The eigenvalues are found from the characteristic polynominal

$$
\begin{equation*}
D(\lambda)=|\lambda U-P|=\lambda^{2}+2 \zeta \omega_{N} \lambda+\omega_{N}^{2} \tag{B.14}
\end{equation*}
$$

Thus

$$
\begin{align*}
& \lambda_{1}=\omega_{N}\left(-\zeta+\sqrt{\zeta^{2}-1}\right) \tag{B.15}\\
& \lambda_{2}=\omega_{N}\left(-\zeta-\sqrt{\zeta^{2}-1}\right)
\end{align*}
$$

The state transition matrix is given by:

$$
\begin{align*}
e^{P t} & =z_{11} e^{\lambda_{1} t}+z_{21} e^{\lambda_{2} t}, \text { for } \lambda_{1} \neq \lambda_{2} \\
& =\left[U+Z_{12} t\right] e^{-\omega_{N} t}, \text { for } \lambda_{1}=\lambda_{2}=-\omega_{N} \tag{B.16}
\end{align*}
$$

Substituting each of the above into (B.8) and simplifying

$$
\begin{gather*}
\boldsymbol{\Theta}_{0}(t)=z_{11}\left[\boldsymbol{\theta}_{0}(0)+\frac{Q}{\lambda_{1}}\right] e^{\lambda_{1} t}+z_{21}\left[\boldsymbol{\Theta}_{0}(0)+\frac{Q}{\lambda_{2}}\right] e^{\lambda_{2} t}-\left[\lambda_{2} z_{11}+\lambda_{1} z_{12}\right] \frac{Q}{\lambda_{1} \lambda_{2}} \\
\text { for } \zeta \neq 1 \tag{B.17}
\end{gather*}
$$

and

$$
\begin{array}{r}
=z_{12}\left[\Theta_{0}(0)-\frac{Q}{\omega_{N}}\right] t e^{-\omega_{N} t}+\left[\Theta_{0}(0)-\frac{Q}{\omega_{N}}-\frac{z_{12} Q}{\omega_{N}{ }^{2}}\right] e^{-\omega_{N} t}+\left[\omega_{N} U+Z_{12}\right] \frac{Q}{\omega_{N}^{2}} \\
\text { for } \zeta=1 \tag{B.18}
\end{array}
$$

where the constituent idempotent matrices are calculated as

$$
\begin{align*}
& z_{11}=\frac{\lambda_{2} U-P}{\lambda_{2}-\lambda_{1}}=\frac{\left[\begin{array}{cc}
\omega_{N}\left(\zeta-\sqrt{\zeta^{2}-1}\right) & \omega_{N}^{2} \\
-1 & \omega_{N}\left(-\zeta-\sqrt{\zeta^{2}-1}\right)
\end{array}\right]}{-2 \omega_{N} \sqrt{\zeta^{2}-1}} \tag{B.19}\\
& z_{21}=\frac{\lambda_{1} U-P}{\lambda_{1}-\lambda_{2}}=\frac{\left[\begin{array}{cc}
\omega_{N}\left(\zeta+\sqrt{\zeta^{2}-1}\right) & \omega_{N}^{2} \\
-1 & \omega_{N}\left(-\zeta+\sqrt{\zeta^{2}-1}\right)
\end{array}\right]}{2 \omega_{N} \sqrt{\zeta^{2}-1}}
\end{align*}
$$

and the constituent nilpotent as

$$
z_{12}=\left.\left[P+\omega_{N} U\right]\right|_{\zeta=1}=\left[\begin{array}{cc}
-\omega_{N} & -_{N}^{2} \tag{B.20}\\
1 & \omega_{N}
\end{array}\right]
$$

Substituting (B.20), and (B.15) into (B.12) and simplifying

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{\theta}_{0}(t) \\
\theta_{0}(t)
\end{array}\right]=\left[\begin{array}{l}
\omega_{N}\left(\zeta+\sqrt{\zeta^{2}-1}\right) \dot{\theta}_{0}(0)+\omega_{N}^{2} \theta_{0}(0)-\frac{T}{J_{T}} \\
-\dot{\theta}_{0}(0)-\omega_{N}\left(\zeta-\sqrt{\zeta^{2}-1}\right) \theta_{0}(0)+\frac{T_{L}}{J_{T} \omega_{N}\left(\zeta+\sqrt{\zeta^{2}-1}\right)}
\end{array}\right] \frac{e^{-\omega_{N}\left(\zeta+\sqrt{\zeta^{2}-1}\right) t}}{2 \omega_{N} \sqrt{\zeta^{2}-1}}} \\
& +\left[\begin{array}{l}
-\omega_{N}\left(\zeta-\sqrt{\zeta^{2}-1}\right) \dot{\theta}_{0}(0)-\omega_{N}^{2} \theta_{0}(0)+\frac{T_{L}}{J_{T}} \\
\dot{\theta}_{0}(0)+\omega_{N}\left(\zeta+\sqrt{\zeta^{2}-1}\right) \theta_{0}(0)-\frac{T_{L}}{J_{T} \omega_{N}\left(\zeta-\sqrt{\zeta^{2}-1}\right)}
\end{array}\right] \frac{e^{-\omega_{N}\left(\zeta-\sqrt{\zeta^{2}-1}\right) t}}{2 \omega_{N} \sqrt{\zeta^{2}-1}}+\left[\begin{array}{l}
0 \\
\frac{T_{L}}{K_{T}}
\end{array}\right] \\
& \text { (for } \zeta \neq 1 \text {) }
\end{aligned}
$$

and

$$
\left[\begin{array}{c}
{\left[\begin{array}{l}
\dot{\theta}_{0}(t) \\
\theta_{0}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{T_{L}}{J_{T}}-\omega_{N} \dot{\theta}_{0}(0)-\omega_{N}^{2} \theta_{0}(0) \\
\dot{\theta}_{0}(0)+\omega_{N} \theta_{0}(0)-\frac{T_{L}}{\sqrt{K_{T} J_{T}}}
\end{array}\right] t e^{-\omega_{N} t}+\left[\begin{array}{c}
\dot{\theta}_{0}(0) \\
\theta_{0}(0)-\frac{T_{L}}{K_{T}}
\end{array}\right] e^{-\omega_{N} t}+\left[\begin{array}{c}
0 \\
\frac{T}{K_{T}}
\end{array}\right]} \\
\text { for } \zeta=1 \tag{B.22}
\end{array}\right.
$$

Even though (B.21) is valid for $\zeta<1$, it does involve complex arithmetic. A better form for this case is obtained directly from (B.21) by expressing the exponentials in terms of sine and cosine and simplifying resulting in

$$
\begin{align*}
& \text { for } \varepsilon<1 \tag{B.23}
\end{align*}
$$

The necessary state equations for the unsaturated region have thus been derived. These are (B.21) for $\zeta>1$, (B.22) for $\zeta=1$, and (B.23) for $\zeta<1$.

B. 3 SATURATED REGION NUMBER THREE

The only difference between saturated region number 1 and number 3 is that the driving torque is reversed. Therefore, the
state equation for this region is obtained by simply reversing the sign of $T_{\text {SAT }}$ in (B.10). Thus for region 3 we have

B. 4 SWITCHING MODE LOGIC

The remaining task is to tie together the state equations for the various regions in order to arrive at the value for the system overshoot. The procedure used is summarized by the flow chart of Figure B.3, the derivation of which can be explained in the following manner.

The first step is to examine whether the servo is initially saturated by comparing $\theta_{0}(0)$ to $T_{S A T} / K_{T}$. Assuming that the initial displacement is large enough to cause saturation, the next step is to solve for the intersection of the trajectory and the first saturation boundary. The boundary line defining this saturation is given by

$$
\begin{equation*}
\theta_{\mathrm{b}_{1}}=\frac{\mathrm{T}_{\mathrm{SAT}}}{\mathrm{~K}_{\mathrm{T}}}-\frac{2 \zeta_{\mathrm{g}}}{\omega_{\mathrm{N}}} \dot{\theta}_{\mathrm{O}} \tag{B.25}
\end{equation*}
$$

letting the $\left(T_{S A T}-T_{L}\right) /{ }^{B_{M}}$ term of Equation (B.10) be defined as $\dot{\theta}_{S}$, which is the servo followup rate, and then substituting (B.10) into (B.25):

Figure B.3. Nonlinear overshoot logic flow diagram.

$$
\begin{align*}
& {\left[\frac{-\dot{\theta}_{0}(0)-\dot{\theta}_{s}}{2 \zeta_{M^{\omega} N}}\right] e^{-2 \zeta_{M} \omega_{N} t}-\dot{\theta}_{s} t+\theta_{0}(0)+\frac{\dot{\theta}_{0}(0)+\dot{\theta}_{s}}{2 \zeta_{M} M_{N}}} \\
& \quad=\frac{T_{S A T}}{K_{T}}-\frac{2 \zeta_{g}}{\omega_{N}}\left[\dot{\theta}_{0}(0)+\dot{\theta}_{s}\right] e^{-2 \zeta_{M} M_{N} t}-\frac{2 \zeta_{g}}{\omega_{N}} \dot{\theta}_{s} \tag{B.26}
\end{align*}
$$

and collecting terms

$$
\begin{align*}
& {\left[\frac{2 \zeta_{g}}{\omega_{N}}-\frac{1}{2 \zeta_{M^{\omega}}{ }^{\omega}}\right]\left[\dot{\theta}_{0}(0)+\dot{\theta}_{s}\right] e^{-2 \zeta_{M}{ }^{\omega} N^{t} 1}-\left[\dot{\theta}_{s}\right] t_{1}} \\
& \quad+\left\{\frac{1}{2 \zeta_{M^{\omega}} N}\left[\dot{\theta}_{0}(0)+\dot{\theta}_{s}\right]+\theta_{0}(0)-\frac{T_{S A T}}{K_{T}}-\frac{2 \zeta_{g}}{\omega_{N}} \dot{\theta}_{s}\right\}=0 \tag{B.27}
\end{align*}
$$

Equation (B.27) can then be solved for the time at the boundary $\left(t_{1}\right)$ by iteration. A good initial guess is

$$
\begin{equation*}
t_{1} \text { (est.) }=\frac{\theta_{0}(0)-T_{S A T} / K_{T}}{\dot{\theta}_{S}} \tag{B.28}
\end{equation*}
$$

Once t_{1} is found it is substituted into (B.10) to obtain the desired boundary conditions which are the initial conditions for region number 2. These two steps are illustrated as the first operation in Figure B. 3 for the saturated case.

Region number 2 is then entered, either after the above calculations for the saturated case, or directly for the unsaturated case.

Since region number 2 is one of indecision, that is the next boundary is not known, one simply continues to solve for $\dot{\theta}_{0}(t)$ and $\theta_{0}(t)$ incrementing time in steps of Δt until one of the two boundaries is crossed. However, the particular state equation to be evaluated in region number 2 depends on the value of ζ. Thus the next step is to evaluate ζ and, depending on its value, calculate the matrix coefficients which are independent of time as required for either (B.21), (B.22), or (B.23). One is now at point 5 of Figure B. 3 with $t=0$. The previous values of the state variables are stored as $\Theta_{0 S}$ and depending on the value of 5 either (B.21), (B.22), or (B.23) is evaluated. It should be noted that the latter is a relatively simple calculation since the matrix coefficients are independent of t and have already been evaluated.

After point 9, one simply checks to see if either of the two possible boundary conditions have been exceeded, i.e. if $\dot{\theta}_{0}(t)>0$ or if $\theta_{0}(t)<\theta_{b 2}$ where $\theta_{b 2}$ in the corresponding values for the second saturation line given by

$$
\begin{equation*}
\theta_{\mathrm{b} 2}=-\frac{\mathrm{T}_{\mathrm{SAT}}}{\mathrm{~K}_{\mathrm{T}}}-\frac{2 \zeta_{\mathrm{g}}}{\omega_{\mathrm{N}}} \dot{\theta}_{\mathrm{O}} \tag{B.29}
\end{equation*}
$$

If neither of the above inequalities is satisfied then an appropriate Δt is calculated, t is incremented and one returns to point 5 and the process is repeated until an exit is obtained at either point 10 or 11.

Consider first that the exit is via 11. The corresponding situation is illustrated in Figure B. 4 , i.e. $\theta_{0}(t)$ lies in region

Figure B.4. Phase-plane interpolation diagram.
number 3 while $\theta_{0}(t-\Delta t)$ lies in region 2 . By using a straight interpolation line between these two points, the desired intersection point is readily calculated using the derived interpolation equation

$$
\left[\begin{array}{c}
\dot{\theta}_{0}\left(t_{2}\right) \tag{B.30}\\
\theta_{0}\left(t_{2}\right)
\end{array}\right]=\frac{1}{2 \zeta_{g}{ }^{M+\omega_{N}}}\left[\begin{array}{l}
\omega_{N} \dot{\theta}_{0}(t-\Delta t)-\omega_{N} \theta_{0}(t-\Delta t)-\omega_{N}{ }^{M T}{ }_{S A T} / K_{T} \\
2 \zeta_{g}{ }^{M} \theta_{0}(t-\Delta t)-2 \zeta_{g} \dot{\theta}_{0}(t-\Delta t)-\omega_{N} T_{S A T} / K_{T}
\end{array}\right]
$$

where M is the slope of the interpolation line given by

$$
\begin{equation*}
M=\frac{\dot{\theta}_{0}(t)-\dot{\theta}_{0}(t-\Delta t)}{\theta_{0}(t)-\theta_{0}(t-\Delta t)} \tag{B.31}
\end{equation*}
$$

In a similar manner, if one exceeds the $\dot{\theta}_{0}=0$ boundary (i.e. exit via point 10) the intersection point, which this time corresponds to the desired overshoot, may be evaluated using

$$
\begin{equation*}
\theta_{0}(\text { overshoot })=\frac{\dot{\theta}_{0}(t-\Delta t)}{M}-\theta_{0}(t-\Delta t) \tag{B.32}
\end{equation*}
$$

where M is as given in (B.31).

If the intersection is on the $\dot{\theta}_{0}=0$ line, one is finished; if not, then one proceeds into region number 3 using the new initial conditions as given by (B.30). Region number 3 is also one of indecision reguarding the next boundary condition. However one can readily derive which boundary applies in the following manner. If one remained in region number $3 \dot{\theta}_{0}(t)$ would equal zero at some time say t_{3}. This value can be solved forby using the first equation of (B.24) yielding

$$
\begin{equation*}
t_{3}=\frac{1}{2 \zeta_{M^{\omega} N}} \ln \left[1-\frac{\mathrm{B}_{M_{0}} \dot{\theta}_{o}(0)}{\mathrm{T}_{S A T}{ }^{+T} \mathrm{~L}}\right] \tag{B.33}
\end{equation*}
$$

and using this value in the second equation one readily obtains $\theta_{0}\left(t_{3}\right)$. If this value is less than $-T_{\text {SAT }} / K_{T}$, the assumption of remaining in region number 3 is valid and one ends up at point 12 of Figure B. 3 with θ_{0} (overshoot) $=-\theta_{0}\left(t_{3}\right)$. If not then the trajectory must enter region number 2 for the second time. An equation giving the appropriate time in region 3 can be obtained in the same manner as (B.27) by letting $\dot{\theta}_{S S}=\left(T_{S A T}+T_{L}\right) / B_{M}$ and using (B.24) instead of (B.10).

$$
\begin{align*}
& {\left[\frac{2 \zeta_{g}}{\omega_{N}}-\frac{1}{2 \zeta_{M} \omega_{N}}\right]\left[\dot{\theta}_{0}(0)+\dot{\theta}_{s s}\right] e^{-2 \zeta_{M} \omega_{N} t_{3}}+\dot{\theta}_{s s} t_{3}} \\
& +\left\{\frac{1}{2 \zeta_{M} \omega_{N}}\left[\dot{\theta}_{0}(0)-\dot{\theta}_{s s}\right]+\theta_{0}(0)+\frac{T}{T_{S A T}}+\frac{2 \zeta_{T}}{\omega_{N}} \dot{\theta}_{s s}\right\}=0 \tag{B.34}
\end{align*}
$$

Once the time in region number $3\left(\mathrm{t}_{3}\right)$ is obtained by sloving (B.34) it is substituted into (B.24) and the initial conditions are obtained for region number 2, t is set to Δt and one returns to point 5 . The procedure is thus repeated as explained before except this time a termination is reached via point 10 and Equation (B.32).

Tables B.1, B.2, and B. 3 show sample outputs of a computer program that was written to perform the above described procedure. The three tabulations correspond to the three trajectories shown in Figure B.1. These trajectories are repeated as Figure B. 5 with the corresponding calculated data points from the digital computer program supperimposed. Figure B. 6 illustrates the same results except on the displacement vs. time plot instead of the phase-plane.

Table B.1. Nonlinear overshoot calculations for 0.1 radian displacement.

Table B.2. Nonlinear overshoot calculations
for 0.2 radian displacement.

Table B.3. Nonlinear overshoot calculations for 0.35 radian displacement.

$K_{T}=1536$ OZ-IN/RAD

Figure B.6. Typical system response curves.

APPENDIX C
 DERIVATION OF NONLINEAR BANDWIDTH EQUATION

The purpose of this appendix is to derive the necessary equations for calculating the system bandwidth. Often, this is "accomplished" by using the linear closed loop transfer function, with s replaced by $j \omega$, and calculating the frequency at which $\left|\theta_{0}(j \omega) / \theta_{i}(j \omega)\right|$ is down 3 db . However in the real world, one rarely realizes this value. This discrepancy is mainly a result of amplifier saturation, which in turn causes the actual bandwidth to be a function of input level. The true affects of saturation, as well as coulomb friction, backlash and finite stiffness, could be accounted for by direct simulation of the nonlinear state equations presented in Section 2.2. However, including this simulation in an iteration loop (as necessary to find $\omega=\omega_{B}$ such that the response is -3 db) is very time consuming. This is due to the fact that for each iteration one must wait for steady-state conditions before an evaluation can be made. In order to minimize the solution time, an algebraic equation for the bandwidth frequency is derived including the effects of saturation and coulomb friction. This is accomplished by using describing function approximations. For simplicity sake, the system is considered to have zero backlash and infinite stiffness. This approximation is justified since the displacements are considered to be large compared to any deflections that may exist in the gear train.

The bandwidth frequency for the linear second order system is found by taking the closed loop transfer function

$$
\begin{equation*}
\frac{\theta_{0}(s)}{\theta_{i}(s)}=\frac{\omega_{N}^{2}}{s^{2}+2 \zeta \omega_{N} s+\omega_{N}^{2}} \tag{C.1}
\end{equation*}
$$

replacing s by $j \omega$ and setting the magnitude equal to 0.707 for $\omega=\omega_{B}$

$$
\begin{equation*}
\left|\frac{\omega_{N}^{2}}{\left(\omega_{N}^{2}-\omega_{B}^{2}\right)+j\left(2 \zeta \omega_{N} \omega_{B}\right)}\right|=0.707 \tag{C.2}
\end{equation*}
$$

and solving for the bandwidth frequency (ω_{B})

$$
\begin{equation*}
\omega_{B}=\omega_{N} \sqrt{1-2 \zeta^{2}+\sqrt{2-4 \zeta^{2}+4 \zeta^{4}}} \tag{C.3}
\end{equation*}
$$

This equation can be extended to the desired nonlinear case using describing functions, by replacing ω_{N} and ζ by their corresponding effective values ω_{N} ' and ζ^{\prime} given by

$$
\begin{equation*}
\omega_{N} \prime=\sqrt{\frac{K_{f}^{K_{a}}{ }^{\prime} K_{m}}{J_{T}}} \tag{C.4}
\end{equation*}
$$

$$
\begin{equation*}
\zeta^{\prime}=\frac{\mathrm{B}_{M+K_{G} K_{a}^{\prime} / K_{a}+N_{2}}^{2 \sqrt{K_{f} K_{a}^{\prime} K_{M}{ }^{\prime} T}}}{2} \tag{C.5}
\end{equation*}
$$

where K_{a}^{\prime} and N_{2} are the effective gain values for the amplifier and coulomb friction elements as given by their respective describing functions. For the friction element

$$
\begin{equation*}
N_{2}=\frac{4 T_{L}}{\pi \dot{\theta}_{0}(\text { peak })} \tag{c.6}
\end{equation*}
$$

and letting N_{3} be the describing function for the amplifier saturation

$$
\begin{align*}
N_{3} & =\frac{2 K_{a}}{\pi}\left[\psi+\frac{\sin (2 \psi)}{2}\right] \text { for } E_{i}(\text { peak }) \geq E_{s a t} K_{a} \tag{C.7}\\
& =K_{a} \text { otherwise }
\end{align*}
$$

where

$$
\begin{equation*}
\psi=\operatorname{arc} \sin \left[\frac{E_{\text {sat }}}{K_{a} E_{i} \text { (peak) }}\right] \tag{C.8}
\end{equation*}
$$

Thus N_{3} is a function of its respective input E_{i} (peak) and likewise N_{2} is a function of $\dot{\theta}_{0}$ (peak). One can obtain E_{i} (peak) for any ω from the transfer function

$$
\begin{equation*}
\frac{E_{i}(s)}{\theta_{i}(s)}=K_{f}\left[\frac{s^{2}+2 \zeta_{M L} '_{N} \omega^{\prime} s}{s^{2}+2 \zeta^{\prime} \omega_{N}{ }^{\prime} s+\omega_{N}{ }^{\prime 2}}\right] \tag{C.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\zeta_{M L}^{\prime}=\frac{\mathrm{B}_{M+N_{2}}}{2 \sqrt{K_{f}{ }^{K_{a}^{\prime}{ }^{\prime} K_{M} J_{T}}}} \tag{C.10}
\end{equation*}
$$

by replacing s with $j \omega$ and solving for E_{i} (peak)

$$
\begin{equation*}
E_{i} \text { (peak) }=K_{f} \sqrt{\frac{\omega^{4}+\left(2 \zeta_{M L} \omega_{N} \omega^{\prime} \omega\right)^{2}}{\left(\omega_{N}^{\prime 2}-\omega^{2}\right)^{2}+\left(2 \zeta^{\prime} \omega_{N}{ }^{\prime} \omega\right)^{2}}} \theta_{i} \text { (peak) } \tag{C.11}
\end{equation*}
$$

Since the output amplitude is 0.707 of the input amplitude

$$
\begin{equation*}
\dot{\theta}_{0}(\text { peak })=0.707 \omega \theta_{i}(\text { peak }) \tag{C.12}
\end{equation*}
$$

and thus

$$
\begin{equation*}
N_{2}=\frac{4 \mathrm{~T}_{\mathrm{L}}}{0.707 \pi \omega \theta_{\mathrm{i}} \text { (peak) }} \tag{C.13}
\end{equation*}
$$

The necessary relationships have now been derived and ω_{B} given by

$$
\begin{equation*}
\omega_{B}=\omega_{N} \prime \sqrt{1-2 \zeta^{\prime 2}+\sqrt{2-4 \zeta^{\prime 2}+4 \zeta^{\prime 4}}} \tag{C.14}
\end{equation*}
$$

is calculated using the iteration scheme illustrated in Figure C.l. This procedure consists of one iteration inside another. The outer loop is used to adjust ω until it equals ω_{B} as given by (C.14) to the desired accuracy $\left(\delta \omega_{B}\right)$, while the inner loop adjusts, for each value of ω, K_{a} ' so that it equals its describing function value $\left(N_{3}\right)$ as given by (C.7) to the desired accuracy (δK_{a}).

Tables C. 1 and C. 2 show sample outputs from a computer program that was written to perform the above described procedure. The only difference between the two tables is that Table C. 2 is for the zero friction case. Each table consists of a tabulation of the system

Figure C.1. Nonlinear bandwidth flow diagram.

Table C.1. Nonlinear bandwidth calculations with friction and amplifier saturation.

Table C.2. Nonlinear bandwidth calculations for zero friction case.

bandwidth as a function of peak magnitude of the input sine wave. There is little difference between the two tabulations thereby demonstrating that amplifier saturation is the dominate nonlinearity except for small input levels. At small input levels (less than about 4 degrees) the zero friction case is equivalent to the linear case (no saturation) and the bandwidth equals the linear value of $61.74 \mathrm{rad} / \mathrm{sec}$. For the case with friction the bandwidth falls off for both high and low values of input amplitude, as would be expected. The results obtained are plotted as Figure C.2.

An analog computer was used to check the validity of the describing function approximations used to represent the two nonlinearities. Figure C. 3 documents the simulation used. The analog computer was operated by setting potentiometers 5 and 6 to the corresponding values of ω_{B} and θ_{i} (peak) as tabulated by the digital program and making Lissajous diagrams in predrawn boxes with the height (output) equal to 0.707 times the base (input). As demonstrated by Figure C. 4 the analog computer responses are almost exactly tangent to all sides, thereby demonstrating that the describing function assumption provides an effective model of the system.

Figure C.3. Analog computer diagram used for bandwidth analysis.

Figure C.4. Lissajous diagrams obtained from analog simulation.

1. Booz, Allen Applied Research, Inc. Semiconductor Information Storage and Retrieval System. May, 1964. Report No. 185-5T56-2.
2. Chubb, B. A. Modern Analytical Design of Instrument Servomechanisms. Addison-Wesley, 1967.
3. Hannom, T. J. B. and Kaskey, G. Digital Computer As a Design Tool. IEEE. International Convention Record, volume 13, Part 6 (Symposium on Automatic Control, Systems Sciences, Cybernetics, Human Factors) 1965 - pp 27-38.
4. Wilde, D. J. Optimum Seeking Methods. Prentice-Hall, 1964.
5. Lavi, A. and Vogl, T. P., eds. Recent Advances in Optimization Techniques. Wiley, 1966.
6. Balakrishnan, A. V. and Neustadt, L. W., eds. Computing Methods in Optimization Problems. Academic Press, 1964.
7. Brooks, S. H. Discussion of Random Methods for Seeking Maxima. Operations Research, 6, 244-251. March-April, 1958.
8. Idelsohn, J. M. 10 Ways to Find the Optimum. Control Engineering, 11, 97-102. June, 1964.
9. Brown, R. R. Gradient Methods for the Computer Solutions of System Optimization Problems. Wright Air Development Center. 1957. Technical Note 57-159, 1957.
10. Brown, R. R. Generalized Computer Procedure for the Design of Optimum Systems, Parts I and II. AIEE. Transactions, Part I (Communication and Electronics), 78, 285-293. 1959.
11. Junewick, A. B. Generalized Random Extremum Analysis Technique. Lear Siegler, Inc., Instrument Division. 1965. Technical Report TR-65-006.
12. Hooke, R. and Jeeves, T. A. Direct Search Solution of Numerical and Statistical Problems. Association for Computing Machinery. Journal, 8, 212-229. 1961.
13. Weisman, J. and Wood, C. F. The Use of "Optimal Search" for Engineering Design, in Recent Advances in Optimization Techniques, A. Lavi and T. P. Vogl, eds. Wiley, 1965.
14. Watkins, S. E. An Optimization Technique Applied to Solutions of Engineering Problems. Autonetics Division of North American Rockwell Corp. 1963. Technical Memorandum 345-5-26.
15. Gleason, A. M. Search Problem in the N-Cube. American Mathematical Society Symposium on Applied Mathematics. 1960. pp. 175-178.
16. DeRusso, P. M., Roy, R. J. and Close, C. M. State Variables for Engineers. Wiley, 1965.
17. Koenig, H. E. and Blackwe11, W. A. Electromechanical System Theory. McGraw-Hill, 1961.
18. Koenig, H. E., Tokad, Y. and Kesavan, H. K. Analysis of Discrete Physical Systems. McGraw-Hill, 1967.
19. Scheffler, H. S., Duffy, J. J. and Spradlin, B. C. MANDEX - A
Worst-Case Circuit Analysis Computer Program. Batte
Institute. Technical Paper.
20. Shewhart, W. A. Economic Control of Quality of Manufactured Products. Van Nostrand, 1931.
21. Wilks, S. S. Determination of Sample Sizes for Setting Tolerance Limits. Annals of Mathematical Statistics, 12, 91-96. March, 1941.
22. Wilks, S. S. Statistical Prediction with Special Reference to the Problem of Tolerance Limits. Annals of Mathematical Statistics, 13, 400-409. December, 1942.
23. Barrows, M. D. Probability Methods for Establishing Tolerances. Produce Engineering, 20, 106-109. November, 1949.
24. Sandquist, W. L. and Enrick, N. L. Practical Ways to Apply Statistical Tolerancing. Product Engineering, 34, 47-51. May 27, 1963.
25. Epstein, B. Tolerances on Assemblies. American Machinist, 90, 119-121. January 3, 1946.
26. Mark, D. Choosing the Best Method of Variability Analysis. Electronic Design, November 8, 1963.
27. Mark, D. G. and Stember, L. H., Jr. Variability Analysis. Electro-Technology, 76, 35-48. July, 1965.
28. Hammer, P. C. Numerical Evaluation of Multiple Integrals, in On Numerical Approximation, R. E. Langer, ed. University of Wisconsin Press, 1959.
29. Miller, J. C. P. Numerical Quadrature Near a Rectangular Domain in Two or More Dimensions. Mathematical Tables and Other Aids to Computation, 14, 13-20, 130-138, 240-248. 1960.
30. Tustin, A. The Effects of Backlash and of Speed-Dependent Friction on the Stability of Closed-Cycle Control Systems. Institution of Electrical Engineers. Journal, 94 IIA, 143-151. 1947.
31. Nichols, N. B. Backlash in a Velocity Lag Servomechanism. AIEE. Transactions, Part II (Applications and Industry), 72, 462-476. 1953.
32. Vallese, L. M. Analysis of Backlash in Feedback Control Systems with One Degree of Freedom. AIEE. Transactions, Part II (Applications and Industry), 74, 1-4, 1955.
33. Ogata, K. and Atkinson, C. P. Analysis of a Servomechanism with Backlash by the Ritz-Galerkin Method. AIEE. Transactions, Part II (Applications and Industry), 77, 82-85. 1958.
34. Pomella, P. Closed Loop Control Systems with Backlash, Stability of Limit Cycles in Non-Linear Control Systems. Ph.D. Thesis, University of Glasgow. Glasgow, Scotland, 1961.
35. Chubb, B. A. Investigation of Servo Null Oscillations. Lear Siegler, Inc., Instrument Division. 1960. Engineering Memorandum Report No. 93.
36. Graham, D. and McRuer, D. Analysis of Nonlinear Control Systems. Wiley, 1961.
37. Ritow, I. Impact-Momentum Equation in Servo Design. Electrical Manufacturing, 57, 107-111, 286-288. May, 1956.
38. Satyendra, K. N. Describing Functions Representing Effect of Inertia, Backlash, and Coulomb Friction on the Stability of an Automatic Control System, Part I. AIEE. Transactions, Part II (Applications and Industry), 75, 243-249. 1956.
39. Pastel, M. P. and Thaler, G. J. Instrument Servomechanism with Backlash, Coulomb Friction, and Stiction. AIEE. Transactions, Part II (Applications and Industry), 79, 215-219. 1960.
40. Brusin, V. A. Sufficient Conditions for Absolute Stability of a Servo System with Backlash, Taking into Account the Inertia of the Controlled System and the Hypothesis of Perfectly Inelastic Input. Automation and Remote Control, 28, 193-203. February, 1967.
41. Liversidge, J. Backlash and Resilience within Closed Loop of Automatic Control Systems, in Automatic and Manual Control, A. Tustin, ed. Academic Press, 1952.
42. Chestnut, H. and Mayer, R. W. Servomechanisms and Regulating System Design; volume 2. Wiley, 1955.
43. Cosgriff, R. L. Nonlinear Control Systems. McGraw-Hill, 1958.
44. Thaler, G. J. and Pastel, M. P. Analysis and Design of Nonlinear Feedback Control Systems. McGraw-Hill, 1962.
45. Thomas, C. H. Stability Characteristics of Closed-Loop Systems with Dead Band. ASME. Transactions, November, 1954.
46. Freeman, E. A. Stability Analysis of Control Systems Having Two Nonlinear Elements with Calculations for Saturation and Backlash. Institution of Electrical Engineers. Proceedings, 109, Part C, 665-675 (Monograph No. 534 M). 1962.
47. Gelb, A. Limit Cycles in Symmetric Multiple Nonlinearity Systems. IEEE. Transactions on Automatic Control, AC-8, 177-178. 1963.
48. Aizerman, M. A. Theory of Automatic Control. Addison-Wesley, 1963.
49. Gran, R. and Rimer, M. Stability Analysis of Systems with Multiple Nonlinearities. IEEE. Transactions on Automatic Control, AC-10, 94-97, 1965.
50. Viswanadham, N. and Deekshatulu, B. L. Stability Analysis of Nonlinear Multivariable Systems. International Journal of Control, 5, 369-375. 1967.
