9. 2 .. .....12.. 3,.» 4 . ..m. . C» , n L . x. ...».y...,_......,.. .... i .6...» am”? ...m... N. Luna?“ . : ... ..M: AH? 14.», (14” ... «é» . . ‘ 2...”...5 wry, ...... .2 2-3.... V... any tum. . 9 271.1 I. 1;... A? 6.1 4.11.14: $044!. I} _ 74 . tn. 1 .. ...??? . “.... . «I.» ......» .1 L/n... u. ..nnrbhw. WW1” . ...... . ...»? awmwfifiéwimar..fir .2. . . . .» . . . .. . . . 3.7.6..“ .....ffzwflfivg. M. 4.. .. . A.» 43?»..sz {a . 3%.... Em.» «ya»... 4, a. fig”. My . . ...: ray. w 2.. ...”..mwmr/ cur»... , . .. . . ... .1» 3...»... J . . . . . faxfi. A}. . . , . .. . »%»W»Ww... fry: .3.» . o . .5... v as .n u. .» ...». 41.... 43.77%».1Trfl. l f » Run... fix, fl J ...M.u...u.»n,.r.m.. .an . f1 Av... . .wmywwwymww . a. . . ......» £1.» .4»... ..p. .. .. . . . .Mivrjfiflflym .. . .2 .5? .. ..r.7.,.f;:. ...;i43. . ; L a...) M.“ a. ”AT/...... . Iv . M...H.,yr_...d.fl.u... way/flux. . 21....-. . .54.... (.25 . p . filo. . Z... . L. .1“. .4 . .. .. ...».hwflr...» fig... 55/9... » Cpl » waif»: . 7. e r: 99. :Zv : . ... .r 3 ...WmWI/IJVGP a I f...» ....» flit . ... t . guy/fix? fiwflm / tiny wdwifv.» I .4!!! brfWWfimMuM/WKWJN... v . 3.»: .Mw...» ., .. 1 I...» 1 W m. ...»; ...... ..y fr r 7r. f ma... 4:». WWW»: M» .....Jm ..., .3» 5M.» w J: ..wrmwfifirwyv flawzfiwfié 4,...» r... .93. . a. 1. .. I45? ....7 .I . ....WI .... a. ...:mefivgmégnfi / ... é I» It»... Envy, 8.». WV.» £42134: ..4 « I it! .fh. a 1.».1 r viiiw , iuuzlld d. fix » “away. 9..» v.3», 1» i .I’er/W. I. fly”! I». i3»? rt ... in M»: .7». .. . .4 fix“... #4.». m: x... . . .02.... <2 ,. 7... . I «.w..w..:r1.. ». . .. u . .5 n 7 1: v’ . .. , «... “...”... g 97.... .. ”W1. » .. I, it»)! {Jerd/l. . . ... . : .1, «MW»? 9...... .. Jul, .. W.” .../IzhvV/v {WM-l flk flay/.1? . . r .1.» ... y .1 III: :. u e 1 ,3 .71! .. ......VPRMH/fiw fflfimhfi.» mama». . ... . her-V4.15 41a: . 45 {f 41 . flux?» fin...» $1.3.» lawn» . ...;5 11:57! ....»..v5:..rr . )1}; r . . _ Janknwwuu . . «9; hr. 9 13.711. . .IWVIIr r7: . { . r I . 6K7... rfvyirr!» . , tvaflrr! If. a. [371. r rvvnfrfllrrr/ul», .. L» .1; ...»...rr -..:1, » 3L3. mt“ ; .1734... ...: I . i. .. 5 2 a :- . _ . . l . y . .. .1 :3: . .... 9‘ :vxxl .... ...: ...!a ......nizuazfluxhfil flag—{fidflhx JpafiflfiéfivflaJJ—é 1.9;... Mum/4&1? _ .3. fi. ... 1.5.3.1.. : , .....1.«.v.»....__..m ._ ..fié..._ g $35.93 E. ,5. .... $5.3“... .mu. .1». .. ha: . AP”... .2»: ...: ... .33.... .2 r . m: $31....» ...imm...wfir ~1mm...uw$.mw§uwfimfifi . fiffifiw. f.§§v%¥vnwu%u - 3., fig»... 4.511%». «a? . .. k». if? .,. 51...? seawarmr LIBRARY Michigan State University ,H»_'nl". This is to certify that the thesis entitled RECOIL CORRECTIONS TO THE HYDROGEN HYPERFINE SPLITTING OF ORDER (me/mp)a61na-1 presented by Robert S. Cole has been accepted towards fulfillment Of the requirements for Ph . D . degree in Phys iCS. Z/az/né W Wfiff'" / Major professo/ Date July 28, 1972 0-7639 ABSTRACT RECOIL CORRECTIONS TO THE HYDROGEN HYPERFINE SPLITTING OF ORDER (me/mp)a61 By Robert S. Cole A calculation of the (me/mp)OL61n0L'1 recoil corrections to the hydrogen hyperfine splitting is presented. The result is 2 -5 8 me me In me Av — — 1+— ONCR lnoc'l 3-K(13+7_e.)+1<2(7-14——) H 3 (2.1) Note that the spinor indices are suppressed, that the sub- script H denotes the Heisenberg Operator, and the particles are labeled (1) and (2) respectively. Using well known techniques, (2.1) can be transformed tO the interaction picture as: (O/TZHPUR.) Rabblfiigz.) 3/2211.) 3/00, —oo,“/ 0) [(4779 753/ 1 (22) 7 , 044/ (O/S'(m/-oo)/O> where the w are the interaction picture field operators, I0) is the unperturbed vacuum state, and S w t t S(tt’/=E<-2')A,;L; at, Jag, T{H1(t.) Hid“); (2.2a) AUG ‘ t’ t’ where HI is the interaction Hamiltonian given byzc7) (2) ~2'e 1!)"fo éflflfl)%%¢ ‘26 7.9% X1, 4/» 2,0 (x) (2. 2b) Using the Wick theorem(8) on (2.2) one derives the perturba- tion expansion: (1) ’ , ll (2; 3 (I) é<¢u 12/ x3, Y4): SFYX,‘ X3J§F(y1“'x4)“ 62/d363d4x6 SF (71.4%) SF (yz'yc X 0) (2/ I (3’- ’ a A” D (XS-7(6) Sig/(“5'79“) gefléqg) 1‘ V ,asz + (2.3) which can be exhibited diagramatically as: Formally we write the infinite series in (2.3) as: (70191., 13,1.) .—_ Sg)(7<,-x,)‘§g(x.-y.) + filfx‘d‘x/‘x? $71945. ) (2) (2) x g; (X) ‘ 7(6) 1(7‘5, 11/ X7, X3”) gFm/X7 ' 151SF {15’ - I) 4 (2.4) where I is the sum Of all graphs contributing tO the two particle interaction. One casts this in the form Of an integral equation be denoting I as that part Of I which consists Of the sum Of all irreducible graphs(3). Then (2.4) can be written: (I 1 '4 4 4 W . G081.) x5, 74/ = §p/(1,-9za) Silk 7:.) + [dry/”Mair: ‘3; (ms) 01 X SF <11 -Xé) T(X5, ¢él 7Z7, ijééXZ Y; 79/ ’14) (2 ' 5) which is schematically shown as 3 4 3 4 3, 4 \ ‘ v if... a T— + 7/“f y I 5 [1' //¢ / Z I 1 Equation (2.5) is the Bethe-Salpeter equation(3). From equation (2.5) one can rigorously derive a form for the two particle wave function Of a bound state(9): a. \. 4 4 4 4 0) O.) Wot/(1U XZ/z'. fd'fifdxéd’x7élyg g: (11'15’) Sp (Xi-X6) XEOXSJ «(U 17/ 0(3) 3%)(17/ 7(8) (2'6) For convenience we will henceforth use the convention that all repeated indices are to be summed (integrated) over. Equation (2.6) is the basic equation used in calcu- lating the hyperfine splitting. Introducing center Of mass and relative coordinates X and x, where: X EZ/xlf'72—7Zl ’L/5X4’7L’X 7' : «I -1; ¢L :l -— ' [IX 7X, : ”’4' . 7? : 444,:— WIf/M; ) 2 ”41,747an (2'7) we can write (2.6) as: fla): Cuber/1‘“ (4’ XI) (Ink/y") (2.8) h —JI§'X: _2 w ere WW) 2 e {'77) 774(74/7‘2) 1 (2.83) / —?Z(X‘X) O Ska/X7: f2? .6 SPI[X’XI+ 71(X’XQJI (2.8b) 2/ X 37: [X~X’ + 7,0070] . , {XXX—X) —— and I“ (1] 17 :: ffX e I<’X,‘XL’X-Xi) (2.8c) We have used momentum K as conjugate to center of mass posi- tion X. For convenience we will work in the system where the center Of mass is at rest so that Ku = (0,iKO). We will also take p to be the relative momentum, conjugate to x. Thus we can rewrite (2.8b) as d4 {74(1’1) .(U (2) 6,092 : ($5 SFW’Z/KKM'W’N) (Md) We now begin the perturbation theory by separating the instantaneous Coulomb interaction from the interaction kernel: IK = :[Qa- IKI (2.9) C ' ’ f U) yo} where I =—— ~2a/{1-r) We) 5:, 4 a (2.9a) and 1k the remaining part Of the interaction kernel. Hence (2.8) can be written: fled :: 42(61, (7/, 17/5/4924 0) It'll/,0) (WWW fl (2.10) + 6.44.01”; «7 find 10 For the unperturbed (Coulomb interaction) equation. having total energy KC, we take: gem): —20<[7 “(a X)/(x’-— Maw 3:“ 04% (’x”) (2.11) We then want tO evaluate the energy difference AE 5 KO - K8. In order tO get at this energy difference, it is useful to factor GK(x,x') into the following form: (71,091? = g. (79;) Adyfl’) 3107401 0) 2/ : Aka/Z) gKQ‘j/X’) 43 314‘ (2.12) where 1' {V'i/ ’/ fix“ )z/fi g f (I; (2) .- O y (2 )4 [Ha/W7, 7/ k] (2.12a) and I, ( '1’ 1 'TI (2) TI. (2.12b) where H(i)(p) = u(i 1) p + 8(i)ml . is the Dirac Hamiltonian. A similar factorization holds for GKC(x,x'), Then we note that: d4 z. ,«(m-y) (2) -I -/ g“ (IX/y).jk6(IX/;) : A E/(Z—ébe [/((1”)+//('I)’/G][H%) + #{fif/ - 467 (2.13) Multiplying (2.13) by AK(y,x') we obtain: 11 3.21%.), «'1 — g“. (cap/123,29 = Mag/29a magma, 2') = w, «MW fixes/Ms“) = AE GWWQWW (2.14) In order to utilize this equation we define a hybrid wave function, (which differs from ¢KC(X) by terms of order AE): fl’flx/ 2 g (2,?) AM} 29%.? 0pm,) (PLAN) (2.15) : 'iAK(“/fl)0fl(go)j((fl) (2.15:1) Where 077.) 2%); «fig/w) d’m') (mac ’)/,2 (2.151)) Then multiplying (2.14) by -ia5(xov)¢Kc(X.)/r, we have: éx(«/’XI)IKQ(IX:17(PKI(’XH) _ (PKKX) : AE'. GK 69;) X20} x40) gxcg/ 7") p I x<}ifl'if?)9%4012) (2.16) where we've used fifldfllfl/A =£10)fl6(¥)//1 which follows because 6(XO)AK(x.y)6(yO) is independent of K. Equation (2.16) then becomes: (2)742 — gm, «7 1%; x 7%?“ ’2 -——= 2' A26“ W) )1,"’11”’4:9.)p7) (2.17) We then write (2.17) as: (I) [9477]“ ‘ 1W “71%.?“ == Z‘AEBS 91’”an In) (2.17a) 12 whose adjoint is (PK/(XI) [Gilt/'2‘)“ 1.791)]: ME 422.)XE) (2.18) We then multiply by ¢K(x): I , -I. , C / . ‘ . %(X)[GKUW)*IK(1,1)Y(PK{1) - 2A,; x Where we've taken the normalization 2((1/‘0Q¢0)4PK{1)= I Adding and subtracting Ik(x.x'): {MMML'M x) — MW) + 1K'(rx,’rx)]gpk(o<) : 2 AE / r I I . .. . __ = (P«@)Ik(fxx7‘)$pu(y " ZAt (2.19) where we've used (2.8) and (2.9). We have already seen that ¢k differs from ¢KC by terms of order AB, which is negli— gible to our order of accuracy. Hence we wish to express (2.19) in terms of ¢k which we will then replace with ¢KC. To find the relationship between ¢K and ok we write (2.17a) as: [CM-Yd, ’X’) - I: (’X, ’X’) ”1“,“, ’X’) +IK’(7(, Visa/(Ix? 2 ME XL“, 31(2) (7(0) jQIX) (2) I.» agmm’m — @2217de + 1.121991%) = .12.— 31"); 091.17% so that 92:00 — flex) + G“@,7’)I“(7‘4WO£;.)7Q7/ (2. 20) 13 Expanding the exact Green function in terms of the Coulomb Green function: 9092’) = G 42.1%? Gil/2(7) Rig/jyéucgfiy) + and neglecting the term in AB in (2.20) we write (2.19) as: A; z .1 W2) [1‘1xe + Ixxyékcggfiggj «QJPKA’X’J (2. 21) This expression is the one that will be used in the follow- ing calculations. But first we must derive an approximation to the Coulomb wave function. III. FIRST ITERATED WAVE FUNCTION In order to make use of the expression for energy shift, eq. (2.21), we need an approximation to the Coulomb wave function ¢KC(x). This may be obtained by using (2.11) as the basis of an iteration procedure(10) beginning with the non- relativistic Pauli wave function ¢p(x). Specifically the first iterated wave function is written as U) I/ v,.<«1=fa*.'w6. (4, «71'... (1’, «'9 W“ (3.1) I [[4 2F(1 1/ (I/ Where G“(’X/’Yj: (El-rd“ e gF 02+? V)S,;(- P1“ 7Z2. “) m (I 2: .z I, and Icmq") : -2 4nd 344 A” /(x 27/th :13) ii 'Lgl‘ ,, all ” y x <0) and WU 2 49“)” IXCM’) where y E ud, and¢p(0) = ys/Zn‘l/Z(spin ftn) E ¢(O)(spin ftn) The x” integration is trivial using 6(x'-x”). The x' inte- gration yields (2w)3o( —p1-g). Hence the now trivial q integration yields (I) (I) M 4 3 I ' .- __,‘ 0 Wm)— -.mw 2MP elm, rO£S~F(’/,+.(,K)§;’g,a+w) " W)" WWI-27‘ (3. 2) 14 15 but 42:; fl , (22+r7/2-74’/12wyw) SO (II M 12/ {/1225 -2‘ of (42X 344 A! g (b ('J (L) C JZ’ _____.——---"""' «Z _____ _ 4, CF“ (2 {m4 fl¢iw SN? (”7’10 $477 7‘“)?OP(O) I (3.3) In order to do the pO integration, we expand the propagators: U) (2) u) <2) __[/1 My) A+ A— g + 4K 36 +72K) :: + PO” 7 ) F 70 {I +7,K— —,E)(-( Z+7.K E) (FoWZzKo‘EJU’ o+q.k.+e) ('l (2) +_A—(1/J/\+(’¢’J + A- (12M- (,2) (22222.1222+.) (22.22) W. ...) (3 4) The pO integration is then accomplished by closing the inte- gration contour in the lower half of the complex plane if t>0 and in the upper half of the complex plane if t<0. For example: (++ term): -5 .t " " (9/2?“ f M -(~m+€w-éeJ1 [20"(74‘o‘5W/WJ] {(53- [VJ/é/ -2. E2- 0 ' 21/(965/‘67 (901:) e ( i’k/k/f z: + y El +53 ' K. E +51 'ko I pffl / t‘>o t0 and Q(~t') = é.- (/ - 6(ij where 6(tJ = 2/0 tzo ./ t4 Then we use H(i)(p) = aCiJ.p + BCiJmi, (1=1,2) and the fact that B(i)¢p(0) = ¢p(0) so that we can effectively set 8(i)=1(i=1,2). We combine the exponentials according to the formula: 1‘. #122? ‘2 7/ “W "‘ “(J (“W/2N (3.7) Terms of order 92 in the numerator are neglected (i.e. K0 2 M - qu/Z = M) while the denominators are expanded in exact powers of momentum: ____i,——— 2:._E:;EJ::J§;____2_._e- (E,+E;): We1 [(6 +6, )l-“Ol }[E 5);- 4(6)] (3.8) (Ez-EV'M‘ + WK’J ‘4M’ (#11347 +15%”) and similarly I _ (E.+5,)‘-M* + fi/ANJ (3 9) (aw—w ‘ ~ 4M“(F‘+(J+ZW<7 After a bit of manipulation we obtain (0 W 2 \H ¥:M—+cfif —r0€o/ (3.10) 18 where - pc’“-4//M{/+fl){/ 5 _—izf¥’:)[pe/+ e(£J((£/] M W” ZIJB/‘M (1+!)2 and e 2 JPN 1%)de I“ W” fl/JO 7b [ t +é é ](’sz/%M(/’l+rj) and {0/ J29, : ‘10(aw/Zida/jp/FKEHéKtJC/‘géi/]@rr/::;JZ:*X/ with Fer: [($5va + 0 62)] aw [(2419 eff") — 092)] m; [Jig/W; ’ ———-—e”—‘1’+-£"’ If” + pay] me = [Jag—m2. If” _ If) —— owl] /F(3:/ = [gm 04.72)] mm: [4% - (we—ea] (3.10a) (3.10b) (3.10c) (3.10d) 19 It is also useful to note at this point that the static wave function (i.e. at t = O) is given by M l 2 (0) 0 : F- “(5/ (2/ flufl (/ 1’de (19%} [MM (70,. 42 F644 1’— éfl/ 7M1 [fig/WV”? (3.11) where WJ'ZfiMfi/fiA4—M/1hg MJ—+~)+3(/flr HW)/g—J—)] F491-2M2(?+ ":J [”65] *1) HQL»£W, J;+-Z% +/9(E é/) ($12) 6?):(M/Lfig 444 Both do and 5¢' are proportional to p2 and hence repre- sent those terms of the first approximation to the true Coulomb wave function which may be in error. Only a second iteration process would resolve the uncertainty in these terms, but a second iteration calculation appears to involve a prohibitive amount of unnecessary work at this stage. The only other uncertainties or approximations made in the calculation of ¢KC(1) are that terms of order o2 were neglected in the numerator and terms of order a“ were neg— lected in the denominator. In each case such terms would contribute only to an energy splitting of order d7 or higher, hence we are justified in dropping them. IV. CALCULATIONS Chapter IV consists of the details of the calculations '1 hyperfine split- involved in the computation of the delno ting. For convenience this chapter will be broken up into five sections: A. The Coulomb recoil, B. The one photon exchange, C. The two photon ladder exchange, D. The two pho- ton crossed exchange, and E. Non—contributing diagrams. A. Coulomb Recoil ’1 contribution The first source of potential aslnd comes from the Coulomb recoil. In order to determine AE (eq. (2.21)) to order delnoc'1 we must first determine the ”unperturbed” energy, KOC, to the same order. The aslna—l component of KOC is called the Coulomb recoil. We begin by writing (2.11) as(2): {Ki- HMW’ #73710] (PW (12/0) 5/ 3 k-/ Q »/ +ffizjgéé~ ~{AL/H— )(-/\’J( ,} fit») (4A.l) Adding and subtracting (a/r)?KC(r,O) and using the property of projection operators that HAT + A’wa Ai"/\(f+ AWAY” we can write (4A.l) as: 20 21 [K:—- ngz) — MIX—7:7) + %]‘f“c(£/0J (4A.Z) efdjz'fl(£,~);fi 39“ g ’0)==o where :JJZEZC *3 41(2) A} .15) + AWN/M1. L) , (4A.3) I (u ‘ g,(27~) + £A(_)L£)/L(-k)fez 0' Equation (4A.2) is very similar to the Breit equation: [K06 _ HUJfi/‘HAU + loijzfgaz/O) :_ O (4A.4) The energy levels of the Breit equation can be expressed as a power series in q2(11) with no onslnof1 term in the expan— sion. We then take the 9(q/r) term of (4A.Z) as a small per- turbation of (4A.4) and compute the difference of KOC and KOC' to order aslnq’l. Since KOC' contains no oaslnoc—1 term, the difference mentioned above will be the Coulomb recoil to ‘1 order delnq Hence we write: AECU 11“" ‘ “0 on. :(::)D(3 (70H i’J 11(7) 303(7) (4A.5) 142:4!) 22 where 9(p') is the Fourier transform of (4A.3) and where (I (2] c/ ~I d3, 4,134] I. (p30,): [H J40) + 146/) - [(0 (5733/, e [7? 533)ij (4A.6) which is the Fourier transform of (4A.4). Taking the first iteration of (4A.6) by inserting , -Y‘Ifl’} SDpQ/LJ: e6 30PM) on the right hand side. we obtain: “I . (I, ‘ C’ (OJ 1/ ) 7:. H ) + “(i j -' K ft dip—'— CPB fl J W 1 0 ](.Zvr)é/79‘+X'l) as the first iteration. The operator [H(1)(p)+H(Z)(-p) -KOC']—1 can be explicitly written as: [HO/12) + Hfifl) ' K0] 4 : o) (2) w (l/ “J ‘1’ up (2) __ A, A. + AA. + A- A. A_ /\_ E,+E; -—Kc Ere; ,KU E,*E:"Ko E,+E,_+t(o Tdius from (4A.3) and (4A.7a) we have: T (1! * / 4 . (W (J (u “’ (H w femorweflipfl -Aia;_+ M. - A-/\.. (tha/lép'gxl) E"- EoI‘TK" ELLE!” K° E, I‘fEil‘f’ [(0 Seatting 8(i) = l (i=l,2) the projection operators are efEfectively: (4A.7) (4A.7a) (4A.8) 23 (I) (2.) I " \ ‘ I I A+ A+ ~4E'EIL{CEI+MI)(EZ 17le) + ~+ —- ‘guflxl JIM fm> (4A.5) becomes: _ __ 4nd 7(pé2 0);!)3’7/ Jfl/J‘fl/z AECOUL A W) W W} 3 (I’M)? (I'M) 1.2-2'!’ x {5 “ ‘_ +___ ' - I .- / r I Elltl (EL .5! I+k0) E" El (E) I- E""K0 I I E. El’ (E2 +E,'+ 1(0) WM - I I x [ r “t ‘ " ' EIE2(EI+EL'L(°) EIE1(EL-EI+L(0) EIE1(E1-Ele°> EIEL(EI+E1+K"J Y (4A.12) Now ’ I :3 I :2’_ E! /+ KO (EL/+Mz> -(E,/-—I1M./)"’2':/M“l 62'4”; + W’L) ) .. I ELI—El, ~Mb 2M1’ 4- 3(74/2) I J _,_Z/:/ E.+E;-Ko '- (E.~’m.)+(E.'4"J + é/aal 43’ + X1 The most singular term in (4A.12) (the term involving (El + E2 - KO)‘1) has dimension [momentum]O at small mo- Inentum and hence(12) will not contribute to order qslnq'l. Thus, to this order, the Coulomb recoil is zero. B. One Photon Exchange 1 contribu- The simplest interaction to yield an dslnd- tion is the exchange of a single photon. We separate the in- stantaneous Coulomb interaction (which accounts for the major part of the binding) from the covariant single photon ex- change, and then utilize (2.21) from perturbation theory to approximate the remaining time dependent contribution. The single photon exchange kernel is (see Appendix A): .. , fl?” m a, . IMxyz-zllvx/(ozw7‘flW/FW; )1 + {lg/mea/jyf (413.1) flmu.fl.fly where ku is the four momentum of the exchanged photon. Sub— tracting out the instantaneous Coulomb interaction, i(4no)yk(l) y4(2)/{k|2, we obtain: I?“ 1) =-2'47ro<0? x”) M. ygnyyD/{ji 11/sz / IX“ (17:)4 g; F; 4 4 )2!) "25.“, (413.2) ‘+ Ed? y“v_fl2y 2””; % fl), Thus we substitute this kernel into AE, : 4/;(41141' fit/(X) INM/X’) 30;: (at) (413.3) U} Where garb“ is the first iterated Coulomb wave function. The kernel (4B.2) very naturally separates itself into a ”Charge" part IC(x,x') and a ”dipole” part Id(x,x'). We 26 compute each part separately for computational ease. 1. Charge Component For the charge component it is sufficient to set Fl(k2) = F1(O) = 1(13) since the onslnoa‘1 contribution arises from low momentum recoil terms. Indeed for any term to give a logarithmic contribution, we can take k< 2E1E1’(¢+EI+ELI+M) Referring to Table 2 we see that the spin averages (see Section 4C and Appendix B for the details of their computa- tion) are (4pM)‘1(® + Q + Z?) (4B.13) 30 Table I. Time Integrations for One Photon Exchange. -2‘ £1th 71 4:24;"- 11192 : _— ZT:(I¢+6.'15/) '00 (J (, ~II 1H .— —_ / (If 7);" .7)/ /// / \fl a a .g 5 'Z> :ra<’w[ (I/ /2) <01 74 a /l/ <42 “1w KE> T Hf“ 7112/7 flan/gig: {VI/2 {(23) ——+— éfllfl‘qP/f‘ fill/17487] (27 d" f7a’ “max (E5 <“n70‘m1i‘z’3fl-jfl’> a - 33— 77'7- :_<%M fl “(1a(2/fl/2)fl> > gf'fl/ <%Qfl a/ Ixavxqgj> <2ngae7?amkaw >; —:g 1 1” fl) 2 / ,2 QM IN £4Ufl> t ‘élwz/ m; 2] W / {2 ‘ X I L <7 £42341? If 77> fl" * é‘lflxz/ <11? 453$ 31,4 3 74> muff é)! ‘ ,1 / II} ,a/ M/l/é (27 / ‘ [ X I}; \\4 f“? 17» ~,g 2, %> _; 1?,fl / 0/ W / / ,2 14,424 é fiffl” t 25441221 9‘ '§‘(f‘f"f’7 W ——>- 2477:7171 33 —:z____‘a/WOJ/ 5. WW y x; [51 .___£_/1 44/47:) [3/ M< >24” WW(7”+U} 2-44 “H (413.17) )1’ {L2 «1» “M + (I Hz) E,’ 249-447 euEIM'z’P Using Table III (see Appendix C for a derivation of the integrals) we obtain: '7; 7c M 3 / WOJ/L <0‘”’- 0"”) A a " (4B.18) 3 //u-A4 We now return to that part of (4B.6) that has no u matrices in the kernel. The only possible spin-spin contribu- tion comes from‘fl so that we have (1157. : W 4212/41.): “777 WWJ/I: +44] M [217) ? (43.19) m X/fl [Ht/74 é/tJG/t/ffi’étH aim @f/y/g/ 2 i/é/lé/ 7g /£/ ”j? LU (413.19) The integral over the 6 function is trivial, while the inte- gral over the other term is identical to that done above. Inspection of (4B.12) shows that only the ”mm: 441 3 . . . ———— + ——4— portion Will be Singular enough to Euil aew yield a logarithmic contribution, so that we have: 34 Table III. 0161mm“1 momentum integrals for one photon exchange. fwdgpéli: [0110,15 4(4 £4“; ‘+3‘/‘ 12 +11) 142 121 M” 015W 121212191L : li‘flutX-z (P ‘21") 12’123‘12 2’1”” 0190(1) 10 44' V16) 17:4 ‘1 2 _ Ad 11221‘11‘11‘1112H‘E21 222‘ 0‘19} AF} I 1.12 ('4’) 175* -1 ,1 -——. £401 S1231?“ 112 +1“? 112 2’1”“ {Pd-51” 17"],122179’1‘ M" -1 4 *—1«0< “SH—K‘j ( ll M1 35 (AE4) : 474244 41‘ 4(‘2 4=«‘/2/‘221/‘§_ 1272/4 f‘W {4“4 12y M‘Kznfi \ ” ZZZ; 222‘ .2 2 _ 2 X6 5:52, +515, +0Hy 2'/!5/‘ 71.4%] which vanishes identically. (4B.20) Hence the total contribution of the charge component of the one photon exchange is NJ: 3; 4 4131220412 2:5" (413.21) I 3 //a.fi4 2. Linear Dipole Component We now turn to the linear dipole component of (4B.2). We have fir _4,,41 «2 4/42/2 fi. 221 l (m1 1% 12/ (413.22) where I(MEX,X’/~14rmc/fi 744/1:ng Z/ LZZ/XH WA) (4B.23) 24w /" 5” Equation (4B.22) in momentum space is 4 14 ti;- 24/442] VK/1I17;/2’1K'//4 (43.24) If a t {/l ”I Where jo(gp1=fl§%,aeft4(/1QU ,' fiflél/fl given by (3.10) 36 and kU E (pH-pi) Thus <1 //1 -5045 x 121 (21 fl 4 2‘ a, 12 .4. 2 212221244441 2 15,22,112: 4124,14, 42 (27:1 127:) (48.25) We can do the p0 and p5 integrations by first expanding / (l/ I 2 l/ {2] 2 117% = 1: 221 2,2211 2 242 121-2121] (22222 #222 and then invoking the following formulas (based on the outgoing wave prescription): L/:%H ,y K/lwe If 1112-1121 2111 z ‘2/°t ~2L/f/ 64(é1-r-AJA/t/ [17/740002 “Ag )=+K7€2/£ - / (4B.28) -.. 11212211121 12 £12121 6&1 (4B.27) . ..z' é/f/ -4 (1.2+ Alf/7w) —— K17 (£3 2—.e For F2(k2) we have written KAz/(A2+k2) where K is the proton anomalous magnetic moment(131. This particular form factor is quite suitable for low momentum processes, which is what ‘1 contribution is. It will be seen that the exact the delnd functional form of F2(k2) is unimportant, and indeed, the results to our order would be unchanged if we had used a point proton (i.e. let A2 + 00). This is not surprising since 1 contributions come from low momentum recoil again all delnd- effects. Thus we can write (4B.36) as 37 d 01 /z‘ w (AEljzzlztafii; mflfizfl ( t)??? Hijf 1(an [~”1é_ %({%_§11311203$]K , {NH —-2' (121+ A1174 x 23—— ~ 2 ( It (1212219 V‘) 12/ a JUt’ -5 [21+ {At/I 1 I _KTL—ix‘fl/%2g)_€ _£ ( A)/ ew‘ffiDzfl/{J (43.29) We now do the trivial t' integration and insert the wave function (3.10) recalling that Lfl'gg/t): 1%"1T@t)x"‘y"’ and 3*(t1 = '€(t). Again we keep only even powers of e(t), as e(t) is itself an odd function of time, and the rest of the time integrand is an even function of time. As was the case with the charge component we separate out the part from the remainder terms (involving do or 5¢'). First the 9:” K (fem part: d 31% ___K____-n:[ 7:01 [80(01013/2’10113 4 M12 (AE') : ”7’1 (Zrcf W afl+r>ji x flotflgflfmver (12.2)][13134 151—112-2127.? H ’m ”2 W 222212111 — 11221”+2112<1H11112122 21 +1 l . 1+ sz X [6-5121121“ 3-1(12 A) ] E (4B.30) 39 The spin average for the first term can be written (see Table II) (SM/M1 1111 1222/ 221121W1 2221122221 2122 /22211;2+i1 (4B. 31) while the spin averages for the second term can be written Mum'lm - <2) (413.32) The momentum integrations in (4B.30) thus become fé’ffid} 1+1) (fl/21%,) [22m /2/ 11222.,371 1‘?) Xm/M/12w/j (413,33) dyriEy A4 Q ~ and /1/"’+1“1’1r”+1‘1‘[4/ 1 $1] (413.34) Next we turn to the time integrations. The first time inte- gration in (4B.30) has been done previously (see (4B.12)) and can be written as 2.{./m'/m1 + 471,1 + +111, .— 491(E1'1‘m») ‘f' f’2(E‘+/VH‘,Z .— I ——’-- __——————-— f I» / . 5,551} 5.5/1; E111: +551 25,5512 (2+5. +52 “ M1 26.5; Ezaed—EfiEj—rM jo‘(E2"sz+/II(E"WJ) _‘_ (1 H2); - OE <—> (L14— A117,); (4B.35) The second time integration in (48.30) is “21 {{fl— (__¢___ _1_// _ £|+M,)1 é‘E E. Pae/ +123 +79 5 21011EL1+M1)+1¢11(E,+/m,) +LEE,1}2,+E+E’)— 2E.E;’Lz([¢+ E,+-E"-M) yer-mnpwa—m ... _ .... rm" § zeagwuefiggw) +0 2)!) (ta k H (48.37) Only the underlined terms are of the proper dimension to give a logarithmic contribution. Hence the relevant inte- gral in (4B.37) is: 61%? 12x17? mm M. 111101+510111011+le E,E,'H£_£ill + E’E'r)fl_fllll T 11 2) (4B.38) MI 4472, 471.1 a )2 1 I 1‘ I — I ‘* 6+2 E" 1111311 +A1 E;E.1]p—£’/1+ A‘) Since A is of the order of m2, the A dependent terms will not 1 since they are not singular coritribute to order delno‘ enough to give a logarithmic contribution. The remaining terms can be integrated with the help of Table III and we obtain for the J-j term: w Ne/ ‘“’é (f’+3“7‘1r"+r*)1111 111 + —_ E, E; 18 E. E,’ 18 + 4231+ fag, _ fl(5&f,.m,7)+fll(g‘+xm,) (43.43) E‘EI'E11‘Q+E‘+E,’) ZE.E1’[g"1{a+E,+EL’—M) MW’WVIWW - 111531-0111 111115-4111 + 0911}- 11 H (Lu/‘91)} 25511111 (11+ E, + E" + M) (4B.43) The only term singular enough to contribute to our order is the underlined term in (4B.43). Again the A dependent terms do not contribute to order aelnd'l. The remaining integral is 01; (15V [\F‘1E211‘W3J4- [0"1E,+rm,) _ [1,111512111P11'1’5“); Z 2 + OH 2); (4B.44) E|E11 61310013P1W.P){{LM1 <__1_____1_j 3 W2+191VW+EH+y 1E+MJ1Ef+rmJ + (E‘~W.)(E‘z1—rm3) .. 2E, E;1(k+EI+El1-M) ZE'E111krl-E, +EtQM) '- 0"“sz “~nM' . E‘s—l 5351’ J The only terms in (4B.55) yielding an integrand of proper dimension (at small momentum) are the lowest powers of mo- mentum. Thus (4B.54) is to our order: 46 Qf OPP ”PF, 4’". W2. (Qt-m,)(p”— pl) 07 +X‘X)1fl 0( ‘2' - K M l + l ' .L.Zfll 4B.58) —.- ...—3..) I M. /A Thus the total oc61n0f1 contribution from the exchange of a single photon is (see (4B.21 and (4B.58)) (43.59) AE! I7<§% + K743”); *5 “5i ”:4 WNW W44” (Tm>1¢ oz' h 2 w ere‘? __ M C. The Ladder Diagram The ”ladder diagram" contribution to the energy shift comes from the second order perturbation formula of the one photon exchange. Specifically we have(12): u} ~2i fd‘kd?’ (199(0) I. (7nd) “PW (1') won where IK(x,x') is derived in Appendix A and is: (471“): d1 ATL’fl ”to: ifil’l’ 0, a) A: w 12/ Rafixm 3%“ (27:)? j 7"2 “g nnG—[fd‘fl ”A”! ,L 0/ (z) ,' xéj’x-x’) { Who/("21‘ - 2a).. Rd) BA“ 031’ Lt" (4C. 2) He! ‘5 109%): ~ K 20‘"; Z/m2 4 / Where Qk(x4[’/ = {—j’é‘é { F (”X y )S(l)(f+ 7%): ("P + 7' K) Inserting (4C.2) into (4C.l), the integration proceeds as 48 follows: do the x integration obtaining (2w)“6(-k-p'); do the p' integration using the 6 function; do the x' integra- tion obtaining (2W)”6(-k'-k-p)6(ké+k0). Then change var- iables: k' + -k' and we obtain: The charge component of AEL AEC_ ELM) d} 014mg JQ-L 72/0/22 j) " .. + _ A.B /O(l).g(2)> 3 \ (see Appendix B) to separate the momentum vectors from the spin variables. It is important to note that in order to yield a spin-spin contribution, and given product of a matrices must have an evee number of a matrices for particle (l) and an exee number of a matrices for particle (2). An odd number of a matrices will not result in a <é(1)'0(zt> term. An example of this method follows: 52 Table IV. Spin averages for two photon ladder diagram. Spin average Coefficient of A \H (WWW “(22¢ flWMa/a’néf > m l l H E E M N : (Oi/H- owl/“(2% “(C/éfipfk WWW (I/ ,fl> O P B C )5 p g) 3 <9( n_/ 0(11/ gag If 050.1 g ”(x/{da/Mzzfééémfl> = m: WW m w a’fiW ”Wei 9245“? 7 E <0(M‘ am a W; K/z/ffl> AWL 0W”. «w 45> : (1H2) @%£%WW$ @WM 96”.» : Us”) '3 (a/”.p(a/6”’!£/¢V$> : (14—72) Qgig 0("401‘1’4‘144 /> N ”1 m H! & .26 ¢ fl [9 2" L7 "'3 Hkiflré “0421’ Z V (be) mm mm -2 I. g? 2: '4‘ 3 l w s“- ah WW WHO 53 Table IV (continued) Spin average Coefficient of <70). UJZ)> 2,7 2: a”. 40/4014 gflé’> : am) -§- #1: ,g/ 5 Maw/4% 0% ww > -% W‘ “(a WWW/w x‘” a“? 72>: (162) —§— Mal) : '5 =0”? a: L‘Lk’ad t/E (New ‘éa’fla’k > 062/ +3; 1(er 0/ E <2C”£95“,é WWWW”) 062/ ~§ Llp‘ m 2 (05% as“: 4% 95'3”} a Low: ”f" z <01”; 3’12”? 915’" > :GHZ) -g‘ lim)‘ “5” 2 @511 95% 95”: 59> =0”? 0 Z“; ””21 "% 1W" to (M M M 26% O y (M 01% 5% 25%? O 54 (1 HIV %(fl “fl/(v (U <2X ’gg “B:>i '<:AIB” m1 ”h’afiu : ‘ .. ' (2) Z. 3 < . ‘ ,. (I) (2) .— ' I A184“ 62:); €2ms 0:, 03 >“ : A c B a—Il)‘ (2)> __ _l_ A o B 0-0). 2) _ 2 (I), 2) ,~ A,<: 0‘ 3 {g ~<< 0“;> ”‘7? £.j§<fir 04:) Tabulation of all spin averages for the ladder diagram occurs in Table IV. We now extract the k0 integration from (4C.6) and apply it to (4C.7): fdé< m» l- Mm I; (’J JJJU/[w‘f w} «Loyal? )dj(’@(2/fW-£} (4C. 7a) Since both [ ] and {w.f.} contain terms independent of a, dependent on d(1), or on a(2), or on d(11d(2), one can ex- tract the spin-spin contribution (remembering to keep an even number of a matrices for each particle) by inspection. ,QHHJHE [-2]: 1%)” term: Clearly the only spin average to contribute to the spin—spin interaction is E T 55 Thus the above term contributes ~I LN) III) I;+ +-I+' %CEI}T (4c.10) 4eMeWJI WXIEI , where IIEI: jojko £0 E I :3 L2. 114M.- 1H) [L4 (7! K. :E, :2e)]IL (”Mat EIEZIg 11) All such k0 integrations for the ladder diagram are tabulated in Table V. In like manner the -Q01Ue] [ JMIII awful A} term will contribute I I “ZII <5 w x5. Wqém + (E +"" )§2)B *5 WW3)? 355%? I 4E5 W + {-(e.+m«,Xs.~m)4M + ewe/z - (E..+rm.)rm73 + @2211. + {-(e,-m,ye.+m)é,¢p)a — (ammmy +Le,-~».)x:m3 + we}? I. + {"(E,‘M"¢>(Ez‘/7"2)C7{¥)a - (Er/WJELEJZ’ - (EnM/Fmfi owefif. A? (4c.12) Similarly the -fio’/k’[ 24 II Wqufw. ()2 term will contribute: ..M” 4E E2 {{.. (E «WXEL' mz)G(}?)d + am gflg); I?)—+ firm {fiKé9i 59 (AE5) = m’llef flax. 43/; “54-42) M (470‘ trim"? 5,005.00 x [--(E.+m,)(El +M))G,(2)a + (52+ml)f¢)3 +(_E‘«+mJFm’B - HQ)Q]% + [ (E.-w.XE.—»«.)pg;A - (a.-m.)&g)B—(E.-mfig)3 + two] I++ - Li D422 :1? + [05,- was. +xm.)1w A -(E.+Im) m3] I. , + [(EWXEz—mhxem -(E,+n«.)E(.L)B:( I- . + [(EfifmrXEzt’W) 'D(£)A]I-_ } (4C.15) Since it is the low momentum region that will make the log- arithmic contribution, we can make certain approximations in the above expression(14). Namely we can expand the Ei in the numerators, and keep only the leading terms as they occur. Thus (Bi + m-) = Zmi (i=l,2) and (E1 - mi) = kZ/Zmi. 1 We must be a bit more careful in the denominators. Here we have the product El(k)E2(k)E1(p)E2(p), where E1(k)E2(k) comes from the projection operator expansion of the particle propagators, and E1(p)E2(p) comes from the wave function co- efficients of the matrices. It can be shown (Appendix E) that it is sufficient to set E1(p)E2(p) = mlmz in the de- nominator so that the only explicit energy dependence left is El(k)E2(k) in the denominator. Thus for purposes of 60 1 calculation to order aslno’ we can effectively set: 13(9) 2 8 12(9) 2 4mZ F03) g ml (4C.16) C(p) 2 2 Hence we can reduce (4C.15) to the point where we can then use the table of integrals, Table VI. For example, the first 11+ term inside the braces of (4C.15) can be written: LEE/UM 7:72 (%QZF2+ 51ij + [£2] (4C.17) where we have used only the term with dimension [momentum]-2 from 11+, since the other terms would not give a logarithmic contribution. If we now integrate over (4C.17) using Table VI we obtain d3Pd3‘1[P)+ 221+sz AM [3+13‘fl] (4C.l8) L M1 [A 2. Linear Dipole Component The linear dipole component of AEL, (4C.4), is computed in the same way as the charge component, although the situa- tion is slightly more messy. For computational convenience we break (4C.4) up into two terms: a. _ 2.1422): MALL/T Witt-e (AEL/G— (2K)4 jag” m. (2 rr} 3" ’IMW ‘ “w m 7 {fi% [XL/\S'fl ~M MS (ta—4x) FILLLWW [if W49) (4C.4a) 2 5 Lx‘L’Ja/s’f a” .- ’ (EA L121)? fli‘fl” #J (L g) W0) . (HF/‘2) U (2 I) ('I X {- FILL}; U’W I” SFL-Lqm) Spay 7Z2“) 5“ 4(2)(T—L; -— (X 0(W M (27d 3/2. (4C.4b) We deal first with (AEi)1. The matrix product is reduced using OUV = -iyuyv + iopv, and Yukv = y4ik0 — iy4ai.ki 63 We readily obtain: X2203? L2: baa/[fig [0901+ 1X7” 205% gag/£27 (4019) We again expand the propagators in terms of projection oper- ators (see (3.4)): SélLSF(Z) = [ ]yidi. Incorporating the matrix portions of the wave functions, we can write the matrix portion of (4C.4a) as: €742) 7N+ Reg/Jr F9920 371-), + {(EL-m/Cwmw— (EI‘WJG¢)T/” E49)?” PM? {I} Similarly the —,Z03)H_2[ ]%('.Igm[w.f.; term is 65 ”1'2 __ m ‘4 a E; wxaw aw 4am») was WW - WEI“ + {(E,+M4,)(El~/ml)é7(2>a ~ (E2- mfiwg ~*(E,+wjfig)$ +M)QZ 1:: + {(5 ”“XBWGM + mem +92 Mme ma? 1;" + {(EI’IMJ(E1‘MI)G{¥K+CEZ‘ ”JP-(2)3 -(Ec'm’)a£)£ "DW’Q'qu—E and the - 2,1 lb|-1[ Y9!!! eff) all}? ((60. if term Ffl‘fl—TME +rm,() Ez+’mL)F(£)B (E +m;)D¢Q)€ TGE +W)C—,Q2)7Z- Rpffifl: 4E E1 ,V‘WMfl/WM/ + {(Efi/mJflEl-mt) F6213, _ (Eivfl’tszQJEg " (El+m) QLEYIL + FQfifg I+ + ZRE‘v/mMErf/mi) mag, + (El—Hm.) 1142)}? + (5,441,) GAB/71 * Swift; + {(5. 'MXEz-WJFLEUQINEUM‘JDGUE’ " (57“) 67¢”: ‘ E@)152I':2> and the - gwogL " (51+M4)'M)D ‘ R?)M§I-,g 67 As before, all terms underlined once are of dimension [momentum]'2 while those underlined twice are of dimension [momentum]'3. All other terms are less singular in mo- mentum and hence won't contribute to order aean-l. Collecting all terms with a potential logarithmic contri- bution we have 4) 2‘ WWW)” 1?de 439’ OWN/'1‘. '44) (A CD ZWLMWWJ" (Pl-+3“)z EMU E111} L I” [f (2/Z '1; — HP) M I++ + (Ermmwb 1+, +LEI+4M,)‘]X2)EI_+E (4C.Zl) Only the 11+ term merits special attention as it is of di- mension [momentum]”3. A careful calculation of 11+ shows that it contains a term of dimension [momentum]'3 plus a term of dimension [momentum]_2. Explicit calculation of the integral involving the integrand of dimension [momentum]-3 shows no logarithmic dependence, while explicit calculation of the integral with the integrand of dimension [momentum]-2 dBkdBP UN 215'"? + k2] (pwwzewa—m 2142 {kHz/1 reveals the integral which, 68 from Table VI, is zero to order delnd'l. The remaining terms in (4C.21) are quickly calculated using the low momentum approximations mentioned before equa- tion (4C.l7) and Table VI. We obtain 3 Z / (A54) 2-x 296 /W0)/<0410*2’>%4 / M, {M L @ M2 3 Z',’ gal (4C.22) We turn now to (AE%)Z as given in (4C.4b). As before we write y iofivkv = yi[dl-k—d2°k+d1-a2(k0-d2-k)] and expand the propagators as in (3.4) so that the matrix portion of (4C.4b) can be written as ( Qg+4zl “0"E2) (Ermxew Ham) 05% — «El—mad‘ié — 9:“; 5:14 <~Vfl<3+¢Z‘I(O+E/)(/Qo+7zzwo +52) (4c.25) 70 Again we extract the spin-spin content by retaining only those terms with an even number of a matrices for each particle. Doing the trivial k6 integration. we obtain: iozlk’IJXQALYSw'L} term Hs'l‘l 45E; {{"(Ei-w) €702)?" + 1742) >30; 1+: +{)D£J)9 (E+xrn)€ QJé+ngjb/EIH E+ZF(E3+/m.)(ET+/mi) rpm - (E3 +m4m}fl' + (E, +434) (742)01 — Pm )J? 1+“ W W +[(EI””"3)(EPM;)F/p)$ +(E; vmjbmfl — (El-4M,)€7(p/O{ — EQ)JJ)I- + + §(E3'W3)i><2m «Ea/mamas +(E, +3333szng +C7m>C§IL§ and finally the duldmgajkl: ]d"./o(‘2’ refif term +mjf¢1flB +(E2 +Wz}§4’)c +{p)2: AaN £M4_f4 @EL/G)- -K M2 E [3+ 57,11; 472.] (4C.27) Adding (4C.22) and (4C.27): 3 2 m 1) -/ A3234: _K 73a /Wo)/jma [wifl __,fl (4028) M1 5 4'1; 3/)", 74 3. Quadratic Dipole Component The quadratic dipole component of AEL is computed using identical methods as before. AEM‘ 230133001 d3’pd’1id4l apt/5 A L — (2%)“ i 1" “(9(0) {7 KEa/"fy L3» ngQE+023K)SS)(k+%k/)K X) A? ”L3: 2 (PM/4?) X _ 2””). J (27f)3/7 (4C.5) Using (4C.l9) and (3.4) we can write the matrix part of (405) as: WNW Ma’éfli'é”’£'+9<.”’é[]£((flé’ 9501116214 ._ 3w 3 333 .337 may 3 ii 2 «WW. 3 33223) 33/233 WWW 3 WW/A-.3<“BUZM”3! -1353: mww - 12.51’20’[lZ’1’a”’,a/"£é’ 33.7 ¢(‘)a(ydfi(1)é[]0(“~(Z/+ “(ljoffz)a(fi[]du')£(2)aagil>;w‘Jug (1} r/ (2) Where {W3 {12% {1)(94’ Fw)p((' 33-9 + FCQJK ,2 1" CQ)“ £K° z; Agéiin using the same techniques as before we can extract the Spiin—spin content. The ZSM'AZE [] gl’jé’gw‘f.§ term 75 I 45.6; {{(EWMJEQJzC‘ éflWG? 1+4. 1' g— (E,- m,)f¢p)Z/+ Qm/Qg I+- 3. 33..33e333’+ e333§3,+ + §~33m «er/33.331333 3.333333333353333 3mm? :1; 33; (E,3M)(E3W2)MM +(53W3W338 “(5+M3)f4£)3 ”4W3 11".? and the _/go fill/EDT ]f’:q}gmflf)é/;w”£g term ”I Pv/W _ - I 4e.e. {[(t' “Erma?” '(Ei+’m-L)EQ}F ~ (E.-+/mz)é(p/L -(3:-. 'WJDWD + Hob/1371.3]. + {(EWMXErWJEJM +(93'M‘LMQJL + (93* ““me J" @ij14” +5c «err/3339mm + PM? I; + {(Emflez-m) imagermaewc -(E3+/w3):a3)e, — Pam/321-- 5 79 and finally the QUJXZQ/‘f’fiéi 160333flgflfé'fw. if); term ( 42.393 (fpr/mflfil—wmljmw — KEZ+MJF992C +(E,-4M)E{Q)O ~44»; I.” +[(E,—M3)(E3 mam» — (Evmflmc {Emu-We) 0 +écpJP§ I,” +{(E3+/m.)(53+w3)DCQfl> + (523—3333.),t3333c +LE333/333Jfiy0 +6352)P§I_+ + §(E3+3m,)(Ez-4n.) Dam) + (E2 -M3) F@)C - (E,+ 444,) EC?) 0 " 41¢) PEI"? Collecting those terms that will contribute to our order, we have: 3331 3' 3(3/ WOW #3 3333 d33’ 0% ’- it 3) AEL :- "' 7 1 i z .— [(E ..M‘)(EI+M1)D4)E]I (04-73 M; (VHF) E, (13) 53(13) “H - [(E’df-meFéajw +(E;‘+WL)E@) wJI++ ‘- (E,'+M3XEz+M3)DQZ 21+, 3. [3e,...,)e33m .. 3333-3231” +[—fi W .3: (4029) L 7 ML 3 79 and finally the Q‘ng’gfld ”0332203,? Era/.793? term ( b 435. ffle.—m>(e.+m)m>p — W +(E,-m.)r:33g)o -—é,qz)?)z I” + [(E3-MI)(EL 'MZ)ZXQ)D ' LE1 ‘0“ t) ch “(E)’W.)‘fi1) 0 + QC?) PE I4... +[(E3+xm.)(63+/M3)D£Pfl> + (En/3344mm +LE,+M,)‘1:’(,Q)0 +éee/P§I_, 3, {(E,+m,)(EZ-/mi) D33») + (El-4m) R32); - (E,+ 433,) Fe?) 0 - COMPEL} Collecting those terms that will contribute to our order, we have: 33 333/303“ 33333333333233-33) 3.3333333; <31+We<33e<33 [ [<5 'XE ”W13. -[(E+WMJH%MU+fé+flmdfb2481;+ —-@fi+quErhm5HlyE:I+, _3_ [(E3W3)F¢W .. 333342] 1+, +[—~(3)313(53+m)&pl¥/’]I+, .3- (EL+VA1)E@)Z//_ M)? '+/& A’" 134 (4C.29) 80 In summary the total ladder diagram contribution is: :7{3+%fij—K<4t%%fi§ .)+“’é"5> (“'30) i3: 3 / 2 n). ) -/ where 7 ___ eta “Pd/M4? fivxéa D. Crossed Diagram The crossed two photon contribution to the energy shift comes from the irreducible crossed two photon kernel, and is given by(12): N 33) , AEC :1 Jiffy/"73’ appw/ 15(1’17WK‘C753 0/ (4D.l) where T~(x,x') is derived in Appendix A and is A¢ 1 d4 41/ - £3, 3 3 2." _ 143 3 1.1 (¢«/—— Egg/0:3 f/Zéélnte 82M 7514916 ((£7 7% K n M w 0) fl)(1 H 3([2fufy Qfi/xr17xy&)+5¢e 7W ”ff ZJHHAy/OZ It 1m 3 — ¢1(29)f0:"o’fl£/;G~KX oz) BMW”) Wflwzymf 33W f3, ”ff/£— J‘ML (413.2) /m 7" fi , _ d4 ’ 2f77eyJ J” , “' ~”‘ 3 IV where GE (x—X) —f&7t)fi; g p&+?/ZJSF6ID+7ZIK) (4D.Za) Doing the x,x' and p' integrations when we substitute (4D.2) into (4D.l) we obtain: 81 AE : Mfr new We re-eM/E w?!) EC ITmy4 ,2 ,é/‘ ,( ngjAX’va’ng'Q—sz, er) Sigma ’+"Z. If) ”XXX” + W“ W’X s"’gt..z,K/‘s‘”(. We») ""1 £014). .. Eigijxu ”X 0:0)L/5/ SFU“ 8é+4ZIk/SP
  • (413.4) We expand the product of propagators according to (3.4) so that (4D.4) can be rather quickly reduced to the following expression in brackets: 82 <3:ng I} - JO‘I 3021“quan — “/71“: {Cut {f + “2'0?in 1K;/)X‘-a/[w. (3> (4D.5) where [ ] contains the projection operators and {w.f.} {Dew + Boyd — @9502; «(miggmflzflg . The k6 integration is trivial using oCkO—kb), so that we can readily extract the spin—spin contribution using identical methods to those de- scribed earlier. All that is needed is the expression for the projection operators when various combinations of d matrices multiply it from the left. These are given by: for a(1)d(2) on the left: L :1 r; __‘.___. { (Eq'Wi)(Egl'/mi)“(Ei’wmjfili’i—é _(E’_,/m')g’(z}£/+ 9(3’15 49),?" 4EMSPQ)§/- 7Q}C $1-,3 «WW 86 Thus we can write the entire charge component of the crossed diagram as: (A5 c) .. 2' a3/WQ/l 45px]: ASL, afld‘. ’2. '43 C _ M (21% (piflr‘j‘ 5,04 54(4) ) [[(Et 'hmJ 9W 2; " M)’5]f++ + [(5. +M.XE;I+ML)6(¥}Z[ ~(E. if'.M1;/E(I?) f _ (E; +MIJFKE/E +1152) g? 133+ , + [(E‘+WJ(EL'+/MQC7Q)& +Etl+wqfiw $9 +Efim) Fag/z +32) §]f_+ -[(Ea’+mf5u)§+ Bowl?” + 312)ng + )(p)§I+_ T [(ErmNEJmJDQ/z ~(E/+m)§?)§jffl +(E.+m)E<;2)g it? + [(E‘ +M,XE;I+W;)M/f] E-_ E (4D.10) The first two I++ terms, with integrands of dimension [momentum]-3 , will give zero contribution to our order. The remaining terms in (4D.10) are quickly calculated using Table VI, and we obtain: A E" ._ _ m’Ww/KO‘W 0.09% a/ " M (413-11) C M 1 fl 2. Linear Dipole Component The linear dipole component is given by the second and third terms of (4D.3). For computational convenience we break the expression up into two terms, (AE3) and (AEg)2. l 87 Table VII 8 ' . pin averages f f or two photon crossed diagram. Spin average N Coefficient of (OW-64$ A s «46%,? -‘”> Kg ‘5 <0((‘(//J(2)0{m£J WW (2,; %(I)£> + 2 i9; ‘!£.¥ m d $> ' ‘2' V 2.: : E 3 <0“??? “a (4 _% E.“ J“ 25/21? p((z/ £> A, .~ g E 06“) (I = :(L/ N, (H 2 H / 4 M: <4 é”: a); “mica/(5(a) gwéflm 49> £7; my? I (J~~/O\£~dja/I ~(1:%(2;g> P E i ..m 05> we) 3 : <0/(2/0(”:é 02/1/“(2:£> '32— Pl 4:; , m - N + 3:— ta 3 = <% M W?» 3 A “9 W /~— Q A i— k Ii 4% I '- 3’ ( Q : 3 k "B N N N ( A /V, - a -+E;k’ a : <04 MW > 3” «a 2. ~ ”3' J5 fl 88 Table VII (continued) ’5 e <06“ [05% N"*£’I9"’> “j; I 2 <94” 9521 ’95 "L W5 ; (W JI’I M20 E :- Z : if: w 77 @110). I , 052/! If M I?» IV <4(_"/ KICZLMvL/g fl/é/a/ Ia/fl ,Q5$> <0Q/a/Iré “(I14 99% (gel/N Mm ¥> A, N N §> is?) R? H? ’— ’ ’— .— N __,. I" I + ow “T 1": + VIN MN 89 Table VIII. k0 integrations for crossed diagram NM if“) I l ' If? @121 (SC-1.1.4149 WM‘ [12 (Mme-ted] W (’lz’ME‘ ”U 2 Tu. ML + )L‘HH th‘ I “7+ 4 NR'PM’UUIHW “ UAM‘M‘E %{4/M: lk'l‘kl‘g f_+ amirt —+i[4% [kl M1} N 1,, “Pam ’ . {3M.Mz[k‘llkl((k'l+‘kog z» / . 1 I“ ”75““ {mama—g . ‘ vi +- #1 L §4mzlk‘((lgl(llc’l+ltf) 3 I ‘ ~I li~+ fixtz {9LM‘[Q%\kJ(\kJ\+‘QL)g f’: ——7 17M? ‘1 ”I :ewjmguwmm + - ' [6491’le (HUI-i- It!) N H ‘ I: —$-2fié I ++ —.___ + ( m‘hll ”’12 E2) ( .. ( {2|le MULAIHH) ' ?< N l I I I ’ *’ '+ 1“ {YA/m (\‘k\+(kl)§ (in ’5‘1th‘ (ye-"1"at g + g4“ {\k(+\L1) 90 l 3 3 3 é _ +__. éfiEjlf: :/mf;md4JféiPd Ad L 0/(:2%2¢)6Q2 1L) ¥%@» Flfiéy xfgxny12)s} WGL+4Z,K)<§FM _ 4&th Kit/q; :Wédffl: “(21) (4D.12) Using (3.4) and (4C.l9), we can write the matrix portion of (4D.12) as <[M'Ww-f-f 09"? lot/”’5 (2%wa — “Hy/W +wé)fw..%f W ”W +45" %[]«"””// 42.1mm— weM’zflg’m> (4D.13) where {w.f.} = {D42} +ng gm-fl +E¢)’oyl)¥ +Gwa”? way} We use (4D.6) through (4D.9) where appropriate and do the trivial k6 integration as well as the k0 integration (see Table VIII). We then extract the spin—spin contribution. [ ]g(2)'k{w.f.} term: the spin average are of dimension ]4 [momentum while the most singular k0 integration, I ++’ is of dimension [momentum]_5, so the integrand will not be singular enough for a contribution to our order. The - éymijaimgflié fluff term: 91 i i _, , N , ~ _ .r-v N EIELI {fiE,+wJ(t,*W;jRfl/f ~(E$'W1)D4¥)¥ -02f§ ~9—P/;CVJ?IN+_ + [(EI—rmfla’wmj Em 3:; +0?! —/m) Gil/4;: *{En‘IMJDWE ~FCP/51VEE-+ +§cpzi Hex-mm? -AIX (_§%t+i3%) (411.15) We now turn to (AEg) which is given by z'a‘ ’ M44“ é’- - / -- ’ OAE:%C>::—v:mtfi%P¢jnd/9 Jéjiziz é fly éz7’él/ ¢yw M (1} (I) (. (I/ ' 3 1M 0% é/§F€é+7,l(/S}46él+7zk)yv ”Mfg/(27:) /’ /M. KW (4D.16) Using the same method outlined before (4D.l3) we can write the matrix portion of (4D.16) as 94 <26"4£’I]{w. I} + «:74 "-451wa Mm + Ie"’,I.I,°-’i’£7 IFVI-I? + H 5% {at} - «fay/g ’- {IL/5’) [ ] 09/949?“ ff — 4]? MW}; mm}? (4D.17) where {w.f.} = [Dm)+Fw¢m-£ — Erma"). ~G2¢PJQIUQE£2C€§ Using (4D.6) - (4D.9) where appropriate. and doing the k6 and k0 integrations, we then extract the spin-spin contribu- tion. The 9(21k'[ ]{w.f.} and [ ]g(l)°§'{w.f.} terms have spin averages of dimension [momentum]4 and the most ~ singular of the k0 integrations, I++, has dimension [momentum]—5, so there won't be any terms singular enough to yield an aslnd-1 contribution. The ,angy[:]qgugan¥.§ term 43.5; [{”{E’+”"J(EV'“’)G‘W WEI'WJFQJ i5- (51+WJF69/Z +bw§§f W W 1'4} an). + §‘/E.+IIIJ(E.’+M/C7¢)§ +(Ez’+-I"2>Ecp)§ dawn-JUPIS - hwy fig + §-%a~/ M +3Lfl) (4&19) Thus the total crossed diagram contribution to the linear dipole component is (see (4D.lS) and (4D.19)): A154: K Ids/Way <0-m 7429,41" (6 fl 1— fifl) (413.20) C M: 5 m; 5 on, 3. Quadratic Dipole Component The quadratic dipole component of the crossed two photon diagram is given by the last term in (4D.3): M_ m: duawuflcé’.é—, a”. g __ ”ma/J a W 2 WW Mia/1% §FI€4+%K/S}w{—é’+¢m)yy"’ "’4‘“;qu (4D.21) Using now familiar techniques we write the matrix portion of (4D.Zl) as: 98 + ”ff-”.4? MW - d-ié “it?! my” - «5.715714 6152‘? , M a“’£’[ J — [ 1457,!5‘21é J. aging/at; J. 04"”[J9s’1’é’fl + fia(-"’5"23£’[ )Wfié 45% {XXI/23.” fl war (fl )5; ,/Z A/(‘ft/0(J(21[JXJW%(2/Ag(zjé + £0 “(aw/(17’ g(Z/é/[7aé “(\(z/ a/'/ /(l) ECO/é [WU a/fl(z(é];wv If) (4D.22) where {w.f.} = [My + Ftp/gwfl + EWQSW-J’ + (”kW/25%? Zia/‘4? The spin—spin contribution is extracted using identical techniques to those discussed earlier. In all of the fol- lowing we need consider only spin averages of dimension [momentum]2 or less as the k inte rations have dimensio- 0 g 5, [momentum]-4 -2 [momentum]— , ..., and we want an integrand of dimension [momentum] The — [2’59 [ 703% {wig and - Q’QLYK'QTmfif terms: No contribution from these terms as spin averages are at least of dimension [momentum]4 The-agg’z“f,g[]og“z‘iié [w.f.§ and [xi/W“ N m {We} fzterms All spin averages are of too high a dimension to con- tribute to our order. 99 (I) (2/ (2) / (II The ' 2‘ 15021 K .4 i. Y“; 220-va term: we consider only spin averages of dimension [momentum]2: \ '— 4Eflh' {(E’ —m.}(E;I+ml)]xp)$i/++ +(E,—/m,}(E-;’-W>)D(¥)3 f4, + (E. + m,)(E.'+m)1w3f. + + (5, WM Ez-"W2M)3f--3 and the -— Q’XIT jaw-[é fi/{wflflfwxf’f term: I , xv, c N 45.5; (5 (5.-....)(5. WW) 3 I... +.(gz[+W‘>D(p)3/E—+ +(EI+M14)(E_L,'M;JW$I jig-1’3 and the ng-k g‘flg’fliw.“ and fi"%f€‘%l]fw.f.§ terms: There is no oce’lnoc'1 contribution because spin averages are of too high a dimension. The ’50 “JEEYOQVZWE [MIX term: Spin averages are of at least dimension [momentum]2, so need to examine l;+ only: I , ~ , . "’ ”V ~ ~, 45,51'flE‘Jr/M‘MEI MM) F(P)€ ~(Ez ~Wx/D‘WQ- *(E,-+mj(7(7p/Jy + FGP/W El.” The ~~ fl. dc‘mi] flfl'jé/dz'mfwotg term ——/ ‘ ' 96, N (a; ”I, 45%, §/fl\fl-z Ml E. Non—Contributing Diagrams Radiative corrections to the one photon exchange repre- sent a potential source of aslna_1 contributions, but de- tailed calculations(14) have shown that in fact they do not contribute to our order. Since terms involving three photons are at least of order as, we conclude that the ocf’lnoz—1 terms are those cal- culated in this Chapter and give by (4B.59), (4C.30), and (4D.25): 102 I '— 4 ——_' 1315:73 - K7(§+§’%)+K‘t(é—%1) (4E.1) T43 / ”(0// 1lnd-1/M2 which can be readily factored (see (5.4)) into the Fermi frequency times a term with the ”correct” mass dependence (i.e. doesn't diverge for m2 + m). It should be noted in Tables IX, X, XI, terms with the ”wrong" mass dependence (e.g., n(M/U) cancel out so that we are left with only terms with the ”correct” mass dependence. The total a6lna-l contribution is thus AE:%[?-K{l3+7%l)+t(2(7- I44%)§ (5.1) where, again, 7 : 10(5/WW/‘47W- 0"”)44" M” (5.2) Using M = (m1 + m2), l®(O)I2 = yaw-1, and Ry = a2m1/2 we can write (5.2) as : §(”7?.)29<4Ld"figw (5.3) <1 + a) This can then be rewritten with the Fermi coefficient 7 as a factor 4F a“: “‘Qaw‘flflwafiflf’ %{r#)“2%“"/’*%N (5.4) 103 104 Table IX. Charge component 1% One Photon Two Photon Two Photon Diagram Ladder Diagram Crossed Diagram 2M 1M _ M “‘3'? “(3+3‘1T) n 11 Table X. Linear dipole component One Photon Two Photon Two Photon Diagram Ladder Diagram Crossed Diagram KUZM-tl-iml —KnO+—2-m1 -Kng.M+£+iln_l 3/4 3 3mg 3 3m2 3/ 3 3m2 Table XI. Quadratic dipole component Two Photon Two Photon Ladder Diagram Crossed Diagram 105 where the later factor in parentheses has the value 1.070 X 10‘4 MHz (where we have used d'1 = 137.03608). Thus the frequency shift corresponding to (5.1) is 0H = 2.899 x 10‘4 MHz (0.2 ppm). (5.5) It is interesting to note that, numerically, the linear dipole term and the quadratic dipole term almost exactly cancel each other (the linear dipole term being -8.324 X 10'4 MHZ, and the quadratic dipole term being +7.913 X 10'4 MHz). The present theoretical value(15), including this work, of the hydrogen ground state hyperfine splitting is (0H)th = 1420.4026 (l + 65) i 0.0057 MHz (4.0 ppm) (5.6) where the quoted uncertainty is the root sum square of the following errors: 3.8 ppm in aWQEDZ’ 0.6 ppm due to the un— certainty for the uncalculated terms in o, and 0.9 ppm in 6p(15). Hence the uncertainty in the determination of the fundamental constant, a, represents the bulk of the uncer- tainty in (VHJth‘ The experimental value for the hydrogen hyperfine split- ting of the ground state is(l6) (0H)exp = 1420.4057517864 (17) MHZ (1.2/1012) which is over six orders of magnitude more precise than the theoretical calculations. The uncertainty in.d does not affect the ratio of muonium to hydrogen hyperfine splittings (see (1.4)) as this ratio 106 is insensitive to the value of q: 3 7/ _/< (H $4?) { , ffi}: (1+ &)3 l+0//;“0/P'O(/;? (1'4) The greatest difficulty in using (1.4) is the uncertainty involved in the determination of the ratio uU/u At p. present there are two determinations of the ratio, a Uni- versity of Washington/Lawrence Radiation Laboratory (UW/LRL) (17) collaboration which measured the muon and proton pre- cession rates in a liquid, and a University of Chicago re- su1t(18) which measured Zeeman transitions in muonium. The two results are (MU/UP)UW/LRL = 3.183 346 7 (82) (2.6 ppm) (Up/Up)Chi = 3.183 338 (13) (4.1 ppm) From these values we can put an upper limit on 6p. using (1.4). The present value (including this work) of the proton recoil correction, 6 is (-34.4 i 0.9) ppm(15). p, the uncertainty coming primarily from uncertainties in the form factors in the (me/mp)d correction. The muonium recoil correction. 6U, is (~174.0 ppm)(19), and the muonium is 4463.3023 (35) (0.7 ppm)(17). hyperfine frequency, Vm’ These numbers then lead to an upper limit of dp': (8 S (6.5 i:22.8) ppm l p )UW/LRL l+ (310')Chi é (3.8 4.3) ppm 107 The uncertainty in each case was computed as the root sum square of the component uncertainties listed above. Clear- ly, the measurement of the “u/“p ratio affords a most accurate determination of the proton polarizibility. The calculation presented here is the logical culmina- 1 tion of a series of delnq recoil correction calculations that have included the positronium calculation(12), the (19) muonium calculation and finally this calculation which has been the most involved of all. REFERENCES [\J 10. 11. 12. 13. 14. 15. 16. 17. REFERENCES R. Karplus and A. Klein, Phys. Rev. 81, 848, (1952) T. Fulton and P. Martin, Phys. Rev. 88, 903, (1954); Phys. Rev. 88, 811, (1954) E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232, (1951) S. D. Dress and J. D. sullivan, Phys. Rev. 154, 1477 (1966) D. Jensen, 8. Kovesi—Domokos, and E. Schomberg, Preprint #NYO 4076—17, Johns Hopkins University D. Romer, PhD. thesis (unpublished), New York University (1971). Mr. Romer calculated the charge term in the Lorentz gauge for positronium. This served as a check on the positronium calculation previously performed in the Coulomb gauge by Fulton, Owen and Repko, Ref. 12. Equation (2.2b) treats the proton as if it were a point Dirac particle, although the results that follow this equation would be the same if we were to include a phenomenological magnetic moment term for the proton. For example, see Schweber, An Introduction to Relativistic Quantum Field Theory, Row, Peterson, and Co. (1961) M. Cell-Mann and F. Low, Phys. Rev. 88, 350, (1951) E. E. Salpeter, Phys. Rev. 81, 328, (1952) T. Ishidzu, Prog. Theo. Phys. 8, 154, (1951) T. Fulton, D. Owen, and W. W. Repko, Phys. Rev. A8, 1802, (1971) C. lddings, Phys. Rev. 138, B446, (1965); or F. Guerin, Nuovo Cim. 50A, 1, (1967) and 50A, 211, (1967); or R. Faustov, Nucl. Phys. 18, 669, (1966) 0. Owen, Ph.D. Thesis (Johns HOpkins University, 1970) B. N. Taylor, W. H. Parker, and D. N. Langenberg, Rev. Mod. Phys. 41, 375, (1969) R. Vessot, et. al., IEEE Trans. Instr. Meas. IM-15, 165, (1966) K. M. Crowe, R. W. Williams, et. al., Phys. Rev. 88, 2145, (1972) 108 109 18. D. Favart, V. L. Telegdi, et. al., Phys. Rev. Lett. 11, 1336, (1971) 19. T. Fulton, D. Owen, W. W. Repko, Phys. Rev. Lett. 18, 61, (1971) APPENDI CES APPENDIX A DERIVATION OF KERNELS 1. Single Photon Exchange ¢,‘/K’ 79 94’ Using well known Feynman diagram techniques, the above diagram is written: 1019/79; X: 71,) : - el/fl4yfl1,*X/7X.l/l('l a.) p {7" Jag/Z: (bk-51), 045)) ; (".62 fiffid?d4f/fll4é A?” [/flny/y Ik/X/‘;) (ya/(111;) " (272’: 4 4 4 y 1' VII/y- IX}? H/ / / // 'X g; gikF.M0};(/Offi/ (A.1) We introduce the center of mass and relative coordinate system (see (2.7)): ’ ' ’ _ (‘6‘ 4 4 4/ 4 ,/ (r) . I H 1697/ XX ) (27" fdgd/WZX/ /” 3:“ IBM/"55‘4” ' ’{1/ “ ' k '; - ' ’ . ,, xelf ”XV?! /7?(;jvezz/ /’[,X%i/Oel/ 9717,17 x gly’lé'fflzfl'i/‘WFVX” (A.2) 110 111 -zrfl'X/ But I(x,x') Ef/X’e 109/1212C) (2.8c) so performing the indicated integrations on (A.2) we obtain: ( +—é+ +}W .292: (70 (Zr/“WWW— 1) Ibex) '-' [AF-)5 Now do the trivial p integration. Then do the y integration obtaining (2n)“6(k+p'—p”). Then do the p” integration: 1(« 1): (aw/f1,” ’flp MW fl) FIZ/FéZ/glL“ £"(F/’7Z.K/(’xexy (A.3) Now change variable p' ’11_,.—»- F + 7,1; and do the p' integration: 0 féx' . ’ (2)1364 42 a » I“ X) : (1:)4/dé a“ b/uA/F 2 ) JYK ’X) (A.4) Insert DF = SUA/k2 and let Fk(k) include a phenomenological magnetic moment for particle 2: __ . 0’ R/fl‘) <12 (A.5) 50/ : (712/21) — 2% 03,1. I Thus: 4:4) 4;? [w (I/ 2 {my} ’ 2/ 4‘6 1) Mat/1 ’2’ 8(1) w (2/ 112 2. Ladder Diagram ‘7‘ ’Y; Y 1 l l ' 1 I I m ”AW W74" As was seen in Chapter II. the two photon ladder kernel is a second order perturbation expansion of the one photon interaction kernel, Kk (see (2.21)). 1k is that part of the one photon interaction kernel (A.6) that remains when the Coulomb interaction is separatekd out, namely: 1(‘/éx/77:24TC0(C/‘6('Xj(;{7:jwefFZZ/XUI/w (I) 7 The two photon ladder kernel is then given by: SEA/>919 : I 651) ng;)1‘”,x ' (A.7) 4 , l where é«(1,«7:fld—é «Q ,0(7< ”5} 0+ mew PMZJZ') Thus . I (4475“) dm Iéqz’e {Ll , 2 2 IK{1,1):-———//é7ufi(zflg 12(Mé()24()%:_51’357+ Wm 2M :31 ) 1W (A.8) 113 which is the desired result. 3. Crossed Diagram Kernel The indicated idagram is written: Ibo/Aw 7/) =e fdgdzd”; ’A‘e’ Tiff) (X27 (7;; 93% 1, 7-,) W (2) / n , , $372 -29 1x ’2. (2733 'x‘2/2‘%F(7(17)Y>)H(51-79) (A.9) 4; / 2o - / We set F1676 0” j Ejzf/ffl‘ffi3(11‘g)£l§(y-Q)I}"/éji) (it/3 and take the appropriate Fourier transforms: I(’X.j¥z)xl;xl/) _ (ii/:2 dydy/qu”(42J43’d4ft714/[471’Zé/4 y’éflfl/ x 5/222; 2’) Sitwsfép/ WF {’7 7/12 W, m p... . (W e 2 {(x. W21“; 4217473 Irlj’e {/{2 -272 2'1/y2y7 1' ' l' J {1((14' '1 " - ' €¢Hj°fl£ WfizHg 7,) (A.10) The y.y',z,z' integrations yield: {Zr/m/y'é’+§/+[)//-7+f-Z/a/(‘f/t/y/A/fll" ’7) Doing the now trivial 5,5', n, n' integrations, we have: 114 (2/ I(m,o<.,x,”)x. = ‘2‘“ If”; I’d WW}; ”77 7:04} /)§p(f)S (NAM 2(k+,n}’xl r' 0.; M29.» 41.) b. (m {(P+kl)?(ll Z. (P/+k/)’X) l'(f/+L/¢z./ (A-ll) 2 <2 J2 We transform to the center of mass using (2.7) and then in- tegrate over X' according to (2.8c): 1m)- 43f; J“ UM I;V,4;;a)sébsfi M,“ (I l I 2k 4» '_ Ctr/yzéjjgahébpgficw/fi (+P+r L 71)}: fifl’lt/"(I/F 7“ -7z,1€)’x ,2 [Mn/5%,!) +1,/< -7,471’ , , (A.12) (27;)4 0/0 +f+é +é ’14:) Do the p' integration and change variables p1.» [9 +”Z/ —-> 34,625 (“to") which was used extensively in the calculations. Consider an integral of the type we en- countered in Chapter IV: 5 a ( 1 3‘ AB 041/1 0*” (3,1) M: MAM A, 1M, ~~M~2 where A and B are momentum vectors, and f an arbitrary function bilinear in A and E. If we subject all momentum vectors to a simultaneous rotation, R(¢.w,e), where ¢, ¢, 6 are the usual Euler angles, remains invariant. Thus: J:/d%dgfi {043; Ag, -~)C,: 3 A2 (13.9) 118 Thus using (B.l) and (B.3) we obtain: (Taxi? gin-32> .4, 3LA '3 <0“". am) (3.10) The remainder of this section lists some general spherical averages used in computing the values listed in Tables II, IV, and VII. Anticommutation relations can be applied to find related spin averages. < om Man/{egg —-+ i A .3 (NH-0)) <0” Kalgwm W») —;> -— (A xc) .Q Q) (N. W) (N mg «{(U # ax - i . @5112: f.“ 9‘ 6C £5 3) + {-3— (A'QXS‘D) 3i (4%) (92) + are ya -.2) $0.1 My); <°"”- 0“”) —> -§- .423 < <0(”5M‘)0(”O4 a”?o<(2)p((’/.B > —+ g A «,3, <0“. 00> <0” a“) dry/4 “(2230({1/“(0 > ..., EA ~ 0.0,. 041D éqrfibwrw> ~+ graewm» <09” (”,5 afiflazf> 9 - 3g 5 .3 <0< 5' ’09“’r“wg“’m ”a (”12> .2 a a w (70> é A .5 )Sl wwwb> fracmwaoww +§ (52%;? .c) —§—(A'2)C§'2J§<°“"0"> APPENDIX C INTEGRALS In this Appendix the derivation of the k0 integrations and the momentum integrations used in this calculation will be given. We start with the k0 integrations. The basic k0 integration for the ladder diagram is of the following form: ( ~(¢(’A’ A All—IAMW/r, mA/Wm (c.1) Iced. +4 -a° where we have included one form factor of the type KAz/(k2 + A2). We will show that, in fact. any form factors are superfluous to the oaslnof1 calculation because terms with the form factor parameters (in this case A2) are not singular enough to yield a logarithmic contribution. The integrand in (C.l) has poles in the upper half plane at k0 = ~Ikl + 18, k0 = -Ik'| + is, k0 = —(k2 + A2)1/2 + is, and k0 = anO - El + is. We then close the integration contour in the upper half plane to obtain 119 120 A3— I “r: K 2 L‘ I" 1 Al + . ~2IL') (La [UH-N)? L" (”ZIVO’EW'VVZJVE’) l A + war)“ (it. v ww- (kw:(I HES-m) Keeping only the two most singular terms at low momentum, we have, fl/22fi__r~___, . .L -. . ” {2&1meer Ar”... +,.M;)+0(L)§ (cs) And in like manner, 0&4 l f 151% w [12. mama -..); 1.4. (12./(.... a); Poles are in the upper half plane at k0 = -|kl + is, and k0 = ‘lk', + :18 j: l ,_:l2ni {PQL ([214;ch — (E,+m,})(~(¢ {Ea'may} + 1 I '2‘; (r- V) (—L’—€,+/m,/){.L” (5; my 124 but (1+5, + m, Emu. lad-Er-r/m, ‘ l: Eff/M. £E|+M,)x U} H10 ‘) + , r0 .1 o- . -ZQI (kit h9>y(=ua), (C.7) is simply of order us because the inte- gral itself is independent of a. Thus the logarithmic be- havior arises from the low momentum region. We also note that by putting on of the wave functions at the origin in the two photon calculation, we have forced the other wave function momentum, p, to be small to insure a logarithmic contribution. Hence we are justified in setting E(k+p) = E(k) in the denominators of the two photon momentum integrals. Similarly we are justified in setting mi/Ei(p) = l as was done repeatedly in the use of the static wave function. The momentum integrations depend upon the use of the formu1a(12) / l __ I 4!: -3A W1 ”Efl,-w.[“+a”“j”] (C.8) 0 which is used in conjunction with the usual Feynman para— meter integrals to obtain the following expressions: 126 I ah _ ‘ij‘w I ahL (r-u) alC (I-W‘ [afipdw+@%fl'@fluv1% (C.9) V‘ l 2 L93. d“ M {l 7") 0* I} C‘ [(9 o-(l LIV)" 01:“ J'Qr-OJ'U' +(C— aju {juggmy-j q/z ((3.10) Equations (C.9) and (C.lO) are used to expand the denomina- tors of the momentum integrals. For example, (i=l,2) ‘3 3 ‘ 1 (1 :0: drdf Fr (PZ+X))1(PIL+X11)1JJI_41{L E ’ijjr) I!” P Fig/”‘6 “) (“MI/i0? W”) M1171 where Ai = (l—u)[p2u + miz + (y2 - mi2)v] = [l—u)[p2u + A1] 2 0. Let p'2¢(p' + up) and integrate over p'. v<17/M/sz/zf(%a 4::ry:)4 TC ELM + M? :sAf 127 The integral over p is then done, yielding 4M l- usaJ‘W 3J‘ at elvufi Lt] _££_ ¢Ln :%:f ( ) I’d/)4 2( 4190. A"1 +(I—W‘EZ‘7/l‘1’r The parameter integration over u is trivial. The V inte- gration is I'm!» ’ 44.; («’01 _. —- _‘_I_ o w) ... —»~ aql'xl 2 U + fime-VMww- d expanding in powers of (y/mi)2, since y << ml, the leading logarithmic behavior is i 2.41. -/ ”he [Ag 7 + Affl 7 Since the coefficient of the momentum integrals contains an as, we need keep only the Inca"1 term. All other terms of the V integration contribute to order a6 or higher. Hence we can write I Mlv _ 2 g, p f, WWI/LA .— ELI/g4” (1:47)) (C.ll) 128 The other momentum integrals for the one photon ex- change (Table III) are done in a similar manner. The general method is to integrate over p' (using the Feynman para- meters), integrate then over p, and finally do the parameter integrals using (C.10). Rather than go through all of the details of the remaining integrals in Table III, we list a few helpful p' integrations that are necessary to the re- maining derivations. 13’ 09'1 M lfl W djp' MM"! I_u __(f LIP +34] )4 M45 ”(I‘d/VJ /f4,9'/;1:\L£1 2d;j:£____,' %' i. . f(V3X7‘}¥-¥I‘fi’ ’ IZMfi-u) d0 iii.- -4/jl/z AL). OFF, \ [whwwrrra' fwfl) If% 7? 0 -mfia(2% fi,[fls —Jij \:\ $ij12: [MIC] zi/dlufi, fi/Uwér/LA‘ J. 129 where A; :(I-MJH‘M +w;’ +(a‘l-mfpr] = U'WEP‘“ +Ai] 20 Similar methods are applied to the momentum integrals For example, for the two photon diagrams (see Table VI) dig/001% 'pl (p‘+3‘j ‘ 5.0:) ad.) it [ Lug/t djé 1L1 71‘ rt2 -/ k : fewefi) la 1 7C _ — + i W (F); 03% few" (W x { (4’43“) X : EML - 4“} l+<25 $0 €130,544) 8‘ o EAL) EAL) L of Elk) 51¢) k 0 The first two terms contain no logarithmic dependence. while the later integral is evaluated by integration in the complex plane. -, (‘1— W). 5f; wit—1L :Lfo __:(+eoe/r 56912 f A: a, Mnj/z . fiw , if" .4. (mm) 2'0 ///l°‘”“‘/‘ 20 fo‘wnW‘ Change variables in the later integral, q-z, q A (I— z‘z/r) I : fi/XZ fight/my” ,¢> In the complex plane we have poles at q = 0, and q ~ 130 The square root branch cut is indicated by 0000000000 while the logarithmic branch cut is indicated by A-MAW~V and there is a logarithmic singularity at q = —iY ' 1““ CAM/LE? PLANE (h l ’1 K4 I 2< w > <1 < <7 ‘ \ ‘ég-lrm 28 7O O 0 We close the integration contour in the upper half plane, and use the residue theorem. 2%5- ( ff“ (- f/rl/ Kyla- 2W) 3; M0 zf/N 5*;{;+«/* it] Mammy“ . 1 ECWQWyg QURD co @m :‘éZEJEZJ E22, — 1 . We note that the function just to the right of the branch cut is the negative of the function just to the left of the branch cut. so we have 131 . ’° ”albeit/J”) L_____(/-zr/N _ #ij f”; ;[;+——TJ’ '0 Now let y = eiq in the later integral L !¢(/— lat/g4) A0 + 47W) 210:? f/f1+%]/a:/;-?(Tl_mt)yt AWL m [A4/r)+A(I+X—) __—___T“‘—7_—‘ ——~——————______1L____ Pffl? '7 /g12',”44j :l/é; ?(?"£l’ m1; 7; MEI/M (,0 y 20°]th J/ Zfi'Wm Comm 30725 To 01%? fl w ”'*’\r wZ1xfllfléfwh 4— la X 4* 7/?” M imam/"1 kfl—fi‘l CbflfluswaiTa fig? Tr - “‘5’ ;;h 12a?’ Thus to order ocslnof1 we have tam/w T -, I fd;——— W h 12%“ (IE/,1) (C.lZ) An identical procedure is followed in performing the remaining integrations listed in Table VI.