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ABSTRACT

ESTIMATES ON SINGULAR VALUES OF FUNCTIONS OF PERTURBED
OPERATORS

By

Qinbo Liu

In this thesis we study the behavior of functions of operators under perturbations. We

prove that if function f belongs to the class Λω
def
= {f : ωf (δ) ≤ const ω(δ)} for an arbitrary

modulus of continuity ω, then sj(f(A) − f(B)) ≤ c · ω∗
(
(1 + j)

−1
p‖A − B‖

Slp

)
· ‖f‖Λω for

arbitrary self-adjoint operators A, B and all 1 ≤ j ≤ l, where ω∗(x)
def
= x

∫∞
x

ω(t)

t2
dt (x >

0). The result is then generalized to contractions, maximal dissipative operators, normal

operators and n-tuples of commuting self-adjoint operators.
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PREFACE

It is well known that a Lipschitz function on the real line does not have to be operator

Lipschitz. The situation changes dramatically if we consider the Hölder class of functions.

In [1] and [3], it was proved that if f belongs to the Hölder class Λα(R) with 0 < α < 1,

then ‖f(A)−f(B)‖ ≤ const ‖f‖Λα‖A−B‖
α for all pairs of self-adjoint or unitary operators

A and B. The authors also generalized their results to the class Λω, and obtained estimate

‖f(A)− f(B)‖ ≤ const ‖f‖Λωω∗‖A−B‖.

In [2], it was shown that for functions f in the Hölder class Λα(R) with 0 < α < 1 and

if 1 < p < ∞, the operator f(A) − f(B) belongs to Sp/α, whenever A and B are arbitrary

self-adjoint operators such that A−B ∈ Sp. In particular, it was proved that if 0 < α < 1,

then there exists a constant c > 0 such that for every l ≥ 0, p ∈ [1,∞), f ∈ Λα(R), and for

arbitrary self-adjoint operators A and B on Hilbert space with bounded A−B, the following

inequality holds for every j ≤ l:

sj(f(A)− f(B)) ≤ c ‖f‖Λα(R)(1 + j)
−αp ‖A−B‖α

Slp
(see (3.1.1) for definition).

In section §3.2, we generalize this estimate to the class Λω. We prove that if function f

belongs to the class Λω for an arbitrary modulus of continuity ω, then sj(f(A) − f(B)) ≤

c ω∗
(
(1 + j)

−1
p‖A − B‖

Slp

)
‖f‖Λω for arbitrary self-adjoint operators A, B and all 1 ≤ j ≤

l. The result is then generalized to contractions, maximal dissipative operators, normal

operators and n-tuples of commuting self-adjoint operators. We also obtain some lower-

bound estimates for rank one perturbations which also extend the results in [2]. In section

§3.3, similar estimates are given without proofs in case of contractions, maximal dissipative
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operators, normal operators and n-tuples of commuting self-adjoint operators.

In chapter 1, we give a brief introduction to the theory of double operator integrals and

their applications to the perturbation theory. We refer the reader to [21] for more details.

Necessary information on function spaces Bsp,q and Λω are given in section §2.2. We refer

the reader to [1] for more detailed information.

The results obtained in section §3.2 and §3.3 were proved in [14], submitted to the Indiana

University Mathematics Journal in April, 2016.
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Chapter 1

A brief note on double operator

integrals

1.1 Introduction

1.1.1 Formal definition of double operator integrals

Formally, Double Operator Integrals (DOI) are objects of the form

T =

∫
X

∫
Y

Φ(x, y)dE1(x)QdE2(y). (1.1.1)

In (1.1.1) (X,E1(·)) and (Y,E2(·)) are two spaces with spectral measure. The values of the

measure E1(·) are orthogonal projections in a separable Hilbert space H1, and similar for

the measure E2(·) in the Hilbert space H2. The scalar-valued function Φ(x, y) (the symbol

of the DOI) is defined on X × Y . Finally, Q is a linear bounded operator acting from H2 to

H1, or Q ∈ B(H2, H1). Under reasonable definition the result T is also an operator acting

from H2 to H1. Hence, the integral (1.1.1) defines a linear mapping (transformer)

T
E1,E2

Φ : Q 7→ T. (1.1.2)
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T
E1,E2

Φ is often written as TΦ for short, especially when the spectral measures E1, E2 are

fixed. Sometimes we write

TΦ := T
E1,E2

Φ Q (1.1.3)

If E1, E2 are the spectral measures of self-adjoint operators A,B (E1 = EA1 , E2 = EB2 ), then

instead of (1.1.3) we write

TΦ := T A,B
Φ Q (1.1.4)

Rigorous definition of the integral (1.1.1) depends on the space of operators we wish to

deal with and the class of admissible symbols is also determined by the choice of this space.

In the case of the space S2 of Hilbert–Schmidt operators, the integral (1.1.1) can be well

defined for an arbitrary bounded and measurable symbol with respect to an appropriate

measure µ on X × Y . The measure µ is determined by the given spectral measures E1 and

E2; the operator TΦ is also Hilbert–Schmidt and moreover,

‖TΦ‖S2
≤ (µ)-sup|Φ|‖Q‖S2

. (1.1.5)

All this, including the construction of the measure σ, will be explained in section §1.2. For

other spaces of operators the situation is more complex. One of the most important cases is

when the integral (1.1.1) can be well defined for any bounded operator Q and the resulting

operator TΦ is also bounded. Then the transformer T
E1,E2

Φ acts in the space B(H2, H1)

and is bounded by Closed Graph Theorem. Theorem 1.3.1 gives a full description of the

class M of all admissible symbols of this type. If Φ ∈ M, then the transformer T
E1,E2

Φ is

also bounded in the space S1 of all trace class operators and in the space S∞ of all compact

operators. It is possible to consider the action of the integral (1.1.1) between other spaces

2



of operators, and the spaces for Q and T may differ from each other and the exhaustive

description of the class of admissible symbols for the most of cases is not know. However,

there are many sufficient conditions which allow one to apply the general results of the theory

of DOI.

1.1.2 Functions of non-commuting operators

Suppose that H2 = H1 and in (1.1.1) X = Y = R, E1 = EA1 , E2 = EB2 where A,B

are self-adjoint operators. Then it is natural to regard TΦ as the function Φ of the pair

(A,B), separated by the operator Q. The operators A and B are not assumed commuting,

since the presence of the operator Q prevents any possible gains which might come from the

commutation of A and B. For the simple case when Φ(x, y) = φ(x)ψ(y) where φ and ψ are

bounded functions, we have by Spectral Theorem

φ(A)Qψ(B) =

∫
φ(x)dE1(x)Q

∫
ψ(y)dE2(y).

Formally, this can be re-written as

TΦ = φ(A)Qψ(B) =

∫
σ(A)

∫
σ(B)

φ(x)ψ(y)dE1(x)QdE2(y). (1.1.6)

Moreover, we have

‖TΦ‖ ≤ ‖φ‖L∞(A;E1)‖ψ‖L∞(B;E2)‖Q‖. (1.1.7)
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The equality (1.1.6) can serve as the definition of the integral (1.1.1) for the function

Φ(x, y) = φ(x)ψ(y). This definition extends naturally to the finite sums

Φ(x, y) =
∑

1≤k≤N
φk(x)ψk(y),

in particular to the case when Φ is a polynomial in x, y and the operators A,B are bounded.

However, the estimate similar to (1.1.7), i.e.

‖TΦ‖ ≤ ‖Φ‖L∞‖Q‖

is no longer valid. Theorem 1.3.1 will give an estimate of the operator norm in a more general

situation. If one is only interested in the Hilbert–Schmidt norm, the estimate (1.1.5) gives

the desired result.

1.2 DOI on S2

Let (X,E1) and (Y,E2) be two spectral measures in the space H1 and H2 respectively. The

Hilbert–Schmidt class S2 = S2(H2, H1) is a Hilbert space, with respect to the scalar product

〈
Q,R

〉
= tr(QR∗) = tr(R∗Q). (1.2.1)

We will construct a certain spectral measure on S2, the tensor product of measures (X,E1)

and (Y,E2), and define the DOI TΦ as integral with respect to this spectral measure.
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Consider the mappings


E1(δ) : Q 7→ E1(δ)Q, for δ ⊂ X, Q ∈ S2;

E2(∂) : Q 7→ QE2(∂), for ∂ ⊂ Y, Q ∈ S2.

(1.2.2)

Each operator E1(δ) is an orthogonal projection in S2, the mapping δ 7→ E1(δ) is σ-additive,

and E1(X) = I (the identity transformer on S2). So we see that E1 is a spectral measure in

S2, and the same for E2. The types of E1 and E2 coincide with that of E1 and E2 respectively.

Thus for any bounded measurable functions φ(x), ψ(y) we have

∫
X
φ(x)d(E1(x)Q) =

∫
X
φ(x)dE1(x) ·Q

and ∫
Y
ψ(y)d(E2(y)Q) = Q ·

∫
Y
ψ(y)dE2(y).

The measures E1 and E2 commute, since one corresponds to the multiplication from the left

and the other from the right.

The mapping

E(δ × ∂) = E1(δ)E2(∂) : Q 7→ E1(δ)QE2(∂) (1.2.3)

is an additive projection-valued function on the set of all ”measurable rectangles” δ × ∂ ⊂

X×Y (orthogonal projections on S2). It turns out (see [20]) that this function is σ-additive.

The σ-additive projection-valued function E(∆) extends, in a unique way, from the set of

measurable rectangles ∆ = δ×∂ to the minimal σ-algebra A0 of subsets in X×Y , generated

by such rectangles, and the extension is σ-algebra, so it is a spectral measure in S2. We

denote it by the same notation E . It is convenient to add to A0 all the subsets ε′ ⊂ ε of sets

5



ε ∈ A0 of E-measure zero, putting E(ε′) = 0. The resulting family A is also a σ-algebra, and

the spectral measure E on A is N–full (see Birman section I.3.7). A scalar measure of type

E can be chosen as the measure µ in (1.1.5).

Now we take by definition

TΦ =

∫
X×Y

Φ(x, y)dE(x, y), (1.2.4)

or

TΦQ =

∫
X×Y

Φ(x, y)d(E(x, y)Q). (1.2.5)

So, for bounded Φ this is a bounded transformer in S2. Then we have

TΦ1+Φ2
= TΦ1

+ TΦ2
, TΦ1Φ2

= TΦ1
TΦ2

; (1.2.6)

TΦ̄ = T ∗Φ ; (1.2.7)

‖TΦ‖ = ‖Φ‖L∞(X×Y ). (1.2.8)

If Φ(x, y) = φ(x), then TΦ =
∫
X φ(x)dE1(x), or TΦQ =

∫
X φ(x)dE1(x) · Q. The similar

formula is valid for Φ(x, y) = ψ(y). From this observation and (1.2.6), we see that

∫
X×Y

φ(x)ψ(y)d(E(x, y)Q) =

∫
X
φ(x)dE1(x) ·Q ·

∫
Y
ψ(y)dE2(y).

6



1.3 DOI on S1 and B

1.3.1 Class M

Now we extend the definition of TΦ to the space B = B(H2, H1) of all bounded operators.

To do this we need some additional assumptions on the symbol Φ since it is not always

possible.

Let S1 be the trace class of operators, then

S1 ⊂ S2 ⊂ B. (1.3.1)

Moreover, the space B is adjoint to S1, with repect to the duality given by (1.2.1):

〈
Q,R

〉
= tr(QR∗), Q ∈ S1, R ∈ B. (1.3.2)

Clearly, any transformer TΦ with a L∞–symbol maps S1 into S2. Suppose that TΦ is

a bounded transformer from S1 into S1 itself for a given function Φ. Then the transformer

TΦ̄ is also bounded in S1 and has the same norm. The adjoint transformer T ∗
Φ̄

acts in the

space B. The equality (1.2.7) shows that it is natural to define

TΦQ = (TΦ̄|S1)∗Q, ∀Q ∈ B. (1.3.3)

The properties (1.2.6) of the transformers TΦ extend to the whole of B.

Let TΦ be a bounded transformer with a L∞–symbol that maps from S1 into S1. If

Q ∈ S∞ (the space of all compact operators), then TΦQ ∈ S∞ . Indeed, it is sufficient

to show this for the dense in S∞ subset K of finite rank operators. But if Q ∈ K, then
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TΦQ ∈ S1 ⊂ S∞. So TΦ acts from S∞ into S∞ and

‖TΦ‖B→B = ‖TΦ‖S1→S1
= ‖TΦ‖S∞→S∞ . (1.3.4)

By interpolation, we get

‖TΦ‖B→B ≥ ‖TΦ‖S2→S2
= ‖Φ‖L∞ . (1.3.5)

Denote by MB the set of all functions Φ on X × Y , such that the transformer TΦ is

bounded on B. This is a normed algebra of function, with respect to the norm

‖Φ‖MB = ‖TΦ‖B→B.

The mapping Φ 7→ Φ̄ is an involution in MB. It then follows from (1.3.5) that the algebra

MB is complete and hence, is a Banach C∗–algebra. The Banach algebras MS1
and MS∞

are introduced in the same way. It follows from duality that

M := MB = MS1
= MS∞ ,

including equality of the corresponding norms.

The class M depends on the choice of the spectral measures E1 and E2. We shall use

M(E1, E2) when it is useful to reflect this dependence explicitly.
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1.3.2 Criterion of Φ ∈M

Let (X,E1) and (Y,E2) be two spectral measures in the space H1 and H2 respectively. For

each h1 ∈ H1, the function ρh1
(·) = (E1(·)h1, h1) is a finite scalar measure. Similarly , the

function τh2
(·) = (E2(·)h2, h2) is defined for each h2 ∈ H2. The class M(E1, E2) admits the

following description.

Theorem 1.3.1. [17, 18, 23] Let Φ ∈ L∞(E1, E2). Then the following statements are

equivalent:

(i) Φ ∈M = M(E1, E2).

(ii) For any h2 ∈ H2, h1 ∈ H1 the integral operator

Kh2,h1
: L2(Y ; τh2

)→ L2(X; ρh1
), (Kh2,h1

u)(x) =
∫
Y Φ(x, y)u(y)dτh2

(y)

belongs to S1, and

sup
‖h1‖=‖h2‖=1

‖Kh2,h1
‖S1

=: C <∞.

Moreover,

‖Φ‖M = C.

(iii) There exist a measure space (Z, η) and measurable functions α on X × Z, β on Y × Z

such that

Φ(x, y) =

∫
Z
α(x, z)β(y, z)dη(z) (1.3.6)

and 
A2 := (E1)-sup

x

∫
Z |α(x, z)|2dη(z) <∞;

B2 := (E2)-sup
y

∫
Z |β(y, z)|2dη(z) <∞.

(1.3.7)

For any such factorization

‖Φ‖M ≤ AB, (1.3.8)
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and there exists a factorization such that

cAB ≤ ‖Φ‖M, c > 0. (1.3.9)

The constant c does not depend on the spectral measures E1, E2.

For the proof, see [17], [18] and [23]. The set of functions that admit the representation

in (1.3.6) and (1.3.7) is called the integral projective tensor product of spaces L∞(E1) and

L∞(E2).

1.4 Transformers on other classes

Let B = B = (H2, H1), where H1 and H2 be two given separable Hilbert spaces. For each

Q ∈ B, the singular values sn is defined by sn(Q) := λn(
√
Q∗Q), n ≥ 0. The Schatten ideals

Sp, weak Sp–ideals Sp,w ,ideals S◦p,w and spaces Sp,1 are defined by

Sp = {Q ∈ S∞ : {sn(Q)} ∈ lp}, 0 < p <∞. (1.4.1)

Sp,w = {Q ∈ S∞ : sn(Q) = O(n−1/p)}, 0 < p <∞. (1.4.2)

S◦p,w = {Q ∈ S∞ : sn(Q) = o(n−1/p)}, 0 < p <∞. (1.4.3)

Sp,1 = {Q ∈ S∞ :
∑
n

(n+ 1)p
−1−1sn(Q) <∞}, 0 < p <∞. (1.4.4)

For 1 < p < ∞, certain norms can be introduced such that these spaces become Banach

algebras. They will be called the nice symmetrically-normed ideals (See [12] for more details

on symmetrically-normed ideals (SNI)) and we have the following duality relations given by

10



(1.2.1)

S∗p = Sp′ ; (S◦p,w)∗ = Sp′,1; S∗p,1 = Sp′,w, 1/p′ = 1− 1/p. (1.4.5)

Given a SNI S, the set of symbols Φ, such that the transformer TΦ is bounded on S,

form a commutative Banach algebra of functions on X × Y , with complex conjugation as

the involution. We denote this algebra as MS . It follows from the duality arguments and

interpolation that for 1 < p <∞

MSp = MS
p′

; MS◦p,w = MS
p′,1

= MSp,w (1.4.6)

and for any nice SNI S, the following topological imbeddings hold:

M ⊂MS ⊂MS2
= L∞(X × Y ). (1.4.7)

Furthermore, if Φ ∈M, then ‖Φ‖MS
≤ ‖Φ‖M for any nice SNI S.

1.5 Applications of DOI to the perturbation theory

1.5.1 Transformers Zφ

Let (R, E1) and (R, E2) be two spectral measures in the separable Hilbert space H1 and H2

respectively. The spectral measure E is defined as in §1.2. Denote the diagonal of R2 by

diag, i.e. diag
def
= {(x, x) : x ∈ R} ⊂ R2. Then it is shown in [21] that E|diag is an atomic

measure.

Let A and B be self-adjoint operators in the Hilbert spaces H1 and H2 respectively. If φ

11



is a uniformly Lipschitz function on R, then the function

φ̌(x, y) =
φ(x)− φ(y)

x− y

is well defined and continuous outside the diagonal and bounded. Suppose that it is somehow

extended to diag and the extended function is bounded on R2. Note that this function is

always E–measure since E is N–full. If at some point x ∈ R the function φ is differentiable,

the natural choice of extension is φ̌(x, x)
def
= φ′(x). Otherwise, the value of φ̌(x, x) can be

chosen arbitrary.

Below we suppose that some extension of φ̌ to the whole of R2 is chosen and fixed. Then

the transformer

Z
A,B
φ

def
= T A,B

φ̌
=

∫
R

∫
R

φ(x)− φ(y)

x− y
dEA1 (x)(·)dEB2 (y) (1.5.1)

is well defined, at least on the class S2. We do not reflect the choice of extension in the

notations, since the formulas presented in Theorem 1.5.1, 1.5.2 hold true independently of

it. Moreover, for any SNI S the membership φ̌ ∈MS does not depend on this choice. This

follows from section 7.1 of [21].

Theorem 1.5.1. [18] Let H1 = H2 be a Hilbert space and A, B be self-adjoint operators

with the same domain in H1, and suppose that B − A ∈ S where S is a nice SNI. Suppose

also that the function φ is such that φ̌ ∈MS. Then,

φ(B)− φ(A) = Z
A,B
φ (B − A). (1.5.2)

It allows the operators A,B to be unbounded.
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Formula (1.5.2) is called the Birman–Solomyak formula. A similar formula also holds for

unitary operators, in which case we have to integrate φ̌ of a function φ on the unit circle

with with respect to the spectral measures of the corresponding operator integrals.

Theorem 1.5.1 extends to the quasi–commutators JB −AJ . Here J is a linear bounded

operator acting from H2 to H1. The operators A,B are not supposed bounded, and JB−AJ

is understood as the operator generated by the sesqui-linear form (JBh2, h1) − (Jh2, Ah1)

where h1 ∈ Dom A, h2 ∈ Dom B.

Theorem 1.5.2. [18] Let A and B be self-adjoint operators in Hilbert space H1 and H2

respectively and let J ∈ B(H2, H1). Suppose that JB −BA ∈ S where S is a nice SNI, and

that φ̌ ∈MS. Then, independently on the way φ̌ is defined on the diagonal,

Jφ(B)− φ(A)J = Z
A,B
φ (JB − AJ). (1.5.3)

Theorem 1.5.2 turns into Theorem 1.5.1 if we take H2 = H1 and J = I. Both theorems

were proved in [18].

1.5.2 Tests for φ̌ ∈MS

For practical usage of Theorem 1.5.1, 1.5.2 one needs tools for checking the inclusion φ̌ ∈MS

for a given SNI S. A particular case of Theorem 1.5.1 says that for self-adjoint operators A

and B

|φ(x)− φ(y)| ≤ L|x− y| ⇒ ‖φ(A)− φ(B)‖S2
≤ L‖A−B‖S2

.
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It is well known that a Lipschitz function on the real line is not necessarily operator Lipschitz,

i.e., the condition

|φ(x)− φ(y)| ≤ const|x− y|

does not imply that for self-adjoint operators A and B

‖φ(A)− φ(B)‖ ≤ const‖A−B‖.

Denote M(R,R) and M(T,T) by M(R) and M(T) respectively. It was shown in [23] that

if φ is a trigonometric polynomial of degree d, then φ̌ ∈M(T) and

‖φ̌‖M(T) ≤ const d ‖φ‖L∞ . (1.5.4)

On the other hand, it was shown in [25] that if φ is a bounded function on R whose Fourier

transform is supported on [−σ, σ] (in other words, φ is an entire function of exponential type

at most σ that is bounded on R), then φ̌ ∈M(R) and

‖φ̌‖M(R) ≤ constσ ‖φ‖L∞ . (1.5.5)

Inequalities (1.5.4) and (1.5.5) led in [23] and [25] to the fact that functions in functions

in the Besov spaces B1
∞,1(T) and B1

∞,1(R) are operator Lipschitz. The gegeral Besov space

Bsp,q will be defined in §2.1 for 1 ≤ p, q ≤ ∞ and s ∈ R. Here we only give an equivalent

description for B1
∞,1(R). A function φ on R belongs to for B1

∞,1(R) if

r0(φ)
def
=

∫ ∞
0

(sup
x∈R
|φ(x+ t)− 2φ(x) + φ(x− t)|)dt

t2
<∞. (1.5.6)
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Any function φ ∈ B1
∞,1(R) has uniformly bounded continuous derivative, and we denote

r(φ)
def
= r0(φ) + sup

x∈R
|φ′(x)|.

The space B1
∞,1(T) can be defined similarly.

Theorem 1.5.3. [25] Let φ ∈ B1
∞,1(R). Then φ̌ ∈M(R) for any spectral measures E1, E2,

and

‖φ̌‖M(R) ≤ Cr(φ),

where the constant C is independent of the spectral measures E1, E2. In particular, for any

nice SNI S we have

‖Jφ(B)− φ(A)J‖S ≤ Cr(φ)‖JB −BA‖ (1.5.7)

for self–adjoint operators A,B and bounded operator J as in Theorem 1.5.2.

A similar result also holds when φ ∈ B1
∞,1(T).

In chapter 2 we will explain the result found in [1] that if φ belongs to the Hölder class

Λα(R) with 0 < α < 1, then ‖φ(A) − φ(B)‖ ≤ const‖A − B‖α for arbitrary self-adjoint

operators A and B.

1.6 DOI with respect to semi-spectral measures

Let H be a Hilbert space and let (X,A) be a measurable space. A map F from A to the

algebra B(H) of all bounded operators on H is called a semi–spectral measure if

F(∆) ≥ 0, ∆ ∈ A,
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F(∅) = 0 and F(X) = I,

and for a sequence {∆j}j≥1 of disjoint sets in A,

F(
∞
∪
j=1

∆j) = lim
N→∞

N∑
j=1

F(∆j) in the weak operator topology.

If K is a Hilbert space, (X,A) is a measurable space, F : A 7→ B(K) is a spectral measure,

and H is a subspace of K, then it is easy to see that the map F : A 7→ B(H) defined by

F(∆) = PHF (∆)|H, ∆ ∈ A (1.6.1)

is a semi-spectral measure. Here PH stands for the orthogonal projection onto H.

Naimark proved in [15] that all semi–spectral measures can be obtained in this way, i.e.,

a semi–spectral measure is always a compression of a spectral measure. A spectral measure

F satisfying (1.6.1) is called a spectral dilation of the semi–spectral measure F .

A spectral dilation F of a semi-spectral measure F is called minimal if

K = clos span{F (∆)H : ∆ ∈ A}.

It was shown in [16] that if F is a minimal spectral dilation of a semi–spectral measure F ,

then F and F are mutually absolutely continuous and all minimal spectral dilations of a

semi–spectral measure are isomorphic in the natural sense.

If φ is a bounded measurable function X and F : A 7→ B(H) is a semi–spectral measure,

then the integral ∫
X
φ(x)dF(x) (1.6.2)
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can be defined as ∫
X
φ(x)dF(x) = PH(

∫
X
φ(x)dF (x))

∣∣∣∣H, (1.6.3)

where F is a spectral dilation of F . It is easy to see that the right–hand side of (1.6.3) does

not depend on the choice of a spectral dilation. The integral (1.6.2) can also be computed

as the limit of sums ∑
φ(xα)F(∆α), xα ∈ ∆α,

over all finite measurable partitions {∆α}α of X.

If T is a contraction on a Hilbert space H, then by the Sz.–Nagy dilation theorem (see

[8]), T has a unitary dilation, i.e., there exist a Hilbert space K such that H ⊂ K and a

unitary operator U on K such that

Tn = PHU
n|H, n ≥ 0, (1.6.4)

where PH is the orthogonal projection onto H. Let FU be the spectral measure of U .

Consider the operator set funtion F defined on the Borel subsets of the unit circle T by

F(∆) = PHFU (∆)|H, ∆ ⊂ T.

Then F is a semi–spectral measure. It follows from (1.6.4) that

Tn =

∫
T
ζndF(ζ) = PH

∫
T
ζndFU (ζ)

∣∣∣∣H, n ≥ 0. (1.6.5)

Such a semi–spectral measure F is called a semi–spectral measure of T. Note that it is not

unique. To have uniqueness, we consider a minimal unitary dilation U of T , which is unique
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up to an isomorphism (see [8]).

It follows easily from (1.6.5) that

φ(T ) = PH

∫
T
φ(ζ)dFU (ζ)

∣∣∣∣H
for an arbitrary function φ in the disk–algebra CA.

In [24] and [27] DOI with respect to semi–spectral measures were introduced.

Suppose that (X1,A1) and (X2,A2) are measurable spaces, and F1 : A1 7→ B(H1) and

F2 : A2 7→ B(H2) are semi–spectral measures. Then double operator integral

∫
X1×X2

Φ(x1, x2)dF1(x1)QdF2(x2)

were defined in [27] in the case when Q ∈ S2 and Φ is a bounded symbol. DOI were also

defined in [27] in the case when Q is a bounded linear operator and Φ belongs to the integral

projective tensor product of the spaces L∞(F1) and L∞(F2).

In particular, the following Birman–Solomyak formula holds:

φ(R)− φ(Q) =

∫
T×T

φ̌(ζ, τ)dFR(ζ)(R−Q)dFQ(τ). (1.6.6)

Here R and Q are contractions on Hilbert space. FR and FQ are their semi–spectral mea-

sures, and φ is an analytic in D of class (B1
∞,1)+ (For definition, see section §2.2.1).
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Chapter 2

Operator Hölder Functions and

arbitrary moduli of continuity

2.1 Introduction

Let 0 < α < 1. In was proved in [1] that the functions in the Hölder class Λα are also operator

Hölder continuous for arbitrary self–adjoint operators, unitary operators and contractions,

and their sharp estimates are also obtained. Similar results for maximal dissipative operators,

normal operators and n–tuples of self–adjoint oprators are also obtained in [1], [4], [5] and

[10]. In those papers, the authors also extended the results to class Λω. We will show the

proof for self–adjoint operators and unitary operators and give a short discussion for other

types of operators. An introduction to the function spaces Λα and Λω are given below in

§2.2.1 and §2.2.2.

2.2 Function spaces

2.2.1 Besov classes

In this subsection we give a brief introduction to the Besov spaces that play an important

role in the problems of perturbation theory. We start with Besov spaces on the unit circle.
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Let 1 ≤ p, q ≤ ∞ and s ∈ R. The Besov class Bsp,q of functions (or distributions) on T

can be defined in the following way. Let w be an infinitely differentiable function on R such

that

w ≥ 0, supp w ⊂ [
1

2
, 2], and w(x) = 1− w(

x

2
) for x ∈ [1, 2]. (2.2.1)

Define a C∞ function v on R by

v(x) = 1 for x ∈ [−1, 1] and v(x) = w(|x|) if |x| ≥ 1. (2.2.2)

Define trigonometric polynomials Wn, W
]
n and Vn by

Wn(z) =
∑
k∈Z

w(
k

2n
)zk, n ≥ 1, W0(z) = z̄ + 1 + z, and W

]
n(z) = Wn(z), n ≥ 0

and

Vn(z) =
∑
k∈Z

v(
k

2n
)zk, n ≥ 1.

Vn is called de la Vallée Poussin type kernel.

If f is a distribution on T, we define fn, n ≥ 0 by

fn = f ∗Wn + f ∗W ]
n, n ≥ 1, and f0 = f ∗W0,

Then f =
∑
n≥0 fn and f − f ∗ Vn =

∑∞
k=n+1 fn.

The Besov class Bsp,q consists of functions (in the case s > 0) or distributions f on T

such that

{‖2nsf ∗Wn‖Lp}n≥1 ∈ `q and {‖2nsf ∗W ]
n‖Lp}n≥1 ∈ `q (2.2.3)
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Besov classes admit many other descriptions. In particular, for s > 0, the space Bsp,q admits

the following characterization. A function f ∈ Lp belongs to Bsp,q, s > 0, if and only if


∫
T
‖∆nτ f‖

q
Lp

|1−τ |1+sq dm(τ), for q <∞;

sup
τ 6=1

‖∆nτ f‖Lp
|1−τ |s <∞, for q =∞.

(2.2.4)

Here m is the normalized Lebesgue measure on T, n is an integer greater than s, and ∆τ ,

τ ∈ T, is the difference operator:

(∆τf)(ζ) = f(τζ)− f(ζ), ζ ∈ T.

We use the notation Bsp for Bsp,p.

The spaces Λα
def
= Bα∞ form the Hölder–Zygmund class. If 0 < α < 1, then f ∈ Λα if and

only if

|f(ζ)− f(τ)| ≤ const|ζ − τ |α, ζ, τ ∈ T.

These spaces are called the Hölder spaces. A function f ∈ Λ1 if and only if f is continuous

and

|f(ζτ)− 2f(ζ) + f(ζτ̄)| ≤ const|1− τ |, ζ, τ ∈ T.

By (2.2.4), for α > 0, f ∈ Λα if and only if f is continuous and

|(∆n
τ f)(ζ)| ≤ const|1− τ |α,

where n is a positive integer such that n > α.
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Note that the (semi)norm of a function f in Λα is equivalent to

sup
n≥1

2nα(‖f ∗Wn‖L∞ + ‖f ∗W ]
n‖L∞).

It is easy to see from the definition of Besov classes that the Riesz projection P+,

P+f =
∑
n≥0

f̂(n)zn,

is bounded on Bsp,q. Functions in (Bsp,q)+
def
= P+B

s
p,q admit a natural extension to analytic

functions in the unit disk D. It is well known that the functions in (Bsp,q)+ admit the

following description:

f ∈ (Bsp,q)+ ⇔
∫ 1

0
(1− r)q(n−s)−1‖f (n)

r ‖qpdr <∞, q <∞,

and

f ∈ (Bsp,∞)+ ⇔ sup
0<r<1

(1− r)(n−s)‖f (n)
r ‖p <∞,

where fr(ζ)
def
= f(rζ) and n is a nonnegative integer greater than s.

Let us proceed now to Besov spaces on the real line. We consider homogeneous Besov

spaces Bsp,q(R) of functions (distributions) on R. We use the same functions w, v as in

(2.2.1), (2.2.2) , and define functions Wn, W
]
n and Vn on R by

FWn(x) = w(
x

2n
), FW

]
n(x) = FWn(−x), n ∈ Z
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and

FVn(x) = v(
x

2n
), n ∈ Z,

where F is the Fourier transform:

(Ff)(t) =

∫
R
f(x)e−ixtdx, f ∈ L1.

Vn is also called de la Vallée Poussin type kernel.

If f belongs to S ′(R), the space of tempered distribution on R, we define fn by

fn = f ∗Wn + f ∗W ]
n, n ∈ Z.

Initially we define the (homogeneous) Besov class Ḃsp,q(R) as the set of all f ∈ S ′(R) such

that

{2ns‖fn‖Lp}n∈Z ∈ `q(Z). (2.2.5)

According to this definition, the space Ḃsp,q(R) contains all polynomials. Moreover, the

distribution f is defined by the sequence {fn}n∈Z uniquely up to a polynomial. It is easy to

see that the series
∑
n≥0 fn converges in S ′(R). However, the series

∑
n<0 fn can diverge

in general. It is easy to prove that the series
∑
n<0 f

(r)
n converges uniformly on R for each

nonnegative integer r > s− 1/p. Note that in the case q = 1 the series
∑
n<0 f

(r)
n converges

uniformly, whenever r ≥ s− 1/p.

Now we define the modified (homogeneous) Besov class Bsp,q(R). We say that a distri-

bution f belongs to Bsp,q(R) if {2ns‖fn‖Lp}n∈Z ∈ `q(Z) and f (r) =
∑
n∈Z f

(r)
n in the space

S ′(R), where r is the minimal nonnegative integer such that r > s − 1/p (r ≥ s − 1/p
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if q = 1). Now the function f is determined uniquely by the sequence {fn}n∈Z up to a

polynomial of degree less than r, and a polynomial φ belongs to Bsp,q(R) if and only if

deg φ < r.

Besov spaces Bsp,q(R) admit equivalent definitions that are similar to those discussed

above in case of Besov spaces of functions on T. In particular, the Hölder–Zygmund classes

Λα(R)
def
= Bα∞(R), α > 0, can be described as the classes of continuous functions f on R

such that

|(∆m
t )(x)| ≤ const|t|α, t ∈ R,

where the difference operator ∆t is defined by

(∆tf)(x) = f(x+ t)− f(x), x ∈ R,

and m is an integer greater than α.

As in the case of functions on the unit circle, we can introduce the following equivalent

(semi)norm on Λα(R):

sup
n∈Z

2nα(‖f ∗Wn‖L∞ + ‖f ∗W ]
n‖L∞), f ∈ Λα(R).

The following result will be used in §2.3.

Theorem 2.2.1. [1] Let α > 0. Then for each ε > 0 and each function f ∈ Λα(R) there

exists a function g ∈ Λα(R) with compact support such that f(t) = g(t) for t ∈ [0, 1] and

‖g‖Λα ≤ ‖f‖Λα + ε,
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where the constant can depend only on α.

To prove Theorem 2.2.1, we use the well–known fact that if φ and f are functions in

Λα(R) and φ has compact support, then φf ∈ Λα(R). We refer the reader to [11], Section

4.5.2 for the proof.

Denote by S ′+(R) the set of all f ∈ S ′(R) such that supp Ff ⊂ [0,∞). We define the

analytic Besov space
(
Bsp,q(R)

)
+ as Bsp,q(R) ∪S ′+(R). Put

(
Λα(R)

)
+

def
= Λα(R) ∪S ′+(R).

For f ∈ S ′+(R), we have f ∗W ]
n = 0, n ∈ Z.

We refer the reader to [1], [13] and [26] for more detailed information on Besov spaces.

2.2.2 Spaces Λω

Let ω be a modulus of continuity, i.e., ω is a nondecreasing continuous function on [0,∞)

such that ω(0) = 0, ω(x) > 0 for x > 0, and

ω(x+ y) ≤ ω(x) + ω(y), x, y ∈ [0,∞).

We denote by Λω(R) the space of functions on R such that

‖f‖Λω(R)
def
= sup
x 6=y

|f(x)− f(y)|
ω(|x− y|)

.

The space Λω(T) on the unit circle can be defined in a similar way.

Theorem 2.2.2. [1] There exists a constant c such that for an arbitrary modulus of con-

tinuity ω and for an arbitrary function f in Λω(R), the following inequalities hold for all

n ∈ Z:

‖f − f ∗ Vn‖L∞ ≤ c ω(2−n)‖f‖Λω(R). (2.2.6)
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Proof. We have

|f(x)− (f ∗ Vn)(x)| = 2n
∣∣∣∣ ∫R(f(x)− f(x− y))V (2ny)dy

∣∣∣∣
≤ 2n‖f‖Λω(R)

∫
R
ω(|y|)|V (2ny)|dy

≤ 2n‖f‖Λω(R)

∫ 2−n

−2−n
ω(|y|)|V (2ny)|dy

+ 2n+1‖f‖Λω(R)

∫ ∞
2−n

ω(y)|V (2ny)|dy.

Clearly,

2n
∫ 2−n

−2−n
ω(|y|)|V (2ny)|dy ≤ ω(2−n)‖V ‖

L1 .

On the other hand, keeping in mind the obvious inequality 2−nω(y) ≤ 2yω(2−n) for y ≥ 2−n,

we obtain

2n+1
∫ ∞

2−n
ω(y)|V (2ny)|dy ≤ 4 · 22nω(2−n)

∫ ∞
2−n

y|V (2ny)|dy

= 4ω(2−n)

∫ ∞
1

y|V (y)|dy ≤ const ω(2−n)

This proves (2.2.6).

Remark 2.2.3. [1] A similar inequality holds for functions on T of class Λω:

‖f − f ∗ Vn‖L∞ ≤ c ω(2−n)‖f‖Λω , n > 0.

To prove it, it suffices to extend f as a 2π–periodic function on R and apply Theorem

2.2.2.
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Corollary 2.2.4. [1] There exists a constant c such that for an arbitrary modulus of conti-

nuity ω and for an arbitrary function f in Λω, the following inequalities hold for all n ∈ Z,

in R case, or for all n ≥ 0, in T case:

‖f ∗Wn‖L∞ ≤ c ω(2−n)‖f‖Λω , ‖f ∗W
]
n‖L∞ ≤ c ω(2−n)‖f‖Λω . (2.2.7)

Put
(
Λω(R)

)
+

def
= Λω(R) ∩S ′+(R) and C+

def
= {z ∈ C : Im z > 0}. Then a function in

Λω(R) belongs to the space
(
Λω(R)

)
+ if and only if it has a (unique) continuous extension

to the closed upper half-plance clos C+ that is analytic in the open upper half-plane C+

with at most a polynomial growth rate at infinity.

2.3 Hölder estimates for self–adjoint operators

In this section we show that Hölder functions on R of order α, 0 < α < 1, must also be

operator Hölder of order α. Note that if A and B are self–adjoint operators, we say that

operator A − B is bounded if B = A + K for some bounded self–adjoint operator K. In

particular, this implies that DomA = DomB. We say that ‖A−B‖ =∞ if there is no such

a bounded operator K that B = A+K.

Lemma 2.3.1. [3] Let A and B be self–adjoint operators and let R be an operator of norm

1. Then there exist a sequence of operators {Rn}n≥1 and sequences of bounded self–adjoint

operators {An}n≥1 and {Bn}n≥1 such that

(i) the sequence {‖Rn‖}n≥1 is nondecreasing and limn→∞ ‖Rn‖ = 1;

(ii) limn→∞Rn = R in the strong operator topology;
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(iii) for every continuous function f on R, the sequence

{‖f(An)Rn −Rnf(Bn)‖}n≥1

is nondecreasing and

lim
n→∞

‖f(An)Rn −Rnf(Bn)‖ = ‖f(A)R−Rf(B)‖;

(iv) if f is a continuous function on R such that ‖f(A)R−Rf(B)‖ <∞, then

lim
n→∞

f(An)Rn −Rnf(Bn) = f(A)R−Rf(B)

in the strong operator topology;

(v) if f is a continuous function on R such that ‖f(A)R−Rf(B)‖ <∞, then the sequence

{sj(f(An)Rn −Rnf(Bn))}n≥1

is nondecreasing for every j ≥ 0 and

lim
n→∞

sj(f(An)Rn −Rnf(Bn)) = sj(f(A)R−Rf(B)).

Proof. Put Pn
def
= EA([−n, n]) and Qn

def
= EB([−n, n]) where EA and EB are the spectral

measures of A and B. Put An
def
= PnA = APn and Bn

def
= QnB = BQn. Clearly,

Pn(f(A)R−Rf(B))Qn = f(An)PnRQn − PnRQnf(Bn), n ≥ 1. (2.3.1)
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It remains to put Rn
def
= PnRQn.

Theorem 2.3.2. [1] Let 0 < α < 1. Then there is a constant c > 0 such that for every

f ∈ Λα(R) and for arbitrary self–adjoint operators A and B on Hilbert space the following

inequality holds:

‖f(A)− f(B)‖ ≤ c ‖f‖Λα(R) · ‖A−B‖
α. (2.3.2)

Proof. Due to Lemma 2.3.1, we can assume that A and B are bounded operators. It then

follows from Theorem 2.2.1 that we may assume that f ∈ L∞(R) and we have to obtain an

estimate for ‖f(A)− f(B)‖ that does not depend on ‖f‖L∞ . Put

fn = f ∗Wn + f ∗W ]
n.

Let us show that

f(A)− f(B) =
∞∑

n=−∞
(fn(A)− fn(B)) (2.3.3)

and the series on the right converges absolutely in the operator norm.

For N ∈ Z, we put gN
def
= f ∗ VN . Clearly,

f = f ∗ VN +
∑
n>N

fn

and the series on the right converges absolutely in the L∞ norm. Thus

f(A) = (f ∗ VN )(A) +
∑
n>N

fn(A) and f(B) = (f ∗ VN )(B) +
∑
n>N

fn(B)
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and the series converge absolutely in the operator norm. We have

f(A)− f(B)−
∑
n>N

(fn(A)− fn(B)) =

(
f(A)−

∑
n>N

fn(A)

)
−
(
f(B)−

∑
n>N

fn(B)

)

gN (A)− gN (B).

Since gN ∈ L∞(R) and gN is an entire function of exponential type at most 2N+1, it follows

from (1.5.2) and (1.5.5) that

‖gN (A)− gN (B)‖ ≤ const 2N‖f ∗ VN‖L∞‖A−B‖ ≤ const 2N‖f‖L∞‖A−B‖ → 0

as N → −∞. This proves (2.3.3).

Let N be the integer such that

2−N < ‖A−B‖ ≤ 2−N+1. (2.3.4)

We have

f(A)− f(B) =
∑
n≤N

(fn(A)− fn(B)) +
∑
n>N

(fn(A)− fn(B)).
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It follows from (2.2.5) and (2.3.4) that

∥∥∥∥∑
n≤N

(fn(A)− fn(B))

∥∥∥∥ ≤ ∑
n≤N
‖(fn(A)− fn(B))‖

≤ const
∑
n≤N

2n‖fn‖L∞‖A−B‖

≤ const
∑
n≤N

2n2−nα‖f‖Λα(R)‖A−B‖

≤ const 2N(1−α)‖f‖Λα(R)‖A−B‖

≤ const ‖f‖Λα(R)‖A−B‖
α.

On the other hand,

∥∥∥∥∑
n>N

(fn(A)− fn(B))

∥∥∥∥ ≤ ∑
n>N

(‖fn(A)‖+ ‖fn(B)‖)

≤ 2
∑
n>N

‖fn‖L∞ ≤ const
∑
n>N

2−Nα‖f‖Λα(R)

≤ const 2−Nα‖f‖Λα(R) ≤ const ‖f‖Λα(R)‖A−B‖
α

by (2.3.4). This completes the proof.

2.4 Hölder estimates for other classes of operators

In this section we obtain analogs of the result of the previous section for functions of unitary

operators, contractions, maximal dissipative operators, normal operators and n–Tuples of

commuting self–adjoint operators.
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2.4.1 The case of unitary operators

Theorem 2.4.1. [1] Let 0 < α < 1. Then there exists a constant c > 0 such that for

every f ∈ Λα(T) and for arbitrary unitary operators U and V on Hilbert space the following

inequality holds:

‖f(U)− f(V )‖ ≤ c ‖f‖Λα(T) · ‖U − V ‖
α. (2.4.1)

Proof. Let f ∈ Λα(T). We have

f = P+f + P−f = f+ + f−.

We estimate ‖f+(U)− f+(V )‖. The norm of ‖f−(U)− f−(V )‖ can be obtained in the same

way. Thus we assume that f = f+. Let

fn
def
= f ∗Wn.

Then

f =
∑
n≥0

fn. (2.4.2)

Clearly, we may assume U 6= V . Let N be the nonnegative integer such that

2−N < ‖U − V ‖ ≤ 2−N+1. (2.4.3)

We have

f(U)− f(V ) =
∑
n≤N

(fn(U)− fn(V )) +
∑
n>N

(fn(U)− fn(V )).
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It follows from the Birman–Solomyak formula for unitary operators and (1.5.4) that

∥∥∥∥∑
n≤N

(fn(U)− fn(V ))

∥∥∥∥ ≤ ∑
n≤N
‖(fn(U)− fn(V ))‖

≤ const
∑
n≤N

2n‖fn‖L∞‖U − V ‖

≤ const
∑
n≤N

2n2−nα‖f‖Λα(T)‖U − V ‖

≤ const 2N(1−α)‖f‖Λα(T)‖U − V ‖

≤ const ‖f‖Λα(T)‖U − V ‖
α.

On the other hand,

∥∥∥∥∑
n>N

(fn(U)− fn(V ))

∥∥∥∥ ≤ ∑
n>N

(‖fn(U)‖+ ‖fn(V )‖)

≤ 2
∑
n>N

‖fn‖L∞ ≤ const
∑
n>N

2−Nα‖f‖Λα(T)

≤ const 2−Nα‖f‖Λα(T) ≤ const ‖f‖Λα(T)‖U − V ‖
α

by (2.4.3). This completes the proof.

2.4.2 The case of contractions

Recall that if T is a contraction on Hilbert space, it follows from von Neumann’s inequality

that the polynomial functional calculus f 7→ f(T ) extends to the disk–algebra CA and

‖f(T )‖ ≤ ‖f‖CA , f ∈ CA.

Theorem 2.4.2. [1] Let 0 < α < 1. Then there exists a constant c > 0 such that for every

f ∈ (Λα)+ and for arbitrary contractions T and R on Hilbert space the following inequality
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holds:

‖f(T )− f(R)‖ ≤ c ‖f‖Λα · ‖T −R‖
α. (2.4.4)

Proof. The proof of Theorem 2.4.2 is almost the same as the proof of Theorem 2.4.1. For

f ∈ (Λα)+, we use expansion (2.4.2) and choose N such that

2−N < ‖T −R‖ ≤ 2−N+1.

Thus as in the proof of Theorem 2.4.2, for n ≤ N , we estimate ‖fn(T )− fn(R)‖ in terms of

const 2−n‖T−R‖ (see (1.6.6) and (1.5.4)), while for n > N we use von Neumann’s inequality

to estimate ‖fn(T )− fn(R)‖ in terms of 2‖fn‖L∞ . The rest of the proof is the same.

Corollary 2.4.3. [1] Let f be a function in the disk–algebra and 0 < α < 1. Then the

following two statements are equivalent:

(i) ‖f(T )− f(R)‖ ≤ const ‖T −R‖α for all contractions T and R,

(ii) ‖f(U)− f(V )‖ ≤ const ‖U − V ‖α for all unitary operators U and V

Remark 2.4.4. [1, 9] This corollary is also true for α = 1. This was proved by Kissin and

Shulman (see [9]).

2.4.3 The case of maximal dissipative operators

2.4.3.1 Dissipative operators

In this section we give necessary information of dissipative operators in order to interpret

the construction of the semi–spectral measure of a maximal dissipative operator. We refer

the reader to [4], [8] and [7] for more information.
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Definition 2.4.5. Let H be a Hilbert space. An operator L (not necessarily bounded) with

dense domain DL in H is called dissipative if

Im(Lu, u) ≥ 0 , u ∈ DL.

A dissipative operator is called maximal dissipative if it has no proper dissipative exten-

sion.

Note that if L is a symmetric operator (i.e., (Lu, u) ∈ R for every u ∈ DL), then L

is dissipative. However, it can happen that L is maximal symmetric, but not maximal

dissipative.

The Cayley transform of a dissipative operator L is defined by

T
def
= (L− iI)(L+ iI)−1

with domain DT = (L + iI)DL and range RangeT = (L − iI)DL (the operator T is not

densely defined in general). T is a contraction, i.e., ‖T (u)‖ ≤ ‖u‖, u ∈ DT , 1 is not an

eigenvalue of T , and Range (I − T )
def
= {u− Tu : u ∈ DT } is dense.

Conversely, if T is a contraction defined on its domain DT , 1 is not an eigenvalue of T ,

and Range (I − T ) is dense, then it is the Cayley transform of a dissipative operator L and

L is the inverse Cayley transform of T :

L = i(I + T )(I − T )−1, DL = Range (I − T ).

A dissipative operator is maximal if and only if the domain of its Cayley transform is the

whole Hilbert space.
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Every dissipative operator has a maximal dissipative extension. Every maximal dissipa-

tive operator is necessarily closed.

If L is a maximal dissipative operator, then −L∗ is also maximal dissipative.

If L is a maximal dissipative operator, then its spectrum σ(L) is contained in the closed

upper half–plane closC+ and

‖(L− λI)−1‖ ≤ 1

|Imλ|
, Imλ < 0. (2.4.5)

If L and M are maximal dissipative operators , we say that the difference operator L−M

is bounded if there exists a bounded operator K such that L = M +K. An elementary fact

is (see [4] for the proof) that if L is a maximal dissipative operator and M is a dissipative

operator such that L−M is bounded, then M is also maximal dissipative.

The construction of the functional calculus for dissipative operators was given in [4].

Let L be a maximal dissipative operator and let T be its Cayley transform. Consider its

minimal unitary dilation U , i.e., U is a unitary operator defined on a Hilbert space K that

contains H such that

Tn = PH Un|H , n ≥ 0,

and K = clos span{Unh : h ∈ H }. Since 1 is not an eigenvalue of T , it follows that 1 is

not an eigenvalue of U (see [8], Ch. II, §6).

The Sz–Nagy–Foiaş functional calculus allows us define a functional calculus for T on

the Banach algebra

CA,1
def
=
{
g ∈H ∞ : g is continuous on T \{1}

}
.
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If g ∈ CA,1, we put

g(T )
def
= PH g(U)|H .

This functional calculus is linear and multiplicative and

‖g(T )‖ ≤ ‖g‖H∞ , g ∈ CA,1.

A functional calculus for the dissipative operator on the Banach algebra

CA,∞
def
= {f ∈ H∞(C+) : f is continuous on R}

by

f(L)
def
= (f ◦ ω)(T ), f ∈ CA,∞,

where ω is the conformal map of D onto C+ defined by ω(ζ)
def
= i(1 + ζ)(1− ζ)−1, ζ ∈ D.

Let L be a maximal dissipative operator, T be its Cayley transform and let ET be the

semi–spectral measure of T on the unit circle. Then

g(T ) =

∫
T
g(ζ)dET (ζ), g ∈ CA,1. (2.4.6)

The semi–spectral measure EL of L can be defined by

EL(∆)
def
= ET (ω−1(∆)), ∆ is a Borel subset of R.
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It folllows from (2.4.6) that

f(L) =

∫
R
f(x)dEL(x), f ∈ CA,∞. (2.4.7)

2.4.3.2 Hölder Estimates

It was shown in [4] that if f is a bounded function on R whose Fourier transform has

compact support in (0,∞), and if L and M are maximal dissipative operators such that

L−M is bounded, then the Birman–Solomyak formula holds for L and M with respect to

their semi–spectral measures and

‖f(L)− f(M)‖ ≤ 8σ‖f‖L∞(R)‖L−M‖. (2.4.8)

It then follows that if f ∈
(
B1
∞,1(R)

)
+, we can associate with f the sequence {fn}n∈Z

defined by fn
def
= f ∗Wn, which gives

f̌ =
∞∑

n=−∞
f̌n.

The series converges uniformly. Then the Birman–Solomyak formula also holds for f . Note

that f is not necessarily bounded, and when it is not bounded, the difference operator

f(L)− f(M) is defined by

f(L)− f(M)
def
=

∞∑
n=−∞

(
(fn(L)− fn(M))

)
. (2.4.9)

As in the case of self–adjoint operators, the series on the right converges absolutely and the

definition does not depend on the choice of the functions Wn. Furthermore, the functions in
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(
B1
∞,1(R)

)
+ are operator Lipschitz on the class of maximal dissipative operators.

Theorem 2.4.6. [4] There is a constant c > 0 such that for every α ∈ (0, 1), for arbitrary

f ∈
(
Λα(R)

)
+, and for arbitrary maximal dissipative operators L and M with bounded

L−M , the following inequality holds:

‖f(L)− f(M)‖ ≤ c (1− α)−1‖f‖Λα(R)‖L−M‖
α, (2.4.10)

where f(L)− f(M) is defined by (2.4.9).

Proof. Using the same arguments as in the proof of Theorem 2.3.2 , we get

‖f(L)− f(M)‖ ≤ const ‖f‖Λα(R)‖L−M‖
α.

The fact that the constant in this inequality can be estimated in terms of c (1−α)−1 follows

immediately form Theorem 2.5.5 below.

2.4.4 The case of normal operators

In [5] it was shown that the Birman–Solomyak formula holds for arbitrary normal operators

only for linear functions and a new formula for the difference f(A) − f(B) was established

for functions in the Besov space B1
∞,1(R2) and normal operators N1, N2 in terms of DOI.

Readers are referred to [5] for the definition of B1
∞,1(R2) and the construction of the theory

of DOI for normal operators.

Also denote by F the Fourier transform on L1(Rn), n ≥ 1 by:

(Ff)(t) =

∫
Rn

f(x)e−i(x,t)dx, where
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x = (x1, ..., xn), t = (t1, ..., tn), (x, t)
def
= x1t1 + ...+ xntn.

The following important result was proved in [5]:

Let f be a bounded continuous function on R2 such that

supp Ff ⊂ {ζ ∈ C : |ζ| ≤ σ}, σ > 0.

There exists a constant c > 0 such that for arbitrary normal operators N1 and N2,

‖(f(N1)− f(N2)‖ ≤ c σ‖f‖L∞‖N1 −N2‖. (2.4.11)

The class Λα(R2) of Hölder functions of order α, 0 < α < 1,is defined by:

Λα(R2)
def
=

{
f : ‖f‖

Λα(R2)
= sup
z1 6=z2

|f(z1)− f(z2)|
|z1 − z2|α

<∞.

}

The class Λα(Rn), n > 2 is defined in the same way.

Using (2.4.11), it was proved in [5] that the functions in B1
∞,1(R2) are operator Lipschitz

for normal operators and there exists a constant c > 0 such that ‖f(N1) − f(N2)‖ ≤

c ‖f‖Λα‖N1 − N2‖α for every function in Λα(R2) and arbitrary normal operators N1 and

N2.

2.4.5 The case of n–Tuples of commuting self–adjoint operators

In [10], another formula for the difference f(A1, ..., An) − f(B1, ..., Bn) was established for

functions in the Besov space B1
∞,1(Rn) and n–tuples of commuting self–adjoint operators

(A1, ..., An) , (B1, ..., Bn) in terms of DOI. Readers are referred to [10] for the definition of
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B1
∞,1(Rn) and the construction of the theory of DOI for n–Tuples of commuting self–adjoint

operators.

The following important result was proved in [10]:

Let f be a bounded continuous function on Rn such that

supp Ff ⊂ {ξ ∈ Rn : |ξ| ≤ σ}, σ > 0.

There exists a constant cn > 0 such that for arbitrary n–tuples of commuting self-adjoint

operators (A1, ..., An) and (B1, ..., Bn),

‖f(A1, ..., An)− f(B1, ..., Bn)‖ ≤ cn σ‖f‖L∞ max
1≤j≤n

‖Aj −Bj‖. (2.4.12)

Using (2.4.12), it was proved in [10] that the functions in B1
∞,1(Rn) are operator Lips-

chitz for normal operators and there exists a constant cn > 0 such that ‖f(A1, ..., An) −

f(B1, ..., Bn)‖ ≤ cn(1−α)−1‖f‖Λα max1≤j≤n ‖Aj−Bj‖α for every function in Λα(Rn) and

n–tuples of commuting self-adjoint operators (A1, ..., An) and (B1, ..., Bn).

2.5 Arbitrary moduli of continuity

In this section we consider the problem of estimating ‖f(A)−f(B)‖ for self–adjoint operators

A and B and functions in the space Λω, where ω is an arbitrary modulus of continuity. We

also show similar results for unitary operators, contractions, maximal dissipative operators,

and n–tuples of commuting self–adjoint operators.
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Given a modulus of continuity ω, we define the function ω∗ and ω] by

ω∗(x) = x

∫ ∞
x

ω(t)

t2
dt , x > 0

and

ω](x) = x

∫ ∞
x

ω(t)

t2
dt +

∫ x

0

ω(t)

t
dt , x > 0.

In this paper, we assume that ω] is finite valued whenever it is used.

For example, if we define ω by

ω(x) = xα, x > 0, 0 < α < 1,

then ω](x) ≤ const ω(x).

It is well known(see [6], Ch.3, Theorem 13.30) that if ω is a modulus of continuity, then the

Hilbert transform maps Λω into itself if and only if ω](x) ≤ const ω(x).

Theorem 2.5.1. [1] There exists a constant c > 0 such that for every modulus of continuity

ω, every f in Λω(R) and for arbitrary self-adjoint operators A and B, the following inequality

holds:

‖f(A)− f(B)‖ ≤ c ‖f‖Λω(R)ω∗(‖A−B‖). (2.5.1)

Proof. Due to Lemma 2.3.1, we can assume that A and B are bounded operators and their

spectra are contained in [a, b]. We replace the function f ∈ Λω(R) with the bounded function
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f[ defined by

f[(x) =



f(b), x > b;

f(x), x ∈ [a, b];

f(a), x < a.

(2.5.2)

Clearly, ‖f[‖Λω(R) ≤ ‖f‖Λω(R). Thus we may assume that f is bounded.

Let N be an integer, we claim that

f(A)− f(B) =
N∑

n=−∞

(
fn(A)− fn(B)

)
+
(
(f − f ∗ Vn)(A)− (f − f ∗ Vn)(B)

)
, (2.5.3)

and the series converges absolutely in the operator norm. Here fn = f ∗Wn + f ∗W ]
n and

the de la Vallée Poussin type kernel Vn is defined as in §2.2.1. Suppose that M < N , it is

easy to see that

f(A)− f(B)−

(
N∑

n=M+1

(
fn(A)− fn(B)

)
+
(
(f − f ∗ VN )(A)− (f − f ∗ VN )(B

))

=
(
(f − f ∗ VM )(A)− (f − f ∗ VM )(B)

)
.

Clearly, f − f ∗ VM is an entire function of exponential type at most 2M+1. Thus it follows

from (1.5.5) that

‖(f − f ∗ VM )(A)− (f − f ∗ VM )(B)‖ ≤ const 2M‖f‖L∞‖A−B‖ → 0 as M → −∞.
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Suppose now that N is the integer satisfying (2.3.4). It follows from Theorem 2.2.2 that

‖(f − f ∗ VN )(A)− (f − f ∗ VN )(B)‖ ≤ 2‖f − f ∗ Vn‖L∞

≤ const ‖f‖Λω(R)ω(2−N ) ≤ const ‖f‖Λω(R)ω(‖A−B‖).

On the other hand, it follows from Corollary 2.2.4 and from (1.5.5) that

N∑
n=−∞

‖fn(A)− fn(B)‖ ≤ const
N∑

n=−∞
2n‖fn‖L∞‖A−B‖

≤ const
N∑

n=−∞
2n‖f‖Λω(R)ω(2−N )‖A−B‖

= const
∑
k≥0

2N−k‖f‖Λω(R)ω(2−(N−k))‖A−B‖

≤ const

(∫ ∞
2−N

ω(t)

t2
dt

)
‖f‖Λω(R)‖A−B‖

= const 2Nω∗(2−N )‖f‖Λω(R)‖A−B‖

≤ const ‖f‖Λω(R)ω∗(‖A−B‖)

The result now follows from the obvious inequality ω(x) ≤ ω∗(x), x > 0.

Corollary 2.5.2. [1] Let ω be a modulus of continuity such that ωx ≤ constω(x), x > 0.

Then for an arbitrary function f ∈ Λω(R) and for arbitrary self–adjoint operators A and B

on Hilbert space the following inequality holds:

‖f(A)− f(B)‖ ≤ c ‖f‖Λω(R)ω(‖A−B‖). (2.5.4)

Below we give similar results for other types of operators. Their proofs are similar to the
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proof of Theorem 2.5.1.

Theorem 2.5.3. [1] There exists a constant c > 0 such that for every modulus of continuity

ω, every f in Λω and for arbitrary unitary operators U and V , the following inequality holds:

‖f(U)− f(V )‖ ≤ c ‖f‖Λωω∗(‖U − V ‖). (2.5.5)

Theorem 2.5.4. [1] There exists a constant c > 0 such that for every modulus of continuity

ω, every f in (Λω)+ and for arbitrary contractions T and R, the following inequality holds:

‖f(T )− f(R)‖ ≤ c ‖f‖Λωω∗(‖T −R‖). (2.5.6)

Theorem 2.5.5. [4] There exists a constant c > 0 such that for every modulus of continuity

ω, every f in (Λω)+ and for maximal dissipative operators L and M with bounded difference,

the following inequality holds:

‖f(L)− f(M)‖ ≤ c ‖f‖Λωω∗(‖L−M‖). (2.5.7)

Let ω be a modulus of continuity, the class Λω(R2) is defined by:

Λω(R2)
def
=

{
f : ‖f‖

Λω(R2)
= sup
z1 6=z2

|f(z1)− f(z2)|
ω(|z1 − z2|)

<∞.

}

The class Λω(Rn), n > 2 is defined in the same way.

Theorem 2.5.6. [5] There exists a constant c > 0 such that for every modulus of continuity

ω, every f in Λω(R2) and for arbitrary normal operators N1 and N2, the following inequality
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holds:

‖f(N1)− f(N2)‖ ≤ c ‖f‖
Λω(R2)

ω∗(‖N1 −N2‖). (2.5.8)

Theorem 2.5.7. [10] Let n be a positive integer. There exists a constant cn > 0 such that for

every modulus of continuity ω, every f in Λω(Rn) and for arbitrary n–tuples of commuting

self–adjoint operators (A1, ..., An) and (B1, ..., Bn), the following inequality holds:

‖f(A1, ..., An)− f(B1, ..., Bn)‖ ≤ cn ‖f‖Λω max
1≤j≤n

ω∗(‖Aj −Bj‖). (2.5.9)
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Chapter 3

Estimates on singular values

3.1 Results for perturbation of class Sp

Let l ≥ 0 be an integer and p ≥ 1.Denote by Slp the normed ideal that consists of all bounded

linear operators equipped with norm

‖T‖
Slp

def
=
( l∑
j=0

(sj(T ))p
)1
p . (3.1.1)

Classes Slp and Sp are both nice SNI. Thus Theorem 1.5.1 and (1.5.5) can be applied to

them, i.e., if f is an exponential function of finite type at most σ that is bounded on R, then

for arbitrary self–adjoint operators A and B, we have:

‖f(A)− f(B)‖
Slp
≤ constσ‖f‖L∞‖A−B‖Slp

, (3.1.2)

and

‖f(A)− f(B)‖Sp ≤ constσ‖f‖L∞‖A−B‖Sp . (3.1.3)

Similar results also hold for maximal dissipative operators, normal operators and n–tuples

of self–adjoint operators.

We also have if f is a trigonometric polynomial of degree d, then for arbitrary unitary
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operators U and V ,

‖f(U)− f(V )‖
Slp
≤ const d‖f‖L∞‖U − V ‖Slp

,

and

‖f(U)− f(V )‖Sp ≤ const d‖f‖L∞‖U − V ‖Sp .

Similar results also hold for contractions.

Theorem 3.1.1. Let 0 < α < 1. Then there exists a constant c > 0 such that for every

l ≥ 0, p ∈ [1,∞), f ∈ Λα(R), and for arbitrary self–adjoint operators A and B on Hilbert

space with bounded A−B, the following inequality holds for every every j ≤ l:

sj
(
f(A)− f(B)

)
≤ c ‖f‖Λα(R)(1 + j)−α/p‖A−B‖α

Slp
. (3.1.4)

Proof. Put fn
def
= f ∗Wn + f ∗W ]

n, n ∈ Z, and fix an integer N . We have

∥∥∥∥∥
N∑

n=−∞

(
fn(A)− fn(B)

)∥∥∥∥∥
Slp

≤
N∑

n=−∞
‖fn(A)− fn(B)‖

Slp

≤ const
N∑

n=−∞
2n‖fn‖L∞‖A−B‖Slp

≤ const ‖f‖Λα(R)

N∑
n=−∞

2n(1−α)‖A−B‖
Slp

≤ const 2N(1−α)‖f‖Λα(R)‖A−B‖Slp
.
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On the other hand,

∥∥∥∥∥∑
n>N

(
fn(A)− fn(B)

)∥∥∥∥∥ ≤ 2
∑
n>N

‖fn‖L∞

≤ const ‖f‖Λα(R)

∑
n>N

2−nα

≤ const 2−Nα‖f‖Λα(R).

Put RN
def
=

N∑
n=−∞

(
fn(A)− fn(B)

)
and QN

def
=
∑
n>N

(
fn(A)− fn(B)

)
. Clearly, for j ≤ l,

sj
(
f(A)− f(B)

)
≤ sj(RN ) + ‖QN‖

≤ (1 + j)−1/p‖RN‖Slp
+ ‖QN‖

≤ const
(
(1 + j)

−1
p 2N(1−α)‖f‖Λα(R)‖A−B‖Slp

+ 2−Nα‖f‖Λα(R)

)
.

To obtain the desired estimate, it suffices to choose the number N such that

2−N < (1 + j)−1/p‖A−B‖
Slp
≤ 2−N+1.

Using the same type of arguments, we can get similar estimates for unitary operators,

contractions, maximal dissipative operators, normal operators and n–tuples of self–adjoint

operators.
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3.2 Estimates on singular values of functions of per-

turbed self-adjoint and unitary operators

In this section, we generalize the estimate in §3.1 to the class Λω and also obtain some lower–

bound estimates for rank one perturbations which also extend the results in [2]. In section

§3.3, similar estimates are given without proofs in case of contractions, maximal dissipative

operators, normal operators and n–tuples of commuting self–adjoint operators.

Theorem 3.2.1. There exists a constant c > 0 such that for every modulus of continuity ω,

every f in Λω(R) and for arbitrary self-adjoint operators A and B, the following inequality

holds for all l and for all j, 1 ≤ j ≤ l :

sj(f(A)− f(B)) ≤ c ω∗
(
(1 + j)

−1
p‖A−B‖

Slp

)
‖f‖Λω . (3.2.1)

Proof. Due to Lemma 2.3.1, A and B can be taken as bounded operators, then we may

further assume f is bounded. Let RN =
∑N
n=−∞(fn(A)− fn(B)), QN = (f − f ∗VN )(A)−

(f−f ∗VN )(B). Here fn and the de la Vallée Pousśın type kernel VN are defined as in §2.2.1.

Then f(A) − f(B) = RN + QN , with convergence in the uniform operator topology. Note

that for any integer m ∈ Z, functions fm and f − f ∗ Vm are entire functions of exponential

type at most 2m+1. Thus it follows from (3.1.2), (2.2.6) and (2.2.7) that

‖QN‖ ≤ c ω(2−N )‖f‖Λω
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and

‖RN‖Slp
≤

N∑
n=−∞

‖fn(A)− fn(B)‖
Slp

≤ c

N∑
n=−∞

(
2n‖fn‖L∞

)
‖A−B‖

Slp

≤ c 2N ω∗(2−N )‖A−B‖
Slp
‖f‖Λω .

Then

sj(f(A)− f(B)) ≤ sj(RN ) + ‖QN‖ ≤ (1 + j)−1‖RN‖Slp
+ ‖QN‖

≤ c
(
(1 + j)

−1
p 2N ω∗(2−N )‖A−B‖

Slp
+ ω(2−N )

)
‖f‖Λω .

Take N such that 1 ≤ (1 + j)
−1
p 2N‖A − B‖

Slp
≤ 2 and use the fact that ω(t) ≤ ω∗(t) for

any t > 0, we get (3.2.1).

Theorem 3.2.2. There exists a constant c > 0 such that for every modulus of continuity

ω, every f in Λω(T) and for arbitrary unitary operators U and V , the following inequality

holds for all l and for all j, 1 ≤ j ≤ l :

sj(f(U)− f(V )) ≤ c ω∗
(
(1 + j)

−1
p‖U − V ‖

Slp

)
‖f‖Λω . (3.2.2)

Proof. If (1 + j)
−1
p‖U − V ‖

Slp
≤ 2, the proof is similar to Theorem 3.2.1 with RN =∑N

n=0(fn(U)− fn(U)); if (1 + j)
−1
p‖U − V ‖

Slp
> 2, then

sj(f(U)− f(V )) ≤ ‖f(U)− f(V )‖ ≤ c ω∗(‖U − V ‖)‖f‖Λω ≤ c ω∗(2)‖f‖Λω .
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Corollary 3.2.3. Let ω be a modulus of continuity such that

ω∗(x) ≤ const ω(x), x ≥ 0.

Then for an arbitrary function f ∈ Λω(R) and for arbitrary self-adjoint operators A and B,

the following inequality holds for all l and for all j, 1 ≤ j ≤ l :

sj(f(A)− f(B)) ≤ const ω
(
(1 + j)

−1
p‖A−B‖

Slp

)
‖f‖Λω .

Let H, H be the Hankel operators defined in [2].

Theorem 3.2.4. Let ω be a modulus of continuity on T. There exist unitary operators U ,

V and a real function h in Λω]((T )) such that

rank(U − V ) = 1 and sm(h(U)− h(V )) ≥ ω
(
(1 +m)−1).

Proof. Consider the operators U and V on space L2(T) with respect to the normalized

Lebesgue measure on T defined by (see [2])

Uf = z̄f and V f = z̄f − 2(f, 1)z̄, f ∈ L2.
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For f ∈ C(T), we have

(
(f(U)− f(V ))zj , zk

)
= −2



f̂(j − k), if j ≥ 0, k < 0;

f̂(j − k), if j < 0, k ≥ 0;

0, otherwise.

Define function g by

g(ζ) =
∞∑
n=1

ω(4−n)(ζ4n + ζ̄4n), ζ ∈ T.

Then we have

‖g ∗Wn‖L∞ ≤ const ω(2−n), ‖g ∗W ]
n‖L∞ ≤ const ω(2−n) , n ≥ 0.

Let ξ, η be two arbitrarily different fixed points on T, choose N ≥ 0 such that 1
2 ≤

2−N
|ξ−η| ≤ 1,

then
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|g(ξ)− g(η)| ≤
N∑
n=0

|gn(ξ)− gn(η)|+ |(g − g ∗ VN )(ξ)− (g − g ∗ VN )(η)|

≤
N∑
n=0

|gn(ξ)− gn(η)|+ 2
∞∑

n=N+1

‖gn‖L∞

≤ const
N∑
n=0

2n‖gn‖L∞ |ξ − η|+ 2
∞∑

n=N+1

‖gn‖L∞

≤ const
N∑
n=0

2nω(2−n)|ξ − η|+ const
∞∑

n=N+1

ω(2−n)

≤ const ω∗(|ξ − η|) + const

∫ 2−N

0

ω(t)

t
dt

≤ const ω](|ξ − η|).

Consider the matrix Γg = {ĝ(−j − k)}j≥1,k≥0 = {ĝ(j + k)}j≥1,k≥0.

Let n ≥ 1. Define matrix Tn = {ĝ(j + k + 4n−1 + 1)}
0≤j,k≤3·4n−1 , then

Tn =



ω(4−n)

ω(4−n)

. .
.

ω(4−n)


.

If R is any matrix with the same size of Tn such that rank(R) < 3 · 4n−1, then ‖Tn −R‖ ≥

ω(4−n). It follows that sj(Tn) ≥ ω(4−n) for j < 3 · 4n−1. For each Tn, there is some

orthogonal projection Pn such that Tn = PnΓgPn, hence sj(Γg) ≥ sj(Tn) ≥ ω(4−n) for all

54



n and for all j, j < 3 · 4n−1. Thus for all j ≥ 0, we have

sj(Γg) ≥ ω
( 3

16
· (j + 1)−1) ≥ 3

32
· ω
(
(j + 1)−1).

To complete the proof, it suffices to take h = 32
3 g.

Corollary 3.2.5. Let ω be a modulus of continuity such that

ω](x) ≤ const ω(x), 0 ≤ x ≤ 2.

There exist unitary operators U , V and a real function h in Λω(T ) such that

rank(U − V ) = 1 and sm(h(U)− h(V )) ≥ ω
(
(1 +m)−1).

Theorem 3.2.6. Let ω be a modulus of continuity on T and f be a continuous function on

T. If for all unitary operators U and V , we have

sn(f(U)− f(V )) ≤ const ω
(
(1 + n)

−1
p‖U − V ‖Sp

)
, for all n ≥ 0 ,

then f ∈ Λω(T).

Proof. Let ζ, η ∈ T, we can select commuting unitary operators U and V such that s0(U −

V ) = s1(U − V ) = . . . = sn(U − V ) = |ζ − η| and sk(U − V ) = 0, k ≥ n + 1. Then

sn(f(U)− f(V )) = |f(ζ)− f(η)|, ‖U − V ‖Sp = (1 + n)
1
p · |ζ − η|.

Theorem 3.2.7. Let ω be a modulus of continuity on R and f be a continuous function on
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R. If for all self-adjoint operators A and B, we have

sn(f(A)− f(B)) ≤ const ω
(
(1 + n)

−1
p‖A−B‖Sp

)
, for all n ≥ 0 ,

then f ∈ Λω(R).

Proof. Similar to Theorem 3.2.6.

Theorem 3.2.8. Let ω be a modulus of continuity over R. There exist self-adjoint operators

A, B, and a real function f in Λω](R) such that

rank(A−B) = 1 and sm(f(A)− f(B)) ≥ ω
(
(1 +m)−1), for all m ≥ 0.

Proof. WLOG, we assume ω(t) = ω(2), for all t ≥ 2, that is, ω can be regarded as a modulus

of continuity on T.

We then choose a function(see [2], Lemma 9.6) ρ ∈ C∞(T) such that ρ(ζ) + ρ(iζ) = 1,

ρ(ζ) = ρ(ζ̄) for all ζ ∈ T, and ρ vanishes in a neighborhood of the set {−1, 1}. Note that

ρ ∈ Λω(T), since ω(st) ≥ s
2ω(t), for all t ≥ 0 and s, 0 < s < 1.

Define function g1 by

g1(ζ) =
∞∑
n=1

ω(4−n)(ζ4n + ζ̄4n), ζ ∈ T.

Then g1 ∈ Λω](T). If g0
def
= Cρg1 for a sufficient large number C, then g0 ∈ Λω](T), vanishes

in a neighborhood of the set {−1, 1} and g0(ζ) = g0(ζ̄) for all ζ ∈ T, and sm(Hg0) ≥

ω
(
(1 +m)−1

)
for all m ≥ 0.

Define ϕ(x) = (x2 + 1)−1(as in [2], Theorem 9.9), then there exists a compactly supported
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real bounded function f such that f(ϕ(x)) = g0(x−ix+i) and a simple calculation shows that

f belongs to Λω](R). Denote L2
e(R) the subspace of even functions in L2(R). Consider

operators A and B on L2
e(R) defined by A(g) = H−1MϕH(g) and B(g) = ϕg, here H is

the Hilbert transform defined on L2(R) ( see [2]) and Mϕ is the multiplication by ϕ. Then

rank(A−B) = 1, and we have

sm(f(B)− f(A)) ≥
√

2sm(Hf◦ϕ) =
√

2sm(Hg0) ≥
√

2ω
(
(1 +m)−1).

3.3 Estimates for other types of operators

The following estimates are given without proofs in case of contractions, maximal dissipative

operators, normal operators and n-tuples of commuting self-adjoint operators.

Theorem 3.3.1. There exists a constant c > 0 such that for every modulus of continuity ω,

every f in
(
Λω(R)

)
+ and for arbitrary contractions T and R on Hilbert space, the following

inequality holds for all l and for all j, 1 ≤ j ≤ l :

sj(f(T )− f(R)) ≤ c ω∗
(
(1 + j)

−1
p‖T −R‖

Slp

)
‖f‖Λω .

To prove this result, the following result is important(see [1], [2] and [24]):

There exists a constant c such that for arbitrary trigonometric polynomial f of degree n

and for arbitrary contractions T and R on Hilbert space,

‖(f(T )− f(R)‖Sp ≤ c n‖f‖L∞‖T −R‖Sp .
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Theorem 3.3.2. There exists a constant c > 0 such that for every modulus of continuity ω,

every f in
(
Λω(R)

)
+ and for arbitrary maximal dissipative operators L and M with bounded

difference, the following inequality holds for all l and for all j, 1 ≤ j ≤ l :

sj(f(L)− f(M)) ≤ c ω∗
(
(1 + j)

−1
p‖L−M‖

Slp

)
‖f‖Λω .

To prove this result, the following result is important(see [4]):

There exists a constant c > 0 such that for every function f in H∞(C+) with

supp Ff ⊂ [0, σ], σ > 0,

and for arbitrary maximal dissipative operators L and M with bounded difference,

‖(f(L)− f(M)‖Sp ≤ c σ‖f‖L∞‖L−M‖Sp .

Theorem 3.3.3. There exists a constant c > 0 such that for every modulus of continuity ω,

every f in Λω(R2) and for arbitrary normal operators N1 and N2, the following inequality

holds for all l and for all j, 1 ≤ j ≤ l :

sj(f(N1)− f(N2)) ≤ c ω∗
(
(1 + j)

−1
p‖N1 −N2‖Slp

)
‖f‖Λω .

To prove this result, the following result is important(see [5]):

There exists a constant c > 0 such that for every bounded continuous function f on R2
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with

supp Ff ⊂ {ζ ∈ C : |ζ| ≤ σ}, σ > 0,

and for arbitrary normal operators N1 and N2,

‖f(N1)− f(N2)‖Sp ≤ c σ‖f‖L∞‖N1 −N2‖Sp .

Theorem 3.3.4. Let n be a positive integer and p ≥ 1. There exists a positive number cn

such that for every modulus of continuity ω, every f in Λω(Rn) and for arbitrary n-tuples of

commuting self-adjoint operators (A1, ..., An) and (B1, ..., Bn), the following inequality holds

for all l and for all j, 1 ≤ j ≤ l :

sj(f(A1, ..., An)− f(B1, ..., Bn)) ≤ cn max
1≤j≤n

ω∗
(
(1 + j)

−1
p‖Aj −Bj‖Slp

)
‖f‖Λω .

To prove this result, the following result is important(see [10]):

There exists a constant cn > 0 such that for every bounded continuous function f on Rn

with

supp Ff ⊂ {ξ ∈ Rn : |ξ| ≤ σ}, σ > 0,

and for arbitrary n-tuples of commuting self-adjoint operators (A1, ..., An) and (B1, ..., Bn),

‖f(A1, ..., An)− f(B1, ..., Bn)‖Sp ≤ cn σ‖f‖L∞ max
1≤j≤n

‖Aj −Bj‖Sp .
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