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INTRODUCTION

Matrices are becoming more and more nooular as a tool

for the electrical engineer. The most obvious reason for

this is their ability to maintain the continuity of a

complicated nroblem Without the engineer becoming lost in

a haze of comoutations. By indicating each steo with

matrix algebra, the engineer may carry the oroblem through

to a symbolic solution and then retrace his steps making

the necessary computations. This is true, for example, in

cascading networks, in paralleling networks, and in the

apolication of symmetrical comoonents to a power system.

Matrices may also be used to advantage in finding

eQuivalent networks on an impedance basis, that is, by

maintaining the impedance invariant (unchanged). Another

worth-While use is in Writing the mesh or nodal equations

of a network when there are a great number of mutual

inductances.

If, in a given nroblem, one has a number of simultaneous

voltage equations, the currents may be obtained by the

usual process of determinants. But a more straightforward

method Would be with the use of matrices and the comoutation

of the inverse of the imoedance matrix. If the nrooer

symmetry is present, an even more comoact method would
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involve the diagonalization of the imoedance matrix and the

usually tedious computation of the impedance determinant

would not be necessary.

The object of this thesis is to give examples and show

how matrix algebra may be aoolied to various tyoes of

circuit problems, and to convey to the reader the continuity

and comnactness obtained by this method as oboosed to the

usual method of determinants and substitution and the loss

of objective that usually follows when one makes computations

as they orogress in their nroblem.



CHAPTER I

FUNDAMENTAL DEFINITIONS

and

THEOREhS OF MATRICES

Since the use of matrices by electrical engineers is

not widesoread as yet, the logical nlace to begin this

thesis would be With some of the fundamental definitions

and theorems of matrices. This Will also afford the

reader the opportunity of becoming familiar with the

notation used throughout the thesis.

Definition of a Matrix

It Will be easier to define a matrix if an examole is

given. The mesh equations for the circuit in Figure I may

   

    



be written as:

el = 21111 % 21212 % 21313 where 211 = a % c f d

(1) e2 = 22111 % 22313 % 22313 233 = b % c % f

33 = 23111 t 23212 t 23313 233 = d t f t 8

212 - 231 = -c, 213 = 231 = -d, 223 = 232 3 -f

If a oroner rule for multiplying matrices is defined

and followed, the equations (1) may be Written as:

      

r» 1

91 T11 212 2131 iii
( ) or simply

2 e 3 z 2 Zn x i
2 21 22 3 2 _

“ [E] - [Z] x [I]

yfs 331 232 zssy “is

Where [E] is the voltage matrix; [Z] , the impedance

matrix; and [I] , the current matrix. :Afmatrix, therefore,

is simply an array of numbers and is non necessarily square.

Equality of Matrices

Two matrices are equal when they cannot be distinguished

from each other. Therefore, two matrices are equal, [A] =[HI,

when every element of [A] equals every element of [B] , that

is, aij 3 bij' (1 indicates the row and j the column of

the elements a and b)

The Zero and Unit Matrices

If every element of a matrix [A] is zero, (aij = 0)

then [A] is defined as a zero matrix.
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3'

A unit matrix [1] is a souare matrix With all elements

on the principle diagonal equal to one and all other

elements equal to zero.

Multiplication of Matrices

If [A] '-"- [B] 1: [fl , then aij = in}; ij’ Where n

is the number of columns in [B] and the number of rows

in [F] . From this definition, one can see that [A]

[B] x [F] is realizable only if the number of columns

in [B118 equal to the number of rows in [F] . It is

also apparent that(m[811)x(n[F]q)= (1%}: 5 that is, [A] has

the same number of rows as [B] and the same number of

columns as [F3

If this definition is applied to the indicated

multiplication in equation (2), then [E] 3 [Z] x [I] and

3

e1 =2 zikik .

1:31

3 a c. c 0

e1 " 5-5-1 zlklk " z1111 7‘ Z121.2 7‘ Z131:5

3

e2 -'-‘- E1 221:1]: = 22111 7‘ 28212 7‘ 23313

Us

eg‘glkzzmi‘ 2i13,;31311"2322"z

It Will be noticed that this multiplication gives the

desired result, that is, equations (1).
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A definition of scalar multiplication is also

necessary. it [A] = [B] if kaij = bij' This is

different than k|A|=lBl where [AI and [B] are

determinants. In this case only one of the row or

columns of IA! is multiplied by k.

The Inverse Matrix

Using equation (2) as an example, suppose that the

voltages and impedances are Known and that the currents

are desired. Then by the usual method of determinants:

Z1 Z Z-

11 = -——£ e1 % -4al e3 { 31 e3

IZI IZI iZ'T

Z Z Z

(3)12: £91{_2..§.32,£_§333

'3! MI IZI

Z13 Z23 233

i8 = -- e1 % ‘——— e3 % .___ e3

[2! W [3!

where 211, 231, Z31...are the cofactors of 211’ 231, 231...

in the determinant of [2| ; that is, Zij is the minor

of zij multiplied by (-l)i#j. Equations (3) may be

written as:

(4d 00 :3 fig _:x Dfl

Equations (2) and (4) define the inverse. [fl‘JfZ] x [I]

and m 3 [Y] x [E] and therefore, [E] = [Z] x [Y] x [E]

but since [E] = [E], [Z] x [Y] must equal [1] . If the

indicated multiplication is carried out, the above statement
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is verified. [Y] is defined as the inverse of [Z] ;

that is, [Y] = [2]”1 or [Z] = [YJ-l . Therefore, a

matrix times its inverse is a unit matrix. [Z] x [Z] "l =

[23-1 x [Z] 1'- 0]. Also, if the determinant of [Z] ilel

then the determinant of [Z] -1 is 7%,- .

It is apparent from the above definition of the inverse

that [ZJ-l could not exist ifIZI = 0.

$ A matrix whose determinant is zero is called a singular

matrix. A square matrix may or may not be singular,

whereas all rectangular matrices are singular. Only non-

singular matrices have an inverse and for each matrix

there is only one inverse.

The transpose of [Z] is defined as [2],; and is

obtained by interchanging the rots and columns of [Z] .

Therefore, [Z] ‘1 may be determined by first finding [21,0

and then replacing its elements by their cofactors over

2 .

[Z] ; that is, substitute —£l for z-- in the transposed
1

I2! 3
matrix.

Laws of Matrix Algebra

Because of the definitions of multiplication, it is,

in general, not commutative; that is, [A] x [B] 3" [B] x [A].

Exceptions are [A] x [IQ-1 :[fifl ‘1 x [A] , and [A] x [l] =

m x m.



-8-

In other manipulations, however, matrix algebra is

similar to ordinary algebra.

(5) [A3 71 [Bl = [B] 2‘ [A]

(6) km #ktBJ MW #031)

(7) kl‘A] 1‘ qD—J (1:qu) JIM}

(a) [F] x (A) / [F] x [B] [F] x ( [a] % [13])

(e) w x mum as (m Mains]

If [A] = [B] 7‘ [F] then it is necessary that

aij Z bij # fij'

cancellation of factors. If [A] x[F] = [B] x [F] then

Caution must be used, however, in

postmultiplying both sides by [F]"1 gives [A] x [F] x [F].1 =

[B] x [F] x [F]"1, and [A] 3 [B] . The above stipulation,

however, is that [F]"1 exists; that is, [1‘] is a non-

singular matrix. [F] may not be cancelled for the case

there [A] x [F] 3 [F] x[B] because in general [A] x ET] 1

[F] x [A] . Also it may not be cancelled for the case

where [A] x [F] 7- [B] x [F] if [F] is a singular matrix,

because [F]"1 is non-existent and the above reasoning

could not be followed.

Two additional matrix relations are:

(10) ([A] x [B] x [FDt = [FLG x [13],; x [A],

(11) ( [a] x [B] 2: [Fl )‘1 = [El-1 x [31-1 x [al‘l



Linear Transformations

Occasionally it is desirable to interchange the rows

or columns of matrices or add a row (column) to another

row (column). Sometimes it is necessary to multiply a

row (column) by a factor or to add to a given row (column)r

a certain other row (column) that has been multiolied by

a factor. If the above onerations are to be oerformed

on, say the [Z] matrix, where [Z] is cart of the equation

EB] 7- [Z] x [I] , then it is necessary to perform these

ooerations With a matrix so that the equality of the

matrix equation Will not be nullified. For instance,

if [A] interchanges the firSt and second rows of [Z]

and [E] = [Z] x [I] then the resultant equation is obtained

by oremultiolying both sides by [g] , giving:

fig :x EB] = [E] x [Z]:x Efl

Each of the above-mentioned linear transform matrices

are formed from the [1] matrix and are, therefore, square.

The following linear transform matrices are illustrated

for n equal to four, but the same technique may be applied

for n equal to any finite number. They are obtained as

follows:

To interchange two rows gremultioly by [A] where [A]

is a unit matrix With the corresoonding two rows interchanged.
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To interchange two columns uostmu tioly by [A3 there [A]

is obtained by interchanging the two correswondirg columns.

Example:

[A]

[ijX[BIIB]]interlchanes lst and 3rd

row 0 x A] interchanges

lst and 31rd 001.1111ns of B] .

O
l
—
‘
O
O

O
O
I
—
‘
O

O
O
O
H

H
O
O
O

To add one row to another rot, perform the desired

Operation on [i] and premultiply. To add one column

to another, oerforu the desired 0eration on [118 nd

oostmultiely.

Example:

1

[A] o {131?} adds 4th row of [B] to 1st.

0

1

adds lst column of [B to

4thx JO
O
O
H
‘

O
O
I
—
‘
O

O
I
—
‘
O
O

To multioly a row by a factor, multiply the given

row of [I] by that factor and oremulti‘olj. To multiply

a column by a factor, rmiltioly the given colurm of [13

by that factor and postmultiolv.

Example:T

'l O O

[A] a o 1 o J x [B] multiplies 3rd row of [B] by k.

0 O k multiplies 3rd column of A

o o o 1 by [k]

If it is desirable to multiply a given row by a factor

and add that row to another, perform the desired operation

on [1] and premultiply. If it is desirable to multiply a

column and add it to another column, perform the operation

on [1] and postmultiply.
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Example:

[A] =
adds k times 2nd column to 4th

O
O
H
O

O
H
O
O

O

k g x 3 adds k times 4th row to 2nd row.

0 x

1O
O
O
H

column.

The above technique sill be used in the chapter on

diagonalization. No unique notation was adopted for the

above matrices since they will be redetermined for

particular cases in Chapter V.

Cayley~Hamilton Theorem

If [M] is defined as the characteristic matrix of the

matrix [A] , then [M] = [A] -/u[l]. / is a. scalar

parameter and [M] , [A] , and [l] are square and of the

same order n. The determinant of [m] , (1M1), is defined

as the characteristic function of the matrix [A] and the

equation [Ml = O is defined as the characteristic equation

of [A] . The statement of the Cayley—Hamilton Theorem

is that any matrix [A] satisfies its ovm characteristic

equation.

Example: [A] = [l 2]

3 4

A a - 1 = 2 _ = _

[A] [A] /[J [g- 4] [é a [(1K) (4%]

Characteristic Function: (It/u)(4;x~) -6

Characteristic Equation: (17“)(47u) — s = 0

That is: /u? -§,‘ - 2 = O
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And by the Cayley-Hamilton Theorem:

[A]2-5[A]-2[1]= 0

Where [Q2 =[A] x [A] and [l] is of the same order as [A] .

Therefore 1 1 2 _ l 2 _ l O -

[212:[34] s[..] 4011-0
Carrying out the above operation indicates its

0
3

correctness. The aoolications that follow from this

theorem are very useful. Since [A]:3 — 5 [A] - 2 [l] = O

for [A] : B3 [A]2 z: 5 [A] ,l 2 [El] and multiplying

through by [A] gives,

[93 = steamers 501+ 2m> ’42:»; =

27 [A] 1‘ 10 [I]

27 [A32 ,t 10 [A] =27( S [A] ,t 2 [1] ) ,l 10 [A]-

145 [A] ,l 54 [1]

[A]5 = . ................

Thus, without carrying out the matrix multiplication,

[A] 4

[A]4, [A]5 ........ may be determined in terms of [Jan-1,

[A] n-Z’ ....... [l] where n is the order of the square

matrix [A] .

This theorem also indicates a method for the

determination of the inverse. The folIOWing example Will

Let [El =

illustrate [his me hod:

H
M
O
)

p
m
m

0
3
4
5
0
-
4

H
0
3
0
)

P
o
e
m

‘
m
p
w
,

l 0 6- 2 1

Therefore [£4] = [ 7'18 2. (13] -‘-" If {0 (8r(6;«)
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ml: (6-;u)2(87u)%8%8-{(87k)%4(67t9 1‘16(67u)}

And IMI 2' 7.3 ,t 20,3 - 111,; 176 = 0 (Characteristic Equation)

Therefore [513 -20 [a]2 ,t 111 [B] - 176 [1] 2: 0

Which gives 176 [1] = [313 — 20 [1312 ,t 111[B]

Multiolying through by [B] '1 and dividing by 176 gives:

[B] "'1 2: 1/176 [B12 — 20/176 [B]; 111/173 [1]

_1 41 32 20 120 40 20 111 o 0

.And [B = 1/176 32 B4 58 — 40 160 80 ¢ 0 111 o

20 58 53 20 so 120 o o 111

_1 32 -8 o

[B] = 1 / 176 -8 35 -22

o -22 44

By the method described in section 5,

[Bl=6xsx6/2x4x1—1'x8x1—2x2 6-4x4

  

x6=l76 .

P 1’ - fi

84_24 28 32 -80

_1 46 16 14

And [B] =1/176 =1/176 -8 :55 -22

21 61 __62

'4 6| '1 6| '1 4| —:2 44
" d

21-61 '62

L84 24 28   
It is difficult to say which method is the best.

Both methods require an evaluation of a determinant of

the same order as IBI . However, if the order of [BI

is five or higher, the determination of the cofactors,

necessitated by the second method illustrated, becomes

a difficult task. While, for the Cayley—Hamilton method,

there is only the fifth order determinant to determine
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and the rest of the Operation is matrix multiplication,

addition, and subtraction. It would seem, therefore,

that for matrices of fourth order or less, the method of

section 5 is best and for matrices of fifth or higher,

the Cayley—Hamilton method is best. If a comouting

machine capable of handling matrices is available, then

the Cayley-Hamilton method is definitely the one to use.



CHAPTER II

FOUR TEREINAL NETWORKS

Usually, what takes place at the input and output

terminals is of interest rather than what happens inside

the network itself. In analyzing or synthesizing a

network it may be found desirable to interconnect several

four terminal boxes in various ways. The fact that

matrices can be used to exoress any two of the four

variables in terms of the other two (e1, e2, 11, 12) makes

them particularly effective in handling problems of this

kind. There are six different ways by which matrices may

be used to express relations between the various voltages

and currents.

 

 

 

 

  
 

2

la
”22

is 6:1

Figure 2

Referring to Figure 2, they arel:

(11) i1 : Yll yle x e1 (12) el = 211 212 x 11

12 YBI y22 e2 z21 z22 13e

1E. A. Guillemin, Communication Networks, II, pp. 144.



(13) 11 _ g11 g12 e1 (14) e1 _ h11 hie i1
- x - x

e2 321 g22 12 12 h21 h23 e2

(15) e1 = A B 1 e2 (16) e8 D B x e1

11 c D -12 12 c .3 --i1

The interrelations between the various elements of the six

square matrices have been derived and tabulated.2 If one

were doing many problems of this type it would be desirable

to use such a table. Throughout this thesis, however, all

interrelations will be derived as part of the problem.

Cascading Networks

Where several networks are to be cascaded, the type of

representation to use would be that given by equation (15).

For example, if in Figure 3, all of the networks are identical,

 
 

 
 

 

33? is“ 4s, . w....5i2.-~~.

19’" M 63., ‘91... , Mu q‘lflt

 

  

      
Figure 3

then the input current and voltage can be expressed in

terms of the output current and voltage by this simple

relation:

 

2Ibid., pp. 133—138.
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n

e1 = [A B] x e3n

11 C D e1n

The matrix [A B]n may be evaluated as an application

C D

of the Cayley-Hamilton theorem. Referring to Chapter I,

the procedure is as follows:

Let s = [g g] when t] = m Vail]

And [M] :: [g B] {’6‘ ,3] : [(AE’“) (DIE/«J

Therefore (Ml = ,2 - (A ,l D), ,t AD-BC, but AD-BC : 1

(Shown later on in this section). ‘And IMI= O is the

characteristic equation, therefore, /“2 - (A ,5 Dy! 1 = 0.

And by the statements of the Cayley-Hamilton theorem,

[Caz—kirk] 1‘ [1] =0 wherek=A#D.

Therefore [C92 k x [G] - [1]

mi 1: 2: [G13 - [c1 = as...) s -k {11

[(1:14 2 (kg-l) [(33 -k [c] : (ks-2k) x [(3.] 413-1) x [1]

And if [6?” = p 16?] - q [1]

[GT1 3 (kn-<2) x [G] - p [1]

Using the above relations for the coefficients of [G]

and [I] , [Gan can be obtained faster than the actual

matrix multiplication will allOW, especially if n is

large and A, B, C, D are complex.

The folIOWing example Will be Worked out to

illustrate the use of cascading networks. From the
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network given, Figure 4, find the characteristic impedance

looking in at terminals 1—2; that is, find Rx so that the

impedance looking in at 1-2 will be Rx when 3-4 is termi-

nated in Rx’ Also, if 3—4 is the output, terminated in Rx:

and 1-2 is the input, what will the attenuation be for the

 

    

 

    

network?

113; 1.1- 1.1.71.....le- 3

39 3‘ Q6 5%
4 4;

2 4

Figure 4

Solution: The network is first broken up as shown in Figure 3.

I In 3 :4 40
w*4 1112‘ V2113.

I 3

14% q, hfiiil £51 5; £3 4: 521) }15’

z (a) (b) (c) “

Figure 5

Using Figure 5(a) as an example:

61 = (10 # 8)11 % 8 12 = 21111 * 21212

 

(17)
82 Z 811 % (4 ¢ 8) 12 3 22111 { 22312

where 211 = 18 212 = 231 = 8 233 Z 12

Then 9 z e z

_ 2 22 - _§ 22
. 11 — -—- - ___ 12 , el - z11( - -—— 12) # 21212

221 221 z21 221

And el 3 211 _(211299 - 212) i

2 2
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Or

211 '2‘

12 213

(18)

l

11 = '2"- eg - Z23 12 : 082 -' D12

12 z12

- (a) (b) (c)

And 81 A B A B A B 66

Therefore 3 - x x x

i1 . C D C D C D -i

e1 9/4 19 3/8 9 5/3 124/6 e6

x x x

11 1/8 3/2 1/6 5/3. 1/6 8/3 ~16

Carrying out the indicated multiplication gives:

e1 _ 19.9 279 e

.. x 5

11 1.33 18.7 _ --i6

And el = A e6 - B 16 - Where A 3 19.9 B 3 279

11 = C 86 - D is C = 1033 D : 18.7

It is easily seen from equations (18), which apply

to any four terminal network that has symmetry about the

principle diagonal, ([z] 2' [z]t), that AD - BC = 1. In

our case AD - BC 3 373.13 — 371.07 = 1.

If the network is terminated in Rx then e6 3’ -in6

and e1 3-A(-R116) -816 3 “15(ARx / B) i

11 = c(-ine) ~Dis = -16(CRx / D)

And if R1 is to be the characteristic impedance,
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31 ARI * B 2

-—_ = R = -——————— ,therefore, CR / DR «AR -B = o
i x x x x1 CRx % D

2

And R12 / a.x (D—A) _,§ 3 0

o

a: - Rx (0.9) - 10 =

C

2 O

 

_ +»\f*
G1 1 R - 009 - o 4 - 09 " ov ng x 2 81 f 8 O _ 0 g 29 - l4 9 ohms

 

A180 61 - A86 — B16 1

11 " 036 - D16 .—

Rx

Therefore el = Aes ¢.§ e6 = e6 ( ARx f B )

Rx Rx

—§'= R1 = 14.9xl9.9{879 299 27s 0-0258
e1 ARx B

N 2 1n( es) — 1n 0.0258 3 -ln 1

EI’ ' 0.0258

N 3 -ln 38.8 3 —3.65 nepers

But since e1 and e6 are across the same resistance,Rx,

N may be converted to decibels. The gain, therefore,

equals -8.688 x 3.65 = -31.6 db.; that is, there is an

attenuation of 31.8 db. for the network including Rx'

It might be suggested that one set up the network

and measure Z open circuit and Z short circuit and

obtain Rx by Rx =m . However, this could. not be

done in our case, because Rx = Bragg-3;; only when the
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network is symmetrical about a vertical line through

its midpoint.

In this example all network components were resistances,

however, the same technique is equally applicable when the

components are complex impedances. In a later example it

Will be shOWn that matrices may be used when the Laplacian

transform is involved.

There are, undoubtedly, many ways of working the above

problem, but it is doubtful if there is any method more

concise and straightforward than that_just shown.

Paralleling Networks

In paralleling two or more networks, Figure 6,

 

 

 

     
Figure 6

equations of the type given by (11) would be used.

[IJT [I]1 ,( [1:]3 and [8:11 = $233. Adding the two

equations we have [IJT = [I31 ,l [112 3 [‘31 x [E] ,1 [132 x9]

and by equation (9), therefore:
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(19) [IjTi(ffJ1/El2)xi{l

In handling problems of this type with matrix algebra

a great deal of caution must be used. After the connections

have been made on the left, they may be made on the right

providing that there is no potential difference between

terminals 3 and 3' and between 4 and 4'. If potential

differences exist, there will be circulating currents

within the networks. The result Will be that the current

in at terminal 1 will not equal the current out at 8 and

similarly for the other terminals of the networks. If

other means cannot be used,3 ideal transformers may be

placed at one end of the network forcing the currents to

be equal. If n networks are to be paralleled, the most

h0pe1ess case would require n-l transformers. A more

complete discussion of this is given in Communication

Networks.4

The paralleling of two or more networks might be

necessary in a problem in synthesis. For instance, several

four terminal networks are available and a specific overall

effect is desired; that is, [I] = E] x [E] . [E] contains

the driving voltage e1 and the desired output voltage e3.

 

3Ibid., p. 148

4Loc. cit.
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fig is the admittance matrix that will give this desired

result with the ensuing currents [fl . Then by the method

of combination shown in Figure 6 and equation (19), the

various [8 Matrices may be added until the desired result

is obtained; that is, [if] = [151 ,l [QB which, of

course, means that yij = yijl # yijg"" With a finite

number of networks available, one would be very lucky to

obtain a combination that would be exactly correct, but

approximations could be obtained. And for the problem as

stated, the use of matrices would lead to a solution

ldirectly.

Matrices may be applied very nicely to the analysis

of paralleling problems. Thi circuit of Figure 7(a) is

ii *TI 3" 

  

 

JP 1? N’
1_~“Ma_

R R R

n R

(b) (c)

Figure 7

a one section low pas filter terminated in its character-

istic impedance, R, and connected to an all frequency
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generator, eg. The problem is, if the networks Figure 7(b)

and (c) are paralleled to the filter itself, what will be

the overall effect on the frequency characteristic at the

load; that is, find «,1 1F whereK =«(w)and/8 =,8(w) .

The networks in Figure 7 are redrawn and paralleled in

 

 

 

  

 

Figure 8. If i- 1'"

ad ..',v ‘-

5; .2

T2 2T (a)

. .u .51

i. a. , e9: ’2 .1}

(b)
1 V

‘45 4‘ #% €5]::]I?

.l” m

Z ‘ 1‘ Z;

—. M. ‘— (C)

J.

x 76

Figure 8

Part (b) of Figure 8 requires some explanation. The

resistances in the lower branches were removed and placed

in their respective upper branches. This is allowable

since the external effects are unchanged. Then the T-F'7T'

transformation was applied giving the network shown. The

17'form is desirable over the T because it lends itself
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to the node method readily. It is possible to parallel

these networks without ideal transformers since the lower

conductor of all three networks contains no admittance;

and therefore, the potential differences previously

mentioned are zero. This was another reason for changing

the network of Figure 7(b ).

I - ( DC # _l_.
.. ‘— ) e -_l__e

11 2 pL 1, DL 2

Figure 8(a) . p 3 it»

13 z - it 81 % ('85 ¢ 2% >82

1 n = .l. f _l_. - l e.,

1 ( 43 en )el “—83 a

Figure 8(b) "

i = - 1 e / 1 / 1
2 “8R 1 (Z?- .87] )eg

I.

11 = (4% ( 4% )el ‘ 1% e

Figure 8(c) .
i

13 --%el%(%7‘%)e2

[13' = [.xj‘xfE] , fij -_-_- [’YJ" x [E] ’ [YJWX [E] = [13m

And F3 = fiJ' ,7 [11" ,. [11"= ([YJ' 1 n" f n'“ > x [E]

Therefore

1 .(00 #.l_ / lEE - 9 W

(20) 11 = ( nL 833) (8137‘s?) x 31

2 - s 1 19

L (titer) (“C(Bt"s:')_ 63  
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With the termination in R, e2 2 — R 12, and 12 = -.:g

R
e2 _ 1

Therefore -'H- = V1281 % ygzez and leel - -eg(.§ % Ygz )

e ‘1 ,1 1 19

Which gives -;3 3 - (R % y22) : (R % DC 7LISL %‘§§)

3 y '~w l 9
12 (EL 7‘ '8'??- )

e (3% ,t jw(c- 1 ) «NIB

A d 1 - ”1L ‘-'- 5
n E} " (.9... - 1' .1_;)

BR to

Therefore 2 .

«4‘ 32 ‘(c- 1 2’ J “V‘

( 9 )'2 ,1 ( 1 )3
88 «JL 1

1f, 3 tan’1 “Kc-EMF.

, 87

1’23 tan‘1 ~88

3 1 2 9Q)L
_ (31) #tz’(c— lt—

°< " 1“ [83 top) And/6:74“??-

(-9-)3 / <--1->2
8R “IL

Where °( is the attenuation in papers andfl is the

phase shift, both being functions of frequency.

~From the technique used, it is necessary that the

networks (a), (b), and (c) be connected as shown in

Figure 8 to give the same results as this analysis. This

means that Figure 8(b) must be connected as shown, or as

an equivalent T with no impedances in the lower branches.

It is the ability of matrices to maintain the continuity

of the problem that lends itself so nicely to this solution.
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Series Networks

When two or more networks are to be placed in series,

Figure 9, equations of the type given by (18) would be used.

 

 

 

 

 

   

  
(Eli = {211 x le ids = [le I E02» and F13 =[ZJs x [133.

but [I] = [131 = [132‘ [133 and W: [E31 7‘ We 1‘ [‘93

provided that the precautions referred to in the previous

section are taken; that is, the current in at terminal 1

is equal to the current out at terminal 8 etc. Under these

conditions [E] 3 ( [311 ,1 E12 7’- [ZJS ) x [1] .

matrices apply themselves to problems involving series

connections just as nicely as they do to problems involving

cascade and parallel connections.

A good illustration would be an extension of the

problem of the previous section. Referring to Figure 7(a)

suppose the filter network was matched to the generator

originally; that is, between the filter section and the

generator there is a resistance R equal to VL/C . Vie
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have already determined the effect of paralleling the

networks Figure 7(b) and (c) to the filter section itself

and then connecting them to eg; we would now like to know

what the overall attenuation would be if the resistance R

was placed between the combination network and the generator.

Naturally, the whole problem could be redone, but using

the series connection technique we can utilize most of the

previous work. The procedure can best be illustrated by

referring to Figure 13. The step from Figure lO(a) to (b)

 

 

 
  

  

 

R I . _i

a z Acme/y, 4 in (a)

- 22:: L?“""--‘;_‘l -

i ' 3 '
‘ ' R (b)

2: 3., 35 :
 

  

    

 

  

4’ | I 4 I

1‘7, I I : 63‘.

Z ! I 2'-

(L......_n_._..a ' ‘

(2;) A? (c)

A ‘jgf': 3 : 4fi§r ”

1‘3” I .c ' 63 t

.2 . 3‘ 3" 1 ‘4

e; ,, 2:: 2:: t
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is possible because all four terminal, bilateral,77’

networks have an equivalent T. Figure 10(0) is elec—

trically the same as Figure 10(b) and if terminals 3 and

4' were disconnected there would be no potential difference

between them; therefore, (a), (b), and (c) are equivalent

networks and the matrix method may be used.

Solution:

e ' = Ril' { 01 ' e ' R o. 1 '

Figure 10(0) 1 2 and 1 = x 1

(too) eg' - 011' % 012' 93' o o 12:

Equations (20) may be used for Figure 10(0) (bottom)

11" = (no 1‘ %L 7‘ ‘3') —( 7:1- 7‘ gfi) x elu

12" " ‘ 21;: 7‘ :3) (no 1: 35-; g) 32"

n 1 19 1 9 -’
e : (DC #‘EE % ‘fi9 -('3E % §§) x 11"

62" 4%: vie-3%) (oo¢%fv‘%g. 1,“

qr"
/

and, therefore, our equations for/thejtwo subnetworks are:

e1 : R 0 x g 11

a v :
e2 0 0 12

And

31" 211 212 11"

: x

ea" z21 222 12"

Where 211 = 232 = 3.3

O



 

1

And 2 = 321 = 1.125 a -j £35

13 ‘ 5.375 - w’LC ,t 32.5wR(1.SC — 1)

£35

Adding the two above equations gives:

ell * e1" : (211 % R) 213 x 11

II '

e2' * 92 Z21 222 12

But el' # el" = eg and eg‘ = 0, also, e3" = e2

Therefore eg = (2.11 % R)il % 21312

e 2 22111 t 22212

C
0

 

 

 

 

 

And e2 = 22111 - zggeg And 11 : e2(R ¥ 233)

eg 2 (211 { R)(223 % R) _ z 9 82

2 :§_* '4L: -
31 R

e

_E Z (211 # R)(zgg % El - 212

e z z % R % R ¢ ’3 2
g : __l 22 Z11 322 R ‘zia

"= 2 R _‘
e2 21

eg _ 211(211 # 2R) # R2 - 2123

eg 212R

And

m
l

m

N
O
V
}

I
I

{
S
N

:
4 4





._ 4 , \

Where 1: = 118 R" ,t (91.33 - 50.:5 w’L2 - -——-.,l3°25

0'0“

- 43 M am e ‘ 3 2- .eo. L—63.oJC-ll.5wRLC

- h 2 a 3 r‘ a n 2
u - 11.e R - 1.14.5waeLu —- s a

difid

v = 5.34031, — 9.18 5.:
k.)

B ‘”5P

ut 322-.- 6'

es

Therefore

. 3 ndeF : 1n ($7115) 2%ln (w) ,‘ j(tan“l 3E - tan”1 1)

U." ‘
u% v

_ 2 2 '

And 0‘ - -} ln (xi—fit?) , and/6 = tan-1 1 _. tan‘l 1

n V
x u

Although the solution to this problem is not a simple

one, it wouldn't be less complicated if it were worked by

some other means. It is doubtful if there is a more direct

route to the solution than that afforded by the use of

matrices as illustrated above.

Series Parallel and Parallel Series Networks

Sometimes it is desirable to connect the networks in

parallel on the left and in series on the right or vice

versa. Or, if a network is given, it is sometimes desirable

to picture it in this way to facilitate the solution.

Equations (14) would be used for a series—parallel connection

and equations (13) would be used for a parallel-series
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connection. Referring to Figure ll(a), the equations for

  

 

   

      

 

 
 

 
  

 

 

      

—éi .Jé: 5;: <—1;

1e: N, e1

6"

165' /\4; 6:1

(a) (D)

Figure 11

N1 are: 81 : hll' hlz' x 11

12' 1121' hzg' 83

e h I. h II 1

And for N ' 1 Z 11 12 x 1

12" hglfl h II 62

22

Adding the two sets of equations gives:

e11 ¢ e11 : (ell: 1 n1,") (hlg ¢ h12"> x 11

12' * is" (hsl' ( hzl") (hss' * has") 92

And the resulting equations for Figure 11(b) would be:

11' ¥ 11" _ (311' % all") (513' % $13") x el

63' t 82" (521' t 521") (322' * S22") 13
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When applying matrices to these types of networks,

the same precautions must be heeded as for the parallel

and series connections of the last two sections. After

the connections have been made on one side of the networks,

there must be no potential differences between the terminals

to be connected on the other side. If there is, then an

ideal transformer must be used or other steps taken, as was

done in the example used to illustrate the parallel connec—

tion. This cannot be over-emphasized. The use of matrices

will give erroneous results if the current into a network,

on a given side, is not equal to the current out on that

same side.

The follOWing example will be used to illustrate how

matrices may be applied to the series-parallel connection.

.1: m
 

 

4

I

I

'
v
v
v
v

1 12L

Rf
1%*

“
A
A
A

v
‘
v
'

 T Ti
 

  
 

Figure 12

In Figure 18 is a diagram of a single stage triode amplifier,

with negative feedback,couoled to its load, ZL, through a

transformer. The problem is to find the gain of the.overall

network.



-34-

Before starting the problem, however, something should

be said about the application of matrices to tube circuits

in general. As a rule it is possible to obtain a P] or a

fig for a given tube circuit. Once this is done the other

forms (page 10) may be obtained, and the Operations of .

cascading, paralleling, etc. may be carried out providing

the previously outlined rules are not broken.5 However,

if the analysis is to be on the basis of an equivalent

circuit, the use of matrices is not a short-cut. To find

the fig and. fig is someWhat of an ordeal compared to the

techniques for solution found in any text on tube circuits.

If the solution is to take into consideration the interelec-

trode capacitances, and is to cover the entire frequency

range, say for a square have input, then the authors

Gardner and Barnes outline a nice technique7 using the

laplace transform. The following solution will illustrate

Why the use of matrices is not alWays the best procedure

for a unilateral network.

The equivalent circuit of Figure 12 is given in Figure

13. Matrices may be used since the transformer insures that

the current into either network will equal the current out

 

5

Ibid., p. 148.

6S Seely, Electron—tube Circuits, pp.85—86.

7M. F. Gardner and J. L. Barnes, Transients 1g Linear

Systems, pp. 180-188.



on a given side. For the

. equations are: el" =

62" :

And e1" :

18" :

e1" 0 1

Therefore :

1 " o %_

bottom box of Figure 13(b), the

Rfign ¢ Oil"

Rfig" % 011"

Oil" % 82"

Oil" #(l/Rf)e2"

i u

x l

N

 

 

 

 

 

 

 

 

   
(b)

Figure 13
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But the equations for the tOp box are not so easily

obtained. They may be found as follows:

a(/«el' -' 13139) = 82' - ZLiz'

. I g 1

And /“ el 9’2 Ztiz' ,1 13:

a a p

Since, in tube circuit analysis of this kind it is usually

 

 

 

 

assumed that the transformer is ideal, is 3 ~ai2 .

The fo ' = '

re ”/61 :2. - 2L 12' — r .12'
a 57' 9

c z a 8Or e1 e2 _ (ZL % rDa ) i '

'-- 2
,«a fa.

But eg' : e2" = e

And 13 = 18' ¢ 12" = 0

Therefore 13' 3 -12" and Rfig" 3 e2" 2 eg'

And therefore ez' - -Rf12' and 12' - -e3'

Rf

This gives el' = 63' Z r 33 '

‘/‘:—- * L * up ) e2
8. ”a, ——

Rf

2
‘h I: IT-erefore e1 e2 ( Rf { ZL % rpa )

[a Rf

2

Or 81' = Oi1' t (Ri% ZL ¢ 32a ) 92'l/4a Rf

12' 011' - -%— e2'
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v 2e1 : o Rf { zL ¢ r23 11.

12! flh'i‘w x e '

e " O n1 __ l i

Alld " x

11" o 1/Rf e "

Since el' ¥ el" = e, and i3' % i9" 3 0, adding the two

matrices.gives:

 

  

 

 

 

 

 

2 .
R Z 'e - r0 :71 L7£rpa l 11

o ‘ ,f‘aar x

e

2' b0 0 , J

Therefore e 2 e2 ( aRf J Rf % ZL % rpag) ZL

' -— Z"Rf /48. L

e

But —§ 3 -12'

Rf

2
R - Z

And therefore e = ~1zzL ( a f Rf % L % IUna )

flazL

i ' Z
. .- 2 L _ Z

and gain ———é._. - /a L

flaRf #Rf{ ZL % rpaz—

Or gain 3

ZL

/“__._,;a a2 : fa ZL'
a R R Z

f a

”A -§-v‘ ‘2“;1‘71‘1‘0 rav‘yar‘me'v‘zx.
a“ a ‘
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The usual technique would be as follows:8

Z

z '; L

E?

Rf' = Rf

E?

 

  
 

There ZL' and Rf' are ZL and Rf reflected back across

the ideal transformer.

: I l//4el ( rp Z zL ¢ Rf )1

91 : (rp ¢ ZL' ; Rf') i :

/fl4

Therefore 8 = (I Z zL' ¢ Rf! #LaRf')i

_ I
e iaRr

  

-£L-_-_---

/

e = rp * ZL' * Rf' # aRf') iZL' E

I 8.

./“ ZL

And iZL'a. — flaZL'

Therefore ”—3“ -
 

rp { 8/4a ¢ 1)Rf' ; zL'

An even simpler technique is as follows:

K _ K Where K — nominal gain

T ‘ le/QK

l6 1' feedback ratio

- ' I

K ‘ iaZL and i = 81

 

88eely, on. 01 ., 00. 85-86.
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Therefore K Z/aZL' andfl = -Rf __ .3 Rf!

In 7K Rf. fYLr ZL ZLi

And "

Therefore h‘1‘ zfaZL

“r; ill/4 #2033; 2L'

The ournose of this illustration is not to discredi

the use of matrices for the series-narallel connection,

but to ooint out the di ficulty of using matrices vhen a

unilateral circuit is involved, and still have an examnle

illustrating the technioue of visualizing a network as

being comoosed of two networks connected in series on one

end and in parallel on the other.

Transformer Analysis

An ideal transformer has been referred to throughout

this chapter. In analyzing the feedback amplifier, an

ideal transformer has assumed and in forcing the current

into a given network to be equal to the current out on a

given end, it was suggested that an ideal transformer

might be used. An ideal transformer is one that has

neither_leakage nor losses and has infinite inductances

on the primary and secondary sides. It is therefore imooss-

ible to attain. The losses can usually be kept Within

reason, but in air core transformers or when the ratio of
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an iron core transformer is high, it is difficult to keep

the flux leakage low.

In network analysis or synthesis involving transformers,

the Work is considerably simoler if an ideal transformer can

be assumed. In this seetion, therefore, we will determine,

with the use of.matrices, the conditions When an ideal

transformer may be assumed and will derive an equivalent

circuit for the case when an ideal transformer may not be

assumed. Figure 14(a) is a tyoical transformer circuit and

its equivalent is Figure 14(b). This second circuit will

be analyzed to determine when the assumotion of an ideal

transformer is oractical.

 

 

(b)

    
Figure 14
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(
D I‘ (P1 % 342L11)11 ¢ jLJMig

0

l
l

3035.11 1‘ (92 7‘ ij33)ig

e - (RI 1‘ jCJLll) jCJM K 1:1

0 3'le (R2 ,t 3“L:32) 13

—1

(311 van) jwM x e

jwM (R2 ,1 ij22) O

9(Rg 1‘ 3.601422)

(RI 1‘ 3501411) (fig 7‘ ijB2) “(30M)“

Therefore 11

, z T .2

i - .

1 R2 3 JLJLZz

:1
.-

:
3

Q
.

[
m

H N

I

 

«2If (RlL22 ¢ 322L11)35> slag- a)(L11L22-m )

And if (UL-22)) 33 and lel)> R1

 

 

Then 2 = (a L 2 J L ) _1 2 L R2 11 - al # R2 L11

22 L22

B t L1 L L 1u I: 83 And 11 = T.

1 ,8 L23 a“

Which zives z = a Re _
r. 1 7l 7 _, P1 7; 32:

8.

But R8' is simoly the secondary load with losses reflected

across the transformer. If the above underlined conditions

exist, as they often do with iron core transformers, then
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the transformer of Figure 14 may be reoresented as in the

following diagram.

Ila. e _. 80 ,l Oi 1
- 1", e

—zr"+ + t 1 E— 8 l '5 0 e2

1:, Q1 _ = x i

11 - Oea — aig il 0 a 2

Then the leakage is not neglegible; that is,

2 .

then an equivalent circuit for the transformer is useful.

  

Ire
.—-r-

,, + * *2:

    

 

 

‘25“

(a)

W

Ll

  
‘ 6: I [:4' ] e} ‘,
 

-l-. * 4' b.»

2’ ’1.

‘ 9‘: find.) fizz-1:) 9; ‘

  

(‘6’)
Figure 15
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The voltage equations for Figure 15(a) are:

el = ijllil ,1 juhig 91 L11 ii i1

and = 3:.) x

68 = jcoMil % jcangig 82 M L33 1

There- L M (L -L ) M L O

fore [L]: 11 = 11 1 ,t 1

H L22 M (ng‘LB) 0 L3

And fiJ == fiJ' ,1 53"

Figure 15(b), therefore, is the equivalent of Figure 15(a).

La
2 _ £3 _ M

a “ and k -
L 3

11 lelLBB

For the leakage to be zero, k must equal 1, that is,

 

L11L82 - M2 = O, (ILI = 0). But the reason for this

analysis is because [Ll ¥ 0. By choosing L1, and L3,

however, IL” can be forced to zero giving (Lll—Ll)x

(ng‘Lg) - H2 = O. k' for the transformer in Figure 15(b)

is, therefore, 1, and

 

 

(21) a‘ =- (L22 'LB} - M = L22 ‘Lz

' Lll'Ll "'ar“—— '
(L11 “Li) t

Figure 15(b) is verified.

Since [L] till]. 1‘ [14]", two impedance matrices are

being added and, therefore, two voltage matrices are

being added. The indication is that two networks are

being placed in series and, therefore, Figure 15(0) is

the equivalent of (a) and (b). The next steo is to
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analyze the b0tt0.u box of Figure 15(0), the equations of

which are:

- jw{(Lll-L1)il ,t m3;el' -

(82)

82' 3 3U i £31111 1‘ (L23~L3)113

And el' _ . (Lll‘Ll) M 11

' - J U ‘ X .

.. ‘.' - .. D — " 2 -Bat i ’ a'(L11 L1), and (L22 L2) ‘ a. (L11 Ll)

e ' (L -L ) a'ig(L -L ) 1

Therefore 1' 3 jéo ll 1 2 ll 1 x l

62 a‘(Lll‘Ll) a. (Lll‘Ll) 12

And el' = j (.){(Ll--L1)il ,1 a'igéLn-Lln

And since k' 3 l, a'ig

(23) 91' : 3w<L11‘L1)11 7‘ 30(L11‘Lins

e2' 3 a'el

Equations (23) indicate that the bottom box of Figure 15(c)

could be redrawn as shown in Figure 15(a) or (b). Figure

15(0) could be obtained from equations (22) in the same

  

 
 

 

 

manner. ..:2.-'-..- i3 3:" + lid; J

(a) kit“)? 3'1 ”I”? § ' ‘51 (b)

i :7 aka! A;

iii—ii 4w
ad»! (C)

Figure 16
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By substituting Figure 18(b) for the bottom box of

Figure 15(C) the following equivalent circuit is obtained.

Lu?  

 

Ida”

But since k' = 1 and, therefore, (Lll—Ll)(L32-L2) - r3 = o

. , s2 -
Then L1ngg—Lngg-ungl%LlL3—i — o

 

also L2 3 ‘L‘ ‘LlLBB

11 l Lll—Ll

This means that either L1 or L9 is arbitrary. To simplify

 

the equivalent circuit, choose L2 = C.

.2
'L‘ - L11L22 ‘ M
 

 

 
 

  

 

Therefore L 34"" — — H2

1 L22 ‘ L ‘.-2._

9 L22 11 L33

-2 - M” n

But A - L11L22 and therefore L1 = L11(1—Ke)

And a' =VL82 "' L2 _ L23 _ i 32 _. g

" — - A

Lii'Li [pf iPi # L K3 L11
1 1 11

From the orevious analysis a very useful equivalent circuit

is given in Figure 17.

'aMH a?

to" a” 6;?

  

 

Figure 17
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In most cases the inductance L11(l-K2) can be

assimulated into another inductance of the network.

However, if it cannot be taken care of in this fashion,

the overall equations can be obtained readily by the

  

 

r . _72‘*
91 = '3'; JUaLllfl .< ) e2

1 x

bawaflLn K A

Where L11 — primary inductance

L23 - secondary inductance

M — mutual inductance‘

M
- L90 T - m.

a "' “ ‘5 " VLllEBB

Equivalence of the L77, Bridged T,

and

Symmetrical Lattice Structures

The T-rf‘fand 77-!- T transformations are common

knOWIedge to all electrical engineers ans the transformation

equations can be found in several texts. With the use of

matrices, the derivation of these equations is straight-

forward and concise. Equations (24a) refer to Figure 18(a)

and equations (24b) refer to Figure 18(b).
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'7' 3 ‘-z I;

1"" 3‘ ’1 91?

 

 

 

Figure 18

  

e = (z % z )i % zciq e z z 1

e2 — 2013 # (2b # zc)12 ca 231 222 12

Where zll - za % 20, 223 = zb # 20, and 212 = 221 = 20

I 2 ' _ I, I(24b) 11 (y; % Yg)31 Y293 and 11 : y11 Y13 x 81'

i2' : ~y261' * (Ysz3)92' i2' y21 Yes 92'

Where V11 = Y1 # yg. ng = ya % Y3, and ylg = Y21 = -Y3

P 1 -
y _

Therefore el' _1 11' —gg ._Z§l 113

I:Dd x 3 ‘Yl ‘Yl IX

82' 12'

3113 y11 LIB:

LIYI ‘YIJ  
But since the networks are to be equivalent:

31 Z 81', 92 : 63', 11 2 11!, 12 z 13!

.- -l _

Therefore [Z] - [Y] and 211 - ygg , 228 :.-. yll ’ 212 = "5'21

IYFlYl |Yl

2 _

- y1y34y1y3%y2y3lY': ylly22 - (y12)2 = (yl%YB)(YZ%y3)-y2

.. .. -1-- ,4 1 7‘ 1
LetA- yly37‘yly37‘y3y3 - 2122 EYES Z

 

oz,

0 o
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Thereforezstz 23 # QB % z1 and l — z 222

A150 Z = Z 7‘ Z : 3’28 = 7‘ " r7 311 a c .75. Y2 Y3 , 223 — ~b/Zc Y1 % Y2

A

 

And 212 = z“ = YB

" A

 

 

 

 

za 2 .3; 212223 x .l- 3 2122

13 z "““‘
. 217Z227ZZ3~ 3 21#22%23

... Y1 Z Z Z 1

Z -' __ - 1 2 3 -— 3

(25) b A 217IZQ;Z~ X 21 2223

26 2 .33 : 212223 x ‘l_ 3 2123

13 22 z lz l2zlizzizs l 3 3

The T _u-‘TT'transforms are derived below:

 

  

. _1 _ z q

y11 ylz _ z11 z12 - 33 ‘321

‘ ‘ z
y21 yzz 221 323 | I lZl

7312 z11

_ IZI 1er

LetV : 'Z' :: leZBZ-2122 = (zafzcuzb’lzc) ' 2c2 I

zazb { zazc % zbzc'

_'
-Zn-

'

Therefore yll — yl%y2 — 2e - zb#ac , Yza = y2%y3 : za/zc

 

? V ‘v—

-y12 2 ya - 221 Z
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yl : £9 and 31 : .SL : zazb # zazo#zbz

V 2b 2

b

(25) Y2 : 20 and 22 -_: 1 zazb ,‘ 213ch 7‘2sz

V’ 29 2

C

YE i 3 - ?- Zazb ,‘ zazC 7‘2sz

7 a z -

a

The bridged T is a rather common structure, and it

will be analyzed With the object of obtaining its equiva-

lent T. The bridged T of Figure 19(a) is redrawn in

Figure 19(b), and their equations follow.

   

 

 

 
Figure 19

Figure 19(b) e2" : 2211" ; zgigua 13"

(y1%y4) -y4 ‘ 81'

Bottom box 61" = 2211" # zzig"and::‘]:Z222::]x 11'

Figure 19(b) M[:

Too box {11' = (y1%y4)e1' -y4e2 '

13' = -v4e1' # (y3%y4)egan -y4 (Y3#y4) 62'
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e ' FY % y '
Therefore 1 : .-§_-4 Y4 F’ :

e2! IYI Ti? .x i1

Y4 y1%Y4 1 ,

_ |Yl [Y1 j ._ ZJ    

But since el = 91' f 31" , 92 = 62' ¢ 92"

And 11 = 11' = 11" , 13 = 12' = 16"

  

 

    

   

 

 

 

 

 

 

r ' F
q

81 {$312,123 33,122 Fill
: lYl [Yl

x

6 Y4 % z Yify4 12 " )‘23 2
.4 .M " m JJ-J

Referring to Figure 18(a) and equations (34a)

rel F(za%zc) 2o 11

:
x

Gal 20 (Zb7lzc) 12

Since the two networks are to be identical

2 #2 = y3¥y4 J 22 , ZC = y4 __ %

a c y1y3%y1y4¥§3y4 ylygiyly4%y3y4 23

zb%zo ;__YI%y4 % 22

YIY3¥YIY4;YSY4

1

z : yy3 3» _¥_ 3 IE .- = 2124
3 1y Y Y Y Y "5 #2 #z ‘"”“3 14 34 4 3 1 217-2—31‘24

1Y1 _ '—
(27) Z = -' 21 _ 2324

b Y1Y3%V1V4;Y3Y4 ““EZ¥Eg¢EI '

“‘2'2'2" zl#23%z4
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Y4 1

 

 

 

(27) 2c z ¢ 2 E; - zlz3%(zl%23*24)22

Yiys y1y4%y3y4 24;23le '_21¥23¥Z4

212324

Equations(27) determine the relations between the

three elements of the equivalent T in terms of the four

elements of the bridged T. Using the T-4~47’transformation,

the equivalent ”could be obtained from the equivalent T,

or the bridged T (Figure 19(a)) could be treated as two

networks in parallel and the equivalent‘fifobtained directly.

The symmetrical lattice or bridge, Figure ?O(a), is

another common structure and may be represented as in

 

 
Figure 20 (b)

Figure 20(b). This is oossible because the currents

indicated by the arrOWs in Figure 20(a) are equal.

  

- - Y]. ' _. y ' r q

Top box 11 - 2— el 2-}. 83 and 11! 1'2;- _yl‘i 81'

Figure 20(1)) 1 - -y "" 2 .2

o 2 "' _-.].:. e ' - Y1 en. 1 I x

2 1 2—- 5 L ZJ -y1 Z}- 82'

I 2‘  



Y Y 'Y’

Bottom box 11" 3 Eael" % 5292" 11' —§- Kg? e "

F ?o( ) and = w 2 ‘igure e b 1 " = 1 1 u

2' Y2 u ,( 29 n 8 Y2 Y x e u

-e 2 .__ 3 2

- 2
  

Since the two networks are in earallel, il - il' % il",

 

 

 

 

  

 

 

 

  

   

12 : 13! ; i2", el = el' - e1", and eg 3 e8 = e2"

, Tyltya ye~y1'

11 e " 81
Therefore _ “ 3 x

‘ Y “Y12 2 1 y1#Y2 82

. 2 2 ‘

e1 ' y1%yg Ye-Y 1'1 1
And 2 -:g—$ l

-
_ x z

. 3 2 J

”21%23 22-211 ’ 111

2 2

x

Z8‘21 21%23 12

2 2 " JL    
 

 
 

 

Figure 21
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The equations for the symmetrical T and11'are:

il % zbig

e - z #32

Figure 21(a) l _E3_JE

_ zbil % zaizzb .

en - '——3———'lq

      

  

. p .

ell za#22b Zb 1 | 11W

And : 2 x

z #22

99 2b a0 b 1

L ”J - ~ ‘ L 2.

Figure 21(b) i 3 Y #2y
1 CB d el _ ydez

12 ' 'ydel * yc"“ye92

2

f 1 P 9.

1 Y *w) 1 V e

And 1 ° 2 d ~yd ll

3 x

13 _ ‘Yd yc%2yd e2
b a TA 5 "    

For the lattice --r- T transformation, [ZJL :- [ZJT and

for the lattice ~o ”transformation, [YJL _-.- [Y]".

Therefore

N

2a % z 21%23 _

r b 2 , Zb "’ 23-21

2

 

 

9

 

Y _ ¢ _ y -y

‘2 # y ‘ yl Y2 3 yd - l 2

2 d 2 ~ 2
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And lattice-«>T gives the follOWing conversions:

za : 221, and 2b = 23-21

 

a!

The T «plattice conversions are:

2 -

1 ‘ 29
-Z

,8.nd u-Eé7l22b

N
I
N

w

(28)

The lattice -~-- 77’ are:

yo : 2y3 . and yd = Y1“Y2

2

 

And the 77’ -—-a- lattice are:

Y1 :‘ZE % 2rd , and Y2 = ya

2 "E

The above analysis of the T,7f, bridged T, and

symmetrical lattice networks, with matrices, has established

directly a relation between them. Eguations(27) show that

the bridged T has a unique equivalent T whereas a given T

may have several equivalent bridged T's. A180 equations (28)

show that any symmetrical '1‘ or ”may be reoresentedas a

1

hat a ymmetrical lattice may notU
)

symmetrical lattice, but t

always be renresented by a T or 7T'(negative imnedances).

Three Basic Katrices

A review of this chanter‘till show that the three

basic matrices of four termina networks are the

imoedance, admittance, and cascade matrices. Then the





determinant of the imoedance matrix is zero, it does

not have an equivalent admittance matrix and when the

determinant of the admittance matrix is zero, it does not

have an eouivalent imnedance matrix. However, both of

these matrices do have an equivalent cascade matrix,

but when G of the cascade matrix is zero, no equivalent

imoedance matrix exists, and then B is zero, 10 equivalent

admittance matrix exists. These three matrices are,

therefore, the fundamental ma+rices, and from them the

other three forms can be obtained (equations 18, 14, and 18).

It asiears, therefore, that any four terminal network

.1

.\

can be handled With the imcedance, semittanoe, and cases eC
)
;

matrices and the matrices obtained through the maninulation

of these matrices. It must be keot in mind, however,

that to use matrix algebra on a four terminal network,

the current in on a siren end must equal the current out

'I:

on that end. his sometimes requires the insertion of an

ideal transformer to make the mathematics valid. If the_

transformer is inserted for ourooses of analysis, then it

must be present in theantual circuit or the analysis Will

be false.

The circuit of Figure 22(a) will be used to illustrate

the matrix analysis of a four terminal network. This

circuit may be redraWn as shown in Figure 32(b). The only

difference between the two circuits is that a 1:1 ideal



 

 

    

In 1 3,, 3.?’ our

 

    

AAA “-

 

,3,” 0hr

 

   
 

3" (b)

Figure 22

transformer has been inserted in cart (b). Vonever, th's

does alter tre network, 2nd, therefore, tte transforuer

may be broken we as shown in Fiuure at.

If]

P -

 
 

   
  

on?
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This chacter has shown how the subnetworks of

Figure 93 may be COmblfled, With matrices, to give one

1

matrix for the overall network. It may oe done in the

folloWing steps:

First——fultioly the cascade matrix of (a) times that

of (b).

Second--Obtain the equivalent admittance matrix for

the (a) and (b) combinrticn.

Third-~Add this admittance matrix to the admittance

matrix of (d).

Fourth-—Obtain the equivalent cascade matrix frou

the third steb for the overall (a), (b), (d)

combination.

Fifth—~add the imaedance matrices of (c) and (e).

Sixth-~From eteo 5, obtain the equivalent cascade

matrices for the (c), (e) combination.

Seventh——”ultidly the cesced matrix of the (a) (b)

(d) combination times the cascade matrix

of the (c) (e) combination.

The last steo will give the Cascade matrix for the

overall network and from it the imcedance or admittance

matrices may be obtained.

There are a large number of examdles in this chanter,

illustrating the nrocedures of cascade, carallel, and series

connections, therefore, the solution of this oroblem has

been indicated rather than actually carried out.

This cheater has shovn, With illustrations, how

matrices may be an'liEd to four terminal netnorks. And

it has oointec out some of the limitations as Well as

advantaged of matrices when so used.



-H.~1.""_’ III

[‘1 "A l'”31:? 1‘71 5. ~- . «77'?

A kirge number of networks contain only one voltage

Ind may, fierefore, be considered as the terminal networks.

latrices, here as altays, are a decided factor in main—

*
3

taining the continuity of the wroblem. There a e many

matrices, however.0other advantn.es be had by usin

The res t of this chanter will be used to illustrate SOme

of these advantages.

Synthesis of Equivalent Networks

Occassionelly it is desirable that the contours of a

‘

given network be Chan2e 0 and that the inut imneoence be

maintained invariant. For instance, suooose that ltfl

[Z] x [I] reoresents the given netvork and. that ['3'

@a' x: fiJ' reoresents te desired network, then a

transformation matrix [filmey be used to transforn k3

into [231' and maintain z. invariant. The
inout - ei/li ’

develonment is as follows(assuming the voltage to be

 

in mesh 1):

F81 :11 :12. ' ° ° ' ' :1111 :1

: 21 22 o o o o . 0 2n 2 , .-

0 . . x . , [I] —[Z]X[IJ

L. L Zn]. 21:12 o o o o o o Znn Lin.    
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[E] = [p] x [I] is the matrix equation of the given network,

H ' .— P1 ' | - 1 0 1 'r

and [J - [a] x [I] is of tne demred networx. [If] must

transform [it] to {23' and still allow e /i = e '/i '
1 l l l

(in-nut imoedance invariant). It has been found that [fl

. . . T ,., T, _ ,, I

may be useo 1n the following; manner, {at x [J x in] — [a] .

[rat oremultiolies {3] for no other reason than that the

end result justifies it. Touality must be Haintained on

both sides of the equation {j Z [Z] x [I] at all times.

«1

So if both sides are nrezrultiolied by Ejt’ then [at x [L]:

[II] t x [Z] x [I] . r.1SO, [2'1] x U ‘1 may be inserted

between {2] and [IJ since i] x f] ‘1 = [L] . Therefore,

“f j-Q : v”:- ‘7 ‘r ‘1

i] t x [.1 J x [Z x n x I. x [I

{13' 1' [23' X [If

    

 

 

 

 

. ,r _ P
m __ n ‘1

Where LE] - ‘(u 4'1. . . . 0‘“ and [1:] t - ‘(ll ‘6'. . . - J.“

41, C(zz . - ‘ 41“ ‘(ll {11 . - - 4‘61

L‘ul 1‘: ' - - 4‘!“ b ‘1‘ 42" . , . J‘hJ

if kll Z (-l)i7£j x minor of

And [K]: Deterznirzfint of [II]

‘ A . _, P 1' 1' D . I

Then {1] - k 1 “21 . . . . . 2.an 111 I'll.

IKI IK\ IK ,

klg kg? ..... kng x 12 : 10'

m (K: \KI ’

k1n k2n knn i i c

L [Kl 'K IK‘ ‘ v n . l. nj      



 

 

      

k k

And therefore i ' : 11- f‘71 - k,

1 1%]I{112’£""l:‘11
'K' [K] n

rd 1

. ~ 1 _ II °( . - .
also [E - 1’ ‘6" re; " e1“

«(:1 411 4n: o O

. . x :

. o o

O O

L‘In 41v! . . . 4“ L- J - .

And 91' : el 1! 0 7‘ 0.

e1 e '

But it is necessary that i_': ; that is, the

l i I

l

transforzretion :::.;1trixi] does not Chenpe he input

impedance. A simple way to satisfy this condition would

he to choose a(,,: 1 and. 4.1 = «(.3 = = «(m = O, and

l. .- — '.?‘;‘:'v ' .0 r; ‘

therefore, kgl — kfil .... — knl - O Q grab el — el onQ

1'31.

1 1 ’10....07

‘(21411- - - «(an

Therefore (I? -"-'

I

“(In '(ua. - - - (at:

The above derivation stimulates that [K] -1 exists and.

  
.9

therefore, that [Kl ¢ 0. This requires that {a be a

non—singular matrix anC, therefore, huSt be square.

The next steo is to determine the0('s. This may best be

shown With the f01lOWinj examole. Figure 24 (a) is a



 
 

  

4:

--""lfr *

2' ' Z | 1 2:, 2' ‘1
’ L r 3 “ 4

15; Z 52 '6;

5; 5% 5‘

—"IF _ T T

(a) (b)

Figure 24

network that has the desired inout imoedance, but not the

desired circuit configuration. The orohlem is to find

the narameters of Figure 24(h) such that 11' 3 11 and

81' 3 e10

Solution: el " {3wUNTIL ) # 313111 .. (jULgfie

. SD

0 : _(j¢oL2)il * (ijg %“;)ig

Therefore e -(L1%Lg) ‘Lo 3 O 1
- *1 l l

— jh) % 3:; x

O L ”L8 L2 0 S 13 

¢
-

H U
)

0 C
D

I
'
-
‘

l
l

33“}; % S3§i}1'_ {3' “L3,; .22512!

" ‘5”1‘3 ’l 34%;“ #{J’U(L3%L4‘H(8)}1’“

j“

C

l

(inout 1moed-

l 0
If K = = = ' =[J [4. ‘1], then 11 i1' , e1 e1 , and z s'

ances)





Therefore L3 «L2 9 1 .x, O

U = 10—.“ X :

-L3 (Latin) 0 4. -10 lo

10—3 x (is—e04; 104,!) (104..(,_-10 .(z)

(10 «act '104‘1) (10 x: )

1 oh 4 O 1 O

3 3 = 104 x x x Z

4 (4 ,4 1343) (10 4.41)
10 x

(10 (an) (10 #3)

Since the first row elements of the two matrices on

the left, are negatives of each other:

(29) 4 ,4 10 4‘: ~10 1.4, and 15—204 4 iox,‘ =-1o.(,(.<, -1)

Solving these simultaneously:

4. = -o.2es end 4,: 1.575

'Therefore L1: 104(15—204, #1043) : 21.589 x 10"2 =c.21»3 henries

L4: 10‘2(10.(:-(15—204 ,t 1043)): 0.0435 henries

_, 4
s — 10 (4410.13 = 104 (4 ,4. 8:39) —- ssco darefs

(
Qs = 104(1oxf-(4,lio.(,‘)) = 2 2,310 derafs

Foster's Reactance Theorem states that the two networks

of FLure 24 are ootentially equivalent. By a similar

method Sauer's two potentially equiv lent net H0is may be

found. The limitations of this technique are in finding
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the¢('s. If resistances were introduced into the two

mesh nets rk, there would, in general, be three ixzne o Mdet
._,

equations of he trce(?9) to be solved simultaneously for

the tw0¢('s. Cf course, this is not noessible. If the

solution had Leen in terms of 2's there would have been

only one ecu tion and 2

found. However, if there had een resist:does associatedb

v.ith each inductsnce ant the E/L ratio was constant

{
1
'

throughout the network, t en a three ourameter solution

could have been found. For a three mesh network there

would huae been sixo('s and for a. four mesh, twelve ('s.

The limitations are, therefore, quite great. For a two

mesh, however, this method is faster then Foster' 8 or

Cauer's.

Change of Reference Frame

The follOWing technique has been called by Le Corbeiller,

The Kron hesh ”ethocg, since it has been develcoed and used

extensively by Tron.

In networks containing several meshes and a large

number of mutual imnedances, it is often times difficult

to obtain the mesh imoedance matrix I?)' by writing the

rexwell mesh equations. In the simcle bridge, for instance,

 

0.
r I

‘ w'.‘ . Y ' ‘

”Le Corbeiller, :ctr1x analys1s of electric Leteorus,

09034-44.
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there is a oossibility of fifteen mutuals. One can

visualize the task of even attemnting to write the maxsell

mesh equations for this case. The Kron Jesh Method

eliminates this sort of confusion and allows One to obtain

the most comolex mesh imoedance matrix by a surely mechani—

cal process.

A simnle oroof of this technique is given by Le

Corheiller, end it takes about ten oages of his book

"10 Since most"Matrix Analysis of Electrical Circuits.

engineers are interested in method rather than aroof, only

the method of aonlication will be presented here. It

must also be said that this method is not limited to two

terminal networks, but that any finite numbers of voltages

may be oresent, providing that they are either all d.C.

or all a.c. and of the same frequency.

The metnod is as follows:

For each branch draw an arrow reoresentin; the

current in that branch and choose the current direction

the same as the voltage in that branch. Next, arbitrarily

choose the mesh currents and indicate their directions

With arrows. For an n branch network there Will be n

equations exoressing the n branch currents in terms of

the mesh currents. From these equations the matrix

equation may be written by the usual method, fl] =fpj x: U].

 

10 cc. Ci .
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! is the branch current matrix, 93' is the mesh current

matrix, and [5'] is the connection matrix between the two.

If there is a voltage in each branch or only one

voltage oresent in the thole network the branch voltage

matrix may be written as {f with sufficient zeros to

give the column matrix n rows (n is number of branches).

Tach mesh voltage, in general, will contain more than one

branch voltage and may be reoresented as [E3 '. The "method"

then says that [‘3' 3 E“ x E]

The bower of the technique will now be oresented.

The branch imnedance matrix. ED is obtained in a very

simt-le manner. If there are :1 branches, then [2] will

be square and of order n. It is combosed simely by

nlacing the n branch imnedances on the orincicle diagonal

and the zij mutual impedances are placed in the ij positions

of the matrix. The maxwell impedance matrix [Z] ' is then

obtained as ESL; x [Z] x E3] = [2]..

The mesh equation may now be written as [31' ='- [Z]' x [3'

where [13' are the unknown maxwell mesh currents. Therefore,

[13‘ =[Z] "1 XE] '. After [13' is obtained the branch currents

can be obtained from our original equation, [I] = p] x [I] '.

It must be cautioned, at this noint, that [I] #[a’1 xtF] .

Recalling how the {2] matrix (branch) was written, the

equation [I] 2‘2] -1 x179 would give branch currents as

though each branch imoedance and voltage were shorted on



themselves. For a two terminal nettorx ( ne voltage),

w

it is obvious that 1 out2, is...end in, are not zero,

[I] = [3‘1 x [E] would give every current but 11 as zero.

and 11 would equal el/zll which is incorrect.

Since the circuit in Figure 25 is of a network that

is not flat, the mesh equations are difficult to obtain.

This circuit Willbe used to illustrate the Kron jesh

, :3
Method. --'-

éy’

 
In Figure 25 is the classical cube oroblem. The problem is

to find the incut innedance across the diagonal. There are

8 nodes and l subnetwork, therefore, 8-1 3 7 indeoendent

node oairs. Also there are 13 branches and therefore
, J ’
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13-7 =3 independent meshes. The chosen mesh currents are

indicated in red while the branch currents are in black.

  

    

11 = 11' 0 o o o o r 1 o o o o d‘

13 = o o 133 o o o o 1 o o o

13 = o o o o 15 o o o o o 1 o

14 = o o o o o -1.* o o o o 0-1
0

15 = 0 -1g 0 a o o 0-1 0 o o o

-' ' I- 1 " 'r '15 - o o -1g%14 o o [i - o 0-1 1&0 o x 1]

17 = o o 0 14-15 0 o o o 1-1 0

18 = «110 o 14 o #15 -1 o o 1 o 1

19 = -1f¢1§0#r4 o o ' -1 1 o 1 o o

110: -1£¢1g#1go o o —1 1 1 Q o o

111: o o 13' 0-13 0 o o 1 0—1 0

112: o o o 0—1510 0 o 0 0—1-1

113: o 13 o o O‘-ié L o 1 o o 0-1.

There the 13 x 5 matrix is the [Q].

" e1 7 ' 91'}

o 0
There— , I _

[E]' 3 [qt X[E] where [E] = O fore [1"] " O

Lolzd L064

r'0 o o o o . 013}

fifl =: o o 23 o o .

O O O O 25 .

L013. . . . 213‘  



h

[21' 3 [011; 1:4 [Z] x [C] and carrying out the indicated

coeraticn gives:

P(28%29%210) ("29-210) (“210) (—28-29) (O) (~28T

(—zg—zlo) (25¥zg%zlo%zlg) (210) (29) (O) (~213)

[Z1' 3 (-210) (210) (23%26%zlo%zll) {-28) (~zll) (0)

{—za-zg) (29) (~26) (25%z7%28%29) (-z7) (28)

(O) (O) (~211) (~27) (zg#z7%zll#zlg) (212)

L(~28) (~213) (0) (28) (218) (z4#28%zlg%zlg)  
A two terminal network is being used to illustrate

Kron's technique, because it works very nicely here. Since

in this oroblem the interest is in the inout imoedsnce only

and, therefore, in il' only; it would be necessary to find

[2" if the method of determinants Was used. The following

method will illustrate how 11‘ may be found without solving

for the deterninant ofe 6 x 8 matrix: 11

Let [Z] ' ”[211 [313 There LZJ 1’ [232’ [7‘] 3'

A [213 Z[34

Also let [F] -[["L:j: ‘71‘918 111-[:]%nd[’32=§[]

and [214 are 3 x 3 matrices.

  

Also 18351111.? [111 T'Jhere [IJI 7- ril'T end [112 = ri4'T

[I12
13‘

15'

L16'  
 

llGabriel Kron, Tensor Analysis, 13.21-22.



Therefore {:31 :[291 2([131 {[1732 xlIl andI’fi g =[ZJ3 xifll ,1

[214 XIIJQ. F‘lir‘nineting [g 2, the following equation is

found:

{EL—[z]. xfdil mm = as. 421. x h: x 1th x [:11

. But [‘32 [8] and therefore,

0 ,

[131 [Z 1 -[Z]g 7‘ [334-1 1“ [93)‘1 x [E31

In using this technicue, it is essumed thfit it is

easier to find the inverse of a 3 X 8 twice, than it is

to find the inverse of a 8 x 8 once. Ihe method Will be

illustrated by Carrying the irevious oroblem to conclusion.

If we let all of the branch imoedences equal one ohm, then:

    

,. 3 -2 -l:-2 0 —1T .1, {-1

—2 4 1| 1 o u z

. :1..-i-4I.-1:1- 0.. 31 'J2
{2] = -2 1 -"‘i| 4'11 1 = U

o o 1 1 4 1 z

-1 —1 o: 1 1 4_ fab 4;

If we let E]: [Z11 - [213 x [234-1 x [213

3 -2 -1 1.1 —o.4 o. s 1.9 -1.5 .1.6

Then. E]: —2 -4 1 .0.4 0.8 0.6 = -1.e 3.2 1.6

-1 1 4 0.0 -o.e 0.8 —1.5 1.8 3.2

”
r
4

7.86 x x

x x x

.4 x x x

:
_
_
_
I

And [%Il— O
)
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P I b A

1 ' 7.38 X XW e
l l 1

Therefore 12' Z 574 x x x x O

I
L13. L J( x X. 0

7 C38 8 h r-

‘ 0.4 — a — ssh

nd i ' = 5.; z, : AA -'= - 0.80oo ohms

A l ’ inout 7'09 9

This illustration was used to show how the Kron nesh

“ethod could be scilied to advantage in determining the

mesh imoedsnce mtrix of e comolex circuit and to show how

a desired curren might be found without finding the

determinant of a large (31', oroviding the other currents

are not desired. She tho terminal illustr.3tion ore ented

here is not meant to imoly that this technique is liwited

to circuits containing one voltn5e. It has been derived

for an n mesh network conteininw n voltages. The two

terminal nrobleu oresented is, more or less, a classical

one, end was used to simolify the calculations and still

oreseent the method.

La.trix Pa.rameter F.eoresentation

Iatrix care.xeter reoresentction is a method of

reoresenting a circuit in terms of its resistance, induc-

tance, and elastance (recicrocol ceoaoitunce) matrices.

For instance, if it is nece m3.ry to give a person informa-

tion on a two terminal nettork, it is much more ccznoa.ct

to simnly give him three matrices and let him draw the
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circuit. The method csn best be illustr ted with an

X2311 '16.

  

 

9 are hi;hly

innrobeole, out serve for ourooses of illustrstion. The

:
3
”

values oooosite t e condensers are Velues of elastence {l/c).

This method aoclies for oassive (too terminal) networks only

and it is assumed that the voltsLe is a comoonent of mesh

'1 only.

The mesh equations are:

(e¢3we,£3/ju)il 4113 ,4 013% 014 - (juS ,4 1/j...)'15e

o = —411 ,1 (4%juS,‘3/ju)ig 41/3... )13 -(2/ju)141‘ 015

= 011 -(l/ju)12 #7; 1/3... )13 - 314 ,4 015

Oil -(2/jw)12 - 313 ,l (3443.02,! E/ju)i4 - 315

= -(30 5; l/jw)il ,1 Oi; ,l 015 -Si. 1! (eggs; 1/ju)i_O
O

O

H

The matrix ecution [31"—- [Z] 1: [lie] herefore:

e (357406,l3/jb) -4 O O —('¢o5-—l/jw)

o = -4 (masts/j») (4/1 9 (42/3...) 0 .2
o 0 (4/10) (man) {-3) o x 13

0 O (-3/j") {-3) (3 gh’g *2/3‘“) (~3) i4

0 (395/1/39) o o :3) (2,4qu 741/31») 1:





”‘ 5

~

6 as follows:O
.

H d H
.

O
:

(
0

£
1
:

However, the imoedance metrix new

1

1

A

I .
5
3

O O O

J

A
(
D

\
J

q

(~13)

    

e o o o

— . o o (3) o o o

[z]: o o (7) (—z.) o A! jo o o o o o

o o (-3) (s) {—33 o o c (72) o

1 o o o (-3) (e ."‘5> o o c (s)
1 d

‘
k

9

[
0
0
0
m

  

It is quite aoourent that the method

reoresentetion is much simgler than the uctuul Circuit.

To draw the circuit from its o remeter matrices is

es remenbered that the voltage

is in mess I, only. The method for obtaining the circuit

from the oeremeter matrices will now be illustrated.

The first rows of the three matrices indicstes_tha

there is no mutual between meshes l and o, and l and 4.

The second row indicates that there is no mutual between

2 and 5. The third row indicates none between 3 and 5

and of course, 3 and l. Tith this information the

folloWing structure may be drevn in this order:

I1 l 2 I 3_] But there are mutuals

[g I 4 I ’ between 3 and 4, therefore,

- 1. the structure must be

changed to the following one:

Illzlg

|5|4l

 

 

 



After the structure of the network is obtained, it is a

simule matter to insert the R, L, and 1/3, values giving

the circuit of Figure 25.

Imoedance Level Chan e
‘4

{.3

There are an infinite number of networks having

the same innut immedanee as a given network. and, for

ourooses of economy, any one of tnese may be more desirable

than the given network. Or, it may be that the siven

network has an induetsnce or Csoecitunce that cannot be

obtained. In any event, the given network can be changed

to another one having the same confi3uration and inout

imoedance by a very simole method.' The basis for this

Operation till now be derived. The follOWing equstions

reoresent any two terminal network.

(
D I1 - 21111 % 21212 % . . . . Zlnin

in % . . . . zn i0

I
I

N \
J

H

H
.

H

‘
k

[
‘
3

I
3

L
U

arm 11 - 211 Where Z'

(
O

«
I
Q

 

Therefore v” 3 z. 3
11 insut .

E
]

H H
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flow if any one of he columns or rows of the above
1

equations, exceot column one or row one, is multiplied

by N, then the new determinant [2" till ecual N|Z|(cheoter

Q d 1“ . zen-'- \ ' ;' ' . I ‘ "

I), -nc the new ml.or 211 V111 esusl N 211, Since 211 is

the determinant [Z] With column one and row one deleted.

If all of the columns and rows are multiolied by N(exceot

column one and row one), the new determinant [Zl' will

9nw

equal NinIZ/ and leI will equal N

therefore, that regardless of how many rows or columns

Z . It is see ..11 y to see,

are multiolied by some finite number, or numbers, these

.numbers may be factored out giving the sums relstion between

’ZI' andlZ‘as between 211' and 211. The result is that

zingut : el/il = ley/ N211 is unchanged. Referring to

the imoedance matrix of the previous section, the following

illustration till be given.

   

r55) (-4) o o o l (e) o o 0 {-5i

-4) (4 o o o o (3) o o o

ff} 2 o o (7) {—3 0 ¢ 3 o o o o o

o o (—3) E5) {-3) o o o (z) o

_ o o o -3) (s) (-5) o o o (9)4)

P(3) o o o {—1)

1 O (3) {-1)’«?) O

% 3:; o (-1) (l) o o

o {-2) o 2 o

{-1) o o o (1)

‘- d  

Hultiulyin: the lest column by 0.3 fives:
#



_
l

   

"(3) (4) c o o 7 "(3) o '3 O (-3

, ' (-4) (4) o o o O (8) O o 0

fig :: 9 O 57% 33 o % 3:0 0 O O O O

o o - ) a 5-1.8) o c c (:3) c

L0 o o -3) 5'4). Lbs) o o o (5.4) 

.1__ O )

% jaw O «l

O 3

  

and because of the erevious derivation, CZ] end [Z]'

have the same inout innedsnces.

Care must be used, however, or a network may b

made ohysicolly unrealizeble. For instance, if the

second column is multiolied by 13, the resistance and

elestence nutrices are unobtainsble. Thet is, there is

more imoednnce in the mutual than there is in the mesh.

This, of course, is not oossible. The method might be

used, however, to obtsin n nhysically renli7eble network

from one thst is not.

This chsoser has exoleined and illustrated some

18U
)

of the the terminal network analysis and syntbe

oossible with the use of matrices.



CHAET“R IV

SYZLTTEICAL CCuTCVTTTO

Symmetrical comoonents are defined by means of linear

algebraic equations. Because of this fact the details of

handling these equations can, and often do, obscure the

end results. Katrices, because of their compactness, can

be aoolied to symmetrical components With the result that

the oroblem isHltys in sight rather than hidden among

the algebraic m3nio“1 tiJns . mr. Reed makes tlfi. s statement

in advocating the teaching of svnmetrical components with

matrices, "Ieeoin; all the details in their oro3e r olcc ..

by the usual methods is such a tremendous task that rarely,

if ever, are all these details given."12 The rest of this

chapter will be used to outline a procedure for the

aoolications of matrices to symmetrical comoonents, and a

couols of examoles till be included to illusWrte their use.

The defining equations will be stated in terms of the

current, but will as ly equally well to voltages. Also,

it will be assumed thet an A, B, C, sequence is oresent,

since a given sequence can be reoresented es an A, B, 3,

sequence and used in these equations.

 

o.4'(
J
)

H 0

~ - . ‘~ : -\ r r' . ('4 , -' " f‘ . "n“ . '7‘"-

nyril B. Reed, nltcrrstin,,.urrent Llruult éggggy,
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Let

i , i . , be the unbalancee three chase currents.
a b, 10

H ' be t e u t' " . Wee ts an ‘ ~ -~.1a1 101 1cl bhc nositite secuen c of eultncec currents.

. . . 1" ‘3,“ 1“".z . V ‘ ~ , ‘N': 5:)“ ‘ 5 ‘3“ 4'

1&8 lbg 103 ee tne neaitite sequence of Lelvhcec currents.

, i i be the zero sequence currents.
do b0 00

'lZJ-O’3
.1“ ' : ' ' ' .i'y' . : J

T-.en 1&0 13,11,313“: xLneie a 6

o ' '-

7‘ 2 1 ,z e g a2 .. o

= 1- e1 ¢a i. ,
a u 1 O _.

a1 ‘h‘ * snc a - 1

8

"D_ . “w. --
ieg - 1a#e 1b%aic

5

Therefore 1,, '1 1'1 1 11 f i l
o a

.1. o
— H .

ia1 — 3 l a a x 1b

1 1 3 1u a

as, L J L 0.. 

That is, [15,18 =[r]

  

  

    

x [I] , end [I]: [T]"1 x [1818

  

  

where [Iglszriao [T] = T}; r1 1 1i

2
a1 , 1 a a

,2
51a? bl a 8..I

"’4

.. ' a -l.. I-

[I] - 1e [T - 1 1 11

1b , 1 e3a

, 2
+10‘ bl a. 8.1

But ibo 1&0 % 0 ¢ 0

ibl = 0 # a21a1% O

ibe Z O # O % aia2
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And i 3 i % O % O
00 b0 O

101 ' O / a“ibl / O

1Cg = o % o # aibg

Therefore [1b]S = Fibo‘l = ’1 o o“ riao'

2
1b1 O a O x 1&1

,1b3J I_O O a; ''18?"      

u

F
r
i

£
3

H

xAnd [L012 [15:15

Also[IC] s 3 [Tlr x [15) S [gr x [Tlr 11 [la]

But [gs-z [r]r x [1518 [firsx We

[3 therefore
[f] r-1 = [Tlrg

S

And[T] 1‘3

With the two transformation matrices, [fiend [T]r,

the symmetrical components of any one of the chase

currents may be found from the three unbalanced nhase

currents, or the three unbalanced nhase currents may

be found from the symmetrical comuonents of any one of

the nhase currents. The following exemole will illustrate

this statement.

Referring to Figure 27 find the symmetrical comoonents

of the line currents in terms of the symmetrical comnonents

of the chase currents.



 

zc‘ -——"  
Figure 27

  

Solution:

18L = 1a % c - '10 Therefore [IL] = '1 o —1‘

: _ - . —1 l O
ibL 1a # 1b % O

. _ , LO —1 1d

10- - O - 1 i0

1. b That is, [IL] = [A] x [I]

But [IaLJS Z [T] x [113

And [IJS 3 [T] x [I] or [I]: [T]"1 x [1818

Therefore [IaL] : [T] x E] x [TI-1 1: [T518

That is,

 

{1

And

 
Therefore i

riaOLT

.. aBLJ

18.1L

18.

2I.

1

8.1L

1

 

q

8.0L

 d
aOL

 

  

   

Pi q

. -1 3
EH 2: gg }{ flfl x. 1 0

a1

Liagd

o o ‘ F1 ‘1

6'0

(l-a) O X i

2 a1
0 (l-a) i

« . as,

.. -' . s 0

L 4-5 6 33001“, la”1 '3'1’7 63"0 1

“L

x [T]
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The above results show that the zero sequence current

in line a is zero (the zero sequence of line current is

always zero for a three Aire system, unless grounded).

They also show that the relation between the oositive

sequence current in line a and the oositive sequence

current in chase a is the same as the rela ion between

line and chase current in a balanced load. For the

negative sequuence the line current leeads the obese current.

The relations between the sysnetrical comoonents of line b

  

and Mb Gonoonents Of phase b WHY be es tel.lis ed as follows:

[reds-1 [flr x [131.13 And 1.138 : [T]:x [1318

Therefore [15L] :[flr xfi * 1 O O .. -1

s 0 (330° 0 XETJI. 41ng

L. o 0 £30:

0

.,., O
u

.0 O €100.-

  

These results show that the relations between the line

comoonents and onese coroonen ts are the szime for ezzch chase.

The ouroos e of the next eHxa;1ole is to furt‘.er illus-

trate the use of matrices, but more imoortant, to illuminate

a nossible technique for the solution of circuit 3roblems

0"

that heve soecia21 s ametr 41e technique of disconalization3 Yo .
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is being referred to, and Mill he presented in the

followirg Chester.

Feferring to Figure 28 find the symmetrical comeonents

of the ;enereted voltages in terms of the symmetrical

comnonents of the currents.

‘4‘-‘A

 

 

 

 
 

2'1, 3'- 3L

3v

1»

° 2 c i3“

+ #“VAVAS

Figure 28

Solution:

ea — (zg%ze%zL%zN)1a # ZNlb 742N1C

e = zNia % (26% ze%zL#zN)ib % ZNic

e0 2 zNia % zNib % (23%ze%zL%zN)ic

Let 2 - zg%ze#zL

en ZN ZN (2%ZN) i
U . , 0

But [Egg = [T] x [E] and [I] = [T] “'1 x [1318

therefore {532's 1 [T] x [Z] x [T]"1 x [1638



      

      

 

And if the 1ndiceted ooerntion is carried out the result is:

I'e P ' '$01 (2743210 0 67 180

e ..
31 - O z 0 x 1&1

e O O z i
b 32‘ I- J I- 8.2.

. P

Also Feb (27132.) O (51 Fi ‘1!
O N b0

: T] x -lebl [ r O z 0 x [T]r x 1.01

e o o ' ' ’

.. bZJ . z‘ blbg.

. C

U]? [Eb] S : (21‘s: ZN) O O

O z 0 x [IA]

0 O 2 U
d

.. P ‘1

And [EC] - (z/-32N) O O

s

O z 0 x I

[as
O O z

n d  

It Will be noticed in Figure 38 that each ohase has

I
)

, there is no COquing

(
D

the same impedance and, ther forf
'

between the sequences; that is, ea is a function of ia

only, etc., also that the zero sequence imoedence ecusls

the chase impedance olus three times the return imoedence,

When the load is balanced.

Referring to the oossible technique for solution of

circuit problems mentioned above, it Will also be noticed

from Figure 38 and its [3] matrix that a certain symmetry



—83—

is oresent. All the imnedances on the diagonal are equal

and all the imoednnces off the diagonal are equal, and it

vas found that oremultiolying this matrix oyCfl and

oostmultiolying it by [TJ'1 resulted in a diagonalized

matrix. The result is that three simultaneous equations

in three unknowns is reduced to three simple ratios.

This subject will be covered more thoroughly in the next

chaoter.

One more examole will now be given illustrating the

use of matrices to symmetrical comnonent oroblems.

Symmetrical comoonents are used primarily for the

determination of fault currents in oower systems. The

following exemole, therefore, will be a simnle oroblem

on a single line to ground fault. This and other problems

'2'

are given by Reed.1” Referring to Figure 29 the nroblem

a

6

3' JiléF

3: c
AAA ._

vvvvv

 

Figure 29

 

13Ib1d., pp.498-511.
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A

     

is to find the qult current if. rne equations for

Figure 29 are: ea 3 \“a#21%z~)1a # zvib #zg1C # Vaf

eb - z 1a % (zb¥zl%zg)ib % zgiC # Zflf

: 0 I" . v

eC zgla % Zglb % \scizl#zg)1c%fcf

And therefore

n I P .. P

ea] 2a 0 0T M o o 1.1 1 18} Vaf

eb ’ O Zb O % O 21 O % 2g 1 l l x 1b % zfi

Lee. 0 O 20. b0 0 2L .1 l 1 .10. ,_ch    
e .

But [Ba] 3 [T] X [E] = [62:] and the sssumotion may be

S e
a

made that the generated voltages are balanced and of

positive se uence; therefore, e

a~o

A180 [I] DJ'J' x [léls

'21 0 0q

0 O

(
D

d

O % 2Z Z

b

0 sq

l

O

:[Tlx

   O
D Z].

  
Z Z are2

a’ h’ 0

G8

3 e“ Z O.

and therefore

8

[”111

111

 _111

[TT‘I x 7‘ [T] x

  

the ohase imoedences of the generator.

Symmetrical comoonents are aonlied to oroblems

involving rotating mach

reoresent a non-linear oroblem as

great deal of accuracy.

ence the t the

It has been

C5-

inery because of their ebility to

linear one with a

found through exoeri-

best results are obtained for generators

 

af

Zfif

  _,cf





if the oositive, negative,

imoedences have certain

emoirically and will be reoresented in

2

(
D

U
! l

- , "

L: 1’10

values.

sequence impedences resyectively.

Therefore [T] x

Also [T] x

 

And zg[T]

Which gives

X

 

O

O   

no -

e ..

a1

0

. 4

But {léls 3 IT] x [I] = [T] x

b

 

 

F<zGO izqu,

 

 

for the zero,

2 O (31

a x [T]"1
0 2b 0

O O qu

o o'

x [T]“1 =

21 O

O 21‘

1 1‘ 2: [ii-1 ~

1 1

l l;

o o "

(Zslyzzl) O

O (2387‘21)‘

 

  

These

oositive,

 

zero sequence

values

this

 

 

  

 

 

 

  

- PZGO O O 1

O 2&1 o

.0 O Zc

le O O‘

O 21 O

_O 0 Z1

2,, {3 o 0‘}

O O O

O O O

b A

q 4

riao rvaf

X 8.1 7‘ [T] X Zfif

- 3.2d Lva 4

here 31a 3 i0 3 0

And i-. = if



     

Therefore [Ia] : 1/3 1 1 1 x o = if ' 1

s i -—'

l a a3 3 a8

q 0 a

l a* a

'( 1! ,1" o l ' ‘F0 2% 21 01%.) o 1

, : ~ I 1

And eal O (2&l¥zl) 0 an x‘gi %

0 O (Z~n%z ) a“
kO b L15 1 I - d

._ . (2T

3 Vaf {azfif % a ‘cf

 
8 - 1

Vaf % a zf1f % ave

The above equation, however, reoresents the fault

in phase b in terms of the comoonents of phase a. If

‘

the equation is made to ce a function of the comoonents

of chase b an imoortrnt symmetry oresents itself.

Since [371338 : [Tlr x [Eagle and [1315 : [T];1 x [It-1‘s

[Tux [21; {1‘1er x mix [1118* [311 x
3

.(Vaf%zfif%vcf) T

2
(vaf¢ azf1f¢a ch)

2.,
L(Vaf¢ a zf1f%dvcf) 

  

And ‘

O P(z~ %z #32 ) O 07 .11 'V #2 i #V 1
— u. l g 1 .l af f f cf

ebl - O 0(z 7‘7 ‘ O x 1 x “'f' 7‘ 3 aZV #2 1 AW
0 31 H1’ 3 af f f Cf

,.. 1 z . a2
LO 0 (Zugflll L l Lavaf’l flf" ch‘    
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Multiolying the above equation by the row matrix, [1,1,1] ,

O" ' = ( .n '2 \. ( fl 1 ‘7D1ves. ebl {:zuo%zlfuzg,%,qu#zl)%(zG #zll}.;§ % “fif

 

 

 

Therefore ifi— Ibo 3 lb 3 Ibo 3 ebl

3 1 (230%21%32g)%(zGl%zl)%(zG2%zl)%32f

Afld be : Vraf7lzfif1£VCf : ‘(Zfl 7‘2 7‘33 \ x j...

0 ———-——--——-'— Ho 1 e’ 00
3

V = agv #z i lav
bfl af' f f" Of 2 e. -(7 *0 )i

3 01 ”31 “1 b1

v ‘ v ,l ‘ ,l Qv ‘- a, 2-1 a“ ,
bf2 7‘ af I f of : -(ZGZ % 41) 108

3

The above equations indicate that the fault may be reore-

sented by a series circuitze shown in Figure 30 where the

total fault current if is equal to ib = ibofibl{ib2.

A‘AMAAA

 

   

 

   
Figure 30

This chanter has shown how matrices may he aonlied

with advantage to nroblems involving symmetrical comoonents.

The usual crocess of solving equations to ,et the relations
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between the voltages, currents, and their symmetrical

comoonents has been reduceé to the simole orocedure of

- . . :‘1 "'1 m
mult1oly1n5 by [T], [I] :[TJr: and [fir . 1he result

is that the thread of the oroblem is never lost.
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For a gitven circuit problem, the matrix equation

['13] = [2]}: {I} is obtained. "-"fhen voltage equations are

written, the olt.~e end inoed anc es are knoWn are the

currents are desired. Therefore, to find the cuirents

the above equation must be written as fig :5 tfl'l

Similarly, if node equations are written, h] == hi x: fig,

the currents end admittances are known and the voltages

are desired. This means that the voltages must be found

[75 2 {3'34 x LIZ; . In either case, an inverse matrix

must be comouted and for a large number of meshes or nodes

this can be a considere.ble task.

The determination of the inverse is nearly as

difficult as, or eoually as difficult as the method of

determinants (h'oter I). If, however, the matrices [P]

and {0] could be found such that [P] x [Z] x {33 gave a

matrix 'ith elements on he princiole dieonal only, then

‘tl‘e new eouation {Ad-j: {ij m, Waere [Z] is tlfle

diagonalized matrix, would result in n simole equations

N

el N

of the tyne,-—— 3 il , where n is the order of the

I

Zl



{
D[Z matrix. One the new currents are found, the desired

currents (old) could be obtained by a simole multiplication

N

between the {4] matrix and the [I] matrix.

This method Will now be illustrated w’th the folloWing

(
D

xamole. Find the currents of Figure El by diegonalization

and by the method of computing the inverse.

, '2 '4

[0 Z ‘4 £1)

-‘ 3 ,

2; '

74,7
Z.   
Figure 31

Mesh equations:

10 = (2;4;3)11-413—313—014

o = -411 #(4¢4¢4)13—013-4i4

o I -311 —012 % (2{2%s)13-214

o = 011-413 —213 ; (2%2%4)i4

Matrix equation:

”10‘ ”(9) (-4) (—3) (o) ' ’ifl

O _ (—4) (12) (O) (~4) 1'

o (-3) (0) <7) (-2) x :3

)     n
3   L q, {(0) (—4> (-

That is [Q = [Z] x [1]

By the method of diagonalization, the following procedure

is used:
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Premultiply the matrix equation by {13] giving [13 x [13 :

{a x [Z] x {13 x [I]. The [1] matrix may be inserted

between [23 and [IJbecause it does not affect the equality

of the equation. But [QJX {Ca-1: {1], therefore, insert

this in the olace of [1] giving, Laxxi: =le x [Z] x [a x

[QJ‘lxxLI The eouetionWilt?"- [fix [I] may nov be vritten,

vhere: é]- fax J-fl’ {fa- {lax {Z3 x [‘33 (the diagona-

lized 1121trix) :nd [I] -"- {Cg‘lx {1] are unknovm currents.

The problem, nOW, is to find [P] and {4] such that

[P] x [Z] x [Q] 1’ 62;] will result in a, diagonal matrix.

This is done as follows:

9 -4 -3

-4 13 O -4

[h] = -3 o 7 —2

O —4 —3 8

Add 4/? x lst row to 2nd row riv1ns

’9 _4 -3 0'

' 98 -4 —4

[Z] = 0 e“ ":2:

—3 0 £7 —2

b0 —4 —2 8  
Add 1/3 x lst row to 3rd row giving:

'9 -4 -5 0“

1: 93 —4 —4

[Z] = 0 s“ ‘21

o :3 e -2
3

-41 —“
LO ‘- 8‘  



Add 3/83 x 2nd row

9

121'" =

 

O

O

O
b

Add 9/23 x 2nd row

P

9

ma

[Z] = O

o

L 0 

Add 29/57 x 3rd row

9

1: Jam: 0

Z =

O

 Lo

Referring to Linear Transformations, Shaoter I,

to 3rd row givin':

-4 -3 d

__ :4.- —4
9 3

134 ~58

O 23 53”

— —24 8J

to 4th row giving:

-4 -3 o ‘

33 .:$ -4
9 3

O 134 ~58

41-3 {:3

O -58 148

‘3? “*3
his? C2.

to 4th row giving:

-4 -3 d“

93 —4 —4

'§ "5

O 134 figs

23 23

8834

O O 1541‘

 

 

 

1
7
0

l

 

 

 

1')

O

the

first ooerstion could have been performed by a oremulti—

olier.

\.

lst row is added

or =Therefore

 

This premultiolier is,

to 2nd row.

0
0

|
-
-
‘
O

O
H

O

 

 

'1 o o

4
'g 1 o

o o 1

b0 0 o

6' 1

O x [Z]

0

k

.
e
H
D

<
3
9
5

 

, where 4/9 of
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But [Z]

[P]

£
9
?
4

0
)

m 

(
)
1

0
3
‘
”

1
'
1
)

u
<
1

(
0
1
%
H

x
)

 

(
A

 

r
w

£
3

0
L1
1

1.
1

I
}
3

(
0

f
r
]

(
7

‘
.

O
.
.

-
_

H

)
1

E
.

H

D

L
)

O
H
O

O
l
-
‘
O
O

0

[Z]

H
t
o

w

 

’
3
3

\
1

Since all we have done

   

1000 "10001

0100 0100

O O 1 O x O_§ l O

09___01 233

L83 L0001,

I I q

0 1000

O x '3 l O O x

0 s

0010

1.1 _0001‘   

end therefore,

q

0

O

O

1  d
is add multiples of one row to

, ‘ . mu ‘ ~ _ .

another, the determinant of [Z] muSt equal tne oetermin—

ant1yf fig and [PI muSt equal 1, and this is the case.

Next ooeration:

“HI

 

 

  

 

H q

—4 -o 0

$3 —4 ~4
_§ 3.

134 ~58

0 2:5 :23

8234

0 0 ~ :1
.LO‘tl‘



1&5 1/3

um

[Z]

Add 3/33 x 3nd column

I“

l
l

11:1:

[Z] =

x who 0

Illa!

 

x 1st column

F9

0

 -O

p

8

(
D
O

0

 

 

’
2
3

d (
1
.

to

"
0

(
0
1
0

f
.
)

C
)

to 3rd

0

93

S.

O

O

to 4 n

o

(
I
)

C
~
"
.
)
|
O
J
O

(
2
)

-i 1‘.’i.’1.§j1

-3 d

»
£
>

C
J
|
#
>

"

l: -58
a _

9'2? (3'2

k._a‘ .21“,

ha"

(:1: C‘4‘
 

 H U
!

.

4
x

H

column

O

—4

t
o
]

1:4 -58

23 23

8884
  

 

column ;ivin9.

?

o Cfl

O .4

134 -58

E¢34
O ;

1.14:]...ll 
c1lumn giving:

q

’
3

m
0
.
0

P
4

m
g
o
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‘
»
b

,

0
3

 

7
1
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4

{
D

-
0
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1
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D
J
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Add 89/87 x 3rd column to 4th column giving:

'9 0 0 (51

N 0 92 0 0

[z] = -: ‘
o 0 213.5% 0

33
9974

O .. -1.

-O O 1541,, 

’-

""1weferring again to Linear Transformations,

 

   

     

 

 

these ooerntions could have been oerformed by a

multiolier. The first jostmultiulier is, .l'é

O 1

O O

.0 O

4/? of the 1st column is added to 2nd column.

F1 .3. o 0‘ '1

N

Therefore, [Z] 3 [P] x [Z] x O 1 O O x 8

O O 1 O O

,o 0 o 1.1 L

'1 o o 0' ’1 0 0 01 ’1

3 s

x0 1 go x o 1 0 2-3- x 0

O O l O Q o 1 o O

‘uO O 0 1‘ L0 O O 1 J b0

1:

But [Z] = [P] x [z] x [91

-1 4 e 52207

é' 5'5 1541

0 1 .3; 690

Therefore [0] Z 33 12:1

0 O l g;

0 O O 1

L d  

O
H
O

O

Chaoter l,

O
O
H
O

O
O
H
O

 

 

ost~

0'} where

O

O

1.

.3. 01

O O X

l O

O 1

0 0"

O O

29
l...

67

0 IL 



 

 

 

 

 

   

 

 

 

  

 

 

  

 

 

 

-VC"

N

53 2: fig 1: fig :: P if 0 0 0 151

g 1 0 0

x 0

27 3 =

'— 23 1 0 o

1587 39: gg 0

1323 1541 27 1 .

L ...-

7 10 : 1‘9 0 0, 0‘1

4o ' .28

N N N _ -§ 0 9 O 0

D3] - [Z] X [I] " 2’39 : o o 1.51%. o

0:: ' “V

15870- 0 o 0 8334

1. 432.3; 1041,

Which gives, on multiolying:

N 10 N 40 N .20 N 1’ -70

11 = s , 13 =‘§2 , 13 = 154, 14 = §Zf70£

But N _ —l . N

[I] [Q x[I] and therefore [I] = [Q] x [I]

Therefore

r. - ’ i. E. 529 ' 10

1l l s 23 1:571”T ‘§ W

i 3 390 40
2 - -—— .——— .__

— O 1 23 1541 X 93

is 0 0 1 Q9 .29
1 07 134

L 4 L0 0 0 1 1 .;§1§ZQ
" - L £14,702.

1 3'19 Z 1s0 Z 510 Ze,ses,230

l s 823 3032 38,035,782

2 1.1111 Z 0.193: Z 0.2328 Z —.2205

11 = 1.7873 amos 12 = 0.8101 omos

is 3 0.850 emos i4 3 0.8485 amos
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If tne usual method of oomoutinr the inverse is
5:)

used to determine the currents, the result will be as

      

follows:

- P n - D t

111 211 ‘13 213 214 10

_ —1 y -

[I] - [Z x LII: 12 z “'5 221 222 02-3 224 x 0

Lnat 18, 13 231 232 213 234 O

.144 _ L241242 243 24% 1.0..

where Zij IS the coiactor of 213

Therefore 11 = Zll x 10, 12 = Z21 x 10

(Z! IZI

1 = z v -'

IZI

IZ’ : 9 X all-4: X (421 '3 X 231 7‘ O X Z41

12 0 -4 -4 —3 0

And Z Z O 7 -3 Z 512, Z ‘ -1 x O 7 -2 3 232

11 -4 -2 a 21 -4 -2 8

-4 —3 O -4 —Z 0

Z Z 12 O —4 3 272, Z = —1 x 13 O -4 Z 184

31 —4 -2 e 41 o 7 —2

.Therefore,IZ] 2 5x512 -4x255 ~5x37£ Z 0x154 = 2554

 

 

 

I ' Z 51,r _ 1 — 27? _ .r, 1
And 11 :g:{ - 1.7577 ares 15 - 7—59 - 0.550 amps

QLCQ QJU‘t

°7°° - 1540 —
: ~~~J : o . a ' _ 11, - 0.6425 amos

If an easy method for determining the currents is

what we are after, then diagonalizetion by the [El and



H
)

(
0

[0] matrices should not be used. This nest examnle illus—

trates the difficulty and the time consumed in determining

do 3in if(
D[P] and [Q] before the orohlem can even he Vorl:

the imnedances sre comolex, it is next to imoossible to

determine the oroser [é] end [Q . It is also sonarent

from the nest illustration that a different [P] and [Q]

is recuired for every [2] matrix.

The problem of dissonalizetion is not honeless,

however. It was found in the last chaoter that for a

third order [Z] matrix, with all elememt on the diagonal

equal to one value and all other elements equal to a

different va.lue, theh trix [T] coulc1be used to diagonalize

it; that is, [‘2]: ['2] x KI x [fl-'1. This tyoe of symmetry

is referred to, by Pioes,14 as E symmetry. He then states

that e. [Z] matrix of n order With ’3. symmetry may be

N

diegonalized by the use ofzm1 fig matrix; that is, 12] Z

a-(r-l)(9-l)
[S] '1 x [Z] x [S] where [S] '-‘- [Sm] Srs 2

with r ~21? 2,3 . . n, s 3 1, 2, 5 . . . n, and

a 3 6?? The use of the [S] matrix is an extension

of the method of symmetrical comeonents.

It might be Worth noticing, a this ooint, that to

btain [Z], in the last Chester, [Z] mus oremultiolied

 

l4 , .

L. A. Flees, "Irensient Analgsis 3f 83m.etr1al

Networks by the nethoc. of Qy’retriosl Someonents," AIJE

"U

Transactions, (1040), W. 3..



by [T] and nostmdltiplied by [T] '1 While Vines (above)

nremultielies by [s]‘1 end nostmultielies by [s] . If

the above definition of [S] is used and [S] is obtained,

 

11111111111 1 1. ... . .1 1

1 a"1 a“? . . . . . a‘(n‘l)

[e]: 1 . .. °

1 . . . .

l . . . . . . .

-1 .-(n‘l) . . . a-(n~l)(n—1L 
Therefore [8] = '1 1 1'1 and a: 6

  

(n33 l 3-1 a_2 3

9 _4 therefore a — l

l a-“ a
.. J

hultinlying each element of [S] by 5” gives:

  

And therefore [81-1 '5- [T]

"I

rundamentally, then, Pines has defined the same

onerator as is used in symmetrical comoonents in the

nrevious cheater. Vowever, in so doing he has extended

it to cover oroblems other than three nhsse and has

)
1

intro<uced the negative exponent. For a given oroblem.‘
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the negative exponents of a can a1Ways be made oositive

by multinlying esch element of [S] by 6 = l .

In the discussion of Pipes'article in the A. I. L. s.

Transactions,15 the point is brought out that this same B3

matrix will also diagonalize a [2] matrix that has "ring"

symmetry. "Ring" symmetry is not defined, but the two

examoles given 16 are shown in Figure 38.

The red lines on Figure 32 indicate a symmetry that

will allow diasonalization with the use of the [S] matrix.

  

 

  

 

 

(a) > (b)

Figure 32

Matrix (a) of Figure 32 gives the following diagonalized

form:

 

‘15Ibid., 5.1109.

151b1d., 55.1109—1110.



 

F20 O 0 0 0

0 2l 0 0 O

0 0 28 O 0

0 O 0 2:5 0

O 0 O O 24

_O O 0 O 0

matrix (b) of Figure 33

 

form:

20 o o 01

O 31 0 0

L0 O 0 23‘ 

 

O

21 :25

22 :24

35

th =ere Z0

21 ~23 3

28 3

he matrices of Figure 33(a)

indicated,

  

N
N

N

0
’
0

g
:

U
‘
b
a

N
.

\
I
O

‘
1
}

in red, in Figure

‘-onslize end. their results

 

3?.

are

 

n 1

20 . 0 0

0 21 0 O

0 0 23 0

0 0 0 2%

(C)

20 0 0

O 21 O

O 0 26

(d)

(7Z21P

— (z ‘212‘213Z214)

These

(2%3212%3213%Zl4)

’213 “314)

gives the following diagonalized

(Ztgziztzls)

(Z ‘ 313)

and (b) have the symmetry

matrices did

given in Figure 53(0) and

There

z=(zM%2b%z#zd)

-(za—jzb—zc#jz

-zbZzC-z d)

232(zaijb-z

20

21 d)

zz(za
Zn

,1.

~

C-jzd)

.he re

:\Z.-d7lzh%zc )

l-(Z:#agz0%dzc )

z2l—(zadraz#a22:)

:0
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The matrices of Figure 33 are of little use in most

circuit problems, because they lack the symmetry about

the diagonal characterized by most [2] matrices; that is

213 ¥ Zji for the matrices of Figure 35(a) and (b).

However, they have served a ouroose in in5163tihr a tvce of

synuetry necessary for diagonelizetion by [S] . Also of

importance is the aginrent fact tfist if zij zji in the

flflnmtrix, then the créer of [Z] must be even if die:ona—

lizetion is to be nossible, unless, of course, E syuhetry

is cresent.

The following examnle will now be ;iven to illustrate

the advanteie of dinbcnalizing when symmetry oermits it.

Referring to FiMIre 34, the problem is to find the

-tmesh curre (
D

e as functions of time when a stec voltage is

 

Figure 34
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sonlied at t 3 O; thnt is, v is a d. c. source and time

is measured fron the instant the SWitch is closed. It is

assumed that energy storage in each mesh is zero before

the switch is closed.

Solution:

The differential ecustions mcy be written as follevs:

- Y 1 '.' " ‘7 3 «.l'. °V -- (up7(P_,( EpLLl 7‘ M11312 7‘ mgplz 7‘ Llpld:

o mlnil #(Lp#R¢ %b)12 % mlpi3 % M2914

- ,. .. 1

O - M2911 % M1912 # (Lp%R% fip)13%mlpi4

0 = Mlpil # mgpig % M1013 71 (LP1‘R7L 314

u. _ —J = .L

here p - ut and p d“

If the lanlace transform is taken on each side of

the above equations, they may be written as:

e = zaIl % szg # ch, # sz4

C
)
-

O szl % zaI2 % sz3 #2014

o = zCIl % szB ; 2&1:5 $sz4

0 - sz1 # ZCIB % sz3 {2&14

(Ls ,1 Rtts)

z = M18, zC = M88 I = 4((1)

. V

there e = ‘g 2

Because all initial conditions are zero.

P- Iq P P p

, Therefore 0 3 2b 2a Zb 20 x 12

0 2° zb za Zb I3

-0. -zb zc zb za‘ .14.“      





~104-

And LE] = [Z] x [I]

But it is noticed that the above [Zlmstrix has the

same tyne of symmetry as Figure 32(b}, an; therefore,

the [S] matrix may be used.

 

 

  

I"1 1 1 1‘

1 q j?” 31,1
[S] '-'-' 1 a‘ if" a‘3 Where a Z 6 4 I: e 2 j

1 a—s a-4 a-s . 4

a a = l

l a 3 a o a-?.

-

'1 1 1 11

--1

[SJ : l -3 -1 J and S] I 3-;- [Conjué‘ete S]

l -l l —1 ‘ (ultays)

L1 3 —1 -3.

1'1 1 1 f

-1 .i

Therefore [S] 2 4 l j -l -j

l -1 1 -l

n1 -3 -1 jd  
[a] : [z] x [I] stl x [E = [$14 XE’JX [53 x [31'1 EU]

\~—«-\/"“"/ \——yr~——’
LT: N x H

PT E3 E3 II]

From F‘iggure .3?(b) [fl is found to be:

P s
N 20 O O 0

[Z]: 0 z c o O _

21 :27 — (za-zc)

; (
D

H (
D

N

I' 7 2 z

D

H (za%zC—Ezb)

  



And.

t
n

L
l

c
+

[I] =

And

But

And

 

N

[If] ‘-"- _l_ xfll l 1 11 x '61

4

l J -l -j 0

1 -l l --l 0

L]. -j -l j. L04

therefore

r1. ’2 o o 01

‘2 x 1 = 0 21 o o

l O 0 as 0
‘3

L1. .0 c o 21,

N _ e N _ e N _ 8

ll -4? ’ 12 ~ 421 ’ 13- 4:22

N 1

[I] :3 [5]“ x [I] and therefore [I]

1

F1 1 1 :f F'%

O

1 -j -l J E. .2”. _ 2

x ‘ 4
1 -1 1 —1 21

l,

L1 J -1 -j 7'3

.1.

L21.

' z: E l l 7‘ 2 _.
I1 4 ( 20*22 '31) 12 — 4

e 1 ,l _1_ _. a

I : - ( - 3:.

3 4 20 23 (.11

‘ o l. ,
ZO ‘ za%22b#zc P #Lo% CS %

.. n r 1

20 ‘ R % £(L % H l g ‘2) *‘6g

-105—

 

   

 

 

 

 

 

 

 

r
P
‘
I
C
D

  

  

 

‘
k

t
:

t
o (
'
1

 



 



 

21: za-zC: E114 LS%%§-1QS
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Then i]. = :11: sin

4 LE2“1]. (L‘Eufl{#—

2sin .zt

L-Lz

-fit

18 = i4 : V
  

5 sin 1: - 6:.“sin "

I (Metal 1.137% (beefing/3‘

.4:- 5‘“ ‘

and. 1:3 - l 5'. sin gt 7‘ sin

4 (LEAFMBYP’ (11-2.;firefly/52

-aqt

- (1131254331: J
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his thesis has cresented some of the funcsm.ntsls.
_
_
.

of matrix algebra and showed how they may be aoclied to

1 1

various tyces of circuit problems. It has not, oy any

means, covered .11 the oo.sible suolicntions of matrices.C‘
.‘

ystrices are a field of mathematics in themselves

‘ gsicersble Work has been donetrith then. It has

only been in the last few years, however, that an ottemnt

hes been mede to accly them to circuit nroblems. Because

of their compactness and utility to maintain the continuity

of tne orcblem their use in involved circuit problems is

unlimited. It is hozed thfit in the ruture metrices till

Q . s“ '1 "\ ‘ - A r 'L‘ " ‘ "I '. . "' 'fit ' V‘ ' “5‘. "J . .'*

experience ch]. CV31 :THGU“I‘ ‘2980-«0 1.; tflv 61,111.2r1‘15

problems of all the fields.
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