

This is to certify that the
thesis entitled
A COMPARISON OF SHADING ALGORITHMS
FOR REAL-TIME RASTER GRAPHICS SYSTEMS
presented by

KATHLEEN A. CIESLAK
has been accepted towards fulfillment
of the requirements for
MASTER OF SCIENCE_degree in ELECTRTCAL ENGINEERING


Date October 17, 1985

RETURNING MATERIALS:
Place in book drop to remove this checkout from your record. FINES will be charged if book is returned after the date stamped below.

# A COMPARISON OF SHADING ALGORITHMS FOR REAL-TINR RASTER GRAPHICS SYSTENS 

## By

Eathleon A. Cieslak

A THESIS

\author{
Subaitted to <br> Michigan State Oniversity in partial fulfillment of the requirements for the degree of <br> MASTER OR SCIENCE <br> ```
Department of Electrical Engineering <br> and <br> Systems Science

```
}
    1985

\section*{ABSTRACT}

\section*{A COMPARISON OF SHADING ALGORITHMS FOR REAL-TIDB RASTER GRAPHICS SYSTENS}

\section*{By}

Kathleen A. Ciesiak

\begin{abstract}
Shading is an important part of computer graphics. It transforms flat, confusing line drawings to solid inages that appear threo-dimensional. Shaded images of real-time raster graphics systeas must conform to strict tining constraints or the images degrade.

Shading is enhanced by improving the shading algorithn as well as the object model and the method of processing the data during the hidden-surface remoral algorithe. This report presents eight algorithms from the current literature. They are transformed into functional-block architecture specifications then compared primarily on the basis of speed of execrion.

However, the fastest algorith is not necessarily the most sitable. The quality of the images generated is an important criterion for judging the algorithms. If there are no limitations on hardvare, the best solution is a combination of algorithms since some are more suitable than others for simulating certain offects, such as specular reflections and transparency.
\end{abstract}

To my Parents and Grandparents

\section*{ACENOWLEDGKENTS}
I wish to express my sincere appreciation to Dr. P. D. Fisher for his constant guidance and onconrasement, valnable sugsestions, and interminable patience throughout this study.
Also, I wish to thank \(g\) comittee meebers. Dr. M. Shanblatt and Dr. C. Wey, for their helpfrl suggestions concerning this research.
Above all, I especially wish to thank Richard Baids for his endless encouragenent, patience and understanding throughout the course of this study.

This research was supported in part by Lear Siegler, Inc. / Instrunent Division.

\section*{TABLE OF CONIENTS}
Chapter Page
I. INTRODUCTION ..... 1
II. BACEGRODND ..... 6
2.1 Graphics Terminology and the Raster System ..... 6
2.2 Problems of High-performance Graphics ..... 17
2.3 The Shading Problen ..... 28
III. PRESENTATION OF SHADING ALGORITHMS ..... 33
3.1 Gonrand Intensity Interpolation Shading ..... 34
3.2 Phong Normal-vector Interpolation Shading ..... 41
3.3 Blinn Normal-vector Interpolation Shading ..... 50
3.4 Newell-Sancha Half-tone Shading ..... 61
3.5 Whitted Ray-tracing Shading ..... 64
3.6 Catmil Bivariate Surfaco-patch Shading ..... 71
3.7 Cook-Torrance Reflective Model for Shading ..... 77
3.8 Fournier-Pussell-Carpenter Fractal-surface Shading ..... 85
IV. COMPARISON OF THE ALGORITHMS ..... 89
4.1 Basic Routines and Processor Model as Standards for Comparison ..... 93
4.2 Functional-block Level Transformations of Algorithms ..... 103
4.2.1 Gourand Transformation ..... 105
4.2.2 Phong Transformation ..... 115
4.2.3 B1inn Transformation ..... 122
4.2.4 Newell-Sancha Transformation ..... 132
4.2.5 Whitted Transformation ..... 136
4.2.6 Catmull Transformation ..... 143
4.2.7 Cook-Torrance Transformation ..... 148
4.2.8 Pournier-Fussel1-Carpenter Transformation ..... 153
4.3 Comparisons ..... 155
v. CONCLUSION ..... 159
5.1 Summary ..... 159
5.2 Purther Research ..... 160
BIBLIOGRAPHY ..... 163

\section*{LIST OR TABLES}
Table Page
2.1 Required memory bandwidths for a 60-Hz display versus pixel times [28] ..... 22
4.1 Sumary of execution times for basic procedures . . . . . . . 100
4.2 Sumary of execrtion times and additional hardware . . . . . . 157

\section*{LIST OR FIGURES}
Figure Page
1.1 Y-chart of algorith transformations ..... 4
3.1 Geometry of reflection model for Gourand's algorithm ..... 36
3.2 Projection of one polygon intersected by the scan line [18] ..... 37
3.3 Geometry of reflection model for Phong's algorithm ..... 44
3.4 Determination of the reflected light [26] ..... 47
3.5 Projections of the reflected light [26] ..... 48
3.6a Positions of light source and Viewer with no interference [3] ..... 56
3.6b Positions of 1 ight sonrce and viewer where some of the reflected light is intercepted [3] ..... 57
3.6c Positions of 1 ight source and viewer where some of the incident light is masked off [3] ..... 58
3.7 Proportion of facet contributing to the reflected light is 1 - ( \(\mathbf{m} / \mathrm{k}\) ) [3] ..... 59
3.8 Geometry of reflection model for Whitted's algorithm [35] ..... 66
3.9 Paths of reflected light that reach the viever [35] ..... 67
3.10 Tree formed from components of 1 ight reaching the viewer from point \(P\) of Figure 3.9 [35] ..... 68
3.11 Patch subdivided so that no subpatch covers more than one sample point [7] ..... 73
3.12 Geometry of reflection model for Cook and Torrance's algorithm [10] ..... 79
3.13 Subdivision of a triangle [30] ..... 87
4.1 Addition array to sum four addends most expediently ..... 98
4.2 Inage to be shaded with raster of pixels ..... 106
Figure4.3 Functional-block diagran of Gourand's shading model . . . . . 108
4.4 Functional-block diagran for calculating the shading "slope" ..... 109
4.5 Functional-block diagran for calculating the interpolation coefficient ..... 110
4.6 Functional-block diagran of the interpolation calculation ..... 111
4.7 Functional-block diagran of the entire shading calculation ..... 114
4.8 Functional-block diagran of the nornal vector approzimation ..... 117
4.9 Functional-block diagran for calcriating cos \(\theta\) ..... 119
4.10 Functional-block diagren for estimating cos o ..... 120
4.11 Functional-block diagran for Phong's shading model ..... 121
4.12 Functional-block diagran for calculating the direction of the peak specular reflection ..... 123
4.13 Functional-block diagran for calculating \(c_{s}\) ..... 125
4.14 Functional-block diagran for calculating \(k_{1}\) and \(\mathbf{k}_{2}\) ..... 126
4.15 Functional-block diagran for calculating the distribution of the facets' orientations ..... 127
4.16 Functional-block diagran for calculating gand \(j\) ..... 128
4.17 Functionel-block diagran for calculating the Fresnel function ..... 129
4.18 Functional-block diagran for calculating \(G\) and the ( \(\bar{N} \cdot \overline{\mathrm{~V}}\) ) terns ..... 130
4.19 Functional-block diagran for Blinn's shading model ..... 131
4.20 Functional-block diagran for Nowell et al.'s shading model ..... 134
4.21 Functional-block diagram for calculating shading values for transparent objects ..... 135
Figure Page
4.22 Punctional-block diagran for calculating \(\overline{\mathrm{V}}\) ' ..... 138
4.23 Functional-block diagran for calculating the direction of reflection ..... 139
4.24 Functional-block diagran for calculating \(\mathbf{k}_{\mathrm{f}}\) ..... 140
4.25 Functional-block diagran for calculating the direction of transantted light ..... 141
4.26 Punctional-block diagran for Thitted's shading model ..... 142
4.27 Functional-block diagran for sumand gereration ..... 145
4.28 Functional-block diagram for approximating one normal component for a bicubic patch ..... 147
4.29 Functional-block diagran for calculating the distribution of the facets' orientations ..... 150
4.30 Functional-block diagran for calculating the spectral component of reflection ..... 151
4.31 Functional-block diagran for the Cook and Torrance shading model ..... 152
4.32 Punctional-block diagran for fractalization calcrlations ..... 154
5.1 The relationships between the three processes and the algorithes ..... 161

\section*{CHAPTER I}

INIRODUCTION

Since the introduction of the cathode-ray tube, (CRT), as a display device for comprters, one goal has been to achieve realistic, dynanic inages. As opposed to printers and other such display devices, CRTs allow real-time graphical interaction with the computer. Inages are drawn on the screen before the user's eyes almost imediately after the comands are entered. Thns, no more waiting for printouts to see results.

The next logical step is to improve the inages themselves. For real-time dynamic applications, the inage mest be mpdated and displayed on the screen at fast rates according to strict timing constraints to create the illusion of movement. Several graphics systens vere developed ovolving to raster sraphics which seges the most promising. Raster graphics systeas are capable of creating solid, colored, realistic, dynanic images.

Realise is achieved through varions techniques, one of which is shading. Shading enhances realism by providing depth cues for a threedimensional appearance. The effect is similar to a drawing of a circle, which appears as a flat disk until the artist shades it creating the illusion of a sphere.

Shading provides for surface properties adding to the realism of the image. If the object being displayed has a suooth surface it will reflect light differently than another with a rough surface. By utilizing properties of reflection from varions surfaces according to different types of available lighting shading can convey textures of objects. Patterns may
also be imposed onto objects through the use of shading.
However, shading has proven a formidable task for designers since it is dependent on many factors. The type of lighting present oreates different properties of reflection. The location of the lighting aay affect the reflections and form shadows from the object. And as mentioned, the object's surface properties also affect reflections of the light. In addition the manner in which the hman visual system operates comes into play as does the location of the viever.

This research presents and investigates several shading algorithme as well as a new reflective model and an object modeling technique, which can be applied to the algorithns to enhance realisin. All of these are available in the current literature. This investigation compares the attributes of each algorithm and deternines the time complexity using functional-block transformations.

Subsequent chapters explain these concepts in more detail. Chapter II provides background information by defining general graphics terminology and explaining how a raster graphics system operates. It presents some of the problems of high performance graphics systeas and explains the problem of shading more explicitly.

Chapter III presents shading algorithes available in the current literature. These encompass two general methods for representing solid objects. For the polygon-mesh method, several implementations for shading are presented since this is a popular technique for modeling solids.

The fourth chapter compares the algorithms presented mainly on the basis of execrition time. There are different criteria which may be used to evaluate shading algorithms, depending upon a system's requirements and
applications. For example, realism or cost may be important considerations. But for threo-dimensional, real-time graphics systeas the most important criterion is execrion time so that the image update performance is not degraded. Chapter IV presents a processor model to mee as a standard for comparison. The algorithms are transformed into functional-block diagrams then are compared for speed of execrtion using varions architectures to efficiently implement the diagrans.

By changing the algorithns to functional-block representation, they are transformed from an behavioral representation to an architectural representation. This can be depicted in what are kown as I-charts [13]. Y-charts are threodimensional characterizations of a transformational system. This threo-dimensionslity can be depicted as a 'Y'. Each axis is associated with a different representation of the systen with different levels of the particular ropresentation located along the length of its axis. Onc axis is for architectural representations meaning various hardware models of assten. The second axis is for behavioral representations which are different forms in which the behavior of an algorithm may be represented. The third axis is for physical representations or the different stages of the actual implementation.

In such a system transformations may occur along the same axis at the same or different lovels, or between axes. Arcs are drawn on the I-chart to show these transformations. In this investigation, transformations occur from the Algorithmic level of behavioral representations to the functional-block architectural representations enabling an accurate assessent of the time required for each algorithn's execrion. The F-chart for these transformations is shown in Figure 1.1.


Fignre 1.1: Y-chart depicting algorithm transformations
The fifth and final chapter sumarizes the advantages and drawbacks as well as any conclusions derived from the comparison of the shading algorithns. Possible extensions of this work for future research are also included.

This chapter provides background information to aid in the understanding of the problem of shading computer-generated inages. Some general graphics terminology is presented leading into the specific definitions associated with raster graphics systens. The second section of this chapter discusses sone of the problens of graphics systens, specifically those of high-performance graphics. The chapter ends with a more detailed explanation of the shading problen.

\subsection*{2.1 Graphics Terminology and the Raster System}

The field of computer graphics has been defined as the "ereation, storage and manipulation of models of objects and their pictures via computer" [12]. It is concerned with the synthesis of pictures of objects, either real or inaginary. Computer graphics takes the threo-dimensional objects and attenpts to portray them on a two-dimensional vieving display. For this reason it encompasses many of the basic concepts and techniques of geometry and drafting in addition to phenomena of the real, threo-dimensional world.

Essentially, all computer graphics systems are comprised of the same types of components. Each system has a host processor, a display controller and a display device. The host processor typically performs other functions \(2 s\) well as graphics processing. The display controlier executes
instructions to display the images and may have sone capability to manipulate then. The distribution of the processing between these components and the implementation of the display procedure are dependent on the type of graphics systen, defining the technologies it employs and its complexity. However, all systems perform two basic functions. The first is the construction and manipulation of the object's image, while the second is displaying that inage.

This division of labor led to the concept of two coordinate systeas. The first is the world coordinate systen, or object coordinate systen as it is sometimes called. This refers to the three-dimensional space, where the object to be modeled normally resides. The second is the device coordinate system, which is the planar space of the display. Here, models of the object are manipulated then projected onto the viewplaneof the sereen. It is necessary to use the world coordinates during most manipulations of the object's orientation with respect to the viewer. The object is then transformed to device coordinates for displaying its image.

Simple geonetric definitions of points and lines are applied during the modeling and manipolations of objects, including the notions of slope and intersections. However, even simple calculations of intersections may become time consmang when working with curved surfaces and solids. There are generally two methods for representing curved surfaces. The first is to divide the object into planar polygons and form a skeletal polygon-mesh. Two types of polygons arise during such a representation: convex and concave. Convex polygons are those satisfying the condition that for any two points contained by the polygon, all points on the line segment connecting them are also contained by the polygon. Concave polygons are
those which are not convex. The polygons are easily represented by listing their verter coordinates. Becanse the polysons are planar, second-order equations may be used to describe the surface, but this method tends to produce noticeable contour edges during solidmodeling; more so than the sext method.

The second method for representing curved objects is to define the coordinates of points on the surfaces by threo-dimensional equations. Thes patches, which are not nocessarily planar, are defined by three parameterized equations; one equation for each of the cartesean coordinate axes. These equations provide exact information at any point for the surface. Although this may be an advantage, the calcalations can becone extensive. Though the patches are typically larger than the polygons of the first method, maning there are fower patches to calculate, their equations are generally more complex and difficult to hande during manipulations of the object. Therefore, the class of surfaces that may be modeled is limited due to large execrition times, but also becanse curved patches do not provide enorgh degrees of freedon to satisfy slope continuity between patches so they are not suitable to model arbitrary forms. Both polysormesh and curved-patch representations are often called wire-frane pictures or threodimensional drawings becanse their appearance is like a collection of lines and arcs.

Once a model of the object has been generated a particular view must be bounded since the display screen has a limited area and/or a picture of the entire object may not be desirable. The rectangular space in the world coordinate system that frames this view is called a window. The window and its contents are then mapped to device coordinates. \(A\) viewport is a
rectangular portion of the display screen in device coordinates where the window's contents are mapped and thes displayed. A viewport may include all or part of the screen. (Sometimes a viewport is also called a vindow by some systeas, but this ambiguity can be confusing.) This mapping procedure nust be repeated whenever the viewpoint of the object is changed.

To map the object enclosed by the window to the viewport, the object is projected to the plane of the screer. There are two classes of planar projections. The first is parallel projections which assue that the center of projection, (the point through which all projection rays pass), is infinitely distant from the projection plane, which in this case is the Viewplane of the screen. Because the projection point is so far away, the projection rays appear parallel. Parallel lines are extended from each vertex of the object to the viewplane. The points of intersection of these lines with the viewplane are the projections of the object's vertices. These vertex projections are then connected according to lines corresponding to edges of the object. Different types of parallel projections exist depending on the number of faces and edges of the object parallel to the projection plane. In general, however, this class of projections is not very realistic becanse it lacks perspective foreshortening. Perspective foreshortening, performed naturally by the human visual system, is where the size of objects, or their projections, vary inversely with the distance from the center of projection. An advantage of parallel projections is that they scale measurements accurately; therefore, this method is usually used for drafting.

The second class is perspective projections which have the effect of perspective foreshortening. The center of projection is explicitiy
specified and is thus a finite distance from the object. Projection rays, which converge at this point and consequently are not parallel, are extended to the vertices of the object and on through to the viewplane. Again, the intersections of the lines with the viewplane define the projected inage. For both classes of projections, angles are preserved only when the object's face containing the angle is parallel to the viewplane.

The above projections describe monographic images, where only one image is formed. The hman visual system actually produces two inages, one from each eye since the eyes are separated by a sall distance. The brain fuses the two images into one forming a stereographic image. This provides a powerful depth cue known as stereopsis. Bor this to be offective each oye mest sec only one of the inages formed. Some system have been designed to take advantage of this offect [8,9].

It should also be noted that most computer displays are based on a left-handed, threo-dimensional, cartesean coordinate systen where the z-axis points into the screen. Dsing a threo-dimensional projection format along with these reference axes, transformations can be performed on the inages to give the impression of motion. Basically, there are two kinds of inage dynanics. Update dynanics is when a change occurs in the shape, color or other physical properties of the inage being viewed. Motion dynanics is When the object appears to move with respect to atationary viever; conversely, it could also be when the objects appear stationary and the observer appears to move, as is the case with flight simulators. This second type of dynanics is possible through transformations.

Transformations may change the actual viow of the object to make other sides visible or just change the present view's orientation to the observer.

on the screen, requiring a display file to store the instructions so they can be re-execried during the refresh cycle. This refresh rate creates high bandwidth requirements of both the memory and the processor to meet the necessary timing. If the inage is not refreshed soon enough it fades then again becomes bright after it is finally retraced. This noticeable flashing of the inage is known as filcker and can be annoying to the systea's users.

In order to be able to retrace the entire image within the alloted time, vector graphics' images had to be fairly simple. The use of a structured display file helped solve this problen. It is an extension of the regular display file because it stores hierarchies which compose the inage. These hierarchies are like subroutines to software progran and can be executed faster. A structured display file allows for transformations by merely specifying parameters for the size, location and orientation of the image theroby improving dynamics. Vector systens use less memory than raster systems, but the deflection circuitry used for the electron beam is complex since it met accomodate randon strokes.

The DVSTs operate on a random-stroke basis but the display screen is different. Inside the screen is a dielectric mesh which retains the image until it is deliberately erased. This eliminates the need for the display file which was a significant advantage before VLSI reduced the cost of memory chips. Unfortunately the inage cannot be selectively erased; the entire image must be wiped out all at once. To erase the screen a charge is applied to the dielectric mesh which appears as a flash. This can be annoying to the user. However, it is possible to reduce the energy of the electron bean while drawing the image so that the image will not be volatile, but then a display file is needed to refresh it. The advantage of
this is the capability of displaying a fram composed of both volatile and nor-volatile inages. This wonld decrease the denands of each refresh cycle to only retrace some of the inage; the parts anticipated tomove. This is sinilar to the technique used in animated cartoons. But neither of these systems can display solid, dynanic images. Raster-scan graphics systems were developed rsing tolevision monitors giving then this capability as well as taking advantage of the established assenbly lines of the monitors. The monitor screen is broken into an array of picture olements called pizels. The electron bean scans the pixels row by row from top to botton in a fixed pattern bown as a raster. This elininates the need for the complicated deflection mechanise of the random-stroke display systems.

Actmally, there are two types of rasters. The first is a nor-interlaced pattern where the electron bean traces each horizontal line, called a raster line or scan line, in sequence fron top to botton of the display. The second is an interlaced display which alternates the lines dividing then into an even field, the oven-nurbered lines, and an odd field, the odd-numbered ones. To display a complete inage or frene, both fields are required so two passes thromgh the raster lines are necessary. In both rasters, as the electron bean moves along a sean line it is called active becanse it is displaying data. Retraces are when the bean reaches the right edge of the line and retnrns to the left edge of the next raster 1 ine, (horizontal retraces); or similarily, when the bean retmrns fron the bottom right corner to the top left corner, (vertical retraces). During these retraces, (not to be confnsed with redrawing an inage though the terns are identical), the electron bean is blenked or tnraed off.

A variation of either raster is called horizontal underscanning. By
decreasing the horizontal deflection of the electron bean the raster pattern is altered to change the shape of the pizels, usually making thea square. Whelan [34] presents what he calls a subclass of raster-scan systems. The pixels of his display are rectangular axeas which are larger than typical pixels enabling his system to be faster than gereral raster system while still retaining all of their attributes, though he loses some spatial resolution of the display.

The time required to completely scan the raster is called the refresh rate. The reciprocal of the refresh rate is the frane time which measures the duration of each frane before the next refresh. These two rates help deternine the level of interactivity of a raster display, or how fast a now inage can be generated in response to a user's input. This is usually the most critical performance measurement of a raster sraphics system. Typically, raster system are slower than randomestroke systeas becanse they indirectly draw lines and arcs by scanning the entire screen activating only the pixels composing the lines and arcs, whereas random-stroke system only pass over the points of the lines and arcs. But, with faster processors and shorter memory access times, raster systems are approaching the speed of the random-stroke systeas.

One disadvantage of raster systems is that they require large memories. The number of distingnishable pizels in the raster determines the display's resolution. Some of the highest resolutions may be larger than an array of \(4096 \times 4096\). The image memory; also known as the frame buffer, display or bit-map memory; has one or more bits of memory that correspond to the pizels of the display. A bit plane is an array of memory of one bit per pirel. The pixel depth of a systen is its number of bit planes. This deternines
the nuber of sray-scale intensities available for shading on an achromatic display, (a monochromatic display has one bit plane and thes displays only black and white), or the number of colors available for color displays, called color resolntion. An inage plane is set of bit planes, menally eight. For full color, three inage planes are nooded; one each for red, green and blue which are the additive prinary colors necessary to combine and prodece most other colors. (They are called additive prinaries becanse individual contributions of each are added to form other colors.)

Consequently, the number of bits in the inage menory met be one or nore times the number of pizels of the display screen. Becanse of such large memories raster systen need an extraely hish bandwidth for both the processor and memory to satisfy inge mpdate and display tining constraints. But this pizel-by-pizel addressing capability is the ley which allows different kinds of inages on a single screen; such as alphanmeric characters combined with photographic inages.

Baldanf [1] made an important observation concerning bit-maped memories and raster-scan displays; namely, to incresse the quality of the display does not necessitate increasing the number of pixels of the display. Jsing a systen with four megabits of memory, Baldanf compares the confisuration of fonr milifon pixels with one bit of menory per pizel to that of one milion pizels with fonr bits per pirel thes providing sizteen gray scales. The quality of both is very similar and the cost advantages favor the latter.

Concerning display devices in general, achromatic monitors are superior to color monitors in terms of brightness, resolntion and size. Color displays are more complex and inpose significantly higher bandwidth
requirenents on the memory and processor. Therefore, color monitors cannot easily match the quality of their achromatic connterparts. However, color adds another dimension to the information displayed. It also adds considerably to the price of the system. In 1979 they were considered too costly for widespread use [15]. But in 1984 according to Machover and Meyers [22], sales of color raster displays were growing at a rate of two to three times faster than the rate of srowth of DVSTs and vector-scan displays, meaning color displays are gaining popularity.

A variation of achromatic displays which is also gaining populerity, particularly anong nsers who enter data fron printed papers, is the positive inage display. Positive inges are bleck characters on a whte background. This is a bit different to implement becanse instead of tnrning pizels on to show an inage, the backeround is always on and the pizels aking up the inage are turned off. But this is less tedions for the eser since the screen has the sane sort of contrast as printed material.

The hardware required by a raster systee consists of the components of a basic sraphics systen mentioned earlier: a host processor, display controller, and display device. The display device's operation is as already discussed. Sonetimes, in enaller system, the host processor is called the display processor, sraphics processor, video display processor or display generator. Often, there is still another processor which acts as a host performing other functions but which has the capability to manipulate the inage memory, too. The display processor manipulates the data in the inage menory by writing new data to npdate the inage for the next frame. It also has the ability to read the menory to determine previons pixel values so as to establish new values. Display processors once were merely buffers,
but scaphics functions were eventually moved there to relieve the host processor's burden so it conld perform other duties.

The raster systen equivalent of the displey controller. the final component of basic graphics systen, is called the video refresh controller, refresh controller, display controller or frane buffer controller. It reads from the inage menory and feeds data to the output portion of the systen. It does not have the ability to alter pizel deta; in other words it can only read from the inage memory, not write to it as well. The display controliers main function is to obtain the pizel data in paraliel form to utilize higher bandwidths then convert it to serial bit strean to store in the video buffer, frane buffer, or refresh bnffer. The video outpet hardware converts the data to intensity levels or colors helping the display controller create the serial data. The Fideo buffer stores the pirels intensities or colors for the display.

In sumary, there are vector-scan displays, which are randourstrole, refresh systens; raster-scan displays, which are nom-random-stroke, refresh systens; and direct view storage trbes, which are random-stroke, refresh and/Or nonvolatile inase systees. \(O\) these three, raster graphics is the only one ablo to display solid, dynanic inases bnt it is not entirely free of problens. These problens and sone of general graphics systanse presented in the next section.

\subsection*{2.2 Problems of High-performance Graphics}

This section begins with some seneral problems comon to all graphics systems. One is that CRTs are analog devices and compriers and processors
are digital devices. A digital-to-analog comverter, (DAC), is essential to graphically display information. Since the DAC converts the digital signals from the display controller to analog voltages meaningivl to the CRT, the DAC's resolntion directly determines either the muber of gray scales or colors resolvable in the monitor. A color monitor needs three DACs, one each for red, blue and green. Castleberry [4,5] discusses this problem and presents a video DAC that meots the high-performance requirements of a graphics system, yet is low cost.

Another problem, which may be apparent from the redundant terminology. is a need for standardization. Each nique graphics configuration developed requires new software systen to support it. According to Machover and Kyers [22]. "the principal idea underlying the quest for standards was that the main body of software should be device independent. It should interface to any input device through a device handler, which vould, of course, be device independent. Similarily, it should interface to any type of display through a display drivern. One advantage to software which is adaptable to any hardware systen is that once programers have learned to use it they become portable, too, and can move about freely anong systems.

Soveral graphics standards exist now with some moving towards national or international acceptance. In 1977 the Core Graphics System standard was developed by an ACM Siggraph Comittec. It is a threo-dimensional standard defining the boundary between applications and the graphics support package as well as specifying the content of that package. Although it was not officially accepted by the International Standards Organization, (ISO), it has been influential in the development of other standards, particularly the Graphical Kernel Systen, (GXS). GKS has been officially accepted by ISO.

It has been called a "Sanall Core" becanse it, too, defines the boundary between the applications and the graphics support package. However, it does not specify the content of the graphics support package, and it is a two-dimensional standard although threo-dimensional extensions have been discussed.

Machover and Kyers [22] list five other standards and their status toward national or international approval. They are as follows:
1) Initial Graphics Exchange Specification, IGES. It provides for the exchange of graphics databases among CAD/CAM systeas.
2) North American Presentation Level Protocol Syntax, NAPLPS. It uses sequences of bytes of ASCII code and code extensions to describe graphics and text in separate frames. As the name suggests, it functions at the sixth level of the ISO's Open Systems Interconnection model and can transait graphics and text over a low-capacity data commancation link.
3) Programer's Hierarchical Interface to Graphics 8tandard, PGIGS. It is an updated, expanded, dynanic, three-dimensional version of Core.
4) Virtual Device Metafile, VDM. It is a two-dimensional, device-independent standard conceived to satisfy both the Core concept and GES for metafiles. It functions at the level just above device drivers and is concerned with the transfor of picture information betwoon different graphics dovices.
5) Virtual Device Interface, VDI. It also operates at the level just
above device drivers but is a two-way commaications protocol. It
interfaces between device-independent software and
device-dependent code.

Among the problems peculiar to raster systems, the memory contention problem has received significant exposure in the literature. To avoid flicker in the displayed image, the display controller mest refresh the display 30 or more times per second. For the illusion of motion the display must be refreshed oven more of ten to avoid jerly movements, so the display controller must access the inage memory for the display data frequently. Meanwhile, the display processor is calculating the data for the next frame to be displayed and must mpdate the image memory before the display controller needs the new data. As a resilt both have high demands for accessing the memory creating a momory contention problem. Adding to this matter, many of the problems to be discrssed later, (including shading), increase the processing time to generate the now inage thrs affecting the display processor's attempts to meet its timing constraints.

With most systems a stable display is the foremost requirement so the needs of the display controller are met first then tradeoffs are made to accomodate the display processor. Some specific tiaings that are critical to the operation of the display controller are the refresh rate, retrace times, total linc time, active linc time, total frane time and pixel time. All of these pertain to the display and though most build on each other, they are particularly dependent on the refresh rate. As previously stated, the refresh rate is the nuber of times the entire screen must be scanned per second. The retrace times are the amonnt of time needed by the electron bean to reposition itself after displaying a raster linc. Since the bean is
blanked, the display controller may not need data from the memory, depending on whether it has enough for the next active session. Often the display processor will access the memory during these retrace times.

The total line time is the average time required by the electron bean to scan a visible raster line including the horizontal retrace time. Active line time does not include the retrace time since the bean is blanked. The total frame time is the total line time maltiplied by the nmber of visible lines in the frane plis the vertical retrace time; its reciprocal is the refresh rate. Pixel time is the average time necessary for the bean to scan a single pixel; it is the active line time divided by the number of pixels per line. Essentially, it is the rate that new pixel data mat be smpplied to the video output hardware to support display refresh. In other vords, if data for only one pixel is obtained during each memory cycle, pixel time determines the rate in which the memory must be accessed by the display controller: therefore, the pixel time determines the mecessary bandwidth of the memory and processors. According to Righter [28], the required, instantancous, memory bandwidth is equal to the reciprocal of the pizel time. He presents a table of required memory bandwidths for a 60-Bz display versus pizel times for different display dimensions, shown in Table 2.1.

To achieve such high bandwidths, many solutions have been presented. One device designed to allow better access to the inage memory is dual-ported memory chips. These devices provide two access paths with the actual memory time-shared between these ports; it does not imply that the same memory location can be accessed simultancously from both ports but this method does provide some time savings [19,27]. Some of these chips inciude extra logic to help decrease access times. On-board shift registers

\title{
Table 2.1: Required menory bandwidths for a 60-Hz display as inverse of pixel time [28]
}

\section*{Display Size Pixel Tine Bandridth Rogired}
\begin{tabular}{|c|c|c|c|}
\hline 512 & 384 & 66.5 ns & 15 \\
\hline 640 & 512 & 38.3 ns & 26.1 \\
\hline 1024 & 768 & 14.4 ns & 69.4 \\
\hline 1024 & 1024 & 10.0 ns & 100 \\
\hline 1280 & 1024 & 8.0 ns & 125 \\
\hline
\end{tabular}
transform a large block of parallel data to a serial bit strean leaving the device free for the next access [38]. Drum, Harris and Ebertin [11] include on their device logic to handle menory contention so it is possible to access the same location simultanconsly from both ports. Willians [37] compares the different types of seneral purpose meary chips available, such as SRAMs, DRAMs, RPROMs and EEPROWS.

Other solutions to the problem of mory contention include architectures for the memory itself to increase its bandwidth. Depending on the arrangement of the memory chips, different access modes can be implemented to access rows, colums, pages or nibbles. Whitton [36] sumarizes the different access modes as she thoroughly discusses the memory contention problea. She claims that displays of moviag, smooth-shaded solids and vector objects almost always require a technique bnown as double buffering. Double buffering is when two complete inages are stored in the Video buffex. While the display controllex is accessing one copy to update the display, the display processor is writing the next frane's data into the second copy. At the end of their cycles the two processors switch copies. Double buffering nearly eliminates the memory contention problem but is costly to implement. Overall, Whitton concludes that bigger memory devices do not necessarily mean better access and stresses using different architectures to achieve higher bandwidths.

Though the display controller needs the inage memory to supply data to the display, high-performance graphics dictates that a large number of pixels be written into the memory overy frane time. For this reason van Dam [39] claims graphics cannot be done remotely; both the display processor and the display controller need to access the image menory. This is especially
true of high-performance graphics systems because they need a front-end mini- or mainfrane computer for the data manipulations. In general, as interactivity decreases, frustration increases contributing to preature user fatigue. So the display processor mast be able to quickiy process the now fage and store it into memory for the display controller to display. As designers strive for realism, inages are becoming more complex requiring excessive time to generate mpdated images corresponding to new viewpoints derived from user inputs. Again, architectures can be impleaented to speed up processing, such as pipeline and/or parallel processing, and petri nets which are data-driven systens. Many papers exist discussing multiprocessing techniques both for their own merit and as applied to specific graphics systems. Such architectures provide increased throughput and, if modalarly designed with well-defined interfaces between the processors, they may provide modification flexibility. In addition specialized hardware to perform some inage generation functions greatly decreases processing time though at an increase in cost.

Most of the other probleas of high-performance graphics systems affect the imago-processing time. The first step to producing an inage is to model the object. Two methods for modeling objects have already been discussed; polygor-mesh and curved-patch equations. Generally, objects do not follow surface models very well. Particularly with natural phenomena such as clouds or smoke, these models become extremely complex trying to imitate these objects. Also the diversity of a design within a given framework is limited. A model may be able to produce an image of a tree but it may not be able to distinguish a poplar from ample trec. Then again, such fine detail may not be necessary, depending on the application. The model must
also provide a threo-dimensional projection format. This not only keops track of faces and edges seen in the chosen view but those not seen, too, as well as the depth or z-coordinate of each. This type of format allows for hidden surfaces to be appropriately shown when the view changes and aids in most of the processes to be discussed such as clipping, hidden surface removal, shading and shadow generation.

Actually, all four of the processes montioned are related to each other and are especially dependent on how the object was modeled. Clipping is a technique for not showing portions of the object outside of the window. It is execrited before hidden surfaces are reared becanse it deternines the depth coordinates of each of the surfaces of the inage. It also decreases the nuber of surfaces so these are reaved before any more calculations are performed on them to avoid wasting time.

Hidden-surface removal is the next process performed on the inage because it, too, ranoves surfaces from the inage so they are oliminated before they are processed any further. Also known as the visibility problem, hiden-surface removal is used on both solid models and wirefrane drawings alike. It reaores any surface or line that is obscured by surfaces that are closer to the viewer, thus generating a realistic, solid picture or a less confusing wirefrane drawing. Onfortunately, the identification and reaval of hidden surfaces is very time consuning, so many different algorithms have been developed to solve this problem. One notable contribution was from Sutherland, Spoull and Schwacker [31]. They compared ten such algorithme trying to find some fundamental insights into the problem itself. They concluded that all of the algorithme performed some sorting of the surfaces to deternine which were visible; if the sorting
process could be made more officient the exeortion time would decrease. They presented two methods of sorting different from those used by the algorithms that they compared. A second conclusion was the detection of a principle called coherence; that objects have a local constancy about them. "Scan-line coherence" is the fact that a san line changes very little between successive frames. "Brame coherence" is that an entire picture is nearly the same from one frame to the next. In fact the worldmodel of an object changes less frequently than the viewing position. These principles may be used to reduce the amount of computations necessary for generating successive frames.

Other features which enhance realism are filling adjoining surfaces with contrasting shades to show intersections, adding highlights and textures, shading surfaces to show form and threo-dimensional qualities, and simulating transparent surfaces. These will all be treated in the next section which explains the shading problem more completely.

The final process covered in this section is shadow seneration. Shadows enhance realisa by providing depth cues reinforcing the threo-dimensional effect. They axe not dependent on the viewpoint but on the type of light sources available and their locations. If, however, the light source is behind or at the viewpoint no shadows will be visible; they will be cast behind the object, hiden from view. This is often the approach taken to avoid the extra calculations to generate shadows. The same algorithms used for hidden-surface removal can be used to create shadows except the light source's location is used as the viewpoint. Instead of removing the surfaces hidden by other objects, their intensity or color is changed to produce the shadow. Since the processing is so similar,
it is possible to compute hidden surfaces for removal and shadows simultaneorsly.

Nevertheless, oven after all of the above processes have been performed on the image there are still problems merely drawing it onto the display. A line or arc cannot simply be drawn frompoint \(A\) to point \(B\) on a raster display because of the scan pattern; it must be transformed or mapped to a pixel representation which is a process called scan conversion. This is usually performed by the raster display itself so the user does not need to be concerned about it. Once the lines are drawn, they must be saoothed. Any nonvertical or nonhorizontal line may appear as a staircase because of the arrangement of the pixels in a matrix which form the line. There are two approaches to this problen, known as aliasing. The first approach is to increase the resolution of the display. By increasing the pirel density the jagsedness of the edges and 1 ines \(\begin{gathered}\text { ill } \\ \text { be smaller and } 10 s s \text { perceptable but }\end{gathered}\) there will be more points to compute overall. The second approach is to use multiple bits of memory to represent each pixel's intensity or color. Varying the intensity along jagged edges will create the impression of straight lines because the edges will be fuzzed, or faded into the background. Once the lines have been smoothed, intersections of surfaces must be computed particularly for objects modeled by equations. Phillips and Odell [25] discuss this problem and present an algorithm to atteapt to solve it. They stress that it is of ten more difficult to find intersections than to just display them. Fortunately, for many applications this is sufficient.

The next section provides more detail concerning the shading problem and many of its related processes mentioned above.

\subsection*{2.3 The Shading Problem}

Essentially, the problem of shading is to generate solid inages by filling the polygons or patches formed during the nodeling stage in such a way as to enhance realism. Shading is affected not only by the method of modeling the object but also by the hidder-aurface removal algorithm used; the order in which the hidder-surface reaval algorith computes visible information influences the shading algorithm. The best attribute a hidden-surface removal algorithm can possess, with respect to shading, is to generate information by scan line rather than arbitrarily ordered patches or polygons. Becanse these two algorithma are so closely related they are of ten treated together in published studies.

Shading algorithas vary in complexity ranging from those that arbitrarily fill the surfaces of an image to those that record minute details of surface properties, texture and patterns. All but the simplest involve the behavior of the human visual system and principles of optics. Peculiarities of the behavior of the human visual systen of ten force algorithms to compensate, or even deviate from, otherwise uniform shading rules. The effects will be discrssed as they pertain to the method or problem being presented.

Briefly, the optics principles involve the angles of incident light to the surfaces being shaded. The resulting reflection, absorption or transaission from the surface is dependent on many factors. One such factor is the surface properties of the object being modeled; amooth, slossy surface will reflect more light than a dull, matte surface. Another factor is the light source itself including both the type of light and its location. The type of light as well as its luminance, or intensity, is
influencial in determining how an object will be lit ug. Diffuse background light, or ambient light, produces constant illmination of objects regardless of their orientation to the light. This uniform brightness makes objects appear flat and does not nsually produce realistic inages when used alone. Point sources of light can produce specrlar reflections, or highlights, which are dependent not only on the object's orientation to the light but also the viewer's orientation to the object with respect to the light's location. This creates much more interesting images.

The absorption of light determines the object's color or intensity. The transmission of light through objects is related to absorption by the object's degree of transparency. It is similar to the shadow-generation and hidder-surface removal processes because objects behind transparent objects mast be identified. The illmination of these "hidden" objects is altered according to the amonnt of light actually allowed through the object in the foreground and whether or not that light is refracted. Moreover. transparent objects often jield specular reflections, which sometimes help reinforce the presence of clear objects. One method offectively used to generate transparent objects, in addition to opaque objects which have a zero percentage of transparency, is called ray-tracing. Using the principles of optics, light rays are followed from the viewer to the first surface where the ray will branch into its components of reflected and refracted light. Each of these components is followed forming a tree that can be used to deternine the shading intensities of the surfaces viewed. One such algorithe is presented in the next chapter.

Surface detail can be conveyed through shading; textures and patterns enhance realisin and can be exhibited through proper shading. Onc method is
to mep aigitized photo or model of the pattern or texture to the surface of the inage. This mapping deternines the pizels intensities or colors and is probably the best way to senerate patterns. Tertures can be shown in this manner or they can be modeled. One approach is not to actually model the texture but to perturb the surface normal to indicate the texture. The surface normal is critical to measuring angles of incidence, reflection and refraction from the surface while computing intensity valnes. So, by altering the normal's true direction a suoth surfece will appear as a rong
 to model the textnre using fractal atheatics which were developed by Benoit Mandelbrot. This method mses stochastic processes to model the randomess of natmral phenomena. This method, too, will be discrssed further in Chapter III.

Another method for generating shaded images is lown as half-tones; this is the method used in most printed matter snch as newspapers, books and magazines. The hman visual systen performs spatial integration where a snall area, when viewed from a distance, appears as single intensity despite the fact that a close-np examination reveals fine detail of varying intensities. This offect is used when producing half-tone inges. The screen is divided into suall resolntion nnits, usuliy a sall, square matrix of pizels. Each resolntion unit is imprinted with alack dot whose srea is proportional to the anount of blackess of the corresponding area of the object being displayed. (Blacloness equals one ninus the intensity.) This method provides more intensity levels withont incressing the number of bit planes but spatial resolntion of the display is sacrificed.

Color is another type of surface detail. Achromatic color includes
black, white and shades of gray with its only attribute being the intensity of the colors. Chromatic displays have many attributes. Hues distinguish between different colors. Saturation, also called chroma, refers to the purity of a color or the amount of dilution by white light. (White light is O\% saturated.) Brightness, or value, is sinilar to intensity for achromatic color. A tint is the result of adding white light to a color thereby decreasing its saturation. Shades result when black is added to a pure color, decreasing its brightness. Tones are the result of the addition of both black and white light to a color.

Several theories have been developed concerning the eye's reaction to color. One of specific interest for raster systems is called the tri-stimulus theory. This theory states that there are three different types of cones on the retina of the oye, each having peak sensitivities to light of either red, blue or green hues. This is aligned with the concept of using these same hues in combinations to produce most colors on color television or raster-scan monitors. A comprehensive discussion of color which covers topics like different color models for monitors and printers, and objective descriptions of colors using electromagnetic onergy densities and standard chromaticity diagrams is beyond the scope of this paper but is included in Foley and van Dan's book [12]. One color model of pertinence to raster graphics is the mGB color model. Dsing a right-handed cartesean coordinate system, a unit cube is formed with black located at the origin, white at the point ( \(1,1,1\) ), and red, blue and green are located on the azes Where \(z=1\), \(y=1\) and \(x=1\), respectively. The main diagonal connecting black and white contains equal amounts of each primary and represents the gray levels. However, this model is hardwarooriented so it is not easily
controlled by the user becanse it does not directly relate to intuitive notions of hue, saturation and brightness. Nevertheless, to implement color on a raster display three sets of equations are necessary, one for each primary hue. This is why color system gereraliy require higher bandwidths of the memory and processors and are more difficult to implement.

Overall, the procedure for computing shades or PGB values for a particular pixel involves deternining which polygons or patches are mapped there, finding details about the surfaces assigned color or intensity, calculating the pixel's angle and distance from the light source and from the viewer, then computing the shading value for the pizel in question. Details about the surface include taking into consideration most of the processes already discussed to create a realistic inage. After overything is considered, shading is a complicated process and many algorithes have been developed to provide a solntion. Several of these algorithme are presented in the next chapter.

\section*{PRESENTATION OF SHADING ALGORITRES}

\begin{abstract}
Sone of the first shading procednees are lnown as constant-shading algorithms. These are msually applied to objects modeled nsing the polysor-nesh technique where each planar, polysonsl facet is filled with a single intensity valne or color. One problem with this method is that adjecent polygons may exhibit an obvions difference in intensity; in reality, objects are composed of continnons cmrves and their intensities Vary continuously. By shading inages with this method the polysons nsed to model the object are apparent to the viewer.[22] This conspicons transition fron one intensity to the next is called contonring and contributes to the uncealistic appearance cansed by this mothod. Another problen with this nethod is known as the Mach-band effect, which is cansed by the human visnal system. If the light-intensity curve from illminated surfaces has a discontinnity in magnitnde or slope, the eye accentuates the change. Thes, the difference in shadins of adjacent polygons is exagserated.

More complex algorithes have been developed to overcone these problems to provide continuons sheding of curved surfaces as vell as simulate texture, transparency and other attributes discrssed in the previous chapter. Four of the next five sections present one such algorithm. The third and seventh sections present new shading models which conld be applied to some of the other algorithme. The sixth and eighth sections introduce different methods for enhancing the object models. The sixth section uses the curved-patch modeling technique discussed in Chapter II. The eighth and
\end{abstract}

\begin{abstract}
final section presents a now method based on fractal geometry to alter models of terrains and other natural phenomena. Both may be applied along with any of the other shading models to generate realistic pictures. Included in this text are many equations and figures that are modified versions of those that appeared in the papers which originally presented the algorithms. Some adjustments vere mecessary to mify the notation used throughout this text as well as to eliminate or add portions of figures to better represent the discussions contained here.
\end{abstract}

\subsection*{3.1 Gourand Intensity Interpolation Shading}

This algorithm [18], published in 1971, is applied to a ourved-patch object-modeling technique called rational Coons patches but conld easily be modified for the polygon-mesh technique. In 1964 S. A. Coons introduced a modeling technique to extend the class of objects that may be modeled; this technique allows for the definition and representation of curved surfaces. An extension was developed by T. M. P. Lee in 1969 called the rational Coons patch. One of its properties is that patches can be reparameterized without modifying their geonetric shapes. Gourand's algorithm is based on a hidder-surface removal algorithm developed by G. S. Watkins which accepts nonplanar polygons; so, Gourand extended it to rational Coons patches.

Watking' algorithm computes information about the image scan line by scan line, which facilitates the shading process. The actual shading rule implemented utilizes basic principles of optics which take into consideration the object's orientation and its distance from the viewer. The light source is assumed to be at the same location as the observer to
avoid the need to generate shadows. The object's orientation is measured as the cosine of the angle, \(\theta\), between the surface normal, \(\bar{N}\), and the direction of the light, \(\bar{L} ;\) or as in this case, the viewer, \(\overline{\mathrm{V}}\); shown in Figure 3.1. The distance from the viewer is introduced to distingrish betweon overlapping, parallel planes which would otherwise be shaded with the same intensity since both have the same orientation. This also simulates the manner in which the eye perceives illuninated objects from distance; because light energy decreases as the inverse square of the distance, parallel faces at different distances from the viewer would appear to be different intensities in reality. According to Gourand, the method used to compute the distance is not important as long as the relative ordering of the faces is preserved. Using the perspective transformation, the ( \(x, y, z\) ) coordinates of point become the projection coordinates ( \(x / 2, y / z, 1 / z\) ) if the observer is located at the origin of the coordinate systen and is facing in the positive \(z\) direction. Using the \(1 / z\) coordinate as an appoximation of the distance, the shading equation becomes
\[
\begin{equation*}
S=\frac{1}{2} \cos ^{2} \theta \tag{1}
\end{equation*}
\]

Since the distance values, \(1 / z\), are only known at the vertices of the polygons, it is necessary to perform a linear interpolation for points between the vertices to obtain the distance values. After the distance values have been computed, the shading for point \(P\) located on the scan line betweon points \(E\) and \(F\) shown in Figure 3.2 is approximated using the equation
\[
\begin{equation*}
S_{P}=(1-\alpha) \frac{1}{z_{E}} \cos ^{2} \theta+\alpha \frac{1}{z_{F}} \cos ^{2} \theta \tag{2}
\end{equation*}
\]


Figure 3.1: Geometry of reflection model for Gourand's


Figure 3.2 : Projection of one polygon intersected by the scan line [18]

The coofficient \(a\) ranges as \(0 \leq a \leq 1\) and denotes the position of the point \(P\) on the scan 1 ine betweon the end points \(E\) and \(F\) : if \(P\) is located at \(E\), then \(a=0\); if \(P\) is at point \(F\), then \(a=1\). Gouraud clains there is no noticeable degradation in the shading from using this approximate equation.

To smoothly shade curved surfaces Gourand modifies the shading computation of each patch so that continuity exists across each boundary. Since each vertex of the patch will be oriented differently, thes requiring different shading, interior points have to be shaded as a continuors function of the vertex shading. Generally, these modifications attempt to alleviate the offects of contouring and the Mach-band effect. To help achieve this shading continuity a normal for each vertex is computed by cither averasing all of the patch vertex-normals associated with the vertex or using an analytical description of the surface to compute the exact normal.

Two successive linear interpolations are performed to compute the shading of interior points for each patch. Referring again to Figure 3.2. the surface normals are assmed to be known at the vertices \(A, B, C\) and \(D\). The scan line intersects edge AB at point \(E\) and edge \(C D\) at point \(F\). The point \(P\) is any point inside the patch \(A B C D\) that is on the scan line. The shading at points \(E\) and \(F\) is interpolated using the shading values calculated at the vertices. The shading at point \(E\) is calculated naing the shading values from point \(A, S_{A}\), and from point \(B, S_{B}\), in the equation
\[
\begin{equation*}
S_{E}=\left(1-a_{E}\right) s_{A}+a_{E} s_{B} \quad\left(0 \leq a_{E} \leq 1\right) \tag{3}
\end{equation*}
\]
where \(a_{E}\) is defined similarily to a in equation (2). Likevise, \(S_{F}\) and \(S_{P}\) can be calculated using the equations
\[
\begin{array}{ll}
s_{P}=\left(1-a_{P}\right) s_{D}+a_{P} s_{C} & \left(0 \leq a_{P} \leq 1\right) \\
s_{P}=\left(1-a_{P}\right) s_{E}+a_{P} s_{P} & \left(0 \leq a_{P} \leq 1\right) \tag{5}
\end{array}
\]

Using these equations, it can be verified that if
\[
\begin{aligned}
& P \equiv \mathbf{A}, \text { then } \mathbf{S}_{\mathbf{P}} \equiv \mathbf{S}_{\mathbf{A}} \\
& \mathbf{P} \equiv \mathbf{B}, \text { then } \mathbf{S}_{\mathbf{P}} \equiv \mathbf{S}_{\mathbf{B}} \\
& \mathbf{P} \equiv \mathbf{C}, \text { then } \mathbf{S}_{\mathbf{P}} \equiv \mathbf{S}_{\mathbf{C}} \\
& \mathbf{P} \equiv \mathbf{D}, \text { then } \mathbf{S}_{\mathbf{P}} \equiv \mathbf{S}_{\mathbf{D}}
\end{aligned}
\]

Since Watkins' technique for computing hidden surfaces officiently calculates and tabulates data for the inage, this was extended to include the shading calculations to help minimize the computation of a new shade for each point. Watkins scans the picture froa top to botton by scan line, computing the following information for each polygon edge:
1) The number of the first scan line that intersects the edge.
2) The total number of scan lines that intersect the edge.
3) The \(x\) and \(z\) coordinates of the highest point of the edge.
4) The slope in \(x\) and \(z\) for the edge.

The necessary shading information is easily added to this list:
5) The shading, \(S\), of the surface at the highest point of the edge.
6) The "slope" of the shading along the edge.

The shading "slope" is calculated as
\[
\begin{equation*}
\Delta S=\frac{S_{2}-S_{1}}{n} \tag{6}
\end{equation*}
\]
where \(S_{1}\) and \(S_{2}\) are the shading of the two endpoints of the edge and \(n\) is the total number of scan 1 ines that intersect the edge.

With the above information the shading may be computed for a iven scan 1ine. An edge will becone "active" when its first point is reached by a scan line which is being used in the shading compration. The zyz coordinates are bnown for this point along with the value of the shading. A segment is created when an edge becones active by pairing edges which belong to the same patch; the segment is the portion of the scan 1 ine between the paired edses and contains information about the coordinates of the endpoints, the values of the shading at the endpoints, and both the coordinate slope and shading "slope" necessary to mpdate shading information from scan line to scan line. From the present scan line the slopes are added to the coordinate information of the point on the edge and to the point's shading value to find the coordinates and shading of the next point Where the next scan line intersects the same edge. After the hidden-lines computation is performed, many of the segments are totally or partially visible. The shading is calculated for each visible point of a segent along a scan line by computing a coefficient as
\[
\begin{equation*}
a=\frac{\mathbf{X}_{P}-\mathbf{X}_{\mathbf{E}}}{\mathbf{X}_{\mathbf{F}}-\mathbf{X}_{\mathbf{E}}} \tag{7}
\end{equation*}
\]
where the \(\mathrm{I}^{\prime} \mathrm{s}\) represent the displacement along the scan line. Using this value for the coefficient \(\alpha\), the shading can be calculated for the point \(P\) of Figure 3.2 using equation (5).

According to Gourand, this linear interpolation for the shading intensities produces shading across patch boundaries which is continuous in value but not in derivative. This elininates most of the contouring effects
but some Mach-band effects may be seen in the vicinity of silhouette curves and where the surface curves sharply. He stresses that this algorithm may be implemented in hardware since it is only a linear interpolation being performed, and he compares the execrtion times required for Vatkins' algorithe and the extended algorithe proposed by Gouraud. If Gourand's algorithm is totally implemented in hardware, no extra time will be required for execution though extra domands will be made of the momory. If the algorithm is implemented in software, the total time required by Vatkins' algorithm would be multiplied by less than 1.2 for Gouraud's algorithm's execrtion time. Two systems which have implemented Gouravd's algorithm are described in papers published by Fujimoto, ot al. [17], and Fuchs, et a1. [16].

The next section presents an algorithe which tried to improve apon Gourand's by reducing the Mach-band offect.

\subsection*{3.2 Phong Normal-vector Interpolation Shading}

This algorith [26], published in 1975, was doveloped by Bui Trong Phong. It expands upon Gouraud's algorithm because instead of linearly interpolating the intensity valne of the shading, Phong's algorithm interpolates the surface normal and then calculates the now shading values using these normal vectors. Phong also uses a more complex shading equation which allows the viewer to be in a different location than the light source in addition to taking into account reflectivity of the object and specular reflections. Phong presents the more complex shading rule with his algorith as an attempt to achieve more realistic shading. Another
difference between the two algorithms is that Phong's algorithe is presented for objects modeled using the polygon-mesh technique.

Phong's shading equation is based on the physical principles of optics with a few eapirical adjustments. The direction of the incident light is always measured as angle with respect to the surface mormal, 0 . The angle of incidence equals the angle of reflection, so the direction of the reflected light is also measured as \(\theta\) with respect to the normal. Different types of lighting affect the object's illmanation in different ways as do different types of surfaces. Rongh or dull surfaces scatter the reflected light in all directions equally, an effect called diffuse reflection. This type of reflection follows Lambert's cosine law which relates the amount of light reflected and the direction of the light source to the surface as shown in the equation
\[
\begin{equation*}
S_{P, d}=C_{P} \cos \theta \tag{8}
\end{equation*}
\]
where \(C_{P}\) is the coefficient of reflectivity of the surface; \(C_{P}\) is a ratio of the light reflected from the surface to the total amount of incoming light at the point \(P\). This type of reflection is not dependent on the viewer's location because the object appears a constant intensity from all directions.

Diffuse background light, or ambient light, produces constant illmanation of objects regardless of the object's orientation; reflection is dependent only on the object's coefficient of reflectivity and the intensity or brightness of the light, for which Phong uses an enviromental diffuse reflection coefficient, \(C_{d}\). Normally, an object subjected to only ambient light would be illmanated according to the equation
\[
\begin{equation*}
\mathbf{S}_{\mathbf{P}_{, 2}}=\mathbf{C}_{\mathbf{P}} \mathbf{C}_{\mathbf{d}} \tag{9}
\end{equation*}
\]
but Phong combines the equations (8) and (9) as
\[
\begin{equation*}
S_{P,(d+a)}=C_{P}\left(\cos \theta\left(1-C_{d}\right)+C_{d}\right) \tag{10}
\end{equation*}
\]

Diffuse reflection from colored surfaces requires three equations, one for each primary color. Most of the light is absorbed but the color of the light reflected is the perceived color of the object.

Specular reflections depend on the location of the viever because the light is reflected unequally in different directions. Such highlights are enitted from shiny surfaces and appear white, or the color of the incident light becange most of the light is seflected. For a perfect mirror, light is reflected only in the direction of perfect reflection; that is when the angle of incidence equals the angle of reflection. This is the reason for the concentration of reflected light in the highlight. For nonperfect reflectors the reflected light is not quite as concentrated but falls off rapidly as the direction moves from that of perfect reflection. Therefore, the viewer's location is critical; as the viewer moves from the direction of reflection, less light is available to be seen as a highlight. The direction of the line of sight is measured as the angle \(\sigma\) from the reflection vector, \(\bar{R}\), as shown in Figure 3.3 . Phong approximates the specilar reflection as the cosine of \(\sigma\) raised to the power \(c_{1}\), where \(c_{2}\) usually ranges from one to ten. When the surface is a perfect reflector, \(c_{1}\) is large so the value will rapidly go to zero as o deviates frome. This cosine term is maltiplied by a function \(\nabla(\theta)\), which is a function of the ratio of the specularly reflected light and the incident light as function of the incident angle; \(\nabla(\theta)\) ranges betweon 10 and 80 percent. Both \(c_{1}\) and

\(\begin{aligned} \text { Figure } 3.3: & \text { Geonetry of reflection model for Phong's } \\ & \text { algorithm }\end{aligned}\)

W(e) are empirically adjusted for the picture and no physical justifications are nade by Phong. Hence, the complete shading equation becomes
\[
\begin{equation*}
S_{P}=C_{P}\left(\cos \theta\left(1-C_{d}\right)+C_{d}\right)+\nabla(\theta) \cos ^{c} 1 \sigma \tag{11}
\end{equation*}
\]

For each point on the surface Phong calculates the normal. which is nsed in the above shading equation, using a linear interpolation technique sinilar to that msed by Gonrand to interpolate the shading intensities. Initially, the normals are only known for the vertices of the polysons. Normals along polygon edges and interior to the polygon are computed using
\[
\begin{equation*}
\bar{N}_{P}=(1-a) \bar{N}_{1}+a \bar{N}_{2} \tag{12}
\end{equation*}
\]
where a is defined in the same manner as in equation (7). The normal to a Visible point inside the polygon is determined from a linear interpolation of the normals at the intersections of the two edges of the polygon with the scan plane passing through the point under consideration. Thus, the general surface normals are quadratically related to the verter normals.

Using these normals, the shading values can be determined. Some assmptions are aade to simplify the cosine terns; both the light source and viewer are assmed infinitly far away. The cosine terms may then be rewritten as
\[
\begin{equation*}
\cos \theta=\bar{L} \cdot \frac{\bar{N}_{P}}{\left|\bar{N}_{P}\right|} \tag{13}
\end{equation*}
\]
and
\[
\begin{equation*}
\cos \theta=\bar{V} \cdot \frac{\overline{\underline{R}}_{P}}{\left|\overline{\mathrm{~B}}_{P}\right|} \tag{14}
\end{equation*}
\]
where \(\bar{L}\) and \(\bar{V}\) are unit vectors in the direction of the light and viewer,
respectively, \(\bar{N}_{P}\) is the surface normal at the point \(P\), and \(\overline{\mathbf{E}}_{\boldsymbol{P}}\) is the reflected 1 ight vector at \(P\). The quantity represented in equation (13) is the projection of a normalized vector, \(\bar{N}_{p}\), on an axis parallel to the direction of the light source. If the magnitude of \(\bar{N}_{P}\) is unity, then equation (13) is one component of \(\bar{N}_{P}\) in a coordinate system where one axis is in the direction of the light. In this case the quantity in equation (14) can be obtained directly from \(\bar{N}_{\mathbf{p}}\).

To find the value of equation (14) from \(\bar{N}_{P}\) a Cartesean coordinate systen with the orisin located at the point \(P\) and the z-axis parallel to the light but pointing in the opposite direction, as shown in Fignre 3.4 , met be used. Four assumptions must be made abort the model:
1) The normalized vector \(\bar{N}_{P}\) makes an angle \(\theta\) with the z-axis; therofore, \(\bar{X}_{P}\) makes an angle \(2 \theta\) with the z-axis.
2) \(\theta \leq 90^{\circ}\). If \(\theta>90^{\circ}\), then the 1 ight is behind the surface being considered. In the case where a view of the back surface is desired when it is visible, the normal is assmed to always point toward the light source.
3) If \(\bar{L}\) is the unit vector along the Pz-axis, then vectors \(\bar{L}, \bar{N}_{p}\), and \(\overline{\mathbf{R}}_{\mathrm{P}}\) are coplanar.
4) The two vectors \(\bar{N}_{p}\) and \(\bar{R}_{p}\) are of unit length.

Using assumption (3), the projections of the vectors \(\bar{N}_{P}\) and \(\overline{\mathrm{R}}_{\mathrm{P}}\) onto the plane defined by ( \(\mathrm{Px}, \mathrm{Py}\) ) are merged into a line segment as shown in Figure 3.5. Therefore,
\[
\begin{equation*}
\frac{\overline{\mathbf{X}}_{\mathbf{r}}}{\overline{\mathbf{Y}}_{r}}=\frac{\overline{\mathbf{X}}_{n}}{\overline{\mathbf{Y}}_{n}} \tag{15}
\end{equation*}
\]


Figure 3.4: Determination of the reflected light [26]


Figure 3.5: Projections of the reflected light [26]
where \(\bar{X}_{I}, \bar{X}_{n}, \bar{Y}_{Y}\), and \(\bar{Y}_{n}\) are components of \(\bar{X}_{P}\) and \(\bar{N}_{P}\) in the \(x\) and \(y\) directions, respectively.

Dsing assumptions (1) and (2), the component \(\bar{Z}_{n}\) of \(\bar{N}_{P}\) is
\[
\begin{equation*}
\overline{\mathrm{Z}}_{\mathbf{n}}=\cos \theta \tag{16}
\end{equation*}
\]
meaning \(0 \leq \bar{Z}_{n} \leq 1\). The following relations are obtained from trigonometric identities
\[
\begin{equation*}
\bar{Z}_{r}=2 \bar{Z}_{n}^{2}-1 \tag{17}
\end{equation*}
\]
and
\[
\begin{equation*}
\bar{X}_{r}^{2}+\bar{Y}_{r}^{2}=1-\cos ^{2} 2 \theta \tag{18}
\end{equation*}
\]

Using equations (15) and (18), we obtain
\[
\begin{equation*}
\bar{X}_{r}=2 \bar{Z}_{n} \bar{X}_{n} \tag{19}
\end{equation*}
\]
and
\[
\begin{equation*}
\bar{Y}_{r}=2 \bar{Z}_{n} \bar{Y}_{n} \tag{20}
\end{equation*}
\]

Thus, the three components of \(\bar{E}_{P}\) are obtained from \(\bar{N}_{P}\) and are bnown in the light sonrce coordinate system. The projection of \(\bar{X}_{P}\) onto the z-axis of the viever coordinate system requires finding the dot product of \(\overline{\mathbf{E}}_{\mathbf{p}}\) with this 2-axis. The component of \(\bar{E}_{p}\) on an axis parallel to the vieving direction is then evaluated as the cosine of \(\sigma\), which is used to simulate specular reflections.

Phong states that interpolating \(\overline{\mathrm{R}}_{\mathrm{p}}\), as is done for the normal vectors, would be a more time-consming process, calculating these vectors directly requires less storage space as well. By calculating the shading values from interpolated normals, a better approximation of the curvature of the surface

\begin{abstract}
is obtained and highlights are more accurately simulated. Unfortunately, the Mach-band offect is not completely oliminated becanse a continnous derivative of the shading function across polygon edges is not guaranteed; subjective brightness along abrupt changes in orientation of adjacent polysons will be visible. This is inevitable becanse, according to the Mach-band effect, it will be visible at abrupt changes in the slope of the intensity distribution curve regardless of whether or not the first derivative of the curve is continnous. Phong tried using higher-degree interpolation schemes and the offect was still visible. Furthermore, the inages produced differed very little from those produced by the method presented here so the latter was determined better technique because it uses less time and may be implemented in hardware. However, this method did produce a marked improvement over Gourand's algorithm for sinulating smooth shading, although it requires more than three times the harduare to implement and a slight increase in execntion tine; but Phong feels the improved quality is worth it.

The next shading algorithe improves on Phong's mothod by not using any erpirical adjustments in the shading model.
\end{abstract}

\subsection*{3.3 Blinn Normal-vector Interpolation Shading}

In this algorithm [3], published in 1977, James F. Blinn uses a theoretical shading model derived by K. E. Torrance and E. M. Sparrow. Blinn does not actually present an algorithe to implement the shading model but applies his model to existing algorithms then compares his images generated to those from Phong's algorithm. Blinn's experimental resilts generally match those from Phong's algorithm but some differences arise.

Blinn's shading model simulates highlights more accuractely becanse it uses a theoretical model whereas Phong's shading model includes some capirical adjustments. One of the two main differences is that the amount of specular reflection varies with the direction of the light source. The second main difference is that the direction of the peak specular reflection does not always coincide with the direction of reflection, \(\overline{\mathrm{n}}\), where the angle of the reflected light with the surface normal equals the angle of the incident 1ight.

Blinn's algorithm assunes that the surface is composed of a collection of mirror-like microfacets that are oriented in random directions. The specular component of the reflected light is assuned to come from facets that are oriented in the direction of maximum highlights, \(\overline{\mathrm{H}}\). If the surface was a perfect mirror, light would only reach the viewer if the surface normal bisected the angle between the directions of the viewer and of the light sonrce. This required direction of the normal is \(\overline{\mathrm{H}}\) and can be defined 13
\[
\begin{equation*}
\overline{\mathbf{H}}=\frac{\bar{L}+\bar{V}}{|\bar{L}+\bar{V}|} \tag{21}
\end{equation*}
\]

The diffuse component of reflected light results from mitiple reflections between the facets, and from internal scattering. The Torrance-Sparrow shading model implemented combines four factors to generate the shading intensity:
\[
\begin{equation*}
S=\frac{D G E}{(\bar{N} \cdot \bar{V})} \tag{22}
\end{equation*}
\]

Where \(D\) is the distribution function of the facets' orientations, \(G\) is the amount by which the facets shadow and mask each other, \(F\) is the Fresnel
reflection 1 aw, and \((\bar{N} \cdot \overline{\mathrm{~V}})\) is the cosine of the angle betweon the surface normal and the viever. All vectors are assmed normalized. Each of these terms will be discussed more fully in turn.

Light will be specriarly reflected only by facets posessing a local nornal vector which points in the direction of 面. The distribution function, \(D\), evaluates the nuber of facets pointing in this direction. Several different distribution functions have beon proposed. Phong uses a cosine function raised to power as presented provionsly except instead of measuring the angle between the directions of the viewer and the reflected light, the angle \(\beta\) is measured between the average surface normal and \(\overline{\mathrm{H}}\) of each facet to conform to Blinn's representation of the surface using microfacets. This angle may be defined as
\[
\begin{equation*}
\beta=\cos ^{-1}(\bar{N} \cdot \bar{H}) . \tag{23}
\end{equation*}
\]

Blinn's version of Phong's distribution function becomes
\[
\begin{equation*}
D_{1}=\cos ^{c_{1}} \beta \tag{24}
\end{equation*}
\]

The distribution function used in the Torrance-Sparrow model is a standerd Garssian distribution:
\[
D_{2}=e^{-\left(\begin{array}{ll}
\beta & c_{2} \tag{25}
\end{array}\right)^{2}}
\]
where \(D_{2}\) is the proportionate number of facets whose local normals form an angle \(\beta\) from the average surface normal. The factor \(c_{2}\) is the standard deviation for the distribution which is a property of the particular surface being modeled; \(c_{2}\) is large for dull surfaces and small for shiny surfaces.

A third distribution function has been proposed by T. S. Trowbridge and
K. P. Reitz which generates a very general class of surface properties by modeling the facets as ellipsoids of rovolution:
\[
\begin{equation*}
D_{3}=\left[\frac{c_{3}^{2}}{\cos ^{2} \beta\left(c_{3}^{2}-1\right)+1}\right]^{2} \tag{26}
\end{equation*}
\]
where \(c_{3}\) is the eccentricity of the ellipsoids. \(c_{3}\) is 0 for very shiny surfaces and 1 for very diffuse surfaces.

Each of these distribution functions peaks when the value of the cosine tern is 1 , which is when facets point along the average surface normal so that \(\beta\) is 0 . As \(\beta\) increases or decreases the values of the functions decrease at rates that are controlled by the values of \(c_{1}, c_{2}\) and \(c_{3}\). Binn used a uniform angle, \(\omega\), at which the distribution falls to one half to compare the functions. In terms of w the three controls become
\[
\begin{align*}
& c_{1}=-\frac{\ln 2}{\ln \cos \omega}  \tag{27}\\
& c_{2}=\frac{(\ln 2)^{0.3}}{\omega}  \tag{28}\\
& c_{3}=\left[\frac{\cos ^{2} \omega-1}{\cos ^{2} \omega-(2)^{\circ} .^{3}}\right] \bullet .3 \tag{29}
\end{align*}
\]

Although similar plots are obtained of the functions for equal values of \(\omega\), Blinn uses \(D_{3}\) for his shading model because it has experimental as well as theoretical justifications, and it is the easiest to compute. If does not change within a frame, \(D_{3}\) can be calculated nsing intermediate values calculated once per frame:
\[
\begin{align*}
& \mathbf{k}_{1}=1 /\left(c_{3}^{2}-1\right)  \tag{30}\\
& \mathbf{k}_{2}=\mathbf{k}_{1}+1 \tag{31}
\end{align*}
\]

Using equations (30) and (31), \(D_{3}\) becomes
\[
\begin{equation*}
D_{3}=\left[\frac{k_{2}}{\cos ^{2} \beta+k_{2}}\right]^{2} \tag{32}
\end{equation*}
\]

This speods up the computation of the distribution function.
To simulate surfaces of varying shininess, \(c_{3}\) changes from place to place on the surface and \(D_{3}\) mast be normalized. In equation (26) \(D_{3}\) is normalized so that \(D_{3}(0)=1\). If \(c_{3}\) varies across the surface, a constant normalizing factor must be used that is based on the minimumalue of \(c\), over the surface:
\[
\begin{equation*}
c_{3}=c_{\text {min }}+\left(1-c_{\text {min }}\right) t(u, \nabla) \tag{33}
\end{equation*}
\]
where \(t(u, \nabla)\) is the texture value. The texturomodulated distribution function is:
\[
\begin{equation*}
D_{3}=\left[\frac{c_{\min } c_{3}}{\cos ^{2} \beta\left(c_{3}-1\right)+1}\right]^{2} \tag{34}
\end{equation*}
\]

The second factor in the specriar reflection model measures the degree to which the facets shadow each other and is called the "geometric attenustion factor", G. O ranges in valine from 0 to 1 and ropresents the proportion of light from the source that reaches the viever after the shadowing takes place. An assmaption is aade that the microfacets are V-shaped grooves with the sides at equal but opposite angles from the average surface normal. Only grooves where one of the sides has a local normal in the direction of \(\bar{H}\) contribute to the highlight. Three cases may arise for different positions of the light source and viewer; these are illustrated in Figure 3.6. Note that \(\bar{L}\) and \(\overline{\mathrm{V}}\) do not necessarily lie in the
plane of the figure which contains \(\overline{\mathrm{H}}\) and \(\overline{\mathrm{N}}\). For case (a) of Figure 3.6, \(\mathbf{~}\) is 1 since the light rays are not blocked by other surface facets. To compute \(G\) for cases (b) and (c) the proportion of the facet contributing to the reflection mest be calculated. This is the ratio \(1-(\mathbf{m} / \mathbf{k})\) as shown in Figure 3.7. By projecting the vector \(\overline{\mathbf{V}}\) or the vector \(\overline{\mathrm{L}}\) onto the plane containing \(\bar{N}\) and \(\bar{H}\), the problen is reduced to two dimensions. Applying the law of sines and several trigonometric identities, the ratio is deternined for cases (b) and (c) in terms of the vectors \(\bar{N}, \overline{\mathrm{H}}, \overline{\mathrm{V}}\), and \(\overline{\mathrm{L}}\) :
\[
\begin{equation*}
G_{b}=1-m / k=\frac{2(\bar{N} \cdot \overline{\mathrm{~B}})(\overline{\mathrm{N}} \cdot \overline{\mathrm{~V}})}{(\overline{\mathrm{V}} \cdot \overline{\mathrm{H}})} \tag{35}
\end{equation*}
\]
\[
\begin{equation*}
G_{c}=1-m / k=\frac{2(\bar{N} \cdot \bar{H})(\bar{N} \cdot \bar{L})}{(\bar{L} \cdot \overline{\mathrm{~B}})}=\frac{2(\overline{\mathrm{~N}} \cdot \overline{\mathrm{H}})(\overline{\mathrm{N}} \cdot \overline{\mathrm{~L}})}{(\overline{\mathrm{V}} \cdot \overline{\mathrm{H}})} \tag{36}
\end{equation*}
\]

The value of \(G\) will be the minimum of \(G_{a}, G_{b}\) and \(G_{c}\).
The next factor in the shading model is the Fresnel reflection, \(F\), which determines the actual amount of incident light roflected from a facet as opposed to being absorbed. \(F\) is a function of the index of refraction, r, of the substance and the angle of incidence, \(\theta\), which is defined in this case as
\[
\begin{equation*}
\theta=\cos ^{-1}(\overline{\mathrm{~L}} \cdot \overline{\mathrm{H}})=\cos ^{-1}(\overline{\mathrm{~V}} \cdot \overline{\mathrm{H}}) . \tag{37}
\end{equation*}
\]

Thus the Fresnel function is given by
\[
\begin{equation*}
F=0.5\left[\frac{\sin ^{2}(\theta-\gamma)}{\sin ^{2}(\theta+\gamma)}+\frac{\tan ^{2}(\theta-\gamma)}{\tan ^{2}(\theta+\gamma)}\right] \tag{38}
\end{equation*}
\]
where
\[
\sin \theta=\frac{\sin \gamma}{r} .
\]


Figure 3.6a: Positions of light source and viewer with no interference [3]


\title{
Figure 3.6b: Positions of light source and viewer where some of the reflected light is intercepted [3]
}


Figure 3.6c: Positions of 1 ight source and viewer where some of the incident light is masked off [3]


Figure 3.7: Proportion of facet contributing to the reflected light is 1 - ( \(\mathbf{m} / \mathrm{k}\) ) [3]

For metallic substances \(r\) will be large in value and \(F(\theta, r)\) is nearly constant at 1; for nometallic substances \(x\) is aall and \(F\) has an exponential appearance beginning at 0 for \(\theta=0\), and reaching 1 at \(\theta=90^{\circ}\). If the light source and the viewer are assumed infinitely far away, the light rays reaching the \(\nabla\) iewer will be parallel and \(\overline{\mathrm{L}}\) and \(\overline{\mathrm{V}}\) will be constant vectors. This means that the calculations of the directions of \(\overline{\mathrm{L}}, \overline{\mathrm{V}}\) and \(\overline{\mathrm{B}}\) and of ( \(\overline{\mathrm{V}} \cdot \overline{\mathrm{B}}\) ) neod to be performed only once per change in light source direction. Using some trigonometric identities, \(F\), too, only needs to be calculated once using the equation
\[
\begin{equation*}
F=\frac{(g-j)^{2}}{(g+j)^{2}}\left[1+\frac{(j(g+j)-1)^{2}}{(j(g-j)+1)^{2}}\right] \tag{39}
\end{equation*}
\]
where
\[
j=(\bar{V} \cdot \bar{B}) \text { and } g=\left(x^{2}+j^{2}-1\right)^{\bullet} \cdot{ }^{3}
\]

This helps reduce the computation time.
The final factor in the shading model is the division by \((\bar{N} \cdot \overline{\mathrm{~V}})\). Since the viewer sees more of the surface when it is tilted, more facets with local nornals in the \(\overline{\text { E }}\) direction will contribute to the intensity of the specular reflection. The increase in ares seen is proportional to the cosinc of the angle between the average surface nornal and the line of sight, thus explaining the presence of this term. Combining this term with the computation of \(G\), it is possible to avoid a division by zoro by making some comparisons to find the minimu of \(G_{a}, G_{b}\) and \(G_{c}\) before doing the divisions:
\[
\text { If } \begin{aligned}
(\bar{N} \cdot \bar{V})<(\bar{N} \cdot \bar{L}) \text { then } \\
\text { If } 2(\bar{N} \cdot \bar{V})(\bar{N} \cdot \bar{B})<(\bar{V} \cdot \bar{H}) \text { then }
\end{aligned}
\]
```

            G:= 2(\overline{N}\cdot\overline{\textrm{B}})/(\overline{\textrm{V}}\cdot\overline{\textrm{B}})
            else G:= 1 / (\overline{N}\cdot\overline{\mathbf{V}})
    -1 se
If 2(\overline{N}\cdot\overline{L})(\overline{N}\cdot\overline{\textrm{B}})<(\overline{\textrm{V}}\cdot\overline{\textrm{B}})\mathrm{ then}
G:= 2(\overline{N}\cdot\overline{\mathbf{H}})(\overline{N}\cdot\overline{L})/(\overline{\textrm{F}}\cdot\overline{\mathbf{H}})(\overline{N}\cdot\overline{\textrm{V}})
else G:= 1 / (\overline{N}\cdot\overline{\textrm{V}})

```
This also helps speed up the computation of the highlight function.
    Comparing this highlight function to the one Phong used, Blinn notes
that for sall angles of incidence, the two are very similar. However, the
intensity of the highlight and its direction differ for large \(\theta\), thas the
differences are most noticeable for edge-1it objects. Also, Phong's model
does not simulate nometallic objects as well as Blinn's does. Because \(D_{3}\)
is casier to compute than \(D_{1}\), the savings in computation time offsets the
extra time required to generate \(G\) and \(F\) so Blinn claims there is no overall
increase in computation time yet the degrec of realism is increased.
    The next section presents an algorithe which uses the method of
half-tones described in Chapter II to generate shaded inages.

\subsection*{3.4 Newell-Sancha Half-tone Shading}

Although the authors clain this is a half-tone algorithm [23,24], M. R. Newell, R. G. Newell and T. L. Sancha do not disclose the specifics on how the half-tones are implemented. However, the algorithm, published in 1972, is significant because it is one of the early attempts at simulating transparent objects. The algorithe also uses a difforent method to generate the information about the objects being modeled; images are created by
calculating the shading values per polygon in order of decreasing distance from the viewor instead of on acan line basis as with the previous three algorithms.

The basic idea behind the Newell-Sancha hidden-surface algorithe is to order the polygons or patches in order of decreasing distance from the viowplane then to paint the object face by face, overlapping any existing faces thereby covering hidden surfaces. If conflicts arise where the faces cannot be properly placed in order, perhaps due to cyclical obscurings or intersections of faces, faces are split to attempt to resolve the problens, thereby increasing the total number of faces composing the object. The faces are painted into the image memory, which they call a screen map, then the information is processed again according to scan lines before being displayed.

The shading function is performed during the painting of the faces to the image memory. The model used has a diffuse, an ambient and apecriar component. The diffuse component is the cosine of the incident angle, \(\theta\), raised to the power \(s\) and multiplied by a coefficient, \(C_{d}\), which is the intensity range. s is an arbitrary power; when \(s=1\), the function simulates diffuse reflection. As increases, the object appears darker except for a few faces vhich appear at the brightest intensity; this sives the effect of shiny black surface. The abient component, \(S_{a}\) is a constant representing the ambient level of lighting. The specular component is used in particular to simulate longitudinal reflection patterns of bottles or other objects of revolution and has the form of the sine of the incident angle raised to a high power, \(i\), and multiplied by the specular intensity range, \(C_{8}\). Thus, the shading equation becomes
\[
\begin{equation*}
s=C_{d} \cos ^{s} \theta+S_{a}+C_{s} \sin ^{i} \theta \tag{40}
\end{equation*}
\]

\begin{abstract}
Transparent materials can be simulated by silighty altering the painting routine. When the new surface being painted is transparent, instead of simply replacing the previous shading value of the old face covered by this new surface with the new face's value, the shading value stored is a combination of both the old, \(S_{0}\), and new, \(S_{n}\), shading values. A comparison is made between the old and new values and depending on the outcome, the resulting shading value is a veighted sum of these two as follows:
\end{abstract}
\[
\begin{align*}
& \text { If } S_{n}<S_{0} ; S=w S_{n}+(1-w) S_{0}  \tag{41}\\
& \text { If } S_{n}>S_{0} ; S=S_{n} \tag{42}
\end{align*}
\]

Where is a weighting factor.
Newell, et al. claim that these functions are not an attempt to simulate the real world but can considerably enhance the appearance of the images produced. Although the offects of transparency are simelated, no provision is made for the effects of refraction which are apparent through many transparent objects. Also, they feel that "the time taken to produce an image procludes the possibility of using shaded pictures in a truly interactive way". Their second paper, [23]. presents ten figures of images produced with their algorithm. They compare the complexity of each figure and the time required to produce the image. The ontire algorithm is broken into four parts with the third being the writing of the fragments to the image memory, which includes the performance of the shading function. They list times for this part ranging from 1.4 to 33.4 seconds. However, it is

\begin{abstract}
not known exactly how much of these times was spent on the shading alone. Regardless, pictures of images generated using this method which were included with the paper greatly exhibited contouring effects.

The next section presents an algorithn to generate inages using the method of ray tracing described in the last chapter. It simulates the effects of both transparoncy and rofraction as woll as shadows and light reflected from object to object within a scene.
\end{abstract}

\subsection*{3.5 Whitted Ray-tracing Shading}

In this algorithe [35], published in 1980, Whitted incorporates a technique known as ray tracing. The algorithm is based on a hidder-surface algorithm that produces "trees" of slobal information for each pixel of the display. The trees are formed by tracing light rays from the viewer to the first surface encountered, then tracing the components of reflection and refraction from the first surface to the next until reaching a light source. Shading is then performed by traversing the tree to deternine the light intensity received by the viewer.

The hidden-surface algorithe does not perform the usual functions of clipping and removal of faces hidden to the viewer; these may be visible as reflections on other objects within view of the observer. Rays are traced from the viewer to the first surface to the next surface and onto the last surface before reaching the light source; therefore, objects not included in the view may affect the lighting of visible objects.

The ray tracing is performed by calculating the intersection of an incident ray of light with a reflecting surface. Since the rays are traced
from the viewer, the direction of the incident ray, \(\bar{L}\), coincides with the direction of the viewer, \(\bar{\nabla}\), for the first surface. The incident ray is broken into two components: the reflected light in the direction of \(\bar{Z}\) and the light trangitted through the surface in the direction of \(\bar{T}\). The \(\bar{L}\) direction follows the rule that the angle of incidence equals the angle of reflection as established in previous sections. The direction of the transmitted 1 ight, \(T\), obeys Snell's law of refraction. Thes, \(\bar{E}\) and \(T\) are functions of \(\bar{N}\) and \(\overline{\mathrm{V}}\) given by
\[
\begin{align*}
& \bar{V}^{\prime}=\frac{\overline{\mathbf{V}}}{|\overline{\mathrm{V}} \cdot \bar{N}|}  \tag{43}\\
& \overline{\mathrm{R}}=\overline{\mathbf{V}}^{\prime}+2 \overline{\mathrm{~N}}  \tag{44}\\
& \bar{T}=\mathbf{k}_{\mathbf{f}}\left(\overline{\mathrm{N}}+\overline{\mathrm{V}}^{\prime}\right)-\bar{N} \tag{45}
\end{align*}
\]
where
\[
k_{f}=\left(k_{n}^{2}\left|\bar{v}^{\prime}\right|^{2}-\left|\bar{v}^{\prime}+\bar{N}\right|^{2}\right)^{-\infty}
\]
and \(k_{n}=\) the index of refraction. These equations assume that \((\overline{\mathrm{V}} \cdot \overline{\mathrm{N}})\) is 1038 than zero so \(\bar{N}\) mast point to the side of the surface that from which the ray is incident. Likewise, \(k_{n}\) must be adjusted to account for the change. If the denominator of \(k_{f}\) is imaginary, \(\bar{T}\) is assumed to be zero because of total internal reflection. The intersection process is performed recursively until all branches of the tree are terminated. These relationships are pictured in Figure 3.8. Figure 3.9 shows how the rays are traced from surface to surface with Figure 3.10 showing the trec formed from the components of light reaching the viewer from point \(P\) in Figure 3.9. The shading model used by Whitted is dependent on the vectors generated by the hidden-surface removal algorithm, namely, \(\bar{N}, \bar{R}\) and \(\bar{T}\). It inciudes a


Figure 3.8: Geometry of reflection model for Whitted's algorithn [35]


Figure 3.9: Paths of reflected light that reach the viewer [35]


Figure 3.10: Tree formed from components of light reaching the viewer from point \(P\) of Figure 3.9 [35]

\begin{abstract}
constant representing the ambient reflection, \(S_{a}\), and terms for the diffuse and specular reflections and the transaitted intensity. The diffuse component ideally would include contributions reflected from nearby objects as well as light from all of the sources. These contributions would simply add together to form the total diffuse reflection. However, the computation required to sum components from other objects in the scene would be too extensive so a diffuse comporient siailar to that used by Phong is implemented which only accounts for the sources. Assuming that \(\overline{\mathrm{N}}\) and \(\overline{\mathrm{L}}\) are normalized, the diffuse component becomes their dot product multiplied by the diffuse reflection coofficient, \(C_{d}\). The complete equation for the shading model is
\[
\begin{equation*}
S=S_{a}+C_{d}(\bar{N} \cdot \bar{L})+C_{s} R+C_{t} T \tag{46}
\end{equation*}
\]
where \(C_{s}\) and \(C_{t}\) are the specular reflection and transansion coefficients, respectively, \(R\) is the intensity of light incident from the \(\overline{\text { R }}\) direction and \(T\) is the intensity of light from the \(\bar{T}\) direction. Although the coefficients \(C_{s}\) and \(C_{t}\) were held constant to generate the pictures included in Whitted's paper, more accuracy is obtained by making them functions incorporating the Fresnel reflection law; the coofficients would then vary as a function of the incident angle in a manner depending on the properties of the surface being displayed. Instead, they must be chosen to correspond to physically reasonable values to generate realistic pictures. As the tree from the hidden-surface algorith is traversed, shading intensities are calculated at each node using this model. The intensities are then linearly attenuated as a function of the distance between the nodes. The linear function is used because it provides a good approximation of the effects of distance; for
\end{abstract}
non-planar surfaces the squaro-law approximation does not apply.
When modeling surface properties, if the value of \(C_{s}\) is decreased and that of \(C_{d}\) increased, the surface will appear less glossy but the highlight will not spread out realisticly as it did for Phong's model whenever the specriar exponent was reduced to simulate less smooth surfaces. To improve the highlights generated, a random perturbation is added to the surface normal to simulate the randomly oriented microfacets of rough surface, thereby assuming a surface modeled in the manner described by B1inn in section 3.3. If the surface is smooth and shiny, the perturbation has a salall variance; rough surfaces necessitate using larger variances. This method will also give transparent objects a frosted appearance by using larger variances. But becanse this method requires a great amonnt of extra computation, it is avoided whenever possible. One such case is when specular reflections are caused directly by a point light source, where Phong's model of specular reflections can effectively be used at the point of reflection.

Shadows may be simulated using this algorithm by extending the trees from the hidder-surface algorithm to include rays associated with light sources at each node. If one of these rays intersects a surface before it reaches the source, the point of intersection represented by the node lies in shadow with respect to that light source. This source will not contribute to that point's diffuse reflection, thus creating a shadow.

The pictures included in Whitted's paper were created using a VAX-11/780 and are probably the best generated by any of the algorithms thus far. However, they required betweon 44 and 122 minutes to be processed. For simple pictures 12 percent of the processing time is attributed to just
the shading with the majority of the time needed to compre the intersections in the hidden-surface removal algorithm. Some shortconings of the algorith is that it does not provide for diffuse reflections from distributed light sonrces, nor do specular roflections degrade gracefully as surfaces get less slossy.

While this algorith was able to shade objects modeled by both polyson-mesh and curved-patch representations, the next section presents an algorith designed specifically for curved patches, particularily a class known as the bicubic patch.

\subsection*{3.6 Catunl Bivariate Surface-patch Shading}

This algorith [6.7] was developed in 1974 by Edwin Catenll. The nethod was primarily developed for objects modeled using a class of crrved patches called bicubic patches but is not 1 imited to them alone and can be applied to other kinds of surfaces as well. The algorithm is based upon a subdivision procedure which divides the patches into subpatches. After the subdivisions are accomplished, hidden-surface renoval and shading functions are performed. Four different methods to determine the shading values are discussed.

Catmell feels that bicubic patches are better for modeling objects to be displayed. The polysor-mesh technique produces unrealistic effects such as a faceted appearance cansed by contouring and jagged silhouettes formed by straight-1ine segents. Also, quadric curved patches do not provide enough degrees of freedon and are therefore unsuitable for modeling many objects. Bicubic patches are easily joined with slope continuity across the
boundaries so they produce continuous shading and smooth silhouettes. And \(a s\) mentioned, the basis of Catmull's algorithm is the subdivision algorithe and this process can be performed quickly using bicubic patches.

The subdivision algorithe divides all patches into subpatches until each subpatch's projection represents only a single pixel on the raster display. This is done by joining the midpoints of opposite sides of the patch, thus dividing it into four subpatches. Eventually the patch will appear as in Figure 3.11. Subpatches which do not cover any pizels are associated with the nearest subpatch covering a pixel or sample point. Clipping is performed during this process to determine if a subpatch will be on the screen before dividing it any further. Overall, the number of subdivisions required is slightly greater than one third of the nuber of pizels covered by the original complete patch. According to Catall, the subdivision of each bicubic component requires thirty additions with values passing through four adders; it is best to have a subdivider for each of the three bicubic comoponents to work simultaneousiy and reduce the total execution time required.

When the subdivisions are completed, hidden surfaces are removed then a shading value is assigned to each pixel and accordingly, to each subpatch. Catmull sites four methods to determine the shading value for each pixel.

The first shading method can be any of those mentioned in this text Which uses the surface normal to calculate the shading intensity. However, since the equation of the normal to a bicubic patch is a fifth degree polynomial, it is difficult to find. A fifth degree subdivision equation could be used to solve the normal equation but this is impractical so Catmull used the following method to generate the pictures in his paper.


Figure 3.11: Patch subdivided so that no subpatch covers
more than one sample point [7]

The normal equation is approximated with a cubic equation. Its components are then subdivided along with the components of the patch equation to obtain approximate normal equations for the subpatches. The patch and normal equations are functions of two variables, and \(v\). The notation for the \(x\)-component is
\[
\begin{equation*}
x(u, v)=\sigma M_{x} V \tag{47}
\end{equation*}
\]
where \(\mathrm{D}^{2}\) and \(V\) are matrices defined as
\[
\begin{align*}
& V=\left[\begin{array}{llll}
u^{3} & u^{2} & \nabla & 1
\end{array}\right]  \tag{48}\\
& V=\left[\begin{array}{llll}
\nabla^{3} & \nabla^{2} & \nabla & 1
\end{array}\right]^{T} \tag{49}
\end{align*}
\]
and \(M_{x}\) is a four-by-four matrix of coofficionts defined as
\[
u_{x}=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14}  \tag{50}\\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right]
\]

The derivative of the z-component in the \(u\)-direction is given by
\[
\begin{equation*}
x_{v}=\sigma^{\prime} M_{x} V \tag{51}
\end{equation*}
\]
and the derivative in the \(\quad\)-direction is defined as
\[
\begin{equation*}
x_{v}=\sigma M_{z} V^{\prime} \tag{52}
\end{equation*}
\]

The normal vector, \(\left[x_{n} y_{n} z_{n}\right]\), is found by forming the cross product of the tangent to the surface in the \(u\)-direction, \(\left[x_{u} y_{u} z_{n}\right]\), and the tangent in the \(v\)-direction, \(\left[x_{v} y_{v} z_{v}\right]\). Thus, tho normal components are defined as
and
\[
\begin{equation*}
z_{n}(n, v)=\sigma^{\prime} u_{x} v \sigma y_{y} v^{\prime}-\delta \mu_{z} v^{\prime} \sigma^{\prime} \mu_{y} v . \tag{55}
\end{equation*}
\]

To find the approximate components of the normal requires a simar matrix maltiplication for each component as shown for only the x-component:
\[
\begin{equation*}
I=C P_{X} C^{T} \tag{56}
\end{equation*}
\]
where \(C\) is the Coons matrix defined as
\[
C=\left[\begin{array}{rrrr}
2 & -2 & 1 & 1  \tag{57}\\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
\]
and
where

The equations for the \(y\) and z-components are sinilar and can be fonnd by comparing equetion (52) with equations (53) and (54) to derive sinilar equations as (55) and (57) through (60) for the other components of the approximated normal vector.

A second nethod to find the shading values is to use an intensity fnnction. This associates nubers with the pizels as derived by a finction. The function could be based on anything such as pressure, strain, height, density, artistic whin, etc. Some checks must be used to stay within the bounds of the display as described in [7].

The third method is to map a picture to the surface. This is done by forming a one-to-one correspondence between either the pixels covered by the patches and the intensities of the picture or between areas of the picture and entire patches. The intensity of the picture could be a function of \(u\) and \(\nabla\) as is the patch. The function or area is divided as the patch is to maintain the correspondences. One problem that may ocenr is a sampling problen. If the the picture contains more intensity values than the patch
has pizels, all of the information in the pictrre will not be displayed on the patch. In the area-mapping method the sampling problem is less noticable becanse the average intensity of the area is mapped to the subpatch, however, the problen is not eliminated.

The forth and final method to calculate the shading values is to modify the intensity for offects such as shadows or transparency. Another nethod nust be nsed to find the initial intensities then this method adjusts the valnes. \(A\) method sinilar to that of Nowell, et al. is meed for displaying transparent objects. Shadows are created by using "shadow-patches" formed from the silhouette of an object from the point of view of the light. After determining which portions of the object are behind these patches, the shading values of the shadowed portions are attenusted. One problem is that this method merely dininishes highlights rather than olininating thea.

Several pictures generated by this method were included in both of Catmell's papers. Times to produce the pictures ranged from 115 seconds to 15 Einutes. It was not disclosed exactly what portion of the time was required to generate only the shading values. Despite the complexity of many of the pictrres, they were very realistic.

The next section presents a shading model that utilizes the different characteristics of various materials to display how they reflect light more acenrately to achieve more realistic images.
3.7 Cook-Torrance Reflective Model for Shading

This model [10], published by Robert L. Cook and Kenneth E. Torrance in 1981. is a reflectance model for shading computer inages with emphasis on
generating color inages. It is based on goometrical optics like most of the provious alsorithms but is applicable to a broader range of materials, surfaces and lighting situations. Here, the intensity of the reflected light is determined by the intensity and size of the source, and by the object's reflecting ability and surface properties. The spectral highlights are determined by the spectral composition of the source and the wavelength-selective reflection property of the surface.

Like the previous algorithms, this shading model uses the vectors \(\overline{\mathrm{N}}, \overline{\mathrm{V}}\), \(\bar{L}\), and \(\overline{\mathrm{B}}\), where all are normalized and defined as in previous sections and shown again in Figure 3.12. Note that the angles between \(\overline{\mathrm{B}}\) and the two vectors \(\overline{\mathbf{V}}\) and \(\overline{\mathrm{L}}\) are defined as \(\xi\), and that these three vectors 1 ie in the same plane; \(\overline{\mathrm{N}}\) is not necessarily contained in that same planc. This model also derives its specnlar component in a siailar manner as Binn's model and depends on the description of a surface as being composed of randomly oriented microfacets.

Unlike any previous algorithm, this model deternines the energy of the incident light as expressed as energy per unit time and per unit area of the surface. Most non-mirror surfaces reflect the incident bean over a wide range of angles, thas, the reflected intensity in any given direction depends on the incident energy and the incident intensity. The intensity of the incident light is expressed in a similar manner to the energy but is per unit projected area and per unit solid angle. The onergy of an incident bean of light, \(E_{i}\), is given by
\[
\begin{equation*}
E_{i}=I_{i}(\bar{N} \cdot \bar{L}) \omega_{i} \tag{62}
\end{equation*}
\]
where \(I_{i}\) is the average intensity of the incident beam and \(\omega_{i}\) is the solid


Figure 3.12: Geometry of reflection model for Cook and
Torrance's algorith [10]
angle of the bean.
Unless the surface is a perfect mirgo, the incident light will be reflected over a wide range of angles. Each light sonrce is associated with a bidirectional reflectance, \(B_{b}\). which is the ratio of the reflected intensity in a specified direction to the incident energy from another direction both within seall solid angle. \(\mathrm{B}_{\mathrm{b}}\) is given as
\[
\begin{equation*}
B_{b}=\frac{S}{E_{i}} \tag{63}
\end{equation*}
\]
where \(S\) is the reflected intensity or shading value that the viewer sees from each light source and is given by
\[
\begin{equation*}
S=B_{b} E_{i}=B_{b} I_{i}(\bar{N} \cdot \bar{L}) \omega_{i} \tag{64}
\end{equation*}
\]
\(\mathcal{R}_{b}\) is a inear combination of two components. The diffuse component, \(R_{d}\), is fron either internal scattering where the incident 1 ight penetrates the surface or from mutiple surface reflections such as from rough surface. The specular component, \(R_{g}\), is from light that is reflected at the surface of the object. If the object being modeled is not composed of a homogeneous material, these two components may have different colors. If dis the fraction of reflectance that is diffuse, ( 1 - d) is the fraction of reflectance that is specular and \(B_{b}\) is given by
\[
\begin{equation*}
\mathbf{B}_{b}=\mathbf{d} \mathbf{R}_{d}+(1-d) \mathbf{R}_{s} \tag{65}
\end{equation*}
\]

The light reflected toward the viewer from anbient light, when integrated over the entire hemisphere of illminating angles, can be defined by a heaispherical-directional reflectance, \(R_{a}\), which is an integral of \(B_{b}\) and, therefore, is a linear combination of \(R_{d}\) and \(R_{s}\). \(R_{a}\) is assumed
independent of the direction of \(\overline{\mathrm{V}}\) and the ambient light is assumed uniformly incident. The reflected intensity due only to the ambient light, \(S_{a}\), is given by
\[
\begin{equation*}
\mathbf{S}_{\mathbf{a}}=\mathbf{R}_{\mathbf{a}} \mathbf{I}_{\mathbf{i}, \mathbf{a}} \mathbf{f} \tag{66}
\end{equation*}
\]
where \(I_{i, a}\) is the intensity of the incident ambient light and \(f\) is the fraction of the illuminating hemisphere that is not blocked by other objects, given by
\[
\begin{equation*}
f=\frac{1}{\pi} \int(\bar{N} \cdot \bar{L}) \omega_{i} \tag{67}
\end{equation*}
\]
where the integration is performed over the unblocked portion of the illumanting hemisphere.

Hence, the total intensity of the light observed is the sum of the reflected intensities from all of the light sources plus any reflected intensity from the ambient light. With \(f=1\), the shading model is defined 28
\[
\begin{equation*}
S=I_{i, a} R_{a}+\sum_{j} I_{i, j}(\bar{N} \cdot \bar{L}) \omega_{i, j}\left(d R_{d}+(1-d) R_{s}\right) \tag{68}
\end{equation*}
\]

This equation takes into account light sorrces with different intensities and projected areas. For instance, if two incident beans have the same intensity and incident angle but one has twice the solid angle as the other, the first will make the surface appear twice as bright as the second will. Siailarily, if an incident beam has twice the intensity but the same incident angle and solid angle as a second beam, the first will make the surface appear twice as bright. However, the model depends on several variables. For example, the intensities depend on the wavelength of the
light, d depends on the material composing the object and the reflectances depend on these variables in addition to the reflection geometry and the surface roughness.

Directional dependence only affects the specular component, \(R_{s}\), since it relies on the location of the viewer. Similar to Blinn's model, this component can be defined as
\[
\begin{equation*}
\mathbf{R}_{\mathbf{s}}=\frac{\text { F D G }}{\pi(\overline{\mathrm{N}} \cdot \overline{\mathrm{~L}})(\overline{\mathrm{N}} \cdot \overline{\mathrm{~V}})} \tag{69}
\end{equation*}
\]

The terms \(G, D\) and \(F\) have the same meaning as they did in Blinn's model but their equations are defined differently.
\(G\) is the geonetrical attenuation factor which accounts for the shadowing and masking among the microfacets. It is defined as
\[
\begin{equation*}
G=\min \left\{1, \frac{2(\bar{N} \cdot \overline{\mathrm{H}})(\overline{\mathrm{N}} \cdot \overline{\mathrm{~V}})}{(\overline{\mathrm{V}} \cdot \overline{\mathrm{H}})}, \frac{2(\overline{\mathrm{~N}} \cdot \overline{\mathrm{~B}})(\overline{\mathrm{N}} \cdot \overline{\mathrm{~L}})}{(\overline{\mathrm{V}} \cdot \overline{\mathrm{H}})}\right\} . \tag{70}
\end{equation*}
\]

D represents the the fraction of facets that are orionted in the direction of \(\bar{H}\). Cook and Torrance consider the Ganssian model proposed by Blinn in equation (24), but also model developed by Petr Beckann and Andre Spizzichino for rough surfaces
\[
\begin{equation*}
D=\frac{1}{\mathrm{~m}^{2} \cos ^{4} \beta} e^{-\left[\tan ^{2} \beta / \mathrm{m}^{2}\right]} . \tag{71}
\end{equation*}
\]

Where is the root-mean-square slope of the facets, which controls the spread of the specular component. If is small, the surface will appear smooth and the distribution of the specular component from the facets will be highly directional around the vector \(\overline{\mathrm{H}}\). If is large, rough surfaces are simulated and the specular component will be more spread out. Comparing this model to Blinn's of equation (24), the differences are very slight.

The advantage of this function is that it gives the absolnte magnitude of the reflection without introducing any arbitrary constants; however, it requires more computation.

When objects have two or more different surfaces of different roughess, the distributive functions will have different slopes \(m\). The overall \(D\) can be expressed as a weighted sum of the respective distribution functions:
\[
\begin{equation*}
D=\sum_{j} \nabla_{j} D\left(m_{j}\right) \tag{72}
\end{equation*}
\]
where \(w_{j}\) is the weight of the \(j^{\text {th }}\) distribution function. The swa of all the weights must equal 1 .

Fis the Fresnel term which describes how light is reflected from each microfacet. It is anction of the incident angle, \(\xi\), and the waveleagth of the light, \(\lambda\). \(F\), as well as the other reflectances \(R_{d}\) and \(R_{a}\), may be obtained from the reflectance spectra for the material. This information has been measured for many materials, usually for illmination at normal incidence, and tabulated. The measurements were made for only a fow vavelengths so the values may need to be interpolated. By maltiplying the reflectance spectra for the surface by the spectral energy distribution of the incident light, the spectral energy distribution of the reflected light is obtained. Since \(F\) and \(\mathbf{R}_{\mathrm{d}}\) also vary with the geonetry of the reflection, \(R_{d}\) is taken to be the bidirectional reflectance for illumination in the direction nornal to the reflecting surface, whereas \(\mathrm{F}^{\prime} \mathrm{s}\) directional dependence leads to color shift when the directions of incident and reflected light are near grazing.

The Fresnel equation expresses the reflection in terms of the index of
refraction, \(r\), and the extinction coefficient of the surface, \(C_{e}\), and the angle of illmanation of the microfacets, \(\xi\). If \(x\) and \(C_{c}\) are known, the Fresnel equation is used to find the spectral and angnlar dependence of \(F\). If not, \(r\) is estimated by setting \(C_{0}=0\) using an equation similar to Blinn's equation (39) except here is has an additional factor of 1/2:
\[
\begin{equation*}
F=\frac{1(g-j)^{2}}{2(g+j)^{2}}\left[1+\frac{(j(g+j)-1)^{2}}{(j(g-j)+1)^{2}}\right] \tag{73}
\end{equation*}
\]
where
\[
j=(\bar{V} \cdot \bar{B}) \text { and } g=\left(r^{2}+j^{2}-1\right)^{\bullet}
\]

This dependence of reflectance on wavelength and incident angle implies that the color of the reflected light changes with the angle \(\xi\). The computation of this color shift is excessive so it is approximated from the spectral energy distribution, thereby approximating the RGB values for the color. Since all of the other algorithme have only dealt with intensities for achromatic displays, the procedure for calculating these values is not discussed. However, some important conclusions were drawn concerning the realisa of computer-generated images.

One conclusion is that nonhomogeneous materials may have specular and diffuse comporents of different colors. Plastics are one such material. The color of the specular component, which is reflected from the surface, is only siightly altered by the color of the incident light, depending upon the reflectance of the surface material. The diffuse component is of the color of the plastic alone. This is not the case with metallic objects. Reflections from metals occur almost completely at the surface. The specular component is still only slightly altered by the color of the light

\begin{abstract}
sonree brt if the surface is smooth, there may be barely any diffuse reflection. According to Cook and Torrance, nost of the other algorithms create inages of objects that appear to be nade of plastic. Their model incresses the realis. of the inges by simulating other materials.

The next section presents a now eethod for modeling objects, particularily those that ocenr in nature such as montain ranges, continent outlines anc other objects with randon surfaces.
\end{abstract}

\subsection*{3.8 Forrnier-Pusse11-Carpenter Fractal-surface Shading}

In 1982 Alain Fonsnier, Don Pussell and Loren Carpenter published a detailed discrssion [14] of mew method to model objects, particriarly for those that occur naturally dre to the randonness of theif surfaces. The nethod was derived froe fractal athenatics techniques which were largely developed by Benoit Mandelbrot in the late 1960's. One of the methods presented by Fonriner, et al. was implemented by Stephen L. Stepoway, David L. Wells and Gerald R. Kane in a mitiprocessor architecture in a paper published in 1984 [30].

Bractal matheatics techniques are very usefnl to model non-deterministic phenomena such as terrains, smoke and clouds. Traditional methods for modeling such objects; i.e., polygon-mesh or curved-patch techniques, do not senerate realistic inages of these types of objects. Even so, extremely large nubers of polygons or patches are necessary to reproduce the natmral features. The use of textrremapping, a technique which was discrssed in both Chapter II and Section 3.6, is more effective for these types of objects but even this tends to have a repetitive
regnlarity not characteristic of the real objects. Tertnremappins also has Iinitations to the detail that can be conveyed as the viewer is brought closer to the surface. Conversely, fractal matheatics can create the resolntion required of a particular scene by continuing the textmring process to the extent necessary. The natnre of the process is randon enongh to effectively model sioke, trees, rocks and other such objects yet can be controlled enough to follow a basic outilne, such as the cosst of a continent.

The algorith is similar to that presented by Catmell in Section 3.6 . Both relied on a subdivision process to break the model into pieces which covered only a single pizel on the raster display then calculated surface normals to be used in the shading computation. In this algorith the object is modeled at the start using polygon-mesh technique where the polygons are all triangles. The description is cosrse requiring just a fow doren triangles to sive a general outline of the overall shape of the object; the algorith provides the textme definition. The more triangles used at this phase, the more specific and controlled will be the object's definition.

As stated the subdivision algorith breaks the triangles into saller triangles continuonsly until each triangle corresponds to only one pizel. The new triangles are sonewhat noncoplanar. The midpoints of the edges forming a triangle nnder consideration are moved a random distance from the edges in direction related to the normal of the triangle. These new midpoints are joined to form a now trianglo. Each edge of the new triangle is connected to a corresponding vertex of the original triangle to form three more triangles. In this manner each triangle is divided into four smaler triangles as illustrated in Figure 3.13. Sone problens may arise if


Figure 3.13: Subdivision of triangle [30]
adjacent triangles are processed simaltaneously. If their shared midpoint is not moved to the same position, the surfaces will not meet at the common edge. This can be corrected by sharing information between the processors abont the midpoint's now position so both will use the same placement. Another solution is to move the midpoint in the direction of the average normal of the two triangles sharing the edse; still the processors must share information about the midpoint's exact displacement along the average normal.

Once the subdivision process is completed the shading values are determined from the shade of the original triangle and the orientation of the normals of the new triangles. The shading values may be obtained using any of the shading models mentioned in this chapter which uses the surface normal to calculate the value.

Several pictures were included in the paper of Fournier, et al., mostly depicting terrains. The effect was very realistic. No execution times were provided for the time required to generate the images; however, Stepoway, et a1.. clain that fractal surfaces cannot be used in real-time applications because of the complexity of generating images. Nevertheless, the realisa is impressive and fractal techniques have been used in movies such as "Star Trek II", "Vol Libre" by Carpenter and "Peak" by Mark Snilily.

Overall, this chapter has presented a wide range of shading models and techniques to achieve realistic, computer-generated images. The next chapter will examine the time-space complexity of the algorithms and discuss the advantages and disadvantages of each.

\section*{CRAPTER IV}

\section*{COMPARISON OF THE ALGORITHMS}

\begin{abstract}
There are different criteria by which to judge the shading algorithme presented in Chapter III. One such standard is the realisn of the inages generated by the algorithm. Many of the algorithms brild upon previous work in an attempt to enhance the realism of the final inages. The shading process is closely related to the modeling technique and the hidden-surface removal algorithn implemented. The modeling technique provides the basic data about the surfaces of the object. The manner in which the hidden-surface removal algorithm processes this information determines how it will be available for the shading algorith and its reflectance model; most shading algorithme profer a hidder-surface removal algorithe that processes the information scan-line by scan-line. Increased realisa of the shaded images results from improvenents in any of these three processes.

It should be noted that because the inages are produced from a numerical description of the objects, only approxiante inages of the subject matter will be attained. There are many factors which affoct the realisa of the images generated by the computer; such as the resolntion of the screen, the nuber of intensity levels obtainable, the processing power available, and the lack of a visul feedback system, to nane a fow. Therefore, precise duplicates of the objects are not possible and a degree of desired realism mest be defined.

Generally, the algorithms presented in Chapter III are based on two modeling techniques, each with a modified version as well, and varions
\end{abstract}
reflectance models. Gourand's algorithm was presented for the polygor-mesh technique and relies on the data being processed in scan-line order. The polygor-mesh technique uses low-order equations which are easy to solve, and it does not restrict the class of objects that can be modeled. Though Gouraud's algorith improves upon the constant shading algorithm by reducing contouring, it still exhibits Mach band offects. According to Caterll [7], Gourand's algorithm is difficult to use to generate highlights and the shading is affected by the orientation of the polygons in the picture. This last problem is due to the viewer and light sorrce being at the same location and causes frame discontinuities for motion pictures. Despite these problems, Gorraud's images are acceptable and the algoritha has been implemented in systeas as mentioned in Chapter III.

Phong improved upon Gourand's algorithm by maintaining shading continnity across the boundaries of the polygons. It still exhibits Mach band effects though not as noticably. However, Phong's reflectance model was based on some empirical adjustments so Blinn applied a theoretical model which portrays highlights more accurately. Though Blinn's algorithe was applied to Phong's algorithm, it is a reflectance model so it alone is not dependent on the polygon-mesh modeling technique or scan-line ordering of processing data as is Phong's algorithm. Both of these algorithms produce images of better quality than Gourand's.

The Newell-Sancha algorithm also uses the polygon-mesh modeling technique but it requires the data to be processed by area rather than scan-line because it shades entire polygons at the same time. Since no effort was made to shade continuously across the polygons' edges, this algorithe exhibits considerable contouring and the Mach band offect; and
thms, the images are not as realistic as those from the previous algorithms. Although this alsorith was an early attempt to display transparent objects, no effects of refraction are modeled.

Whitted's algorith conld be applied to either polygon-mesh or curved-patch modeling techniques. It requires that the information about the objects be processed in the form of ray-tracing trees. The algorithm accounts for light sources within the scene being displayed and reflections between objects, neither of which were modeled in the previous algorithms. The images are very realistic but require large anounts of computations, and do not account for diffuse reflections from distributed sources; also highlights do not degrade gracefully as surfaces become less glossy.

Catmull's algorithn created realistic inages nsing a specific class of curved patches called bicubic patches. He claims polygons create silhouettes that are not smooth and quadric patches cannot model any arbitrary object. The algorithm divides the patches into subpatches no larger than the size of one pixel before performing the shading or hidden-surface removal processes; thus, the information is processed by pizels. Orerall, the bicubics are high-order equations and are difficult to deal with. The subdivisions require large amounts of computations. Vorking at the pirel level creates aliasing problems not easily solved but eliminates the Mach band offect.

Cook and Torrance presented a reflectance model independent of both the modeling technique and the manner in which the information is processed during the hidden-surface reaoval procedure. It relates the brightness of the object, as woll as what it is composed of, to the intensity and size of each light source. Cook and Torrance foel that all of the previous
algorithms display all objects as if they vere made of plastic. They use the information about the object's composition to deternine exactly how light will be reflected to display more realistic images true to the material that composes the objects. They clain to do all this without increasing the overall execution time.

The final algorithm presented in Chapter III explains a new modeling technique based on fractal matheatics. It is specifically developed for natural objects becanse of their nor-deterministic nature. Jsing the previous modeling techniques on objects such as saoke, clouds or monntains, Which do not have regular features or simple macroscopic structures, requires excessively large numbers of primitives, oither polygons or patches. Fractals provide random terture and structure to objects modeled coarsely with planar triangles. Textnro-mapping attempts this offect but is too regnlar becanse it repeats the pattern and therefore, appears namatural. Another advantage is that fractals are not defined at a predeternined level of resolntion so distant and very close scenes are still quite realistic. Also, the computational effort is proportional to the complexity of the images. Fractals can model deterministic objects, too, but the computations are more demanding than any of the previous algorithns. This concludes the comparison of the algorithme presented in Chapter III based on realism and other problems, such as implementation. Unfortunately, despite its importance, realism is a very subjective criterion.

The most important critorion is the speed of execution so that the inages are able to respond to inputs on real-time basis. If the time required to generate successive inages is too long, the inage update rate will degrade causing flicker. The time complexity of the algorithms will be
analyzed in this chapter. The first section presents routines for standard functions, such as addition and multiplication, then analyzes them for their speed of erecution. The hardware requirements of the processor model of the system are discussed based on these functions. These routines serve as subroutines for encoding the algorithes into functional-block representations in the second section and different architectures are applied to make the algorithme ran more officiently. The final section compares the algorithas based on the criterion of speod of execution.

\subsection*{4.1 Basic Routines and Processor Model as Standards for Comparison}

The purpose of this chapter is to analyze the execrion times required for the shading algorithes. Some assmptions have been made about the processor model to isolate the amount of time required for the shading algorithms. First, the size of the memory is as large as necessary. Since the mapping of the memory is beyond the scope of this paper, no contention problems exist so the time required to access memory locations is assumed to be negligible. Also, the time to actually display the inage on the screen is not considered. Lastly, there is no limit to the hardware available to implement the system. If forr multiplications are perforned simultaneousiy. four mitipliers are available. This increases the cost of the system but reduces the speed of execution. Of course, other methods besides simply adding hardware are investigated. This is particularily true when computing an undetermined nuber of values; since the total hardware requirements are nnknown, other architectures must be utilized to minimize the ezecution time.

The processor model contains the necessary hardware as described in the procedures that will follow. Nevertheless, some information is vital to the shading comprations and the time necessary to calcriate this information is discrssed. Examples of such information include the determination of normal vectors for polygons and patches, extra processing of object models, and correlating data within the scene as with ray-tracing and soae hidder-surface removal algorithes. The processor model is discrssed in this section after the analysis of execution times for addition; subtraction; mltiplication; division; square roots; exponentials; cosines; sines; inverse cosines; tangents; exponentiation; dot products; natrix products; vector addition, magnitudes and normalization; and smanations as woll as the determination of normals and Eidpoints. All nambers are assmed to be signed, two's-complement, fixed-point mubers that are scaled to values less than one. Although the systen is a 3-bit machine, most of the values are only 16-bit with the higher precision provided for maltiplication. Here n will be considered 16 and the system will be a 2 -bit system. Therefore, two successive multiplications may be performed before an overflow is likely to occur and truncation becomes necessary.

As stated, the execution times of several functions and processes are analyzed in this section. These times will be used in the next section when the shading algorithms are transformed into functional-block representations. Many of the execntion times for the procedures were calculated using the material from Hwang [20] and Shanblatt [29]. Most of these times are measured in increments known as \(\Delta_{g}\) which is the delay of a single NAND, NOR or INVERTER gate. This helps to keep the comparison independent of the technology used to implement the system.

The first procedure is addition. An n-bit, (up to 64 bits), Carry-Look-Ahead Adder, CLA, is used which produces an (n + 1)-bit sum. It is a two-level design based on 4-bit Block CLAs. The execution time regnired, \(\Delta_{T}\), is \(12 \Delta_{g}\). For subtraction the subtrahend is complemented then is added to the minuend to form the desired difference. Complementation requires \(3 \Delta_{g}\) so the total time needed for subtraction is \(15 \Delta_{g}\).

A Baugh-Wooley array multiplier is used to implement multiplication [2]. An n-bit mitiplicand and maltiplier will produce a 2n-bit product. The execution time required is based on the nuber of bits; \(\Delta_{T}=(4 n+3) \Delta_{g}\).

The next eight procedures are implemented with the CORDIC algorithm first developed by Volder in 1959 [32] then later discrssed by Valther [33] and Lawitzke [21]; Walther provides a comprehensive discussion of how to implement the CORDIC algorithe for circular, linear and hyperbolic functions using either the rotation or vectoring modes which he calls a mified algorithm. The unit of COBDIC delay, \(\Delta_{C}\), is the result of \(n\) shifts and adds requiring 2n clock cycies where \(n\) is the number of bits in the result and each clock cycle is at least as long as \(\Delta_{T}\) for addition. Based on the CLA's execution time, \(\Delta_{C}\) is appromimately \(24 n \Delta_{g}\). One function implemented is division. Generally, the dividend is at least \(n\) bits but no more than \(2 n\) bits in length and the divisor and quotient have \(n\) bits. Division is a linear function and is implemented using the vectoring mode. It requires one \(\Delta_{C}\) or \(24 n \Delta_{g}\) where \(n\) rofers to the number of bits in the quotient. Most of the seven remaining functions implemented with the CORDIC algorithm require feeding back the outputs and dividing out a constant term. The square root function is a hyperbolic function using the vectoring mode and
requires \(\Delta_{C}\) and one division process or \(48 n \Delta_{g}\). Exponentials are also hyperbolic functions but use the rotation mode. Two CORDIC delays are again needed so the delay is \(48 n \Delta_{g}\). The cosine function is circular and uses the rotation mode. It also requires \(2 \Delta_{C} s o\) that \(\Delta_{T}\) is \(48 n_{g} \Delta_{g}\). The sine function is similar to the cosine function and requires the same delay. The inverse cosinc is first evaluated by finding the inverse sinc then using a trigonometric relation for the final result. The inverse sine is defined as
\[
\begin{equation*}
\sin ^{-1} \gamma=\tan ^{-1}\left[\frac{\gamma}{\left(1-\gamma^{2}\right)}\right] \tag{74}
\end{equation*}
\]

This function requires a multiplication, subtraction, square root and one division then the inverse tangent is ovaluated using the CORDIC algorithm which uses one \(\Delta_{C}\). Then the arc cosine is evaluated using
\[
\begin{equation*}
\cos ^{-1} \gamma=\frac{\pi}{2}-\sin ^{-1} \gamma \tag{75}
\end{equation*}
\]

Which has a total time delay of \((100 n+33) \Delta_{g}\). The tangent function is implemented by simultaneously calculating the sinc and cosinc functions and then dividing them, during which the constant terms cancel. The tangent requires \({ }^{2} \Delta_{C}\) or \(48 n \Delta_{g}\). Exponentiation is the last Cordic function and is evaluated using the identity for \(c=a^{b}\) :
\[
\begin{equation*}
c=e^{(b \ln a)} \tag{76}
\end{equation*}
\]

Natural logarithme can be implemented with the CORDIC algorithm nsing \(2 \Delta_{C}\). Thus, the total delay will be \(\left(4 \Delta_{C}+131\right) \Delta_{g}\) or \(3203 \Delta_{g}\) when \(n\) is 32.

Since the images are threodimensional each vector has three components. This, to form dot products requires three soparate multiplications which may be performed in parallel and two additions so the
delay is that of aultiplication plus \(24 \Delta_{\mathrm{g}}\). On the other hand, because of the bicubic patches discrssed in Catmull's algorithm, some matrices are as
 as each row of \(A\) is multiplied by each colman of \(B\), \(C\) mitiplications and (c - 1) additions are necessary. Howover, the multiplications can be completed simultancously. If \(c=4\), the nmber of addition delays can be reduced to two by finding the suas in parallel according to the recurrence computation array, also called tree reduction, shown in Figure 4.1. For all matrix multiplications performed in this paper \(c=4\) so the number of additions needed is two. But overall these operations are required mp times for the completion of the entire matrix multiplication procedure when performed separately. By using mprocessing elements, PEs, entire colums of the product can be calculated by each PR simultaneousiy. This reduces the total delay time to \(p(4 n+27) \Delta_{\text {g }}\) but substantially increases the hardware becanse each \(P \mathrm{~m}\) met have c mitipliers and at least (c/2) adders -ith a maximu of \(c\) adders.

Vector addition uses three parallel adders to swe the vector components separately and simultaneously. It requires the same delay as scalar addition. Determining the magnitude of vectors requires taking the square root of the sum of the squared vector components. The vector normalization process then divides this number into each component of the original vector. The former requires three simultancous multiplications, two additions, and one square root while the latter additionally requires three simultaneous divisions. Thus the total delay to calculate the magnitude is (52n +27 ) \(\Delta_{g}\) and to normalize the vector is \((76 n+27) \Delta_{g}\).


Figure 4.1: Addition array to sum four addends most expediently

Figure 4.1. This reduces the computation from (a - 1) addition delays, Where a is the number of addends, to \(\log _{2} a\). Thns, the total delay is \(12 \log _{2}\) a \(\Delta_{g}\). The minimum number of adders needed to accomplish this is half the nuber of addends where each can send its swirecty to any other adder to expediently transfer data. The maximu would be equal to a with the adders arranged in an array with predefined data paths siailar to that shown in Figure 4.1.

Finding the normal vector of a planer polygon is done by calculating the cross product of any two adjacent sides. Since the equations for the sides of the polysons are not known, vectors in the same direction can be calculated by subtracting corresponding components of the endpoints; this requires three simultancous subtractions for each vector or \(15 \Delta_{g}\) overall. Then six simultaneous multiplications and three simultaneous subtractions are necessary to perform the cross product. The total delay, including finding the vectors, is \((4 n+33) \Delta_{g}\). The final procedure is to find the midpoint of linear line segments. The corresponding components of the endpoints are added needing three simultancous additions and then each sma is split in half using three simultaneous divisions. The total delay is \((24 n+12) \Delta_{g}\).

All of the execution times discussed above are tabulated in Table 4.1 for both the general case and when \(n\) is 32 . They will be used in the next section while transforming the algorithms into functional-block representations.

The hardware requirements now presented for this system are subject to change after the shading algorithms have been trangformed. These requirements are based on the parallel operations performed to calculate the

Table 4.1: Smany of execrtion times for basic procedures
\begin{tabular}{|c|c|c|}
\hline Procedure & Execution Time, \(\mathbf{A}_{\mathbf{T}}\) & \(\Delta_{T}\) When \(\mathrm{m}=32^{2}\) \\
\hline Addition & \(12 \Delta_{8}\) & \(12 \Delta_{8}\) \\
\hline Subtraction & \(15 \Delta_{8}\) & \(15 \Delta_{8}\) \\
\hline Multiplication & \((4 n+3) \Delta_{8}\) & \(131 \Delta_{8}\) \\
\hline Division & 24n \(\Delta_{8}\) & \(768 \Delta_{s}\) \\
\hline Square Root & 48n \(\Delta_{8}\) & \(1536 \Delta_{8}\) \\
\hline Exponential & 48n \(\Delta_{8}\) & \(1536 \Delta_{8}\) \\
\hline Cosine & 48n \(\Delta_{8}\) & \(1536 \Delta_{8}\) \\
\hline Sine & 48n \(\Delta_{8}\) & \(1536 \Delta_{8}\) \\
\hline Asc Cosine & \((100 n+33) \Delta_{s}\) & \(3233 \Delta_{8}\) \\
\hline Tangent & 48n \(\Delta_{8}\) & \(1536 \Delta_{8}\) \\
\hline Exponentiation & 120n \(\Delta_{8}\) & \(3203 \Delta_{8}\) \\
\hline Dot Product & \((4 n+27) \Delta_{8}\) & \(155 \Delta_{8}\) \\
\hline Matrix Multiplication & \(p(4 n+27) \Delta_{s}^{2}\) & \(155 \mathrm{p} \Delta_{8}\) \\
\hline Vector Addition & \(12 \Delta_{8}\) & \(12 \Delta_{8}\) \\
\hline Vector Magnitude & \((52 n+27) \Delta_{s}\) & \(1691 \Delta_{8}\) \\
\hline Normalization & \((76 n+27) \Delta_{g}\) & \(2459 \Delta_{8}\) \\
\hline Sumation & \(12 \log _{2} a_{8}{ }^{3}\) & \(\log _{2}\) a \(\Delta_{8}\) \\
\hline Normale & \((4 n+33) \Delta_{8}\) & \(161 \Delta_{8}\) \\
\hline Midpoints & \((24 n+12) \Delta_{g}\) & \(780 \Delta_{g}\) \\
\hline
\end{tabular}

\footnotetext{
1- \(n\) is the number of bits in the numbers.
2- Matrix \(A\) is me, \(B\) is \(c x p\). Function performed is \(A\) B.
3- is the number of addends to be smmed.
}
procedures discussed above. The majority of the hardvare is necessary because of the vector computations that are performed, particularily the matrix multiplication.

First, the consequences of using a 3-bit machine are discussed. As stated, the majority of the numbers are limited to only 16 bits but the system is capable of 32 to accommodate the larger products from multiplication. Adhering to these 1 imitations means there are initially 16 bits to form values but the number of bits in the shading values is likely to increase since most of the shading algorithms require at least one multiplication. Thes, the number of bits used to calculate shading intensities provides a maximul of \(2^{32}\) intensity lovels. Even though the values of \(x, y\) and \(z\) are 1 inited to 16 bits, this limitation provides more than adequate screen resolntion. Besides, the relationship between the screen resolution and the number of intensity levels available was discrssed in Chapter II with the greater number of intensities favored over the higher resolution. For this reason even if these limitations did not allow for such high resolutions or vastly numerous intensity levels, they would not adversly affect the images generated.

The most demanding procedure, in terms of hardware, is matrix multiplication. The recurrence computation was used for this procedure as well as to generate sumations. Osing the recurrence compriation array to reduce the delay cansed by the additions means noeding from two to four adders per processing element because there are two possible ways to implement the recurrence array. The first is to use two adders which are capable of sending their sums to each other and themselves directly to avoid delays from transforring data. These sum are used as inputs for the next
addition. If there are four addends, as is the case with matrix multiplication, each adder receives two addends and forms a sun. Then one of the adders adds the two swe just produced to form the final sum. The second method of implementation is to use four adders in an array as denoted by the plus signs in Pigure 4.1. The adders of the first row compute their sum then send then to the adders in the next row as designated by the 1 ines marking the data flow pattern. The direction of the data flow is predetermined and is static so this hardware is dedicated whoreas the data flow pattern of the previons method is programable so a single addition can easily be performed. The advantage of this second method is that if the number of addends used as inputs to the smantion is greater than four, this method lends itself readily to pipelining; four addends could be applied to the first row of adders after one addition cycle while the final sum of the previous four is being calculated by the second row. However, the matrix multiplication procedure requires four of the recurrence arrays so large nubbers of addends can be officiently sumed using all four arrays. Thus, using the first method requires less hardware and the advantages of the second method are still retained. Overall, the matrix maltiplication procedure needs eight adders, two for each processing element. It also needs 16 mitipliers, four for each processing element. The quadrupifate hardware demands cut the execution time to one quarter of that without the extra hardware.

Vector normalization and cross products require three simultaneous divisions and hence, three dividers. The process of determining vectors from polygon vertices to use for the cross products requires six simultaneons subtractions. Since there are already at least six adders
because of matrix multiplication, only six complementor circuits need to be added to the hardware 1ist. And lastly, the CORDIC alsorithm requires a shift register. Since three dividers are needed, the condiC circuitry is tripled.

This concledes the hardware requirements of the basic routines discussed above. Besides the assmptions stated at the beginning of this section, no other demands are made of the processor model at this time. Nevertheless, if some of the procedures are performed in parallel to speed the execrion of the shading algorithms, nore hardrare may be necessary. Methods to reduce the execution times of the algorithms are investigated in the next section of this chapter, along with their impact on hardware requirements. The algorithes are transformed into functional-block representations using the processes described in this section as basic brilding blocks.

\subsection*{4.2 Functional-block Transformations of the Algorithms}

In this section the shading algorithmes presented in Chapter III are transformed into functional-block representations nsing the rontines analyzed in the previous section as the functional blocks. One problem with performing a time analysis on these algorithas is due to the relationship between the object-modeling technique, the hidden-surface algorithm and the shading algorithm implemented. Because the overall appearance of the shaded images can be improved by introducing changes to any of these three areas, one cannot simply analyze the shading algorithe alone. For this reason improvements to the object-modeling technique and the hidden-surface
algorithe are also transformed to functional-block representations when decaed that they are critical to the operation of the shading algorithm. These times must be considered along with the actual shading algorithm execution time during the time analysis.

Another problem with comparing the algorithns is that each makes different assmptions. For example, most of the algorithes assue that the normal vector to the polygon is known bofore performing the shading but Catmull carries out an extensive approximation of the normals. Gomrand and Newell, et al., claim to know the incident angle and calculate its cosine directly whereas Blinn, Whitted and Cook, et al., know the vectors for the viewer and light source's directions and nse dot products to deternine the cosines of their angles with the normals. On the other hand, Phong approximates the cosine of the angle for the specriar component directly from the normal but still uses a dot product for the cosine of the incident angle. Blinn approximates the direction of specular reflection and its angle with the normal but Cook, et al.. assme they are known while the other algorithme do not itilize then at all. Catmall and Fournier, ot al., do not implement their own shading algorithm so they make the same assuptions of the shading algorithm used. Cook, et al., and Whitted are the only algorithme that demonstrate the additive property of different light sonrces.

Yet, the impact of these assumptions is not always noticeable. To calculate the normal for planar polygons requires much less time than to carry out the approximations of normals for bicubic patches. Therefore, the planarpolyson normal calculation is nearly negligible in comparison. The additive property associated with multiple light sources is applicable
across the board so it is ignored. For Phong to approximate the cosine is only one gate delay greater than using a dot product. However, for Nowell, et al., and Gourand to directly calculate the cosine takes almost ten times longer than performing the dot product so some advantages are gained here that will be considered during the final analysis.

After each algorithm has been transformed, it is applied to the simple image of Figure 4.2. The figure depicts a raster of pixels with an object modeled having six surfaces. Three of the surfaces are hidden from the viewer and are drawn with dashed lines. Note that point \(G\) is located behind point \(A\) and each raster point is represented by its corresponding visible and hidden surfaces. The algorithes are applied to this object while assmang only one light source as atandard for the time analysis. The last section of this chapter sumarizes the time strdies of the next eight subsections.

\subsection*{4.2.1 Gourand Transformation}

This algorithe is presented in Section 3.1. The shading value is interpolated across patches or polygons to give the appearance of smooth, cusped surfaces.

Although Gourand presented his algorithm for objects modeled using Coons patches, it is analyzed as applied to polygons. Gourand assmes that the viewer and light source are at the same location and thus, both make the same anglo, 0 , with the normal to the surface. The shading value is calculated at the highest and lowest points of the edges of the polygons, (the vertices of the polygons), during the hidden-surface removal algorithm


Figure 4.2: Image to be shaded with raster of pixels
using equation (1). The functional-block diagran for this equation consists of a cosinc operation and two successive multiplications as shown in Pigure 4.3. The total time needed for this calculation is 2798 Ag \(_{8}\).

The number of scan lines intersecting each edse is determined during the hidden-surface algorith as vell. Using this and the two ondpoints' shading values, a shading "slope" is calculated using equation (6). This slope is also calculated during the hidder-surface algorithm. The functional-block diagran for the "slope" is shown in Figure 4.4. Not includiag the time to calculate the ondpoints" shading values, the "slope" requires \(783 \Delta_{g}\).

Starting from the highest endpoint of a polygon edge, this "slope" is added to the shading value of the present edgo-pizel to obtain the shade of the point of intersection of the next scan line with the same edge. Since the endpoint shades and edge slopes have all been calculated during the hidden-surface algorithm, this procedure requires only an addition for each interior point on the polyson edges. Using these values, the interior points of the polygon, (those not on edges), are interpolated using equations (7) and (5) as depicted in Figures 4.5 and 4.6. The complete interpolation requires \(941 \Delta_{\mathrm{g}}\). The hardware required for each of these procedures is within the 1 inits of the existing processor model.

This is really the only algorithm that provides a method for its implementation. It uses the shading "slope" to speed the calculation of the shading values for the polygon edges and interpolates all interior points as discussed more fully in Section 3.1. It is possible to process segments of the scan lines in parallel after the segment ondpoints' shades have been calculated. The image in Figure 4.2 has total of 13 visible segments


Figure 4.3: Functional-block diagran of Gouraud's shading model


Figure 4.4: Functional-block diagran for calculating the shading "slope"


Figure 4.5 : Functional-block diagran for calculating the interpolation coefficient


Figare 4.6: Functional-block diagram of the interpolation calculation
which conld easily be done in parallel by adding enongh hardware. However, the number of segments composing inages is neither constant nor predetermined. Also, since the length of each segment is not the same, some segments require more total time than others.

A better method is to calcelate shades for pizels in parallel. As long as the endpoint shades can be coordinated with each segments interior points, each interior pixel's interpolation can be performed in parallel. By making each pizel's interpolation independent, the timing is more miform and lends itself better to pipeline and parallel processing than segments do. Each interpolation requires three subtractors, two multipliers, one adder and one divider. The entire interpolation is used as a pipeline, there are several parallel pipelines to calculate data for several pixels at once. Using two parallel adders to calculate each segment's endpoints' shading valuos, the information can be available overy \(12 \Delta_{g}\). After this delay, one or more of the pipelines conld begin calculating pixel shading values. If there are fower pixels in the first segent than parallel pipelines, each realining pipeline may have to wait one or more additional delays.

The delay of each stage of the pipeline must be \(783 \Delta_{\mathrm{g}}\) plus some latch delay becanse the division process is the most time-consuning. After the first stage is completed, several pairs of endpoints' values will be available so the pipelines can continue processing the entire picture. The pipelines will have siz stages so the delay for each is ( \(N+5\) ) \(768 \Delta_{8}\), Where \(N\) is the number of values processed. This delay includes filling and emptying the pipeline. Since the pipelines are operated in parallel, the total dolay is this plus at least one addition delay: (N +17 ) \(768 \mathrm{~A}_{\mathrm{g}}\).

The hardware necessary for this architecture primarily depends on the number of parallel pipelines used. Assmang there are three, the systen would need nine subtractors, six multipliers, three adders and three dividers plus two more adders to calculate the edge shades and a buffer to store the edge shades until a pipeline is ready to use them as well as latches between the pipeline stages. So besides the latches and buffers, six adders and three complementors must be added to the system. A general block diagram of the architecture is presented in Figure 4.7.

When applying this algorithe to the inage in Figure 4.2, there are two parts to consider. The first is the extra processing that ment be done during the hidden-surface removal algorithe to find data specifically for the shading portion. The second part is the shading portion itself.

During the hidden-surface algorithn, shades are calculated for the vertices of the polysons and "slopes" are deternined for each edge. The vidget in Figure 4.2 has six polygons, eight vertices and 12 edges. Assming that the shading information is only calculated for visible portions of the image, seven vertex shading values and nine "slopes" mist be calculated. This requires a total of \(26,633 \Delta_{g}\). This time is greatly dependent on the implementation of the hidden-surface algorithm and could possibly be reduced. However, as it stands, it does not impose any new requirements on the hardware of the system.

Overall, the inage has 15 interior edge points whose shading values must be calculated. In total there are 13 segments and 19 interior polygon points. Starting from point \(C\) of edge \(C D\), the first segment has two pinels \(s 0\) after \(12 \Delta_{\mathrm{g}}\) two pipelines will be started. Normally, after another \(12 \Delta_{g}\) the third pipeline is started but in this case the endpoints of the next


Figure 4.7: Functional-block diagram of the entire shading calculation
segrent are vertices of polygons meaning their shading values are already known so no addition is necessary. Since there are 19 pizels, each pipeline calculates shading values for six. The last pixel's value is found by one of the first two pipelines since they finish before the third. (This last pipeline delay would have absorbed the extra addition delay in the beginning.) Thas, the total delay for Gourand's algorith when applied to the standard inage for \(N=7\) is the pipeline delay and one addition; thes, \(\Delta_{T}\) is \(9228 \Delta_{g}\).

\subsection*{4.2.2 Phong Transformation}

Phong's algorithe is presented in Section 3.2. It assmes that the light source and viewer are infinitely far away. This means that the rays of light will be parallel and that distances do not affect the shading values. The algorith assmes normal vectors are bnown at vertices then instead of interpolating shading values across the polygons, normals are interpolated for each pirel. The most timo-conswing portion of this process is that the normals must be normalized after they have been approximated. Although Phong assumes to know the directions of the viewer and light source, the cosine of the angle of the viever is approximated directly from the normal vector. Phong claims that finding cos \(\sigma\) in this manner is faster than interpolating it, but the difference between this method and calculating the cosine using a dot product is actually one extra \(\Delta_{g}\).

In this algorithm the calculation of normals can be considered part of the information processing during the hidden-surface algorithm. Normals are
approximated for each pixel of the inage using the same interpolation scheme of Pigures 4.5 and 4.6 that was used to approximate shading values. The functional-block diagran uses the previous figmes as its blocks and is shown in Figure 4.8. The total delay is \(4183 \Delta_{g}\). Becanse of the large number of pizels in an inage, the normal approximations vould greatly benefit from a similar architecture used for the shading interpolations for Gourand's algorithe. One difference is that the circuitry to calculate the segnents' endpoints' shading values is not needed. The other is the need for normalization circuitry.

The best architecture is to break up the normalization process into its five steps: three simultaneons maltiplications, two sequential additions, a square root and three simultancous divisions. These are added at the ond of the interpolation pipeline making it an 11-stage pipeline. Now the stage delay met be equal to the square rooter's delay: \(1536 \Delta_{g}\). Since the total delay of any two consecutive steps does not exceed the square rooter's delay, pairs of consecutive stages are joined as one stage making a six-stage pipeline with better hardvare utilization. This also decreases the total pipeline delay which is now \((N+5) 1536 \Delta_{g}\). As with all pipelines, the greatest time savings are obtained when large nubers of the calculations are performed. The hardware requirements of this pipeline are those specified for the normalization process mentioned above and for the interpolation pipeline in the last section. The total requirements are five multipliers, four adders, three subtractors, four dividers and a shift register. If three of these are placed in parallel, the extra hardvare units required by the system are 13 adders, three complementors and nine dividers.


Figure 4.8: Functional-block diagram of the normal vector approximation

The realining calculations are part of the shading portion of the algorithn. To calculate the cosine of the incident angle requires a dot
 estimating cos \(\sigma\) as in equation (17) requires \(156 \Delta_{g}\); this calculation is pictured in Figure 4.10. Lastly, Phong's shading calculation is equation (11). Dsing the cosine values, a shading value is computed according to the functional-block diagran of Figure 4.11. The ontire calculation, including evaluations of the cosines, uses \(4284 \Delta_{g}\). The bigeset time-nser is the exponentiation of the cosine value for the specular reflection. With the CORDIC implementation of this function, unless \(c_{1}\) is greater than 30 , it is faster to perform the function using consecrive multiplications. However, since \(c_{1}{ }^{\prime} s\) value is not known, exponentiation is used here.

Nevertheless, this function can be broken into three steps. The first and last require \(1536 \Delta_{\text {g }}\) so this is the stage delay of apipeline implementation. Both cosine operations can be combined as one stage and the operations parallel to the exponentiation form four stages parallel to those of the exponentiation. All in all, there are six stages in the pipeline that contribute to the total delay of \((N+5) 1536 \Delta_{g}\). Using three of these in parallel, the hardware mat have 27 multipliers, 18 adders, six subtractors and siz shift registers. Therefore, in addition to the hardware added for the normal interpolations, 11 mitipliers, six adders and three shift registers met also be added to to the systen.

Applying this algorithe to the image in Figure 4.2 increases the execution time of the hidden-surface algorithm. There are 34 visible points that need to have normal vectors. Splitting these in threo, each pipeline calculates at least 11 normals with one doing an extra. The delay for this,



Figure \(4.10:\) Functional-block diagran for estinating cos o


Figure 4.11: Functional-block diagran for Phong's shading model

\begin{abstract}
with \(N=12\), is \(26,112 \Delta_{g}\). In the same manner, the shades ment be calculated for the same 34 points plus the seven vertices. This means two of the shading pipelines find 14 values and the last only finds 13 . The total delay for the Phong shading calculation is \(29,184 \mathrm{~A}_{\mathrm{g}}\).
\end{abstract}

\subsection*{4.2.3 B1inn Transformation}

Blinn's algorithm is presented in Section 3.3. Althongh the polysor-mesh modeling technique is used, the surface is presmed to be composed of microfacets oriented in random directions.

Blinn claims that there is no increase in execntion time over Phong's algorithm. He assumes that the directions of the viewer, light sonrce and nornal are known. However, Blinn's algorithm is an attempt to improve on Phong's algorithm. Since no atteapt is made to alter the shading values across polygons to smooth the shading, it is assumed that Blinn relies on Phong's technique to interpolate the normal vectors. Thns, overything in the last section that pertains to interpolating the normals applies here as wel1.

Another process added to the hidden-surface algoritha is the deternination of the direction of the specular reflection, \(\bar{H}\), as in equation (21) which is shown in Figure 4.12. \(\overline{\text { He }}\) needs to be calculated only once per change in light sonrce direction so this is an addition of \(2471 \Delta_{g}\) to the hidden-surface algorithm's delay and two maltipliers, 12 dividers, 17 adders, three complementors and one shift register, including the hardware for the normal interpolations.

Blinn uses \(\overline{\mathrm{B}}\) to calculate the angle \(\beta\) that it makes with the normal.


Figure 4.12: Functional-block diagram for calculating the direction of the peak specular reflection

This is unnecessary and time-conswing. The cos \(\beta\) is the value needed for the shading calculations and it can be found using a dot product which uses \(155 \Delta_{g}\) 。

The calculation of Blinn's shades is more complicated because it uses the Fresnel Reflection Law, F; a distribution function for the facets' orientations, \(D_{3}\); a division by \((\bar{N} \cdot \bar{V})\) and a geonetric attenuation factor, \(G\). \(D_{3}\) utilizes calculations described in equations (29), (30), (31) and (32) for which functional-block diagreas are shown in Figures 4.13, 4.14 and 4.15. The complete calculation of \(D_{3}\) takes \(5954 \Delta_{g}\). This calcriation needs to be performed only once per frame so it does not drastically increase the execution time of the shading equation. The Fresnel function of equation (39) is depicted in Figures 4.16 and 4.17. Despite the fact that its calculation requires \(3832 \Delta_{g}\), it has to be found only once per change in light source direction. \(G\) is only calculated once per change in illumination as well. It was presented as equations (35) and (36) brt is combined with the division by ( \(\bar{N} \cdot \overline{\mathrm{~V}}\) ) using the short progran at the end of Section 3.3. The functional-block diagran is Figrec 4.18 and its total delay can be one of four from the various paths possible; the naximum is \(1227 \Delta_{g}\). This software requires that magnitude comparitor be added to the system which has a delay of \(48 \Delta_{g}\). These last three functions can be performed in parallel so the delay of \(D_{3}\) is added once to the shading calculation's time. Then the shading computation of equation (22) uses an additional \(262 \Delta_{s}\) for consecutive muliplications as shown in Figure 4.19. There is sufficient hardware after the hidden-surface algorithm requirements are fulfilled.

Applying Blinn's algorithm to the widget in Figure 4.2 , the normal and


Figure 4.13: Functional-block diagram for calculating \(c_{3}\)


Figure 4.14 : Functional-block diagram for calculating \(\mathbf{k}_{2}\) and \(\mathbf{k}_{2}\)


Figure 4.15: Functional-block diagran for calculating the distribution of the facets' orientations


Figure 4.16: Functional-block diagram for calculating gand j


Figure 4.17: Functional-block diagram for calculating the Fresnel function


Figure 4.18: Functional-block diagram for calculating \(G\) and the ( \(\overline{\mathrm{N}} \cdot \overline{\mathrm{V}}\) ) terns

Figure 4.19: Functional-block diagram for Blinn's shading
model

\begin{abstract}
\(\overline{\mathrm{I}}\) calculations add \(28,583 \mathrm{~A}_{\mathrm{g}}\) to the hidder-surface algorithm's execrion time. There is a one time delay of \(5954 \Delta_{g}\) to start the shading calcriations, then the shading values for the 41 pixels covered by the image, each using \(262 \Delta_{g}\), are calculated. The total delay for the shading portion of Blinn's algorithm is \(16.696 \Delta_{g}\). Thus, Blinn's clain that his algorithm did not increase the execution time of Phong's algorithm has been verified.
\end{abstract}

\subsection*{4.2.4 Newel1-Sancha Transformation}

Newe11, Sancha and Newell's algorithm, presented in Section 3.4, performs most of the hidden-surface removal and shading functions at the same time. It calculates shading information by polygon rather than scan 1inc. Shading values must still be calculated per pixel but the values are constant throughout a polygon meaning less calculations are necessary.

The hidden-surface algorithn arranges the polygons in order of increasing distance from the viewer. Shading values are calculated for polygons starting with the furthest ones using equations (40), (41) and (42). After the polygon's shading value has been determined, the entire polygon is written into meary. In this manner polygons are placed in the memory and closer ones that obscure others simply overlap them. This artomatically "removes" hidden surfaces brt it is possible to calculate several values for the same pixel as will be ovident from the example at the end of this section. The advantage of this method is that transparent surfaces are easily simulated though refraction offects are ignored. Also, no extra processing for the shading function is required in the
hidden-surface algorithe since they are performed together in the shading calcrlation.

The shading calculation assmes that the incident angle is known and so the cosinc and sine functions are evaluated directly. Figure 4.20 shows the functional-block diagran for the shading calcalation. The total delay is \(4894 \Delta_{g}\). If the closest object is transparent, when a shading value is recalculater for a pixel, the new shading value is a combination of the old and new values as found using equations (41) and (42) and illustrated in Figure 4.21. The transparency calculation is basically an interpolation but the weighting factor is already known and does not have to be calculated; however, a magnitude comparator mest be added to the systen hardware. The total delay of this computation is \(206 \Delta_{8}\).

Overall, the equations can be arranged into a threo-stage pipeline with a stage delay of \(1536 \Delta_{g}\) by breaking up the exponentiation function as was done for previons algorithms. The last three operations in Figure 4.20 plus the entire transparency calculation can be combined as the third stage of this pipeline. Thus, the pipeline delay is \((N+2) 1536 \Delta_{g}\). In this case parallel pipelines are not as necessary because fower calculations need to be performed since the data is calcrlated per polyson instead of per pirel. Thus, the only extra hardware needed for the system is a shift register and a magnitude comparator.

When applied to the inage in Figure 4.2, this algorith calculates a shading value for each of the six polygons comprising the object. Once the shade is determined it is assigned to each pizel covered by the polyson. Using the pipeline, the total delay is \(12,288 \Delta_{g}\). Though the delay is not too extensive, some of it is unwarranted because the algorithm is not


Figure 4.20: Functional-block diagram for Nowell ot al.'s


Figure 4.21: Functional-block diagran for calculating shading values for transparent objects
efficient. Assmang the inage of Pigure 4.2 is opaque, each pizel will be replaced by another shading value at least once. Worse yet, pizels on edges common to two or more polygons are replaced more frequently. Thns, at least half of the execution tine conld be eliminated by hidden-surface algorith in this example image with the object being opaque. Now assuming that the polygon ABFB is an opening rather than a surface, seven of the 41 pizels have only one shading value assigned to then but the seven are a sall percentage of the total so time may be saved by using a hidden-surface algorithm. However, whether or not an actual time-savings can be realized by using a hidden-surface algorithe would depend on its implementation.

\subsection*{4.2.5 Whitted Transformation}

This algorithm, presented in Section 3.5, can be applied to planar-polysons or curved-patches; the polyson implementation is discussed in this section. Whitted assmes that the normal vectors and directions of the light source and viewer are bnown. Nevertheless, the vectors for the reflected light, \(\overline{\text { E }}\) and trangitted light, \(T\), are calculated during the hidden-surface algorith nsing the method of ray-tracing described in Section 3.5.

Information about the way light illmanates the object is calculated on a global basis during the ray-tracing procedure. Ray-tracing is performed by starting at a point on the surface and calculating \(\overline{\mathrm{L}}\) and \(\overline{\mathrm{T}}\) from that point. These new vectors are then followed until they reach another surface where they become the now incident rays and the procedure is repeated. Therefore, these calculations are sometimes performed several times starting
from a single pixel. Equation (43) calculates \(\overline{\mathrm{V}}\) ' and the functional-block diagran is shown in Figure 4.22. The total execution time is \(2614 \Delta_{g}\). A pipeline configuration could be nsed but is not worthwhile as will be explained.

F' is used to calculate \(\bar{T}\) and \(\overline{\text { R }}\). The functional block diagran for equation (44) that computes \(\overline{\mathrm{I}}\) is shown in Pigure 4.23 and has a delay of only \(24 \Delta_{s}\) after \(\overline{\mathrm{V}}\) is known. \(T\) is fong using Snell's law to simulate refraction effects through transparent objects. The calculation of the coofficient \(\mathbf{k}_{f}\) is diagramed in Figure 4.24. Note that the vector magnitude procedures in the second step do not incinde the square root step of the usual procedure so their delay is only \(155 \Delta_{g}\). The rearining portion of the T calculation is shown in Figure 4.25. The total delay, not including the \(\overline{\mathrm{V}}\) calculation, is \(2882 \Delta_{\mathrm{g}}\). It is not worthwhile to pipeline this compration becanse of the data dependency anong the various steps; none can proceed until \(k_{f}\) is bnown but the delay for \(k_{f}\) practically canses the entire delay of the \(\bar{T}\) calculation.

However, a two-stage pipeline could be used where the first stage finds \(\overline{\mathrm{V}}\), and the last stage finds F and \(\overline{\mathrm{T}}\). The stage delay would be \(2906 \mathrm{~A}_{\mathrm{g}}\) so the pipeline delay is \((N+1) 2906 \Delta_{g}\). The required hardware inciudes six multipliers, five adders, one complementor, two dividers and a shift register which are within the 1 imits of the processor model. Using three of these pipelines in parralel, two multipliers, seven adders, three dividers and three shift registers need to be added to the system.

The shading calculation of equation (45) is diagramed in Figure 4.26. The total delay is \(298 \Delta_{g}\). This computation can be pipelined into three stages with a stage delay of \(155 \Delta_{g}\). The first stage inciudes the first


Figure 4.22 : Functional-block diagran for calculating \(\overline{\mathbf{V}}\),


Figure 4.23: Functional-block diagram for calculating the direction of reflection


Figure 4.24: Functional-block diagram for calculating \(\mathbf{k}_{f}\)


Figure \(4.25: ~ F u n c t i o n a l-b l o c k ~ d i a g r a m ~ f o r ~ c a l c u l a t i n g ~ t h e ~\)


Figure 4.26: Functional-block diagran for Whitted's shading model
three parallel operations. The second stage has the mitiplication performed parallel to two successive additions. The last stage is the last addition. The total pipeline delay is (N + 2) \(155 \mathrm{~A}_{\mathrm{g}}\). Even with three parallel pipelines the procedure does not need any extra hardware.

Applying the ray-tracing procedure to the image in Figure 4.2 is somewhat trivial if the object is opaque becanse there is only one object and, therefore, no surfaces for the \(\overline{\mathrm{E}}\) and F rectors to bounce off of. There are 82 pixels in both the visible and hidden faces but since the light rays never strike the hidden-surfaces oniy 41 pixels require one ray-tracing calcriation each. Each pipeline computes values for 13 pirels with two doing an extra. The total delay added to the hidden-surface algorithe is 43.590 \(\Delta_{g}\). After the hidden-surface algorithm is performed, only 41 pirels are visible so the delay for Whitted's shadias procedure is \(2480 \Delta_{g}\) when \(N\) is 14. So the ray-tracing comprations are very time-consuming but the shading is very fast. If part of the object is transparent, the nuber of Vectors to calculate is greater and the ray-tracing execntion time increases but not the shading time. Assming polygon ABFE is transparent, seven extra sets of \(\overline{\mathrm{E}}\) and \(\overline{\mathrm{T}}\) rectors met be calculated because the initial \(\overline{\mathrm{T}}\) values will strike the previously hidden faces. Thus, the ray-tracing tine increases to \(49,404 \Delta_{g}\); an increase of \(5814 \Delta_{g}\).

\subsection*{4.2.6 Catmall Transformation}

Catanll's algorithm is presented in Section 3.6. It does not actually present a specific shading model but clains any can be used that are based on the surface normal. The algorithm can be applied to both polygons and
curved-patches but is presented for curved-patches called bicubics. First, surface normals are approximated for each patch. This is a very time-consming process attributed to the hidder-surface algorithm. Nert, the object model is modified using a subdivision algorith to break the patches into pixel-size subpatches. The approximated surface normals are divided with the patches so that each subpatch has its own normal.

The normals are approximated using several matrix multiplication operations. All of the operations have at least one \(4 \times 4\) matrix: several involve the vectors \(D\) and \(V\) from equations (48) and (49) since the bicubic equations are functions of \(n\) and \(\nabla\). It is assumed that the first and second derivatives of these vectors are bnown. Values for ( \(n, \nabla\) ) that are of particular interest are \((0,0),(0,1),(1,0)\) and \((1,1)\). If these values are plugged into the vectors and stored as constants for use during the matrix multiplications, long strings of sumands can be avoided becanse the additions can be performed in parallel with the maltiplications. Otherwise, each sumand as found in Pigure 4.27 would have a possible 256 terms, plus the number of mitiplications would increase becanse polynomials are being mitiplied. By using the constant vectors, the nuber of sumands that must be generated increases but there is an overall savings in time.

The time analysis for the normal approzimation is only discresed for one component of the bicubics, \(x\). The other two are calculated in a similar procedure that requires the same amount of time and hardware. Referring to Figure 4.27, the smmands are calculated for equations (53), (59), (60) and (61). Since matriz multiplication is associative, the rightmost pair are mitiplied first to fully utilize the hardware and minimize the delay. The matrix moltiplication of amematrix and acepmatrix is sot up so that


Figure 4.27: Functional-block diagra for smand generation
the delay is dependent on the value of \(p\). For \(\nabla^{j}\) the value of \(p\) is one so the delay is minimal. The product of the first step is also a \(4 \times 1\) matrix so the delay of the second matriz maltiplication is also minimized. The total delay to generate a sumand is \(441 \Delta_{g}\). This can be made into an officient, threestage pipeline becanse each of the stages has nearly the same delay. The pipeline's delay is \((N+2) 155 \Delta_{g}\).

Dsing these smands, equations (53), (59), (60) and (61) can be evaluated using the sumation and complementing processes. In equation (53) \(x_{n}\) has two termes so the delay is \((12+3) \Delta_{f}\). The nubber of sumands in equations (59) and (60) is four. Complementations can be performed in parallel before the sumation begins. The total delay is \(27 \mathrm{~A}_{\mathrm{g}}\). Equation (61) has eight sumands and its delay is \(39 \Delta_{g}\). These sumations can be performed as the sumands are senerated so the delays are insignificant. The extra hardware necessary for the pipeline and sumations is 49 nultipliers and 43 adders.

The final computation for the normal is a \(4 \times 4\) multiplication as in equation (56) and shown in Pignec 4.28. The value of \(p\) is four so each stage takes \(524 \Delta_{g}\). Forming a two-stage pipeline, the total delay is \((N+1) 524 \Delta_{g}\). The necessary hardware is covored by the extra added for the extra hidden-surface calculations. However, all of the hardware mat be tripled so that all three components can be calculated in parallel. The total additional hardware is 179 multipliers and 145 adders which is significantly more than that needed by any of the other algorithms.

According to Catmull, each component requires 30 additions during each subdivision in the subdivision algorithm. The components may be calculated simultancously. Catmull estimates that the number of subdivisions needed to


\section*{Figure 4.28: Functional-block diagram for approximating one nornal component for a bicubic patch}
completely divide a patch is siightly greater than one third of the numer of pixels covered by the patch. The total delay added to the modeling portion of the processing is then (360 sub) \(A_{g}\) where sub is the nmber of subdivisions required.

Applying this algorith to the sizmo in Figure 4.2, it requires slightly greater than 35 subdivisions when edge pizels that are common to two patches are connted twice; once for each patch. This means an increase in the modeling procedure of \(12,600 \Delta_{g}\). Normals are approximated per patch so six are neoded here. This adds \(3668 \Delta_{8}\) to the hidder-surface algorithe's execrition time. Altough the additional dolays are relatively short, the extra hardware is quite extensive.

\subsection*{4.2.7 Cook-Torrance Transformation}

Cook and Torrance developed a shading model that is presented in Section 3.7. In their original paper they discussed color shaded images extensively. One of their concinsions is that objects made of certain aterials have specular reflections and diffuse reflections of different colors. Since all of the other algorithms discussed in this report do not address the issue of colored images, this part of the Cook-Torrance algorithm is largely ignored.

Overall, the algorith is very similar to Blinn's algorith discrssed in Sections 3.3 and 4.2 .3 becanse both assume that the surface is made up of randomly oriented microfacets. Tet Cook and Torrance assume that the direction of the specular reflection, \(\bar{H}\), is known. If this is calculated during the hidden-surface algorithe as in Section 4.2 .3 , which is shown in

Pigure 4.12, then the delay is \(2471 \Delta_{g}\) which occurs only once per change in the light source's direction. The hardvare needed for this calculation is Within the limits of the system.

The shading calculation depends on the geonetric attenuation factor, a division by ( \(\bar{N} \cdot \bar{V}\) ), the Fresnel Refraction Lav and a distribution function for the facets' orientations. The calculation of \(G\) and the ( \(\bar{N} \cdot \overline{\mathrm{~V}}\) ) division are performed exactly as shown in Fignes 4.18 and discnssed in Section 4.2.7. Therefore, their delay is a maximm of \(1227 \mathrm{~A}_{\mathrm{g}}\). The Fresinel function calculation is the same as Blinn's in Pignres 4.16 and 4.17 except the final value is maltiplied by one half in this model. However, this multiplication can be performed in parallol with the last set of simultaneors meltiplications so the execrtion time is unchanged at \(3832 \mathbf{\Delta g}_{\mathbf{g}}\). The distribution function used is different from Binn's and is presented as equation (71). Its functional-block diagran is shown in Pignre 4.29 and its total delay amounts to \(4105 \Delta_{g}\). These four functions are used to calculate the specular component of the reflected light, \(R_{s} . \mathcal{E}_{\mathbf{g}}\) is found using equation (69) and its functional-block diagran is presented in Figure 4.30. The total time needed for this calculation is \(4105 \Delta_{\text {g }}\) for \(G, D, F\) and \((\bar{N} \cdot \bar{V})\) which are found simultancously and only once per change in light source difection. The reanining time noeded per pixel is only \(262 \Delta_{g}\).

The shading model calculation is diagramed in Figure 4.31. \(\mathbf{R}_{\mathrm{a}}\), the heaispherical-directional reflectance, and \(B_{b}\), the bidirectional reflectance, are linear combinations of the diffuse and specular components of the reflectance; \(R_{d}\) and \(R_{g}\), so they are calcriated using the interpolation calculation of Figures 4.5 and 4.6 in Soction 4.2.1. If the interpolation calculation is broken into three steps, the shading


Figure 4.29: Functional-block diagran for calculating the distribution of the facets' orientations



Figure 4.31: Functional-block diagram for the Cook and Torrance shading model
computation can be made into a five stage pipeline with a stage delay equal to that of division, \(768 \Delta_{g}\). Thas, the total delay is (N + 4) \(768 \Delta_{g}\) plus a one time addition of \(4105 \Delta_{g}\). Only three multipliers and one adder need to be added to the hardware. If three of these pipelines are nsed in parallel, three magnitude comparators, three complementors, 20 mitipliers and one adder must be added to the system.

When applied to the image in Figure 4.2, the time added to the hidden-surface algorith is still \(2471 \Delta_{g}\). To calculate shading values for the 41 visible pixels requires \(17,929 \Delta_{\text {g }}\) where \(N=14\).

\subsection*{4.2.8 Fournier-Fussel1-Carpenter Transformation}

This last algorith uses a technique called fractalization to alter the object modeling technique to make images of natural objects appear more realistic. It is presented in Section 3.8. The object to be modeled is composed of planar, triangular polygons. This algoritha divides the triangles into amaller triangles until none represent more than a single pixel in the raster.

The algorith finds the midpoints of the three sides of a triangle then uses the points to break the triangle into four samler triangles. The process is transformed into a functional diagran as in Figure 4.32. The total delay is \(780 \Delta_{g}\) per triangle that is divided. If three of these circuits are used in parallel, the extra hardware required by the process is 24 dividers and 19 adders.

After the new object model has been completed, the hidder-surface algorithm has to calculate the normals to the triangles so that any of the

Figure 4.32: Functional-block diagran for fractalization calculations
shading models previonsly discussed can be applied. This process requires \(161 \Delta_{f}\) per normal calculated, or per triangle. The number of triangles is likely to get very large so three normal-calcalator circrits are used in parrallel. No additional hardmare is necessary.

Before the algorithm can be applied to the inage in Figure 4.2 , the polygons must be broken into triangles. Any polygon can be broken into triangles by starting at one vertex and connecting it to all of the other vertices except the two imediately beside the first. Applying this to the image in Figure 4.2, a total of 12 triangles are formed from both visible and hidden surfaces. There are a total of 81 pirels covered by all of these surfaces so there must be at least 81 triangles formed. This will require 22 fractalizations which will use \(6240 \Delta_{8}\). The normal calculations will be performed for only the 41 visible triangles so they use \(2254 \mathrm{~A}_{\mathrm{g}}\).

\subsection*{4.3 Comparisons}

This chapter discrssed the eight algorithes on the basis of their images' realism. Although realism is a subjective quality, it is important because it is often the basis of most viewers' opinions of the images. The most important criterion for raster sraphics systens is the speed of execrtion becanse if successive frames take too long to senerate, the quality of the inage degrades to the point where flicker can be annoying. Section 4.1 described basic processes that could be used to transform the algorithms into functional-block diagrans to help analyze their execution times. The hardware requirements of these processes vere assessed and formed the basic processor for the system. The functional-block diagras
were applied to various architectures to attempt to minimize the execrion times. This of ten required additional hardware to be added to the system. Sometimes the algorithme added extra time and/or hardware to the hidden-surface removal or object modeling portions of the entife display process. All of these execution tines and hardware requirements are sumarized in Table 4.2.

Based on the time analyses perforned, the Newell-Sancha algorithe requires both the shortest delays and the minimal extra hardware. This may be the reason why the images are not as realistic as any from the other algorithms. Gourand's inages are quite good jet the delays are not too great and the extra hardware is the second minimal. Gourand utilized the cosine function rather than a dot product during the hidder-surface algorithn to compute contributions of light from the source; most of the other algorithms used dot products. The cosine requires more time to calculate than do dot products. Newell, et al.. use the cosine function but calculate mach fewer shading values overall so its extra time is not significant. Gonrand's extra time in the hidden-surface algorithe could be reduced but the cosine is not used to calculate all shading values so switching to the dot product may not generate too great of timo-savings.

However, Gourand's algorithe does not simalate specriar refiections very realistically. Blinn and Phong improve on Gouraud's method with Blinn's algorithe being the faster and requiring less extra hardware. Still, these do not accurately simulate offects of transparency. Whitted's algorith is capable of such offects and produces extrealy realistic images. Whitted's shading model did not reproduce specular reflections as vell as Blinn's or Phong's as the surface becomes less smooth but it does
Table 4.2: Sumary of execrition times and additional

account lor light reflected among the objects in the scene. However, his preprocessing before applying the shading model is time-consuning. Cook and Torrance's algorith required less tine than Bling's and less overall hardware oven though they were quite similar. Catinil's algorith required significantly more hardware than any of the others due to approzimating nornals for the crived patches. For this resson this method for modeling is ruled ont. Its delay is relatively short but this does not include any tine for shading. The fractal method does not fare too badiy in either time or hardware but does not acconnt for the shading process oither.

A1 things considered, Cook and Torrance's algorith is the best all around eethod but it still does not simulate sone effects, such as transparency. The very best solntion is to conbine several of these methods. Cook and Torrance's reflectance model conld be msed in most instances. Whitted's ray-tracing could be nsed to deternine the offects of object reflections in other objects as well as transparent surfaces. And when mountains or other natnrally randon objects are displayed, the algorith of Fonrifer, et al., conld alter the object model for more realistic images. Of comrse, this demands much more hardware. Also, the control of such an implenentation would be extensive to deternine when to use which algorithm. But the systen would display a wide variety of objects most realistically.

\section*{CHAPTER V}

CONCLUSION

\subsection*{5.1 Sumary}

The purpose of this reseach was to present shading algorithes for compreter graphics systeas and to compare them first on the basis of speed of execution and, second, by the overall quality of the images generated. The report began by generally discussing the field of computer graphics. Graphics terminology was explained and display systems were described, particularly the raster sraphics system. Problems of high-performance graphics were presented and discussed narrowing in on the problems associated with shading displayed inages.

The third chapter presented eight algorithms available in the current literature that attempto solve the shading problem. The shading process is closely related to the object-modeling and hidden-surface removal processes; so, the algorithms suggested improvements in one or more of these procedures. Generally, the object-modeling technique determines the method to model objects using numerical representations. There are two basic types, polygon-mesh and curved-patch. Most of the algorithms discrssed were applied to objects modeled with polygons. The hidden-surface algorithim processes the model of the object to determine which parts of the image are visible to the viewer and eliminates those that are not. This processing often included calculating general information about the object's surfaces, such as computing the surface normals. Most of the algorithms performed
some processing here. The shading process included using a shading or reflectance model to determine how much of the source illmanation is being reflected from the object and in what manner. For example, mot objects under certain circustances exhibit specular roflections or highlights. The algorithms and their relationships among these three processes is depicted in Figure 5.1.

The algorithms were transformed into fanctional-block architectaral representations to enable an assessent of their speed of execrition. This is a critical characteristic for raster sraphics systeas if they are to operate in real-time. The functional-block transformations vere applied to various architectures in an attempt to minimize the execution times of the processing. Then, all of the shading systems vere used to shade the same simple image as a standard for comparison. The execrion times and additional hardware requirements resulting from shading the inage were tabulated in Table 4.2 .

Results of this investigation suggest that the best single algorithm is that of Cook and Torrance becanse it adequately simulated offects of diffuse and specilar reflections withont requiring extremely long delays or excessive extra hardware. However, the best shading implementation is a combination of algorithes so that a broader range of objects and reflectance effects can be more realistically simulated and displayed.

\subsection*{5.2 Puture Research}

Several topics touched upon in this roport may be researched further. First of all, one of the assumptions made before comparing the speeds of the

Figure 5.1: The relationships between the three processes


\section*{BIBLIOGRAPHY}
1. D. R. Baldauf, "The Workhorse CRT: Now Life", IRER Spectrun, Vol. 22. No. 7. July 1985, pp. 67-73.
2. C. R. Baugh and B. A. Wooley, "A Two's Complement Parallel Array Multiplication Algorithm", IRER Transactions on Compriers, Vol 22. No. 12. December 1973, pp. 1045-1047.
3. J. F. Blinn, "Models of Light Reflection for Computer Synthesized Pictures". Compnter Grephics, Vol. 11, No. 2. 1977. pp. 192-198.
4. R. R. Castleberry, "High-speed D/A Converters Field Precision Graphics", Conprter Desien, Vol. 22. No. 11. November 1984, pp. 175-181.
5. R. Castleberry, "High-speed Video D/A Corverters Simplify Graphics-display Designs"0, Rpeinecripg Desisp Novs. May 31, 1984, pp. 185-190.
6. E. Catral1, "Computer Display of Curved Surfaces", Coppoter Graphics, Pattern Recornitiong and Data Strpcture Proceedinge. May 1975. pp. 11-17.
7. E. Catmul1, "A Subdivision Algorithm for Coaputer Display of Curved Surfaces", Technical Roport, Computer Science Department. University of Utah, December 1974.
8. J. H. Clark, "Designing Surfaces in 3-D", Commnications of the ACM, Vol. 19, No. 8. August 1976, pp. 454-460.
9. J. H. Clark, "The Geonetry Engine: A VLSI Geometry Systen for Graphics", Comptor Graphios, Vol. 16, No. 3. July 1982, pp. 127-133.
10. R. L. Cook and K. E. Torrance, "A Reflective Model for Compater Graphics", Copprer Graphics, Vol. 15, No. 3. August 1981, pp. 307-316.
11. M. J. Drunm, J. B. Harris and M. Ebertin, "Dual-port Static RAMs Can Remedy Contention Problems", Competer Design, Vol. 23, No. 9. Angnst 1984, pp. 145-151.
12. J. D. Foley and A. van Dam, Fundamentals of Intoractive Comprier Graphics, Addison-Wesiey Publishing Company, Reading, Massachusetts, March 1983.
13. J. A. B. Fortes, E. S. Fu and B. W. Wah, "Systeantic Approaches to the Design of Algorithmically Specified Systolic Arrays", Internetional Conference on Aconsticse Specche and Sirnal Processing. March 1985. pp. 300-303.
14. A. Fournier, D. Fussell, and L. Carpenter, "Computer Rendering of Stochastic Models \(\mathrm{s}^{\prime \prime}\). Comanications of the ACM, Vol. 25. No. 6. June 1982, pp. 371-384.
15. H. Fuchs and B. W. Johnson, Mn Expandable Kaltiprocessor Architecture for Video Graphics", Proceedings of the 6th Annmal Squposive on Comprior Arichitecture. April 1979, pp. 58-67.
16. H. Fuchs and J. Ponlton, "Pirel-planes: A VLSI-oriented Design for a Raster Graphics Engine", YLSI Desifn. 1981. pp. 20-28.
17. A. Pujimoto, C. G. Perrott and K. Ivata, "A 3-D Graphics Display System with Depth Buffer and Pipeline Processor". IRER Compnter Graphics and Applicstions, Vol. 4, No. 6. Junc 1984, pp. 11-23.
18. H. Gourand, "Continuous Shading of Curved Surfaces", IRER Transactions on Compoters, Vo1. 20, No. 6. June 1971. pp. 623-629.
19. D. W. Gulley, Joining Text and Graphics Enhances Video Performance", Compter Desirn, Vol. 23, No. 9. Augrst 1984, pp. 121-129.
20. K. Hwang, Compter Arithmetic: Principlese Architectmre and Desien, John Wil ey and Sons, New York, 1979.
21. J. H. Lawitzke, "The CORDIC Algorithm", Technical Report, Michigan State University, November 1984, Unpublished.
22. C. Machover and W. Kyers, "Interactive Computer Graphics", IRER Comprtex, Vol. 17. No. 10. October 1984, pp. 145-161.
23. M. B. Newel1, R. G. Newell and T. L. Sancha, "A Solution to the Hidden Surface Problem" ACM Proceedinge. 1972, pp. 443-450.
24. M. B. Newel1, R. G. Newell and T. L. Sancha, "The Economic Application of Ealf-tone Picture Generating Algorithme Compator Aided Design, IER Conforence Publication 86, Southanpton. April 1972.
25. M. B. Philiips and G. M. Odell, "An Algorithe for Locating and Displaying the Intersection of Two Arbitrary Surfaces", IRER Computer Graphics and Applications, Vol. 4, No. 9. September 1984, pp. 48-58.
26. B. T. Phong, "Illmination for Computer Generated Pictures", Compnicstions of the ACM, Vo1. 18, No. 6. Junc 1975. pp. 311-317.
27. R. Pinkhan, M. Novak and E. Guttag, "Video RAM Excels at Fast

Graphics", Electronic Design. August 18, 1983, pp. 161-172.
28. W. H. Righter, "CNOS 256-Kbit RAMs Are Fast and Use Less Power", Comprter Desien, Vol. 23. No. 9. August 1984, pp. 133-140.
29. M. Shanblatt, EP809 Cless Motes, Michigan State University, 1984, Unpublished.
30. S. L. Stepoway, D. L. Wells and G. R. Kane, "A Multiprocessor Architecture for Generating Fractal Surfaces". IRES Transactions on Coppters, Vo1. c-33, No. 11. November 1984, pp. 1041-1045. .
31. I. B. Sutherland, R. F. Sproall and R. A. Schmacker, "A Characterization of Ten Hidden-surface Algorithms", Compriting Spryeys. Vol. 6, No. 1. March 1974, pp. 1-55.
32. J. B. Volder, "The CORDIC Trigonometric Conpring Technique", IRE Transactions on Electronic Coprters. September 1959. pp. 330-334.
33. J. S. Walther, "A Dnified Algorithm for Elementary Functions", Spring Joint Comprter Conference. 1971, pp. 379-385.
34. D. S. Thelan, "A Rectangular Area Filling Display Syster Architecture", Compter Graphics, Vol. 16, No. 3. July 1982, pp. 147-153.
35. T. Whitted, "An Improved Illmination Model for Shaded Display", Comprications of the ACM, Vol. 23. No. 6. Jnac 1980, pp. 343-349.
36. M. C. Whitton, "Memory Design for Raster Graphics Displays", IERE Conputer Graphics and Applicatiops. Vol. 4, No. 3. March 1984, pp. 48-65 .
37. T. Williams, "Seaiconductor Memories: Density and Diversity", Comprex Desien, Vol. 23, No. 9. August 1984, pp. 105-116.
38. M. S. Young, "Use a CRT-controller Chip to Mix Text and Graphics", Rngincering Design Nems. May 31, 1984, pp. 153-170.
39. "Computer Graphics Comes of Age, An Interview with Andries van Dam", Commications of the ACM, Vol. 27. No. 7. July 1984, pp. 638-648.

\section*{GENBRAL REFERENCES}
1. J. Acquah, J. Foley, J. Sibert and P. Wenner, "A Conceptual Model of Raster Graphics Systems" Comptor Graphics, Vol. 16, No. 3. July 1982, pp. 321-328.
2. H. Fuchs, G. D. Abram and E. D. Grant, "Noar Roal-time Shaded Display of Rigid Objects", Compnter Graphics, Vol. 17, No. 3. July 1983. pp. 65-72.
3. S. Harrington, Comptor Graphics: A Prosraming Approach, McGraw-Hill, Inc., New York, 1983.
4. T. Ikedo, "High-Speed Techniques for a 3-D Color Graphics Terminal", IERE Computer Graphics and Applications, Vol. 4, No. 5. May 1984, pp. 46-58.
5. M. M. Mano, Disital Logic and Comprter Design, Prentice-Hal1, Inc.. New Jersey, 1979.
6. M. Novak and R. Pinkan, "Inside Graphics Systems, from Top to Bottom", R1ectronic Design. July 21, 1983, pp. 183-188.
7. R. Pike, "Graphics in Overlapping Bitmap Layers", Coppoter Graphics, Vol. 17, No. 3. July 1983. pp. 331-356.
8. D. S. Roark, "Toward Real-time Interactive Color Graphics", Comprex Design, Vol. 21, No. 7. July 1982, pp. 167-173.```

