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INTRCDUCTICN

latrices are beconing more and more »onular as a tool
for the electrical ensineer. The most obvious reason for
this is their ability to maintain the continuity of a
comvlicated nroblem without the enzineer becoming lost in
a haze of comoutztions. By indicating esch steo with
matrix alzebra, the engineer may carry the oroblem through
to a eymbolic solution and then retrace his siens making
the necessary comonutations. This is true, for examd>le, in
cascading networks, in paralleling networks, and in the
avolication of symmetrical components to a vower system.

datrices may elso be used to advantage in finding
equivalent networxs on an iupedance basis, that is, by
maintaining the immedance invariant (unchanged). Another
worth-while use is in writing the mesh or nodal equstions
of a network when there are a great number of mutual
inductances.

If, in a given oroblem, one has a number of simultaneous
voltage equations, the currents may be obtained by the
usual nrocess of determinants. But a wmore straizhtforward
method would be with the use of matrices and the com»nutation
of the inverse of the imnedance matrix. If the orover

gsymmetry is present, an even more comdact method would
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involve the diagonalization of the imoedance matrix and the
usually tedious comdutation of the impedance determinant
would not be necessary.

The object of this thesis is to give examples and show
how matrix algebra may be a»onlied to various tynes of
circuit problems, and to convey to the rezder the continuity
and comnactness obtained by this method as onoosed to the
usual method of determinants and substitution and the loss
of objective that usually follows when one makes comoutations

a8 they »rogress in their n»nroblen.



CHAPTER I

FUNDAKZINTAL DEFINITICNS
and
THEQREMS OF MATRICES
Since the use of matrices by electrical engineers is

not wides»oread as yet, the logical nlace to begin this
thesis would be with some of the fundamental definitions
and theorems of matrices. This will also afford the
reader the opportunity of becominz familiar with the

notation used throuchout the thesis.

Definition of a Matrix

It will be essier to detine a matrix if an examole is

given. The mesh eguations for the circult in Fisure I may

e e
9 i jc i @




be written as:

e; T z31i1 # zy5ip # 213l where 23] S a £ c £4d
(1) eg = zp1i1 # z22ig # 25313 Zog b £ cff
ez = 2311 £ z3plp £ z33ls 233 =d £ f4g

215 ¥ 221 = =-¢, 213 = 231 = -d, 223 = Zz0 = -f

If a orover rule for multiolying matrices is defined
and followed, the equations (1) may be written as:
e Z11 212 %13 4

_ or simoly
(3) feg] = 221 23z zZzz| * |13

El = (2 x (1
€3 Zz1 232 23 iz

where (E] is the voltaze matrix; (2] , the imvedance

matrix; and [I] , the current matrix. A'matrix, therefore,

is simnly an array of numbers and is noc necessarily sguare.
Equality of iatrices

Two matrices are equal when they cannot be distinguished
from each other. Therefore, two wetrices are equal, [A] =(B],
when every element of [A] equals every element of [B] , that

is, a 3 = bij‘ (i indicates the row and j the coluamn of

i
the elements a and b)

The Zero and Unit Matrices

If every element of a matrix [A] is zero, (a1j = 0)

then [A] is defined as a zero matrix.



~5-

¢
A unit matrix [1] is a sgQuare matrix with all elements
on the princinle diagonal equal to one and all other

elements equal to zero.

Multiplication of latrices
n
If [A] = [B] X [F-'_] » then a44 = 2_bix ij’ wnere n
k=0

is the number of columns in Eﬂ and tne number of rows
in ﬁﬂ . From this definition, one can see that Eq =
[B] x [f] is realizable only if the number of columns
in [B] is equal to the number of rows in [F] . It is

also zonarent that(ﬁ%L)x(J?L)=(£% ;

that is, [A] hes
the same number of rovis as &ﬂ and the same number of
columns as Bﬂ .

If this definition is aonlied to the indicated

multinlication in ecuation (2), then [E] = [Z] X E[] and

3
ey =,leik1k .

K—
3 - - - .

e, ~ kzZI 21kl T 2111 £ 21213 # Zy3igz
3

ez = Z Zaxlk T Z;ily £ Zapla  Z2slg
3

It will be noticed that this multiolication gives the

desired result, that is, ecuations (1).
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A definition of scalar multinlication is zlso
necessary. k [ = [E] if keyq = byj. This is
different than k |[A] =B} where [A| and |B| are
determinants. In this case only one of the Trow or

columns of |4l is multiclied by k.
The Inverse Matrix

Using equation (2) as an examdle, suprose that the
voltages and impedances are xnovn and that the currents

are desired. Then by the usual method of determinants:

Z p/ p/
i, T —he 4 Rleyys Bl
1 1 2 3
1zl Izl M}
Z Z Z
(3) i = —]'—z-el# .._2_2.3274 —sges
1z 12l 12l
/ Z Z
i = 13 e, 4 33 e. 4 33 ¢
3 1 TR TR
(2 121 1z
where le, 251> Zzl...are the cofactors of 211> 221> 2zpe-e

in the determinant of [Z} ; that is, Zij is the minor
of 24 4 multiolied by (-1)1"3. Zguations (3) may be
written as:
(4) 0 = § =< [E]
Equations (2) and (4) define the inverse. [Eﬂ=[Z] x [1]
end ff] = ff] x (£ and therefore, [E] = (4 x [§ x (€]
but since (§ = [E], [@ x (Y] must equel [ . If the

indicated multiplication is carried out, the zbove statement
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is verified. [Y) is defined as the inverse of [Z] ;
that is, (Y] = [Z]-l or (7] = 1. Therefore, a
matrix times its inverse is a unit matrix. (2] x [~ =
211 x @] = (J. Also, if the determinant of [7] is|z|
then the determinant of ﬁﬂ'd'is T%T .

It 18 annarent from the adbove definition of the inverse
that [Z]-l could not exist if JZ|] = O.
i A matrix whose determinant is zero is called a singular
matrix. A square matrix may or may not be singular,
whereas all rectangular matrices are singular. Only non-
singular matrices have an inverse ané for each matrix
there is only one inverse.

The transoose of [Z] is defined as [Z), and is
obtained by interchanging the rows and columns of (Z] .
Therefore, [2)~! may be determined by first finding Eﬂt
and then reovlacing its elements by thelr cofactors over

Zy s
IZ] 53 that is, substitute 2 for z;; in the transoosed

2] o
matrix.

Laws of liatrix Algebra

Because of the definitions of multionlication, it 1is,
in general, not commutative; that is, [A] x [B] # [B] x [a).
Exceptions are [A] x (A -1 =@ ! x [, and g x [J =
[=@E.



-8~

In other manivoulations, however, matrix slzebra is

similar to ordinary algebra.

(s) [ #[8 =([8 + [4

(8) x4 #x[g k(W 4 [H)

(7) [ + qaf4] (x £q) x [4

() M x4 xM@ =108 x ([ 4 E)
() W x40 xPl = ([ 400 ) x [¥]

1f (a1 = (B] # [F] tren it is necessary that
844 = bij ¥ fij' caution wust be used, however, in
cancellation of factors. If [A] x [F] = [B] x {F] then
nostmultiolying both sides by [F1™F zives (4] x [] x [} ~* =
[B] x (A x [F1-1, and [&) = [B] . The above stinulation,
however, is that [F]™> exists; thot is, [ is a non-
singular matrix. [f] may not be czncelled for the case
vhere [4] x [F] = [F] x [B] vecause in general [A x [F] #
[F] x [A) . Also it may not be cancelled for the case
vhere [A] X [F] = [B] X [F] if [F] is a singular matrix,
because ﬁﬂ'i is non-existent and the above reasoning
could not be followed.

Two accitional matrix relatvions =re:

(10) ([ x (B x [F]), = [Elyx By x [,

) (W xME@ @) ) t=M@1x@E1x?



Linear Transformstions

Cccasionally it is desirable to interchanze the rows
or columns of matrices or 2dd a row (column) to snotrer
row (column). Eometimes it is necessary to multioly 2
row (column) by a factor or to addé to a given row (column)
a certain other row (column) that has been multinlied by
a factor. If the above onerations are 10 be »erformed
on, say the [Z] matrix, where [Z] ie ~art of the equation
£ = [2) x [1) , then it is necessary to perfora these
onerations with a matrix so that the equality of the
matrix equation wili not bve nullified. For instance,
if [A] interchanves the first and second rows of [Z]
and [E] = [Z) x [I] then the resultaent equation is obtained
by oremulticlying both sides by [4] , giving:

B x(E =[{ x [2] = 1

Tach of the ebove-mentioned linear transfora matrices
are forred from the [I] matrix and are, therefore, sguare.
The foliowing linear transfora matrices are illustrated
for n equal to four, but the same technique mey be zvolied
for n egqual to> any finite number. They are obtained es
follows:

To interchange two rows premultinly by [A] where [A]

is a unit metrix with the corres»nondin: two rows interchancged.
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To interchange two coluwns nostmultisly by [&) where [4]

is obtained ty interchansins the two corres-ondins colunns.

Txamnle:

[ = x[B] interchanzes lst zad 3rd
(x] TOW O x 4 interchanges
lst and 3rd columns of [H .

OoOrHOO
OOKrO
COOH
HOOO

To add one row to another row, perfora the desired

oneration on [l] ancé nrerultinly. To acdcd one coluumn
to znother, oerforu the desired oeration on [l] end

vostmultioly.

Zxample:

i -

or OO
HOOK

; adcs 4th row of [E] to 1lst.
adds 1st column of [B] to

COOH -
OOrO

4th

To rultioly a row bty a factor, multinly the 2iven

row of tq by that factor and oremulti-ly. To multivly
a column by a factor, multi»nly the given coluwn of cg

by that factor sné postmultinly.

Examole:T
1 0 O

[A] = f0O 1 O ] X [B iwultioslies 3rd row of CB] ty k.
0 0 k b4 [A multivlies 3rd column of
0O 0 O by k.

If it is desirable to multiply a given row by a factor
and add that row to another, perform the desired oneration
on [1] and premultiply. If it is desirable to multiply a

column and add it to another column, perform the operzation

on [1] and postmultioly.
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Example:

(4 =

0)
k g x adds k times 4th row to 2nd row,
) X adds k times 2nd column to 4tp

loYoNo)
OO+ O
(o} _JoXo

1 column.

The above technique will be used in the chanter on
diagonalization. No unique notation was adonted for the
above matrices since they will be redetermined for

particular cases in Chaonter V.
Cayley-Hamilton Theorem

I1f [M] is defined as the characteristic matrix of the
matrix [A] , then [i] = (4] —/u[l]. e 1s a ecaler
varameter and [M] , [4] , and [1] are square and of the
same order n. The determinant of [@] » (J¥f), is defined
as the characteristic function of the matrix [A] aund the
equation |¥] = O is defined as the characteristic equation
of [A] . The statement of the Cayley-Familton Theorem
is that any matrix [A] satisfies its own characteristic

equation.

Examnle: (g = [1 2]

3 4

[ = (1 -pl - [% ‘-:] - [é ﬂ = [(15/“) (43/‘)]

Characteristic Function: (1:/u)(4;A4) -8
Characteristic Fguation: (11/u)(4;/&) -8=0

That is:‘/U? -§,4 -2 =0
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And by the Cayley-Hemilton Theorem:
(2 -5 -2[] = o0
¥here ()% =[4 x [4) and [{ 1s of the same oxder as [4] .
Therefore [% i] x [:]7; i] -5 [:]3. 2] -2 [é ICL)] = 0
Carrying out the above oreration indicates ite
correctness. The apcrlications that follow from this

theorem are very useful. Since [A]g -5[4 -2 [1] = 0

for [4] = [% j [A]z = & [A] £ 2 [1] and multiplying

through by [A] gives,

[9° = sW%/200 =50 s+ 2[0) #2(d =
27 (4 # 10 [

27 [A° # 1000 =27(s5(a) # 2[1]) £ 10 [4])=
145 [4) # s4 [1]

)

Thue, without carrying out the metrix multinlication,

Oh

[A]4, [A]s ........ mey be determined in terms of [A] n-1’
(4 n-2’ ....... [1] where n is the order of the square
matrix (a) .

This theorem also indicates a metrod for the
determination of the inverse. The following exsmple Wwill

illustrate [his method:

8 2
Let ﬁﬂ = 8
4

[k AN KO
O

Therefore [i] g g i é g 8 (63“) (88 1
h g = - = =
sretore 1 4 6 /o 0 1 1 4»(57«)
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Jil = (5 M2 (8 om0 £8 48 = f(84 #4550 #15(s ]
and || = A% £ 2083 - 111m £ 176 = 0 (Characteristic Fquation)
Therefore [H]° -20 [8]° # 111 [ - 176 [} = O
Which zives 176 [ = [J° - 20 (A2 4 111(H]
Multiolying through by [B] -1 ana dividing by 176 gives:
[ - = 1178 [§2 - 20/178 [+ 111/173 ()
1 41 32 20 120 40 20 111 0 0
and [g~* = 1/176f|32 84 s8] - | 40 182 80| £ | 01110
20 58 53 20 8G 120 0 0111
-1 32 -8 0
(5] = 1/176 |-8 35 =22
0 -22 44
By the method described in section 5,

IBl =6 x8x64f2x4x1-1x8x1-2x23x8-=-4x4

x 6 =176
- Y .
g 4] |24 2 8 33 -8 0

.1 s8] |16 14

and [B)™" = 1/17 = 1/176 |-8 35 -22
21 s _|s2

a6| |16 14 -22 44

-
21| |61 6 2
8 4] 24 2 8

It is difficult to say which method is the best.
Both methods require an evaluation of a determinant of
the same order as |B| . However, if the order of [B|
is five or higher, the determination of the cofactors,
necessitated by the second method illustrated, becomes
a difficult task. Thile, for the Cayley-Hamilton method,

there is only the fifth orcder determinent to determine
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and the rest of the'ooeration is matrix multiplication,
addition, and subtraction. It would seem, therefore,
that for matrices of fourth order or less, the method of
section 5 is best and for matrices of fifth or higher,
the Cayley-Hamilton method is best. If a comnuting
mechine canable of handling matrices is available, then

the Cayley-Hamilton method is definitely the one to use.



CHAPTER II
FOUR TEZRLINAL NETWORKS

Usually, what takes place @t the inojut and outnut
terminals is of interest rather than what haospens inside
the network itself., 1In analyzing or synthesizing a
network it may be found desirable to interconnect several
four terminal boxes in various ways. The fact that
matrices can be used to exvress any two of the four
variables in terms of the other two (e1, ey, iy, 12) makes
them varticularly effective in handling oroblems of this
kind. There are six different ways by which matrices may

be used to express relations between the various voltages

and currents.

: 2

i [ S

fe e}

Figure 2

Referring to Figure 2, they arelz

(11) |4, - [ vig] , |5 (12) [eq - [71 212] | i
iz y21 Va3 €z egl 221 Z22| |i:

1p, A, Guillemin, Communication Networks, II, oo. 144,




r g
(13) if _ 811 &1z
°2] |81 a2
(15) fe;] [a B
= x
1, C D
» -

x i
e
€5 (18)
-12

.
hj; b33
Lh21 haz

The interrelations between the various elements of the six

square matrices have been derived and tabulated.2

If

one

were doing many oroblems of this tyce it would be desirable

to use such a table.

Throughout this thesis, however, all

interrelations will be derived as vert of the problem.

Cascading Networks

There several networks are to be cascaded, the tyne of

reoresentation to use would be that .iven by ecuation (15).

For example, if in Fizure 3, all of the networks are identical,

ﬁﬁp z;. j’lﬂ
18," A/" ezn f e’hﬂ

Fizure 3

N,

+/

A
2n

Gl

then the innut current and voltage can te expressed in

termg of the output current and voltaze by this simnle

relation:

Ibid., no.

133-133,
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n
eq] _ [A B] . e
11 C D €1n
The matrix [A B]n may be evaluated as en apolication
Cc D

of the Cayley-Hamilton theorem. Referring to Chapter I,

the procedure is as follows:

Let [q = [g g] men [ = [ -l

R h 2 I e

Therefore || = o - (A 4 Dju # AD-BC, but AD-BC = 1
(Shown later on in this section). And |MI= O is the
characteristic equation, therefore,‘/ug - (A 4 D;ﬁtf 1 =0.
And by the statements of the Cayley-Hamilton theoren,
(G—lg-kx[cﬂ # [1] = 0 where k = A # D,
Therefore [(ﬂz k x {G] - [1]

@3 ex [(2 -0 = 21 @« (i
[@* = 3-1) [« B = Pz) x [@ -(:2-1) x i
ang 1f [@* 1 =0 jg -a [

G° = (g x [ - 5

Using the above relations for the coefficients of ﬁﬂ

and (1], {&J® can be obtained faster than the actual
matrix multiplication will allow, especially if n is
large and A, B, C, D are complex.

The following example will be worked out to

illustrate the use of cascading networks. From the
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network given, Figure 4, find the characteristic imoedance
looking in a2t terminals 1-2; that is, find Ry so that the
impedance looking in at 1-2 will be Rx when 3-4 is ternmi-
nated in Rx' Also, 1f 3-4 is the output, terminated in Ry,

and 1-2 is the inout, what will the attenuation be for the

network?
/e . " o 3
2 4
Figure 4
Solution: The network is first broken uo as shown in Figure O3,
[
LA BN, A, . A A
N ¥ ’/
e i p3'a af é ¢ et *’"x
2 (a) (b) (c) 4
Figure 5
Using Figure 5(a) as an examnle:
ez - 811 4 (4 £ 8) 12 = z9114 y 22212
where z,, =18 zj5 =257 =8 253 =13
Then e z e z
2 - 2 22
o= = - =2 in , e = z3(—= - — 12) # z101,
221 221 Z21  Zz1
And el = zll (zllz.,., L 212)
— ez - 12
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Cr
211 2
€y = =22 ¢ - i = Aen = Bi
(18)
i 1 222 § = ¢ D
17255 3 713 8 2
: } (a) . (b) (c)
And ef A B A B A B eq
Therefore = X b ¢ X
il C D LC D cC D -1
.

el [eo/4 197 [2/2 ¢ 5/3 124/8 eq
X X X
1,17 |1/8 3/3) |1/8 5/3) |1/8 8/3) |-ig

Carrying out the indicated multivplication gives:

eq] _ 19.9 279 e

il 1.33 18.7 --i6
And e] = A eg - B ig ¥here A = 19,9 B =279
il =C eg = D ig c =1.33 D =18.7

It is easily seen from equations (18), which avoly
to any»four terminal network that has symmetry about the
principle diagonal, ((Z] = [ZJt)’ thet AD - BC = 1. In
our case AD - BC = 372,13 - 371.07 = 1.

If the network is terminated in R, then es £ -R,ig
and e; = A(-Rylg) -Big = -ig(ARy £ B)

1, = C(-Ryig) -Dig = -14(CR; # D)

And if Rx is to be the characteristic imvedance,
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e AR_ £ B
1 - R = X

2
,therefore, CRy # DRy -ARx -B = 0
i, x CR, # D

And R,a # R (D-A) B = O
C

C
R2.nR (0.9) =210 =0
X X ¢

Giving R_= 0.9 £ V817840 = 0.9 £29 = 14.9 ohms
2

]
Also e - Ae6 - B16 \
1] = Cey - Dig —
Ry
Therefore e; = Aeg £ % eg = €5 ( ARxﬁf B )
‘X X
e 14,9 = 14.9 -
e _ R - . =55 = wmreyess - 0.0258
e = Iﬁ;‘?‘ﬁ = 14.9x19.924279 2CSFRTS
N = 1n( €3) - 1n 0,0258 = =1n _ 1
= 0.0258

€1

N = -1n 38.8 = -3.65 nevers

But since e and eg are across the same resistanée,Rx,
N may be converted to decibels. The gain, therefore,
equals -8.688 x 2,85 = =21.6 db.; that is, there is an
attenuation of 31.6 db. for the network including R.

It mizht be suy:zested that one set uo the networkx
and measure Z oven circuit and Z short circuit and
obtain Ry by R, = Vqﬂ;rfzz'. However, this could not be

done in our case, because R, = V ZOc Zsc only when the
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network is symmetrical about a vertical line throuzh
i1ts midpoint.

In this examnle all network comdonents vwere resistances,
however, the same technigue is equally avvliceble when the
components are complex imoedances. In a later examnle it
will be shown that matrices may be used when the Law»nlacian
transform is involved,

There are, undoubtedly, many ways of working the above
problem, but it is doubtful if there is any method more

concise and straizhtforward than that just shown.

Paralleling Networks

In pvaralleling two or more networks, Fipure 6,

Figure é
equations of the ty»e given by (11) would be used.

[1]1 ;’:f]]_ X {E]]_ and [ﬂz = [ﬂz X [E:'z » but

[I]T [I]l # [I]z and [E]l = @]2 Adding the two
equations we have [I]T = [I]l ¢ [I]z = [Y]l X [E] yi [ﬂz x[‘*ﬁj

and by equation (9), therefore:

1
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(19) G, = (f, #M;)= [

In handling voroblems of this tyve with meztrix algebra
a great deal of caution must be used. After the connections
have been made on the left, they may be made on the ri.ht
providing that there is no potential difference between
terminals 3 and 3' and between 4 and 4'. If votential
differences exist, there will be circulatinz currents
within the networks., The result will be that the current
in 2t terminal 1 will not ecual the current out at 2 and
similarly for the other terminals of the networks. If
other means cannot be used,3 ideal transformers may be
placed at one end of the network forcing the currents to
be equal. If n networks are to be paralleled, the most
hopeless case would require n-l1 transformers., A more

complete discussion of this is given in Communicaticn

Networks.4

The paralleling of two or more networks mizht be
necessary in a oroblem in synthesis. For instance, several
four terminal networks are. available and a specific overall
effect is desired; that is, E[] = [Y] X [E] . [E contains

the driving voltage ey and the desired output voltage es.

Agibid;, p. 148

4Loc. cit.
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ﬁﬂ is the admittance matrix that will give this desired
result with the ensuing currents Eﬂ « Then by the method
of combination shown in Figure 6 and equation (19), the
various ﬁﬂ Matrices may be added until the desired result
1s obtained; that 1s, [f] = [d, # [, ... vhtcn, of
course, means that V14 = ¥i4p 4 Vijpeeer Tith a finite
number of networks available, one would be very lucky to
obtain a combination that would be exactly correct, but
aporoxim=tions could be obtained. And for the problem as
stated, the use of matrices would lead to a solution
directly.

Matrices may be applied very nicely to the analysis

of varalleling problems. Thi.circuit of Figure 7(a) is

LOTIN
(&) T#% § T (R
(a)
» R »
A~ AN e A
R R R
4 R
M =AAMAA-
(o) (c)
Figure 7

a one section low vas filter terminated in its character-

istic imvedance, R, and connected to an all freguency
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generator, eg. The oroblem is, if the networks Figure 7(b)
and (c) are paralleled to the filter itself, what will be
the overall effect on the frequency characteristic at the
load; that is, find & { JF where & =400)and/6 =I3(‘0) .

The networks in Figure 7 are redrawn and paralleled in

Figure 8, 2’ y !
gu i v %

Figure 8

Part (b) of Figure 8 requires some ex»lenation. The
resistances in the lower branches were removed and nlaced
in their resnmective uvver brarnches. This is allowable
since the external effects are unchanzed. Then the T= 77
transformation was anvnlied giving the network shown. The

TT form is desirable over the T because it lends itself
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to the node method readily. It is vpossible to parallel
these networks without icdeal traznsformers since the lower
conducter of all three networks contains no admittance;
and therefore, the potential differences »reviously

mentioned are zero. This was another reason for changing

the network of Figure 7{(b).
l__(ﬁ #_l_.)e -1 e
Figure g(a) . D= jW
i = - 1 e £ (1 £ nc
3 =L 1 (=T Z Jeg
i o=, 1 41 - 1 e
1 ( =3 gR )€1 T 57 2
Figure 8(b) "
1, = = _1 e 4 (1l # 1
3 er 1 T GmT ogg e
"
ST SR DI X
Figure 8(c) ,
1
i, = -1. 4 (1 41
2 re1’ (g R ez

D'=1@'=60 . 6=-0":8.0"=<0=8"
wme (=0 AR +R" -0 +0 40 =B

Therefore
i (oc £1_ £ 1SR -
1 2 7 22 149
(20) ; = | ( oL 6R g (UL 8R ) x !
2 - (1L # ¢ oct 1_ 419 e
& =) O] |
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With the termination in R, eg = - R 15, and 12 = -

e
2 - 1
Therefore - H‘ - ylzel 7‘ y82e2 and y12e1 - —eg( §-

e 1 1 1 710
Which gives —* = - (§#v2) _  (Ffove ity #40)
2

L &)
(5L (c-_1 < +J
And £ = —?”w A

- 1
S S R

Therefore am 2 Mo

€“*Jﬂ = (%%) "dgc.w]i-l )2 E"’(m ¥)
Q 3
()" # @p)?

<

1
tan™l @ c-WY,)8R
27

Y= tan"’l -8R

(27)3 4 Wil L)® o
o = 1nl] ‘&R - ‘;L Andlﬁ‘-‘ll‘?’:.
9 1

“here o is the attenuation in neoers:nni/ﬂ is the
vhase shift, both being functions of frequency.

From the technique used, it is necessary that the
networks (a), (b), and (c) be connected as shown in
Figure 8 to give the same results as this analysis. This
means that Figure 8(b) must be connected as shown, or as
an equivalent T with no imovedances in the lower branches.

It is the 2bility of matrices %5 maintain the continuity

of the problem that lends itself so nicely to this solution.
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Series Networks

When two or more networks are to te nlaced in series,

Figure 9, ecuations of the tyne given by (12) would be used.

/ 3
2 N, .
/' k4
2]l M, L«
¢’ 3"
2" R A/3 40

Figure ©

El= B, = ., Elz= Bz Ho 20d Bz =ls = [,
but ] = [{1= ;= E; ana E]= B/ B2 # @5
provided that the orecautions referred to in the onrevious
section are taken; that is, the current in at terminal 1

is equal to the current out at terminal 2 etc. Under these
conditions [E] = ( [ZJI y [2]2 # FJS ) x m .

ilfatrices apoly themselvee to oroblems involving series
connections just as nicely as they do to »nroblems involving
cascade and narallel connections,

A good illustration would be an extension of the
problem of the vrevious section. Referring to Figure 7(a)
sunnose the filter network was matched to the generator
originally; that is, between the filter section and the

generator there is a resistance R equal to VI7C . Ve
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have already determined the effect of paralleling the
networks Figure 7(b) and (c) to the filter section itself
and then connecting them to eg; we would now like to know
what the overall attenuation would be if the resistance R
was placed btetween the combination network and the generator.
Naturally, the whole »nroblem cculd be redone, but using

the series connection technioue we can utilize most of the
vrevious work. The »nrocedure can best be illustrated by

referring to Figure 15, The eteo from Fizure 1C(a) to (b)

R / —_3
N N\,
@ g ) 1)8/\{1 4 R (a)
1
A /| pmm— ey 3
—— : :
@ 2: 3‘36 ' . R (v)
o
| II --—_--1 ‘.3'
e I R M e ]
P |~z '
1 " / ' { [e’t
2 :- R ‘
PR —— | 4
@ I:’ [-=====-2 % gt
R IrF
167” | 3a 3C3b : p e,t
g1 3. —ls
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is nossible because gll four terxinal, bilateral, 7]
networks have zn ecuivalent T. Figure 10(c) is elec-
trically the eame as Fizure 10(b) and if terwinels 3 &nd

4' were disconrected there would be no votential difference
between them; therefore, (a), (b), and (c) are equivalent

networiks and the matrix method may be used.

Solution:
e,' = Rip' # 0i,! eq' R o} [|i,!
Figure 10(c) 1 2 znd | 1 ]= x| !
(tov) eg! = 0i' 4 015! ey 0 0 ia'

Equations (20) may be used for Figure 10(c) (bottom)

ilﬂz P(DC # %L # %%) -( %i- # %ﬁ) i eln
) -0 R D erl s I LA
e "] M(pe £ L 4 138 (i /£ 2_)-’ 1M
= oL €3 oL 8R'| 4 1
'] |-k A =) (oc £ )] I
and, therefore, our equations fo:/jhgftwo ;;ﬁnetWorks are:
N _ 'R O . 1,9. |
Lezz 0 o] 12'
And
e ﬂ lel Z125 i m
o2 B ESE 1"




1
And  z__ = 257 = 1l.125 R -j &0
13 “ 5.375 = WLC # Ja2.5@R(L.SC - _1)
N
Adding the two above equations gives:
. el' # el" _ (zll 7’- R) le . 11
ez' + ez’ 221 222 12
But eq' £ ey" = e and eps' = 0, also, e3" = e
Therefore eg (zll 4 P)il # Zyots
ey = 2211y £ z3iz
Since €3 = -Ri, or ip = - ;g
And ep = 23111 - zgges and i; T eg(R # Z22)
| R Zz1
e, = (24, # R)(fiz # R) 215 e
s - (23 #R(z) #R) 215
€, z2p1 R _—
2 R
2 .
€, _  211%23 # Rzy, # Rzop £ R® -2122
- z~.R
ey 21
2 2
e, leR
And
n e -

- o]

jv






=

: 4 ,
118 2° £ W13 - 50.55 w? - 128

here X =
wic®
y" DeDT XN -GS.VJG-II.SwRLC
w= 11.2 R® - 1.135W%2L - 2.5 3°
5T
v = 3.34W3L - 9.18‘:‘}5
B = +jf
ut fg - ET
€
Therefore

. 5 - 3 2 . -
c(fJF = 1n (i—é_:j% ) —%1n(_.._Lx'_ ¢ ) £ i(tan Ly _ tan-1 v)
u® £ ve x u
< = 2 £ y? -1 -1
And =3 1n (T{—lg) s and/e = tan " y - tan" " ¥
u© £ v X u
Althou:h the solution to this problem is not a simple
one, it wouldn't be less comolicated if it were worked by
some other means. It is doubtful if there is a more direct
route to the solution than that afforded ty the use of

matricee as illustrated above.
Series Parallel and Parallel Series Networks

Sometimes it is desireble to connect the networks in
parallel on the left and in series on the right or vice
versa. OCr, if a network is ziven, it is sometimes desirable
to micture it in this way to facilitate the solution.
Tguations {(14) would be used for a series-narallel connection

end equations (13) would be used for a parallel-series
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connection. Referring to Fizure 11(a), the equations for
i =

4 Py
&, 22 s -2

{e | N, Ny | e

g AGE I
22 %
|, N, [t
(a) (o)
Figure 11

Nl are: e = hyq! hya! . i;
ig‘ h?ll h22I eg
" " i
And for N?: ¢! = 1 hlz X 1
= 12“ hBl" h22" ez

Adding the two sets of equations gives:

s B A TIE AR TR L TR

12| * iz" (hzll ’( h?,]_") (hZZ' 7; h:2") eZ
And the resulting equetions for Figure 11(b) would be:
11| ’l il“ i (511I ¥ 511“) (;12' ,( '-’13") el

= x
ey' £ eg" (g21' # e21") (sa0" # e23") iy
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"hen annlyinz matrices to these tynes of networks,
the same pnrecautions aust be heeded as for the narallel
and series connections of the last two sections. After
the connections have been made on one sice of the networks,
there must e no motential differences between the terminals
to be connected on the other side. If there is, then an
ideal transformer must be used or other stens taken, as was
dbne in the examnle used to illustrate the oarallel connec-—
tion. This cannot be over emohasized. The use of wmatrices
will give erroneous results if the current into a network,
on a given side, is not equal to the current out on that
same side.

The following example will be used to illustrate how
matrices may be aoplied to the series-varallel connection.
r l'a

e{ F'I'TT et

Figure 12

{2,

In Figure 12 is a diagram of a single stage triode amvlifier,
with nezative feedback counled to its loacd, ZL, throuch a
transformer. The oroblem is to find the _ain of the.overall

network.
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Before starting the vrobler, however, somettins should
be said about the anrlication of matrices to tube circuits
in general. As a rTule it is »oseitle t92 obtzin a @] or a
[f] for e ziven tube circuit. Once this is done the otrer
forms (naze 10) mey be obtzined, sné the owerations of ‘
cascading, ovarallelin:, etc. mey te carried out nroviding
the vreviouely outlinad rules are not broken.5 However,
if the analysis is to be on the basis of an equivzlent
circuit, the use of matrices is not a short-cut. To find
the ﬁﬂ and ﬁj is somewnat of zn ordeul comnzred to the
techniques for solution found in arny text on tube circuits.
If the solution is to take into consideration the interelec-
trode capacituances, and is to cover the eatire frequency
range, say for a square wave input, then the authors
Garédner and Barnes outline a nice technique7 using the
laplace transform. The following solution will illustrate
why the use of matrices is not alvways the best nrocedure
for a unilatersl network.

The eguivalent circuit of Figure 12 is given in Figure
13, Matrices may ve used since the transformer insures that

the current into either network will equal the current out

5
Ibid., o. 148.

68. Seely, flectron-tube Circuits, o»,85-E3.

ients in Linear

m

7M. F. Gerdrer and J. L. Barnes, Trzn
Systems, »>. 180-183.
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on a given side. For the bottom box of Fizure 13(b), the
eguations are: e;" = Reip" 4 0iy"

eg" = Rfiz" # Oil"

And el" = 01" £ ey
ig" = 013" A(1/R;)e,"
e, " 0 1 i
Therefore 1 = 1 x 1
" * n
L1 1° w5 °2
l.a
S e e
Yr

f 2
K¢

—
n
(E%.

(a)

(o)

Figure 13






-38=

But the equatione for the top box ares not so easily

obtained. They may be found as follows:

ansel' - isrp) = ey' - 215!

And et = oe' _ozpiy! # igT
a a P

Since, in tube circuit analysis of this kind it is usuz2lly

assumed that the transformer is ideal, 1 = =2io’.
Therefore‘/;cel' = Ea'_ Z, 15" - r_aiy!
a s 0
= ' 2
or e, ey' (ZL # r e ) 1,
/Mma Ma
But eg! = ez" = e
And i, = iy £ 12" =0
Therefore 150 = -1 and Rfiz" = ez" = eg!
And therefore e2' = —Rflz' and i5' = -ep!
Re
This gives e;' = e3’ 2. 41 a° ,
D e
/Aﬂa ’ ( - a ) —_—
P an R,
3
h I '
Therefore e e, ( Re + 2, # r a )
3
Or eyt = ouyt 4 Bt B L Taat )
ma Re 2
1" = 0iy' - - ey
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The two metrices to be used, therefore, =re:

Pelﬂ _ "o L3 £ Zp # rnag 1,

Li?»' ) ’“d"“’ i X

< 0 -1/R¢ 2
fe1) _ o 1 1"
And " - X "
Lila 'o 1/R, e,

Since el' £ el" e, end is' £ 1" = 0, adiing the two

matrices gives:

. 0 Re £ Z, 4 r)a
- 1
- an
0 Mang
0 0
Therefore e T e, aRe £ Ry £ 2y 4 Th a® 2y,
= z.
Rf /«a. L
e
But 2 = -1,
Eg
2
R, =R Z
And therefore e = -1pz, ( ot ot £ I £ T a7
/“a'ZL
i.v Z
- 2 L . z
And gain S = /A(& L _
/«aRf,lRf,lzL#rDa
Or gain -
2L
M8 2 - e
a R E 2
f 1 '
A -§ £ 3 f —% # Ty To # 5aa # l)Po ¢ ZL
a~® a a® :
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The usual technioue would be as follows:®
2.
’ 70 L
YA L= %%
te R.' = Re
S

There ZL‘ and Rf' are ZL and Rf reflected back across

the ideal transformer.
=t ' 1
M ey ( rp 3 ZL £ Rf )i
ep < (rp # ZLI # Rfl) i =
&
Therefore e = (r £ 2! # Re' £ aR.')i

SR d D
//4

- '
e iaRr

e = 1y 421" 4R £ aRe') 17! a
=T a
Va 2,
And 120 '
Therefore L% - /“HZL
e

IO (/qa # L)Re' £ 2"

An even simpler technique is as follows:

where K = nominal gain

/5 = feedback ratio

and 1 = 21
el ID + Rfl # ZL'
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Therefore X 2/,¢aZL' and /3 = «Rf - = R,!
o F R L %L 2L

And o ]
Therefore *T =</f‘aZL i
T, 74(/4 é#l)Rf'# Zy,"

The vurnose of this illustr-tisn is not to discredit
the use of mztrices for the ceries-narallel connection,
but to ovoint outr the difficulry of usin: metrices vhen a
unilateral circuit is involved, and still have 2n exzamnle
illustrzting the technioue of visualizing a network as
being comnosed of two networks connected in series on one

end and in parallel on the other.

An ideal trunsforuer has been referred to throu_hout
this chaoter. 1In analyzing the feedback amplifier, an
ideal transformer ﬁas assumed end in forcinzy the current
into a ¢iven network to be equal to the currsrnt out on a
siven end, it was suzzested that an ideal trensforazer
might be used. An idecl transformer is one th:zt has
reither leakage nor losses and has infinite induetances
on the orimsry and secondary sides. It is therefore imooss-
ible to attain. The losses can usually be keot within

reason, but in air core transformers or when the ratio of
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an iron core traneformer is hizh, it is difficult to keep
the flux lezkage 1low.

In networx znalysis or synthesis involving transformers,
the worx is considerably simoler if zn ideal trznsformer can
be assumed. In this section, therefore, we will determine,
with the uce of matrices, the conditions when an ideal
transforner may bve assumed and will derive an eguivalent
circuit for the case vwhen an idecl transformer may not be
assumed. Fivure 14(a) is a tynical transformer circuit and
its equivalent is Fizure 14(b). This second circuit will
be anzlyzed to determine when the assumntion of an idezl

traneformer is »ractical.

(v)

Fizure 14
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e = (P1 # jwly )iy # jwki,
0 = jwiiy £ (Ry # jwlapli,

o B . . 9

e]: (»y £ JCJLll) jOX i iq

0 | Jwk (Ry £ jwmgg)J i%

. o “ -'1 -

i (Ry £ ijll) jU i} e

'12 jwi (qg 4 ijgg)J 0
Therefore i = e(Rg £ jwla2)

(R] # Jwl ) (7 # jwilzy) —(Jwi)?

and & = gz FiRe £ Jw(Ryly £ Roly) - willygLyp- X°)

1 §247>j¢0L22

Z 4D
If (RiLyo # Bpgly1) DD RyRp= Wi(LyjLas-ik?)
And if WLys)> Ry  and WLj1>> Ry

Then 2 = (Rylpg # Rylyy) = g /4 g

- ol 2 L1
23 Los
But .E}._ = Los and D11 = i__
1 20 L2 a®
Thich gives Z = R; £ Ry 2. £ R
2 = 7, 47,
a2

But Rg' is simnly the secondary 1lo0ad vith losses reflected
across the transformer. If the atove underlined conditions

exist, as they often co with iron core traneformere, then



the transformer of Ficure 14 uway be reorecented as in ihe

followingz diagram.

/& . = €5 4 o1 N
“"’z' + + A 1l ;" 2] 1 'a'.' 0 eg
e, st o = x-i
11 = Oeg - aijp il 0 a 2

“ren the lecksse is not neglerible; that is,
2y .
- - X (n -3
R Ry - @l Lag= K°) s not &KW, # Bolyy)
then an ecuivzlent circuit for tlre trernsformer is useful.

/a ra’
';;—‘. + t ir ¢ # t <,
1 e, 4y Lyg elt &..'4) lu“z)
N a
(a) (o)
—TT - T —
L, V4 2
‘ e, ) a’ €, (
—— 4 + L—,
/ 7
1 é:' éu"‘:) %ﬁn"lz) C; ‘
()

Ficure 15
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The voltase eguations for Figure 15(a) are:

e = ijllil # julﬁig el . Lj; « il
and = jw X

ey = jeill; 4 jelgzip €5 M Lo i

There- L i (Lyq-Lq) i L, O

fore [L]z 11 = 1171 1

and L] = B £
Figure 15(b), therefore, is the equivalent of Figure 15(a).

2 _ Llaz L - K
-_— , end k =

11 Viiilzz

For the leakaze to be zero, k must equal 1, that is,

a

Ly,Llog - %2 = 0, (|L] = 0). But the reason for this

analysis is because |L| £ 0. By chonsing L,, and Lg,

however, |L'l can be forced to zero giving (Lyq-Lp)K
.2

is, therefore, 1, and

(1) ar=\[(lz2 P2) o M = Ly -lz
(L7 =Lq) 11771 P
11 1

Figure 15(b) is verified.

= 0. k' for the trereformer in Figure 15(b)

since [1j =[]’ ¢# @J", two impedence metrices are
being adcded and, therefore, iwo voltaze matrices are
being added. The indication is thzt two networks are
beinz placed in series and, therefore, Fizure 15(c) is

the ecuivelent of (a) and (t). The next sten is to
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anelyze the bottom box of Fizsure 15(c), the ecustions of

which are:

jel(Lyg-Ly)ig £ uigd

(22)
62' =T jw i::';'il # (L23'L2)113
and [el'] I [(S5EER70) i 4
S B - ( * 1.
ea 4 (Lgz-Lj) 1

Bat ¥ = a'(Ly;-Ly), and (Lyp-Lp) = a'® (Lyy-Ly)

e, (Ly,-Ly) a'iz(Lyy-Lq) i
Therefore 1l = jw 117 2 117 x|t
ez' a'(Lll"Ll) a!l (Lll"‘Ll) iz
er' = 3 WLy ~L1; # a'ig(ly 1)}
And 11 1 N 1171
ex' T Jwfar(Ly-L)1) £ att(Lyq-11)11) T atey!

And since k' =1, a'ij iz

ey' = jew (Lyy-L)ip 4 je (L3g-Lq)i,

(23)
82' = a'el

Equations (£3) indicate that the bottom box of Figure 15(c)

could be redrawn as shown in Fizure 13(z) or (b). Figure

15(c) could be obtained from equations (22) in the same

Z i ’ La A

%y
! ‘ + + '
(a) 1 e'l (ha".{? _,:_37 1 1 e, (lu")} ? 5 i e’A1 (b)
’ P/

.z.;_. /e 1!
+ + '
1 0,’ ? { é{lzflx\ e,f
rolos/ (c)
Figure 158

/1
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By substituting Figure 13(b) for the bottom box of

Ficure 15(c) the following ecuivalent circuit is obtained,
/a

rdes/
But since k' = 1 and, therefore, (L11‘L1)(L22‘L2) - ¥ =0

Thea Lyqlpo-Ljlgg-Lgl  #Lilp=¥® = 0

and 1y = |8l - by
?

— also Lg = |Ll -LyLlag
11 “1 Lll L1

This means thet either Ly or L, is earbitrury. 7To simnlify
the equivelent circuit, choose Ly = C.

2
LI Liylpg - X7 _

Therefore Ly =-"T55 - y:
1 L2z = Ly - 2=
- L22 11 L33
2 . .
But £~ - Lijlgg  end therefore L, = Lyq (1-x%)

bsle

And & LSZ - L° \// _ % 22
= T =
,Pf119fl¢ Ly B 11

From the orevious analysis a very useful equivalent circuit

ie ziven in Fisure 17.

L,0-K) I
s 19 e
I
Ve K, e}
rdea/

Figure 17
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In most ceses the inductznce Lll(l-Kg) can be
assimulsted into another inductance of the network.
Fowever, if it cannot be taken care of in this fashion,
the overzll equations csn be obtsined readily by the

method of cascading, giving:

-

: o\
e _ %ﬁ JaJaLll(l X°) e,
i b ¢
jwakL K
11 -

orimary inductance

Where Lll

Lpas = secondary inductance
K = mutual inductance
M
_ LBQ Y - did
& = N = VInlz:

Eguivalence of the T, 77, Bridzed T,
and -
Symmetrical Lattice Structures
The T~ 77and 77-» T transformations are common
%nowledsre to all electrical engineers and the transformation
equations can be found in several texte. Yith the use of
matrices, the derivation of these ecuations is straight-

forward and concise. Zguations (P4a) ref=sr to Figure 18(a)

and equations (24b) refer to Figure 1€(b).
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- -,
2 2 4
3 bl
Figzure 18
e, = {2z, £ 2. )i, £ z¢is e p z i
(84&) 1 a c’~"1l & and 1 - 11 13 x 1l
ez = 2013 # (Zb 7‘ Zc)iz ez 221 222 12
Yhere 2y) = z, # Zgs 255 = Zp £ 25 and 295 = 25 T 2z,
(24b) 17" = (yy # ya)eq!' = yae,! i y y e !
1 17 V2leg %2 o P [P Yaz] o
ig' = =yzey! £ (yzfysz)ey! 12') |va1 vez) |es
"here yy; T V1 £ V2, Va3 T V2 # ¥3, and ¥y, = y21 T -y;
u -
V22 ~Ya1
Therefore [ e, ! - i —== —s= iy
RS R BT el e IS TR vral B Bt
82' 12' .
V12 Y11 I,
1Y B{p
But since the networks are to be ecuivalent:
el = el', 92 = eg', il = il', 12 = 12'
Therefore [2] = (Y] -l ong 211 = ¥22 | z55 = ¥N , 25 = T¥21
1Y 7Yl Y
2 3 o
IT1= ya1vgg = (vi2)" = (v Ava) (vofvg)-va™ = yvivphvyvshvey,
L 41 4
Let A = ¥ Vafy ¥a#o¥s = 2122 Tz, | 23,
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Therefore A = z, # 29 £ 2y and _1
Z,E327 a

(]

= = Yoo = -
Also le Za 7‘ c 22 = YB 7‘ Yg, , 222 = gb#zc = yl 7‘ yz

PaN
v A
And 2yp = 2, = A2
Za = {.-é. - 212223 x _1— - 2129
A z
| Z)722725 s 2425tz
- Yl 212,2 1
z, = = 17373 x =
(25) Y A T T T %%
Z1f20bz. 1
177273 21 F2 7z,
- - Z.2
25 = y_z. = 212223 X %‘ - 173
A 21722723 < zl; 237 23

The T —~w» 77 transforms are derived below:

-l o z -
11 Yiz2] _ | %1 G2 _ 22 ~Z21
= = z
Ya1 Va3 221 %z 2l 1z}
“212 211
R 121 IZI‘J

Let ¥V = 2| = 211222—2122 = (za%zc)(zb,(zc) - zc2
2,2y # 22, £ z,2,

- - 200 = 2. 43
Therefore yll yl,lyz - 28 = b" S, VYoo = yz,ly:3 = za#zc

v v ——
“Ylg = Ya = 221 =



.
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= z - - .
1 “b and 21 = M = 2,%, £ zazc«/-zbzc
v 2y, >
b
(26) Y2 = Zc and 22 - ¥ = Zazb ;l Za‘zc'L #zbzc
v Z, p
c
= z_and 2z = € =
37 a 3= 5 252y # 232, 22
v a p
a

The bridged T is a rather common structure, and it
will be analyzed with the object of obtairins its ecuiva-
lent T. The bridzed T of Figure 19(a) is redrawn in

Figure 19(b), and their equations follow.

34 A 6 A
1e: - [ e;1
Jl 33 ,

3 te &}
; =4 |
N H n B 3 ”
(a) fe LS
(b)
Figure 19
Bottom box fe." = z-i." £ zgigh e, " "2, 2 1!
1 <71 © snd | 1] =] Pz |t
Figure 19(Db) e = zzil" F z5in" ezu 22 22 ig"
Too box ii' = (Yl#}";)el' "Yq.ez' and '11'-_ (Yl#}’4) =Yg x e],'
Figure 15(b) (1,' = ~Y48;' £ (yatyydes! L12: LY, (yz#va)] ez’
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e’ [v.4 ¥ i
Therefore 1] = 54y, ;
ey’ 1Y) | i,
Vg Y1£v4 i
| 1Y (Yt | 2

But since e; = e;’ 4 e1" , e3 = ex' £ egt

SIS U SR S L PAC I PLRE I

- -y P o
el Xﬁf!i # 22 Z& # 23 11
= 1Yl B
x
y #
e 4 £z Y17Vq i
2 2 23 2
L J LT ° T i

Referring to Figure 18(a) and equetions (24a)

e (za#zc) z, i

1 1

i
L

eg 2, (zpfz) 1g

Since the two networks are to be identical

Y3¥y4 # - z - y4
z,#z2 = “2 0 -
atZ, y1y3¥y1y4¥§3y4 2 © Y1¥3FY Y, ¥ay, # 23
zb#zc - YI%Y4 # 22
Y1Y37ZV1Y47‘V3Y4
1
y —
Za = Ylgs#y1y47&3y4 ) ‘EZ¢§%¢5I="‘ = 212
e %t
212324
1
y -
(37) € z,_= L Z1 = 23%

D Y1VaFY ¥, FYavy 7T — 2
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' 1

- - \
1Y37¥1Y47¥37, z24f25f2, 2172572,

Equations(27) determine the relations between the
three elemnents of the equivalent T in terms of the four
elements of the brideed T. Using the T—=T¥ transformation,
the ecquivalent T7 could be obtzined from the equivalent T,
or the bridzed T (Ficure 12(2)) could be treated as two
networks in narallel und the equivalent 77 obtained directly.

The symmetrical lattice or bridge, Figure 20(a), is

another common structure and may be represented as in

3

3
(=)

Figure 20(b). This is nossitle because the currents

indicated bty the arrows in Fizure 20(a) are equal.

i, V1 - e,!
and 1 = §l z% 1
Figure 20(b) 15 = -y y x
= Zler - Y1e. i
2 1 3 ° 2 V1 N ey’
< 3

. - J1 v o 7 t
Top box 11 = == e1 §l es



1
Figure 20(b) i,"

Bottom box i

Since the two ne

12 = 13‘ # 12"’
i{

Therefore -
iz
eq"

And 1 -
ezv

[ 2q£25
2

Z3-2]
| 3

y2 Yo Yo y
= e/ —92" i -2 ’2 e
g "1 2 and 1 = 3 2 1
=y Y2 it x
_Ze " 7{ —?;e.," 2 2 Vo 82"
2 1 2 © = £
d 2 ——
- 2
tworks are in »zrallel, i; = 1" 1",
e; = el' = el“, and eg = ey' = eg
flsz Yo=Y o
] 2 X 1
Yo=Yy
23771 y1fys e
2 2 3
- -1
V172 Yo, i1
2
X -
Y271 vy, iq
2 2 J
22-211 11
2
X
z 425 i
5 2

Fi

gure 21
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The equations for the symmetrical T and 7T or=:

e, = z_ 42z
Figure 21(a) 1 -23—-2 1 # Zpis

ozl 4 za%sz .
€y = —s 15

(<} < (]
-
e z 422, z, i
And = 2 X
2z #sz
eg zb a')_ iz

Figure 21(b) i, = vy

o
<

p «

i y_ #3y 7 e

1 c d _
And - 5 Yd . 1

18 -Yd yc#gyd 62

b - ——g—i

For the lattice —# T transformation, (2], = [Z]T and

for the lattice — Tr transformntion, [Y]L

$

Therefore =z z.£25
a # VA = l E<] -
z 7 ® o %y T 227
2 ’
Ve Y1#y v1-y
— = 1 2 — 1 2
> £ Ya > Y3 5
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And lattice—T gives the following conversions:

Zg = Zzl, and 2y, = 23-2

-

The T —lattice conversions are:

2, = 2 -
1=72  anda %2 Z 2ay 22y,
2 2
(28)
The lattice —e= Tr are:

Yo = Ry » and y4 T y1-¥2
Tz
And the ¥ —» lattice agre:
Y1z ZE # 2y, » and y5 = yg
2 2
The above analysis of the T,7?r, bridzed T, and
symrmetrical lattice networks, with watrices, has est=blished
directly a relation between them. Equztions(27) show thut
the bridged T has a unique eqguivzlent T whereas a given T
may have several eqguivalent bridzed T's. also equations (28)
show that any symmetrical T or fT may be renresentedas a

het a syxmetrical lattice msy not

on

symmetrical lattice, but

always be reoresented by a T or 77 (nezative imnedances).

Three Basic i‘atrices

A Teview of this chenter will cshow that the three

basic matrices of four terminal networks are the

“

imnedance, admittance, and cascade mertrices. “hen the






determinant of the imnecdance mz2trix is zzro, it does
not have an eouivalent admittznce matrix ond vhen the
determinant of trhe adwmittsnce wmatrix is zero, it does not
have 'an eoulvalent immedance mutrix. However, both of
these matrices do have an evuivalent cascale watrix,
but when C of the cascade witrix is zero, no eqguivzlent
imnedance mantrix exists, &nd when B is zero, no equivalent
admittznce matrix exists. Trese ithree matrices rre,
therefore, the fundarwental matrices, 2nd from them the
other three forus can be obtainz=d (egquations 13, 14, =nd 17).
It 2o ears, thersfore, that any four terminzl network

acade

(‘ 1

can be hzndled with the imoedance, 2dmittance, =and
matrices and the mztrices obtzined throu~h the maninuletion
of these matrices. It must »e keot in wmind, however,
that to use ratrix al-ebra on a2 four terminal network,
the current in on = =iven end must equal the current out
on thzt end. This sometimes reguires the incertion of an
ideal transformer to make the mathematics wvalic., If he
transformer is inserted for o»nurooses of znalysis, tien it
must oe preseant in theactual circait or the analysis will
be false.

The circuit of Figure 22(a) will be used to illustrate

£

the w-trix analysis of a four terminal network, This

~e

circuit may be redrawn as shown in Figare 22(b). The only

difference hetween the two circuits is thkat a 1l:1 icdeal



3¢
= 35 3
3 32
Vi 3 3w ouT
33
3
(a)
Jé 37
- g M 1
3 2 3z 30
m J 3 i 310 oaT
33 34
ke e |
3 (v)
Figure 22

wever, this

ansformer

of Figure 22(b)




This chazter has shovn how the subnetworxks of
Ficure 23 may be coubined, with msatrices, to v¢ive one
ratrix for the overall network. It mey be cone in the
following stens:

Pirst-- ultioly the cascace metrix of (a) times that

of (b).

Second--Cbtaia the ecuivalent admittance m=trix for

the (a) znd {t) combin.ticn.
Third--add this admittunce motrix (0 the admittance
ratrix of (d).

Fourth--C0btain the eguivzlent cascade matrix frou
t“he third step for the overall (a), (b), (d)
combination.

Fifth--A3d3 the imojedance matrices of (c¢) snd (e).

Sixth--From stes S, obtain the equivalent cascade

matrices for the (c), (e) coudbination.

Seventh--"alti-~ly the cescezde wotrix of the (a) (b)

(d) coubin~tion times the czescude wmotrix
of the (¢) (e) combin:tion.

The last stens will zive ths caccade matrix for the
oversll netrorx @2nd from it the impedance or admittance
matrices may he obtained.

There are a larce nunber of exam»les in this chanter,
illustrating tre »nrocecdures of cascade, narallel, &#nd series
connections, therefore, the solution of this »roblem hss
teen indicrted rather than actu=zlly cerried out.

This chanter hog ehovn, with illustr=tione, how
nmatricss mzy he an lied to four terminal networizs. 4nd

it hes 72ointed oHut sowre of the limitations as well as

aévanta 'es of n-irices when so usedc.
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A larce number of networks contain osnly one voltewe
‘nd m=y, ther=fors, b consicdsredi as t+0 terusinzl netvorie.

fazctor in main-

o,

e

[N

latrices, hare as always, are & deci
taining the continuity of the ~rovlem. There are many
other advantages to L2 h G 7wy ueinz matrices, however.
The rest of this chaoier will be used to illustrute sowe

of these edvantaces.
Synthesis of Equivalent Networks

Occasionally it is desirable that the contours of a
given network bte chanzed ond that the in-ut imnedence be
maintsined invirisnt. For instance, suonose th-t kﬂ

1 ; at

X ﬁ] revresents the civen netvork and thet f]
@]' b ¢ ﬁ]' renresents the desired network, then a
transformation mztrix Rjnmy’be used to transform hﬂ

A . o -0 9
1ntotg 2and meintein Zinaut
develonment ie as follows(acssuzing the voltare to be

= ei/ii , invariant. The

in mesh 1):

> 1 > . ﬁ
81 211 212 L :ln i1
- 221 P N ) 2 .
of - - 7" .n X -l bﬂ ::Eg"ﬁj
‘ bzn]_ Zio o e 0 .. | ..1n..
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E = [z x [I] is tue m.trix ecuation of the given network,
and []' = [7] ' x [I]' is of the desired network. [ rmust
transform [7] to [2’]' end etill ellow e]_/il = el'/il'
(inout imnedance invariznt). It hos been found that [7
may be used in the followins menner, {44 x 7] x (] = [Z]'.
[ { oremultinlies [7] for no other reason than that the

end result juctifies it. Touality must te wrzintzined on
both sides of tre ecqu.tinn f’] = [’.’] X [I] at all times.

So if both sides are nrevultinlied by [Jy, then [ x [=
@, = @ x [ . «1s0, [ x [J7! way ve inserted
tetween {i] ¢nd [I] eince {7 x 1] -1l = HE Therefore,

(¢ x L=, = [7 x K = |lf|'lx[1!
@' = @’ =g

o - - - Pr -
"here [d Tl A Ay o - -] end L T <y - A,
A2y %22 - - - dam ;3 2y - - - Awa
L‘"l J\l LA ‘I‘!‘ ‘(,. Jzn e o o Jth
if k) = (-1)1) x winor of
and [X[.= Detersirrrnt of [
, Fi ! - 1, Ve [~ _—
Then ll] - kll £09 o o o o ‘\nﬂ ilﬁ 8 11'
IXlI %) 1X
klg k?? ..... kn2 X 12 = iO'
IKt K] \XI
k1n Kon knn i i !
O IX( L B L "n 3




k k
Anéd therefore 1i,' = _11. 2 ¥,
Il IX] "n
rd -l
Also [E]l = no %o - - Cn; —e; B elﬂ
12«12 on2 0 0
. , x =
, 0 0
0 0
] Ay Aan - . . ‘(’“'. - . -
And e, ' = ey £ 0 4 0.
e e, !
But it is recesszry that T = y thst is, the
1 ill

trznsforration matrix ] does not chan.e the in»ut

impnedance. A4 cimple way 1o suiisfy this concition would
be to choose &, = 1 =nd o2 = ois = .... = o4y = 0, and
therefore, kp1 = kKzy +..s = knl = 0 .iving el' = eq end

i v T i,
1 1 1 6 .. ..o

<2 a2 - . - odan
Therefore (ig =

.
. .
4

gy Aua - - - -(u»J

The above derivation stinulates that | ~l exicts ang,

therefore, that |X[ # O. This recuires thet [@ be a
non-ginsulsr matrix and, therefore, .uct be squere.
The next sten is to determine the O 's. This may best be

chown with the followin-s examole. Fivure 24 (2) is a



Ly = 0.05 H, 8y = 40,070 L, Lo =0.10 H, S

L,
ol [ Lo
;\ ’Z;\ _J_= "Z'N ?14
el Lz 52 t e’ : 3
s, Sy S'
— T T
(a (b)

Figure 24
network that has the desired innut imnedance, but not the
desired circuit confisuration. 7The nrovlem is to find

the narameters of Fisure 24(b) such that i ' = i, and

1
Solution: e = {jw(Ll#Lz) # -J—:’ill - (jwlg)ig
Sz
0 = -(jwiziy 4 (jwhg # 301z
Therefore [ e (L#Ls) =L, s 0 i
< 1 1
1
- ju b X
Jw
0 Ly Ip 0 s in

Also el' = wL 7‘ 3§111_ [JUL;S £ 87521

= fet, "ﬁ-ji 7‘{3“(1»—47‘114)7‘ S?’zb }12

1 0
If [X] = then 1, = i,', e; = e ', and z = 2!
[“- “7] ’ 1 1 1 1 (inout 1r§f)ed-
ances






Therefore L3 -L, o l «, 0
o - 10-“‘ x =
-Lz (Lz#Ly) 0 o -10 10

107° x[ (15-20a £ 10 e4?) (10 <eky =10 oy )

(10 < &y -10uty ) (10 o )
~ 1 o 4 0 1 0
S v = lO4 X ' x X =
(s548,) 0 o, 0 10 o 2

-

4 (4 £ 106) (10 oAuote)]
(10 L at) (10 «7)

€ince the first row elements of the two matrices on
the left, are negatives of each other:

(20) 4 £ 10 = =10 ool y and 15-204 £ 104, =-10,(«, -1)

Solving these simultaneously:
« = -0.282 2nd «L,= 1.375
Therefore L,= 107%(15-20«) £10 &%) = 21.582 x 1072 20,215 henries
)=

Ly= 10‘“(10-(,_ -(15-~o-4 4 1047))= 0.055 henries

m

z= 10 (4#10,{, = (4£.829)= 48,220 darafs

g

= 104(1041-(4%10.(.‘)) = 272,510 darafs

Ffoster's Reactance Theorem states thet the two neitworgs
of Figure 24 are »ootentially ecuivalent. By a similar
method vauver's two »notentitially equivilent networzs mey be

found. The lisnitetione of <his technicue sre in finding
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the o's. If resistances vere introduced into the twro

resh networx, there would, in .eneral, be three indenendent
equations of the 1v2:2{2%) to Le solved sinulteneously for
the twoe{'s. ~2f course, this ie not noesitle., If tle
solution haod teen in terme of z's there would %ave been
only one ecu.tion =nd =:xzin tree's could not have been
found. Wowever, if there hal been resist.aces associzted
vith each inductance and the /L ratio was constant
throushout the networx, then a three »arameter solution
could h:ve veen found. For a three mesh network there
would hwve been sixe{'s and for a four mesh, twelve &«'s.
The liritz=tions azre, therefore, guite ureat. For s two

mesh, hovever, this method is faster than Foster's or

Cauer's.

Chence of Reference Frame

~aady

The follewing technicue has been called by Le Corbeiller,
The Kron iesh methorg since it hnas been develoned snd used
extensively by I'ron.

In networks containing several xmeshes and a large
nurmver of mutuel immedances, it is often times difficult
to obtain the mesh imoedance matrix [z]' by writinz the

raxwell mesh ecuztions. In the eim~le brid e, for instanc

] . . . - . v ; \
“Le Corveiller, iotrix anszlyecis ¢l Tlectric Netiroris,
Doo 34-4'4 .
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there is a wossivility of fifteen mutuals. Cne cen
visualize the task of even attesnting to write the naxwell
mesh ecuations for this case. The Zron .esh xethod
eliminates this sort of confucion and allowe one to obtain
the most comnlex mesh imoedance m=trix dy a murely mechani-
cal »rocess,

A simvle oroof of this technicue is -siven by Le
Corkeiller, 2nd it tskxes about ten »Hnzes of his hook

w10 Since moct

"idatrix analysis of Tlectrical Circuitse.
engineers are interested in method rather than croof, only
the method of a»pliczation will be przsented here. It

must also be said that thie method is not limited to twvo
terminal networxs, but that any finite nuambers of volta-es
may ne oresent, »Droviding thut they are either all d.c.

or all a.c. anc of the same frequency.

The method is as follows:

For each branch drew an arrow renresentinz the
current in that branch and choonse the current direction
the same as the voltage in thzt branch. Next, arbitrerily
choosge thg mesh currents znd incdicete their directions
with arrows. For an n tranch networx there will be n
eguations exoressing the n braanch currents in terms of

the mesh currsnts. From these ecuationes the matrix

equation msy be written by the usual method, E] = k] x Fj.

10 o¢. Ci

.
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[ is the branch current watirix, tﬂ ''ie the wmesh current
ratrix, and [ﬂ ie the connection matrix between the two.

If there is a vdolt:ze in each branch or only one

voltare »oresent in the whole netiworkx the branch voltz-e
matrix may be written as [: vith sufficient zeros to
give the column @mztrix n rows (n is number of brznches).
Tach mesh voltz.e, in zeneral, will contain more than one
btranch voltzge and may be reonresented aspg'. The "method"
then says that [‘3‘]' = b]t X {2]

Tre nower of the technicue will now te ores=nted.

The branch imnedance matrix pﬂ is obtained in a very

sim=le manner. If there are n branches, tren EJ will

be scuare and of order n. It is cowmcosed simnoly by

nlacingy the n oranch impedances on the orincivle diegonzal
and the zij mutual impedunces are »nlaced in the ij positions
of the matrix. The maxwell impedance matrix ﬁa ' is then
obtained as E]t x [Z] x k] = [Z]'.

The mesh equstion may now bs written as [E]' =4 x lI]'
There ﬁa' are the unknown maxwell mesh currents. Therefore,
[]3 ' o= lZ] -1 x F] '. After [I] ' is obtained the branch currents
cen be obtained from our original ecuation, [I] = t)] x [IJ ',

It must te cautioned, at this voint, that [I] ;t[ -1 xlE] .
Recalling how the Fﬂ matrix (branch) was written, the
equation [I] 2[21-1 x{f would give branch currents as

though each branch imnedance and volt:ge were shorted on



network ( voltage),

themselves. For a two

t i,, i,...and iy, are not zero, but

27 73

t is obvious t
[IJ = [Z]'l x[E] would give every curreat but i, as zero.

: 4

ch is incorrect.

And i, would equal el/le wh

is of a network that

ol

o

Since the circuit in Figure 2

is not flat, the mesh eguations are difficult to ob
This circuit willbe used to illustrate the Kron iesh

Method.

The problen is
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chosen mech currents are

D

12-7 =6 independent meshes. Th

indicated in red vhile tke branch currents are in black.

i, =1,' 00000 T 10000 0]
iz = 0 0137 00 001000
1 = 0 00040 000010
i, = 0 0000 -ig" 000 ¢ 0-1
C
1 = 0-1d 00900 0-1 0000
iz = 00 -14£1,'0 0 (] =] oo-11-00]=x 7"
i, = 000 1id 0 000 1-10
g = -110 C 14 0 413 -100101
ig = =140 0 0 -110100
1107 -1#id#140 0 © 111000
i1 0 0 i,' 0-13 0 0010-10
1, 0 C 0 0-1d0 00 0 0-1-1
1,55 0 14 0 0 0 -/ | 0100 0-1]
There the 13 x € matrix is the [C].
.611 611
0 There—-c a1 0
[E]' = (C]t x[EZ] where [£] = 0 fore (B =0
| C13] "y
(0000 0 0 . . .03}
0 200 0 O .
zZ] =}Jo 0 zz 0 0 .
0 0 0 0 z .
01z - - " 213,




[z)* = (C]t x [z x [¢] 2nd carrying out the indicated
oneration gives:

[(zgfzgtzyg) (-zg-z ) (=z5) (~zg-zg) (0) (-zg])]
(-zg-2z14) (zgfzofzigfzi3) (210) (2g) (0) (-2 ;)
[+ =] (~215) (z,,) (zpfzgheigfzg)) (-z5) (-z;) (C)
(-zg-25) (25) (-z5) (zgtz fzgtzy) (-z4) (z)

(0) (0) (-213) (-zq) (z3fzptz  dz ) (295)

L (=2g) (-2, 5) (0) (zg) (z1,) (z4fzgtzyofzyz)

-
A two terminal network is being used to illustrate
Kron's technique, because it works very nicely here. Since
in this »roblem the interest is in the innut imnedance only
and, therefore, in il' only; it woulé be necessury to find
IZI' if the méthod of determinants was used. The followinz

method will illustrcte how il' may bz found without solving

for the deteraminant of ¢ 86 x & matrix:ll
tee ' =[lg], @3] ereldy, E, @
Fﬂs Zj and @34 are 3 x 3 matrices.

atso let []' =[] wvere [, T and [J , =<1
| B, .8] [8

Also 18‘?#]' ':.[IJ:J “here [I]]. -

“[i1'] enaf], =fi,
ALFJE i, ig!
biz' 16'

1lsopriel Kron, Tensor anclveis, »9.21-22,




Therefore [, [, x[, B, x[} anc [T, =) 5 =[], #

[2]4 x[IJg. Tliminating [g 5, the following eoguation is

found:
B, -B =07 <z =0, -0, <8, <6 = @,

But {‘32 [8] and therefore,

0

[, B, -B: <@, 17 = B,

In usiny thie technicue, it is eseumed that it is
eacier to find the invers=z of a 3 x & twice, than it is
to find the inverse of a 3 x 3 once. The method will be
illustrated by czrryin. the o reviouns »roolsm Lo coaclusion.

If we let all of the brench imoedances egual one ohu, then:

"3 -3 -13-2 0 =17 (7 ”
2 4 191 1 0 -1 .J 2
S I G Y S S ) b M
] ==~ T 1 f2" 77| = 7
0 0 -1g-1 4 1
|21 -1 o1l g JE 4

If we let ﬁ]’- ), - k], x [Z]4—1 x [2)4

3 -2 -1] [1.1 -0.4 0.8 1.8 -1.5 -1.8
Then EJ=| -2 -2 1|-| -0.4 o.e -0.6| =| -1.5 z.2 1.
-1 1 4] Lo.5 -0.5 o.8 -1.5 1.6 3.2

7.58
X
4 b4

X X
-1 . 1l X X
And [@ S. x X
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7.3 x X e
1 1
Therefore 3.4 X X X b ¢ 0
X X X 0
3
7.5 e - -
—_ 3.4 -5 - 0.6533
and 1 = T &. 3 Z. = ==, = = = 0.£033 ohus
v l ’ inout 7.63 5

his illustr=ztion wage used o show how the kron .esh
¥ethod could be z9o»lied to zdvantz.e in determining the
mesh imwmedance mwatrix of & comnlex circult and to show how

b

a Jdesired currznt mi-ht be found without findins the
deterzin>nt of a2 l:ur_e tﬂ ', »nrovidins the other currents
are not cdesired. “he two terminal illustrztion »nresented
rtere is not meant to iwnly th-t this technicue ie limited
to circuits contzinia:s one volta.e., It hns been derived
for an n mesh netvork contzining n voltzires. The two
terminal nrohlem vresented 1s, more or lese, a classical

one, anc was used to simolify ~‘he calculstions and still

nresent the method.
Jatrix Parametexr Renresentation

Yatrix oaerareter reoresentation is a wmethod of
renresenting a circuit in terms of its resistunce, induc-
tence, and elastance (reciorocal canasitunce) matrices.
For instance, if it is necesszry to _ive & verson informa-
tion on & two terminal network, it is much wmore comvact

to simnly ;sive him ithree matricees znd let him cdraw the
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circuit. The method can best be illustr=ted with an

examole.

The parameter values chosen in Figure 25 are hizhly
improbable, but serve for purnoses of illustration. The
values opposite the condensers are values of elastance (1/c).

This method apnlies for passive (two terminal) networks only

and it is assumed that the voltase is a component of mesh

1 only.
The mesh equations are:
e = (64jw643/jw )iy ~4ig £ Oiz £ 0iy = (j@5 £ 1/jew)ig
0= -41; 4 (44je343/jw)ip -(1/jw )iz -(2/jw)ist Cig
0 =01y -(1/jw )iy #(74 1/jw )iz = 314 # Oig
0 =01y -(2/jw)ip - 3z £ (8fjw 2t :/.‘;U)i4 - 3ig

0= =(jo 54 1/jm )iy # 01y # Oig =31, # (SAje®f 1/jw)ig

The metrix equation f‘] = [Z] b4 [I]ls, therefore:

e (6fjw B843/j0) -4 0 O —(Jwi—l/Jw) 1,
o] = -4 (44jw343/jw) (-1/jw) (-2/jw) O iz
0 0 (-l/jw) (741/je) (-3 0 2l 1a
0 0 (-2/jw) (=3) (Sfjw3 ) (=3) iy
0 ~(jo541/j0) 0 0 (-3 9 41/jw) i
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However, the imoedance mAtrix nay be civiced 2e follows:
(s) (-4) 0o 0 © (3 2 0o 0 (-5)
(-4) (4) o ¢ O o () o o ©

[ZlI=] 0o o (M (zo0 |t o ¢ o 2 o
0 0 =2) I3) (-zg 0 2 ¢ (2) o
0 9 0 (-=3) (¢ {(-5) 5 0 ¢ (¢)

(z) n o 0 (-1)
1 1o 5) 5-1)(-9) 0
fJjel o (-1)(1) ¢ o
0 (-2) 0 (2) o0
(=1) o 0 0 (#1)

Tret is, [3] = (A] # whl# (1/je) [1/d]
It is cuite aospurent tvhzt the method of »sirameter
reoresentetion is such simoler thon the cctusl circuiv,
To draw +the circuait from its »2urumeter mitrices is
. cimanle maetter., It mast te rewestered thet the voltage

is in mech 1, only. The method for obtoinin: the circuit

ge

h
]
o
ct
oy
®
(o4
Y]
=
)
=
(]
ct
D
L]
t+
=
[
(¢}
D
on
<
'.-h
(-]
[u-]
=
o
=
o3
o]
H.
—
o]
(o}
]
ct
]
R
ct
7]

Tre firet rows o7 the three wmntrices indicstes_tna
there is no matual tetwesn mesghes 1 and 3, and 1 =nd 4.
The second row indicetes th=1 there is no mutual between
2 and 5. The third row indicates norne Let®een 3 and 3

and of cource, 3 znd 1. 7ith this informatinn the

following structure may be c¢ravn in this order:

I1 I 2 I 3 But there are nmutuals
5 4

bvetween 3 and 4, therefore,
I_.I_-I' the ctructure must be
changed to the following one:
[1 2
3
5

L 4
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After the structure of the network is obtzined, it ic a

simnle matter to insert the R, L, and 1/, values c¢iving
the circuit of Fisure 23.
Imoedance Level Chan:e

There are an infinite nurker of rnetworzs h:oving
the came innut imnedance ce a Ziven netvorx., :=nd, for
nursoses of econony, zny one oI theszs may be more cesir:bl
than the Jiven network. Cr, it moy ! that thie _iven
network has on incuctince or cazdecitunce that cannot Le
ontained., In zny event, tne gziven networx caan be changed

to znother one h-ving

imnedance by a very simvole

oceration will now e Jeri

reoresent any tao terrinal
81 = allil * Zlﬁiﬁ %
0 = z,9iy #znglg .
And i, = 2 rhe
1 11 | here
2T 51
e |
W e = = -
Trherefore i3 Zi nout

method. The basis
ved. Thoe following

networx.

Zlnln
i
n

Za
1<) %

3

3
»
*-

= minor of 211

the saze confiuration w«nd inout

for this

ecuscions

o
S
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Gow, if eny one of the coluune nr rows of the ¢bove
ecuatione, excent cnlumm oae o2r rTow one, is muliinlied .
oty ¥, tren the new determinant [Z]' will ecual ¥)Z|(chaoter
I), en¢ the nev zinor Z;,' ¥ill ecual N 2y, since Z,q is
the ceterminant |Z] with column one and row one deleted.

If all of the columns =nid rows are multinlied by N(expeﬂt
column one cnd row one), the new determinant [Zf' will

2
Nl
'/

equzl N;n[ZI and Z__' will ecual N 1 It is easy to see,

11
therefore, that rezardless of how many rows ov columns
are multinlied by enme finite nurber, or nuxrters, trese
nuribers may bte factored out ¢ivinz the some relestion between

[Z2]' and|Zles between Z.,' ard 2 “he result is that

11 11
Zinout = €1/i] = N[2Z]/ NZpq is unchenged. Geferring to
the imvedance matrix of the »revious section, the folloviny

illustration ®ill be given,

55) (-4§ o 0 0 () o 0o o (-3)
-4) (4 0O 0 0 o (& o 0 0
fz71 =1 © o (7) {-3) o0 4 juf O 5 0 0 0
0 o (-3) gs) (-2) 0 0 0o (Y 9o
0 0 0 (=2) (¢) (=) 2 o2 0 (¢

((z) 0 o o (-1)]

1} o (z) (-1)f-=) O

£t 30 O (-1) (1) 0 s

D (-2) 0 2 0

(-1) o o9 o (1)

taltionlying the l2st coluwnn by 2.3 ~ives:



|
~3
&
1

(3} (<4) ¢ ° 0 () o 2 9
- (-4) (4) 0o 0 © 0 () 6 0
2 =129 0 ?7% 3; 0 fjel 0 0o 0 9
0 0 (=3)(8 é-l.a) O ¢ 0 (=
0 0 0 (<3)(5.4) (-5} o 0 ¢

1 | o
# Je| 0
0

and because of the ~revious cerivation, [7Z] en? [Z]'
have the sawme inout immecsnces.

Sere nust ce usel, howevsr, or a network may he
made »hrsicolly unrezlicaitle, For instznce, if the
second¢ colun is multionlied ty 1D, the resistance znd
elastance mutrices are unobtainzble. Th~t is, there is
more irmedance in trhe mutuel than there is in the mesh.

This, -f cource, ie not »noseible., The method =izht be

used, hovever, to otirin n ~hysicnlly rexlizavle network

from one th:t is not.

2
y

This chsnier hie ex2leined -nd illustrzted some
f the vo terminzl netvork snzlysis wad syntihesis

nossible with the use of matvrices.

.
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CHAPTTR IV

Sy ey ~N r ™
Sl u.‘tL JC. S 33\7 ?‘JTS

Sywmetricel cornonentrs are defined Dy meenes of 1
alcebraic ecurtione. Becauce of this fact tre d2tzile nf
#andlins these egiations can, and ofien do, ntecure the

end results. Ilatrices, because of their compnactnecss, czn
be annlied to eynﬂétrlcal comionents with the result that
the orotlemn ie alvays in sizht rather than hidcen &wmony

the al.ebraic ma2ninulstions. ur., meed maxes thics statenent

n acvocating the teuching of eymuetricasl components with

...Jt

matrices, "Yeesin_ all the details in their oroser oleces...
by the usuel methode is such a tremendous task that rarely,
if ever, zre all these cetzils ;iven.“lg The rest of this
chapter will be used to outline e »nrocedure for the
annlicotions of mztrices to symuetricel cownonents, &nd o
counl=2 of examnles vill be included to illustrate their use.
The defining eqaztions vill be stated in terus of the
curr=nt, but will a--1ly equally well to voltajes, Aleso,
it will te assumed thet en A, B, C, secuence is nresent,
since a .iven secguence czn be renresentec es an A, R, O,

gsequence and uszed in these egustione.

12 _. . . - C - -
2gyr11 B. Roed, aAlternctinc-Surrcny Cirevit IZoheory, 92.4%Z1.




Let
ia’ ib, ig? be the unbtalanced three nheee currents.
iaI ibi ic1 be the vositive secuence of bvzlanced curvents.
5 rhe +¥ e i - ‘ ] e I o S
iaz ibz 103 be the ne_sztive secuence of velsnced currentes.
i, i i be the zero seguence currents.
ad "bo “¢p
. I . 1609
Then oy = i A1 41 vhere a = €9
—_— et e
o 4
y 5 14a4a”=0
i . T i_fei, £aci, -
& . -
al ol = and a® = 1
3
2]
- s 4R s
N i #a 1b%a10
S
s - .
Therefore iao 1 1 1 i,
i 2
- -~ .
ial = 3 1 a a iy,
1 1 ® 1
a a
ag C

That 1is, [Ia]s =[T] X

wr -r o

"here [Ial e ia.o (1] = %_ 1
aj ? 1
1

L 83 g
g =1_1, M-t =
5 I 1
e a

But i i £ 040
bo a)
by = O 481,40
1bz 0 £ 0 £ aigy

1

Qo

I

D

91

o
)

©
&)

@, 0 @= @7 x 1],

17

a2l

)
[
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Andicozibo#o,zo

o-
1eg =0 # &%y £0
102=07‘O#a1b2
Therefore [Iy] = [iy,] = [1 0 © a0
2
ib]_ C a” 0] x a1
tpo 0 0 a i,

"
)
l<h
o]
5

[,
[Ib]s [T]rx [T]rx FS]
c* [, = B |

[ therefore [T} r-l = [T]rz

and [Ib] .

asofid = i,
But [IQ 5 =

And[T] rs

Tith the two transform:tion metrices, [[Jend [T]r’

™

S

i
-
)

o]

the symmetrical comwonents of any one of the »hase
currents may be found frow the ithree untalanced nhase
currents, or the three unbalanced nhase currente may
be found from the symretrical commonents of any one of
the ~hase currents. The folloving exemnle will illustrate
this statement.

Referring to Fizure 27 find the symmetrical comsonents
of the line currents in terme of the eymretrical cosvonents

of the vhese currents.



Z.CL-——"

Solution:

i =ia,lo-i

[N
|

i - 0 -1
CL b

Figure 27

c

= -1, 4 i, # 0

But [IaL]s = i Y [11]
ind [Ia]s =@ x i or (1= [{l7* x [Ia]S

Therefore [i ]
al, .

i

That is, | 4
&1L

i

aoL

P -

i
And i -
8.1L

i
a
L

i

Therefore [IL]

-
-

[ x @ x [ x

, . - . - -3300.
Therefore iaOL 0o, lal fg € i

1 0-1
-11 o] x [1]
0-1 1

to That is, [IL] = [a] x (O

S x [] x ﬁﬁ_l x (?éls
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The above results shiow that tiie zero seqguence currentg
in line a is zero (trhe zero secuence of line current is
always zero for a three wire systemn, unless grounded).
They also snow that the relation between the nositive

-

seguence current in line a =2n? the 7nositive seouence

e

current in nhase a is the szme as the relafion between
line and nhz.ee current in a balanced load. For the
neirative sequence tlie line current leacds the »hase current.
The relationes betveen the symwetrical comoonents of line ©

anc the coaponents of nharce D muy e estatlished as followe:

[IbL]s = [1, x [IaL]s and (1 = 0 [Ia}s

Trerefore [15] [, =E[1 0 0
He 0o e¥0° o | X097 [,
0 o &°%%°

And [1] =Yz ]1 0 0
°L o)
S ~3j30
0 €’ 0 xE[a
o s
j 30
0 0o
Theee results show thet the relations ketween the line
commonente «nd nhace couwmonsSntie wre the same for each ~hase.
The ournose of the next exaamle is to further illus-
tr=te the uce of m-trices, tut more imoortant, to illurinate
a vossible technicue for the solution of circuit -~rotlems

-

that have snwecial symmetry. The itechnicgue of dizgonalization



=81
is being referred to, and will be presented in the

following chapter.

Referring to Figure 28 etrical components

of the enerated voltages in terms of the symmetrical

comoonents of the curr

) 3e

Figure 28
Solution:
= e .
Ca'™ (zév‘zev‘zm‘zwla # 2Ny 7tzx\"]‘c
ey = oyt # (2.4 zfzpfoi 4 zi,
e, T zyig # zyly 4 (zo%zefzhsz)ic
Let z = zbfze#zL
°a (o) zy oy e
o ] =1 = e a2
ec Zy Zy (z#z::) b
? c

3ut [Eae = [0 x [E] ena [} = M x [I;ls
“herefore ["Za]s =[] x [Z] x [T]'1 x [I]

A8



—02-

ind if the indiceted oneration is c
eaoT (Z;LSZN) 0
e -
a| = 0 z 0 X
€ 0 0 z
L 22
Also f e, 1 =
bo (Z%UZN) O
eb1 - [?]r X C 2
€ 0] 0
L Pz
oT [?é]s = | (zf2zy) O
0 z
0 o)
And E] Z ) (zfczy) O
=, :
0 z
0 0

2

ied out the result
0]
&1
82
ibO
x [?]r'l x ibl
;
Py
b ¢ [itJS
=[x,

-

It will be noticed in Fi:zure 78 that each nhase hes

)

the came impedunce and, therefore, iliere is no counling

-
mn

between the seguences; thut 1s, e,

“0

i

S

-

Q

function

1a

only, etc., also thzt the zero secuence imned:iuce ecuzls

i

the chzse iupedcence pnlus three tises the return imoecdcnce,

vhen the lozd is velanced,

Referrinz to the v»ossivle tecunicue for solution of

circuit wvrovlems uwentioned cbove, it will aled ve noticed

from Figure 28 =ud its [%] matrix that a certein

eymretry

S

.
-



is present. All the impedances on the diag

dances off the

costmultislying it by [T]'l resulted in
matrix. The result is that three simultaneous eguations
in three unknowns is reduced to three simdle ratios.
This subject will be covered more thoroughly in the next
chavter.

One more examvle will now be given illustrating the

use of matrices to metrical component oroblems.

Symmetrical components are used primarily for the
determination of fault currents in power systems. The
following example, therefore, will be a simple problem

on a single line to ground fault. This and other problems
are given by =’eed.1:5 Referring to Figure 29 the problem

J

37

e J}’ ij
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is to find the frult current ir. The ecuztinone for
2% -=re: = (z )i z i i
2% =re: e ‘“a%zl%zg)la 4 2.1 fz i

ey = Zuia £ (2 #zl%z”)ib 4

= {~
e, z&ia 4 zélD # \@C#zl#z‘

Fizure

Anéd therefore

1 l 1 i \'
a af
1o 21 otz 1 1 x| st
11 1 1) |ve
B e,
But Ea Dﬂ X [‘] e and the ascumntion mey be
e

made that the generated voltcses are valanced cnd of

oositive seguence; therefore, e G = 0.

eQ ag

also [1] = [~ «x [Ia] snd therefore
s

3 o -
0 7y © 2 00 1171 1o
- =1
€0y =[@ xjo =z, OJ#]0 z; O ,lzglll [} xial,t[T]x
0 Ozol I O 2 111
L 0 L 82
Z,5 zb, zc ere the nhase imnedances of the cenerator.

Symusetrical comnonents are adlied to sroblews
involving rotating wmachinery teczuse of their chility to
revrecsent @ non-linecr vroblem as s linenr one with a
creat deal of accurzey., It has been found throuch exneri-

ence that the vest Tesults are obtsined for eanerators







0
(9}
|

if the nositive, nezative, =nd zero sequence _enerztor
imnedances rove certain values. These values cre found
em>irically ¢nd will be reorecented ia this »rovlean as
ZGO’ zGl’ and 232 for the zero, ~ositive, and re-ative
sequence imnedances resectively.

z o 0 2GA O 0
Therefore [1] x & x [T]"l =]
0 Zy 0 23 0
0 0 2, 0 0 ZGo
z c 0 2 0 0
also [T] x 1 x M1 =]
0 2Y N B 0 z4 O
0] 0 2y 0 0 Zl
and oz [r]xf1 1 1] = [ = 2.3 0 O
1 1 1 O O O
1 1 1 0O 0 O
Thich gives
-
0 1 [z #1122 o 0 o Vs
e B 0 (24442 0 Ix|i T] x| z¢i
. ) NERLE P
0 0 0 (zag#zl) 1azd Vor
Bat (1] = [ x (1 = [ = [1,] there i, =i =0
s
ib and 1. = 1f
g
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Terefore [1] = 1/3f1 1 1= o] = i [,
S 2 14 2| a
l a a 2
o | 0 8
1 a" a -
0 (2, #2,43z,) 0 o0 1
= ~ X i
And eal 0 (z l#z ) 0 ao x 3; /
0 o (zg,tzq) a”
o ud l - Y
g 1] Vot Eete 7 Vot
-— . 2T
3 Vf%azflf#alcf

The above equation, however, reorecents the foult
in vhoce © in terme of the c¢ow>onents of »hase a. If
the eonuztion is wale $2 e & functism of the comnonents

of nhase b an imnortrnt symmetry oresents itself.
Since [Eb]s = [T]r x [Ea]s and Fa]s = [T]r-l X [It]s
[rx ] =W, =@M, =] 4B,
3
(Vapforiehiee)

2
(vaf7‘ aZfif#a ch)
(Vaf-/ angifylavcf)

And -
0 Y. [(z5.#2,732,) 0 0 11 1 [VaefzdefV
ebl- Oo(z £z_) ol*|]1 x = f3 822y 4z 1 4aV
0 91071 3 af?Zgrerel,

Ial l A 8,2
0 0 (zug#zl) ) eV, of fif¥ v, ]



=57 =

¥ultinlying the atove eguation by the row matrix, [1,1,1]

- . = i
gives: ebl = {kz;o#zlfSZg)%(z~ #zl)# oo 1)} £tz f £
ie = = = €
Trerefore 1f- Ibo = Iy =TIy, = bl
3 1 (230%217‘32 YHl2s tz )4 (2 L;27‘21)%32@
And Vo = VopdzelofVop =
fo f77c¢f = (zn 42 #Sz x i,
3
V.. = &V .fz.i.daV
ofy af 77Ff77 0t o o (2. f2y)i
3 01 “G1" "1 by

2
be = aVaf%zflf#a Ve _
2 2 -

The above equatioans indicate thut the fsult way be resre-
s=nted by a series circuitas shown in Figure 30 where the
total fault current ip. is equal to i, = 1 i iy .

f b q b bo* blf 02

PV VIS

33¢

Figure 30

This chanter has stown how m=trices may be a»nnlied
vith advanta-e to »robless involvin: sywnastrical comoonente.

The usuel vrocess of solvins ecuztions tn _et the rel-tions
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between the voltages, currents, zad their symsetrical

comoonents has bveen reduced to the simnle »Hrocedure of
. ‘ q-1 -1

multinlying by [T], @7, [J,, znd [T]r . The result

is thaet the thread of the »nrobler is never 1lost.



CHar77R V
DIaaU¥allZallln

For o viven circuit orovlew, the wmeitrix equation

iv
[E] = {Z] X iI] is ovtainec., “hen valte_ e ecuztions are
written, the voltase end imnedances ere <nown and the
currents are desirad. Therefore, to find the cuirents
the etove egu:tion musy be vritten es ﬁ] = kﬂ’l X Ej.
Similarly, if node equotions are written, ﬂ] = ﬁﬂ X ﬁﬂ,
the currents and admittznces are xnown and the volto_es
are desired. This nmeans that the voltz.es must e found
as ] = ba'l x {f; . 1In either case, e¢n inverse matrix
nust be comouted and for a larie number of meshes or nodes
this can be a considerzble task.

The determination of the inverse is nearly as
difficult as, or eourlly ac difficult as the meihod of
determinants (Chzoter I). If, lrowever, the matrices ﬁﬂ
end K] could be found such that [F] x [] x [{] seve a

natrix with elements on the princinle diazonal oaly, then

=

if 3 j
the new equation fﬁ] = fzj X m, where {é] is the
diagonalized matrix, would result in n simole ecustiions
N
f1-%

of the tyne, il » where n ic the order of the

N
21
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Eﬂ matrix. Once the new currents sre f

mmnd, the dseired

currents (0ld) could be obtained by a simnle multiolication

Y
between the ﬁg matrix end the ﬁjnmxrix.

This method will now be illustrated with the following

examrole. Find the currents of Figure 31

ané by the wethod of cowmputing the inverse.

Figure 31

Ifesh ecuatione:

10 = (8%4#3)11—412—313-014

41y A44444)15-0i 41y

0
0
0

Jatrix eguation:

mat 1s [f] = g x (]

By the method of diagonalization, the following oro

is used:

-31, =01, £ (3#2;3)13-214
011-412 -2iq £ (3{2#4)14

[0 [o) (-0 (-3 ) [4]
op_ | (-4 =) (o) (-4) i,
of |-y » = (=2 i,

L o] Loy (-9 (-2 ey d L,

edure
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Premultioly the metrix ecuztion by tP] giving {ﬂ X []'

B =@ x0= .

vetreen fZ] and [[Jbecause it coes not affect the ecuality
But [q] = M'l = fJ, therefore, insert

this in the »lace of [] <1v1n5, LP xt] [P] b 4 [Z.] X [Ca X
(]! xlﬂ The eomtlon [‘j = f lﬂ mey now be written,

where: t‘:] = g = lﬂ = 7 = fZJ x {g (tre dizzona-

lized metrix) and [_I] = {’.,g"l [I] are unknown currents.

The [1] matrix may be inserted

of the eouation.

= @d=H

The problem,

now, is to find [P] cnd [g such thut

N

f] will result in a diagonal matrix.

This is done as follows:
f9 -4 -3 0
-4 13 0 -4
Z=1-3 o 7 =2
0 -4 =2 8
- -l
Ad¢ 4/2 x 1st row to “nd Tow :iving:
o -4 -3 0]
1 o2 -4 -4
[z =j0 & ==
-3 0 47 =2
- 0
bO 4 2 8-
Add 1/3 x 1lst rTow to Zrd Tovw .ivi
"o -4 % O]
“_ 92 -4 -4
[} =]lo 7= =
0 -4 3 -2
2
0 -4 -2 8
] -



A8d 3/723 x 2nd row

S

[Z]l“ -

0
0
0

»

434 2/23 x 2nd row
o
9
e
21 = |°
0
| 0

Add 29/37 x 3rd row

9

[ ]mu 0
Zzl =

0

LO

Referring to Linecr Transforsations, Jhaoter I,

=9
<

o

to 3rd row ziving:

-4 =23 0
€2 -4 -4
G 3
124 <58
0 =5z 33
- -2
4 BJ
to 4th row ziving:
4 =3 0]
c2 -4 -
= = -
0 134 -58
4;3 r.;3
0 =58 148
% 53
o) Ca-
to 4th row ziving:
-4 =3 0]
a3 -4 -4
)
0 124 -58
cd 23
81354
0 0 15414

the

first ornerstion could huve been verformed by a »nremlti-

vlier.

N

1st row is added

]

Therefore

QOO Wb
OO0 = O

This oremultinlier is,

to 2nd row.

o= O

1 0 O

O O Wi
00 H
Or O

b [Z]

HO O O

O], where 4/9 of
0
0
1
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By the same reasoning
100 1000 1000
0100 0100 0100
- co1olxfpo1olxjo310| x
(7] = Jloocg1 0901 g3
A7 23 0001
1000 1000
0100 x 24100} x [z
1010 5]
3 0010
0001 0001
But CZ]””I = [F] x [Z] znd therefore,
T 1 o0 0o O]
4
= cC 0
I A
22 = 1 0
o X
1597 £2) 23 4
| 3523 1541 T7

Since all we have Cone ig add wultivles of one row (o
- 2 . "l“ ", > -
another, the ceterminent of [Z] wustT egual the cevermin-

ant of [Z] and [PI xust equal 1, and this is the zase.

Next overation:

"9 -4 -3 0]
z YU/ : O 2:0;- E_’-‘t _.4
o o Hz =



ad3 4/2 x lst colu
-
1L
(7] =

A48 1/3

Add 3/33 x

/]

2

1"y

(z]

X lst coluaun

ot
nd
1o

"

r

Q

-

0

tO <Nc
0
ﬁf\
=

N

Cis

to

iy O

(6]

O

1o

(A
i3
O,

D)
o O <4LJO

Jiviag:
-2 ol
-4
= -4
)
134 -58
28 22
2224
O 1241,
colann oiving:
0 0
-4 -4
&
174 -£8

(@]

coluwn ivin_
~ -
0 0
G -4
174 =58
- ==
OO f<gs)
° e
-

¢orluwn Siving:

D O

]
N

Yy
€3

O

-

o O

l
m

[0e)

N f\)!

(D
™ O

)

O1
W>
—
[ 1
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Add 22/27 x 3rd column to 4th column wiving:

"9 0 0
N o £2 9 gW
fz] = <
o o 1% 0
=3
2274
L0 0 0 1541

-
—

“eferrinyg again to Linear Trensformations, Chanter 1,

these onerations could h=ve heen nerformed by a Hogt-
miltinlier. The first sosteultinlier is, [1 £ 0 O] » *rere
0100
0010
0001
4/ of the lst coluxn is added to Tud coluxn.
1200 [roio
N (&
Trerefore, [ = [E x [ x o 1 0 Of g é 2 gx
O 0 1 O 0 0 0 1
o 00 1] L A
1 0 0 0 1 00 0 f1 oo 0y
3 o
x 0 1 = 0 x 0O 1 O 5% xJjJ0o 1 O 2g
0O 010 0 01 0 0 0 13
0 0 0 1 O 0 0 1 0O 0 0 1
o - - -
N
But [ = [f = [2) = QL
-, 4 o 5297
9 3 1541
0 1 =  £20
Therefore [Q) = 85 lggl
0 D 1 %7
0 0 0 1
_ -




N

i

¥

[ = [

N N
(2] = (1

-2

“hich gives, on multinslying:

10

@)
<

N
i

s

N
o= Q7 <

Therefore:
p . = 3 4 e FQQT
i 1 = — 283
1 g 23 1341
i 3 330
2 —-— —— | ——
=19 1 =3 15a| =
13 0 0 1 g2
o7
i
| T4 [0 0 0 1
4. = 10 #4180 £ £19 4 2,795 33
1 S B8Z3 032 5,032,782
T 1.1111 £ 0.1227 £ 0.2308 £ -.2°
i, = 0.%50 zmns ig = 0.8435

10 ]
40
92
20
124
15,870
| 24,702,
5
cimDs
amns

=1 o ¢ o 10] 10
4
3 1 0 0 o 40
07 ~ X = 9
(e
& &= Y0 o |E
63
1587 3250 25 4 0 15870
-4';)-: & 1lt4l 27 - L 4533
- - PN
~ 10 o 0o o0, o0 !
33 1
ﬁ% 0 =3 0 0 N
l2an = o o 28 o |* |1l
3% =5 N
15870 o o o &34 iz
| 74575 1541] ol
| 14
N 40 N o0 W 15,870
15292, iz =134, 14 = TL, 700
N
end therefore [I) = [ x [1]
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If the ueual method of ceomsutinz the inverse is

useé to cdetermine the currents, the result will be zs

follows:
. o -l -y » -
(1] 211 %12 %13 214 10
_ -1 3 .
ﬁ] = [Z X LQ, il _ T%T 231 2oz 223 224 x 0
That 1is, 13 z31 232 233 234 0
2 | %41 %42 "a3 "aa] L O
*here Zij is the cofactor of zij'
mh i - 3 - .
Therefore i, le x 10, 12 Zoy 2 10
izl 12|
i, = 2 -
Pt et Zaxw
12}
12} =9 x Z91~4 X 227 =3 x 237 4 0 X Zy,
12 0 -4 -4 -3 0
tnd 2_. =} o 7 =2|= 512 Zon = =1 x] O 7 =2]= 232
11 14 2 8 >el 4 -2 8
-4 -3 0 -4 -3 0
z.. =|12 0 -4]= 272 z,. =-=1x]12 0 -=4]|= 154
L1l 2 e A 0 7 -2
Therefore, JZ] = Sx512 -4x232 -3x372 # Ox184 = 2834
' i Z 8100 - i = 2720 - A o
And 13 S12d = 1.7377 amps 1 " 233% = 0.950 aups
- 2220 - "L . - 1840 =
i, = ===r T 0.810 amns i, = 5574 0.6425 amons

If zn easy method for determining the currents is

vhat we are a2fter, then diasgonalizztion by the ﬁﬂ and



)
[€¢]

ﬁﬂ matrices stould not be used. This o=ct examnle illus

tratee the difficulty ond the time coasumed ia cdetermining
[F] &nd [Q) vefore the =roblem cun even te ¥orked. and if
the immedances are cownlex, it is next to imnoseible to
determine the »ro-er [F] end [} . It is 2lso awmarent
from the owust illustretion thuat a different [3) and A
is recuired for every [A matrix.

The problem of dizonalizstion is not hopeless,
however, It was found in the last chanter that for a
thircé order Eﬂ watrix, with 11 elewents on thz diejonal

gual to one vzlue and wll other elerents ecual to &

different Vulue the matrix [T} could be used to diagonelize
it; that [Z) x @ x [}’]'1. This tyoe of symuetry
14

is referred to, vty Pines, as ¥ symretry. He then states
that a Eﬂ m2trix of n order with T syumetry may be

N
di~ sonalized by the use of an Eﬂ rnaztrix; that is, Dﬂ -

[€- -1 x [[] x [ wnere [S] = [Srg] 2nd 8, = a-(r'l)(s-l)
with r -?}f 2, 3 . .n,s=1, 2,3 .. .n, and
a = € & The use of the [S] matrix is &n extension

of the method of symmetrical comnonents.
It mizht Te worth noticing, ~t this »oint, that to

tain [Z], in the last checter, [Z] wos trehulxlollea

4 .
L. a. Pives, "Irunsient Analyszs of S}mxetrlc*l
Fetworks by the :lethod of Symretrical Tomoonents," alfE

=7

Trapsactiors, (154C), . 437.




oy [ and costmaltinlied by [1] ~! while “ives (atove)
oremultiolies by [)~! and oostmulticlies by [8] . 1If

the above cefinition of [S] is used and [S] is obtained,

it will be:
7-1 1 1 . . . . . 1 “
1 21, . . a=(n-1)
=4 . . . . o
1 . . . . .
-(n-1) -(n-1)(n-1
-l ) . . . . a )( L
J 2 1200
Therefore [8] = [ 1 1 1 ead a= € <z €
(n:3 1 a"l a-z z
-2 -4 therefore a -1
1 a a
iultinlying each element of [3] oy 2° gives:
1 1 1
[S] = 11 ag al = [T]'l
1 a a.2

And therefore [S]"l = [1]

Fundenentally, then, Fioces hae defined the same

onerator as is uced in syumetrical com»nonents in the
nrevious chenter., Yowever, in so ¢oing he has extencded
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the negative exoponents of a can always be made positive
by multinlying ezch element of [S] by € =1.

In the discussion of Pipes'zrticle in the A. I. E. E.
Transactions,lE the point is brousht out that this same [ﬂ
matrix will also diagonalize a B] metrix that has "ring"
symmetry. "Ring" symmuetry is not defined, but the two
examnles given 15 4re shown in Figure 32.

The red lines on Figure 33 indicate a try that

will zllow dia:onaliration with the use of the [ﬁ matrix.

()

Figure 32
Matrix (a) of Figure 32 givees the following diagonalized

form:

157pi4., 2.1109.
181pi¢., 0o.1100-1110.



= (2f3210f22151214)

0O 0 O 0
0 24 0 0 0 O zy Szg = (7-/z12 -Z1z -214)
0 0 2,0 0 O 2y Tz, = (z '212”213%214)
O 0O O z;, 0 0 zg = (2—2212{2213—214)
0 O C0 O Zy 0
0 000 0 z

tatrix (b) of Fizure 32 rzives the following diagonalized

form:
2, 0 0 OT There 2, = (z#2212¥213)
0 zq 0 0 27 523 = (z - 213)
0 0 230 2o = (2 # z93-2273)
0
LO 9, 0] 23‘

he matrices of Fizure 33(a) end (o) heve the symsetry

indicated, in rec, in Fizure 32. These matrices did
diaoonzlize end their results are siven in Fizure 23(c) znd

(a).

There
Pza z, Zg zﬂ 'zo n 0 09 zo=(za#zb{zc#zd)
24 23 Zy 2, 0 240 O zlz(za-jzb—zc#jzd)
2o 24 2, 7y 0 0 2z, 0 zg=(za-zb#zc-zd)
-zb Zg Zg Zau |0 0 O z3) 257 (254 iz ~25=32,)
(a) (c) “here
z2g Zy Zg 2y 0 0 Z; Z(za#zb#zo)
2c %3 % 0O 2,0 zq :(Za#“dzb*fzc)
%y Zg 2 0 (g) 2o Z -(zarazb#a“zc)



[Z)matrix, then the orcer of [Z]

lizetion

is vpresent.

mesh

currents as

e followiny e

Referring to Fi

is to be possit

me

problenm

when

2ji
even if diazona-
course, E symumetry

ven to illustrate
symmetry permits it.

is to find the

sten voltaze is

Figure 34
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egonlied at t = 0; thet is, v is & d. ¢. source and time
ies meacured fron the instaant the switch is closed. It is
2ssured th-t energy storace in each mesh is zero before

the switch is clocsed.

Solution:

The difTerential ecuztions mry Le mritten zs follovs:

Vv = (LofR{f %p)il # lpi, £ Mopiz # Ejpi,
— 1 s g
0 = o1, #(Lpf2f Cp)12 4 kypiz # Lool,

0 = 1ypiy £ i piy £ (LofRE g5)15h4p01,
0 = uypiy £ ligpip £ dpvig # (LefRt ¢ )1y

“"here p = &% and p - at
If the lanlace transform is tekxen on each side of
the zbove ecuztions, they may be written as:

e = 2,1 £ 2,15 £ z, I, # 2, Iy

€

2,14 £ 2,1, 4 2,1, #ch4

=z.I; 4 szB £ zaI3 %sz4

O O O

2,14 # ZCIZ # 2, I #za14

= (18 4 R £ %)
z, = M9, z, T M5S I=¢((i)

5
(v}
H
[(]
(¢}
"

nj<
N
|

Because z2ll initial conditions are zero,

> ﬂ p - ﬂ >
e za zb Z, zb I{
Therefore o} = 2y, za Zy 2, b4 I2
0 zo zb 24 2y IZ
L O .zb 2o Zp  Za _I%
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and [£] = [2] x [1]
But it is noticed that the above [Z]uatrix has the
same tyne of symmetry es Fivure 32(d), and therefore,

the [S] matrix m=y be used.

1 1 1 19
1 - J?” Jg
[s] =1 o & a=3] tnere a =€ 4 = 2z
1 a® g4 g5 4
- _a - a =1
1 a 3 a " & ?_
_J
1 1 1 17
-1
[s] = 1 -j -1 j and [5] = % [Conjuoate S]
1 -1 1 -1 (alvzys)
|_1 o o-1 “j.

F1 1 1 1
-1 1

Therefore [S]™* = 4|1 j -1 -j

1-1 1-<=1

-1 -1y
=) = |2 . -l 4 = -1 x[z21x x [€171 x
=1 = (2] = [1] -1 x (5] - BY7™° x[z2lx [8) x [€17 x(1]
N = N x N
o (2 o

From Tigure 32(0) [Z)is found to be:

"zo 0O 0 07
) here Zg = (z&#sz#z )
[Z]= Jo =2, ¢ O _ ¢
z, T2z = (zﬂ—zc)
0 0 z: 0 e
z. = (zg%zC—Ezb)
_O 5 0 2, =




ane [3 = 1 xf1 1 1 I} xre
z

1 j -1 <=j 0

1 -1 1 -1 0

1 -5 -1 j. , 0

and therefore

gxfrl =10 2z 0 o0

1 0 D 240
&
Ll. » v Q O ZJ’
W -
g oz ¥ e 1 - e
And Iy -4;5' , 12 = 421 , 13 = 422 ,
N 1
But [I] = [&) ™" x [I) sad therefore [I]
- Pe
1 1 1 1
I Z,
[1] = oot x| L]= %
= 4
1 -1 1 -1 ‘1
1
bl J_ ""1 -'3- z..:
i
7).
; = & (L1142 =
e (1102
=703 27
3 4 ZO Zg al
- - . 1 .
But zy = za#zzb#zc S R 4L8f 5z # 8

and 25 = R4 e(L 42 £ 4 %,

o

(93]






= = aQ _];_ - Mo
zy = 2z, =2, - R £ Lo,lcs L8
And 2y = R4 S(L -3p) 4 iz
4 - < = 1 W - g
7o = 2, £ 2y =32, = R £ LE 4 =3 £iin <IN S
Aad 2y T R4 S(L- 2y £ ) A2
-1 [y
Therefore I = Zz 7 ( - 1 £
S<(L43ipfily) #7854 L
v
n 1 # 2 )
8 (L-DiqAilp ) ARSEA L S5 (L-tp)f s £ L
v <
-1 r
s*(L42i 1# 23)71.’?31‘_ 5“(1’4—2;&1#353)71331‘ 5
v
1
I, = 1’- v 1 y 1
S T ( 2 1 2 g 1
SY(Lf2uq £iin ) £BS4 = S*(L-2i, £ ) 754 =
1 [ ¥ 1 (S v
- 2 )
$9(L-tig) £35 4 A= }

’ P
ﬂ VWL-/:/]JZ?J)

av)

1

R )

et
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-ag

Y 3 - \t3 .
Then ll = X 6 ein t 7‘ £ cin Mt
4 L 2‘-:.1 W L-g .t )
(] (lu.l .-A‘, t N
—eyt
£ 2 € ‘sin p.t j
(L-15) ol
.44e
i, =iy = Y csin A, t -
~ v'
T (L,Lu. .u;ng, (L-m.l,l.,.,
-d
And 1, = v 5. sin @, t # cin
4 (Lfa.'.l;‘;»;g)'lg’ (Ll - 7lm F
~¢(“t
- 2 € sinfst ’f
Thie exemnle hags illustreted, decicivel:, the
alvantae to be had ia di:: onalirin> the [ﬁ] netrix vhen
T or rin. svmmetry ie nreseat. It ie only honed that

furiter ress:rch zlon.; thece lines vill result in traas-

form mnatrices thot will c¢ic jonelize [?] riricse of

morse enersl ty e,



This trhesis has vwresented some of the funcdementals
of matrix alzebra and showed how they wey be a2nlied to
various tynes of circuit provlems. It hae not, by eay

means, covered zll the noscitle awnlications of motrices.

D

(

Jatrices are a field of rasthematics in themselves

and considerzbhle ¥ork hne been done ¥ith then., It has

of the o2roklew their uce in invelvaed circuit probl:zms is
unlizited., It is ho:eld thot in the Tatare ~otrices vill
exnarience 21 ¢ven L Trecter uses e il the ean_iuncering

aroclews of 211 thc
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