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ABSTRACT

THE DEFORMATION AND STABILITY OF A PRESSURIZED

CIRCULAR TUBE AND SPHERICAL SHELL IN FINITE

ELASTICITY AND FINITE PLASTICITY

by

Dong-Teak Chung

This dissertation consists of two parts, both concerned with the

investigation of problems for a cylinder and/or a sphere under

conditions of finite strain. The problem considered in the first part,

is carried out within the theory of finite elasticity while the problem

in the second part is set within finite plasticity theory.

In part I, finite elastic deformation of hollow circular cylinders

and spheres under applied uniform internal pressure is studied.

Conditions for the initiation of a localized shear bifurcation are

obtained. The location of this bifurcation relative to the pressure

maximum is investigated. It is shown that when the ratio of the outer

undeformed radius to the inner undeformed radius is larger than a

critical value, the shear bifurcation occurs before the pressure maximum

is attained, while when this ratio is smaller than this critical value,

the converse is true. The analysis is carried out for a particular

compressible elastic foam-rubber material (the Blatz-Ko material). The
 

results are obtained in closed analytic form.

In part II, we carried out an explicit analysis of'a bifurcation

problem for a solid sphere composed of an elastic-plastic material.

This problem is concerned with the bifurcation of a solid sphere under

symmetric tensile load into a configuration involving an internal

cavity. The analysis is carried out within the context of plasticity



Dong-Teak Chung

theory using both finite strain Jz-flow theory and finite strain

Jz-deformation theory. It is also shown that the classical

infinitesimal theory of plasticity does not predict such a pheonomenon.

This model may be used to describe the nucleation of a void from a

pre-existing micro-void.
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PART I

THE FINITE DEFORMATION OF INTERNALLY

PRESSURIZED HOLLOH CYLINDERS AND SPHERES FOR A CLASS

OF COMPRESSIBLE ELASTIC MATERIALS



CHAPTER 1

INTRODUCTION

Recently Abeyaratne and Horgan [1] obtained an exact solution to a

problem describing finite plane strain deformation of an infinite

medium, composed of a certain compressible nonlinearly elastic material,

the so-called Blatz-Ko material. The problem considered in [I]

concerned an infinite medium with a circular cylindrical cavity under

pressure loading conditions. In part I of this thesis we show that the

solution technique of [1] may be applied also to the case of pressurized

hollow cylinders and spheres with jjgjtg_radii, and we carry out a

detailed investigation of the solution to these basic problems of

nonlinear elasticity.

The material considered in this study is a particular homogeneous,

isotropic, compressible elastic material, namely the Blatz-Ko material.
 

The pressurized cylinder and sphere problems in finite elasticity for

incompressible materials have been considered previously by many authors
 

(see e.g. [2,3]) and are simpler, since the incompressibility constraint

immediately yields an explicit expression for the (axially symmetric)

deformation field. Such simplification does not occur for compressible

materials.*

The "Blatz-Ko material" is a mathematical model characterizing the

constitutive behavior of a certain foam rubber-like material and was

 

*The pressurized sphere and cylinder problems for a class of

(hypothetical) compressible materials, namely harmonic materials, have

been investigated recently [4,5]. See also [3], Chapter 5, and [6].

1



2

proposed by Blatz and Ko [7] on the basis of experiments carried out by

them. An extensive discussion of its properties may be found in [7] and

also in the paper of Knowles and Sternberg [8]. One interesting

feature of the Blatz-KO material is that the system of partial

differential (displacement) equations governing the equilibrium of a

body composed of such a material may cease to be elliptic at

sufficiently severe strain levels [8]. In the present work, we are

interested in examining the implications of this for the pressurized

cylinder and sphere problems.

It should be noted that bifurcation instabilities for pressurized

cylinders and spheres for incompressible elastic and elastic-plastic

material response have been studied by many authors (see e.g. [3]) but

we shall not be concerned with the analogs of these studies for the

compressible material of concern here.

In the next Chapter, the problem of a hollow circular cylinder

composed of the Blatz-KO material subject to internal pressure is

formulated. In Chapter 3 the solution to the resulting boundary value

problem is obtained and features of the solution are discussed.

In Chpater 4, some illustrative examples are presented. For the

case of a thin shell, an explicit relation between the deformed radius

and the applied pressure is obtained and plotted in Figure 1. In

particular, it is found that as the applied pressure p is increased from

zero, the deformed radius increases until p reaches a maximum value.

Subsequently, p decreases even though the deformed radius still

increases. Such non-monotone pressure versus radius relationships are

well-known in finite elasticity, particularly for incompressible



3

materials.* Numerical results pertaining to hollow cylinders of

arbitrary thickness are also obtained, with corresponding pressure

versus deformed radius curves shown in Figure 2. These curves exhibit a

single pressure maximum. It is verified analytically in Appendix A that

this occurs always for the Blatz-KO material. It is observed that as

the thickness of the cylinder increases, the maximum pressure and the

corresponding deformed inner radius increases as might be expected.

This is verified analytically in Appendix B. when the applied pressure

is small, our results coincide with those of infinitesimal elasticity

theory. In Chapter 4, we also examine the loss of ellipticity of the

governing displacement equations of equilibrium at the deformation at

hand. The value of the applied pressure (and the correSponding deformed

inner radius) at which the cylinder first loses ellipticity is obtained.

It is shown that when the ratio of the outer undeformed radius to the

inner underformed radius is larger than a critical value, loss of

ellipticity occurs 23:95; the pressure maximum is attained while when

this ratio is smaller than this critical value, the converse is true.

In Chapter 5, the corresponding three-dimensional problem for a

pressurized hollow sphere is treated. The overall behavior of the

solution is similar to the two-dimensional case.

 

*An extensive study of this phenomenon for incompressible materials has

been carried out recently by Carroll [9]. It is of interest to note

that this behavior does ggt_occur in the cylindrical inflation of

Mooney-Rivlin or neO-Hookean (incompressible) materials whereas it does

for Spherical inflation of such materials [9].

 



CHAPTER 2

THE PRESSURIZED HOLLOH CYLINDER; FORMULATION

0F BOUNDARY-VALUE PROBLEM

Let the open region Do = {(r,e)|a < r < b, O < 6 < 2n} denote the

cross-section of a right circular cylinder with inner radius a, and

outer radius b, in its undeformed configuration. The cylinder is

subjected to an internal pressure of magnitude p. The resulting

deformation is a one-to-one mapping which takes the point with polar

coordinates (r,e) in the undeformed region Do to the point (R,e) in the

deformed region D. We assume that the deformation is an axisymmetric

plane strain one so that

R = R(r) > 0, e s e on Do, (2.1)

where the positive function R(r) is to be determined. Unless explicitly

stated otherwise R(r) is assumed to be twice continuously differentiable

on a < r < b.

The polar components of the deformation gradient tensor E associated

with (2.1) are given by

Pr, = R(r), Fee = R(r)/r, Fre . Fe, = O, (2.2)

where the dot denotes differentiation with respect to the argument. The

Jacobian determinant J = det f is required to be positive and hence

one has

R(r) > O for a < r < b. (2-3)

.The principal stretches associated wnth the radial deformation (2.1)

are

Ar = R(r). A9 = R(r)/r. (2.4)
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The right Cauchy-Green deformation tensor is defined as C = [TE and its

fundamental scalar invariants can be taken as

I . tr 9, J a (det 91/2 (2.5)

so that in the present problem

I - R2 + (R/r)2, J = RR/r. (2.6)

Next we turn to the constitutive relation and suppose that the

cylinder is composed of a Blatz-KO material* [7]. This compressible,
 

isotropic, elastic material is characterized, in plane strain, by the

elastic potential

v(1,J) . u/2(I/J2 + 2J - 4), u > O, (2.7) l'

 

representing the strain energy per unit undeformed volume. Here n

denotes the shear modulus of the material at infinitesimal deformations.

The true stress tensor I associated with a plane deformation is given

by

I = (2O-lav/aI) EET + (aw/aa)l. (2.8)

On substituting from (2.7) and (2.6) into (2.8) one finds that

= (1 ---—J%;--). (2.9a)

TRRM " R(r)R (r)

( ) (1 r3 ) (2 9b)

1R9 3 19R 3 0, a < T‘ < b. (2.9C)

In the absence of body forces, the equilibrium equations div T = O in
A

the present case reduce to the single equation

d A _
Tbe)

 

‘An extensive discussion of the stress response of this material to

various states of deformation may be found in [8].
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This, together with (2.9), yields the following nonlinear second-order

ordinary differential equation for R(r):

3rR3R - R3R + r3R4 = O for a < r < b. (2.11)

The prescribed boundary conditions are

TRR = -p at r = a, TRR = O at r = b, (2.12)

which, on using (2.9), can be written as

R(a)R3(a) . a(l + p/u)‘1, (2.13a)

R(b)R3(b) = b. (2.13b)

In the next Chapter we derive an exact solution to the boundary-value

problem (2.11), (2.13).



CHAPTER 3

SOLUTION OF BOUNDARY-VALUE PROBLEM

3.1 Solution

It has been shown recently in [1] that the second-order nonlinear

ordinary differential equation (2.11) may be reduced to a first-order

equation on making the substitution

t(r) = "E i (= xr/xe) > o. (3.1)

Equation (2.11) then yields

3rt - t(l-t)(t2+t+4) - O for a < r < b, (3.2)

where t a dt/dr. It can be shown that there is no loss of generality in

assuming that t(r) is less than unity* for a < r < b. Thus it then

follows from (3.2) that t increases monotonically with increasing r and

so we have

0 < t < 1, dt/dr > 0 for a < r < b. (3.3)

Upon integrating (3.2), one finds that

8 c t6 h(t)
r = 7T I? , (3.4)

(1-t) (t +t+4)

where C > O is a constant of integration and we have set

5 -1 2t+1

h(t) =- ex {— tan (——-)l > O. (3.5)

p ITS ITS .

On the other hand (3.1) and (3.2) also give

 

‘The arguments given in [1] to justify this assumption carry over, with

obvious modification, to the present problem. Notice that since the

applied load is that of internal pressure only, one would expect Ar < 1,

he > 1 and so one anticipates that t is indeed less than unity.

7



1 an 3
_— a > 0,

3.6

R t (l-t)(t2+t+4) ( )

which yields

4 . O(t2+t+4) h(t) .
R

(14:)2

(3.7)

Again, 0 > 0 is a constant of integration. Observe from (3.3), (3.6)

that the undeformed and deformed radial coordinates (r,R) vary

monotonically with t. Equations (3.4), (3.5), (3.7) provide a

parametric solution to the differential equation (2.11). The range of

the parameter t is

ta < t < tb, (3.8)

where ta > 0 is the value of t corresponding to r = a and is to be

determined from (3.4) and tb < 1 is determined in an analogous fashion.

The components of true stress TRR: Tee may also be expressed in terms of

t on using (2.9), (3.1), (3.4) and (3.5). This leads to

 

 

 

 

2 1/2
(um

I 3 ”[1 ' J: (309)
RR h1/2(t)(t2+t+4)3/2

2 2 1/2
t (C/D )

T = u[1 - ], t < t < t . (3.10)
ea h1/2(t)(t2+t+4)3/2- a b

From the definition of ta, tb, it follows from (3.4) that

6
Ct h(t )

a8 a 2 a a 4 , (3.11)

(ta+ta+4)(1-ta)

6
Ct h(t )

b8: 2 b b 4. (3.12)
(tb+tb+4)(1-tb)

Finally the boundary conditions (2.12), in view of (3.9), may be written

as



 

2 1/2
(C/D )_p a "[1 - , (3.13)

nI/?(ta) (t2+ta+4)3/2

2 1/2
0 = "[1 - C/D ) (3.14)
 

L
J.

A“2(tb)(t§+tb+4)3‘/f

Equations (3.11) -(3.14) consist of four equations for the four unknowns

ta, tb, C and D. In the following section we discuss the existence of

solutions to these equations.

3.2 Discussion

Ne eliminate the integration constant C between equations (3.11)

and (3.12) and obtain

b89(tb) = 439(ta). (3.15)

where g(t) is given by

(124.4 111414
g(t) a 6* , O < t < 1. (3.16)

t h(t)

Also from (3.13) and (3.14), eliminating the constant C/DZ, one has

(11.2)? h(tb)(t§+tb+4)3

, (3.17)

“ h(ta)(t§+ta+4)3

 

Thus we now have two equations (3.15), (3.17) for the two unknowns ta

and tb. The function g(t) in equation (3.16) tends to infinity as t +

0+, decreases monotonically as t increases and has the value zero when t

= 1. Thus for a given ratio of outer undeformed radius b to inner

undeformed radius a, one can always express ta in terms of tb and vice

versa. He may write

tb 8 f(ta,a) (3.18)

where a.- b/a and f is an implicit function. Thus, for a given applied

pressure p, if (3.17) with tb expressed as in (3.18), can be solved for
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a number ta such that O < ta < 1, then (3.18) provides a number tb and

(3.11)-(3.14) is the desired solution.

In order to verify that (3.17) can indeed be solved for an

apprOpriate value of ta, we consider the auxiliary function 0(ta)

 

defined by

h(f(ta)){f2(ta)+f(ta)+4}3

Q(ta) a 754* 3 , 0 < ta < 1, (3.19)

h(ta)(ta+ta+4)

which appears on the right hand side of (3.17), when (3.18) is taken

into account. For convenience here, we have written f(ta) a f(ta,a).

One can readily show that

lim Q(ta) = 1,

ta+0+

lim dQ(ta) > 0,

ta+0+ T—ta

(3.20)

Tim Q(ta) 3 l,

ta+1-

lim dQ(ta) < O

ta’l- dta

It follows that for 0 < ta < 1, there exists a maximum value for Q, with

the corresponding value of p given by (3.17) as p = pm. Thus, if 0 < p

< pm, there exist at least two solutions for ta. It is shown in

Appendix A that Q has only one local maximum and so exactly two

solutions for ta exist.

Before we proceed to further examination of the foregoing solution,

we return to discuss the possible alternative range of values of t(r).

Recall that in the preceding discussion we restricted attention to the

case when 0 < t(r) < 1 on a < r < b. Note that t(r) E 1 is a solution

of (3.2). However (3.1) then yields R(r)=cr (c constant) which does not
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satisfy the boundary conditions (2.13) unless p = 0. 0n the other

hand, if t(r) = 1 at s2mg_point in a < r < b, then (3.2) and a

continuity argument shows that t(r) must be unity on the entire range

a < r < b. Consequently, the only case remaining to be considered is

that for which t(r) > 1 on a < r < b. The preceding analysis up to

equation (3.19) continues to be valid (with 1 < tb < t < ta and Obvious

minor modifications) and the existence of solution again hinges on the

solvability of (3.19) for a root ta, now > 1. It is easily seen that no

such number exists (when p > 0) and thus the case when t(r) > 1 need no

longer be considered.

Finally, we observe that the deformed inner radius R(a), given by

(3.7) with t = ta, may be written as

352.1 = ta'3/4(1+p/u)'1/4. (3.21)

on using (3.11) and (3.13).



CHAPTER 4

RESULTS AND DISCUSSION

He now examine some features of the results derived in the previous

section and consider some illustrative examples.

4.1 Thin Shell:
 

When the radius ratio a = b/a is very near to unity, it is not

difficult to express the relation (3.18) between ta and tb explicitly.

Let

o.= 1 + e, e = (b-a)/a (<<1), {4-1)

and assume

tb = ta + e A(ta), (4.2)

where A(t) is an, as yet, unknown function. Substituting (4.1), (4.2)

into equation (3.15) and neglecting second-order terms in 3 yields

A(t) . 1/3(t2+t+4)(1-t)t and so (4.2) then reads

tb . ta + (e/3) (taz+ta+4)(1-ta)ta, 0 < ta < 1. (4.3)

Upon substituting from (4.3) into equation (3.17), one obtains an

explicit relation between ta and the prescribed pressure, which is

given, to leading order, by

p/u a e (ta-ta3), for O < ta < 1. (4.4)

It is clear from (4.4) that p has only one maximum. The deformed cavity

radius R(a), is given by (3.21). In the present case, where p is given

by (4.4), equation (3.21) yields, to leading order,

R(a) a t-3/4
(4.5)

12
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where the value of ta corresponding to a prescribed pressure p is found

from (4.4). A graph of the ratio of the deformed radius to undeformed

radius versus pressure, according to (4.4), (4.5), is shown in Figure 1.

As the pressure p is increased from zero, the deformed radius increases

until p reaches a maximum value of 0.385ue, where R(a) = 1.510a.

Subsequently p decreases even though the radius still increases. This

phenomenon is well-known in finite elasticity, especially for

incompressible materials (see e.g. Ogden [3] pp. 283-287 for the
 

spherical thin shell and the comprehensive recent study by Carroll

[9].)

4.2 Thick Cylinder:
 

For a thick-walled cylinder, the relation between ta and tb is

implicit and thus computational work is necessary, in general to analyze

the behavior of pressure versus radius. It can however be shown

analytically that p has only one maximum point and this analysis is

carried out in Appendix A. A graph of the ratio of the deformed radius

to undeformed radius versus pressure, obtained from solving (3.15),

(3.17) numerically and using (3.21), is shown in Figure 2, for different

values of the radius ratio a a b/a. As is shown in Figure 2, as the

thickness of the cylinder increases, the value of the maximum pressure

increases and it occurs at increasingly larger values of R(a)/a, as

might be expected. This is verified analytically in Appendix B.

The bottom curve in Figure 2, corresponding to a = 1.05, is seen to

confirm the thin shell results discussed in section 4.1. On the other

hand, as o + a (i.e. a cavity in an infinite medium), the pressure

maximum is reached asymptotically as the deformed radius tends to
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infinity, and has the value pm = 1.51677u. Thus we recover the result

Of [1] for this case.

4.3 Linearization:
 

In the particular case when the applied pressure is small (p/u <<

1), (3.19) and (3.21) show that ta 2 1, tb z 1 and so t(r) = 1

throughout the body. Let

ta = 1 - 5,, tb = 1 -5b, t(r) = 1 - 6(r), (4.6)

where the small parameters 5(r),‘63, 5b are unknown. Substituting (4.6)

into (3.9), (3.10), (3.13), (3.14) yields, to leading order,

Tee = "(5bt5). (4.7)

IRR = "(bu-5). (4.8)

pl]: 3 6a - 5b. (4.9)

Also from (3.4), (3.11), using (4.6), one obtains

a2

r

Finally the relation between 5a and 6b may be obtained upon substituting

(4.6) into (3.15). This leads to

5b = aaarZ, (deb/a). (4.11)

The resulting linearized stress fields given by (4.7)-(4.11) yield the

well known results of the infinitesimal theory of elasticity (see e.g.

Timoshenko and Goodier [10], p. 71):

2 2

a .JEL___ 11.
Tee b2_az (1 + F2 )’ (4’12)

and
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2 2

+24 --"-:>- 1...,
'3 F

4.4 Loss of Ellipticity:
 

The pressure maxima we have encountered exhibit the unstable

behavior of a pressurized tube of the particular compressible material

under consideration. It is of interest to examine other possible

instabilities for this problem. It is well-known that the displacement

equations of equilibrium in finite elastostatics may lose ellipticity at
 

sufficiently severe deformations. In particular, for plane strain

deformations of the Blatz-KO material, necessary and sufficient

conditions (in terms of the principal stretches) for ellipticity have

been obtained by Knowles and Sternberg [8]. In this section, we

examine the implications of these results for the pressurized cylinder

problem at hand.

From equation (4.8) of [8], it follows that ellipticity holds for

the Blatz-KO material (2.7) at the axisymmetric solution (2.1) if and

only if the principal stretches Ar: 19 introduced in (2.4) are such

that

2 - 73' < t < 2 + If, (t =- 1,419). (4.14)

Since in the present problem we have 0 < t < 1, it follows that the

right hand inequality here always holds. On the other hand, it is clear

that ellipticity will be lost whenever the left inequality is violated.
 

In view of the monotonic increasing character of t as r increases

(see (3.3)), and recalling that 0 < ta < t < tb < 1, it follows that

ellipticity is first lost at r = a and that this occurs when

ta = 2-/3. For a given value of radius ratio a = b/a, the

corresponding value of the applied pressure, say pe, is found from
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(3.17), where the value of tb is given by (3.15) with ta = 2 - /3. The

corresponding value of R(a)/a then follows from (3.21) with p = pe and

ta = 2 - 13. In Figure 2, the pairs of values (pa/u, R(a)/a), for

different radius ratios 6, are joined by the dotted curve. There is a

critical value of the radius ratio a = at say, at which pe = pm. This

may be found numerically from (3.17), (3.18), (3.19) with ta = 2 - f3,

and we find

“c = 5.1. (4.15)

Thus, for a < ac, the load maximum is reached before loss of ellipticity

occurs while for a > ac, the converse is true.

In either case, after loss of ellipticity, the existence of the

smooth solutions obtained here is still ensured. In addition, the

possibility exists that non-smooth deformation fields, with

discontinuous deformation gradients and stresses, might occur. The

argument provided in [1] shows that axisymmetric solutions with such

discontinuities do 323 exist in the present problem. Neak solutions, if

they exist, must necessarily be non-axisymmetric. There is also the

possibility that surface bifurcations might occur, as in [1], but we

shall not pursue this issue here.



CHAPTER 5

THE PRESSURIZED HOLLOW SPHERE

In this Section, we describe briefly how the foregoing

considerations can be applied to the analogous problem Of an internally

pressurized hollow sphere.

5.1 Formulation of Problem:
 

We are concerned in what follows with the pressure loading of a

sphere composed of the Blatz-KO material. Let

Do a {(r,6,¢)|a < r < b, 0 < O <2n, O < a < n},

denote the hollow Sphere in its undeformed configuration. The Sphere is

subjected to an internal pressure p.

The resulting deformation is a one-to-one mapping which takes the

point with spherical polar coordinates (r, e, a) to the point (R, e, O)

in the deformed region 0. We assume that the deformation is an

axisymmetric one so that

R - R(r) > O, 9 a e and O = O on Do, (5.1)

where R(r) is to be determined.

The polar components of the deformation gradient tensor associated

with (5.1) are given by

5 . diag (R(r), R(r)/r, R(r)/r). ' (5.2)

The principal stretches associated with the radial deformation (5.1)

are

Ar = R(r), A3 = A¢ = R(r)/r. (503)

17
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The Blatz-KO material is characterized in the three-dimensional

case, by the elastic potential (see e.g. [7])

-2 -2 -2

W(A1,A2,A3) = u/2(A1 +A2 +A3 + 2A1A2A3 - 5). (5.4)

The principal components of true stress I are given by

 

J‘1 aw
T11 = 414243 311 (no sum on I) (5.5)

- '1 72 _
- u(1-J A, ), J - x11213.

Substitution from (5.3) and (5.4) into (5.5) yields

r2

TRR(P) = U (1 -‘;7;§), (5.58)

r4

100(F) = T¢¢(F) = u(1 -'EEE). (5.6b)

In the absence of body force, the equilibrium equations div 1 = 0 reduce

to

d 215 -
aF-TRR +-§— (TRR - r - O, for a < r < b. (5-7)

00)

which, by virtue of (5.6), yields the nonlinear second-order ordinary

differential equation

4 4
2 3“ R = 0, for a < r < b. (5.8)3r R R - 2rR3R + 2r

The prescribed (pressure) boundary conditions are

'1'

RR 'p at r 8 as
(5.93)

TRR
0 at r = b. (5.9b)
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5.2 Solution QE’BOundary-Value Problem:

Just as in the two-dimensional case, equation (5.8) may be reduced

to a first-order equation on making the substitution

t(r) =-£§)§} > o. (5.10)

Equation (5.8) then yields

3rt(r) - t(l-t)(2t2+2t+5) = O for a < r < b, (5.11)

where t = dt/dr. Again we assume that t(r) is less than unity for a < r

< b and so deduce from (5.11) that

0 < t < l, dt/dr > 0 for a < r < b. (5.12)

Integration of (5.11) yields

15 c t9d(t)

" ’ *2 2 5 .
(2t +2t+5) (l-t)

 

(5.13)

where C is a positive constant of integration and the function d(t) is

defined by

d(t) = exp {2 tan-1(££§l)} > 0. (5.14)

Also (5.10), (5.11) yield

2

R6 = 013—t +2t+§1d(9), (5.15) 

(14)?

where D > 0 is a constant of integration. The range of the parameter t

is

(0 <) ta < t < tb (< 1). (5.16)

The components of true stress TRR, Tee may also be expressed in

terms of t on using (5.6), (5.10), (5.13) and (5.14). This leads to
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‘RR u{1 - (DS—)1/6(2t2+2t+5)'3’2d'1/2(t)}, (5.17)

-3/2d-1/2
(t)}, (5.18)T99 uII - (—§)1/5¥M(2t+2t+5)

D

for ta < t<tbo

From the definition of ta and tb, it follows from (5.13) that

9

C ta d t

a15= ( a) (5.19)

(2t:+2ta+5)2 (1 -ta)5

 

9
C t )

b b (5.20)
2 2 PS '

(2tb+2tb+5) (1-tb)

d(t
b15 g
 

Finally the boundary conditions (5.9), in view of (5.17), may be written

as

uil- (C:)1/5(2t§+2t+5)‘3/2d*1/2(t )1, (5.21)I

'
0 I
I

O

l

2

- uIl-(gg)1,6(2tE+2tb+5)'3/2d'1/2(tb)}. (5.22)

D

The four equations (5.19) - (5.22) for the four unknowns ta, tb, C,

D are analogous to equations (3.11) - (3.14) obtained in the two

dimensional case. It can be verified that the considerations of

section 3.2 carry over, with obvious modification, to the three-

dimensional equations of concern here. In particular, the analog

of (3.21) in the present case is given by
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3.1.11 . ,a-sls (1 . 13-1/5. (5.23)

In what follows, we consider some illustrative examples analogous to

those discussed in Chapter 4 for the two-dimensional problem.

5.3 Thin Shell:
 

When the radius ratio a(=b/a) is very near to unity, the explicit

relation between ta and prescribed pressure, analogous to (4.4), is

given by

2. -3 2 .92.u 28(ta ta) + 0(8 ), e a << 1. (5.24)

Similarly, the analog of (4.5), on using (5.23),(5.24) becomes

3?)- = ta'3/5 + 0(a). (5.25)

A graph of the ratio of the deformed radius to undeformed radius versus

pressure, according to (5.24), (5.25), is shown in Figure 3. Again we

observe that the pressure first increases as the shell inflates, reaches

a maximum with value 0.7698ue where R(a) = 1.390a and decreases on

further inflation.

5.4 Thick Shell:

For a thick shell, numerical computation yields the graph of

pressure versus deformed radius shown in Figure 4. The behavior of the

spherical shell is similar to that of the cylindrical shell shown in

Figure 2.

5.5 Linearization:
 

For small pressure (p/u << 1), we find again that ta = 1, tb = 1

and so t(r) = 1 throughout the body. Let

t, = 1 - 5,, tb = 1 - ab, t(r) = 1 - 6(r) (5.26)
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where the small parameters 6a, 6b and 6(r) are unknown. We find that

Tee 8 2u/3(6+26b), (5.27a)

‘RR = 4u/3(5b-5). (5.27b)

p = 4u/3(5,—5b), (5.27c)

6(r) = (a3/r3)63, (5.27d)

55 = a:3 5,, a = b/a. (5.27e)

The resulting linearized stress fields given by (5.27) again yield the

well known results of the infinitesimal theory of elasticity (see e.g.

Timoshenko and Goodier [10], p. 395),

3 3

TRR =- -§9—5 (1- is), (5.28a)

b “'3 r

-——§33§.(2+ b3) (5 28b)1' 3 . o

99 2(5 -a ) :5

5.6 Loss of Ellipticity:
 

In the three-dimensional case also, for the Blatz-K0 material,

necessary and sufficient conditions for ellipticity of the displacement

equations of equilibrium have been obtained by Knowles and Sternberg

[8]. Thus from equation (3.1) of [8] it follows that ellipticity holds

(for the Blatz-K0 material (5.4) at the axisymmetric solution (5.1) if

and only if the principal stretches 1., A9, A¢ introduced in (5.3) are

such that

2 - J3 < Ar/Ag < 2 + f3, . (5.29a)

2 - I? < Ar/x¢ < 2 + f3, (5.29b)

2 - J3 < A¢/Ae < 2 + f3. (5.29c)
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Since in this problem we have x9 = A¢, (5.29c) is automatically

satisfied and (5.29a), (5.29b) are equivalent to

2 - I? < t < 2 + 16', t =- xr/xe = 11,414,. (5.30)

The inequality on the right in (5.30) always holds (see (5.12)) and, by

virtue of the monotone increasing character of t as r increases (see

(5.12)), ellipticity is first lost at r = a and this occurs when

ta = 2-13. For a given value of the radius ratio a = b/a, the

corresponding value of the applied pressure, say pe, is found in a

similar manner to the two-dimensional case on using (5.19)-(5.22). The

corresponding value of R(a)/a then follows from (5.23) with p = pa and

ta = 2-/§. In Figure 4, the pairs of values (De/u,R(a)/a) for

different radius ratios a are joined by the dotted curve. As in the

case of the two-dimensional problem, there is a critical value of the

radius ratio a = “c at which pa = pm. This may be found numerically and

we find that

at =5 3.25.

Thus for a < ac, the pressure maximum is reached before loss of

ellipticity while for a > ac, the converse is true. Finally, after loss

of ellipticity, the non-existence of non-smooth axisymmetric solutions

may be demonstrated by an obvious modification of the argument given in

[1]. The possibility of surface bifurcations also exist, but we shall

not pursue this here.
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Applied pressure versus ratio of deformed to undeformed

radius for a thin cylindrical shell.
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Applied pressure versus ratio of deformed to undeformed

radius for hollow cylinders for different radius ratio

a = b/a. The dotted curve connects the points (pa/u,

R(a)/a), where pe denotes the pressure at which ellipticity

is lost
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Applied pressure versus ratio of deformed to undeformed

radius for hollow spheres for different radius ratios a

b/a. The dotted curve connects the points (pe/u, R(a)/a),

where pe denotes the pressure at which ellipticity is lost.
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APPENDIX A:

Here we present the details of the calculation showing that Q(ta) in

equation (3.19) has only one maximum for 0 < ta < 1.

We write

Q(t)-: Q(t a) , thLt))(f7(tl+f%tl+4l3 (A.1)

h(t)(t +t+4)3

using t instead of ta for simplicity. For later purposes, it is also

convenient to emphasize here that 0 depends on the radius ratio a = b/a

(see 3.18). We recall that (3.20) shows that Q(t,a) has at leaSt one

maximum on 0 < t < 1. Now

  

3 a . .0g, ) ___6(t2m4) 22(15ma)2 11 um,“a), (M)

(NH)2

where

H(t) = h(t)(t2+t+4)3, (A.3)

and

R(t,a) = {(12+t+4)(f+1)%{-- (f2+f+4)(t+1)}. (A.4)

Observe from (A.2) that R(t,a) = 0 is equivalent to

13915439-= 0.
3t

Thus at a maximum point for Q(t,a), say at t=t(a), it follows that

R(E,a) = 0. (A.5)

Now we want to show that only one such point t a t(a) exists for which

0 < t < 1. From (A.2) upon differentiating again, we find

28
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2
a 6 2 2 2

= [2(t +t+4 2t+1 f +f+4 -h-h f R t,a3:9- 15(2)]7' )( )( ) ( ) ( )

+ (t2+t+4)2-2-(f2+f+4)(2f+1)-f'~h-h(f)R(t,a)

+ (t2+t+4)2(f2+f+4)2-h'-h(f)R(t,a)

+ (t2+t+4)2(f2+f+4)2-h-h'(f)'f'-R(t,a) (A.6)

+ (t2+t+4)2(f2+f+4)2-h-n'(f)33§%:393

 

- {H::)}2(t2+t+4)(t+1)(f2+f+4)2-h-h(f)R(t.a).

Using (A.5) we find

2
1.3 a -.- 6 (t2+t+4)2(f2+f+4)2-h'h(f)-aB-§-E-’-E)- “o (A-7)

3t t=t {H(t)} t=t 

Differentiating (A.4) with respect to t and using (A.5) we find

t+1 f+1 2
akgt,a) fl = 4f‘(———-- -—-) + f"(t +t+4)(f+1). (A.8)

at t=t(a) f+1 t+1 

He now observe from equation (3.15), (3.18) that

afgtla) > 0

8t ’

2

.2_£§£1£Q.< 0, (A.10)

at

t < f(t,a). (A.11)

aR§t,a) 5 < 0 for 0 < t < 1, and so from (A.7), we deduce that

at t=t( a)

(A.9)

Thus

 

23112 < 0 for 0 < E < 1.

31. tif( a) 

Therefore, we concTude that Q(ta,a) has only one maximum for

0 < ta < 1.



APPENDIX B

In Appendix A, we have shown that Q(ta,a) in equation (3.19) has

only one maximum for 0 < ta < l, and the corresponding value of ta is

denoted by t(a). In this Appendix, we analyze the behavior of t(a) as a

varies and thereby verify the remark made in Chapter 4.2 regarding the

value and location of the pressure maximum pm as the radius ratio

a = b/a increases.

As we have shown in Appendix A, at the maximum point for Q(ta,a) we

have

R(E(a).a) = o (3.1)

where R(t,a) is defined by (A.4). Differentiating (8.1) with respect to

ayields

dR - 25.2%. 25. .
1 - 3?. do + 801 0' (8.2)

We have shown in Appendix A that

-3§ < 0 for 0 < E < 1.

at A

Observe from (8.2) that 33-:- has the same sign as g—E. Now from (A.4) and

(3.18), we have

-1 2 2
8R 8 _192 a (l-f) (t +t+4)(8f/8t)g(f)(3f4+3f3+11f2_f_4)’

7“- 1811(1)(152+1=+4)(ag/01=)2
(8.3)

where we use t,f instead of t(a), f(t(a),a) a f(a) for simplicity. The

last term on the right hand side of (8.3) vanishes when f = 1//§. Thus

from (8.2) we see that
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g§%§Q-= 0 when a = 5*, (3.4)

where a? is the value of a for which

f E f(€(3).3) = 1//§. (3.5)

Thus recalling (A.9), we conclude that

if 0 < f < 1 then %E-> 0,
(I

* A

. ~ _ dt 3
if f - f then do 0, (8.6)

* ~ dE
andif f<f<1th€fld—'<0..

a

To analyze the behavior as a function of a of the point (t(a),f(a))

correSponding to the maximum value of Q(ta,a) in the (ta,f(ta))-plane,

it is necessary to find the behavior of df/da also. If we treat f in

(3.18) as the independent variable in (3.19), we find that

$59)- = o if s(7=(a),.) -- 0. (3.7)

where

S(f(a),a) = (t2+t+4)(f+1) - (f2+f+4)(t+1)t'(f). (8.8)

Here

. 8
t (f) .._%%1221 .

Just as in the derivation of (8.4), (8.5), one can show that

1391 . 0 when a = a“, . (3.9)

where d?* is the value of a for which

t(f(of*),af*) = 1/lf. (3.10)
e

t

Thus we obtain a result analogous to (8.6), namely that
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if 0 < t < t then .Q: > 0,
do

if E =1 then 9f- = 0 (811)
do ’ '

. * ~ d“

and if t < t < 1 then 3" > 0.
a

To complete our analysis, we need the following two auxiliary results.

'
-

meal 1

Let f(x) be a continuously differentiable function on [1,w). Let k

be some fixed number. Furthermore, suppose that f and k are such that I

f'(x) < 0 whenever f(x) < k. If there exists an xo¢5[1,~) such that

 
f(xo) < k then

f(x) < k and f'(x) < 0 on [xo,~).

m

If f(xo) < k then

df
a;- x=xo < 0 by hypothesis.

Thus

f(x) < f(xo) for x0 < x < x0 + e and so f(x) < k for x0 < x < x0 + 6.

Thus

df

d;- xxxo + e < 0‘

Lemma 2

Let f(x) be a continuously differentiable function on [1,»). Let k

be some fixed number. Furthermore, suppose that f and k are such that

f'(x) > 0 whenever f(x) > k. If there exists an xoe[1,~) such that

f(xo) > k then

f(x) > k and f'(x) > 0 on [xo,~).
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The proof of Lemma 2 is similar to that of Lemma 1 and will be omitted.

Let

*

a = 1 + e + 52/2 (3.12)

and assume

f(t) = t + eA(t) + 223(t)/2, (3.13)

where A(t), 8(t) are unknown functions. Proceeding as in the analysis

sketched in Chapter 4.1, one can show that

E 1//§ - 0.2:, (3.14)

;
1//§ + 0.2:. (3.15)

Thus, when the radius ratio a (=b/a) is near to unity we see from

(8.14), (8.15) that

e * .c 2

0 < t < t, f < f < 1 for a = 1 + e + e /2. (3.16)

It would follow from (8.6), (8.11) that

d“ d? 2
'a% < 0 and ‘3; > 0 for a = 1 + e + e /2. (3-17)

Then, by Lemma 1 and Lemma 2, we can conclude that

d? < 0 ~ * s 8 18To": and 0<t<t for1<a<, (.)

and

%%>Oand f<f<1 for1<a<oo, (8.19)

which establishes the desired monotonicity results.

 

A

* when a = 1 + c then t = f = 1//3 which is the intermediate case in

(8.6) , (Boll) o
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‘ PART II

A BIFURCATION PROBLEM IN FINITE PLASTICITY

RELATED TO VOID NUCLEATION



CHAPTER 1

INTRODUCTION

In a recent paper [1], Ball has made an extensive study of a class

of singular problems for the equations of nonlinear elasticity, in which

a spherical cavity forms at the center of a ball placed in tension. He

showed that the existence of such solutions depends on the growth

properties of the stored energy function H for large strains and the

singular solution bifurcates from a trivial (homogeneous) solution at a

critical value of the surface loading or displacement at which the

trivial solution becomes unstable under appropriate hypotheses. An

alternative physical interpretation for such problems (for a solid

circular cylinder composed of a particular nonlinearly elastic material)

in terms of the growth of pre-existing micro-void is given in [2]. The

purpose of the present study is to analyse the corresponding bifurcation

problem within the context of plasticity theory.

In the next Chapter we consider an incompressible solid sphere under

symmetric, monotonic increasing, tensile dead load p. The constitutive

relation describing the material behavior is taken to be a

generalization of Jz-flow theory to finite deformations. One solution

to this problem, for all values of p, corresponds to a homogeneous state

in which the sphere remains undeformed but stressed. However for a

certain critical range of p, one has in addition, a second possible

configuration involving an internal spherical cavity. An explicit

expression for the critical load Pcr at which the cavity is initiated is

35
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obtained (see Eq. (2.14)). It is important to note that this critical

load is given automatically by the analysis. The issues of stability

and post-bifurcation behavior are discussed in Chapter 5.

In Chapter 3, we treat the aforementioned problem using

Jz-deformation theory. This is simply a special case of finite

elasticity for a particular incompressible material. It is found that

the final results are identical with those in Chapter 2.

It is worth pointing out that the bifurcation considered here is

inherently associated with the kinematic nonlinearity. When the present

problem is examined using classical infinitesimal strain plasticity

theory as we do in Chapter 4, one finds that bifurcation is ggt_predicted

at any finite load.

 



CHAPTER 2

FINITE STRAIN FORMULATION AND SOLUTION; Jz-FLON THEORY

Consider a solid sphere of radius A, subjected to a monotonically

increasing radial tension (dead load), p(t), applied to its surface R =

A. In view of symmetry, the resulting deformation of the sphere is

described by

r = r(R,t), 6 = e and o = 0, r(O+,t) > O, (2.1)*

where (r, 6, ¢) are the current spherical polar coordinates of the point

which, in the undeformed configuration, was located at (R, o, o). If

the material is assumed to be incompressible, the deformation gradient

5 obeys det E - 1. For the deformation (2.1), this implies rzar/aR =

R2, which when integrated gives

r = r(R,t) - {R3 + c3(t)}1/3, c(t) > 0, (2.2)

where c(t) is to be determined. If it is found that c(t) = O, (2.2)

implies that the body remains a solid sphere in the current

configuration. On the other hand, if c(t) is found to be positive (i.e.

r(O+,t) > 0), there is a cavity of radius c centered at the origin in

the current configuration.

From (2.1) and (2.2), the non-vanishing components of the Eulerian

strain-rate tensor are found to be

0r = -2F/r, 09 - 0, = F/r, (2.3)

 

*Note that the convention used here for undeformed and deformed

coordinates is opposite to that employed in Part I.
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where the dot denotes the Lagrangian time derivative. In view of

symmetry, and assuming the material to be isotropic, the non-zero

components of the (Cauchy) true stress tensor are the radial stress

ar(r,t) and the hoop stresses 09(r,t) . a¢(r,t). The prescribed dead

load boundary condition on the surface of the sphere requires that

°r(a. t) = p(t)(A/a)2. (2.4)

where a = r(A,t) a (A3 + c3)“3 represents the deformed outer radius. r

The constitutive relation for the elastic-plastic material is taken

to be a generalization of dz-flow theory to finite deformations, (see

e.g. [3]):

 

k
l

’-

0 =-—3 g + A--3 E (o )s (2 5)
2E e 20b P e ~ ’ '

5‘

Here 5 is the deviatoric Cauchy stress; ac is the effective Cauchy

stress; A is a loading coefficient; ep(-) is a given constitutive

function representing the effective plastic logarithmic strain. The

Jaumann (co-rotational) rate of the Cauchy stress deviator is denoted by

g, so that g = S - OS + 59 where g is the spin-tensor. In the case of

uni-axial tension, the relation between true stress a and the

logarithmic strain a, in monotonic loading, can be obtained

from (2.5) as e = 5(0) 5 a/E + ep(o). He assume this relation to be

invertible so that we may write the stress-strain relation jn_uni-axial

tension as either

a = 5(6) or e = 2(0). (2.6)

In the present problem, 9 vanishes, and thus g = 5. Also,

q9 a 09 - or. Equation (2.5) and (2.6), under conditions of loading

(A a 1), yield
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1 , (2.7)

€(Oe) = ZP/T‘, 0e = as "‘ or.

On using (2.1), we may integrate (2.7) with respect to the parameter t

to obtain c(oe) = 2£n(r/R). Using (2.6) to invert this gives

oe = o{2£n(r/R)}. (2.8)

Finally, in the absence of body forces, the equilibrium equations

reduce to the single equation f;

I

-335 - 2-32 = O. (2 9)
3r r '

Thus, the problem to bg_solved is the following: We wish to find
  

 or(r,t) and c(t) > D such that the field equations (2.2), (2.8), (2.9) fl.

and the boundary condition (2.4) hold*. In addition, if c(t) > 0 it is

also required that

0r(C.t) = 0. (2.10)

This stipulates that when a hole appears at the origin, it must be

traction-free.

First, it is readily shown that, for all values of p > 0, one

solution to the foregoing problem is

or(r,t) = p(t), c(t) = O. (2.11)

This corresponds to a homogeneous state of deformation r = r(R,t) = R,

with resulting stresses “r = 90 = o¢ = p(t).

Next we seek a solution for which c(t) > O. Combining (2.2), (2.8)

and (2.9), integrating with respect to r, using boundary condition

(2.4), and employing a change of variables yields

 

*The remaining physical quantities can be immediately found thereafter

from (2.2), (2.9) and 09 = o¢ = °e + °r°
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ar(r’t) = p(£. 2 - I2£n(l‘/R) 3(6)
- 3 3 1/3

2£n(a/A) eon3e/2)-1 d5» R-(r -c ) . (2.12) 

On enforcing the remaining boundary condition (2.10), one is led to

3(8 _ 3 3 1/3

exp(3e/2)-1 d5: 3 - (A + c ) . (2.13)
 

2f£n(%)

Thus, if for a given value of p, (2.13) can be solved for a positive

root c, then this c together with (2.12), provides a solution to the

problem at hand.

It is readily shown that under usual constitutive conditions,

[5(a) = 0(6) as e + 0, 5(5) = 0(5") as e + a, n > O], the integral in

(2.13) is bounded for all a > A. Therefore, there does exist a value of

pressure p(>O) corresponding to each c > O. A schematic graph of p vs.

c is shown in Figure 5. The critical load Pcr at which the cavity is
 

initiated is found by letting c + 0+ in (2.12), i.e.

= O 8

per (1;W (16. (2.14)

As noted previously, the integral in (2.14) is bounded and so, the

cavity is initiated at a finite value of load.

One may also study this problem using the finite strain version of

Jz-deformation theory (e.g. [4]). This will be done in the next

Chapter.



CHAPTER 3

FINITE STRAIN FORMULATION AND SOLUTION; Jz-DEFORMATION THEORY

In this Chapter, we treat the problem at hand using a finite strain

version of Jz-deformation theory (e.g. Hutchinson and Neale [4]). This F3

is simply a Special case of finite elasticity for a particular :

incompressible material.

Consider a solid sphere of radius A, subjected to a radial tension

 
(dead load), p, applied to its surface R a A. The resulting deformation #5

is a mapping which takes the point (R,e,o) to the point (r,e,¢). He

assume that the deformation is axisymmetric one so that e = 0,0 = 0 and

r = r(R). In order to avoid interpenetration, it is required that

r = r(R) > O on O < R < A, r(O) > O. (3.1)

Observe that if r(O) > O, the deformation is not one-to-one at the

origin. If the material is assumed to be incompressible, one readily

finds that

r = r(R) = (R3 + c3)1/3, c > O, (3.2)

where the constant c is to be determined.

The polar components of the deformation gradient tensor F

associated with the radial deformation (3.2) are given by

E a diag (($702: 31%)., 1.1-3.1)- (3.3)

The corresponding principal stretches are

As a A¢ - r(R)/R - x, x, = 19-2 - x-2 (3.4)

In view of symmetry, the non-zero components of the true stress tensor

41
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are the radial stress ar(r) and the hoop stresses 09(r) = a¢(r). The

prescribed dead load boundary condition of the surface requires that

°r(a) = p(A/a)2. (3.5)

where a = r(A) = (A3 + c3)1/3 represents the deformed outer radius.

He now turn to the constitutive relation for a general isotropic

incompressible elastic material characterized by an elastic potential

H(11,12,13) representing the strain energy per unit undeformed volume.

The components of the principal true stress a are given by

x,- aw .
°ii = AIAZAB 3‘1 - p, (no sum on i). (3.6) 

A

For all A > 0 it is convenient to define R(A) by

13(1) w(x‘z,x,x), x > 0. (3.7)

From (3.4), (3.6) and (3.7), one can derive the following:

- r “' L
or - 06 - -212." (R)' (3.8)

In the absence of body force, the equilibrium equations div 0 = 0

reduce to

-—d +2 -0 39dror -F(ar-ae) - , c < r < a. ( . )

On using (3.6) and (3.7), (3.8) becomes

1 “1 -
-§-w (g) - 0. (3.10)

:
I
n

Thus, theproblem tgnbg_solved is the following: We wish to find or(r)
 

for r(iEc,a] and c > D such that the field equations (3.2), (3.10) and

boundary condition (3.5) hold. In addition, if c > D it is also

required that

°r(C) = 0 (i.e. arlR=O = O). (3.11)

This requires that when a hole appears at the origin, it must be

traction-free.
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First, it is readily shown that, for all values of p > 0, one

solution to the foregoing problem is

or(r) = p. c = 0. (3.12)

This corresponds to a homogeneous state of deformation r = ;(R) = R.

Next, we seek a solution for which c > 0. Integrating (3.10) with

respect to r, using boundary conditions (3.5) and employing a change of

variable 6 = r/R yield

.2
A A

a A_2 _ H' E = 3_ 3 1/3
or(r) p(a) (r E§§11d£’ R (r c ) . (3.13)

'R

On enforcing the remaining boundary condition (3.11) yields

p = (g)2 I -E%Lfldfi. a = (A3+ c3)1/3. (3.14)
a -

'A

Thus, if for a given value of p, (3.14) can be solved for a positive

root c, then c together with (3.14), provides a solution to the problem

at hand.

As we mentioned before, Jz-deformation theory is a special case of

finite elasticity, the class of incompressible materials being now

characterized by the particular energy function of the form

w(11,12,x3) = w(ee), (3.15)

where

ee = [(2/3){(2011)2+(2012)2+(£013)2}]1/2. (3.16)

when 11 = 1'2, 12213-1, as is the case here, (3.16) gives A = exp(ee/2).

In the case of uni-axial tension,_the relation between true stress a and
 

the logarithmic strain 5 can be obtained, i.e.
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0(5) = H'(e)- (3.17)

Employing a change of variable, a = Zing, and using (3.17), (3.14)

readily becomes

p = ($2) —9-(-§-L (is. (3.18)

22n(%) exp(§-€-)-1

Equation (3.18) is seen to be identical to (2.13).

 



CHAPTER 4

INFINITESIMAL STRAIN FORMULATION AND SOLUTION

In this Chapter, we consider briefly the infinitesimal strain

analog of the problem just treated. In view of symmetry, the r

.
y
w
j

displacement field has the form

UR = U(R.t). Ue = Uo = 0- (4.1)

"
N
M
‘
A

1
.
1
L

‘
-
_
'

|
'
-

The non-vanishing components of the infinitesimal strain tensor are

8

ER = 5%» so = e. = %- “-2)  T-h..- a

Incompressibility in the present case requires

8R + $9 + e¢ = 0.
(4'3)

Thus, (4.2) and (4.3) lead to a simple ordinary differential equation

for u whose general solution is

u(R,t) - (a(t)-A)A2/R2, (4.4)

where a(t) represents the deformed outer radius of the sphere which is

to be determined. If it is found that a(t) = A, then u(0+,t) = 0 i.e.,

the sphere remains solid in the current configuration (in fact, in this

case u(R,t) a 0). On the other hand, if it is found that a(t) # A

(a(t) > A) then u(0+,t) = a and the body has ruptured at the origin.

The non-zero stress components are the radial stress 0R and the

hoop stresses 09, o¢ (oe=o¢). The prescribed tensile load boundary

condition of the surface of the sphere requires that

°R(A.t) = P(t). p(t) > 0. (4.5)
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The constitutive relation for the elastic-plastic material (at

infinitesimal deformations) is taken to be the classical Prandtl-Reuss

equation with a Von Mises (J2) yield criterion; i.e.

. 3 . 35 (0e)

Here 5 is the deviatoric stress; Ge is the equivalent stress, oe={3/2

tr(§2)}1/2; A is a loading coefficient. The constitutive function

ep(oe) is, of course, given (and gives the value of the corresponding

"effective plastic strain").

In the case of uni-axial tension, the relation between stress and

strain in loading can be obtained from (4.6) as

e =-§ + cp(o) 5 5(0). (4.7)

The response function may be inverted to give

0 = 0(6). (4.8)

Returning to the problem at hand, from (4.1) and (4.2), the non-zero

components of strain-rate are

- 2 - 2
‘ aA - - aA

..-. -2—, e = e = -—--,
(409)

R3 G 4 R3

where the dot denotes differentiation with respect to t. Equation (4.6)

and (4.7), under conditions of loading (A=1), yield

5(0 ) = -——- , o = o - OR’ (4.10)
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Integrating (4.10) with respect to t and using a = A when t = 0 gives

c(oe) = 2u/R. Using (4.8) to invert this gives

‘ 2u
0e a O(-R—- o (4.11)

Finally, in the absence of body forces, the equilibrium equations

reduce to the single equation

  

 

:33- 2.39.: D. (4.12) B:
3R R g1

Thus, the problem £9. 92Mii the following: we wish to find l

oR(R,t) and a(t) > A such that the field equations (4.1), (4.11), (4.12)

and the boundary condition (4.5) hold. In addition, if a(t) t A it is

also required that !’

0R(O+,t) s 0. (4.13)

This requires that when a hole appears at the origin, it must be

traction free.

First, it is readily shown that, for all value of p > 0, one

solution is

aR(R,t) = p(t), a(t) = A. (4.14)

This corresponds to a homogeneous state of deformation with resulting

stresses

°R'°e=°o=P(t)o

Next we seek a solution for which a(t) > A. Integrating (4.12)

with respect to R from R a R to R = A, using the boundary condition

(4.5) yields

" 3(3!)
IP daR = 2 f R dR, 0 < R < A. (4.15)

OR R R
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Employing a change of variable 6 = 2u/R now gives

2(a-A)A2/R3.

em¢)=p-§I 3%Hao<h<h. MAM

2(fi- -1)

In order to enforce the boundary condition (4.13) we calculate oR(O+,t)

from (4.16). Recalling that a ¢ A in the present case, this gives

oR(O+,t) = p - 33 I“ 21:18.3. (4.17)

a

2(3 '1)

However for a general strain hardening material, the integral in (4.17)

is readily shown to be unbounded. This implies that it is impossible to

satisfy the boundary condition (4.13) at any finite value of load.

Thus, at all finite value of p, bifurcation is not predicted by

infinitesimal theory.

Another way to attack this problem is to follow the procedure in

[2] and to first solve the problem for a sphere with a pre-existing

spherical cavity at its center, and then, to let the radius of the

cavity tend to zero. For all values of p < Pcr the solution tends to

the homogeneous solution in this limit while for p > Pcr the solution

tends to another (non-homogeneous) state. It is found that

pcr = $3 Sé-Elde. (4.18)

Note from (4.17) that by enforcing the boundary condition (4.13) and

letting a = A, we may formally recover (4.18). Alternatively, note that

(4.18) may also be formally derived from the finite strain formula for

Pcre (2.14), by replacing the exponential in (2.14) by the first two

terms in its Taylor expansion about a = O.

 



CHAPTER 5

DISCUSSION

Here we discuss further the bifurcation predicted by the finite

strain formulation of Chapters 2 and 3.

For all values of the prescribed radial dead load p one possible

configuration is that in which the sphere remains solid (see (2.11)).

On the other hand, for a certain range of p one has, in addition, a

second possible configuration involving an internal spherical cavity.

Equation (2.14) gives the critical value of the load, Pcr: at which a

cavity may initiate.

It is necessary to examine the stability of these two possible

configurations in order to determine whether the homogeneous solution

will in fact bifurcate, at p = Pcr: into the one involving a cavity.

Figure 5 shows, schematically, a graph of the cavity radius c versus the

applied load p. The bold horizontal line coinciding with the positive

p-axis corresponds to the homogeneous solution. The curves emanating

from (Pcr: 0) correspond to a bifurcated solution involving a cavity.

Presumably, if such a curve comes off to the right, the bifurcated

solution is locally stable and so the sphere would indeed develop an

internal cavity at p = Pcr- Conversely, if bifurcation to the left

occurs, the solution is locally unstable and the sphere remains solid.

On using a Taylor expansion near Pcr: (2.13) yields

_._3* 2 2|: 3
p = p(C) = pcr + -3- A3 (pa. - -3-) + 0(c) as c + 0. (5.1)

49
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A

where E = o'(O) is the Young's modulus. Thus when Pcr > 2E/3,

the slope of the curve at (Pcr. 0) is positive and so bifurcation to the

right occurs. On the other hand, when Pcr < 2E/3, the slope is

negative. Consequently a void will actually appear at p = Pcr only if

Pcr is greater than 2E/3.

Of course, the load level at which stable bifurcation is predicted

here is unreasonably large. This feature is commonly encountered in

bifurcation analyses employing classical flow theories of plasticity. It

may be possible to use more elaborate constitutive models or to include

the effect of a pre-existing stress concentrator (such as an inclusion)

to obtain more realistic values for the critical load.
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Figure 5. Schematic graph showing variation of cavity radius c versus

applied load p.
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