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I. INTRODUCTION

Generally, the infrared absorption spectra of
molecules originate when a molecule is raised from one
vibration-rotation state to another state with higher
energy accompanied by the absorption of light. Therefére
one of the principal problems of molecular spectroscopists
has been the interpretation of the vibration-rotation
energy levgl structure of the molecule under study.

Just as in the diatomic molecule case, in which the
study of the infrareé spectra gives precise information
about the vibration-rotation energies and these energies
lead to the accurate determination of the structure of
the diatomic molecule, we may obtain information about
bond distances, bond angles, vibrational frequencies,
force constants, dissociation energies, anharmonic con-
stants, centrifugal distortion constants, etc., by the
analysis of the infrared spectra of polyatomic molecules.
An understanding of these quantities leads to the deter-
mination of the deteailed structure of the molecule and
should ultimately help us to better understand the
physico-chenical properties of matter in the aggregate.

In the case of polyatomic molecules the situation
is often very complicated, since we are considering
magy-body problems. There are several internuclear dis-

tances, several force constants, several vibrational
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frequencies, etc, Therefore it has been found con-
venient to formulate the general theoretical expression
for the energies of polyatomic molecules and then to
apply it in the specific case instead of trying to de-
duce formulas for each specific case separately.

However, in the case of polyatomic molecules it is
impossible to find exact general expressions for the
energy levels. For this reason some assumptions are
made which are valid in practice, and one treats the
general formulation by an expansion formalism in suc-
cessive orders of approximation. For instance, it is
possible 1in the study of infrared spectra of poly-
atomic molecules to assume the validity of the Born-
Oppenheimer approximation to separate the vibration-
rotation motion of the nuclei from the electronic motion,
and also one can safely ignore the energy contribution
of the nuclear spins until a certain high order of
approximation.

The general quantum mechanical Hamiltonian for the
polyatomic molecule was first formulated and studied by
Wilson and Howard.1 Then Darling and Dennison2 gave
their general Hamiltonian for the polyatomic molecule
which is of slightly different but equivalent form to
that of Wilson and Howard. The formulation by Darling
and Dennison proves somewhat more convenient for
development. By use of the above-mentioned Hamiltonians

the vibration-rotation energy levels of polyatomic
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molecules were calculated to the second order of ap-
proximation and it was found that the energy relations
calculated explained certain anomalies of the infrared
spectra of polyatomic molecules and gave the relations
between the energies and the parameters which charac-
terize the molecule and ifs dynamic behavior. This
success established calculation of vibration-rotation
energies from theoretical formulations.

In recent years improved experimentzl accuracy and
resolution in the infrared work in many cases necessi-
tated the taking into account of terms in the Hamiltonian
higher than the second order of approximation in order
to arrive at a satisfactory interpretation of experiment.
Vibrational effects, rotational effects and vibration-
rotation iqteraction effects higher than in the second
order had been observed in various experiments.

Recognizing thié situation, Nielsen, Amat, and

Goldsmith?’"6

extended the expansion of the Hamiltonian
to fourth order, and extensively regrouped the resulting
terms to obtain the expansion of the vibration-rotation
Hamiltonian in orders of approximation more closely
corresponding to experimenal evidence. This newly
formulated Hamiltonian gave satisfactory interpretations
of the more recent experiments. However, this general

Hamiltonian to fourth order contains a very large numbér

of terms, many of them depending on the molecular para-



Lo

meters in a very complicated manner. Therefore it be-
comes important to.review the expressions in the general
Hamiltonian and simplify them for solution of particular
eigenvalue problems. Such studies have been carried

out for symmetric and spherical rotators, principally
by Amat and his coworkers.7

Another large and important class of molecules is
of the asymmetric rotator type. In asymmetric molecules
the energy eigenvalue problem is more complicated than
in symmetric or spherical rotators in the zeroth order
of approximation; on the other hand, the Hamiltonian of
the asymmetric rotator is considerably simpler in the
vibrational and vibration-rotation interaction terms
since in the asymmetric molecule there are no essential
vibrational degeneracies such as occur in symmetric and
spherical rotators.

Since the symmetry properties of a given polyatomic
molecule qualitatively characterize its spectrum, it
should be feasible to distinguish the Hamiltonians for
eacih of the different symmetry groups of molecules.

We have found that the symmetry properties of a partic-
ular point group or point groups of molecules greatly
simplify the general Hamiltonian.

In this work we have studied the generel vibration-
rotation Hamiltonian of asymmetric rotator molecules in

the Nielsen-Amat Goldsmkith formulation by subjecting
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this Hamiltonian to the symmetry restrictions of the
asymnetric rotator point groupé. Particularly the second
and fourth order centrifugal distortion constants, which
will be defined later, and those terms of the Hamiltonlan
which can be interpreted as vibrational corrections to
the rotational structure were of interest.

We shall first present a discussion of the general
vibration-rotation Hamiltonian, and we will subsequently
impose the symmetry restrictions of the asymmetric
rotator point groups. Finally, we will discuss sone

properties of the symmetry restricted Hamilltonians.



II. THE GELERAL VIBRATICN-ROTATION HAMILTOINIAN

For the theoretical calculation of the energies of
a molecule it 1s necessary to formulate a suitable quan-
tumn mechanical Hamiltonian. We shall reproduce the de-
rivation of such a general quantum mechanical Hamiltonian

for the vibrating-rotating molecule.

The total Hahiltonian of a molecule would have to
include a portion which represents the electronic con-
tribution to the total energy. This electronic energy
1s not of interest here, since we wish to consider
vibration-rotation transition during which the molecule
remains in its electronic ground state configuration.

8 have shown that

For such a case, Born and Oppenheimer
it is allowabhle to separate the electronic motion from
the nuclear motion to a very good degree of approxima-
tion. Since the electrons are moving much faster than
the nuclei and consequently the wave function of the
electronic state is almost independent of the change in
internuclear distances, the Born-Oppenheimer approxima-
tion is valid in most cases. Nielsen? has pointed out
that one could calculate the vibration-rotation energy
accurate to one part in 106 despite the Born-Oppenheimer
approximation. We will adopt the Born«Oppenheimer

approximation for the formulation of the general vibra-

tion-rotation Hamiltonian, and hereby will not consider

b=



-7-

d;rectly the electronic motion any further. The
potential energy of nuclear vibration will, of course,
recognize indirectly the molecular electron configura-
tion in the time average over the rapid electronic

motions.,.

The classical kinetic energy of a molecular frame-

work of N nuclei is

I
T=122 miV12 (11-1)
i=1

o=

where Iy is the mass of the i-th nucleus and Vi repre-
sents the velocity of the i-th nucleeus in a space-fixed
coordinate system. Using the position vector R to the
origin of a moving coordinate system (whose manner of

- motion will be specified later), the angular velocity

of the moving system, w, and the position vector of the
particle in the moving system, T;(x;, y;, 2;), the

velocity Vi can be expressed as19

V. =R+ 7, + orr, (1I-2)

Substituting Vi of (II-2) into (II-1) and utilizing the
rules of vector algebra, the kinetic enerzy 1s found

to be
2

-

- B2 L dom. w2 2 (= T2, 1
T = ?"‘ﬁ + QimiLri W "’(I‘i ) v mivi

+ ﬁ.imi;i + §-Z{;miri +lZmiri v, (II-3)
i i
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where I is the total mass zm., and V.=T,.

ll 1 1
The position vector ?i is the vector sum of the constant
equilibrium position vector, Ei(xio, ¥ zio), and the
displacement vector from the equilibriwz nosition,

FiGxsts vty 250y

(II-4)

i 1 v P

=]
1]
o) |

-
2
v
|

i (II-5)

We now take the origin of the moving system at the cen-
ter of mass of the H-nuclei molecule. This is expressed

by the so-called first Eckart condition,11

sm.T, = 0 (11-6)
;101 ? .

vhich also implies, because of (II-4), that

Zmyfy = 0 and miVi =0 . (1I-7)

i

™M

Since the molecule is semi-rigid and the nuclei remain
very close to their respective equilibrium positions,

it is meaningful to require the second Eckert condition,
< ~ % -— -O
Lmiai r., =0 (11-8)

l.e.y the noving system shall be "attached" to the
nuclear equilibrium configuretion.

Eq. (II-8) also implies, again through (II-k), that
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g 3,%V; =0 and.%miaix Fg = 0. (I1-9)

;nl

i
The second bckart condition means that there is no rota-
tion of the system as a whole relative to the body-fixed
axes, since eq. (II-9) implies that the internal vibra-
tory motions do not produce any rotational angular
momentum of the molecule as a whole relative to the
moving system. Howev;r, the particles may still rotate
on infinitesimal orbits about treir equilibrium positions.
The Eckart conditions are six linear constraints on the
roving system and the displacement vectors Ti’ and yield
useful simplifications of the kinetic erergy expression
(I1-3).

The first term of (II-3) is the translaticnal
kinetic energy, which is non-periodic and is related to
the temperature of the molecular ensemble and the
Doppler broadening effect in the spectrum. The trans-
lational energy is thus not of immediate interest in the
vibraticn-rotation problem and can be omitted from the
kinetic energy expression.

The second term of (II-3) is the rotational energy and

can be expressed as
(T 48+ 2 I ), (I1I-10)

by defining the moments of inertia I, and products>of

inertia I.,(~#¢) as follows:
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I, =7m(5%+ v, (1I-11)
< i
I, =-omX, 5 (#) . (1I1-12)

The indices >, {, and 1 are cyclic and each ranges over
Xy ¥y and z of the "body-fixed" coordinates, i.e. over

Xy, ¥y and z of the moving system above.

Employing (II-4), we can express the moments and products

ol inertia eas

I,,=10 +2:m (0 0+, % ) 4T (7% 12)
" i 1 i i
(II-13)
s = 1° - « O > C 'Yy o A IR |
I..=1.. g'mi(‘i TR AR 481
(I1-1k%)

where Ii and I?; are the equilibrium moments and
X AR

products of inertia, respectively.
The third term of (II-3) is the vibrationel energy and
is equivelent to

1 - s 124 1244 12

2.imi(xi' +yi' +ui' ). (II-19)
It is convenient to assume a mass adjustment transforma-

tion on the displacement vector end to express the

i
vibration energy by mass-adjusted coordinates, Sjy @s

(I1I-16)

where

N

- ' -7 ' -
Sy = myxq ', Sp = myyy'y Sy =Mz,
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S]+ =(Iﬁ2X2', R XN ’ S =‘—Fn Z’:' . (11-17)

The fourth and fifth terms of (II-3) can be shown to
vanish by tre first Eckart condition.

The last term of (II-3) 1s the Coriolis term and repre-
sents the vibraticn-rotation interaction. By the second

Eckart condition the Corioljs term can be written as

(d'e (imi“i) "i) . (II"18)

Thus the kinetic energy will be

-

35 -
2 + ° C‘m

T=FT..2+ BIL izl T
> (II-19)
The general potential energy is composed of an
"internal" potential energy due to tle time-averaged
electronic force field and an "external" potential
energy. Asswaing the overell molecular motion to
proceed in force-free inertiasl space, the potential

energy, V, is a function of the internal coordinates

-~

i
expand the potentiel energy in a Taylor series about

only. Since the si's are generelly small, one can

the nuclear equilibrium positions,

31&' . STy, ’5\‘/
V=V, +5 (%) s, +32( 7 %) s.s, +17 (—) s.s.s
© imqm 0T TfyesiestoTiTy ey e 0Tk

+ooo ° (I]"”)O)

M\
However, the force at the ecuilibrium positions, (jf)o,

must be zero, and the constant term V, 1s of no sig-
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rificance here, and can be set equal to zero. Therefore
we vrite the potential energy &z the sunm of the quad-
ratic simple harmonic terms, and higher crharmonic

correction terms,

V = -l'};f. .S S, +7 :_Y f . .5, Yoo (11-21)
EEIET RSP IET St S RNt e ’
wiere the force constunts £ are defined as
£30 = (71 (I11-22)
ij = U T -cc
- (v _o2
fijk (dsiéi«r’)o’ etc. (11-23)

Vo
Let us introduce coefficients {.. which transform

the coordinates si into linesr combinations of the

normal coordinatcs of vibration Qs. Then in the asymnet-

ric molecule in which essential degenerate modes of

12

vibration are prevented due to insufficient syrmetry

the mass-adjusted cartecsian displacements will trans-

for as
n
[y ! =Zg;sqs, i=1, 2, eeey I (I1-2k%)
> ¥=Xy Yy OT Z ,
or also
n .
= =;%i:%';; % (11-25)

The index n 1s equal to the total nuwaber of vibrational
mecdes of the molecule. Since tlie matrix of the co-
efficients has the normalization property, we have

[ (11-26)

‘is
- ™ >~
Aiﬁ «isids?

2ss!
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The ockert conditions constrein the ,-matrix by the

following relatio.s;13

ifﬁijfs = 0 (II-27)
.Li'm.i(?i‘:‘i.s - Jilis) = O . (11-28)

Tuliing the body-fixed certesian coordinete axes as the
princip¢l axes cf the equilibrium inertia eliipsoid
cnd substituting (II-24%) into (I1-13) and (II-14%), we
obtein expressions for the instanteneous moments and

products of inertia in terms of the nermal coordinetes:

Law = IO, +78770g +7 A7, > (11-29)
s ss'!
I.a -:;aSVQS +§évASs'Qst' (-7, (II-30)

vhere 18“ represents the principal equilibrium moments
of inertiz, cnd the constunts al® , al’ , A;;, and A;g'

are defined by

N< - o .y O.v
a " =2 m (2 0 o+, 00)

s Pl DA SRS PRRE U P A
a":‘ — ~n-1 ( o ., + i, o ~ )

= -4:." S\ S ’ 9

S {1 1 71s i "is (11-31)

~ 7\ - L. < .
A =, ( N i + .-

ss' 3 'is’'is! bigiist” ?
A’\ S = - v?— .'\ -

ss'! G 'isis!

i
Substituting (II-24%) into (II-16) and utilizing (II-26),
the kinetic vibrctional energzy will be in normal coor-

dinates,
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Y Q . (I1-32)

The Coriolis term may be written by (I1-24%) and (II1-295)

&S

7‘5;‘”13'?1 =IT, ©es19,8g (11-33)
where the Coriolis coupling coefficients §;;. are de-
fined as

' _ < :3 e _59 e T_

’sst T i(‘is'is' ‘is'’is ) (11-3%)

Thus we can write the lkinetic energy of (II-19) as

The potential energy of (II-21) becomes in terms of the

normal coordirates

Q 2 + E: S"Q Q Q ” + eee ) (11'36)

V = o=
‘é 's¥s sstsh ss sts!

where,Rs is the square of the s-th normsl frequency
and where the k's sre the transformed force constants.

These are now functions of the f'sy, m,'s and jgg's

i

From (II-35) and (II-36) one finds the conjugate
angular momenta, P., for each =) and the linear momenta,

ps*, conjugate to Qs &

= 2T - =
P, =§;d- I+ I"E NV Id/u{ "‘S{S )SS'Q Q -
(II1-37)
T T e (11-36)
ST B s S
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Swaning (II-37) multiplied by «_ over - @nd adding
(II-38) nultiplied by éq and sumned over s, we obtain

twice the kinetic energy,

2T = P. . + 2 p *Q . (II-39)
- s S s

Substituting ¢_ from (I1-38) into (II-39), we have
S ?

T=4(B -p ) +bpg*2 (11-L0)
S

vhere p. is an internal angular nmomentun arising from
the vibretional motions whithin the "body-fixed" system,
and is equel to (= ‘L:‘SS'Qsp;')'

ss'!
One can show by manipulating (II-37) and (II-38) that

P.-p = 1! - I -1 , (II-%1)
where ~ >
4:_'( = IJ‘" -Z ~S—S»'\s’: QS') (II-L*2)
Ir = (57 7 st . (I1-k
R Im[} +z.s(§/' sas Qs')(g'qs/s QS') ( 3)
Eq. (II-41) can be written in vector form,
F-F= 4 "'2 (TI-44)
A’ “.‘
where
r 1"'1
ll[ = Il _Il _Il N
o P xx Xy Xz
T-I' I -1
R £ Yy yz (II-45)
-1 -1 I
. 2ZX zy 2z |
The inverse equation to (II-4%) is,
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S=0 (F-P (I1-46)

where the elenerts of “u.! are

*

Joo= (I I+ IV TN ), (F#) (11-L47)

to= (II I'l - 112) (II-Lr((j)
with '

U= cdet !, . (II-49)

Combining equations (II-36), (II-40), and (II-46) we
hcve an expvression for the totzl energy in the classicel

Hamiltonian form,

.2 -
H=do o (B-p )R- v hipg? e %;fsqsz
+ 7.k RQQ ,Q + ... (11-50)

s‘s's":SS'S" s s! st
Podolsky“+ considered the problem of obtaining the
quentw: mechanicsal Familtonien corresponding tc the
classical kinetic energy expressed in terms of momenta,
p;, conjugate to a set of generalized coordinates qi.

If the classicel kinetic energy has the generzl form.

T = %;;gijpipj ; (II-51)
J
he showed that the proper quantum mechanical Hamiltonian
should be
H=lgbmpeldgp gt 4 v 11-52
=:8 7 DpyeTg TpyEt ¢V, (II-52)

1]
where g = det gtJ} . Eq. (II-52) is subject to the

requirement that its eigenfunctions shkould be rnormalized

in the configuration space qi's,

| -

J 4" e dq1quoo.dqn = 10 (11-53)



-17-

From (II-50) the kinetic energy may be written in ttre
form

T=436¢ PP, (II-54)
ij J

by denoting

Py = Px-px ’ P, = P -p

P)+ = p1* ) PS = pﬁ.* b o e o ) P = p *, (11-55
and

14 f / iy
IG Ji = Uv;j 0 | , with G = det G7¢| =M, (I1-56)
\ 0 \'I]

where |I| is the n x n identity matrix.
Then according to Podolsky the proper quantum mechanical

Hamiltoﬂian would be
+ V. (I1-57)

However the conjugzte coordinates to the momenta Pi do
not meet the requirement (II-53). Thus we should trans-
form P; into tre proper form to satisfy (II-53).

After this unitary transfomation 1s performed, the

qQ
Hamiltonien (II-57) will become’

\

L S L ij - - TS
H = 3G* 2 ((8T5P;S¥)GHIGTE(STEP.S%) 6T + v, (II-5€)
i3 J
. =1
with S = (sinZ) .
Remembering that P3 is independent cf the Euleriean
angle 23, which is the engle Letween the z-axis of the
body-fixed system and tre Z-axis of the space-fixed

system, we finally obtein the proprer cuantun mechanicel
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Hamiltonien sas

H

]
(SIS

MFZ (B -p )i,

_1 1 3 -1 =
HCE(P =p )t e p % T X8
' S

+ Q2 T Ky R Q
S

+ I-59
sstgh SS'S" 's's'"s" tet (11-59)

vhere PY and Py here represent the modified angular
) - \E - 3 =}
momenta (sin ©)*P,.(sin 5) * and (sin 8)‘Py(sin ) 7,

respectively.

In order to calculate the vibration-rotation
energies of a molecule we should solve the Schroedinger
equation for tre Hemiltonian operator (II-59).

However this Hermiltenian does by no means lend itself
to an exact solution of the Schroedinger equation.
Hence to make further progress, the Hamiltonian (II-59)
has to be developed in crders cof approximation.

Since the desplacenents ai are small relative to the
equilibriur. coordirates cx:, the Hamiltonian (II-59)
can be expanded such that tie zeroth order Hamiltonian

will be the equilibriwr: Hamiltonien. In the follovirng

chapter we will perform this expansion.



III. DEVELOPMENT OF TH=E HANILTONTAN
When we expand the Hamilterian (II-59) we get
the following operator expression,

H=3Z ‘' ,P P =~ 1 (pop,+ 1, p )P+ 15 hs) /.u ¢
~ . ~ R - T i ;.«“:‘ x ~ 3

o

+ -,i-}“'pg‘? + N +V (I111-1)
s
where
) BR R s -’.1' >
A=t s (o o TEGQ )+ u T (pr 5 ().
ZE A 2 S S S

The terms ol (1II-1) represent the pure rotational
energy, the Coriolis coupling energy, the first correc-
tion to the Coriolis energy, the vibratioral energy,
the second correction to the Coriolis energy and the
potentiel energy, in this order. ¢

Since 3y and ;¢ are functions of the normal co-
ordinates which, in turn, are furcilicns of the dis-
placenent vectors from the equilibrium pcsitions, it
is possible to develop (/. and uv in power series of the
normal coordinctes fer the develcpment of the Hamiltonian
in the way mentioned at the end of Chapter II.

Let us wvrite then,

(— - AN e Yo’ S RN
fen = s L7 +§£‘4-Qs +~‘§1ss'QsQ
-

- +0 S

S e ’ s

| ) - i - A\
L{ - — (r +\ I +oco) (IlI- )
ME e 1T ’ 7

TR '
where

2fo 10 (I11-%

> L ~ .

-19-
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“<s s : (III-4p)
ol 27
SnE o 03 s o™ £ ’? - a . a, Oy
-css! ASS' +;,|/58")S'S"+‘Z‘ _S_I_o_{s_ . (III-’-PC)
We also have that
¥ = (III1-%a)
Ny
o=y s (I1I-5b)
2 I0 -

The index . ranges over Xy, ¥y &nd z, end 123 will
vanish forrx#p if we tzke the axes of the body-fixed
system as the principel axes of the equilibriwan moment
of inertia ellipnscid. Substituting the expansicns
(III-2) and (III-3) into the terus of (iII-1) each of
trhese terms will hLave a series expansion in the normal

cocrdinstes. For exanrple,

S +z‘f§é,QSQS,+... (IIIf6)

ss
Ilow regrouping terms by estimeted orders of magnitude,

one gets the Hamiltonian in the series form

H=H +%H +>24

. : 5 +u3H3 + e (I1I-7)

wvhere 7 1s & numerical perameter of smallness.

We expended (I1I-1) such that the zeroth order
Hariltcnian HO would represent the "rigid-harmonic"
Naniltorian of the rnolecule, i.e., it represents the
energies of a rigid rotator with the nuclear framework

of the molecule in its equilibrium position plus the
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energies of vibretion from a potential which 1is a
quadrctic form in the normal coordinates.

Replacing 1" by its value 185 , and Q_ and p; by
(‘h2/,«_s)%qS and (?s/hg)% respectively, we obtain the

firect order terms, Hy, the second order term Ii,, etc.,

2 1
i, = %;%5_ +(R/2)32_"(p2/R% + ) (III-Ca)
1Y, s S S
BRERTS f‘2 Py P
S Ll I,I‘ PO € . - D Ba
H1 - 20(%‘2”1“0( I'&, (As)qsg Pﬁ -"Zz quj
+hC Z.' "Kss's"qsqslqs" (III-Sb)
ss's
no= 43 = _O_T;° (5b' )‘i'q q.,P P+ M=b~
‘2 JSS'N:‘ I““IJ’X‘B /\S,)\_s' S S' x 55 “x l’—‘)(
R R A
-0 L ()% (p g tap )
=g lem < N o o
+ hc 2_', " ";KSS'S"S'" qsqslqansul (I1I-8c)
5s's's
vhere
6 I
ncK = X (—Ah E (I1I-92)
ss's" ss's" AgAggn ’
hcK ’ﬁ8 )* (III-9b)

\ =k (—
sstgtgmt sslsg'ts™ "s"‘s")\s"_\'s"'

and the internal angular mouenta may be expressed as

~ s
P07 2 Sesrgr/i) agpgy (III-10)
SS

Higher order terms of the Hamiltonian are given in the

reference.3

The energiecs of the system represented by thue
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Hamiltonian (III-7) can in principle be calculated in
successive orders of approximation by the perturbation
method., The zeroth order energy would be calculated
only from the zeroth order term H,. The first order
correction energies, En(1), are computed only from the
diagonal matrix elements of H1. In the absence of
degeneracies, the off-diagonal elements of H1 will
contribute to the sccond order réther than to the first
order correction encrgies., This means that the off-
dilagonal meatrix elecments of H1 complicate the computa-
tion only of the second order correction energies, Eiz).
To calculate the energies to the second order it is
desirable to trensform the Hamiltonian to a form more
convenient for the per%urbation calculation. Van Vleck
ugrested the so-called contact transformationt5 By
~a suitable unitary trconsformation T, one attempts to

find a Hamiltcnian II',

H' = THT™! = H_' 4MH ' +2Hy' 4 .. (III-11)
such that the zeroth order term and the diagonal matrix
elements of the first order term of the Iamiltonian
remein unchanged while the off-diagonal elements of the
first order term of the transformed‘Hamiltonian would
v:znish comnletely. This unitary trcnsformation would
lezve the wave functions unchanged, and hence under
this transformation the eigenfunctions of H, would be-

cone eigenfunctions of Hj+H,', which is now "equivalent"



-23-

to a zeroth order term. Since there ars no off-diagonal
matrix elements of Hy', we can treat H2' as the first
perturbeation term and get the second order correction
energy by teking the expectation values of H2'.

Thus, except in the case of accidentzl degeneracies,
it is advantageous to consider the partial diagcnaliza-
tion of +the Hamiltonian in the vibrational quan-
tum numbers by use of the contact trecnsformation.

This is done by choosing a sulteble operator T which
leaves Hy of (III-Ea) unchanged and gives an H,' inde-
16

1

pendent of the vibrational onerctors.
The simplest method of obtaining the suitable form of
T is to set T = eiAS, where S 1s called the Herman-

Shaffer operator. Then,

H' = THT™! = (1+iAS-§x2S2+...)-(HO+AH1+A2H2+...)

- (1-175-2:25%+...), (I1I-12)
or
Hy' = Hy (II1I-13a)
Hy' o= My - i(H 8-81,) (III-13b)
Hy'! = O, + #17S, (I4+I4')] and so on. (ITI-13c)

The requirements for a suiteble contact trensformation

are thus that we have for all vyl

(coeVgeeo [1(H 8-SH ) |eeevgee.)=0 (III-1ka)
(eoevVgeoo [ 1CUIS=SH )| oeovioes)= (IIT-14b)

(oo.vsooolii1lovlvé.'.) for vs¢vé .
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The proper onerators S were found by Ilerman and
Shaffer.17 However, if we perform the contact trans-
formation, a part of the Hamiltonian forimnally belonging
to H,' becomes of the order of magnitude of H }4.

Hence we need to regroup the terms in true orders of
magnitude after the contact trensformation. This

treansformed and regrouped Hamiltonian is

A= byt e by eyt e byt (III-15)
wnere
h,' = H (III-162)
% o
h ' = &3 :Pf)(
! <TI0, (III-16b)
! =
2 i%(g (D)2 RP P-+a%éd(2)yabcdqaqchqd
aab<c<d
+5 1 (5P p 4,0, )B Pe
p ab (2) aPp”* (2) Tapda ¥z
a<hb

+ Z 3 (aa,p P*PPg,a,) + Hy'*
abcd(2) 80 a~b"crd d*a’b 2
atb,c4d

(III-16c)

where H2'* includes all terms of Hy' non-diagonal in

one or more vibrational quantum numbers,

Hy —4:;;((2)Ya)p P.P.P f:;;c(2)ya P Dy,D
a<bsc
+5 q((z)be) (a_a.p +p_a_a )B. (III-17)
a‘-;b

pi of hy', which is éé;fs_ s~(qs*psc'q dps~) in the
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general case, vanishes for asymaetric molecules due to
the absence of degenerate modes of vibrction, because
§;§,sa= O in asymmetric molecules since the index <
which enumerates degenerate modes of vibrction for
given s, =c'= 1, The coefficients Y are complicated
functions of the molecular constants and detailed

expressions for them are given in the litered:ure.h"6

In order to calculate the vibration-rotation
energy to the fourth order, it is necessary to apply
vet a sccond contact transformation 7 to the Hamiltonian

e
it

T + S + ';\2 + 3- + -
do +\H1 + .H2 +A\H3 + oo (III-18)

in such a manner that Ho+ +/\H1+ +)?H2+ will now be
diagonal with respect to the vibraticnal quantunm
nunbers in the representation for which Ho is diagonal
in the vibrational quantuun numbers. Again one observes
that the trinsformation will have the effect that cer-
tain terms of H+ which formally arise from the operator
Hm+ contribute only to the order of magnitude of Qm+T‘
Hence it is also necessary to regroup the terms of the
twice transformed Hamiltonian by true orders of magni-
tude. After this regrouping the Hamiltonian is of the

form

BT =TH07= byt o4 gt 4yt 4 ngt el (T11-19)
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By the recuirements for the contact transformetion,

+
1

venishes for asymnetric molecules. The detailed ex-

ho+ is the zeroth order term Hj unchanged and h

pressions for h2+, h3+, and h4+ are given by Amat and

Nielsens’6 who have found the required transformation.

The Hemiltonian (III-19) can be used to calculate
vibration-rotation energies to the fourth order cf
enpproximation by utilizing only those matrix elenerts
of (IT1I-1¢) wnich are diazonal in all vibrational
quantun rumbers v., because h,%, hy*, ard hy" are al-
ready diagonal in all v, and off-diagonal matrix
elements in any v, of h3+ and h)+ will contribute to
thhe ernergies oniy in orders of anproximation higher
than the fourth. The Hamiltonian (III-19) is diagonal
to @11 orders in the rotational quantwn nu.bers J(total
arzular momentum cuantwn number) end M{magnetic cuantun
number) but it is not diagonal in the quantum number K
in & symmnetric rotator representatio:n. In particuler,
for asymretric molecules hy* is not diagonal in K, and
no closed for:i generel transformetion is known which
would bring the zero-order rigid asymmetric top

deniltonian to the diazonal form. This is, of course,

ct

h

o

escentiel fact wvhich prevents one from obtaininz «n
ana_.ytical e:pression for the rotation-vibration
enerisies of esynmetric molecules in the general case

despite the perturbation formelism,.
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Iieglectin; components which are off-diegonal in
the vibrational quantun numbers, we have the following
tynes of term to the fourth order of wupnroximetion in
the vibretion-rotetio: Hamiltonicn for the asymmetric
molecul’le:

R >
(@) ()T ()5 S Tan®F

AN

zv0 (11I-2C)

: T(4)

=, I z
()™ ()7 ()

(e) ZrZP,

e clp 3 LoDl ol p2
TP T Po Lr-P VA
(1) (2) o

(3) (2) (L) ()

vierz we hive used tne following notetion: re

Zr2P2,

sta:.ds
for »roducts of any two vibretional operators ggyay,

H r% Cfor any product of four vibration-

D ap .
PPy A5Ppr PGy

zl operators, etc.; P for any product of 2

¥ Py’ and
dB.-..-Za"bl,...’
+ (n) a’b’...

in H as the coefficients to the various operators.

end (n)= stands for which appear

St
The zubscript (n) of (n)Z recpresents tiie order of ap-
proximation of the corresponding term. We also he&ve
omitted the summation sign over the rotatiornal and
vibrational indices. Detailed expressions of (n)z are
given in thre references,5’6 and we will write down
explicitly only those (n)Z which will be needed in the
present work and as the need arises.

Teriis (a) constitute pure vibruational operators
including anharmenicity corrections, terms (b) constitute
pure rotetional operators including centrifugel distor-

tion corrections, and terms (c) may be interpreted as
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vibration-rotation interaction terms end comprise such
contributions as the vibreational corrcctions to the
rotetional and centrifuccl distortion constents.
Generslly the vibrational frequencies are 100 to 1000
times larger than the pure rotationel frequencies.
Therefore, aé discussed by Anmat and I‘Fielsenl8 the
§ubscript (n) of (n)Z indicates the order of megnituce
of the contribution by the term correctly for J=10 to

v=30. If J=1, then such terms as (]_F)Zr2P)+ 6

and (M)ZP
sihhould nore prcperly be regarded zs contributions to
the eighth arnd tenth orders of magnitude respectively
rether than to the fourth order indicated by the
subscripts. In any cazse, inclusion of all of the zbove
tyves of term will be sufficient to fourth order for

6 need be

all rcasonable J, and terms such as (M)ZP
considered in the fourth order onliy for large values
of J., The relative importance of the various types of
terms for given J can be ascertained from Table I of
the reference 18.

In cases of resonances, in which two or more
energy levels arc either closely spaced or actually
degenerzte, our preceedin; arguments must be modified,
since the contribution frowm the relevant operators hn+
will more v»ronounced then in the non-degenerate case,

If two energy levels are very close, the off-diagonal

matrix elements of hn+ will contribute to the energy
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in a much lover order than the 2n-th. In the general
molecule there cean occur two kinds of resonance. One
is the accidental resonence which is dus to the proximi-
ty of two interacting levels with different vibrational
quantum numbers yet having neerly the same energiles.
Coriolis resonance and Fermi resonance are typical
accidental resonances. The other kind of resonance is
the essential resonance between levels which have the
same vibrastional quantwa numbers but different internal
anguler momentum quantum nuabers, e.g. 1, or different
I quantum numbers. In the asymrietric molecule essential
degeneracies arc cbsent because of the low symmetry of
the molecule. Therefore in this work we need to con-
sider only the accidental resonances. In fact, since
it is very conplicated to account for all possible acci-
dental de;ereracies, we will assume thot our molecule
is free of accidental resonances, or that, if they occur,
the energy levels involved in such resonaices may be
excluded from consideration. Then the Hamiltonian
(III-19) is quite appropriate for the czlculation of
energies to the fourth order.

Terms (a) of (III-20) are associzted with the pure
vibrctional energies. We shall denote their total
diagonal contribution to the Hamiltonian by hv+*. This

hv+* givcs the vibretional energies Ev to fourth order

and will not concern us further, since we are principally



-30-

interested in the rotational level structure built

upon narticuler vibrcactional states rether then in tre
detailed cclculation of the pure vibrational structure.
From the general vibretion-rotction Hamiltonian we find
for esymmetric molecules that the (1)Zr2P-type ternms
have zero coefficients (1)2, and that the (B)Zrhp and
(3)Zr2P3-type terms have no ncn-zero mcatrix elements
diagonal in all Vg Thus the odd crder terms which are
a source of considerable difficulties in sym:etric and
spherical rotators may be excluded from considerafion

in the asymmetric rotator case. Thus, to fourth order,

we have:

H = ny** o+ bt o+ ny” o+ ntT, | (II1-21)
where

+ _ 2 _ 2 5 2 5 2

ho = (O)AP - IL)X + B}"y + Cr’z ) (III"22)

" = (520202 4 (2)zpl+ , (II1I-23)

m** = zp2 +  urtp2 +  zp2pt 4 zpb

b (%) (%) (%) (%)

(III-24)
The asterisks denote that terms of hv+* are to be
omitted in h,** and h4+* and also that terms of b * not

diagonal in all v, are to be omitted in h,*".



IV, Z2RO ORDER ASYIIisTRIC RCTATOR HAMILTONIAN

We return to the part of Hamiltonian (III-8a),
which remained unchanged under the two successive
contact transformation. The first summztion term of
(I1I-8a) is the rigid rotator Hamiltonian and the
second term is the Hamiltonian of n uncoupled simple
harmonic oscillators.

The vibrational portion of (III-8a) was
Hyy = 30T (0282 + o_2) (1V-1)
ov g S S g /¢

With the aid of the vibrational metrix elements

(vgiag2] vg) = (vg+ %) (IV-2a)

(vg|pg2|ve) = BE(v + ), (IV-2b)

we obtain the vibrational energy of the molecule to

zero order of approximation from (IV-1) as

iy
) = RS 2 1 -
Egy = ﬁ;>g (vs+ ) (IV-3)
We can write (IV-3) as

Eoy = hezug(vg+ 1), (IV-k4)
s

where Wy are the normal frequencies of oscillation

expressed in em™ 1.

The zero order rotational Hamiltonian Hor can be

written as

= 3 (4P 2+ =P 2+ 1 p2 IV-
HOI' f(ﬁj{;{'x 'f?';y Tg;z) ( 5)

-31-
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vhere X, y, and z represent the directions of the
principal axis of the inertia ellipsoid in the body

fixed coordinate system. With the apnreviations,

1 1 1
A=%5m—,B=30",y C= 3570 (1vV-6)
2T%x * © T 24 219,
Hopr will be
- 2 2 2
Hy, = APS + BP,® + CP,< , (IV-7)

and the definition of the asymmetric top molecule
implies
A#B#C.,

We will assume A>B>C in this study. This ordering is
not always the conventional one, but this work can be
brought into azgreement with any of the customary con-
ventions by proper interchanges of A, B, and C.
The total angular momentum can be expressed as

P2=p 2, P2 +p%=p2+p2+P° (1-6)
where X, Y, and Z are the axes of the space-fixed
Cartesian coordinate system. Each component P, Py, and

P, commutes with each of P, Py, and P,, and
(By, B,) = -ifP,, ¢, 3, and ¥ cyclic, (IV-9)

(P, E

7 +ihP., s, -, and ¢ cyclic, (I7-10)

in which =~, 3, and r represent the body-fixed system
coordinates and «, #, and ~ represent space-fixed

system coordinates. The total angular momentun P2 and
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Pz comnute with H ., but PZ does not comaute with Hor
for the asymmetric molecule. Hence the eigenfunctions

of the asymmetric rotator will be designated by }5F

and a set of (2J+1) eigenfurctions (4. will be asso-
ciated with every possible pair of quantum numbers J

and M (12 £J);

7 (IV-11)

- %2 ,
- = A<J(J+1) LJM R

P, yp. =AMy . (IV-12)

RS Jl

The (2J+1) eigenfunctions associated with a given pair
of values J and M would have been identified by the
quantum number K in the symmetric rotator case, since
for the symmetric rotator we have that P f. . = thJKM’
i.e.y, K is a "good" quentum number.

Wang16 wrote qﬁy as a linear combination of the eigen-
1
functions of the symmetric rotator, T
k = I -
Fr = 28y Py - (1v-13)

Substituting (IV-13) into the Schroedinger eaquztion of

the asymmetric rotator we obtain

. _ <~ )
Hor %CI{?J};I-': = Eyp ‘”KCK*J};I»: (IV-1k)

and from the condition for the existence of non-trivial
solutions of (IV-1k4) we obtain the secular equation for

each pair of J and Il as
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Dot | kv = Bop x| = O (IV-15)
vhere
Hgr =) DS For Payng AT - (1V-16)

In principle we can now calculcte the energy levels of
the asymmetric rotztor from egq. (IV-15).

In the symmetric rotator case we have

2 2
) Gl = K-J(J A V162
tJKM LA +1)’$Jhﬂ (IV-162)
— X b
Py P = B 2ox (IV-15Db)
— (J. _
Pp¥ o = Mopp (IV-16c)

Taking the phase angle for the angular momentun conmpo-
nents such that

3

Y41)=(E+1| P [ X)) =R [(J=E) (J+i+1)] *  (IV-17a)

(K| Py

"};
(k|3y|K+1)=—(K+1}r3lh)=- %ﬁ[(J-K)(J+h+1)]“, (IV-17D)

the non-vanishing matrix elements of Px2’ Py2, and Pz2

are given by

(112, 2] )= Py  1)=10%[ 3 (T+1) KT (IV-182)
(i P2 K22)=- (1| P 9 1:42) (IV-18b)

o, B o 1
=R2 ((J31) (TFK+1) (TFn+1) (J3142)) 2

(KI1P,°|1.)=R°K>2 (IV-18c)
From these matrix elements we obtoin the non-vanishing

matrix elements of [H, ;] for given J and I as
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(5 [Hy | K)=3(4+B) 3(5+1)-K2 R2+Ch2R° (1V-192)
(KsnorfL+2)=(L+2{}or|K) (IV-19b)

=302 (4-B) [ (J=Km1) (J-K) (J4141) (F40+2) &,

£q. (IV-15) can de simplified dy taking advantize of the
symmetry properties of the wave functions of the system.
Since the inertia ellipsoid must be invariant under
rotation througch an angle T around any principal axis,
there exist symnmetrized symmetric rotator wave functions
inveriant under these symmetry operations. According to
tullikenl? the symnetrized wave functions belong to one
of four symmetry species, designated by A, By, By, B, ,
which are associat>d with three rotations C,, and the

identity operation I. The relation between the sy:rmetry

species and the rotational operations is as follow:

Syminetry operators

~v 7 ~Z T
~ 1
~2 Ca v2
Ry + + + +
Symmetry 3 + - - + (IV=-20)
species <
5, - + - +
J
3 - - + +

where + znd - desirnate vhether ths wave function is
symmetric or antisymaetric under a given operation.

Tne symmetrized wave functions ¢§p of the symmetric



rotator are forned by

s _ 1r.Xx _1)P ~X ° =
(IV-21a)

,y S - ';X (-
100 = 4% for 1.=0 (IV-21b)
vhere 4§=(¢§yv:('1)q’?J1y and q=r. when K/I or q=ii when

K<{M,

From (IV-13) we construct the symmetrized wave
functions of the asymmnetric rotator using the symmetrized
vave functions of the symmetric rotctor of (IV-21), and
get the corresponding secular equaticn to (IV-15) ex-
pressed by matrix elements in the symmetrized symmetric
rotator representation,

S _<opnpS .S
\l/JI-: —%CR liJ}:‘-' (IV-22)

I
PN

-3

Det 'Hix'p'Eorgfhh'| =0. (IV-23)

We find easily that the matrix JHEL'p: will split into
two submatrices {HEK'OJ andinx.1}. Designating ;HEL'O]
and iHiL'1J by [+’ and | -! respectively according to

the sign of (-1)p, the matrix iHﬁy.I will be of the form

s .S

Cxro SN

|

hS (+] |

L0 (J+1)x(d+1) | O |
. f ‘ o (IV-2k)

‘1’}/ | 0 : L"J
S - J xJ

L :
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Wang29 hes shown that (+] and [-) can be factorized into
two subnmetrices each, by collecting elements witih even
K values and with odd K values. By performing this we

can transforn [HKK.J into a four-step matrix

L | (1V-25)

o~

where E and O indicate even K or odd K respectively,
whereas + and - signs indicate p=0 or p=1. According

to (IV-29), the secular equation now factors into four

S
Jl,p

associated with a given "step" belong to only one of

equations of lower orders and all eigenfunctions 7}

the four symmetry species. We give the form and the
ranks of E¥, E7, 0%, 07 in Table 1, and the symmetry
species of their eigenfunctions in Table 2.

Although the orders of the factored secular equations
are lower, closed form solutions of the encrgy eigen-
values &are possible only for a few small J values. In
most cases the calculation of the energy eigenvalues can
only be made by numerical methods except in cases of

small asymmetry for which case various approximation

methods are available.
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Table I EY, E, 07, 07 of asymmetric rigid

Iro

tator.

+_f AT =~ __
E'=" Hyoi2H,, 0 O . 1 E"={Hy,, H, 0 0 .
220 Hpp oy O o Byo Ay My 0 . '
H, H . H, H H .
| R ‘ © 0 Ten Tos oo 7|
. i, 0 . 0 0 U, H.. .|
B T TR g6 Mep * !
n : i
L ] L) L] * .} \ L] L] L] [ ] L] ,
+ - -0 - N
0 -%(H11+{11) H13 0 . 07 = (H11-H41) h13 0 .
| H31 rI33 H35 . H31 H33 H35
0 H H . 0 H H .
| 53 55 53 55
L [ 2 L ] [ ] .J L L ] L] L .
Table II Rgnks and symmetry species of E+, BT,
0%, 07,
rank symmetry species
step K P even J odd J even J odd J
EY even 0 I+ 3(J+1) A B,
E  even 1 +J 4(J-1) B, I
+ 1 RN
0 odd 0 id L (J+1) By BX
0~ odd 1 ¥ 2 (J+1) B B

”
L
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o
According to Ray‘1 the nuwrerical evealuation of rigid
asymmetric rotator energies can be simnlified by

introducing an asymmetry parameter =,

P = 2BZfEC) , -1l <4, (IV-26

If k=-1 we have the case of the vrolate symmetric
rotator and if K=1 we have the oblate symmetric rotator.
For K =0 we have the '"most asy metric" rotctor. Denoting
Hyp by its associzted energies E(A,B,C), we find fron

(IV-5) thet

E(aiq+b,aB+b,aC+b) a(APx2+BP 2+C?ZZ) + bP2

y
ai(4,B,C) + BR2J(J+1). (IV-27)

If we substitute

a=-2., b=-A*C, = aB+b (IV-28)
-C A-C

and rearrange (IV-27), we have E(A,3,C) as
E(A,B,C) = A%QE(H) + £2C5(341)n° (IV-29)
vhere E(¥) 1is E(1., ,-1).

E(A,B,C) for fixed J cen have (2J+1) values, and
the (2J+1) volues of E(x) as functions of K associated
with the given J can be proved not to "intersect'" when
« 1is varied in the interval -1{(~<{1. Therefore we
cen designate an index T(=-J, =J+1, ..., J) to identify

the (2J+1) energy levels associated with given J,

£’ = A%QEQ(K) + é%gJ(J+1)ﬁ2, (IV-30)
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in such a way that

L J J -
B L) CE S () Cann CE(). (Iv-31)

It can be shown that
EI(=) = -27 (). (1V-32)

Remembering thct one cen assign in the limiting
cases h=+1 and k=-1 to every E(A,B,C) absolute velues
K_, and K4 (wnich are the limiting symmetric top quantum
numbers K) we can identify the energy levels by K_4 and
K1, and T will be found to be equal to h_1-K1. Since
we ccn relate the symmetry species of the rotational
wave function in the two limitins cases to the I. quantum

nunbers, we can also identify the syumetry species of

an energy level by its T value in the followying way:

T __J J-1 J-2 J-3 J=4 ,.,

-
Symmetry | even J | A By By B, A ..

species | |
lOde | B, B, B, A B, ... (IV-33)

vy Px

In combination with Table 2 and (IV-33), we should be

. . ~ ) _J
able to find the eigenvclues Brs 25 q9 By_py eee from
- +

the step matrices E+, 0-, O+, &, E, .. in this order.

Bg. (IV-29) is convenient for numericel cslculations
of the energies of the asymnetric rotator, since we
could essily calculate the energies by obtaining E(x).
However, thec evaluation of E(X) is by no means simple.

Hainer, Cross, and Ling22 give & review of the methods
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of obtaining E(x), ond calculeted®> E(x) for Jz12 for

< from C to 1 by steps of .1. Their eveluation of E(K)
was done by solving the secular equation of (IV-23) in
2 continued fraction forrn., Later workers 2k have en-
larged and extended the Heiner-Cross-Kirng eigenvalue
tables. Also, there exist methods which use Kathieu
functions, harmonic oscillator functions, or power
series expensions in the treatments of tne secular de-
terminants. Such methods have been discussed by Hainer,

2z It should also be renicrked thet if

Cross, and King,
one concsiders higher order approximations, the compi-
lation of eigenvcue tables is no longer rractical nor
even feasible since entirely too nieny verameters are

involved.

Despite the discouraging &aspect of the complexity
of the celculation of the zero order energy eigenvalues
of the asymretric rotztor, we found that one could
proceed tc the consideration of higher order terms with-
out producing an undue amount of additional complexity.
In fact, as we shall show, scme closed form solutions
of the encr:;ies including the centrifugal distortion
effects end vibration-rotation interactions can be given
up to the fourth crder of approximation.

Presently obtainable resolution in the infrared
and microwave spectra of molecules requires that these

higher order approximations be considered if a satis-
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factory interpretztion of the spectra is to be obtcined.
We will undertzke the considercztion of higher order
terms in the following chapters. Since the general
symmetry properties of the Hamiltonian are important
for the further development, we shall discuss these in

the next chepter.



V. GEIERAL SYIITETRY CCIISIDLRATIOINS

The terms of the generasl !leamiltonian may either
remain unchanged or change sign under any of the rele-
vant symmetry onerations which are coordinate trans-
formations (reflectio-;or rotations) which will »nroduc

an equilibrium configuration of the nuclei that is in-

distinguishable from the original one. Recognizing th

éxial vector nature of the anguler mmomentum components

and that the vibrational operators qg and pg must be

e

symmetric or antisymmetric under the point group opera-

tions, it is found that for asymmetric molecule all
terins of the Hamiltonian eare either symmetric or anti-
symmetric under any symmetry operation. Cf course, fo
higrer syrmetries more cormplicited situations arise;
is true only for the asymmetric rotutor point ~roups
thet all irreducible represertations of these grouns a
one-dimensional irreducible representetions.
The Hamiltonianr of a vibroting rotctor must be

inveriant under all sym:etry opnerations of the point

r

it

re

group to which the rotator bhelonss. Hence 2ll terms of

the Hamiltoni&an which are sntisymietric under one or
more symmetry operetions of the relevart point group
must be cbsent from the Hamiltonien for that group.

£1ll ¢synmetric molecules muct belong to one of eight

point rouns. These eizht point srouvs «rz contained

~L3-
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witnin the set of thirty-two possible crystallozrenhic
point groups, and hence ecymmetric rotator point grouns
cen be referred to in thz crystallogrephic lensuege, 1l
one so desires. Thece asymmetric rotator point groups

L 4

and their nomenclature arc swuerized in Teble I1I, where

il

we give the symmmetry onerations for tne various point
srouns in customery notation. The orthorhombic point
groups have the highest symmetry, and hence one could
foresee that the vibration-rotation familtonian will
have its sinplest form for thesce point grouvs. The
monoclinic point zroups have lower symmetry than the
crthorhombic point grouws, but higher symmetry than

the tricliric point zroups. 5 one would expect we
will see thet the order of symmetry is closely recleted
to the degree of conplexity of the Hamiltorien. Tﬁére—
fore 1t is reasoncble to discuss the vibration-rotection
Jamiltonicn for ecch point ;'roup sepncrately arnd we will
do tnhis in the followin:s chopters. )

In the acsymumetric molecule every vibrational mode
is non-cdegenerate, For a given non-degenerate normzal
vibration a symmetry opocration can at mest bring cbout
a simultanzous change of sign of all displacement co-
ordinctes belonging to ¢ given non-degenerate vibration.
therefore a given symmetry operation will chanze the
sigr. of &il the nor:al coordinatces or it will lesve then
&li unchenged., GSirce o nor-degener:te vibration can only

be symmetric or arntisymnetric with respect to any symmetry
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Table III Asymmetric rotator oncint groups.

Crystallographic Group Group operations
nomenclature symbol other then identity operation
Triclinic Cy none
C;=8, i
l'onoclinic Cs=Cqyy, T, Case(a) Cxy)
Cese(d) o(yz)
Case(c) o (2zx)
C, Cry Case(a) Co(z)
Case(b) Cy(x)
Cese(c) Co(y)
Cop Coy0ypi  Case(a) C,(z),0(zy)
Cese(b) Cy(x),0(yz)
Case(e) C2(y),o(zx
Orthorhombie Cov Chy two Ty
V:D2 three nutually 4 Co
Vh:Dzh three mutually 1+ C,, 1,

three mutually + 5
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oneretion which is pormitted by tne symmetry of the
moleculz, our statement about the symmetry of the
vibrational operators in the first parc<rcoh of this
chepter is valid. Ilow, from (III-20) we see that all
vibrationel operators are present in our ilamiltonian
as even pouers only. OSince the vibrationel operators
g and pg are elther symmetric or antisyrrnetric wrder
any symmetry oneration for the asymmetric molecule, the
vibrationzl portion of any onerator term will always
transforr into itself. This means that a2ll terms of

our Hamiltonicn will be syrinetric or antisymmetric
depending onrly upon the syrmmetry property of the rota-
tionel portion of the oper<tors.

To find the symmetry pronerties of the rotational
operators we have to consider the behavior of each
component of the angular momentw: under the possible
syrmetry operations for the csymmetric molecule. The
syrmetry oroperties of the coordinetes end the anguler
momentwa components ere given in Teble IV, where + sign
stands for "syrmetric" and - sizn stunds for "anti-
syrmetric" behavior. Thus we can determine the symmetry
property of any roteticnal oneretor by using Table 1IV.
For example, the operator Pxpypxpz is antisymmetric
under the symmetry cperation c(xy), but is symmetric
under the symmetry operation Cg(x). It is interesting

to notice the symmetry operators G(xy), o (xz), and Cc(yz)
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behave equivalently to C,5(z), Cy(y), and Cs(x),
respectively for the angular momentum components,

The time-reversal symmetry has not been considered
in this study, since we do not expect it to produce
further simplification in our problem.

Table IV Symmetry properties of the coordinates
and angular momentum components.

—
—

Symmetry Angular momentum
operation Coordinates components
X Y z Py Py P,
I + + + + + +
i - - - + + +
o (xy) + + - - - +
6 (xz) + - + - + -
o(yz) - + + + - -
C2(z) - - + - - +
C,(x) + - - + - -

C2(Y) - + - - + -

NI
|



VI. ASYITETRIC ROTATOR HAMILTOIIAI TO THE
FOURTH ORDsER OF APPRONIMATION

The Hamiltonian appropriate for a vibrating-rotating
asymmetric molecule was given to the fourth order of
anproximation by (III-21) in an abbreviation form. In

greater detail (III-21) may be written as

= (hy™+ho*) + BT+ Wy, (Vi-1)
with
+* « Xl gaa 2, “E 2
=5 " ~ !
e R T A D
+7. “F yp p.p P (VI-2)
wixs  (2) v
e — . ~E.bb 2 2.
h)+ = 2; (u)ZPﬂPﬁ +‘_'.‘ o (u)éagoa pb PO(PC
“f ;a,b
< 5 2 aabb, 2, 2
+ -, Z D n
T 20 O Baan® 0 () 2R IR
- - XA 2 ?A",/a 2
+J.,Q. a( (’+) aaa™ . “ eLpa )P P:P Py
+ I (4)ZP.P.P P PP . (VI-3)

As mentioned at the end of Chapter III the pure vibra-
tional energy Ev from hv+* is not of immediate interest
in this study. The zero order rotational Hamiltonian
ho*(=Hyp) was discussed in Chapter IV. Therefore we
willl focus our discussion In this chepter on h2** and

h)++* .

+%¥ . .
The second term of h2 whichh is the second order

“L45-
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centrifugal distortion term, and the last term of h4+*
which is the fourth order centrifugezl distortion tern,
are important for the analysis of the rotational struc-
ture. In most molecules the fourth order centrifugsl
distortion term is very small except at very high J
values. But in some rere cases, notably for H,0, the
effect of this fourth order centrifugal distortion terms
is prominent for the lower J values too. This feature
wos shown by Benedict,25 and by Parker and 3rown.26
Since in most cases these terms give unobservebly small
contributions, and since we want to discuss these terms
in Chapter VIII, we will excludes these fourth order
centrifugal terms in this chapter.

The s=cond order centrifugal distortion terms can

be written as

+> L .. P.PPP (VI-k)

wiere thesecond order centrifugel distortion coefficients

‘,,.. are

1 _ (xﬂl’
4 T,,({.-,g - (2)Y ’ (VI'S)

and where the factor 4+ is introduced in the definition

(VI-9) to bring the 7.. into agreement with the

“vro
conventional defirition of the second crder centrifugal

—_

distortion constants. The coefficients ‘s, @are propor-

tional to



?
b

a‘S
10,10 1° 19,
L\;"

where the molecular constants as

at’
s

(VI-6)

M

were defined by
(II-31). We shall use for 7..,; the alternative nota-
tion (=t~-) where convenient, Because of the non-
comnutativity of the angular momentum components B,
(VI-4) shows that there could be a total of eighty-one
(). Because of (VI-6) many of these are equal to

eacnh other, and one has in fact that

(<02 )=(r i )=Cn 0 )=(n0 )
=(on )= - 2)=(rbi)=C -7 0). (VI-7)
Applicafion of this condition to (VI-4) shows that many
of the summation terms have common coefficients, and
one arrives, &s is well known, at twenty-one distinct
(x2v$§). These are swmarized in Table V and are further
classified into four sets.

Symmetry properties of the operators assoclated
with these coefficients are given in Table VI. It will
be noticed that we have grouped the (xfo) on the basis
of their symmetry behavior. A further advantage of this
classification appears if one considers the position of
the matrix elements of the second order centrifugal
distortion terms in the total Hamiltonian matrix. 1In
the symmetric rotator P2, P, diagonal representation,
wnich was ernployed for the zero order problem in Chapter

IV, the angular momentwa operators whose (« .:) belong
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Table V Tabulation of distinct second order
centrifucal distortion constants.

Ty =1y 25 3y eeey 21.

n (=3x8 Set
1 (xxxx)

2 (yyyy)

3 (zzzz)

L (yyzz)=(zzyy)

5 (zzxx)=(xxzz) I
6 (xxyy)=(yyxx)

7 (yzyz)=(zyzy)=(yzzy)=(zyyz)

8 (zxzx)=(xzxz)=(2xx2)=(x22X)

9 (xyxy)=(yxyx)=(xyyx)=(yxxy)

10 (oxy )= (xxyx)=(xyxx) = (yxxx)

11 (yyyx)=(yyxy)=(yxyy)=(xyyy) .
12 (xyzz)=(yxzz)=(zzxy)=(zzyx) 2
13 (xzzy)=(yzzx)=(zxyz)=(zyxz)

=(zxzy)=(zyzx)=(xzyz)=(yzx2z)

14 (yyyz)=(yyzy)=(yzyy)=(zyyy)

15 (zzzy)=(zzyz)=(zyzz)=(yzzz)

16 (yzxx)=(zyxx)=(xxyz)=(xxzy) T
17 (yxxz)=(zxxy)=(xyzx)=(x2yx)

=(xyxz)=(xzxy)=(yxzx)=(zxyx)

18 (xxxz)=(xxzx)=(xzxx)=(2xxx)

19 (zzzx)=(z2x2z)=(2zx22)=(x222)
20 (zxyy)=(xzyy)=(yyzx)=(yyxz) 115
21 (zyyx)=(xyyz)=(yzxy)=(yxzy)

=(yzyx)=(yxyz)=(zyxy)=(xyzy)
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Table VI Symmetry properties of P R, P, P

associated with

h'
Operator I 1 o(xy) o(xz) c(yz) Cx(z) C,(x) Cr(y)

n=1 + + + + + + + +
2 + + + + + + + +
3 + + + + + + + +
L + + + + + + + +
5 + + + + + + + +
6 + + + + + + + +
7 + + + + + + + +
€ + + + + + + + +
9 + + + + + + + +
10 + + + - - + - -
1 + + + - - + - -
12 + + + - - + - -
13 + + + - - + - -
14 + + - - + - + -
15 + + - - + - + -
16 + + - - + - + -
17 + + - - + - + -
18 + + - + - - - +
19 + + - + - - - +
20 + + - + - - - +
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to sets Iy or 12 may have nonvanishing metrix elements

of types (KIK), (&|K%2), (K|Kkfk) only, whereas sets II,
or II2 operators ray have nonvinishing matrix elements
of types (K{K%1), (K|K*3) only. Also, sets Iy and II,
matrix elements are real whereas sets I2 and II1 matrix
elenents are pure imaginary. I we write the matrix
elements of (VI-4) in the symuetrized syrmetric rotator
renresentation (which was discusscd previously for the
zero order problem) we obtain a mctrix wvhich is Hermitian
and, in addition, symr.etric about the "nonprincipal
dizgonal. After verforming the Wan; transformation,
matrix elements of the four sets of terms will stand in
the following positions in the transformed natrix for

given J:

1 I, II, 114
I, I, | 11 I1,
: (VI-€)
11, . Iz, | 1, I,
11, | 11, I, I,

Y - . . +
If we cdd the transformed matrix of h

o ©of (IV-25), we

liave the matrix reprcsentation of the Hamiltonian of the
asymaetric rotator to the second order. To the four

submatrices in the dia-onz2l sositions of (VI-E€) will now



- 5k=

be added E*, E-, 0%, 07, respectively, of the Wang
transformed matrix of the zero order Hamiltonian. 1In
other words, the matrix of the second order Hamiltonian
would be of the form (VI-9), where E¥, E*, 0%, 0= now
stands for the sum of Z*, E, O+, 0" of the rigid

rotator Hamiltonian, and the corresponding I,'s of

(VIi-8):

; N T
; + !
. | L
1 B | 11, ' II
1 . -
X 2 i 2 1 (VI-9)
! i |
- +

I Iy ot I

11, i I1, ! Ip . 07

If we consider a properly partitioned four step matrix

T which transforms (VI-9) to a basis in which only the
blocks on the diagonal of (VI-Q) are completely diagonal,
we find that none of the I, or II elements will fall
within the diagonal blocks because of the transformation.
Thus only 7, through Tq (set I4) are true second order
constants, whereas 7, through 7, will contribute only

to the fourth order of aporoximation of the energies.

This argument 1s very important, since we shall use it

to good adventage for the fourth order terms.

Because of the inveariance requirement of the
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Hamiltonian, if any Ph-type term of (VI-4) changes sign
under one or more operations of a given point group,

the corresponding («itr§) must be zero for that point
group. Using the symmetry properties of the angular
momentum componeﬁts of Table IV, one finds that twenty-
one distinct ( 7 ‘) will in general be nonvanishing

for the triclinic point groups, whereas only thirteen
distinet (=2¥¢) will be nonvanishing for the monoclinic
point groups, and only nine distinct (x¢~§&) will be
nonvanishing for the orthorhombic point groups. Thus
Kivelson and Wilson's 27 second order centrifugal dis-
tortion treatment of (VI-4) will be applicable to second
order to any asymmetric top molecule except the planar
molecules, where we have linear dependences between
nonvanishing (#¢r:). The planar asymmetric top molecule
will be discussed later.

The remainder of ho** and hh+* comprise vibration-
rotation interaction terms and additional corrections
due to the rotational motion of the molecule. These
terms are not, in general, negligible and will be

considered now.

The set I4 of (¥:-.) was nonvanishing for all

1? Hz

vanished completely for the orthorhombic point groups

asymmetric point groups, whereas the sets I,, II

and one of them was nonvanishing for the monoclinic

point groups. The distinction between 12, I1 112

1’
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elements is not very significant and depends on the
choice of which particular component P, 1is taken
diagonal, or also on the particular way in which the
principal axes system is attached to the molecular
equilibriuu configuration. The three situation which
can arise are shown in Table III as cases (a), (b), and
(¢). The contributions of Iq, I,, II4 and IIp of the

pit

-type terims to the energy and their direct correlation
with the point groups give very useful hints for the
development of the general fourth order Hamiltonian of
(VI-1).

We rearrange (VI-1) into the form

H* = H*' + h,* + npt + 0%, (VI-10)
where H'' includes all terms which are symmetric under
the symmetry operations for the orthorhombic point
groups Coyy V=D, and Vp=Dy, and (ha++hb++hc+) repre-
sents the remainder of H*, which is antisymmetric under
the symmetry operations of the orthorhombic point groups.
Thus H'' is the Hamiltonian to the fourth order of
aponroximation of a molecule which belongs to the ortho-
rhombic point groups. For monocliniec point groups,
cs=C1h’ C,, and C,y, additional terms beyond g appear
in the Hamiltonian because of the lower symzetry. Which
extra terms have to be added to H'' depends on the

manner in which the body-fixe principal axes system is

attached to the molecule, and one can distinguish three
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cases as in the case of (=2¢$) in the way pointed out

in Table 1III. In eq. (VI-10) we denoted the additional
terms for the cese (a) of monoclinic point groups by
h,*, the additional terms for the case (b) of monoclinic
point groups by hb+ and the additional terms for the
case (c) by h,*.

In the symnetrized basis, the entire orthorhombic
Hamiltonian H*' will have nonvanishing matrix elements
only within the four Wang blocks E', &, 0%, 0~ and all
additional terms allowed by the lower symmetries have
non-zero matrix elements located only outside the diago-

nal blocks E', E7, 0%, 0. This is ascertained either
by computing the matrix elements involved directly, or
by examining the even-or-odd character of the matrix
element integrands under the symmetry operations of the
rotational inertia ellipsoid, C,(x), C,(y), C,(z), using
the symmetrized basis wave functions. In this manner

the following arrangement of non-zero matrix elements

in the Wang matrix is found:

( E' Monoclinic tionoclinic Monoclinic
Orthorhombic case(a) case(c) case(b)
¥onoclinic E™ Monoclinic Yonoclinic

case(a) Orthorhombic case(b) case(e)
Monoclinic ronoclinic O+ ronoclinic

case(c) case(b) Orthornombic case(a)
lionoclinic Monoclinic Monoclinic 0~ !

case(b) case(c) case(a) Orthorhombic}
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Now, as in the case of the Ph-type terms, if we consider
a properly partitioned four-step matrix T which trans-

forms the Hamiltonian to a basis in which only the Wang

+ +

blocks 27, 57, 0", and O are diagonal, then we find
that none of the matrix elements located outside the
Wang blocks will fall within the Wang blocks because of
the transformation. This means that monoclinic matrix
elements of h,*™* will contribute to the fourth order of

* will contribute

approximation, whereas elements of h4+
only to the eighth order. Therefore, to the fourth
order we need consider only the monoclinic matrix
elements of h,*™, but not those of hh+*‘ From eq.(VI-2)
the terms of h,** to be considered are (2)ZPLP and
(2)Zr2P2. The additional contributions of (2)Zr2P2
will be combined with those qf the Ph-type terms. As

a result one obtains the additional terms for the
monoclinic point groups to the fourth order of approxi-
mation, and we will give these simplified h,*, h *, and

hc+ later.

Performing the symmetry operations of the ortho-
rhombic point groups upon (VI-1) but without the last
term of n,**, we get ' as

+%* +
H'' = (" o™y + 0™ et (VI-11)

with
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h2+*l E_Z—‘(f"‘-" y apa2 jﬁY 2)P 2

~a (2 (2) 2al
+“%;? \ (Z)YP‘PbP Ps) (VI-12)
n, "t = 2R3
23 bb 2 2.2
+Z’ (h)éaaqa dy“ Px
~saabb 2y p2
' 2% aﬁb(‘“) aabbla20p* ()220, %, %) B
o SNz g 2470588, 2)p b p P
Joa (WTaata T (W) a B
(VI-13)
where 2 ' means the summation over only those P P P, P;

which are symmetric under the symmetry operations.
With the aid of the vibrational matrix elements
(IV-2) and the following additional vibrational matrix

elements
(VasVp| 4a®Pp2 | Vga¥y) = B (e 3) (vpe )
(Vs Vp2a2ap2 1V, Vy) = (vo+ 3)(vp+ §) (VI-1k)
/
(VayVp |P,2Pp2 |V s Vi) = B (vo+ 3) (vy+ 3)
the vibration-rotation Hamiltonian H'' for the asymmetric
molecules belonging to the orthorhombic point groups 1s

+* + (A""A""A“"'A"')ng + (B+Bl+BII+B"l)Py2

H+' = h,

+(C+C'4C"+C" ' )P,2 + § 5! (T ¥ T )PP B

U(

ik
(VI-15)
In (VI-15) we have that
! - 2 xXx a 1
A' = é(ﬁ (Z)Ya (;§Y )(Va+2)— ((2 )(V +J)
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Vo= 2 yyyaa, Yyy +1) = ' )
B Z(ﬁ (2) (2) ag) (Vo*z) Z(( %3 (v +%)

' - 2 22 aa, zz = ' 1
Ot =5 % S BNNaa) () Sy (v ),

(VI 16)
and that
e e
LU yy = "
T : (VI-17)
Cn = 22 = "
T
i < 2 xx~-hb 3
P AT (1) 2ag Vath) (V)
XX 4 »x,aabb ) N
+a %%aéb ((h)zaabb+ﬁ (Lr)z )(Va+§)(vb+3)
= I fE) D e
B 1= Z, ﬁ2(i}){zbb(v +‘L)(V + )
+ 2 (Y¥z  +n* YV228PD) (v 4y (v +d)
a,b'aéb (Ll’) aabb a b <
- gib((u)%;')(v +2) (v )
" 2 2z, bb
o az,b 8y %aa (Va* ) (Vp+2)
2z 4 zz.,aabb
*o s i Zaabo (I (v e (v
= Z ((]+)X"')(V )(Vb‘f‘%‘) o (V1-18)

Thus

the effective rotational constants (&, (3, and

are to fourth order

a = A+A'+A"+A“|
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AE o ) gt ™ 2, € ) (v 7 (o)

@ = B+3'+3v+pM!
= B+2(, A \BN) (Vv +3)+ "+ 5 (o Aa) (Vo) (v + £)
é (2)”a’‘a ()5 25 (4)>a
C = C+C'+C"+C"!

C'hg( (2)0a) (va+-%)+(,+)x"+a%b( ()7 ap) (Vo) (v +d).
(VI-19)

The various coefficlents «, B, and ¥ introduced here

are related to the coefficients ¥ and 2 of references

5 and 6 through (VI-16), (VI-17), and (VI-18), and

depend on the molecular constans in a comnlicated manner.

Also in (VI-15) we have that

d | — 046 .g 290 75 aa 1
7, —2‘5( () Zaa*B= Ty 270 (v*d)
=5 ) = d f (VI-20)
a

—

leprs

We have examined of (VI-15) in the first part of
this chapter, and the detziled expression for f..,(
reveals that ﬁﬁxé = Pyrp e We have reindexed ﬁxﬁxg
in Table VII. With the aid of Tables V and VII we cen

write the Hamiltonian for the orthorhombic noint groups

to fourth order of approximation,

o p** b 2 .p 2 2
H' = h,™ +(P," +(3P,° +(CP,

+=(T+p, )qu‘“%(Tz* f’2)Pyu+(7‘—3+ f3)PZLF

+H(Tyf),) (PP, 24P 2P D)+ (T 00) (P, 2P P42, 2PT)
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Table VII Fonvanishing f, . ..

—— - ——

(xprs) m=faars
(xxxx) )
(yyyy) Fo
(zzz2) t@
(yyzz), (zzyy) fy
(zzxx), (xxzz) fs
(xyy), (yyxx) (¢
(yzyz), (zyzy) fo
(xzxz), (zxzx) g
(xzyxy), (yxyx) Fy
(zyyz) P10
(yzzy) P11
(zxxz) fyo
(xz2x) F13
(xyyx) "1y

(yxxy) f15
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3T+ f) (PP 24P 2P 2)

+: 7T

. 2,1 2,171 2
‘7(Pypz+PzPy) +‘7é(Psz+PxPz) +4\9(P P_+P_P_.)

Xy yx

10 1 7
+}|7(PszPyPZ+PzPyPZPy)+1,8(PZPXPZPX+PXPZPXPZ)

+§[o(P PP P +P P P P)

&y o (PP P )+ Py (PyP, Py )i g p(P P 2P,)

Y

+3 0, 3(PXPZ2PX)+7} P10, (PxPy 2Py )+3 5 (PyPyPPy) . (VI-21)

From the angular momentum comiutation relations Kivelson

end Wilson27 have esteblished that

(B P +P, P )2=2(F, 2P 24P [P, %) 482 (3P, 2_2p,2-2P;?),
(«# 2 #y, and cyclic). (VIi-22)
With the eid of these identities, (VI-21) can be

simplified somewhat to:

+1 +*

H' = n,™" + G Py+ B Py2+ C P2

+H(Ty+ P, 542 (T )P P+ (737 )P 2

43 (TY+2 Ty ') (P 2P 24P 2P 2)
+§(75+2fé+ﬂ5)(Pz2Px2+Px2PZ2)

O 2 9*‘6"Px2py2*Py2Px2)
+i77(Pypzpypz*Pzpypzpy)+%‘8(PxPszPZ+PZPXPZPK)
+i(;(PxPnypy+PyPXPYPX)
+$F1O(Pzpyzpz)+£'ﬁ1(Pypzzpy)+%912(Psz2Pz)
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X 2 2 1p 2
+3 f’w(PxPz?PX)n (14 (PyPy Py )+d fy 5 (P PPy ).
(VI-23)
The relation (VI-22) has the effect of combining
the coefficients T,, Tg, and Ty of (BB +P;R )2 vith
Tﬂ, 75, and Tg of (R,2P32+P42P“2). The grouping of
Ty, through Tg oceurs as (TL}QT%), (T%+27é) and (T%+2’b).
Thus, in general cese only these combinations (in
addition to T, T and 73) can be obtained by fitting
experimental freoquencies. Hence for these cases only
six irdependent distortion coefficients can be found
and Ty, “(5, Tg cannot be separated fron ‘T7, g
’f9, unless encugh additionsl information is available
to corpute some of the T's invclved directly from their
definition. Also, the expressions for A, B3, and
acquire the additional terms %ﬁ2(379-27§-21é),
%ﬁ2(3Té-21§-2T%), and iﬁ2(3T}-2Té-2T§),respectively, as

a consequence of the application of (VI-22)

The nonvenishing matrix elements of the Hamiltonian
(VI-23) in the symretric rotetor representation are
given in Appendix I. For a particular choice of J, the
diagonal blocks E+, E, 0+, 0™ can be constructed easily
from these matrix elements of Appendix I. 1In Appendix
II we give those eigenvalues of (VI-23) which can be

established in closed form.

The additional contribution to tre Eamiltconian for
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the monoclinic point groups will be:

Case (a).

+ _ 1 3 2 2
h," = z(;O(Px P +P, “P P +P P P, +Pypx3)

+3 3p 2p_ P +P_P_P 2+P P 3
2 0 (PyoP Py P PP P P 4P Py2)

H T (PePyP S+p P P +P, %P P +P %P P )

Xy z 'y Y
X D 2 D2
+47;3(Px:z‘Py+ry1Z Py*+P,P, P P +P P P P,
+P P PP +PP PP +PPPP+PPPP)
Z X2y ZyzX Xzyz yYyzxui
+{5(PyP +P Py), (VI-2Y4)
where
- ! 1 "
7 =2 ()6 ) Verd), (VI-26)
and
Ve nyaQﬁZ + Xy VI-26
(2)%a " (2) (2)*ea * (Vi-z6)

The nonvanishing matrix elements of ha+ in the symmetric

rotator representation are given in Appendix III,

Case (b). The additional contributions hb+ can be found
from (VI-24), (VI-25), and (VI-26) by making in these
the replacements indicated in Table VIII., lionvinicshing
matrix elenents of hb+ in the symmetric rotetor repre-

sentation are given in Appendix III.

Cese (¢). The additional contribution hc+ can be found
from (V1-24), (VI-25), and (VI-26) by making in these

the replecerents indiceated in Table VIIJ. Nonvanishing

s,
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Table VIII Corresponding quantities for tlLe
monoclinic contributions to the
Hlamiltonian.

h* hy* h *

Tio Ty <18

T11 15 <9

T2 T16 <20

113 Ty 121

x y z

y z X

z X y

Q' ~

AJ d v
X YZxr ZX~r
(2}),Yaa (2) aa (g)laa
Xyyaa yzZyaa ZXyo&a
(2) (2) (2)

-t ~ 1
(2)°a (2)-a (2) a
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netrix elements of hc+ in the symnetric rotator repre-

sentation are given in Appendix Ill.

For the triclinic point groups, Cy and Ci=82, the
Hamiltonian to the fourth order of aporoximation is

given by

=a + -+ -+
H +h,” +h" +h, (VI-27)

where H'' is given by (VI-23) and h,*, h*, and hc+

are trose of the monoclinic point groups.



VII. PLAKAR ROTATORS

When the equilibrium configurction of the molecule
is planar a number of "simplifying" features will apply.
Planar molecules must have at least cne reflection
plane, viz., the reflection plane which liles in the
plane of the molecule. Thus, four of the eight asymmetric
rotetor point grouns from Table II1 need not be con-
sidered here. Furthermore, it can be shown by giving
specific examples that all asymmetric rotator point
groups which do have at least one reflection plane will

admit the planar condition, and

¥ =0, (VII-1)
where the (-axis 1s perpendicular to the plane in which
the molecule lies.

We refer to Table IX for the planar asymmetric
rotator point groups. It is noted that the triclinic
point groups do not admit of planar rotztors. Hence,
the most generasl planar rotetor Hamiltonian can contain
at most thirteen {'s, and to fourth order of approxima-
tion is composed of H'' and only one of h,”, h*, or

hc+, as explained in Chapter VI,

The condition for the planar molecule (VII-1)

implies

..IO

s = 1% (VII-2)

I + 19

-68-~
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by the definition of the principal moments of inertia.
If we choose for convenience of discussion the x-y plane
as the plane in which the molecule lies, we have from

(VII-2) thrat

1/A + 1/B = 1/C (VII-3)
from the definition of A, B, C in (IV-6). One should
not confuse the equilibrium rotational constans A4, B,

C with &, B, C of eq. (VI-19) which represent the
instantaneous rotational constants of the molecule.

Due to the inertia defect and non-rigidity one does not
have the same kind of relation (VII-3) among 2, 43 4, C ,
and (VI-19) directly shows the relationship between the
equilibrium rotational constants and the instantaneous

rotational constaents.

Since the molecule lies in the x-y plane we have

the following for al’ and al” of (II-31) and by the

condition z9 = O3
i

X2z

ag = 0
(VII-%)
z
ag =0,
and
a?x + agy = a:z . (VI1-5)

Alsc, in planar molecules we have the following properties
of the elements of the normal coordinate transformation

matrix 1:

17, # 0, 17

is # 0y l?s = 0 for in-plane vibrations,
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1X =0, 1Y

- 2
is 1s = 0y 1ig # 0 for out-of-plane

vibrations. (VII-6)

For the planar molecule Cka and Morino12 found the

relations,

azx = ay¥ = a% = 0 for out-of-plane vibrations,
(VII-7)

AT + Agg = A . = 1 for in-plane vibrations,

AE = pYY = 1 and A%% = 0 for out-of-plane
ss ss ss :
vibrations. (VII-8)

a:“ and A;: were defined by (II-31).

Similarly, one secures easily the following results
for the Coriolis coupling coefficient j;% of (II-3%)
of the planer molecule by the relation (VII-6):

If a and b are both in-plane vibrations,
X _ - z
5ab - O, gzb - O, ifab # 0. (VII-98.)
If a and b are both out-of-plane vibrations,

x z
ab = O §Zb = 0, Sapb = O. (VII-9b)

If only one of a or b is an in-plane vibrztion,

SILE 0, Y #o, $Z = 0. (VII-9c)

Triatomic molecules, which are a special case of general
planar molecules, admit only in-plane vibrations. In

cases in which the plane of the molecule is the y-z plane
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or the z-x plare, the apprropriate equations corre-
sponding to (VII-L4) through (VII-9c) may be obtained
by permuting x, y, 2z cyclicelly.

When we apply (VII-L) to the definition of T....,

%2 .
7. = -4;8s &g
O 10 10 71O
S I”‘ 1 33 IA { I.A, ’

VA

ve obtain after some rearrangement the Dowling28 rela-

tionships among q through Tb:

./7 = ’8 =0 ’
= (W0 - (B,

(VII-10)

-~ 2 : 2 .
: (B/C) il (B/A) 6

(C/n)27g + (c/B)°::

-3 )

if the molecule lies in the x-y plane. Thus there are

-

only four independent distortion constants among 9

’79.
pencent -('s may be built up from contributions of the

through Eq. (VII-7) reveals that the four inde-
in-plane vibrations only, so that the summation over
vibrational modes could be restricted to in-plane

29

vibretions only. Hill and Edwards gave the specific
exxpressions for the second orcder centrifugal-distortion
energy in planer asymmetric-top molecules in terms of

the four independent distortion constants.

iultiplying (VII-5) by a?y, it is easy to prove a

relationship among the four additional 7's which appear
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in molecules belonging to one of the monoclinic point
groups. For the x-y planar molecule we find in this
way

(1/8)% 7, + (1/B)2 7, = (1/C)2%, (VII-11)

10 11 12
and from (VIiI-4) we immediately secure that
“(13 =0 . (VII-12)

We summarize the conditions and relztionships among the
T's in Table X, in which we give the appropriate
equations for the y-z planar molecules and Xx-z planar
molecules corresponding to (VII-12), (VII-11), and
(VIT-12).

The planer condition introduces also many simpli-
fications into the detailed definitions of the ['s, but
no simple relationships similer to those holding for

the T's appear to hold among the ¢'s.
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Table X Relationships among planer rotator

distortion constants.

Plane of
molecule Relationships
X=-Yy :7=r8= (13:0
7= 2— _ 2~
= (A/C) 5 (A/B) 6
= (B/0)2T, - (B/A)°7,
Iy = (C/i)2rg + (C/BZ,
(1/A)27‘ +(1/J)2(11*(1/C)2 12 (monoclinic)
”;O Ty = (12 = 0 (orthorhombic)
y-2z Tg=7g="4p=0
Ty = (4/B)2 7 + (M/C)275
~ 2.~ 2.
(2 - (B/A) '»6 - (B/C) L)+
- _ 2,.« -
3= (C/A) %5 (C/B) \u .
(1/8)2 7, +(1/0)27, -(1/A)‘ ; (monoclinic)
7]u = 1}5 = T4g = o (orthorhombic)
Z2-X (7 =‘T9 = (21 =0 .
- 2~ _
T, = (B/C)27, + (B/A)3T
~ 2. 2
3 = (OB, - (C/M)
(1/8)2 1 g+(1/€)%1,=(1/B)% 7, (moroclinic)

- . -~

g = 19 = Too = 0 (orthorhombic)




VIII. FOURTH ORDER CENTRIFUGAL DISTORTION TERIS.

In the previous chapter we neglected the fourth
order centrifugal distortion terms (P6-type terus),
since their contribution to the energy 1s only signifi-
cant for J230 in general cases., However, as indicated
in the previous chapter, experimental resultszS indicate
that the second order centrifugal distortion terms (Ph-
type terms) are inadequate to describe the stretching
effects in some cases, such as for the planar triatomic
molecule H,0, even for the lower J values. In these
cases it is necessary to consider the fourth order
centrifugal distortion effects to get a satisfactory
fit to the spectral data. For these reasons we present
in this chapter a survey of the fourth order centrifugal

distortion terms.

These fourth order centrifugal distortion terms

were given by the last term of eq. (VI-3) as

» = Z. = -
H S (M)ZR{P P Py PGPW ’ (VIII-1)
where * (h)z are the fourth order centrifugal distor-

tion constants (coefficients) and the detailed and very
lengthy expression of them in terms of molecular
constants is given in Appendix IV, We shall use the

““*%*)z where

alternative notation [xgré¢™. for
convenient and further denote |o(¢i¢'_ by -, 1=1,2,3,...

~75-

L
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where the numbering of the O 's will be established
later.

Because of the noncommutativity of the angular
momentum components Px, (VIII-1) shows that there is
a total of 30=729 coefficients [«Brie 1, However, if
we apply the symmetry operations upon the P6-type
operators we find that only 183 terms are nonvanishing
for orthorhombic point groups and 365 terms are non-
vanishing for the monoclinic point groups. The P6-type
operators, whose [aéy'i(fjs do not vanish for the ortho-
rhombic poigt groups are found to have real matrix
elements of type (K|K), (K|K¥2), (K|K4), (K|Kt6) only.
Therefore, as in the case of the second order centrifu-
gal distortion terms, the entire matrix elements of the
183 nonvanishing P6-type terms for the orthorhombic
point groups will lie only within the four Wang blocks
g*, E°, 07, 0" in the symmetrized symmetric rotator
representatlion. Further, all additional terms allowed
by the lower symmetries in the case of monoclinic or
triclinic point groups have nonvanishing matrix elements
located only outside the Wang blocks. This is ascer-
tained in the same manner as for the Pu-type terms.

L
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