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ABSTRACT

A OOIPAHISON OF SHADING ALGORITHIS

FOR HEAL-TIME EASTER GRAPHICS SYSTEIS

By

Kathleen A. Cieslak

Shading is an important part of computer graphics. It transforms flat.

confusing line drawings to solid images that appear three-dimensional.

Shaded images of real-time raster graphics systems must conform to strict

timing constraints or the images degrade.

Shading is enhanced by improving the shading algorithm as well as the

object model and the method of processing the data during the hidden-surface

removal algorithm. This report presents eight algorithms from the current

literature. They are transformed into functional-block architecture

specifications then compared primarily on the basis of speed of execution.

However, the fastest algorithm is not necessarily the most suitable.

The quality of the images generated is an important criterion for judging

the algorithms. If there are no limitations on hardware. the best solution

is a combination of algorithms since some are more suitable than others for

simulating certain effects. such as specular reflections and transparency.
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CHAPTER I

INTRODUCTION

Since the introduction of the cathode-ray tube. (CRT). as a display

device for computers. one goal has been to achieve realistic. dynamic

images. As opposed to printers and other such display devices. CRTs allow

real-time graphical interaction with the computer. Images are drawn on the

screen before the user's eyes almost immediately after the commands are

entered. Thus. no more waiting for printouts to see results.

The next logical step is to improve the images themselves. For

real-time dynamic applications. the image must be updated and displayed on

the screen at fast rates according to strict timing constraints to create

the illusion of movement. Several graphics systems were developed evolving

to raster graphics which seems the most promising. Raster graphics systems

are capable of creating solid. colored. realistic. dynamic images.

Realism is achieved through various techniques. one of which is

shading. Shading enhances realism by providing depth cues for a

three-dimensional appearance. The effect is similar to a drawing of a

circle. which appears as a flat disk until the artist shades it creating the

illusion of a sphere.

Shading provides for surface properties adding to the realism of the

image. If the object being displayed has a smooth surface it will reflect

light differently than another with a rough surface. By utilizing

properties of reflection from various surfaces according to different types

of available lighting shading can convey textures of objects. Patterns may
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also be imposed onto objects through the use of shading.

However. shading has proven a formidable task for designers since it is

dependent on many factors. The type of lighting present creates different

properties of reflection. The location of the lighting may affect the

reflections and form shadows from the object. And as mentioned. the

object's surface properties also affect reflections of the light. In

addition the manner in which the human visual system operates comes into

play as does the location of the viewer.

This research presents and investigates several shading algorithms as

well as a new reflective model and an object modeling technique. which can

be applied to the algorithms to enhance realism. All of these are available

in the current literature. This investigation compares the attributes of

each algorithm and determines the time complexity using functional-block

transformations.

Subsequent chapters explain these concepts in more detail. Chapter II

provides background information by defining general graphics terminology and

explaining how a raster graphics system operates. It presents some of the

problems of high performance graphics systems and explains the problem of

shading more explicitly.

Chapter III presents shading algorithms available in the current

literature. These encompass two general methods for representing solid

objects. For the polygon-mesh method. several implementations for shading

are presented since this is a popular technique for modeling solids.

The fourth chapter compares the algorithms presented mainly on the

basis of execution time. There are different criteria which may be used to

evaluate shading algorithms. depending upon a system's requirements and



applications. For example. realism or cost may be important considerations.

But for three-dimensional. real-time graphics systems the most important

criterion is execution time so that the image update performance is not

degraded. Chapter IV presents a processor model to use as a standard for

comparison. The algorithms are transformed into functional-block diagrams

then are compared for speed of execution using various architectures to

efficiently implement the diagrams.

By changing the algorithms to a functional-block representation. they

are transformed from an behavioral representation to an architectural

representation. This can be depicted in what are known as I‘charts [l3].

Y-charts are three-dimensional characterizations of a transformational

system. This three-dimensionality can be depicted as a '1'. Each axis is

associated with a different representation of the system with different

levels of the particular representation located along the length of its

axis. One axis is for architectural representations meaning various

hardware models of a system. The second axis is for behavioral

representations which are different forms in which the behavior of an

algorithm may be represented. The third axis is for physical

representations or the different stages of the actual implementation.

In such a system transformations may occur along the same axis at the

same or different levels. or between axes. Arcs are drawn on the I-chart to

show these transformations. In this investigation. transformations occur

from the Algorithmic level of behavioral representations to the

functional-block architectural representations enabling an accurate

assessment of the time required for each algorithm's execution. The Y-chart

for these transformations is shown in Figure 1.1.
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Figure 1.1: Y-chart depicting algorithm transformations



The fifth and final chapter summarises the advantages and drawbacks as

well as any conclusions derived from the comparison [of the shading

algorithms. Possible extensions of this work for future research are also

included.



CHAPTER II

BACKGROUND

This chapter provides background information to aid in the

understanding of the problem of shading computer-generated images. Some

general graphics terminology is presented leading into the specific

definitions associated with raster graphics systems. The second section of

this chapter discusses some of the problems of graphics systems.

specifically those of high-performance graphics. The chapter ends with a

more detailed explanation of the shading problem.

2.1 Graphics Terminology and the Raster System

The field of computer graphics has been defined as the "creation.

storage and manipulation of models of objects and their pictures via

computer" [12]. It is concerned with the synthesis of pictures of objects.

either real or imaginary. Computer graphics takes the three-dimensional

objects and attempts to portray them on a two-dimensional viewing display.

For this reason it encompasses many of the basic concepts and techniques of

geometry and drafting in addition to phenomena of the real.

three-dimensional world.

Essentially. all computer graphics systems are comprised of the same

types of components. Each system has a host processor. a display controller

and a display device. The host processor typically performs other functions

as well as graphics processing. The display controller executes

6



instructions to display the images and may have some capability to

manipulate them. The distribution of the processing between these

components and the implementation of the display procedure are dependent on

the type of graphics system. defining the technologies it employs and its

complexity. Hovever. all systems perform two basic functions. The first is

the construction and manipulation of the object's image. while the second is

displaying that image.

This division of labor led to the concept of two coordinate systems.

The first is the world coordinate system. or object coordinate system as it

is sometimes called. This refers to the three-dimensional space. where the

object to be modeled normally resides. The second is the device coordinate

system. which is the planar space of the display. Here. models of the

object are manipulated then projected onto the viewplaneof the screen. It

is necessary to use the world coordinates during most manipulations of the

object's orientation with respect to the viewer. The object is then

transformed to device coordinates for displaying its image.

Simple geometric definitions of points and lines are applied during the

modeling and manipulations of objects. including the notions of slope and

intersections. However. even simple calculations of intersections may

become time consuming when working with curved surfaces and solids. There

are generally two methods for representing curved surfaces. The first is to

divide the object into planar polygons and form a skeletal polygon-mesh.

Tho types of polygons arise during such a representation: convex and

concave. Convex polygons are those satisfying the condition that for any

two points contained by the polygon. all points on the line segment

connecting them are also contained by the polygon. Concave polygons are
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those which are not convex. The polygons are easily represented by listing

their vertex coordinates. Because the polygons are planar. second-order

equations may be used to describe the surface. but this method tends to

produce noticeable contour edges during solid modeling; more so than the

next method.

The second method for representing curved objects is to define the

coordinates of points on the surfaces by three-dimensional equations. Thus

patches. which are not necessarily planar. are defined by three

parameterixed equations; one equation for each of the cartesean coordinate

axes. These equations provide exact information at any point for the

surface. Although this may be an advantage. the calculations can become

extensive. Though the patches are typically larger than the polygons of the

first method. meaning there are fewer patches to calculate. their equations

are generally more complex and difficult to handle during manipulations of

the object. Therefore. the class of surfaces that may be modeled is limited

due to large execution times. but also because curved patches do not provide

enough degrees of freedom to satisfy lepe continuity between patches so

they are not suitable to model arbitrary forms. Both polygon-mesh and

curved-patch representations are often called wire-frame pictures or

three-dimensional drawings because their appearance is like a collection of

lines and arcs.

Once a model of the object has been generated a particular view must be

bounded since the display screen has a limited area and/or a picture of the

entire object may not be desirable. The rectangular space in the world

coordinate system that frames this view is called a window. The window and

its contents are then mapped to device coordinates. A viewport is a
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rectangular portion of the display screen in device coordinates where the

window's contents are mapped and thus displayed. A viewport may include all

or part of the screen. (Sometimes a viewport is also called a window by

some systems. but this ambiguity can be confusing.) This mapping procedure

must be repeated whenever the viewpoint of the object is changed.

Tb map the object enclosed by the window to the viewport. the object is

projected to the plane of the screen. There are two classes of planar

projections. The first is parallel projections which assume that the center

of projection. (the point through which all projection rays pass). is

infinitely distant from the projection plane. which in this case is the

viewplane of the screen. Because the projection point is so far away. the

projection rays appear parallel. Parallel lines are extended from each

vertex of the object to the viewplane. The points of intersection of these

lines with the viewplane are the projections of the object's vertices.

These vertex projections are then connected according to lines corresponding

to edges of the object. Different types of parallel projections exist

depending on the number of faces and edges of the object parallel to the

projection plane. In general. however. this class of projections is not

very realistic because it lacks perspective foreshortening. Perspective

foreshortening. performed naturally by the human visual system. is where the

size of objects. or their projections. vary inversely with the distance from

the center of projection. An advantage of parallel projections is that they

scale measurements accurately; therefore. this method is usually used for

drafting.

The second class is perspective projections which have the effect of

perspective foreshortening. The center of projection is explicitly
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specified and is thus a finite distance from the object. Projection rays.

which converge at this point and consequently are not parallel. are extended

to the vertices of the object and on through to the viewplane. Again. the

intersections of the lines with the viewplane define the projected image.

For both classes of projections. angles are preserved only when the object's

face containing the angle is parallel to the viewplane.

The above projections describe monographic images. where only one image

is formed. The human visual system actually produces two images. one from

each eye since the eyes are separated by a small distance. The brain fuses

the two images into one forming a stereographic image. This provides a

powerful depth one known as stereopsis. For this to be effective each eye

must see only one of the images formed. Some systems have been designed to

take advantage of this effect [8.9].

It should also be noted that most computer displays are based on a

left-handed. three-dimensional. cartesean coordinate system where the x-axis

points into the screen. Using a three-dimensional projection format along

with these reference axes. transformations can be performed on the images to

give the impression of motion. Basically. there are two kinds of image

dynamics. Update dynamics is when a change occurs in the shape. color or

other physical properties of the image being viewed. lotion dynamics is

when the object appears to move with respect to a stationary viewer;

conversely. it could also be when the objects appear stationary and the

observer appears to move. as is the case with flight simulators. This

second type of dynamics is possible through transformations.

Transformations may change the actual view of the object to make other

sides visible or just change the present view's orientation to the observer.
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The basic types of transformations include translations. rotations and

scaling. These may be implemented using matrix multiplications. They

create effects such as panning. roaming and dragging. Panning uses

translations to move the viewpoint parallel to the viewplane causing the

entire scene to move as if the viewers turned their heads. Dragging. which

also uses translations. moves one or more objects within the scene being

viewed. This is often used in CAD systems while trying to find the optimal

placement of objects in a scene. Zooming uses scaling to make the image

larger or smaller giving the illusion of the viewer moving closer to or

further from the image.

The method used to display the images on the screen is one of the main

criteria used to catagorixe graphics systems. There are three basic

systems: vector-scan graphics also known as calligraphic-scan systems.

direct-view storage tubes (DVST). and raster-scan graphics systems.

Vector-scan graphics systems were the first type of system to be

developed. They are called random-stroke display systems. Pictures are

drawn using plotting instructions specifying to draw a line from point A to

point B. This is why they are called random-stroke systems; the starting

and ending points for their instructions may be anywhere on the display

screen. These instructions are stored in a display file where they are

accessed by the display controller which executes them on the display

device. a CRT. The inside of a CRT screen is coated with a phosphorous

material which emits light when excited by an electron beam. The electron

beam draws the image by moving across the surface of the screen. but the

emitted light fades shortly after the beam moves away. Hence. the image

must be retraced 30 times or more each second for the image to remain stable
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on the screen. requiring a display file to store the instructions so they

can be re-executed during the refresh cycle. This refresh rate creates high

bandwidth requirements of both the memory and the processor to meet the

necessary timing. If the image is not refreshed soon enough it fades then

again becomes bright after it is finally retraced. This noticeable flashing

of the image is known as flicker and can be annoying to the systsm's users.

In order to be able to retrace the entire image within the allotted

time. vector graphics' images had to be fairly simple. The use of a

structured display file helped solve this problem. It is an extension of

the regular display file because it stores hierarchies which compose the

image. These hierarchies are like subroutines to a software program and can

be executed faster. A structured display file allows for transformations by

merely specifying parameters for the size. location and orientation of the

image thereby improving dynamics. vector systems use less memory than

raster systems. but the deflection circuitry used for the electron beam is

complex since it must accommodate random strokes.

The DVSTs operate on a random-stroke basis but the display screen is

different. Inside the screen is a dielectric mesh which retains the image

until it is deliberately erased. This eliminates the need for the display

file which was a significant advantage before VLSI reduced the cost of

memory chips. Unfortunately the image cannot be selectively erased; the

entire image must be wiped out all at once. To erase the screen a charge is

applied to the dielectric mesh which appears as a flash. This can be

annoying to the user. However. it is possible to reduce the energy of the

electron beam while drawing the image so that the image will not be

volatile. but then a display file is needed to refresh it. The advantage of
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this is the capability of displaying a frame composed of both volatile and

non-volatile images. This would decrease the demands of each refresh cycle

to only retrace some of the image; the parts anticipated to move. This is

similar to the technique used in animated cartoons. But neither of these

systems can display solid. dynamic images. Raster-scan graphics systems

were developed using television monitors giving them this capability as well

as taking advantage of the established assembly lines of the monitors. The

monitor screen is broken into an array of picture elements called pixels.

The electron beam scans the pixels row by row from top to bottom in a fixed

pattern known as a raster. This eliminates the need for the complicated

deflection mechanism of the random-stroke display systems.

Actually. there are two types of rasters. The first is a

non-interlaced pattern where the electron beam traces each horizontal line.

called a raster line or scan line. in sequence from top to bottom of the

display. The second is an interlaced display which alternates the lines

dividing them into an even field. the even-numbered lines. and an odd field.

the odd-numbered ones. To display a complete image or frame. both fields

are required so two passes through the raster lines are necessary. In both

rasters. as the electron beam moves along a scan line it is called active

because it is displaying data. Retraces are when the beam reaches the right

edge of the line and returns to the left edge of the next raster line.

(horizontal retraces); or similarily. when the beam returns from the bottom

right corner to the top left corner. (vertical retraces). During these

retraces. (not to be confused with redrawing an image though the terms are

identical). the electron beam is blanked or turned off.

A variation of either raster is called horizontal underscanning. By
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decreasing the horizontal deflection of the electron beam the raster pattern

is altered to change the shape of the pixels. usually making them square.

Ihelan [34] presents what he calls a subclass of raster-scan systems. The

pixels of his display are rectangular areas which are larger than typical

pixels enabling his system to be faster than general raster systems while

still retaining all of their attributes. though he loses some spatial

resolution of the display.

The time required to completely scan the raster is called the refresh

rate. The reciprocal of the refresh rate is the frame time which measures

the duration of each frame before the next refresh. These two rates help

determine the level of interactivity of a raster display. or how fast a new

image can be generated in response to a user's input. This is usually the

most critical performance measurement of a raster graphics system.

Typically. raster systems are slower than random-stroke systems because they

indirectly draw lines and arcs by scanning the entire screen activating only.

the pixels composing the lines and arcs. whereas random-stroke systems only

pass over the points of the lines and area. But. with faster processors and

shorter memory access times. raster systems are approaching the speed of the

random-stroke systems.

One disadvantage of raster systems is that they require large memories.

The number of distinguishable pixels in the raster determines the display's

resolution. Some of the highest resolutions may be larger than an array of

4096 x 4096. The image memory; also known as the frame buffer. display or

bit-map memory; has one or more bits of memory that correspond to the pixels

of the display. A bit plane is an array of memory of one bit per pixel.

The pixel depth of a system is its number of bit planes. This determines



15

the number of gray-scale intensities available for shading on an achromatic

display. (a monochromatic display has one bit plane and thus displays only

black and white). or the number of colors available for color displays.

called color resolution. An image plane is a set of bit planes. usually

eight. For full color. three image planes are needed; one each for red.

green and blue which are the additive primary colors necessary to combine

and produce most other colors. (They are called additive primaries because

individual contributions of each are added to form other colors.)

Consequently. the number of bits in the image memory must be one or

more times the number of pixels of the display screen. Because of such

large memories raster systems need an extremely high bandwidth for both the

processor and memory to satisfy image update and display timing constraints.

But this pixel-by-pixel addressing capability is the key which allows

different kinds of images on a single screen; such as alphanumeric

characters combined with photographic images.

Baldauf [1] made an important observation concerning bit-mapped

memories and raster-scan displays; namely. to increase the quality of the

display does not necessitate increasing the number of pixels of the display.

Using a system with four megabits of memory. Baldauf compares the

configuration of four million pixels with one bit of memory per pixel to

that of one million pixels with four bits per pixel thus providing sixteen

gray scales. The quality of both is very similar and the cost advantages

favor the latter.

Concerning display devices in general. achromatic monitors are superior

to color monitors in terms of brightness. resolution and size. Color

displays are more complex and impose significantly higher bandwidth



16

requirements on the memory and processor. Therefore. color monitors cannot

easily match the quality of their achromatic counterparts. However. color

adds another dimension to the information displayed. It also adds

considerably to the price of the system. In 1979 they were considered too

costly for widespread use [15]. But in 1984 according to lachover and

Meyers [22]. sales of color raster displays were growing at a rate of two to

three times faster than the rate of growth of DVSTs and vector-scan

displays. meaning color displays are gaining popularity.

A variation of achromatic displays which is also gaining popularity.

particularly among users who enter data from printed papers. is the positive

image display. Positive images are black characters on a white background.

This is a bit different to implement because instead of turning pixels on to

show an image. the background is always on and the pixels making up the

hmage are turned off. But this is less tedious for the user since the

screen has the same sort of contrast as printed material.

The hardware required by a raster system consists of the components of

a basic graphics system mentioned earlier: a host processor. display

controller. and display device. The display device's operation is as

already discussed. Sometimes. in smaller systems. the host processor is

called the display processor. graphics processor. video display processor or

display generator. Often. there is still another processor which acts as a

host performing other functions but which has the capability to manipulate

the image memory. too. The display processor manipulates the data in the

image memory by writing new data to update the image for the next frame. It

also has the ability to read the memory to determine previous pixel values

so as to establish new values. Display processors once were merely buffers.
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but graphics functions were eventually moved there to relieve the host

processor's burden so it could perform other duties.

The raster system equivalent of the display controller. the final

component of a basic graphics system. is called the video refresh

controller. refresh controller. display controller or frame buffer

controller. It reads from the image memory and feeds data to the output

portion of the system. It does not have the ability to alter pixel data; in

other words it can only read from the image memory. not write to it as well.

The display controller's main function is to obtain the pixel data in

parallel form to utilize higher bandwidths then convert it to a serial bit

stream to store in the video buffer. frame buffer. or refresh buffer. The

video output hardware converts the data to intensity levels or colors

helping the display controller create the serial data. The video buffer

stores the pixels' intensities or colors for the display.

In summary. there are vector-scan displays. which are random-stroke.

refresh systems; raster-scan displays. which are non-random-stroke. refresh

systems; and direct view storage tubes. which are random-stroke. refresh

and/or nonvolatile-image systems. 0! these three. raster graphics is the

only one able to display solid. dynamic images but it is not entirely free

of problems. These problems and some of general graphics systems are

presented in the next section.

2.2 Problems of High-performance Graphics

This section begins with some general problems common to all graphics

systems. One is that CRTs are analog devices and computers and processors
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are digital devices. A digital-to-snalog converter. (DAC). is essential to

graphically display information. Since the DAC converts the digital signals

from the display controller to analog voltages meaningful to the CRT. the

DAC's resolution directly determines either the number of gray scales or

colors resolvable in the monitor. A color monitor needs three DACs. one

each for red. blue and green. Castleberry [4.5] discusses this problem and

presents a video DAC that meets the high-performance requirements of a

graphics system. yet is low cost.

Another problem. which may be apparent from the redundant terminology.

is a need for standardization. Each unique graphics configuration developed

requires a new software system to support it. According to lachover and

Myers [22]. "the principal idea underlying the quest for standards was that

the main body of software should be device independent. It should interface

to any input device through a device handler. which would. of course. be

device independent. Similarily. it should interface to any type of display

through a display driver". One advantage to software which is adaptable to

any hardware system is that once programmers have learned to use it they

become portable. too. and can move about freely among systems.

Several graphics standards exist now with some moving towards national

or international acceptance. In 1977 the Core Graphics System standard was

develOped by an AC! Siggraph Committee. It is a three-dimensional standard

defining the boundary between applications and the graphics support package

as well as specifying the content of that package. Although it was not

officially accepted by the International Standards Organization. (ISO). it

has been influential in the development of other standards. particularly the

Graphical Kernel System. (GKS). GKS has been officially accepted by ISO.
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It has been called a ”Small Core” because it. too. defines the boundary

between the applications and the graphics support package. However. it does

not specify the content of the graphics support package. and it is a

two-dimensional standard although three-dimensional extensions have been

discussed.

Iachover and lyers [22] list five other standards and their status

toward national or international approval. They are as follows:

1) Initial Graphics Exchange Specification. IGES. It provides for

the exchange of graphics databases among CAD/CAI systems.

2) North American Presentation Level Protocol Syntax. NAPLPS. It

uses sequences of bytes of ASCII code and code extensions to

describe graphics and text in separate frames. As the name

suggests. it functions at the sixth level of the ISO's Open

Systems Interconnection model and can transmit graphics and text

over a low-capacity data communication link.

3) Programmer's Hierarchical Interface to Graphics Standard. PHIGS.

It is an updated. expanded. dynamic. three-dimensional version of

Core.

4) Virtual Device letafile. VDI. It is a two-dimensional.

device-independent standard conceived to satisfy both the Core

concept and GKS for metafiles. It functions at the level just

above device drivers and is concerned with the transfer of picture

information between different graphics devices.

5) Virtual Device Interface. VDI. It also operates at the level just
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above device drivers but is a two-way communications protocol. It

interfaces between device-independent software and

device-dependent code.

Among the problems peculiar to raster systems. the memory contention

problem has received significant exposure in the literature. To avoid

flicker in the displayed image. the display controller must refresh the

display 30 or more times per second. For the illusion of motion the display

must be refreshed even more often to avoid jerky movements. so the display

controller must access the image memory for the display data frequently.

leanwhile. the display processor is calculating the data for the next frame

to be displayed and must update the image memory before the display

controller needs the new data. As a result both have high demands for

accessing the memory creating a memory contention problem. Adding to this

matter. many of the problems to be discussed later. (including shading).

increase the processing time to generate the new image thus affecting the

display processor's attempts to meet its timing constraints.

Iith most systems a stable display is the foremost requirement so the

needs of the display controller are met first then tradeoffs are made to

accommodate the display processor. Some specific timings that are critical

to the Operation of the display controller are the refresh rate. retrace

times. total line time. active line time. total frame time and pixel time.

All of these pertain to the display and though most build on each other.

they are particularly dependent on the refresh rate. As previously stated.

the refresh rate is the number of times the entire screen must be scanned

per second. The retrace times are the amount of time needed by the electron

beam to reposition itself after displaying a raster line. Since the beam is
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blanked. the display controller may not need data from the memory. depending

on whether it has enough for the next active session. Often the display

processor will access the memory during these retrace times.

The total line time is the average time required by the electron beam

to scan a visible raster line including the horizontal retrace time. Active

line time does not include the retrace time since the beam is blanked. The

total frame time is the total line time multiplied by the number of visible

lines in the frame plus the vertical retrace time; its reciprocal is the

refresh rate. Pixel time is the average time necessary for the beam to scan

a single pixel; it is the active line time divided by the number of pixels

per line. Essentially. it is the rate that new pixel data must be supplied

to the video output hardware to support display refresh. In other words. if

data for only one pixel is obtained during each memory cycle. pixel time

determines the rate in which the memory must be accessed by the display

controller; therefore. the pixel time determines the necessary bandwidth of

the memory and processors. According to Righter [28]. the required.

instantaneous. memory bandwidth is equal to the reciprocal of the pixel

time. He presents a table of required memory bandwidths for a 60—Hz display

versus pixel times for different display dimensions. shown in Table 2.1.

To achieve such high bandwidths. many solutions have been presented.

One device designed to allow better access to the image memory is

dual-ported memory chips. These devices provide two access paths with the

actual memory time-shared between these ports; it does not imply that the

same memory location can be accessed simultaneously from both ports but this

method does provide some time savings [19.27]. Some of these chips include

extra logic to help decrease access times. On-board shift registers
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Table 2.1: Required memory bandwidths for a 60-Hz display

as inverse of pixel time [28]

was: 34.39.1122 mm

512 x 384 66.5 ns 15 le

640 x 512 38.3 ns 26.1 le

1024 x 768 14.4 ns 69.4 le

1024 x 1024 10.0 us 100 le

1280 x 1024 8.0 ns 125 MHz
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transform a large block of parallel data to a serial bit stream leaving the

device free for the next access [38]. Drumm. Harris and Ebertin [11]

include on their device logic to handle memory contention so it is possible

to access the same location simultaneously from both ports. Iilliams [37]

compares the different types of general purpose memory chips available. such

as SRAIs. DRANs. EPROIs and EEPROIS.

Other solutions to the problem of memory contention include

architectures for the memory itself to increase its bandwidth. Depending on

the arrangement of the memory chips. different access modes can be

implemented to access rows. columns. pages or nibbles. Ihitton [36]

summarizes the different access modes as she thoroughly discusses the memory

contention problem. She claims that displays of moving. smooth-shaded

solids and vector objects almost always require a technique known as double

buffering. Double buffering is when two complete images are stored in the

video buffer. 'hile the display controller is accessing one copy to update

the display. the display processor is writing the next frame's data into the

second copy. At the end of their cycles the two processors switch copies.

Double buffering nearly eliminates the memory contention problem but is

costly to implement. Overall. Ihitton concludes that bigger memory devices

do not necessarily mean better access and stresses using different

architectures to achieve higher bandwidths.

Though the display controller needs the image memory to supply data to

the display. high-performance graphics dictates that a large number of

pixels be written into the memory every frame time. For this reason van Dan

[39] claims graphics cannot be done remotely; both the display processor and

the display controller need to access the image memory. This is especially
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true of high-performance graphics systems because they need a front-end

mini- or mainframe computer for the data manipulations. In general. as

interactivity decreases. frustration increases contributing to premature

user fatigue. So the display processor must be able to quickly process the

new image and store it into memory for the display controller to display.

As designers strive for realism. images are becoming more complex requiring

excessive time to generate updated images corresponding to new viewpoints

derived from user inputs. Again. architectures can be implemented to speed

up processing. such as pipeline and/or parallel processing. and petri nets

which are data-driven systems. Hany papers exist discussing multiprocessing

techniques both for their own merit and as applied to specific graphics

systems. Such architectures provide increased throughput and. if modularly

designed with well-defined interfaces between the processors. they may

provide modification flexibility. In addition specialized hardware to

perform some image generation functions greatly decreases processing time

though at an increase in cost.

lost of the other problems of highrperformance graphics systems affect

the image-processing time. The first step to producing an image is to model

the object. Tho methods for modeling objects have already been discussed;

polygon-mesh and curved-patch equations. Generally. objects do not follow

surface models very well. Particularly with natural phenomena such as

clouds or smoke. these models become extremely complex trying to imitate

these objects. Also the diversity of a design within a given framework is

limited. A model may be able to produce an image of a tree but it may not

be able to distinguish a poplar from a maple tree. Then again. such fine

detail may not be necessary. depending on the application. The model must



25

also provide a three-dimensional projection format. This not only keeps

track of faces and edges seen in the chosen view but those not seen. too. as

well as the depth or z-coordinate of each. This type of format allows for

hidden surfaces to be appropriately shown when the view changes and aids in

most of the processes to be discussed such as clipping. hidden surface

removal. shading and shadow generation.

Actually. all four of the processes mentioned are related to each other

and are especially dependent on how the object was modeled. Clipping is a

technique for not showing portions of the object outside of the window. It

is executed before hidden surfaces are removed because it determines the

depth coordinates of each of the surfaces of the image. It also decreases

the number of surfaces so these are removed before any more calculations are

performed on them to avoid wasting time.

Hidden-surface removal is the next process performed on the image

because it. too. removed surfaces from the image so they are eliminated

before they are processed any further. Also known as the visibility

problem. hidden-surface removal is used on both solid models and wireframe

drawings alike. It removes any surface or line that is obscured by surfaces

that are closer to the viewer. thus generating a realistic. solid picture or

a less confusing wireframe drawing. Unfortunately. the identification and

removal of hidden surfaces is very time consuming. so many different

algorithms have been developed to solve this problem. One notable

contribution.was from Sutherland. Spoull and Schumacker [31]. They compared

ten such algorithms trying to find some fundamental insights into the

problem itself. They concluded that all of the algorithms performed some

sorting of the surfaces to determine which were visible; if the sorting
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process could be made more efficient the execution time would decrease.

They presented two methods of sorting different from those used by the

algorithms that they compared. A second conclusion was the detection of a

principle called coherence; that objects have a local constancy about theme

"Scan-line coherence" is the fact that a scan line changes very little

between successive frames. "Frame coherence” is that an entire picture is

nearly the same from one frame to the next. In fact the world model of an

object changes less frequently than the viewing position. These principles

may be used to reduce the amount of computations necessary for generating

successive frames.

Other features which enhance realism are filling adjoining surfaces

with contrasting shades to show intersections. adding highlights and

textures. shading surfaces to show form and three-dimensional qualities. and

simulating transparent surfaces. These will all be treated in the next

section which explains the shading problem more completely.

The final process covered in this section is shadow generation.

Shadows enhance realism by providing depth cues reinforcing the

three-dimensional effect. They are not dependent on the viewpoint but on

the type of light sources available and their locations. If. however. the

light source is behind or at the viewpoint no shadows will be visible; they

will be cast behind the object. hidden from view. This is often the

approach taken to avoid the extra calculations to generate shadows. The

same algorithms used for hidden-surface removal can be used to create

shadows except the light source's location is used as the viewpoint.

Instead of removing the surfaces hidden by other objects. their intensity or

color is changed to produce the shadow. Since the processing is so similar.
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it is possible to compute hidden surfaces for removal and shadows

simultaneously.

Nevertheless. even after all of the above processes have been performed

on the image there are still problems merely drawing it onto the display. A

line or are cannot simply be drawn from point A to point B on a raster

display because of the scan pattern; it must be transformed or mapped to a

pixel representation which is a process called scan conversion. This is

usually performed by the raster display itself so the user does not need to

be concerned about it. Once the lines are drawn. they must be smoothed.

Any nonvertical or nonhorixontal line may appear as a staircase because of

the arrangement of the pixels in a matrix which form the line. There are

two approaches to this problem. known as aliasing. The first approach is to

increase the resolution of the display. By increasing the pixel density the

jaggedness of the edges and lines will be smaller and less perceptable but

there will be more points to compute overall. The second approach is to use

multiple bits of memory to represent each pixel's intensity or color.

Varying the intensity along jagged edges will create the impression of

straight lines because the edges will be turned. or faded into the

background. Once the lines have been smoothed. intersections of surfaces

must be computed particularly for objects modeled by equations. Phillips

and Odell [25] discuss this problem and present an algorithm to attempt to

solve it. They stress that it is often more difficult to find intersections

than to just display them. Fortunately. for many applications this is

sufficient.

The next section provides more detail concerning the shading problem

and many of its related processes mentioned above.
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2.3 The Shading Problem

Essentially. the problem of shading is to generate solid images by

filling the polygons or patches formed during the modeling stage in such a

way as to enhance realism. Shading is affected not only by the method of

modeling the object but also by the hidden-surface removal algorithm used;

the order in which the hidden-surface removal algorithm computes visible

information influences the shading algorithm. The best attribute a

hidden-surface removal algorithm can possess. with respect to shading. is to

generate information by scan line rather than arbitrarily ordered patches or

polygons. Because these two algorithms are so closely related they are

often treated together in published studies.

Shading algorithms vary in complexity ranging from those that

arbitrarily fill the surfaces of an image to those that record minute

details of surface properties. texture and patterns. All but the simplest

involve the behavior of the human visual system and principles of optics.

Peculiarities of the behavior of the human visual system often force

algorithms to compensate. or even deviate from. otherwise uniform shading

rules. The effects will be discussed as they pertain to the method or

problem being presented.

Briefly. the optics principles involve the angles of incident light to

the surfaces being shaded. The resulting reflection. absorption or

transmission from the surface is dependent on many factors. One such factor

is the surface properties of the object being modeled; a smooth. glossy

surface will reflect more light than a dull. matte surface. Another factor

is the light source itself including both the type of light and its

location. The type of light as well as its luminance. or intensity. is



29

influencial in determining how an object will be lit up. Diffuse background

light. or ambient light. produces constant illumination of objects

regardless of their orientation to the light. This uniform brightness makes

objects appear flat and does not usually produce realistic images when used

alone. Point sources of light can produce specular reflections. or

highlights. which are dependent not only on the object's orientation to the

light but also the viewer's orientation to the object with respect to the

light's location. This creates much more interesting images.

The absorption of light determines the object's color or intensity.

The transmission of light through objects is related to absorption by the

object's degree of transparency. It is similar to the shadow—generation and

hidden-surface removal processes because objects behind transparent objects

must be identified. The illumination of these ”hidden" objects is altered

according to the amount of light actually allowed through the object in the

foreground and whether or not that light is refracted. loreover.

transparent objects often yield specular reflections. which sometimes help

reinforce the presence of clear objects. One method effectively used to

generate transparent objects. in addition to opaque objects which have a

zero percentage of transparency. is called ray-tracing. Using the

principles of optics. light rays are followed from the viewer to the first

surface where the ray will branch into its components of reflected and

refracted light. Each of these components is followed forming a tree that

can be used to determine the shading intensities of the surfaces viewed.

One such algorithm is presented in the next chapter.

Surface detail can be conveyed through shading; textures and patterns

enhance realism and can be exhibited through proper shading. One method is
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to map a digitized photo or model of the pattern or texture to the surface

of the image. This mapping determines the pixels' intensities or colors and

is probably the best way to generate patterns. Tbxtures can be shown in

this manner or they can be modeled. One approach is not to actually model

the texture but to perturb the surface normal to indicate the texture. The

surface normal is critical to measuring angles of incidence. reflection and

refraction from the surface while computing intensity values. So. by

altering the nermal's true direction a smooth surface will appear as a rough

surface. but the overall effect is not very realistic. Another approach is

to model the texture using fractal mathematics which were developed by

Benoit landelbrot. This method uses stochastic processes to model the

randomness of natural phenomena. This method. too. will be discussed

further in Chapter III.

Another method for generating shaded images is known as half-tones;

this is the method used in most printed matter such as newspapers. books and

magazines. The human visual system performs spatial integration where a

small area. when viewed from a distance. appears as a single intensity

despite the fact that a close-up examination reveals fine detail of varying

intensities. This effect is used when producing half-tone images. The

screen is divided into small resolution units. usually a small. square

matrix of pixels. Each resolution unit is imprinted with a black dot whose

area is proportional to the amount of blackness of the corresponding area of

the object being displayed. (Blackness equals one minus the intensity.)

This method provides more intensity levels without increasing the number of

bit planes but spatial resolution of the display is sacrificed.

Color is another type of surface detail. Achromatic color includes
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black. white and shades of gray with its only attribute being the intensity

of the colors. Chromatic displays have many attributes. Hues distinguish

between different colors. Saturation. also called chroma. refers to the

purity of a color or the amount of dilution by white light. ('hite light is

0% saturated.) Brightness. or value. is similar to intensity for achromatic

color. A tint is the result of adding white light to a color thereby

decreasing its saturation. Shades result when black is added to a pure

color. decreasing its brightness. Tones are the result of the addition of

both black and white light to a color.

Several theories have been developed concerning the eye's reaction to

color. One of specific interest for raster systems is called the

tri-stimulus theory. This theory states that there are three different

types of cones on the retina of the eye. each having peak sensitivities to

light of either red. blue or green hues. This is aligned with the concept

of using these same hues in combinations to produce most colors on color

television or raster-scan monitors. A comprehensive discussion of color

which covers topics like different color models for monitors and printers.

and objective descriptions of colors using electromagnetic energy densities

and standard chromaticity diagrams is beyond the scope of this paper but is

included in Foley and van Dan's book [12]. One color model of pertinence to

raster graphics is the RGB color model. Using a right-handed cartesean

coordinate system. a unit cube is formed with black located at the origin.

white at the point (1.1.1). and red. blue and green are located on the axes

where z-1. y-l and x-l. respectively. The main diagonal connecting black

and white contains equal amounts of each primary and represents the gray

levels. However. this model is hardware-oriented so it is not easily
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controlled by the user because it does not directly relate to intuitive

notions of hue. saturation and brightness. Nevertheless. to implement color

on a raster display three sets of equations are necessary. one for each

primary hue. This is why color systems generally require higher bandwidths

of the memory and processors and are more difficult to implement.

Overall. the procedure for computing shades or IGB values for a

particular pixel involves determining which polygons or patches are mapped

there. finding details about the surfaces assigned color or intensity.

calculating the pixel's angle and distance from.the light source and from

the viewer. then computing the shading value for the pixel in question.

Details about the surface include taking into consideration most of the

processes already discussed to create a realistic image. After everything

is considered. shading is a complicated process and many algorithms have

been developed to provide a solution. Several of these algorithms are

presented in the next chapter.
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PRESENTATION OF SHADING ALGORITHMS

Some of the first shading procedures are known as constant-shading

algorithms. These are usually applied to objects modeled using the

polygon-mesh technique where each planar. polygonal facet is filled with a

single intensity value or color. One problem with this method is that

adjacent polygons may exhibit an obvious difference in intensity; in

reality. objects are composed of continuous curves and their intensities

vary continuously. By shading images with this method the polygons used to

model the object are apparent to the viewer.[22] This couspicous transition

from one intensity to the next is called contouring and contributes to the

unrealistic appearance caused by this method. Another problem with this

method is known as the Inch-band effect. which is caused by the human visual

system. If the light-intensity curve from illuminated surfaces has a

discontinuity in magnitude or slope. the eye accentuates the change. Thus.

the difference in shading of adjacent polygons is exaggerated.

lore complex algorithms have been developed to overcome these problems

to provide continuous shading of curved surfaces as well as simulate

texture. transparency and other attributes discussed in the previous

chapter. Four of the next five sections present one such algorithm. The

third and seventh sections present new shading models which could be applied

to some of the other algorithms. The sixth and eighth sections introduce

different methods for enhancing the object models. The sixth section uses

the curved-patch modeling technique discussed in Chapter II. The eighth and

33
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final section presents a new method based on fractal geometry to alter

models of terrains and other natural phenuena. Both may be applied along

with any of the other shading models to generate realistic pictures.

Included in this text are many equations and figures that are modified

versions of those that appeared in the papers which originally presented the

algorithms. Some adjustments were necessary to unify the notation used

throughout this text as well as to eliminate or add portions of figures to

better represent the discussions contained here.

3.1 Gouraud Intensity Interpolation Shading

This algorithm [18]. published in 1971. is applied to a curved-patch

object-modeling technique called rational Coons patches but could easily be

modified for the polygon-mesh technique. In 1964 S. A. Coons introduced a

modeling technique to extend the class of objects that may be modeled; this

technique allows for the definition and representation of curved surfaces.

An extension was develOped by T. I. P. Lee in 1969 called the rational Coons

patch. One of its properties is that patches can be reparameterized without

modifying their geometric shapes. Gouraud's algorithm is based on a

hidden-surface removal algorithm developed by G. S. Iatkins which accepts

nonplsnar polygons; so. Gouraud extended it to rational Coons patches.

Intkins' algorithm computes information about the image scan line by

scan line. which facilitates the shading process. The actual shading rule

implemented utilizes basic principles of optics which take into

consideration the object's orientation and its distance from the viewer.

The light source is assumed to be at the same location as the observer to
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avoid the need to generate shadows. The object's orientation is measured as

the cosine of the angle. 0. between the surface normal. N. and the direction

of the light. ‘L; or as in this case. the viewer. V; shown in Figure 3.1.

The distance from the viewer is introduced to distinguish between

overlapping. parallel planes which would otherwise be shaded with the same

intensity since both have the same orientation. This also simulates the

manner in which the eye perceives illuminated objects from a distance;

because light energy decreases as the inverse square of the distance.

parallel faces at different distances from the viewer would appear to be

different intensities in reality. According to Gouraud. the method used to

compute the distance is not important as long as the relative ordering of

the faces is preserved. Using the perspective transformation. the (x.y.z)

coordinates of a point become the projection coordinates (x/z. ylz. lls) if

the observer is located at the origin of the coordinate system and is facing

in the positive a direction. Using the 1/1 coordinate as an approximation

of the distance. the shading equation becomes

1 3

S - ; cos 0 (1)

Since the distance values. 1/z. are only known at the vertices of the

polygons. it is necessary to perform a linear interpolation for points

between the vertices to obtain the distance values. After the distance

values have been computed. the shading for point P located on the scan line

between points E and F shown in Figure 3.2 is approximated using the

equation

.1. . .1. .
SP = (1 - u) 2E cos 0 + o 1F cos 0 (2)
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Figure 3.1: Geometry of reflection model for Gouraud's

algorithm
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Scan Line

 
 

Figure 3.2: Projection of one polygon intersected by the

scan line [18]
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The coefficient u ranges as O S u S 1 and denotes the position of the point

P on the scan line between the end points E and F: if P is located at E.

then u - 0; if P is at point F. then u - 1. Gouraud claims there is no

noticeable degradation in the shading from using this approximate equation.

To smoothly shade curved surfaces Gouraud modifies the shading

computation of each patch so that continuity exists across each boundary.

Since each vertex of the patch will be oriented differently. thus requiring

different shading. interior points have to be shaded as a continuous

function of the vertex shading. Generally. these modifications attempt to

alleviate the effects of contouring and the Mach-band effect. To help

achieve this shading continuity a normal for each vertex is computed by

either averaging all of the patch vertex-normals associated with the vertex

or using an analytical description of the surface to compute the exact

normal.

Two successive linear interpolations are performed to compute the

shading of interior points for each patch. Referring again to Figure 3.2.

the surface normals are assumed to be known at the vertices A. B. C and D.

The scan line intersects edge AB at point E and edge CD at point F. The

point P is any point inside the patch ABCD that is on the scan line. The

shading at points E and F is interpolated using the shading values

calculated at the vertices. The shading at point E is calculated using the

shading values from point A. 8A' and from point B. 83' in the equation

where “E is defined similarily to u in equation (2). Likewise. SF and SP

can be calculated using the equations
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SF-(l-uF)SD+uFSc (osapsn (4)

sP-u-ap)sg+aps,. (osapsi) (5)

Using these equations. it can be verified that if

P ' A. then SP 3 8A

P l B. then SP 3 SB

P . Cs than SP 3 Sc

P 3 D. then SP‘a SD

Since latkins' technique for computing hidden surfaces efficiently

calculates and tabulates data for the image. this was extended to include

the shading calculations to help minimize the computation of a new shade for

each point. Watkins scans the picture from top to bottom by scan line.

computing the following information for each polygon edge:

1) The number of the first scan line that intersects the

edge.

2) The total number of scan lines that intersect the edge.

3) The x and z coordinates of the highest point of the

edge.

4) The slope in x and z for the edge.

The necessary shading information is easily added to this list:

5) The shading. S. of the surface at the highest point of

the edge.

6) The "slope" of the shading along the edge.

The shading "slope" is calculated as

S - S

AS =_’___L (6)

n
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where S: and S, are the shading of the two endpoints of the edge and n is

the total number of scan lines that intersect the edge.

'ith the above information the shading may be computed for a given scan

line. An edge will become "active" when its first point is reached by a

scan line which is being used in the shading computation. The xyz

coordinates are known for this point along with the value of the shading. A

segment is created when an edge becomes active by pairing edges which belong

to the same patch; the segment is the portion of the scan line between the

paired edges and contains information about the coordinates of the

endpoints. the values of the shading at the endpoints. and both the

coordinate slope and shading "slope" necessary to update shading information

from scan line to scan line. From the present scan line the slopes are

added to the coordinate information of the point on the edge and to the

point's shading value to find the coordinates and shading of the next point

where the next scan line intersects the same edge. After the hidden-lines

computation is perfonmed. many of the segments are totally or partially

visible. The shading is calculated for each visible point of a segment

along a scan line by computing a coefficient as

KP - IE

xr’xr

where the K's represent the displacement along the scan line. Using this

(7)

value for the coefficient a. the shading can be calculated for the point P

of Figure 3.2 using equation (5).

According to Gouraud. this linear interpolation for the shading

intensities produces shading across patch boundaries which is continuous in

value but not in derivative. This eliminates most of the contouring effects
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but some Inch-band effects may be seen in the vicinity of silhouette curves

and where the surface curves sharply. He stresses that this algorithm may

be implemented in hardware since it is only a linear interpolation being

performed. and he compares the execution times required for Iatkins'

algorithm and the extended algorithm proposed by Gouraud. If Gouraud's

algorithm is totally implemented in hardware. no extra time will be required

for execution though extra demands will be made of the memory. If the

algorithm is implemented in software. the total time required by Iatkins'

algorithm would be multiplied by less than 1.2 for Gouraud's algorithm's

execution time. Two systems which have implemented Gouraud's algorithm are

described in papers published by Fujimoto. et al. [17]. and Fuchs. et

a1. [16].

The next section presents an algorithm which tried to improve upon

Gouraud's by reducing the Itch-band effect.

3.2 Phong Normal-vector Interpolation Shading

This algorithm [26]. published in 1975. was developed by Bui Thong

Phong. It expands upon Gouraud's algorithm because instead of linearly

interpolating the intensity value of the shading. Phong's algorithm

interpolates the surface normal and then calculates the new shading values

using these normal vectors. Phong also uses a more complex shading equation

which allows the viewer to be in a different location than the light source

in addition to taking into account reflectivity of the object and specular

reflections. Phong presents the more complex shading rule with his

algorithm as an attempt to achieve more realistic shading. Another
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difference between the two algorithms is that Phong's algorithm is presented

for objects modeled using the polygon-mesh technique.

Phong's shading equation is based on the physical principles of optics

with a few empirical adjustments. The direction of the incident light is

always measured as an angle with respect to the surface normal. 0. The

angle of incidence equals the angle of reflection. so the direction of the

reflected light is also measured as G with respect to the normal. Different

types of lighting affect the object's illumination in different ways as do

different types of surfaces. Rough or dull surfaces scatter the reflected

light in all directions equally. an effect called diffuse reflection. This

type of reflection follows Lambert's cosine law which relates the amount of

light reflected and the direction of the light source to the surface as

shown in the equation

sP.d " 91» c“ 9 (s)

where CP is the coefficient of reflectivity of the surface; CP is a ratio of

the light reflected from the surface to the total amount of incoming light

at the point P. This type of reflection is not dependent on the viewer's

location because the object appears a constant intensity from all

directions.

Diffuse background light. or ambient light. produces constant

illumination of objects regardless of the object's orientation; reflection

is dependent only on the object's coefficient of reflectivity and the

intensity or brightness of the light. for which Phong uses an environmental

diffuse reflection coefficient. Cd. Normally. an object subjected to only

ambient light would be illuminated according to the equation
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SP.‘ . CP Cd (9)

but Phong combines the equations (8) and (9) as

sP.(d + ‘) ' CP (CO8 0 (1 ' Cd) + Ca). (10)

Diffuse reflection from colored surfaces requires three equations. one for

each primary color. lost of the light is absorbed but the color of the

light reflected is the perceived color of the object.

Specular reflections depend on the location of the viewer because the

light is reflected unequally in different directions. Such highlights are

emitted from shiny surfaces and appear white. or the color of the incident

light because most of the light is reflected. For a perfect mirror. light

is reflected only in the direction of perfect reflection; that is when the

angle of incidence equals the angle of reflection. This is the reason for

the concentration of reflected light in the highlight. For nonperfect

reflectors the reflected light is not quite as concentrated but falls off

rapidly as the direction moves from that of perfect reflection. Therefore.

the viewer's location is critical; as the viewer moves from the direction of

reflection. less light is available to be seen as a highlight. The

direction of the line of sight is measured as the angle a from the

reflection vector. R. as shown in Figure 3.3. Phong approximates the

specular reflection as the cosine of a raised to the power c1. where c1

usually ranges from one to ten. Then the surface is a perfect reflector. c1

is large so the value will rapidly go to zero as o deviates from O. This

cosine term is multiplied by a function '(O). which is a function of the

ratio of the specularly reflected light and the incident light as a function

of the incident angle; l(0) ranges between 10 and 80 percent. Both c1 and
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Figure 3.3: Geometry of reflection model for Phong's

algorithm
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'(O) are empirically adjusted for the picture and no physical justifications

are made by Phong. Hence. the complete shading equation becomes

sP - cl, (cos 9 (1 - cd) + Ca) + 1(0) cos°1 o. (11)

For each point on the surface Phong calculates the normal. which is

used in the above shading equation. using a linear interpolation technique

similar to that used by Gouraud to interpolate the shading intensities.

Initially. the normals are only known for the vertices of the polygons.

Normals along polygon edges and interior to the polygon are computed using

Fl. - (1-a)fi,+afi, (12)

where u is defined in the same manner as in equation (7). The normal to a

visible point inside the polygon is determined from a linear interpolation

of the normals at the intersections of the two edges of the polygon with the

scan plane passing through the point under consideration. Thus. the general

surface normals are quadratically related to the vertex normals.

Using these normals. the shading values can be determined. Some

assumptions are made to simplify the cosine terms; both the light source and

viewer are assumed infinitly far away. The cosine terms may then be

rewritten as

l
"
l Iv
"

cos 0 = (13)

E
]

"
3
.

and

I4
"

cos 0 ='V ° (14)

a '
2
.

where L and V are unit vectors in the direction of the light and viewer.



46

respectively. N? is the surface normal at the point P. and if is the

reflected light vector at P. The quantity represented in equation (13) is

the projection of a normalized vector. N}. on an axis parallel to the

direction of the light source. If the magnitude of IN? is unity. then

equation (13) is one component of N? in a coordinate system where one axis

is in the direction of the light. In this case the quantity in equation

(14) can be obtained directly from NP.

To find the value of equation (14) from IN? a Cartesean coordinate

system with the origin located at the point P and the z-axis parallel to the

light but pointing in the opposite direction. as shown in Figure 3.4. must

be used. Four assumptions must be made about the model:

1) The normalized vector Ni makes an angle 0 with the

z-axis; therefore. if makes an angle 20 with the z-axis.

2) 0590'. HS) 90'. then the 1131.: is behind the

surface being considered. In the case where a view of

the back surface is desired when it is visible. the

normal is assumed to always point toward the light

source.

3) If‘L is the unit vector along the Pz-axis. then vectors

L. NP. and R? are caplanar.

4) The two vectors N? and RP are of unit length.

Using assumption (3). the projections of the vectors NP and if onto the

plane defined by (Px. Py) are merged into a line segment as shown in Figure

3.5. Therefore.

(15)

r
o
l
l
N
I

H
n a
q
u
n
l
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Figure 3.4: Determination of the reflected light [26]
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Figure 3.5: Projections of the reflected light [26]
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where ir' In. It. and Ti are components of R5 and 'NP in the x and y

directions. respectively.

Using assumptions (1) and (2). the component 7‘ of N? is

Eh - cos 0. (16)

meaning 0 S'En S 1. The following relations are obtained from trigonometric

identities

i-zz'-1 (17)

and

i; + if" - 1 - cos: 20. (18)

Using equations (15) and (18). we obtain

it - 221. in (19)

and

Y: - 22n in (20)

Thus. the three components 0f if are obtained from NP and are known in the

light source coordinate system. The projection of if onto the x-axis of the

viewer coordinate system requires finding the dot product of ‘Rf with this

z-axis. The component of if on an axis parallel to the viewing direction is

then evaluated as the cosine of a. which is used to simulate specular

reflections.

Phong states that interpolating RP. as is done for the normal vectors.

would be a more time-consuming process. calculating these vectors directly

requires less storage space as well. By calculating the shading values from

interpolated normals. a better approximation of the curvature of the surface
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is obtained and highlights are more accurately simulated. Unfortunately.

the Nachrband effect is not completely eliminated because a continuous

derivative of the shading function across polygon edges is not guaranteed;

subjective brightness along abrupt changes in orientation of adjacent

polygons will be visible. This is inevitable because. according to the

Inch-band effect. it will be visible at abrupt changes in the slope of the

intensity distribution curve regardless of whether or not the first

derivative of the curve is continuous. Phong tried using higher-degree

interpolation schemes and the effect was still visible. Furthermore. the

images produced differed very little from those produced by the method

presented here so the latter was determined a better technique because it

uses less time and may be implemented in harduare. However. this method did

produce a marked improvement over Gouraud's algorithm for simulating smooth

shading. although it requires more than three times the hardware to

implement and a slight increase in execution time; but Phong feels the

improved quality is worth it.

The next shading algorithm improves on Phong's method by not using any

empirical adjustments in the shading model.

3.3 Blinn Normal-vector Interpolation Shading

In this algorithm [3]. published in 1977. James F. Blinn uses a

theoretical shading model derived by K. E. Torrance and E. I. Sparrow.

Blinn does not actually present an algorithm to implement the shading model

but applies his model to existing algorithms then compares his images

generated to those from Phong's algorithm. Blinn's experimental results

generally match those from Phong's algorithm but some differences arise.
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Blinn's shading model simulates highlights more accuractely because it uses

a theoretical model whereas Phong's shading model includes some empirical

adjustments. One of the two main differences is that the amount of specular

reflection varies with the direction of the light source. The second main

difference is that the direction of the peak specular reflection does not

always coincide with the direction of reflection. R. where the angle of the

reflected light with the surface normal equals the angle of the incident

light.

Blinn's algorithm assumes that the surface is composed of a collection

of mirror-like microfacets that are oriented in random directions. The

specular component of the reflected light is assumed to come from facets

that are oriented in the direction of maximum highlights. E. If the surface

was a perfect mirror. light would only reach the viewer if the surface

normal bisected the angle between the directions of the viewer and of the

light source. This required direction of the normal is'H and can be defined

+
+

i
d
l
‘
fl

| (21)

l
“

I

F
5

r
d

The diffuse component of reflected light results from multiple reflections

between the facets. and from internal scattering. The Torrance-Sparrow

shading model implemented combines four factors to generate the shading

intensity:

nor

(Ni?)

 s a
(22)

where D is the distribution function of the facets' orientations. G is the

amount by which the facets shadow and mask each other. F is the Fresnel
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reflection law. and (NiV) is the cosine of the angle between the surface

normal and the viewer. All vectors are assumed normalized. Each of these

terms will be discussed more fully in turn.

Light will be specularly reflected only by facets posessing a local

normal vector which points in the direction of ‘H. The distribution

function. D. evaluates the number of facets pointing in this direction.

Several different distribution functions have been proposed. Phong uses a

cosine function raised to a power as presented previously except instead of

measuring the angle between the directions of the viewer and the reflected

light. the angle 8 is measured between the average surface normal and 'H of

each facet to conform to Blinn's representation of the surface using

microfacets. This angle may be defined as

B - cos-1 (N‘H). (23)

Blinn's version of Phong's distribution function becomes

01 - cosc‘ p (24)

The distribution function used in the Torrance-Sparrow model is a

standard Gaussian distribution:

-( )’D3 3 ° 3 cs
(25)

where D: is the proportionate number of facets whose local normals form an

angle 8 from the average surface normal. The factor ca is the standard

deviation for the distribution which is a property of the particular surface

being modeled; c, is large for dull surfaces and small for shiny surfaces.

A third distribution function has been proposed by T. S. Trowbridge and
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K. P. Reitz which generates a very general class of surface properties by

modeling the facets as ellipsoids of revolution:

D, s (26)

cos' B (c,' - l) + 1

 

where c, is the eccentricity of the ellipsoids. c, is O for very shiny

surfaces and 1 for very diffuse surfaces.

Each of these distribution functions peaks when the value of the cosine

term is 1. which is when facets point along the average surface normal so

that 8 is 0. As 8 increases or decreases the values of the functions

decrease at rates that are controlled by the values of c1. c, and c,. Blinn

used a uniform angle. u. at which the distribution falls to one half to

compare the functions. In terms of u the three controls become

 

l 2

c1 :- - __n__ (27)

ln cos a

(ln 2)"‘

ca s—— , (28)

e

cosa u - l 0.8 (29)

c a .

’ cos' n - (2)°-‘

Although similar plots are obtained of the functions for equal values of o.

Blinn uses D; for his shading model because it has experimental as well as

theoretical justifications. and it is the easiest to compute. If a does not

change within a frame. D, can be calculated using intermediate values

calculated once per frame:

11 - 1 / (c,’ - 1) (30)

k, - k1 + 1 (31)
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Using equations (30) and (31). D, becomes

D, - ’ (32)
8

cos 8 + k1

 

This speeds up the computation of the distribution function.

Tb simulate surfaces of varying shininess. c, changes from place to

place on the surface and D, must be normalized. In equation (26) D, is

normalized so that D,(0) . 1. If e, varies across the surface. a constant

normalizing factor must be used that is based on the minimum value of c.

over the surface:

c, - c.1n + (1 - c.1n) t(u.v) (33)

where t(u.v) is the texture value. The texture-modulated distribution

function is:

°min °3

D, a (34)

cos' 8 (c, - 1) + 1

 

The second factor in the specular reflection model measures the degree

to which the facets shadow each other and is called the "geometric

attenuation factor". G. G ranges in value from O to 1 and represents the

proportion of light from the source that reaches the viewer after the

shadowing takes place. An assumption is made that the microfacets are

V-shaped grooves with the sides at equal but opposite angles from the

average surface normal. Only grooves where one of the sides has a local

normal in the direction of‘H contribute to the highlight. Three cases may

arise for different positions of the light source and viewer; these are

illustrated in Figure 3.6. Note that L and V'do not necessarily lie in the
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plane of the figure which contains H and N. For case (a) of Figure 3.6. G

is 1 since the light rays are not blocked by other surface facets. To

compute G for cases (b) and (c) the proportion of the facet contributing to

the reflection must be calculated. This is the ratio 1 - (m/k) as shown in

Figure 3.7. By projecting the vector V or the vector ‘L onto the plane

containing 'N and H. the problem is reduced to two dimensions. Applying the

law of sines and several trigonometric identities. the ratio is determined

for cases (b) and (c) in terms of the vectors N. H. V. and E:

 

  

c = 1 - lk .. - _ 35

b " (v-n) ( )

2(fioi) (fi-T.) 2(fi-i) (N-I.)

G6 = 1 - m/k I . (36)

(Li) ('V-i)

The value of G will be the minimum of 6‘. Oh and Ge'

The next factor in the shading model is the Fresnel reflection. F.

which determines the actual amount of incident light reflected from a facet

as opposed to being absorbed. F is a function of the index of refraction.

r. of the substance and the angle of incidence. O. which is defined in this

case as

O = cos.1 (L-H) = cos"1 (V'H). (37)

Thus the Fresnel function is given by

sin3 (0 - 1) + tan3 (0 - 1)

sin’ (9 + 7) tan’ (6 + 1)

 

F = 0.5 (38)

where

sin

sin 0 8 7 .
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and viewer with noFigure 3.6a: Positions of light source

interference [3]
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Figure 3.6b: Positions of light source and viewer where some of

the reflected light is intercepted [3]
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Figure 3.6c: Positions of light source and viewer where

some of the incident light is masked off [3]
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Figure 3.7: Proportion of facet contributing to the reflected

light is 1 - (m/k) [31
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For metallic substances r will be large in value and F(O.r) is nearly

constant at 1; for nonmetallic substances r is small and F has an

exponential appearance beginning at 0 for O - O. and reaching 1 at O - 90'.

If the light source and the viewer are assumed infinitely far away. the

light rays reaching the viewer will be parallel and L and V will be constant

vectors. This means that the calculations of the directions of L.‘V and H

and of (75H) need to be performed only once per change in light source

direction. Using some trigonometric identities. F. too. only needs to be

calculated once using the equation

(39)

F _ (g - j)‘ 1 + (j (g + j) - 1)‘

(g + i)’ (j (g - j) + 1)‘

where

j. (V'i) and ' II (t: + 1’ - 1)....

This helps reduce the computation time.

The final factor in the shading model is the division by (N‘V). Since

the viewer sees more of the surface when it is tilted. more facets with

local normals in the H direction will contribute to the intensity of the

specular reflection. The increase in area seen is proportional to the

cosine of the angle between the average surface normal and the line of

sight. thus explaining the presence of this term. Combining this term with

the computation of G. it is possible to avoid a division by zero by making

some comparisons to find the minimum of G.. 6b and Gc before doing the

divisions:

If (N°V) ( (N-L) then

If 2(fi-V) ('fi-i) < (TI-i) then
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G:- 203-?!) I (TI-i)

else G:- 1 I (N-V)

else

11 2(‘fi-i) (fi-i) < (V-i) then

G:- 2(N-H) (N-L) /(V°H) (NW)

else G:- 1 / (TV-V.)

This also helps speed up the computation of the highlight function.

Comparing this highlight function to the one Phong used. Blinn notes

that for small angles of incidence. the two are very similar. However. the

intensity of the highlight and its direction differ for large 0. thus the

differences are most noticeable for edge-lit objects. Also. Phong's model

does not simulate nonmetallic objects as well as Blinn's does. Because D,

is easier to compute than D,. the savings in computation time offsets the

extra time required to generate G and F so Blinn claims there is no overall

increase in computation time yet the degree of realism is increased.

The next section presents an algorithm which uses the method of

half-tones described in Chapter II to generate shaded images.

3.4 Newell-Sancha Half-tone Shading

Although the authors claim this is a half-tone algorithm [23.24].

I. E. Newell. R. G. Newell and T. L. Sancha do not disclose the specifics on

how the half-tones are implemented. However. the algorithm. published in

1972. is significant because it is one of the early attempts at simulating

transparent objects. The algorithm also uses a different method to generate

the information about the objects being modeled; images are created by
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calculating the shading values per polygon in order of decreasing distance

from the viewer instead of on a scan line basis as with the previous three

algorithms.

The basic idea behind the Newell-Sancha hidden-surface algorithm is to

order the polygons or patches in order of decreasing distance from the

viewplane then to paint the object face by face. overlapping any existing

faces thereby covering hidden surfaces. If conflicts arise where the faces

cannot be properly placed in order. perhaps due to cyclical obscurings or

intersections of faces. faces are split to attempt to resolve the problems.

thereby increasing the total number of faces composing the object. The

faces are painted into the image memory. which they call a screen map. then

the information is processed again according to scan lines before being

displayed.

The shading function is performed during the painting of the faces to

the image memory. The model used has a diffuse. an ambient and a specular

component. The diffuse component is the cosine of the incident angle. 0.

raised to the power s and multiplied by a coefficient. Cd. which is the

intensity range. s is an arbitrary power; when s - 1. the function

simulates diffuse reflection. As a increases. the object appears darker

except for a few faces which appear at the brightest intensity; this gives

the effect of a shiny black surface. The ambient component. 8 is a,.

constant representing the ambient level of lighting. The specular component

is used in particular to simulate longitudinal reflection patterns of

bottles or other objects of revolution and has the form of the sine of the

incident angle raised to a high power. i. and multiplied by the specular

intensity range. C Thus. the shading equation becomes
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S = Cd cos‘ 0 + S, + C, sin1 0. (40)

Transparent materials can be simulated by slightly altering the

painting routine. 'hen the new surface being painted is transparent.

instead of simply replacing the previous shading value of the old face

covered by this new surface with the new face's value. the shading value

stored is a combination of both the old. So. and new. Sn. shading values. A

comparison is made between the old and new values and depending on the

outcome. the resulting shading value is a weighted sum of these two as

follows:

If Sn ( So; 8 - w Sn + (l - w) 80 (41)

If s, > so; 3 .. s (42)

where w is a weighting factor.

Newell. et al. claim that these functions are not an attempt to

simulate the real world but can considerably enhance the appearance of the

images produced. Although the effects of' transparency are simulated. no

provision is made for the effects of refraction which are apparent through

many transparent objects. Also. they feel that "the time taken to produce

an image precludes the possibility of using shaded pictures in a truly

interactive way". Their second paper. [23]. presents ten figures of images

produced with their algorithm. They compare the complexity of each figure

and the time required to produce the image. The entire algorithm is broken

into four parts with the third being the writing of the fragments to the

image memory. which includes the performance of the shading function. They

list times for this part ranging from 1.4 to 33.4 seconds. However. it is
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not known exactly how much of these times was spent on the shading alone.

Regardless. pictures of images generated using this method which were

included with the paper greatly exhibited contouring effects.

The next section presents an algorithm to generate images using the

method of ray tracing described in the last chapter. It simulates the

effects of both transparency and refraction as well as shadows and light

reflected from object to object within a scene.

3.5 'hitted Ray-tracing Shading

In this algorithm [35]. published in 1980. Ihitted incorporates a

technique known as ray tracing. The algorithm is based on a hidden-surface

algorithm that produces ”trees" of global information for each pixel of the

display. The trees are formed by tracing light rays from the viewer to the

first surface encountered. then tracing the components of reflection and

refraction from the first surface to the next until reaching a light source.

Shading is then performed by traversing the tree to determine the light

intensity received by the viewer.

The hidden-surface algorithm does not perform the usual functions of

clipping and removal of faces hidden to the viewer; these may be visible as

reflections on other objects within view of the observer. Rays are traced

from the viewer to the first surface to the next surface and onto the last

surface before reaching the light source; therefore. objects not included in

the view may affect the lighting of visible objects.

The ray tracing is performed by calculating the intersection of an

incident ray of light with a reflecting surface. Since the rays are traced
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from the viewer. the direction of the incident ray. L. coincides with the

direction of the viewer. ‘V. for_the first surface. The incident ray is

broken into two components: the reflected light in the direction of 'R and

the light transmitted through the surface in the direction of T. The R

direction follows the rule that the angle of incidence equals the angle of

reflection as established in previous sections. The direction of the

transmitted light. T. obeys Snell's law of refraction. Thus. R and T‘ are

functions of N and V given by

_ v

V' - ‘27 (43)

lv-Nl

ii - ‘v" + 274' (44)

T-k,(‘fi+v')—'fi (45)

where

1,. - (t; I‘v'l’ - IV' +fil‘)"-‘

and kn - the index of refraction. These equations assume that (ViN) is less

than zero so‘N must point to the side of the surface that from which the ray

is incident. Likewise. kn must be adjusted to account for the change. If

the denominator of k, is imaginary. T is assumed to be zero because of total

internal reflection. The intersection process is performed recursively

until all branches of the tree are terminated. These relationships are

pictured in Figure 3.8. Figure 3.9 shows how the rays are traced from

surface to surface with Figure 3.10 showing the tree formed from the

components of light reaching the viewer from point P in Figure 3.9.

The shading model used by Ihitted is dependent on the vectors generated

by the hidden-surface removal algorithm. namely. N.‘R and T. It includes a
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Figure 3.10: Tree formed from components of light reaching

the viewer from point P of Figure 3.9 [35]
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constant representing the ambient reflection. 8,. and terms for the diffuse

and specular reflections and the transmitted intensity. The diffuse

component ideally would include contributions reflected from nearby objects

as well as light from all of the sources. These contributions would simply

add together to form the total diffuse reflection. However. the computation

required to sum components from other objects in the scene would be too

extensive so a diffuse componhnt similar to that used by Phong is

implemented which only accounts for the sources. Assuming that N and L are

normalized. the diffuse component becomes their dot product multiplied by

the diffuse reflection coefficient. Cd. The complete equation for the

shading model is

S - S, + Cd (N‘L) + C, R + Ct T (46)

where C, and Ct are the specular reflection and transmission coefficients.

respectively. R is the intensity of light incident from the R direction and

T is the intensity of light from the T direction. Although the coefficients

C, and Ct were held constant to generate the pictures included in 'hitted's

paper. more accuracy is obtained by making them functions incorporating the

Fresnel reflection law; the coefficients would then vary as a function of

the incident angle in a manner depending on the properties of the surface

being displayed. Instead. they must be chosen to correspond to physically

reasonable values to generate realistic pictures. As the tree from the

hidden-surface algorithm is traversed. shading intensities are calculated at

each node using this model. The intensities are then linearly attenuated as

a function of the distance between the nodes. The linear function is used

because it provides a good approximation of the effects of distance; for
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non-planar surfaces the square-law approximation does not apply.

lhen modeling surface properties. if the value of C. 1. decreased and

that of Cd increased. the surface will appear less glossy but the highlight

will not spread out realisticly as it did for Phong's model whenever the

specular exponent was reduced to simulate less smooth surfaces. To improve

the highlights generated. a random perturbation is added to the surface

normal to simulate the randomly oriented microfacets of a rough surface.

thereby assuming a surface modeled in the manner described by Blinn in

section 3.3. If the surface is smooth and shiny. the perturbation has a

small variance; rough surfaces necessitate using larger variances. This

method will also give transparent objects a frosted appearance by using

larger variances. But because this method requires a great amount of extra

computation. it is avoided whenever possible. One such case is when

specular reflections are caused directly by a point light source. where

Phong's model of specular reflections can effectively be used at the point

of reflection.

Shadows may be simulated using this algorithm by extending the trees

from the hidden-surface algorithm to include rays associated with light

sources at each node. If one of these rays intersects a surface before it

reaches the source. the point of intersection represented by the node lies

in shadow with respect to that light source. This source will not

contribute to that point's diffuse reflection. thus creating a shadow.

The pictures included in Vhitted's paper were created using a

VAX-ll/780 and are probably the best generated by any of the algorithms thus

far. However. they required between 44 and 122 minutes to be processed.

For simple pictures 12 percent of the processing time is attributed to just
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the shading with the majority of the time needed to compute the

intersections in the hidden-surface removal algorithm. Some shortcomings of

the algorithm is that it does not provide for diffuse reflections from

distributed light sources. nor do specular reflections degrade gracefully as

surfaces get less glossy.

Ihile this algorithm was able to shade objects modeled by both

polygon-mesh and curved-patch representations. the next section presents an

algorithm designed specifically for curved patches. particularily a class

known as the bicubic patch.

3.6 Catmull Bivariate Surface-patch Shading

This algorithm [6.7] was developed in 1974 by Edwin Catmull. The

method was primarily developed for objects modeled using a class of curved

patches called bicubic patches but is not limited to them alone and can be

applied to other kinds of surfaces as well. The algorithm is based upon a

subdivision procedure which divides the patches into subpatches. After the

subdivisions are accomplished. hidden-surface removal and shading functions

are performed. Four different methods to determine the shading values are

discussed.

Catmull feels that bicubic patches are better for modeling objects to

be displayed. The polygon-mesh technique produces unrealistic effects such

as a faceted appearance caused by contouring and jagged silhouettes formed

by straight-line segments. Also. quadric curved patches do not provide

enough degrees of freedom and are therefore unsuitable for modeling many

objects. Bicubic patches are easily joined with slope continuity across the
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boundaries so they produce continuous shading and smooth silhouettes. And

as mentioned. the basis of Catmull's algorithm is the subdivision algorithm

and this process can be performed quickly using bicubic patches.

The subdivision algorithm divides all patches into subpatches until

each subpatch's projection represents only a single pixel on the raster

display. This is done by joining the midpoints of opposite sides of the

patch. thus dividing it into four subpatches. Eventually the patch will

appear as in Figure 3.11. Subpatches which do not cover any pixels are

associated with the nearest subpatch covering a pixel or sample point.

Clipping is performed during this process to determine if a subpatch will be

on the screen before dividing it any further. Overall. the number of

subdivisions required is slightly greater than one third of the number of

pixels covered by the original complete patch. According to Catmull. the

subdivision of each bicubic component requires thirty additions with values

passing through four adders; it is best to have a subdivider for each of the

three bicubic comoponents to work simultaneously and reduce the total

execution time required.

When the subdivisions are completed. hidden surfaces are removed then a

shading value is assigned to each pixel and accordingly. to each subpatch.

Cannull sites four methods to determine the shading value for each pixel.

The first shading method can be any of those mentioned in this text

which uses the surface normal to calculate the shading intensity. However.

since the equation of the normal to a bicubic patch is a fifth degree

polynomial. it is difficult to find. A fifth degree subdivision equation

could be used to solve the normal equation but this is impractical so

Catmull used the following method to generate the pictures in his paper.
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Figure 3.11: Patch subdivided so that no subpatch covers

more than one sample point [7]
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The normal equation is approximated with a cubic equation. Its

components are then subdivided along with the components of the patch

equation to obtain approximate normal equations for the subpatches. The

patch and normal equations are functions of two variables. u and v. The

notation for the x-component is

x(n.v)=U llx V (47)

where U and V are matrices defined as

u - [n' u' u 1] (43)

V I [v3 v3 v 1]T (49)

and I: is a four-by-four matrix of coefficients defined as

b q

‘11 ‘11 ‘11 '14

‘11 'ss ‘21 ‘14

x a,, a,, a,, a,, (50)

‘41 ‘42 ‘41 ‘44

L -  
The derivative of the xrcomponent in the urdirection is given by

xu - 0' III V (51)

and the derivative in the v-direction is defined as

xv - U I! V' . (52)

The normal vector. [xn yn an]. is found by forming the cross product of the

tangent to the surface in the urdirection. [xn yn zn]. and the tangent in

the v-direction. [xv yv ‘vl' Thus. the normal components are defined as



xn(u.v)

yn(u.v)

and

xn(u.v)

To find the approximate components of the normal
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3 U' I, V U I: V' - U Iy V' U' I, V .

- 0' II V u I, v' - u I, v' 0' I1‘ v

0' I1 v u I, v' - a II v' u' Iy v .

requires

(53)

(54)

(55)

a similar

matrix multiplication for each component as shown for only the x-component:

x - c Px cT

where C is the Coons matrix defined as

and

where

 

-3 3 -2 -1

O 0 1 0

l O 0 OJ

—

 

I 2 -2 1 1‘

xn(0.0)

xn(l.0)

dxn(0.0)

du

dx (1.0)

dun

 

xn(0.1)

xn(1.1)

d (0.1)

4:“

dx (1.1)

dun

dxn(0.0)

dv

dxn(1.0)

dv

d ‘(0.0)

diav

d ’(1.0)

d:3v

d (0.1) i

4:“

d (1.1)

.3“

a: ’(0.1)
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(56)

(57)

(58)
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dxn(u.v)/du 3 U" I, V U I, V' + U” I, V U' N, V'

- u' I, v' u' I, v - u I, v' u" I, v (59)

dxn(u.v)/dv = U' I, V' U I, V' + U' I, V U I, V"

- u I, V" n: I, v - u I, v' u' I, v' (60)

d'xn(u.v)ldudv - u" I, v' u I, v' + u" I, v u I, v"

+ 0' I, v' u' I, v' + u' I, v u' I, v"

- u' I, v" u' I, v - u: I, v' u: I, v'

- u I, v" u" I, V'- n I, v' u" I, v'. (61)

The equations for the y- and z-components are similar and can be found by

comparing equation (52) with equations (53) and (54) to derive similar

equations as (55) and (57) through (60) for the other components of the

approximated normal vector.

A second method to find the shading values is to use an intensity

function. This associates numbers with the pixels as derived by a function.

The function could be based on anything such as pressure. strain. height.

density. artistic whim. etc. Some checks must be used to stay within the

bounds of the display as described in [7].

The third method is to map a picture to the surface. This is done by

forming a one-to-one correspondence between either the pixels covered by the

patches and the intensities of the picture or between areas of the picture

and entire patches. The intensity of the picture could be a function of u

and v as is the patch. The function or area is divided as the patch is to

maintain the correspondences. One problem that may occur is a sampling

problem. If the the picture contains more intensity values than the patch
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has pixels. all of the information in the picture will not be displayed on

the patch. In the area-mapping method the sampling problem is less

noticable because the average intensity of the area is mapped to the

subpatch. however. the problem is not eliminated.

The forth and final method to calculate the shading values is to modify

the intensity for effects such as shadows or transparency. Another method

must be used to find the initial intensities then this method adjusts the

values. A method similar to that of Newell. et al. is used for displaying

transparent objects. Shadows are created by using "shadow-patches" formed

from the silhouette of an object from the point of view of the light. After

determining which portions of the object are behind these patches. the

shading values of the shadowed portions are attenuated. One problem is that

this method merely diminishes highlights rather than eliminating them.

Several pictures generated by this method were included in both of

Catmull's papers. Times to produce the pictures ranged from 115 seconds to

15 minutes. It was not disclosed exactly what portion of the time was

required to generate only the shading values. Despite the complexity of

many of the pictures. they were very realistic.

The next section presents a shading model that utilizes the different

characteristics of various materials to display how they reflect light more

accurately to achieve more realistic images.

3.7 Cook-Torrance Reflective Nodel for Shading

This model [10]. published by Robert L. Cook and Kenneth E. Torrance in

1981. is a reflectance model for shading computer images with emphasis on
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generating color images. It is based on geometrical optics like most of the

previous algorithms but is applicable to a broader range of materials.

surfaces and lighting situations. Here. the intensity of the reflected

light is determined by the intensity and size of the source. and by the

object's reflecting ability and surface properties. The spectral highlights

are determined by the spectral composition of the source and the

wavelength-selective reflection property of the surface.

Like the previous algorithms. this shading model uses the vectors N. V.

‘L. and ‘H. where all are normalized and defined as in previous sections and

shown again in Figure 3.12. Note that the angles between 'H and the two

vectors 4V and 'L are defined as g. and that these three vectors lie in the

same plane; N is not necessarily contained in that same plane. This model

also derives its specular component in a similar manner as Blinn's model and

depends on the description of a surface as being composed of randomly

oriented microfacets.

Unlike any previous algorithm. this model determines the energy of the

incident light as expressed as energy per unit time and per unit area of the

surface. lost non-mirror surfaces reflect the incident been over a wide

range of angles. thus. the reflected intensity in any given direction

depends on the incident energy and the incident intensity. The intensity of

the incident light is expressed in a similar manner to the energy but is per

unit projected area and per unit solid angle. The energy of an incident

beam of light. Bi' is given by

E, - I, (fi-E) u, (62)

where Ii is the average intensity of the incident beam and ”i is the solid
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Figure 3.12: Geometry of reflection model for Cook and

Torrance's algorithm [10]
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angle of the beam.

Unless the surface is a perfect mirror. the incident light will be

reflected over a wide range of angles. Each light source is associated with

e bidirectional reflectance. 2b. which is the ratio of the reflected

intensity in a specified direction to the incident energy from another

direction both within a small solid angle. Rb is given as

s
_ _

63)
'1. E, ‘

where S is the reflected intensity or shading value that the viewer sees

from each light source and is given by

s - I, a, - I, 1, (Ni) 6, (64)

Rb is a linear combination of two components. The diffuse component. Rd. is

from either internal scattering where the incident light penetrates the

surface or from multiple surface reflections such as from a rough surface.

The specular component. R is from light that is reflected at the surface
'0

of the object. If the object being modeled is not composed of a homogeneous

material. these two components may have different colors. If d is the

fraction of reflectance that is diffuse. (l - d) is the fraction of

reflectance that is specular and Rh is given by

Rb I d Rd + (l - d) R,. (65)

The light reflected toward the viewer from ambient light. when

integrated over the entire hemisphere of illuminating angles. can be defined

by a hemispherical-directional reflectance. R,. which is an integral of Rb

and. therefore. is a linear combination of Rd and R,. R, is assumed
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independent of the direction of‘V and the ambient light is assumed uniformly

incident. The reflected intensity due only to the ambient light. 8 is

given by

.9

sa ' Ra Ii.a f (66)

where 11', is the intensity of the incident ambient light and f is the

fraction of the illuminating hemisphere that is not blocked by other

objects. given by

r 11611:) (67)8— O 0

n i

where the integration is performed over the unblocked portion of the

illuminating hemisphere.

Hence. the total intensity of the light observed is the sum of the

reflected intensities from all of the light sources plus any reflected

intensity from the ambient light. 'ith f I l. the shading model is defined

‘8

s - I,” n, + 21 11.) (ii-f.) “1.1 (d n, + (1 - d) 3,). (68)

This equation takes into account light sources with different intensities

and projected areas. For instance. if two incident beams have the same

intensity and incident angle but one has twice the solid angle as the other.

the first will make the surface appear twice as bright as the second will.

Similarily. if an incident beam has twice the intensity but the same

incident angle and solid angle as a second beam. the first will make the

surface appear twice as bright. However. the model depends on several

variables. For example. the intensities depend on the wavelength of the
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light. d depends on the material composing the object and the reflectances

depend on these variables in addition to the reflection geometry and the

surface roughness.

Directional dependence only affects the specular component. R,. since

it relies on the location of the viewer. Similar to Blinn's model. this

component can be defined as

F D G

R,I _._ _- . (69)

n (N-L) (N-V)

 

The terms G. D and F have the same meaning as they did in Blinn's model but

their equations are defined differently.

G is the geometrical attenuation factor which accounts for the

shadowing and masking among the microfacets. It is defined as

 

{ 263-3) (ii-Tn 2(i-i) (74.1)}
G I min 1. (70)

(v-i) ' (‘v-i)

D represents the the fraction of facets that are oriented in the

direction of ‘H. Cook and Torrance consider the Gaussian model proposed by

Blinn in equation (24). but also a model developed by Petr Beckmann and

Andre Spizzichino for rough surfaces

1 -[tan‘ 8 / ma 1

n=-—,————,——. . (71)

n cos B

where m is the root-mean-squsre slope of the facets. which controls the

spread of the specular component. If m is small. the surface will appear

smooth and the distribution of the specular component from the facets will

be highly directional around the vector E. If m is large. rough surfaces

are simulated and the specular component will be more spread out. Comparing

this model to Blinn's of equation (24). the differences are very slight.
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The advantage of this function is that it gives the absolute magnitude of

the reflection without introducing any arbitrary constants; however. it

requires more computation.

Ihen objects have two or more different surfaces of different

roughness. the distributive functions will have different slapes m. The

overall D can be expressed as a weighted sum of the respective distribution

functions:

1) - E v, D(mj) (72)

J ,

where v, is the weight of the 1“ distribution function. The IIII of .11 the

weights must equal 1.

F is the Fresnel term which describes how light is reflected from each

microfacet. It is a function of the incident angle. t. and the wavelength

of the light. A. F. as well as the other reflectances Rd and 3,, may be

obtained from the reflectance spectra for the material. This information

has been measured for many materials. usually for illumination at normal

incidence. and tabulated. The measurements were made for only a few

wavelengths so the values may need to be interpolated. By multiplying the

reflectance spectra for the surface by the spectral energy distribution of

the incident light. the spectral energy distribution of the reflected light

is obtained. Since F and Rd also vary with the geometry of the reflection.

Rd is taken to be the bidirectional reflectance for illumination in the

direction nonmal to the reflecting surface. whereas F's directional

dependence leads to a color shift when the directions of incident and

reflected light are near grazing.

The Fresnel equation expresses the reflection in terms of the index of



84

refraction. r. and the extinction coefficient of the surface. Co. and the

angle of illumination of the microfacets. {. If r and C, are known. the

Fresnel equation is used to find the spectral and angular dependence of F.

If not. r is estimated by setting Co I 0 using an equation similar to

Blinn's equation (39) except here is has an additional factor of 1/2:

1 ( - )’ ( ( + ) - 1)’

F - ' J [1 + J ' J J (73)
2 (t + i)’ (i (t - 1) + 1)“

where

1" (v.°i) and g 8 (1'3 +1, _ 1,9.5.

This dependence of reflectance on wavelength and incident angle implies that

the color of the reflected light changes with the angle t. The computation

of this color shift is excessive so it is approximated from the spectral

energy distribution. thereby approximating the RGB values for the color.

Since all of the other algorithms have only dealt with intensities for

achromatic displays. the procedure for calculating these values is not

discussed. However. some important conclusions were drawn concerning the

realism of computer-generated images.

One conclusion is that nonhomogeneous materials may have specular and

diffuse components of different colors. Plastics are one such material.

The color of the specular component. which is reflected from the surface. is

only slightly altered by the color of the incident light. depending upon the

reflectance of the surface material. The diffuse component is of the color

of the plastic alone. This is not the case with metallic objects.

Reflections from metals occur almost completely at the surface. The

specular component is still only slightly altered by the color of the light
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source but if the surface is smooth. there may be barely any diffuse

reflection. According to Cook and Torrance. most of the other algorithms

create images of objects that appear to be made of plastic. Their model

increases the realism of the images by simulating other materials.

The next section presents a new method for modeling objects.

particularily those that occur in nature such as mountain ranges. continent

outlines and other objects with random surfaces.

3.8 Fournier-Fussell-Carpenter Fractal-surface Shading

In 1982 Alain Fournier. Don Fussell and Loren Carpenter published a

detailed discussion [14] of a new method to model objects. particularly for

those that occur naturally due to the randomness of their surfaces. The

method was derived from fractal mathematics techniques which were largely

developed by Benoit Iandelbrot in the late 1960's. One of the methods

presented by Fournier. et al. was implemented by Stephen L. Stepoway. David

L. Iells and Gerald R. Kane in a multiprocessor architecture in a paper

published in 1984 [30].

Fractal mathematics techniques are very useful to model

non-deterministic phenomena such as terrains. smoke and clouds. Traditional

methods for modeling such objects; i.e.. polygonrmesh or curved-patch

techniques. do not generate realistic images of these types of objects.

Even so. extremely large numbers of polygons or patches are necessary to

reproduce the natural features. The use of texture-mapping. a technique

which was discussed in both Chapter II and Section 3.6. is more effective

for these types of objects but even this tends to have a repetitive
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regularity not characteristic of the real objects. Thxture-mapping also has

limitations to the detail that can be conveyed as the viewer is brought

closer to the surface. Conversely. fractal mathematics can create the

resolution required of a particular scene by continuing the texturing

process to the extent necessary. The nature of the process is random enough

to effectively model smoke. trees. rocks and other such objects yet can be

controlled enough to follow a basic outline. such as the coast of a

continent.

The algorithm is similar to that presented by Catmull in Section 3.6.

Both relied on a subdivision process to break the model into pieces which

covered only a single pixel on the raster display then calculated surface

normals to be used in the shading computation. In this algorithm the object

is modeled at the start using a polygonrmesh technique where the polygons

are all triangles. The description is coarse requiring just a few dozen

triangles to give a general outline of the overall shape of the object; the

algorithm provides the texture definition. The more triangles used at this

phase. the more specific and controlled will be the object's definition.

As stated the subdivision algorithm breaks the triangles into smaller

triangles continuously until each triangle corresponds to only one pixel.

The new triangles are somewhat noncoplanar. The midpoints of the edges

forming a triangle under consideration hre moved a random distance from the

edges in a direction related to the normal of the triangle. These new

midpoints are joined to form a new triangle. Each edge of the new triangle

is connected to a corresponding vertex of the original triangle to form

three more triangles. In this manner each triangle is divided into four

smaller triangles as illustrated in Figure 3.13. Some problems may arise if
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Figure 3.13: Subdivision of a triangle [30]
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adjacent triangles are processed simultaneously. If their shared midpoint

is not moved to the same position. the surfaces will not meet at the common

edge. This can be corrected by sharing information between the processors

about the midpoint's new position so both will use the same placement.

Another solution is to move the midpoint in the direction of the average

normal of the two triangles sharing the edge; still the processors must

share information about the midpoint's exact displacement along the average

normal.

Once the subdivision process is completed the shading values are

determined from the shade of the original triangle and the orientation of

the normals of the new triangles. The shading values may be obtained using

any of the shading models mentioned in this chapter which uses the surface

normal to calculate the value.

Several pictures were included in the paper of Fournier. et al.. mostly

depicting terrains. The effect was very realistic. No execution times were

provided for the time required to generate the images; however. Stepoway. et

al.. claim that fractal surfaces cannot be used in real-time applications

because of the complexity of generating images. Nevertheless. the realism

is impressive and fractal techniques have been used in movies such as ”Star

Trek II". "VOl Libre” by Carpenter and ”Peak” by Mark Snilily.

Overall. this chapter has presented a wide range of shading models and

techniques to achieve realistic. computer-generated images. The next

chapter will examine the time-space complexity of the algorithms and discuss

the advantages and disadvantages of each.



CHAPTER IV

COMPARISON OF THE ALGORITHMS

There are different criteria by which to judge the shading algorithms

presented in Chapter III. One such standard is the realism of the images

generated by the algorithm. Many of the algorithms build upon previous work

in an attempt to enhance the realism of the final images. The shading

process is closely related to the modeling technique and the hidden-surface

removal algorithm implemented. The modeling technique provides the basic

data about the surfaces of the object. The manner in which the

hidden-surface removal algorithm processes this information determines how

it will be aviilable for the shading algorithm and its reflectance model;

most shading algorithms prefer a hidden-surface removal algorithm that

processes the information scan-line by scanrline. Increased realism of the

shaded images results from improvements in any of these three processes.

It should be noted that because the images are produced from a

numerical description of the objects. only approximate images of the subject

matter will be attained. There are many factors which affect the realism of

the images generated by the computer; such as the resolution of the screen.

the number of intensity levels obtainable. the processing power available.

and the lack of a visual feedback system. to name a few. Therefore. precise

duplicates of the objects are not possible and a degree of desired realism

must be defined.

Generally. the algorithms presented in Chapter III are based on two

modeling techniques. each with a modified version as well. and various

89
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reflectance models. Gouraud's algorithm was presented for the polygon-mesh

technique and relies on the data being processed in scan-line order. The

polygon-mesh technique uses low-order equations which are easy to solve. and

it does not restrict the class of objects that can be modeled. Though

Gouraud's algorithm improves upon the constant shading algorithm by reducing

contouring. it still exhibits Mach band effects. According to Catmull [7].

Gouraud's algorithm is difficult to use to generate highlights and the

shading is affected by the orientation of the polygons in the picture. This

last problem is due to the viewer and light source being at the same

location and causes frame discontinuities for motion pictures. Despite

these problems. Gouraud's images are acceptable and the algorithm has been

implemented in systems as mentioned in Chapter III.

Phong improved upon Gouraud's algorithm by maintaining shading

continuity across the boundaries of the polygons. It still exhibits Inch

band effects though not as noticably. However. Phong's reflectance model

was based on some empirical adjusnments so Blinn applied a theoretical model

which portrays highlights more accurately. Though Blinn's algorithm was

applied to Phong's algorithm. it is a reflectance model so it alone is not

dependent on the polygonrmesh modeling technique or scan-line ordering of

processing data as is Phong's algorithm. Both of these algorithms produce

images of better quality than Gouraud's.

The Newell-Sancha algorithm. also uses the polygon-mesh modeling

technique but it requires the data to be processed by area rather than

scan-line because it shades entire polygons at the same time. Since no

effort was made to shade continuously across the polygons' edges. this

algorithm exhibits considerable contouring and the Hach band effect; and
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thus. the images are not as realistic as those from the previous algorithms.

Although this algorithm was an early attempt to display transparent objects.

no effects of refraction are modeled.

lhitted's algorithm could be applied to either polygon-mesh or

curved-patch modeling techniques. It requires that the information about

the objects be processed in the form of ray-tracing trees. The algorithm

accounts for light sources within the scene being displayed and reflections

between objects. neither of which were modeled in the previous algorithms.

The images are very realistic but require large amounts of computations. and

do not account for diffuse reflections from distributed sources; also

highlights do not degrade gracefully as surfaces become less glossy.

Catmull's algorithm created realistic images using a specific class of

curved patches called bicubic patches. He claims polygons create

silhouettes that are not smooth and quadric patches cannot model any

arbitrary object. The algorithm divides the patches into subpatches no

larger than the size of one pixel before performing the shading or

hidden-surface removal processes; thus. the information is processed by

pixels. Overall. the bicubics are high-order equations and are difficult to

deal with. The subdivisions require large amounts of computations. 'orking

at the pixel level creates aliasing problems not easily solved but

eliminates the Mach band effect.

Cook and Torrance presented a reflectance model independent of both the

modeling technique and the manner in which the information is processed

during the hidden-surface removal procedure. It relates the brightness of

the object. as well as what it is composed of. to the intensity and size of

each light source. Cook and Torrance feel that all of the previous
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algorithms display all objects as if they were made of plastic. They use

the information about the object's composition to determine exactly how

light will be reflected to display more realistic images true to the

material that composes the objects. They claim to do all this without

increasing the overall execution time.

The final algorithm presented in Chapter III explains a new modeling

technique based on fractal mathematics. It is specifically developed for

natural objects because of their non-deterministic nature. Using the

previous modeling techniques on objects such as smoke. clouds or mountains.

which do not have regular features or simple macroscopic structures.

requires excessively large numbers of primitives. either polygons or

patches. Fractals provide random texture and structure to objects modeled

coarsely with planar triangles. Texture-mapping attempts this effect but is

too regular because it repeats the pattern and therefore. appears unnatural.

Another advantage is that fractals are not defined at a predetermined level

of resolution so distant and very close scenes are still quite realistic.

Also. the computational effort is proportional to the complexity of the

images. Fractals can model deterministic objects. too. but the computations

are more demanding than any of the previous algorithms. This concludes the

comparison of the algorithms presented in Chapter III based on realism and

other problems. such as implementation. Unfortunately. despite its

importance. realism is a very subjective criterion.

The most important criterion is the speed of execution so that the

images are able to respond to inputs on a real-time basis. If the time

required to generate successive images is too long. the image update rate

will degrade causing flicker. The time complexity of the algorithms will be



93

analyzed in this chapter. The first section presents routines for standard

functions. such as addition and multiplication. then analyzes them for their

speed of execution. The hardware requirements of the processor model of the

system are discussed based on these functions. These routines serve as

subroutines for encoding the algorithms into functional-block

representations in the second section and different architectures are

applied to make the algorithms run more efficiently. The final section

compares the algorithms based on the criterion of speed of execution.

4.1 Basic Routines and Processor Model as Standards for Comparison

The purpose of this chapter is to analyze the execution times required

for the shading algorithms. Some assumptions have been made about the

processor model to isolate the amount of time required for the shading

algorithms. First. the size of the memory is as large as necessary. Since

the mapping of the memory is beyond the scope of this paper. no contention

problems exist so the time required to access memory locations is assumed to

be negligible. Also. the time to actually display the image on the screen

is not considered. Lastly. there is no limit to the hardware available to

implement the system. If four multiplications are performed simultaneously.

four multipliers are available. This increases the cost of the system but

reduces the speed of execution. Of course. other methods besides simply

adding hardware are investigated. This is particularily true when computing

an undetermined number of values; since the total hardware requirements are

unknown. other architectures must be utilized to minimize the execution

time.
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The processor model contains the necessary hardware as described in the

procedures that will follow. Nevertheless. some information is vital to the

shading computations and the time necessary to calculate this information is

discussed. Examples of such information include the determination of normal

vectors for polygons and patches. extra processing of object models. and

correlating data within the scene as with ray-tracing and some

hidden-surface removal algorithms. The processor model is discussed in this

section after the analysis of execution times for addition; subtraction;

multiplication; division; square roots; exponentials; cosines; sines;

inverse cosines; tangents; exponentiation; dot products; matrix products;

vector addition. magnitudes and normalization; and summations as well as the

determination of normals and midpoints. All numbers are assumed to be

signed. two's-complement. fixed-point numbers that are scaled to values less

than one. Although the system is a 32-bit machine. most of the values are

only 16-bit with the higher precision provided for multiplication. Here n

will be considered 16 and the system will be a 2nrbit system. Therefore.

two successive multiplications may be performed before an overflow is likely

to occur and truncation becomes necessary.

As stated. the execution times of several functions and processes are

analyzed in this section. These times will be used in the next section when

the shading algorithms are transformed into functional-block

representations. Many of the execution times for the procedures were

calculated using the material from Hwang [20] and Shanblatt [29]. Most of

these times are measured in increments known as A, which is the delay of a

single NAND. NOR or INVERTER gate. This helps to keep the comparison

independent of the technology used to implement the system.
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The first procedure is addition. An n-bit. (up to 64 bits).

Carry-Look-Ahead Adder. CLA. is used which produces an (n + 1)-bit sun. It

is a two-level design based on 4-bit Block CLAs. The execution time

reguired. AT. is 12 A,. For subtraction the subtrahend is complemented then

is added to the minuend to form the desired difference. Complementstion

requires 3 A, so the total time needed for subtraction is 15 A,.

A Baugh-Iooley array multiplier is used to implement multiplication

[2]. An nrbit multiplicand and multiplier will produce a 2n-bit product.

The execution time required is based on the number of bits;

AT' (4n + 3) A,.

The next eight procedures are implemented with the OORDIC algorithm

first developed by Vblder in 1959 [32] then later discussed by 'alther [33]

and Lawitzke [21]; Walther provides a comprehensive discussion of how to

implement the OORDIC algorithm for circular. linear and hyperbolic functions

using either the rotation or vectoring modes which he calls a unified

algorithm. The unit of OORDIC delay. Ac. is the result of n shifts and adds

requiring 2n clock cycles where n is the number of bits in the result and

each clock cycle is at least as long as AT for addition. Based on the CLA's

execution time. Ac is appromimately 24n A One function implemented is'0

division. Generally. the dividend is at least n bits but no more than 2n

bits in length and the divisor and quotient have n bits. Division is a

linear function and is implemented using the vectoring mode. It requires

one Ac or 24n A where n refers to the number of bits in the quotient. Most

I

of the seven remaining functions implemented with the OORDIC algorithm

require feeding back the outputs and dividing out a constant term. The

square root function is a hyperbolic function using the vectoring mode and
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requires Ac and one division process or 48n A,. Exponentials are also

hyperbolic functions but use the rotation mode. Two OORDIC delays are again

needed so the delay is 48n A The cosine function is circular and uses the‘-

rotation mode. It also requires 2AC so that AT is 48n A,. The sine

function is similar to the cosine function and requires the same delay. The

inverse cosine is first evaluated by finding the inverse sine then using a

trigonometric relation for the final result. The inverse sine is defined as

si -1 I t nV’ --JL--

n 7 ‘ [(1—1‘)] (74)

This function requires a multiplication. subtraction. square root and one

division then the inverse tangent is evaluated using the OORDIC algorithm

which uses one Ac. Then the arc cosine is evaluated using

- fl _

cos ‘ 7 I 5-- sin 1 1 (75)

which has a total time delay of (lOOn + 33) A The tangent function is‘0

implemented by simultaneously calculating the sine and cosine functions and

then dividing them. during which the constant terms cancel. The tangent

Exponentiation is the last Cordic function and is

b.

requires 2Ac or 48n A,.

evaluated using the identity for c I a

(b ln s)

ec I (76)

Natural logarithms can be implemented with the OORDIC algorithm using 2 AC.

Thus. the total delay will be (4 AC + 131) A, or 3203 A, when n is 32.

Since the images are three-dimensional each vector has three

components. Thus. to form dot products requires three separate

multiplications which may be performed in parallel and two additions so the
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delay is that of multiplication plus 24 A,. On the other hand. because of

the bicubic patches discussed in Cbtmull's algorithm. some matrices are as

large as 4 x 4. If matrix A is defined as m x c and matrix B is c x p. then

as each row of A is multiplied by each column of B. c multiplications and

(c - 1) additions are necessary. However. the multiplications can be

completed simultaneously. If c I 4. the number of addition delays can be

reduced to two by finding the sums in parallel according to the recurrence

computation array. also called tree reduction. shown in Figure 4.1. For all

matrix multiplications performed in this paper c I 4 so the number of

additions needed is two. But overall these operations are required mp times

for the completion of the entire matrix multiplication procedure when

performed separately. By using m processing elements. PEs. entire columns

of the product can be calculated by each PE simultaneously. This reduces

the total delay time to p (4n + 27) A, but substantially increases the

hardware because each PE must have c multipliers and at least (c/2) adders

with a maximum of c adders.

Vector addition uses three parallel adders to sum the vector components

separately and simultaneously. It requires the same delay as scalar

addition. Determining the magnitude of vectors requires taking the square

root of the sum of the squared vector components. The vector normalization

process then divides this number into each component of the original vector.

The former requires three simultaneous multiplications. two additions. and

one square root while the latter additionally requires three simultaneous

divisions. Thus the total delay to calculate the magnitude is (52m + 27) A

and to normalize the vector is (76n + 27) A,.

Summations are generated using recurrence computations as depicted in
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ADDEND ADOEND

”Wm \/

\/.

 

Figure 4.1: Addition array to sum four addends most

expediently
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Figure 4.1. This reduces the computation from (a - 1) addition delays.

where a is the number of addends. to log, n. Thus. the total delay is

12 log, a A The minimum number of adders needed to accomplish this is,.

half the number of addends where each can send its sum directly to any other

adder to expediently transfer data. The maximum would be equal to a with

the adders arranged in an array with predefined data paths similar to that

shown in Figure 4.1.

Finding the normal vector of a planar polygon is done by calculating

the cross product of any two adjacent sides. Since the equations for the

sides of the polygons are not known. vectors in the same direction can be

calculated by subtracting corresponding components of the endpoints; this

requires three simultaneous subtractions for each vector or 15 A, overall.

Then six simultaneous multiplications and three simultaneous subtractions

are necessary to perform the cross product. The total delay. including

finding the vectors. is (4n + 33) A,. The final procedure is to find the

midpoint of linear line segments. The corresponding components of the

endpoints are added needing three simultaneous additions and then each sum

is split in half using three simultaneous divisions. The total delay is

(24n + 12) A,.

All of the execution times discussed above are tabulated in Table 4.1

for both the general case and when n is 32. They will be used in the next

section while transforming the algorithms into functional-block

representations.

The hardware requirements now presented for this system are subject to

change after the shading algorithms have been transformed. These

requirements are based on the parallel operations performed to calculate the
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Table 4.1: Summary of execution times for basic procedures

   

Procedure Execution Time. AT AT‘Ihen nI32 3

Addition 12 A, 12 A,

Subtraction 15 A, 15 A,

Multiplication (4n + 3) A, 131 A,

Division 24n A, 768 A,

Square Root 48n A, 1536 A,

Exponential 48n A, 1536 A,

Cosine , 48n A, 1536 A,

Sine 48m A, 1536 A,

Arc Cosine (lOOn + 33) A, 3233 A,

Tangent 48n A, 1536 A,

Exponentiation 120n A, 3203 A,

Dot Product (4n + 27) A, 155 A,

Matrix Multiplication p (4n + 27) a, ‘ 155 p A,

Vector Addition 12 A, 12 A,

Vector Magnitude (52n + 27) A, 1691 A,

Normalization (76n + 27) A, 2459 A,

Summation 12 log, a A, ' 12 log, a A,

Normals (4n + 33) A, 161 A,

Midpoints (24n + 12) A, 780 A,

 

1- n is the number of bits in the numbers.

3- Matrix A is m x c. B is c x p. Function performed is A ' B.

3- a is the number of addends to be summed.
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procedures discussed above. The majority of the hardware is necessary

because of the vector computations that are performed. particularily the

matrix multiplication.

First. the consequences of using a 32-bit machine are discussed. As

stated. the majority of the numbers are limited to only 16 bits but the

system is capable of 32 to accommodate the larger products from

multiplication. Adhering to these limitations means there are initially 16

bits to form values but the number of bits in the shading values is likely

to increase since most of the shading algorithms require at least one

multiplication. Thus. the number of bits used to calculate shading

intensities provides a maximum of 2'3 intensity levels. Even though the

values of x. y and z are limited to 16 bits. this limitation provides more

than adequate screen resolution. Besides. the relationship between the

screen resolution and the number of intensity levels available was discussed

in Chapter II with the greater number of intensities favored over the higher

resolution. For this reason even if these limitations did not allow for

such high resolutions or vastly numerous intensity levels. they would not

adversly affect the images generated.

The most demanding procedure. in terms of hardware. is matrix

multiplication. The recurrence computation was used for this procedure as

well as to generate summations. Using the recurrence computation array to

reduce the delay caused by the additions means needing from two to four

adders per processing element because there are two possible ways to

implement the recurrence array. The first is to use two adders which are

capable of sending their sums to each other and themselves directly to avoid

delays from transferring data. These sums are used as inputs for the next
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addition. If there are four addends. as is the case with matrix

multiplication. each adder receives two addends and forms a sum. Then one

of the adders adds the two sums just produced to form the final sum. The

second method of implementation is to use four adders in an array as denoted

by the plus signs in Figure 4.1. The adders of the first row compute their

sums then send them to the adders in the next row as designated by the lines

marking the data flow pattern. The direction of the data flow is

predetermined and is static so this hardware is dedicated whereas the data

flow pattern of the previous method is programmable so a single addition can

easily be performed. The advantage of this second method is that if the

number of addends used as inputs to the summation is greater than four. this

method lends itself readily to pipelining; four addends could be applied to

the first row of adders after one addition cycle while the final sum of the

previous four is being calculated by the second row. However. the matrix

multiplication procedure requires four of the recurrence arrays so large

numbers of addends can be efficiently summed using all four arrays. Thus.

using the first method requires less hardware and the advantages of the

second method are still retained. Overall. the matrix multiplication

procedure needs eight adders. two for each processing element. It also

needs 16 multipliers. four for each processing element. The quadruplicate

hardware demands cut the execution time to one quarter of that without the

extra hardware.

Vector normalization and cross products require three simultaneous

divisions and hence. three dividers. The process of determining vectors

from polygon vertices to use for the cross products requires six

simultaneous subtractions. Since there are already at least six adders
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because of matrix.multiplication. only six complementor circuits need to be

added to the hardware list. And lastly. the OORDIC algorithm requires a

shift register. Since three dividers are needed. the OORDIC circuitry is

tripled.

This concludes the hardware requirements of the basic routines

discussed above. Besides the assumptions stated at the beginning of this

section. no other demands are made of the processor model at this time.

Nevertheless. if some of the procedures are performed in parallel to speed

the execution of the shading algorithms. more hardware may be necessary.

Methods to reduce the execution times of the algorithms are investigated in

the next section of this chapter. along with their impact on hardware

requirements. The algorithms are transformed into functional-block

representations using the processes described in this section as basic

building blocks.

4.2 Functional-block Transformations of the Algorithms

In this section the shading algorithms presented in Chapter III are

transformed into functional-block representations using the routines

analyzed in the previous section as the functional blocks. One problem with

performing a time analysis on these algorithms is due to the relationship

between the object-modeling technique. the hidden-surface algorithm and the

shading algorithm implemented. Because the overall appearance of the shaded

images can be improved by introducing changes to any of these three areas.

one cannot simply analyze the shading algorithm alone. For this reason

improvements to the object-modeling technique and the hidden-surface
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algorithm are also transformed to functional-block representations when

deemed that they are critical to the operation of the shading algorithm.

These times must be considered along with the actual shading algorithm

execution time during the time analysis.

Another problem with comparing the algorithms is that each makes

different assumptions. For example. most of the algorithms assume that the

normal vector to the polygon is known before performing the shading but

Catmull carries out an extensive approximation of the normals. Gouraud and

Newell. et al.. claim to know the incident angle and calculate its cosine

directly whereas Blinn. Ihitted and Cook. et al.. know the vectors for the

viewer and light source's directions and use dot products to determine the

cosines of their angles with the normals. On the other hand. Phong

approximates the cosine of the angle for the specular component directly

from the normal but still uses a dot product for the cosine of the incident

angle. Blinn approximates the direction of specular reflection and its

angle with the normal but Cook. et al.. assume they are known while the

other algorithms do not utilize them at all. Catmull and Fournier. et al..

do not implement their own shading algorithm so they make the same

assumptions of the shading algorithm used. Cook. et al.. and Ihitted are

the only algorithms that demonstrate the additive property of different

light sources.

Yet. the impact of these assumptions is not always noticeable. To

calculate the normal for planar polygons requires much less time than to

carry out the approximations of normals for bicubic patches. Therefore. the

planar-polygon normal calculation is nearly negligible in comparison. The

additive property associated with multiple light sources is applicable
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across the board so it is ignored. For Phong to approximate the cosine is

only one gate delay greater than using a dot product. However. for Newell.

et al.. and Gouraud to directly calculate the cosine takes almost ten times

longer than performing the dot product so some advantages are gained here

that will be considered during the final analysis.

After each algorithm has been transformed. it is applied to the simple

image of Figure 4.2. The figure depicts a raster of pixels with an object

modeled having six surfaces. Three of the surfaces are hidden from the

viewer and are drawn with dashed lines. Note that point G is located behind

point A and each raster point is represented by its corresponding visible

and hidden surfaces. The algorithms are applied to this object while

assuming only one light source as a standard for the time analysis. The

last section of this chapter summarizes the time studies of the next eight

subsections.

4.2.1 Gouraud Transformation

This algorithm is presented in Section 3.1. The shading value is

interpolated across patches or polygons to give the appearance of smooth.

curved surfaces.

Although Gouraud presented his algorithm for objects modeled using

Coons patches. it is analyzed as applied to polygons. Gouraud assumes that

the viewer and light source are at the same location and thus. both make the

same angle. 0. with the normal to the surface. The shading value is

calculated at the highest and lowest points of the edges of the polygons.

(the vertices of the polygons). during the hidden-surface removal algorithm
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Figure 4.2: Image to be shaded with raster of pixels
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using equation (1). The functional-block diagram for this equation consists

of a cosine operation and two successive multiplications as shown in Figure

4.3. The total time needed for this calculation is 2798 A,.

The number of scan lines intersecting each edge is determined during

the hidden-surface algorithm as well. Using this and the two endpoints'

shading values. a shading "slaps" is calculated using equation (6). This

slope is also calculated during the hidden-surface algorithm. The

functional-block diagram for the ”lepe" is shown in Figure 4.4. Not

including the time to calculate the endpoints' shading values. the ”slope"

requires 783 A,.

Starting from the highest endpoint of a polygon edge. this "slope” is

added to the shading value of the present edge-pixel to obtain the shade of

the point of intersection of the next scan line with the same edge. Since

the endpoint shades and edge s10pes have all been calculated during the

hidden-surface algorithm. this procedure requires only an addition for each

interior point on the polygon edges. Using these values. the interior

points of the polygon.. (those not on edges). are interpolated using

equations (7) and (5) as depicted in Figures 4.5 and 4.6. The complete

interpolation requires 941 A,. The hardware required for each of these

procedures is within the limits of the existing processor model.

This is really the only algorithm that provides a method for its

implementation. It uses the shading "slape" to speed the calculation of the

shading values for the polygon edges and interpolates all interior points as

discussed more fully in Section 3.1. It is possible to process segments of

the scan lines in parallel after the segment endpoints' shades have been

calculated. The image in Figure 4.2 has a total of 13 visible segments
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shading "slope"
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z//// Interpolation Coefficient Calculation /////
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,//// Interpolation Calculation ////7
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which could easily be done in parallel by adding enough hardware. However.

the number of segments composing images is neither constant nor

predetermined. Also. since the length of each segment is not the same. some

segments require more total time than others.

A better method is to calculate shades for pixels in parallel. As long

as the endpoint shades can be coordinated with each segments' interior

points. each interior pixel's interpolation can be performed in parallel.

By making each pixel's interpolation independent. the timing is more uniform

and lends itself better to pipeline and parallel processing than segments

do. Each interpolation requires three subtractors. two multipliers. one

adder and one divider. The entire interpolation is used as a pipeline.

there are several parallel pipelines to calculate data for several pixels at

once. Using two parallel adders to calculate each segment's endpoints'

shading values. the information can be available every 12 A,. After this

delay. one or more of the pipelines could begin calculating pixel shading

values. If there are fewer pixels in the first segment than parallel

pipelines. each remaining pipeline may have to wait one or more additional

delays.

The delay of each stage of the pipeline must be 783 A, plus some latch

delay because the division process is the most time-consuming. After the

first stage is completed. several pairs of endpoints' values will be

available so the pipelines can continue processing the entire picture. The

pipelines will have six stages so the delay for each is (N’+ 5) 768 A,.

where N is the number of values processed. This delay includes filling and

emptying the pipeline. Since the pipelines are Operated in parallel. the

total delay is this plus at least one addition delay: (N + 17) 768 A,.
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The hardware necessary for this architecture primarily depends on the

number of parallel pipelines used. Assuming there are three. the system

would need nine subtractors. six multipliers. three adders and three

dividers plus two more adders to calculate the edge shades and a buffer to

store the edge shades until a pipeline is ready to use them as well as

latches between the pipeline stages. So besides the latches and buffers.

six adders and three complementors must be added to the system. A general

block diagram of the architecture is presented in Figure 4.7.

lhen applying this algorithm to the image in Figure 4.2. there are two

parts to consider. The first is the extra processing that must be done

during the hidden-surface removal algorithm to find data specifically for

the shading portion. The second part is the shading portion itself.

During the hidden-surface algorithm. shades are calculated for the

vertices of the polygons and "slopes" are determined for each edge. The

widget in Figure 4.2 has six polygons. eight vertices and 12 edges.

Assuming that the shading information is only calculated for visible

portions of the image. seven vertex shading values and nine ”slopes" must be

calculated. This requires a total of 26.633 A,. This time is greatly

dependent on the implementation of the hidden-surface algorithm and could

possibly be reduced. However. as it stands. it does not impose any new

requirements on the hardware of the system.

Overall. the image has 15 interior edge points whose shading values

must be calculated. In total there are 13 segments and 19 interior polygon

points. Starting from point C of edge CD. the first segment has two pixels

so after 12 A, two pipelines will be started. Normally. after another 12 A,

the third pipeline is started but in this case the endpoints of the next
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segment are vertices of polygons meaning their shading values are already

known so no addition is necessary. Since there are 19 pixels. each pipeline

calculates shading values for six. The last pixel's value is found by one

of the first two pipelines since they finish before the third. (This last

pipeline delay would have absorbed the extra addition delay in the

beginning.) Thus. the total delay for Gouraud's algorithm when applied to

the standard image for N’I 7 is the pipeline delay and one addition; thus.

A,. is 9228 A,.

4.2.2 Phong Transformation

Phong's algorithm is presented in Section 3.2. It assumes that the

light source and viewer are infinitely far away. This means that the rays

of light will be parallel and that distances do not affect the shading

values. The algorithm assumes normal vectors are known at vertices them

instead of interpolating shading values across the polygons. normals are

interpolated for each pixel. The most time-consuming portion of this

process is that the normals must be normalized after they have been

approximated. Although Phong assumes to know the directions of the viewer

and light source. the cosine of the angle of the viewer is approximated

directly from the normal vector. Phong claims that finding cos c in this

manner is faster than interpolating it. but the difference between this

method and calculating the cosine using a dot product is actually one extra

A,.

In this algorithm the calculation of normals can be considered part of

the information processing during the hidden-surface algorithm. Normals are
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approximated for each pixel of the image using the same interpolation scheme

of Figures 4.5 and 4.6 that was used to approximate shading values. The

functional-block diagram uses the previous figures as its blocks and is

shown in Figure 4.8. The total delay is 4183 A,. Because of the large

number of pixels in an image. the normal approximations would greatly

benefit from a similar architecture used for the shading interpolations for

Gouraud's algorithm. One difference is that the circuitry to calculate the

segments' endpoints' shading values is not needed. The other is the need

for normalization circuitry.

The best architecture is to break up the normalization process into its

five steps: three simultaneous multiplications. two sequential additions. a

square root and three simultaneous divisions. These are added at the end of

the interpolation pipeline making it an 11-stage pipeline. Now the stage

delay must be equal to the square rooter's delay: 1536 A,. Since the total

delay of any two consecutive steps does not exceed the square rooter's

delay. pairs of consecutive stages are joined as one stage making a

six-stage pipeline with better hardware utilization. This also decreases

the total pipeline delay which is now (N + 5) 1536 A,. As with all

pipelines. the greatest time savings are obtained when large numbers of the

calculations are performed. The hardware requirements of this pipeline are

those specified for the normalization process mentioned above and for the

interpolation pipeline in the last section. The total requirements are five

multipliers. four adders. three subtractors. four dividers and a shift

register. If three of these are placed in parallel. the extra hardware

units required by the system are 13 adders. three complementors and nine

dividers.
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The remaining calculations are part of the shading portion of the

algorithm. to calculate the cosine of the incident angle requires a dot

product as shown in Figure 4.9 which uses 155 A,. Once cos 0 is known.

estimating cos c as in equation (17) requires 156 A,; this calculation is

pictured in Figure 4.10. Lastly. Phong's shading calculation is equation

(11). Using the cosine values. a shading value is computed according to the

functional-block diagram of Figure 4.11. The entire calculation. including

evaluations of the cosines. uses 4284 A,. The biggest time-user is the

exponentiation of the cosine value for the specular reflection. With the

OORDIC implementation of this function. unless c, is greater than 30. it is

faster to perform the function using consecutive multiplications. However.

since c,'s value is not known. exponentiation is used here.

Nevertheless. this function can be broken into three steps. The first

and last require 1536 A, so this is the stage delay of a pipeline

implementation. Both cosine operations can be combined as one stage and the

operations parallel to the exponentiation form four stages parallel to those

of the exponentiation. All in all. there are six stages in the pipeline

that contribute to the total delay of (N‘+ 5) 1536 A,. Using three of these

in parallel. the hardware must have 27 multipliers. 18 adders. six

subtractors and six shift registers. Therefore. in addition to the hardware

added for the normal interpolations. 11 multipliers. six adders and three

shift registers must also be added to to the system.

Applying this algorithm to the image in Figure 4.2 increases the

execution time of the hidden-surface algorithm. There are 34 visible points

that need to have normal vectors. Splitting these in three. each pipeline

calculates at least 11 normals with one doing an extra. The delay for this.
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with N'I 12. is 26.112 A,. In the same manner. the shades must be

calculated for the same 34 points plus the seven vertices. This means two

of the shading pipelines find 14 values and the last only finds 13. The

total delay for the Phong shading calculation is 29.184 A,.

4.2.3 Blinn Transformation

Blinn's algorithm is presented in Section 3.3. Although the

polygonrmesh modeling technique is used. the surface is presumed to be

composed of microfacets oriented in random directions.

Blinn claims that there is no increase in execution time over Phong's

algorithm. He assumes that the directions of the viewer. light source and

normal are known. However. Blinn's algorithm is an attempt to improve on

Phong's algorithm. Since no attempt is made to alter the shading values

across polygons to smooth the shading. it is assumed that Blinn relies on

Phong's technique to interpolate the normal vectors. Thus. everything in

the last section that pertains to interpolating the normals applies here as

well.

Another process added to the hidden-surface algorithm is the

determination of the direction of the specular reflection. H. as in equation

(21) which is shown in Figure 4.12. 'H needs to be calculated only once per

change in light source direction so this is an addition of 2471 A, to the

hidden-surface algorithm's delay and two multipliers. 12 dividers. l7

adders. three complementors and one shift register. including the hardware

for the normal interpolations.

Blinn uses H to calculate the angle 8 that it makes with the normal.
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This is unnecessary and time-consuming. The cos B is the value needed for

the shading calculations and it can be found using a dot product which uses

155 A,.

The calculation of Blinn's shades is more complicated because it uses

the Fresnel Reflection Law. F; a distribution function for the facets'

orientations. D,; a division by (HIV) and a geometric attenuation factor. G.

D, utilizes calculations described in equations (29). (30). (31) and (32)

for which functional-block diagrams are shown in Figures 4.13. 4.14 and

4.15. The complete calculation of D, takes 5954 A,. This calculation needs

to be performed only once per frame so it does not drastically increase the

execution time of the shading equation. The Fresnel function of equation

(39) is depicted in Figures 4.16 and 4.17. Despite the fact that its

calculation requires 3832 A,. it has to be found only once per change in

light source direction. G is only calculated once per change in

illumination as well. It was presented as equations (35) and (36) but is

combined with the division by (HIV) using the short program at the end of

Section 3.3. The functional-block diagram is Figure 4.18 and its total

delay can be one of four from the various paths possible; the maximum is

1227 A,. This software requires that a magnitude comparitor be added to the

system which has a delay 0f 48 A,. These last three functions can be

performed in parallel so the delay of D, is added once to the shading

calculation's time. Then the shading computation of equation (22) uses an

additional 262 A, for consecutive multiplications as shown in Figure 4.19.

There is sufficient hardware after the hidden-surface algorithm requirements

are fulfilled.

Applying Blinn's algorithm to the widget in Figure 4.2. the normal and
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i calculations add 28,583 A. to the hidden-surface algorithm's execution

tine. There is a one tine delay of 5954 A‘ to start the shading

calculations. then the shading values for the 41 pixels covered by the

inage. each using 262 A‘, are calculated. The total delay for the shading

portion of Blinn's algorithm is 16,696 A.. Thus. Blinn's claim that his

algorithm did not increase the execution time of Phong's algorithm has been

verified.

4.2.4 Newell-Sancha Transformation

Newell. Sancha and Nevell's algorithm. presented in Section 3.4.

performs nost of the hidden-surface removal and shading functions at the

same tine. It calculates shading information by polygon rather than scan

line. Shading values must still be calculated per pixel but the values are

constant throughout a polygon neaning less calculations are necessary.

The hidden-surface algorithm arranges the polygons in order of

increasing distance from the viewer. Shading values are calculated for

polygons starting vith the furthest ones using equations (40). (41) and

(42). After the polygon's shading value has been determined. the entire

polygon is vritten into memory. In this manner polygons are placed in the

nemory and closer ones that obscure others sinply overlap them. This

automatically "removes" hidden surfaces but it is possible to calculate

several values for the same pixel as will be evident from the example at the

end of this section. The advantage of this method is that transparent

surfaces are easily simulated though refraction effects are ignored. Also.

no extra processing for the shading function is required in the
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hidden-surface algorithm since they are performed together in the shading

calculation.

The shading calculation assumes that the incident angle is known and so

the cosine and sine functions are evaluated directly. Figure 4.20 shows the

functional-block diagram for the shading calculation. The total delay is

4894 A“. If the closest object is transparent. when a shading value is

recalculated for a pixel. the new shading value is a combination of the old

and new values as found using equations (41) and (42) and illustrated in

Figure 4.21. The transparency calculation is basically an interpolation but

the weighting factor is already known and does not have to be calculated;

however. a magnitude comparator must be added to the system hardware. The

total delay of this computation is 206 A‘.

Overall. the equations can be arranged into a three-stage pipeline with

a stage delay of 1536 A! by breaking up the exponentiation function as was

done for previous algorithms. The last three Operations in Figure 4.20 plus

the entire transparency calculation can be combined as the third stage of

this pipeline. Thus. the pipeline delay is (N‘+ 2) 1536 A“. In this case

parallel pipelines are not as necessary because fewer calculations need to

be performed since the data is calculated per polygon instead of per pixel.

Thus. the only extra hardware needed for the system is a shift register and

a magnitude comparator.

When applied to the image in Figure 4.2. this algorithm calculates a

shading value for each of the six polygons comprising the object. Once the

shade is determined it is assigned to each pixel covered by the polygon.

Using the pipeline. the total delay is 12.288 Al' Though the delay is not

too extensive, some of it is unwarranted because the algorithm is not
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efficient. Assuming the image of Figure 4.2 is opaque. each pixel will be

replaced by another shading value at least once. Iorse yet. pixels on edges

common to two or more polygons are replaced more frequently. Thus. at least

half of the execution time could be eliminated by a hidden-surface algorithm

in this example image with the object being opaque. Now assuming that the

polygon AEFB is an opening rather than a surface. seven of the 41 pixels

have only one shading value assigned to them but the seven are a small

percentage of the total so time may be saved by using a hidden-surface

algorithm. However. whether or not an actual time-savings can be realised

by using a hidden-surface algorithm would depend on its implementation.

4.2.5 Ihitted Transformation

This algorithm. presented in Section 3.5. can be applied to

planar-polygons or curved-patches; the polygon implementation is discussed

in this section. 'hitted assumes that the normal vectors and directions of

the light source and viewer are known. Nevertheless. the vectors for the

reflected light. i and transmitted ‘light. 'T. are calculated during the

hidden-surface algorithm using the method of ray-tracing described in

Section 3.5.

Infonnation about the way light illuminates the object is calculated on

a global basis during the ray-tracing procedure. Ray-tracing is performed

by starting at a point on the surface and calculating 'i and 'T from that

point. These new vectors are then followed until they reach another surface

where they become the new incident rays and the procedure is repeated.

Therefore. these calculations are sometimes performed several times starting
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from a single pixel. Equation (43) calculates 7' and the functional-block

diagram is shown in Figure 4.22. The total execution time is 2614 A‘. A

pipeline configuration could be used but is not worthwhile as will be

explained.

'V' is used to calculate'T and i. The functional block diagram for

equation (44) that computes '5 is shown in Figure 4.23 and has a delay of

only 24 A' after 7' is known. 'T is found using Snell's law to simulate

refraction effects through transparent objects. The calculation of the

coefficient kf is diagrammed in Figure 4.24. Note that the vector magnitude

procedures in the second step do not include the square root step of the

usual procedure so their delay is only 155 A‘. The renaining portion of the

'T calculation is shown in Figure 4.25. The total delay. not including the

‘V' calculation. is 2882 A“. It is not worthwhile to pipeline this

computation because of the data dependency among the various steps; none can

proceed until kf is known but the delay for k: practically causes the entire

delay of the T calculation.

However. a two-stage pipeline could be used where the first stage finds

V' and the last stage finds‘f and T. The stage delay would be 2906 A‘ so

the pipeline delay is (N + 1) 2906 A‘. The required hardware includes six

multipliers. five adders. one complementor. two dividers and a shift

register which are within the limits of the processor model. Using three of

these pipelines in parralel. two multipliers. seven adders. three dividers

and three shift registers need to be added to the system.

The shading calculation of equation (45) is diagrammed in Figure 4.26.

The total delay is 298 A‘. This computation can be pipelined into three

stages with a stage delay of 155 A“. The first stage includes the first
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three parallel operations. The second stage has the multiplication

performed parallel to two successive additions. The last stage is the last

addition. The total pipeline delay is (N'+ 2) 155 A‘. Even with three

parallel pipelines the procedure does not need any extra hardware.

Applying the ray-tracing procedure to the image in Figure 4.2 is

somewhat trivial if the object is opaque because there is only one object

and. therefore. no surfaces for the I and T vectors to bounce off of. There

are 82 pixels in both the visible and hidden faces but since the light rays

never strike the hidden-surfaces only 41 pixels require one ray-tracing

calculation each. Each pipeline computes values for 13 pixels with two

doing an extra. The total delay added to the hidden-surface algorithm is

43.590 A‘. After the hidden-surface algorithm is performed. only 41 pixels

are visible so the delay for 'hitted's shading procedure is 2480 AI vhen N

is 14. So the ray-tracing computations are very time-consuming but the

shading is very fast. If part of the object is transparent. the number of

vectors to calculate is greater and the ray-tracing execution time increases

but not the shading time. Assuming polygon ABFE is transparent. seven extra

sets of i and T vectors must be calculated because the initial T values will

strike the previously hidden faces. Thus. the ray-tracing time increases to

49.404 A'; an increase of 5814 A“.

4 .2 .6 Catmull Transformation

Caunull's algorithm is presented in Section 3.6. It does not actually

present a specific shading model but claims any can be used that are based

on the surface normal. The algorithm can be applied to both polygons and
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curved-patches but is presented for curved-patches called bicubics. First.

surface normals are approximated for each patch. This is a very

time-consuming process attributed to the hidden-surface algorithm. Next.

the object model is modified using a subdivision algorithm to break the

patches into pixel-sire subpatches. The approximated surface normals are

divided with the patches so that each subpatch has its own normal.

The normals are approximated using several matrix multiplication

operations. All of the operations have at least one 4 x 4 matrix; several

involve the vectors 0 and V from equations (48) and (49) since the bicubic

equations are functions of u and v. It is assumed that the first and second

derivatives of these vectors are known. values for (u.v) that are of

particular interest are (0.0). (0.1). (1.0) and (1.1). If these values are

plugged into the vectors and stored as constants for use during the matrix

multiplications. long strings of summands can be avoided because the

additions can be performed in parallel with the multiplications. Otherwise.

each summand as found in Figure 4.27 would have a possible 256 terms. plus

the number of multiplications would increase because polynomials are being

multiplied. By using the constant vectors. the number of summands that must

be generated increases but there is an overall savings in time.

The time analysis for the normal approximation is only discussed for

one component of the bicubics. x. The other two are calculated in a similar

procedure that requires the same amount of time and hardware. Referring to

Figure 4.27. the summands are calculated for equations (53). (59). (60) and

(61). Since matrix multiplication is associative. the rightmost pair are

multiplied first to fully utilize the hardware and minimize the delay. The

matrix multiplication of a m x c matrix and a c x p matrix is set up so that
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the delay is dependent on the value of p. For VJ the value of p is one so

the delay is minimal. The product of the first step is also a 4x1 natrix so

the delay of the second matrix.multiplication is also minimised. The total

‘. This can be made into an efficient.

three-stage pipeline because each of the stages has nearly the same delay.

delay to generate a summand is 441 A

The pipeline's delay is (N’+ 2) 155 A‘.

Using these summands. equations (53). (59). (60) and (61) can be

evaluated using the summation and complementing processes. In equation (53)

x11 has two terms so the delay is (12 + 3) A‘. The number of summands in

equations (59) and (60) is four. Complementations can be performed in

parallel before the summation begins. The total delay is 27 A‘. Equation

(61) has eight summands and its delay is 39 A'. These summations can be

performed as the summands are generated so the delays are insignificant.

The extra hardware necessary for the pipeline and summations is 49

multipliers and 43 adders.

The final computation for the normal is a 4 x 4 multiplication as in

equation (56) and shown in Figure 4.28. The value of p is four so each

stage takes 524 A.. Foaming a two-stage pipeline. the total delay is

(N + 1) 524 A'. The necessary hardware is covered by the extra added for

the extra hidden-surface calculations. However. all of the hardware must be

tripled so that all three components can be calculated in parallel. The

total additional hardware is 179 multipliers and 145 adders which is

significantly more than that needed by any of the other algorithms.

According to Catmull. each component requires 30 additions during each

subdivision in the subdivision algorithm. The components may be calculated

simultaneously. Catmull estimates that the number of subdivisions needed to
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/////’ Approximate Normal Component Calculation j////7

 

Matrix Multiplication w/o Sums
 

C * P
x    

 

Matrix Multiplication w/o Sums
 

C * P * CT
x

   

 

////// String of Summands with Coefficients ,////I

Figure 4.28: Functional-block diagram for approximating one

normal component for a bicubic patch
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completely divide a patch is slightly greater than one third of the number

of pixels covered by the patch. The total delay added to the modeling

portion of the processing is then (360 9 sub) A‘ where sub is the number of

subdivisions required.

Applying this algorithm to the gixmo in Figure 4.2. it requires

slightly greater than 35 subdivisions when edge pixels that are common to

two patches are counted twice; once for each patch. This means an increase

in the modeling procedure of 12.600 A‘. Normals are approximated per patch

so six are needed here. This adds 3668 A‘ to the hidden-surface algorithm's

execution time. Altough the additional delays are relatively short. the

extra hardware is quite extensive.

4.2.7 Cook-Torrance Transformation

Cook and Torrance developed a shading model that is presented in

Section 3.7. In their original paper they discussed color shaded images

extensively. One of their conclusions is that objects made of certain

materials have specular reflections and diffuse reflections of different

colors. Since all of the other algorithms discussed in this report do not

address the issue of colored images. this part of the Cook-Torrance

algorithm is largely ignored.

Overall. the algorithm is very similar to Blinn's algorithm discussed

in Sections 3.3 and 4.2.3 because both assume that the surface is made up of

randomly oriented microfacets. Yet Cook and Torrance assume that the

direction of the specular reflection. E. is known. If this is calculated

during the hidden-surface algorithm as in Section 4.2.3. which is shown in
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Figure 4.12. then the delay is 2471 A. which occurs only once per change in

the light source's direction. The hardware needed for this calculation is

within the limits of the systen.

The shading calculation depends on the geometric attenuation factor. a

division by (N;V). the Fresnel Refraction Law and a distribution function

for the facets' orientations. The calculation of G and the (N‘V) division

are performed exactly as shown in Figure 4.18 and discussed in Section

4.2.7. Therefore. their delay is a naximum of 1227 A'. The Fresnel

function calculation is the same as Blinn's in Figures 4.16 and 4.17 except

the final value is multiplied by one half in this model. However. this

multiplication can be performed in parallel with the last set of

simultaneous multiplications so the execution time is unchanged at 3832 A‘.

The distribution function used is different from Blinn's and is presented as

equation (71). Its functional-block diagram is shovn in Figure 4.29 and its

total delay amounts to 4105 A These four functions are used to calculate

the specular component of the reflected light. R . R' ' is found using

equation (69) and its functional-block diagram is presented in Figure 4.30.

The total time needed for this calculation is 4105 A. for c. n. F and (fi-V)

which are found simultaneously and only once per change in light source

direction. The remaining time needed per pixel is only 262 A“.

The shading model calculation is diagrammed in Figure 4.31. R‘. the

hemispherical-directional reflectance. and Rb. the bidirectional

reflectance. are linear combinations of the diffuse and specular components

of the reflectance; Rd and R‘. so they are calculated using the

interpolation calculation of Figures 4.5 and 4.6 in Section 4.2.1. If the

interpolation calculation is broken into three steps. the shading
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Figure 4.29: Functional-block diagram for calculating the

distribution of the facets' orientations
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1////r Cook-Torrance Shade Calculation
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computation can be made into a five stage pipeline with a stage delay equal

to that of division. 768 A.. Thus. the total delay is (N‘+ 4) 768 A‘ plus a

one time addition of 4105 A‘. Only three multipliers and one adder need to

be added to the hardware. If three of these pipelines are used in parallel.

three magnitude comparators. three complementors. 2O multipliers and one

adder must be added to the system.

'hen applied to the image in Figure 4.2. the time added to the

hidden-surface algorithm is still 2471 A.. To calculate shading values for

the 41 visible pixels requires 17.929 A‘ where N'- 14.

4.2.8 Fournier-Fussell-Carpenter Transfonmation

This last algorithm uses a technique called fractalixation to alter the

object modeling technique to make images of natural objects appear more

realistic. It is presented in Section 3.8. The object to be modeled is

composed of planar. triangular polygons. This algorithm divides the

triangles into smaller triangles until none represent more than a single

pixel in the raster.

The algorithm finds the midpoints of the three sides of a triangle then

uses the points to break the triangle into four smaller triangles. The

process is transformed into a functional diagram as in Figure 4.32. The

total delay is 780 A. per triangle that is divided. If three of these

circuits are used in parallel. the extra hardware required by the process is

24 dividers and 19 adders.

After the new object model has been completed. the hidden-surface

algorithm has to calculate the normals to the triangles so that any of the
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shading models previously discussed can be applied. This process requires

161 A' per normal calculated. or per triangle. The number of triangles is

likely to get very large so three normal-calculator circuits are used in

parrallel. No additional hardware is necessary.

Before the algorithm can be applied to the image in Figure 4.2. the

polygons must be broken into triangles. Any polygon can be broken into

triangles by starting at one vertex and connecting it to all of the other

vertices except the two immediately beside the first. Applying this to the

image in Figure 4.2. a total of 12 triangles are formed from both visible

and hidden surfaces. There are a total of 81 pixels covered by all of these

surfaces so there must be at least 81 triangles formed. This will require

22 fractalisations which will use 6240 A‘. The normal calculations will be

performed for only the 41 visible triangles so they use 2254 A'.

4.3 Comparisons

This chapter discussed the eight algorithms on the basis of their

images' realism. Although realism is a subjective quality. it is important

because it is often the basis of most viewers' opinions of the images. The

most important criterion for raster graphics systems is the speed of

execution because if successive frames take too long to generate. the

quality of the image degrades to the point where flicker can be annoying.

Section 4.1 described basic processes that could be used to transform the

algorithms into functional-block diagrams to help analyze their execution

times. The hardware requirements of these processes were assessed and

formed the basic processor for the system. The functional-block diagrams
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were applied to various architectures to attempt to minimise the execution

times. This often required additional hardware to be added to the system.

Sometimes the algorithms added extra time and/or hardware to the

hidden-surface removal or object modeling portions of the entire display

process. All of these execution times and hardware requirements are

summarised in Table 4.2.

Based on the time analyses performed. the Newell-Sancha algorithm

requires both the shortest delays and the ninimal extra hardware. This may

be the reason why the images are not as realistic as any from the other

algorithms. Gouraud's images are quite good yet the delays are not too

great and the extra hardware is the second minimal. Gouraud utilised the

cosine function rather than a dot product during the hidden-surface

algorithm to compute contributions of light from the source; most of the

other algorithms used dot products. The cosine requires more time to

calculate than do dot products. Newell. et al.. use the cosine function but

calculate much fewer shading values overall so its extra time is not

significant. Gouraud's extra time in the hidden-surface algorithm could be

reduced but the cosine is not used to calculate all shading values so

switching to the dot product may not generate too great of time-savings.

However. Gouraud's algorithm does not simulate specular reflections

very realistically. Blinn and Phong improve on Gouraud's method with

Blinn's algorithm being the faster and requiring less extra hardware.

Still. these do not accurately simulate effects of transparency. 'hitted's

algorithm is capable of such effects and produces extremely realistic

hnages. Ihitted's shading model did not reproduce specular reflections as

well as Blinn's or Phong's as the surface becomes less smooth but it does
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account for light reflected among the objects in the scene. However. his

preprocessing before applying the shading model is time-consuming. Cook and

Torrance's algorithm required less time than Blinn's and less overall

hardware even though they were quite similar. Catmull's algorithm required

significantly more hardware than any of the others due to approximating

normals for the curved patches. For this reason this method for modeling is

ruled out. Its delay is relatively short but this does not include any time

for shading. The fractal method does not fare too badly in either time or

hardware but does not account for the shading process either.

All things considered. Cook and Torrance's algorithm is the best all

around method but it still does not simulate some effects. such as

transparency. The very best solution is to combine several of these

methods. Cook and Torrance's reflectance model could be used in most

instances. Ihitted's ray-tracing could be used to determine the effects of

object reflections in other objects as well as transparent surfaces. And

when mountains or other naturally random objects are displayed. the

algorithm of Fournier. et al.. could alter the object model for more

realistic images. Of course. this demands much more hardware. Also. the

control of such an implementation would be extensive to determine when to

use vhich algorithm. But the system would display a wide variety of objects

most realistically.



CHAPTER V

CONCLUSION

5.1 Summary

The purpose of this reseach was to present shading algorithms for

computer graphics systems and to compare them first on the basis of speed of

execution and. second. by the overall quality of the images generated. The

report began by generally discussing the field of computer graphics.

Graphics terminology was explained and display systems were described.

particularly the raster graphics system. Problems of high-performance

graphics were presented and discussed narrowing in on the problems

associated with shading displayed images.

The third chapter presented eight algorithms available in the current

literature that attempt to solve the shading problem. The shading process

is closely related to the object-modeling and hidden-surface removal

processes; so. the algorithms suggested improvements in one or more of these

procedures. Generally. the object-modeling technique determines the method

to model objects using numerical representations. There are two basic

types. polygonrmesh and curved-patch. Most of the algorithms discussed were

applied to objects modeled with polygons. The hidden-surface algorithm

processes the model of the object to determine which parts of the image are

visible to the viewer and eliminates those that are not. This processing

often included calculating general information about the object's surfaces.

such as computing the surface normals. Most of the algorithms performed

159



160

some processing here. The shading process included using a shading or

reflectance model to determine how much of the source illumination is being

reflected from the object and in what manner. For example. most objects

under certain circumstances exhibit specular reflections or highlights. The

algorithms and their relationships among these three processes is depicted

in Figure 5.1.

The algorithms were transformed into functional-block architectural

representations to enable an assessment of their speed of execution. This

is a critical characteristic for raster graphics systems if they are to

operate in real-time. The functional-block transformations were applied to

various architectures in an attempt to minimise the execution times of the

processing. Then. all of the shading systems were used to shade the same

simple image as a standard for comparison. The execution times and

additional hardware requirements resulting from. shading the image were

tabulated in Table 4.2.

Results of this investigation suggest that the best single algorithm is

that of Cook and Torrance because it adequately simulated effects of diffuse

and specular reflections without requiring extremely long delays or

excessive extra hardware. However. the best shading implementation is a

combination of algorithms so that a broader range of objects and reflectance

effects can be more realistically simulated and displayed.

5.2 Future Research

Several topics touched upon in this report may be researched further.

First of all. one of the assumptions made before comparing the speeds of the
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algorithms was that the memory did not affect the execution of these

algorithms. This is not true but the assumption was made to simplify the

comparisons. The relationship between the processor and the memory is

crucial to the performance of a raster graphics system. Besides just the

architecture. the way in which the memory is mapped affects how the

information will be available for the algorithms to update the pixels.

Another area that should be investigated further is to find faster

implementations of the arithmetic functions used as the functional blocks

during the algorithm transformations. Both parallel and pipeline

architectures might lead to faster or more efficient implementations. The

regularity of these functions and architectures should be investigated to

assess the suitability for VLSI or VHSIC implementations.

As stated. the algorithms were compared on the basis of first speed and

then realism. Other criteria such as cost or area usage should also be used

to compare these algorithms. And of course. new algorithms can always be

included in the comparisons.
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