

MICHIGAN STATE COLLEGE of AGRICULTURE AND APPLIED SCIENCE THESIS HYDRAULICS OF THE COLUMBIA RIVEF SUBMITTED FOR CIVIL ENGINEER DEGREE

1926

E. H. COLLINS

cup -

THESIS

E. H. Collins

ļ L

1926

THESIS

"HYDRAULICS OF THE COLUMBIA RIVER"

SUBUITTED FOR

CIVIL ENGINEER DEGREE

OF

AGRICULTURE AND APPLIED SCIENCE

MICHIGAN STATE COLLEGE

.

.

STATE ONLINE DAPP. SCIENCY TH ACHLAN

LIGHTARY

.

THESIS

THESIS Cripter 2

.

THESIS

"TYDRAULIDS OF THE COLUE I'. RIVER"

SUBMITTED FOR CIVIL ENGINEER DEGREE 1926 EY E. H. COLLINS.

--00000--

SYNOPSIS

Recently, considerable experimental data concerning the flow of the Columbia River was obtained. These data were extensive and accurate enough to check up the constants commonly used in the various slope formulas to compute the flow of rivers. The experimental data consisted of the reading of several gages along approximately 25 miles of the river. The actual flows observed ranged from 25,000 c.f.s. to 345,000 c.f.s. Quite reliable data were also obtained from local residents concerning a flow of 700,000 c.f.s., the largest flood known. Various cross-sections were sounded and contoured. The flow was measured at a standard U.S.G.S. stream gaging station having a well defined rating curve. Having the values of flow, slope, hydraulic radius and area known, coefficients of standard slope formulas were computed and the results are discussed.

FIELD DATA

The Columbia River, above the point where these experiments were conducted, has a drainage area of about 35,000 square miles. The average flow at this point is greater than that of the Colorado and Yukon rivers, about equal to the Frager, Missouri and Nile rivers and somewhat less than the Danube, St. Lawrence and Ohio rivers. The path of the Columbia River parallels mountain ranges which are closely related to great folds and faults. The valley between these ranges varies in width from one-quarter to two miles in width. The river

has cut a channel thru the valley with banks, in general, 50 to 75 feet above flood-water. The range in stage from low-water to flood-water is about 25 feet. There are no high falls in the river. The slope in general is gradual. Occasionally the banks are rock canyons about half the general width of the river. At these places the river either falls over a rock dike or passes thru a very deep erevice. Between these points the width of the river, in general, is about 1500 feet. The bed is composed of water-worn boulders which are fairly large. During flood the river carries silt and alternately forms and washes out sand and gravel bars. At low-water it appears it should be classed even lower than Torrential stream by Kutter, while at high-water it would be classed as Earth having stones and weeds occasionally.

Plate I shows the location of all gages and sections and the stream gaging station.

RIVER GAGES

ł

River gages were placed at each section noted. These were staff gages made of pieces of 2" x 6" and fastened either to standing trees or cedar posts placed solidly in the ground. The gage boards were painted white. The foot mark elevations were stenciled with black paint and each tenth of a foot was marked with a saw cut. A line of check levels was run the full length of the 25 miles of the river. Periodically, each foot in the slope gages and one mark on the vertical gages were checked with an engineer's level from a local B.M. placed near each gage. Fortunately no gages were found in error. These gages were all read once daily by the same observer. They were read from early spring thru the flood months and continued until late in the fall when the flow had reached close to the minimum.

CROSS-SECTIONS

The cross-sections were taken at low-water by sounding the river with a lead weight and taking topography of the bank with an engineer's transit.

2.

GAGING STATION

The gaging station is well located on a straight stretch of the river where the stream line flow is not disturbed except at extremely low water. The gagings were made from a cable stretched across the river. A small Price current meter was used to measure velocity. The meter had been rated by the U.S.G.S. at Washington, D. C. Standard U.S.G.S. methods of stream gaging were used. Plate II is a copy of the rating curve. A staff gage at the rating station was read twice daily.

It will be noted on Plate I that there is some inflow from the Kettle River between the gaging station and the gage sections. Previously, a rating station had been maintained on the Kettle River by the U.S.G.S. The gage at this station was still in existence. Readings of this gage were taken periodically. The flow of the Kettle River was deducted from the flow of the Columbia River at the gaging station to obtain the flow of the Columbia River past the gages used in this discussion.

COMPUTATIONS

All gage readings were plotted for each gage. Any blunders by the observers were thus discovered and discorded.

The sections were plotted to natural scale. The wetted perimeter was measured with a map measurer. The area was planimetered. Curves of both R and A were plotted for each section. For the purpose of this discussion flows of 48,000; 100,000; 150,000; 200,000; 250,000; 300,000; 350,000 and 700,000 c.f.s. have been chosen. The profiles for these flows, as observed in the field, are plotted in Plate III. The hydraulic characteristics of these sections for the flows mentioned above are shown in the appendix. Plate XVI in the appendix also shows some typical sections with their values of A and R.

3.

Two methods were used in working up the data. As an example of these methods consider for the moment sections 16, 17 and 18. One method was tried where the areas and hydraulic radii of sections 16 and 17 were averaged and the slope taken as observed between sections 16 and 17. However, it was found better to take the area and hydraulic radius of section 17 and the average of the slopes 16 to 17 and 17 to 18.

Vaules of roughness coefficient (n) both in Kutter's formula

$$V = \frac{41.6 + \frac{1.811}{n} + \frac{0.00281}{S}}{1 + (41.6 + \frac{0.00281}{S}) \frac{n}{\sqrt{R}}} \sqrt{R S}$$

and Manning's formula

$$V = \frac{1.486}{n} R^{2/3} S^{1/2}$$
 were next computed.

PROBLEM

The title of this thesis "Fydraulics of the Columbia River" was taken because apparently there is little data available on this subject. Data were discussed with members of the United States Geological Survey. They had some scattered data on a few large rivers. However, none of it seemed to show any definite laws such as are shown in this discussion. A large amount of data have been presented on small streams and small artifical canals but none on large rivers or canals. Also, some fifty so-called slope formulae have been presented to calculate the flow of streams, etc. Most of these formulae are rather complicated and, strange to say, Kutter's formula, which is probably used more extensively than any other, is the most complicated. It is believed that so-called "nature" does her work in the simplest way. The problem then is to present the hydraulic characteristics of flow in large rivers with particular reference to the flow of the Columbia River and discuss their relations as set forth in what are commonly called slope formulae.

DISCUSSION

As the experimental data obtained on the Columbia River appears to be the best it will be discussed first.

On Plate IV values of Kutter's and Manning's coefficient "n" have been plotted for all sections for flows of 48,000 c.f.s. and 100,000 c.f.s. Values at higher flows were not plotted because there was very little variation. It can be seen from these results that Manning's coefficient is not so sensitive as Kutter's when other than stream line flow exists. In other words, bends, rapids or other disturbances in the stream do not effect Manning's formula as much as it does Kutter's. In general the two values follow closely except where there were rapids in the river as at sections 19-22 and 26. Above section 26 there is a narrow deep gorge. The wide variation at this section is undoubtedly due to whirls, boils and eddies from the stream above.

On Plates V to XIII, the variation of the roughness coefficient "n" for each section is shown for all stages. Seven of the twelve sections show fairly consistent variations. The other sections (13-14-20-21-23) are erratic. The reason for this is, that in the vicinity of these sections were either bends, rapids or other disturbances which broke the slope of the stream between points of observation. In most cases several intermediate sections would have been necessary to isolate each change in slope. Had these observations been taken it is believed that the surves for all sections would be similar. It may be noted that both Manning's and Kutter's coefficients check closely especially at the higher flows.

Of the sections showing consistent variations, section 16 is probably the best section. All the physical characteristics of the river from section 15 thru section 16 to section 17 were favorable to expect good results from a slope formula. The various characteristics of this section are plotted in detail on Plate XIV. On this plate flow in c.f.s. has been plotted as abscissae and V. R. R. S. n. C and K as ordinates. The experimental data plots in

5.

smooth curves that warrant some study. It may be seen from these curves that the general laws as stated by Kutter in 1825, are substantiated. These general laws are stated as follows:

C INCREASE'S

- With the increase of hydraulic radius R and most rapidly when r is small.
- 2. With the decrease of resistance to flow (coefficient of roughness n).
- 3. With a decrease of slope S.

It appears that Items 1 and 2 might be called axiomatic. Item 3, however, has been much discussed. In Kutter's original discussion he found conflicting results from the experiments he discussed. It might be stated that in these experiments the slope was small as compared to the slopes in the Columbia River data. Plate XV shows some similar data regarding the Mississippi River above Carrollten, Louisiana taken from Table 9 in "Calculation of Flow in Open Channels" by Ivan E. Houk of the Miami Conservancy District. These curves show an increase and decrease of C with an increase of S. The slope in general is about onetenth that of the Columbia River data.

The value K, shown in both plates XIV and XV, was derived as follows:

Starting with the well known assumption of a solid of water sliding down a trough of uniform slope and moving with a constant velocity, use (F) for force due to friction tending to retard this solid; (W) weight of solid; (A) crosssectional area; (L) length; (w) weight per unit volume; (K) is coefficient of fluid friction; (p) is the wetted perimeter; (V) is velocity; (R) is the hydraulic radius; (S) is slope and (g) is force of gravity.

Then W = LAwand $F = KPLw \frac{V^2}{2r}$ Then the energy over-coming the friction is equal to

LAw $\frac{h}{L}$ or LAw $\frac{h}{L} = KpLw \frac{V^2}{2g}$ $V^2 = \frac{2gAh}{KpL}$ Since S = $\frac{h}{L}$ and R = $\frac{A}{p}$ we may with $V = \sqrt{\frac{2gRS}{K}}$ or $V = 8.025 \sqrt{\frac{RS}{K}}$ Chezy's formula is $V = C\sqrt{RS}$ Then in other words C = $8.025 \sqrt{\frac{1}{T}}$

It should be noted that this value (K), as shown on the above curves, shows practically the same variations as the coefficient of roughness friction (n).

CONCLUSIONS

It appears that all slope formulae are empirical. Kutter has spent more time and used more experimental data in developing his formula, hence it has had more weight with engineers in general and rightly so. It is probable that the accuracy of the experimental data used by Kutter was poor. This combined with the fact that his data on large canals and rivers was meagre led him to some wrong conclusions regarding slope. On the Columbia River with practically ten times the slope Chesy's coefficients(c) are practically equal. The correction Kutter introduced for slope was undoubtedly absorved by a slight change of his values of (n). Manning's formula appears to be just as good as Kutter's under ideal conditions and better under poor conditions. It is believed that the . • • . . . value K, which has been discussed, would have given as accurate results as any formula. It is the simplest form of constant that could be used. Kutter's formula has given good results when checked up for local conditions as any formula would, but when used in one locality with constants derived by comparison with a supposedly similar locality has been erratic. It is like the case of estimating the runoff of one drainage area by comparison with another which seldom can be relied on except for a very rough estimate.

ļ

. . .

.

.

.

.

•

£____

APPENDIX

COLUMBIA RIVER - HYLRAULIC CHARACTERISTICS

48,000 C. F. S.

	Tie tence	Elevation of water	Difference in eleva-	Area	Velocity	Hydraul io Radine	Slope between	Slope	Га	п _л
Sect	Ft.	Burface	t ion - ft.	Sq. Ft.	Ft/Sec.	Pt.	sections	at sections		4
12	06890	1215,80	1.95	11,750	4 . 08	8°6	000283			
13	6070	1217.75		10,750	4 ,46	13,0	000567	0 00425	•038	•041
14		1221.70	с 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13,250	3 .63	12.0		000320	•039	•041
15		1222,35		16,750	2,87	19 ° 2		•000 369	.072	2 60 [•]
16	0021	1227,15		13,250	3_63	19.5		.000780	•085	.107
17		1234,28		21,000	2,28	22 . 5		000491	,115	. 168
18	0125	1235,10		25,750	1.86	37 . 75		•000172	111.	2 0 2
19	0600	1236,53	L.40	33,500	1.43	31,50		•000356	.173	.347
20	0840T	1241.45		15,250	3 ,15	00*61		•000281	.056	•068
21	9 6 80	1242 .49		13,800	3,48	24.75	EE LOUD	•000120	•040	•047
22	0101	1243,46		34,000	1.41	31,50		000205	•150	.279
23	7470	1245,55		12,000	4.00	18,00		000248	•040	•046
24	56 70	1246,80	7°71	16,750	2,86	25.75		•000 219	•065	6 80 [•]
25	0020	1248,15	1.00	16,800	2,86	24.40	012000			

COUDER A RIVER - HYDRAULIC CHARACTERISTICS

100,000 C. P. S.

		Elevation	Difference			Hydraulic Poster	Slope		1	1
Sect	Uletance Ft.	of water Burface	in elevar tion - ft.	Sq.Ft.	Ft/Sec.	Pt.	sections	at sections	3	ж.
2		1221.70		19,500	5,15	15.70				
	06899		2.40				000348			
13		1224.10		17,000	5 .88	16.20		000267	0 34	•036
	6970	•	3.75				000538			
14		1227.85		20,000	5,00	16.00		000443	•035	.037
	8600		1,16				000131			
15		1229.00	,	22,750	4.40	25,25		0 00 334	052	061
	7230	I	3,65	•			.000505			
16		1232.65	•	17,600	5,68	22.80		000318	053	•061
	09 64	·	5,95				.000747			
17		1238.60	•	25,250	3,96	26.75		000626	.072	•094
	9270	•	1.55				.000167			
18		1240.15	ŀ	29,000	3.45	39,80		000457	•08 8	.127
	5590		2.47				000442	•		
19		1242.62		40,250	2.48	36,50		000304	1 38	.231
	10780		5.08				000471		1	
20		1247.70		20,750	4.82	24.00		000456	.047	•056
	9680		1.90				000196			
21		1249.60		18,250	5.48	30,00		000223	0.37	140.
	7310		1.50				•000 202	000000		
22		1251.10		43,000	2. 26	38 ,00		002000	211.	9/1
	7470		1,85				000240			
23		1262 .95		17,500	5.72	23.40		•000225	•036	
	5670		1.77				000312			
24		1254.70		23,000	4.36	30,25		•000278	•0 53	068
	6200		1.40				•000226			
25		1256.10		22,600	4.42	30,50				

.

ì.,

COLUMBIA RIVER - HYDRAULIC CHARACTERISTICS

150,000 C F S

I

	Distance	Elevation of water	Difference in eleva-	Area	Velocity	Hydraulic Radius	Slope between	Slope	4	4
Sect.	Ft	surface	tion - ft.	Sq. Ft.	Ft/Sec.	Ft	sections	at sections	A	M
ង		1225.80		25,000	6.00	19.50				
1	6890		2 .60	000 10	00 7	0 Z 0 L	•000377	0000	031	124
QT	6970	1228.40	3, 35	000472	0000	00.01	000481			
14		1231.75		25,000	6.00	19 ,00		.000323	•032	027
15	8800	1233.20	1.45	26.700	5.62	28.70	•000165	•000293	•042	.030
	7230	1076 9K	3.05		AL 7	24 40	000422	000559	.041	049
01	1960	1200.21	5,55	000473	•		000 697			
17		1241_80		30,000	5.00	28.75		000459	090	•0 48
18	9270	1243,85	2°05	31,8 00	4.72	40,20	122000	•000388	•073	•046
0	5590	1246.95	3,10	45.500	5_30	38_00	•000555	•000E09	,115	•074
1	10780		5 _00		61 3	27 R.	000464	000387	044	100
ର୍ଷ	96 80	ak.laži	3 ,00	000	97°0		000310			
21		1254 . 96		22,300	6.73	33 . 50	000293	•000 3 01	•040	. 184
22	0161	1257 .10	4 7 6 7	26,500	5.66	25.50		•000500	•032	•050
23	7470	1257_90	0980	21,800	6,38	26.75		000256	031	•044
24	5670	1260,20	00° 20	27,500	5.46	34 °50	012000	•00030B	•050	.132
25	6200	1261 .50	₽ •1	27,000	5,56	36°0				

· · · · · · · · · · ·

· · · · · · · · · · · · · · · · ·

• . •, • . • . • . • •

· ·

· · · · · · · · · · · · ·

·

COLUEBIA RIVER - HYDRAULIC CHARACTERISTICS

200,000 C. F. S.

		Elevation	Difference			Hydraulic	Slope			
	Distance	of water	in eleva-	Area	Velocity	Radi us	between	Slope	¤ "	д Ъ
Sect.	Ft	surface	tion - ft.	Sq. Ft.	Ft/Sec.	Ft	sections	at sections	a	4
12		1229.10		30,000	6.67	22.50				
	0689	•	2,95				•000428			
13		1232.05		26,000	7.70	21,00		000432	•031	033
	0469		3,05				.000437			
14		1235,10		29,700	6 . 74	22,00		•000216	026	025
1	8 80 0		1.70		Ę	00 62	•000TA4		020	540
15		1236.80	3000	000.00	6 •07	00*26				
16	72:30	1239 .75		24,250	8,25	25 . 75		.000516	•036	.037
	1960	•	4.97				000624			
17		1244.72		51,750	6.30	32,50		•000454	•052	•059
	9270		2,63		1		.000284			
18		1247.35		34,700	5.76	40 . 50		•000451	c 90	•084
	5590		3.45				•000e18			
19		1250.80		27,250	7.34	27 , 25		876000.		640°
	10780		4.70				000437			
20		1255.50		28,000	7.14	31,50	012000	•000374	040	•0 44
ç	86 80	1950 KA	2 ,00	25,000	A 00	36,00	otenno.	.000312	_036	.038
13	7310	>>**	2.30		•		.000315	•		
22		1260.80		30,500	6.56	29 ,00		•000260	035	037
	7470		1.52				000204			
23		1262.32		26,250	7.60	27.70		000276	0.30	0.20
	5670		1.98				679000°	002000		220
2		1264.30		31,500	6.35	36°00			170	
55	62 0 0	1266,10	1,80	30 , 500	6,56	38,50	7 63000*			
		,								

7

. . . 4

.

COUNTBIA RIVER - HYDRAULIC CHARACTERISTICS

250,000 C. F. S.

		Elevation	Difference			Hydraulio	Slope			
	Distance	of water	in eleva-	Area	Velocity	Radius	between	Slope	ď	р,
Sect	Ft.	surface	tion - ft.	Sq. It.	Ft/sec.	Ft	sections a	at sections	3	4
12		1231.70		34, 000	7.36	25_00				
	6890	•	3,25	•			•000465			
13		1234.95	I	30,000	8,35	24.00		000444	•032	031
	6970		2,95				.000423		1	
14		1237.90		33,500	7.48	245 0		.000317	030	•030
	6800		1.75		i		•000 211			
15		1239 .65		33, 000	7.60	34.50		sT2000	.co.	
•	7230		3,10			06 90	000428	00000	033	033
16		1242 .7D		51.000	07.6	01007	000570			
41	0961	1247 30	00.**	35-000	7.16	35.00		000430	046	052
Ā	0226		2.70		•		.000291	•	ı	1
18		1250.00	•	36,750	6 . 80	40.70	ı	000496	•058	.072
	5590	•	3,95				00000			
19		1253 ,95	•	30,500	8,20	29 _50		•000560	•0 3 8	.045
	10780		4.52				000420			010
20		1258.45		31,000	8°08	34 50		•000374	920	040
2	968 0	1961 AS	3,18	27-000	9.27	36,00		.000350	034	-034
3	7310		2.72		•	•	.000372	1		
22) 	1264.35	•	36,000	7.16	32.00		000286	•036	•037
	7470		1.50				102000°			200
23		1265.85		29,800	8.40	27.40		000290	.20	.20
	5670		2,15		, , 1		615000		245	080
24		1268,00	i	36,000	7.16	4T*00		Tecono		
25	6200	1269 .76	1 . 76	33,500	7.48	41,50				

• • • • • • • • •

• • • • •

•

CHARACTERISTICS
HYDRAULIC
RIVER -
C OLUMBIA

300,000 C. F. 3.

		Elevation of mater	Difference		Valorita	Hydraulio Rediné	Slope	Sl cm	Ø	E
sot.	Pts talled	Burface	tion - ft.	3q. Ft	Ft/Sec.	Ft	sections	at sections	"	,×
12		1254,45	C E	38 ,500	7,80	28 •00				
.13	0630	1257 .75	6°°°	33 , 500	8,95	26 ,50		•000 453	032	•032
14	01.60	1240.72	16.2	37,500	8,00	27 .30		.000320	•030	•030
15	8800	1242 .6 0		36,000	8,35	37,00	-T2000	•000 313	035	•037
16	7230	1245 .58	6 . 2	31 ,000	9.67	27 .70		•000 484	•031	•031
17	0964	1250.00	7 .7	57,500	8 ,00	37 . 60		•000 434	.043	670*
18	9270	1252 .90	0.0	39 5 0 0	7.60	43 ,5 0	etenno"	•0005 29	056	•067
19	5590	1257,30	4 . 40	34,500	8_70	00°35		000577	.042	•04:5
20	10780	1261.70	4°40	34,000	8,62	37 . 50		000380	.037	6 20 [•]
21	6 80	12 65,10	0 4 .0	3 0 , 0 00	10,00	41,00		000 39 5	035	•036
22	7310	1268 .30		39,500	7.60	35 .50		502 000	•037	6 20 [•]
23	7470	1269 .65	8	34,000	8.80	27,00		.000271	025	•025
2	5670	1271.70	60° %	38,500	7.80	44 °00		•000 336	•044	•047
25	0029	1273,62	7097	37,000	8 ,10	44.50				

COLUMBIA RIVER - HYDRAULIC CHARACTERISTICS

•

.

350,000 C. F. S.

Sec t	Distance Ft.	Elevation of water surface	Difference in eleva- tion - ft.	Årea Sq. Pt.	Velocity Ft/Sec.	Hydr gulic Radins Ft	Slope between sections	Slope at sections	ਜੰਬ	a A
ឌ		1236,80	uc T	42,000	8 . 34	. 30 €0	313000			
13	0030	1241,15		36 ,200	9.17	29 20		•000458	•033	•033
14	0269	1243,25	01°2	42, 000	8,34	29 .50		.000258	.027	•027
15	8800	1246 ,15	1°30	39 ,000	00 ° 6	29 °00	012000	.000375	.037	•038
16	7230	1248,28	3.18	34,500	10,15	26.50	000434	000 479	030	020
17	0964	1252,45	4.17	40,200	8.70	39 _ 20	520000°	000416	•040	•044
16	9270	1255,30	Z_85	41,500	8_45	45 • EO		•00060 1	•055	•065
19	5590	1260,30	5 ,00	37,500	9*26	34_00		•000 582	C‡ 0	•043
20	10780	1264.30	00 •	37,000	9 • 46	40°00	TJCDDO.	•000 <i>3</i> 77	•036	•037
21	9680	1268 _00	C.L	32,000	10,95	43,20		000434	0 .055	.036
22	1210	1271 65	00°0	43,500	8 _05	36_50		000524	•039	•0 4 1
23	7470	1272,90	8.1	39 , 5 00	8,86	26.70	TOTOO.	•00030B	•02 5	•024
54	5670	1274.93	20°2	41,500	8.45	46. 70	000253	•000694	•040	042
25	62 00	1276.50	10.1	39 4 00	888	46 . 50				

.

• •

. . . ·

COLUMBIA RIVER - HYDRAULIC CHARACTERISTICS

700,000 C. F. S.

		Elevation	Difference			Hydraul 10	Slope			
Sect	Distance Ft.	of water surface	in eleva- tion - ft.	Area Sq. Pt.	Velocity Ft/Sec.	Radias Ft.	between sections	Slope at sections	d ^a	ц. А
12	0689	1252,00	5 00	66,500	10.55	44 _00	000435			
13	6970	1255_00	2 E	55,500	12.72	41,50		000468	•020	•029
14	BROOM	1258 ,5 0		62,0 00	11,29	42 5 0	000464	000478	•035	•038
15		1262 .50		57 ,000	12,27	54. 70		000434	•036	•036
16	79.60	1265.50		62,000	11,29	35.70		•000364	.027	.025
11	0236	1268_00		57,500	12,17	49 ,00	979000	•000480	•036	•036
18	KR90	1274_00	5 Y	58,5 00	11,96	60° 00	969000	•000636	0 48	•053
19		1277.50		49 , 7 00	14,08	40,30		•000577	•030	•028
20	00 / 0T	1283,20		58,500	11,96	520 0		003460	•037	037
21		1287 .00	0°00	48,500	14.43	59°00		•000298	.027	.024
22		1268,50		66,000	10.60	49 0 0		•000236	•029	.027
23	KETO	1290 .50		76,500	9.15	35_50	00000	•00044 2	•034	0.36
77	6200	1294,00		61 ,000	11.46	63, 30	000483	.000550	045	.053
25		1297_00		58,500	11,96	61,50				

1

• • • • ·

,

ROOM USE ONLY

.

È

ESEN HER GOLY

. .

