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ABSTRACT

FLUCTUATION SPECTRA OF MESOSCOPIC VIBRATIONAL SYSTEMS

By

Yaxing Zhang

We study the spectra of fluctuations in linear and nonlinear vibrational systems. Fluctuations play

a major role in mesoscopic systems explored in nanomechanics, cavity and circuit quantum elec-

trodynamics, and Josephson junction based systems to mention but a few. We find that important

insights into the nature of the fluctuations can be gained by investigating the system dynamics in

the presence of periodic driving. This is because the interplay of the driving and fluctuations leads

to specific pronounced spectral features. Our predictions are corrobarated by measurements on a

carbon nanotube resonator which show that the theory allows one both to reveal and to characterize

frequency fluctuations in a vibrational system, as well as to determine the decay rate without ring-

down measurements. Our results bear on the general area of decoherence of mesoscopic oscillators

and also on the classical problems of resonance fluorescence and light scattering by oscillators.

An important and poorly understood mechanism of fluctuations in mesoscopic systems is the

dispersive mode coupling. This coupling is inherent essentially to all mesoscopic systems. It comes

from the nonlinear interaction between vibrational modes with non-resonating frequencies. We

consider the power spectrum of one of these modes. Thermal fluctuations of the modes nonlinearly

coupled to it lead to fluctuations of the mode frequency and thus to the broadening of its spectrum.

However, the coupling-induced broadening is partly masked by the spectral broadening due to the

mode decay. We show that the effect of the mode coupling can be identified and characterized

using the change of the spectrum by resonant driving. The theoretical analysis is complicated by

the fact that the dispersive-coupling induced fluctuations are non-Gaussian. We develop a path-

integral method of averaging over the fluctuations and obtain the power spectrum in an explicit

form. The shape of the spectrum depends on the interrelation between the coupling strength and

the decay rates of the modes involved, providing a means of characterizing these modes even where



they cannot be directly accessed. The analysis is extended to the case of coupling to many modes

which, because of the cumulative effect, can become effectively strong. We also find the power

spectrum of a driven mode where the mode has internal nonlinearity. Unexpectedly, for a driven

mode, the power spectra dominated by the intra- and inter-mode nonlinearities are qualitatively

different. The analytical results are in excellent agreement with the numerical simulations.

Of significant interest for physics and biophysics are overdamped mesoscopic and microscopic

systems. Inertial effects play no role in their dynamics. We show that where such systems are

periodically driven, along with the conventional delta-peak at the driving frequency their power

spectra display extra features. These can be peaks or dips with height quadratic in the driving

amplitude, for weak driving. The peaks/dips are generally located at zero frequency and at the

driving frequency. The shape and intensity of the spectra sensitively depend on the parameters of

the system dynamics. To illustrate this sensitivity and the generality of the effect, we study three

types of systems: an overdamped Brownian particle (e.g., an optically trapped particle), a two-state

system that switches between the states at random, and a noisy threshold detector. The analytical

results are in excellent agreement with numerical simulations.
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CHAPTER 1

INTRODUCTION

Mesoscopic vibrational systems (oscillators) have attracted much interest in recent years, including

nanomechanical resonators [1], optomechanical systems [2], and superconducting cavity modes

[3]. These systems are usually weakly coupled to the environment, therefore they have very small

decay rate, much smaller than their vibration frequency. What accompanies the coupling to the

environment is fluctuations. The mesoscopic nature of these systems is two-fold: on the one hand,

due to their small size (typically of nano/micro scale), these systems usually experience compara-

tively large quantum and classical fluctuations. On the other hand, the systems can be individually

accessed and manipulated, thus allowing to study their fluctuations without performing ensemble

averaging. In a word, to study the dynamics of these systems, it is crucial to understand the fluctu-

ations in the systems: how to measure them, where they come from and how they affect the system

dynamics.

Another feature of mesoscopic vibrational systems is that they have relatively strong nonlin-

earity [4]. As is well known, frequency of a nonlinear oscillator depends on its amplitude. The

effect of nonlinearity becomes already strong when the nonlinearity-induced frequency shift is

comparable to the decay rate of oscillators. For oscillators with low decay rates this happens

well before the conventional strongly nonlinear effects, such as dynamical chaos, for example,

come into play. There are various mechanisms of nonlinearity. Some are intrinsic in the systems,

and some come from nonlinear coupling to the external degrees of freedom. For nanomechanical

resonators, the nonlinearity can come from the intrinsic phonon nonlinearity, or phonon-phonon

scattering process. They are particularly important for resonators of small size, for example, a

vibrating nanobeam. The nonlinearity can also come from nonlinear coupling to external electric

field that is used to drive the resonator. For superconducting circuits, the dynamics of the employed

Josephson junctions is intrinsically nonlinear.
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A standard tool to characterize mesoscopic vibrational systems is spectroscopy. It can be trans-

mission/reflection spectrum for a cavity mode, or the power spectrum of the displacement of me-

chanical resonators. Quite often, the spectrum is modeled as a Lorentzian whose width is thought

to be given by the decay rate of the oscillators. However, there are other mechanisms of spectral

broadening. One of them is fluctuations in the vibrational frequencies, that is, the system eigen-

frequency is subject to a random perturbation in time. For a nanomechanical resonator, frequency

fluctuations can result from attachment or detachment of molecules on the resonator, charge fluc-

tuations in the substrate, or dispersive coupling between different vibrational modes, etc.. For

a cavity mode, it can come from fluctuations in the dielectric constant. The nonlinearity in the

systems also leads to spectral broadening via converting amplitude fluctuations of vibrations to

frequency fluctuations. The convoluted effects of different spectral broadening mechanisms make

the shape of spectral line complicated, and generally non-Lorentzian and asymmetric. In order to

quantify different sources of fluctuations and nonlinearity in the system, it is important to be able

to identify and characterize their effects on spectral broadening. This is the central topic of the

thesis.

The effects of frequency noise on spectral broadening have been observed in different meso-

scopic vibrational systems. To name a few, Sansa et al. [5] showed that frequency fluctuations play

a crucial role in silicon nanoresonators based on a Allen variance analysis, yet the source of fluc-

tuations largely remain unknown. Barnard et al. [6] showed that in carbon nanotube resonator, the

frequency noise that comes from mode-mode coupling accounts for most of the observed spectral

linewidth at room temperature; Miao et al. [7] observed the same effect in graphene resonator. In

superconductivity cavity, the frequency noise/phase noise was measured via homodyne detection

[8, 9], and was attributed to coupling between the cavity and two-level fluctuators in the cavity

walls or the substrate.

To reveal and characterize frequency fluctuations remains a challenge. The previously men-

tioned Allen variance analysis gives informaiton about frequency noise in a narrow band, not the

whole spectrum. Other methods such as homodyne detection, and direct observation of the spec-
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tral line do not provide a direct probe of frequency noise, and are often mixed by other sources of

fluctuations.

In this thesis, we propose a method to identify and characterize frequency-noise and nonlin-

earity - induced spectral broadening. The method is based on applying a near resonant driving

to the oscillator, and analyzing the resulting change to the oscillator power spectrum because of

the driving. More specifically, the oscillator power spectrum will display spectral peaks of certain

shape and strength as a result of driving. As we will show, firstly, these peaks will not occur if

there is no frequency noise. They are consequences of the interplay between frequency noise and

the driving. Secondly, the characteristics of the peaks sensitively depend on the properties of fre-

quency noise such as noise strength and spectrum, therefore allowing one to extract information

about the underlying fluctuations or the nonlinearity mechanisms.

The idea behind the proposed method is analogous to shining electromagnetic wave onto an

oscillating charge (a charged harmonic oscillator), and measure the luminescence spectrum of the

charge. As a standard textbook result, a harmonic oscillator only scatters light elastically. There-

fore, its luminescence spectrum will simply be a superposition of a δ -peak at the incident light

frequency and the thermal spectrum due to thermal fluctuations of the oscillator [10]. However,

if the oscillator frequency is randomly perturbed by the environment, the oscillating charge can

scatter light inelastically for which the energy offset is provided by or dumped into the environ-

ment. As a result, the luminescence spectrum will show extra structure away from the frequency

of incident light. Depending on the energy stored in the frequency noise (classically it relates to

the correlation time of the noise) and the relaxation rate of the oscillating charge, one expects that

the scattered light can be at frequencies different from the incident light frequency, and width of

the spectral peaks reflects the bandwidth of the frequency noise.

To illustrate the method, we study in Chap. 2 the oscillator response to a near-resonant drive

based on a phenomenological model of a harmonic oscillator with generic frequency fluctuations

[11]. We formulate the problem in terms of oscillator susceptibility that fluctuates in time due to

frequency noise. We show that indeed depending on the interrelation of the noise correlation time
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and the oscillator relaxation time, the driving-induced power spectrum ("luminescence spectrum")

has significantly different structure. We then show the experimental results on a carbon nanotube

resonator obtained by our experimental collaborators, and apply the theory to quantitatively extract

the properties of the observed frequency noise in the system.

An important source of frequency noise is nonlinear dispersive coupling between vibrational

modes, as amplitude fluctuations of one mode lead to frequency fluctuations of the other mode.

Dispersive mode coupling plays a central role in quantum non-demolition measurements, in par-

ticular in superconducting circuits [12, 13] and optomechanical systems [14]. However, revealing

and characterizing the coupling-induced noise of the oscillator frequency becomes challenging in

the presence of dissipation when the fine structure of the oscillator absorption spectrum cannot be

resolved.

In Chap. 3, we focus on mode-coupling-induced frequency noise. We study a microscopic

model of two nonlinearly coupled harmonic oscillator(or two modes), both of which are coupled

to a thermal reservior. Because of the nonlinear coupling between the two oscillators, amplitude

fluctuations of one oscillator become frequency fluctuations of the other. We find analytically

using a path-integral technique the response of one of the oscillators to a near resonant driving,

and the driving-induced power spectrum [15]. As in the generic case, this spectrum reflects the

properties of the frequency noise, in particular, it depends sensitively on the interrelation between

the coupling strength, and decay rates of the two oscillators. We then generalize the analysis from

two coupled modes to many coupled modes.

The driving-induced spectral peaks of the power spectrum result from fluctuations in the system

susceptibility. These peaks are sensitive tools to study system dynamics and fluctuations irrespec-

tive of the particular type of the system. With this in mind, in Chap. 4, we study the driving-induced

power spectra of several types of systems different from a fluctuating oscillator, including an over-

damped Brownian particle (e.g., an optically trapped particle), a two-state system that switches

between the states at random, and a noisy threshold detector. In all studied cases we show that

driving leads to the onset of spectral features near the driving frequency and the characteristic fre-
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quencies of the systems [16]. The shape and intensity of these features are sensitive to the form of

the system nonlinearity and the fluctuation mechanism.

In Chap. 5, we conclude by summarizing the major results of the thesis and discuss future

directions.
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CHAPTER 2

INTERPLAY OF DRIVING AND FREQUENCY NOISE IN THE SPECTRA OF
VIBRATIONAL SYSTEMS

2.1 Introduction

The spectrum of response and the power spectrum of an oscillator is a textbook problem that

goes back to Lorentz and Einstein [17, 18, 10]. It has attracted much attention recently in the

context of nanomechanical systems. Here, the spectra are a major source of information about

the classical and quantum dynamics [19, 20, 21, 22, 23, 24, 25, 26]. This is the case also for

mesoscopic oscillators of different nature, such as superconducting cavity modes [8, 9, 27, 28] and

optomechanical systems [2]. Mesoscopic oscillators experience comparatively large fluctuations.

Along with dissipation, these fluctuations determine the shape of the vibrational spectra.

A well-understood and most frequently considered [10] source of fluctuations is thermal noise

that comes from the coupling of an oscillator (vibrational system) to a thermal reservoir and is

related to dissipation by the fluctuation-dissipation theorem. Dissipation leads to the broadening

of the oscillator power spectrum and the spectrum of the response to external driving.

Spectral broadening can also come from fluctuations of the oscillator frequency, which play an

important role in mesoscopic oscillators. For nanomechanical resonators, frequency fluctuations

can be caused by tension and mass fluctuations, fluctuations of the charge in the substrate, or

dispersive intermode coupling [22, 23, 24, 25, 26, 29, 30, 6, 7], whereas for electromagnetic cavity

modes they can come from fluctuations of the effective dielectric constant [8, 9]. Identifying

different broadening mechanisms is a delicate task that has been attracting much attention [24, 26,

8, 6, 31, 32].

In this chapter we study the combined effect of periodic driving and frequency fluctuations on

the power spectra of nanomechanical vibrational systems. For a linear oscillator with no frequency
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fluctuations, driving leads to a δ -like peak at the driving frequency ωF [10, 19], because here the

only effect of the driving is forced vibrations linearly superimposed on thermal motion. Frequency

fluctuations make forced vibrations random. As we show, this qualitatively changes the spectrum

leading to characteristic new spectral features. We observe these features in a carbon-nanotube

resonator and use them to separate the energy relaxation rate from the overall broadening of the

power spectrum in the absence of driving, as well as reveal and explore the narrow-band frequency

noise.
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Figure 2.1 Top: sketches of the power spectra of a driven linear oscillator Φ(ω). Panels (a) and
(b) refer to large and small correlation time of the frequency noise tc compared to the oscillator
relaxation time tr, respectively, i.e., to narrow- and broad-band frequency noise. The blue (lower)
line shows the spectrum of thermal fluctuations in the absence of driving; it is centered at the
oscillator eigenfrequency ω0 = ⟨ωosc(t)⟩. In the presence of driving there is added a δ -peak at the
driving frequency ωF . The green areas show the spectral features from the interplay of the driving
and fluctuations of ωosc(t). Bottom panels: ωosc(t) for tc ≫ tr (a) and tc ≪ tr (b).

For a linear oscillator, the spectral features resulting from the interplay of driving and frequency

noise are sketched in Fig. 2.1. The two limiting cases shown in Fig. 2.1 correspond to the long

and short correlation time of the frequency noise tc compared to the oscillator relaxation (decay)

time tr. For tc ≫ tr (panel a) the oscillator frequency ωosc(t) slowly fluctuates about what can be

called the eigenfrequency ω0 = ⟨ωosc(t)⟩. One can then think of slow fluctuations of the oscillator

susceptibility χ , which depends on the detuning of the driving frequency ωF from ωosc(t). The

associated slow fluctuations of the amplitude and phase of forced vibrations at frequency ωF lead

to a finite-width spectral peak centered at ωF . This is a frequency-domain analog of the Einstein
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light scattering due to spatial susceptibility fluctuations [33].

For tc ≪ tr (panel b), driving-induced random vibrations quickly lose the memory of the driv-

ing frequency. They become similar to thermal vibrations. However, their amplitude is determined

by the driving, not the temperature. This leads to a spectral peak centered at the oscillator eigen-

frequency ω0, with the height quadratic in the driving amplitude.

In the quantum picture, one can think that, as a result of pumping by a driving field, the oscil-

lator emits energy quanta. For the familiar example of an oscillating charge driven by an electro-

magnetic field these quanta can be photons, and one can speak of light scattering and fluorescence

by an oscillator. A quantum is emitted over time tr after the absorption event. For tc ≪ tr the

frequency of the quantum is uncorrelated with the excitation frequency ωF . This is a fluorescence-

type process. The energy difference h̄(ωF −ω0) comes from the frequency noise. For tc ≫ tr

emission occurs at frequencies close to ωF . In the both cases the spectrum is qualitatively different

from just a δ -like peak in the absence of frequency fluctuations [10].

2.2 Power spectrum of weakly driven systems

2.2.1 General expression

To describe the power spectrum of a nonlinear system one has to go beyond the approximation

implied above, where only the linear susceptibility is fluctuating. If driving is described by the term

−qF(t) in the oscillator Hamiltonian, where q is the oscillator coordinate and F(t) = F cosωF t is

the driving force, to obtain terms ∝ F2 in the power spectrum one should keep terms ∝ F and ∝ F2

in the response,

q(t)≈q0(t)+
∫ t

−∞
dt′χ1(t, t

′)F(t′)

+
∫∫ t

−∞
dt ′dt′′χ2(t, t

′, t′′)F(t′)F(t′′). (2.1)

Here q0(t) is thermal displacement in the absence of driving. Equation (2.1) does not include

averaging, χ1 and χ2 are the fluctuating linear and nonlinear susceptibilities. The standard linear
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susceptibility is ⟨χ1(t, t′)⟩, it is a function of t − t′. For a harmonic oscillator, which is the central

topic of this chapter, χ2 = 0.

The conventionally measured oscillator power spectrum is

Φ(ω) = 2Re
∫ ∞

0
dteiωt⟨⟨q(t + t′)q(t′)⟩⟩,

where ⟨⟨·⟩⟩ indicates statistical averaging and averaging with respect to t′ over the driving period

2π/ωF . For weak driving

Φ(ω)≈ Φ0(ω)+
π
2

F2|χ(ωF)|2δ (ω −ωF)+F2ΦF(ω). (2.2)

This spectrum is sketched in Fig. 2.1. Function Φ0 is the power spectrum in the absence of

driving, a resonant peak associated with thermal vibrations of the oscillator. The δ -peak at the

driving frequency in Eq. (2.2) and in Fig. 2.1 describes average forced oscillator vibrations, χ(ω)

is the Fourier transform of ⟨χ1(t, t′)⟩ over t − t′.

Of primary interest to us is the term ΦF(ω), shown by the envelope of the green area in Fig. 2.1.

It describes the interplay of frequency fluctuations and the driving. We consider it for ω close to

ωF assuming a high quality factor, ω0tr ≫ 1, typical for mesoscopic systems, and resonant driving,

|ωF −ω0| ≪ ωF .

The explicit expression for the driving-induced term in the power spectrum of fluctuations of

the oscillator reads

ΦF(ω) =
1
2

Re
∫ ∞

0
dtei(ω−ωF )t

∫∫ 0

−∞
dτdτ ′eiωF (τ ′−τ)

×⟨χ1(t, t + τ)
[
χ1(0,τ ′)−⟨χ1(0,τ ′)⟩

]
⟩+Φ(2)

F (ω). (2.3)

This expression follows from Eqs. (2.1) and (2.2). The first term gives the contribution of the

fluctuations of the linear susceptibility. The second term gives the contribution from the nonlinear

susceptibility,

Φ(2)
F (ω) = Re

∫ ∞

0
dteiωt

∫∫ 0

−∞
dτdτ ′ cos[ωF(τ − τ ′)]

×
[
⟨χ2(t, t + τ, t + τ ′)q0(0)⟩+ ⟨q0(t)χ2(0,τ,τ ′)⟩

]
. (2.4)
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This term describes the correlation between fluctuations of the second-order susceptibility and ther-

mal fluctuations in the absence of periodic driving. We emphasize that, for a resonantly modulated

underdamped oscillator, it is pronounced at frequencies ω close to the driving frequency ωF , not

2ωF . Equation (2.4) describes, in particular, the contribution to the spectrum from the nonlinear

susceptibility of a nonlinear oscillator. It is especially convenient in the case of weak nonlinearity,

where the oscillator spectrum Φ0(ω) is broadened primarily by the decay rather than by frequency

fluctuations due to the interplay of the nonlinearity and the amplitude fluctuations. In this case the

term Φ(2)
F gives the main contribution to ΦF . The theory of a nonlinear oscillator will be discussed

in Chap. 3.

2.2.2 Spectrum of a driven harmonic oscillator with fluctuating frequency

For a harmonic oscillator with fluctuating frequency, ωosc(t) = ω0+ξ (t), where ξ (t) is zero-mean

noise. We assume that the noise is weak compared to ω0 and that its correlation time tc ≫ ω−1
0 .

The noise then does not cause parametric excitation of the oscillator [34, 35].

The most simple model of the oscillator dynamics is described by equation

q̈+2Γq̇+[ω2
0 +2ω0ξ (t)]q = F cosωF t + f (t), (2.5)

where f (t) is thermal noise and Γ = t−1
r is the relaxation rate. Both f (t) and the direct frequency

noise ξ (t) lead to fluctuations of the oscillator phase. Separating their contributions by measuring

the commonly used Allan variance (cf. [19]) is complicated. However, these two types of noise

have different physical origin, and our results show how they can be separated using the power

spectrum; a different approach, which however may not be implemented with a standard spectrum

analyzer, was proposed in [36].

The susceptibility of a linear underdamped oscillator with fluctuating frequency can be found

in a standard way by changing from the fast oscillating variables q, q̇ to slow complex oscillator

amplitude u(t) = [q(t)+(iωF)
−1q̇(t)]exp(−iωF t)/2. From Eq. (2.5), the equation for u(t) in the
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rotating wave approximation reads

u̇ =−[Γ+ iδωF − iξ (t)]u− i
F

4ω0
+ fu(t). (2.6)

Here, δωF = ωF −ω0 is the detuning of the driving frequency from the oscillator eigenfrequency;

fu(t) = [ f (t)/2iω0]exp(−iω0t). Equation (2.6) applies on the time scale that largely exceeds

ω−1
0 . On this scale fu(t) is δ -correlated even where in the lab frame the oscillator dynamics is

non-Markovian, cf [37]. Solving the linear equation (2.6), one immediately obtains the fluctuating

linear susceptibility of a damped harmonic oscillator,

χ1(t, t
′) =

i
2ω0

e
−(Γ+iω0)(t−t′)−i

∫ t
t′ dt′′ξ (t′′)

+ c.c. (2.7)

(χ2 = 0). Equation (2.7) often applies even where the oscillator dynamics in the lab frame is non-

Markovian. We disregard corrections ∼ |δωF |/ωF ; in particular in Eq. (2.6) for convenience we

replaced F/ωF with F/ω0; similarly, in the expression for fu we replaced f/ωF with f/ω0.

We note that the noise fu(t) drops out from the moments ⟨un(t)⟩ [36]. This can be used to char-

acterize the statistics of the frequency noise. Here we consider the change of the conventionally

measured characteristic, the power spectrum, and the extra spectral features related to the interplay

of the driving and frequency noise.

It is convenient to rewrite Eq. (2.3) for the spectrum ΦF(ω) near its maximum in the form

that explicitly takes into account that, when the expression for the susceptibility is substituted into

Eq. (2.3), the fast-oscillating terms in the integrands can be disregarded. This gives

ΦF(ω) = (8ω2
0 )

−1Re
∫ ∞

0
dt exp[i(ω −ωF)t]

×
∫ t

−∞
dt ′
∫ 0

−∞
dt′1
⟨
χsl(t, t

′)[χ∗
sl(0, t

′
1)−⟨χ∗

sl(0, t
′
1)⟩]
⟩
,

χsl(t, t
′) = e−(Γ−iδωF )(t−t′) exp

[
−i
∫ t

t′
dt′′ξ (t′′)

]
. (2.8)

Here, function χsl(t, t′) gives the slowly varying factor in the fast-oscillating time-dependent os-

cillator susceptibility χ1(t, t′). Function ⟨χsl(0, t)⟩ ≡ ⟨χsl(−t,0)⟩ gives the standard (average) sus-
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ceptibility

χ(ωF) =
∫ ∞

0
dteiωFt⟨χ1(t,0)⟩=

i
2ω0

∫ ∞

0
dt⟨χsl(t,0)⟩. (2.9)

The mean forced displacement of the oscillator in the linear response theory is

⟨q(t)⟩= 1
2

Fe−iωFt χ(ωF)+ c.c..

2.3 Oscillator power spectrum in the limiting cases

2.3.1 Weak frequency noise

Explicit expressions for ΦF(ω) can be obtained from Eq. (2.8) in the limiting cases. For weak

frequency noise, one can expand χsl in ξ (t). To the leading order, the spectrum ΦF is proportional

to the noise power spectrum Ξ(Ω) =
∫∞
−∞ dt⟨ξ (t)ξ (0)⟩exp(iΩt),

ΦF(ω)≈ 1
16ω2

0 [Γ
2 +(ωF −ω0)

2]

Ξ(ω −ωF)

Γ2 +(ω −ω0)
2 . (2.10)

This expression provides a direct means for measuring the frequency noise spectrum. It already

shows the peculiar features qualitatively discussed above. If Ξ(Ω) peaks at zero frequency and is

narrow on the scale Γ (as for 1/ f -type noise, for example), ΦF(ω) has a peak at ωF , cf. Fig. 2.1a.

The shape of this peak coincides with that of Ξ(Ω). If, on the other hand, Ξ(Ω) is almost flat

on the frequency scale Γ, |ωF −ω0| (broad-band noise), ΦF(ω) has a Lorentzian peak at ω0, cf.

Fig. 2.1b.

2.3.2 Narrow-band frequency noise

To describe the effect of a narrow-band, but not necessarily weak frequency noise, one can replace

ξ (t′′) in Eq. (2.8) with ξ (t). Then it follows from Eq. (2.9) that the susceptibility reads

χ(ωF) =
i

2ω0
⟨X(t)⟩, X(t) = [Γ− iδωF + iξ (t)]−1 . (2.11)
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whereas the expression for the driving-induced term in the power spectrum reads

ΦF(ω)≈ 1
8ω2

0
Re
∫ ∞

0
dtei(ω−ωF )t⟨X(t)[X∗(0)−⟨X∗(0)⟩]

⟩
. (2.12)

The quantity iX(t)/2ω0 corresponds to the “instantaneous" slowly fluctuating susceptibility. The

narrow spectrum ΦF(ω) is determined by the spectrum and statistics of the frequency noise. These

expressions can be used for numerical calculations if the statistics of the noise ξ (t) is known. The

simple relation (2.10) between ΦF(ω) and Ξ(ω) follows from this analysis for ⟨ξ 2⟩≪ Γ2+(ωF −

ω0)
2. Importantly, this condition can be achieved by tuning ωF somewhat away from ω0.

2.3.3 Broadband frequency noise

The case of flat Ξ(Ω), i.e., of ξ (t) being δ -correlated on time scale tr, can be analyzed for an

arbitrary noise strength using the characteristic functional of a δ -correlated noise is

P[k(t)] = ⟨exp[i
∫

dtk(t)ξ (t)]⟩= exp[−
∫

µ(k(t))dt],

where function µ(k) is determined by the noise statistics.

As seen from Eq. (2.8), function ⟨χsl(t, t′)⟩ is determined by P[k(t′′)] with k(t′′) = −1 if

t′ < t′′ < t and k(t) = 0 otherwise. For δ -correlated noise, where P[k(t)] = exp[−
∫

dt µ(k(t))],

taking into account that µ(0) = (dµ/dk)k=0 = 0 and µ(−k) = µ∗(k), we obtain

⟨χsl(t, t
′)⟩= exp

[
−(Γ− iδωF +µ∗(1)])(t − t′)

]
,

χ(ωF) = (i/2ω0)
[
Γ̃− i(ωF − ω̃0)

]−1 (2.13)

with Γ̃ = Γ+Re µ(1) and ω̃0 = ω0 − Im µ(1). Thus, frequency noise leads to the broadening of

the conventional susceptibility Re µ(1) and the effective shift of the oscillator eigenfrequency by

−Im µ(1). We note that the noise can be considered δ -correlated when its spectrum is flat not just

on the scale ≳ Γ, but on the scale ≳ Γ+Re µ(1), which itself depends on the noise intensity. At

the same time, the noise spectrum is assumed to be much narrower than ω0. As seen from Eq. (2.8)

the noise components oscillating at frequencies much higher than Γ+Re µ(1), |δωF | are averaged
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out; frequency noise with frequencies ∼ ω0 was disregarded in Eq. (2.6). When writing Eq. (2.6)

we also assumed that noise at frequencies close to 2ω0 ≈ 2ωF is very weak and can be disregarded.

If this were not the case, one would have to take into account the effects of nonlinear friction that

come from the coupling to the source of the noise, cf. [37].

Averaging the term ⟨χsl(t, t′)χ∗
sl(0, t

′
1)⟩ in Eq. (2.8) comes to calculating⟨

exp

[
−i
∫ t

t′
dt′′ξ (t′′)+ i

∫ 0

t′1
dt′′1 ξ (t′′1 )

]⟩

≡
⟨

exp
[

i
∫ ∞

−∞
dt2k(t2)ξ (t2)

]⟩
. (2.14)

Here t > 0 and −∞ < t′ ≤ t,−∞ < t′1 ≤ 0. Clearly, in this equation k(t2) = 0,±1. For t′ < 0 we

have k(t2) = sgn(t′− t′1) if min(t′, t′1)< t2 < max(t1, t′1) and k(t2) =−1 if 0 < t2 < t; for t′ > 0 we

have k(t2) = 1, if t′1 < t2 < 0 and k(t2) =−1, if t′ < t2 < t; otherwise k(t2) = 0. For a δ -correlated

noise the averaging using the explicit form of P[k(t)] and integration over t′, t′1, t gives

ΦF(ω) =
[Re µ(1)]/Γ

8ω2
0 [Γ̃

2 +(ωF − ω̃0)
2]

Γ̃
Γ̃2 +(ω − ω̃0)

2 . (2.15)

The spectrum (2.15) and the spectrum Φ0(ω) in the absence of periodic driving have the same

shape given by the last factor in (2.15): a Lorentzian centered at the noise-renormalized oscilla-

tor eigenfrequency ω̃0 = ω0 − Im µ(1) with halfwidth Γ̃ = Γ+Re µ(1). However, in contrast to

Φ0(ω), the area of F2ΦF(ω) is independent of the intensity (∝ kBT ) of the dissipation-related

noise. Instead it is proportional to the frequency-noise characteristic Re µ(1). Equation (2.15)

suggests how to separate the noise-induced broadening of the oscillator spectrum from the decay-

induced broadening, see below.

2.3.4 Gaussian frequency noise

For a stationary Gaussian noise the characteristic functional is expressed in terms of the noise

correlator [38],

P[k(t)] = exp
[
−1

2

∫
dt dt′ ⟨ξ (t)ξ (t′)⟩k(t)k(t′)

]
.
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Figure 2.2 The power spectrum of the oscillator with a Gaussian frequency noise with the spectrum
Ξ(Ω) = 2Dλ 2/(λ 2 +Ω2). The noise intensity is D/Γ = 2. Panels a and b: the full spectrum. The
color coding is the same as in Fig. 2.1, F2/16Γ2 = 20kBT . Panel c: the driving-induced term. The
solid lines and dots show the analytic theory and simulations; the consecutive curves are shifted by
0.25 along the ordinate.

If the correlator ⟨ξ (t)ξ (t′)⟩ or equivalently, the power spectrum Ξ(Ω), are known, using the values

of k(t) given below Eq. (2.14) one can perform the averaging in Eq. (2.8) and then perform integra-

tion over time to find the power spectrum ΦF . The results are shown in Fig. 2.2 for the noise power

spectrum with bandwidth λ , Ξ(Ω) = 2Dλ 2/(λ 2 +Ω2). They illustrate how the shape of ΦF(ω)

changes from a peak at ωF for a narrow-band noise (λ ≪ Γ) to a peak at ω0 for a broadband noise

(λ ≫ Γ). The overall area of the spectrum ΦF nonmonotonically depends on the frequency noise

intensity: it is linear in the noise intensity for weak noise, cf. Eq. (2.10), but for a large noise

intensity it decreases, since the decoherence rate of the oscillator increases.

2.3.5 The weak-noise condition

In the limit of weak slow noise, ⟨ξ 2(t)⟩ ≪ |Γ− iδωF |2, Eq. (2.12) goes over into the result for

such noise obtained above; note that in Eq. (2.10) one should replace ω −ω0 with ωF −ω0 in the

slow-noise limit, since function Ξ(Ω) is concentrated in the range of small Ω ≪ Γ. For the broad-
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band noise, on the other hand, the weak-noise limit discussed above corresponds to |µ(1)| ≪ Γ. In

this case the noise power spectrum is flat and Ξ(Ω) = (d2µ/dk2)k=0 ∼ |µ(1)| ≪ Γ. Generally, the

weak noise condition used to obtain Eq. (2.10) certainly holds for maxΞ(Ω)≪ Γ. It is important

that, for slow noise, the condition is less stringent and can be met by increasing the detuning |δωF |,

allowing one to read the slow-noise power spectrum directly off the oscillator power spectrum.

2.3.6 Susceptibility with weakly fluctuating frequency

Both the standard susceptibility χ(ω) and the power spectrum in the absence of driving Φ0(ω) are

affected by frequency noise. In the considered case they are related by the fluctuation-dissipation

relation, Φ0(ω) = (2kBT/ω)Im χ(ω). For a non-white frequency noise the spectrum Φ0(ω)

becomes non-Lorentzian.

The explicit expressions for the susceptibility in the limiting cases of fast and slow frequency

noise were given above, Eqs. (2.13) and (2.11). A simple explicit expression for χ(ω) follows

from Eqs. (2.8) and (2.9) also in the case of weak noise. Here, the susceptibility becomes

χ(ω)≈ i
2ω0(Γ− iδω)

[
1−

∫ dΩ
2π(Γ− iδω)

Ξ(Ω)

Γ− iδω − iΩ

]
, (2.16)

where Ξ(Ω) is the frequency noise power spectrum and δω = ω −ω0. Importantly, the noise-

induced correction just slightly distorts the susceptibility. For example, a sharp low-frequency

peak of Ξ(Ω) does not lead to a narrow peak in χ(ω) and, respectively, in the power spectrum

Φ0(ω). This should be contrasted with the narrow peak in ΦF(ω), which emerges in this case.

2.4 The area of the driving-induced spectral peak

We now consider the area SF of the driving induced spectral peak for ω close to ω0,ωF ; note

that this peak may have several maxima, as seen from Fig. 2.2. We define the area as an integral

over positive frequencies, SF =
∫∞

0 dω ΦF(ω). Keeping in mind that ΦF(ω) is small for large
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|ω −ωF | ∼ ωF [in fact, Eq. (2.8) does not apply for such ω], we obtain

SF =
π

8ω2
0

∫∫ 0

−∞
dt dt ′⟨χsl(0, t)χ∗

sl(0, t
′)⟩− π

8ω2
0

∣∣∣∣∫ 0

−∞
dt ⟨χsl(0, t)⟩

∣∣∣∣2 . (2.17)

This expression describes the dependence of the area of the driving-induced spectrum on the pa-

rameters and statistics of the frequency noise.

From Eq. (2.17), the area SF becomes zero in the absence of frequency noise, since ⟨χsl(t, t′)⟩=

χsl(t, t′) in this case. The area SF linearly increases with the frequency noise intensity for weak

noise, as seen from Eq. (2.10).

An explicit expression for SF can be obtained for white frequency noise. From Eq. (2.15),

SF =
π

8Γω2
0

Re µ(1)
|Γ+ i(ωF −ω0)+µ(1)|2

. (2.18)

From Eq. (2.18), SF linearly increases with the characteristic noise strength Re µ(1) where it

is small, but once the noise becomes strong, SF decreases with increasing |µ(1)|, with SF ∝

Re µ(1)/|µ(1)|2 for |µ(1)| ≫ Γ, |ωF −ω0|.

For weak narrow-band frequency noise, from Eq. (2.10) one obtains SF in terms of the noise

variance ⟨ξ 2(t)⟩ as

SF =
π

8ω2
0

⟨ξ 2(t)⟩
[Γ2 +(ωF −ω0)

2]2
.

An explicit expression for SF can be obtained also for a strong Gaussian noise. We will assume

that the noise correlator ⟨ξ (t)ξ (0)⟩ is not fast oscillating and, respectively, the noise spectrum

Ξ(Ω) does not have narrow peaks or dips. For the noise variance ⟨ξ 2(t)⟩ much larger than Γ2,δω2
F ,

and the squared reciprocal noise correlation time t−2
c , from Eq. (2.17)

SF ≈ π2

8Γω2
0
[2π⟨ξ 2(t)⟩]−1/2. (2.19)

The variation of SF with the varying frequency-noise intensity and bandwidth is shown in

Fig. 2.3, which refers to the exponentially correlated Gaussian noise. As seen from this figure, SF

displays a maximum as a function of the noise intensity D. The dependence on the noise bandwidth

λ is more complicated; SF can have two maxima as a function of λ for sufficiently strong noise

intensity.
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Figure 2.3 The scaled area S̃F = 8Γ2ω2
0 SF of the driving-induced peak in the oscillator power

spectrum as a function of the frequency noise parameters. The data refer to Gaussian frequency
noise with the power spectrum Ξ(Ω) = 2Dλ 2/(λ 2 +Ω2).

2.4.1 Scaling of the driving-induced power spectrum

A convenient scaling factor for the distribution ΦF(ω) and for the area SF is provided by the area

Sδ of the δ -peak in the oscillator power spectrum at the driving frequency. As seen from Eq. 2.2,

Sδ = (π/2)|χ(ωF)|2. If χ(ωF) is known from the measured power spectrum in the absence of

driving with the invoked fluctuation-dissipation theorem, scaling by Sδ allows one to avoid the

actual measurement of the force F , which requires knowledge of the coupling to the driving field.

The expression for Sδ simplifies if the frequency noise can be thought of as a sum of a weak

narrow-band noise ξnb(t) and a broad-band (δ -correlated in slow time) noise ξbb(t), which is

not weak, generally, and is statistically independent from the narrrow-band noise. In this case,

combining Eqs. (2.13) and (2.11) and expanding to the leading order in the weak narrow-band

noise, we obtain,

Sδ ≈ π
8ω2

0
[Γ̃2 +(ωF − ω̃0)

2]−1

×

[
1− Γ̃2 − (ωF − ω̃0)

2

π[Γ̃2 +(ωF − ω̃0)
2]2

∫
dω Ξnb(ω)

]
. (2.20)

Here, Ξnb(ω) is the power spectrum of the narrow-band noise; the variance of the narrow-band

noise is ⟨ξ 2
nb(t)⟩= (2π)−1 ∫ dω Ξnb(ω).

18



For not weak narrowband frequency noise, one has generally,

Sδ =
π

8ω2
0
|⟨[Γ̃+ i(ωF − ω̃0 −ξnb(t))]

−1⟩nb|2 (2.21)

where ⟨..⟩nb indicates averaging over the narrow-band frequency noise.

The correction that contains Ξnb can be directly read off the area of the narrow peak Φ(nb)
F (ω)

in the spectrum ΦF(ω), which is due to the narrow-band noise. For weak narrow-band noise,

this peak is described by Eq. (2.10) if one replaces in this equation Γ with Γ̃, ω0 with ω̃0, and

Ξ(ω) with Ξnb(ω). This can be seen from Eq. (2.8). Indeed, in the expression for χsl(t, t′) in

Eq. (2.8) one can write
∫ t
t′ dt′′ξnb(t′′) ≈ ξnb(t)(t − t′). To find Φ(nb)

F (ω), one should integrate

over the range of t given by the reciprocal bandwidth of the narrow-band noise. Since it largely

exceeds 1/Γ, the contributions of the broad-band noise to χsl(t, t′) and χsl(0, t′1) are statistically

independent. Therefore the averaging over the broad-band noise in these susceptibilities can be

done independently. If this averaging is denoted by ⟨·⟩bb,

⟨χsl(t, t
′)χ∗

sl(0, t
′
1)⟩bb ≈ ⟨χsl(t, t

′)⟩bb⟨χ∗
sl(0, t

′
1)⟩bb

for Γt ≫ 1. Here

⟨χsl(t, t
′)⟩bb ≈ e

−
[
Γ̃−i
(

ωF−ω̃0−ξnb(t)
)]

(t−t′)
.

Since function Ξnb(ω) quickly falls off with increasing |ω |, in the denominator of Eq. (2.10)

one can replace ω with ωF . One then sees that, to the leading order in the narrow-band noise

strength, the ratio of the area Snb of the narrow peak Φ(nb)
F (ω) to the area of the δ -peak in the

spectrum is

Snb
Sδ

≈ 1
2π

1
Γ̃2 +(ωF − ω̃0)

2

∫
dω Ξnb(ω). (2.22)

For not weak narrow-band noise, it follows from Eq. (2.17) that,

Snb =
π

8ω2
0
⟨[Γ̃2 +(ωF − ω̃0 −ξnb(t))

2]−1⟩nb −Sδ (2.23)

where Sδ is given by Eq. (2.21).
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Equations (2.20) and (2.22) can be used to scale the area of the broader peak of ΦF(ω) by Sδ

with account taken of the effect of the narrow-band frequency noise. Along with the onset of a

narrow peak in ΦF , this noise leads to the change of the shape and area of the broad peak. To find

the area of the broad peak Φ(bb)
F (ω), one need to integrate over the range of time t given by 1/Γ̃ in

Eq. (2.8). During this period of time, the narrow band frequency noise stays almost constant, that is,

ξnb(t)≈ ξnb(0). Then the one can simply replace δωF with δωF −ξnb(t) in Eq. (2.8) for χsl(t, t′).

The result is particularly simple in the considered case here where the broad-band frequency noise

is δ -correlated in slow time and the broad peak of ΦF(ω) is described by Eq. (2.15). One just has

to replace in this equations ω̃0 with ω̃0+ξnb(t), then averaging the expression over the distribution

of ξnb(t). To the second order in the ξnb(t), the area of the broader peak is given by,

Sbb ≈ π
8ω2

0

Re µ(1)/Γ
[Γ̃+(ωF − ω̃0)]

2

×

[
1− Γ̃2 −3(ωF − ω̃0)

2)

2π[Γ̃2 +(ωF − ω̃0)
2]2

∫
dω Ξnb(ω)

]
. (2.24)

For not weak narrowband noise, one has

Sbb =
π

8Γω2
0
⟨ Re µ(1)
|Γ+ i(ωF −ω0 −ξnb(t))+µ(1)|2

⟩nb. (2.25)

One immediately sees from Eq. (2.23) and Eq. (2.25) that,

Γ̃/Γ = 1+Sbb/(Snb +Sδ ). (2.26)

When the narrow-band frequency noise is weak, the width of the broad peak is determined by

primarily the broadband noise, that is, it is close to a Lorentzian with halfwdith Γ̃. One can then

use the above equation to extract the spectral broadening due to broadband frequency noise.

2.5 Experiments on carbon nanotube vibrational system

To corroborate the theory, Moser et al. [11] measured the spectrum of a modulated carbon nanotube

resonator. The device consists of a carbon nanotube contacted by source and drain electrodes and
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suspended over a gate electrode, see Fig. 2.4. The vibrational mode under study is a flexural mode

as indicated in the lower panel of the Fig. 2.4. Details of the fabrication and the geometry of

the device can be found in Ref. [39]. The measurement was performed at T = 1.2K. For such

T and weak driving, low-lying flexural modes of the resonator are well described by harmonic

oscillators. The driving was applied as an ac voltage δVg on the gate electrode, and the power

spectrum of the mechanical vibrations was probed by measuring the noise in the current flowing

through the nanotube.

Figure 2.4 AFM image of a 4-µm-long nanotube before removing the silicon oxide (top) and
schematic of the device (bottom).

Fig. 2.5 compares the power spectra of the nanotube vibrations obtained with and without

the oscillating force. The spectrum without modulation (blue trace) is close to a Lorentzian, as

expected for thermal vibrations. The spectrum with modulation (green trace) displays a narrow

peak centered at the modulation frequency and a much broader peak of the same shape as the

spectrum without modulation. The areas of the both modulation-induced parts of the spectrum

scale as δV 2
g (Fig. 2.5b, c), in agreement with Eq. (2). The separation between the parts is subject

to some uncertainty because of the measurement noise in Fig. 2.5a. The resulting uncertainty in

the slopes in Fig. 2.5b, c is ≲ 10%. The change of the spectrum is not a heating effect associated

with the modulation, since we estimate temperature increases as ≲ 10−8 K. The spectral feature at

ωF is not related to the phase noise of the source used for the modulation; indeed, the phase noise

of our source ≈ 10 Hz away from ωF could only account for ≈ 0.01 % of the measured power

spectrum.
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Figure 2.5 (a) The power spectrum of the fluctuating current δ I(t) through a driven carbon nan-
otube. The measurement bandwidth is 4.7 Hz. The eigenfrequency of the studied flexural mode
is 6.3 MHz. The driving frequency is 100 Hz below the resonance frequency. The blue line refers
to the power spectrum without driving; the green area shows the driving-induced spectral change.
This change is separated into the broad peak (darker green), narrow peak (lighter green), and a
delta-spike at the modulation frequency. This spike lies within 3 bins, within our experimental
resolution, and is represented by the black vertical lines. The separation of the broad and narrow
peaks is done by the straight line that interpolates the broad peak. Shown in the lower panels is the
dependence of the lighter green area (b), the darker green area (c), and the area under the δ -peak
(d) on the squared amplitude of the modulating gate voltage; as expected from the theory, it is close
to linear.

The driving-induced spectral change provides a simple means for estimating the intrinsic relax-

ation rate of the resonator Γ from our experimental data. This can be done using the areas F2Snb

and F2Sbb of the narrow and broad peaks in Fig. 2.5, respectively. Comparing them to the area

under the driving-induced δ -peak F2Sδ , we eliminate F and obtain from Eq. (2.26)

Γ̃/Γ ≈ 1+(Sbb/Sδ ) [1− (Snb/Sδ )] ; (2.27)

we used Snb ≪ Sδ . With Γ̃/(2π)≃ 230 Hz read out from the collected spectra (such as the one in

Fig. 2.5a), along with Sbb/Sδ and Snb/Sδ measured from Figs. 2.5b-d, we obtain Γ̃/Γ≃ 2.1, which
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gives Γ/(2π)≃ 110 Hz. Therefore, the broad-band fluctuations of the resonant frequency account

for ≳ 50% of the measured mechanical linewidth. Because of the noise in the measurement in

Fig. 2.5a, the uncertainty in Γ is ≲ 10%.

The narrow-band frequency noise can also be characterized from the measurements. Since the

narrow-band frequency noise in the nanotube is comparatively weak, one can interpret the results

using the weak-noise expression for the spectrum Eq. (2.10). Then the shape of the resonator spec-

trum gives the shape of the noise power spectrum. Figure 2.6 shows the narrowband frequency

noise spectrum obtained by subtracting the broad part of the resonator spectrum from whole spec-

trum as shown in Fig. 2.5a. The spectrum is of 1/ f α type. The data indicate that α is close to

1/2. Obtaining the power spectra ΦF for several values of ωF −ω0 should allow separating the

low-frequency part of the frequency noise spectrum Ξ(ω) even where it is not weaker than the

broad-band part, and reading it directly off the data on the power spectrum using Eq. (2.10).

Figure 2.6 Narrow band frequency noise spectrum. It is obtained by fitting the broad part
⟨δ I2⟩broad(ω) of the experimental spectrum in Fig. 2.5a to a Lorentzian, and then by subtracting
this fit from the experimental spectrum. The red line is a fit to 1/ f 1/2, where f = |ω −ωF |/2π .

2.6 Conclusion

The above results show that the interplay of driving and frequency noise qualitatively changes

oscillator spectra compared to the spectra with no frequency fluctuations [10]. The change sensi-

tively depends on the frequency noise intensity and power spectrum. The possibility to separate
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contributions from different parts of the frequency-noise spectrum is of significant interest, as they

may come from physically different sources, like two-level fluctuators and dispersive coupling to

other modes, to mention but a few.

The results suggest a way of discriminating between two major factors of the broadening of the

oscillator spectra: decay (energy relaxation), frequency fluctuations induced directly by the noise

that modulates the eigenfrequency. For linear oscillators, our simple procedure yields the decay

rate without the need of an actual ring-down measurement that is often difficult to implement, in

particular for nanotube mechanical resonators.

The analysis of driven linear oscillators with a fluctuating frequency immediately extends to the

quantum regime, which is attracting much interest in nano- and optomechanics [2, 40, 41, 42, 43,

32]. For nonlinear oscillators, the nonequidistance of the energy levels can bring in new features

compared to the classical limit.
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CHAPTER 3

SPECTRAL EFFECTS OF DISPERSIVE MODE COUPLING IN MESOSCOPIC
SYSTEMS

3.1 Introduction

Mesoscopic vibrational systems typically have several nonlinearly coupled modes. These can be

flexural, torsional, or acoustic modes in the case of nanomechanical resonators[6, 44, 45, 46, 47, 48,

49, 7], photon and phonon modes in optomechanics[50, 51, 2, 52, 53, 54], or modes of microwave

cavities in circuit quantum electrodynamical systems[13]. Often different modes have significantly

different frequencies, so that the interaction between them is primarily dispersive. A major effect

of such interaction is that the frequency of one mode depends on the amplitude of the other mode.

The related shift of the mode frequency provides a means of characterizing the coupling strength

where both modes can be accessed, cf. Refs. [45, 55, 49, 56] and can be used for quantum

nondemolition measurements of the oscillator Fock states.[57, 58]

In many mesoscopic systems only one or a few modes can be directly accessed and controlled.

The presence of dispersive coupling to other modes and the strength of this coupling have to be

inferred from the data on the accessible modes. To the best of our knowledge, there have been no

generally accepted means of doing this.

An important consequence of dispersive coupling is that amplitude fluctuations of one mode

lead to frequency fluctuations of the other mode [37]. The amplitude fluctuations come from the

coupling to a thermal reservoir, but they can also be of nonthermal origin. The mode-coupling

induced frequency fluctuations broaden the spectrum of the response to an external force and the

power spectrum. Such broadening has been suggested as a major broadening mechanism for flex-

ural modes in carbon nanotubes [6], graphene sheets[7], doubly clamped beams[55, 49] as well as

microcantilevers.[56]
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Separating the mode-coupling induced fluctuations from other spectral broadening mechanisms

is nontrivial, see Ref. [5] for a recent review of the broadening mechanisms. The most familiar

broadening mechanism is vibration decay due to energy dissipation. Another mechanism of in-

terest for the present chapter is internal vibration nonlinearity. Because of such nonlinearity, the

frequency of a vibrational mode depends on the mode amplitude and thermal fluctuations of the

amplitude lead to frequency fluctuations. This is reminiscent of the mode-coupling effect, yet the

nonlinearity is different. We show below how the two nonlinearity mechanisms can be clearly

distinguished.

In this chapter, we propose a means for identifying and characterizing the mode-coupling in-

duced frequency fluctuations. The approach is based on studying the change of the power spectrum

of the considered mode, which is due to an additionally applied periodic driving. The approach

does not require access to other modes, in contrast to Refs. [45, 55, 49, 56], for example. It relies

on the fact that, quite generally, frequency fluctuations lead to the features in the power spectrum

of a periodically driven mode, which do not occur without such fluctuations, see Chap. 2. If one

thinks of the driven mode as a charged oscillator in a stationary radiation field, these features cor-

respond to fluorescence and quasi-elastic light scattering. The absence of these effects in the case

of a periodically driven linear oscillator with constant frequency is a textbook result.[17, 18, 10]

The analysis of the power spectra of driven modes with fluctuating frequency in Chap. 2 was

phenomenological. The results were obtained in several limiting cases and in the case of Gaussian

fluctuations. The dispersive mode coupling studied here leads to strongly non-Gaussian frequency

fluctuations. The simplest type of such coupling corresponds to the coupling energy ∝ q2q2
d , where

q is the coordinate of the considered driven mode and qd is the coordinate of the mode to which it

is dispersively coupled and which we call the d-mode. Where the modes are far from resonance,

the frequency change of the considered mode is proportional to the period-average value of q2
d ,

i.e., to the squared amplitude of qd(t). Even where qd(t) is Gaussian, as in the case of thermal

displacement of a linear mode,[18] the squared displacement q2
d(t) is not.

The features of the spectra related to the dispersive-coupling induced frequency fluctuations
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depend on the interrelation between three parameters. These are the typical magnitude of the

frequency fluctuations ∆ω , their reciprocal correlation time Γd , and the decay rate of the considered

mode Γ. We assume that all these parameters are small compared to the mode eigenfrequencies

and their difference.

In the absence of driving, the power spectrum and the linear response spectrum of the consid-

ered mode have the form of a convolution of the spectrum calculated without dispersive coupling

and a function that depends on the parameter αd = ∆ω/Γd . [59] We call αd the motional narrow-

ing parameter to draw the similarity (although somewhat indirect) with the motional narrowing

effect in nuclear magnetic resonance (NMR).[60, 61] For αd ≪ 1 the correlation time of the fre-

quency fluctuations is comparatively small. Then the fluctuations are averaged out and their effect

is small, as in the case of fast decay of correlations in NMR. On the other hand, for αd ≫ 1, the

spectrum can be thought of as a superposition of partial spectra, each for a given value of the am-

plitude of qd(t). The weight of the partial spectrum is determined by the probability distribution

of this amplitude.

In the presence of driving, the situation is different. The first distinction is that, without the

dispersive coupling, there is no driving-induced part of the power spectrum at all, except for the

trivial δ -peak at the driving frequency. Based on the previous results in Chap. 2, we expect that the

driving-induced part of the spectrum will strongly depend on the interrelation between the rates

Γ and Γd . It is clear that it will also strongly depend on αd , but this dependence is not known in

advance.

The formulation below is in the classical terms. However, as we explain, the results fully

apply also to the case where the considered driven mode is quantum, i.e., its energy level spacing

is comparable or exceeds the temperature. At the same time, it is essential that the d-mode is

classical. The case of the deeply quantum regime of the d-mode is in a way simpler. In this

case, the power spectrum of the considered mode without driving can have a pronounced fine

structure, with different lines corresponding to different occupation numbers of the d-mode.[37]

This is similar to the spectrum of a two-level system dispersively coupled to a quantum vibrational
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mode[62, 63], where the fine structure has been seen in the experiment.[12]

3.1.1 The structure of the chapter

An important part of the chapter is the averaging over the fluctuations of the d-mode. This is an

interesting theoretical problem, with direct relevance to the experiment. It involves an explicit

calculation of the appropriate path integral. The calculation is presented in Secs. 3.4 and 3.5.

These sections as well as Sec. 3.3.1 can be skipped if one is interested primarily in the predictions

for the experiment. Below in Sec. 3.2 we give a general expression for the power spectrum of a

mode driven by an external field, which applies where the field is comparatively weak, so that the

internal nonlinearity of the mode remains small. The effect of the field is most pronounced where

it is close to resonance. In Sec. 3.3 we derive equations of motion for weakly damped dispersively

coupled modes in the rotating wave approximation. Section 3.6 provides the explicit analytical

expressions for the driving-induced part of the power spectrum in the limiting cases, which refer

to the fast or slow relaxation of the d-mode compared to the relaxation of the driven mode and also

to the large or small frequency shift due to the dispersive coupling compared to the relaxation rate

of the d-mode. This section also presents results of numerical calculations of the spectra, which

are compared with the results of simulations. The last part of the section describes the dependence

of the area of the driving-induced peak on the dispersive coupling parameters. Section 3.7 extends

the results to dispersive coupling to several modes. In particular, we consider the cumulative effect

of dispersive coupling to many, but not too many modes, which may become strong even where the

coupling to each of the modes is weak. Section 3.8 describes the driving-induced part of the power

spectrum for a nonlinear oscillator, where the fluctuations of the oscillator frequency are due not

to dispersive coupling but to the internal nonlinearity. The last section provides a summary of the

results. The transfer-matrix method used to perform the averaging over the dispersive-coupling

induced fluctuations and an outline of an alternative derivation of the major result are given in the

appendices.
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3.2 Driving-induced part of the power spectrum

Frequency fluctuations render the mode response to driving random. Generally, the response is

nonlinear in the driving strength. Respectively, even for sinusoidal driving, the mode power spec-

trum Φ(ω) is a complicated function of the driving amplitude F and frequency ωF . The conven-

tional way of measuring the power spectrum of a driven system with coordinate q corresponds to

the definition

Φ(ω) = 2Re
∫ ∞

0
dteiωt⟨⟨q(t + t′)q(t′)⟩⟩,

where ⟨⟨·⟩⟩ indicates statistical averaging and averaging with respect to t′ over the driving period

2π/ωF (sometimes the power spectrum is also defined as Φ(ω)/2π). If the driving is weak, one

can keep in Φ(ω) only the terms quadratic in F ,

Φ(ω)≈ Φ0(ω)+
π
2

F2|χ(ωF)|2δ (ω −ωF)+F2ΦF(ω). (3.1)

Here, Φ0 is the power spectrum in the absence of driving. For the considered underdamped

mode, it is a resonant peak at the mode eigenfrequency ω0, which is due to thermal vibrations;

the width of the peak is small compared to ω0. Function χ(ω) is the mode susceptibility, Φ0(ω) =

(2kBT/ω0)Im χ(ω) in the classical limit. The term ∝ |χ(ωF)|2 describes the contribution of

stationary forced vibrations at frequency ωF .

Of utmost interest to us is the last term in Eq. (3.1), ΦF(ω). For a linear oscillator with

non-fluctuating frequency, this term is equal to zero. Indeed, the motion of such oscillator is a

superposition of thermal vibrations and forced vibrations at frequency ωF , which are uncoupled.

Frequency fluctuations affect both thermal vibrations, leading to spectral broadening, and forced

vibrations. The latter effect is particularly easy to understand in the case of slow frequency fluc-

tuations. Here, one can think of the amplitude and phase of forced vibrations as being determined

by the detuning of the instantaneous mode frequency from the driving frequency. Therefore they

fluctuate in time, which leads to the onset of a “pedestal" of the δ -peak at ω = ωF in Eq. (3.1).

Some other limiting cases have been considered earlier in Chap. 2.
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3.3 Equations of motion for the slow variables

We will consider the power spectrum Φ(ω) in the case where the mode of interest is dispersively

coupled to another mode (mode d). The modes are weakly coupled to a thermal reservoir, so that

their decay rates are small. The mode of interest is driven by a periodic field F cosωF t. The

Hamiltonian of the system is

H = H0 +Hb +Hi, H0 =
1
2
(p2 +ω2

0 q2)+
1
4

γq4

+
1
2
(p2

d +ω2
d q2

d)+
3
4

γdq2q2
d −qF cosωF t. (3.2)

Here, p and pd are the momenta of the considered mode and the d-mode, respectively, ω0 and ωd

are the mode eigenfrequencies, γ is the parameter of the intrinsic nonlinearity of the considered

mode, and γd is the dispersive coupling parameter. We do not incorporate the intrinsic nonlinearity

of the d-mode, as it will not affect the results if it is small, see below.

The term Hb is the Hamiltonian of the thermal bath (each mode can have its own bath, but we

assume that in this case the baths have the same temperature), whereas Hi describes the modes-

to-bath coupling. We assume the coupling to be linear in the modes coordinates, Hi = qh+qdhd ,

where h and hd are functions of the dynamical variables of the bath. Such coupling is the dominant

mechanism of relaxation for small mode displacements and velocities. For Hi of this form, the

decay rate of the considered mode is[64, 65]

Γ ≡ Γ(ω0) = h̄−2Re
∫ ∞

0
dt⟨[h(0)(t),h(0)(0)]⟩eiω0t , (3.3)

where h(0) is function h calculated in the neglect of the mode-bath coupling. The expression for

the decay rate Γd of the d-mode is similar to Eq. (3.3), with h(0) replaced with h(0)d and ω0 replaced

with ωd . Parameters Γ,Γd correspond to friction coefficients in the phenomenological description

of the mode dynamics

q̈+∂qH0 =−2Γq̇−h(0)(t). (3.4)

The analysis below refers to slowly varying amplitudes and phases of the modes and applies even

where the above phenomenological description does not apply.[64, 65, 37]
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In what follows we assume that the modes are underdamped, the nonlinearity is weak, and the

driving frequency is close to resonance,

Γ,Γd ,
|γ|⟨q2⟩

ω0
,
|γd |⟨q2

d⟩
ω0

, |ω0 −ωF | ≪ ω0,ωd , |ω0 −ωd |. (3.5)

The condition on γ,γd means that the change of the mode frequencies due to the nonlinearity is

small compared to the eigenfrequency. However, it does not mean that the effect of the nonlinearity

is small, as the frequency change has to be compared with the frequency uncertainty due to the

decay Γ,Γd . We assume that the nonlinear change of the d-mode frequency, which comes from

the dispersive coupling and the internal nonlinearity of the d-mode, is also small compared to ωd .

3.3.1 Stochastic equations for slow variables

Where conditions (3.5) apply, the motion of the underdamped modes presents almost sinusoidal

vibrations with slowly varying amplitudes and phases. It can be described by the standard method

of averaging, which is similar to the rotating wave approximation in quantum optics. To this end,

we change to complex variables

u(t) =
1
2
[q(t)+(iωF)

−1q̇(t)]exp(−iωF t) (3.6)

and similarly ud(t) =
1
2 [qd(t)+ (iωd)

−1q̇d(t)]exp(−iωdt). Disregarding fast oscillating terms in

the equation for u(t), we obtain

u̇ =−[Γ+ iδωF − iξ (t)]u− i
F

4ω0
+ f (t),

δωF = ωF −ω0, ξ (t) =
3γ

2ω0
|u(t)|2 + 3γd

2ω0
|ud(t)|2, (3.7)

where f (t) =−(2iω0)
−1h(0)(t)exp(−iωF t). Similarly, the equation for ud(t) reads

u̇d =−
[

Γd − i
3γd
2ωd

|u(t)|2)
]

ud + fd(t), (3.8)

with fd(t) =−(2iωd)
−1h(0)d (t)exp(−iωdt).
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Functions f , fd describe the forces on the modes from the thermal bath. The forces are random,

and one can always choose ⟨ f ⟩ = ⟨ fd⟩ = 0. Asymptotically, they are delta-correlated Gaussian

noises,

⟨ f (t) f ∗(t′)⟩= (ΓkBT/ω2
0 )δ (t − t′),

⟨ fd(t) f ∗d (t
′)⟩= (ΓdkBT/ω2

d )δ (t − t′); (3.9)

all other correlators vanish. The δ -functions here are δ -functions in “slow" time compared to

ω−1
0 ,ω−1

d , and the correlation time of the thermal bath. The stochastic differential equations

(3.7) and (3.8) are understood in the Stratonovich sense: ⟨u(t) f ∗(t)⟩= ΓkBT/2ω2
0 ,⟨ud(t) f ∗d (t)⟩=

ΓdkBT/2ω2
d . These equations were obtained and their range of applicability established for a har-

monic oscillator coupled to a bath,[64, 65] but they also hold for a weakly anharmonic oscillator.[37]

As seen from the definition of the complex amplitude u(t), function ξ (t) in Eq. (3.7) describes a

change of the frequency of the considered mode due to the intrinsic nonlinearity and the dispersive

coupling. Because of the noise terms f , fd , the frequency becomes a random function of time. The

related frequency noise is of primary interest for this chapter.

3.4 The driving-induced spectrum ΦF(ω) for dispersive coupling

In this and the two following sections we will study the spectrum ΦF(ω) in the case where the

internal nonlinearity of the mode can be disregarded, i.e., one can set γ = 0. In this case frequency

fluctuations ξ (t) ∝ |ud(t)|2 in Eq. (3.7) are due only to the dispersive nonlinear mode coupling.

An important feature of this coupling is that it does not affect the frequency noise ξ (t) itself, as

essentially was noticed earlier.[59] In other words, fluctuations of |ud(t)|2 are the same as if the

d-mode were just a linear oscillator uncoupled from the considered mode.

The simplest way to see this is to change in the equation of motion (3.8) from ud(t) to ũd(t) =

K(t)ud(t) with K(t) = exp[−3i(γd/2ωd)
∫ t dt′|u(t′)|2]. The Langevin equation for ũd is ˙̃ud =

−Γd ũd + f̃d(t) with f̃d(t) = K(t) fd(t). From Eq. (3.9), the noise f̃d(t) has the same correlation
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functions as fd(t). Therefore the term ∝ γd drops out of the equation for ũd . Since |ud |2 = |ũd |2,

the term ∝ γd does not affect |ud(t)|2 either [even though it does affect ud(t)].

It is convenient to write ξ (t) in terms of the scaled real and imaginary part of

ũd = (2ω0/3|γd |)1/2(Qd + iPd).

Functions Qd ,Pd are the scaled quadratures of a damped harmonic oscillator. They are described

by the independent exponentially correlated Gaussian noises (the Ornstein-Uhlenbeck noises)[66].

Using the Langevin equation for ũd , we obtain

⟨Qd(t)Qd(0)⟩= ⟨Pd(t)Pd(0)⟩= αdΓd exp(−Γd |t|),

αd = 3|γd |kBT/8ω0ω2
d Γd ,

ξ (t) = [Q2
d(t)+P2

d (t)]sgnγd . (3.10)

The frequency noise of the driven mode ξ (t) is non-Gaussian. Parameter αd characterizes the

ratio of the standard deviation of the noise, which is equal to the noise mean value ⟨ξ (t)⟩ =

3γdkBT/4ω0ω2
d , to its correlation rate Γd .

Since ξ (t) is independent of u(t), the Langevin equation for u(t) (3.7) is linear. Its solution

reads

u(t) =
∫ t

−∞
dt′χ∗

sl(t, t
′)[(−iF/4ω0)+ f (t′)],

χsl(t, t
′) = e−(Γ−iδωF )(t−t′) exp

[
−i
∫ t

t′
dt′′ξ (t′′)

]
. (3.11)

Function χsl(t, t′) describes the response of the considered driven mode to a resonant perturbation.

The coefficient at F averaged over realizations of ξ (t) gives the resonant susceptibility of the mode,

χ(ωF) =
i

2ω0

∫ ∞

0
dt⟨χsl(t,0)⟩. (3.12)

It determines the δ -peak in the power spectrum (3.1). From Eq. (3.11), the term ΦF(ω) in Eq. (3.1)
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for the power spectrum has the form

ΦF(ω) = (8ω2
0 )

−1ℜ
∫ ∞

0
dt exp[i(ω −ωF)t]

×
[∫ t

−∞
dt′
∫ 0

−∞
dt′1⟨χsl(t, t

′)χ∗
sl(0, t

′
1)⟩−4ω2

0 |χ(ωF)|2
]

(3.13)

(in the integral over t it is implied that Im ω →+0).

The term ∝ f (t′) in Eq. (3.11) determines the power spectrum of the mode Φ0(ω) near its

maximum, |ω −ω0| ≪ ω0, in the absence of driving. Thus, Eqs. (3.11) - (3.13) give a general

expression for the power spectrum of an underdamped mode with fluctuating frequency in the

absence of internal nonlinearity.

3.5 Averaging over the frequency noise for dispersive coupling

To find the driving-induced part of the power spectrum F2ΦF(ω), one has to perform averaging

over fluctuations of ξ (t) in Eq. (3.13). This calculation is the central theoretical part of the chapter.

In what follows we outline the critical steps that are involved.

The integrand in the expression for ΦF(ω) can be written as

⟨χsl(t, t
′)χ∗

sl(0, t
′
1)⟩= e−(Γ−iδωF )(t−t′)+(Γ+iδωF )t′1

×G2(t, t′, t′1), G2(t, t′, t′1) = ⟨e−iϕξ (t,t
′)+iϕξ (0,t

′
1)⟩,

ϕξ (t, t
′) =

∫ t

t′
dt′′ξ (t′′). (3.14)

Here, ϕξ (t, t
′) is the increment of the phase of the oscillator over the time interval (t′, t) due to the

frequency noise ξ (t). Function G describes the result of the averaging over the noise.

Expression (3.14) can be slightly simplified using the relation (3.10) between ξ (t) and the

quadratures Qd and Pd . These quadratures are statistically independent, and therefore averaging

over them can be done independently, so that

G(t, t′, t′1) =
⟨

exp
[

i
∫ t

t0
dt′′k(t′′)Q2

d(t
′′)
]⟩

, (3.15)
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where t0 = min(t′, t′1) and in the interval t0 < t′′ < t function k(t′′) is equal to 0,±1,

k(t′′) =


−sgnγd , τ ≤ t′′ ≤ t; τ = max(t′,0)

0, τ ′ < t′′ < τ; τ ′ = max
[
min(0, t′), t′1

]
sgn(t′− t′1)sgnγd , t0 = min(t′, t′1)≤ t′′ ≤ τ ′.

(3.16)

The averaging in Eq. (3.15) can be conveniently done using the path-integral technique. A

theory of the power spectrum based on this technique was previously developed for the case where

there is no driving.[59] The approach[59] can be extended to the present problem, as discussed in

the Sec. 3.5.5. However, the calculation is cumbersome. Here we use a different method, which is

based on the technique [67] for calculating determinants in path integrals.

In terms of a path integral, the mean value of a functional L[Qd(t)] of Qd(t) can be written as∫
DQd(t)L[Qd(t)]P[Qd(t)]. For the considered exponentially correlated noise Qd(t), the proba-

bility density functional is (cf. Ref. [38])

P[Qd(t)] = exp
[
−(4αdΓ2

d)
−1
∫

dt(Q̇d +ΓdQd)
2
]
.

To find G(t, t′, t′1) we need to perform averaging over the values of Qd(t′′) in the interval (t0, t).

In a standard way, we discretize the time as tn = t0+nε,n= 0, . . . ,N, where ε =(t−t0)/N and N ≫

1. The path integral is then reduced to integrating over the values of Qn ≡ Qd(tn)/(4αdΓ2
dε)1/2

with 1≤ n≤N followed by averaging over Q0 ≡Qd(t0)/(4αdΓ2
dε)1/2 with the Boltzmann weight-

ing factor exp[−2εΓdQ2
0].

In the mid-point discretization, in the integrals over time one uses Q̇d(t) → [Qd(t)−Qd(t −

ε)]/ε and f
(
Qd(t)

)
→ [ f

(
Qd(t)

)
+ f
(
Qd(t−ε)

)
]/2 for an arbitrary f (Qd).[68] Then the exponent

in P[Qd(t)] becomes

− (4αdΓ2
d)

−1
∫

dt(Q̇d +ΓdQd)
2 →−

N

∑
n=1

[
(Qn −Qn−1)

2

+ε2Γ2
dQ2

n

]
− εΓd(Q

2
N −Q2

0). (3.17)
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The integral over t′′ in Eq. (3.15) is similarly discretized and goes over into 4αdΓ2
dε2 ∑n knQ2

n with

kn ≡ k(tn). Then the expression for function G becomes

G(t, t′, t′1) = I[k]/I[0], I[k] =
∫

dQ0e−Q2
0(1+εΓd)

∫ N

∏
n=1

dQn exp
[
−Q†Λ̂[k]Q+2Q0Q1

]
.

(3.18)

Here, Q is a vector with components Q1, . . . ,QN . From Eq. (3.17), the diagonal matrix elements of

Λ̂[k] are Λnn[k] = 2+ε2Γ2
d(1−4iαdkn) for 1 ≤ n ≤ N−1, ΛNN [k] = 1+ε2Γ2

d(1−4iαdkN)+εΓd .

The only non-zero off-diagonal matrix elements of Λ̂ are Λnn±1[k] =−1.

3.5.1 Finding the determinant

The integrals in Eq. (3.18) are Gaussian. Therefore the calculation of G requires finding the deter-

minants of the matrices Λ̂[k] and Λ̂[0]. This can be done following the approach [67]. We consider

the determinant Dn ≡ Dn[k] of the square submatrix of Λ̂[k], which is located at the lower right

corner and has rank N−n+1. For example, D1 is the determinant of the whole matrix Λ̂, whereas

DN is the matrix element ΛNN . The result of integration over Q1, . . . ,QN in Eq. (3.18) for I[k],

besides the Q0-dependent factor discussed below, is πN/2/
√

D1[k].

It is straightforward to see that Dn satisfies the recurrence relation

Dn = [2+ ε2Γ2
d(1−4iαdkn)]Dn+1 −Dn+2, 1 ≤ n ≤ N −2. (3.19)

In the limit ε → 0, Dn[k] goes over into D(tn;k) and Eq. (3.19) reduces to a differential equation

for D(t′′)≡ D(t′′;k),

D̈(t′′)−Γ2
d [1−4iαdk(t′′)]D(t′′) = 0 (3.20)

The obvious boundary conditions for function D are D(t)= limε→0 DN = 1 and Ḋ(t)= limε→0(DN−

DN−1)/ε =−Γd . The quantity of interest is D1[k]≈D(t0;k); we will also need Ḋ(t0;k), see below.

Integrating the linear in Q1 term in the exponent in Eq. (3.18) gives the factor exp[Q2
0(Λ̂

−1)11].

It follows from the above analysis that (Λ̂−1)11 = D(t0+2ε)/D(t0+ε)≈ 1+εḊ(t0)/D(t0). Then

the result of integration over Q0 in Eq. (3.18) is the factor {π/ε[Γd − Ḋ(t0;k)/D(t0;k)]}1/2 in I[k].
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For k = 0, we have from Eq. (3.20) D(t′′;0) = exp[Γd(t − t′′)]. With this, the expression (3.18)

for function G becomes

G(t, t′, t′1) =
{

2ΓdeΓd(t−t0)/[ΓdD(t0;k)− Ḋ(t0;k)]
}1/2

(3.21)

This expression is the central result of the section. It reduces the problem of calculating the

driving-induced part of the power spectrum to solving an ordinary differential equation (3.20).

3.5.2 The average susceptibility

We start the discussion of the applications of the general result (3.21) with the analysis of the factor

⟨χsl(t,0)⟩, which gives the average mode susceptibility, Eq. (3.12). Function ⟨χsl(t,0)⟩ is given

by ⟨exp[−i
∫ t

0 dt ′′ξ (t′′)]⟩, which in turn is given by Eq. (3.14) with G of the form of Eq. (3.15) in

which t′ = t′1 = 0 and k(t′′) = −sgnγd . Solving Eq. (3.20) with k(t′′) = const is straightforward,

as is also finding then G(t,0,0) from Eq. (3.21). The result reads

⟨χsl(t,0)⟩= exp [−(Γ− iδωF)t] χ̃(t), χ̃(t) = eΓdt

× [coshadt +(Γd/ad)(1+2iαdsgnγd)sinhadt]−1 ,

ad = Γd(1+4iαdsgnγd)
1/2. (3.22)

Equation (3.22) expresses the average susceptibility in elementary functions. It agrees with the

result[59] for the correlation function of the mode dispersively coupled to a fluctuating mode.

3.5.3 The average of the product of the susceptibilities

Solving the full Eq. (3.20) with discontinuous k(t′′) is more complicated. It can be done by finding

function D(t′′) piecewise where k(t′′) = const as a sum of ”incident" and ”reflected" waves and

then matching the solutions. The corresponding method reminds the transfer matrix method. It is
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described in Sec. 3.5.4. The result reads

[G(t, t′, t′1)]
−2 = [χ̃(τ1)χ̃ ′(τ3)]

−1 −
(Γ2

d −a2
d)(Γ

2
d −a′2d )

4Γ2
dada′d

× sinh(adτ1) sinh(a′dτ3) exp[−Γd(2τ2 + τ1 + τ3)] (3.23)

where τ1 = t −τ,τ2 = τ −τ ′,τ3 = τ ′− t0; parameters t0, τ , and τ ′ are expressed in terms of t, t′, t′1

in Eq. (3.16), and χ̃(t) is given by Eq. (3.22). Function χ̃ ′(t) = χ̃(t) and a′d = ad for t′ < t′1,

whereas χ̃ ′(t) = χ̃∗(t) and a′d = a∗d for t′ > t′1.

This expression is unexpectedly simple. We use it below for analytical calculations, in partic-

ular for calculating the driving-induced part of the power spectrum in the limiting cases.

3.5.4 The transfer-matrix type construction

The central part of the calculation of the driving-induced power spectrum is the averaging over the

frequency noise due to dispersive coupling. Equations (3.14) and (3.21) reduce this averaging to

solving an ordinary differential equation (3.20) with the coefficient that varies with time stepwise.

The solution can be simplified by taking advantage of this specific time dependence.

From Eq. (3.16), the interval (t0, t) in Eq. (3.20) is separated into three regions m = 1,2,3

within which the time-dependent coefficient k(t′′) = k̄m is constant. The boundaries between the

regions τ and τ ′ and the values of k̄m are specified in Eq. (3.16). We enumerate the regions in the

order of decreasing time, that is, the region τ < t′′ < t corresponds to m = 1, etc. In each region

D(t′′;k) = M11(t
′′− t0;m)Am +M12(t

′′− t0;m)Bm. (3.24)

Here, Mi j are the matrix elements of the matrix

M̂(t′′;m) =

 coshamt′′ sinhamt′′

am sinhamt′′ am coshamt′′

 ,

am ≡ a(k̄m) = Γd(1−4iαd k̄m)
1/2 (3.25)
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We note that, from Eq. (3.16), a1 = Γd(1+4iαdsgnγd)
1/2, whereas a2 = Γd ; a3 is equal to either

a1 or a∗1 depending on whether t′ < t′1 or t′ > t′1 in the argument of the G-function in (3.21).

The values of A1,B1 in Eq. (3.24) are determined by the conditions D(t;k) = 1, Ḋ(t;k) =−Γd .

The values of Am,Bm for m = 2,3 are found from the continuity of D(t′′;k), Ḋ(t′′;k) at the bound-

aries t′′ = τ,τ ′.

Function G(t, t′, t′1) in Eq. (3.21) is determined by D(t0;k) = A3 and Ḋ(t0;k) = a3B3. From

Eqs. (3.24) and (3.25) we haveA3

B3

= M̂−1(τ ′− t0;3)M̂(τ ′− t0;2)M̂−1(τ − t0;2)

× M̂(τ − t0;1)M̂−1(t − t0;1)

 1

−Γd

 , (3.26)

This simple relation combined with Eq. (3.21) give the integrand in the expression for the power

spectrum ΦF(ω) in a simple form, which is convenient for numerical integration. The expression

(3.26) can be evaluated in the explicit form. The result is given in Sec. 3.5.3. It is advantageous

when one looks for the asymptotic expressions for the spectrum ΦF(ω).

3.5.5 Alternative path-integral approach to averaging over frequency noise

Here we provide an alternative approach to evaluating function G(t, t′, t′1), which is defined by

Eq. (3.15) and describes the outcome of averaging over the frequency noise. The method is related,

albeit fairly remotely, to the method developed for calculating the power spectrum of a nonlinear

oscillator in the absence of driving.[59, 37] We start with writing the probability density functional

of the Gaussian process Qd(t) on the whole time axes, −∞ < t < ∞, in terms of the correlation

function A(t2, t3) = ⟨Qd(t2)Qd(t3)⟩ and its inverse A−1(t2, t3),

P[Qd(t)] = exp
[
−1

2

∫ ∫
dt1dt2Qd(t1)A

−1(t1, t2)Qd(t2)
]
,∫

dt2A−1(t1, t2)A(t2, t3) = δ (t1 − t3), (3.27)
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cf. Ref. [38]).

From Eq. (3.15), function G and its derivative ∂G/∂ t can be written as

G(t, t′, t′1) =
∫

D [Qd ]P̃[Qd ]∫
D [Qd ]P[Qd ]

,

∂G
∂ t

=−isgn(γd)

∫
D [Qd ]Q2

d(t)P̃[Qd ]∫
D [Qd ]P[Qd ]

, (3.28)

where functional P̃ has the form

P̃[Qd ] = exp
[
−1

2

∫ ∫
dt1dt2Qd(t1)Ã

−1(t1, t2)Qd(t2)
]
,

Ã−1(t1, t2) = A−1(t1, t2)−2ik(t2)δ (t1 − t2). (3.29)

Here k(t2) is a stepwise function, which is equal to 0 or ±1 in the time interval (t0, t), where t0 ≡

min(t′, t′1) is defined in Eq. (3.16). This definition has to be extended in the present formulation,

k(t2) = 0 for t2 > t and t2 < t0.

A key observation is that functional P̃[Qd ] is also Gaussian. One can introduce an operator

Ã(t, t1) reciprocal to Ã−1, ∫
dt1Ã(t, t1)Ã

−1(t1, t2) = δ (t − t2). (3.30)

In terms of this operator,

Ã(t, t) =

∫
D [Qd ]Q2

d(t)P̃[Qd ]∫
D [Qd ]P̃[Qd ]

. (3.31)

Multiplying equation (3.29) for Ã−1 by A(t2, t3)Ã(t1, t) and integrating with respect to t1, t2,

we obtain an integral equation for Ã(t, t3),

Ã(t, t3)−2i
∫

k(t1)Ã(t, t1)A(t1, t3)dt1 = A(t, t3). (3.32)

This equation can be reduced to a differential equation by differentiating twice with respect to t3,

∂ 2Ã(t, t3)
∂ t2

3
−Γ2

d [1−4iαdk(t3)]Ã(t, t3) =−2αdΓ2
dδ (t3 − t). (3.33)

Interestingly, Eq. (3.33) has the same structure as the differential equation for the "time-dependent"

determinant found in the other method, see Eq. (3.20). Thus it can be solved in a similar fashion as
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in Sec. (3.5.4). The boundary conditions are Ã(t,±∞)= 0. It follows from the decay of correlations

of Qd(t) . At the values of t3 where k(t3) changes stepwise, see Eq. (3.16), Ã and ∂ Ã/∂ t3 remain

continuous, except t3 = t, where ∂ Ã/∂ t3 changes by 2αdΓ2
d ,as seen from Eq. (3.33).

We can now write Eq. (3.29) for function G(t, t′, t′1), in terms of function Ã,

∂tG(t, t′, t′1) =−isgn(γd)Ã(t, t)G. (3.34)

The boundary condition for this equation is G(t, t,0) = 1. From the explicit expression for G we

also have

∂t′G(t, t′, t′1) = isgn(γd)Ã(t
′, t′)G(t, t′, t′1),

∂t′1
G(t, t′, t′1) =−isgn(γd)Ã(t

′
1, t

′
1)G(t, t′, t′1). (3.35)

The solution of these equations reads

G(t, t′, t′1) =exp

{
−isgn(γd)

[∫ t

t′
Ã(t′′, t′′)dt′′−

∫ 0

t′1
Ã(t′′, t′′)dt′′

]}
. (3.36)

We have checked that the expression for function G that follows from Eqs. (3.33) and (3.36)

coincides with the result obtained using the transfer matrix method.

3.6 Discussion of results

In this section we use the above results to discuss the form of the driving-induced part F2ΦF(ω)

of the power spectrum in the case of dispersive coupling. We give explicit expressions for the spec-

trum in the limiting cases. We also present the results of the numerical calculations of the spectrum

based on the general expressions (3.13), (3.14), and (3.23). These results are compared with the

simulations. The simulations were performed in a standard way by integrating the stochastic equa-

tions of motion (3.7) - (3.9) using the Heun scheme [69].

As we show, the shape and the magnitude of ΦF(ω) sensitively depend on two factors. One

is the interrelation between the magnitude of frequency fluctuations ∆ω and their bandwidth 2Γd ,
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the motional-narrowing parameter αd defined in Eq. (3.10). The other is the interrelation between

Γd and the width of the mode spectrum in the absence of driving Φ0(ω).

The width of the mode spectrum is not given just by the mode decay rate Γ. It is affected by the

frequency noise and depends on αd . This is seen from Eqs. (3.12) and (3.22) for the susceptibility

Im χ(ω), cf. Ref. [59]. The halfwidth of the peak of Im χ(ω) varies with the frequency noise

strength αdΓd from Γ+2α2
d Γd , for αd ≪ 1, to ∼ Γ+2αdΓd for αd ≫ 1 (the peak of Im χ(ω) is

profoundly non-Lorentzian for αd ≫ 1 and αdΓd ≳ Γ).

An important outcome of the analysis in the previous sections is that the spectrum ΦF(ω)

allows one to measure both the strength and the correlation time of the frequency noise due to

dispersive coupling. In the first place, it allows one to directly identify the very presence of this

noise. We emphasize that the full driving-induced term in the power spectrum F2ΦF(ω) can

be seen even where thermal fluctuations of the driven mode are weak and the peak in the power

spectrum Φ0(ω) is too small to be resolved.

3.6.1 The spectrum ΦF(ω) in the limiting cases

3.6.1.1 Weak frequency noise

The general expression for the spectrum simplifies in the limiting cases where the frequency noise

is weak or its bandwidth is large or small compared to the width of the driven mode spectrum

Φ0(ω). In the case of dispersive coupling, the limit of weak frequency noise is realized where

αdΓd ≪ Γ. A general expression for ΦF(ω) for weak frequency noise was obtained earlier

Eq. (2.10). It relates ΦF(ω) to the power spectrum of the frequency noise ξ (t). From Eq. (3.10),

in the present case we have ⟨ξ (t)⟩= 2⟨Q2
d(t)⟩sgnγd = 2αdΓdsgnγd , whereas the correlation func-

tion of the noise deviation from the average δξ (t) = ξ (t)−⟨ξ (t)⟩ is 4α2
d Γ2

d exp(−2Γd |t|). Then,
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extending the results (2.10) to noise with non-zero average, we obtain

ΦF(ω) = (α2
d Γ3

d/ω2
0 )[(ωF − ω̃0)

2 +Γ2]−1

×{[(ω −ωF)
2 +4Γ2

d ][(ω − ω̃0)
2 +Γ2]}−1, (3.37)

where ω̃0 = ω0 + ⟨ξ (t)⟩= ω0 +2αdΓdsgnγd . This expression can be also directly obtained from

Eq. (3.23) in the corresponding limit.

From Eq. (3.37), for weak dispersive-coupling induced noise, the intensity of the spectrum

ΦF(ω) is proportional to the square of the coupling parameter. If the detuning of the driving

field frequency from the eigenfrequency of the driven oscillator largely exceeds the half widths of

the power spectra of the both oscillators in the absence of driving, |ωF − ω̃0| ≫ Γ,Γd , the power

spectrum ΦF(ω) has two distinct peaks. One is located at the oscillator frequency ω̃0 and has

halfwidth Γ. The other is located at the driving frequency ωF and has halfwidth 2Γd . We note that

the noise variance 4α2
d Γ2

d is independent of Γd . For constant α2
d Γ2

d , the areas of the peaks at ω̃0

and ωF are ∝ Γd/Γδω4
F and δω−4

F , respectively (the ratio Γd/Γ affects only the area of the peak

at ω0). As |δωF | decreases, the peaks start overlapping. For small |δωF | they cannot be resolved.

This behavior is general and occurs also where the frequency noise is not weak, as we show below.

3.6.1.2 Broad-band frequency noise

We now consider the case of the broad-band frequency noise, where the decay rate of the d-

mode Γd largely exceeds the width of the driven mode spectrum. This condition requires that

the motional-narrowing parameter be small, αd ≪ 1. At the same time, the contribution of the

frequency noise to the spectrum width of the considered mode does not have to be small compared

to its decay rate, i.e., the ratio α2
d Γd/Γ can be arbitrary. In other words, the broadening of the

spectrum of the considered mode can still largely come from the dispersive coupling.

To describe the most pronounced peak in the spectrum ΦF(ω) for large Γd and small αd , one

can solve Eq. (3.20) in the WKB approximation, D(t′′) ≈ exp{−Γd
∫ t′′
t dt2[1− 4iαdk(t2)]1/2}.

Combined with Eq. (3.21), this solution immediately gives the averaging factor G in Eq. (3.14)
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and thus the spectrum ΦF . Alternatively, one can use the explicit expression (3.23) for function G.

Only the first term has to be kept in this expression for αd ≪ 1 and Γ ≪ Γd . Integration over time

in Eq. (3.13) gives

ΦF(ω)≈
2α2

d Γd/Γ
4ω0[Γ̃2 +(ωF − ω̃0)

2]
Im χ(ω),

χ(ω) = (i/2ω0)[Γ̃− i(ω − ω̃0)]
−1. (3.38)

Parameters Γ̃ and ω̃0 are the halfwidth of the spectrum and the eigenfrequency of the driven mode

renormalized due to the dispersive coupling, Γ̃ = Γ+2α2
d Γd and ω̃0 is the same as in Eq. (3.37).

Equation (3.38) shows that, for a broad-band frequency noise, the spectrum ΦF(ω) has the

same shape as the spectrum in the absence of driving, ΦF(ω) ∝ Φ0(ω) ∝ Im χ(ω). However,

from the spectrum Φ0(ω), which is Lorentzian in this case, one cannot tell whether the spectrum

halfwidth Γ̃ is due to decay or to frequency fluctuations. In contrast, ΦF ∝ α2
d is proportional to the

variance of the frequency noise and has a characteristic temperature dependence (α2
d ∝ T 2 if Γd is

T -independent). It enables identifying the frequency noise contribution to the spectral broadening,

as it was earlier demonstrated for a δ -correlated frequency noise, see Chap. 2.

Along with the comparatively narrow peak (3.38), for α2
d Γd ≳ Γ the spectrum ΦF(ω) has a

broad background near ω0, with the typical frequency scale Γd . To describe it one has to take into

account corrections ∝ α2
d to the leading-order term in function G (3.23). For large |δωF | ≫ Γ̃, the

spectrum also has a peak near ωF with width ∼ 2Γd .

3.6.1.3 Narrow-band frequency noise

The spectrum ΦF(ω) has a characteristic shape also in the opposite limit where the bandwidth of

the frequency noise 2Γd is small compared to the width of the spectrum in the absence of driving

Φ0(ω). In this case ΦF(ω) displays a characteristic peak at the driving frequency ωF , as can be

already inferred from the weak-noise expression (3.37). In the overall spectrum Φ(ω) it looks

like a pedestal of the δ -peak at ωF . The typical halfwidth of the pedestal is given by Γd . This

allows one to read off the decay rate of the d-mode from the spectrum ΦF(ω) without accessing
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the d-mode directly. To resolve the pedestal for large αd , where αdΓd ≳ Γ so that the width of

the spectrum Φ0(ω) is primarily determined by the dispersive coupling, we need a comparatively

large detuning of the driving frequency from the maximum of Φ0(ω).

The simplest way to find ΦF(ω) near ωF for small Γd is based on Eq. (3.23). One first notices

from Eq. (3.13) that the major contribution to ΦF(ω) in this case comes from the time range

t ∼ Γ−1
d , whereas t − t′, |t′1|≲ |Γ− iδωF |−1. Therefore in Eq. (3.23) one is interested in the limit

of large t but comparatively small t − t′, |t′1|. In the limit t → ∞ but for fixed t − t′, function

G−2(t, t′, t′1)→ 1/χ̃(t − t′)χ̃∗(−t′1) with χ̃(t) given by Eq. (3.22). The remaining term in G−2 is

∝ exp(−2Γdt). One can then write the integrand in the expression (3.13) for ΦF(ω) as a series

in exp(−2Γdt). The next simplification comes from the fact that |ad(t − t′)|, |adt′1| ≪ 1 for |Γ−

iδωF |/|ad | ≫ 1. Therefore one can expand χ̃(t − t′)≈ [1+2iαdΓd(t − t′)sgnγd ]
−1 and similarly

for χ̃∗(−t′1). Ultimately, the result of integration over the times t, t′, t′1 reads

ΦF(ω) =
∞
∑

n=1

∣∣∣∣∣ 1
n!

αn
d

∂ n

∂αn
d

χ(ωF)

∣∣∣∣∣
2

nΓd
(ω −ωF)2 +(2nΓd)

2 . (3.39)

This expression describes the spectral peak at small |ω −ωF | in terms of the derivatives of the

susceptibility χ(ω) calculated as a function of the motional-narrowing parameter αd . The width

of the spectral peak (3.39) is given by the bandwidth of the frequency noise 2Γd . The peak is

generally non-Lorentzian.

3.6.2 Evolution of ΦF(ω) with the varying bandwidth and strength of the frequency noise

To visualize the dependence of the spectrum ΦF(ω) on the parameters of the system, we now

present the results of numerical evaluation of the general expressions (3.13), (3.14), and (3.23).

Fig. 3.1 shows the evolution of the driving-induced power spectrum ΦF(ω) with the varying ratio

of the decay rates Γd/Γ, i.e., the varying ratio of the bandwidth of the frequency noise and the

decay rate of the driven mode. We use as a scaling factor the susceptibility χ0 of the driven mode

in the absence of dispersive coupling,

χ0(ωF) = i[2ω0(Γ− iδωF)]
−1. (3.40)
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In Fig. 3.1 (a), the frequency noise bandwidth is much larger than the width of the spectrum

Φ0(ω) in the absence of driving. The spectrum ΦF(ω) is close to a Lorentzian centered near

the shifted eigenfrequency of the driven mode, see Eq. (3.38); for small αd the shift should be

2αdΓd , whereas the halfwidth should be close to Γ+2α2
d Γd ,[59] which agrees with the numerics.

In Fig. 3.1 (d), on the other hand, the noise bandwidth is small. The spectrum ΦF(ω) is a narrow

peak near the driving frequency ωF , see Eq. (3.39), with halfwidth ≈ Γd . In Figs. 3.1 (b) and (c)

the frequency noise bandwidth is comparable to the width of the spectrum Φ0(ω). In this case

the spectrum ΦF(ω) displays two partly overlapping peaks. The overlapping can be reduced by

tuning the driving frequency ωF further away from the resonance, see below.
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Figure 3.1 The scaled driving-induced part of the power spectrum of the driven mode dispersively

coupled to another mode, which we call the d-mode. Thermal fluctuations of the d-mode lead to

frequency fluctuations of the driven mode. Panels (a) to (d) show the change of the spectrum with

the varying ratio Γd/Γ of the decay rates of the d-mode and the driven mode. The scaled strength

(standard deviation) of the frequency noise is αdΓd/Γ = 1. The spectrum ΦF(ω) is scaled using

the noise-free susceptibility χ0(ωF), Eq. (3.40), Φ̃F = 4ΓΦF/|χ0(ωF)|2. The solid lines and the

dots show the analytical theory and the numerical simulations, respectively.47



Fig. 3.2 shows the evolution of the spectrum ΦF(ω) with the varying strength (standard devia-

tion) 2αdΓd of the frequency noise. The frequency noise bandwidth 2Γd is chosen to be close to the

decay rate of the driven mode Γ. The driving frequency ωF is tuned away from resonance so that

the two peaks of ΦF(ω) are well separated. An insight into the shape of the peaks can be gained

from the aforementioned similarity of the spectrum ΦF(ω) with the spectrum of fluorescence and

quasi-elastic light scattering by a periodically driven oscillating charge.

For weak frequency noise, curve 1 in Fig. 3.2 , the peaks are located near ωF (quasi-elastic

scattering) and ω0 (fluorescence), cf. Eq. (3.37). As the noise strength increases, the peak near

ω0 becomes broader and the position of its maximum shifts to higher frequency (if γd > 0, as

assumed in the figure). This resembles the evolution of the spectrum Φ0(ω) in the absence of

driving with increasing αd ; this evolution is shown in the inset of Fig. 3.2. For αd > 1 the peak

becomes non-Lorentzian and asymmetric.

In contrast, the shape of the peak located near ωF stays almost the same with varying noise

strength. This is consistent with the picture of quasi-elastic scattering, where the width of the peak

is determined by the frequency noise bandwidth. To illustrate how persistent this behavior is, we

scaled the spectra in Fig. 3.2 so that at their maxima at ωF the spectra have the same height for

different αd .

3.6.3 Effect on ΦF(ω) of the detuning of the driving frequency

To provide more insight into the nature of the double-peak structure of the spectrum ΦF(ω) for

Γ ∼ Γd , we show in Fig. 3.3 the effect of detuning of the driving frequency ωF from resonance.

Panels (a), (b), and (c) refer to the driving frequency being red detuned, equal to, and blue detuned

from the the maximum of the spectrum Φ0(ω) in the absence of driving, respectively. The results

we show refer to the dispersive coupling constant γd > 0. For γd < 0, the plots should be mirror-

reflected with respect to ω −ω0, and ωF −ω0 should be replaced with ω0 −ωF .

The peak located near the frequency ωF is well resolved in Fig. 3.3 (a). It moves along with

ωF as the latter varies. In Fig. 3.3 (a) one can also see a broader peak, which is located close to ω0
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Figure 3.2 The evolution of the driving-induced part of the power spectrum with the varying
strength of the frequency noise due to dispersive coupling. Curve 1 to 3 refer to the scaled standard
deviation of the noise αdΓd/Γ = 0.5, 2.5, and 12.5, respectively. The ratio of the noise bandwidth
to the decay rate of the driven mode is 2Γd/Γ = 1. The scaled detuning of the driving frequency
from the eigenfrequency of the driven mode is δωF/Γ = −5. The spectrum is scaled using the
noise-free susceptibility χ0(ωF), Eq. (3.40), Φ̃F = 4ΓΦF/|χ0(ωF)|2. The curves 1 and 3 are ad-
ditionally scaled by factors 3.15 and 1.3, respectively, so that the peaks near ωF have the same
height. The inset shows the spectrum Φ0(ω) in the absence of driving for the same values of
the frequency noise strength αdΓd/Γ as in the main panel. The solid lines and the dots show the
analytical theory and the simulations, respectively.

and essentially does not change its position as ωF changes. For small frequency-noise bandwidth,

the peak at ωF becomes narrow and is described by Eq. (3.39). However, it is well-resolved for

large frequency detuning even where the noise bandwidth and the width of the spectrum Φ0(ω)

are of the same order of magnitude. If the widths are close and ωF is close to resonance, the peaks

overlap and cannot be identified, as seen in panel (b). The areas of the peaks are dramatically

different for red and blue detuning. This is due to the asymmetry of the spectrum Φ0(ω) in the

presence of the frequency noise induced by dispersive coupling, see the inset of Fig. (3.2). As seen

from Fig. 3.1, for very small Γd/Γ the peak near the oscillator eigenfrequency disappears; this was

discussed earlier in the case of weak noise, but is also true in a general case.

3.6.4 The area of the driving induced power spectrum

The area SF of the driving induced power spectrum ΦF(ω) is defined as SF =
∫∞

0 dωΦF(ω). The

major contribution to the integral comes from the frequency range where |ω−ωF |, |ω−ω0|≪ωF .
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Figure 3.3 The evolution of the driving-induced part of the power spectrum with the varying de-
tuning of the driving frequency ωF . The scaled strength of the frequency noise induced by the
dispersive coupling is αdΓd/Γ = 2.5. The ratio of the noise bandwidth to the decay rate of the
driven mode is 2Γd/Γ = 1. The spectrum is scaled using the noise-free susceptibility χ0(ωF),
Eq. (3.40), Φ̃F = 4ΓΦF/|χ0(ωF)|2. The solid lines and the dots show the analytical theory and
the simulations, respectively.

Then integration over ω in Eq. (3.13) gives a factor 2πδ (t). Further simplification comes from

changing from integrating over t′ and t′1 to integrating over t′ and t′− t′1 and using Eq. (3.12) for

the susceptibility of the mode. The result reads

SF =
π

4ω0Γ
Imχ(ωF)−

π
2
|χ(ωF)|2. (3.41)

This reduces the calculation of the area SF just to finding the susceptibility χ(ωF) of the mode.

This susceptibility with account taken of the dispersive coupling is given by Eqs. (3.12) and (3.22).

The behavior of the area SF can be found explicitly for small and large αd . In the limit of small

αd , where the frequency noise is weak, from Eq. (3.37) SF ∝ α2
d . For large αd , it is convenient
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to write χ̃(t) in Eq. (3.22) as χ̃(t)≈ (2/
√

iαd)∑∞
n=0 exp[−2n(iαd)

−1/2 − (2n+1)adt], where we

assumed γd > 0; the ultimate result is independent of the sign of γd . The susceptibility χ(ωF) is

given by the integral of χ̃(t) over t, Eq. (3.12). In the limit Γdα1/2
d ≫ |Γ− iδωF | from Eq. (3.12)

χ(ωF)≈ (2ω0αdΓd)
−1 ∑exp[−2n(iαd)

−1/2]/(2n+1). To the leading order in 1/αd this gives

χ(ωF)≈
[

1
2

ln(4αd)+ i
π
4

]
/4ω0Γdαd . (3.42)

We see from Eqs. (3.41) and (3.42) that SF ∝ α−1
d falls down with increasing αd for large αd .

The nonmonotonic dependence of the area SF on the parameter αd , which is expected from

the above asymptotic expressions, is indeed seen in Fig. 3.4(a). This figure shows the area SF as a

function of the motional narrowing parameter αd for different Γd/Γ. The position of the maximum

of SF sensitively depends on Γd/Γ.

In terms of a comparison with experiment, it is advantageous to scale the spectrum ΦF , and in

particular the area SF , by the area of the δ -peak in the power spectrum of the driven mode. This

area is given by the expression Sδ = (π/2)|χ(ωF)|2, cf. Eq. (3.1). The quantities measured in the

experiment are F2SF and F2Sδ . The unknown scaled field intensity F2 drops out from their ratio.

From Eqs. (3.41) and (3.42) SF/Sδ ∝ αd/ ln2 αd increases with αd for large αd . For small αd ,

SF/Sδ ∝ α2
d also increases with αd . On the whole, we found that SF/Sδ monotonically increases

with αd . This increase is seen in Fig. 3.4 (b).

3.7 Dispersive coupling to several modes

The results can be easily extended to the case of dispersive coupling to several modes rather than a

single d-mode. We enumerate the modes by the subscript κ = 1,2, . . .. The modes eigenfrequen-

cies and decay rates are ωκ and Γκ . The energy of the dispersive coupling is (3/4)∑κ γκq2q2
κ .

The contributions of different modes κ to the frequency fluctuations of the studied mode and there-

fore to the random accumulation of its phase are additive and mutually independent. To describe

the driving-induced spectrum, one can use Eqs. (3.13) and (3.14) and average over the phase ac-
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Figure 3.4 The area of the driving-induced part of the power spectrum as a function of αd for
different ratio of the frequency noise bandwidth to the decay rate of the driven mode 2Γd/Γ. The
red (solid), blue (dashed), and green (dotted) lines refer to Γd/Γ = 10, 2, and 0.1, respectively.
The relative detuning of the driving frequency is δωF/Γ = 5. In panel (a), the area SF is scaled
using the noise-free susceptibility χ0(ωF), Eq. (3.40), S̃F = 2SF/π|χ0(ωF)|2. In panel (b), SF is
scaled by the area of the δ peak in the power spectrum of the driven mode, Sδ = π|χ(ωF)|2/2.

cumulation in Eq. (3.14) independently for each mode κ. The result is the product of the averages

[functions G(t, t′, t′1)] calculated for each mode taken separately.

Perhaps of utmost physical interest are the cases where of significance is either dispersive

coupling to one or very few modes, as for example in some optomechanical systems in which a

radiation mode is dispersively coupled to a mechanical mode [50, 58], or where there is dispersive

coupling to many modes, as may be the case in carbon nanotubes or graphene membranes [6,

7]. The present chapter is focused on the first case. The second case may be simpler, since the

parameters γκ of coupling to individual modes are small; in particular, in nanomechanical systems

this is a consequence of the difference of the spatial structure of the studied mode and the modes κ.

If the number of the κ-modes is N, in the thermodynamic limit, N → ∞, we would have γκ ∝ 1/N.

In this limit the spectrum of the modes κ is almost continuous, and frequency fluctuations of the

studied mode come from the coupling ∝ ∑κ,κ′ γκκ′q
2qκqκ′ . This coupling leads to quasielastic
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scattering of modes κ off the studied mode, which results in a broad-band frequency noise and in

the Lorentzian spectrum Φ0(ω); [70, 71] the spectrum ΦF(ω) for a broad-band frequency noise

is discussed in Chap. 2.

3.7.1 An intermediate number of modes: weak and effectively strong coupling

A more interesting situation can arise in the intermediate case of a large but limited number N of

modes κ. We assume that the mode frequencies are well separated, |ωκ−ωκ′ |≫ Γκ,Γκ′ , and the

frequency differences do not resonate with ω0,2ω0. Because N is large, the motional-narrowing

parameters ακ = 3|γκ|kBT/8ω0ω2
κΓκ can be small. However, ακ are not infinitesimally small.

For a large N, one can think of a situation where the cumulative effect of the coupling to many

modes is effectively strong.

For a multimode coupling, the factor χ̃(t) in the average susceptibility ⟨χsl(t,0)⟩ (3.22) is given

by the product of the expressions (3.22) for χ̃(t) calculated for each mode κ.[59] For ακ ≪ 1

χ̃(t)≈exp∑
κ

gκ(t), gκ(t) =−2iακΓκt sgnγκ

+α2
κ [1−2Γκt − exp(−2Γκt)] . (3.43)

For large N, the most simple relevant case is the case of weak coupling, where ∑κ α2
κ ≪

1. In this case the power spectrum Φ0(ω) = (2kBT/ω0)Im χ(ω) is close to Lorentzian. From

Eqs. (3.12), (3.22), and (3.43), to the leading order in ∑κ α2
κ ,

Im χ(ω)≈ Γ̃/
{

2ω0[Γ̃2 +(ω − ω̃0)
2]
}
,

ω̃0 = ω0 +2∑
κ

ακΓκ sgnγκ, Γ̃ = Γ+2∑
κ

α2
κΓκ. (3.44)

In contrast to the previous work,[59] we do not assume here that the halfwidth of the spectrum is

close to Γ; even for small ακ the dispersive-coupling induced spectral broadening may become

comparable to the decay rate of the studied mode for Γκ ≫ Γ. For Γ̃−Γ ≪ Γ one should keep in

Im χ(ω) other corrections ∝ α2
κ , which make the spectrum slightly non-Lorentzian.[59].
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Even where ακ ≪ 1, the sum ∑κ α2
κ is not necessarily small. We will now consider the case

where ∑κ α2
κΓ2

κ greatly exceeds the scaled squared decay rates of the involved modes Γ2
κ(1+

2ακ)2 (typically, this requires that ∑κ α2
κ ≫ 1) and ∑κ α2

κΓ2
κ ≫ Γ2. This is the case of cumula-

tively strong coupling, where the coupling becomes strong because of the large number of modes

involved. One can see that the major contribution to the Fourier transform of χ̃(t) in Eq. (3.22)

[and in Eq. (3.43), for ακ ≪ 1] comes from the time range t ≲ (∑κ α2
κΓ2

κ)
−1/2. In this range

χ̃(t) is given by Eq. (3.43) with the exponent expanded to second order in Γκt. Then the power

spectrum in the absence of driving Φ0(ω) = (2kBT/ω0)Im χ(ω) has a Gaussian spectral peak.

From Eqs. (3.12), (3.22), and (3.43) ,

Im χ(ω)≈ (π/8ω2
0 σ2)1/2 exp[−(ω − ω̃0)

2/2σ2],

σ2 = 4∑
κ

α2
κΓ2

κ. (3.45)

A Gaussian shape of the spectrum in the case of multi-mode dispersive coupling was proposed to

describe the spectra of vibrational modes in carbon nanotubes.[6] This shape was justified[6] in

numerical simulations of a model where all Γκ were the same. The numerical analysis [6] further

showed that the tails of the spectrum are Lorentzian, which is generic for nonlinearly coupled

modes[59] and is seen from Eq. (3.43).

3.7.1.1 The driving-induced spectrum

The spectrum ΦF(ω) is determined by the Fourier transform of function G2(t, t′, t′1) which, as

indicated earlier, is given by the product of expressions (3.23) calculated for each mode κ. For

small ακ

G2(t, t′, t′1)≈ exp
[
gκ(τ1)+g′κ(τ3)+ sgn(t′− t′1)

×∑
κ

α2
κe−2Γκτ2

(
1− e−2Γκτ1

)(
1− e−2Γκτ3

)]
, (3.46)

where gκ is given by Eq. (3.43), whereas g′κ = gκ for t′ < t′1 and g′κ = g∗κ for t′ > t′1; the relation

between τ1,2,3 and t, t′, t′1 is explained below Eq. (3.23), see also Sec. 3.7.1.2.
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For small ∑κ α2
κ and small frequency-noise induced spectral broadening, ∑κ α2

κΓκ ≪ Γ and

∑κ α2
κΓ2

κ ≪Γ2, the driving-induced spectrum is given by Eq. (3.37) in which the factor α2
d Γ3

d/[(ω−

ωF)
2+4Γ2

d ] is replaced by ∑κ α2
κΓ3

κ/[(ω−ωF)
2+4Γ2

κ] and ω̃0 is given by Eq. (3.44). In the case

where ∑κ α2
κΓκ ≳ Γ, the spectrum ΦF(ω) has a Lorentzian peak near ω̃0 described by Eq. (3.38)

in which one should use Eq. (3.44) for Γ̃, ω̃0, and χ(ω), and should replace in the numerator α2
d Γd

with ∑κ α2
κΓκ .

The driving-induced term ΦF(ω) arises also in the case of the effectively strong coupling where

∑κ α2
κΓ2

κ largely exceeds the scaled squared decay rates Γ2,Γ2
κ(1+2ακ)2. In this case one should

keep in the exponent in G2 in Eq. (3.46) only terms up to second order in τ1,τ3. Function G2 then

should be expanded in a series in ∑κ α2
κΓ2

κτ1τ3 exp[−2Γκτ2]. The result of the calculation is

given in Sec. 3.7.1.2. The general expressions simplify in the important case where the decay rate

of the considered mode is small compared to the decay rates of the κ-modes, Γ ≪ Γκ . In this case

ΦF(ω)≈ (2Γ)−1Imχ(ω) Imχ(ωF). (3.47)

Equations (3.45) and (3.47) show that, for frequency noise with the correlation time small

compared to the mode lifetime Γ−1, the leading-order term in the driving-induced power spectrum

ΦF(ω) has the same shape as the peak in the power spectrum in the absence of driving Φ0(ω). This

behavior was found earlier in Chap. 2 for a general frequency noise provided the noise spectrum

is much broader than the width of the spectral peak of Φ0(ω) and the standard deviation of the

noise, in which case the spectrum Φ0(ω) is Lorentzian; cf. also Eq. (3.38). In the present case

the coupling is strong and the width of the noise spectrum ∼ maxΓκ is smaller than the standard

deviation σ , and as a result ΦF(ω) is not proportional to the squared coupling parameter as in

Eq. (3.38).

Other terms in the expression for ΦF(ω) obtained in Sec. 3.7.1.2 show that the driving-induced

spectrum is nonmonotonic also near the driving frequency. The structure of the spectrum sensi-

tively depends on the coupling and the decay rates of the κ-modes.

The general expressions (3.48) and (3.50) simplify if all κ modes have the same decay rate. In
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this case it is also possible to simulate the spectra numerically. We have checked that the analytical

results are in excellent agreement with the simulations. It is important that the dispersive-coupling

induced term in the power spectrum of the driven mode ΦF(ω) is always positive, whether the

dispersive coupling is mostly to one mode or to many modes.

3.7.1.2 Driving-induced spectrum for an effectively strong dispersive coupling to a large
number of modes

Calculation of the driving-induced power spectrum involves a triple integral over time, as seen

from Eq. (3.13). It is convenient to evaluate the integrals over t′, t′1 separately in three regions,

A1, A2, and A3. Region A1 corresponds to −∞ < t′ ≤ t′1,−∞ < t′1 ≤ 0; then in Eq. (3.46) τ1 =

t,τ2 = −t′1,τ3 = t′1 − t′. Region A2 corresponds to −∞ < t′1 ≤ t′,−∞ < t′ ≤ 0; then in Eq. (3.46)

τ1 = t,τ2 =−t′,τ3 = t′− t′1. Region A3 corresponds to 0 < t′ ≤ t,−∞ < t′1 ≤ 0; then in Eq. (3.46)

τ1 = t − t′,τ2 = t′,τ3 =−t′1. Expanding the exponentials in G2(t, t′, t′1) as described in Sec. 3.7.1

and integrating G2 with weight exp[−(Γ− iδωF)(t−t′)+(Γ+ iδωF)t′1] [see Eq. (3.13)], we obtain

the contributions of the regions A1 and A2 in the form

Φ(A1)
F (ω)≈−1

2
Re

∞
∑

n=0
Kn

∂ nχ(ω)

∂ωn
∂ nχ(ωF)

∂ωn
F

,

Kn>0 =
4n

n! ∑
κ1,...,κn

α2
κ1

...α2
κnΓ2

κ1
...Γ2

κn [2Γ+2
n

∑
i=1

Γκi ]
−1

Φ(A2)
F (ω)≈ 1

2
Re

∞
∑

n=0
Kn

∂ nχ(ω)

∂ωn
∂ nχ∗(ωF)

∂ωn
F

. (3.48)

In this equation K0 = 1/2Γ. The susceptibility

χ(ω) = (i/2ω0)
∫ ∞

0
dtei(ω−ω̃0)t−Γt−σ2t2/2 (3.49)

can be easily expressed in terms of the error function; ω̃0 and σ2 are given by Eqs. (3.44) and

(3.45).

In the region A3 it is convenient first to change from integration over t′ to integration over

t̃′ = t − t′. To find the spectrum ΦF , it is convenient to integrate G2 with the appropriate weight
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first over t and then over t̃′. One should take into account that t̃′ ≲ 1/σ ≪ 1/Γκ , but the range of

the values of t that contribute to the integral is not limited to ≲ 1/σ . The result of integration reads

Φ(A3)
F (ω)≈−Im[χ(ω)χ∗(ωF)]/[2(ω −ωF)]

+
1
2

Re
∞
∑

n=1
K ′

n
∂ nχ(ω)

∂ωn
∂ nχ∗(ωF)

∂ωn
F

. (3.50)

Here, the coefficients K ′
n are given by the expression (3.48) for Kn in which 2Γ is replaced by

−i(ω −ωF). We note that Φ(A3)
F is not singular at ω = ωF , since Im |χ(ωF)|2 = 0 and χ(ω) is

a smooth function of frequency; the corresponding term is important primarily where either ω or

ωF are on the tail of the spectral peak Φ0(ω).

The series over n in Eqs. (3.48) and (3.50) generally converges slowly if the decay rates of the

κ modes Γκ ≲ Γ. For large n, in Eq. (3.50) the derivative ∂ nχ(ω)/∂ωn should be calculated with

the decay rate Γ replaced with Γ+ 2∑n
i=1 Γκi in Eq. (3.49). The summation over the modes κi

in the coefficients K ′
n should now be extended to include the modified χ(ω), which now itself

depends on κi. We note that χ∗(ωF) in Eq. (3.50) should still be calculated using Eq. (3.49).

The overall driving-induced term in the power spectrum ΦF(ω) = Φ(A1)
F (ω) +Φ(A2)

F (ω) +

Φ(A3)
F (ω) has peaks and, generally, more complicated features near both the oscillator eigenfre-

quency and the driving frequency.

3.8 Power spectrum of a driven nonlinear oscillator

An important contribution to the broadening of the spectra of mesoscopic oscillators can come

from their internal nonlinearity.[4] The vibration frequency of a nonlinear oscillator depends on the

vibration amplitude. Therefore thermal fluctuations of the amplitude lead to frequency fluctuations.

The analysis of the spectra is complicated by the interplay of the frequency fluctuations that come

from the amplitude fluctuations and the frequency uncertainty that comes from the oscillator decay.

Nevertheless the linear susceptibility could be found for an arbitrary relation between the standard
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deviation of the frequency ∆ω and the decay rate Γ.[59]. The power spectrum of a nonlinear

oscillator in the absence of driving is generally asymmetric and non-Lorentzian.

Finding the driving-induced terms in the power spectrum is still more complicated. The os-

cillator displacement is nonlinear in the driving field amplitude F , and the driving-induced part

of the power spectrum Φ(ω) is not quadratic in F . However, if the field is weak, Eq. (3.1) for

Φ(ω) applies. In the calculation of ΦF(ω) one should take into account terms in the oscillator

displacement that are quadratic in F , which is generic for nonlinear systems.[16]

We assume that the nonlinear part of the oscillator energy is small compared to the linear

part. Then the nonlinear term in the oscillator energy can be taken in the form of γq4/4.[72] The

oscillator equation of motion in the rotating wave approximation is given by Eq. (3.7) with γd = 0,

u̇ =−(Γ+ iδωF)u+
3iγ
2ω0

|u|2u− i
F

4ω0
+ f (t). (3.51)

In this section we do not discuss the effect of dispersive coupling, and the frequency noise that

comes from this coupling is not included into Eq. (3.51).

To find ΦF(ω), we first consider the dynamics of a driven nonlinear oscillator without fluc-

tuations and then take fluctuations into account. The stationary solution ust of Eq. (3.51) in the

absence of the noise f (t) can be found by setting u̇ = 0. For weak driving, ust is a series in F ,

which contains only odd powers of F . Since we are interested in the terms which are linear or

quadratic in F , it is sufficient to keep only the leading term, ust = F/4iω0(Γ+ iδωF). One then

substitutes into Eq. (3.51) u(t) = ust +δu(t). The deviation δu(t) is due only to the noise,

δ u̇ =− (iδωF +Γ)δu+
3iγ
2ω0

(
|δu|2δu+2ust|δu|2 +u∗stδu2

+2|ust|2δu+u2
stδu∗

)
+ f (t). (3.52)

Time evolution of δu(t) depends on the driving field in terms of ust. We find this time evolution in

the two limiting cases.
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3.8.1 Weak nonlinearity

The analysis of the dynamics simplifies in the case of small nonlinearity-induced spread of the

oscillator frequency ∆ω compared to the decay rate Γ. As seen from Eq. (3.51), in the absence

of driving the frequency shift is quadratic in the vibration amplitude ∝ |u|2,[72], and therefore the

frequency spread is determine by the standard deviation of |u|2 due to the thermal noise. This gives

∆ω = 3|γ |kBT/8ω3
0 .

For ∆ω ≪ Γ, it is sufficient to keep only the linear in δu terms in Eq. (3.52).[73, 74] A straight-

forward calculation then gives a simple expression for the the driving-induced power spectrum,

ΦF(ω)≈ 3γkBT

8ω5
0

(ω −ω0)Γ
(Γ2 +δω2

F)[Γ2 +(ω −ω0)
2]2

. (3.53)

The spectrum (3.53) is proportional to the derivative of the Lorentzian spectrum of the har-

monic oscillator Φ0(ω) ∝ 1/[Γ2 + (ω −ω0)
2] over ω . It has a characteristic dispersive shape,

being of the opposite signs on the other sides of ω0. This is the result of the shift of the oscillator

vibration frequency ∝ γF2 due to the driving. Such shift is the main effect of the driving for small

∆ω/Γ.

3.8.2 Large detuning of the driving field frequency

For arbitrary ∆ω/Γ, the analysis is simplified if the detuning of the driving field frequency from

the small-amplitude oscillator frequency |δωF | ≫ Γ,∆ω . In this case, one can change variables in

Eq. (3.52) to δ ũ(t) = δu(t)eiδωFt . The right-hand side of the resulting equation for δ ũ, besides the

noise term, has terms that smoothly depend on time on the scale |δωF |−1 and terms that oscillate

as exp(±iδωF t),exp(2iδωF t). These oscillating terms can be considered a perturbation. To the

first order of the perturbation theory, the equation for the smooth terms takes the form

δ ˙̃u =−Γδ ũ+
3iγ
ω0

|ust|2δ ũ+

(
1+

9γ|ust|2

ω0δωF

)
3iγ
2ω0

|δ ũ|2δ ũ+ f̃ (t), (3.54)

where f̃ (t) = f (t)eiδωFt . We keep in this equation the terms ∝ |ust|2 ∝ F2. These terms contribute

to the spectrum ΦF(ω). The terms of higher oder in |ust|2 have been discarded.
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Equation (3.54) has the same form as the equation of motion for the complex amplitude u(t) in

the absence of driving, i.e., Eq. (3.51) with F = 0. The noise f̃ (t) has the same correlation function

as f (t). Therefore the power spectrum of δ ũ(t) is the same as the power spectrum of a nonlinear

oscillator found earlier,[59] with the renormalized parameters: the eigenfrequency is shifted by

3γ|ust|2/ω0 and the nonlinearity parameter is multiplied by the factor 1+ 9γ |ust|2/ω0δωF . We

note that the correction ∝ |ust|2 in this factor, which comes from the perturbation theory in 1/δωF ,

is small.

To find ΦF(ω) we have to expand the result[59] with the appropriately renormalized parame-

ters to the first order in |ust|2. This gives

F2ΦF(ω) = β{∂β [Φ0(ω −2βδωF ;∆ω(1+6β ))]}β=0,

Φ0(ω ;∆ω) =
kBT
ω2

0
ℜ
∫ ∞

0
dt exp{[i(ω −ω0)+Γ]t}

× [cosh(at)+(Γ/a)(1+2iαsgnγ)sinh(at)]−2. (3.55)

The parameters α and a have the same structure and the same physical meaning as the parameters

αd and ad used before, α = ∆ω/Γ and a = Γ(1+4iαsgnγ)1/2, whereas β = 3γF2/32ω3
0 (δωF)

3

is the scaled intensity of the driving field.

The major contribution to ΦF(ω) as given by Eq. (3.55) for large |δωF |/∆ω comes from the

frequency shift of the spectrum without driving Φ0(ω) and is determined by −2δωF∂ωΦ0(ω;∆ω).

Physically, this results again corresponds to the shift of the oscillator eigenfrequency associated

with the forced vibrations, and the spectrum ΦF again has the characteristic shape of a dispersive

curve. To the next order in 1/δωF , the driving broadens or narrows the spectrum depending on

the sign of γ/δωF by renormalizing the nonlinearity-induced standard deviation of the oscillator

frequency ∆ω .

3.8.3 Numerical simulations

The analytical results on the spectra of the modulated nonlinear oscillator, Eq. (3.55), are compared

with the results of numerical simulations in Fig. 3.5. The spectrum ΦF(ω) generally has a positive
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Figure 3.5 The driving-induced part of the power spectrum of a nonlinear oscillator for large de-
tuning of the driving frequency, δωF/∆ω = 40. The solid curves and the dots show the analytical
expressions and the results of simulations, respectively. The values of the nonlinearity parameter
and the scaled driving strength for the curves 1 to 3 are, respectively, α ≡ ∆ω/Γ = 0.125, 1.25,
and 5, and β ≡ 3γF2/32ω3

0 δω3
F = 0.016, 0.004, and 0.004. The inset shows the change of the

power spectrum in the absence of driving with varying ∆ω/Γ.

and negative parts, in a dramatic distinction from the case of a linear oscillator dispersively coupled

to another oscillator. As ∆ω/Γ increases, the shape of ΦF(ω) becomes more complicated, in

particular, the positive and negative parts become asymmetric.

The simulations were performed in the same way as for the dispersively coupled modes by

integrating the stochastic differential equations (3.51). We verified that the values of the modu-

lating field amplitude F were in the range where the driving-induced term in the power spectrum

was quadratic in F . As seen from this figure, the simulations are in excellent agreement with the

analytical results.

In the intermediate range, where the nonlinearity is not weak and the driving is not too far

detuned, i.e., |δωF | ∼ max(Γ,∆ω), we obtained the spectrum ΦF(ω) by running numerical simu-

lations. These results are presented in Fig. 3.6. They show that the general trend seen in Fig. 3.5

that ΦF(ω) changes signs and is asymmetric for a nonlinear oscillator persists in this case as well.
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Figure 3.6 The driving-induced part of the spectrum of a nonlinear oscillator for small detuning
of the driving frequency. The solid curve (red) shows the analytical results for ΦF(ω) for small
∆ω/Γ for the same parameters as the dotted curve 1. The dots show the results of simulations.
The scaled values of the nonlinearity parameter, the detuning, and the driving strength on the
curves 1 and 2 are, respectively, α ≡ ∆ω/Γ = 0.05, and 1.25, δωF/Γ = 0.5 and 5, and β ≡
3γF2/32ω3

0 (δωF)
3 = 0.64 and 0.01. The inset shows the full spectrum for the parameters of

curve 2 (blue dots, simulations); the spectrum without driving for the same ∆ω/Γ is shown by the
solid line (analytical) and (green) dots on top of this line, which are obtained by simulations.

3.9 Conclusions

In terms of experimental studies of mesoscopic vibrational systems, the major result of this chapter

is the suggestion of a way to single out and characterize the dispersive (nonresonant) coupling

between vibrational modes. The proposed method allows revealing dispersive coupling even where

there is no access to the mode coupled to the studied one. We have shown that dispersive coupling

leads to a specific, generally double-peak extra structure in the power spectrum of a mode when

this mode is driven close to resonance. The dispersive-coupling induced part of the power spectrum

is quadratic in the driving field amplitude. It varies significantly with the detuning of the driving

frequency from the mode eigenfrequency.

The "tune off to read off" approach, which relies on changing the driving frequency, allows one

to study separately two effects. One is the dispersive-coupling induced broadening of the spectral

peak of the linear response, which is of significant interest for mesoscopic modes.[6, 55, 49, 7, 56]

The other is the decay of the “invisible" mode that is dispersively coupled to the studied mode.

The double-peak structure of the driving-induced power spectrum sensitively depends both on the
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strength of the dispersive coupling and the parameters of the invisible mode.

Another important feature of the driving-induced spectrum is the qualitative difference be-

tween the effects of nonlinear dispersive coupling to other modes and the internal nonlinearity of

the studied mode. Both nonlinearities are known to broaden, in a somewhat similar way,[59] the

linear response spectrum in the presence of thermal fluctuations. However, in the case of internal

nonlinearity, the driving-induced part of the power spectrum changes sign as a function of fre-

quency, i.e., it has peaks of the opposite signs and is similar (and is close, in a certain parameter

range) to the derivative of the power spectrum without driving.

We have extended the results to the case of dispersive coupling to several modes. The con-

tributions of different modes to the frequency fluctuations of the studied mode, and therefore to

the random accumulation of its phase, are additive and mutually independent. Then the averaging

over the phase accumulation can be done independently for each mode. The extension to the case

of a few modes is therefore straightforward. New features emerge if there are many, but not too

many modes. The cumulative effect of weak dispersive coupling to many modes may lead to an

effectively strong coupling. As a result, the spectrum without driving becomes close to Gaussian in

the central part, as was suggested in Ref. [6]. The driving-induced part of the power spectrum dis-

plays a characteristic structure, which sensitively depends both on the parameters of the dispersive

coupling and the dissipation parameters of the involved modes.

In terms of the theory, the chapter describes a path-integral method that enables finding in an

explicit form the spectrum of a driven oscillator in the presence of non-Gaussian fluctuations of its

frequency, which result from dispersive coupling to other modes. The results apply for an arbitrary

ratio between the relevant parameters of the system. These parameters are the magnitude (standard

deviation) of the frequency fluctuations ∆ω , their reciprocal correlation time, which is given by

the decay rate of the dispersively-coupled mode that causes the fluctuations, the decay rate of the

driven mode itself, and the detuning of the driving frequency.

It is the presence of several parameters that makes it complicated to identify the broadening

mechanisms from the linear response spectra. The results of the chapter show the qualitative
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difference between the effects of these parameters on the power spectrum when the oscillator is

driven. This enables their identification.

Generally, in mesoscopic vibrational systems, and in particular in nanomechanical systems,

the internal (Duffing) and dispersive nonlinearities can be of the same order of magnitude. If the

studied mode has a much higher frequency than the mode to which it is dispersively coupled, its

fluctuations can be comparatively weaker making the effect of the dispersive coupling stronger.

Also if there are several modes dispersively coupled to the mode of interest, their cumulative effect

can be stronger than the effect of the internal nonlinearity. This makes it even more important to

be able to distinguish the effects, which the proposed approach allows.

The results immediately extend to the parameter range where the driven mode has high fre-

quency and is in the quantum regime, h̄ω0 > kBT . This is because, as long as the mode itself is

linear, its displacement is a superposition of the displacement without driving, which is affected

by quantum fluctuations, and the classical driving-induced displacement. The effect of dispersive

coupling to a classical mode (h̄ωd ≪ kBT ) on the driving-induced displacement is independent

of h̄ω0/kBT . Dispersive coupling of a quantum mode to a classical mode is of particular interest

for optomechanics, where the high-frequency optical cavity mode can be dispersively coupled to

a low-frequency mechanical mode.[50, 58] Driving the cavity mode leads in this case to a charac-

teristic radiation described in this chapter.
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CHAPTER 4

FLUCTUATION SPECTRA OF DRIVEN OVERDAMPED NONLINEAR SYSTEMS

4.1 Introduction

Fluctuation spectra and spectra of response to periodic driving are major tools of characterizing

physical systems. The spectra are conventionally used to find system frequencies and relaxation

rates and to characterize fluctuations in the system. For example, optical absorption spectra give

the transition frequencies of atomic systems and the lifetimes of the excited states, and the spec-

trum of spontaneous radiation is a well-known example of the fluctuation (power) spectrum [75].

In macroscopic systems the spectra are often complicated by the effects of inhomogeneous broad-

ening. Recent progress in nanoscience has made it possible to study the spectra of individual

dynamical systems. A well-known example is provided by optically trapped Brownian particles

and biomolecules [76, 77], where the power spectra are a major tool for characterizing the motion

in the trap [78, 79]. Spectra of various types of individually accessible mesoscopic systems are

studied nowadays in optics [80, 81], nanomechanics and circuit quantum electrodynamics, cf. [4],

biophysics, cf. [82, 83], and many other areas; the technique based on spectral measurements has

found various applications, photonic force microscopy being a recent example, see Ref. [84].

A familiar effect of weak periodic driving is forced vibrations of the system. When ensemble-

averaged, they are also periodic and occur at the driving frequency ωF . They lead to a δ -shape

peak at frequency ωF in the system power spectrum. However, the driving also modifies the power

spectrum away from ωF . A textbook example is inelastic light scattering and resonance fluores-

cence. In the both cases, the system driven by a periodic electromagnetic field emits radiation at

frequencies that differ from the driving frequency [10]. This radiation is one of the major sources

of information about the system in optical experiments.

In this chapter we study the spectra of periodically driven nonlinear systems. We show that,
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in the presence of noise, along with the δ -shape peak at the driving frequency ωF , these spectra

display a characteristic structure. We are interested in the regime of relatively weak driving, where

the driving-induced change of the power spectrum is quadratic in the amplitude of the driving, as

in inelastic light scattering.

In view of the significant interest in the power spectra of systems optically trapped in fluids, we

consider systems where inertial effects play no role. In the absence of driving the power spectra

of such systems usually have a peak at zero frequency. In particular it is this peak that is used to

characterize the dynamics of optically trapped particles.

For a linear system, like a Brownian particle in a harmonic trap, the δ -shape peak at ωF is

the only effect of the driving on the power spectrum. This is because motion of such a system

is a linear superposition of forced vibrations at ωF and fluctuations in the absence of driving.

The amplitude and phase of the forced vibrations depend on the parameters of the system and

determine the standard linear susceptibility [85]. In nonlinear systems forced vibrations become

random, because the parameters of the system are fluctuating. The power spectrum of such random

vibrations is no longer just a δ -shape peak (although the δ -shape peak is necessarily present). The

driving-induced spectral features away from ωF result from mixing of fluctuations and forced

vibrations in a nonlinear system.

4.1.1 Qualitative picture

The idea of the driving-induced change of the power spectrum can be gained by looking at a

Brownian particle fluctuating in a confining potential, a typical situation for optical trapping. The

motion of the particle, after proper rescaling of time and particle coordinate q, is described by the

Langevin equation [86]

q̇ =−U ′(q)+ f (t), U ′(q)≡ dU/dq, (4.1)

where U(q) is the scaled potential and f (t) is thermal noise. If potential U(q) is parabolic and the

system is additionally driven by a force F cosωF t, forced vibrations are described by the textbook
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expression

⟨q(t)⟩= 1
2

Fχ(ωF)exp(−iωF t)+ c.c., χ(ω) = [U ′′(qeq)− iω]−1, (4.2)

where qeq is the equilibrium position [the minimum of U(q)] and χ(ω) is the susceptibility.

For a nonlinear system the potential U(q) is nonparabolic. Because of thermal fluctuations,

the local curvature of the potential U ′′(q) is fluctuating. Intuitively, one can think of the effect

of thermal fluctuations on forced vibrations as if U ′′(qeq) in Eq. (4.2) for the susceptibility were

replaced by a fluctuating curvature, see Fig. 4.1. If the driving frequency ωF largely exceeds the

reciprocal correlation time of the fluctuations t−1
c , the fluctuations would lead to the onset of a

structure in the power spectrum near frequency ωF with typical width t−1
c . The quantity t−1

c also

gives the typical width of the peak in the power spectrum at zero frequency in the absence of

driving [for a linear system, t−1
c =U ′′(qeq)].

q

UHqL

Figure 4.1 Sketch of a potential of a nonlinear system near the potential minimum. Because of the
interplay of nonlinearity and fluctuations, the curvature of the potential fluctuates. These fluctua-
tions are shown as the smearing of the solid line, which represents the potential in the absence of
fluctuations.

Another effect of the interplay of driving, nonlinearity, and fluctuations can be understood by

noticing that the periodic force causes a periodic change in the system coordinate. For a nonlinear

system, roughly speaking, this leads to a periodic modulation of the local curvature, and thus of

t−1
c . Since t−1

c determines the shape of the zero-frequency peak in the power spectrum, such

modulation causes a change of this peak proportional to F2, to the lowest order in F .
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Even from the above simplistic description it is clear that the driving-induced change of the

spectrum is sensitive to the parameters of the system and the noise and to the nonlinearity mech-

anisms. Explicit examples given below demonstrate this sensitivity and suggest that the effects

we discuss can be used for characterizing a system beyond the conventional linear analysis. After

formulating how the power spectrum can be evaluated in Section 4.2, we demonstrate the effects

of the interplay of driving and fluctuations for three very different types of nonlinear systems: an

overdamped Brownian particle (Section 4.3), a system that switches at random between coexisting

stable states (Section 4.4), and a threshold detector (Section 4.5). All these systems are of broad

interest, and all of them display a significant driving-induced change of the power spectrum.

4.2 General formulation

We consider fluctuating systems driven by a periodic force F cos(ωF t) and assume that fluctuations

are induced by a stationary noise, like in the case of an optically trapped Brownian particle, for

example. After a transient time such system reaches a stationary state. The stationary probability

distribution of the system with respect to its dynamical variable q, ρ st(q, t), is periodic in time t

with the driving period τF = 2π/ωF . The two-time correlation function ⟨q(t1)q(t2)⟩ [⟨·⟩ implies

ensemble averaging] is a function of t1−t2 and a periodic function of t2 with period τF . The power

spectrum usually measured in experiment is of the form

Φ(ω) = 2Re
∫ ∞

0
dteiωt⟨⟨q(t + t′)q(t′)⟩⟩,

⟨⟨q(t + t′)q(t′)⟩⟩= 1
τF

∫ τF

0
dt ′⟨q(t + t′)q(t′)⟩. (4.3)

The correlation function in Eq. (4.3) can be expressed in terms of ρ st(q, t) and the transition

probability density ρ(q1, t1|q2, t2) that the system that was at position q2 at time t2 is at q1 at time

t1 ≥ t2,

⟨q(t1)q(t2)⟩=
∫

dq1dq2 q1q2 ρ(q1, t1|q2, t2)ρ st(q2, t2). (4.4)
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For weak driving, function ρst(q, t2) can be expanded in a series in F exp(±iωF t2) with time-

independent coefficients, whereas ρ(q1, t1|q2, t2) can be expanded in F exp(±iωF t2) with coeffi-

cients that depend on t1 − t2. Therefore the power spectrum (4.3) does not have terms linear in F .

To the second order in F for ω ≥ 0 we have

Φ(ω) = Φ0(ω)+
π
2

F2|χ(ωF)|2δ (ω −ωF)+F2ΦF(ω). (4.5)

The term Φ0(ω) describes the power spectrum of the system in the absence of driving. The term

∝ δ (ω −ωF) describes the conventional linear response, cf. Eq. (4.2). However, the expression

for the susceptibility χ(ω) in nonlinear systems is far more complicated than Eq. (4.2); generally,

the susceptibility is determined by the linear in F term in ρst(q, t). In the optical language, the term

∝ δ (ω −ωF) in (4.5) corresponds to elastic scattering of the field F cosωF t by the system.

Of primary interest to us is the term ΦF(ω). This term is often disregarded in the analysis

of the power spectra of driven systems, while the major emphasis is placed on the δ -function

in Eq. (4.5). Function ΦF(ω) describes the interplay of fluctuations and driving in a nonlinear

system beyond the trivial linear response. In the considered lowest-order approximation in the

driving amplitude, ΦF does not contain a δ -peak at 2ωF . However, it may contain a δ -peak at

ω = 0, which corresponds to the static driving-induced shift of the average position of the system.

In what follows we do not consider this peak, as the static equilibrium position can be measured

independently.

Function ΦF can be found from Eq. (4.4) by calculating the transition probability density and

the stationary probability distribution. This can be done for Markov systems numerically and also,

in the case of weak noise, analytically, see Secs. 4.3 and 4.4. Alternatively, function ΦF can be

related to fluctuations of linear and nonlinear response of the system and expressed in terms of

the fluctuating linear and nonlinear susceptibility, see Sec. 4.6. We emphasize that the nonlinear

response has to be taken into account when fluctuations are considered even though we are not

interested in the behavior of the power spectrum near 2ωF or higher overtones or subharmonics of

ωF .
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4.3 Power spectrum of a driven Brownian particle

A simple example of a system where ΦF(ω) displays a nontrivial behavior is a periodically driven

overdamped Brownian particle in a nonlinear confining potential U(q), see Eq. (4.1). This model

immediately relates to many experiments on optically trapped particles and molecules. We will

assume that thermal noise f (t) is white and Gaussian and that it is not strong, so that it suffices to

keep the lowest-order nontrivial terms in the potential,

U(q) =
1
2

κq2 +
1
3

βq3 +
1
4

γq4 + . . . , ⟨ f (t) f (t′)⟩= 2Dδ (t − t′), (4.6)

where D ∝ kBT is the noise intensity. In the absence of driving the stationary probability distribu-

tion is of the Boltzmann form, ρ(0)
st ∝ exp[−U(q)/D].

For small D and weak driving force equation of motion q̇ =−U ′(q)+ f (t)+F cosωF t can be

solved directly by perturbation theory in the noise f (t) and in F , as indicated in Sec. 4.6. Here we

develop a different method, which is particularly convenient if one wants to go to high orders of

the perturbation theory in D and F .

4.3.1 Method of Moments

Systems in which fluctuations are induced by white noise can be studied using the Fokker-Planck

equation

∂tρ =−∂q
{[
−U ′(q)+F cosωF t

]
ρ
}
+D∂ 2

q ρ. (4.7)

This equation can be solved numerically. A convenient analytical approach is based on the method

of moments, which are defined as

Mn(ω; t′) =
∫ ∞

0
dteiωt

∫
dqqn

∫
dq′ρ(q, t + t′|q′, t′)q′ρst(q′, t′). (4.8)

From Eq. (4.5), the power spectrum is Φ(ω) = (2/τF)Re
∫ τF

0 dt ′M1(ω; t′).

The moments Mn satisfy a set of simple linear algebraic equations

−iωMn(ω)+nF̂ [Mn(ω)] = Dn(n−1)Mn−2(ω)

+
1
2

F
[
eiωFt′nMn−1(ω +ωF)+ e−iωFt′nMn−1(ω −ωF)

]
+Qn+1(t

′). (4.9)
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Here, we skipped the argument t′ in Mn and introduced function F̂ [Mn] ≡ κMn + βMn+1 +

γMn+2.. Functions

Qn(t) =
∫

dqqnρst(q, t) (4.10)

in the right-hand side of Eq. (4.9) can themselves be found from a set of linear equations similar

to (4.9). They follow from Eq. (4.7), if one sets ρ = ρst(q, t) and takes into account that ρst(q, t) is

periodic in t. To the lowest order in F it suffices to keep in Qn(t) only terms that are independent

of t or oscillate as exp(±iωF t); respectively, in Eq. (4.10) Qn(t)≈ Q(0)
n +

[
Q(1)

n exp(iωF t)+ c.c.
]
,

and

F̂ [Q(0)
n ] = D(n−1)Q(0)

n−2 +FReQ(1)
n−1,

iωFQ(1)
n +nF̂ [Q(1)

n ] = Dn(n−1)Q(1)
n−2 +

1
2

nFQ(0)
n−1. (4.11)

The system of coupled linear equations for the moments Mn and Qn can be quickly solved with

conventional software to a high order in the noise intensity D. Nontrivial results emerge already

if we keep terms ∝ DF2: these are the terms that contribute to the power spectrum ΦF(ω) to the

lowest order in D. To find them it suffices to consider terms Mn with n ≤ 3 and Qn with n ≤ 4.

This gives

ΦF(ω) ≈ 2D
(κ2 +ω2

F)(κ2 +ω2)2

{
2β 2 (4κ2 +ω2

F)(κ
2 +ω2 +ω2

F)

[κ2 +(ω −ωF)2][κ2 +(ω +ωF)2]

−3γκ} . (4.12)

This expression refers to |ω|> 0; function ΦF(ω) contains also a δ -peak at ω = 0, which comes

from the driving-induced shift of the average static value of the coordinate.

The solution of the equations for the moments in the considered approximation gives a correc-

tion ∝ D2 to the power spectrum in the absence of driving Φ0(ω). To the lowest order in D this

function displays a Lorentzian peak at ω = 0, Φ0(ω) = 2D/(κ2 +ω2). This peak is used in the

analysis of optical traps for Brownian particles [78, 79]; with account taken of the term ∝ D2 the

zero-frequency peak of Φ0(ω) becomes non-Lorentzian.
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4.3.2 Power spectrum for comparatively large driving frequency

The interpretation of Eq. (4.12) is simplified in the case where the driving frequency exceeds the

decay rate, ωF ≫ κ . In this case, periodic driving leads to two well-resolved features in the

spectrum ΦF . One is located at ω = 0 and has the form

ΦF(ω)≈ (2D/ω2
F)(2β 2 −3γκ)(κ2 +ω2)−2 (ω ≪ ωF). (4.13)

This equation can be easily obtained directly by solving the equation of motion q̇ = −U ′(q) +

F cosωF t + f (t) by perturbation theory in which q(t) is separated into a part oscillating at high

frequency ωF (and its overtones) and a slowly varying part. To the lowest order in F and D,

the fast oscillating part renormalizes the decay rate of the slowly varying part of q(t), with κ →

κ − (F/ωF)
2
[
κ−1β 2 − (3/2)γ)

]
. Using this correction in the expression for the power spectrum

of a linear system Φ(0)
0 (ω) = 2D/(κ2 +ω2), one immediately obtains Eq. (4.13) to the leading

order in κ/ωF .

Interestingly, Eq. (4.13) describes a peak or a dip depending on the sign of 2β 2 − 3γκ . That

is, the sign of ΦF is determined by the competition of the cubic and quartic nonlinearity of the

potential U(q). This shows high sensitivity of the spectrum to the system parameters. The typical

width of the peak/dip of ΦF near ω = 0 is κ; the shape of the peak/dip is non-Lorentzian.

The other spectral feature is located at ωF and near the maximum has the form of a Lorentzian

peak, ΦF(ω) ≈ (Dβ 2/ω4
F)[κ

2 +(ω −ωF)
2]−1. The height of this peak is smaller by a factor

κ2/ω2
F ≪ 1 than the height of the feature near ω = 0. We note that the height of the peak at

ωF is proportional to the squared parameter of the cubic nonlinearity of the potential β , but is

independent of the quartic-nonlinearity parameter γ , to the leading order in the noise intensity D.

In Fig. 4.2 we compare the analytical expression (4.12) with the results of numerical simula-

tions. The simulations were done by integrating the stochastic differential equation q̇ =−U ′(q)+

f (t)+F cosωF t using the Heun scheme (cf. [69]). Panel (a) shows that the cubic nonlinearity

of the potential leads to a peak at ω = 0 and a comparatively small peak at ωF . The spectrum

becomes more interesting in the generic case where both cubic and quartic terms in the potential
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Figure 4.2 Scaled driving induced terms in the power spectrum of an overdamped Brownian parti-
cle moving in the quartic potential U(q) given by Eq. (4.6), Φ̃F(ω) = 102κ2ΦF(ω)/2D. Panels
(a), (b), and (c) refer to the scaled cubic nonlinearity β 2D/κ3 = 0.002 and quartic nonlinearity
γD/κ2 = 0.0006, 0.00147, and 0.002, respectively. The black dots and red solid curves correspond
to the numerical simulations and Eq. (4.12). The scaled driving frequency is ωF/κ = 5 and the
driving strength is κF2/ω2

FD = 20. For this driving strength and the noise intensity, the simula-
tion results in panels (b) and (c) deviate from the theoretical curve. The deviation decreases for
weaker driving. This is seen from the simulation data in panel (b) that refer to κF2/ω2

FD = 5 (blue
triangles) and 1.25 (green squares). The corresponding spectra are scaled up by factors 4 and 16,
respectively.

.

are present and β 2 is comparable to γκ . Here, as seen from panel (b), as a result of the competition

between these terms, ΦF(ω) can have a dip at ω = 0 and two peaks, one near ωF and the other

with the position determined by β 2/γκ and ωF/κ . Where the quartic nonlinearity dominates,

γκ ≫ β 2, see panel (c), it is hard to detect the peak at ωF for small noise intensity. Our analyti-

cal calculations and numerical simulations show that, for larger noise intensity, this peak becomes

more pronounced.

A significant deviation of simulations and the asymptotic expression (4.12) in panel (b) for

small ω is a consequence of the near compensation of the contributions to ΦF(ω) from the cubic
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and quartic nonlinear terms in U(q) to the lowest order in F2 and D. The terms of higher-order

in D and F2 become then substantial. Panel (b) illustrates how the difference is reduced if F2 is

reduced. We checked that by reducing also the noise intensity we obtain a quantitative agreement

of simulations with Eq. (4.12).

In some cases the confining potential of an overdamped system has inversion symmetry, and

then β = 0 in Eq. (4.6). In such cases spectral features of ΦF at the driving frequency are ∝ (γD)2.

They can be found by solving the equations for the moments Mn with n ≤ 5 and Qn with n ≤ 6 or

by solving the equations of motion by perturbation theory to the second order in γ , see Sec. 4.6.

4.4 Power spectrum of a driven two-state system

We now consider the effect of driving on a two-state system. Various types of such systems are

studied in physics, from spin-1/2 systems to two-level systems in disordered solids to classical

Brownian particles mostly localized at the minima of double-well potentials. We will assume

that the system dynamics are characterized by the rates Wi j of interstate i → j switching, where

i, j = 1,2. In the case of quantum systems, this means that the decoherence rate largely exceeds

Wi j; in other words, the typical duration of an interstate transition is small compared to 1/Wi j.

For classical systems, this description means that small fluctuations about the stable states are

disregarded.

4.4.1 The model: modulated switching rates

A major effect of periodic driving is modulation of the switching rates. It can be quite strong al-

ready for comparatively weak driving. Indeed, if the rates are determined by the interstate tunnel-

ing, since the field changes the tunneling barrier, its effect can be exponentially strong. Similarly,

it may be exponentially strong in the classical limit if the switching is due to thermally activated

overbarrier transitions, because the driving changes the barriers heights. Nevertheless, for weak

sinusoidal driving F cosωF t the modulated rates W (F)
i j (t) can still be expanded in the driving am-
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plitude,

W (F)
i j ≈Wi j −αi jF cosωF t, i, j = 1,2. (4.14)

This equation is written in the adiabatic limit, where the driving frequency ωF is small compared to

the reciprocal characteristic dynamical times, like the imaginary time of motion under the barrier

in the case of tunneling [87] or the periods and relaxation times of vibrations about the potential

minima in the case of activated transitions. The rates Wi j are also assumed to be small compared

to the reciprocal dynamical times. The driving frequency ωF is of the order of Wi j.

Parameters αi j in Eq. (4.14) describe the response of the switching rates to the driving. They

contain factors ∼ Wi j. Indeed, for activated processes Wi j ∝ exp(−∆Ui/kBT ), where ∆Ui is the

height of the potential barrier for switching from the state i. If F cosωF t is the force that drives the

system, then αi j ≈ Wi jdi/kBT , where di is the position of the ith potential well counted off from

the position of the barrier top [88]. The terms ∝ F2, which have been disregarded in Eq. (4.14), are

∝ Wi j(di/kBT )2 in this case; a part of these terms that are ∝ cos2ωF t do not contribute to ΦF(ω)

to the second order in F , whereas the contribution of the time-independent terms ∝ F2 comes to

renormalization of the parameters Wi j in Φ0(ω), see below. For incoherent interstate quantum

tunneling, αi j ∝ Wi j, too.

We will use quantum notations |i⟩ (i = 1,2) for the states of the system. One can associate

these states with the states of a spin-1/2 particle by setting |1⟩ ≡ | ↑⟩ and |2⟩ ≡ | ↓⟩. The system

dynamics is most conveniently described by the dynamical variable q defined as

q = |1⟩⟨1|− |2⟩⟨2| ≡ σz, (4.15)

where σz is the Pauli matrix. For a particle in a double-well potential, q is the coordinate that takes

on discrete values 1 and −1 at the potential minima 1 and 2, respectively.

The power spectra of driven two-state systems have been attracting much interest in the context

of stochastic resonance, see [89, 90, 91, 92] for reviews. By now it has been generally accepted

that, for weak driving, the power spectrum of a system has a δ -peak at the driving frequency with

area ∝ F2, which is described by the standard linear response theory [93]. This peak is of central
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interest for signal processing. However, as we show in this Section, along with this peak, the

spectrum has a characteristic extra structure, which is also ∝ F2, to the leading order in F .

4.4.2 Kinetic equation and its general solution

It is convenient to write the analog of Eq. (4.4) for the correlation function of the discrete variable

q as

⟨q(t1)q(t2)⟩= ∑
i, j
⟨i|σzρ̂(t1|t2)σzρ̂st(t2)| j⟩ (4.16)

Here, ρ̂(t1|t2) is the transition density matrix, ρ̂(t1|t2)≡ ∑ |i⟩ρi j(t1|t2)⟨ j|, and ρ̂st ≡ ∑ |i⟩(ρst)ii⟨i|

is the stationary density matrix. By construction (in particular, because of the decoherence in

the quantum case) the stationary density matrix is diagonal. Its matrix elements (ρst)ii give the

populations of the corresponding states and periodically depend on time, ρ̂st(t +2π/ωF) = ρ̂st(t).

The transition matrix elements ρi j(t1|t2) give the probability to be in state i at time t1 given that

the system was in state j at time t2. At equal times we have ρ̂(t2|t2) = Î, where Î is the unit matrix.

Equation (4.16) does not have the form of a trace over the states |i⟩; rather it expresses the

correlator in terms of the joint probability density to be in state | j⟩ at time t2 and in state |i⟩ at time

t1, with summation over i, j [94]. In the quantum formulation, the applicability of this expression

is a consequence of the decoherence and Markovian kinetics.

Matrix elements ρi j(t|t′) satisfy a simple balance equation, which in the presence of driving

reads

∂tρ1 j(t|t′) =−W (F)
12 (t)ρ1 j +W (F)

21 (t)ρ2 j, ρ1 j +ρ2 j = 1, (4.17)

where j = 1,2. Equation for the matrix elements of ρ̂st(t) has the same form, except that subscript

j has to be set equal to the first subscript.

From Eqs. (4.16) and (4.17) we obtain a general expression for the correlator of interest,

⟨q(t1)q(t2)⟩= exp
[
−
∫ t1

t2
dtW (F)

+ (t)
]
+ ⟨σz(t2)⟩st

∫ t1

t2
dt
{

W (F)
− (t)

×exp
[
−
∫ t1

t
dt′W (F)

+ (t′)
]}

, W (F)
± (t) =W (F)

21 (t)±W (F)
12 (t). (4.18)
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Here, ⟨σz(t)⟩st ≡ ⟨q(t)⟩st ≡ Tr [σzρ̂st(t)] is the time-dependent difference of the state populations

in the stationary state. Generally , ⟨σz(t)⟩st is nonzero even in the absence of driving unless the

switching rates are equal, W12 =W21. In the presence of driving there emerges a periodic term in

⟨σz(t)⟩st, which describes the linear response, for weak driving.

Disregarding terms oscillating as exp(±2iωF t), to the second order in F we obtain from the

balance equation (4.17) written for (ρst)ii

⟨σz(t)⟩st ≈
W−
W+

+
F
2

[
χ1(ωF)e

−iωFt + c.c.
]
+

α+F2

2W+
Re χ1(ωF),

χ1(ω) = 2(α12W21 −α21W12)/ [W+ (W+− iω)] . (4.19)

Here we introduced notations

α± = α21 ±α12, W± =W21 ±W12. (4.20)

Function χ1(ω) gives the linear susceptibility. In the case of thermally activated transitions,

Eq. (4.19) for χ1 coincides with the classical result [88]. The term W−/W+ gives the difference of

the state populations in the absence of driving, whereas the term ∝ F2 gives the time independent

part of the driving-induced correction to this difference.

4.4.3 The driving-induced part of the power spectrum

Equation (4.18) allows one to calculate the period-averaged correlator ⟨⟨q(t1)q(t2)⟩⟩ in the explicit

form and to obtain the power spectrum. As before, we will not consider the δ -peak in Φ(ω) for

ω = 0. The spectrum is an even function of ω , and we will consider it for ω > 0:

Φ0(ω) = 8W12W21
W2
+

W+
W2
++ω2 , ΦF(ω) = Φ(r)

F (ω)+Φ(c)
F (ω),

Φ(r)
F (ω) = α+∑µ,ν=±ϕF(µω ,νωF),

ϕF(ω,ωF) =−[W+− i(ω −ωF)]
−1
[

α+W12W21
ω2

FW2
+

+ i W−
2ωFW+

χ∗
1 (ωF)

]
. (4.21)

The term Φ0 is the familiar power spectrum of a two-state system in the absence of driving [88].

It has a peak at ω = 0 with halfwidth W+ equal to the sum of the switching rates. The term Φ(c)
F
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describes the driving-induced modification of the peak centered at ω = 0,

Φ(c)
F (ω) = (α2

+/2ω2
F)Φ0(ω)−|χ1(ωF)|2W+/(W 2

++ω2). (4.22)

Of major interest to us is the part Φ(r)
F (ω) of the driving-induced term in the power spectrum

(4.21). For ω > 0, it shows a resonant peak (or a dip, depending on the parameters) at the driving

frequency ωF . In contrast to the δ -peak of the linear response, the peak has a finite halfwidth

∼ W+ = W12 +W21. It is well separated from the peak at ω = 0 for ωF ≫ W+ and generally

is of a non-Lorentzian shape. We stress that, to the order of magnitude, the peak has the same

overall area as the δ -peak of the linear response (in the case of a dip, the absolute value of the area

should be considered). Another important feature of the peak/dip seen from Eq. (4.21) is that it is

proportional to the parameter α+ = α12+α21. This parameter describes the change of the sum of

the switching rates due to the driving.

For activated switching between potential minima considered in the classical stochastic reso-

nance theory, α+=(kBT )−1(W12d1+W21d2). For a symmetric potential α+= 0, since W12 =W21

and d1 =−d2. Then Φ(r)
F = 0, in agreement with [95] where a symmetric potential was considered.

On the other hand, for strong driving it was found [96] that the power spectrum for an asymmetric

potential displays peaks close to odd multiples of the driving frequency and dips close to even

multiples of driving frequency. In our weak-driving analysis we do not consider peaks/dips near

the overtones of ωF ; however, as seen from Eq. (4.21), the sign of Φ(r)
F (ω) near ωF can be positive

or negative, depending on the parameters.

Examples of the driving-induced spectra ΦF(ω) are shown in Fig. 4.3. One can clearly see the

peaks or dips both at ω = 0 and at the driving frequency ωF . In agreement with Eqs. (4.21) and

(4.22), the signs of the features of ΦF are determined by the interrelation between the parameters

of the two-states system. For illustration purpose we chose the values of the ratio of the response

parameters α21/α12 to lie between plus and minus the ratio of the switching rates in the absence

of driving, W21/W12. As seen from Fig. 4.3, the spectra are very sensitive to the ratio α21/α12.

We have seen this sensitivity also for different values of W21/W12.
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Unexpectedly, a finite-height spectrum ΦF(ω) emerges even where the linear susceptibility

is equal to zero, which happens for α12W21 = α21W12. This is seen from Eq. (4.21) and also

from Fig. 4.3. The red line with α21/α12 = 7/3 refers to this case, and the area of δ -peak in the

spectrum is zero. As seen from the figure, numerical simulations are in excellent agreement with

the analytical expressions.
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Figure 4.3 The driving induced terms in the power spectrum of the two-state system for the ratio of
the switching rates W21/W12 = 7/3. The scaled driving frequency and amplitude are ωF/W+ = 5
and Fα12/W12 = 1. On the thick solid (red), dot-dashed (black), long-dashed (blue), short-dashed
(green), and thin solid (purple) lines the ratio α21/α12 is 7/3, 7/6, 0 , −7/6, and −7/3. The vertical
line at ωF shows the position of the δ -peak at ωF . The areas of the δ -peaks for different α21/α12
are given by the heights of the vertical segments. The heights are counted off from the lines to
the symbols of the same color, i.e., to the circle, triangle, and open and full square, in the order
of decreasing α21/α12; there is no symbol for α21/α12 = 7/3 as there is no δ -peak in this case.
The inset shows the full spectrum with (red) and without (black) driving for α21/α12 = 7/3. The
curves and the dots show the analytical theory and the simulations, respectively.

The structure of the spectrum near ω = 0 will be modified if one takes into account terms ∝ F2

in the expressions for the switching rates (4.14). In the considered leading-order approximation in

F these terms have to be averaged over the driving period and are thus independent of time. The

correction due to these terms can be immediately found from Eq. (4.21) for Φ0(ω) by expanding

Φ0 to the first order in the corresponding increments of Wi j; this correction is of a non-Lorentzian

form.
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4.5 Threshold detector

An insight into the dynamical nature of the driving-induced change of the power spectrum can be

gained from the analysis of the spectrum of a threshold detector. Such detectors are broadly used in

science and engineering, and their analogs play an important role in biosystems. We will employ

the simplest model where the output of a threshold detector is q = −1 if the signal at the input is

below a threshold value η , whereas q = 1 otherwise, and will consider the case where the input

signal is a sum of the periodic signal F cosωF t and noise ξ (t),

q(t) = 2Θ [F(t)+ξ (t)−η ]−1, (4.23)

where Θ(x) is the Heaviside step function. To avoid singularities related to non-differentiability of

the Θ-function, we will model the output by

q(t) = tanh
[
Λ
(
F(t)+ξ (t)−η

)]
, Λ ≫ 1, (4.24)

and in the final expressions will go to the limit Λ → ∞. Much work on the interplay of noise and

driving in threshold detectors has been done in the context of stochastic resonance, cf. [97, 98, 99].

In these papers of primary interest was the signal to noise ratio; the issues we are considering here,

i.e., the occurrence of the effective “inelastic scattering" and “fluorescence" as a result of interplay

of nonlinearity and noise, have not been addressed, to the best of our knowledge.

In the absence of noise, the power spectrum of q(t) is a series of δ -peaks at ωF and its overtones

(including ω = 0), provided the driving amplitude F > η , whereas for F < η we have q =−1 and

the power spectrum is just a δ -peak at ω = 0. On the other hand, if F = 0 and ξ (t) is white noise,

in the limit Λ → ∞ in Eq. (4.24) the correlator ⟨q(t)q(t′)⟩= 0 for t ̸= t′, since the values of q(t) at

different instants of time are uncorrelated and ⟨q⟩ → 0, whereas ⟨q2⟩ → 1.

The singular behavior of the correlator ⟨q(t)q(t′)⟩ in the case of white noise persists also in the

presence of driving. This is a consequence of the absence of dynamics, i.e., any memory effects

in the variable q(t) (4.23), and the singular distribution of white noise, where the intensity ⟨ξ 2(t)⟩

diverges.
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Dynamics can be brought into the system by the noise color. Such noise can be thought of

as coming from a dynamical system with retarded response, which is driven by white noise. We

will be interested in the correlator ⟨q(t)q(t′)⟩ and the power spectrum Φ(ω) for weak driving,

where the driving amplitude is F ≪ η (subthreshold driving), and for a simple colored noise, the

Ornstein-Uhlenbeck noise. This is Gaussian noise with correlator

⟨ξ (t)ξ (t′)⟩= (D/κ)exp(−κ |t − t′|). (4.25)

Parameter κ characterizes the decay rate of noise correlations.

Because the threshold detector has no dynamics on its own, the value of the variable q(t) is

determined by the instantaneous value of the noise ξ (t). We can write q(t) ≡ q̃
(
t,ξ (t)

)
, where

q̃(t,ξ ) is given by Eqs. (4.23), (4.24) with ξ (t) replaced with ξ . Then the general expression for

the correlator of q(t), Eq. (4.4), can be rewritten as

⟨q(t1)q(t2)⟩=
∫

dξ1dξ2 q̃(t1,ξ1)q̃(t2,ξ2)ρ(ξ )(ξ1, t1|ξ2, t2)ρ
(ξ )
st (ξ2, t2). (4.26)

Here, the superscript ξ indicates that the corresponding transition probability density and the sta-

tionary distribution refer to the random process ξ (t).

The form of the transition probability for the process (4.25) is well-known [100],

ρ(ξ )(ξ1, t1|ξ2, t2) =

√
κ

2πD(1− e−2κ|t1−t2|)
exp

{
−κ(ξ1 −ξ2e−κ|t1−t2|)2

2D(1− e−2κ|t1−t2|)

}
. (4.27)

The stationary distribution ρ(ξ )
st (ξ1, t1) is given by the same expression with t2 →−∞. Substituting

these expressions into Eq. (4.26) and expanding q̃(t,ξ ) in F(t), after averaging over the driving

period we obtain to second order in F(t) for t1 > t2

⟨⟨q(t1)q(t2)⟩⟩=C+ 4
∫∞

η dξ1
∫∞

η dξ2

[
ρ(ξ )(ξ1, t1|ξ2, t2)−ρ(ξ )

st (ξ1)
]

ρ(ξ )
st (ξ2)

+2F2 cosωF(t1 − t2)ρ(ξ )(η , t1|η , t2)ρ
(ξ )
st (η)

−2F2 ∫∞
η dξ2ρ(ξ )

st (ξ2)
d

dη

[
ρ(ξ )(η , t1|ξ2, t2)−ρ(ξ )

st (η)
]
. (4.28)

Here, C is a constant independent of time; it leads to a δ peak at ω = 0 in the power spectrum

and will not be considered in what follows. The remaining terms are time-dependent. They decay

81



with increasing |t1− t2|, except for the term that oscillates as exp[±iωF(t1− t2)] and describes the

standard linear response to periodic driving. As seen from Eq. (4.28), this term has the form

2F2 cosωF(t1 − t2)
[
ρ(ξ )

st (η)
]2

≡ 1
2F2|χ(ωF)|2 cosωF(t1 − t2),

χ(ω) = 2ρ(ξ )
st (η)≡ (2κ/πD)1/2 exp[−κη2/2D), (4.29)

where χ(ω) is the standard linear susceptibility [85] of the threshold detector. Interestingly, this

susceptibility is independent of frequency. This is because the detector has no dynamics, its re-

sponse to the driving is instantaneous. An alternative derivation of the expression for the sus-

ceptibility, which provides a useful insight into the response of the threshold detector, is given in

Sec. 4.6. It also shows how to deal with the singularities in Eq. (4.28) for t1 → t2, which emerge

after the transition Λ → ∞ in Eqs. (4.24) and (4.26).

The power spectrum Φ(ω) is obtained from Eq. (4.28) by a Fourier transform. The F indepen-

dent term in Eq. (4.28) gives the power spectrum Φ0(ω) in the absence of driving. It has a peak

at ω = 0. The term ∝ cosωF(t1 − t2) gives a δ -peak and also a finite-width peak F2Φ(r)
F (ω) at

frequency ωF . The last term in Eq. (4.28) gives a driving-induced feature in the power spectrum

at zero frequency F2Φ(c)(ω).

The shape of the spectra is determined by the dimensionless parameter that characterizes the

ratio of the threshold to the noise amplitude η(κ/D)1/2. For weak noise, where η(κ/D)1/2 ≫ 1,

the peak near ωF has the form

Φ(r)
F (ω)≈ 1

D
√

2π
Re

(
κη2

4D
+ i

ω −ωF
κ

)−1/2

e−κη2/2D. (4.30)

Here we assumed that ωF/κ is sufficiently large, so that the features of ΦF centered at ωF and

ω = 0 are well separated; Eq. (4.30) applies for |ω −ωF | ≪ ωF . The spectrum (4.30) has a

characteristic non-Lorentzian form with typical width κ2η2/4D. However, its area is small.

In the opposite limit of low threshold, η(κ/D)1/2 ≪ 1, to the leading order

Φ(r)
F (ω)≈ 1

2
√

πD
Re
[

Γ
(

i
ω −ωF

2κ

)
/Γ
(

1
2
+ i

ω −ωF
2κ

)]
(4.31)
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near ωF . This spectrum falls off slowly away from the maximum, as |ω−ωF |−1/2 for |ω−ωF |≫

κ . Equation (4.31) does not contain the threshold η . The small-η correction to (4.31) for ω = ωF

is (1− ln2)κη2/πD2. It is positive. From the comparison of Eqs. (4.30) and (4.31), one sees

that the height of the peak at ωF first increases with the increasing η(κ/D)1/2, but then starts

decreasing.

In Fig. 4.4 we show analytical results for the power spectra obtained from Eq. (4.28) for several

parameter values and compare them with the results of simulations. Immediately seen from this

figure is that the driving modifies the overall spectrum most significantly near ω = 0 and near ωF

for large ωF/κ . There emerges a finite-width peak at ωF . As seen from the inset in panel (b), the

width of this peak increases with decreasing noise intensity, that is, with increasing η(κ/D)1/2.

This is a counterintuitive consequence of the unusual interplay of noise and driving in a threshold

detector. The height of the peak displays a nonmonotonic dependence on η(κ/D)1/2.
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Figure 4.4 Power spectrum of the threshold detector. (a): The full power spectrum; the scaled
frequency and the intensity of the driving are ωF/2πκ = 100 and F2κ/D = 0.0025. The scaled
threshold is η(κ/D)1/2 = 0.5. Inset: the spectrum near the driving frequency. The delta peak
has been subtracted. The curves and black dots refer to the theory and simulations, respectively.
(b): The low-frequency part of the driving-induced term in the power spectrum for ωF/κ = 50
as given by Eq. (4.28). The solid (black), long-dashed (red), short-dashed (blue) and dot-dashed
(green) curves correspond to the scaled value of the threshold η(κ/D)1/2 = 0.1,0.8,1.2, and 2.
Inset: the spectrum near the driving frequency, ωF/κ = 50.

The low-frequency spectrum ΦF(ω)≈Φ(c)
F (ω) also displays a pronounced feature near ω = 0.

One can show from the analysis of the last term in Eq. (4.28) that, for small η(κ/D)1/2, this feature

is a dip, with Φ(c)
F (0) = −1/D for η(κ/D)1/2 → 0. The shape of the dip is non-Lorentzian, with
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typical width κ . As η(κ/D)1/2 increases, the depth of the dip decreases. Ultimately the shape

of the spectrum changes completely. For large η(κ/D)1/2 the spectrum Φ(c)
F becomes broad and

shallow. To the leading order in [η(κ/D)1/2]−1, it can be written as

(2/πD)(D/κη2)1/2 exp(−κη2/2D)Φ̃(c)
F (2Dω/κ2η2),

where the dimensionless function Φ̃(c)
F (x) is zero for x = 0, has a minimum at x ≈ 1.7, where it is

≈−0.6, and then approaches zero with increasing x as x−1/2.

4.6 Formulation in terms of fluctuating susceptiblities

The change of the power spectrum induced by the driving can be analyzed in terms of the fluc-

tuating linear and nonlinear susceptibility of the system, see Sec. (2.2.1). For nonlinear systems,

the term Φ(2)
F is generally nonzero, and should be kept in the power spectrum in contrast to linear

systems.

A convenient way to calculate the fluctuating susceptibilities χ1,2 is based on solving dynam-

ical equations of motion of the system. For example, for an overdamped Brownian particle de-

scribed by the Langevin equation q̇ = −U ′(q)+ f (t)+F cosωF t with nonlinear potential (4.6),

one can proceed by rewriting this equation in the integral form,

q(t) =
∫ t

−∞
dt′e−κ(t−t′) exp

{
−
∫ t

t′
dt′′
[
βq(t′′)+ γq2(t′′)

]}
×
[
F cosωF t′+ f (t′)

]
. (4.32)

For small f and F , one can then expand the q-dependent exponential in the right-hand side and

use successive approximations in F and f . The fluctuating susceptibility χ1 is given by linear in F

terms, whereas χ2 is given by the terms quadratic in F . The advantageous feature of this method is

that it is not limited to white noise. However, the method becomes impractical if the noise intensity

is not weak, and even for weak noise it becomes cumbersome if one goes to high-order terms in

the noise intensity.
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We have checked that the calculation based on Eq. (4.32) gives the same result for the driving-

induced part of the power spectrum ΦF(ω) as the method of moments. We have also found that,

in the second order in the noise intensity D, the term γq4/4 in U(q) leads to the onset of a peak in

ΦF(ω) at ωF .

4.6.1 Fluctuating susceptibility of a threshold detector

Fluctuating linear susceptibility has a particularly simple form for a threshold detector. By lin-

earizing in F(t) expression (4.23) for the output of the detector, we obtain from the definition of

the susceptibility (2.1)

χ(t, t′) = 2δ (t − t′−0)δ
(
ξ (t)−η

)
, (4.33)

where η is the threshold and ξ (t) is the noise. Zero in δ (t − t′−0) reflects causality: the detector

output q(t) is determined by the value of the driving just before the observation time; the very

δ -function indicates that the effect of the driving is not accumulated over time, the response is

instantaneous (but causal).

The standard linear susceptibility χ(ω) is given by expression

χ(ω) =
∫ ∞

0
dteiωt⟨χ(t,0)⟩.

From Eq. (4.33), χ(ω) = 2ρξ
st(η). where ρξ

st(η) is the stationary probability density of the noise

ξ (t), cf. Eq. (4.29). It applies for an arbitrary noise ξ (t), not just for the exponentially correlated

noise considered in Sec. 4.5.

Similarly, the fluctuating nonlinear susceptibility of the detector is

χ2(t, t
′, t′′) =−δ (t − t′−0)δ (t − t′′−0)∂ηδ

(
ξ (t)−η

)
. (4.34)

Substituting Eqs. (4.33) and (4.34) into the general expressions for the power spectrum in terms of

fluctuating susceptibilities, Eqs. (2.3) and (2.4), we obtain the power spectrum in the same form as

what follows from Eq. (4.28).

85



4.7 Conclusions

The results of this chapter demonstrate that the interplay of driving and fluctuations leads to the

onset of specific spectral features in the power spectra of dynamical systems. Such features are

analogs of inelastic light scattering and fluorescence in optics, where an electromagnetic field can

excite radiation at a frequency shifted from its frequency and also at the characteristic system

frequency. Our results show that, in classical systems and in incoherent quantum systems, the

spectral features emerge as a result of the fluctuation-induced modulation of the response to the

driving. Such modulation is common to nonlinear systems.

Since nonlinearity and noise are always present in real systems, the occurrence of the driving-

induced spectral features in the power spectra should be also generic. However, these features are

specific for particular systems, which allows using them for system characterization.

We have studied three types of systems, all of which are attracting significant interest in meso-

scopic physics and in several other areas of science. The first one is an overdamped Brownian

particle fluctuating in a non-parabolic potential well. This model describes, in particular, small

particles and molecules optically trapped in a liquid. We find that, when the particle is periodi-

cally driven, the nonparabolicity of the potential leads to an extra spectral peak or a dip at zero

frequency. For comparatively weak noise, the sign of the driving-induced term in the spectrum at

small ω is determined by the competition of the cubic and quartic nonlinearity of the potential.

The overall shape of the low-frequency spectrum strongly depends on the form of the confining

potential as well. In addition, along with a δ -peak at the driving frequency, the driving-induced

spectrum displays a peak at this frequency with a width of the order of the relaxation rate of the

system.

We have also studied a two-state system that at random switches between the states. We as-

sumed that the driving modulates the rates of interstate switching. The driving-induced spectrum

has a rich form. Depending on the interrelation between the switching rates without driving and

the driving-induced corrections to the rates, it can have peaks or dips both at ω = 0 and at the driv-
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ing frequency. The typical width of the peaks/dips is given by the sum of the interstate switching

rates without driving. Interestingly, these finite-width spectral features can emerge even where the

δ -peak at the driving frequency has very small (or zero) intensity.

The third system we studied is a threshold detector. Here the dynamical nature of the driving-

induced spectral change is particularly pronounced, as this change does not occur if the noise in

the detector is white, except for the δ -peak at the driving frequency. On the other hand, for colored

noise driving does change the power spectrum nontrivially. As in other systems, we find a driving-

induced spectral feature near zero frequency. It can be a peak or a dip depending on the ratio of

the threshold to the appropriately scaled noise intensity. Also, the height of the finite-width peak

at the driving frequency displays a non-monotonic dependence on this ratio, as does the width of

the peak, too, i.e., noise can both increase or decrease the width.

In all studied systems inertial effects played no role: the peaks of the power spectra are lo-

cated at zero frequency in the absence of driving. Therefore driving-induced spectral features near

the driving frequency and zero frequency correspond to inelastic scattering and fluorescence, re-

spectively. However, in contrast to the conventional fluorescence, driving can induce a dip in the

spectrum at zero frequency, as we have seen in all studied systems (the total power spectrum re-

mains positive, of course). The occurrence of the dip looks as if the driving were decreasing the

noise in the system, although in fact the dip has dynamical nature.

The power spectra of weakly damped nonlinear systems should also display extra features in

the presence of weak periodic driving. The effect should be most pronounced where the driving is

resonant. Along with the features near the driving frequency and near ω = 0, there should arise

features near the eigenfrequencies of slowly decaying vibrations about the stable states. Several

features of the power spectra have been studied for nonlinear oscillators in the regime of strong

driving, see recent papers [101, 102] and references therein. Interestingly, the results do not im-

mediately extend to the weak-driving regime, and the features of the interplay of nonlinearity and

driving where they are of comparable strength remain to be explored. However, it is clear from the

presented results that the driving-induced change of the spectra is a general effect that provides a
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sensitive tool for characterizing fluctuating systems and their parameters.
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CHAPTER 5

CONCLUSIONS

Fluctuations and nonlinearities are key features of mesoscopic vibrational systems. Along with the

reasonably well understood thermal fluctuations of the vibration amplitude, of significant interest

are fluctuations of the oscillator eigenfrequency. They lie at the root of classical and quantum

coherence of mesoscopic systems. Frequency fluctuations lead to broadening of the oscillator

spectra, but this broadening is hard to separate and identify, because it is mixed with other spectral

broadening mechanisms such as dissipation.

In this thesis, we studied how to reveal and characterize frequency fluctuations in mesoscopic

vibrational systems. We showed that the interplay of a near-resonant driving and frequency noise

leads to specific features in the oscillator power spectrum. These features allow one to distinguish

frequency fluctuations of different bandwidths and sources, including 1/f-type noise, broadband

noise, or nonlinearity-induced frequency noise. Besides the immediate relevance to the decoher-

ence of mesoscopic oscillators, the results bear on the general problem of resonance fluorescence

and light scattering by oscillators.

The first and perhaps most generic system in which the effect of frequency fluctuations can

be investigated is a harmonic oscillator. Of interest is the general case where the spectrum and

statistics of the fluctuations can be arbitrary. We showed that, when the oscillator is driven by

a near-resonant force, in the presence of frequency fluctuations the driving-induced part of the

oscillator power spectrum contains not only a δ peak at the driving frequency, but also some extra

structure away from the driving frequency. This extra structure is a result of the interplay of the

driving and the frequency noise, and its shape and strength depend sensitively on the characteristics

of the frequency noise. In the case where the frequency noise correlation time is much longer than

the oscillator relaxation time, the extra structure looks like a “pedestal" at the bottom of the δ

peak. The width of the pedestal is directly determined by the bandwidth of the frequency noise.
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In the opposite case where the frequency noise correlation time is much shorter than the oscillator

relaxation time, the combined effect of driving and frequency noise is to induce a broad peak near

the oscillator eigenfrequency. Its shape is the same as the oscillator power spectrum in the absence

of driving, and its intensity is directly proportional to the frequency noise intensity.

Our theory was applied to a carbon nanotube resonator. By comparing the experimental obser-

vations with the theory, we found that a half of the observed spectral width came from a broadband

frequency noise. Also for the first time a 1/f-type frequency noise was found and its spectrum was

analyzed in this system.

We studied the spectral effects of dispersive mode coupling in driven mesoscopic systems. We

found that, if the driving frequency is tuned away from the resonant frequency, there emerges a

characteristic double-peak structure in the power spectrum. It results from the interplay of the

dispersive-coupling-induced frequency noise and the driving. The peaks enable characterization

of not only the coupling strength, but also the decay rate of the mode coupled to the driven mode.

This can be done even where the mode is “hidden" and is not accessible to a direct measurement.

We developed a path-integral technique to average over the coupling-induced frequency noise.

We also studied the power spectrum of a driven oscillator with intrinsic nonlinearity. Because

the oscillator amplitude experiences thermal fluctuations and the frequency depends on the ampli-

tude due to the nonlinearity, the frequency is also fluctuating. We found that the driving-induced

changes of the power spectrum are qualitatively different for the cases of dispersive-coupling in-

duced frequency fluctuations and frequency fluctuations due to the intrinsic oscillator nonlinearity.

This is in spite the fact that, in the absence of the driving, the nonlinearity-related changes of the

spectra are not easy to distinguish between the two cases.

Our theory on harmonic oscillators with frequency noise applies to the regime where the oscil-

lators become quantum (i.e. kBT ≪ h̄ω0) and the frequency noise remains classical. In the case

of dispersively coupled oscillators, the theory applies when the oscillator under study is quantum

while the “hidden” oscillator remains classical.

We also studied the interplay of driving and fluctuations in overdamped nonlinear systems,
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where inertia plays no role. We showed that this interplay also leads to characteristic features

in the power spectrum. Unlike vibrational systems, these features occur at zero frequency and

the driving frequency, and they can represent a dip or a peak in the spectrum depending on the

parameters of the fluctuations and the mechanisms of nonlinearities.

In the course of this work we developed new and fairly sophisticated mathematical methods

including a path-integral technique to average over non-Gaussian fluctuations, a method of mo-

ments to compute the correlation functions in nonlinear systems, and several asymptotic methods

to analyze the spectral effects of fluctuations.

5.1 Outlook

Studies on frequency noise of mesoscopic vibrational systems are currently attracting much inter-

ests. Here I briefly mention two immediate directions to extend our theory. An important extension

of our theory on driven fluctuating oscillators is a theory of the spectra in the regime of nonlinear

response, i.e. comparatively strong drive. This is of particular relevance to the superconducting

cavity resonators. It was found that the intensity of the frequency noise in such systems is in-

versely proportional to the driving amplitude. This nonlinear response is sometimes attributed to

the coupling between the resonator and a bath of two level fluctuators distributed in the dielectric.

However, there is no full theory that describes this effect nor is it clear how to separate it from

other nonlinear effects. It would be natural to extend our formalism to such cases.

Another direction is to study not just the spectrum of the frequency noise, but also the statistics

of the noise. This requires calculating higher order correlators or moments of the oscillator dis-

placement. It is an interesting question how the statistics of the frequency noise would manifest

itself in the driving induced vibrations.
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