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ABSTRACT

THE MODELING AND ANALYSIS OF PARALLEL ALGORITHM DESIGN

BY

Gerald William Cichanowski

Parallel algorithms contain information which describes

process synchronization and intercommunication. This

information is only trivially present in- sequential

algorithms. The impact of this added information on the

design process for parallel algorithms for multiprocessor

systems is studied.

In this research, the metrics of Halstead's software

science are extended to describe the information content of

parallel algorithms. The extended metrics are used to show

that parallel algorithms may have higher information

contents than their sequential counterparts. Part of this

increase is due to the sequential component supporting the

activities of the parallel component. We call this support

subsidization.

Given that parallel algorithms may contain.additional

information over that for their sequential counterparts,

this research examines the effects of this added information

on the parallel algorithm design process. To do this, a

simulation model of the algorithm design process 'was

developed. The model is based on the information content of

an algorithm, and the information which is used to make



Gerald William Cichanowski

decisions during the design process. Two representative

algorithms were chosen for experiments based on the

simulation model; a parallel root finding algorithm and a

parallel bin packing algorithm. Both algorithms have a

single localized parallel segment, but they have other

structural differences.

In the experiments, it was seen that the type of

information which was used by design decisions impacted the

number of steps which were required to design the two

algorithms. It also impacted the rate at which information

was added to an algorithm, while it was being designed.

Also, the performance of a given type of information

differed when used for each of the two algorithms. These

results are then used to suggest ways in which parallel

algorithms can be effectively developed.
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CHAPTER 1

Introduction

During the past decade, many advances have been made in

the realm of computer architecture. While many of these

advances have dealt with traditional Von Nuemann

architectures, alternate models of computer systems have

begun to appear [1-2]. These systems include pipeline

processors, array processors, multiprocessors, and data flow

computers [2]. Although these non-traditional models of

computer systems differ from each other, the common thread

which unites them is that they each potentially support some

concurrency within an algorithm.

Since these non-traditional architectures support

parallelism, if they are to be effectively used, algorithms

must be developed to expolit this capability. This research

‘will examine the software design process for parallel

algorithms.



Two approaches have been taken for the development of

software for such non-traditional architectures. The first

approach is to start with a sequential algorithm and then to

translate it into a form which is suitable for execution on

a parallel computer. Although these transformations are

made to the algorithm's code, since the code is a model of

the algorithm, the transformations are, in essence, made to

the algorithm. These translations may be made by hand, or

by an automated means, such as a compiler. Ruck, [3],

discusses this approach. He describes procedures for the

automatic transformations of programs written in sequential

languages to a form suitable for vector processors. These

transformations include techniques such as tree height

reductions, vectorizing DO LOOPs, simultaneous evaluation of

alternate conditional paths, etc. This approach is

promising primarily for achieving speedups to existing

sequential software.

The approach of translating sequential algorithms taken

above, can also take advantage of the extensive research

which has been done in the area of sequential software

design. Since the algorithm is first created as a

sequential algorithm and then translated into parallel,

standard sequential design techniques can be used to create

the sequential algorithm. Then a simple transformation can

be used to inject parallelism into the design. Starting in

the late 60's with Dijkstra's famous letter to the editor



[4], through much of the 70's many successful sequential

design methodologies have been identified and formalized.

[5-10] These methodologies include several hierarchical

design methods; top-down programming, bottom up programming,

stepwise refinement of program abstraction, and modular

programming. Many tools and strategies have been developed

to take advantage of these methodologies; structured

programming, HIPOs, Nassi-Sniederman charts, etc. [5].

The second approach for the design of parallel

algorithms is to design the algorithms from scratch as

parallel. This has been done by basing the design on

languages which have been specifically designed or extended

for parallel machines. Languages such as VAL [11] for data

flow computers, and Concurrent Pascal [12] for

multiprocessors are examples of such languages. The

strength of using such languages is that a programming

language is essentially a model of the computer which is

being programmed. As such, any program developed in that

language should be directly supported by the computer in

question, and should not require extensive transformations

to take advantage of the machine's capabilities. The

weakness of this approach is that the strong foundation of

design methodologies which have been developed for

sequential algorithms, may not necessarily be applicable to

software for non-Von Nuemann architectures. In light of

these potential differences in design technqiues for



different architectures, we will now examine the algorithm

design process.

1.1 The Algorithm Design Process

The design process for algorithms is essentially an

information gathering process. To successfully match an

- algorithm to hardware, Kung [13] has suggested three pieces

of required information or matching criteria; process

granularity (size), process control, and communication

between processes (Figure 1.1). These criteria correspond

to information which a designer must have to successfully

develope an algorithm. The ability to support these

criteria differ significantly between sequential and

parallel architectures. In a sequential algorithm, process

synchronization and interprocess communication can be

ignored, since there is only a single process. On a

parallel machine, potentially several processes must be

controlled. Thus, synchronization and communication between

them becomes necessary. Differences also exist between

algorithms for different types of parallel architectures.

For example, an algorithm which is designed for a

multiprocessor will differ from its counterpart for a data

flow processor. On a data flow processor, granularity is

small, an individual operation. On a multiprocessor,

granularity is normally larger, and may differ between the
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Figure 1.1 Kung's matching criteria for hardware and

algorithms.



processes which make up the algorithm.

Another way of viewing the differences in information

requirements between sequential and parallel algorithms is

through the process of correctness proofs. Owicki and Gries

[14] discuss correctness proofs for parallel algorithms. In

their discussions, they show that a need exists to go beyond

partial correctness and termination, the standard properties

required for sequential algorithms, to demonstrate

correctness. Partial correctness is shown by demonstrating

that a program's output set is generated from its input set,

using assertions based on the program's‘variables and rules

describing the effects of the program's statements. Owicki

and Gries show that additionally, non-interference between

concurrent processes and the absence of deadlock must be

proven. These additional properties correspond directly to

the additional information that is required to design

parallel algorithms.

Therefore, we can see that the information requirements

for designing algorithms differs when the algorithm is

designed for a sequential or parallel architecture. Indeed,

the information requirements vary between different types of

parallel architectures. Therefore, it is important to

identify what types of parallel architectures will be

considered. This research will restrict itself to a

subclass of parallel architectures. The parameters which

describe the architectures of interest are; asynchronous



process control, local process intercommunication, and

varying process size. This describes multiprocessors when

the granularity is large, and data flow computers when

granularity is small.

The purpose of this research is to examine the design

process for parallel algorithms, in light of these

additional information requirements. This will be done to

find out if a different design approach is required for

parallel algorithms. To do this, the algorithm design

process will be modeled in terms of the information content

of an algorithm. An algorithm is constructed by making a

sequence of design decisions. Each decision causes objects

to be added, deleted, or modified in an algorithm. Thus,

each decision has an impact on the information content of an

algorithm. Normally, a programmer has a set of rules which

govern what information may be used by a design decision,

and what portions of an algorithm may be altered as a result

of these decisions. These rules represent a design

methodology. The result of any design decision, with the

exception of the last decision, is a partially completed

algorithm. Thus, the sequence of design decisions leads to

a sequence of pgrtial algorithm design . By examining the

information content of each of the partial designs, we can

observe the effects of each design decision on the

information in the current partial design.



1.2 Organization of the Dissertation

The first section suggests that parallel algorithms may

contain additional' information regarding process

synchronization and intercommunication and thus may have

higher information contents than their sequential

counterparts. lg 52; amount 9; ggig additional information

enough £2 suggest Egg 352g £25 modifications pg traditiongl

design strategies? In chapter two, an attempt is made to

address this question by developing a set of metrics which

will be used to show that indeed parallel algorithms may

have a higher information content than their sequential

counterparts. This will be done by examining a sequential

root finding algorithm and a parallel version which was

derived from it.

Th5 metrics g; chapter Egg Egg pg 2559 pg guantify 525

information content 95 seggential ggg parallel algorithms.

They were derived from those suggested by Halstead's

 

software science [16]. The metrics as envisioned by

Halstead, are normally used to describe completed

algorithms. In Chapter three, it will be shown that our

extensions to Halstead's metrics are also useful for

describing the information content of partial designs.

ThusI gs will 95 able pg guantify the effects ‘9; 3 design



decision, by comparing the information contents of suceeding

partial designs. A convenient means of representing

algorithms and their partial designs will also be presented

in chapter three. A graph language based on the abstraction

of an algorithm's information content will be used to

demonstrate how design decisions change the information

content of an algorithm.

Given that parallel algorithms may contain a

significant amount of additional information, pp! lg 5235

ggggg information distributed throughout pg algorithm?

There are two possible extremes for the placement of this

added information.

1. The added information may be localized in one small

section of an algorithm.

2. The added information may be distributed throughout

an algorithm.

 

  

I__ig hypgthesized that the concentration and placement ‘_£

the added information may affect the approach one needs pp

5355 1252 designing g pgrallel algorithm. Chapter four

examines the placement of this additional information, by

examining a sequential and parallel version of a root

finding algorithm. There it will be shown that for the

parallel root finding algorithm, the added information is

concentrated in a small, local portion of the algorithm.
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The parallel root finding algorithm is an example of an

algorithm whose parallel information is localized. Also,

the parallel component of the algorithm is small. Chapter

five will present a second parallel algorithm which also has

localized parallel information. However, the parallel

component of this algorithm is much larger. The algorithm‘

solves the bin packing problem and is designed for

multiprocessor systems. Thus, we will have examples of two

algorithms with localized parallel information. The root

finding algorithm has a small parallel component, and the

bin packing algorithm has a large parallel segment. The two

algorithms will be used to investigate the type of

information which should be used to design varying sized

algorithms with localized parallel components.

For algorithms, such as our two sample algorithms, with

localized parallel information, gpg_ gppg 525 gig; pg Egg

parallel component affect Egg pypg pf information 32152

should pp pgpg py 5 design decision? In order to answer

this question, we need to model design decisions in terms of

the information which they use. In chapter six, a model of

the algorithm design process will be presented. The model

will focus on the use of spatial, temporal, and functional

information for the design of parallel algorithms with

localized parallel components. It will examine how the

structure of the algorithm effects the kind of information

which is needed to efficiently design it. The model will
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simulate the design of an algorithm by reconstructing a

graph language representation of it. The order in which

objects are added to a design will be controlled by

exploiting relationships which are based on the use of

different types of information. By monitoring the number of

steps _it takes to complete the algorithm, and the

information content of each of the partial designs, we will

be able to observe the effects of the use of spatial,

temporal, and functional information in the algorithm design

process. An implementation of the model, in Pascal, for the

Cyber 750 will also be discussed.

Chapter seven will describe a set of experiments which

were conducted to examine the effects of using methodologies

which differ in terms of their use of spatial, temporal, and

functional information on algorithms with local parallel

components. The use of this information will be examined

relative to the granularity of an algorithm's parallel

component. The root finding and bin packing algorithms will

be the subjects of the experiments.

Finally, chapter eight will summarize the findings of

this research. It will discuss the correspondence between

pp; pypg‘pg information pggg during Egg design processl ppg.

525 ‘pipg ppg placement 2; £25 pgrallel component pg 525

algorithm . Suggestions will be offered for the development

of parallel algorithms based upon this correspondence.



CHAPTER 2

Metrics For The Description of Algorithm Information Content

In order to effectively model and compare design

strategies, it is necessary to have an objective criteria

regarding the information content of an algorithm, and to

have a means of monitoring the growth of information of an

algorithm, as it moves from its conception through the

design process. Several sets of metrics have been proposed

for this purpose [15]. The metrics proposed by Halstead

[16] seem to dominate and have led to the field of "Software

Science”.

Halstead uses the term software science to describe a

set of metrics which are used to describe and compare

algorithms. The metrics are based on counts of the elements

which compose the algorithm. The metrics represent the

number of bits which are required to uniquely encode an

algorithm. As such, they represent the information content

12
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of an algorithm.

The metrics as presented by Halstead, have been used to

describe sequential algorithms. In [17] they were extended

to allow their use with parallel algorithms. A brief

description of Halstead's metrics will be followed by their

extensions into the parallel realm.

2.1 Metrics For Sequential Algorithms

Halstead has proposed the following basic metrics for

,sequential algorithms.

n1 - number of unigue or distinct operators in an

algorithm's implementation.

n2 - number of unigue or distinct operands in an

algorithm's implementation.

N1 - total count of the appearance of all operators in

an implementation.

N2 . total count of the appearance of all operands in an

implementation.

F1 . - number of occurences of the jth most frequently

used operator, where j = 1, 2, ..., n1.
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P . Number of occurences of the jth most frequently
2,j

‘used operand, where j . 1, 2, ..., n2.

Also it is evident that:

£1

”1 " a=1 Fm

and

n

= 2

N2 §=1 F24

As can be seen from the descriptions above, the metrics

are based on simple element counts of a particular

implementation of an algorithm. It should be clear that

implementations of an algorithm in different languages will

potentially yield different values for these metrics,

showing that the information content of an algorithm is

dependent on the language in which it is implemented.

2.1.1 Ag Example pf Halstead's Metrics for g Seguential

Algorithm

As an example of these metrics, an algorithm from [18]

which evaluates a polynomial p(x)-a xn+ a x"-1n "-1 +...+818+ao

will be examined.



P :- A[O];

POWERX :- 1;

FOR I :8 1 TO N D0

BEGIN

POWERX :3 X * POWERX;

e :-P+A[I] *Powsxx

END;

The operator and operand counts for the algorithm are given

in Tables 2.1 and 2.2. Note, that the counts are based on a

static description of the code, and that they ignore the

number of references made to a particular piece of code,

unlike the more traditional measures such as an algorithm's

asymptotic behavior.

Using the basic metrics more sophisticated measures can

be formed. The vocabulary of an algorithm is the sum of the

number of unique operators, n1, and unique operands, n2.

For the example algorithm, the vocabulary, n, is:

n - n1+ n2- 15

The implementation length, N, of an algorithm is based on

the number of occurences of the elements in the algorithm's

vocabulary. Thus:

The length of an algorithm and its vocabulary are often

combined to form the volume metric. Volume represents the

number of bits which are required to encode an algorithm.

Thus, volume requires a component to uniquely represent each
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Table 2.1 Operator counts for the polynomial program.
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member of the vocabulary, logzn. Plus, it needs to include

the number of occurences (length) of those elements.

Therefore, volume is expressed as:

V - N logzn.

For the example algorithm this yields:

v . 32 109215 . 125.02 bits.

2.1.2 Potential Volume

As mentioned earlier, the language in which an

algorithm is implemented has an effect on the metrics.

Because of this, a basis is needed to compare different

implementations of a given algorithm. Potential volume, V*,

is the metric used for this purpose. This represents the

minimal information needed regarding an algorithm. This is

comparable to calling a predefined procedure. The

information which is needed are the input and output

operands. The operators become assignment operators to the

output operands, plus the function which is the purpose of

the procedure. Thus, if we let n1* and n2* represent the

minimal vocabulagy and N1* and N2* represent the

minimal length, the minimal or potential volume becomes:

v* . (N1* + N2*) 1092(n1* + n2*)
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For the polynomial algorithm this is:

V* - (2+4) 1092(2+4) = 15.5 bits.

We assume three input operands (A, N, and X) and one output

operand (P). The operators are the polynomial evaluation

function and the assignment operator for the result operand.

Knowing that the most succint form of our algorithm is

15.5 bits, it can now be compared to the acutal

implementation volume of 125.02 bits. The resulting metric

is called the implementation level, L.

L . v* - 15.5 - .124

V- T5576?

Note that the closer L is to one, fewer details regarding

the algorithm are required. If L equals one, the algorithm

must be present as a component of the language which is

being used. As L becomes smaller, the implementation volume

must increase. Since implementation volume represents

information, one would suspect such an algorithm required

more design steps, with a resultant increase in the design

time and the number of expected design errors. L can also

be used to compare two implementations of an algorithm. The

version which has the smaller value for L can be assumed to

be more complex, and require more design effort.

This concludes the discussion of metrics for sequential

algorithms. In [16] other uses for these metrics are given.

It is shown there that the metrics are useful for predicting
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development and maintenance time and effort. The next

section will describe extensions to these metrics for use

with parallel algorithms.

2.2 Metrics For Parallel Algprithms

The metrics described in [17] for parallel algorithms

are direct extensions of their sequential counterparts. As

such, they are also based on element counts. However, there

is a difference in how the elements are to be counted. In

chapter one, it was argued that the design of parallel

algorithms require information above their sequential

counterparts. This information includes knowledge of

process intercommunication, insuring mutual exclusion where

required, and so forth. This new information was not

required in designing sequential algorithms. As a result of

this, for our purposes in analyzing an algorithm's

information content, we will view an algorithm as being

composed of two components: a sequential component, and a

parallel component. Thus, the element counts become:

n1 p . a count of those unique operators that represent

I

the activities of parallel processes, their

synchronization, and access to shared data.
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n1 5 - a count of those unqiue operators that represent

I

the basic sequential activities performed by an

algorithm and are not invoked be a parallel operator.

r12,p . a count of those unqiue operands used by parallel

operators including synchronization and resource

sharing operators. This includes all operands

associated with the invocation of a parallel

operator.

"2,s - a count of those unqiue operands that are used in

the algorithm's basic sequential computational

activities, excluding those invoked by a parallel

operator.

When dealing with these elements, the designer must be

cognizant of the domain in which the elements are found

(sequential or parallel), since they are treated seperately

in each domain. Thus, the simple element counts will be

superceded by counts of operator-context and operand-context

pairs. Thus, we now include conceptual differences between

sequential elements and possible parallel counterparts.

Therefore, if an element is found in both a sequential and a

parallel portion of the algorithm, for purposes of the

vocabulary, it is counted twice. It is counted as belonging

to the sequential component, and also as belonging to the
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parallel component. The vocabulary is not inflated, because

now the vocabulary measures unique operator/operand-context

pairs.

If we return to the polynomial algorithm of the last

section, we notice that it is Composed of only a sequential

component. Thus, we can easily see that the sequential

metrics of the first section are a special case of the

parallel metrics, with n1 and n

Op 20p

Since sequential algorithms can be described in terms of the

both equal to zero.

new metrics, the metrics will be useful in comparing a

parallel algorithm to its sequential counterparts, as well

as for comparing two parallel algorithms.

As before, the total number of occurences of

element-context pairs yield the metrics shown below.

N1 p - the total count of parallel operators and those

sequential operators invoked by them.

N1 s . the total count of those sequential operators

not invoked by a parallel operator.

N2'p . total number of occurences for operands used by

parallel operators. This includes operands

involved in sequential actions invoked by a

parallel operator.
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used in

frequently

N2 3 a total number of occurences of operands

sequential activities not invoked by parallel

operators.

F31 p . number of occurences of the jth most

used operator in this class.

F31 s . number of occurences of the jth most used

I

sequential operator.

We can define operands F32 and F32 in the same

:5 :P

It follows that:

N - Ei's Fj
1’8 30:1 1.8

and

n

N =Z1'P F3

N and N2 can be similarly defined.
2'3 op'

The total number of operators and operands

designated N1 and N2 respectively, where:

fashion.

will be
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i=s,p J=1

Also, the number of unique operators and operands are given

as n1 and n2. They are defined as:

=Zn.
n1 i=s,p 1.1

n = IE n .
2 i=s,p 2,1

The sum of the number of unique operators and operands in

each category for an algorithm is the vocabulary of the

parallel algorithm. We again designate it as n, where:

n - n1+ n2

Likewise, the length, N, of a parallel algorithm equals:

N - N1+ N2

2.2.1 Compprison g; g Seguential. and 3 Parallel Root

Finding Algorithm

To illustrate the use of the new metrics in comparing

two algorithms, a sequential and a parallel version of a
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root finding algorithm will be presented and analyzed using

the new metrics. The sequential algorithm taken from [19]

is' shown below. The algorithm assumes that the function,

which is to be evaluated, is monotonically increasing and

has a root in the interval [LOW, HIGH].

real procedure bisect(LOW, HIGH, E)

begin

real 2, X, LOW, HIGH, E, Y;

while (HIGH - LOW) > 2 * E do

begin

x :- (LOW + HIGH) / 2;

Y :- r(x):

if Y < 0

then HIGH - x

else LOW - X

end:

2 :- (LOW + HIGH) / 2

end:

The element-context pair counts are shown in Tables 2.3 and

2.4. Since it is a sequential algorithm, all parallel

metrics equal zero, and the metrics' correspond to the

standard sequential versions.

Next, a parallel version of the algorithm is given.

The parallel component is that block which composes the

'PARPOR' statement and the definitions of the shared

variables.

real procedure rootf(LOW, HIGH, N, E)

begin

integer shared N, J:

integer 1;

real shared DELTA, LOW, Y[l..N];

real B, 2, HIGH;

while ABS(HIGH - LOW) > E do

begin

DELTA :- ABS(HIGH - LOW) / (N + 1);
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parfor J := 1 until N do

be in

r J] :- F(LOW + (J * ostra))

end;

LOW :- LOW 4- DELTA;

I :- 1;

while 0 > Y[I] and I <- N do

begin

LOW :- LOW 4' DELTA;

I :- I + 1

end:

HIGH :- LOW + DELTA

end;

2 :8 (LOW + HIGH) / 2

end;

Tables 2.5 and 2.6 give the element-context counts for

algorithm ROOTF.

Using the counts given in the tables, it can be seen

that the vocabularies of the respective algorithms are:

n ' "1 * n2 * “1,5+ n2
IP Ip '8

BISECT 0 + 0 + 13 + 8 - 21

ROOT? 10 + 6 + 15 + 11 - 42

The lengths of the two algorithms are:

N ' N1,p+ N2,p+ "1,5+ N2,s

BISBCT 0 + 0 + 32 + 29 - 61

ROOTF 16 + 15 + 50 + 39 - 120

Thus, we can immediately observe that the parallel algorithm

has twice the vocabulary and length of its sequential

counterpart.

As with the vocabulary and length metrics, there is a

new counterpart to the volume metric. Now volume refers to
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Table 2.3 Operator counts for the bisection algorithm.
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Table 2.5 Operator counts for the multiprocessor algorithm.
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Table 2.6 Operand counts for the multiprocessor algorithm.
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the number of bits required to encode

conceptual discriminations which an algorithm's designer

must make. This new metric, which is called the

conceptual volume, 2, is:

y - (Ns+ Np) logz(ns+ np).

As with the other metrics, the sequential metrics presented

earlier are a special case with Np and np equal to zero.

For our example root finding algorithms, 3 is shown

below.

arsscr y - (61 + 0) 1092(21 + 0) - 267.93

ROOTF y . (89 + 31) 1092(26 + 16) - 647.07

2.2.2 Component Metrics and Potential Conceptual Volume

At times, it will be useful to examine the parallel or

sequential portion of an algorithm only. The resulting

metrics are known as component metrics. Thus, the

gppponent conceptual volume for the parallel portion of an

algorithm is calculated as below.

V . (N—p 1,p+ N2,p) logz( n + n2 )

1.? :9

Thus, for ROOTF:

yp - (16 + 15) 1092(10 + 6) . 124

25 - (so + 39) 1092(15 + 11) - 413.34
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This can be used to see that the bulk of the information

resides in the sequential portion of the ROOTF algorithm.

Next, the concept of potential volume will be examined

in the parallel context. The reader should recall that the

potential volume represented the minimal expression of an

algorithm, equivalent to calling a predefined procedure.

Thus, one would not expect there to be a difference in the

potential volume whether the underlying procedure was

sequential or parallel, since all that is seen is the

procedure call. A procedure call would be the same for

procedures which are either sequential or parallel. In

either case, we assume the parameters passed and two

operators (the function and assignment operators) belong in

the sequential domain. Finally, the

potential conceptual volume, 2* can be expressed as:

2* - (N*s+ N*p) logz(n*s+ n*p)

- (N*s) logz(n*s)

Which for both BISBCT and ROOTF is:

2* - (2 + 4) 1092(2 + 4) - 15.51 bits.

We assume 2, LOW, HIGH, and B are the parameters, and as

before there.are two operators.



31

2.3 Summary

This chapter began by reviewing Halstead's metrics

which describe the information content of sequential

algorithms. Extensions were introduced to allow the metrics

to describe the information content of parallel algorithms

as well. Two algorithms, BISECT and ROOTF, were used to

show that the extended metrics can be used to compare

sequential and parallel algorithms. By comparing the two

algorithms, it can be seen that the information content of

the parallel algorithm is greater than that of its

sequential counterpart. Thus the prediction, which was made

in chapter one, that parallel algorithms may need to include

additional information to handle process synchronization,

process intercommunication, etc., is supported. Although we

have only examined a single algorithm, one of our basic

questions is answered. That is, a parallel algorithm may

have an increased information content over its sequential

counterparts. If an increase in information is seen for an

algorithm as simple as the root finder, one would suspect

that more complex algorithms would show an even larger

increase in their information contents. The remainder of

this research will examine whether this increase in an

algorithm's information content has an impact on the design



process for such algorithms.
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CHAPTER 3

The Graph Model of Parallel Algorithm Structure

In chapter two, metrics were presented for describing

parallel algorithms. These metrics were based on counts of

the elements of the language in which the algorithm was

expressed. Thus, the metrics represent the information

content of a particular implementation of an algorithm. As

designed, the metrics include counts of non-active elements,

i.e., BEGIN/END pairs, semi-colons, etc.. In seeking to

abstract out only those algorithm features which actively

contribute to and describe the information needed to design

an algorithm, a graphical model of parallel algorithm

structure was developed.

In [20] Reynolds and Chang describe the PAL (Parallel

Algorithm Laboratory) system. PAL is a graph language which

is used to describe parallel algorithms. 25; allows pppp

completed algorithms and algorithms still ig the design
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process pp pg represented. In its original intent, it was to

describe algorithms for VLSI array based architectures, but

it has proved useful for describing algorithms designed for

other parallel architectures as well. A description of PAL,

as extended for this research, follows in the next section.

3.1 The Graph Languagp

The graph language is based on a functional

representation of an algorithm. It consists of data objects

and structures. Data objects are given a label (name) and

flow where needed in the completed graph in a data-flow

fashion. Data objects are represented, in the graph, by

closed rectangles, Figure 3.1. Structures represent

manipulation of data objects and the control of an

algorithm. The simplest structure is the function, Figure

3.1a. It consists of operands (data objects) and an

operator, producing a result, which optionally may be given

a label or used directly as an operand, when the functions

are nested, Figure 3.1b. Functions may be nested to any

level. Parallelism between functions is indicated by

stacking the functions vertically, as shown in Figure 3.1c.

Control in the graph proceeds from left to right.

Control structures in the graph language consist of

closed rectangle-like like structures as shown in Figures

3.1d and 3.1e. The backward block C represents a logical
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36

condition. In Figure 3.1d the condition operates as a

pretest (DO WHILE), and in Figure 3.1e, it operates as a

post test (REPEAT UNTIL). Any structure may be nested

inside of a control block, including other control blocks.

In Figure 3.1f, another use for the condition block is

shown. In this example, it serves as an IF THEN like

structure. In Figure 3.19, it is shown representing an IF

THEN ELSE like structure. The use of the conditional block

is not restricted to the function structures, any structure

may be governed by such a conditional.

An additional control construct remains, the PARFOR

structure. This structure allows an arbitrary number of

copies of a structure to be placed in parallel. It is shown

in Figure 3.1h. N copies of function f1 will proceed in

parallel, when this structure is encountered.

Figure 3.2 shows how the structures can be combined to

describe a complete algorithm. Several features of the

graph language can be seen in Figure 3.2. First, the

placement and amount of parallelism in the algorithm is

easily observed. Second, the graph language forces the

designer to construct his algorithms in a modular form. If

one attempted to construct a complex algorithm in a

non-modular fashion using this notation, it would be

visually confusing. For purposes of this research, global

and local data are represented the same. However, the graph

language could be easily extended to allow discriminations
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between them.

3.2 Relation of Graph Language to the Metrics

The structures of the graph language correspond to

design decisions which must be made when designing an

algorithm. As such, each element is assumed to be an

abstraction of a piece of information which describes the

algorithm. Thus, there is a correspondence between the

graph elements and the metrics of chapter two, which

describe an algorithm's information content.

When a designer creates an algorithm, he uses many

pieces of information, and introduces much of that

information into the algorithm. The first piece of

information, which is required, is the realization of the

need for a structure in the algorithm. This is represented

in the graph language by the structure's label. Second, the

need for a structure is determined because its 'results are

needed. Finally, the designer must be concerned with those

elements which make up the body of the structure, the input

operands, the operator(s), and the conditionals, if they

exist. This procedure is quantified, for purposes of the

metrics, by counting the structure's label, results, input

operands, operator, and conditionals. The counts are

combined, as in chapter two, to form the conceptual volume

and other metrics.
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Additionally, the graph language directly supports the

notion of context. There are two distinct components to any

graph; those structures and operands which are strictly

sequential and those which are in parallel portions of the

algorithm.

Table 3.1 shows the element counts for the algorithm in

Figure 3.2. It also shows how the counts are combined to

form the conceptual and component volumes for the algorithm.

3.3 Metrics for Partial Designs

The metrics of chapter two are normally used to

describe completed algorithms. In analyzing design

methdologies, it is important to be able to determine the

effects of each design decision or step. The graph language

and metrics presented in‘ chapter two, allow this to be

easily done.

Since the metrics represent the information content of

an algorithm, and partially completed algorithms, partially

represent the description of their completed designs, the

metrics can be used to describe the information content of

the partial design at each stage of the algorithm design

process. By comparing the information content at each stage

of an algorithm's development, the growth in the information

content of the algorithm during the design process can be



40

Table 3.1 Element counts and conceptual component

volumes for the algorithm in Figure 3.2.
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monitored.

Figure 3.3 shows a partially completed algorithm. It

is recognized that 'PROG” has three inputs, one output, and

is to be constructued as a D0 WHILE like block. At this

stage of the design process, the structure has an

information content of 15.5 bits (Table 3.2).

Each additional element added to ”FROG”, will change

that information content. By monitoring the metrics, we can

observe the change in the information content, as the design

process proceeds. The values obtained for the metrics at

each stage of the design process are called pgrtial metrics,

PV represents partial volume, and PL represents partial

length. The difference between the partial metrics at

succeeding design steps are called ggggg metrics, i.e.,

volume added or length added.

» vadded ' PVn ’ Pvn‘l

lz’added ' PLn - PLn-l

Thus, the resulting partial volume and length for the

algorithm in Figure 3.4 is 25.2 bits. The volume added from

the design step which led from Figure 3.3 to Figure 3.4 is

9.7 bits (Table 3.3).

Although the term 'added' implies that the volume

increases with each design step, this may not always be the

case. The designer may backtrack in his design, or realize

that what originally appeared to be distinct objects are the
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Table 3.2 Element counts for the algorithm of
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same. Either of these situations could cause the design

step to reduce the partial conceptual volume for an

algorithm. Thus vadded and Ladded may have negative values.

3.4 Summary

This chapter introduced a graph language which will be

used to represent algorithms in a model of the parallel

algorithm design process. The graph elements are based on

an abstraction of an algorithm's information content, and

thus have a strong correspondence to the metrics discussed

in chapter two. Halstead's metrics are normally used to

describe completed algorithms. This chapter has shown that

our extensions to them are also useful for describing the

information content of algorithms during the design process.

Thus, we can now observe the effects of a design decision on

the information content of an algorithm.



CHAPTER 4

Algorithm Transformations and Subsidization

In chapter two, two versions of a root ,finding

algorithm were introduced. There it was shown that the

parallel version contained significant additional

information, above that found in the sequential algorithm.

This chapter will examine the placement of that additional

information.

Parallel algorithms, such as the root finder, may be

developed using several approaches [3]. One approach is to

start with a sequential algorithm and make a set of simple

transformations to it. Such transformations are often based

on isolating and replacing a small sequential segment of the

algorithm with a parallel segment. When a replacement of

this nature is made, how does this impact the structural

complexity of the algorithm, and are there interaction

effects between the parallel and sequential components? The

46
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nature of these interactions will be interpreted in terms of

algorithm transformations.

4.1 Algorithm Transformations

Algorithm transformations can be categorized into four

types (Figure 4.1), based upon changes in an algorithm's

input and output sets. A type 1 transformation is the

simplest. A single parallel code segment replaces a

sequential segment. The parallel segment receives, as

input, a single data object and produces, as output, a

single data object. A type 2 transformation differs, in

that it receives multiple input objects, but only produces a

single output object. This is indicative of log sum

reduction transformations. Many of the automatic

transformations suggested by Ruck [3] are of this type. The

parallel root finding algorithm is an example of a type 3

transformation. ‘A single data object is input, the search

interval, and multiple data objects are output, the function

values at the interval's midpoints. Finally, a type 4

transformation involves multiple inputs as well as multiple

outputs. This type of transformation would be expected with

many matrix problems, such as calculating determinents.
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Figure 4.1 Transformations for converting a sequential

algorithm to a parallel algorithm.
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4.2 Subsidization

If we return to the root finding algorithms of chapter

two, we can observe some features of these transformations.

Recall that in creating the parallel root finding algorithm,

a small sequential segment was replaced by a parallel

segment. In chapter two, it was observed that the parallel

algorithm had a higher information content than the

sequential algorithm. We will now look at the two

algorithms in an attempt to determine what portions of the

parallel algorithm were responsible for this increase in

conceptual volume. Table 4.1 shows the component lengths

and vocabularies of the two algorithms.

Table 4.1 Component lengths and vocabularies for the

two root finding algorithms.

ns np Ns Np N n

sequential, BISECT 21 O 61 5 61 21

parallel, ROOTF 26 16 89 31 120 42

 

By examining Table 4.1, it can be seen that the length,

N, of the parallel algorithm is approximately double that of

the sequential algorithm. As expected, much of this

increase is due to the inclusion of the parallel comnponent.
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ND accounts for half of the increase in length. Since a

small sequential segment of the sequential root finding

algorithm was replaced, one would expect that the length of

the sequential component of parallel algorithm would have

decreased from that of the sequential algorithm. However,

this did not happen. Not only was there no reduction in NS,

it actually increased by almost 50%. In chapter two, the

conceptual component volumes were calculated for the two

algorithms. For. ROOTF 2p was 124 bits and 2s was 418.34

bits. Recall that the conceptual volume of BISBCT was

267.93 bits and that the conceptual volume of ROOTF was

647.07 bits. While component volumes are not additive, they

demonstrate that the bulk of the increase in volume was due

to an increase in the sequential component of the algorithm.

Thus, the increased information in the ROOTF algorithm was

caused by the addition of the parallel component to the

algorithm, plus by the an increase in the sequential

component as well._

Another observation can be made by viewing the

usage index, the ratio of Ni and ni for the ith component

(Table 4.2).
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Table 4.2 Usage indices for the two root finding

algorithms.

N N N

ns np n

BISBCT 2.90 * 2.90

ROOTF 3.42 1.94 2.86

For both algorithms, the overall usage indices N/n are

about the same. However, while the overall indices are

about the same, for algorithm ROOTF, the sequential usage

index, Ns/ns has increased, and.is larger than the parallel

usage index, Np/np. The reason for this can be seen by

examining Figure 4.1. The single output data object of

BISECT has been replaced by multiple outputs from ROOTF.

The final seguential segment of ROOTF must collect and

analyze these multiple outputs. This results in an increase

in .size for. the sequential component. We say that the

sequential component is subsidizing the parallel component.

Subsidization potentially occurs in three of the

transformation types presented earlier. It is present in

the sequential code and it serves to support the parallel

portion of the algorithm by either preparing input for the

parallel segment, or by collecting output from the parallel

segment. However, the position of subsidization will vary

depending on the type of transformation which took place

(Figure 4.2).
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Figure 4.2 The placement of subsidization for the four

algorithm transformation types.
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4.3 Summary

One method of transforming a sequential algorithm into

parallel is to replace a sequential segment of the algorithm

with a parallel segment. When this is done, we have shown

that information may be added to the algorithm. Contrary to

expectation, our examination of the two root finding

algorithms has shown that the information content of the

algorithm may increase not only because a parallel segment

is added to the algorithm, but also because the sequential

component of the algorithm increases in size as well. The

sequential component increases in size, because an interface

may be needed between the original sequential statements and

the parallel component. It was seen here that when a single

sequential segment was replaced by a single local parallel

segment, that the sequential code which provides the

interface may be localized as well. The support provided by

this interface was called subsidization. The possible

presence of subsidization in a parallel algorithm, suggests

that a designer must pay particular attention to the

interfaces between the sequential and parallel components.

Further research is needed to examine algorithms with

multiple parallel components. It is anticipated that

subsidization effects will be seen there as well. However,
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the form they take may differ. Multiple parallel segments

may not need sequential subsidization segments between them,

or a single subsidization segment may serve several parallel

components. Whatever form subsidization takes for

algorithms with multiple parallel components, one suspects

its presence will effect the design process for such

algorithms.



CHAPTER 5

A Parallel Bin Packing Algorithm

In the introduction we indicated that we would conduct

experiments on the design process for parallel algorithms.

Parallel algorithms with a single localized parallel

component will be used in the experiments. The ROOTF

algorithm, which has been discussed in Chapters two and

four, will serve as an example of such an algorithm with a

small localized parallel component. This chapter will

examine the 'other algorithm, which we will use in our

experiments. Like the ROOTF algorithm, it has a single

localized parallel component. However, the size of the

parallel component is larger. Thus, we will have two

algorithms for our experiments, one with a small parallel

component, and one with a large parallel component. The

second algorithm solves a version of the bin packing

problem. Like the ROOTF algorithm, it is designed for use

55
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on a multiprocessor system.

The bin packing problem is a combinatorial problem.

Combinatorial algorithms by their nature are computationally

intensive. Exact solutions to them are often

computationally intractable. Therefore, heuristic

algorithms are generally used when confronted with such

problems. One of the limiting factors in designing

heuristic algorithms, is the amount of computations they

involve. Therefore, combinatorial problems are good

candidates for solution by parallel algorithms.

Bin packing is an example of such a problem. Bin

packing in the one dimensional case, is an assignment

problem [21-27]. Objects of various sizes are to be placed

into a set of bins of limited capacity, such that the

minimum number of bins are used. There are two versions of

the bin packing problem. The first is the on-line version.

In on-line bin packing the objects must be placed into the

bins one at a time, as they are presented to the algorithm.

This is opposed to off-line bin packing, where all items are

presented before the algorithm attempts to pack the items.

The off-line version allows the algorithm to condition the

data before it processes it. The most common form of

conditioning used is to sort the data. It has been shown

that the worst case performance of off-line bin packing

algorithms is significantly better than that for on-line

ones [21].
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The remainder of this chapter will present and discuss

a parallel on-line bin packing algorithm. Its packing

performance will be compared with that of sequential

algorithms, both on-line and off-line.

5.1 The Bin Packing Problem

The bin packing problem consists of placing objects of

particular sizes into a set of standard size bins. In the

one dimensional case, the objects are characterized by one

parameter. Objects can be of size between 0 and 1. For a

given problem, the algorithm will be presented with a list

of items, L, of length n, 0 < a. g l, for each i, 1 g
l

i g n, where a. represents the ith element of list L.
1

The same value may occur in more than one position in the

list.

The bins into which the items will be packed, are

specified by a set of indices, 1, ..., m, where B1 is called

the first bin and Bm represents the last nonempty bin used.

For any bin Bj the sum of ai packed into it cannot exceed 1.

The current sum of ai stored in bin Bj is called the content

of bin j, and is denoted as c(Bj). The amount of unused

space in a bin is called the gap, and is given as l-c(Bj).

Several sequential heuristic algorithms have been

proposed for on-line bin packing [22-25]. These include the
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first-fit, refined first-fit, and best-fit approaches. The

best-fit is of special interest to us here. In the

best-fit, BF, approach a new item is assigned to a bin

Bj such that the gap in bin Bj will be minimum over all

currently nonempty bins. It has been shown that the worst

case packing generated by the best-fit method is:

1.7 L* - 2 5 BF(L) g 1.7 L* + 2.

L* represents the number of bins in the optimal packing for

list L [26]. Yao has shown that for any on-line algorithm

the worst case performance can be no better than 3/2 L*

[21].

Off-line algorithms, however, perform better, since the

list of items presented to the algorithm can be conditioned.

Typically they are sorted into decreasing sequence. The

best-fit decreasing rule, BFD, consists of sorting the list

of items into decreasing order, and then applying the

best-fit rule. Johnson [26] has shown that the BFD

algorithm has a worst case performance of

(11/9) L* 5 BFD(L) 5 (11/4) L* + 4.

At this point, we will examine the best-fit rule to see

why its performance is improved when the list is presented

in decreasing order. In order to do this, it is useful to

think of the best-fit rule as partitioning the set of

nonempty bins into two classes. The first class consists of
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those bins whose gaps are not smaller than the size of the

item to be added. This group, 61' represents the domain of

the traditional best-fit rule. From this group, the bin

which will have the smallest gap, once the new item is added

is chosen.

The second group, 62, consists of those bins whose gap

is too small to receive the new item. These bins are not

candidates to receive the new item when using the best-fit

rule. Thus, as group G2 grows large, the number of choices

available to the best-fit rule grows small.

Now it is easy to see why the best-fit decreasing

algorithm works better. The larger the ai, the fewer the

bins from which the algorithm can choose the best-fit.4

Since the larger items are at the beginning of the list, at

which time the maximum cardinality of the set G1 is small,

the impact that an item will have on the size of G1 is

small. On the other hand, if a large item is placed in the

middle of the list, it will mean that many of the partially

filled bins will not have enough room to hold it. The

best-fit algorithm will, therefore, have fewer places to

store the item than would otherwise be the case if ai was

smaller. The BFD algorithm is successful because the

presorting allows more bins to be examined as potential

candidates to receive a new item, than if the list of items

was unsorted. This suggests, that if the performance of a

best-fit rule is to be increased, that a way to expand the
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number of bins from which a choice is made, must be found.

5.2 The Best-Fit With Replacement Rule

1 In order to increase the packing performance of the

best-fit rule, the search space (number of bins which are

considered) will be expanded. The following rule causes

both sets G1 and 62 to be searched when an item, ai, is

presented for packing.

1. For those bins in G1, find the bin, B. whose gap
1'

will be minimum with the addition of ai. If no

Bi E 61 satisfies this condition, return the null

set.

2. For those bins in G2 with a gap > 0, find- a bin,

3].,

stored within it is replaced by ai. If no Bi 5

G2 satisfies this condition, then return the null

whose gap will be minimum when one object

set.

3. Select from the two sets generated above, the

non-null set that contains the bin with the

smallest projected gap. In case of ties, select

the bin with the smallest index. If it is from 61'

then add ai to the contents of the bin. If it is
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from 62, replace the item in the bin with ai so

that the gap is minimized. When both candidate

sets are null, place ai in the next unused bin.

4. If an item has been replaced by ai in Step 3,

repeat Steps 1 through 3 until no new replacement

occurs and then process ai+1.

This new rule is called best-fit with replacement

(BFR). The replacement option expands the set of bins which

are considered to all bins, except those which are empty, or

whose gaps equal 0. To show how this rule works, the

following list will be used:

6 occurences of .129 followed by 6 occurences of

.352 followed by 6 occurences of .519.

In Figure 5.1, the BFR packing of this list is compared to

the optimal packing and that derived from the BF rule. It

takes 10 bins using the BF rule, but only 8 bins with the

BFR approach. The optimal packing uses 6 bins. The

difference between the optimal packing and the BFR packing

is 2 bins, or 1/3 of the optimal packing. The BF rule uses

4 extra bins equal to 2/3 the optimal packing, or double the

extra bins. ‘

The list which was used in Figure 5.1, presents a worst

case situation for the BF rule [26], because the physical

ordering precludes the placement of a small, medium, and
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BIN l BIN 2 BIN 3 BIN 4 BIN 5 BIN 6 BIN 7 BIN 8 BIN 9 BIN 10

.129 .352 .352 .352 .519 .519 .519 .519 .519 .519

.129 .352 .352 .352

.129

O 129

.129

O 129

A. BF Packing

Bin 1 Bin 2 BIN 3 BIN 4 BIN 5 BIN 6 BIN 7 BIN 8

.352 .352 .519 .519 .519 .519 .519 .519

.129 .352 .352 .352 .352

.129 .129

B. BFR Packing

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6

.519 .519 .519 .519 .519 .519

.352 .352 .352 .352 .352 .352

.129 .129 {129 .129 .129 .129

C. Optimal and BFD packing.

Figure 5.1 A comparison of the BF, BFR, BFD, and Optimal

Packings for the example list.
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large item in each bin. Such a placement is necessary to

obtain the optimal packing. On the other hand, the BFR

rule, through the use of replacement, is able to make enough

reorderings to significantly improve the performance.

Later, it will be shown that the BFR rule will repeat its

good performance when presented with longer lists.

5.3 Implementation of the BFR Rule as a Parallel Algorithm

Now that the BFR rule is established, an algorithm

which uses the rule will be developed. Such an algorithm

could be either sequential or parallel. Note, that the

improved performance is gained by increasing the number of

bins, which are considered each time an item is added. This

results in a direct increase in the number of computations.

which will be required. Although a sequential algorithm may

be sufficient for small lists, for larger lists, the number

of computations would be prohibitively large. Thus a

parallel implementation for our algorithm is desirable. The

next question to ask then is, what aspects of the problem

can be done in parallel?

The bulk of the new computations are involved in

evaluating the capacity of each bin to hold a new item.

Therefore, this seems to be the appropriate place to

consider parallel acitivities. Since each bin may have a

different number of items in it, and that the bins are
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divided into two groups, G1 and 62, suggests that

asynchronous parallel processing may be appropriate.

Additionally, the item to be packed must be distributed to

the processors, and the results compared to select the

proper bin. This suggests a master-slave relationship

between the processors. These requirements are well

supported by a multiprocessor system. Therefore, a parallel

algorithm for the BFR rule on a multiprocessor system will

now be presented. The algorithm will be refered to as the

MBFR (multiprocessor best-fit with replacement) algorithm.

In the parallel version presented here," a process is

associated with each active bin. A bin is active if it is

neither empty nor has a gap of zero, when an item, ai, is

presented on-line to be packed. It is given to a master

process which broadcasts the item's value to each active

process. For each active bin, the associated process

computes the new gap that the bin will have if the item is

added to it. If the bin has room for the item, it returns a

value to the master equal to the new gap. If on the other

hand, the item is larger than the current gap, the process

scans the list of items in the bin. The items are assumed

to be in decreasing order. The scan procedes from largest

to smallest until an item, x., is found, such that ai is

J

greater than xj and ai is less than or equal to the current

gap plus xj; or the size of xj plus the gap is less than ai.

In the former instance, a value is returned equal to the
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projected gap if xj were to be replaced by the new item,

along with the x5 to be replaced. Otherwise, a null value

would be sent, representing that no replacement is possible.

The master then collects the projected gaps or png

from each of the active processes. It then selects the bin

with the smallest projected non-null gap to receive the new

value. If the bin is from the G1 set, a signal is sent to

the associated process to insert the new item into the

ordered list, and reduce the gap for the bin by the value of

the item. When the bin is from the 62 set, the associated

process is told to remove the item to be replaced and to

insert the new item. The gap is also updated. Next the

master broadcasts the replaced item to all the active bins,

and the cycle continues until no replacement is necessary.

When this occurs, the master reads the next item from the

input list. The algorithm will always terminate, because a

replaced value may be only smaller than the item to be

added. Thus if a replaced value also causes a replacement

when it is re-added, eventually it will be too small to

replace other items.

A version of the algorithm is given in Appendix A.

Simulations of the algorithm have been run on various length

lists. The results of these simulations will be discussed

in the next section.
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5.4 The MBFR Algorithm Simulation

A simulation model of the MBFR algorithm was prepared

to investigate the algorithm's performance. The model, in

sequential Pascal, simulates the parallel algorithm, and

assumes an arbitrary number of processors. Three hundred

trials were run using the simulation model. Thirty runs

were made for each of ten list lengths, ranging from 18 to

180 items. We now discuss the structure of these lists.

Graham [27] analyzed the performance of the first-fit

and best-fit bin packing algorithms. He suggests a class of

lists for which these algorithms perform poorly. The

example presented previously uses a list belonging to this

class. The lists are defined as:

Let n be divisible by 16, and let 8 satisfy 0 < 8‘ 5 1/84.

Define a list L - (a1,a2,...,an) by

1/6 - 28 for lfiifin/3

1/3 + 8 for n/3<i£2n/3

1/2 + 8‘ for 2n/3< i$n

The optimal packing for such a list is n/3.

For each set of trials, a list of appropriate length

(18 to 180) was generated, and then 30 random permutations
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of each list were used to test the algorithm.

The results are shown in Tables 5.1, 5.2, and Figures

5.2 through 5.5. Table 5.1 gives the distribution of the

number of bins obtained for each set of list lengths. Table

5.2 shows the optimal packing, the average packing, the

ratio of the average packing to the optimal packing, and the

ratio of the worst case packing to the optimal packing.

Additionally, it gives the average number of reverberations

(exchanges) per list, the probability that a new item causes

a reverberation, and the ratio of the worst case excess bins

to the optimal number of bins. Figure 5.2 gives the curve

for the average packing relative to the optimal, as a

function of list length. To facilitate comparisons, it also

shows the performance bounds of 17/10 and 11/9 discussed

earlier. Figure 5.3 does the same for the worst case

packing. Figure 5.4 shows the ratio of the maximum number

of excess bins to the optimal, again as a function of the

list length. Finally, Figure 5.5 shows the relationships

between the average and maximum number of processors which

were required, to the average and worst case packings.

Several aspects of the results stand out. From Figure

5.3, it can be seen that as the number of items in the lists

increase, the worst case performance tends to ll/9, and even

for short lists, the worst case performance is considerably

better than 17/10. Figure 5.2 shows that the average

performance is relatively stable, and that it is
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considerably better than the worst case: furthermore, by

examining Table 5.1, it can be observed that the optimal

packing is obtained 42% of the time. Table 5.2 and Figure

5.4 also show the deviation of the worst case from the

optimal as a ratio of the optimal. It is interesting to

note that the algorithm always performs better than 1/3 and

levels off at better than 1/4 for the longer lists.

It should be noted that these results were obtained

with the algorithm only having to perform a few

reverberations. For example, on the average, only 2.66

items in a list of 18 items caused a reverberation. The

maximum number of cascading reverberations for any of the

lists was only two. Thus, selecting from G2 only a limited

number of times, still improves the results significantly

over that for the best-fit algorithm.

Finally, the results show the number of processors

which are required. Remember that the simulation assumed

that one processor would be assigned to each active bin. In

the worst case, Figure 5.5 shows, that the number of

processors seems to be bounded by the optimal packing, not

the worst case, as might be expected. The number of

processors also appear to be significantly less than the

average packing as well. If we look at the average number

of processors used, we see that the average is considerably

less than the optimal, average, or worst case packings.

This shows promise for implementing the algorithm on a
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multiprocessor system with a limited number of processors.

In such a case, each processor would be assigned several

active bins. But as can be seen from Figure 5.5, even for

large lists, each processor would still only have to handle

a limited number of bins.

5.5 The Computational Complexity of the MBFR Algorithm

This section will discuss the computational complexity

of the MBFR algorithm. The multiprocessor algorithm is

based on the best-fit with replacement rule. This rule is

an extension of the best-fit rule, which was discussed

earlier. Therefore, the computational complexity of the

best-fit algorithm will be discussed first, in order to give

a basis of comparison for the MBFR algorithm. In order to

determine the computational complexity of the BF algorithm,

we will focus on the computations which test a bin to see if

a new item is less than or equal to the current gap. Since

this testing process is based on the list length and

dominates the computations, the computational complexity

will be expressed in terms of the total bins tested for

packing a list of n items.

A worst case scenario for the BF algorithm is to

attempt to pack a list of items whose sizes are all the

same, greater than .5, and less than 1.0. When such a list

is packed, only one item can be placed into a bin, and no
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bins can ever be completely filled. Thus, when an item ai,

is presented to be packed, i-l bins must be tested to see if

the item will fit. Thus, for a list of 11 items, 251 (i-l)

bins are tested. This results in a computational complexity

of O(n2). I

If the same type list is presented to the MBFR

algorithm, the number of bins which are tested will be the

same, $21 (i-l). Although the i-l- bins are tested

simultaneously, the master process must still compare i-l

bids each time an item, a is presented to be packed. Note1'

that for the MBFR algorithm, the time which is required to

test the individual bins is bounded by a constant, since the

bins are tested simultaneously each by a seperate processor.

Therefore, the computations that dominate are those' of the

master process which tests each of the bids generated by the

slave processors. Thus, for the MBFR algorithm, the

computational complexity is based on the number of bids that

the master process must test to pack a list of n items.

The type of list which elicits a worst case performance

for the BF algorithm, however does not produce a worst case

performance for the MBFR algorithm. The MBFR algorithm will

show its worst performance, if two conditions are met. The

first condition is that each time an item is added, it must

cause an item to be replaced. Also, for each item which is

replaced, when it is repacked, it must cause a replacement

as well, unless it is the smallest item in the list. The
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second condition is that only one item may fit in a bin, but

the item may not fill the bin. This condition causes i-l

bins to be tested, if item ai is presented to be packed. An

example of such a list is the following: .6, .7, .8, and .9.

That is, all items are greater than .5 and less than 1.0; no

items have the same value: and the list is in ascending

order. If the first two items are packed, bin 1 will

contain .7 and bin 2 will contain .6. When .8 is presented

to be packed, 2 bids are generated. .8 will be placed into

the first bin and displace item .7. Item .7 is then

’repacked. Again 2 bids are generated. This time .7 is

placed into bin 2 and it displaces .6, which must then be

repacked. Thus, if item ai is presented to be packed, i-l

bids are generated, and the item is packed by displacing the

item in the first bin. That item is then repacked, and it

will displace the item in the second bin. This process

continues until all items have been shifted one bin. This

results in the master process having to consider

n

2: (i-l)(i) bids. Thus, the MBFR algorithm has a

66iputational complexity of O(n3).

Therefore, we can see that our simulation suggests that

the MBFR algorithm has a better average performance than the

BF algorithm. However, in the worst case, it does not

perform as well. This is not a major problem for the MBFR

algorithm, however, since the worst case for the MBFR

algorithm only arises for a list of items with very
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restrictive constraints. Also note, that since the list

must be ordered for the worst case to occur, the packing of

such a list would be best handled by an off-line algorithm.

5.6 Summary

This chapter presented a second sample algorithm to use

in our experiments, a multiprocessor bin packing algorithm.

Like the ROOTF algorithm introduced earlier, it has a single

localized parallel component. However, the ROOTF algorithm

has a small parallel component, while the parallel component

of the MBFR algorithm is much larger. Thus, we have

examples of two algorithms with single, localized parallel

components. One has a small parallel component and one has

a large parallel component.

A simulation was used to show that the on-line MBFR

algorithm has a packing performance comparable to the

off-line best-fit decreasing (BFD) algorithm. Although

further analysis of the MBFR algorithm would be interesting,

for our purposes it is not needed, since we are primarily

interested in the structural properties of the algorithm,

not its behavior. The ROOTF and MBFR algorithms will be

used in Chapter seven, to examine the role of spatial,

temporal, and functional information in the design process

for these two algorithms. The next chapter will present a

model of the algorithm design process. A simulation based
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on that model will be used in Chapter seven to conduct the

experiments in parallel algorithm design.



CHAPTER 6

The Algorithm Design Model

The previous chapters showed that parallel algorithms

may contain additional complexity beyond that found in their

sequential counterparts. Some of that complexity resided in

the parallel component, and some of that was the result of

additions to the sequential component. The size of this

added complexity may impact the success of making different

types of design decisions. The question which is addressed

by this research is; in algorithms with a single parallel

component, how does the granularity of the parallel

component impact the performance of design methodologies.

In this chapter, we will develope a model of the

algorithm design process which will allow us to study this

question. The design process will be modeled using the

graph language representation of an algorithm, introduced in

Chapter three. Section 6.1 will describe the basic design

80
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unit in our model, the design step. A design step, in our

' model, consists of two phases: a placement process, and an

elaboration process. Section 6.2 will discuss the placement

process, and Section 6.3 will describe the elaboration

process. A procedural description of the model will be

presented in Section 6.4. Finally, the chapter will

conclude by describing a simulation model based on the

abstract model of Sections 6.1 through 6.4. The simulation

model will be used in Chapter seven, to conduct experiments

in parallel algorithm design.

6.1 A Design Step

In Chapter one, we characterized the design process as

producing a sequence of partial designs. In Chapter three,

an example of two successive partial designs (Figures 3.3

and 3.4) was used to show that we could use our software

metrics to quantify the change in the information content

from one partial design to the next. The change in the

conceptual volume between the two partial designs was a

result of making modifications to the structure of the first

partial design. Two basic types of decisions that underlie

these modifications can be observed. One process determines

the positions in the current partial design where

modifications are to take place, i.e., where to make

additions, deletions, or alterations. The other process
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determines what modifications will be made at these

positions. This process includes decisions about the

addition, deletion, or alteration of portions of the current

partial design. It also determines the size and

functionality of the modules which contain those portions of

the current partial design that are to be modified.

Each of the above processes have been. extensively

discussed in the literature [4-10,28,32]. For example, the

placement of a set of modifications in a partial design

dominates many discussions of design methodologies. These

decisions are considered so important that design strategies

have often been named after this selection process, i.e.,

top-down and bottom-up design .[5]. Some of these

methodologies are based on a hierarchical design approach

[34]. That is, the problem is described at several levels

of abstraction. At the first level, the algorithm is

described in general terms and at succeeding levels, an

increasing amount of detail is added. Top-down approaches

suggest that the designer create an algorithm in a

hierarchical fashion. At one level a main function is

created and at succeeding levels, subfunctions which fill in

the details of the algorithm, are added [34]. Top-down

methodologies dictate the levels or placement of the

functions in the algorithm which the designer may deal with

during a particular design step. Bottom-up design, likewise

describes an algorithm in several levels of abstraction.
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However, bottom-up design suggests that the designer start

at the lowest levels of detail and group low-level actions

together into successively more generalized functions [32].

Although these two methodologies differ, they both aid in

the placement of the next set of modifications to the

current partial design. In this research, we will call this

process theplacement proces .

The second part of a design step, the process of

deciding what modifications are made as part of a design

step, has also achieved much attention [5,28,32]. Much of

this discussion has centered on dividing an algorithm into

manageable size units (modules). Some of these discussions

involve; module independence, interfaces between modules

(coupling), module cohesion, how modules should cooperate,

as well as data hiding. For example, in discussions on

cohesion, Wirth [8,32] suggests that certain instruction

sequences which perform .simple basic actions should be

grouped into primitive modules or "action clusters”. Others

[4-10], offer suggestions such as limiting module

descriptions to one physical printer page, or to collect in

a module a set of related primitive functions, i.e., basic

string handling functions. All of these and similar

suggestions serve to decompose the problem, and therefore,

the design into components. In this research the process of

performing this decomposition and deciding what objects

should be added, deleted, or altered as a result of a design
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step, will be called the elaboration process.

Recall, that the development of an algorithm can be

represented by a sequence of partial designs. The placement

and elaboration processes are used to transform one partial

design into the next. The set of decisions and resultant

actions which lead from one partial design to the next, as a

result of the placement and elaboration processes, is called

a design step. A design methodology is a set of rules which

are used to aid the designer in making the placement and

elaboration decisions. Thus, a design methodology can be

represented as a set of guidelines which a designer uses in

order to make the decisions which lead from one partial

design to the next.

For convenience, this research will limit the placement

decision for a design step to one location in a partial

design. This restriction will not limit the generality of

our model. A design step which would have allowed

independent modifications to several locations can still be

modeled as a sequence of design steps, one per location, for

each location where a modification was to be made.

The next section will discuss how our model of the

algorithm design process represents the placement process.

It will be followed, in Section 6.3, by a similar discussion

of the elaboration process.
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6.2 The Placement Process

The placement process is the set of decisions which

determine where to make the next modification to the current

partial design. There are several ways in which this

component can be selected. These criteria are based on

selecting a component from the set of algorithm components

which are not in the current partial design [5-10,28,32].

1. Pick a component which is physically adjacent to a

particular component in the current partial design,

i.e., in the same module.

2. Pick a component which is concurrent to a component

in the current partial design.

3. Pick a component which provides an input to a

component in the current partial design.

4. Pick a component which receives an output from a

component in the current partial design.

5. Apply criteria l-4, but only with regard to the most

recently developed component, i.e., the relationship
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must connect the new component to the component which

was dealt with by the last design step.

6. Pick a component which is at the same level of

abstraction as the last component, i.e., if the last

design step added part of the main procedure, the

next component should be part of the main procedure

as well.

7. Pick a component which is at an adjacent level of

abstraction as the last component, i.e., add a

subprocedure to the procedure which was dealt with by

the last design step.

8. Pick a component with a similar functionality as the

last component, i.e., if the last component did a

particular string handling function, the next

component should deal with string handling as well.

These criteria are just a few of those used by software

designers. However, they serve to illustrate the types of

information a designer uses to make the placement decision.

The placement decision can be described relative to the

current partial design. That is, the decision somehow

exploits a relationship between the new component and those

Components already in the current partial design. These
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placement relationships may be based on spatial

relationships, criteria 1, 6, and 7, or on informational

relationships, criteria 2-4, and 8. In otherwords, these

relationships connect components because they are physically

close in an algorithm's representation, or they share common

functions and/or data items.

The temporal order in which components are added to a

design can be used to describe placement relationships. For

example, placement relationships may connect the next

component to the component which was added or modified by

the last design step. However, placement relationships may

also connect the next component to a component which was

dealt with by the second to last or other previous design

step. Also, some of the relationships used by a placement

decision may be based on the last design step, while other

relationships, which 'are based on other previous design

steps, may be used by the same placement decision. Thus, we

can see that the information, which is used by a design

step, may have a temporal order to it.

In order to model the placement process, we must

identify a set of placement selection criteria to use.

Based on the information which is available in our graph

language model, the following relationships can be easily

identified. They are based on both spatial and

informational relationships between the structures of the

graph language. These relationships are the following.
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1. Components which are concurrent to each other.

2. Components which are in the same module.

3. Components which provide inputs to other components.

4. Components which receive outputs from other

components.

The above criteria will be used to select the placement of

the next component, based on a relationship with the current

partial design. Some of the relationships are based on the

physical positions of the objects in the graph language

representation of an algorithm (spatial locality). Other of

these relationships are based on a common functionality or

the direct communication of data between the graph language

structures of an algorithm (informational locality). These

relationships also have a temporal order to them. If we use

the above relationships to connect a new component to the

component which was dealt with by the last design step, we

say that it is a £1553 £5925 placement relationship. We call

this a first order relationship, since the new component is

related to a component which was treated by a decision which

is one design step away. If we use the relationships to

connect the next component to the component which was added
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or modified by the second to last design-step, we ’say the

placement relationship is gggppg pgggg. A relationship based

on a component added or modified by a specific previous

design step will be called an app pigs; placement

relationship. It is possible that a design step uses

multiple placement relationships. If this is the case, we

will assign the temporal .order of the highest order

placement relationship, which is used by that design step,

to the decision. '

In order to model placement relationships, we will

partition them into two classes. Relationships based on the

above four criteria, which are of the first order, will

comprise the first class. Relationships which are second or

higher order form the second class. Since the relationships

in. the first class are based on spatial or informational

localities, and are temporally local, i.e., are based on the

last design step, we will call a placement based on these

relationships a localized placement. Placements which are

based on the relationships in the second class will be

called non-localized placements.

Non-localized placements are those based upon second or

higher order temporal relationships. To model this broad

spectrum of possibilities would be quite complex.

Therefore, non-localized placements will be modeled

probabilistically. This will allow us to represent all

possible criteria for placements, without having to include



90

the many combinations of relationships that some of these

criteria would require. Thus, if the decision is made to

use a non-localized placement, one of the components not in

the current partial design will be randomly selected to be

treated by the next design step.

Localized placements in our model are dependent on the

last component which was dealt with by the previous design

step. They will be modeled by one of the four locality

relationships described above. Later in Section 6.3, it

will be seen that our design model allows for the

possibility of errors during the design process. If an

error occurs, control structures in the last component may

not be complete. To allow these control structures to be

completed, a localized placement may also choose the last

component, if the previous design step did not complete it.

The next design step then has the possibility of completing

it.

The process of selecting the next component consists of

looking at the last component which was added or modified in

the current partial design. Then it is determined whether

any of the components which are not in the current partial

design are connected to the last component, based on one of

these localized relationships. If so, one of those

components is selected. There may be several possible

candidates for selection, and modeling the decisions to

choose between them would be complex. Therefore, the
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selection from the list of possible candidates will also be

probabilistic. Thus, a localized placement

probabilistically chooses the next component from a

constrained subset of the remaining components, and a

non-localized placement probabilistically chooses from the

- set of all remaining components.

Recall from the first part of Section 6.2, that several

placement criteria were introduced. Those criteria are

either modeled directly by the localized placements, or

indirectly by non-localized placements. Since we can

combine the localized placements in any order, or include

any ~component using a non-localized placement, all possible

first or any degree order placement criteria can be

represented by our model.

We will now discuss the process by which the decision

to use a localized or non-localized placement is made. Many

factors influence the progression a designer uses in

creating an algorithm [7-9]. These include:

1. The designer's perspective of the problem.

2. Simularities between the -problem and those

encountered previously by the designer.

3. Available mathematical models of the problem.
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4. The language being used to design the algorithm.

5. The design methodology used by the designer, i.e.,

top-down, bottom-up, stepwise refinement, etc.

These factors are highly variable and differ considerably

between, designers. Also, we are not interested in how they

are determined, but only the relative frequency of using the

different criteria. Therefore, the decision to use a

localized or non-localized placement will be modeled by a

frequency distribution. Likewise, if the choice is made to

use a localized placement, the selection of which of the

five relationships to use will also be modeled by a

frequency distribution. These frequencies will be

represented in our model by a set of probabilities. They

are the following:

PR Probability of using a non-localized placement.

I Probability of using an input placement relationship.

Po Probability of using an output placement

relationship.
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C Probability of using a concurrent placement

relationship.

M Probability of using a module relationship.

Ps ' Probability of using the same component.

We call these probabilities the design methodology

probabilities.

By representing the placement decision as a set of

probabilities, we will be able to examine how the relative

frequency of use for each of the placement criteria affects

the rate at which information is added to an algorithm's

design. This will be done by examining the change in

conceptual volume between successive partial designs. By

varying the design methodology probabilities, different

design methodologies can be examined.

The next section will discuss how a component is

processed, once its placement has been determined.

6.3 The Elaboration Process

Previously in this chapter, we have been using the term

component to refer to those algorithm graph elements which

are added or modified in the current partial design as a
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result of a design step. We will now consider a more

complete description of those graph elements.

In order to design an algorithm, the problem which is

to be solved is often decomposed into managable size units.

We will call these units design modules. In the literature

[5,28,32], several criteria have been suggested for

decomposing the design of an algorithm into design modules.

1. Divide the problem into major functions. Let each

function be represented by a design module.

2. Design modules should be independent. The meaning of

a design module should be independent of the context

of the algorithm.

3. Design modules should be self contained, i.e., one

should be able to replace a design module in an

algorithm by a different one with the same function,

and the algorithm should still be correct.

4. The size of a design module should be limited. Its

representation may be limited to a number of printer

lines.

5. Group primitive actions which perform a basic

function together into a design module.
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Most of these criteria are based on a functional subdivision

of an algorithm, and thus are highly dependent on a

designer's perspective of the problem. Two designers given

a particular problem, will often arrive at different modular

decompositions.

The modular decomposition of an algorithm can also be

hierarchical [5,28]. Thus, a designer may decompose an

algorithm into a set of high level modules, which are then

further decomposed into a set of lower leveled modules.

Again, the choice of how to select these modules is

variable, and different designers will arrive at different

modular decompositions. This variability presents a problem

for us in our attempt to model the elaboration process.

Therefore, the modular decomposition of the algorithms used

by the model will be prespecified.

We will model the design process for an algorithm

through the process of recreating a graph language

representation of it. We will assume in our model, that

algorithms are designed in a modular fashion. Recall, that

the graph language is based on a functional representation

of an algorithm. The objects in a control structure, or

which are in control structures that are nested in the first

structure, represent a functional unit. If we assume that

the algorithm was created in a modular fashion, it is

reasonable to assume that these functional units could be

designed as a unit. Thus, these functional units can
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represent a possible decomposition of the algorithm into

design modules. These design modules are not necessarily

unique. One designer may group one combination of

functional units together into a design module, and another

designer may use a different Vgrouping, even though the

underlying functional units are the same. Thus, in order to

control the experiments we will prespecify the design

modules for an algorithm. These modules will represent the

module placement relationship and will remain fixed for all

experiments using a given algorithm.

Design modules represent a high level decomposition of

a problem. However, the information which is represented by

a module may be too much to consider during one design step.

Therefore, it is often necessary to further divide a design

module into units which can be treated by a single design

step.

The portion of an algorithm which can be dealt with at

any moment is limited. Halstead [16] and others [29]

suggest that humans are limited in the number of mental

discriminations per second which they can make. They

suggest that the design units programmers deal with are not

individual elements, but groups of objects. These groups

have been called chunks [30], and represent those

discriminations which can be made as a unit. In this

research, a chunk is assumed to correspond to such a group

of objects, but it also includes the design decisions which
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relate those objects together. If an attempt is made to

deal with too much information in one chunk, errors often

result. Additionally, sometimes a designer makes an error,

even when a chunk deals with limited information.

Therefore, our model of the algorithm design process will

consider the possibility of an error each time an object is

considered for inclusion in a chunk.

In our model, 3 gpppk represents Egg objects ghigh_ 255

design gpgp. A chunk is what the previous sections in

Chapter six have refered to as a component. Chunks are the

result of decomposing a design module into units which can

be treated by a single design step. Although, our model

will prespecify the modular decomposition of an algorithm,

chunks will be determined at the time the algorithm is

designed. Chunks are determined as follows. First, a chunk

must be contained within a design module. A control

structure is used to identify a chunk. Objects which are in

that control structure, or which are in control structures

nested in the first structure are candidates for a chunk.

Note, these objects also represent a functional division of

the algorithm. A chunk differs from a design module, in

that the size of a chunk is tightly controlled. A

probabilistic limit will be placed on the number of objects

which may form a chunk. Thus, the functional decomposition,

which can be seen in the graph language representation of an
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algorithm is used in two ways. First, at a high level we

will group these functional units into design modules and

feed a description of this grouping into our model. Second,

the functional units will allow the model to form basic

units which are small enough to be treated by a design step,

yet represent related acitivities. These second units are

called chunks.

The basic action of our model is a design step. It

involves the determination of the starting point for a chunk

by the placement process, and then the subsequent

elaboration of that chunk. This process is being modeled by

recreating a graph language representation of an algorithm.

Therefore, we will place one further restriction on the

elaboration process. That is, we will restrict the

elaboration process to adding graph language elements to a

chunk. Since the target algrithm is predetermined, the only

way we can insure that the proper algorithm will be designed

is to prespecify the elements in the algorithm and eliminate

backtracking in the design process. Thus, the elaboration

process consists of identifying the objects in a chunk and

adding them to the design, subject to the limitations of the

designer making an error. As mentioned earlier, each time

an object is considered for inclusion in a chunk, the

possibility of an error will be considered. This is done

for two reasons. First, it is a means to limit the size of

a chunk. Second, all designers make errors. This allows
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the impact of these errors to be represented in our model.

6.4 The Procedural Model

The previous sections described an informal model of

the algorithm design process and its relationship to current

software design theory. We will now specify our model of a

design step in procedural terms. Figure 6.1 gives a high

level outline of our algorithm design model. The model

consists of two parts; an environment and a designer. The

environment represents the information which is available to

the designer. It includes the methodology probabilities,

the graph language representation of the algorithm, the

localized relationships between the graph language

components, and statistics about the algorithm which is

being designed. Most of this information is provided to the

model and is predetermined. The designer part of the model

represents the process of algorithm design. The placement

and elaboration activities are represented by this portion

of the model. We will now examine the designer process.

The designer process starts in box a of Figure 6.1.

Using the methodology probabilities, it decides whether to

make the next placement by using a localized or a

non-localized decision. If a non-localized decision is

selected, the model enters box d, which randomly selects any

chunk which is not in the current partial design. If a
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Figure 6.1 Abstract model of the algorithm design process.
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localized decision was selected in box a, the model enters

box b. Here, a particular localized relationship is chosen,

based on the methodology probabilities. Then the model

enters box c where a chunk, which is connected to the last

elaborated chunk, is randomly chosen, based on the

relationship which was selected in box b. Then from either

box c or d, the model enters box e.

In box e, the objects which form the chunk are

determined. These objects may be input operands, results,

operators, conditionals, or other control structures which

are nested in the structure that starts the current chunk.

The chunk elaboration process consists of selecting these

objects from the algorithm's representation in the

environment and placing the objects into the current partial

design. As' the objects are selected, statistics are kept

which indicate how many objects have been referenced and how

many unique items are in the current partial design. These

statistics allow the conceptual volume to be calculated at

the end of each design step.

When objects are identified as possible candidates for

inclusion in a chunk, the possibility that the designer is

making an error is considered. This is modeled by counting

the number of objects in the chunk and probabilistically

limiting the size of the chunk. This accomadates the notion

discussed by Halstead [l6] and others [29], that human

designers are limited in the number of mental
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discriminations that they can make as a unit. If an error

is indicated, the object is not added to the cunk, and the

elaboration of the chunk is complete. The model then

reenters box a and continues in this fashion until all

objects have been added to the design.

This completes our discussion of the abstract model of

the algorithm design process. We have modeled this process

as producing a sequence of partial designs. A design step

represents. those actions which are used to move from one

partial design to its successor. The actions, which make up

a design step, were described by two processes; a placement

process and an elaboration process. The next section will

describe a simulation, which was developed based on this

abstract model.

6.5 The Simulation Model of Algorithm Design

The previous sections described the abstract model of

the parallel algorithm design process. In this section, a

simulation based on the abstract model will be presented.

The simulation model was implemented in Pascal on the Cyber

750.

The simulation model consists of two parts. An

environment and a designe . The environment represents the

information which is used by the model during the design

process. It includes a modular description of the target
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algorithm, the methodology probabilities, the placement

relationships, and the counts which are used to generate the

software metrics. The designer represents the process of

algorithm design. The designer process embodies the logic

that uses the information in the environment to make the

placement and elaboration decisions.

6.5.1 The Modeng Environment

The environment of the model was implemented as a

series of tables and pointers, see Figure 6.2. The graph

language algorithm is represented by tables STRUCT, OPBRAND,

and AFUNCT. Table STRUCT describes the structure and state

of elaboration for the algorithm. Bach graph control

structure has an entry in table STRUCT. There are pointers

from STRUCT for each graph element to tables OPERAND and

FUNCT. A pointer to table FUNCT identifies the control

structure's operator, and pointers to table OPERAND identify

the control structure's operands, these are the control

structure's inputs and results. Additionally, table STRUCT

has entries for each graph control structure which indicate

the control structure's context, sequential or parallel.

There are also flags to indicate if each of the control

structure's elements have been added to the design.

Tables OPERAND and FUNCT each have one entry for every

operand/operator that are used in the algorithm. Each entry
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consists of two flags. The flags correspond to the context,

sequential or parallel, under which references to the

operands/operators occur. The flags are set after the first

reference to the objects in a particular context are made.

This is done in order to achieve a count of unique algorithm

elements for the conceptual volume metric.

The first order locality relationships are represented

by tables CONCUR, INPUTS, OUTPUTS, and MODULE. 'CONCUR

represents the relationship between graph control structures

that are concurrent to each other. INPUTS and OUTPUTS

represent the relationships of control structures that

provide inputs or receive outputs from other control

structures. Finally, MODULE indicates which graph control

structures form modules of the algorithm. Each graph

control structure which participates in one of the

relationships with other graph control structures, has

entries in the appropriate tables. An entry consists of a

pointer to table STRUCT which identifies a control

structure. Additionally, it includes a pointer to table

STRUCT for each control structure that is related to the

first entry.

Table NOTDONB is .used to allow a non-localized

placement to choose the next graph control structure. It

contains entries for all graph control structures which have

not been fully elaborated. An entry consists of a pointer

to table STRUCT.
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The status of the current design is represented by

several variables in the simulation model. P08 is a pointer

to table STRUCT for the graph control structure of current

interest. STEPS indicates how many chunks have been

processed. Finally, UNIQUE and TOTELEMBNTS hold the element

counts which are required for generating the conceptual

volume metric.

6.5.2 Design Methodolggies-In The Simulation Model

A design methodology is represented by a set of

frequency distributions. These distributions indicate the

relative frequency of use for each of the placement

criteria. For convience, these distributions are

represented in the model as a cumulative probability

distribution, Figure 6.3. The entries are used to select a

decision type for choosing the next chunk. The criteria are

based on the control structure that identifies'the last

designed chunk (POS). The basic criteria and their

associated codes follow:

8 The same control structure should start the next

chunk.
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1,0 The next chunk should provide an input to, or

receive an output from the last chunk.

C The next chunk should be concurrent to the last

chunk.

M The next chunk should be in the same module as the

last chunk.

R randomly select the next chunk (a non-localized

placement).

In the simulation model, table POSITION represents this

probability distribution. The table has one entry for each

of the accented points in the plot of Figure 6.3. Different

design methodologies are modeled by changing the shape of

the curve.

6.5.3 The Design Process

This section will discuss the simulation's

implementation of the placement and elaboration processes.

First, the model is initialized. This is done by reading a

graph language based description of the algorithm into table

STRUCT. The locality relationship tables CONCUR, INPUTS,
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OUTPUTS, and MODULE are provided a description of the first

order relationships between the components of the graph

language algorithm. From these descriptions, tables

NOTDONE, OPERAND, and FUNCT are also initialized. Table

POSITION is initialized by reading a cumulative probability

distribution. This distribution represents the relative

frequency for each of the placement criteria. Finally,

since the model is probabilistic, a pseudo-random number

generator is required. The seed for the generator is

initialized by reading the system clock. This gives a

different pseudo-random number sequence for each trial.

The simulation's implementation of the designer process

will now be discussed. First, the placement of the next

chunk is determined. This is done for all chunks, except

the first one. The first chunk always starts with the outer

most graph control structure. If we refer to Figure 6.1, we

can trace the placement process. The placement process is

represented by boxes a through e in Figure 6.1. In box a, a

pseudo-random number is generated. This number is used to

select the type of decision from the cumulative probability

distribution which is in table POSITION. If a non-localized

placement is selected, box d is entered. In box d, a chunk

is randomly selected from the set of all graph control

structures which are not in the current partial design

(table NOTDONE). If a localized placement had been selected'

in box a, the model would have entered box b, instead of box
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d. In box b, a first order placement relationship is

selected. This is done by generating a pseudo-random number

and using it to access table POSITION. Once this is done,

box c is entered. In box c,the next chunk is selected by

examining the table for the relationship that was selected

in box b. If more than one graph control structure is

related to the last chunk, one of them is randomly selected.

If no structures are related to the last chunk using the

appropriate relationship, a different placement decision is

tried by returning to box a.

Once the starting control structure for the next chunk

has been selected in either box c or d, box e is entered.

Box e represents the elaboration process. The objects,

which consitute a chunk, are identified from tables STRUCT,

OPERAND, and FUNCT. If an object is to be included in a

chunk, the entry for the object in table STRUCT is marked.

These objects may be results, operators, input operands,

conditionals, or nested control structures. Objects are

added to a chunk in a predetermined order. First, the need

for a chunk is determined by its results. Therefore, the

result operands are the first objects which are added to the

chunk. After the results are identified, the actions which

yield those results are considered. Therefore, the

operators are added next. Input operands and conditionals

are lower level details, therefore, they are added last.

Although all designers may not use this ordering for adding
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objects to a chunk, varying this order would not

significantly impact the results from our model.

As objects are identified from the tables, the

possibility of an error is considered, before an object may

be added to the design by marking the tables in the

environment. This is done by procedure ERROR. This

procedure generates a pseudo-random number and test it

against an error distribution, e"/1° , where x is the number

of objects in the current chunk. This distribution allows

us to limit the number of items in a chunk to match the

notion discussed by Halstead and others, that the number of

discriminations which a designer can make as a unit is

limited. The distribution causes the probability of an

error to increase exponentially as objects are added to a_

chunk. It bounds the number of objects at 21. If the

pseudo-random number exceeds the value of the distribution,

an error is assumed and the current chunk is complete,

without including the new object.

As table STRUCT is marked to indicate the object is now

in the current partial design, counts of the objects which

are referenced and the number of unique objects are

accumalated. These counts are used-to compute the software

metrics. This process of identifying the objects from the

graph language description, and marking that description to

indicate that the objects are in the current partial design

continues until either an error occurs or until no eligible
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objects are left to include in the current chunk. Eligible

items are those in the control structure which starts the

chunk, or those that are in control structures which are

nested in the first control structure. Recall, lthat these

objects represent a functional decomposition of the graph

language algorithm.

Finally, the elaboration process finishes in box e, by

updating the tables in the environment to reflect the new

partial design. This updating consists of removing entries

from the relationship tables for control structures which

have all their objects completed. The software metrics are

then computed for the current partial design, and the

process continues by reentering box a. Figures 6.4 through

6.6 summarize the designer process.

The next section will illustrate the elaboration

process by tracing a sample algorithm through two design

steps.

6.6 An Illustration of The Design Step Process

To illustrate the flow of the design process, the

algorithm of Figure 6.7 will be used. We will trace through

two design steps.

The starting point is the outer most. graph control

structure, PROG. First its label is marked, then the result

OUT is marked. At this point the element counts for the
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repeat

if not first chunk

then choose-next-chunk

else outer structure is next chunk;

elaborate next chunk;

update metrics:

update environment:

output metrics:

until (all structures are elaborated):

Figure 6.4 An overview of the designer component of the

simulation model.

procedure choose-next-chunk;

begin

POS :3 null;

repeat

generate random number;

find match to random number in table POSITION;

case match

5: next chunk is current structure;

R: select randomly from table NOTDONE;

I: select randomly from table INPUTS:

0: select randomly from table OUTPUTS:

C: select randomly from table CONCUR;

M: select randomly from table MODULE;

end case: ‘

until (POS <> null):

end;

Figure 6.5 Procedure for choosing selection criteria and

next chunk.
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procedure elaborate;

begin

ERROR :8 false:

for I :- l to 5 do

while STRUCTIPOS] is not done and ERROR is false do

case I

l: mark-label;

2: mark-results:

3: mark-operator;

4: mark-input-operands:

5: mark-conditional;

end case:

end;

Figure 6.6 An overview of the elaboration procedure for the

simulation model.
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metrics show two references and two unique items. The

implied operator DO WHILE is then marked. Then the input

operands, which in this case are graph control structures

are marked. Assume that f1, f2, and f3 are

probabilistically selected and that no errors occur when

they are marked, but that an error is probabilistically

indicated when we try to mark f4. Since an error occurs,

f4 is not marked and processing of the first chunk is

complete. Thus at the end of design step one, the element

counts and conceptual volume will be that which is found in

Table 6.1.

The second elaboration is then started. Assume that a

non-localized placement was selected based on the

methodology probabilities. Also, assume that from the

non-completed structures, structure f2 was randomly chosen.

Since f2's label has already been marked, it is not

remarked. The result W is marked, then the operator +, and

finally the input operands x and Y are marked. Assume this

time that no errors are generated. Since all of the objects

in control structure f2 have been added to the current

partial design, this completes step two. Table 6.2 shows

the updated metrics.

Now assume a localized placement is selected. Then the

determination is made to use the concurrent relationship.

Since f2 started the last chunk, structure f3 will start the

next chunk. Processing continues in this fashion until the



117

Table 6.1 Element counts and conceptual volume for step

one.of the abstract model illustration.

 

 

 

  
 

, m?“ 1 milk 1
Sequential Element (1) Fn,s Parallel Element (1) Fan

PROG 1 1 f2 1 1

OUT 2 1 f3 2 1

DO...WHILE g 1

f1 1

4 4 2 2

1 = (4+2) log2 (4+2) = 15.5 bits.

Table 6.2 Element counts and conceptual volume for step

two of the abstract model illustration.

 

rank

 

 

 

Sequential Element (1) F; 3 Parallel Element (1) F; P9 ‘

’

PRQG 1 1 f2 1 1
OUT 2 1 f3 2 1DO. . .WHILE 3 1 W 3 1f1 4 1 + 4 1

x 5 1
Y 6 1

4 4 6 6  
K = (4+6) log2 (4+6) = 33.2 bits.

 

 



118

entire algorithm has been completed.

6.7 Summary

This chapter has presented a discussion of the

algorithm design process. In order to organize and

integrate the many suggestions offered in the literature, we

have divided the design process into two phases: a placement

process and an elaboration process. We have called the

process of determining the positions in an algorithm at

which to make modifications the placement process. We saw

that many design methodologies, i.e., top-down or bottom-up

design, focus on this process. We also examined the process

of modularizing an algorithm and determining what objects

should compose a module. We called this process the

elaboration process. This chapter then presented a model of

the algorithm design process which was based on the

placement and elaboration processes. An implementation of

the model as a simulation was presented. This simulation

model will allow us to examine the impact of using localized

and non-localized placements in the design process. Since

we have divided placement decisions into two classes, those

which use first order relationships and those which use

higher order relationships, we will be limited in our

results to comparing only first order decisions to the

others as a group. While comparisons between the use of
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second and third order relationships may be interesting,

such comparisons are beyond the scope of this model.

In the next chapter, the simulation model will be used

to examine the impact of making localized and non-localized

placements on algorithms with different size parallel

components.



CHAPTER 7

The Experiments

This chapter will use the simulation model of the

algorithm design process which was developed in Chapter six.

Experiments will be conducted to study the impact of

different placement decisions on the design of parallel

algorithms with different size parallel components. First,

some properties of the two sample algorithms, MBFR and

ROOTF, will be discussed. Section 7.2 will then describe

the different design methodologies which were used in the

experiments. The methodologies are described in terms of

their use of localized and non-localized placements.

Section 7.3 presents a preliminary discussion of the

experimental results. These results suggest that the

structure of an algorithm impacts a design methodology's

performance. In order to examine the role of an algorithm's

structure, Section 7.4 describes the differences in the

120
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structures between algorithms ROOTF and MBFR which can be

observed using the software metrics. This is followed in

Section 7.5 by a discussion on how these structural

differences impact the elaboration process. Section 7.6

presents a similar discussion on the placement process.

This is followed in Section 7.7 by a discussion of how these

results relate to human designers.

7.1 The Sample Algorithms

The ROOTF algorithm from chapter two and the MBFR

algorithm from chapter five were used in the experiments.

Graph language representations of the algorithms are shown

in Figures 7.1 through 7.3. Both algorithms have single

local parallel components. The parallel component of the

ROOTF algorithm is small, while the parallel component of

'the MBFR algorithm is much larger. Thus, the algorithms can

be used to examine the effects of the amount of parallelism

present in an algorithm on the design process for algorithms

in which the parallelism is localized.

Algorithm ROOTF has a structure which is predominantly

sequential. Recall from Chapter two, that it was created by

making a simple transformation to the sequential algorithm

BISECT. Although it contains a small parallel segment, the

programmer can still visualize the basic control structure

as sequential. In fact, the primary parallel construct, the
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PARFOR statement, can be replaced by the sequential FOR

statement, and the algorithm will still be correct.

Therefore, the performance of the different design

methodologies on algorithm ROOTF should relate to their

performance on sequential algorithms as well as on

algorithms with small localized parallel components.

The MBFR algorithm, on the other hand, has a larger

parallel component. The conceptual volume of its parallel

component is 652.3 bits versus 53.7 bits for algorithm

ROOTF. It contains a more complex interface between the

sequential and parallel components. Unlike the root finding

algorithm, the number of computations made by the parallel

processes will not be the same. It will require more time

to determine the bid for a bin with a large number of items,

than for a bin which is almost empty. This requires the

designer to be more aware of synchronization between the

processes. Likewise, the designer needs to deal with more

-communication between the concurrent processes and the

master process. ROOTF only requires passing the value of

the function at the subinterval's midpoint. MBFR must pass

a bid and the value of an item to replace, or else

communicate to the master that those values are null.

Therefore, the performance of the design methodologies on

algorithm MBFR will be representative of their performances

on other, more complex, parallel algorithms.
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7.2 Design Methodologies Used In The Experiments

The design of each algorithm was simulated using five

classes of design methodologies. Each design methodology

was represented by a probability mix. The mixes are shown

in Table 7.1. For each mix, the probability of a localized

placement was evenly divided among the four first order

relationships. The set of mixes was designed to examine the

effects of using only localized placements, non-localized

placements, or various combinations of both types of

placements. Although the use of 100% high order placements

can be modeled directly, the nature of the model developed

here precluded the use of only first order localized

placements. This is because not all possible localized

relationships are identifiable in the graph language. All

algorithm structures are related to all other structures in

an algorithm, but only a subset of these possible

relationships are considered by the model. These missing

relationships present a difficulty for the model. It is

possible that they are the only relationships for the last

elaborated control structure. If this is the case, the

model would not be able to select another structure using a

first order relationship. This would cause the model to

deadlock. Thus, the use of predominantly localized
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Table 7.1 The design methodology probability mixes used

in the parallel algorithm design experiments.

 

 

Mix non—localized localized

percentage , percentage

1 100 O

2 75 25

3 50 50

4 25 75

5 5 95  
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placements was modeled as 95% localized placements and 5%

non-localized placements.

In Figures 7.1 and 7.2, the high level modular

decompositions which were used for the first order module

placement relationships can be seen. The graph control

structures within a dashed box form one possible high level

modular decomposition. These modular decompositions were

used for all of the experiments.

The design mixes in Table 7.1, represent the use of

varying combinations of‘ localized and non-localized

placements. By modeling design methodologies using these

mixes, we will be able to see whether there ‘ig

correspondence between the distribution and granularity f

P
O
I

the pgrallel information ip pp algorithmI and the pypg __

information which should be used to design such algorithm .

7.3 .The Experiments

In the experiments, the designs of the root finding and

bin packing algorithms were simulated. Since the model is

stochastic, 20 trials were run for each algorithm and design

mix. Table 7.2 gives the average number of design steps for

each set of trials.

In Table 7.2, we can see several things. First, for

each design mix, on the average, it took more steps to

design algorithm MBFR than algorithm ROOTF. If we look at
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Table 7.2 The average number of design steps which were

required for each design mix, for algorithms MBFR and ROOTF.

 

Mix Average Number of Design Steps

 

ROOTF MBFR

1 49.0 70.2

2 51.3 67.3

3 50.5 70.0

0 50.8 72.3

5 48.0 72.2   
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just algorithm ROOTF, we can see that each design mix, on

the average, took a different number of design steps. The

same observation can be made between the design mixes for

algorithm MBFR. These observations suggest two things.

First, the design mixes caused different amounts of

information to be added to each of the two algorithms.

Second, for a given algorithm, different design mixes cause

information to be added at different rates. Thus, we can

see that not only are there differences in the performances

of a design mix between the two algorithms, there are also

differences in the performances of the five design mixes for

a given algorithm.

Table 7.3 gives the average amount of information added

to the ROOTF and MBFR algorithms as the result of a design

step, for each design mix. Also shown are the differences

in the averages for a design mix between the two algorithms.

In Table 7.3, we can see that an average design step always

added more information to algorithm MBFR than to algorithm

ROOTF. But, by examining the differences in the amount of

information added between the two algorithms, we can see

that the amount of these differences is not constant. If we

look at the differences for mixes 2 through 5, we can see

that they decrease from 2.16 bits to 0.41 bits. If we look

at just algorithm ROOTF, we can see that as we move from

design mix 2 to mix 5, that the averages increase from 11.71 '

bits to 12.52 bits. But, if we look at the same averages
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Table 7.3 The Average information (bits of conceptual

volume) added to the algorithm by a design step for each

design mix.

 

 

Mix Average Information Added Difference Between

the Averages For

Algorithms

ROOTF MBFR MBFR and ROOTF

1 12.26 13.30 1.04

2 11.71 13.87 ' 2.16

4 11.83 12.91 1.08

5 12.52 12.93 0.41     



132

for algorithm MBFR, the averages decrease from 13.87 bits to

12.93 bits. Thus, we can see that for our two algorithms,

the design mixes behaved in different ways. A given mix

caused information to be added to algorithm ROOTF at a

different rate than to algorithm MBFR. Also, for a given

algorithm, the different mixes caused information to be

added at different rates.

We can see further evidence of these differences by

examining Figure 7.4. In Figure 7.4, a temporal estimate of

five minutes was associated with a design step. Recall,

that a design step represents processing a chunk.

Therefore, it represents a non-trivial set of decisions.

Five minutes was selected as a rough estimate of the average

time it would take to make those decisions. Using this

estimate, the average design time for each algorithm and

design mix was plotted. Design mix one was omitted from the

plots, because it represents the use of only non-localized

placements. Since some first order relationships would

normally be used in the design process, and mixes 2 through

5 represent the increasing use of first order placements,

they are of more use to us here. We can see immediately

from Figure 7.4, that the MBFR algorithm, on the average,

took longer to design than the ROOTF algorithm. This to be

is expected, since it is larger. But, we can also see that

while mix 2 took the least time to design algorithm MBFR, it

took the most time to design algorithm ROOTF. Also, mix 5
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Figure 72; Average design time, in minutes, for algorithms

ROOTF and MBFR as a function of the design mix.
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took the least time for algorithm ROOTF, but the most time

for algorithm MBFR. Therefore, we can see that the design

methodology which took the least time differed between the

two algorithms.

The results from Tables 7.2 and 7.3, and Figure 7.4

suggest two major observations. First, Egg choice pf 3

design methodology affects the rate at which information lg

Egggg pg pg algorithm during 155 design Egg Egg Egg sample

algorithms. Second, since the performance of the design

methodologies differed between the two algorithms, Egg

structure 2; pp algorithm, impgcts ppg performance g; 3

design methodology. We will examine how the two phases of a

design step are impacted by an algorithm's structure in

Sections 7.5 and 7.6. First, however, we will look at the

differences in the structures of algorithms ROOTF and MBFR.

7.4 Structural Differences Between Algorithms ROOTF and

m

In Table 7.4, several differences in the structures of

algorithms ROOTF and MBFR.are identified. The first obvious

difference between the algorithms is their size. Algorithm

MBFR is about 55% larger than algorithm ROOTF. MBFR has a

conceptual volume of 934 bits, while the conceptual volume

of algorithm ROOTF is 601 bits. Likewise, the sizes of the

parallel and sequential components differ. The parallel
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Table 7.4 Structural differences between algorithms

ROOTF and MBFR.

 

ROOTF MBFR
 

Conceptual Volume (X_in bits) 601 934

Parallel Component Conceptual

Volume (X?) 53 652

Sequential Component Conceptual

Volume (ES) 480 160

Ratio of Parallel Component

Conceptual Volume to Conceptual

Volume (1p / 1) .09 .70

Ratio of Sequential Component

Conceptual Volume to Conceptual

Volume (XS / X) .91 -.30    
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component of algorithm MBFR has a size of 652 bits versus 53

bits for algorithm ROOTF. The sequential component of

algorithm MBFR has a size of 160 bits versus 480 bits for

algorithm ROOTF. In algorithm ROOTF, the sequential

component dominates the conceptual volume, while in

algorithm MBFR, the parallel component dominates. For

algorithm ROOTF, 9% of the volume is the result of the

parallel component and 91% is the result of the sequential

component. On the other hand, in algorithm MBFR, the

distribution is 70% parallel and 30% sequential.

Thus, our metrics have allowed us to see several

differences in the informational structure of algorithms

ROOTF and MBFR. In the next sections, we will see how these

structural differences impact the design process. First, we

will examine how they impact the elaboration process in

Section 7.5. Then, we will examine their impact on the

placement process in Section 7.6.

7.5 Effects pf the Algorithm's Structure pp the

Elaboration Process

Since algorithm MBFR is larger than algorithm ROOTF, we

might expect that there are more unique objects in it.

Since conceptual volume is based on the number of unique

objects as well as on references to them, this might cause

the addition of an object to algorithm MBFR to have a larger
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informational impact. Recall that y - N log2 n. Since

algorithm MBFR has 73 unique object-context pairs, and

algorithm ROOTF has only 51, this explains some of the

difference in the average information added by a design

step, between the two algorithms. But, it does not explain

the opposite trends in the average information added for

each design mix, i.e., why does design mix 5 add more

information than mix 2, for algorithm ROOTF, whereas mix 2

adds more information than mix 5 to algorithm MBFR.

Therefore, we must look for other reasons why the added

information added by a design step varies between the two

algorithms.

Since algorithm MBFR is larger than algorithm ROOTF, it

has more graph control structures. And, as can be seen in

Figures 7.1 through 7.3, its graph control "structures are

nested to more levels than those in algorithm ROOTF. Thus,

the size of a chunk may potentially be larger in algorithm

MBFR, than in algorithm ROOTF. Recall, that a chunk must be

contained in a functional unit. A functional unit is

denoted by a graph control structure and those graph control

structures which are nested in it. Since more items may be

in a chunk in algorithm MBFR, more information may be added

to the algorithm, on the average, by a design step.

The number of object-context pairs in the algorithms

and the sizes of the chunks, seem to explain why the amount

of information added by a design step varies between the two
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algorithms. The next section will examine why the five

design mixes performed differently for a given algorithm.

7.6 Relationship Between the Placement Process nd the

3355 Information 1; égggg pg gp Algorithm's Design

The results from the previous section suggest reasons

why the design mixes added information to the two algorithms

at different rates. We will now examine why, for a given

algorithm, the five design mixes performed differently.

Since the impact of the elaboration process is the same for

for all of our design mixes, we will examine the impact of

an algorithm's structure on the placement process.

The placement process is used to select) the next

structure to add to an algorithm's design. Depending on the

relationship which is used by the placement process, and the

structure of the algorithm, the new structure may cause a

context shift. Recall, the context of a structure

represents whether it is in a sequential or a parallel

component of an algorithm. The context under which an

object is referenced, affects the volume metric. Recall, y

- N log2 n, where N is the number of objects referenced and

n represents the number of unique object-context pairs.

Thus, a reference to an object in a new context has a larger

impact on the volume, than a reference to the object in the

old context. Therefore, a placement decision which causes a
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context change may result in information, as measured by the

volume metric, being added to an algorithm at a higher rate.

If an algorithm is designed using placement decisions

which cause context changes late in the design of an

algorithm, the result will be a large jump in the

information growth rate when the context change occurs.

Since N will be larger late in the design of an algorithm, a

small change in n will have a large impact. If context

changes occur early, the initial growth rate will be higher,

but the effects of the context change will not be as

significant. Since N will be small early in the design

process, a change in n will not have as large of an impact

on the volume as it would later. Therefore, while the total

amount of information added to an algorithm is the same, how

early or late in an algorithm's design that context changes

occur and the number of context changes, will affect the

rate at which this information is added.

In the model, the choice of a placement decision may

affect when a context change can take place. Whether a

placement decision causes a context change or not, may

differ between two algorithms. We will now look at the

placement decision types, which were used in our model, to

see how this might happen. Since the concurrent

relationship was not used for our two sample algorithms, it

will not be considered here.
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The input and output relationships connect structures

based on the use of the same data. However, this data might

be used in both the sequential and parallel components of an

algorithm. In algorithm ROOTF, 60% of the structures which

have input and output relationships, are connected to a

structure in a different context. In algorithm MBFR, only

35% of the structures which have input and output

relationships, are related to structures in a different

context. A higher percentage of these structures are

related to structures in a different context in algorithm

ROOTF. Thus, input and output placement decisions may cause

a context change more often in algorithm ROOTF, than in

algorithm MBFR. Therefore, a design mix which places an

emphasis on the use of the input and output relationships,

may have different impacts on the two sample algorithms.

The module relationship is used to make a placement

based on a high level modular decomposition of an algorithm.

The decompositions which were used in the experiments, only

relate structures which are in the same context. Therefore,

the use of a module placement decision has the same impact

on both algorithms.

The use of a non-localized placement may cause a

context change in algorithm ROOTF, with a different

probability than in algorithm MBFR. In algorithm ROOTF, 9%

of the algorithm represents the parallel component and 91%

of the algorithm represents the squential component. In
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algorithm MBFR, the distribution is 70% parallel and 30%

sequential. Therefore, when a structure is randomly

selected using a non-localized placement, there is a higher

probability of a context change in algorithm MBFR than in

algorithm ROOTF. Thus, a design mix which emphasizes

non-localized placements, may cause a context change more

often in algorithm MBFR, and thus, add information to it at

a higher rate.

It appears that the input, output, and non-localized

placements may be responsible for controlling context

changes, in our experiments. Since' input and output are

localized placements, mix 5 represents the highest

probability of their use. Mix 5 also represents the

smallest use of non-localized placements. As Table 7.3

shows, when algorithm ROOTF was designed using mix 5, as

expected, it had the highest average information growth

rate. This was expected, since mix 5 allows for the highest

use of the input and output placement relationships and the

smallest use of non-localized placements and thus, allows

the most context changes for algorithm ROOTF. Mix 2

represents the use of localized placements only 25% of the

time. When mix 2 was used to design algorithm ROOTF, the

information growth rate was the lowest. This was also

expected, since a non-localized placement for algorithm

ROOTF has a low probability of a context change. Earlier,

when we discussed the input and output placements, we saw
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that they were less likely to cause a context change for

algorithm MBFR than for algorithm ROOTF. But, non-localized

placements had a higher probability of causing a context

change for algorithm MBFR. Therefore, we might expect

different performances for the two algorithms from the

design mixes based on the impact of the input, output, and

non-localized placements. Indeed this happened. For

algorithm MBFR, mix 2 caused the highest information growth

rate, and mix 5 caused the smallest.

Thus, we can see that 525 structure g; gp algorithm

impgcts Egg ggy 1p 2212! 3 design methodology egg;

information pp Egg algorithmI 3; Egg result 9; 3 design

gpgp. One way this occurs, is by promoting or preventing

context changes, when structures are selected for

elaboration. The next section will consider how these

context changes are related to the activities of human

designers.

7.7 Correspgndence Between the Model's Results and

Human Designers

We will now attempt to explain the model's behavior in

terms of real designers. Since humans are limited in the

amount of information which they can deal with at a

particualr moment [16], it would be useful if a design

methodology could help control the amount of information
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which must be used to make a design decision. Some parts of

a parallel algorithm can be designed independent of the

other parts. Therefore, less information is needed to

design these independent parts, than if there were

dependencies between them. However, process synchronization

and intercommunication often requires the designer to

consider several processes, when making a design decision

about these activities. Some of these activities may be in

a parallel portion of the algorithm, while other of these

activites may be in a sequential portion of the algorithm.

Thus, conceptual differences between the objects in the

parallel and sequential components may impact the amount of

information which the designer must deal with. These

conceptual differences correspond to a context change in the'

design model. Thus, we can see that if these aspects of a

parallel algorithm are designed early, their informational

impact on the algorithm will be less than if they are

considered at the end of the design process. Since an

algorithm only has a small information content at the

beginning of the design process, a complex decision will be

easier to make then, than if the decision is made later in

the design process. This occurs, since the information

content of the algorithm is higher later in the design

process. Although a context change still causes an increase

in the rate at which information is added to an algorithm

early in the design, that increase will be less than if the
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context change occurs later in the design process.

. Others have recognized this in their discussions on

parallel algorithm design [32-34]. Although they have not

explicitly considered conceptual differences between objects

in sequential and parallel components of an algorithm, the

increased informational complexity of considering objects in

both contexts at the same time, underlies some of their

suggestions. For example, Brinch Hansen in [32] discusses

development procedures for concurrent algorithms. He

divides an algorithm into three components: monitors,

classes, and the process. Monitors represent

synchronization activities: classes represent shared data

items for process intercommunication: and the process

represents the remaining sequential-like activities of an

algorithm. He suggests designing the monitor and class

components first. The remainder of the algorithm can then

be designed almost as a sequential algorithm. In other

words, he suggests making decisions which involve both

parallel and sequential activities early, when the size of

the algorithm is small and thus, the amount of information

which must be considered from the previous design steps is

limited. The process is basically sequential in nature, and

only deals with information in a single context. Thus, the

effective information burden on the designer is less, than

that of the monitor and class components. The lack of

context changes when designing the process component of the
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algorithm, causes less information to be added to the

algorithm, when the process component is designed.

To further demonstrate the efficacy of this approach,

an example will be presented. In [33], Coffman and Denning

present an example of two cooperating sequential processes,

the producer/consumer model. Figure 7.5 shows an adaptation

of their model in complete detail. The Producer generates

an object; the object is put into a common buffer: and it is

then retrieved by the Consumer and disposed of. N

represents the number of buffers; array elements B[0..N-l]

are the buffers: and SI and 52 are semaphores. Assume that

statements S and W are indivisible. This is necessary for

the semaphores to function correctly.

Note from Figure 7.5, that if the designer tries to

consider the processes as a whole, not only must the action

of the individual processes be considered, but the intricate

details of the semaphores and intercommunication must be

considered as well.

Figure 7.6 shows how the design of the producer and

consumer processes can be simplified, by first addressing

process synchronization and intercommunication. Now the

manipulation of the semaphores can be designed independent

of the processes which use them. Likewise, the details of

managing the buffers for process intercommunication can be

removed from the design of the producer and consumer

processes. By focusing on intercommunication and process
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begin

cobegin

Producer: produce(w):

W: 81 :- Sl - 1;

L: if 81 < 0 then goto L;

8[in] :8 w;

in :- (in + 1) mod N;

S: 52 :8 $2 + 1;

goto Producer;

Consumer:

W: 52 :- $2 - l:

L: if 82 < 0 then goto L;

w :- Blout]:

out :- (out + 1) mod N;

S: 51 :- $1 + l;

consume(w):

goto Consumer;

coend

end.

Figure 7.5 The producer and consumer processes in full

detail.



Input(w):

Output(w):

Wait(S):

L:

Send(S):

begin

cobegin

Producer:

Consumer:

coend

end.

Figure

synchronization

removed.

7.6 The producer
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Blin] :- w;

in :8 (in + 1) mod N.

w :- B[out]:

out :- (out + 1) mod N.

S :

i

-s

£s<

- 1

0 t

S :8 S + 1.

produce(w):

Wait(Sl):

Input(w):

Send(52):

goto Producer;

Wait(SZ):

Output(w):

Send(Sl):

consume(w):

goto Consumer;

and

and process

:

hen goto L.

consumer processes

intercommunication

with the

details



Xmit:

Receive:

begin

cobegin

Producer:

‘Consumer:

coend

end.

Figure 7.7 The producer
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Wait(Sl):

Input(w):

Send(SZ).

Wait(sz):

Output(w):

Send(Sl).

produce(w):

Xmit(w):

goto Producer;

Receive(w):

consume(w):

goto Consumer;

and consumer processes

parallel details removed.

with all
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synchronization first, we are forced to define a large

number of context-operand pairs early in the design process.

This is consistent with the approach taken in the model of

making n large at the beginning of the design process.

Although the information growth rate will be intially'

higher, the information growth rate will not be as large

later in the design process. The designer must still deal

with semaphores in the code of Figure 7.6. They are only

dealt at a higher level. By combining both synchronization

and process intercommunication, and treating their design

first, the design of the producer and consumer processes

becomes almost trivial, as seen in Figure 7.7. Since the

parallel activities have been designed in a seperate module,

these complex decisions have been made without the designer

having to consider the information which represents the rest

of the producer and consumer processes.

7.8 Summary

Our experiments with the ROOTF and MBFR algorithms have

shown that the choice of a design methodology may impact the

time it takes to design an algorithm. Also, the structure

of an algorithm may impact the performance of a design

methodology. Our metrics have allowed us to see that a

design methodology which has a high probability of causing a

context change late in an algorithm's design, will .cause
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information to be added to an algorithm at a higher rate

than if they occur early in an algorithm's design. When

designing a parallel algorithm, it is sometimes necessary to

deal with objects that occur in both the sequential and

parallel contexts, during a single design step. This may

occur when designing the process synchronization and

intercommunication activities. A decision which involves

objects in both contexts is more complex late in an

algorithm's design, than if it occurs early. Therefore, it

may be easier for a designer to consider these aspects of a

parallel algorithm early in the design process. Those parts

of the algorithm which are strictly sequential or strictly

parallel, can easily be handled later in the design process.

Since they only deal with a single context, the

informational impact of designing them is the same late in

the design process, as it would be if they were designed

early.

It was also seen in this chapter, that these results

correspond to suggestions that have been made by others for

designing parallel algorithms. They suggest a similar order

in designing the different components of a parallel

algorithm. These suggestions were based on intuition. We

now have some quantitative backing for them.





CHAPTER 8

Conclusions

This dissertation began with the premise that parallel

algorithms contain structural and semantic information

regarding process synchronization and intercommunication,

which is not present in sequential algorithms. The impact

of this additional information on the design process for

parallel algorithms was examined.

The first questions this dissertation addressed are as

follows. Can this additional information be quantified?

How much more information does a parallel algorithm contain?

And, where in an algorithm are the effects of this added

information seen? Software metrics were presented which

described the information content of parallel algorithms.

The metrics are based on those suggested by Halstead, but

were extended to consider conceptual differences between

those algorithm elements which are found in sequential

151
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versus parallel portions of an algorithm. By examining a

sequential root finding algorithm and a parallel version,

which was derived from it, we saw that indeed the parallel

root finding algorithm does contain additional information.

It was also seen that this additional information is not

necessarily spread uniformally throughout the algorithm, but

it may be concentrated in a small portion of the' algorithm.

In fact, the bulk of the added information may not

necessarily be found in the parallel portion. It may appear

in the sequential component. This is a result of the need

for the sequential component to support the parallel portion

of the algorithm. This support has been given the name

subsidization.

Given that parallel algorithms may contain additional

structural and semantic information, the next question which

was addressed was: should this added information affect the

way in which we design parallel algorithms? In order to

examine this question, a model of the algorithm design

process was created. The model was based on the information

content of an algorithm, and the information which is used

during the design process.

The design process was modeled as a series of design

steps. A design step consists of a placement process and an

elaboration process. The placement process determines the

positions in an algorithm at which to make a modification.

The elaboration process makes those modifications.
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Placement decisions were divided into two sets. The first

set is those decisions which are based on relationships to

those objects which were added to an algorithm by the last

design step. The second set represents those decisions

which are based on any relationships except those which

involve objects added to an algorithm by the last design

step. Placements which are made based on the decisions in

the first set were called localized placements. Placements

which are made based on the decisions in the second set were

called non-localized placements. Design methodologies were

modeled by using various combinations of localized and

non-localized'placements.

The designs of a parallel root finding and a parallel

bin packing algorithm were simulated. It was seen from the

results of these simulations, that the design methodologies

performed differently for the two algorithms. Also, for a

given algorithm, the performance of different design

methodolgies varied. It was suggested that the structures

of the algorithms were responsible for these different

performances. We saw that the elaboration process was

impacted by the number of unique object-context pairs in an

algorithm, and it was also impacted by the levels to which

the structures in the algorithms were nested.

The placement process was impacted by placement

relationships which allow a context change to occur between

design steps. A context change early in the design process
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has less of an impact on an algorithm's volume, than a

context change will have if it occurs later. Therefore, it

was suggested that a designer treat those aspects of a

parallel algorithm, which may involve dealing with objects

that are in both sequential and parallel components of an

algorithm, first. Process synchronization and

intercommunication often involve objects that are in both

sequential and parallel components of an algorithm.

Therefore, if they are designed first, the decisions which

design them will be less complex, than if they are designed

later in the design process when the algorithm will be

larger. The rest of the activities of a parallel algorithm,

involve objects that are primarily in a single component.

Therefore, the complexity of designing these remaining

activities will be the same late in the design process, as

it would be if they were designed at the beginning. Thus,

by designing a parallel algorithm's process synchronization

and intercommunication activities first, the overall design

process can be simplified. These quantitative predictions

seem to be confirmed in the literature. Brinch Hansen and

others have made similar suggestions for designing parallel

algorithms. Their suggestions have been based on intuition.

We now have some quantitative support for them.

The next appropriate step for this research would be to

repeat the experiments for other parallel algorithms.

Although the ROOTF and MBFR algorithms are representative of
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other parallel algorithms with single localized parallel

segments, it would be useful to study other such algorithms.

Also, it would be interesting to study whether the trends,

which were observed here, apply to parallel algorithms in

which the parallelism is distributed. Further experiments

using our model would offer some insights into this.

In conclusion, this research has demonstrated that

there may be informational differences between parallel and

sequential algorthms. These differences are primarily

concerned with structural and semantic information which

must be considered in designing parallel algorithms, but not

in designing sequential ones. These differences in

information have an impact on the design process for

parallel algorithms. It is anticipated, that as we come to

a better understanding of these underlying differences

between sequential and parallel algorthms, that we will be

able to arrive at design techniques which will simplify the

design of parallel algorithms. This will also aid in

designing languages and operating systems for parallel

architectures. The combination of better design techniques

and a better design environment, should facilitate the

efficient use of parallel architectures.
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APPENDIX A

The Bin Packing Algorithm

A pseudo-code description of the MBFR algorithm is

given below. The algorithm repeats for each item in the

input list. The algorithm assumes all nonempty bins make a

bid for each new item, but in practice, only nonempty bins

which are also not full would do so. This was done to

simplify the algorithm.

Null bids by active processors for an item are coded as

l for the bid, and 0 for the replaced item. The master

collects the bids and selects the minimum bid which is less

than 1. If the new value is greater than 0 for the selected

bin, the item is removed from the bin. Next the new item is

placed into the selected bin, and the gap is updated. The

algorithm then repeats for the removed item.
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If there were no bids less than 1, the master inserts

the new item into the next empty bin and calculates the

appropriate gap. If items are replaced, notice that they

get progressively smaller. An item cannot displace one

which is larger than itself. Therefore, the replace/insert

cycle will always terminate. a parallel alg is being

constructed,
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Algorithm narnaturncx

wuxslus:-I;

GAF[11:-l;

READ(VALUB)

WHILE NOT END 0? LIST DO

BEGIN

NHILE(VALUE)§ 0 D0

PARFOR Iz-l TO NUHBINS D0

IF VALUE<IGAPIIJ

THEN

BEGIN

BIDII]:-GAP[I]-VALUE;

NEWVALUEII]:-0

END

ELSE

BEGIN

NEWVALUEII]:-FINDX(VALUE);

IF NEWVALUBIII-O

THEN BIDII]:-1

*initialize first bin‘

*process list*

*pack initial value as well as cxchangcs‘

*request bids‘

*bins from G1 set*

*bins from C2 set*

*FINDX returns maximum value of bin item

for which GAP+item~value>0 is true. If no

item exists it returns to a 0*

ELSE BID[I]:-NEHVALUE[I]+GAP[I]-VALUE

END:

satacrz-xru(arn); *MIN chooses the bin with the minimum

of all bids, and returns its index*
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IF BIDISELECTl<1

THEN IF NEUVALUEISELECT1>O

TEEN

BEGIN

REHOVE(NEUVALUE[SELECT],SELECT *renoves NEWVALUE from the

selected bins list*

INSERT(VALUE,SELECT) *inserts VALUE into selgeted

n

UPDATE 02(VALUE,NEUVALUE[SELECT],GAPISELECT],SELECT)

*updates GAP accordingly*

VALUE:-NEWVALUE[SELECT] *new VALUE to pack on next

pass‘

END

ELSE

BEGIN

UPDATE 61(VALUE,GAP[SELECT],SELECT) *update G bin by sub-

tracting VALUE from

VALUE:-O the GAP for the selected

a
END bin

ELSE

BEGIN

NUBINS:'NUBINS+1 *or start a new bin hy setting CAP of

s g . ‘ _ - w 0*

apex NEH mmwuumsmntus); MM)” “W", m 1 ”Wk

VALUE:-O

END

END ‘oi pack exchange loop*

READ(VALUE)

END ‘0! list pruccss loup*
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