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ABSTRACT

INVERSE PROBLEMS RELATED TO TRANSIENT CONVECTION

IN THE THERMAL ENTRANCE REGION BETWEEN PARALLEL PLATES

BY

Raymond S. Colladay

Transient heat transfer in the thermal entrance region between

parallel plates with a fully developed laminar velocity profile is

studied for low Peclet number flows. Axial heat conduction is in-

cluded and its effect on the temperature profiles upstream of the

heated region as well as in the entrance region itself is noted.

The energy equation is solved numerically using an alternating

direction implicit finite difference method. Two boundary condition

cases are presented, (1) a uniform wall heat flux and (2) a uniform

wall temperature. The plate boundary upstream of the heated region

is insulated in both cases. Steady state and transient results are

presented for a range of Peclet numbers between 1 and 50. These

results: have not been previously obtained.

Using this solution as a basic building block in superposition,

a number of inverse problems are formulated and presented in terms of

integral equations. Particular emphasis is given to the inverse

problem of estimating the mean velocity from temperature measurements

at the wall and the solution of the energy equation. The optimum wall

heat flux profile and Optimum axial location of wall thermocouples

which give the best estimate of this velocity parameter are studied.

An example of the nonlinear estimation procedure used in calculating



Raymond S. Colladay

the mean velocity is also presented. This work is the first to

formulate these inverse problems related to convection.
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Re

Pr

Pe

h
CX

NOMENCLATURE_

Temperature

Velocity components

Physical coordinates

Time

Half-plate separation distance

Absolute viscosity

Specific heat

Thermal conductivity

Density

Thermal diffusivity = k/pCp

Mean velocity

Reynolds number = pua/u

Prandtl number = uCp/k

Peclet number = RePr = ua/a

= Local heat transfer coefficient

Nu = Local Nusselt number = hCXa/k

T
s

Dimensionless physical coordinate x/aPe

Dimensionless physical coordinate y/a

Dimensionless time = ta/a2

Dimensionless velocity = u/u

Wall heat flux

Uniform upstream temperature and initial temperature

Wall temperature



+ II

T = T-TO/fli2 = Dimensionless temperature for uniform heat flux

boundary condition

T+ = T-To/Ts-To = Dimensionless temperature for uniform wall

temperature boundary condition

Tb Bulk temperature

T = Duration of experiment

x = Location of wall thermocouples

K

II

L Heating length

Tmax = Maximum temperature constraint

“Tmax - Max1mum temperature rise constraint - Tmax-To

§ = Objective function - basic criterion to be extremized

Pe aT/aPe = Sensitivity Coefficient with respect to the Peclet

number.



1. DESCRIPTION OF THE PROBLEM

1.1 Introduction

The problem of extracting information from a set of measured

data obtained under optimum experimental conditions has recently

gained wide interest. In the area of convection, where it may be

difficult to measure the velocity with a probe, parameters associated

with the velocity profile can be estimated from thermal measurements

at the boundary - an application which has considerable appeal. An

optimum experiment insures that the parameters are determined more

accurately than by any other similar experiment with the same errors

in the temperature measurements.

The solution of the partial differential equation describing

a process is often labeled as an inverse type problem.when conditions

are overspecified at a given boundary. The energy equation, with

both the heat flux and temperature at the boundary known and the

velocity an unknown coefficient to be determined falls into this

category.

In this work, the basic objective is to investigate inverse

problems related to the thermal entrance region between parallel

plates under transient conditions. Consequently, an accurate

transient solution to the thermal entrance region problem is needed,

particularly in the liquid metal-small Peclet number range.

Many extensions to the original Graetz problem (1) of steady

laminar heat transfer to a constant prOperty fluid in the thermal

1



entrance region of a constant wall temperature tube with a parabolic

velocity profile have appeared in the literature. The corresponding

flat plate geometry has been considered by various investigators

(2, 3, 4); their work.was followed by the treatment of such additional

effects as transient conditions (5, 6), uniform heat flux boundary

condition (7-9), hydrodynamically undeveloped flow (7-15), nonuniform

prOperties (16, 17), wall surface resistance (18, 19), flow in an

annulus (20), viscous dissipation (ll, 21), power velocity profiles

(22, 23), and nonuniform boundary conditions (24).

In all of these studies, the one fundamental assumption made

is that the fluid conduction in the axial direction is negligible.

In many cases this assumption is justified. However, when the Pe

number is small (say less than 100), 93 when results in the entrance

region in the immediate vicinity of, and including x = 0 (location

where heating begins) are of interest, these solutions are not

applicable. Another case where axial conduction should not be neglected

is wherever the boundary conditions at the plate vary substantially

over small regions.

In many modern heat exchanger devices envolving large heat

fluxes such as nuclear reactors, the use of liquid metals has become

more popular. Due to the good thermal conductivity of these metals,

solutions that include axial conduction are required.

In reviewing the literature, it is apparent that very few

publications treat this problem. References (25-31) include the axial

conduction term in the energy equation, but apply a uniform temperature

boundary condition at x = O. This forces the solution at this location

to be the same as for the case of negligible axial conduction. However,



it is at the start of the heating section, more than anywhere else

in the entrance region, that the effect of axial conduction is most

significant.

Some authors (32-36) have considered the "complete" problem;

allowing axial conduction upstream of the x = 0 location by assuming

a uniform temperature profile far upstream of the heated region. A

uniform velocity profile is assumed in (32-34). Only Agrawal (35)

and Hennecke (36) treat this case for a parabolic velocity profile;

both under steady state conditions. The former assumes a flat plate

geometry and the latter treats a tube geometry. Using analytical

methods, Agrawal treats a constant temperature boundary condition at

the wall; that is, the regions x > O and x.< O at the wall are

maintained at constant temperatures Ts and To respectively. In

addition to this boundary condition, Hennecke treats the wall con-

dition of constant heat flux for x 2 0 and insulated upstream.

An analytical solution of the energy equation assuming a fully

developed parabolic velocity profile leads to a differential equation

whose eigenfunctions are not orthogonal. Representing the eigenfunctions

by infinite Fourier sine series, this difficulty is reflected in the

fact that to date only the first five eigenvalues have been reported,

(35). These few values are not sufficient for accurate evaluation of

the temperature distribution in the neighborhood of X = 0 since at

this location, the convergence of the series is very slow. Hence,

Agrawal's solution in this region is not reliable.

The methods of both (35) and (36) require numerically matching

the temperature solutions from the upstream and downstream regions at

the interface x = 0. In transient calculations this could require a

substantial amount of computer time.



To the author's knowledge, no results for the complete problem

of transient laminar flow between parallel plates have appeared in

the open literature.

Once the wall temperatures are available from the solution of

the entrance region problem, an optimum experiment can be designed to

estimate the velocity (or some parameter of the velocity profile) from

temperature measurements at the wall. The experiment is optimized

with respect to the heat flux profile and location of thermocouples

at the wall for a given duration of the experiment and maximum

temperature rise. Optimum conditions permit the estimation of the

parameters more accurately than any other similar experiment with

the same constraints.

Nonlinear estimation - the procedure for calculating unknown

parameters in a differential equation describing a physical process -

has its first known reference by Gauss (47). The method, as applied

to Optimum experimental conditions, has been deveIOped from a

statistical approach by Box and coworkers (48-50) and recently

extended to applications involving partial differential equations by

Beck (51-53).

1.2 Problem Description

In this dissertation, the thermal entrance region between

parallel plates is studied. The energy equation, with axial con-

duction and transient effects included, is solved numerically using

an alternating direction implicit (ADI) method. Assuming a hydro-

dynamic development section upstream of the heated region, the velocity

profile is parabolic. Two sets of boundary conditions at the wall

are treated, (I) a uniform heat flux is applied to both plates in the



region x 2 0 (where x is the spatial coordinate in the axial

direction) at time t = O, and insulated in the region x < 0; and

(2) the plates are maintained at the same uniform temperature in the

region x 2 0 beginning at t = O and insulated upstream. Axial

conduction is allowed upstream by assuming a uniform temperature

profile at x = «n.

The ADI numerical method does not require matching the solutions

to the upstream and downstream regions at x = 0. Both the regions

are treated together as a single domain.

Since the thermal conductivity and the velocity are assumed

independent of temperature, the energy equation is linear in x and

t, making superposition of solutions possible. A number of inverse

problems are formulated using Duhamel's superposition integral with

the uniform heat flux boundary condition solution as a basic building

block.

Particular emphasis is given to the inverse problem of estimating

the mean velocity from temperature measurements at the wall. A basic

criterion is developed which gives a measure of the effectiveness of

an experiment for determining the mean velocity. This criterion is

then maximized with respect to the heat flux profile (a function of x

and t) and wall thermocouple location to establish an optimum

experiment.

The effect of errors in the temperature measurements is in-

vestigated. Also, an example using the nonlinear estimation procedure

under optimum conditions is presented.



II. MATHEMATICAL DESCRIPTION

2.1 Energy Equation

Transient convection for fully developed laminar flow of an

incompressible viscous fluid with constant properties is considered

in the region between parallel plates. Two cases are investigated,

Case I: a constant wall heat flux for x 2 0 (see Figure 2.1) and

insulated upstream, x < 0; and Case II: a constant surface temper—

ature for x 2 O and insulated upstream.

For negligible viscous dissipation and flow work and constant

thermal conductivity, the equation expressing energy conservation is,

T a: a1- 2T bipcpg: + u ax + v 3y) — 14:: + ayz) (2.1)

For fully developed flow, u and v are given by,

u = % G[1 — ($21 (2.2)

v = o (2.3)

a- '_l
where the mean veloc1ty, u - a $0 udy (2.4)

Equation (2.1) is linear in temperature, T since k, p, Cp,

and G are assumed to be independent of T.

Since the thermal entrance region is of particular interest,

the axial conduction term azT/ax2 must be retained.

Solutions to Equations (2.1), (2.2), and (2.3) are obtained

for the two sets of boundary conditions on T(x,y,t) given below.

 ‘
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FIGURE 2.1: PLATE GEOMETRY



CASE I: UNIFORM HEAT FLUX

T(X.y.0) = T0

T(-°°.y.t) = TO

2

a T(”1_Y2t) = 0

5x2

LTKX goitl = 0

BY

kaT(X,a,t) = 0 for X < 0

By q" for x 2 0

 

CASE II: UNIFORM WALL TEMPERATURE

T(X.y.0) = TO

T('°°9Y:t) = TO

AT («.550 = 0

ax

BT(X20:t) = 0

BY

T(x,a,t) = TS for x 2 O

aT(:;a,t)= O for x < 0

It is convenient to express the energy equation and its

(2.5a

(2.5b

(2.5e

(2.5d

(2.5e

(2.6a

(2.6b

(2.6c

(2.6d

(2.6e

(2.6f

boundary conditions in dimensionless form. Let the variables be non-

dimensionalized as follows, using the half plate separation distance,

(1)
a, as the characteristic length.

 

l

( ) Note that some references for the characteristic length use the

hydraulic diameter, defined D = 4x(Flow Area/Perimeter). the

parallel plate case, D = 4a. hen comparison is made with results

based on DH’ a factor of 4 will be introduced.



for Case I

 

for Case II

 

o for x+<o

+

1 for x 20

(2.7a

(2.7b

(2.7e

(2.7d

(2.7e

(2.7f

(2.8)

(2.9a:

(2.9bj

(2.9c:

(2.9d:

(2.9a:
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CASE 11

T+(X+.y+.0) = 0 (2.10a)

+ +
T (-m,y+,t ) = o (2.10b)

+ + +

5T (”’1 1E ) = o ' (2.10c)

ax

+ + +

5T (X ;92‘1 = o (2.10d)

ay

T+CX+,l,t+) = 1 for x+'> 0 (2.10e)

+ + +

5T (X $1,: ) = o for x*'< o (2.101)

BY

2.2 Other Useful Relations

The local Nusselt number, Nu, used in expressing the local heat

transfer coefficient, hx’ in dimensionless form is of particular

. . . +
interest, espec1ally 1n the entrance region near X = O.

The defining equation for hx is,

q" = hx(Ts - T ) (2.11)
b

where Tb is the bulk temperature as defined by Equation (2.16).

Also, the heat flux is given by,

.. = 3:1; 2.12q k(ay)y=a ( )

The Nu number is then formed as follows,

g"a as;
h a k a(a ) =a

(2.13)
k T -Tb (TS-Tb)

Expressing Equation (2.13) in terms of the appropriate dimen-

sionless variables of Equation (2.7), we have:
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for Case I:

 

 

  

 

 

 

 

 

Nu = l = l

T{To Tb-To T+-T:
3"a ' g"a S

k k

or based on DH = 4a,

4

Nu = T+'T+ (2.14)

s b

for Case II:

T-T

a 0 +

( _ ) 5T

5(1) Ts To 1=1 ( 4) +_

Nu = a a =M

T -T T -T +

s o) _ b o) l - Tb

(T -T (T -T

s o s o

and based on D

H +

4 d1.

+ +_

Nu = 5y 1 " (2.15)
+

l - Tb

The bulk temperature, as used in the above equations, is

defined as

T ‘lr' dA
b(x’t) AGIAUT c

c c

where Ac is the cross sectional area normal to the direction of

flow. For the given geometry,

=L aquy (2.16)
Tb ad 0

For the particular boundary conditions of this problem, Tb in

dimensionless form becomes, using Equation (2.7),

Case I:

T
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II

Since it [a udy = l and g_§_= constant. Therefore,

 
  

u o k

T-T

+'_ l. a .__Jl

b afi j‘o ( g"a)dy

k

+ _ 1 +1+ +
or Tb - f0 u T dy (2.17)

Case II:

T+ = T-To = 1_ Ya T _ 1_ Ya To y

b Ts-TO a6 0 u T -T ad 0 T -To

and again,

+ 1+++

=1Tb o u T dy (2.17)

The Nusselt number as defined in Equation (2.13) is a function

of x and t. One can consider an average Nu over an axial length

L, or time T, or both.

§E(c) =-%.f: Nu dx (2.18)

fi3(x) = %-j; Nu dt (2.19)

--_ l_ L T
Nu.-T1‘IOIO Nu dt dx (2.20)

For both cases, the Nusselt number is zero for x < O. In the

region x 2 O, a numerical method of solution is used and is described

in the next chapter.



III. NUMERICAL METHOD

3.1 Finite Difference Expressions

Expanding a function f(x,y,t) about a point x in a Taylor

Series gives for (x + Ax,y,t),

2 2

f(x+Ax,y,t) = f(x,y,t) + AxW+ (£21?) a f(Xiy,t)

. 8X

3 3

+ mx) 5 mew) + (Axf‘ aafémuti + (3 1)3! 3 4! a 0.. 0

ax BX

and for (x-Ax,y,t),

2 2

f(X"AX,y,t) = f(x,y,t) _ AX lag—M + %{L Lf®21Y1t)

6x

3 3 4 4

(AX) a f(x,y,t) (AX) a_f(x.y.£2
3! 3 + 4! 4 + ... (3.2)

5x 3x

Subtracting we have,

2 3

afgxzyfi) = f(X+AXQY2t) '7 f(x-Ax,y,t) - (AX) a f(x’y’t)‘ + ...  

 

 

ax 2Ax 6 M3

(3.3)

and adding,

62f(x2}'1t) = fCX+AX:Y:t) ' 2f(X:Y:t) + fg’AX335t)

2 2

5x (AX)

(1502 4f( t)
- a. X’y’ + ... (3.4)

12 4

5x

A rectangular grid with a mesh size Ax by Ay and At in

time is imposed on the region of interest (see Figure 3.1). If the

13
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MX = Number of intervals into which the upstream length, L is

divided.

NX = Number of intervals into which the entire x-domain, L is

divided.

NY = Number of intervals into which the half-plate separation

distance a is divided.

x = O = MX(Ax) = Location where heating begins.

 

FIGURE 3.1: FINITE DIFFERENCE SPATIAL GRID FOR PARALLEL PLATE

GEOMETRY
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indices i,j, and n correspond to nodal points in x,y, and t

respectively, then the temperature at a typical grid point in time

and space is,

T(xi,yj ,tn) = TEiAX’jAYSHAt]

Using Space indices as subscripts and the time index as a super-

script we have,

n

Ti,j - T(xi’yj’tn)

Equations (3.3) and (3.4) then become in particular,

 

 
  

r -------1n n n
3 n

- I I
5%,]- , Ti+1,j Ti-m . ML 1211'. - I (3-5)

H ______5i-4

2 n n n n F""‘-"‘5'fi"7- I '5 TL; ,___ 1+1,j ”m + Ti-1,1u_ $92 a Tm: (3 6)2
2 : 12 4 I .

ax (AX) . 5x '.__ _________ J

Similarly for the y derivative

 

 

2n n n n "'"’"'”ZYF“

. . . . - 2 . . + . . ' 2 2

2 2 I 12 4 I '

ay (Ay) . By J
L...___._-_ ......

From Equation (3.1) the time derivative can be expressed as,

—-----—--—-

 

n n+1 n = n :

EEEEJ 2 Ti:3 - Tia'di- $A£l.gL ‘ (3.8)
at At . 2 at2 :

t... _________J

The boxed in terms in the above equations are retained only to give

an order of the truncation error. See Appendix A.

Adopting the following notation for the first and second order

central difference operators we have,
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n n n ~ n n

= - ~ }’ - n c .

i-(Tisj) Ti+%aj Ti'%:j 2(Ti+19j Tl'laJ) (3 9a)

2 n n n n
= - +

3.

sicri,j) Ti+l,j 2Ti,j Ti-l,j ( 9b)

2 n _ n n n

Siam) " Ti,j+1 ”m + Tia-1 (3'9”

3.2 Alternating Direction Implicit Method

The numerical solution of finite difference approximations to

parabolic equations can be accomplished in a number of ways depending

on the time step at which the difference operators in Equation (3.9)

are evaluated. A number of these approximations are described by

Douglas (42).

The method used in this work is an alternating direction

implicit (ADI) method similar to that of Douglas (42). This latter

method is a modification of the method first prOposed by Peaceman

and Rachford (43), and later modified by Douglas and Rachford (44).

To the author's knowledge, this numerical method has only been used

in solving diffusion-type equations. Pearson and Serovy (41) used

the method in solving the Navier-Stokes equations but did not include

the first order derivatives in the alternating direction scheme.

Substituting Equation (3.9) into (2.8), (drOpping the super-

script "+" for simplicity) and alternately evaluating the x and

y derivatives at the unknown or future time level, we have for the

intermediate time step n + %,

 

n+% n

T - T
iii i,j .l_ n =.___l____ 2 n

At/2 + Ax uj 61“) (”021,82 an)

+--———1 52,(T“+!5) (3-10)

am 2 J
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and for the (n+1) time step,

 

Tn+1 _ Tn+3§

i ' i ' 1 n+1 l 2 n+1

+—-U.6.(T )=T5.(T )
At/Z Ax J 1 (Ax) Fe 1

iv

+ 1 2 57:(T“+2) (3.11)

(Ay) J

Formulation in this way allows for the separation of unknowns

into a y-direction calculation with NY unknowns and an x direction

calculation with NX unknowns. Thus, the maximum number of simul-

taneous equations to solve is Max(NX,NY) rather than (NX) X (NY)

for a fully implicit method.

Combining Equations (3.10) and (3.11) to eliminate the inter-

mediate time step results in the following equation for the total

time step,

Tn+1 _ T

i ' 1 1 n n+1 _ l 2 n n+1
At +2(Ax)uj6i(T +T )———-——2251(1' +T )

2(Ax) Fe

+ 1 2 agar“ + In”) +————§t2 2 a: agcr“ - Tn+1)

2(Ay) 4(Ax) (Ay) Fe 3

2 +
- —AtT u. 5. sicr“ - Tn 1) (3.12)

4(Ay) Ax J J

The formulation as just described is that due to Peaceman and

Rachford. If, however, the modified method of Douglas is used, the

end reSult for a total time step is the same, but the particular x

and y direction equations are much easier to solve. Rather than

. . . n+% * .
defining a half time step temperature T , let Ti j be an Inter-

,

mediate temperature defined by,
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1* n
1,1 ' i,j 1 n 1 2 n

+ _ =_

At Ax uj 51(T ) (6x)2Pez 51(T )

-+-———l-§ agcr“ +-T*) (3.13)

2 (by)

+

and let T: ; be defined by,

9

 

n+1 n

. . - T. .

1,3 1,1 + 1 u, 6,(Tn+1 + Tn) = l 62(Tn+l + Tn)

At 2(Ax) J 1 2(AX)2Pe2 1

*

+ ——l-—§ 6?(T + Tn) (3.14)

2(Ay)

Subtracting Equation (3.14) from (3.13) gives

n n+1 At

uj 61(T - T ) 4--————-§—-§

2(Ax) Pe

* n+1 At

T. . = T. . -

1:] 1).] 2(AX)

 

Tn+1

5:(T“ - ) (3.15)

Substituting Equation (3.15) into (3.14) eliminating T* results in

exactly the same equation as (3.12) for the Peaceman-Rachford formu-

lation, so the two methods are equivalent for the total time step.

The truncation error, which gives an indication of the error

resulting from the replacement of the differential equation by its

finite difference approximation, is dealt with in Appendix A. It is

seen that the error associated with Equation (3.12) as given by

Equation (A-8) is of order O[(Ax)2,(Ay)2,(At)2].

22
+L

ERROR = 1A%1_ [T 3 + u T 2 "‘l2'T 2 21n +'Lé%l— Tnaz +
t txy Pe tx y Y

(szz 1 n+%

6 E 2 T 4 ‘ u T 33
Fe X X

A subscript notation has been used to denote derivatives, e.g.

Tn3 = a3Tn/at3.

t
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Referring to Appendix B, one can see that a stability analysis

predicts that the ADI method as formulated by Equation (3.12) is un-

conditionally stable for any size Ax, Ay, and At. However, for a

mesh that is too coarse, the solution of the finite difference equation,

though stable, differs significantly from the solution of the differ-

ential equation.

Define,

and

Y At

Then Equations (3.13) and (3.15) can be put in the form,

X-Direction:

+

(a +Axu.6 -—l—5‘:‘)T‘i‘1—
J Fe 3.]

x l 2 n

axTi,j + (Ax ujéi - 2 61)Ti,j (3-16)

Pe

Y-Direction:

2 *

a - 6. T. . =

( Y J) 1:]

0’ 2 0’ 2 2 n
(a - 2Ax—1u,5,+——-—16.+6.)T. . (3.17)

y 01X J1 Pezozx 1 J 1.3

Written in matrix form, Equations (3.16) and (3.17) result in a

tridiagonal system of the form,

._ ._ +1 ._

B +A F} =Q j = 0,1,...,NY (3.16a)
x x J x.

j J

3 +37”? =6y i = 1,2,...,NX (3.17a)
Y y 1 1
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Bx and E; are boundary condition vectors for the x and y

directions reSpectively,

    

”6.1
o 0

Ex f 3 ET =

0 o

th’L EN;

6; and a; are known vectors for the x and y direction

equations respectively,

    

t *
qu F0

q1 q1

a=. a='
X. y.

J qi 1 qj

[508 for each j LfNZJ for each i

where a typical element of 6; is

j

* n 2 n n
= _ +—_ _

qi “xTi.j RJTi-1,j P82 Ti,j SjTi+1,j

and a typical element of 6; is

i

n n n n n

. = AX U. T. . ‘ T. . + E T. . + a - 2E T. . + E T. .

q] B J( 1'13] 19]) 1'13] ( y ) l’J 1+laJ

_ l Ax

where R. -'——§ +'—— U. (3.18a)

2 J
Pe

_ l AxS, _ m_§ ..E_ u,
(3.18b)

J Pe J

a

3 =1 (3.18c)

ax

E _ 2

““§ B (3.18d)
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AK and A; are tridiagonal coefficient matrices of order NX-l and

 

  

J 1
NY reSpectively,( )

r

A -S 0 ‘1

X J

-R A -S 0

J X J

A = where A = a +-—g§

x. x x

J Pe

-R. A 'S

O J X J

O -R. A

L J

PA 0 0
O

-l A -1

Y

A = where A = a + 2 and

y Y y

-l A -1 c and d depend on

O y

0 d A the boundary con-

-n+l -*
T and T are the unknown temperature vectors for the x and

y directions respectively,

n+11

1,J'

Tn+1

2,J

— +
T”,1 1 = J = 0,1, ,NY
J

+1

T? .
1,]

n+1

T

NX:J  
 

(1)
A; is of order NX-l since the boundary temperatures TO j

j ,

j = 0,1,...,NY are known for all times and therefore do not have to

be calculated. Also, Afl will be of order NY-l for x 2 O in Case

II since Ti NY 1 = MX,...,NX is the specified surface temperature

9

equal to l for all time.
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a
”
;

  T.

L 1,113

3.3 Method of Solution

Assume the temperatures over the first n time steps are

known. To calculate the temperatures for the (n+1) time step,

Equation (3.17a) is solved for each i = l,...,NX for the temperatures

*

T , i.e. a tridiagonal system of NY equations and unknowns is solved

NX-l times. See Figure (3.2)

 

 

       

m

T G A G v J=NY

1 o O 090 o 00‘ 0 --—0J

—e—-—_ g j=0

O 1 1 NX   
 

FIGURE 3.2: Y DIRECTION CALCULATION

*

Then with T known, Equation (3.16a) is solved for each j = 0,1,...,NY

+

for the temperature Tn 1. This requires the solution of a tri-

diagonal system of NX-l equations and unknowns NY times. See

Figure (3.3).
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T—eg: A- e vHE—J—NY

8 o to .. o 01—;

«Leg ,i; e ”v 9:2,J=o

o 1 i Nx   
FIGURE 3.3: X DIRECTION CALCULATION

The tridiagonal matrices are easily upper triangularized to

solve for Tn+1 or T* by Gauss elimination.

The solution time required to run the calculation to steady

state with a typical mesh size of NX = 60 and NY = 10 on a CDC

3600 computer is from 30 seconds to 1 minute. Pe = 1 required

NX = 108 with a run time of 1.5 minutes.

It should be mentioned that at X+i= 0 where Ax must be

very small for accurate calculation of the Nu number, the surface

and bulk temperatures have been extrapolated to their respective

T-intercept values as (Ax)2 * 0. Since the truncation error is of

order (Ax)2, (Ay)2 and (At)2 (see Appendix A), for a given

(by)2 and (At)2 the temperature is linear in (Ax)2 provided

Ax is small enough. Two calculations for the same Ay and At

and different Ax establishes the clope C1 of the straight line,

T=C(Ax)2+C(A)2+C(At)2+T

1 2 y 3 0

C2 and 03 are nearly zero in the range of Ay and At used, so

at X+ = O we can express TS and Tb as
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2

Ts — Cls(Ax) +Tso

and

_ 2
Tb Clb(Ax) +Tb0

For the larger Pe numbers, Tso and Tbo are used in Equation

(2.14). For smaller Fe and positions downstream from X+i= 0, C1

is negligible in the Ax range used.

3.4 Finite Difference Boundary Conditions

It is more instructive to formulate the boundary conditions

from a conservation of energy principle on a finite element centered

on a boundary node than from the Taylors series approach used for

an interior node.

In this section, let the difference Operators at a boundary

be denoted by equating the subscript to the appropriate boundary

2 2 2
6. , 62 are the second orderindex. For example, 6i=0’ 6i=NX’ J=0 j=NY

difference operators at the respective boundaries.

CASE I: Uniform Heat Flux

The upstream boundary condition on X+ (Equation (2.9b)) is

applied at X+'= -L where L is large enough that the fluid

temperature is not effected by the heated plates, (see Figure 3.1).

This distance must be larger for the smaller Pe numbers.

4.

At X -L = ~MX(Ax):

- O,1,2,...,NY

0,1,...

:
3

(
.
.
.
.

I

To,j=0

At y = O
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6j=o(T ) = 0

2 _ 1 - 1,2, ,NX

6j=o(T ) - 2(T ,l - T1,o) - 0,1,. .

. + .
Cons1der the plate surface at y = l, J = NY.

ll

Cl1
II

qz l ‘1 l
c l l l .. Y —: q = NY

d -——-—O‘ ——————>- .
-‘3.°9-_9.-_-.-__g_ AV _..- fol‘d J = NY - 3:;

conv -——u- r——-—->qconv

qcond.

o o 0 NY - 1

o o 0 j + l

.1J<———£DK-—+4

O M O O J

o O O J " 1

i-l i i+l   
 

FIGURE 3.4: ENERGY BALANCE ON A DIFFERENTIAL ELEMENT

For an interior node, an energy balance applied to the element

centered on the i,j node leads to the same finite difference

equation derived before, Equation (3.12).



26

However, when considering a boundary node, the resulting

"half" element or cell associated with this node should have fluxes

centered on the half cell at a location Ay/4 from the plate surface

(row of temperatures designated by 9 connected by a dotted line in

Figure 3.4).

The net rate of energy into the element is given as follows:

1 C d t' : ° - ' ‘( ) on uc ion q q i,NY-%

cond cond

 

 
i-%,J - qcond i+%,J

k A1 Ti-1,J ' Ti,J _ (91 T1,.) ' Ti+1,J

AZ (2 ) Ax 2 ) Ax

Ti,NY ' Ti,NY-1:l
- Ax

Ay

 

where J designates the position yJ = a - g2 .

(2) Convection

dconv.|i;%,J ’ é‘i+%,J =

T + +
Ax [1g Ti-1,J Ti,J Ti+1,J]

2

  

 

 

  

puJCpAz 2 2 -

. . . = Ali?
Rate of energy accumulation Within cell pCpAzAx 2 6t i,J

Completing the energy balance,

T. - T
LT + 1+1,J i-l,J =

pCp at i,J pCpuJ 2Ax

T - T + -
k i+1,J 2 i,J Ti-ILJ Ti,NY TilNY’l n l— + n .1— 3 1

2 '2 2 +q1Ay quy('9)
(AX) (M)

3 1
= -— + _

Let TJ 4 TNY 4 TNY-l

or in general

= +
TJ ClTNY CZTNY-l
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where

3/40

ll

1/40

II

The nodes along the boundary y = a fall into three categories

depending on the heat flux at that point.

+

(1) For those boundary nodes which fall in the region X < 0,

(1 s i S MX-l), q; = q3 = O.

+

(2) For those in the region X > O (MX < i s NX),

_ n: u

(3) For the boundary node located at the discontinuity in

+

heat flux at X = 0, q; = q" and q; = O.

Expressing Equation (3.19) in the dimensionless ADI form we

have, for the X-Direction

l 2 n+1 * l 2 n

[ax + Ax ujai - 2 611%,J - OtXTi,J + [Ax uJéi - 2 511T,“J (3.20)

Pe Pe

In terms of C1 and C2,

1 2 n+1 _ 1 2 n+1

CIEGX + Ax uNYéi - 2 6iJTi,NY CZEaX +'Ax uNY-lsi - 2 i]Ti,NY-1

Be Pe

* l 2 n
+ - ....—

+ C1{°’xTi,NY [AX uNYéi Pe2 6i1Ti,NY}

* l 2 n

+ Cz{°’xTi,NY-1 + ”X ”NY-151 ' P82 6iJTi,NY-'1} (3'21”

Note the ease with which this boundary condition can be

implemented using the ADI numerical method. The right hand side of

(3.21a) is known since the TP+1
1,NY-1 1 = 1’ ° 0 - ,NX rOW Of temperatures

are calculated before the NY row.
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. _ 2 _
For 1 - NX, 51 - o and 51=Nx (T) becomes %(TNX,J _ TNX-1,J)

in (3.21a).

ll q"

If 62 (T) = ZCT - T ) + Ay .El +-—g then,

j=NY i,NY-1 i,NY q" q"

using (3.18c) and (3.18d) we have for the

Y-Direction

* 2 x 2 n n

- = - +-E + c T +
ayTi,J 5j=NY Ti,NY Edy AXE 61 5i](C1Ti,NY 2 i,NY-l)

2 n

6j=NY Ti,NY (3.21b)

2

For i = NX, 6i O and 61=NX(T) = 35(TNX,J - T

NX-1,J) 1“

(3.21b).

For this case, the downstream x-boundary condition,

52T+(L-L,y+,t+)/ax+2 = O can be applied before the development

length, xgév is reached without effecting the resultsin the region near

3

+

X = 0. Therefore, when a smaller mesh size for greater accuracy

+ +
at X = O is required, (LsL) may be less than XDev° The de-

velopment length, defined as being that length from the entrance at

which the local steady state Nu number is within 5% of its final

value, is shown verses Pe number in Figure 3.5. This shows that

X 9 O

, is importantthe Pe number dependence, other than in X+I= 35;

for Pe < 20. The fully developed value of xgév = 0.186 agrees

with Cess and Schaffer (46).

CASE 11: Uniform Tempreature

The boundary conditions for this case are the same as for case

n .
I except for the constant wall temperature, Ti NY = 1 1 = MX,...,NX,

,

and the downstream x-boundary condition.
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OJ.-’ 0’ i l, L_:Lv1

5

 

2|

1 32 7:0 20 40

Fe

FIGURE 3.5 DEVELOPMENT LENGTH - CASE I
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Applying the boundary condition (2.10c) at a location upstream

of Xgév is more critical to the results in the entrance region than

in Case I. However, with the following treatment of this boundary,

the region about X+I= 0 appears to be relatively insensitive to the

placement of the downstream condition.

2

Let 6i=NX = 6i=NX = O

and

Tn = Tn

NXJ Nx‘laj

This treatment of the downstream boundary on x eliminates the

back-propagation of boundary anomalies into the entrance region

resulting from not applying the condition far enough downstream.



IV. DISCUSSION OF RESULTS FOR CASES I AND II

In this chapter we shall investigate the effects of allowing

axial conduction upstream of the heated region. Of particular

+

interest are the results at the entrance X = 0, since it is here

thatconsiderable deviation from previous studies exists.

4.1 Case I

If axial conduction is neglected, the steady state bulk

temperature increases linearly with X+ from zero. As can be seen

from Figure 4.1, axial conduction has the effect of increasing the

bulk temperatures. Since the region X+I< 0 is insulated, the

heat conducted upstream is convected downstream, raising the fully

developed, dimensionless bulk temperature, T+, by 1/Pe2 as compared

to the case with no axial conduction. The steady state, fully

developed temperature profile, T+, and T+ are derived in Appendix

b

B from an energy balance on a control volume which includes the

. + + . .
entrance and upstream regions. For X >XDev the dimenSionless

+

steady state temperature T is,

2 4
+ _ + l 3 + .l + 39

T‘x+ 2+4y '8y ‘280 (4‘2)
Fe

and the bulk temperature is,

+ +
T = X +--l¥- (4.3)
b 2

Fe

31
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FIGURE 4.1 STEADY STATE BULK TEMPERATURE IN THE

ENTRANCE REGION - CASE I
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At X+ = 0 and the region immediately downstream, the bulk

temperatures are slightly greater than their extrapolated asymptotic

or fully developed values and decay exponentially for X+-< 0. Note

that the develoPment length for T:' is much shorter than that used

to define the entrance region, (i.e. xgév ).

The temperature profiles at X+I= 0 for various Pe numbers

are given in Figure 4.2. Notice how axial conduction from the heated

region alters the temperature profile of the incoming fluid. This

clearly shows the error in those papers which make a point of in-

cluding axial conduction and then, through the boundary condition,

force a uniform temperature profile at the entrance. This forces

the temperature here to be the same as for the case where axial

conduction effects are neglected. However, it is at X+ = 0, more

then anywhere else in the entrance region, that these effects are

greatest. Also, note that since T: and T+ at X+ = 0 are both

b

zero only as Fe a'm, the Nu as defined by Equation (2.14)

x+-o

is finite for finite Fe.

The Nu number in the entrance region for Fe = l,2,6,10,

20,50, and m is given in Figure 4.3. For X+-< 0.02, the Nu

number decreases with decreasing Pe, while the Opposite is true

for X+i> 0.02. This can also be seen from Figure 4.4 which gives

the Nu number as a function of Fe for X+'= O and several

positions downstream of the entrance. The fully developed value

of 8.225, as shown in Figure 4.3 is in agreement with Kays (45).

It is apparent from these figures that axial conduction can

have a considerable effect on the Nu number. The greater the Pe

+

number the smaller the region about X = 0 where the Nu number
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FIGURE 4.2 STEADY STATE TEMPERATURE PROFILES AT X=0 - CASE I
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deviates from the case of no axial conduction. However, even for

Pe > 50 this deviation could be significant when dealing with a

wall heat flux varying with X+.

Since the energy equation is linear, superposition of the

basic kernel for a step change in q" can be used to generate the

reaponse to any variable heat flux q"(X+). In this way, the

results in a neighborhood of, and including X+ = 0 would be

distributed throughout the region of interest. If the axial cone

duction is not included the resulting surface temperature and Nu

number for such a case could be in substantial error even for large

Pe number. For a further discussion on the superposition of

solutions, see Chapter 6.

The temperature profiles for Pe = 6 in the entrance region

are shown in Figure 4.5. The profiles should converge to the fully

developed profile envelope as given by Equation (4.2). As can be

seen, when X+ = 0.45, the numerical results lie on this envelope.

The transient heat conduction solution for an infinite slab

of thickness 2a in the y- direction with a constant wall heat

flux, q" is (54),

T=_<J"_t+91E(§XZ‘_32._2_; Lyle-m a , Pill
pC a k 2 2 _ COS a ) (4'4)

p 6a n n—l n

or in terms of the dimensionless variables of the entrance region

problem as given in (2.7),

2
+ m n 2 2 +

+ + + - 2 — - +
T(y+,t)=t +26L1-—2 z 5—1)2—enTTt cosnny (4.5)

N n=1 n

.. 22+

T+=T+(1,t+)=t +—1--Z- z l—e'nTTt (4.6)
s 3 2 2

N n=1 n
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For flow in the entrance region downstream of the heat flux dis-

continuity at X+I= 0, convection has no influence on the temperature

response during early times since aT+75X+' is zero then and Equation

(2.8) reduces to the heat conduction equation. Therefore, if one

were to use the temperatures given by Equations (4.5) and (4.6) in

the usual expressions for the bulk temperature (Equation (2.17))

and Nu number (Equation (2.14)), the slab transient heat conduction

problem should predict the early transient behavior some distance

(dependent on the time considered) downstream of X+'= O. This is

indeed the case as can be seen from Figure 4.6, which gives the

transient results before steady state is reached.

Recall the expression for the bulk temperature,

2
+ 1 ++ + 3 1 + + +

- = -2- J‘Oa-y )T dy (4.7)- dTb O u T y

Substituting Equation (4.5) into (4.7) and integrating gives,

2 2 +
+ + -
T=t -—1 “fit
b 15 (4’8)

[
‘
1
8

6 1
+7 Te

U nn 1

Equations (2.14), (4.6), and (4.8) are combined to give an effective

slab Nu number of,

 

_ 2

Nu — .. 2 2 + (4.9)

.1; .. 1— E (L + 2- L)e-n TT t

5 2 2 2 4

N n=1 n n n

For steady state, Equation (4.9) becomes

Nu = 10 (4.10)

Notice that the velocity profile enters into the slab Nu

number only as the weighting function in the bulk temperature
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calculation. Hence, we would expect different transient and steady

state results to the slab problem depending on the velocity profile

assumed.

For the example of Fe = 6.0, Figure 4.6 shows the transient

Nu numbers for various X+ positions as well as Equation (4.9)

for conduction only, while Figure 4.7 gives the Nu number versus

X+ for various times. The Nu number is infinite at the instant

the heat flux is applied and in the entrance region CX+ < xgév )

reduces to a given steady state value depending on the location X+U

Now, consider the region X+I> xDev.' We have seen that the

steady state, fully developed Nu number is 8.225. However, if the

distance downstream is sufficiently large (X+ > 0.3 for Fe = 6)

the Nu number reaches a secondary steady state dwell at a value

of 10 predicted by the transient heat conduction problem, Equation

(4.10). Under these conditions, the length of time for the heat

conduction response (Equation (4.9)) to reach steady state is shorter

than the time required for a slug of fluid experiencing the entrance

effects to be convected downstream to this location. Hence, the Nu

number remains at this platau of 10 until the convection effects

act to reduce its value to the final or primary steady state value

of 8.225.

Figure 4.6 shows the numerical results following exactly the

curve of Equation (4.9) until convection effects are felt. For the

region in the immediate downstream vicinity of X+D= 0, (e.g. the

curves shown for X+-< 0.06) convection is significant even for very

early times, resulting in transient Nu number curves which differ

widely from Equation (4.9).



42

I
B
S
V
O

‘
S
E
N
I
l

S
O
O
I
H
V
A

1
V

N
O
I
O
B
U

3
3
N
V
H
I
N
3

3
H
1

N
I

U
3
8
W
O
N

l
T
H
S
S
fl
N

‘
9
‘
)

S
T
D

1
7
‘
?

2
'
0

1
'
?

B
U
O
O
I
d

 

(
T
V

T
’

[
*
T

I

<
2
:

.7,
_

I

I

   

 

9
=
9
d

I

T
F

 

 

 

2
1
)

 

 

'
Z
V
O

 

1'0
=
3
.

 
 

H

2
!

S
T

“
N



43

Notice the t+ = 3.08 curve in Figure 4.7 reaches, near

X+ = 1.0, the final steady state value of 8.225 while at large values

of X+, convection effects are not yet felt and Nu = 10. This

minimum also exists to a lesser extent for very early times in-

dicating the region of influence of convection.

It is evident from these results that the time constant to

reach steady state can be deceptive unless some information is

. . + . . .
given concerning the X position under conSideration.

4.2 Case II

Results for the insulated surface upstream of the constant

temperature surface are given in Figures 4.8 — 4.13. Though this

case is not required for the inverse problem of Chapter 5, the

results are included here for completeness.

Consideration of this mixed boundary condition is motivated

by the fact that it could be used in conjunction with the velocity

profiles of (40 or (41) in treating the combined hydrodynamic and

thermal entry region. If the plates are maintained at the same

temperature, the thermal boundary condition at the plane of symmetry

in the upstream region (y = a, x < 0 in Figure 4.14) is zero heat

flux in the y-direction analogous to the momentum boundary condition

of zero shear used in refs.(40) or (41). ‘The wall temperature could

be a function of x and t providing the temperature of the plates

at a given position and time is the same.
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FIGURE 4.14: HYDRODYNAMIC ENTRANCE REGION FOR A SERIES ‘

OF PARALLEL PLATES-REFERENCE (40, 41)

This case is not treated in the present work, although no

difficult is seen in using velocity profiles from (40) or (41)

in Equation (2.1) with the given ADI numerical method. The author

strongly recommends investigating this problem.

Figure 4.8 indicates the effect of axial conduction upstream

on the bulk temperatures. As discussed in regards to Case I, when

axial conduction upstream is significant, the re3ulting bulk

temperatures in the entrance region are larger than for the case

of no axial conduction.

Figure 4.9 illustrates the effect of axial conduction up-

stream on the temperature profiles at X+ = 0. As in Case I, there

is considerable distortion of the uniform profile by the time the

fluid reaches the heated region for the smaller Pe numbers.

Figures 4.10 and 4.11 give the temperature profiles at

various positions in the entrance region for Pe = 6 and 50

reSpectively.
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The Nu number in the entrance region for several Pe

numbers is shown in Figure 4.12 while the fully deve10ped transient

Nu number is given in Figure 4.13.
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V. OPTIMUM EXPERIMENT FOR DETERMINING THE MEAN VELOCITY FROM

THERMAL MEASUREMENTS

In this chapter the solution of Case I is used as a basic

building block in the superposition integral (see Chapter VI). As

a result, the optimum wall heat flux, q"(X+,t+) and Optimum

placement of thermocouples for a given duration of the experiment

are determined so as to yield a maximum sensitivity of wall tem-

perature to a change in some parameter of the velocity profile

(in this case the mean velocity) under the constraint of a maximum

surface temperature rise. In this sense, the solution of the

energy equation, with overSpecified wall boundary conditions of

given heat flux and temperature measurements, is treated as an

inverse problem where the velocity is an unknown coefficient.

5.1 Nonlinear Estimation Procedure

The procedure for calculating unknown parameters appearing

in a differential equation which describes a physical process is

called nonlinear estimation. A least squares procedure, it utilizes

experimental data obtained from the process and the numerical

solution of the given equation in calculating the parameters.

Referring to Equations (2.1), (2.2), and (2.3), u is an

unknown coefficient. Any parameter of the velocity profile can be

determined, but since a parabolic profile is assumed the obvious

one is the mean velocity, u. It is also possible to simultaneously

52
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determine more than one parameter (51-53).

In dimensionless form, Equation (2.8) describes the physical

process of interest.

+ + 2 + 2 +

bl_++u+bl_=_]-_§B_L+B___T2 (2.8)

At ax+ Pe ax” ay+

. + . . '-
Since u remains the same for any value of the mean veloc1ty, u

. . . a
18 determined through evaluation Of the Pe number, Pe = 2;- .

In terms of Equation (2.8) then, the objective is to determine the

Pe number from thermal measurements taken at the boundary during

an experiment run under optimum conditions.

For continuous transient temperature measurements from n

thermocouples placed on the plate boundary, the sum of squares

function F

n

T 2

F<Pe> = z [Axon (t) - 9(t)].dt (5.1)
. o i s 1
i=1

is to be minimized with respect to Fe. The temperature Ts(t)|i

a function of Pe, is the calculated numerical solution to Equation

. . + + . . .
(2.8) at pOSition Xi’ y = l, and time t, for a spec1fied heat

flux, q"(x,t), (derived from the Case I solution by superposition).

The corresponding experimental temperature is given by ei(t). The

quantity Ai’ subsequently taken to be unity, is a weighting factor

included here for generality. If the statistics of the errors in

the temperature measurements are known, Ai is Often taken to be the

inverse matrix of the variance-covariance matrix of the errors.

A number of procedures have been suggested for minimizing F,

some of which are the method of steepest descent and modifications

to the Taylor series approach (47, 48). Under Optimum conditions
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the Taylor series approach yields very rapid convergence (see the

example in Section 6.4) and will be used in this work.

Though the calculated temperature is a nonlinear function of

the Pe number, the Taylor series method is an iterative procedure

which assumes that at each step the temperature is a linear function

of Pe. If PeO is an initial estimate Of the Pe number, then

M (rec)
S

TS(PeO) + APe aPe (5-2)

I
l
l

TS(Pe)

where APe = Pe - PeO is the first correction in the Pe number.

x

. . * . . . . 5F .

Noting that at the pOint Pe at which F is a minimum, aPe IS

zero, Equations (5.1) and (5.2) can be solved to give the first

correction in Pe.

 

n aT (Pe ) aT .(Pe )

117—: T ____9_ _ ng 0

aPe 2 1:1 IOETS(PeO) + APe aPe e1i aPe dt

*

At the minimum value of F (i.e. F ) we have,

 

 

 

n aTS i(Peso) d

=1; I...” (Pee) 931 are t

n 5T82(Peo)

+ g fot——§P———]: APe dt

i-l

Solving for APe,

TS i(Peo)

iii‘fo[e - TS (Fe0)]: aPe dt

APe - n 6T (Pee ) (5.3)

i21IT\-2____o_]23 dt

aPe i

For one thermocouple making NT discrete measurements in time T,

Equation (5.3) becomes,
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NT aT (Pe)
s,k 0

£21[9 - T3(Peo)]k aPe

APe = NT BT(PeO) 2 (5.4)

z -——---1
k=l aPe k

T = NT(At)

An improved value of Fe is given by

Pe Pe + APe

l o

and the iteration procedure is continued until some convergence

criterion is met, say

£9< 0.0001
Pe

5.2 Objective Function for Determining Optimum Experiment

In order to determine an optimum experiment it is necessary

to find some basic criterion which when extremized yields the Optimum

experiment. The criterion is frequently called an objective function.

An experiment can be an optimum one in various aSpects and thus there

may be different optimums depending upon the desired Objectives and

constraints. For this problem, the best heat flux boundary condition

is determined to insure that, for a random distribution of errors in

the wall temperature measurement, the resulting error in the mean

velocity is a minimum. In maximizing this Objective function the

following conditions are satisfied.

1. The maximum surface temperature rise is to be ATmax

This can be chosen small enough to make the assumption of k, p, Cp,



 

 



and u

2.
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independnet of temperature realistic.

The number of thermocouples, n, along the plate is fixed.

Specifically, optimum conditions for one thermocouple are found.

3.

NT discrete measurements in

Assume that the value

F(Pe)

*

sum of squares function, F ,

There is a fixed duration of the experiment, T.

x

is known and is designated Pe .

For

time, T = NT(At).

of the Pe number at the minimum of

The minimum value of the

need not be zero but it is assumed

that the errors in the temperature measurements are small.

Let us examine F(Pe)

* x

in the local region near F = F(Pe ).

The sum of squares function is,

 

 

 

n

_ T 2

F(Pe) - 33. Tons“) - e(t)]idt (5.1)

1—1

* d * 2 d2 *

F(Pe + APe) ’5 APe d—g-g + (A381 F2 (5.4)

dPe

* aT*
n

dF __ = T * _ __s

dPe 0 2 E To“, 9&5... d (5.5)
i-l

2 * 52 *n T

d F *

2=2 2 flag-eh Zdt

dPe i=1 aPe

n aT

T 2

+ 2 z fo(§%)i dt (5.6)

i=1

If the error in the temperature measurements is small, then the

first term on the right hand

compared to the second term.

into (5.4) we have,

side of Equation (5.6) is negligible

Substituting Equations (5.5) and (5.6)
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*

T
* * 2 n T a 2

F(Pe + APe) = F + (APe) 2 IO(;§§91

i=1

aT*
* APe 2 n T * s 2

=F+(——;) z (Pa—.dt

Pe i=1 Io aPe 1

x

n T * aTS

Let ¢- E fowe find: (5.7)

1-1

* *

Then F(Pe + APe) - F = (ABE->295 (5.8)

Pa

F

I I ,/.Large ¢

I

I

I

I

I

I

I

I

I

i

I

I Small ¢

l

I

* I

F __________ ._

I

I

1* rib

Pe Pe   
 

FIGURE 5.1: ILLUSTRATION OF SUM OF SQUARES FUNCTION

Referring to Figure 5.1, we see that for a well defined

minimum in F(Pe), ¢ should be a maximum.

Considerable information can be gained from the sensitivity

. . . 5T . . . .
coefficient defined as Pe aPe (51). It is the prinCiple quantity

of interest in the objective function since it gives in a relative

way a measure of how sensitive the temperature is to a change in

Pe number. Obviously, if we are to calculate the Pe number from

temperature measurements we would like this sensitivity coefficient

as large as possible. Also, it can be eSpecially instructive when
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considering two or more parameters since it establishes to which

parameter the temperature is most sensitive.

The objective function, ¢, must be modified to include the

constraints of maximum temperature rise, AI = T - T , and
max max 0

given duration of experiment, T. This can be accomplished by dividing

. . . 2 .
the right hand Side of Equation (5.7) by T ATmax' The resulting

Objective function T, given by Equation (5.9), is a dimensionless

criterion which is to be maximized with respect to the boundary

heat flux, q"(X+,t+), and thermocouple location.

n 5T
1 2

0 = -——2 .2: [Ewe ~34), dt (5.9)

1' AT i=1 5P9 1
max

For one thermocouple and NT discrete measurements over

time T, Equation (5.9) is,

NT 3T

0 =——-1-2-— z (Pa—132122.11; (5.10)

T AT k=1 5
max

++
Before investigating the optimum heat flux, q"(X ,t ), which

++
makes 6 a maximum, consider a simple but useful q"(X ,t ) profile.

Suppose that at any instant the heat flux is uniform over a heating

length x and that the plates are insulated elsewhere. Also, over
L

a given duration of the experiment, let the heat flux have a constant

value such that the maximum temperature rise is less than or equal

to ATmax' The following question is then answered: for a given

experiment duration, T, what is the length of heating, xL, and

placement of one thermocouple, x , which will make T a maximum

0

for this constant q"? Once xL is determined, then the magnitude

of q" which satisfies the AT constraint for a given T can

max

be determined. This can be done for each experiment duration,
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giving a full time spectrum Of optimum transient experiments for a

constant q". These results are given in Table 1. Both xL and

x increase continuously as T increases, but due to the nature

of a finite difference method, the smallest increment detected is

Ax. (For Table l, AX+ = 0.015 and Fe = 6, hence Ax/a = Pe AX+ = 0.09)

This explains why xL and x9 in the table appear to be constant

for some time and increase in increments of 0.09.

For example, a particular entry in Table l is illustrated in

more detail in Figure 5.2. This figure shows that if the duration

of the experiment is T+ = 0.12, the Optimum heating length is

xL/a = 0.54 and the Optimum placement of the thermocouple is

 

xe/a = 0.09.

252

--04 -02 °’ 00 M: 0.2
I I I I I I II T

' Pe:6 : -

0.002— I*=O.54 5 _.
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Q“ 054 X1. 08 1.0
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FIGURE 5.2 RELATION OF THE OBJECTIVE FUNCTION TO HEATING

LENGTH AND THERMOCOUPLE LOCATION
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TABLE 1 0171111014 QUANTITIES FOR 9" (xx)..- CONSTANT

DURATION or

xxrsninxur

1”5%

0.02

OPTIMUM

HEATING UBNOTH

éf-Pext

. OPTIMUM LOCATION

OF ONE THERMOCOUPLE

é: Pe XI;

2.0?

2;16

2.70

2.97

3.06
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As discussed in Chapter VI, the solution to a step change in

surface heat flux (Case I) is used to calculate the results for the

heat flux under discussion,

+

constant 0 S'X s x:

+

0 x+<0 and x”'>xL

by superposition. The surface temperature does not reach a

maximum at the end of the heating length as would be the case if

axial conduction upstream‘were not allowed. As can be seen from

Figure 5.3, AT = Tmax - To’ occurs some distance upstream of

+

XL. The smaller the Pe number, the greater this distance. Notice

that the position of maximum temperature shifts downstream‘with

increasing time. Also, recall from Section 4.1 that the further

one goes downstream, the longer is the time required to reach a

steady state condition. As a consequence of these two facts, the

optimum heating length becomes larger as the duration of the

experiment increases, (see Table 5.1).

In terms Of the dimensionless variables of Equation (2.7)

for Case I, Equation (5.10) becomes,

 

+

NT 3T8
l "a 2

@= + 2 (9k) 21(Pe 7:2) At+

AT k=l 5e
T max

NT=2,3,...

'* Ihmm.- To
Since ATmax - q"a k , we have

+

NT aTs M+

=-———:2—'kZ1(Pe --):

(5.11)

NT = 2,3,...
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0T8

The sensitivity coefficient, Fe 33;, is evaluated by solving

Case I for two different Pe numbers differing by a small value,

such as APe = 0.005. Then,

 

5T n Tn .(Pe + APe) - Tn .(Pe)

Pe ——S '3 Pe 521 $41
ape 1 APe

i = 0,1,...,NX

The coefficient with reapect to u is actually the quantity of

interest. However,

; 1112.52.11 = p. amimll
 

au x aPe Ia,a,x

. . . + Ax . . .
if the dimenSionless Ax = 353' in Case I is changed prOportionately

when the Pe number is changed so that T(Pe +-APe) and T(Pe)

are evaluated at the same physical location.

The steady state sensitivity coefficient for a step change

in surface temperature is given in Figure 5.4. The entrance results

converge to the fully develOped value of -(X+'+--£§) derived in

Appendix C. Fe

The transient results for the same boundary condition are

given in Figure 5.5. Note that for early times a maximum occurs

near X+'= 0, and shifts downstream with increasing time. This

causes the optimum placement of the thermocouple to move from the

vicinity of X+u= O for early times, downstream as the duration

of the experiment increases.

The sensitivity coefficient for an arbitrary variation in

q"(X+,t+) is obtained by superposition of the step change case in

+

Peal”—
is linear in

aPe

the same way as with the temperature, since
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X+ and t+ for a given Pe number.

Let us investigate what happens to the objective function as

the duration of the experiment increases. Since Q is a time

average of the Square of the sensitivity coefficient, it takes much

longer to approach its final value of

'12

F 313'

Pe-——§

aPe x+

9

AT+

L. max _J  
than for the temperature response to reach its steady state value.

+

In fact, §'~ 1 as T a m. To gain some insight into what happens

+ . . .
as T d'm, suppose there 18 no axial conduction upstream; the

+ . . .
, and p081tion of max1mum

9

+

temperature occur at the end of the heating length, XL. The above

optimum location of the thermocouple, X

expression of the summand in Equation (5.11) can be expressed in

aT

terms of the fully develOped values of Fe 332' and T:' given in

+

Appendix C, since XL is large for large T+1 Namely,

 

 

  

+

BTS

+ 2
Pa aPe X+ XL + """2'

e -—> _ Fe

+ + l 17

ATmax xL + Pez + 35

The optimum heating length maximizing this quantity as T+ increases

is x::~’w. Allowing axial conduction upstream will not alter these

limiting results. Obviously, an infinite heating length is not

tolerable, physically.

Since no optimum time duration exists for this case as

formulated, the duration of the experiment is left to the choice

of the investigator. Once it is chosen, however, xL, xe, and
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q" a constant which make é a maximum can be found using Table 1.

We would like T to be small in order that 3' may be estimated

even though it is time varying. Also, from a physical consideration,

it would be desirable to have the heating length short, and since

the optimum x increases with the duration of the experiment this

L

means that T should be made as small as possible. Incidently,

the nonlinear estimation procedure requires repeated transient

calculations of the Case I solution over the duration of the

experiment. Hence, a smaller choice of T requires less computer

time.

We now wish to extend the optimum conditions to include a

transient heat flux profile. At a particular instant, let the

heat flux be constant over the heating length, XI. However, in

addition to maximizing Q with resPect to the heating length and

placement of one thermocouple, allow q" to vary with time in such

a way as to make Q a maximum for a given experiment duration

while satisfying the constraint.AT
max 8T

Consider Equation (5.10). The quantity, Fe 33%, for a given

heat flux variation in time can be calculated, using as a basic

building block in superposition, the sensitivity coefficient result-

ing from a unit pulse in the heat flux from t+ = 0 to t+ = At.

let Wk be this basic building block. Then if Pe g;% is the

sensitivity coefficient due to a unit step change in q" at

t+ = 0 (T: = T+YX+,l,t+) is the solution to Case I at y+ = l),

aT+ aT+
wk = (Fe 35% k - (Pe Sifik-l

+

represents the sensitivity coefficient evaluated at t = k At
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+

due to a unit pulse in q" for the duration At beginning at

t+r= 0. The coefficient resulting from a similar pulse in heat

flux of magnitude q" is then q; Wk.

The superposition principle gives the following expression

for Fe SEE at time k At+ due to a heat flux varying with time

as illustrated in Figure 5.6.

5T

(Fe -—8) + q" W= " +...+ " 5.13
aPek ql Wk 2 k-l q W ( )k 1

 

H n q']:

l H

 

 

 

      V

+

k=0 1 2 3 4 t

Akfl  
 

FIGURE 5.6: ILLUSTRATION 0F DISCRETE OPTIMUM

HEAT FLUX PROFILE

aTS 2 k k

—— = II II

(Fe aPe k E {3 clj qp wk-j+1 wk-p+1 (5'14)
—1 p-l

Hence,

1 NT k k

Q = _""— Z 2 2 q". q" W _. W _ (5.15)

‘1' AT2 k=1 j=1 p=l J P 1‘ 3+1 1‘ PH
max

If W has the same sign for all k, the objective function,

k

Q, will be a maximum*when each term in the sum over k is a
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maximum, (i.e. when (Pe aTS/aPe): in Equation (5.14) is a maximum

for any k). The coefficient 'wk is always negative since aT:75Pe

monotonically decreases in time from its zero initial value. The

optimum transient heat flux is one which varies with time in such

a way that the surface is maintained throughout the experiment at

its maximum permissible value. This insures that the heat flux is

as large as possible at every instant. If the q" illustrated

conceptually in Figure 5.6 is this heat flux then its value at any

time, q", can not be increased or the ATmax constraint will be

violated. If qfi for some k were smaller than the maximum

permissible, then noting that W is independent of q", the terms

in the sum in Equation (5.14) would not be maximized.

For example, the optimum transient heat flux for a heating

+

length of x = 1.02 a, (XL = 0.17; Fe = 6) is given in Figure 5.7

L

per degree The position of the maximum temperature variesATmax'

as before, moving downstream with increasing time until a steady

state position of x = 0.72 a is reached. (Keep in mind that the

heat flux at any given instant is constant over the region:

+ +
Osx sx).

L

+

The heating length of XL = 0.17 is an optimum for a choice

+

in experiment duration of T = 0.8. From Figure 5.8, with 6

given by Equation (5.15), we see that the optimum location of one

thermocouple for this example is x;'= 0.06 or since Pe = 6,

= 0.36 .X6 8

The choice of the experiment duration is somewhat arbitrary

as mentioned before. It can be seen from Figure 5.9, which gives

the transient behavior of the objective function, that once the
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slope dQ/dt+ begins to decrease rapidly near t+ = 1.0, the added

gain in the magnitude of § is offset by the rising rate of in-

crease in the length of time over which the data must be taken.

The Q-curve for x: = 0.08 in Figure 5.9 asymptotically approaches

a steady state value of 0.107. For some physical dimensions per-

taining to this example, see Section 5.4.

5.3 Error Analysis

Let us investigate the errors in calculating Pe (or u)

 

due to a biased error 6(t) in the measurements,

 

6(t) = e(t+) — 9*(t+) (5.16)

+ +
where 9(t ) is the temperature measured experimentally at t

* + . .

and e (t ) IS the corresponding true temperature.

Substituting Equation (5.16) into the sum of squares function,

+ * + + 2 +
F(Pe) =IZETS(t) - e (t) - 6(t )1 dt (5.17)

*

If APee = Pe - Fe is the error introduced by 6, then for a

 

small 6,

aT*
* s

= + — 5.18TS TS APee aPe ( )

*

where T is the calculated temperature based on 6 = 0.

Substituting Equation (5.18) into (5.17) and setting

5.15. = o
aPe ’

5T 3T 2T*a
_ 1- * 7': s S S +

0 - j‘OUTS e ) + (APee —aPe - soy—a]?e + APee apezmt (5.19)

*
* *

Also, since for 6 = O, F = F(Pe ) and ggz E 0, Equation (5.17)

gives,
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* aT*

= az_ = T * _ * __s +o aPe 2 fo(T e )ape dt

Using this relation in Equation (5.19) and neglecting second order

terms leads to,

  

a
T s S + ‘

Tempe€ 353 - 5)aPe dt — 0

Solving for APee and dividing by* Pe* *

aT * 6T

-——l§-—‘f: 6(t+)(Pe* ~3§)dc+ -———l§——‘f; 6(t+)Pe SEE dt+

AP6 '1' AT 5 T AT

6 — _‘Paxr = __225
- *

Fe 1 T * 3T5 2 + I

—7*I0<Pe :1»? dtT M
(5.20)

max

 

Hence, to minimize a biased error of 6(t+), the objective function

I should, in general, be a maximum - a reSult consistent with the

basic criterion for an optimum experiment.

For discrete temperature measurements, the integral in

Equation (5.20) is replaced by a summation over time.

The effect of one sided biased temperature errors on the

calculated Pe numbers in Equation (5.20) is more severe than for

random errors which are both positive and negative.

5.4 Example Utilizing the Nonlinear Estimation Procedure

In this section, an example based on the optimum experimental

conditions discussed in section 5.2, utilizing the nonlinear estimation

procedure outlined in section 5.1, is considered. Let the temper—

atures, calculated for the Case I set of boundary conditions with

Pa = 6, be rounded to three significant figures and used as data.

As discussed, the superposition principle is used to build the

temperature response to a variable heat flux from the unit step
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change in q" - Case I. Using the heat flux given in Figure 5.7,

the maximum surface temperature remains constant and equal to its

maximum permissible value throughout the duration of the experiment.

The other optimum conditions are as stated in section 5.2: place-

ment of one thermocouple, x = 0.36 a, and heating length xL = 1.02 a.

0

+

The duration of the experiment is T = 0.8.

To get an idea of what these dimensions are physically,

suppose the fluid between the plates is liquid potassium. From (56),

the properties of K at 5000F are,

 

Pr = 0.004

_ 2
a - 2.7 ft /hr

v = 0.012 ftZ/hr

k = 25 Btu/hr ftoF

For Pe = PrRe = 6, Re = 1500. Let a = 0.5 inches. Then a T+

of 0.8 corresponds to,

= 1.85 sec..
1 II

C a
) I

+

The measurements are taken at intervals of At = 0.01, which in

physical dimensions is At = 0.023 sec. The steady state heat flux

magnitude (Figure 5.7) for a ATmax of 10°F would then be,

ll

3—2 = 1.95 AT or q" = 11700 Btu/hr ftz
k max

In this example, it is known a priori that the data corresponds

to Fe = 6. However, an initial guess of Peo = 10 is made.

Introducing the Pe number into Equation (5.4) to form the

sensitivity coefficient, the correction in the initial guess is,
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NT 513 (Fee)

APe1 kEIEB - T5(Peo)]k(Peo aPe k

_§_- =
(5.21)

eo ETEPe aTS (Pee) 2

k=1 0 aPe k

Case I is first solved for Peo = 10. Only the transient

response through T+ = Ta/a2 = 0.8 need be calculated. With T(Peo)

now known, the Pe number is increased to 10.005 and the transient

solution is calculated again. The sensitivity coefficient is obtained

according to Equation (5.22),

 

aTS(Peo) = pe Ts(Peo +~e) - Ts(Peo)

aPe o e

 Pe

o

where e = 0.005.

Using the new value of the Pe number,

Pe = Pe + APe

ol l

the iteration procedure is continued until some convergence

criterion is met.

For this example, only three iterations were needed to

converge to within 0.0067% of Pe = 6 when the initial guess was

66.6% in error.

The results of the iteration are given below.

Peo = 10 APe1 = -5.218092

Pe1 = 4.781908 APe2 = 1.090112

Pe2 = 5.872019 APe3 = 0.127578

Pe = 5.999597
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For the fourth iteration, APe was 0.001373.

Note that if the initial guess is in considerable error a

significant over shoot can occur. This can be effectively dealt

with by not allowing the correction for any one iteration to exceed

a given maximum.

 



VI. SOME INTEGRAL INVERSE PROBLEMS

Since the energy equation with constant properties is linear,

existing solutions may be added to give other solutions. In partic-

ular, Case I, a unit step change in heat flux at X+ = 0 and t+ = 0

and inSulated upstream, serves as a basic building block in generating

solutions with any prescribed time and axially variable heat flux.

In the following sections, a number of problems related to the

parallel plate geometry are formulated using as a basic kernel in

Duhamel's Superposition integral (54), the solution of Case I. In-

cluded also are a number of inverse problems formulated in terms of

a standard integral equation of the first or second kind.

6.1 Heat Flux Varying with Time and Position

By Superposition we can use the basic solution already obtained

for a constant heat flux in solving the case where the heat flux

varies in an arbitrary manner with time and position. Consider the

++
following general heat flux, q"(X ,t ) for the parallel plate goemetry,
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FIGURE 6.1: FIOW BETWEEN HEATED PARALLEL PLATES

with step changes in the heat flux as follows,

At X = 0: q" = q"(0,t+)

= +. II = II + +

x XL- q q (XL,t )

t = o: ql' = q" (X+,o)

+ +
Dimensionless variables X , y , and t+ are defined by Equation (2.7)

+ + + +
Let T (x,y,t ) be the temperature resulting from a unit

. + + .
step change m Surface heat flux at X = 0 and t = 0, With

+

uniform initial temperature, To, and zero heat flux for X < 0

(Solution to Case I). Then Duhamel's theorem states that if the

+ +
heat flux, q"(X ,t ), varies with position and time, the resulting

temperature between the plates is given by (58),
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+ + + a + + + + + + + + + +

T(X ,y .t ) - To = §{T (X .y .t )q"(0.0) - T (X -XL.y .t )q"(XL.0)

++(x+y+ t+
+J': T ,t '1') MC“.

+

X n

+I0L T+(X+'§:y+at+) dJ-(éSJ—l dg

dq"(X: T)
t+ + + + + + ’

‘ Io T (X 'XL’y at 'T) —L_— dT}

2:““LEIT++(x-§.y,t-T> <1ng (6.1)

T

6567

+

for —m < X < w

+

t > 0

The terms in brackets in the above equation account for the

non-zero initial value in q" as well as its non-zero value at

X+ = 0 and the end of the heating length, x:. If no discontinuities

in q" exist, (i.e. if q"(X+,0) = q"(0,t+) = q"(X:,t+) = 0) then

Equation (6.1) reduces to

XL 2

T<x+.y+.c+)-To =3)“: If:T++(x-§.y.tw) igg'gf-Fl .1ng (6.2)

Integrating by parts of Equation (6.1) leads to the follow—

ing alternative expression for the integral, noting that

a “T(X++'g;y+2t+'T) = 6 2T++(XBE,Z+at+"T) = K1(X+-§,y+,t+-T) (6.3)

ax+at a

+ + + , , _

where K1(X -§,y ,t ~T) is defined as the kernel of the integral

equation and is known from Case I,

+

X
L +

T<x+,y+,t+)-To = ETC If, q"(§,T)K10<+-§.y+.t+-T>d§d~r (6.4)
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Equations (6.1) and (6.4) differ from the result for no axial con-

duction in that the limit of integration on g is over the entire

length of heating rather than from 0 to X+. This is due to the

fact that results upstream are effected by downstream conditions.

To the author's knowledge, Equation (6.4) does not appear anywhere

in the open literature.

As indicated in chapter 4, the temperature resulting from

a space variable heat flux could be in significant error unless

axial conduction is taken into account. The results at X+ = 0,

where the greatest error exists in neglecting axial conduction,

are distributed throughout the X+-domain.

Equation (6.4) becomes an inverse problem if the surface

temperature is a known function of position and time and the heat

flux is to be determined. The resulting integral equation, with

q” in the integrand unknown, is of the first kind; a Fredholm type

on X+ and a Volterra type on t+ (60). Parenthetically, it is

noted that with this formulation, the constant heat flux results

- (Case I) can be used to determine the response to a unit step

+

change in surface temperature for X 2 0 (Case II),

a/k
1 =

TS-TO

X +

0L J“: q"(i,T)K1(X+-§.1.t+-T)d§d'r (6.5)

There are a number of ways to solve integral equations of

this type, some of which are mentioned in references (57, 60). To

obtain a solution numerically, suppose the heat flux in Equation

(6.5) has been determined for the first (n-l) time steps. At

the nth time step an algebraic difference equation can be written

for each node in the x direction over the heated region (say m

 



 



82

nodes), then summed over the first n time steps. Each such equa—

tion in turn contains a sum over the m nodes in the heated region

- a 'l + +

leav1ng (m+l) equations and (m+l) unknowns. Once q (X ,t )

is determined from Equation (6.5), it can be used in Equation (6.4)

to calculate the temperature response throughout the region between

the plates. No reported work has been done on this inverse problem.

When using experimental data, severe problems with Stability might

arise (59).

6.2 Conducting Parallel Plates

Case I assumes that the heat flux applied to the outer sur-

face is conducted through the plate to the fluid without axial

conduction losses. It is of considerable practical interest to

investigate the case where the plates themselves conduct heat in

the axial direction.

Let kS be the thermal conductivity of the plates and let

q; be the heat applied to the outer plate Surface over a length XE.
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FIGURE 6.2: DIFFERENTIAL ELEMENT IN A CONDUCTING PLATE

The following assumptions are made,

1. Steady state

2. k8 = constant

3. The Biot number, h6/ks, is small, say less than 0.1.

Assumption (1) is made in order to direct attention to the conduct-

ing plates. The results of section 6.1 could be used to consider

transient effects.

An energy balance on the element shown in Figure 6.2 gives,

2

T

qux - q"dx + ks6 :;3 dx = 0
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By assumption (3),

 q; + kss a 23 = q" (6.6)

X

where TS is the fluid-plate interface temperature. Note that if

the transient case is considered the heat capacity of the plate must

be included. This adds an additional term to the left hand side of

Equation (6.6), namely, -(pCp)S aTs/at.

+

In dimensionless X+ and y form, Equation (6.6) is,

 

 

2

k 6 a T

q: as. =m M
a Pe 5X

T =T(x+,1)

Note that Ts has the dimension of temperature.

Equation (6.4) for steady state conditions reduces to,

To<+,y+)-To = if: q"<§>K2<x+-§.y+>d§ (6.8)
on

where now the kernel is KZCX+:§,y+) = 5T+kx+-§,y+)/ax+ with

T+(X+,y+) being the known steady state solution to Case I. The

function q"(X+) is the variable heat flux applied to the fluid

(not the plate). Note that the limits of integration on g must

be over the entire X+ domain from «m to m, since q"(X+) has

a non-zero contribution over this range.

Introducing Equation (6.7) into (6.8) gives,

X+

+ + _ a L n +_ +

m .y >—To - RIO qo w w >d§

k 6 2

s 1 5 ngal) +_ +

+ k a —Pe2 j: aéz K2<x §.y >d§

Let q: = constant and note that
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6T+(x+-§,y+2 = , §T+iX+-§,y+)

+ 3%
= K2 (X+'§ 237+) -

ax

Then we have the following integral equation of the second kind.

'I

_qoa + + +
T(X+,y+)'To - _k— [T (X ,y ) ~ T+KX+-X:,y+)]

ks6 l §2Tg§212 + +

“LEFI: F32 K2(X -§.y )dé (6.9)

e a

The temperature T+KX+,y+), its derivative K£X+,y+), To’

and the heat flux, qg, are knOWn while T(X+,y+), appearing both

on the left hand side and in the integrand (for y+ = l), is to be

determined.

One possible method for solving this equation would be to

write the finite difference equation for each node at the wall

(y+ = 1) over the enitre x domain (say M nodes). The equation

for a given node contains all M unknown wall temperatures. One

from the left hand side of Equation (6.9) for that node plus the M

temperatures resulting from the summation of the second derivative.

Hence, there are M equations and M unknowns.

Once the wall temperatures are known, Equation (6.9) reduces

to an ordinary integral with the integrand known and the fluid

temperature throughout the region between the plates can easily

be calculated.

The problem of conducting plates has not been considered in

this manner previously to the author's knowledge.

6.3 Combined Convection and Radiation Between Parallel Plates.

Radiation has become of general concern in many applications

recently. This section considers the situation where the plates
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are of sufficiently high temperature that radiation as well as con-

vection is an important mode of heat transfer. If the fluid is a

non-interacting medium, then radiation between the plates is a

boundary phenomenon dealing with the entire x-domain from -m to

+m. Hence, the solution to Case I serves as a natural basic building

block in formulating the integral relation for this situation.

The following assumptions are made:

(1) 'The plates are gray

(2) The fluid between the plates is non—absorbing and non-emitting

(3) Steady State

(4) Heat flux, qg, is applied for X+n> 0

From Love (57), the total heat flux both emitted and re-

flected leaving the surface is given by,

R<x+> = .6 T:(X+) + p [Emmmimdn (6.10)

+

where R(X ) = the radiosity

o = Stefan-Boltzmann constant

e = emissivity of the gray surface

p = reflectivity

T = absolute temperature in oR

TS = steady state plate temperature = T(X+,1)

n = dummy X+I variable

The kernel F, a function of the geometry, is related to the shape

factor. It is the fraction of radiation leaving an elemental strip

at n on one plate which strikes an elemental strip at X+ on the

other plate per unit length (in n direction) of emitting surface.

See Figure 6.3.
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FIGURE 6.3: ILLUSTRATION OF RADIATION BETWEEN PARALLEL PLATES

+

As given in Ref. (57), the kernel F(X ,n) for this geometry

is,

 

2 2
+ _ 1 (2a 2 2a

F(X an) — __l: 1 =

2 r3 C(X+-fi)2 +4a233/2

Hence, from Equation (6.10), the radiosity for either plate is,

 

+ 4 + 2 R(md‘fl
R(X ) = 60 T (x ) + Zoe [1 (6.11)

s [(X+-fi)2 + 43213/2

The total heat flux absorbed by a differential strip dX+

+

at X by radiation from the other plate is,

+ 2 m R(fl)dn +

(1"(X ) = 203- " R(X) (6-12)
1‘: I-oo [$414.02 + 43213/2

where a = absorptivity, (a = e for a gray surfact). Finally, the

total heat flux added to the fluid is,
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q"(X+) = q3<x+) + q'r'(X+) (6.13)

-co<X+<m

The superposition integral for an axially variable heat flux,

Equation (6.4), reduces for this case to,

 

+ + +

T(X+,y+)-TO = i:- fave) ALLEY—l dc; (6.14)
BX

where

q"(X+) = qg(x+) +-Zea2 If Riflldn_i, 3/2 - R(X+) (6.15)

°° 1(x+-n>2 + 4a2]

with R(X+) in turn given by the integral Equation (6.11). Note

 
the limits of integration on Equation (6.14) must run from «n to

00.

Equations (6.11), (6.14), and (6.15) can be solved for R,

q”, and T by an iteration procedure. At y+ = 1 these equations

are of the inverse type. However, once q" and R have been

determined the temperatures throughout the region between the plates

. can be calculated by a straightforward integration.

Let the x domain be divided into M nodes. Then for y+ = 1

we have 3M equations and 3M unknowns. If Equation (6.14) is written

in finite difference form for each of the M nodes, there results

M equations each containing M unknown q"'s and one TS = T(Xj,l).

Hence, there are 2M unknowns and M equations. Similarly, Equation

(6.11) yields M equations each containing M unknown R's and one

T:, or altogether 2M unknowns with M equations. Finally, Equation

(6.15) gives M equations each containing M unknown R's and one

q" for a total of 2M unknowns. The three equations simultaneously

supply the 3M equations needed to solve for 3M unknowns in q", R,
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and TS.

One poSsible iteration procedure would be to pick TSCX+)

+ +
and solve for R(X ) in Equation (6.11). Then q"(X ) can be

calculated from Equation (6.15) which in turn allows new surface

temperatures to be calculated using Equation (6.14).

 



 

 



VII. CONCLUSIONS

In summarizing, the following conclusions can be drawn:

1. Axial conduction has a substantial effect on the temperature

distribution and resulting Nusselt number in the entrance region

for Fe < 50 in both boundary condition cases.

2. In the neighborhood of, and including the location where heat-

ing begins, the results are influenced significantly by axial

conduction even for Fe numbers much greater than 50. The larger

the Pe number, the smaller this region of influence becomes.

3. If axial conduction is important, then the temperature profile

in the region upstream of the heated section is significantly

altered. Hence, one can not assume a uniform temperature profile

at the entrance cross-section in this case.

4. Axial conduction has the effect of increasing the development

length. As the Pe number decreases, the development length

increases.

5. The early transient response following the application of the

wall heat flux can be described by the heat conduction equation if

the location of interest is sufficiently far downstream from the

entrance cross-section. This location may still be well within

the entrance region, however.

6. At axial positions located in the fully developed thermal region,

the transient Nusselt number decreases in time until reaching a
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"secondary" dwell at a constant value predicted by considering only

conduction between the plates. It remains at this intermediate level

until the entrance effects are convected downstream to this location.

Thereafter, the Nusselt number decreases to its final steady state,

fully developed value.

7. An objective function is defined which, when maximized and

satisfying given constraints, establishes an optimum experiment to

estimate the mean velocity from temperature measurements at the wall.

8. The Optimum transient wall heat flux profile is one which de-

creases with time in such a way as to maintain the maximum wall

temperature at its constrained value throughout the duration of the

experiment. At any instant the heat flux is constant over a finite

heating length in the axial direction.

9. The Optimum heating length for a given experiment duration and

Fe number is determined. Also, the optimum location of one

thermocouple at the wall for this case is found.

10. No optimum experiment duration exists when the objective

function is expressed in the given form. This design factor is

left to the choice of the investigator. However, there are several

important considerations effecting this choice.

11. The optimum heating length and location of one thermocouple

are also presented for a simpler wall heat flux which is not only

constant over the heating length, but also constant throughout the

duration of the experiment. The magnitude of this constant heat

flux decreases with increasing experiment duration so as not to

exceed the maximum wall temperature constraint.

 



 
 



92

12. A number of inverse problems are formulated using as a basic

building block in the superposition principle, the uniform heat

flux case.
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APPENDIX A

Truncation Error in Approximating Equation (2.8) by the ADI

Finite Difference Equation (3.12).

Let the difference, D, between (2.8) evaluated at the point

[iAx,jAy,(n+%)At] and (3.12) be the truncation error at a typical

node. Omitting the superscript "+" from the dimensionless variables

for simplicity,

 

 

 

2 2 n+% Tn+1 - n

51., ET____1 £11-11 123' 12J+ 63,260: +Tn+1)

at 5x Fe? 8X2 By? 1,j At 2(AX) 1 1.1 1.1

l 2 +

' €>i(n :11 - 1 (Tn+T 1)

2(AX) Pe ’3 ’3 2<Ay>

t 662 2 + t +1

- 2A 2 2 616j(TI j - 2 ;) +--—-A———— uj6j61(TI j - T: ji] = D

4(AX) (Ay) Pe ’ ’ 4(Ay) Ax 1: ,

(A-l)

+ 1

- where Tn % = 3(Tn + Tn+1)

Using Equations (3.5) through (3.8)

2

—-------l2 . .1: . +T212+¥> 4%:«r 1. +T .1252(AX) .J .1 X ,1 X X .1 X .J

4T

where the variable subscripts denote differentiation, e.g. T 4 = h—Zu

x ax

Similarly,

2

+ ,. + +1
—1-—2-6? 2&1": i) =§<T 2V; . +T 21‘; 5 +%§—u~ 4‘1”” A: .> (A-3)
2(A)’) J 9.] 3.] y 9.] y L] y a] y L]

1 n+1 ~ 1 n n+1 (?222 n+1

—-— + A-4

2(6):) 6191.1 ”1.1) 2‘ x‘iu’ Tx‘i j) + (TX3“: j +TX3‘1,1) ( )
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Tn+1 _

i,j i,j g n At n _ 1 n n+1 ._ T +.__ _._

At t i,j 2 th i,j 2(Tt‘i,j t‘i,j)

+1

+2-£<T 21‘? . - 2‘: .> (A-S)
t 13.] t ,J

, l . 2 2 n+1 N n+1

52‘ 2 6i6j(TI j ' Ti j) = (T 2 2‘? j ' 2 2‘1 j)
(Ax) (AV) ’ ’ x y ’ x y ’

M n n+1 mg n n+1
+ 12 (T 4 211,, ' 4 211,1) + 12 (T 2 aim ' T 2 411,3) (A'6)

y X y X y X y

(where the higher order terms have been omitted)

2 + +1

2 6163' 2 j ' T: i) = (T 2‘: j ’ T 2‘: j)
(AV) (AX) ’ ’ xy ’ xy ’

+ MCI ‘11 T ‘n-H') + MCI! ‘n ln-HL) (A 7)6 321,j 3Zi,j 12 4i,j 4i.jx y x y xy xy

Introducing into (A-5) through (A-7) the fact that

n n+1 n (At)2 n

(T‘i.j ' T‘i.j) = 'At Tt‘i.j ' 2 TtZAi,j

and neglecting terms higher than second order we have,

Tiff;- - ngj '5 lCII ‘n ‘n+1) L—LAt2 T ‘n (A-Sa)
At 2 t i,j t i,j 4 t3 i,j

l 2 2 n n+1 n At 2 n
2 2 616. T1 . - i .) ‘ -At T 2 2 )1 . -‘£—§l—'T 2 2 2 (A-6a)

(AX) (AV) J :J 3.] X y t 2.] X y t

2
2 +

“’1‘2—“5153'923' ‘Ttil i) =‘AtT 2‘: ' “LIX—2LT 2212' “'73)(Ay) M , ’ Xy t ’J Xy t 3.]

Substituting (A-2), (A-3), (A-4), (A-Sa), (A-6a), and (A-7a) into

(A-l) the truncation error becomes,
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2

At n n l n
D='£_i)_[T3+UT 2'—"2T22]

t txy Pe txy i,j

2
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APPENDIX B

Stability Analysis for ADI Numerical Method

Let E(x,y,t) be the error in the temperature, T, at a point

(x,y) and time t due to the accumulation of round off errors

in the numerical calculations.

*

E(x,y,t) = T (x,y,t) - T(x,y.t)

*

where T is the calculated temperature with a small error and T

is the corresponding exact temperature. Changing the usual notation

Tn to Tn in order to avoid confusion with the imaginary i,

1.1 P.q

the error expressed in difference notation is,

n

n * n

E = E x t = T - T -1

PA ( P’yq’ n) p.q p.01 (B )

Using the Fourier series method develOped by von Neumann, we

' assume that the distribution of errors in the x,y plane at t = O

can be expanded in a Fourier series.

iBmx ivy

E(x,y) =22Amne e

m 11

Since the energy equation is linear, and therefore solutions are

additive, we need consider only the propagation of the error due

, i x i . . .
to a Single term, say e B e YY (the coeff1c1ent lS constant and

may be neglected).

To investigate the propagation of this error as t increases,

a solution must be found which reduces to elfixele as t a 0.

Assume
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_ in ivy fit
E(x,y,t) — e e e

The solution is said to be stable if the initial error does

not grow with time. This condition is met if

‘entl s 1 (B-2)

Substituting (B-l) into (3.12) we see that the error function

satisfies the same difference equation.

 
 

  

En+1 En

' 2
PigAt qu +_2(Ax) u 6 (En + En+1) =,____l§__§ 6 (En + En+lX

q p 2(Ax> Pa

1 + 2 2 +
+ 2 62(En +En 1) + gt 2 2 6 6 (En - E" 1)

2(Ay) q 4(Ax) (Ay) Pe P ‘1

_ At2 u 62(En _ En+1)

4(Ay) Ax q q

2 2

Defining ax = Zififil— and ay =.§L%%l_ as before and substituting

E: q = elepelyyqefltn we have after cancelling the exponential

’

' factors common to each term,

[enAt _ 1] = _ 5&5 u [enAt + 11&1pr _ e-iBAx] +

‘-l-§[enAt + 1][eIBAX - 2 + e-IBAX] «LienAt + 1][e1YAy - 2 + e'lyAy]

axPe fly

1 t o - o o - o

- -—--§[enA - 1][elBAx - 2 + e 1BAX][elYAy -2 + e 1yAy]

axayPe

u At At i AX -i Ax i A -i A

+;;2Ax‘;n “1119-8 'eBJEeyy-ZH
Yy] (13-3)

Making use of the tigonometric relation,
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iBAx 'iBAX

8 Te =SinsAx=2SianosB—Al
21 2 2

we have (elBAx - 2 + e-IBAX) = - 4 Sin2 2%5

Using these relations in (B-3) and grouping the real and imaginary

parts we obtain,

“At _ A +-iB _

e -C+iD (BA)

with A,B,C, and D given below.

C = 1 + 4 Sin2 EAE-+-£-‘— Sin2 XAX‘+ 16 Sin2 EAE Sin2 KAI

A 2 -'a 2 2
d Pe y aid Pe

D - 2At u Sin £95 Cos QAE’EA Sin2 XAX'+ l]

B 2 2 2 '—

\Cl 2 W

M 2 IBI

Therefore, lA + iB| s ‘C + iD‘

‘ and,

‘enAt| S 1

Thus, the numerical method is always stable.

 



  



APPENDIX C.

Derivation of Fully Developed Temperature Profiles and

Sensitivity Coefficients.
 

For the fully developed region, the steady state energy

equation reduces to

2

= 3% (C_]_)

BY

e
l
c

3
P
4

Keys (45) defines the region of fully developed temperature

profiles by the criterion,,

é-t-TSfi-T> =0
ex 3 b

Differentiating,

dT T - T dT T - T dT

fl=__5___§____3_+_i____b. (C-2)

ax dx T - T dx T - T dx

3 b s b

Also, since Nu is constant, h is constant and for

x>xDev '

the constant heat rate, Case I,

q" = h(TS - T = constant.
b)

Ts - Tb = constant

de dTb

an?” (0'3)

Substituting (C-3) into (C-2)

d d

5:. = .32 = i (G-A.,)

ax dx dx '
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Equation (C-l) becomes,

3- L2
u=-2'u(l-az)

fi=12:(1_fi)fl

2 a 2 CZ dx

BY a

Integrating twice, applying the boundary conditions

BY

we have,

-— d 2 2

T = T +.EB._EE(X_.- Zfi__.- 2E.)

3 2a dx 2 12a2 12

Nondimensionalizing according to Equation (2.7)

+ 2 4
dT + +

T TsJ'2dX+(2 '12 12 (CS)

Consider an energy balance on an element in the fully

develOped region,

 

 

 
 

&q"Ax
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._ : : __ dTb

pCp(2a)u Tb ~H AX lr-v- pCp(2a)u(Tb + E;— AX)

*qlle

  
 

FIGURE C.1: ENERGY BALANCE ON A FLUID ELEMENT
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'_ dTb

—.—= "
pCpua dx q

dT n

or a Pe a;§-= Ski

dT+

—__b_=1

+

dX

Hence, (C-S) becomes

2
+ + 1 +

= +—
T TS 8(6y

+ _ l +>+ +

Tb-Y uTfl

(C-6)

(C-7)

Substituting the temperature profile given in (C-6) and the

parabolic velocity profile and integrating, the bulk temperature

becomes,

+

Tb

+

=T .-

S

+

To evaluate the unknown TS

a control volume which includes the

12.
35 (C-8)

consider an energy balance on

entrance and upstream regions.
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FIGURE C.2:

The energy balance gives,

q"x+f:kg%dy=j|:

ENTRANCE REGION CONTROL VOLUME

- dpCpu(T TS) y
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In dimensionless form, using (C-4) we have

where

+

Integrating and solving for T8

dT: 21 + + +
x+-—-j'-—dy32:fT(1-y)dy

Pe dx+

dT;

—:=l from (C-6),

dX

From (C-9)

T =‘x +—2-+— (C-9)

2 4
..+ _1_. 2+ 1+ 12. -
‘X + 2+4y "sy “280 (cm)

Pe

=x++—1—2- (c-11)

Pe

we can obtain the expression for the fully de-

veloped steady state sensitivity coefficient,

or

+

T

.a._.s. - (a... X+) L.(_.]:._

8P8 aPe x a ape 2
Pe

+

is = _ a .1. _ _2_
aPe a Pe2 Pe3

+

Pe 23; = -(X+'+-£-)
(C-12)

aPe 2
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