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ABSTRACT

EMPIRICAL RENORMALIZATION OF SHELL-MODEL

HAMILTONIANS and MAGNETIC DIPOLE

MOMENTS OF Sd-SHELL NUCLEI

BY

Wilton Chung

A refinement of the technique of using energy-level

data to renormalize shell-model Hamiltonians is described.

The one- and two-body matrix elements of the Hamiltonian

are treated as parameters and determined by an iterative

least-squares fit to experimental energy-level data. To

overcome the problems associated with the large number of

correlated parameters involved, the least-squares fit is

reformulated in terms of orthogonal linear combinations of

the one- and two-body matrix elements. -Empirical Hamil-

tonians for full 0d5/2-151/2-0d3/2 model space shell-model

calculations are determined by the described technique

using energy-level data at either the lower or upper end of

the sd-shell. For the lower end of the sd-shell, the

Hamiltonian is renormalized with respect to 197 measured

level energies in the A=17-24 region. For the upper end,

the data set is comprised of 134 measured level energies

in the A=32-39 region. In either case, the initial

Hamiltonians are of the realistic variety of Kuo. A single
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mass independent (l+2)-body Hamiltonian is found to be

inadequate to simultaneously fit the data sets at.both ends

of the sd-shell. Results of fits to both the upper and

lower ends of the sd-shell show that in each case only a

few orthogonal parameters are very well determined, and

less than half of the orthogonal parameters are at all

well determined by the data sets. The dominant result of

the empirical renormalization obtained for the Kuo matrix

elements is a reduction in attractiveness of the dS/Z-Sl/Z'

dS/Z-d3/2' and s]_/2--d3/2 diagonal two-body matrix

elements. Ground-state binding energies and low-lying

spectra of a number of sd-shell nuclei are calculated with

the renormalized Hamiltonians. The agreement with experi-

ment is very good, except for some missing levels in a few

active particles or active holes systems which are presum-

ably intruder states. Band shifting in which entire

excited bands are predicted overbound with respect to the

ground state, the main defect of present interactions, is

corrected and the improvement is found to extend beyond

the region of nuclei from which the data sets were taken

in the least-squares fits. Ground-state wave functions of

nuclei in the middle of the sd-shell also look more

"normal" than the results of realistic interactions as is

shown by the wave functions generated for 2BSi. It is

hoped that the two sets of renormalized Hamiltonians will

complement each other to give a good description of all

nuclei in the sd-shell region.
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Using wave functions generated from the renormal-

ized Hamiltonians, magnetic dipole moments of some ground

and excited states of sd-shell nuclei are calculated.

Results are given both for using the bare-nucleon values of

the single-particle reduced u matrix elements and values

obtained by a fit to available precise measured magnetic

moments. Agreement with experiment is good with either

operator for A=l7-26. However, for A=28—39, results agree

less well with experiment using the bare-nucleon Operator

than using the fitted Operator. Effective orbital

g-factors and intrinsic moments are also obtained from

the fitted operators.
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I. EMPIRICAL RENORMALIZATION OF SHELL-MODEL

HAMILTONIANS (FOR sd-SHELL NUCLEI)

1.1. Introduction

Shell-model calculations have proved to be success—

ful in describing not only energy levels of nuclei, but

other prOpertieS such as spectroscopic factors, electro—

magnetic transitions and moments as well.1-12 However, a

serious limitation Of the method is the rapid increase in

the dimensions of the model space as the number of parti-

cles considered active is increased. Present calculations

have to be done in well-chosen truncated spaces. The major

problem is then that of finding an apprOpriate effective

Hamiltonian for the model space.

For mass A=18-38 "s-d shell" nuclei, many aspects

Of nuclear prOperties can be well reproduced by treating

as active while thethe three orbits 0d 0d
5/2' 151/2' 3/2

031/2, 0p3/2, Opl/2 orbits are filled, forming an inactive

16O core.l-3' 5-8
The model space is spanned by all

Pauli-allowed states formed from distributing A—16 active

nucleons in the three active orbits. The effective

Hamiltonian is assumed to consist of only one-and two-body

parts. The one-body terms represent the interaction





energies of the active nucleons with the core, while the

two-body terms represent the residual effective inter-

actions among the active nucleons. For each A,J,T combina-

tion, the many-body Hamiltonian is constructed and

diagonalized in the model basis space. The eigenvalues are

interpreted as energy levels and compared with corresponding

experimentally Observed levels. The associated eigen-

vectors are used to calculate other experimentally

measured nuclear properties.

The advent Of sophisticated computer codes like

13
the J-T coupling code of French et a1. (Oak Ridge-

Rochester) and the M-scheme code of Whitehead14 (Glasgow)

have made shell-model calculations relatively straight-

forward in a computational sense. Nuclei of the sd-shell

have since been extensively studiedl"8 with various

effective interactions obtained by different techniques.

First, there are realistic effective interactions derived

from nucleon-nucleon scattering data, such as those of Kuo

and Brown15 and Kuo.16 The successes and failures of this

type of interactions have been discussed extensively for a

few particles (A=18-22),l and a few holes (A=34-38)2 in the

sd-shell; and more recently for more than 6 active nucleons

(A=23-31) in the Sd-shell.5-8 Secondly, the residual

two-nucleon interaction may be assumed to have a simple

general functional dependence. The variables in the

function are then adjusted to best reproduce the experi-

mental level energies. For example, the depths Of the
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various spin-isospin components of a potential with a

gaussian radial dependence,17 or the strengths of the two

isospin components of surface—delta or modified surface-

delta interactions18 can be varied to best reproduce the

experimental level energies. Finally, the one- and two-

body matrix elements of the Hamiltonian can be treated as

basic parameters of the model,19 independent of concern

about any underlying potential, and determined empirically

from available experimental level energies.

The technique Of direct empirical determination of

the two-body matrix elements had early successes with

nuclear levels approximately described by models of one or

two "j" orbits?'lo'20'21'22 The problem inherent in this

technique is the rapid increase in the number Of two-body

matrix elements (2bme parameters) with larger model Spaces.

For example, the Hamiltonian for the (f7/2)n model space is

specified by only eight 2bme, while the lsl/2—0d3/2 model

space requires fifteen. For the full sd-shell model space,

sixty-three 2bme are needed to specify the Hamiltonian.

Attemptsl'3 have previously been made to empirically

improve some features of the realistic interactions Of

Kuo.16 However, these attempts circumvented the problem of

"too many" parameters by adjusting only selected 2bme.

Specifically, the Preedom-Wildenthal (PW) interaction3 was

fitted to 72 experimental level energies in the A=18-22

region by adjusting only the 2bme which do not involve the
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and d3/2-d3/2 interactions. The success Of the PW inter-

d3/2 orbit together with only the centroids of the d

action in the A>22 region, as shown by recent full sd—shell

calculationss.8 by the GlaSgow group, is encouraging. The

problem remains of how to manage the larger number of

parameters in an Optimum way. A more systematic method of

extracting as much information as possible from the level-

energy data while at the same time varying the right number

of two-body matrix elements is certainly desirable.

In the following, the formulation Of theoretical

binding energies in terms of one- and two-body matrix

elements is briefly outlined and, from this, expressions

for the least-squares fit to experimental energies are

derived. A method is described in which the least-squares

fit problem is reformulated in terms of uncorrelated linear

combinations Of the one- and two-body matrix elements or

parameters. The uncorrelated parameters are reordered

according to increasing uncertainty, and the well deter-

mined separated from the poorly determined. The well deter-

mined uncorrelated parameters are varied while the poorly

determined uncorrelated parameters are kept fixed. A new

set of one- and two-body matrix elements is derived by

applying the inverse transformation to the uncorrelated

parameters.

Applications of the technique are then described.

An attempt was initially made to Obtain an empirical Hamil-

tonian for the whole sd-shell region by least-squares



fitting to level energies in A=18-24 and A=32-38 simultane-

ously. This attempt was not successful. The problem was

then divided into two separate least-squares fits, in the

A=18-24 and A=32-38 regions, respectively. Results of the

empirical Hamiltonians Obtained are presented and compared

to the realistic Hamiltonians Of Kuol6 used as the starting

sets. Ground-state binding energies of sd-shell nuclei,

and spectra of A=18-24, 25Mg, 26Al and A=32-38 are also

presented. Mass excesses of neutron-rich nuclei are com-

pared with predictions using other mass formulae.

1.2. Method

The Hamiltonian is assumed to consist of one- and

two-body matrix elements only:23

a+a+a a (l)

+

H ’ zeiaiai + zVkimn k l m n

where ei are the single particle energies, are the
vklmn

. + .

two-body matrix elements, and ai and ai are the Single

particle annihilation and creation Operators, respectively.

For a more compact definition, we use:

x = ei or Vklmn

and

equation (1) becomes:

H = E x 6 , (2)

l



where p is the total number Of one— and two-body matrix

elements.

k .th . . .

Let ¢i denote the 1 pure configuration baSis

state where k stands for a set of quantum numbers, e.g,

A-l6 number Of particles, angular momentum J, isospin T,

and parity n. One- and two-body operator matrix elements

can be defined as:

_ k k

Note that the Operator matrix elements are independent of

the interaction and only dependent on the model space. A

matrix element of the many-body Hamiltonian can then be

expressed as:

(
I
:

I

_k'k

<¢i|Hl¢j>

Pk k
- §<¢i|61|¢j>x1

pk
— Zpijlxl . (4)

1

Let Wk be an eigenstate with corresponding eigen-

k k . . .

value A W can be expressed as a linear combination of

the basis states OE;

(5)



where a? are the amplitudes Of the wavefunction, and D is

the dimension Of the state k in the model space. Equations

(4) and (5) give:

<wklnlwk>>
2

I

k k k k

Ijaiaj‘¢i'fi'¢j>

N

'
M

'
9 O t x

31 1 (6)

» II

I
—
I
M
'
O

'
m

x1 (7)

where 81 = Z a jl (8)

Equation (7) expresses the eigenvalue 1k as a linear

expression of the one- and two-body matrix elements. The

Bi's are just combinations of the operator matrix elements

and amplitudes of the wavefunction. It should be noted

that the 8's, unlike the p's, depend on the Hamiltonian

through the amplitudes a's.

Changes in the one- and two-body matrix elements

which improve the agreement of the 1k with experimental

level-energies can be Obtained by minimizing the quantity:

n

x =Z(E -)\) (9)

k



k . .
where Eexp's are experimental level energies corresponding

to the lk's for the shell-model eigenstates Wk's, and n is

the total number of such level energy data. ngp is the

binding energy relative to the model core, with Coulomb

energies extracted. The p number of parameters in the

Hamiltonian gives p equations of

If
.

0 m=l,2,3,...,p (10)

C
)

X

5
Equations (7), (9) and (10) give:

 

P
n p k

k k 32 B x
X (E -28 x ) , l' 1'
k exp 1 l l l _ 0

3x
m

m=l,2,3,...,p (11)

It has been pointed out that the 8's depend indirectly on

the interaction through the a's. However, the a's change

slowly with the interaction. For small changes in the

interaction, the 8‘s can be treated as constants; more

precisely, with an assumption Of approximate linearity of

equation (7), the minimization Of equation (9) can be done

iteratively until the interaction converges. Equation (11)

then becomes .

n k kP k



n

Defining Y = 28 am (13)

k

exp = gEk k

and em k exme (14)

Equation (12) becomes:

gY x = Eexp m=l 2 3 (15)
lmll m I I I'OOIP

The least-squares fit reduces to that of solving p equa-

tions for p unknowns. Equation (15) in more compact

matrix notation becomes

GX = E (16)

where G is a pxp matrix whose matrix elements are the

Y 1'3; x is a vector composed of the (unknown) parameters,
m

and E is a vector derived from the experimental level-

energies. It should be pointed out here that the single-

particle energies and/or some of the two-body matrix

elements may be fixed in the least-squares fit; in this

case p would denote the number of free parameters, not

necessarily the total number of onee and two-body matrix

elements. For the rest Of this section, however, p is

taken to be equal to the number of two-body matrix elements.

The procedure commonly followed in the past in

l
solving equation (16) has been to solve for G- by

numerical methods. This would then be followed by a matrix
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multiplication G-IE to Obtain the parameters X. However,

the problems of the large number of parameters (or equiva-

lently the correlations among the parameters), and an

insufficient data set, make it difficult to do the minimi-

zation effectively. In previous cases, some additional

assumptions were usually made. For example, certain para-

meters were assumed to be poorly determined by the data

set and were fixed at prior theoretical values. In deter-

mining the PW interaction, for example, blocks of para-

meters were assumed to vary by only one single additive

constant rather than independently. The centroids of the

dS/Z-d3/2 and d3/2-d3/2 interactions were adjusted in this

way.

MacFarlane has previously compared24 empirically

determined 2bme with realistic effective interactions. He

noted that the eigenvectors of the error matrix give

uncorrelated linear combinations of the two-body matrix

elements, and that the corresponding eigenvalues give the

uncertainties in these linear combinations. From the error

matrix for the p-shell calculation of Cohen and Kurath,9

MacFarlane found that of the 11 independent two-body

parameters, only seven were well determined. Similar

results were found in other shell-model least-squares fits,

with an increasing prOportion of poorly determined linear

combinations as the number of two-body matrix elements

increased.
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In View of the difficulty in thus determining a

large number of two-body matrix elements, the question may

be asked whether the x2 can be minimized in terms Of

uncorrelated linear combinations Of the two-body matrix

elements. The mutual independence Of the parameters should

then make the problem more manageable. In others words,

can the G in equation (16) be diagonalized as in the case

of the error matrix investigated by MacFarlane. The eigen-

vectors thus derived would give uncorrelated linear

combinations Of the two-body matrix elements.

It follows from equation (13) that Ym so
1 = Yim'

that G is a symmetric matrix. It can be diagonalized with

the same numerical method used to diagonalize the symmetric

Hamiltonian in shell-model calculations. The least-

squares fit can then be reformulated in terms of uncorre—

lated linear combinations of the two-body matrix elements

or for a shorter name "orthogonal parameters."

Let A be the transformation matrix formed from the

eigenvectors of G. Matrix A being orthogonal, A.1 is just

AT. Let D be

D = AGAT (17)

It is interesting to note that the uncorrelated linear

combinations Obtained here are exactly the same as those

obtained by MacFarlane from the error matrix. This is

easily seen by getting the inverse of D, in which case
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where G-1 is just the error matrix. The eigenvalues of

the matrix D are just the inverses of the eigenvalues of

the error matrix. The same transformation is applied to

the right hand side Of equation (16)

~

C = A6 (18)

A new set of orthogonal parameters is then Obtained by

Y = C/D (19)

where the matrix division denotes dividing each component

of C by the corresponding diagonal matrix element Of D.

Applying the inverse transformation immediately gives a new

set of fitted two-body matrix elements, i.e.,

X=AY (20)

The above procedure merely replaces the inversion

of G by the diagonalization of G, it does not solve all

problems of the least-squares fit. We next note that since

the eigenvalues of the error matrix are the squares of the

uncertainties of the corresponding orthOgonal parameters,

the eigenvalues of the D matrix are just the inverses Of

the squared uncertainties. The orthOgonal parameters can

then be ordered according to the increasing or decreasing

certainty with which the data set determines them, and the
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well determined orthogonal parameters separated from the

poorly determined orthogonal parameters.

In Figure l are plotted the eigenvalues dm of the

D- error matrix, and the deviations between corresponding

starting and fitted orthogonal parameters. The fitted

orthogonal parameters are derived from the least-squares

fit, i.e., Y in equation (19). The starting orthogonal

parameters are derived by applying the same transformation

on the starting Hamiltonian for the iteration.

It is clear that the deviations for the very well

determined orthogonal parameters are systematically much

smaller than the others. The deviations for the poorly

determined orthogonal parameters are large and randomly

distributed, a large part of which must be contributed from

round-off errors. For these parameters with large uncer-

tainties, the starting orthogonal parameters are as "good"

as the fitted orthogonal parameters in terms of fitting

the data set. To avoid the round-Off errors, and in the

spirit of the linear approximation of equation (17),

i.e., keeping the change in the interaction small in each

iterative least-squares fit, the procedure in obtaining

a new interaction is modified. First, the transformation

A is applied on the starting Hamiltonian, i.e.,

Y8 = A xS (21)
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where XS specifies the starting Hamiltonian and Y8 is the

vector of starting orthogonal parameters. A new vector Y'

is defined by:

s
' =Y Y(6:dm) + Y (6<dm) (22)

The 6 is an arbitrarily set uncertainty level, and the dm's

are the diagonal matrix elements of the D"1 matrix. The

vector Y' is made up of components from Y if the corres-

ponding dm is less than or equal to the uncertainty level 6:

otherwise, components from YS are used. The dm's are the

squared uncertainties Of the corresponding orthogonal

parameters, so that the 6 in effect sets a limit on the

uncertainties Of the orthogonal parameters. A new inter-

action for the iteration is then derived by applying the

inverse transformation on Y',

x' = AT y' (23)

As a result Of the modification of equation (22) some con-

straints have been added to the least-squares fit.

Ideally, the fitted interaction is held to the starting

interaction except for the parts that are well determined

by the data set.

The above procedure describes one iteration of the

least-squares fit. The process is repeated until the

interaction converges, i.e., until the differences between

the (n+1)th set and nth set of matrix elements are

negligibly small. A reasonable realistic interaction,
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e.g., Kuo's matrix elements16 derived from the Hamada-

Johnston potential,25 or a schematic interaction, e.g.,

the MSDI,18 is usually used as the initial Hamiltonian for

the process. The many-body Hamiltonian matrices are

created and diagonalized in the shell-model space to Obtain

the level energies and corresponding eigenvectors. The

B's, and so the y's, are calculated from the eigenvectors.

(l)
A new interaction X is then derived from the least-

squares fit. A new set of level energies, eigenvectors

and hence the 8's and y's are calculated from the inter-

(1)
action X . From the ensuing new least-squares fit a new

(2)
and further improved interaction X

X(3)

is derived. Again,

(2)
a third set of interaction is calculated from X ,

X(4) from X(3) , and so on, until the interaction converges.

The diagonalization of the G matrix, or the

reformulation Of the least-squares problem in terms of

orthogonal parameters, attacks the main problems of the

minimization of x2, namely those of the large number of

correlated matrix elements and the insufficiency of the

data set. The matrix elements of G are calculated from

the eigenvectors of the Hamiltonians, so that the data set

indirectly determines the orthogonal linear combinations of

the two-body matrix elements, and separates the well

determined from the poorly determined parameters. The

least-squares problem boils down to having a reasonable

initial Hamiltonian for the shell-model space and Of fixing

the uncertainty level.
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There exist now many realistic interactions calcu-

lated from potentials derived from nucleon-nucleon

scattering data, such as the Hamada-Johnston potential25

or the Reid potential.26 Schematic interactions, such as

the MSDI,18 have also been shown to reproduce nuclear

observables quite well. The uncertainty level 6 allows

the fixing of the parameters to be varied. Only very well

determined orthogonal parameters may be varied, thus only

making slight improvements in the interactions. In the

other extreme, even poorly determined orthogonal parameters

may be varied with the possible inclusion Of round-off

errors. A compromise between the two is possible by set-

ting the 6 at an intermediate level. The parameters are

found to converge in at most two iterations for a fixed

uncertainty level. Thus, varying the 6 does not affect the

total number Of iterations needed for the whole calculation.

In fact, it is useful in that the change in the inter-

actions can be kept small in each iteration, in line with

the linear approximation of equation (7).

I.3. Details of the Calculation

I.3.A. Initial Attempt, "Intruder States" and

Coulomb Energies

The A=18=22 and 34-38 regions have previously been

1’2 with ainvestigated extensively in shell-model studies

full sd-shell model space, i.e., with (A-16) active

particles distributed in the OdS/Z' 131/2, 0d3/2 orbits.

Comparisons were made between experiments and results of
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realistic, schematic, and limited-fit interactions for

which only a few matrix elements were varied to fit experi-

mental energy data. In general, the results were incon-

clusive as to which interaction was better. Preedom and

Wildenthal3 further expanded the shell-model least-squares

fit in the A=18-22 region by allowing more degrees of

freedom in the two-body matrix elements. All two-body

matrix elements which did not involve the 613/2 orbit, plus

the centroids of the dS/Z-dB/Z and d3/2-d3/2 interactions

were varied. As the active particles are mainly filling

the d5/2 orbit in the A=18-22 region, the matrix elements

involving the d3/2 orbit are hence not well fixed by the

data set. Quantitatively, the PW interaction results were

found to agree better with experiment relative to results

from previous interactions in essentially all cases in the

5-8 in the fullA=18-22 region. More recent calculations

sd-shell model space by the Glasgow group showed that the

improvement extends beyond the A=18-22 region.

Under the stimulation of the success of the PW

interaction, the initial purpose Of the present study was

to find a single empirically determined interaction for

the whole sd-shell region. The Glasgow shell-model

developments have made it possible to include more measured

level energies in the least—squares fit. Specifically, the

two sd-shell regions previously studied can now be expanded

to include measured level energies of A=23,24 and A=32,33

in the fit.
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More measured level energies will presumably deter-

mine more matrix elements of the Hamiltonian. Using the

above described least-squares method, a single masse

independent (l+2)-body Hamiltonian was fitted simultaneously

to measured level energies in both the expanded A=l7-24 and

A=32-39 regions, with the level binding energies corrected

relative to 160 and with Coulomb energies extracted. It

was found that the least-squares X2 was fairly constant as

the number of data points increased in the A=l7-24 region.

However, adding more measured level energies from the

A=32-39 region into the fit increased the X2 by almost a

factor Of 2. Besides the poorer fit, nuclear observables

calculated from wave functions derived from the fitted

interaction thus obtained were in poorer agreement with

experiment than was the case when the process was confined

to one or the other subsets Of the data. A single set of

mass-independent (l+2)-body Hamiltonian was hence found to

be inadequate for the description of the entire sd-shell

model space. Accordingly, the least—squares fit was divided

into two parts; the A=l7-24 region and the A=32-39 region.

Before discussing the two least—squares fits

separately, it is appropriate here to comment on how

"intruder states" and the extraction of Coulomb energies

are treated in the present study. By "intruder states,"

we mean experimentally Observed states which cannot be even

qualitatively described by a (l+2)-body Hamiltonian in a

A-16
(0s)4(0p)12(ls,0d) shell-model space. Trivially, these
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include the negative-parity states, for which the model

cannot yield theoretical partners. More important, there

are certain positive—parity states which appear to be domi-

nated by configurations from outside of the sd-shell model

space. Examples are core-excited states where 2,4 or more

particles are excited out of the 160 core, or states where

2,4 or more active particles are excited out of the sd-

shell and into the (Of,1p) orbits. For states in the

A=18-20 and A=36-38 regions, i.e., close to the boundaries

of the model space, those levels suspected to be intruder

states or to involve large admixtures of intruder states

are not included in the least-squares fits. For example,

the second Observed 1+, first observed 2+ and second

Observed 3+ levels in 18F are not included in the fits.

The only exceptions are the second and third observed 0+

in 18O, and the second and third observed 2+ in 38Ar. In

these cases, an approximate centroid for the two states is

used. However, for states in the A=21-24 and A=32-35

regions, i.e., farther away from the model space boundaries,

intruder state problems are generally ignored. The low-

lying Observed positive-parity states are taken to have a

one-to-one correspondence with the calculated results, the

inherent assumptions being that these states have only

small and constant admixtures of intruder states. A

fundamental assumption is that this sort of effect can be

treated by a renormalization of the Hamiltonian through the

least-squares fit.



95

mi

Pr



21

The Hamiltonian used in the least-squares fit

includes no Coulomb terms. Hence the measured level

binding energies have to be corrected by removal of the

Coulomb component. However, only estimates can be made Of

the Coulomb part Of the binding energies. In most previous

work, the Coulomb part of the binding energies was para-

meterized in some form, for example23

_ 1 _ z
EC0u1(A,Z)—CZ + §az(z l)+b[§-] ,

where Z is the number of active protons, [g] is the largest

integer :_% and C, a, b are parameters which depend on the

active orbits in which the protons are distributed. The

energy differences between mirror nuclei having either

Tz=iT=:l/2 or Tz=iT=il is then given by

A1(A) c + Za + %{l-(-l)z}b ,

and

A2(A) 2C + (ZZ + l)a + b ,

respectively.

The parameters C, a, b are determined by a least-squares

fit to measured energy differences between mirror nuclei.22

The Coulomb part of the binding energies can then be

estimated as a function of A and Z.

Other estimates Of the empirical binding energies

minus the Coulomb part are possible with the use of

T> = To+l and T>> = To+2 analOgue states in To nuclei. At

present, all T=l analogue states in T=0 Odd-Odd nuclei, and



22

all T=1 and T=2 analogue states in T=0 even-even nuclei,

corresponding to the ground states Of neighboring nuclei,

27,29
are known in the sd-shell region. For example, the

corrected ground-state binding energy EC r Of the A=18,
or

T=1 system can be Obtained by taking the difference between

measured binding energies Of 16O and 18O. From reference

28:

' - _ _ 18 _ 16

= -l39.813 + 127.624

= -12.189 (MeV).

The Ecorr Of the A=18, T=0 system is estimated from the

excitation energy of the T=1 analogue state in 18F, corres-

ponding to the ground state Of 18O, i.e., from reference

29:

E (A=18 T=0) = E (A=18 T=1) - Ex E (18F T=1)
corr ' corr ' ° ° I

-12.189 - 1.042

-13.231 (MeV).

Assuming the difference in measured binding energies of

18O and 18Ne to be due to the Coulomb contribution, the

Ecorr of A=20, T=0 system is Obtained from the difference

20

in measured binding energies of 18Ne and Ne, i.e.,
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Ecorr(A=20’ T=0) = B.E.(zoNe) - B.E.(18Ne)

+ Ecorr(A=18' T=1)

= -160.651 + 132.146 - 12.189

= -40.694 (MeV).

The process is repeated with 20Ne to Obtain the Ecorr Of

22Na, 24Mg and so on. The Ecorr of the Odd-A nuclei and

other even-A nuclei with higher isospin are obtained from

the differences in the measured binding energies of the

corresponding isotopes.

20
However, the above estimate for EC of Ne is

orr

not unique; there are other possibilities. Use can be made

20
of the T=1 analogue state in Ne corresponding to the

ground state Of 20F, then:

_ _ _ _ _ 20 _ 18
Ecorr(A-20, T-l) - Ecorr(A—18, T—O) + B.E.( F) B.E.( F)

= -l3.231 - 154.407 + 137.375

= -30.263 (MeV),

and

E (A=20 T=0) = E (A=20 T=1) - Ex E (2°Ne T=1)
corr ' corr ’ ' ' ’

= -30.26 - 10.26

= -40.52 (MeV).

Or use can also be made of the T=2 analogue state in 20Ne

20
corresponding to the ground state of O, in which case:
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- _ _ 20 _ 16
Ecorr(A-20, T-Z) - B.E.( O) B.E.( O)

= -151.374 + 127.624

= -23.750 (MeV).

and

E (A=20 T=0) = E (A=20 T=2) - Ex E (2°Ne T=2)
corr ' corr ’ ° ’ '

= -23.750 - 16.728

= -40.478 (MeV),

and

E (A=20 T=1) = E (A=20 T=0) + Ex E (2°Ne T=1)
corr ’ corr ’ ° ° '

= -40.48 -+ 10.26

-30.22 (MeV).

The above described procedures are schematically

shown in the following diagram:

 

 
 

160<T=O> ___ III +200(T=2)

180(T=i) -———$——» 18Ne<T=1I I III

18F(T=0) ———EE——»-20F(T=1) II ; 20Ne(T=0)

where the procedures are numbered I, II and III. It is

noted that the three procedures give different estimates

of Ecorr of 20Ne. The discrepancy between the two extremes,

i.e., I and III, is more than 200 keV. It does raise the
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question of which is the best estimate. It Should be

remarked here that the above procedures do not exhaust all

possibilities of estimates of Coulomb energies. Other

analogue states, such as T=2 states in T=1 nuclei, or

T=3/2 states in T=1/2 nuclei and so on, if experimentally

known, offer many more alternatives to the above procedures.

Qualitatively, part of the discrepancies may be accounted

for as due to the effects Of different numbers of active

neutrons in the different nuclei used in the procedures.

However, a full understanding of the differences is a

problem to which a solution is not attempted in the present

study.

Arbitrarily, procedure III was adopted for the

estimate of corrected ground-state binding energies. The

40
only exception is that of deriving Ecorr of Ca from

36Ar. Use of procedure III would entail use of the

36
unmeasured binding energy of Ca. Procedure I is used

instead, with an additional 200 keV correction for the

discrepancy between procedure I and III which is found to

be quite general in the sd-shell region. The corrected

ground-state binding energies of Odd-A nuclei, and even-A

nuclei with higher isospin were Obtained from the differ-

ences in measured binding energies of the corresponding

isotOpes.
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1.3.3. "Particle" Hamiltonian (A=17-24 fit)

The word "Particle" will henceforth refer to the

least-squares fit in the A=l7-24 region simply because these

shell-model calculations were done in the particle

formalism. The fit in the A=32-39 region will corres-

pondingly be referred to with the word "Hole"; as will be

discussed later, the shell-model calculations there were

done in the hole formalism (relative to 40Ca).

The corrected binding energies of 197 experimentally

Observed states included in the data set for the "Particle"

least-squares fit are tabulated in Table 1, together with

their excitation energies. The considerations for intruder

states and the procedure for the correction Of measured

binding energies relative to 16O for Coulomb contributions

are as described above. The present least-squares fit

including level energies of A=23 and 24 involves diagonal-

izing Hamiltonians of large orders. These can be as large

as 2000 in the j-j coupling scheme (Oak Ridge Code) or

13000 in the m-scheme (Glasgow Code). Large amounts of

computer time and data storage are required not only for

the diagonalization, but as well for the calculation of the

coefficients 8 of equation (7). As a time and storage

saving step, the data set was slightly reduced except for

the last iteration.

The above time and storage considerations, the

linear approximation in the formulation requiring only a
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TABLE l.--Binding and excitation energies of states comprising the data set

used to determine the "Particle" Hamiltonian (MeV).

a a

A N 2T v Ex EB A 2.] 2T v- Ex EB

17 01 ' 01 1 0.87 - 3.27 00 02 1 - 3.53 -26.69

03 01 1 5.79 + 1.60b 02 02 1 1.06 -29.16

05 01 1 0.00 - 9.19 2 3.99 -26.73

3 9.08 -26.19 .

18 02 00 1 0.00 -13.23 09 02 1 0.00 —3o.22

2 3.72 — 9.51 2 2.09 -28.18

09 00 l 3-89 - 9-39 06 02 1 0.66 -29.56

06 00 1 0.99 -12.29 2 2.20 -23,028

2 9.12 - 9.11 a 2.97 -27.258

10 00 1 1.12 -12.11 08 02 1 0.82 -29.90h

- - 2 3.68 -26.598

00 02 1 0.00 -12.19 10 02 1 1.82 .28.9oh

2 8.80 - 7.39c 12 02 1 9.51 -25.71§

09 02 1 1.98 -10.21 19 02 1 9.59 -25.631

2 3.92 - 8.27

06 02 1 5.37 - 6.82 00 09 1 0.00 -23.75

08 02 1 3.55 - 8.69 2 9.95 .19.30

09 09 1 1.67 -22.08

19 01 01 1 0.00 -23.68 2 9.07 -19.68

2 5.39 48.39d 08 09 1 3.57 -20.18

03 01 1 1.56 -22.12

05 01 1 0.22 —23.96 21 01 01 1 2.80 -99.99,

2 9.56 -19.12 2 5.78 -91.96J

07 01 1 9.38 -19.30 03 01 1 0.00 -97.29

2 5.96 -18.22 2 9.69 -92.55k

09 01 1 2.79 -20.89 3 5.39 -91.902

11 01 1 6.50 -l7.18 9 5.55 -91.69k

2 7.99 -15.79 05 01 1 0.35 -96.69

13 01 1 9.65 —19.03 2 3.79 ~93.50

3 9.53 -92.71‘

01 03 1 1.97 -19.67 07 01 1 1.75 -95.99

03 03 1 0.10 -16.09 2 5.93 —91.811

2 3.07 -13.076 09 01 1 2.67 -99.37

3 5.96 -lO.68f 11 01 1 9.93 -92.81

05 03 l 0.00 -16-19 13 01 1 6.95 ~90.79m

2 3.15 -12.99

3 9.71 -11.93 01 03 1 0.28 -38.ll

07 03 1 2.78 -13.36e 03 03 1 1.73 -36.66n

09 03 1 2.37 ~13.77e 2 3.51 -39.88

05 03 1 0.00 -38.39

20 00 00 1 0.00 -90.98 2 3.93 -39.96

2 6.72 -33.76 09 '03 1 1.76 ~36.63n

09 00 1 1.63 -38.85

2 7.96 -33.02 22 02 00 1 0.58 -57.65

08 00 1 9.25 -36.23 2 1.99 -56.29

12 00 1 8.78 —31.70 3 3.99 -59.29

16 00 1 11.95 -28.53 09 00 1 3.06 -55.17
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A 23 2? v Ex 88a A 20 27 V Bx EBa

0“ 00 2 “-36 -53.87 01 03 1 1.02 -61.78

06 00 l . 0.00 -58.23 2 3,39 -53,95Y

2 1.98 -56.2S° 03 03 i 1.83 —60.97

3 2.97 -55.26 2 3.99 -59.362

08 00 1 0.89 -57.39 3 3.99 -58.8iz

2 9.77 ~53.96 05 03 1 0.00 -62.80

10 00 1 1.53 -56.70 2 2.31 -60.992

2 9.71 -53.52 3 3.83 -58.97aa

3 5.83 ~52.90 07 03 1 1.70 -61.10

12 00 1 3.71 -59.52° 2 9.93 -58.37aa

2 6.58 -51.65P 09 03 1 2.52 -60.28bb

14 00 l 9.52 -53.71P 11 03 1 n.27 -58.53

2 9.05 -99.18P

16 oo 1 8.60 -99-63P 05 05 1 0.00 -51.10aa

18 oo 1 9.86 -98.37P

2 12.62 -95.61P 29 00 00 1 0.00 -87.11

20 00 1 13.58 -99.65p 2 6.99 -80.67

02 00 1 7.75 -79.36

00 02 1 0.00 -57.61 2 9.83 -77.28

2 6.29 -51.37q 09 00 1 1.37 -85.79

3 7.39 -50.273 2 9.23 -82.88

02 02 l 5.39 -52.27 3 7.35 -79.76

2 6.86 -50.7sr 9 8.65 -78.96

09 02 1 1.28 -56.33 06 00 1 5.23 -81.88

2 9.96 -53.15 08 00 1 9.12 -82.99

3 5.36 -52.25 2 6.01 -81.10

9 5.92 -51.69 3 8.99 -78.67

06 02 1 5.69 -51.97 10 00 1 7.81 -79.30cc

08 02 1 3.36 -59.25 12 oo 1 8.12 . -78.99C°

2 5.52 ~52.09 2 9.53 -77.58CC

12 02 1 6.35 -51.265 16 00 1 11.86 -75.25dd

16 02 1 11.01 -96.60 2 13.21 -73.90cc

t 3 19.19 -72.97dd

08 09 1 0.00 -93.56

02 02 1 0.97 -77.18

23 01 01 1 2.39 -68.37 2 1,35 .75,30

2 9.93 -66.33 09 02 1 0.56 -77.09

3 6.31 -69.95 2 1.39 -76.31ee

03 01 ' 1 0.00 -70.76 3 1.85 -75.80ee

2 2.98 -67.78 06 02 1 1.39 -76.31ee

05 01 1 0.99 -70.32 2 1.89 -7S.7Gee

2 3.91 -66.85 08 02 1 0.00 -77.65

3 5.38 -65.38u 10 02 1 1.51 -76.19ee

07 01 1 2.08 -68.68

2 9.78 ~65.98 00 09 1 0.00 -7l.67

3 5.77 -69.99 2 9.76 -66.91

09 01 1 2.70 -68.06 09 09 1 1.98 -69.69

11 01 1 5.53 ~65.23V 2 3.87 -67.80

13 01 1 6.23 -69.53v 3 5.58 -66.09

15 01 1 9.09 -61.72" 08 09 1 3.96 -67.71

19 01 1 19.29 -56.52x



TABLE l.--Continued.

259

 

 

 

A 20 2? 9 Ex 283 A 20 2T 9 Ex 28a

25 01 05 1 0200 -7s.97ff 33 03 05 1 0.00 -175.19u

26 02 09 1 0.29 -92.o9gg 35 03 01 1 0.00 -215.39mm

09 09 1 0.10 —92.1888 -

2 0.98 -91.8086 01 ~ 05 1 0.00 -200.98"“

06 09 1 0.00 -92.28hh

,, 38 06 00 1 0.00 -251.19mm

28 02 06 1 0.00 -102.6611

,, . 00 02 1 0.00 -251.06mm

29 03 07 1 0.00 -106.99%%111 09 02 1 2.17 ~298.89mm

os 07 1 0.00 -106.9911»33

- 39 03 01 1 0.00 -269.22mm

31 05 05 l 0.00 -198.62kk 01 01 1 2.50 -26i.72mm

05 01 1 6.71 -257.51mm»°°

 

aUnless otherwise noted, the ground-state binding energies are taken from reference

28, corrected for Coulomb energies and relative to

excitation energies are taken from references 27 and 29.

0
’

Reference 30, see text for discussion.

C

‘
1
.

Reference

Q

Reference

f

Reference

8Reference

38.

39.

90.

#1.

hReferences 91

1Reference

jReference

kReference

lReference

mReference

nReference

oReference

pReference

qReference

rReference

sReference

tReference

uReference

vReference

w

Reference

93.

1N.

95.

96.

97.

98.

99.

50.

51.

52.

53.

59.

55.

56.

57.

and 92.

160; the spin assignments and

. . . . . +
Spectroscopic-factors-weignted centr01d of second and third observeu 0 state.
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xReferences 58 and 59.

yThe spin-parity assignment is not definite in reference 60. The

22Ne(d,p) 23Ne results were not sufficient to distinguish between

i=0 and i=1 transitions.

2Reference 60.

aaReference 61.

bb

Reference 62.

ccReference 63.

ddReference 69.

eeReference 65

ffReferences 66 and 67.

88Reference 68.

hhReferences 68 and 69.

11Reference 69. .

jjPre-final calculation showed a douplet of J"=3/2+ and 5/2+ for the

lowest two states in 29Na, both were fitted to the observed ground-

state binding energy.

kkReference 70.

2'Reference 71.

mm . 2

Weighted by (0.25) .

rmReference 72.

00Reference 31, see text for discussion on d -hole strength in 39K.
5/2
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small change in the interaction in each iteration, and the

rapid convergence of the present method of doing the least-

squares fit in terms of orthogonal linear combinations of

the parameters at a fixed uncertainty level resulted in the

ad0ption Of the following fit procedure. Four iterations

in all were done to arrive at the final fitted interaction

or "Particle" Hamiltonian listed in Table 2. The uncer-

tainty level was kept at a small value in the first itera-

tion and increased slowly for the following three iterations

to ensure only a small change in the interactions in each

iteration. The data sets in the first and second iterations

included only the level energies of A=l7-21 and A=22, T=0

systems listed in Table 1. For the third iteration, level

energies of A=22, T=1,2 and A=23 systems were added to the

data set. The data set was expanded further to include all

level energies listed in Table 1 for the fourth and last

iteration.

The initial set Of 63 two-body matrix elements used

17
is the "K+ 0“ interaction, which was extensively investi-

gated in reference 1. It is one of the realistic effective

16
interactions calculated by Kuo from the Hamada-Johnston

25 It will be referred to as the KUOl4 inter-potential.

action since a harmonic-oscillator parameter of‘hw=14 MeV

was used in generating the interaction. The PW interaction

was also derived from the KUOl4 interaction. The two-body

matrix elements of the original KUOl4 interaction, the PW
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Table 2.--The two-body matrix elements <jajb|V|jcjd>JT of

"Particle", KU014, and PW Hamiltonians (MeV).a

 

 

 

213 21b 2jc 23d JT "Particle" K0019b ch

5 5 5 5 01 -2.0099 -2.9381 -2.1293

5 5 5 5 10 -0.8660 -1.0289 -o.9937

5 5 5 5 21 -1.0399 -1.0358 -1.2312

5 5 5 5 30 -1.3939 -0.8589 -l.7788

5 5 5 5 91 0.0208 -0.0502 0.1611

5 5 5 5 50 -9.0307 -3.6690 -9.0232

5 5 5 1 21 -0.6176 -0.8592 -0.6599

5 5 5 1 30 -1.3830 -1.5659 -l.1865

5 5 5 3 10 3.3882 3.1651 3.2056

5 5 5 3 21 -0.9781 -0.3969 -0.9020

5 5 5 3 30 1.9909 1.8796 1.8986

5 5 5 3 91 -1.3293 —1.3626 -1.3801

5 5 1 1 01 -1.3225 -0.9677 -1.9058

5 5 1 1 10 -0.6255 -0.5959 -0.9291

5 5 1 3 10 -0.9292 —0.2368 -0.2399

5 5 1 3 21 -0.9602 -0.8369 —0.8971

5 5 3 3 01 —3.8935 -3.7882 -3.8367

5 5 3 3 10 1.7200 1.6209 1.6917

5 5 3 3 21 -1.2395 -0.9039 -0.9199

5 5 3 3 30 0.8725 0.9996 0.5060

5 1 5 1 20 0.0660 -0.6222 0.1766

5 1 5 1 21 -0.8189 -1.2879 -0.8995

5 1 5 1 30 -3.5513 -3.6919 -3.6603

5 1 5 1 31 0.7762 0.1723 0.7838

5 1 5 3 20 —l.0366 -1.9988 -1.9679

5 1 5 3 21 0.2028 -0.2181 -0.2209

5 1 5 3 30 1.2093 1.1561 1.1709

5 1 5 3 31 -0.3350 -0.0892 -0.0903

5 1 1 3 20 -2.9571 -2.5788 -2.6118

5 1 1 3 21 —1.6881 —1.5511 —1.5710

5 1 3 3 21 -0.9668 -0.7936 -0.7531

5 1 3 3 30 0.0502 0.0269 0.0272

5 3 5 3 10 -5.5217 —5.8276 -5.3692

5 3 5 3 11 0.5267 -0.1257 0.9058

5 3 5 3 20 -3.7876 -9.5271 -9.0520

5 3 5 3 21 0.6659 -0.2037 0.3268

5 3 5 3 30 -0.5305 -1.1313 -0.6127

5 3 5 3 31 0.5976 0.1316 0.6669

5 3 5 3 90 -3.9056 -9.3137 -3.8359

5 3 5 3 91 -1.1927 -1.6603 -1.1985
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Zja 2jb 2jc 2jd JT "Particle" KUOllIb PWC

5 3 l l 10 1.7223 1.7125 1.7345

5 3 l 3 10 —1.6277 -1.9132 -1.9378

5 3 1 3 11 —0.1106 -0.0976 -0.0989

5 3 1 3 20 -l.3218 -l.5404 -1.5602

5 3 l 3 21 -0.2836 -0.7697 -0.7796

5 3 3 3 10 0.1337 0.0383 0.0388

5 3 3 3 21 -0.8424 -1.0101 -1.0230

5 3 3 3 30 2.0286 2.1579 2.1856

1 1 l 1 01 -2.3068 -1.9493 -2.2643

1 l l l 10 -3.3275 -3.1839 -3.4227

1 l l 3 10 0.2719 0.3085 0.3125

1 1 3 3 01 -0.8385 -0.7448 -0.7543

1 1 3 3 10 -0.2569 -0.2127 —0.2154

1 3 l 3 10 -3.0871 ~3.2771 -2.7861

1 3 1 3 11 0.2733 0.2167 0.7525

1 3 1 3 20 -l.34l4 -1.6099 -l.0974

l 3 l 3 21 -0.1653 -0.3267 0.2022

1 3 3 3 10 0.7599 0.7995 0.8097

1 3 3 3 21 -0.1856 -0.2071 —0.2097

3 3 3 3 01 —0.8119 -0.8076 -0.2849

3 3 3 3 10 -0.4708 -0.4695 0.0576

3 3 3 3 21 0.1747 0.0770 0.6110

3 3 3 3 30 —2.6098 -2.5872 -2.0873

 

a

Phase conventions are from reference 1.

Reference 1.

CReference 3.
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interaction, and the fitted "Particle" interaction are

listed in Table 2.

The initial single-particle energies used were

-4.l4, -3.27, +1.60 MeV for the Od5/2'131/2, Od33/2 orbits

respectively. The energies for the Od5/2 and 131/2 orbits

were taken from the ground and first 1/2+ states of 170.

Instead of using the energy of the first 3/2+ state in

17O, the centroid of five Observed 3/2+ resonances in 17O,

30
which contain nearly 100 percent of the Od /2 strength,

3

was used for the energy of the Od3/2 orbit. The centroid

energy Of 5.74 MeV plus the binding energy of the ground

state of 170, relative to 16O, -4.14 MeV, give +1.60 MeV

for the energy of the 0d orbit.
3/2

All 63 two-body matrix elements were varied in all

four iterations, although the number of orthogonal para-

meters varied was in all cases less than 63. The number

Of orthogonal parameters varied increased with the uncer-

tainty level. The single-particle energies were fixed at

the chosen values for the first three iterations. On the

final iteration, the energy of the Od3/2 orbit was varied

together with the 63 two-body matrix elements as free

parameters. The fragmentation of the 0d

17

3/2 strength in

O raises the question of what is the best energy to use

for the Od3/2 orbit for this type Of shell-model calcula-

tion. It was found that the energy shifted to +0.88 MeV,

close to the +0.94 MeV which would result if the energy of

the first 3/2+ in 17O was used.
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I.3.C. "Hole" Hamiltonian (A=32-39 fit)

In shell-mOdel theory, there is a complementary

relation between a particle and a hole representation of

an eigenstate, such that shell-model calculations can be

done either in particle or in hole formalism. In certain

cases, one formalism may be preferable to the other. For

example, in the present study of A=l7-39 sd-shell nuclei,

the same shell-model eigenstates can be described either by

distributing (A-16) particles in the OdS/Z' 131/2, Od3/2

orbits, or by distributing (40-A) holes in the same orbits.

For the A=32-39 region, the hole formalism is preferable

than the particle formalism for two reasons. First, the

number of active holes is smaller than the number of active

particles, so the effects Of three- or more-body contribu-

tions to the interaction should be smaller. Second, it is

also more economical Of computer time and data storage when

doing the least-squares fit. The one- and two-body Operator

matrix elements defined in equation (3) are only dependent

on the model space, the number of active particles or

holes, and the angular momentum and isospin of the eigen-

state. A single set Of Operator matrix elements need only

be generated once and can then be used for both the

"Particle" and the "Hole" least-squares fits. The hole

formalism was used for the A=32-39 region and thus the name

"Hole" Hamiltonian.
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The data set for the "Hole" least-squares fit, com-

posed Of 134 corrected binding energies of observed states,

is listed in Table 3, tOgether with the excitation

energies. The considerations for intruder states are as

described previously. The measured binding energies were

first corrected as in the “Particle" least-squares fit, and

the "Hole" corrected binding energies relative to 40Ca were

Obtained by simply subtracting the "Particle" corrected

binding energy of 40Ca from the "Particle" corrected

binding energies. The orders of the Hamiltonians are the

same as in the "Particle" case. The fit procedure is also

similar. Again, four iterations were done to arrive at the

final fitted interaction or "Hole" Hamiltonian listed in

Table 4. The same variations on the uncertainty level were

also performed. The data set in the first and second

iterations included the level energies of only A=34, T=0

and A=35-39 systems listed in Table 3. Level energies of

A=34, T=1,2 systems were added to the data set in the third

iteration. Finally, all level energies listed in Table 3

were included in the fourth iteration of the fit.

The initial set of 63 two-body matrix elements used

was the K12.5P interaction extensively studied in reference

2. As described there, the interaction was generated in

the same way as the KUOl4 interaction, except that a

harmonic—oscillator parameter Of'fiw=12.5 MeV was used to

take into account an increase in nuclear size for

increasing A. The two-body matrix elements of the original
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TABLE 3.--Binding and excitation energies of states comprising the data used

to determine the "Hole" Hamiltonian (MeV).

 

 

 

A 23 2? 0 Ex 583 A 23 21 9 Ex 88a

39 01 01 1 2.50 18.13 35 01 01 1 1.21 65.72

03 01 1 0.00 15.63 2 3.96 68.97

3 9.72 69.23

38 02 00 l 0.95 29.11 9 6.63 71.19

2 1.70 30.36 03 01 1 0.00 69.51

09 00 1 3.93 32.09b 2 2.69 67.20

06 00 1 0.00 28.66 05 01 1 1.75 66.26

2 3.00 67.51

00 02 1 0.00 28.79 3 5.12 69.631

02 02 1 5.55 39.39c 9 5.98 69.99

09 02 1 2.17 30.96 5 5.59 70.101

2 9.90 33.19d 6 6.03 70.59

7 6.83 71.39

37 01 01 1 1.90 92.09 07 01 1 2.65 67.16

03 01 1 0.00 90.69 09 01 1 3.99 68.95

05 01 1 2.79 93.93 -

2 ~ 3.17 93.818 01 03 1 1.56 71.72

07 01 1 2.22 92.86 03 03 l 0.00 70.16

01 03 1 1.73 97.36f 01 05 1 0.00 79.371‘

03 03 1 0.00 95.63

2 9.02 99.65 39 02 00 1 0.96 77.61

05 03 1 3.09 98.728 2 0.67 77.82

2 9.80 50.93r 3 2.59 79.79

9 3.13 80.28

36 00 00 1 0.00 99.92 09 oo 1 1.29 78.39

2 9.33 53.75 . 2 1.89 79.09

09 00 1 1.97 51.39 06 00 1 0.15 77.30

- 2 9.99 53.86 2 2.19 79.39

06 00 1 7.19 56.56 3 2.62 79.77

08 00 1 9.91 53.83 08 00 1 2.38 79.53

2 6.36 55.78

00 02 1 0.00 77.15

00 02 1 3.12 59.15 - 2 - 3.92 81.07

02 02 1 1.16 57.19 3 5.23 82.38

2 1.60 .57.63h’i 02 02 1 9.08 81.23

3 2.67 58.70h'1 2 5.39 82.59

9 3.97 59.50 09 02 1 2.13 79.28

09 02 1 0.00 56.03 2 3.31 80.96

2 1.96 57.99 3 9.12 81.27

3 2.99 58.52 9 9.89 82.09

06 02 1 '0.79 56.821 5 5.99 83.19

2 2.86 58.89 06 02 1 9.88 82.03

08 02 1 9.69 81.89

00 09 1 0.00 60.27 2 6.25 83.90'

02 09 1 9.52 69.79 ~

09 09’ 1 3.29 63.56 02 09 1 0.00 87.83
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3Unless otherwise noted, the ground state binding energies are taken

from Reference 28, corrected for Coulomb energies and relative to

“OCa; the

Reference

bReference

c

Reference

spin assignments and excitation energies are taken from

27.

73.

79.

Spectroscopic-factors—weighted centroid Of second and third Observed

2+ state.

eReference.

fReference

gReference

hReference

iReference

jReference

Reference

Reference

Reference

2
5
5
1
0
7
?

Reference

0Reference

pReference

qReference

r

Reference

75.

76.

77.

78.

79.

80.

72.

81.

82.

71.

83.

89.

70.

85.



Table 4.--The two-body matrix elements <jajb|VIj

40

"Hole" and K12.5P Hamiltonians (MeV).a

cjd>JT O

 

 

 

Zja 23b ch 23d JT "Hole" K12.5Pb

5 5 5 5 01 -2.1234 -2.2766

5 5 5 5 10 -0.8983 -0.9790

5 5 5 5 21 -0.5549 -0.8799

5 5 5 5 30 -0.6833 -0.7269

5 5 5 5 41 0.4434 -0.0323

5 5 5 5 50 -2.9351 -3.0479

5 5 5 1 21 -0.5527 -0.7416

5 5 5 1 30 -1.3040 -1.3368

5 5 5 3 10 2.6485 2.8734

5 5 5 3 21 -0.1927 -0.3841

5 5 5 3 30 1.5701 1.6060

5 5 5 3 41 -0.8755 -1.1738

5 5 1 1 01 -0.7769 -0.8938

5 5 1 l 10 -0.5285 -0.5859

5 5 l 3 10 -0.2574 -0.2170

5 5 1 3 21 -0.8774 -0.7169

5 5 3 3 01 -3.4471 -3.3550

5 5 3 3 10 1.4097 1.4574

5 5 3 3 21 -0.7272 -0.8010

5 5 3 3 30 0.4723 0.4262

5 l 5 l 20 -0.4291 -0.5203

5 1 5 1 21 -0.3676 -1.1110

5 l 5 l 30 -3.0649 -3.0699

5 1 5 l 31 1.0105 0.1493

5 1 5 3 20 -0.9922 -1.2315

5 1 5 3 21 0.3111 -0.2158

5 1 5 3 30 0.9444 0.9998

5 1 5 3 31 -0.4935 -0.0488

5 1 l 3 20 -2.0269 -2.1718

5 1 l 3 21 -1.3537 *1.3349

5 1 3 3 21 -0.7392 -0.6419

5 1 3 3 30 0.0660 0.0295

5 3 5 3 10 -5.0568 -5.3266

5 3 5 3 11 0.2352 -0.1367

5 3 5 3 20 -3.6694 -3.8860

5 3 5 3 21 0.4477 -0.l664

5 3 5 3 30 -0.9271 -0.9606

5 3 5 3 31 0.6083 0.1122

5 3 5 3 40 -3.3154 -3.5935

5 3 5 3 41 -0.3100 -1.4490

f
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Zja Zjb ch Zjd JT "Hole" K12.5Pb

5 3 1 1 10 1.4758 1.6018

5 3 1 3 10 -1.6758 -1.6509

5 3 1 3 11 0.0483 —0.0654

5 3 1 3 20 -0.7370 -1.3372

5 3 1 3 21 -0.3077 -0.6623

5 3 3 3 10 0.0956 -0.0712

5 3 3 3 21 -0.3325 -0.8646

5 3 3 3 30 1.7037 1.8108

1 1 1 1 01 -1.3430 -1.8186

1 1 1 1 10 -2.8093 -2.9245

1 1 1 3 10 0.4661 0.2866

1 1 3 3 01 -0.6696 -0.6906

1 1 3 3 10 -0.2055 -0.1306

1 3 1 3 10 -2.9441 -2.7934

1 3 1 3 11 0.4955 0.1668

1 3 1 3 20 -1.0458 -1.3606

1 3 1 3 21 -0.0240 -0.2924

1 3 3 3 10 0.8651 0.7384

1 3 3 3 21 0.3064 -0.1952

3 3 3 3 01 -0.9707 —0.8197

3 3 3 3 10 -0.4862 -0.4922

3 3 3 3 21 0.0800 0.0571

3 3 3 3 30 -2.1908 -2.1795

 

a

Phase conventions are from reference 1.

Reference 2.
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K12.5P and the fitted "Hole interactions are listed in

Table 4.

The initial single-particle energies used were

+22.34, +18.13, +15.63 MeV, for the 0d 2, 0d3

5/2’ ls1/

orbits, respectively. The energies for the 0d

3/2

3/2 and

151/2 orbits are taken from the ground and first l/2+

states of 39K. For the OdS/Z orbit, a problem arises from

hole strength in 39K. The
5/2

energy used is taken from recent 40Ca(d, 3He) data by

Doll et al.31 It is the centroid of spectroscopic weighted

the fragmentation of the 0d

energies of all states with i=2 transfer in 39K between

5.27 to 9.75 MeV. The sum of the spectrosc0pic factors

(C28), assuming a dS/Z pick-up for all the states used,

is 4.97, still somewhat smaller than the theoretical total

strength of 6.

All 63 two-body matrix elements were varied in the

first three iterations as in the "Particle" case. Because

of the uncertainty in the OdS/Z orbit energy, its energy

was varied together with the two-body matrix elements in

the last iteration. The energy was then found to shift

down slightly, to +21.75 MeV.

I.3.D. Computer Codes

Various computer codes were used in the present

study. The Oak Ridge Code13 and a modified version of the

Glasgow Codel4 were used to generate the one- and two-body

. . . 1

operator matrix elements p's. A modified verSion of SMIT
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was used to combine the Operator matrix elements with the

eigenvectors to obtain the linear equations (15), and then

perform the least-squares fit in terms of orthogonal linear

combinations of the parameters. A further modified version

of the Oak Ridge Code which uses the Lanczos iterative

diagonalization method was used to calculate many of the

ground state binding energies and the spectra of A=23,24,

25,26,32 and 33 systems to be discussed in the next

section.

I.4. Results

I.4.A. Orthogonal Parameter Fit

Since the Hamiltonian parameters in the trans-

formed representation are linearly independent (orthoqonal),

it is interesting to ascertain how many of them are well

determined by each of the data sets.

The change in the least-squares x2 from a change

in parameter xk of Axk can be estimated as follows. The

definition of x2 is:

_ 2

—E(8Wmm£ (9)

If parameter xk changes by Axk, the new x2 is:

X2(Axk) =2(282mxm + sfikAxk - 8,12 (24)
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The change in x2 is obtained from equations (9) and (24):

A(x2) = x2(Axk) - x2

A(x2) = 2 (is x + s Ax - E )2 - (26 x - E )2 (25)
2 m 2m m 2k k 2 m £m.m 2

Equation (25) can be simplified to:

A(x2) = §8£k2(Axk)2 + Axk[%z(282mxm - E£)Blk (26)

2 m '

2

The second expression on the right is just Axk 52., which is

equated to zero for the minimization of x . Hence, equation

(26) is simply:

A(x2)

2 2
Esgk (Axk) , and

2 _ 2

The change in x2 from a change Axk for parameter xk is just

(Axk)2 multiplied by the corresponding diagonal matrix

element of the G matrix. In terms of the diagonal matrix

elements dm of the error matrix D-l,

(A )

A(x2) — —:-k— (28)

k

or

MXZ)

H

m
D

x
x
”

‘
1
)

(29)

where 8k is the uncertainty of parameter xk.

noted that the x

It should be

k affects the x2 independently without
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affecting the other parameters, as the orthogonal para-

meters are linearly independent.

The x? of the "Particle" Hamiltonian is 0.22 MeV

and for the ”Hole" Hamiltonian is 0.28 Mev. It should be

noted that the uncertainty in the Coulomb correction of the

binding energies can be as much as 200 keV or more. Using

the results of the last iterations of the "Particle" and

"Hole" fits, the change in x2 was calculated for a change

in each of the orthOgonal parameters. In Figure 2 is

plotted on a semi-log scale the percentage change in x2 for

a 200 keV change in each of the better determined ortho-

gonal parameters. The steepness of the curves is to be

noted; only a few orthogonal parameters are extremely well

determined by the data in each case. Less than half of the

63-orthogonal parameters affect the x2 by more than 1 per-

cent in either the "Particle" case or the "Hole" case for

a 200 keV change in their value. The shape of the two

curves are similar, though more orthogonal parameters seem

to be determined by the data set in the "Particle" case

than in the "Hole" case. However, the data set for the

"Particle" fit is bigger than for the "Hole" fit.

In the final iteration of the "Particle" fit,

thirty orthogonal parameters were varied as free parameters,

while twenty were varied in the final iteration of the

"Hole” fit. In either case, all the orthogonal parameters

kept constant affect the x2 by less than 1 percent as shown

in Figure 2. Thus, the X2 obtained for the "Particle" and



46

  

IO4:'

E. CHANGE IN X2 FOR 200 keV _

P CHANGE IN EACH ORTHOGONAL

F PARAMETER

‘ ,03_ ° . "PARTICLE"

E . "HOLE"

i .

.QIOZEf

N E . O

3: :2 ° °.

.7 .. ,

Z n

V '0 F ..o 00

E .3. o

.. .0... 0000

_ °. °%

I L.— ...o 0°00

5 060

I '- °0
0 00°

-
0°

- g st

0. 0°

'04 1 1 1 I w u 1 1 004

0 IO 20 30 40 20 30 4o

ORTHOGONAL PARAMETERS IN INCREASING'UNCERTAINTY
_. 

Figure 2. Percentage change in x2 for a 200 keV change in

each orthogonal parameter.
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"Hole" Hamiltonian should not be affected much by varying

additional of the less-sensitive orthOgonal parameters.

I.4.B. Comparison of Two-Body Matrix Elements

The two-body matrix elements of the "Particle"

Hamiltonian, the original KUOl4 interaction and the PW

interaction are all listed in Table 2. The two-body matrix

elements of the "Hole Hamiltonian and the original K12.5P

interaction are listed in Table 4. Comparison of the

different sets of interactions is now a matter of comparing

the different lists of two-body matrix elements. The task

is difficult since the least-squares fits were done in

terms of orthogonal linear combinations of the two-body

matrix elements and hence every two-body matrix element has

changed. In Figure 3 are plotted the diagonal two-body

matrix elements of the "Particle" Hamiltonian, the "Hole"

Hamiltonian, and the original KUOl4 and K12.5P realistic

Hamiltonians. The off-diagonal two-body matrix elements

of the four Hamiltonians are plotted in Figure 4. The dots

are the original Kuo matrix elements, and the crosses are

the new "Particle" or "Hole" matrix elements. The "Parti-

cle" interactions are plotted to the right of the "Hole"

interactions. In general, the changes have no clear

pattern, though more matrix elements tend to change in the

positive direction (become less attractive).

One can compare the strengths of diagonal orbit-

orbit interactions for the different Hamiltonians defined as:
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JXT(2J+1)(2T+1) <3a3b|V|3a3b>JT , (30)

where ja and jb are single-particle angular momenta and

J,T are the coupled angular momentum and isospin. In

Table 5 are listed the strengths of the orbit-orbit

interactions for the different Hamiltonians. The strength

of the dS/Z-dS/Z interaction does not change in the fitted

"Particle" and PW Hamiltonians from the original KUOl4

Hamiltonian. The strengths of the d and d -d
5/2'51/2 5/2 3/2

interactions are, however, reduced in both cases by

approximately a factor of 2. The strength of the s1/2--sl/2

interaction is again found to be unchanged by both the

u - n ' ' ’present Particle fit and the PW fit. The sl/2 d3/2

d3/2-d3/2 interaction strengths are, however, very different

and

for the "Particle" and PW Hamiltonians." Both PW strengths

are very much reduced from the KUOl4 Hamiltonians. For the

u . fl . . _ . .
present Particle Hamiltonian, the d3/2 d3/2 interaction

strength is not changed; the Sl/Z-dB/Z interaction strength

is slightly reduced, though less than the factor of 2

found for the dS/Z-Sl/Z and d5/2-d3/2 interaction strengths.

However, the Sl/Z-dB/Z and d3/2_d3/2 interactions are not

well determined from either the PW or "Particle" data set.

Essentially the same picture is obtained in com-

paring the strengths of the orbit-orbit interactions of the

u :1 ° ° _
K12.5P and Hole Hamiltonians. The <13/2 (33/2

1/2 interaction strengths are not changed, while the

and 31/2-

5

-d3/2 and dS/Z—d3/2 interaction strengths are reduced
s1/2
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Table 5.--Strengths of orbit-orbit interactions (MeV).

Z (2J+1)(2T+l)<jajb|V|jajb>JT

 

 

 

J,T

a u n b C n n
ja jb KU014 Particle PW K12.5P Hole

5/2 5/2 - 75.9 -77.4 -80.0 - 62.5 -42.5

5/2 1/2 - 44.6 -20.5 -21.0 - 37.6 - 7.9

5/2 3/2 ~133.1 -74.5 -83.6 -llS.0 -56.6

1/2 1/2 _ 15.4 -l6.9 -17.l - 14.2 -12.5

1/2 3/2 - 20.8 -16.0 - 4.0 - 18.1 -l0.0

3/2 3/2 - 20.8 -l9.5 - 6.1 - 18.3 -18.5

 

8Reference 1.

bReference 3.

cReference 2.
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by approximately a factor of 2 in the "Hole" Hamiltonian.

The d5/2-d5/2 and dS/Z-Sl/Z interactions are the ones not

well determined in the "Hole" least-squares fit for the

and dsame sort of reasons that the sl/z-d -d

3/2 3/2 3/2

interactions are not well determined in the "Particle"

least-squares fit. It may be concluded then that the

result of both empirical renormalization of the Kuo's

realistic Hamiltonians is a lessening of the attractiveness

of the dS/Z-Sl/Z’ d5/2-d3/2, and Sl/Z-dB/Z interaction

strengths.

Li et al.32 have recently investigated the

17O(d,p)180 reaction at a deuteron bombarding energy of

18 MeV, and observed 12 states in 180 up to an excitation

energy of 6.34 MeV. From the observed excitation energies

and extracted absolute Spectroscopic factors, they deduced

the diagonal matrix elements of the effective neutron-

neutron interaction for (dB/2)2 + and (d
0+,2+,4 5/2'51/2)2+,

3+, T=1 configurations. Their matrix elements are listed

in Table 6, together with the corresponding matrix elements

of the K0014, PW and "Particle" Hamiltonians. The uncer-

tainties for the "Particle" Hamiltonian matrix elements are

obtained by assuming a 200 keV theoretical error for each

calculated energy.

Li et a1.32 pointed out that their deduced matrix

elements may be too attractive because of the omission of

transitions to higher excited states not seen in the

experiment, and made some theoretical estimates of the



TABLE 6.--Matrix elements <d5/2jIVId5/2j>J.(T=1) of the

effective neutron-neutron interaction (MeV).

53

 

 

 

 

2j Expt.a Est. Errorb KUOl4c "Particle"d PWe

5 -2.77 1.00 -2.44 -2.01:0.44 -2.12

5 -1.06 0.13 -l.04 -1.04ip.12 -l.23

5 -0.35 0.36 -0.05 +0.02:0.04 +0.16

1 -0.79 0.20 -l.29 -0.82:0.l4 -0.85

1 +0.60 +0.17 +0.78:0.09 +0.78

a
Reference 32.

bSee text for discussion on error estimates; reference 32.

cReference l.

dSee text for discussion on uncertainties.

e

Reference 3.



54

error in the deduced matrix elements; these are also listed

in Table 6. Li et al.32 also derived these diagonal matrix

elements from the theoretical energies and spectroscopic

factors for the two lowest 0+ and 2+ levels and the lowest

4+ level of reference 33 by the same technique they used

with their data. These values were then compared to the

actual values of the matrix elements used in the calcula-

tion of reference 33. The discrepancies are then estimates

+ and 4+ levels.of error introduced by omitting higher 0+, 2

These error estimates were found to be model

dependent, though the model used is the same as the one for

the different Hamiltonians listed in Table 6, i.e., a 160

core with (sd)l and (sd)2 configurations for 170 and 180

respectively. No estimated error was given for the

<5/2 l/2IVI5/2 l/2>3,l matrix elements because the lowest

3+ state in 18O is essentially a pure (dS/Z—Sl/Z) configura-

tion. Different (d5/2-51/2)3+,(T=1) matrix elements

merely predict different energies for the lowest 3+ state.

Comparison of the (d5/2)2 diagonal two-body matrix

elements shows that the KUOl4 realistic matrix elements

all agree with the deduced experimental matrix elements

within the theoretically estimated errors, with the experi—

mental values being more attractive. The PW matrix

elements, however, are in poorer agreement with the experi-

mental values. The present “Particle” matrix elements

using the orthogonal least-squares search, on the other

hand, are again in good agreement with the experimental
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values. The (d5/2)20+ matrix element is even less attrac-

)2

5/2 2

matrix element is not changed from the KUOl4 value. The

tive, but well within the estimated error. The (d +

(d5/2)24+ matrix element changes sign, but again the

estimated uncertainty of 0.04 MeV is still within the

estimated error. In short, the KUOl4 and "Particle"

(d5/2)2 diagonal two-body matrix elements and experimen-

tally deduced values are in rather good agreement, with

the observed deviations understandable as mostly due to the

omission of higher excited states.

Comparison of the (dS/Z-Sl/Z) diagonal two-body

matrix elements gives quite a different picture. The PW

and "Particle" matrix elements are in good agreement with

the experimental values. The KUOl4 matrix elements, how-

ever, are much more attractive for both the (d5/2-81/2)2+,

(T=1) and (dS/Z-Sl/2)3+,(T=l) matrix elements than the

experimental values. This is consistent with the above

conclusion that the result of empirical renormalization is

the lessening of the attractiveness of dS/Z-sl/Z'

d5/2-d3/2' and 81/2-d3/2 interaction strengths. The

evident question then is why the diagonal dS/Z-dB/Z'

dS/Z-sl/Z and 81/2—d3/2 interaction strengths are over-

attractive in the Kuo realistic interactions while the

diagonal dS/Z-dS/Z’ 81/2-31/2 and d3/2-d3/2 interaction

strengths are not.
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I.4.C. Ground-State Binding Energies and Spins

The corrected measured ground-state binding

energies relative to 16O are listed in Table 7, together

with the calculated binding energies of the "Particle"

and "Hole" Hamiltonians. The single particle energies used

with the "Particle" Hamiltonian are -4.l4, -3.27, and

+0.88 MeV for the OdS/Z’ Isl/2, Od3/2 orbits, respectively.

For the "Hole" Hamiltonian, they are +21.75, +18.l3,

+15.63 MeV for the OdS/Z' 151/2, Od3/2 orbits, respectively.

The deviations between calculated and measured

ground-state binding energies are also plotted in Figure 5

and Figure 6. The energy deviations for the "Particle"

Hamiltonian are plotted in Figure 5 as a function of

mass A. For each A, the energy deviations are plotted in

order of increasing isospin, starting from the lowest

isospin. The ground-state binding energy deviations for

the "Hole" Hamiltonian are plotted similarly in Figure 6.

The ground state binding energies are well repro-

duced in the A=17-24 region with the "Particle" Hamiltonian.

The energy deviations are all smaller than 0.5 MeV, except

for 21O and 22O, which were not included in the least-

squares fit. The observed binding energies of 21O and

220, however, have large uncertainties. Beyond A=24, the

energy deviation increases with A, with a clear isospin

dependence, i.e., less binding for higher isospin. The

effect of adding seven energy levels from A=35, 38 and 39



TABLE 7.--Ground state nuclear binding energies (MeV) relative to 16

calculated with the "Particle" and "Hole" empinical Hamiltonians.

5'7

 

 

  

 

THEORY (EXPT.-THEORY)

Nucleus J Expt.a Particle Hole Particle fible

160 0 0.00 --- 30.83 --- -3o.83

170 5/2 - 4.14 - 4.14 21.54 0.00 -25.68

180 0 - 12.19 - 12.21 9.18 0.02 -21.37

190 5/2 - 16.14 - 16.31 0.85 0.17 -16.99

200 0 - 23.75 - 23.98 10.50 0.23 -13.25

210 5/2 - 26.3 :gng - 27.69 17.56 1.4 - 8.7

220 0 - 32.2 :g:§b - 34.78 27.58 2.8 - 4.6

230 1/2 - 37.13 32.48

2“0 0 - 41.54 38.28

250 3/2 - 40.14 38.83

.250 0 - 40.49 41.30

270 3/2 - 37.95 40.84

280 0 - 37.43 42:36

18? 1 - 13.23 - 13.35 9.10 0.12 -22.40

19? 1/2 - 23.68 - 23.87 4.54 0.19 -19.14

2°r 2 - 30.22 - 30.47 15.61 0.25 -14.67

21F 5/2 - 38.39 - 38.51 27.02 0.12 -11.37

22? 4 «3.561003c - 43.61 35.04 0.05 - 8.52

23F 5/2 -51.10;0.17d - 51.30 45.17 0.20 - 5.93

2”? 3 I - 54.74 50.69

25? 5/2 - 59.62 57.05

255 1 - 60.47 59.76

27F 5/2 - 61.50 62.72

28? 3,2 - 60.13 63.46

29? 5/2 - 60.02 65.42

20Ne 0 - 40.48 - 40.60 23.55_ 0.12 - 16.99

2146 3/2 - 47.24 - 47.29 33194 0.05 - 13.30

2246 0 - 57.61 - 57.64 47.46 0.03 - 10.15

23Ne 5/2 - 62.80 - 62.88 55.40 0.08 - 7.45



TABLE 7.--Continued.

 

 

  

 

THEORY (EXPT.-THEORY)

Nucleus J VExpt.a Particle Hole Particle Hole

2”Ne 0 - 71.67 - 72.04 - 66.72 0.37 - 5.00

25Ne 1/2 45.971010f - 75.95 - 72.68 0.03 - 3.21

26Ne o - 81.83 - 79.70

2746 3/2 - 82.88 - 82.32

2846 0 - 85.95 - 87.34

29Ne 3/2 - 84.79 - 88.32

3°Ne 0 - 85.78 - 91.53

22Na 3 - 58.23 - 58.23 - 47.48 0.00 -10.75

23Na 3/2 - 70.76 - 70.76 - 62.30 0.00 - 8.46

2”Na 4 - 77.65 - 77.75 0.10

25Na 5/2 - 86.66 - 87.04 0.38

26Na 3 - 92.28:p.02g — 92.50 0.22

27Na 3/2 - 99.0710.06h - 99.43 - 97.40 0.36 - 1.67

28Na 1 -102.66ip.08h -102.76 -102.10 0.10 - 0.56

29Na 5/2 -106.9410.1oh -106.63 -107.50 0.31 0.56

3°Na 1 -109.3010.20h -107.03 -110.01 2.27 0.71

31Na 5/2 -115.1410.80h -108.46 -113.62 6.68 - 1.52

2uMg 0 - 87.11 - 87.49 - 80.23 0.38 - 7.01

254g 5/2 - 94.44 - 94.83 0.39

26Hg 0 -1os.51 -106.33 -102.27 0.82 - 3.24

2743 1/2 -111.97 -112.68 -109.99 0.71 - 1.98

28Mg 0 -120.48 -121.44 -119.40 0.96 - 1.08

29Mg 3/2,1/2i -1'24.12ip.40j -124.75 -123.78 0.63 - 0.34

3°Mg 0 -130.55 -131.08

alMg 3/2 -131.16 -133.65

32Mg 0 ~134.06 -138.71

26Al 5 -105.80 -106.45 0.65

27Al 5/2 -118.52

28A1 3 -126.25

29A1 5/2 -135.68



TABLE 7.--Continued.
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THEORY (EXPT.-THEORY)

Nucleus J Expt.a Particle Hole Particle Hole

3°81 3 -141.4310.04 -141.01 0.42

31A1 5/2 -148.62:p.10k -149.46 -149.14 0.84 0.52

3231 1 -152.63 -153.96

3331 5/2 -156.56 -159.51

2851 0 -135.70 -138.03 -134.36 2.33 1.34

2981 1/2 -144.18 -146.37 -143.46 2.19 0.72

3°51 0 -154.79 -157.11 -154.59 2.32 0.20

3151 3/2 ~161.37 —163.25 -161.09 1.88 0.28

3251 0 -170.59 —171.97 -170.80 1.38 0.21

3351 3/2 -175.14¢0.05£ -175.24 -175.29 ’0.10 0.15

3”51 0 -181.81 4183.28

3°? 1 -155.46 ~157.52 ~155.09 2.06 0.37

31? 1/2 -167.77 -l70.36 -167.88 2.59 ' 0.11

32F 1 -175.64 ~177.79 ~175.74 2.15 0.10

33F 1/2 -185.78 -187.85 -186.34 2.07 0.56

3“? 1 -192.02:_0.05z -192.75 —192.09 0.73 0.07

35P— 1/2 -200.4810.08m -200.54 -200.96‘ 0.06 0.48

325 0 -182.64 -185.78 -182.85 3.14 0.21

333 3/2 -191.28 -194.43 -191.32 . 3.15 0.04

34s 0 -202.70 -205.54 -203.08 2.84 0.38

355 3/2 -209.69 -212.22 -209.58 2.53 0.11

358 0 -219.58 -220.99 -218.50 1.41 0.08

3“01 3 ' -202.55 -205.87 -202.63n 3.32 0.08

3501 3/2 4215.34 -219.07 -215.69 3.73 ‘ 0.35

3601 2 -223.82 -225.93 -223.84 2.11 0:02

3701 . 3/2 —234.22 -235.65 —234.08 1.43 0.14



6 0 .

TABLE 7.--Continued.

 

 

  

 

THEORY ' (EXPT.-THBORY)

Nucleus J Expt.a Particle Hole Particle Hole

36
Ar 0 ~230.43 -232.57 -230.75 2.14 0.32

7
3 Ar 3/2 -239.21 -240.72 -238.98 1.51 -0.23

38Ar 0 -251.06 -251.8c -250.67 0.74 -0.39

38
K 3 -251.19 -253.04 -2Sl.16 1.85 -0.03

39x 3/2 -264.22 -265.39 -264.22 ' 1.17 0.00

40
Ca 0 -279.85 -280.69 --- 0.84 ---

 

aUnless otherwise noted, the ground-state binding energies are taken from

reference 28, corrected for Coulomb energies and relative to 160. The

uncertainties of the uncorrected binding energies are less than 30 keV,

except where explicitly specified.

U
‘

Reference 86.

0

Reference 5*.

6Reference 61.

. . 17+ . 11+.

eTne "Particle" Hamiltonian gives a J =3 ground-state with a J =2 first

excited state at 150 keV. The "Hole" Hamiltonian reverses the two states

with a splitting of 80 keV.

fReferences 66 and 67.

gReferences 68 and 69.

hReference 69.

1The "Particle" Hamiltonian gives a Jfl=3/2+ ground state with a J"=l/2+ first

excited state at 420 keV. The "Hole" Hamiltonian reverses the two states

with a splitting of 24 keV.

jReference 87.

kReference 70.

zReference 71.

mReference 72.

nFor the "Hole" Hamiltonian, the first Jfl=l+ state overbinds and is 120 keV

below the J'"=3+ ground-state.
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into the fit with a weighted factor of (0.25)2 was to reduce

the energy deviations in the upper end, reversing the

increase in energy deviation with A. In general, the

"Particle" Hamiltonian tends to overbind.

For the "Hole" Hamiltonian, the A=32-39 region

ground state binding energies are well-reproduced, consis-

tent with the interaction being fitted to observed energies

in these nuclei. Except for 33P, the energy deviations are

all smaller than 0.5 MeV. For A<32, the "Hole" Hamil-

tonian tends to under-bind. The energy deviation increases

with decreasing A below A=32, again with a clear isospin

dependence which now has the character of more binding

energy for higher isospin. The much reduced attractiveness

of the d5/2-d5/2 and dS/Z-Sl/Z two-body matrix elements can

reasonably be assumed to be responsible for the increasing

under-binding in the lower half of the sd-shell. These

matrix elements are more and more important as the holes

are filling up the OdS/Z-orbit.

The mass relation formulae of Garvey and Kelson,34

and later Garvey et al.35 have been quite successful in

predicting masses of nuclei near to stability. The

accuracy of using such recurrence relations connecting

mass excess values of neighboring nuclei depends upon the

accuracy of the input data. Thibault and Klapisch36 have

recomputed mass excesses for light neutron-rich nuclei

using the Garvey et a1.35 mass relations with more current
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and complete data on T232 nuclei. These results are listed.

in Table 8 under the column TK. Jelley et al.37 have

further extended such fits to include the recently measured"

massexcesses of Tz=5/2 sd-shell nuclei in the input data.

Their results are also listed in Table 8 under column G.

I Under column M are also listed results Obtained

with a modified shell-model mass equation employed by

Jelley et al..37 The modified shell-model mass equation

differs from that of Garvey et al.35 mainly in the para?

meterization of the residual neutron-proton interaction,

where shell structure is more explicitly taken into account.

The calculated mass excesses of neutron-rich sd-shell nuclei

using the "Particle" and the "Hole" Hamiltonians are also

listed in Table 8 for comparison.

Comparison of columns TK and G shows that inclusion

of the mass excesses of Tz=5/2 sd-shell nuclei in the

input data for the Garvey et al.35 mass relations does

improve the agreement of the results with experiments,

except for 21O, 22O and 31Na. The results of the modified

shell-model mass equation of Jelley et al.37 are very

similar to that of Garvey et a1.35 as can be seen from

columns G and M. The calculated mass excesses of the

"Particle" and "Hole" Hamiltonians combined are in good

agreement with the measured mass excesses, i.e., depending

on mass A and isospin Tz, either or both Hamiltonians

give mass excesses which agree with experiments to within

1 MeV, except again for 21O, 220 and 31Na.



TABLE 8.--Mass-Excesses of Neutron-rich Nuclei (MeV).

 

 

  

 

a b Jelley et a1.C Theory

Nucleus Expt. TK

G M Particle Hole

200 3.80 3.74 3.57 17.05

210 9.3:8‘; 8.82 8.74 8.39 7.93 18.06

220 11.5:g::d 9.84 9.42 9.35 8.91 16.11

230 16.44 15.48 15.40 14.64 19.28

240 20.41 19.70 19.44 18.30 21.56

250 28.91 27.77 29.08

260 33.97 35.49 34.68

270 43.26 46.10 43.21

280 49.90 54.69 49.76

22F 2.83:0.038 2.83 2.78 11.35

23F 3.36:0.l7f 3.87 3.40 3.36 3.16 9.29

24F 8.71 8.04 7.79 11.84

25F 12.42 11.75 11.26 10.98 13.55

26F 18.84 18.21' 18.92

27F 23.06 25.25 24.03

2899 31.06 34.69 31.36

29F 36.87 42.87 37.47

24Ne - 5.95 - 5.90 - 6.32 - 1.00

25Ne - 2.18:0.10h - 1.33 - 1.95 - 2.12 - 2.16 1.11

26Ne 0.30 0.17 - 0.27 0.03 2.16

27Ne 5.89 6.52 6.58 7.05 7.61

28Ne 8.82 12.06 10.67

29Ne 15.99 21.29 17.76

30Ne 20.62 28.37 22.62
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a b Jelley et a1.c Theory

Nucleus Expt. TK

G M Particle Hole

26Na - 6.90:0.021 - 6.90 - 6.94 - 7.12

27Na - 5.62:0.06j - 6.11 - 5.71 - 5.73 - 5.98 - 3.95

28Na - 1.14:0.08j - 1.81 - 1.02 - 1.24 - 0.58

29Na 2.65:0.10j 0.29 2.32 2.66 2.96 2.09

30Na 8.37:0.20j 6.28 8.50 10.64 7.66

31Na 10.60:O.80j 10.13 12.70 14.38 17.28 12.12

28Mg -15.02 -15.05 -15.98 -13.94

29119k -10.59:0.40£ -11.58 -lO.7O -10.75 -11.22 -10.25

30Mg -10.66 - 9.37 - 9.21 - 8.94 - 9.47

31Mg - 5.45 - 3.73 - 3.17 - 1.48 - 3.97

32Mg - 2.94 3.69 - 0.96

30Al -15.89:0.04 -15.89 -15.47

3131 -15.01:O.10m —15.75 -15.00 -15.05 -1S.85 -15.53

32A1 -11.88 -11.14 -10.95 -12.28

3341 -10.17 - 9.34 - 8.65 - 6.80 - 9.75

3251 -24.09 -24.13 -25.47 -24.30

3381 -20.57:_0.05n -21.05 -20.71 -20.67 -2o.67 -20.72

348i -20.66 -20.57 -20.32 -19.17 -2O.64

34p -24.55:_0.05n -24.55 —25.28 -24.62

359 -24.04:0.08° -24.79 -24.90 -24.81 -25.00 -25.42

365 -30.67 -3o.70 -32.08 -30.59
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a .

Unless otherwise noted, the mass excesses are taken from reference 28.

The uncertainties of the measured mass excesses are less than 30 keV,

except where explicitly specified.

bReference 36.

cReference 37; G indicates using Garvey et al.35 mass relations, and M

indicates modified shell-model mass relations.

dReference 86.

eReference 54.

fReference 61.

n + + .

gThe ground-state has J =3 and 2 for the "Particle" and "Hole"

Hamiltonians, respectively.

hReferences 66 and 67.

1References 68 and 69.

3Reference 69.

n + +

kThe ground-state has J =3/2 and 1/2 for the "Particle" and "Hole"

Hamiltonians, respectively.

t
o

Reference 87.

8

Reference 70.

Reference 71.

O
:
3

Reference 72.
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It was observed that aside from a mass dependence,

the energy deviations between calculated ground-state

binding energies and experiments have an isospin depen-

dence, which corresponds to less binding for the "Particle"

Hamiltonian, and more binding for the "Hole" Hamiltonian, for

increasing isospin. Comparison of calculated mass excesses

of neutron-rich nuclei of the “Particle" and "Hole"

Hamiltonians with those of Thibault and Kalpisch36 seems to

indicate that the isospin dependences of the "Particle"

and "Hole" Hamiltonians complement each other in giving a

good description of all sd-shell nuclei. The agreement

with the mass excesses of Thibault and Klapisch36 tends to

shift from the "Particle" to the "Hole" Hamiltonian as mass

A and isospin T increase. This encourages the hope that

the two Hamiltonians will yield overlapping descriptions in

the middle of the sd-shell.

The calculated ground state spins are adso listed

in Table 7. The agreement with all experimentally known

states is excellent. The "Particle" and "Hole" Hamiltonians

agree for all ground-state spins except for 28F, 29Mg and

34Cl. In 28F, the "Particle" Hamiltonian predicts a 3+

ground state with a first excited 2+ state; the "Hole"

Hamiltonian reverses the two states. In either case, the

splitting between the two states is less than 150 keV. It

may be noted that the "Particle" Hamiltonian predicts 28F

to be particle unstable by more than 1 MeV; while the

"Hole" Hamiltonian predicts a neutron separation energy of
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740 keV. Thibault and Klapisch36 predict a neutron separa-

tion energy of 60 keV. In 29Mg, the "Particle" Hamiltonian

. + . .

predicts a 3/2 ground state and l/2+ first exc1ted state;

the "Hole" Hamiltonian again reverses the two states. The

splitting of the two states is 420 keV for the "Particle"

Hamiltonian and 24 keV for the "Hole" Hamiltonian. Both

are consistent with a recent observation of Jfl=3/2+, 1/2+

by Goosman et al.87 In 34C1, the first l+ (T=0) state

comes below the lowest 3+ (T=O) state for the "Hole"

Hamiltonian.

The predicted spin of 5/2+ for 210 ground state

agrees with that of the PW interaction.6 The recent

assignment of Jfl=4+ for the 22F ground state by Davids

et al.54 was included in the data set for the "Particle"

least-squares fit; however, the "Hole" Hamiltonian also

reproduces a Jn=4+ 22F ground state. The same statement

23
is also true for the J“=5/2+, F ground state recently

assigned by Goosman and Alburger,61 and the Jn=l/2+, 25Ne

ground state experimentally observed by Goosman et al.66

to have J"=1/2+(3/2+). Both the "Particle" and "Hole"

Hamiltonians predict a Jfl=3/2+ ground state for 27Na

consistently with Jfl=3/2+, 5/2+ proposed by Alburger

et al.88 The ground state spins of other Na isotopes are

calculated to have Jfl=l+, 5/2+, 1+, 5/2+ for 28Na, 29Na,

30 31
Na and Na respectively. The Jfl=l+ 28Na ground state

spin was recently assigned by Roeckl et a1.85 and included

in the "Particle" fit, however, the "Hole" Hamiltonian also



70

reproduces a Jfl=l+ ground state for 28Na. The 29Na ground

state was fitted to the two lowest theoretical eigenstates

of J"=3/2+ and J"=5/2+ in the "Particle" fit, and to the

lowest Jfl=3/2+ state in the "Hole" fit. In both cases, a

J"=5/2+ ground state results from the final interaction.

The Jfl=l+ 34P ground state recently assigned by Goosman

et a1.71 is reproduced by the "Particle" Hamiltonian, but

was not included in the data set for the least-squares fit.

I.4.D. Ground-State Wave Function of 285i

As shown in the previous subsection, the ground-

state binding energies and spins are well reproduced by

the "Particle" and "Hole" Hamiltonians combined. The

deviations between calculated and observed binding energies

in the regions of nuclei from which the data sets were

taken are less than or equal to 0.5 MeV. The improvement

in the calculated binding energies further extends beyond

the regions of nuclei included in the least-squares fit.

It is hoped that the two Hamiltonians will complement each

other to give a good description of all sd-shell nuclei,

i.e., provide overlapping and similar descriptions of

nuclei in the middle of the sd-shell region. To gain some

idea of how the Hamiltonians compare in the middle of the

sd-shell, we compare the ground-state wave functions of

28Si as generated by the different Hamiltonians.

In Figure 7 are plotted the configuration proba-

bilities of n active particles in the dS/Z-orbit for the
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ground state of 2881, as calculated from the "Particle,"

"Hole," and KUOl4 Hamiltonians. It can be seen that the

"Particle“ and "Hole" Hamiltonians give similar descrip-

tions of the ground-state of 28Si, one which is quite dif-

ferent from that given by the Kuo interaction.

The KUOl4 interaction gives almost no component

of (d5/2)12 configuration in the wave function. The

(dS/z)lo configuration has also a very small component.

The large components are those of the (d5/2)6, (dS/Z)7

and (ds/z)8 configurations. The (average) occupation

numbers are 6.84, 2.68, and 2.48 for the d5/2' Sl/Z' and

413/2 orbits, respectively. The empirical Hamiltonians give

a description of the 2BSi ground-state more in keeping with

12
simple expectations. The (d and (dS/z)10 configura-

5/2’

tions are much more heavily occupied than in the Kuo wave

function. The (averaged) occupation numbers of 9.13, 1.45,

and 1.41 for the "Particle" and 8.79, 1.64, and 1.58 for the

"Hole" Hamiltonians, for the d5/2' sl/Z’ and c13/2 orbits,

respectively, are in better agreement with relevant experi-

mental data than are the Kuo values.

The difference between the Kuo and empirical

results may be explained by the less attractive dS/Z-sl/Z

and d5/2‘d3/2 interactions in the "Particle" and "Hole"

Hamiltonians. The same argument may also be used to

account for the small differences in the configuration

probabilities for (dS/Z)8 and (dB/2)12 configurations

between the "Particle" and "Hole" Hamiltonians. The
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dS/Z-dS/Z and dS/Z-Sl/Z interactions are more attractive in

the ”Particle" than in the "Hole" Hamiltonian.

I.4.B. Energy Spectra

The energy spectra calculated with the "Particle"

Hamiltonian for A=17-24, 25(T=l/2), 26(T=0) and with the

"Hole" Hamiltonian for A=32-39 nuclei are shown in

Figures 8-25. The angular momentum labels in the figures

give J for even-A nuclei and 2J for odd-A nuclei. Brackets

indicate the experimental assignment is tentative. An

assignment such as (3) means that the spin is probably 3;

and a (3,5) means that the spin is probably 3 or 5. An

(+)
assignment such as 5

( I

means that the parity is probably

positive; and a 5 means that the parity is unknown. A

bracket around a line means that the observed level is

probably there. A dashed line indicates a negative parity

state, and a solid line with no label indicates a positive

parity state or a state with only the energy known. All

labeled lines with no parity assignment indicate positive-

parity states. A dot indicates that above that energy

there are levels not shown. All known or calculated

levels are included before the first dot. The levels are

plotted in terms of calculated or corrected measured

binding energy relative to 16O or 4oCa. The spectra are

not shifted except for A=26 (T=0) nucleus, where the whole

theoretical spectrum is shifted by 0.5 MeV for easier

comparison. ‘The spectra plotted do not necessarily reflect
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the energy levels included in the data sets for the least-

squares fits as listed in Tables 1 and 3. The lines

connecting calculated and experimentally observed energy

levels are merely to guide the eyes for easier comparison.

The experimetnal spectra are taken from references 27, 29,

and Tables 1 and 3.

In the following paragraphs we discuss some of the

relationships between the model spectra and the experi-

mental data.

(1) A=l7, T=1/2 (Figure 8):

The d strength is observed to be fragmented in
3/2

17
O. The single-particle energy for d was treated as a

3/2

free parameter in the last iteration of the least-squares

fit and was found to move down to +0.88 MeV, close to the

energy of the first 3/2+ state in 17O.

(2) A=18, T=0 (Figure 8):

The 1*, 2+, and 3+ states at 1.70, 2.52, and 3.36

MeV, respectively, were assumed to be intruder states;

otherwise there is good agreement between the calculated

and observed Spectra in the low-energy region.

(3) A=18, T=1 (Figure 8):

The question of whether the second (3.63 MeV) or

third (5.33 MeV) observed 0+ state in 18O is dominated by

core-excited, particle-hole configurations is an unresolved

issue in shell-model calculations. The theoretical second

+
0 state was fitted to the spectrosc0pic-factor-weighted

centroid of the energies of the two observed excited 0+
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states. The third observed 2+ state at 5.25 MeV is gener-

ally accepted as an intruder state. The theoretical second

4+ state is always predicted higher than the one experi-

mentally observed at 7.11 MeV.

(4) A:l9, T=1/2 (Figure 8):

The observed 3/2+ state at 3.91 MeV in 19F is

missing in the calculated spectrum. This is very probably

an intruder state. A recent weak-coupling particle-hole

model calculation by Ellis and Engeland33 which included

(sd)3 configurations also is not able to reproduce this

state.

(5) A=19, T=3/2 (Figure 8):

The agreement is good between the calculated and

observed spectra, although additional experimental data are

required to establish more firmly the correlations between

theoretical and observed levels. The observed possible

l/2+ state at 3.24 MeV in 190 (not labeled in Figure 8)

is missing in the calculated spectrum.

(6) A=20, T=0 (Figure 9):

The ground state rotational band of 0+, 2+, 4+, 6+,

8+ states is well-reproduced. Between 6 and 9 MeV, there

are three observed 0+ and three observed 2+ states, while

the calculated Spectrum has only one 0+ and one 2+ state.

(7) A=20, T=1 (Figure 9):

Below.2.5 MeV, agreement between calculated and

observed spectra is good; however above 2.5 MeV more

experimental data are needed for a definite comparison
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(8) A=20, T=2 (Figure 9):

The five lowest observed states with known spin-

parity assignment are well reproduced.

(9) A= 21, T=1/2 (Figure 10):

The low-lying states are very well reproduced. The

first 15/2+ state is predicted at 9.76 MeV.

(10) A=21, T=3.2 (Figure 10):

Only the Spins of a few states have been uniquely

determined experimentally. However, the level density is

well reproduced, except for two of the four states observed

at about 2 MeV. It is possible that these are negative-

parity states.

(11) A=21, T=5/2 (Figure 10):

The ground state of 21O is predicted to have

Jfl=5/2+, although the binding energy is 1.4 MeV larger than

the experimental value.

(12) A=22, T=0 (Figure 11):

The 1+ and 3+ members of the K=0+, T=0 excited band

in 22Na are overbound in the calculated spectrum, although

the higher spin members of the same band are not. The

extra 2+ state predicted by the PW interaction near 3 MeV

is moved up to around 4 MeV. The observed 4.32 MeV l+

state is missing in the calculated spectrum.

(13) A=22, T=1 (Figure 11):

The first excited 0+ state observed at 6.24 MeV is

predicted to come 1 MeV too low in excitation. Otherwise,
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the agreement is good for individual excitation energies

and the density of states is also well-reproduced.

(14) A=22, T=2 (Figure 11):

Contrary to the compilation of Endt and Van der

Leun,27 the ground state is predicted to have Jn=4+. This

is in agreement with the experimental results of Davids

et al.54 I

(15) A=23, T=1/2 (Figure 12):

Compared to the PW interaction, the present calcu-

lated spectrum agrees much better with experiment. The

low-lying non-ground-state band member observed levels are

overbound, but the discrepancies are all less than 250 keV.

The 9.04, 9.81, 14.24, and 14.70 MeV excited states were

observed recently in 12C(lzc,n)23Mg by Speer et a1.59

These were proposed to be the 15/2+, 17/2+, 19/2+ and 21/2+

members of the ground state rotational band. The 9.04 and

9.81 MeV excited states were also observed in 12C(12C,p)23Na

58 The 9.04 (IS/2+) and 14.24 (l9/2+) MeVby Bibber et a1.

excited states were fitted to the theoretical counterparts

in the "Particle" fit. As shown in Figure 12, the calcu-

lated first 15/2+ state agrees well with the prOposed spin

assignment for the observed 9.04 MeV state. However, the

observed 9.81, 14.24 and 14.70 MeV states are closer in

energies to calculated excited states of 15/2+, 1'7/2+ and

19/2+ spin respectively. The 15/2+ assignment for the 9.81

1
MeV state agrees with a recent 2C(12C,p)23Na measurement

57
by Kekelis et al., which eliminated a 17/2+ assignment
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for this state through angular correlations and lifetime

data. The calculated spectrum shows a number of high-spin

states rather close together. Following the J(J+1) rule,

it is not clear which of the 13/2+, 15/2+, or 17/2+ states

are members of the ground-state rotational band. Further

investigation of the structure of the ground-state band is

needed.

(16) A=23, T=3/2 (Figure 13):

The reversal of the order of the observed '7/2+ and

3/2+ states at 1.70 and 1.82 MeV by the PW interaction is

corrected in the present calculated spectrum.

(17) A=23, T=5/2 (Figure 13):

The ground state of 23F was recently assigned a

Jfl=S/2+ by Goosman and Alburger.61 The state was included

in the "Particle" fit and the binding energy is well

reproduced.

(18) A=24, T=0 (Figure 14):

The energies in general are overbound compared with

experiment. The K=2 excited band which was predicted 1.5

MeV below its observed position by the KU014 realistic

interaction and 0.5 MeV by the PW interaction is well

reproduced in the present case. The first excited 0+ state

is still predicted to be underbound. In the 10-12 MeV

region, there are three observed 0+ states, compared to

only two theoretical counterparts.
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(19) A=24, T=1 (Figure 15):

The experimental spectrum is well reproduced below

3 MeV. More experimental data are needed for comparison

above 3 MeV.

(20) A=24, T=2 (Figure 15):

The calculated spectrum strongly suggest the 4.89

MeV state to have Jfl=3+.

(21) A=25, T=1/2 (Figure 16):

Except for the counterpart of the 1/2+ excited

state observed at 2.56 MeV in 25Mg, all the calculated

low-lying states are overbound compared to experiment. The

calculated Spectrum agrees very well with experiment in

terms of sequence and Spacings, however.

(22) A=26, T=0 (Figure 17):

The calculated binding energies are too large com-

pared to experiment. In Figure 17, the calculated spectrum

has been shifted up by 0.5 MeV for an easier comparison

with the experimental spectrum. The agreement is remarkably

good, suggesting that the observed 2.66 and 3.07 MeV states

have Jfl=2+ and 3+ respectively.

(23) A=32, T=0 (Figure 18):

The calculated binding energies are too large

compared to experiment. However, the shifting of the

excited states down relative to the ground-state by the

K0014 interaction is corrected. The first excited 0+ state

is also correctly calculated; it is underbound by more than

2 MeV by the KU014 interaction relative to the ground-state.



Figure 15. Energy Spectra of A=24 (T=1,2).

78"—
EXP TH

77"-

76—  

75—

‘3 A=24

23

N
U
C
L
E
A
R
a
m
m
o

E
N
E
R
G
I
E
S

R
E
L
A
T
I
V
E

T
O
"
0
m
m

q
u

9
q

0
‘

N
-

O

I
I

I
I

59—

69—

74—— (l-3)° :

I ' Im

(2.4)

I

O

O

O

O

IIII
°

-
N

a
#
0
:

W
u

_
~
4
4

a
0

EXP

:

x

\

T-Z

TH

67—

87



88

 

 

9
l
5
5
9

3
5
7
3
”

7
I

5
B
7
3
3
H
§
9
9
H
5
7
B
I
H
5
9
3

5
9

9
h
f
.

:
3
7

3
I

5

.
0
.

HT

W
5

x
2

3
.
-

T
A

m
_

n
_

_
_

_
.

P

.
_

u
_

.
X

_
_

_
_

E

m
.

.
m
)

_
9

.
9
.

.

.
I
o
.

I
n
u

3
5

o
.

a
s
!

.
o
7

2
3

I
|
7
m
5
5
|
a
m
l
m
r
7
fl

7

_
_

_
_

_
_

_
_

_
v

_

5
n
o

7
.

8
9

n
o

I
.

9
.

n
o

4
5

n
o

n
o

n
o

8
8

.
9

a
.

q
.

o
.

q
.

9

3
2
5
0
2

o
.
_
.

m
>
_
.
_
.
<
.
.
.
w
m
m
m
a
m
w
z
m

0
2
.
0
2
5

m
d
m
g
o
a
z

Energy spectra of A=25 (T=1/2).Figure 16.



89

2
8
5
5

9
2
0
.
2
0
m
z
m
m
e
m
m
3
.
5
2
m
3

.
m
o
2
%
.

 

 
 

 
 

 
 

 

m
m

m
m

m
m

m
m

_
_

1
_

_
_

_
_

4
I

4
4

6

n
m
u
a
H
Z
y
3
5
4
3

4
.
7
6
4
3
5
2
?
I
2
3
I
3
0
?

I
3

5

.
.

_
H

*
T

i
O

%
=

.
-

\
/

..
A

0
.
.

.
P

V
A

.
t

h
fi
m
$
v
m
i
z
m
w
r
o
u
m
d
é
e

I
n
o

:
3

I
4
3

a
P...

a
.

_
_

._.
_

_
_

_
_

_

m
m

m
m

m
m

m
m

m

3
0
5
:

O
w
.

0
k

m
>
_
.
_
.
<
4
m
m
m
m
a
m
w
z
m

0
2
.
0
2
5

m
a
m
-
.
0
3
2

Figure 17. Energy spectra of A=26 (T=0).



90

 

 

6

l05- : 53

I -'==“=="24

(2-4) E 3'

g '04— (2—5) _________ ————-02

8 .........

9, IO3-— --------- .

2____
O

h- 3

I; \ I

a 4 / 42

I3 IOI \ 2— o

\ .
w I

(D

Z

5 I00—

z
m

3:" 2 x 2

g 99—

Z

98—

o———\

97" EXP To

T=O 
A=32

Figure 18. Energy spectra of A=32 (T=0).



91.

(24) A=32, T=1 (Figure 19):

The J"=o+ and 2+ states observed at 0.51 and 1.32

MeV, respectively, are overbound in the calculation. Other-

wise the agreement is good for the low-lying states.

(25) A=32, T=2 (Figure 19):

More experimental data are needed for comparison

above 4 MeV. Two excited 0+ states are predicted near

5 MeV, while only one is observed with a possible assign-

ment of Jfl=0+ at 4.98 MeV.

(26) A=33, T=1/2 (Figure 20):

Some of the excited states are calculated to be

overbound compared with experiment; the order of the second

5/2+ and second 3/2+ states is reversed. The agreement is

good in general.

(27) A=33, T=3/2 (Figure 21):

The low-lying states are well reproduced, though

more experimental data are needed for comparison above

4 MeV. The observed 3.28 MeV state is suggested to have

J"=3/2+ by our results.

(28) A=33, T=5/2 (Figure 21):

The binding energy of 3381 is well reproduced. The

observed energy and J1T of 3/2+ was included in the "Hole"

least-squares fit.

(29) A=34, T=0 (Figure 22):

The calculated binding energy of the 3+ ground state

agrees well with experiment. However, the first excited
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Figure 20. Energy spectra of A=33 (T=1/2).
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1+ state is overbound and comes out below the ground state.

Some other excited states are also overbound.

(30) A=34, T=1 (Figure 22):

The 0+, T=1 ground state of 34S is correctly calcu-

lated to come below the T=0 states in 34C1. The calculated

spectrum agrees well with experiment except that between

5 and 6 MeV there are two observed 0+ state while there is

only one calculated 0+ state in this region. The next

calculated 0+ state is at 7.46 MeV.

(31) A=34, T=2 (Figure 22):

The calculated binding energy of the 1+ ground

state agrees very well with experiment. A very close first

excited state is predicted to have Jfl=2+.

(32) A=35, T=1/2 (Figure 23):

The calculated spectrum is somewhat expanded com-

pared with experiment; the agreement is otherwise good.

(33) A=35, T=3/2 (Figure 23):

Only the two lowest observed states have uniquely

determined spin and positive parity, so that more experi-

mental data are needed for comparison with the calculated

spectrum.

(34) A=35, T=5/2 (Figure 23):

The calculated binding energy for the J"=l/2+

ground state is too large by 0.40 MeV. A Jn=3/2+ state is

predicted for the first excited state.
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(35) A=36, T=0 (Figure 24):

More experimental data above 4.5 MeV are needed for

better comparison of calculated and observed spectra. An

observed Jfl=(1,2)+ state (not labeled in Figure 24) at 4.95

MeV in 36Ar is missing in the calculated spectrum.

(36) A=36, T=1 (Figure 24):

The agreement between calculated and observed

spectra is good. The observed 1.60 and 2.86 MeV states in

36C1 have been reassigned to have Jn=1+ and 3+, respec-

tively, following Rice et al.?9

(37) A=36, T=2 (Figure 24):

The observed first excited O+ state is predicted

to be 1.14 MeV underbound, and the observed second 2+ state

is also predicted to be 1.63 MeV underbound. These two

experimental states may be dominated by intruder state

configurations.

(38) A=37, T=1/2 (Figure 25):

The five lowest positive parity states are well-

reproduced. The results suggests the observed 3.60 MeV

37Ar to have Jfl=3/2+, consistent with the recent

75

state in

observation by Gadeken et al. of J"=3/2+ or 5/2-.

(39) A=37, T=3/2 (Figure 25):

Above 4 MeV, there are many more positive parity

states observed than are calculated. These are presumed to

be mostly dominated by intruder state configurations.
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(40) A=38, T=O (Figure 25):

Again intruder states are important in the spectrum.

+ and 1+ are wellThe lowest three states of Jfl=3+, 1

reproduced. The first 2+ is overbound by approximately

0.5 MeV, while the third 1+ is underbound by approximately

0.5 MeV.

(41) A=38, T=1 (Figure 25):

The first excited 0+ state is predicted at 5.83

MeV, while there are two excited O+ states observed at

3.38 and 4.71 MeV. There are also more excited 2+ states

observed between 3 and 6 MeV than are calculated. In

analogy to the case of 180, these states are very probably

mixtures of (sd)-2 configurations and intruder states.

(42) A=39, T=1/2 (Figure 25):

The dS/Z-hole strength is observed to be frag-

mented. The dS/z-hole single particle energy was treated

as a free parameter in the last iteration of the least-

squares fit. The energy was found to be 21.75 MeV.

In summary, the observed spectra are well-reproduced

by the "Particle" and "Hole" Hamiltonians in their respec-

tive domains, except for some levels which are missing in

a few nuclei. These are mostly in ffew particle" or "few

hole" systems, and can reasonably be assumed to be intruder

states. In the extensive studies made by the Glasgow

Group,5-8 the main defect of the KU014 realistic inter-

action was the shifting of whole bands of levels relative

to each other. The KU014 interaction predicts
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qualitatively correct interband spacings, but the relative

positions of the band heads can be wrong by several MeV.

The PW interaction gives a good description of A122 nuclei,

as is to be hOped since it was derived by a least-squares

fit to these nuclei. However, the improvement over the

K0014 interaction diminishes as A increases, as the ten-

dency to shift bands again shows up beyond A=22. The

"Particle" Hamiltonian gives very similar spectra for A122

nuclei as the PW interaction. The A=23, and 24 spectra are

better described by the "Particle" Hamiltonian than the PW

interaction, as these were included in the present least-

squares fit and not in the PW derivation. The band

shifting is corrected even in A=25 and 26. From the calcu-

lated spectra, it appears that the "Particle" Hamiltonian

gives a better description of lower sd-shell nuclei than

the PW interaction, and definitely better than the KU014

interaction. '

It is hard to compare the "Hole" Hamiltonian with

the K12.5P interaction as only the A=35-38 nuclei were

studied previously.2 The KU014 interaction was found to

give a very poor description of the upper sd-shell nuclei,

in many cases even predicting the wrong ground state spin.

The PW interaction is not expected to show much improvement

over the KU014 interaction in the upper sd-shell nuclei,

as the matrix elements involving the d3/2-orbit which were

least determined in the fit become more dominant. Compari-

son of A=32 and 33 spectra did bear out this fact, though
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the low-lying levels are still predicted in roughly the

correct order.5 The same spectra are very well described

by the "Hole" Hamiltonian.

1.5. Summary and Conclusion

Following the success of the PW interaction,3 an

attempt was made to derive a single empirical Hamiltonian

for the entire sd-shell region nuclei. The matrix elements

were treated as parameters and least-squares fitted to

measured binding energies of nuclei in the A:18-24 and

A=32-38 regions. It was found that a single set of mass-

independent (1+2)-body Hamiltonian was inadequate for the

entire sd-shell, presumably because of differing renormali-

zations at either end of the sd-shell. The data set was

divided into two parts and a Hamiltonian was obtained in

similar fashion from each part separately.

Starting from the KU014 realistic interaction, the

"Particle" Hamiltonian was obtained by an iterative least-

squares fit to measured binding energies in the A=18-24

region. The "Hole" Hamiltonian was fitted to measured

binding energies in the A=32-48 region instead, starting

from the K12.5P interaction. The least-squares fit was

reformulated in terms of orthogonal linear combinations

of the matrix elements as parameters. With from 134 to 197

entries in the data sets, it was found that only a few

orthogonal parameters were very well determined and that
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less than half of the orthogonal parameters were at all

well determined by the data.

The dominant result of the empirical renormaliza-

tion obtained for the Kuo matrix elements is the reduction

in attractiveness of the dS/Z—sl/Z' dS/Z-dB/Z' and sl/Z-d

diagonal two-body matrix elements. Efforts should now be

3/2

made to understand why the realistic interactions are too

attractive for these "unlike orbit" cases.

The ground state binding energies and spins have

been calculated using both the "Particle" and "Hole"

Hamiltonians. In both cases, the agreement in the region

of nuclei from which the data set were taken is very good,

with the deviations between calculated and observed

binding energies being less than or equal to 0.5 MeV. In

both Hamiltonians, the energy deviations increase with

increasing number of active particles or active holes,

with a further isospin dependence superimposed. Low-lying

spectra for a number of nuclei have also been calculated

with either the "Particle" or the "Hole" Hamiltonian. The

agreement with experiment is good, except for some missing

levels in a few active particles or active holes systems

which are presumably intruder states. The "Particle"

Hamiltonian gives descriptions of A522 nuclei rather

similar to the PW interaction. Beyond A=22, the "Particle"

Hamiltonian is a better interaction than the PW interaction

in that band shifting, the main defect of previous inter-

actions where whole excited bands are predicted overbound



105

with re3pect to the ground state, is further corrected. The

"Particle" and "Hole" Hamiltonians appear to give a good

description of nuclei beyond the region where the Hamil-

tonians were fitted, overlapping in the middle of the sd-

shell. Whether the two sets of Hamiltonians will complement

each other to give a good description of all nuclei in the

sd-shell region remains to be seen. Further investigations

of other nuclear prOperties, such as spectrosc0pic factors,

electromagnetic transitions and moments, B-decays and so on,

specifically for nuclei in the middle of the sd-shell is

needed.



 

 

 
 

 



II. MAGNETIC DIPOLE MOMENTS OF

sd-SHELL NUCLEI

II. 1. Introduction

The deviations of observed magnetic moments of

odd-A nuclei from the single-particle Schmidt values have

been the subject of many theoretical studies. Modification

of the independent-single-particle shell-model wave func-

tions or configuration mixinng-91 have been thought to

explain the majority portion of the deviations, while

corrections of the magnetic dipole Operator for such

92-94
effects as mesonic currents have generally been con-

sidered small, except possibly in high spin states.94

However, previous studies have mainly been on selected

odd-A nuclei with simple configurations, such as one

particle or one hole outside a j-j or l-s closed shell.

A more quantitative and comprehensive survey, e.g., of all

measured dipole moments of sd-shell nuclei, is definitely

desirable. The calculations described in section I make

such a survey feasible.

The magnetic dipole moment calculations discussed

here are carried out w1th the untruncated dS/Z-Sl/Z-dB/Z

shell-model wave functions obtained in the work just

106
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described. The magnetic dipole operator, a one-body

operator, does not change the principal nor the orbital

quantum numbers of the particle it acts on. A "good" wave

function defined in one major shell, e.g., the full Os-ld

model space, should at least be able to account fully to

first order for configuration mixing corrections to the

observed deviations of measured dipole moments from the

Schmidt values. The dipole moments thus provide a sensi-

tive test of the wave functions or the interaction used to

generate the wave functions. Conversely, a "good" set of

wave functions can be used to find effective dipole

operators which may be necessary for other types of cor-

rections which cannot be included in the wave functions.

Magnetic moments of ground and excited states of

sd-shell nuclei (except for 27'28 30Al, Si) were first

calculated using the wave functions with the "bare"-(or

"free"-)nucleon gyromagnetic ratios for the dipole

operator. Agreement with experiment was found to be good

for A=17-26, but poor for A=28-39. With the same set of

wave functions, the dipole Operator matrix elements were

then treated as parameters and determined from a least-

squares fit to available precise values of measured dipole

moments. When the magnetic moments were recalculated with

this revised operator, the good agreement with experiment

for A=l7-26 was not changed, while that for A=28-39 was

much improved. Subsequently, effective g-factors and
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intrinsic moments were derived from the Operator matrix

elements determined from the fit.

II.2. Details of Calculation

In isospin formalism, the magnetic moment of a

state WJT is given by:

 

 

_ 1 <J J 1 o|J J > <T T2 I OIT Tz > JT + JT

U-X L <‘1’ IlluIIII‘P >
I=0 /2J+1 V2T+l

(40)

where <WJT|||EI|||WJT> is a double-reduced matrix element

with respect to space and isospace. The subscript I

equals 0 or 1 for the isoscalar and isovector components

respectively of the dipole operator. The Operators are

defined as follow:

A g1 + 92

EO=Z {<—P——£) 33+ (u +u)'§} (41)
._ p n
1—1 2

A 92 _ 92

131= {(-E——’-‘>7i+(u-u)§}w(i) (42)
-_ p n 2
1-1 2

where T2 = +1 for proton and -1 for neutron. The 9:, up

and gn, “n are the orbital g-factors and intrinsic moments

of the proton and neutron respectively. They are, for a

bare- or free-nucleon,

2.79 n.m.1.0 n.m. , u

5
N

p
N

'
U

0.0 n.m. -1.91 n.m.1
2
' ll
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JT JT

The double-reduced matrix element <W IIIKIIIIW > can be

further expressed in terms of single-particle reduced

matrix elements and transition density matrix elements

JT + JT , . JT
<W IIIUIIIIW >=fiz <1IIIEIIIIJ> pijI , (43)

1]

where i,j denotes single-particle states, and the transi-

JT
tion density matrix elements pi. are defined as:

 

31

J <wJT|||(aT x a.) )IlleT>

p.T. - 1 3 11 (44)
lJI /3T§E¢IT’

. . . . . +

The (a: x aj) 13 just the Single—particle creation (ai)
II

and annihilation (aj) Operators coupled to rank 1 and iso-

spin I. Combining equations (40) and (43), the dipole

moment u can be expressed as a linear expression of the

single-particle reduced matrix elements

u ?2 <i|llfillllj> egg-‘1 <45)
:1:le

with coefficients:

CJT = <J J 1 0|J J><T Tz I o | T Tz> pJT (46)

 

 

ijI /(2J+1T(2T+17 131

The transition density matrix elements piT and hence the

11'

igI' contain all the necessary information

from the mixed-configuration wave functions.

coefficients C

For the present calculation, the "Particle"

Hamiltonian was used to generate the wave functions for
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A=l7-28, while the "Hole" Hamiltonian was used to generate

the wave functions for A=28-39. As mentioned earlier, the

exact overlap of the two Hamiltonians in the middle of the

sd-shell remains to be seen from future calculations.

However, A=28 where the sd-shell is half-filled is a

nautral boundary. And as will be seen, the two sets of

Hamiltonians are very similar with respect to reproducing

the dipole moment of the first 2+ state of 288i. The

transition density matrix elements were calculated from

the set of wave functions using equation (44), and the

dipole moments using equation (45) and (46).

With the linear expression (equation 45) and the

coefficients Cigl fixed from the generated wave functions,

the single-particle reduced matrix elements can be treated

as parameters and determined by a least-squares fit to

measured dipole moments. This was done by simply mini-

mizing the quantity:

2

(6102 = ) (47)
(“theory - uexpt.

with respect to the parameters. The measured dipole

moments were not weighted by any uncertainties as only the

more precise measured moments were included in the fit.

In the full Os-ld model space, 1- and j- selection rules

limit the number of independent single-particle reduced

matrix elements to only eight. The eight parameters were

fitted to thirty-seven measured dipole moments, which are

listed in Table 9, except where otherwise noted. Where the
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TABLE 9.--Magnctic moments of some ground and excited states of sd-shell nuclei.

 

 

 

Nucleus Ex.E. a n uexpt.b “calc(n'm')

(keV) I (s) J T (n.m.) bare fitted

17 o stable 5/2 1/2 -1.89c -1.91 -1.84

17 0 6.6x101 5/2+ 1/2 +4.72 +4.79 +4.78

180 1982 3.8x10'12 2+ 1 -o.59:_o.o3d'e -o.85 -0 82

18Ne 1887 4.9x10-13 2+ 1 3.02 +3.10

180 3553 >3x1o'12 4+ 1 :2.48:0.40d'f -1.99 -2.00

1886 3376 4.4x10'12 4+ 1 +6.38 +6.60

18F 0 6.6x1o3 1+ 0 +0.85 +0.73

18? ”937 6.8x10'll 3+ 0 +1.87 +1.84

18? 1122 2.2x1o'7 5+ 0 +2.85:0.03 +2.88 +2.94

190 0 2.7x1o1 5/2+ 3/2 -1.50 -1.49

190 96 2.0x10’9 3/2+ 3/2 -o.69_+p.09d'g -0.91 -o.84

19F 0 stable 1/2+ 1/2 +2.63 +2.90 +2.77

19 e o 1.7x10l 1/2+ 1/2 -1.89 -2.04 -2.03

19F 197 1.3x1o’7 5/2+ 1/2 +3.60:0.01 +3.65 +3.53

1986 238 2.6x10-8 5/2+ 1/2 -0.74:p.c1 -o.7s -O.58

20 1672 1.3x10"11 2+ 2 :0.78:0.08h -0.67 -0.72

20 0 1.1x1o1 2+ 1 +2.09 +2.06 +1.99

2086 o 4.1x1o'1 2+ 1 +0.37 +0.48 +0.47

20Ne 1634 1.2x10'12 2+ 0 +1.08:0.08i +1.02 +1.10

20Ne 4247 9.3x10-14 2 4+ 0 +2.04 +2.21

21? o 4.3x1oO 5/2+ 3/2 +3.84 +3.79

Zlue o stable 3/2+ 1/2 -o.66 -o.77 -0.66

lea o 2.3x1o1 3/2+ 1/2 +2.39 +2.50 +2.41

ZlNe 350 2.0x1o'11 5/2+ 1/2 —0.61 -0.52

21Na 332 1.4x10'1-1 5/2+ 1/2 +3.38 +3.40

22F o 4.2x10° 4+ 2 +2.59 +2.50

22Ne 127s 4.9x1o'12 2+ 1 +0.65_+_0.o3j +0.76 +0.78

22Ne 3356 3.6x10‘13 4+ 1 +1.91 +2.03

22Na 0 2.6 years 3+ 0 +1.75 +1.78 +1.78

22Na 583 3.5x10"7 1+ 0 +0.54:p.01 +0.53 +0.56

23Ne o 3.8x101 5/2+ 3/2 -1.08:0.01 -1.07 -1.06

23Na 0 stable 3/2+ 1/2 +2.22 +2.10 +2.04

24Na 0 5.4x1o4 4+ 1 +1.69 +1.59 +1.57
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TABLE 9.--Continued.

 

 

 

Nucleus Ex.E. uexpt_b . uca1c(n.m.)

(keV) Ta(s) J1T T (n.m.) bare fitted

24Na 472 2.0x1o'2 1+ 1 -1.77 -l.68

24Mg 1369 1.7::10'11 2+ 0 +1.02:0.o4k +1.03 +1.11

24Mg 4238 1.0x1o'13 2+ 0 +1.03 +1.10

24Mg 4123 5.5::10'14 4+ 0 +2.06 +2.22

25Na 0 6.0x101 5/2+ 3/2 +3.67:0.032 ‘ +3.39 +3.51

25Mg 0 stable 5/2+ 1/2‘ -0.85 -o.85 -0.79

26M9 1809 7.2x1o'13 2+ 1 +1.64:0.32d'm +1.61 +1.75

26A1 0 7.2x10S years 5+ 0 +2.82 +2.91

2631 417 1.8::10'9 3+ 0 +1.77 +1.79

2851 1779 6.8x10’13 2+ 0 +1.12i0.18d'm +1.03n +1.10n

2881 1779 6.8x10'l3 2+ 0 +1.12_+_o.18d'm +1.03° +1.1o°

2951 o stable 1/2+ 1/2 -0.56 -o.36 -o.55

299 o 4.2x1oo 1/2+ 1/2 ‘ +9.23 +0.97 +1.18

afly o 1.5x102 1+ 0 , +0.57 +0.60

"p 0 stable ' 1/2+ 1/2 +1.13 +0.94 +1.12

329 o 14 days 1+ 1 -o.25 -o.24 -0.27

32$ 2230 2.2x1o'13 2+ 0 +0.99 +1.07

33s o stable 3/2+ 1/2 . +0.64 +0.50 +0.55

3301 0 2.534100 3/2+ 1/2 +0.86 +0.95

345 2127 4.13410"13 2+ 1 +0.85 +1.01

34c1 146 1.9x1o3 3+ 0 +1.33 +1.48

355 0 87 days 3/2“ 3/2 11.oo:p.o4 +0.90 +0.90

35c1 0 stable 3/2+ 1/2 +0.82 +0.74 +0.87

353: o 18:100 ” 3/2+ 1/2 +0.63 ' +0.63 +0.64

36C1 0 3x105 years 2+ 1 +1.29 +1.34 +1.44

36x o 3.4::10'1 2+ 1 +0.55 +0.35 +0.49

36Ar 1970 4.1x10-13 2+ 0 +0.98 +1.06

37c1 0 stable 3/2+ 3/2 +0.68 +0.32 +0.57

37Ar 0 35 days 3/2+ 1/2 . +0.95:_o.2od +1.39 ' +1.34

37x o 1.2x1o0 3/2+ 1/2 +0.20 -o.13 +0.11

38 13 +

At 2168 5.3x10' 2 1 +0.38 +0.72
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Nucleus Ex.E. ' a n uexpt.b ucalc(n'm')

(keV) T (s) J T (n.m.) bare fitted

+

38K O 4.6x102 3 0 +1.37 +1.23 +1.43

38K 461 7.4x10'10 1+ 0 +0.43 +0.50

+

39K stable 3/2 1/2 +0.39 +0.13 +0.41

- +

39Ca 8.8x10 1 3/2 1/2 +1.02p +1.15 +1.04

+ +

6T is Tl/Z for ground states and Tm for excited states, except for 24Na (1 ) and 34C1 (3 )

excited states where T

1/2

are specified instead.

b 4 I Q I 9

Unless otherwise noted, the measured magnetic moments are taken from the compilation in

Reference

C

Reference

d
Not included in the least—squares fit.

eReference

f

Reference

9Reference

h

Reference

p
.

Reference

Reference

Reference

Reference

3
h
o

a
-

u

Reference

27.

29.

96, 97.

98.

99.

100.

101.

102.

101, 103.

104.

105.

n . . .

"Particle" Hamiltonian.

0 . .

"Hole" Hamiltonian.

9Reference 106.
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sign Of the measured dipole moment is not known, it is taken

tO have the same sign as the bare-nucleon calculated

moment.

II.3. Results

In Table 9 are listed the measured dipole moments

and calculated dipole moments, both with the bare-nucleon

value and the fitted single-particle reduced matrix

elements, Of some ground and excited states Of sd-shell

nuclei. Also listed are the excitation energies, life-

times, spins, parities, and isospins Of each state. The

measured and calculated dipole moments for A=17-25and

A=29-39 are also plotted in Figure 26 and Figure 27

respectively. It is clear that good agreement is obtained

with either the bare-nucleon or the fitted Operators for

A=l7-25. For A=29-39, agreement is much better with the

fitted operator than the bare-nucleon Operator. The RMS

deviation between measured and calculated dipole moments

remains almost unchanged for the 22 dipole moments for

A=l7-25 included in the least-squares fit, it is 0.11 n.m.

and 0.10 n.m. for the bare-nucleon and fitted Operators,

respectively. On the other hand, the RMS deviation shows

a big improvement for the 15 dipole moments for A=29-39

included in the fit with the fitted Operators, it is

0.07 n.m. compared tO 0.20 n.m. with the bare-nucleon

Operators. Overall, the RMS deviation changes from
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Figure 27. Magnetic dipole moments for some ground

and excited states for A=29-39.
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0.15 n.m. tO 0.09 n.m. for all 37 measured moments included

in the least-squares fit.

The fitted single-particle reduced matrix elements

are listed in Table 10, together with the bare-nucleon

single-particle reduced matrix elements for comparison.

The uncertainties were estimated by assuming a 0.09 n.m.

(Obtained RMS deviation) uncertainty or error for each

calculated dipole moment. The dS/Z-dS/Z isoscalar and

isovector matrix elements only change very little, pre-

sumably due tO the already gOOd agreement with the bare-

nucleon Operators for the lower half Of the sd-shell,

where the d —d /2 matrix elements are more important.
5/2 5

In general, except for the s -s isoscalar and

1/2 1/2

dS/Z-dS/Z isovector matrix elements, the single-particle

reduced matrix elements get more positive.

Obviously, the next question is whether the set

Of fitted single-particle reduced matrix elements can tell

us anything about effective g-factors and intrinsic

moments. The isoscalar and isovector single-particle

reduced matrix elements are defined explicitly in the

following:

2. 2
g + g -

<i||li§o|||j>= (-P——2“) <i|||1|||j>

o + O

+ (up + u.) <1||ls|||n> <48)
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TABLE lO.--Comparison between bare-nucleon and fitted

single-particle reduced u matrix elements (n.m.).

 

 

 

<£j|||KI|||£'j'>a Bare Fittedb

<d5/zlllfiolllds/2> ' 2.88 2.94:0.06

<dS/2|||fioll|d3/2> - 0.41 -0.12:0.15

<sl/2|||301||sl/2> 0.74 0.69:0.14

<d3/2|||Eo|||d3/2> 1.13 1.29:0.04

<d5/2|||El|||d5/2> 11.62 11.49:o.18

<d5/2|||Ell||dB/2> - 7.79 -6.52:0.28

<sl/2|||fi1|||sl/2> 6.89 7.25:0.25

<d3/2|||fil|||d3/2> - 1.58. -o.97:0.13

 

 

aI equals 0 or 1 for isoscalar and isovector components,

respectively.

See text for description on uncertainties.
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l l

I + I g — g 0 I

<1II|U1|||J> = (_E_7_JE) <1|||1T2||l3>

(up-un)<illl§Tzlllj> (49)

where the reduced matrix elements Of I, 3, 3T2, 3T2 are

easily evaluated with angular—momentum algebra. The effec-

tive g-factors and intrinsic moments can be treated as

unknowns and determined by two separate least-squares fits

to the fitted isoscalar and isovector single-particle

reduced matrix elements. However, with only two parameters

in each case, a graphical representation Of the least-

squares fits, which is feasible, is more helpful and gives

a clearer picture.

In Figure 28(a) and Figure 28(b) are plotted the

straight lines corresponding tO the eight fitted isoscalar

and isovector single-particle reduced matrix elements

respectively. The dash lines indicate the uncertainties

as listed in Table 10. The cross in each figure corres-

ponds tO the bare—nucleon value g-factors and intrinsic

moments.

It is seen from Figure 28(a) that the area bounded

by the intersections Of the four lines is small. In

Figure 28(b), the corresponding area is larger with the

isovector Sl/Z-Sl/Z clearly outside the boundary. If the

least-squares fits were simply done using Equations (48)

and (49) fitted tO the four isoscalar and four isovector

fitted single-particle reduced matrix elements; the
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\ I / ‘
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-Figure 28. Effective g-factors and intrinsic

moments from the fitted single-particle

reduced u matrix elements (n.m.).
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isoscalar part would give a good fit, and the isovector

part a bad one.

The lepes Of the straight lines are fixed by the

reduced matrix elements Of I and 3, and 1T2 and ETZ. The

fitted single-particle reduced matrix elements merely trans-

late the lines. In both Figure 28(a) and Figure 28(b), the

directions Of change Of the g-factors and intrinsic moments

closely parallel the dS/Z-dS/Z lines. Thus the changes for

the d5/2-d5/2 single particle reduced matrix elements are

small compared tO the others. It should be noted that in

Equations (48) and (49), we have neglected the radial part,

i.e., assumed the overlap Of radial wave functions in each

case to be one. For the dS/Z-dB/Z' an overlap less than

one would move both lines for the isoscalar and isovector

cases in the direction Of making the area Of intersections

smaller. The translation should be larger for the iso-

vector than for the isoscalar. The resulting fits should

be better than are shown in Figure 28(a) and 28(b).

The increase in the isovectors Sl/2 intrinsic

moment may be a little surprising. However, it is not

inconsistent with what is found for the magnetic moments

Of 3H and 3He. The Schmidt value for the isovector

magnetic moment, i.e., u(3H)/2-u(3He)/2, is tOO small

compared tO the experimental value. The effective

intrinsic moments for a Sl/Z particle (with i=0) can be

Obtained directly from the single-particle reduced matrix



elements listed in Table 10 and equations

The results are:

eff eff

up (SI/2) + un

eff eff

up (SI/2) un

eff

or up (Sl/Z)

eff (s )

11n 1/2
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(48) and (49) .

i 0.17 n.m.

: 0.17 n.m.

n.m.

(SI/2) = 0.76

(31/2) = 4.95

= 2.85 i 0.17

= -2.09 i 0.17 n.m.

The effective g-factors and intrinsic moments for

d5/2 and <33/2 orbits can be read Off Figure 28(a) and

Figure 28(b). A more quantitative analysis, i.e., least-

squares fits to the four isoscalar and three isovector

(excluding sl/Z-sl/Z) fitted single-particle

matrix elements listed in Table

reduced

10 gives:

gg'eff + gfi'eff = 1.07 n.m.

gg’eff - fi'eff = 1.12 n.m.

pgff + piff = 0.79 n.m.

ugff - ufiff = 4.36 1 0.01 n.m.

or 92"eff = 1.09 n.m.
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9R"eff = -0.02 n.m.
n

ugff = 2.58 i 0.01 n.m.

ufiff = -1.79 _+_ 0.01 n.m.

The present calculation with the full Os-ld shell-

mOdel space does not include major shell crossing second

and higher order configuration mixing corrections for the

dipole moments via the mixed-configuration wave functions.

The effective g-factors and intrinsic moments are thus due

tO the combined effects Of these higher-order configuration-

mixing corrections, mesonic exchange currents and other

possible corrections. Mavromatis and Zamick91 have pre-

viously calculated second order configuration-mixing

correction for the dipole moments Of mass 17 and 39 with

up tO 25w excitations from the ground state. Their

results, using the bare-nucleon g-factors and intrinsic

moments, show the corrections tO be non-negligible.

Further studies are needed tO untangle the different

effects in the effective g-factors and intrinsic moments.

It may be mentioned in passing that the quenching

Of the intrinsic moments is in agreement with the results

Of Miyawaza92 and Drell and Walecka93 for the effects Of

mesonic exchange currents. The effective orbital g-factors

are close to the empirical estimates Of Nagamiya and
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Yamazaki95 over the whole mass region, i.e., 9:,eff =

1.09 .t 0.03 n.m. and gfi'eff = -0.06 i 0.04 n.m.

II.4. Summary

Magnetic dipole moments in the range A=l7-39 have

been investigated using mixed-configuration shell-model

wave functions generated from empirical Hamiltonians in the

full Os-ld model space. Dipole Operators were treated as

parameters and determined from a least-squares fit to

precise measured moments. Good agreement was found for

the whole range with the fitted Operators, while the bare-

nucleon Operators could only give gOOd agreement for

A=l7-25. Effective g-factors and intrinsic moments were

derived from the fitted Operators. The intrinsic moments

are quenched compared tO the bare-nucleon value; while the

change in the orbital g-factors are 6g: = +0.09 n.m. and

6gn = -0.02 n.m. The isovector intrinsic moment Of the

sl/z-Orbit on the other hand increases, however, this is

not inconsistent with the Observed deviations of the

3H and 3He from the Schmidt value. Itmagnetic moments Of

can safely be said only that the effective g-factors and

intrinsic moments arise from the combined effects Of many

different corrections other than the intra-major-shell

configuration-mixing corrections included in the present

mixed-configuration wave functions. More rigorous and

quantitative treatment Of the various other corrections to
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the magnetic moment, specifically as a renormalization Of

the g-factors and intrinsic-moments, would be very helpful.



III. SUGGESTIONS FOR FURTHER STUDY

The principal aim of this study was to Obtain an

empirical Hamiltonian for use in shell-model calculation

that would give a good description of all sd-shell nuclei

using a full ls-Od model space. A single set of mass

independent (l+2)-body Hamiltonian was found to be inade-

quate. Instead two Hamiltonians were obtained by iterative

least-squares fits to energy-level data in the lower and

upper end of the sd-shell. Comparison of calculated

ground-state binding energies and spins, and energy spectra

with experiments seems to indicate the two Hamiltonians

combined will complement each other to give a good descrip-

tion Of all sd-shell nuclei. The good agreement of

calculated magnetic dipole moments of some ground and

excited states in sd-shell nuclei with experiments is an

initial confirmation of this expectation. More complete

tests are needed, however. Further calculations of energy

spectra of nuclei in the middle of the sd-shell, and

further tests of the generated wave functions with other

nuclear observables such as quadruple moments, electro-

magnetic transitions, B-decays, spectroscopic amplitudes

126
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and electron scattering form factors will yield a thorough

picture of our present level of understanding.

The unambiguous result of the empirical renormali-

zation of the Kuo's realistic Hamiltonians was the reduction

in attractiveness of the "unlike orbit" diagonal two-body

matrix elements. In the light of the problems that still

exist in the theory of effective interactions for shell-

model-type calculations derived from the free-nucleon

interaction, an understanding of the reduction in attrac-

tiveness may provide a key to the solution.  
More quantitative treatment of the various effects

on orbital g-factors and intrinsic moments Of valence

nucleon due to higher-order configuration mixings, mesonic

exchange currents and others are needed for a better under-

standing Of the effective g-factors and intrinsic moments

derived from the fitted single-particle u reduced matrix

elements.

The technique of empirical renormalization of

shell-model Hamiltonian in terms of uncorrelated (ortho-

gonal) linear combinations of one- and two-body matrix

elements can be applied easily to other regions of nuclei

of interest (with manageable ordersof Hamiltonians)

without the previous problems of too many parameters or

insufficiency of data. Examples are shell-model calcula-

tions in a 0f7/2-lp3/2 model space, Op3/2-0p1/2-0d5/2-lsl/2-

Od3/2 model space, Of5/2-1p3/2-lp1/2 model space and so on.
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Better descriptions of the nuclei of interest should be

achieved compared to previous attempts.

However, a shell-model calculation of major

interest with the full Of—lP model space is still prohibi-

tively large even with the present available techniques.

The result of the orthogonal parameter fit on the other

hand is promising in that it shows only a few orthogonal

parameters are important in describing the low-lying

spectra. Understanding of such orthogonal linear combina-

tions may provide simplications for shell-model description

of low-lying Spectra.
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