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ABSTRACT
MOVING THE COMPACT SUBSETS OF MANIFOLDS
By

John Kenneth Cooper, Jr.

We make the following definition. A topological space X
is said to be l-movable when for each proper compact subset, A, of
X there is a homeomorphism, h, of X onto itself with A N h(A) = ¢.
Some results are:

1. If an open connected 2-manifold, M, imbeds in a 2-sphere
with n-handles, N, then there is an imbedding of M in N that is
dense in N.

2. 1f M' is a closed connected n-manifold, n 2 2, ¢ a
closed O-dimensional subset of Mn, and M" - C 1is l-movable, then

n

M is the n-sphere and C has an invert point.

3. A counterexample to the converse of 2 is presented for

4. If L 1is the (n-2)-skeleton of K (where K 1is a
simplicial complex, not necessarily locally finite, of dimension n)
then |K| - |L| is 1-movable.

5. Numerous examples restricting certain possible improve-
ments of the result of 4.

The notion of l-movable is generalized to that of k-movable

and we have results:
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6. Every open connécted triangulable n-manifold is n-movable.

7. For n = 5, every contractible open n-manifold is 2-
movable.

8. If M 1is a k-movable manifold with boundary, then that
boundary is not compact and has either O or an infinite number of
compact components.

9. Let M" be a closed n-manifold. If M" is k-movab le,
then M" is the union of (k+1) open n-cells.

We consider the l-movability of certain open 3-manifolds
and one of the facts obtained is that all W-spaces (and hence all

contractible domains in E3) are l-movable.
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INTRODUCTION

K. Borsuk made the following definition in 1934 (see
R.L. Wilder [23]); a subset M of Euclidean n-space is said to
be free, when for each ¢ > 0 there exists an e-transformation
of M onto M' and M NM' = g. A topological space X is said
to be invertible when for each proper closed subset A there exists
a homeomorphism h of X onto itself with A N h(A) = ¢. This
concept was created by P.H. Doyle and J.G. Hocking [6] and has
been studied extensively.

Thus the following definition seems a natural one to make.

Definition O.1: A topological space X 1is k-movable (for some

positive integer k) if and only if for each proper compact sub-

set B of X, there exist compact subsets BI’BZ""’Bk of B and
k
homeomorphisms hl’hZ""’hk of X onto itself with B = U B
i=1
and B N hi(Bi) = ¢ for each i =1,2,...,k.

1

Remark 0.2: A compact Hausdorff space X 1is l-movable if and only

if it is invertible.

Example 0.3: Both E" and S" are l-movable.
A l-movable compact manifold must be a sphere, but no such

. . . 1
restriction is possible for non-compact manifolds as E~ X M

where M 1is any manifold is l-movable (for example: El x s"

and En+1).



Remark 0.4: A k-movable topological space is {-movable for each
integer ¢ 2 k.

Although k-movable is defined in the topological category,
results are more interesting in the category of manifolds and much
of this work will concern manifolds.

The moving number of a space X is defined to be the

minimum {k|X is k-movable}, and 4w if ¢ = {k|X is k-movable}.

Chapter I of this thesis contains the result that for an
open connected 2-manifold, M, that imbeds in a 2-sphere with n-
handles, N, there is an imbedding of M in N that is dense in
N. The main theorem of Chapter II is: if M" is a closed
connected n-manifold, n 2 2, C a closed O-dimensional subset of
Mn, and M" - C is l-movable, then M®  is the n-sphere and C
has an invert point. A counterexample to the converse of this
theorem is presented for n 2= 3.

Chapter III is an investigation of the l-movability of
|K| - lL\ where K 1is a simplicial complex and L 1is a sub-
complex of K. We have the result that if L is the (n-2)-
skeleton of K (where K 1is a simplicial complex, not necessarily
locally finite, of dimension n) then |K| - |L‘ is l-movable.

This chapter includes numerous examples restricting certain possible
improvements of the above result.

In Chapters IV and V results are obtained concerning n-
manifolds and k-movability in relation to product spaces and manifolds
with boundary. Among the results are the following: Every open
connected triangulable n-manifold is n-movable. For n 2 5 every

contractible open n-manifold is 2-movable. If M 1is a k-movable



manifold with boundary, then that boundary is not compact and has
either 0 or an infinite number of compact components. 1If M s
a closed n-manifold, then M" is k-movable implies M"  is the
union of (k+1) open n-cells. A connected Hausdorff space that
is the union of k open n-cells is k-movable.

Chapter VI concerns the l-movability of certain open 3-
manifolds and includes the fact that all W-spaces (and hence all
contractible domains in E3) are l-movable.

The following notation will be used for certain sets and

topological spaces
Z = {n|n is an integer}
E = {x‘x = (xl,xz,...,xn) an n-tuple of real numbers}

where E" is given the topology determined by the Euclidean
distance. A space is called a n-cell, an open n-cell, or an

(n-1) -sphere when it is homeomorphic respectively to

{x € En‘distance (0,x) s 13, {x € En‘distance (0,x) < 1}, or
Sn-1 = {x € En‘distance (0,x) = 1} with the subspace topology
induced by that on E".

A Cantor set is a homeomorph of the standard Cantor set

in [0,1]. An invert point of a space X 1is a point p such

that for each neighborhood U of p, there exists a homeomorphism,
h, of X onto itself with h(X - U) € U. A topological space X

is said to be the monotone union of a sequence of topological spaces

Xi, i=1,2,..., when xi is a subset of xi+ for i=1,2,...,

1
)

and X = U X, A pseudo-isotopy of a topological space X is a
i=1




homotopy that is a homeomorphism at every level except at possibly
the last. For a subset, A, of a topological space, A will denote
the closure of A and bdy A the boundary of A.

A n-manifold, Mn, is a separable metric space each point
of which has a neighborhood whose closure is an n-cell. A manifold
is a topological space that is an n-manifold for some n. All

. . . . . n
manifolds in this thesis are connected. The interior of M is

the set of all points of the n-manifold M"  that have open n-cell

neighborhoods, and the boundary of M® is M" - (the interior of Mp).

A manifold with boundary is a manifold whose boundary is non-void.

A manifold without boundary is a manifold whose boundary is the

empty set. An open manifold is a manifold without boundary that is

non-compact, and a closed manifold is a compact manifold without

boundary.

In metric spaces, dist (x,y) will denote the distance between

x and y. In a metric space M, with (x,t) € M X El, Sx ¢ =
’

{y € M|dist (x,y) < t}. For tame and locally tame Cantor sets see

{19]. For locally tame in general see [18].

The end of a proof will be denoted by"E}'.



CHAPTER 1

2 -MANTFOLDS

Ian Richards in [217] classified open 2-manifolds. Richards'
work implies that every domain in S2 has an imbedding which is
dense in SZ, and this result is generalized by Corollary 1.5
to the 2-sphere with handles. We then prove that the open MGbius
band is not l-movable and (using a recent result of R. Jones (12}
that each open 2-manifold is the union of two open 2-cells) that all
open 2-manifolds are 2-movable.

We begin by proving some lemmas. In this chapter Tn
will denote the closed orientable surface of genus n, namely

the 2-sphere with n handles.

2
lemma 1.1: Let M be a compact 2-manifold without boundary,
2
C be a compact O-dimensional set, CC M , and U an open set

in Mz, U # g

Then there is a homeomorphism h of M2 onto itself

with h(C) < U.

Proof: Let {Ua} be an open covering of Mz with Ud homeo-

morphic to E2 for all «o. Now let ) > 0 be the Lebesgue

number of this covering. The proof of Lemma 1 in [1] ensures

a finite set of pairwise disjoint, closed 2-cells each of diameter
- t

< Ay Ssay B.,,B,,...,B , with Cc< U int B,. Choose p, € B, for each
1°72 t i=1 i i i



i=1,2,...,t and q, €U for i=1,2,...,t (with qi'»‘q_,I
for i # j). There exists a homeomorphism f of Mz onto it-
self with f(p;) =q, for all i =1,2,...,t. So f'l(U) is
an open neighborhood of {pl,pz,...,pt]. Since C 1is compact
and C C:'élint Bi’ there is a homeom:rphism g of M2 onto
itself (g1 is the identity on M2 - U int Bi’ and in int B

i=1
shrinks Bi N C into f-l(U) n Bi) with g(C) C:f-l(U). Thus

i
h = fg is the desired homeomorphism. [J

Llemma 1.2: For each integer n > 0, let C be a compact O-

dimensional subset of Tn’

Then Tn - C cannot be imbedded in Tt where t < n.

Proof: For each integer n > 0, let a simplicial complex of
dimension 2, K, be a triangulation of Tn’ and C a compact
O-dimensional subset of T - Let U be the interior of one of
the 2-dimensional simplices of K. Then by Lemma 1.1, there is

a homeomorphism, h, of Tn onto itself with h(C) € U. Thus

h(f, -C) =T -h(C) 2T -UD>D lK(1)|.

Suppose there were an imbedding, f, of Tn - C onto

T  with t <n. then fh™}|

¢ would be an imbedding of

x|

in Tt' But this contradicts the theorem of 5.5 in

k)

[24], which says that the l-skeleton of a triangulation of an
orientable 2-manifold is a minimal imbedding (i.e. the 1l-skeleton

cannot be imbedded in a surface of lower genus).



Hence the lemma. O

Lemma 1.3: Let M2 be a surface formed, as in Theorem 3 of [21],
from a sphere S by first removing a closed, totally disconnected
set X from S, then removing the interiors of a finite or in-
finite sequence Dl’DZ"°' of non-overlapping closed discs in

S - X, and suitably identifying the boundaries of these discs in

pairs, except perhaps the boundary of one disc may be identified with
itself to produce a 'cross cap'"; in the finite case there is such a
"cross cap" and in the infinite case, there may or may not occur such

a "cross cap'". The sequence {Di} has the property that for any open
set U in S, XC U, all but a finite number of the Di are contained

in U. P will denote this last property in the proof.

Then M2 cannot be imbedded in TK for any integer K 2= 0.

Proof: Suppose M2 is as above and can be imbedded in Ty for
some integer K 2 0. Let n be an integer greater than K. As
Mz imbeds as an open submanifold of orientable TK’ M2 is
orientable. Thus in the construction of M2 from S in the
hypothesis, no '"cross cap" could have occurred. So we cannot have
the case of a finite number of Di' Hence we may assume that the
Di have been indexed so that in the identification to create Mz,

the boundary of D is identified with the boundary of D

2j-1 23
for § =1,2,... .
Let g be the quotient map giving M2 from
© @ 2
S - XU U int Di)’ g: S - XU U int Di) - M. Let
i=l o i=1 2

2
B=M -g( U boundary D,). Then B imbeds in T, , as M
. i K
i=2n+1



does. But B is the quotient under the quotient map

g\ ® ® . By property P of the hypotheses,
S-(W J int DU U D)
i=1 i=2n+1 -
for each i 2 2n+l, d = distance (Di’ XU uUD.,) >0, Let Vi
j=1
j#i
be the open di/3 neighborhood of D, in S. Let p, € int D,
@ (-]
for each i > 2n+l. Then clearly S - XU J int D, U J D,)
i i
2n 1=1 i=2n+1
is homeomorphic to S - (XU U int D, U U {p }) by a homeo-
. i
i=1 i=2n+1

morphism ,h, which is the identity outside U V. i (shrink D
i=2n+1 !

to the point pi inside Vi for each i =2 2n+l).

Now, U {p; } is a O-dimensional set, and X
=2n+l

is O-dimensional (since it is compact and totally disconnected,

see [11] Theorem D, p. 22), so D =X U U {p } is O-dimensional.

=2n+1
D is also closed.
-1 2n
So gh ": 8§ - (XU U {p }J U U int D, ) —B is actually
i=2n+1 i=1
a quotient map, and identifies only boundary D2j with boundary
D2j-1 for each j =1,2,...,n.

This quotient, B, is homeomorphic to a sphere with n
handles less a closed O-dimensional set.
But then K< n and B imbeds in TK’ which contradicts Lemma

1.2. Hence the supposition was false, and so the lemma is proved.[]

Theorem 1.4: Iet M be an open connected 2-manifold which imbeds
in T , k = minimum {t|M can be imbedded in Tt}'
Then (1) If n =k, then M is homeomorphic to T, - D

where D 1is a closed 0-dimensional subset of Tn.



(2) If n >k, then M 1is homeomorphic to Tn -D,

where is a l-dimensional set,either (a) a finite set plus
8—8—— —8 or (b) a O-dimensional set plus the
Y (n"k)

union of (n-k) pairwise disjoint homeomorphs of the l-sphere.

Proof: Let M, Tn’ and k be as in the hypotheses of the theorem.
By Theorem 3 of [21], M is homeomorphic to either one of the
surfaces of the hypotheses of Lemma 1.3 or to the complement of
a closed O-dimensional set C in TL for some integer { 2 O.
The first of these cannot occur (else by Lemma 1.3, M could not
imbed in Tn’ which contradicts the hypotheses of the theorem).

Thus M is homeomorphic to TL - C where C 1is a closed
O-dimensional subset of TL' By Lemma 1.2, M cannot imbed in
Tt for t <4. But M 1imbeds in Tk’ so k =2 t. By the minimality

of k, k<4. Hence k =4.

(1) If n =k =4, then letting D C we have con-

clusion (1).

(2) If n>k =y, then |C| = the cardinality of C is
either < 2(n-k) or 2 2(n-k).
a) 1In the case that \C\ < 2(n-k) (M 1is not compact, so
‘C‘ 21) 1let p€C, and U be an open neighborhood
of p, which is homeomorphic to E2 by homeomorphism g: U - E2
and cnNnu-={p}. In U, let A= g-l(B), where B € E2 is
the union of 2(n-k) pairwise disjoint closed 2-discs,

Dl’DZ""’DZ(n-k)’ and 2(n-k)-1 arcs, connected in the manner
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of the sketch O O ..._Q .
D

1 P2 D3 ot Dynik

Since B 1is cellular in Ez, A 1is cellular in T{,' and
so there is a homeomorphism, f, from TL - {p] onto TL - A,
Thus f = flT -C is ahomeomorphism from T - C onto

2 (n-k)
(T, - A) - f(c - {p}). Let F= U intD,, and in T, - F
1 i=1 i <

make the identification of the boundary DZi-l with the boundary
of DZi for i =1,2,...,n-k. This gives Tn as the quotient

space of TL -F (as 4 = k). call the quotient map h,
h: TL -F-=T. So h‘TL'A: TL

(TL'A)'f(C-{P})

T, - [(h(A-F) U hf(C - {p})]. Thus f is a homeomorphism from

-A-oTn-h(A-F) is a homeo-

morphism and h = h| is a homeomorphism onto

T& -C onto T - [(h(A-F) U hf(C - {p})]. But M is homeomorphic

to TL - C and hf(C - {p}) if finite and h(A-F) is clearly

homeomorphic to 88— oo 8 .
1 2

(n-k)

b) 1In the case that |C| = 2(n-k), let be

pl’pZ"."pZ(n-k)

2(n-k) distinct elements of C. So clearly there exist pair-

wise disjoint open sets UI’UZ’”"UZ(n-k) of TL with P € Ui
for i =1,2,...,2(n-k) and Ui homeomorphic to E2 for
i=1,2,...,2(n-k). For each i =1,2,...,2(n-k) let Di be

a closed disk, cellular in Ui’ Di c Ui' Then there exists a
homeomorphism h1 from u, - {pi} onto U, - Di’ with hi
equal to the identity outside a compact set which is a neighbor-

hood of Di in Ui’ Define a homeomorphism h from
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2(n-k)
- - = h
TL {pl,pz,...,pz(n_k)} onto T& ;il Di by h\Ui i for
i=1,2,...,2(n-k) and h| 2 (n-k) = the identity. Let
Wt
2(n-k)
B= U int Di’ and in TL - B make the identification of the
i=1

boundary of DZi-l with the boundary of DZi’ for i =1,2,...,n-k.

This gives Tn as the quotient space of TL -B (as 4 = k).

call the quotient map g, g: T, -B-~T. g= g| 2(n-k) is
T,- U D.
Lo B

clearly a homeomorphism onto Tn - X where X 1is the pairwise
disjoint union of (n-k) homeomorphs of the l-sphere. Let

h = th _g» then g h is a homeomorphism from T, - C onto

T - [x U gh(c - {pl’pz""’pZ(n-k)})]° But M 1is homeomorphic
to TL - C and gh(C - {pl,pz,...,pz(n_k)}) is a O-dimensional

set with X as above, so we have (2) (b). O

Corollary 1.5: let M be an open connected 2-manifold which

imbeds in Tn' Then there exists N C:Tn such that N is

homeomorphic to M and N = T -

Proof: Let N = T - D of Theorem l1.4. D clearly has void
interior, so N=T -D=T .0
n n
Theorem 1.6: Let Mz be a compact 2-manifold without boundary
2

2
and C a O-dimensional compact subset of M . If M - C is

l-movable, then MZ is a 2-sphere.

Proof: Let M2 - C be l-movable, and U the interior of D,
a closed 2-cell in Mz. By Lemma 1.1, there exists a homeomorphism,

h, of M2 onto itself with h(C) € U. Then using D as the



12

initial 2-cell in the proof of Theorem 1 of [7], there is a

standard decomposition of Mz, MZ = P2 U A (with P2 homeo-

morphic to E2 and U C.Pz). But A 1is compact in MZ, so

h-l(A) is compact in M2 - C. M2 - C 1is l-movable, so there

exists a homeomorphism g of M2 - C onto itself with

g(h-l(A)) n h-l(A) = ¢. Thus h(gh-l(A)) n hh-l(A) = 3. By

Lemma 2.1, there exists a homeomorphism § of M2 onto itself

with §| 2 =8 h'gh-1 is a homeomorphism of M2 onto itself.
M_-C

But hgh~l(a) na = hgh'l(A) n hh'l(A) = 4. Thus (hgh'l) (A) p2.

So by Corollary 1 of [7], M2 is a 2-sphere.

Theorem 1.7: The open MSbius band is not 1l-movable.

Proof: Let the open MObius band M be given by the quotient map

g: [0,1] x (0,1) = M by the identification of (0,t) with (1,1-t)
for each t ¢ (0,1). A = g([0,1] X [% ’ %]) is a compact subset

of M and AD U = g([0,1] x (% , %)) which is an open Mobius band
and so not orientable. If M were l-movable there would exist a
homeomorphism h of M onto itself with h(A) c M - A, But M - A
is homeomorphic to S1 x (0,1) and so is orientable, while

h(Uy © M - A and so h(U) 1is orientable. Hence U 1is orientable,

This is a contradiction. ]
Theorem 1.8: All open 2-manifolds are 2-movable.

Proof: By a theorem of Jones [12], an open 2-manifold, M, is the

union of two open 2-cells, and so M 1is 2-movable by Theorem 5.5.0



CHAPTER II

1-MOVABILITY AND O-DIMENSIONAL SETS IN MANIFOLDS

Theorem 1.6 tells us that if the complement in a closed 2-mani-
fold of a closed O-dimensional set is l-movable, then that manifold
is a 2-sphere. In this chapter we consider the complement of closed
O-dimensional subsets of closed n-manifolds. The main result of
this chapter is Corollary 2.5, if M" is a closed n-manifold, C
a closed O-dimensional subset of Mn, and M - C is l-movable,
then Mn is the n-sphere and C has an invert point. We end
this chapter with some examples. For each integer n = 3 there
are two Cantor sets in S such that the complement of one of
them is l-movable while that of the other is not l-movable. But
a Cantor set clearly has an invert point and so the converse of

Corollary 2.5 is not true for n 2 3. We begin with a lemma.

Lemma 2.1: Let M" be a compact n-dimensional manifold without
boundary (n 2 2) and C a closcd O-dimensional subset of Mn.
Then for each homeomorphism h of M" - C, there exists

a homeomorphism h of M" such that ﬁ‘ n = h.
M -C

Proof: Given the homeomorphism h of Mt - C as above, define
h as follows in i) and ii).

i) hax) =hx) vxeM -¢c,so R| , =h,
M -C

13
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ii) Given e € C < Mn, there is an open neighborhood U
of e with a homeomorphism g: E" ;;Eg»u with g(0,...,0) = e.

Let U for i =1,2,..., then Ui is

1= 8680,...,0), 171

homeomorphic to E" and n Ui = e. By Theorem IV 4. of [11],
i=1
p. 48, E" cannot be disconnected by a subset of dimension < n - 2,

0<n-2, 80 U n (Mn -C) # ¢ is connected. Thus h(Ui n (Mn - C))

# ¢ 1is connected and so h(Ui n (Mn - C)) 1is connected and closed,
thus compact in M. Let «x € M" - C. Then h-l(x) eM -c
and hcl(x) # e. Clearly there exists in M" - c an open neighbor-
hood V of h-l(x) and integer jo so that VvV N Uj = ¢, and

o

so VN Ui = ¢ for all i 2 jo. Thus h(V) 1is an open neighbor-

hood of h(h l(x)) = x which is disjoint from h, n 0" - )

as h is a homeomorphism. Thus x ¢ h(, N ™" - ¢)) for all
@

i>j andso x ¢ N h(u, N M -C)). Thus
i=1

@
n h(Ui n (Mn - C)) € C, and is a compact non-void connected
i=1

set. The components of C are points. Hence

n h(Ui n (Mn - C)) = {t} for some ¢t € C.
i=1

Now define B(e) = t and denote u; by U i=1,2,....

iii) To show that h is continuous.
h is clearly continuous at each point of M - C, open in M".
let a € C and ﬁ(a) € @ where @ 1is open in Mn. Let Vi = an

of ii) for i =1,2,... . Then {ﬁ(a)} is the intersection of a

decreasing family of non-empty compact sets, h(Vi N (Mn -0) .

Since {ﬁ(a)} c 9o, Theorem 1.6 b) of [8], p. 226 implies there is

a positive integer io so that h(Vi n o - C)) < 8.
)
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Consider Vi (an open neighborhood of a). Then

(o}
ﬁ(viﬂ(Mn-C))-h(Viﬂ(Mn-C))ce. et bev, nc.
[o} [0} (o]

Now let Wi = U, of ii) for i=1,2,..., sothe W,,i=1,2,...,

bi i
form a neighborhood basis for b in M. Thus 9§ jo so that

W, cV,. SoWw, N -¢c)cv, nM" -¢) and
jo 10 jo 10

h®) ¢ hW

n - c) ch, n o - 0) ce.
o (o}

b

Thus ﬁ(vi ) g and so ﬁ is continuous at a. But a
was an arbitrary e?ement of C, hence h is continuous.

iv) To show that h: M® - M" is sur jective, we observe
that as h is continuous and M" is compact, ﬁ(Mn) is compact,
hence closed in the T2 space M". But M" is connected and C
is O-dimensional thus Mn -C= Mn. Now ﬁ(Mn)ZD ﬁ(Mn - C)
= h(Mn -C) = M" - ¢ with ﬁ(Mn) closed, so ﬁ(Mn) D Mn -c=M".

v) h is injective by the following.

As h is a homeomorphism of M" - C, so is h-l, and so by i),

P
ii) and iii) there is a continuous map ,(h- ) from M® to M"
7 PN
so that (hh)| " h™l. Note that (h'l)ﬁ| NoE bl =1 oo
M -C M -C M -C
the identity map on M" - C. But 1 ‘ =1 also,

n! n n
M M -C M -C
and as Mn is a T space with Mn - C dense in Mn we have
2 A~
(by 1.5(2), p. 140 of [87) (h-l)ﬁ: M" - M" is the identity map
on M". Thus h is injective.
vi) Since h is a continuous bijective map from the
compact space Mn to the T2 space Mn, h is a homeomorphism
(by Theorem 8, p. 141 [147).0
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Theorem 2.2: Let M" be a closed n-manifold which is the carrier
of a finite simplicial complex, T, C C.Mp, C 1is O-dimensional and
closed, n 2 2 and Mn - C is l-movable. Then either C has an
invert point or there exists p, c € C, p # c, where each homeo-
morphism h of C has h(c) = c and h(p) = p, and given

¢ > 0, there exist (open in C) neighborhoods ep of p and ec

of ¢ with ep«: Sp , ec C:Sc and a homeomorphism h of ¢C

€ ’€

such that h(C - ep) < ec (thus p and ¢ are the only fixed
points of C). This h is the restriction to C of a homeomorphism
of M" onto itself with the above property for ep and ec open

. n
in M.

Proof: i) There exists a sequence Ki’ i =1,2,... of compact connected
sets c M® - C such that M" - K, C(x€ M"|dist (x,C) € A )
and A 0. To construct the {Ki}, let T(o)=T, let T(i) be

the barycentric subdivision of T(i-l)

for i =1,2,..., and ki
be the mesh of T . Then A; ~ 0 (Theorem 5-20, [10]). Let
L, ={s¢€ T(i)\ |s| N ¢ =¢} and thus the number of components
of |L,| is finite, say Litgsee e |L.| =M - ¢ which is
path connected (connected by Corollary 1, p. 48 of [11], and

each point has a path connected neighborhood so Theorem 5.5, p.
116 of [8] gives path connected), thus there exists arcs Py

3

) which is clearly

in s® - C from a point oft Ll to a Eoint of 1 for
i i

j=2,...,t.. Let K. =(U 24)U (U p

i i j=1 j j=2 3

connected, < Mn - C and compact and Ki 2 \Li\. If s ¢ Mn - Ki

then s 1is a point of simplex of T(l) which also contains a

point of C and has diameter < xi; so dist (s,C) s xi.
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ii). For each positive integer t there exists a compact
connected set Mt such that Mt<: M" - ¢ and the diameter of each
component of M" - Mt is <« %, and Mn - Mt c {x € Mp\ dist (x,C)
< %}. Construct M _ as follows for each positive integer t.

As C 1is O-dimensional, for each b € C, there is an
open neighborhood, ep, of b in M" with (boundary eb) necs=g
and 0, < {x € Mn‘dist (x,b) < %E . C 1is compact so a finite

number of these suffice, say eb ,...,eb , to cover C. Let
L L 1 t

N=m®" - Usg )U (U boundary §_). Then Nc M" - C, N is
._. b . b,
=17 j=1 j

clearly compact, and each component of M® - N is a subset of

one of the eb and thus has diameter < the diameter of eb < %.

] 3
As NNC=gp, we have d = distance (N,C) > 0, so there is a

ki from i) so that ki < minimum (d,%). Thus N c:l(i and
each component of Mn - Ki is thus a subset of one in Mn - N

and has diameter < %. Let Mt = Ki’ then clearly M - Mt <

{x € Mn\ dist (x,C) < )‘i} c {x € Mn‘dist x,C) < %}.
iii) As M" - C is l-movable, there exist homeomorphisms

n . =
ht of M - C onto itself such that ht(Mt) N Mt ¢. But

ht(Mt) is connected and so a subset of one of the connected com-
ponents of (Mn - Mt) - C, which must be a subset of one of the

components of M" - Mt’ all of which have diameter < %. So

ht(Mt) has diameter < %. Now, for all t, Mt # #, so there

[}

exists a sequence <at>

t=1 with a € ht(Mt)' But this sequence is

. n .
in a compact space, M , and so has a subsequence which converges

. n @ n
in M, say <at > - ceEM.

=1
j ]
Thus the sequence of compact connected sets [ht (Mt )}?=1
I

converges to c.
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We now show that c € C. Assume c € C. So d = distance

(c,C) > 0. Then there exists jl,jz,positive integers, so that

for all j =z j,, and El;-< %, and diameter

12
d . - . o s
htj(Mtj) <3 for all j =2 iy- Thus for all j 2 jo max imum (11,32),

h, (Mtj) c{x ¢ M“\disc (x,c) < %} =S

. d
dist (c,at) <3z

c,d/2° So for each

x € ht (Mt ) we have dist (x,C) = d/2 (else dist (c,C) < d,

do o d_d_ 1 _ 1
a contradiction) and so dist (x,C) = 2 > 4 > > T By ii)
2 o
we have x ¢ M - Mt (if not, dist (x,C) < El;ﬁ thus
Jo Jo
x € Mo But then ht (Mt )EM which contradicts the first
Jo Jo Jo Jo
sentence of iii), i.e. ht(Mt) n M, = ¢, as Mtj # ¢. Thus the
0

assumption c € C is false and so c € C.

iv) Note lLemma 2.l says that any homeomorphism of M - C
extends to a homeomorphism of M. Thus we have for each j a
homeomorphism 8¢ which is the extension to M" of ht.’ and

J J

so {gt,(Mt,)}?=1 converges to c.

v) Assume C has no invert point (x is an invert point of
the topological space X means for each open neighborhood 8§ of x,

there exists a homeomorphism h of X so that h(X-¢) € 9). For

each j =1,2,..., let U, be the component of Mt - Mt that has

j .
J
. i c .

c € Uj There is a k so that gtk(Mtk) c:Uj and M':j Mtk So
g (M ) CZUj; denote this gt by ﬁt . Let ej be that component
k 3
of Mn - M such that h (8.) 2 M and hence h (p.) 2 M - U,

tj j tj t, j j

which is connected and contains Mt . C has more than one element
(or else it would have an invert point) so let z € C, z # c.

let x = distance (z,c). Then there is a positive integer jo
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so that for each integer j 2 jo, 1/ < ’23 But Uj has diameter

n -~
j s SO zéUj. Thus z € M -UjChtj(ej
and hence ﬁ-l(z) € §.. But B ‘ is a homeomorphism of ¢
tj 3 tj C
onto itself, so ﬁ;l(z) €ECNoO,. Llet b, = ﬁ;l (z). Then
3 . b taHg

is a sequence in compact C, and so has a subsequence

<

< <’5‘and cEU )

ﬂlﬂ
e | s

3

(-]

<b.>
3 i=1
<bj>L =1 (with _’|1 2 jo) which converges to a point, say p, of

C. Thus the sequence <@ converges to p.

le

So, given ¢ > 0O, there exists an { such that ¢, < S
JL Pse
and le—sl< €, SO U c S (as c €U which has
t j Cy€ j
i, " L
diameter < L <¢) and h (6, ) = M" - U, . Denote h ‘
‘3 5, Ip £y, ©
1 L '
by h and ¢, NC by ¢ and U, NC by U . Thenfor h=h ,
€ jL € j{. e €

ep = ee’ ec = Ue’we have h(ep) 2C - ec and so h(C - ep) = ec. Note

-1
ee (et Sp,e’ Ue (et Sc,e’ h “(C - ec) C ep. It remains to show that
P € ep =9 Ve, p#c, and that p and c¢ are fixed points
€

under homeomorphisms of C.

vi) p# c. Suppose p =c. Let @ be any open neighbor-
hood of p. Then for some positive number ¢, S =S5 c 9.

Ps>€ Cye
Now by v) there exist open sets ee and Ue neighborhoods of »p
and c¢ respectively and a homeomorphism h of C so that
h(c-ee):Ue and ¢ €8S and U €S . But C -8
€

Pse € C,e
< C-8 SC-9 so h(C-9)ch(C-9)csU <8 < 0.

Pre € € [ cs€
Thus p = c is an invert point of C. This is a contradiction.
vii) There does not exist a homeomorphism h of C onto

itself such that h(p) = c. Suppose there were a homeomorphism

h of C such that h(p) = c. Let ¢§ be an open neighborhood
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of c. Then for some 8 >0, S, 8 C 9. Llet o =1/2 min (B, dist
Iy

(c,p)) >0. So S, NS =g and S_

C 0, h 1is continuous
1o 4 P o

) C.Sc and § < .

Y

so there exists § > 0 such that h(Sp 5
b}

As C 1s O-dimensional there exists a clopen (closed and open)

neighborhood B of p, B C:Sp So h(B) C:Sc o is a clopen

5
b}
neighborhood of c. Since B is a neighborhood of p, there

exists a )\ > 0 such that Sp X<: B and )\ < o. By v) there

]
exist open sets ek and Uxand ahomeomorphism f of C so
that . < S U S and f(C - c U . Define a
2 e T e (€ -8) <=1,

homeomorphism p of C by letting u‘B = h|B, u‘h(B) = h-l\h(B)
and p‘C-(B Uhe@)) = the identity on C - (B U h(B)) (this is

a homeomorphism as B and h(B) are clopen, so C - (B U h(B))
also is clopen, and h and h-1 are homeomorphisms). Consider
the homeomorphism fu on C. p(C - Sc,B) c p(C - h(B))

C-ph(@B)=C-BccC-S So fu(C - 8)C fu(C-S_ )C

Ps\ »P
f(Cc - S c £f(C - ¢ cUuU cS c S c 8. Thus is a
(€ =8, cfC-8)cy, 9. Thus ¢ is an

CHA Cyx

invert point of C. But this is a contradiction.

viii) plc] is a fixed point of C; i.e. both are fixed.
Suppose not, then there exists a homeomorphism f of C so that
£(p) # p [f(c) #c], then £(p) ¢ {p,c} [£(c) ¢ {p,c}], as no
homeomorphism of C cansend p to ¢ or ¢ to p by vii).
Given any heighborhood 6 of c[p] there is a g >0 so that
S c 9], let a = 1 min(g, dist (p,c), dist (£(p),c),
c,8 »B 2
dist (£(p),p)) [o = 1/2 min (B, dist (p,c), dist (f(c),c),

< S
o [ b

dist (f(c),p))]. As C 1is O-dimensional, there exists a clopen
neighborhood B of p[c] with Bc S [Bcs ] where
P,6 c,5

§ > 0 1is that given by the continuity of f so that
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£G5S ) 8 <a £G5S 5 < a]-

c S c S
£(p) st 60 S 38(e) 0
Thus we have f(B) C Sf(p) i and so f(B)c C - S

Psd

P o
L£E@®) c sf(c),a and so f(B) c C - Sc a].

But B 1is a clopen neighborhood of p[c] so there is a

A>0 with ) <o so that SPXCB‘:SCKCB]' By v) there

exist open sets ek’ U)‘ and a homeomorphism hk so that

-1

h (C-90 U d h - d S , U CS .
\€-8)cu, and h(C-U)ce and 8 S ..U CS
hi h f h - S ch (C-~-S
Thus h £(B) < h,(C -5 ) ch,( p

h - cS
>‘)C >\(C GL)CU c

A

-1 -1 -1 -1
- - h -
[hk f(B) C hk (c Sc’a) c hk (c Sc,)‘) c \ (c U)‘) c e}\ c Sp,k]

-1 . -
and hkf(B)[hk f(B)] 1is clopen. B N h)‘f(B) = (B N h)\lf(B) = 4]

sh

’ t]

Define a homeomorphism p of C by “'\B =hkf‘B

- -1 ) _
M'\h)\f(B) - (h;‘f) ‘hkf(B) and u‘C-(B U h)\f(B)) identity on
C- (BUh £(8))
lk -1_.-1
lela = h £l u| =, £) | . , and | ) =
s A s hklf(B) A h)\lf(B) C-G U h)‘lf(B))

identity on C - (BU h £®))].
Consider the homeomorphism hkp' of C [h;lu of C(].
(o (e C-hf£f(@ =C - h £f(B =C-BCcCcC-~-S ccC -
e ( 8) C u( X (8)) e ( \ (8)) - N

so hxp.(C - 9)C h)\(c - ek) c U)‘ C Sc’)\ c sc’a C SC»B -~ ©. Hence

c 1is an invert point of (C, a contradiction.
(w¢c - 8) cu(Cc - h-lf(B)) =C - p.(h-lf(B)) =C-BcC-S c
A A SFRN

“‘c-U)cpg cS S S _—g.
A ( X) ek PsA P P,B ®

Hence p is an invert point of C, a contradiction.]

C-u so h;lu(C -8)ch

ix) If p ¢ ee for some €y then let o = 1/2 minimum
0
e~y dist (p,c)). So there exist open sets § and U and a
0 o
o’

homeomorphism h of C such that h (C-9)c U, c €U,
o o o o a

g S ,Uacsc

. f and
o P, I p € eoz’ replace ee, Ue’ n h, by

b}
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and h i . f . Th =
8, U,» an o respectively. If p ¢ 9, Then as o n U, =9
Ch - c and .
we have ha(p) o:(c ea) Ua nd p ¢ Ua Thus p is not a
fixed point after all, a contradiction. Hence p € ea as above.
And for the new choice of ¢ =96 and ¢ =U,and h=h we
|1 % o c o o

have p € ep' Making this change for all € such that p ¢ ¢
€
0
gives us the theorem. O

Theorem 2.3: The non-invert point case in the conclusion of

Theorem 2.2 cannot occur.

Proof: Assume as in the non-invert point case in the conclusion

of Theorem 2.2, that there exist p, ¢ € C, C a compact O-dimensional
metric space with h(p) = p and h(c) = c for all homeomorphisms

h of C onto itself. Also given any ¢ > 0, there exist open

neighborhoods ep of p and ec of ¢, with ep<: Sp , ec cSs

’€ Cye

and a homeomorphism h of C onto itself such that h(C - ep) c ec

(note that h-1 is thus a homeomorphism of C onto itself such

-1
that h “(C - ec) = ep)-

H have that h(C - S c h( - c c S
ence we have ( p e) ( ep) 8. .

’ ’€

-1 -1
and h “(C - Sc’e) ch “(c - gc) c epc Sp,e.

Now let d = 1/3 distance (p,c), so d > 0 and since C

is O-dimensional there exist clopen sets D0 and E0 with

and c¢ € E0 = Sc q Note DO n E0 =¢. As D0

p € D0 < Sp,d

and EO are open, there exists an o >0 so that Sp,ao C:D0

and S — E,, 80 a, sd . So by the hypotheses there exists
c5a) 0 0

of C onto itself such that h_(C - S ) C
0 C,q

a homeomorphism h0

. So h.(C - - - D.. Le
sp’o{0 o h (C - Ey S hy(c SC’”o) c sp’o[0 C Dy et Gy

Cc - (D0 J Eo) cC - EO’ then hO(GO) C.DO. Note G

o

]

and hO(G

0 0)



are clopen sets. Let
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%

= minimum {E’ L

2°2

Gy U hO(GO))}. Then there exist clopen sets D

P € D1 <SS and c €E_ €S

there exists an o

P>d,

1

>0

1

so that

c,d

1

S

. As D
|

distance ({p,c},

1

and E

and E1 with

1

cD and S CE

P,al 1

Csaq 1’

so @, s d,. By the hypotheses there exists a homeomorphism

h

h

1

1

1 1

of C onto itself such that hl(c -S

(c - Dl) (= hl(C -S

)&S

p’dl
(hO(Go) U Dl) ccC - Dl’ then hl(Gl) CE

C,dl

Psa’l

SE.,. Let

1

1

Gy

) &S . So

C,Q’l

=D -
0

are open,

Define inductively di’ Di’ Ei’ ays hi’ and Gi as follows

o,
for each integer i 2 2. Let d, = minimum {ET, 1.1, L distance
i-1 i o1 2 2

({psc}, U (Gj U hj(Gj)))}, then there exist clopen sets Di
3=0
and Ei with p € Di c Sp’di and c¢ € Ei C Sc,di' As Di
and Ei are open, there exists an a; > 0 so that Sp,di C.Di
and S c E.,. Note that D, C D, and E, C E .
c,a i i i-1 i i-1

home omorphism hi of C onto itself such that hi(C - Sc

i

Now if i 1is even, by the hypotheses there exists a

So hi(C - Ei) C.hi(C - Sc )

)ai

cS

P

CD, . Let

o, i
™

(h; ;G PDUE)CC=-E, then h (G)CD,.

h,
i

.
1
G, =B, 5 -

) =

PHo . )

If i 1is odd, by the hypotheses there exists a homeomorphism

of C onto itself such that hi(C -S

hi(C - Di) C hi(C - Sp

o

i

’Qi

CE,. Let
i

(h; 16, )UD)c<=C-D,, then h,(G,) CE,.

fln, o

D,
i

Define the function f

-1
= h ’
i ‘hi(Gi)

are clopen for all

£(p)

i, the

of C

Cs

=c¢, and f£f(c) = p.

and hi(Gi)

G,
i

yc s . So

onto itself by f\G = h,

Since Ei and

are clopen for

1
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all i (inductively as Go is clopen and all the hi are homeo-

morphisms), and the family of sets {H\H = Gi or hi(ci) for some
non-negative integer i} is easily seen to be pairwise disjoint,
we have that f is a bijective function of C onto itself which

-]

is continuous on U (G, U h,(G.)) =C - {p,c}. As d, < 27, the
. i iti i i
i=0 2

]

Di's converge to p and the Ei s converge to c, thus for i

@©

[+
U G g U h,,@G hile £ i = 2k
j‘k""l 2j+1 j=k+1 2j( zj)’ wnhile Ior 1 ’
[- -}
E.={cJU J 6G6,,U U h (G,.,,). So for i even f(E.) C D,
i jek+tl 2j =k 2j+1723+1 i i-1
and for i odd f(Di) C:Ei_l. By this, f is easily seen to be con-

= 2k+1, D, = {p} U
-]

tinuous also at p and c. Hence f, a bijective continuous func-
tion from a compact space to a Hausdorff space, is a homeomorphism.
But f(p) # p (and f£f(c) # c) which contradicts our
hypotheses. Hence our assumption of the existence of a space
satisfying the properties of the non-invert point case in the

conclusion of Theorem 2.2 was false.d

Theorem 2.4: 1If M" is a closed n-manifold, C is a compact
O-dimensional subset of Mn, and M" - C 1is l-movable, then Mn

is an n-sphere.

Proof: Let M" and C be as in the hypothesis and supposc M"
were not an n-sphere. A result of D. Galewski, Corollary 1l.14

of [9] is that C has an open neighborhood, U, which imbeds in

E". So Mn - U 1is a compact subset of M" - Cc. d = distance

(c, M - U) >0. Llet c, {Mt 1, g, be as in the proof of
h| ]

Theorem 2.2. c¢ € U, which is open, and M"

is a n-manifold with-

out boundary, so there is an open set V which is homeomorphic

n

to E and ¢ € VC U. Since the gt (Mt ) converge to c, there

j 73
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is a positive integer y such that - (Mt ) €V for all integers

i
1
j >y. There is an integer b >y so that p < d. Now, tbzb
so l—s%<d. Hence M :(Mn-U), so g, (Mn-U)Cgt (Mt)CV-
b b b b b
So g, (Mn - U) 1is contained in the interior of a closed n-cell,
b

D, with bicollared boundary in V. Hence M - U 1is contained

in a closed n-cell (gtb)-l(D) with bicollared boundary, which

shall be taken as the initial n-cell in the proof of Theorem 1 of

[7]. Thus the "standard decomposition" of [7] which is obtained, P U

R = Mn, has M" - Uc P" soRC U. This says R has a neighborhood, U,

which can be imbedded in E". But this contradicts Theorem 4 of [7].[3
Theorems 2.2, 2.3, and 2.4 together imply immediately the

following corollary.

Corollary 2.5: If M" 1is a closed n-manifold, C a closed O-

dimensional subset of Mn, M® - ¢ is l-movable and n = 2, then M

is the n-sphere and C has an invert point.

Corollary 2.6: Let C be any Cantor set in En, n 2 2. Then

En - C 1is not l-movable.

Proof: Let h be the inverse of the stereographic projection homeo-
morphism, h: E" - s" - {r} = Sn, p € s". so h‘ n is a homeomorphism
of E" -Cc onto S" - ({p}U h(C)) and H = {p% 6Ch(C) is clearly
O-dimensional and closed. Suppose E" - C were l-movable, then by

Corollary 2.5, H has an invert point. But {p} is the only isolated

point of H and so H has no invert point. This is a contradiction. 3

Because of Corollary 2.5, let us now look at the comple-

ments of some O-dimensional subsets of Sn.
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Notation for Lemma 2.7 is as follows: 1let '"Cantor set"

mean & O-dimensional compact, perfect metric space, let

n+2
X = (xl,xz,...,xn+2) € E

Sn+1 - {x € En'l'z‘ ‘x‘ = 1}

n+1
\

7]
I

={xe€s = 0}

Xn+2

L 4 = L ¢

X2 3 s oo

p=(,0,...,0) € "2 .

n+1‘

S1 ={x €S = 0}

n+1l

Lemma 2.7: Let C be a O-dimensional compact set, C & s" - {p},

1
n21l, AcS" - {p}, and o a homeomorphism from C onto A. Then

Sn+1 - C 1is homeomorphic to Sn+1 - A by the restriction to

+1 +1
Sn - C of an extension of o to Sn . There exists such an

A and o for each such C.

Proof: 1) The stereographic projection, g from Sn+1 - {p} to

En+1 =E" x E1 can be taken so that g(Sn - {p}) =E

g - (D) = {(0,...,00) x EL.

" x {0} and

ii) Thus C and A are compact and so g(C) and g(A)

are homeomorphic by g o g and compact,and so closed.

-1‘
g(C)
Also g(C) < E" X {0} and g(A) = {(0,...,0)} x El. So by Klee's

n+l = g0

Theorem 3.3 [15], 4 a homeomorphism h@& E E X E1 such

that h(g(C)) = g(A) and h|
1

-1 -
g(c) ~ 8o8 lg(C)' Extend g 1hg

to ﬁ, a homeomorphism of Sn+ onto itself, by ﬂ(p) = p. Then

1

f is a homeomorphism of Sn+ and ﬁ(C) = A. Note:

- - _ -1 -1 -1 _ -1 -1,
fl, == 1hg\C g lhlg(c) g (h\g(c)) g gog \8(0) 8 gog 8|,
=o. So Hh -1 is the desired homeomorphism.

sh-i.

c

ol
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iii) c < C (a "Cantor set") © s". ¢ has at most a
countable number of isolated points (as s" s 222 countab le)
say {ai}?gl, For each i, there clearly exists a "Cantor set",

n . . 1

'1‘i C S with a, € Ti and diameter Ti < e

® n
let c=CcU (U Ti) €S . Now, the T, are compact,

i=1

thus closed, and O-dimensional in C, so that Theorem II 2. of

[11] applies to give C is a O-dimensional metric space. C

clearly has no isolated points and so is a perfect space. Let

c beapoint of C. If c€C, then c€C. If c ¢C, then

d = distance (c,C) > 0. So there is a positive integer n with
n
%-< %. Thus the neighborhood Ne ={x¢€s |distance (c,x) < e}
of ¢ for ¢ = % is disjoint from ‘1‘K for all K 2 n (else
- d .4 =
d < distance (c,ak) <3 + 2 d). Thus Ne n (KinTK) = ¢ for
all ¢ < %. But N N C ¢ ® for any ¢ > 0, so for each
d € n-1 n-1
0O<e<3 N N(CU U T,) #4. Thus c€ (CU UT,) =
2 € - K —_+ K
K=1 K=1
n-1 _
CU U T,sC. Thus C < C and so C is closed, therefore

k=1 K

compact. Hence C 1is a ''Cantor set'.

iv) It is well known that any 2 'Cantor sets' are
homeomorphic (reference Corollary 2-98 of [10]). Since there
is clearly a homeomorphic image B of the standard Cantor set
in S1 - {p}, there is a homeomorphism f from C onto B,
and so, f(C) & B &< S1 - {p} 1is the desired set A0

Lemma 2.8: Let C be a Cantor set < S" - {p} (with notation

ags in Lemma 2.7) n 2 1. Then Sn+1 - C 1is 1l-movable.
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Proof: Using the notation of Lemma 2.7 and of i) in its proof,

let D be the standard Cantor set in [0,1] C E1 and

{x € El‘x + 1 +t €D for some integer t} and consider

2
{0,...,00} x F < {(0,...,0)} x ElcEn X El. Then

T =E" x E1 - H is l-movable. Since if M 1is a compact set in

T =E" x E!

F

H

1 1
H, then S = {y € E1|(x,y) EMcE"XE -HcCE" XE

for some x € En} is compact. So there exists an integer L>0
with |y| < L for all y € S. Define h: T~ T by h(x,y) = (x,y

+ 2L). h is clearly a homeomorphism of T onto itself with M N h(M) = ¢.

Now g-1|T is a homeomorphism from T onto g™+l _

-1 n+l n+l
({pJUg "(H)) and f£f: S - S defined by f(xl,xz,...,xn+2)

1

is a homeomorphism of Sn+ onto itself

= (-x1’x2, cee ’xn+2)
1 1
with £(S°) =S".

Let A = f({p} U g-l(H)) which is a Cantor set since
{p} U g'l(ﬂ) clearly is a Cantor set.

Now O ¢ F, so {(0,...,0)} x {0} € H. Thus
p = £(-1,0,...,0) = £ g 1({0,...,0} x {0}) ¢ £ g" (). Also
f(p) # p. So p¢ A and A C:S1 - {p}. Since any two Cantor
sets are homeomorphic there exists a homeomorphism o from C

onto A. So Lemma 2.7 applies and Sn+1 - C is homeomorphic to

Sn+1 - A, which by f = f-l‘ is homeomorphic to Sn+1 -

S -A
({p} U g-l(H)) which is homeomorphic by g to T which is

lemovable. Thus Sn+1 - C is l-movable.d
Lemma 2.8 followed by Corollary 2.5 proves that a Cantor
set has an invert point (this could of course be shown directly).

The following theorem is a counterexample to the converse of

Corollary 2.5, in dimension = 3; that is, C C Sn, n >3, and C
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has an invert point does not imply that s" - ¢ is l-movable.

Theorem 2.9: For each integer n 2 3, there exists a Cantor set

C in Sn with Sn - C not l-movable.

Proof: let B be a wild Cantor set in s" (such exist by [3]),
then where p € s" - B and g: s" - P~ E' is the stereographiic
projection homeomorphism, B is wild in s" - p and g(B) 1is wild
in E". By Corollary 3 of [19], g(B) contains a Cantor set A
which is wild at each of its points in En. There exists a trans-

lation homeomorphism £ of E" with f (A) C:E2 X (0,4=) X En-3 C

2 1 n-3 -

E°"XE XE E (as A is compact). ILet L' be the
standard Cantor set in El. Then L =1'x {(0,-1,0,0,...,0)}C
E X En-1 = En is a tame Cantor set in En.

Clearly f£(A) U L is a Cantor set in E" which is locally
wild at each point of f(A) and locally tame at each point of L.

let C= g-l(f(A) U L). There is a constant, K, large

2

enough so that T = {(xl,...,xn) € Enl xi + x2 +...+ xn = K} U

2

2 .
{(xl,...,xn) € En‘ xi + x, < K and Xq =X, =e..=x o = 0} gives

three connected components for En - T, the two bounded ones are
u' and v', containing respectively f(A) and L.

so s" - g-l(T) has three connected components, with two
of them u = g-l(u') and v = g-l(v') containing respectively
g @) and g7,

Suppose s" - ¢ were l-movable. Let 4 = 1/4 min {dist
@ Ew, gTtw), aise @ @), g7tan, dise @ Hw, g7,

diam (g'lf(A)), dist (p,C), diam g-l(L)}.
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In the proof of Theorem 2.2, there exists a tj with
0
ith
l/tjO <4 and ht OMt ) C:Sc,L wi ht a homeomorphism of
o o io
s" - c. From Lemma 2.1, ht extends to a homeomorphism h
Jo

n
of S onto itself. { was chosen so small that no component

of s" - Mt contains points of both g-lf(A) and g-l(L)

3o
(as g-l(T) separates g-lf(A) and g-l(L), while g-l(T) C::Mt ).

Jo
But S° - Sc L is connected and so contained in a single connected
?
component of s® - h(Mt ). But 4 was chosen so small that
Jo

n contains an open neighborhood of a point from each of

S - Sc,L
-1 -1 -1 -1
g f(A) and g (L), say a€g f(A),beg (L) and a € 0,2

. n n
b € eb, ea and eb are open in S , and ea J eb S - Sc,L

Thus h-l(ea U eb) C some connected components of s" - Mt
1 1 1 Jo
and so {h "(a), h " (b)] is a subset of either g f(A) or
g'l(L). In the first case let ¢« = h'l(b) € g‘lf(A) and ¢ = h,
and in the second case let o =a and ¢ = h-l. Then ¢ 1is a

homeomorphism of Sn and o € g-lf(A) with o(a) € g-l(L). As

h is an extension of ht and p € Mt (by the choice of )
;o Jo
- n
{Poe(@} € {Ph(pP),h "(p)} &S - cC.

n
Since S - C 1is a connected manifold, for any two

points (and so for P and o(p) in particular) of

s™ - ¢ there is a homeomorphism ¥' of s -¢c onto s" -cC

which is the identity outside of and on the boundary of an n-cell

in s" - C, and Y¥Y'(p(p)) = p. Extend Y' to a homeomorphism

Y of s™ onto itself by Y\ n = y' and Y\C = jidentity on C.
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Thus Y¢ is a homeomorphism of s with Yo(p) = p and

so Y¢‘ n is a homeomorphism of s" - p onto itself. Hence

S -p

po= g(y¢‘ n )g-1 is a homeomorphism of E" onto itself which
S -p

sends g(x) € f(A) to an element B of L.

Then there exists an open neighborhood @ of g(w)
with gcC £2 x (0,4=) X "3 and w(e) C E2 x (~,0) X "3,
So w(6 NE(A) UL)) =u(dN £f(A)) € L which is tame in E"
and so f(A) U L 1is locally tame at g(x) € f(A). This is a
contradiction as f(A) U L 1is wild at each point of f(A). Thus
s" - ¢ is not l-movable.Dd

There is perhaps a chance of proving the following converse

of Corollary 2.5 when n = 2, because of Lemma 2.11 and Theorem 2.13.

Conjecture 2.10 If C 1is a closed O-dimensional subset of 82

and C has an invert point, then 32 - C 1is l-movable.

2
Lemma 2.11: If C 1is a O-dimensional compact subset of S  and
h is a homeomorphism of C onto itself, then there exists a

homeomorphism h of S2 onto itself so that ﬁ\c = h.

Proof: i) C is a subset of a O-dimensional, compact, perfect
subset A of 82. First C 1is a second countable metric
space (as S2 is such), and hence has at most a countable number
of isolated points, say {xi|i € 1} for some I c {1,2,...].

For each i € I, x

i has a open neighborhood N with N C Sx 1
i’i

and a homeomorphism g: N — E2 with g(xi) = (0,0). Let

A

s g-l(B) where B is the standard Cantor set in [0,1] X

i

2
{0} cE". Then Ax is a O-dimensional, compact, perfect subset
i
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of 82 with x €A <SS 1. let A=CU U A* . Then by
X1 Xy ier “i
Theorem II 2, of 11], A is O-dimensional, A clearly has no
isolated points, and as diameter A* < % with Ax and C
i i

closed for all i € I it is quite easy to show that A is
closed. Thus A 1is also perfect and compact in Sz.

ii) Let x € 32 - A. Then there is the stereographic
projection homeomorphism s: s? - {x} - EZ. let B' be the
standard Cantor set in [0,1] x {0}, thus a perfect, compact,
O-dimensional set in Ez, as is s8(A). As components of O-
dimensional sets are points, Theorem I of [1] applies and there
is a homeomorphism t of g2 onto itself with t(s(A)) =B'.

Now let B = t(s(C)). If it were true that for every homeomorphism
2

2 . a
g of BCE onto itself, there 1is a homeomorphism & of E

onto itself with §|B = g, then we would be through. For given a

-lt-l‘

homeomorphism h of C onto itself, g = ts hs B is a
homeomorphism of B onto itself, and so extends to homeomorphism
a 2 ~ = -14\ .

g of E onto itself with g\B =g. Thus f =s lt gts is

2
a homeomorphism of S - {x} onto itself and so extends to a
2
homeomorphism fh of S onto itself by h(x) = x and

ﬁ\ 2 = f. Now E‘C = f‘c = s-lt—lﬁ ts[c (and as ts(C) =
s -{x}

-1 -1 -1
= t t = 8
B)= s g S‘C

-1t-1ts)h(s-1t-1ts)\c =

t-l(tshs-lt-l)tslc = (s
h{ ., = h.
e
iii) Thus it remains only to show that if g is a homeo-
morphism of B, a closed subset of the standard Cantor set < [0,1] X

{0} < E2, onto B then there is a homeomorphism g of E2 onto itself

with Q\B = g. So suppose such a B and g are given. Define
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1 2
a homeomorphism r from B onto a closed subset of {0} XE CE

by r(y,0) = (0,z) where g(y,0) = (z,0). Then by Klee's Theorem
3.3 [15], there exists a homeomorphism % of E2 onto itself
with ?IB =r. : E2 - Ez, defined by {L(x,y) = (y,x), is a

homeomorphism of E2 onto itself and so let § = ¢ - +.0

Corollary 2.12: Let CcS" - {pr} c Sn+1 - {p} as in Lemma 2.7.

Then any homeomorphism of C onto itself extends to a homeo-

morphism of Sn+1 onto itself.

Proof: Let h: C - C be a homeomorphism of C onto itself. By
lemma 2.7 there exists a homeomorphism o: C~+ A (of C onto a
set Agc S1 - {p}) and this homeomorphism extends to a homeo-
morphism a of Sn-"1 onto itself. Then oh: C~ A is a
homeomorphism satisfying the hypotheses of Lemma 2.7, so there is
a homeomorphism B of s"™! onto itself and B‘C = oh.

Consider the homeomorphism 6;)-15 of Sn+1 onto itself,
@ olg= @Bl = @ ah =(@ M pah = o leh = 0.0

Theorem 2.13: 82 - C 1is l-movable when C 1is a '"Cantor set'.

Proof: 1Let us use the notation for Lemma 2.7 with n =1, If p € C,
then there is q ¢ S2 - C and there is a homeomorphism h of S2
onto itself with h(q) = p. Thus without loss of generality we may
assume p ¢ C. So let g be the stereographic projection of

S2 - {p} onto E2. Then g(C) is a "Cantor set" in E2 and

g(S1 - {p}) 1is a line in Ez. There exists a '"Cantor set', say

B, on g(S1 - {P}). So by Theorem I of [1] there is a homeomorphism
f of E’ onto itself with f‘g(c) a homeomorphism from g(C)

onto B. Thus & = g-lf g 1is a homeomorphism of S2 - {p} onto
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itself and so has an extension, say Y, to 82 by Y‘ 2 =
s”-{r}
and Y(p) = p. Then letting the C and n of Lemma 2.8 be

¢

g-l(B) and 1 respectively, Lemma 2.8 tells us that 82 - g-l(B)

is l-movable. But VY(C) = g"l(B) so Yl 2 is a homeomor phism
S -C

2 -
from 82 -C onto S =-g l(B). Hence S2 -C is l-movable. [



CHAPTER III

SIMPLICIAL COMPLEXES AND 1-MOVABILITY

In this chapter we will first prove some lemmas and a
theorem to enable us to prove the main result of this chapter,
which is that |K| - |K(n-2)| is l-movable for each n-dimen-

K(q) is the

sional abstract simplicial complex K, where
g-skeleton of K and n = 3. We then observe that a l-movability
condition and engulfing theorems trivially give characterizations
of the n-sphere using a theorem of Doyle and Hocking in [77]. We
will then give many examples showing that even when K is a
compact combinatorial n-manifold we cannot claim |Kl - \L‘ is
l-movable, when L 1is a q-dimensional subcomplex of K, 0 €£q < n
or even when L = K(q) for 0<q < [Egg].

When o is simplex, o € |o|, B < |o|, o*B will denote
the set {ta + (1-t)p|t € [0,1], B € B}, o' will denote the
t-skeleton of ¢ considered as the simplicial complex consisting

of all the faces of ¢, and <g> will denote the set |o| - |o|

as in [22] with g =30 = o(n-l).

Lemma 3.1: Let o be an n-simplex, C a compact set, C # g4,
cc ‘o‘ - ‘a(n-2)|, U a neighborhood of |o(n-2)‘ in laal
with uncs= ¢- Let G be the barycenter of . Then there
is a pseudo-isotopy {Ht} of ‘o\ onto \cl which is fixed on

‘o(“'1)| and has H,(C) < &-(|ac| - ).

35
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Proof: We may consider la\ to be linearly embedded in E" and
B" to be the n - ball with center & and radius large enough,
say R, so that ‘o\: B". There is a homeomorphism h of \o‘ onto
B" induced by the radial projection of |°(n-1)‘ onto bdy B".
Now, h(ﬁ) Nh() =¢ (as v NC=g¢g) so d=distance
(h(ﬁ),h(c))>0. Let Dn be the n-ball with center g and radius
R - d/2. Then (o - h(ﬁ)) - (0 * (radial projection from & of
h(ﬁ) onto bdy Dn))is disjoint from h(C).
Let {G.]} be the obvious pseudo-isotopy that shrinks

p" radially down to § and sends each ray from & onto itself.

(1-t) (x-3) + & for lx-&\ <SR - d/2

ct(X) =

(x-8) rp 4 (x-8|-R)[R-A-t) R-d/D)] | _ &
IX'?!\{ d/2 ) +3

for R 2 \x-&‘ 2R - d/2

where the points x and § are considered as vectors from the

origin and

2 2 2. %
| Gaygseesy )| = O] vy, +oo vy * L

Thus G, (h(C)) C &. (bdy B"- h(U)) and so {H,} where
Ht = h-lcth is the desired pseudo-isotopy on ¢ as

h also preserves rays from 5.0

lemma 3.2: Let ¢ be an n-simplex, § its barycenter, and F
a compact subset of |g| - ‘o(n-l)‘.
Then there is a pseudo-isotopy {Ht} of \o\ onto |o‘

which is fixed on [g®"| and has H (F) = 3.
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Proof: Construct Bn and h as in Lemma 3.1 and let d = distance
(bdy B",h(F)).Then d > 0. Let D" be the n-ball of radius
R - d/2 and center g with {Gt} as in Lemma 3.1. Then as

h(F) = D", G, (h(F)) = &, so letting

1

H, =h Gh, {Ht] is the desired pseudo-

isotopy on \o‘ .[J

Lemma 3.3: Let ¢ be an n-simplex with barycenter & and
TyoToseeesT 4q the (n-1)-faces of ¢g. Let iGt be a pseudo-
. . (n-2)

isotopy of |¢i\ onto ‘Ti| fixed on \Ti | for each

i=1,2,...,n+l. Then there is a pseudo-isotopy {Ht} of \o‘

;B¢ 1,2,...,n+1,

onto lo‘ with Ht“Ti\ = G for t € (0,1] and i
Proof: Llet {G_} be the pseudo-isotopy of \o(n-l)\ defined by
Gt‘\Ti‘ = iGt for i =1,2,...,n+l and ¢t € [0,1]. Using polar
coordinates in lo\ (as in [22], p. 117), {Gt} extends to the

pseudo-isotopy {Ht} by
H, ([as2]) = (6 (@), A]-

{Ht] clearly has the desired properties. O

Theorem 3.4: let K be a simplicial complex (not necessarily

locally finite) of dimension n, A be a subset of |K| - |K(n-2)|

which has A N ‘a\ compact for each ¢ € K. Then there are two

pseudo-isotopies, {Ft} and {Gt}, of |K| onto |K| which are
(n-2)‘

fixed on |K and have
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G, F,(A) =T = U -1 U U {i} )
oek-k @D 1 @D x (-2
T is (n-1)-face of ¢ and A N<t> # ¢
and A N <o> ¥ )

Proof: For each (n-1) simplex T of K, obtain, from the con-
struction in Lemma 3.2(with ¢ #F =AN \Tl = AN ‘7\ - lT(n-Z)"

T as the ¢ of Lemma 3.2) UT = h.l(Bn - Dn) a closed neighbor-
hood of |+ | 4n |r| with g=u nF=u nAan|r| =v na
and let {THC} = {Ht} (the pseudo-isotopy of Lemma 3.2 for the above
F) when A N |7| # ¢; when AN |7| = ¢, let M= identity on |r|

and UT = ‘T|- THI(‘T‘ - UT) < {?#}. Now, for each n-simplex ¢ of K,

n+l
let T1oTooeeesTiyg be its (n-1)-faces. Then U = ;il UTi is
™1 (m-2) (n-2)
a closed neighborhood of U ‘Ti l = \o ‘ in iac‘. By Lemma 3.1
i=1

(with g=g, U=U, and C=AN |o|) there is a pseudo-isotopy
{OFt} (the pseudo-isotopy {Ht} of Lemma 3.1) of |g| onto

|o| which is fixed on ‘d(n-l)‘ and has
Fi@anjo)es - (\o(n-l)l - U)

when A N<o> # ¢. When A N<o> =g, let {GFt} be the pseudo-
isotopy which is fixed on ‘c\, th = identity on lo\ for all

t € [0,1]. Hence there is a pseudo-isotopy {Ft} of \K\ onto
‘K‘ defined by Ft‘lT‘ = identity on ‘T‘ for each 1T € K(n-l)

and Ft‘lol = cF for each g € K - K(n-l)

t . Now by Lemma 3.3

(letting 0 =0, 3 =08, T, =T for i =1,2,...,n+l, G = H)
it Tt

we obtain the pseudo-isotopy {cGt} = the {Ht] of Lemma 3.3.

Hence, there is a pseudo-isotopy {G,} of |K| onto |Kk|

defined by
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Gt‘lo\ = oGt for each g € K - K(n-l)

-1 -2
Clyq] = o8, for each 7€ (@1 _  (n-2)

Gt‘|"|" = jdentity on "T‘ for T € l((n-Z)

and

{Gt} and [Ft] are both clearly fixed on \K(n-Z)‘

G,F,(A) €T is easily verified.[d

Lemma 3.5: Let A be a compact subset of a normal space X,
and {Ht} a pseudo-isotopy of X.

If there is a homeomorphism, g, of X onto itself with
g(Hl(A)) n Hl(A) = ¢, then there is a homeomorphism, f, of X

onto itself with f(A) N A = 4.

Proof: As X is normal, g(Hl(A)) and Hl(A) closed, we have
disjoint open sets U and V with U 2 g(Hl(A)) and V 2 HI(A)'
9 = g-l(U) NV 1is open and HI(A) cecV, g(e) cU, and

UcX -90. Let H: X x [0,1] = X be the pseudo-isotopy {Ht}'
Then H 1(p) 1is open and H 1(g) D A x {1} which is compact

in X x [0,1]; so there is a s ¢ [0,1] with H-l(e) DA X (s,1].
let p = (14s)/2. Then Hp is a homeomorphism of X onto
itself and HP(A) C g. Let f = H;lg Hp. Then f(A) = H;lg HP(A)
< H;lg(e) c H;I(U) c H;l(x-e) c H;I(X-HP(A)) < H;I(HP(X-A)) = X-A.

So f(A) NA=¢.0

lemma 3.6: Given an n-simplex g, n =2 3, with its vertices ordered
as indicated g = {al,az,...,an+1}, let Ty i=1,2,...,ntl be
the (n-1)-faces of ¢ with their vertices ordered as induced and
indicated by the ordering of the vertices of g,

T, = {al,az,...,a Then there is a well defined

i ETLFUCTITEFLINGY B



40

set {q,el,az,...,5n+1} C |o| dependent only on the ordering of
the vertices of ¢ with o € <o>, Bi € <Ti> for i =1,2,...,n+l,
n+l n+l
and (U oz-Bi) ﬂ(U 8-?i) = g
i=1 i=1

Proof: We will use barycentric coordinates throughout. u € §-7

n+l
for some i, when u = ( T [u)-+ £:] aj) + 1-t ai for some

=1 (n+1) n n+l
i
t € [0,1], and so each coordinate of u is one of at most two
+1
. 1-t _ t 1-t " 2
==+ = = =
possible values, (n+1 n) and 1 Llet o« jil (D) (nF2) aj € <o>

i-1

= = 2

and for each i =1,2,...,n+tl 1let Bi (jzl Tt aj
n+l :

+ I 2 -i a, ¢ <r.>. Then Vv € o*p, for some i, when for
j=i+1“(“+ ) ] i i

some s € [0,1]

v - (151( 2is . 2(l-s)j a) L 20-9)i
jm1 \R(EHD T (@) (042)) T3/ T (D) (042) i
+ O eUeD | 20 )a
j==i+1\n(n+1) (n+1) (n42) /] 73 °
Observe the coefficients of al’aZ""’ai-l’ai+1""’an+1 in

the barycentric coordinates of v, are all different values.
But this is n different values and n 2 3, so

n+1 n+1

( u o - ?&) r\( U o - Bi) =4 .0

i=1 i=1
Theorem 3.7: Let K be an n-dimensional simplicial complex (not
necessarily locally finite), n = 3.

Then |K| - ‘K(n-Z)‘ is 1l-movable.

Proof: Let A.C:‘K‘ - ‘K(n-Z)" A compact. We need only show
(0'2)‘

a homeomorphism, £, of |K| - |K onto itself with

f(A) N A =¢g. Since A 1is compact, A N <o> # ¢ for at most a
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finite number of simplices ¢ € K (by Corollary 19 of [22], p. 113),
also A and K satisfy the hypothesés of Theorem 3.4. Let

{ql,oz,...,ap} = {0 € K-K(n-1)|<c> NA# ¢} and

- (n-1) _(n-2), A N<t>¥ g or v is a face of ¢,
{kl’XZ"°"xq} {} €K K lfor some i€ {1,2,...,p} !

with o # if i#j and A # 2\, for i# j. Now let
i

3

q
T = U 8.°i)u(ku{i}).
(|=1,2,...,p 17k -1 K

i f
Xk s a face o o,

%

Then by Theorem 3.4, followed by Lemma 3.5 applied twice, the
existence of a homeomorphism, h, of ‘K\ - ‘K(n-2)| onto itself
with h(T) N T = ¢ would imply the existence of the required f,
and hence the theorem.
Let S = {v € K|v is a vertex of either o; for some
i=1,2,...,p or some M for some
k=1,2,...,q} .
S has only a finite number of elements, so they can be ordered
by counting them, vl,vz,v3,...,vL. This ordering of S 1induces
an ordering of the vertices of each oy i=1,2,...,p and of
each Ao k=1,2,...,q.
Now, for each k =1,2,...,q, either kk is not the face

of any o5 i=1,2,...,9, in which case choose § to be any

k

element of <N - {ik}, or kk is an (n-1)-face of o for an
i€ {1,2,...,p}. In the latter case let o, be the ¢ of

Lemma 3.6, then A = for some 3 € {1,2,...,n+l1}. Define

T3

6k = the Bj of Lemma 3.6. Note that 6k is well defined for



42

each k since the ordering of the vertices of M induced by
S 1is the same as that induced by the ordering of the vertices
of any O, which has xk

As "k and 6, are both elements of <\ >, it may be

as a face, t € {1,2,...,p}.

easily shown using Lemma 2 of [227, p. 116, that there is a
homeomorphism B of Ikk\ onto itself which is fixed on

(n-2) -
lkk | and gk(xk) 8,- Define a homeomorphism g of

(n‘l)l

|k onto itself by

g|‘kk‘ =8 for each k =1,2,...,q

q
q = identity on ‘K(n 1)\ - U ‘xk\ .
- Ul k=1
k=1
For each n-simplex, o € K, let cg be the homeomorphism

of ‘a| onto ‘o‘ which has defined

gl ey, =8l ne1y.
o ‘a(n )‘ ‘c(n )l
by OS(Ea,t]) = [g(a),t] (using polar coordinates in |g| as
in [22], p. 117). Then define the homeomorphism, é, of ‘K‘
onto itself by g‘lK(n_l)l =g and gl\o\ =8 for each

gek - k™D,

Now for each g € K - K(n-l), let ao =g if
o ¢ {ol,oz,...,op] and aoi = the o of lemma 3.6 for ¢ = o,
under the ordering of the vertices of o, induced by that of S.
Now define the homeomorphism ah of ‘c\ onto itself given by

(again using polar coordinates)
h(la,t]) =t + (1-t) a .
g ([ ’ ]) 0’0 ( )

Note oh is the identity on ‘c(n-l)‘. Define the homeomorphism,
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h, of |K| onto itself by

ﬁ\ = h for each g€ K - K(n-l)
lol o

and | (=D,

= identity on ‘K
|k

(n-l)‘

Now let h = hg. h is clearly a homeomorphism of |K| onto
itself and hllol is a homeomorphism of |g| onto itself and
h‘<o> is a homeomorphism of <o> onto itself for each ¢ € K.

Thus to show h(T) N T = ¢, we need only show
(*) h(T N<o>) N (T N<o>) = ¢ for each ¢ € K.

This 4s clearly true for each ¢ € K with T N <o> = ¢.

case 1. o€ kK™D 1 k™D =y so TN =4 *) is
true.

case 2. o€ K™D _ gD 44 T N> #g. Then o= A\
for some k € {1,2,...,q9}. But T n<y> = &k and
h(X) = he(k) = h(e(R)) = h(g (X)) =h(s) =8,

(n-l)‘ .

as & € |K But &, # %, so

h(T N<o>) N (T N<o>) = {Gk} n {Xk} = ¢. (*) is true.
Case 3. g € K - K(n-l) and T N<o> ¢ ¢ Then o = o for
some 1i € {1,2,...,p}. So TN <ci> cSTAN |°i\

= U Gi'ik.Nowfor)\
>‘k is face of o,

h@Gy Ry = BE@; %) = Bel|, | 6%
1

K a face of o,

h( 8@ "%)) = hE;-e(h)) = 0@ -8, R)
1

=h(@;6)) = h‘\oi‘(ai'5k) - 02(°i'5k) = 0y
1
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= q§, (where o is the « of Lemma 3.6 for our ordering
of vertices)
= d'aj (where Bj is the Bj of Lemma 3.6 for our ordering

of vertices and o; =0 and kk = TJ).

n+l
So h(T ﬂ<oi>) S U a.aj (the o and Bj being those of
i=1
Lemma 3.6 with our ordering of
vertices and o, = o)
" n+l
and T N <0;> S Udga = U &r. . (the ¢ and Tj's
A is a face of g, j=1 J
and k ¢ {1,2’,,.,&] being those of Lemma 3.6
with our ordering of
vertices and o, = 9g).
n+l n+1l
But Lemma 3.6 gives us (U a-aj) Nn(U &%) =¢, hence
j=1 =

h(T N<0>) N (T N<o;>) =¢. (*) is true. O

let us consider open n-manifolds that have been obtained by
the removal of a closed set from a closed n-manifold. The follow-
ing theorem is trivially given by the sphere characterization

theorem of Doyle and Hocking [7].

Theorem 3.8: Let M" be a closed n-manifold, A be a closed sub-
n n . n n
set of M, AcVcM with V homeomorphic to E , and M = A

be l-movable. Then M" is an n-sphere.

Proof: let M", A, and V be as in the hypothesis. Then A is
compact and so contained in the interior of an n-ball, B c V, with
bicollared boundary. Let B be the initial n-ball with bicollared
boundary in the proof of Theorem 1 of [7] for the manifold M.
Then Mn =UUR with U homeomorphic to E" and UUR a

"standard decomposition" as in [7] and B € U. Now
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M' - A= (U-A)UR and R 1is compact in Mn, hence compact in
M" - A. Mn - A is l-movable 8o there is a homeomorphism h of
M" - A onto itself with h(R) N R = g. Thus h'l(u -A) is a
neighborhood of R and U - A is a Euclidean domain (can be
imbedded in En),so h-l(U - A) 1is also a Euclidean domain. But
then Theorem 4 of [7] says that M is homeomor phic to s". 0

Thus any engulfing theorem that says a closed subset A
of a closed n-manifold M" is engulfed by an open n-cell tells us
that if M" - A is l-movable then Mn is an n-sphere, also if
M" is not an n-sphere then M" - A is not l-movable. So the

engulfing theorems of Newman in [18] and Zeeman in [25] give

Corollaries 3.9 and 3.10 respectively.

Corollary 3.9: Let X be a locally tame closed set of dimension

s n-3 in M, a p-connected closed topological n-manifold without
boundary (thus n 2 3). Then M - X is l-movable implies that M

is an n-sphere.

Proof: Let X and M be as in the hypothesis. Then since there
is an open set V, homeomorphic to E" and so (p-1)-connected, in
M and M -V is compact the main theorem of [18] applies to insure
the existence of a homeomorphism, h, of M onto itself with X < h(V).
But h(V) is homeomorphic to E" and so Theorem 3.8 implies that

M 1is an n-sphere. O

Corollary 3.10: lLet Mn be a connected closed combinatorial

n-manifold, n 2 3. Let q <n-3 and m (M) =0 for 1 =0,1,...,q.
1f M - |L] 1is l-movable where .L 1is some subcomplex of dimension

q of some triangulation of Mn, then Mn is homeomorphic to s",
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Proof: Assume the hypotheses. The result may then be obtained as

a corollary to Corollary 3.9. An alternate proof is to observe

that Theorem 1 of [25] is that \L| lies in the interior of an

open n-ball in M". As || is closed in M" and an open n-ball

is homeomorphic to En, Theorem 3.8 implies that M" is an n-sphere.EI
We now have some examples that restrict the possible improve-

ment of Theorem 3.7 in certain ways.

Corollary 3.11: Let q and n be integers such that 0 < q < n-3

and q < [Eézﬂ. Then there exists a finite n-dimensional simplicial
complex K (that is even a combinatorial n-manifold without boundary)
having |K| - |K(q)| not l-movable.

Proof: There is a finite triangulation, K, of Sq+1 X Sn-q-l that

is a combinatorial n-manifold. As n-q-12q + 1,

m (kD = et x o

(Q)|

) =0 for i=0,1,2,...,9. Suppose

|k| - |K were l-movable. Then by Corollary 3.10, ‘K‘ is

homeomorphic to the n-sphere. But \K‘ is homeomorphic to

Sq+1 n-q-1

X S » which is not homeomorphic to the n-sphere. This

(Q)‘

is a contradiction, so \Kl - |K is not l-movable.[l]

For an n-dimensional simplicial complex K, we have the

(Q)‘

question of whether or not |K‘ - |K must be l-movable. The
answer is affirmative for q = n (since ¢ is l-movable),

(n-1) . . . .
q=n-1 (since |K| - |K \ is the disjoint union of open
n-simplexes, each homeomorphic to En, and so clearly l-movable),
and for q = n-2 (by Theorem 3.7). The answer is negative when

n23,and 0<gqs [%] (by Corollary 3.11). When

n-2 .
[—E—] < q < n-2, the answer is unknown at present.
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Remark 3.12: Observe that when the codimension, n-q, is 0,1,
or 2 we have ‘K\ - |KS| is l-movable. However when n-q = 3,
if we let n = 2q + 2, then Corollary 3.1l gives an example where
|k| - \K(q)| is not l-movable. Hence for each p > 2 we cannot
have the theorem that |K| - \K(n-p)‘ is l-movable, so Theorem

3.7 has the best fixed codimension possible.

Example 3.13: There is a n-dimensional, infinite, locally finite

simplicial complex, K, that is a combinatorial n-manifold and a

triangulation of E" = E1 X En.1 (so that those simplices whose

! x ([0,+=) X En-Z) form a triangula-

carrier is a subset of E
tion of [0,+=) X En-l) with the following property. Every
homeomorphism h that is a translation along the first factor
by some integer d (i.e. h(x,y) = (x +d,y)) is a simplicial
map (that is, h(v) 1is a vertex of K for each vertex of K
and whenever vl,vz,...,vk are the vertices of a simplex of K,
h(vl),h(vz),...,h(vk) are vertices of a simplex of K). Thus
such an h has h(\K(q)|) = |K(q)| for each integer gq,

0 <q £n, and so h‘ is a homeomorphism of

lK\-‘K(q)\
\K‘ - lK(q)l onto itself.

let q be an integer, 0 < q £ n-1, and A be a compact
subset of |K| - |K(q)|, then A c [-a,a] x E" 1 for some integer
a > 0. So the homeomorphism h that is a translation by the

integer 3a along the first factor has h a homeo-

k] -[x |
morphism of |K| - IK(q)‘ onto itself and A N h(A) = ¢. Hence

|k| - |K(q)\ is l-movable, and so examples of l-movability occur

for all integers q and n with 0 <q < n-1.
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Suppose we consider (as a relaxation of the previous ques-
tion) the possible l-movability of |K| - |L| where K 1is an
n-dimensional finite simplicial complex that is even a compact
combinatorial manifold, L is a subcomplex of K(q), L ¢ K(q).
There are three basic possible relationships possible for K and
L as follows:

a) K has no boundary

b) K has non-void boundary, 3K, and L N 3K = ¢

c) K has non-void boundary, 3K, and L N 3K ¥ ¢ .

For each of a), b), and c¢) we have an example with \K‘ - lLl

l-movable and another one with |K| - |L| not l-movable (except

for b), where no l-movable example could exist), for each pair

of integers n and q, n2 2, 0 < q < n.

1) For a) l-movable, let K = §, for an (n+l)-simplex ¢, L be a
q-simplex of K, with its faces. Then |L| is cellular in
|K|, so |K| - |L| is homeomorphic to |K| 1less a point, so

n

to S less a point, so to E" and so l-movable.

2) For a) not l-movable, let K be a triangulation of S1 X Sn.1
and L be the faces of a fixed q simplex of K. Then ‘Ll
is a subset of an open subset of |K| that is homeomorphic

to En, and S1 X S“-1

is not homeomorphic to s". Thus
Theorem 3.8 would be contradicted if ‘Kl - |L\ were l-movable,
and so |K| - |L| is not l-movable.

3) For b) not l-movable, let K be a complex that triangulates
S1 X \Dn-ll where Dn-1 is a (n-1)-dimensional simplex and

K has an n-simplex ¢ with o N 3Kk = ¢. Let L be the

faces of a fixed q-dimensional face of o. Then |K| - |L]
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is a n-manifold with boundary homeomorphic to S1 X S“-z,

but then the boundary is compact so Theorem 5.1 implies that
|k| - || is not 1-movable.

For c¢) l-movable, let K be the first barycentric subdivision
of the faces of a fixed n-simplex. When q < n-1 let L be
the faces of a q-simplex of boundary K, and when q =n let
L be the faces of a n-simplex of K that has exactly n of
its vertices in boundary K. 1In either case |K| - |L| is
homeomorphic to |K\ less a single point, and so homeomorphic
to [0,4) x E" 1. Thus |k| - |L| is l-movable.

For c) not l-movable, let K be the second barycentric sub-

n-l‘

division of a complex that triangulates S1 X \D where

Dn-1 is a (n-1)-dimensional simplex. For q < n-1 1let L

be the faces of a cellular q-simplex of boundary K, and for
q=n let L be the faces of a n-simplex with exactly n of
its vertices in boundary K and L N boundary K cellular in
\3K|. In either case, Remark 5.2 tells us that if \K‘ - \L\
is l-movable, then so is B = boundary (|K| - |L|) =

‘aK\ - ‘L‘, which is homeomorphic to \aKl - {p} for a point
p € \aK‘. But p has an open neighborhood homeomorphic to

En-l. When n > 2, Theorem 3.8 says that \aK‘ is homeomorphic

n-2

Sn-l. But \aK\ is homeomorphic to S1 X S , thus not

to
homeomorphic to sl Hence |K| - |L| is not l-movable.
When n =2, |3K| - {p} is homeomorphic to (Slx {0,1}) - {x}
(for x € S1 x {0,1}), which has exactly one compact component.
This contradicts Theorem 5.1 and so |3K| - {p}, hence B, hence

lK‘ - |L| is not l-movable.



CHAPTER IV

PRODUCTS AND k-MOVABILITY

In this chapter we prove a theorem about products and
then give some examples showing that the non-compactness hypothesis
of the theorem cannot be dropped and that even under fairly strong

restrictions the converse of the theorem does not hold.

Theorem 4.1: If X is a non-compact k-movable topological space
and all compact subsets of X are closed, and Y 1is any topological

space, then X XY 1is k-movable (k any positive integer).

Proof: let X and Y be as in the hypotheses. Given a compact
subset, K, of X XY, L = pl(K) is compact in X (where Py is
the projection of X X Y onto the ith factor). So there exist
compact subsets of L, say LI’L2’°'°’Lk’ and homiomorphisms of
X onto itself, say hl’h2"'°’hk’ so that L = iilLi and
L N hi(Li) =¢ for i=1,2,...,k.

Now for each i =1,2,...,k we have Li is compact,
thus closed, and so pil(Li) is closed and 1(i =KnN pil(Li)
is closed in K and so compact. Define the homeomorphism fi
of X XY onto itself by fi(x,y) = (hi(:),y).

It is now easily seen that K = ;JlKi, the Ki are compact,
and fi(Ki) < fi(pil(Li)) = fi(Li XY) < hi(Li) X Y. But
K L XY,so0 K N fi(Ki) S (L xY)n (hi(Li) XY) =

(L Nh(L)) xY=¢xY=¢0

50
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Remark 4.2: The non-compactness of X when k =1 in Theorem 4.1
cannot be dropped (even if we require X and Y to be manifolds)
as S" is l-movable and S™ x S" is not l-movable. Note that a
closed n-manifold is l-movable if and only if it is invertible
(this is easily seen by the definitions), and invertible if and

only if it is a n-sphere (see [5] Theorem 1, and in [6] the state-

ment on p. 959), and s™ x s™ is not homeomorphic to Szm.

Remark 4.3: The converse of Theorem 4.1 with k = 1 does not
hold as there exists a non-compact non-l-movable metric space G
with G X G homeomorphic to E6, and E6 is l-movable.

let G be the decomposition space G of E3 of R.H. Bing
in section 2 of [2]. The union of the family of non-degenerate
inverses of points G 1is a subset of the set A (which is a
topological solid sphere with two handles) of p. 485 of [2]. A
is clearly compact. But G is a quotient space of E3, say by
the quotient map g, so g(A) 1is a compact subset of X. Assume
G 1is l-movable, then there exists a homeomorphism h of G onto
itself such that A N h(A) = ¢. Let z be one of the points
of G which has a non-degenerate inverse. Then h(z) has a
degenerate inverse and so h(z) has a neighborhood homeomorphic
to E3, and hence 2z has a neighborhood homeomorphic to E3,
so G 1is locally E3 at z. But this contradicts Theorem 13
of [2].

Now, A. Boals has shown in [4] that G X G is homeo-

6
morphic to E .
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Remark 4.4: The converse of Theorem 4.1 does not hold for any k
even if we require X and Y to be manifolds, either one of which
may be specified to be compact and either one of which may be
specified to be l-dimensional.
This may be seen by using the following facts.
a) If an n-manifold M" has compact boundary then it is not
k-movable for any positive integer k (see Theorem 5.1),

b) (0,1) x [0,1) is homeomorphic to [0,1] x [0,1).

Now (0,1) x ([0,1) X S™ is homeomorphic to ((0,1) X (o,1)) x Sn,
which is homeomorphic (using b)) to ([0,1] x [0,1)) X Sn, which
is homeomorphic to both [0,17 x ([0,1) X Sn) and

(0,1) x ([0,1] x s™).

For each positive integer k, (0,1) 1is k-movable, so
Theorem 4.1 tells us that (0,1) x ([0,1) X Sn) is k-movable. But
(0,17, [0,1),00,1) x s", and [0,1] x 8" are all manifolds with
compact boundary, and so they are not k-movable by a).

Thus counterexamplesto the converse of Theorem 4.1 are

X = (0,1, Y = [0,1) x s" and x =[0,1), Y = [0,1] x s" .



CHAPTER V

MANIFOLDS AND k-MOVABILITY

In this chapter we prove that if M is a l-movable n-manifold
with boundary then the boundary of M is not compact and number of
compact components of the boundary of M 1is either zero or infinite.
Further statements concerning k-movability and manifolds with boundary
are followed by the theorem that a connected Hausdorff space that
is the union of k open subsets homeomorphic to E' must be k-
movable. This theorem has the corollaries that every open connected
triangulable n-manifold is n-movable and that for n 2 5, every
contractible open n-manifold is 2-movable. A closed k-movable n-mani-

fold is the union of (k+l) open n-cells.
Theorem 5.1: If M is a k-movable manifold with boundary then the

boundary of M is not compact and the number of compact components

of the boundary is either zero or infinite.

Proof: Let M be a k-movable manifold with boundary and suppose
that the boundary of M, B, is compact. Then ¢ ¥ B = U B, with
the B, compact, B1 # ¢, and there exist homeomorphism;=1
hl’h2""’hk of M onto itself with B N hi(Bi) =g for
i=1,2,...,k. But then B N hl(Bl) = ¢ and this cannot happen
since a homeomorphism of a manifold onto itself has the boundary
as the image of the boundary.

Now let M be a k-movable manifold with boundary and

suppose that the boundary of M, B, has a finite non-zero number

53
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of compact components. Let D be the union of the compact com-

k
ponents of B. Then ¢ ¥D = U D, with the D, compact and
i=]1
D, ¥ ¢, and there exist homeomorphisms hl’hz""’hk of M onto
itself with D N hi(Di) =¢. So DN hl(Dl) = ¢. But hl‘B’ the

restriction to the boundary, of a homeomorphism of a manifold onto
itself, is a homeomorphism of B onto itself, and as such, sends
a compact component of B onto a compact component of B. Hence
¢ #h,@,) = hllB(Dl) €D and D Nh (D) #¢. This is a con-
tradiction. OJ

Each homeomorphism of a manifold onto itself when restricted
to the interior is a homeomorphism onto the interior and when
restricted to the boundary is a homeomorphism onto the boundary.

Thus we have the following remark.

Remark 5.2: If M is a k-movable n-manifold with boundary then
both the interior of M and the boundary of M are k-movable

spaces.

Remark 5.3: If we let M be the n-ball, then the interior of M
is homeomorphic to E" and so k-movable while the boundary of M
is S" and so k-movable. But M has a compact boundary and so
(by Theorem 5.1) M is not k-movable. Hence the converse of

Remark 5.2 is not true.

Remark 5.4: By Theorem 5.1, no compact wmanifold can be the boundary
of a k-movable manifold. However if N 1is any non-compact k-

movable n-manifold, then N is homeomorphic to the boundary of

the (n + 1)- manifold N X [0,1). N x [0,1) is k-movable by Theorem &4.1.
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Theorem 5.5: A connected Hausdorff space X that is the union

of k open subsets homeomorphic to E" is k-movable.

k
Proof: Let B be a proper non-void compact subset of X = U X
i=1

where for each i, X1 is open and homeomorphic to E" by a

homeomorphism gt X1 - En. For each b € B, b € Xj for some
b
iy € {1,2,...,k} and s0o b € g-} for some real t_ > 0.
b

O,tb) b
Bc U g (S ) is open in X for all b € B, and
]
beB b N
B 1is compact implies that B S U g 1(S ) and b € B for
=1 jb 't ¢
X

L =1,2,...,N, and N some positive integer. For each

i’

(s

L8, e, 83, o

i=1,2,...,k let ) = maximum {t_ |t € {1,2,...,N}} and
Lk

-1 . .
= C . = .
Bi BN 8, (SO,L) xi Then B ;ilni Since B is a proper
subset of X, there exists an x € X - B, and there exists for each

i=1,2,...,k, a homeomorphiSm fi of X onto itself with

fi(g;I(O)) = x. But X - B 1is open and fig;1 are continuous

functions for i =1,2,...,k so there is a real number t > 0

with f g?l(s )cXxXx-B for i=1,2,...,k. Let j, be a
i®i o,t

homeomorphism of E" onto itself that is the identity outside

some compact set and (S

ycs

0,2 o,t' Then for each i =1,2,...,k

;i = gzlpgi is a homeomorphism of Xi onto itself that is the

identity outside some compact subset of X, So

pi(x) for x € X
pi(x) = is a homeomorphism of X onto
X for x €X - Xi

itself. Let h1 a homeomorphism of X onto itself. Then

£iuy
hyB,) = £, B) = £4, (B) = £.8; ug,B,) < £.8] ug, (g] (S, ,))
1Py i*1 Py i*i®y £i8; u8y i #8185 g o

-1 -1
c figi p(So’x) c figi (So’t)<: X - B. -Hence B N hi(Bi) ¢ for
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i=1,2,...,k.0

Corollary 5.6: Every open connected triangulable n-manifold is

n-movab le.

Proof: The theorem of [13] says that every open connected triangul-
able n-manifold is a union of n open n-cells. The corollary

follows immediately by applying Theorem 5.5.0

Corollary 5.7: 1If M" is a k-connected n-manifold without boundary

and q 1is the minimum of k and n - 3 then M" is ([3231 + D-

movable.

Proof: Theorem 1 of [20] (also Theorem 2 of [16]) gives the result
that M" can be covered by [agij + 1 open n-cells. The corollary

follows immediately by applying Theorem 5.5. 0

Corollary 5.8: For n = 5, a contractible open n-manifold is 2-

movab le.

Proof: let M" be a contractible open n-manifold with n = 5. So

M" 1is n-connected and Corollary 5.7 (with q = n - 3) says that

n
M"  is ([;%5] + 1l)-movable. As n 2 5, [;:E] =1.0

Theorem 5.9: Let M" be a closed n-manifold. If M" is k-movable,
then M" 1is the union of (k+1) open n-cells.

Proof: Let M" be a k-movable closed n-manifold. Let UC M' and
U be homeomorphic to an open n-cell. Then R = M -y is a proper
compact subset of Mn. So there exist compact subsets RI’RZ""’RR
of R and homeomorphisms, hl’hZ""’hk’ of M" onto itself with

R = S Ri and R N hi(Ri) =¢ for i=1,2,...,k. So for each

i=1 -1
i=1,2,...,k, hi(Ri) cC U, and so R, © hi (U). But then
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U, hII(U), hgl(U),---, h]l-(l(U) are (k+l) open n-cells and clearly
k

M =uy unilw.O
=19



CHAPTER V1

CERTAIN OPEN 3-MANIFOLDS AND 1-MOVABILITY

The l-movability of certain classes of open 3-manifolds is
considered in this chapter. The complexity of the proof of Theorem
6.1 is to insure that the homeomorphism obtained has compact support.
This gives the result that the monotone union of 3-dimensional non-
trivial products of domains is l-movable if E1 is one of the
factors an infinite number of times. Examples both of a l-movable
union and of a non-l-movable union exist when E1 appears at most
a finite number of times. We then prove that every W-space (con-
tractible open 3-manifold that can be triangulated by a countable,
locally finite simplicial complex which is a combinatorial manifold
without boundary and each compact subset of which can be imbedded
in S3) is 1-movable. This has a corollary that all contractible

domains in E3 are l-movable.

Theorem 6.1: Let A be a proper non-void compact subset of E1 X B,
where B is an open manifold. Then there is a homeomorphism h
of E1 X B onto itself such that A N h(A) = ¢ and h is the

1
identity map outside a compact subset of E X B.

Proof: let A and B be as in the hypothesis, and for i = 1,2
let Py be the projection onto the ith factor from El X B. Now
pl(A) is compact in El, so for some real number a > 0,

pl(A) c [-a,a]. pZ(A) is compact in B and so has an open
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(pz(A), B -N) >0, and { = maximum distance (b, B - N).

distance (b,B-N)

p(b)=

A

beB

, @ continuous function from B

compact closure, ﬁ; in B. Let ) = distance

let

to the real num-

bers. Then 0 s u(b) < % and 1 su(b) for b€ py(A) while

w@®) =0 for b €B - N. Define a homeomorphism -1 of E1

onto itself by

g, (£) =(

’for
for
for

for

Lf or

Define

t < -2a
-2a £ t < -a
-a £t <sa

ac<ts 2%& + 2a

2%& + 2a <t

28y . Gap ) + a) - 2a

t
t+2a
t + 3au (b)
t-a 3ay,
gﬂq.a k
A

the function h from E1 X B

+ a - 3au(b)

onto itself

+ 3au(b) + a

by

h(t,b) = (gb(t),b). h is clearly continuous and has as inverse

the continuous function f given by f(t,b) = (ggl(t),b).

1f

(t,b) € A then b € pZ(A)

and so pu(b) 2 1, while

t € p)(A) and so -a<t<a. Hence p,(h(t,b)) =g (t) =

t + 3au(b) > -a + 3au(b) 2 -a + 3a = 2a.

Then h(t,b) ¢ A.

If (t,b) € E1 xB - [-2a, E%L + 2a] X di), then either

t € (-=,-2a) U (2%& + 2a, 4w) or b € B - N. 1In the first case

g, (t) =

g, (t) =

t for all b €B

and in the second case

uw(®) =0 so

t for all t € El. Hence in either case h(t,b) = (gb(t),b) =

(t,b), and h

[-2a, 3%‘ +2a] xN.O

is the identity outside the compact set

@
Corollary 6.2: let X = U Xi where X is a manifold, and for

each i,

X,
i

is open in X

i=1

and homeomorphic to El X B

i

with B,
i
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an open manifold, Xi c Xi+1. Then X is l-movable.

Proof: Let X, the Xi's, and the Bi's be as in the hypothesis
with 8" Xi - E1 X Bi a homeomorphism for each i. Let A be
a proper non-void subset of X. We have A C.Xj for some j.

1
Applying Theorem 6.1 to gj(A) CE x Bj’ there is a homeomorphism

h of E1 X Bj onto itself with gj(A) N h(gj(A)) =¢ and h

is the identity outside a compact subset, L, of E1 X Bj. So
g}lh gj is a homeomorphism of Xj onto itself that is the
identity outside the compact subset g}l(L) and has

;1h gj)(A) = ¢. But Xj and X - g-l(L) are open in X

3
and so g 1h gj extends to a homeomorphism f of X onto

AN (g

h|
1
itself, defined by f(x) =/ for x € X - g; (L)

ngh gj(x) for x € Xi

AnNf(A) = ¢. Thus X is l-movable.ll

Let D be a domain in E3 which is the monotone union
of open non-trivial products of domains Ai X Bi for i =1,2,... .
For each i 1let dimension Ai < dimension Bi’ then as
1l < dimension Ai < dimension Bi < 2 and dimension Ai + dimension
Bi = 3, it must be true that dimension Ai =1 and dimension Bi = 2.

The only connected l-dimensional manifolds are El and Sl, so

either Ai = E1 for an infinite number of i or Ai = S1 for
all but a finite number of 1i. 1In the first case, Theorem 6.2
tells us that D is l=movable. 1In the second case, there is an

example where D 1is l-movable and another where D is not 1-

movable (Examples 6.3 and 6.4 respectively).

Example 6.3: Let D = (-»,») X B where B 1is any open manifold

of dimension 2. D is l-movable by Theorem 4.1 and
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@
D = U (-i,i) XB.
i=1
® 1 1 2
Example 6.4: let D= US XxB, =S x (E - {(1,0),(-1,00})
i=1

c.S1 X E2, where B, = E2 - (5(1,0)‘g)ﬂJs(-1,0)45)i)' To show

that D is not l-movable, consider the compact set A of D
given by A = S1 X T where T = ({-2,0,2} x [-2,2]) U
(€-2,23 x {-2,2}).

If D is l-movable, there exists a homeomorphism h of
D onto itself with A N h(A) = ¢. There is a strong deformation
retraction, r, of D onto A, so the inclusion map, i, of A
into D induces an isomorphism, i, , from nl(A,a) onto nl(D,a)
for a € A. h‘A is a homeomorphism from A onto h(A) and so
induces an isomorphism (hlA)* from m,(A,a) onto m,(h(A),h(a)).
nl(A,a) is isomorphic to nl(Sl,s) X nl(T,t) =7 X G where
(s,t) = a, G 1is a free group on two generators and Z 1is the
group of the integers under addition.

Now, A 1is connected and so h(A) is a subset of U,
one of the components of D - A. Observe that each component of
D -A is S1 X V where V 1is a component of E2 - ({(-1,0),
(1,00} UT). Let V be that component of E2 - ({(-1,0), (1,00} U T
for which U = S1 X V. Let h(a) = (u,v) € S1 x(E2 - {(-1,0),(1,0)}).
But then V has a strong deformation retraction onto F where
v E€F and F is homeomorphic to Sl. So there exists a strong defor-
mation retraction, ), of S1 X V onto S1 X F. Then the induced homo-
morphism, Ae> from rrl(S1 X V,(u,v)) onto nl(S1 X F,(u,v)) 1is an
isomorphism. But nl(U,(u,v)) = nl(S1 X F,y(u,v)) = ﬂl(Sl,u) X

ﬂl(F,v) =27 X 2.
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let j be the inclusion map from h(A) into D.
h
D ——>D

i j commutes .

A ™ h(A)
h‘A

So

h
1, (0,8) ————> 11, (0,h (a))

Ti* . commutes .

) (A,a) —-(;‘-? m; (h(A),h(a))
*

Since the other three homomorphisms are isomorphisms, so is j_,
the homomorphism of fundamental groups induced by j.

Where the homomorphisms «o and g are those induced by

set inclusion, the following diagram commutes.

m, @,h(a))
Tj* /nl(u,h(a»

m, (h(8) ,h(a)) @

But j, 1is an isomorphism, so « 1is injective. So o is an
injection of Z X G into Z X Z. But Z X G 1is not abelian and
Z XZ 1is abelian. This is a contradiction. Hence D is not
l-movable.

Let us now consider the l-movability of a certain class

of 3-manifolds, the W-spaces.

Definition 6.5: A W-space is a contractible open 3-manifold that

can be triangulated by a countable,locally finite simplicial complex
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which is a combinatorial manifold without boundary, and each compact

subset of the open 3-manifold can be imbedded in S3.

Theorem 6.6: Every W-space is l-movable.

Proof: let U be a W-space. Theorem 1 of [17] is the result that

(-]

U= UH, where each H is a cube with handles, H, & interior H
=1 i i i i+

Llet A be a compact subset of U, then there is a positive integer

1

j so that A C interior H,. There exists a pesudo-isotopy,

h|
{ct} t € [0,1], of nj so that G,(A) cTC uj and a N so that for

t € [0,1] G, is the identity map outside, N, the compact closure of

a neighborhood of AUT (where T 1is the union of a finite number
L

of line segments and is homeomorphic to V S1 ; 2 is the
k=1

number of handles on the cube with handles that is Hj). So this

pseudo-isotopy extends to one of U by defining Gt(x) = x for
all x €U - Hj and t € [0,1]. But since T is the union of a

finite number of line segments in H,, there is a homeomorphism

]
h of U onto itself so that T N h(T) = ¢. Now, Gl(A) n h(Gl(A))
STNh(T) =¢ so GI(A) N h(Gl(A)) = ¢. Hence Theorem 3.5 applies

and there exists a homeomorphism, f, of U onto itself with

f(A) N A = g. Therefore U is l-movable. O

Corollary 6.7: All contractible domains in E3 are l-movable.

Proof: Let D be a contractible domain in E3. It is well known
that any domain in a Buclidean space can be triangulated by a
countable, locally finite simplicial complex which is a combinatorial
manifold without boundary. D, and so each compact subset of D,

can be imbedded in 83. Thus D 1is a W-space, and Theorem 6.6

applies.[J
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