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ABSTRACT

MOVING THE COMPACT SUBSETS 0F MANIFOIDS

BY

John Kenneth Cooper, Jr.

We make the following definition. A tOpological space X

is said to be l-movable when for each proper compact subset, A, of

X there is a homeomorphism, h, of X onto itself with A 0 h(A) = ¢.

Some results are:

1. If an open connected Z-manifold, M, imbeds in a 2-sphere

with n-handles, N, then there is an imbedding of M in N that is

dense in. N.

2. If Mp is a closed connected n-manifold, n 2 2, C a

closed 0-dimensional subset of Mn, and Mn - C is l-movable, then

n
M is the n-sphere and C has an invert point.

3. A counterexample to the converse of 2 is presented for

4. If L is the (n-2)-skeleton of K (where K is a

simplicial complex, not necessarily locally finite, of dimension n)

then \K‘ - ‘L‘ is 1-movab1e.

5. Numerous examples restricting certain possible improve-

ments of the result of 4.

The notion of l-movable is generalized to that of k-movable

and we have results:
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6. Every open connected triangulable n-manifold is n-movable.

7. For n 2 5, every contractible open n-manifold is 2-

movable.

8. If M is a k-movable manifold with boundary, then that

boundary is not compact and has either 0 or an infinite number of

compact components.

9. Let Mn be a closed n-manifold. If Mn is k-movable,

then Mn is the union of (k+1) open n-cells.

We consider the l-movability of certain open 3-manifolds

and one of the facts obtained is that all W—spaces (and hence all

contractible domains in E3) are l-movable.
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INTRODUCTION

K. Borsuk made the following definition in 1934 (see

R.l” Wilder [23]); a Subset M of Euclidean n-Space is said to

be free, when for each s > 0 there exists an e-transformation

of M onto Mi and M n'M' = ¢. A topological Space x is said

to be invertible when for each proper closed subset A there exists

a homeomorphism h of X onto itself with A D h(A) = ¢. This

concept was created by P.H. Doyle and J.G. Hocking [6] and has

been studied extensively.

Thus the following definition seems a natural one to make.

Definition 0.1: A topological space X is k-movable (for some

positive integer k) if and only if for each proper compact sub-

set B of X, there exist compact subsets Bl’BZ"'°’Bk oi B and

1,h2,...,h of X onto itself with B = U B

k i=1

and B n hi(Bi) = ¢ for each 1 = 1,2,...,k.

homeomorphisms h

1

Remark 0.2: A compact Hausdorff space X is l-movable if and only

if it is invertible.

Example 0.3: Both ED and Sn are l-movable.

A l-movable compact manifold must be a Sphere, but no such

0 o . 1

restriction is p0531ble for non-compact manifolds as E x M

where M is any manifold is 1-movab1e (for example: E1 x Sn

and En+1).



Remark 0.4: A k-movable topological space is L-movable for each

integer L 2 k.

Although k-movable is defined in the topological category,

reSults are more interesting in the category of manifolds and much

of this work will concern manifolds.

The moving number of a space X is defined to be the

minimum {k‘X is k-movable}, and +m if ¢ = {k‘X is k-movable}.

Chapter I of this thesis contains the result that for an

open connected 2-manifold, M, that imbeds in a Z-Sphere with n-

handles, N, there is an imbedding of M in N that is dense in

N. The main theorem of Chapter II is: if Mn is a closed

connected n-manifold, n 2 2, C a closed O-dimensional subset of

Mn, and Mn - C is l-movable, then Mn is the n-Sphere and C

has an invert point. A counterexample to the converse of this

theorem is presented for n 2 3.

Chapter III is an investigation of the l-movability of

|K‘ - lL‘ where K is a simplicial complex and L is a sub-

complex of K. We have the result that if L is the (n-2)-

skeleton of K (where K is a simplicial complex, not necessarily

locally finite, of dimension n) then IKl - |L| is l-movable.

This chapter includes numerous examples restricting certain possible

improvements of the above result.

In Chapters IV and V results are obtained concerning n-

manifolds and k-movability in relation to product Spaces and manifolds

with boundary. Among the results are the following: Every open

connected triangulable n-manifold is n-movable. For n 2 5 every

contractible open n-manifold is 2-movab1e. If M is a k-movable



manifold with boundary, then that boundary is not compact and has

either 0 or an infinite number of compact components. If Mn is

a closed n-manifold, then Mn is k-movable implies Mn is the

union of (k+l) open n-cells. A connected Hausdorff Space that

is the union of k open n-cells is k-movable.

Chapter VI concerns the 1-movability of certain open 3-

manifolds and includes the fact that a11.W-Spaces (and hence all

contractible domains in E3) are l-movable.

The following notation will be used for certain sets and

topological Spaces

2 = {n‘n is an integer}

E = {X‘X = (x1,x2,...,xn) an n-tuple of real numbers}

where E0 is given the topology determined by the Euclidean

distance. A space is called a n-cell, an open n-cell, or an
 

(n-1)-sphere when it is homeomorphic respectively to

{x E En‘distance (0,x) S 1}, [x E En‘distance (0,x) < 1}, or

Sn”1 = {x E En‘distance (0,x) = l} with the subspace tOpology

induced by that on E“.

A Cantor set is a homeomorph of the standard Cantor set

in [0,1]. An invertgpoint of a Space X is a point p such

that for each neighborhood U of p, there exists a homeomorphism,

h, of X onto itself with h(X - U) CZU. A topological Space X

is said to be the monotone union of a sequence of topological Spaces

xi, 1 = 1 2,..., when X1 is a subset of X1+1 for i = 1,2,...
9

co

and X = U xi' A pseudo-isotgpy of a topological Space X is a

i=1



homotopy that is a homeomorphism at every level except at possibly

the last. For a subset, A, of a tOpological Space, A. will denote

the closure of A and bdy A the boundary of A.

A n-manifold, Mn, is a separable metric Space each point

of which has a neighborhood whose closure is an n-cell. A manifold

is a topological Space that is an n-manifold for some n. All

manifolds in this theSis are connected. The interior of M is
 

the set of all points of the n-manifold Mn that have open n-cell

neighborhoods, and the boundary of Mn is My - (the interior of Mn).
 

A manifold with boundary is a manifold whose boundary is non-void.

A manifold without boundary is a manifold whose boundary is the

empty set. An open manifold is a manifold without boundary that is

non-compact, and a closed manifold is a compact manifold without
 

boundary.

In metric spaces, dist (x,y) will denote the distance between

x and y. In a metric space M, with (x,t) E M X E1, Sx,t =

{y 6 M‘dist (x,y) < t}. For tame and locally tame Cantor sets see

[19]. For locally tame in general see [18].

The end of a proof will be denoted by"[3".



CHAPTER I

2-MANIFOLDS

Ian Richards in [21] classified open 2-manifolds. Richards'

work implies that every domain in 32 has an imbedding which is

dense in 82, and this result is generalized by Corollary 1.5

to the 2-sphere with handles. We then prove that the Open M6bius

band is not l-movable and (using a recent result of R. Jones [12]

that each open 2-manifold is the union of two open 2-cells) that all

open 2-manifolds are 2-movable.

We begin by proving some lemmas. In this chapter Tn

will denote the closed orientable surface of genus n, namely

the 2-sphere with n handles.

2

Lemma 1.1: Let M be a compact 2-manifold without boundary,

2

C be a compact 0-dimensional set, C<: M , and U an open set

2

in M , U # ¢.

Then there is a homeomorphism h of M2 onto itself

with h(C) C U.

‘ggggf: Let {U0} be an open covering of M2 with U0 homeo-

morphic to E2 for all 0. Now let A > 0 be the Lebesgue

number of this covering. The proof of Lemma 1 in [1] ensures

a finite set of pairwise disjoint, closed 2-cells each of diameter

‘ t

< A, Say BI’BZ’°'°’Bt’ with CC: . 1int Bi' Choose pi 6 Bi for each

1:



1 = 1,2,...,t and qi e u for i = 1,2,...,c (with qi i qj

for i i j). There exists a homeomorphism f of M2 onto it-

self with f(Pi) = q1 for all i = 1,2,...,t. So f-1(U) is

an open neighborhood of {p1,p2,...,pt}. Since C is compact

and Cc: tJ int Bi’ there is a homeomorphism g of M2 onto

i=1 t

itself (g is the identity on M2 - U int Bi’ and in int Bi

i=1

shrinks Bi 0 C into f-1(U) 0 Bi) with g(C) CZf-1(U). Thus

h = fg is the desired homeomorphism.[3

Lemma 1.2: For each integer n > 0, let C be a compact 0-

dimensional subset of Tn'

Then Tn - C cannot be imbedded in Tt where t < n.

Iggggfiz For each integer n > 0, let a simplicial complex of

dimension 2, K, be a triangulation of Tn’ and C a compact

O-dimensional subset of Tn' Let U be the interior of one of

the 2-dimensional simplices of K. Then by Lemma 1.1, there is

a homeomorphism, h, of Tn onto itself with h(C) CLU. Thus

h(Tn - C) = Tn - h(C) z'rn - U23 \K(1)\.

Suppose there were an imbedding, f, of Tn - C onto

T with t < n. then fh-1\t would be an imbedding of

MW
in Tt. But this contradicts the theorem of 5.5 inMN

[24], which says that the l-skeleton of a triangulation of an

orientable Z-manifold is a minimal imbedding (i.e. the l-skeleton

cannot be imbedded in a surface of lower genus).



Hence the lemma.[3

Lemma 1.3: Let M2 be a surface formed, as in Theorem 3 of [21],

from a sphere S by first removing a closed, totally disconnected

set X from S, then removing the interiors of a finite or in-

finite sequence D1,D2,... of non-overlapping closed discs in

S - X, and suitably identifying the boundaries of these discs in

pairs, except perhaps the boundary of one disc may be identified with

itself to produce a "cross cap"; in the finite case there is Such a

"cross cap" and in the infinite case, there may or may not occur such

a "cross cap". The sequence {Di} has the property that for any open

set U in S, X<: U, all but a finite number of the D1 are contained

in U. P will denote this last property in the proof.

Then M2 cannot be imbedded in TK for any integer K 2 0.

Proof: Suppose M2 is as above and can be imbedded in TK for

some integer K 2 0. Let n be an integer greater than K. As

2

M2 imbeds as an open submanifold of orientable TK’ M is

2 .
orientable. Thus in the construction of M from S in the

hypothesis, no "cross cap" could have occurred. So we cannot have

the case of a finite number of Di' Hence we may assume that the

2

Di have been indexed so that in the identification to create M ,

the boundary of D is identified with the boundary of D
2j-l 2j

for j = 1,2,... .

Let g be the quotient map giving M2 from

co co 2

S - (X U U int Di)’ g: S - (X U U int Di) —+bd . Let

B = M - g( U boundary D.). Then B imbeds in T , as M
. 1 K
i=2n+l



does. But B is the quotient under the quotient map

g‘ m m . By property P of the hypotheses,

s-(m a int DiU U Di)

i=1 i=2n+1 m

for each i 2 2n+l, d1 = distance (Di’ X U U Dj ) > 0. let Vi

j=--1J

j¢i

be the Open di/3 neighborhood of Di in S. Let pi 6 int Di

a: m

for each i 2 2n+l. Then clearly S - (X U U int D. U U D.)
i 1

2n i=1 i=2n+1

is homeomorphic to S - (X U U int D. U U {pi }) by a homeo-
, 1
i=1 i=2n+1

morphisun, h, which is the identity outside (J ‘v1, (shrink Di

i=2n+11

to the point pico inside Vi for each i 2 2n+1).

Now, U [pi ] is a O-dimensional set, and X

i=2n+1

is O-dimensional (since it is compact and totally disconnected,

see [11] Theorem D, p. 22), so D = X U U {pi } is O-dimensional.

i=2n+1

D is also closed.

_1 2n

So gh : S - (X U U [pi } U U int D1) a B is actually

i=2n+1 i==1

a quotient map, and identifies only boundary D2j with boundary

D2j-l for each 3 = 1,2,...,n.

This quotient, B, is homeomorphic to a Sphere with n

handles less a closed 0-dimensiona1 set.

But then K,< n and B imbeds in TK’ which contradictslemma

1.2. Hence the supposition was false, and so the lemma is proved.[]

Theorem 1.4: let M be an open connected 2-manifold which imbeds

in Tn’ k = minimum {t‘M can be imbedded in Tt}.

Then (1) If n = k, then M is homeomorphic to Tn - D

where D is a closed O-dimensional subset of Tn.



(2) If n > k, then M is homeomorphic to Tn - D,

where D is a l-dimensional set,either (a) a finite set plus

8—8— o.. —-8 or (b) a O-dimensional set plus the

1 2 ... (n-k)

union of (n-k) pairwise disjoint homeomorphs of the 1-sphere.

Egggf: Let M, Tn, and k be as in the hypotheses of the theorem.

By Theorem 3 of [21], M is homeomorphic to either one of the

surfaces of the hypotheses of Lemma 1.3 or to the complement of

a closed O-dimensional set C in TL for some integer L 2 0.

The first of these cannot occur (else by Lemma 1.3, M could not

imbed in Tn, which contradicts the hypotheses of the theorem).

Thus M is homeomorphic to TL - C where C is a closed

0-dimensional subset of TL. By Lemma 1.2, M cannot imbed in

Tt for t < L. But M imbeds in Tk’ so k 2 L. By the minimality

of k, k s L. Hence k = L.

(1) If n = k = L, then letting D = C we have con-

clusion (l).

(2) If n > k = L, then ‘C‘ = the cardinality of C is

either < 2(n-k) or 2 2(n-k).

a) In the case that ‘C‘ < 2(n-k) 01 is not compact, so

‘C‘ 2 1). let p 6 C, and U be an open neighborhood

of p, which is homeomorphic to E2 by homeomorphism g: U a E2

and C D U = {p}. In U, let A = g-1(B), where B C E2 is

the union of 2(n-k) pairwise disjoint closed 2-discs,

Dl’D2’°"’D2(n-k)’ and 2(n-k)-1 arcs, connected in the manner
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of the sketch 0 O ....D .

D1 I’2 I’3 D2(n-k)

Since B is cellular in E2, A is cellular in TL, and

so there is a homeomorphism, f, from IL - {p} onto TL - A.

 

Thus I = f|T -C is ahomeomorphism from T - C onto

2(n-k)

(T - A) - f(C - {p}). Let F = 0 pint D., and in T - F
L 1 L

i=1

make the identification of the boundary D21_1 with the boundary

of D2i for i = 1,2,...,n-k. This gives Tn as the quotient

Space of Tg - F (as L = k). Call the quotient map h,

h: TL - F * Tn. So h‘IL'A: T - A,» Tn - h(A - F) is a homeo-

L

morphism and h'= h‘ is a homeomorphism onto

(TL-A)-f(C-[p})

Tn - [h(A—F) U hf(C - [p})]. Thus f is a homeomorphism from

TL - C onto Tn - [h(A-F) U hf(C - {p])]. But M is homeomorphic

to TL - C and hf(C - (pl) if finite and h(A-F) is clearly

homeomorphic to 8—8— ... —_8 ,

1 2 (n-k)

b) In the case that 101 2 2(n-k), let be
p13P2:°'-9P2(n_k)

2(n-k) distinct elements of C. So clearly there exist pair-

wise d13301nt open sets Ul’U2"°"U2(n-k) of TL Wlth pi 6 U1

for i = l,2,...,2(n-k) and U1 homeomorphic to E2 for

i = 1,2,...,2(n-k). For each i = 1,2,...,2(n-k) let Di be

a closed disk, cellular in Ui’ Di<: Ui' Then there exists a

homeomorphism hi from Ui - {pi} onto Ui - Di’ with hi

equal to the identity outside a compact set which is a neighbor-

hood of D1 in Ui' Define a homeomorphism h from
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2(n-k)

..
_ =11

TL {p1,p2,...,p2(n_k)} onto TL :11 Di by h‘Ui i for

1 = 1,2,...,2(n-k) and h| 2(n_k) = the identity. Let

TL- 121 Ui
2(n-k)

B = U int Di’ and in TL - B make the identification of the

i=1

boundary of D21.”1 with the boundary of D21, for i = 1,2,...,n-k.

This gives Tn as the quotient space Of TL - B (as L = k).

Call the quotient map g, g: TL - B'» Tn' g = g‘ 2(n-k) is

T ' U D.

" i=1 1

clearly a homeomorphism onto Tn - X where X is the pairwise

disjoint union of (n-k) homeomorphs of the l-sphere. Let

hI= h|T -C’ then E'h' is a homeomorphism from TL - C onto

Tn - [X U gh(C - [p1,p2,...,p2(n_k)})]. But M is homeomorphic

to TL - C and gh(C - {p1,p2,...,p2(n_k)]) is a 0—dimensional

set with X as above, so we have (2) (b). E]

Corollary 1.5: Let M be an Open connected 2-manifold which

imbeds in Tn' Then there exists N CITn such that N is

homeomorphic to M and N = Tn'

Proof: let N = Tn - D of Theorem 1.4. D clearly has void

interior, so N.= T - D = T .[3

n n

Theorem 1.6: Let M2 be a compact 2-manifold without boundary

2 2

and C a 0-dimensional compact subset of M . If M - C is

l-movable, then M2 is a 2-Sphere.

Proof: Let M2 - C be 1-movable, and U the interior of D,

a closed 2-cell in M2. By Lemma 1.1, there exists a homeomorphism,

h, of M2 onto itself with h(C) CLU. Then using D as the
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initial 2-cell in the proof of Theorem 1 of [7], there is a

standard decomposition of M2, M2 = leJ A (with P2 homeo-

morphic to E2 and U<: P2). But A is compact in M2, so

h-1(A) is compact in M2 - C. M2 - C is l-movable, so there

exists a homeomorphism g of M2 - C onto itself with

g(h-1(A)) fl h-1(A) = ¢. Thus h(gh-1(A)) fl hh-1(A) = ¢. By

Lemma 2.1, there exists a homeomorphism g of M2 onto itself

with §| 2 = g. h’gh-1 is a homeomorphism of M2 onto itself.

Ml"3 -1 -1 -1 2
But hgh' (A) n A = hgh (A) 0 hh (A) = ¢. Thus (hgh )(A)<: P .

So by Corollary 1 of [7], M2 is a 2-Sphere.[J

Theorem 1.7: The Open MObius band is not l-movable.
 

2122:: Let the Open MObius band M be given by the quotient map

g: [0,1] X (0,1) a M by the identification of (0,t) with (1,1-t)

for each t E (0,1). A = g([0,1] X [%', §]) is a compact subset

of M and A23 U = g([0,1] X (%-, 2)) which is an open Mfibius band

and so not orientable. If M were l-movable there would exist a

homeomorphism h of M onto itself with h(A)<: M - A. But M - A

is homeomorphic to S1 X (0,1) and so is orientable, while

h(U)<: M - A and so h(U) is orientable. Hence U is orientable.

This is a contradiction.[3

Theorem 1.8: All open 2-manifolds are 2-movable.

Proof: By a theorem of Jones [12], an open 2-manifold, M, is the

union of two open 2-cells, and so M is 2-movable by Theorem 5.5.[3



CHAPTER II

l-MOVABILITY AND O-DIMENSIONAL SETS IN MANIFOIDS

Theorem 1.6 tells us that if the complement in a closed 2-mani-

fold of a closed O-dimensional set is 1-movable, then that manifold

is a 2—sphere. In this chapter we consider the complement of closed

0-dimensional subsets of closed n-manifolds. The main result of

this chapter is Corollary 2.5, if M“ is a closed n-manifold, C

a closed 0-dimensional subset of Mn, and Mn - C is l-movable,

then MP is the n-Sphere and C has an invert point. We end

this chapter with some examples. For each integer n 2 3 there

are two Cantor sets in Sn such that the complement of one of

them is l-movable while that of the other is not l-movable. But

a Cantor set clearly has an invert point and so the converse of

Corollary 2.5 is not true for n 2 3. We begin with a lemma.

Lemma 2.1: Let Mn be a compact n-dimensional manifold without

boundary (n 2 2) and C a closed 0-dimensional subset of Mn.

Then for each homeomorphism h of Mn - C, there exists

a homeomorphism h of Mn such that h| n = h.

M -C

Proof: Given the homeomorphism h of Mn - C as above, define

h as follows in i) and ii).

i) h(x) = h(x) ‘v x E Mn - C, so h] n = h.

M -C

13
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ii) Given e 6 C c M“, there is an open neighborhood U

of e with a homeomorphism g: En mu with g(0,...,0) = e.

Let U for i = 1,2,..., then U1 is
i ‘ g(3(o,...,0), l/i:

homeomorphic to ED and fl vi = e. By Theorem IV 4. of [11],

i=1

p. 48, En cannot be disconnected by a subset of dimension 3 n - 2,

o 5 n - 2, so Ui n (Mn - C) # ¢ is connected. Thus h(Ui 0 (Mn - C))

 

¥'¢ is connected and so h(Ui n (Mn - C)) is connected and closed,

n n -l n

thus compact in M . Let x E M - C. Then h (x) E M - C

and h-1(x) f e. Clearly there exists in Mn - C an open neighbor-

hood V of h-1(x) and integer jO so that V H Uj = ¢, and

0

so V n Ui = ¢ for all i 2 jo. Thus h(V) is an open neighbor-

hood of h(h-1(x)) = x which is disjoint from h(Ui 0 (Mn - C))

 

as h is a homeomorphism. Thus x 4 h(ui 0 (Mn - C)) for all

 

i2jo and so xi 0 h(Uifl (Mn-C)). Thus

i=1
m

H h(Ui 0 (Mn - C)) C:C, and is a compact non-void connected

i=1

 

set. The components of C are points. Hence

co

0 h(Ui 0 (Mn - C)) = {t} for some t E C.

i=1

 

Now define h(e) = t and denote Ui by eUi i = 1,2,... .

iii) To show that h is continuous.

h is clearly continuous at each point of Mn - C, open in M“.

Let a E C and h(a) E 9 where e is open in M“. Let Vi = an

of ii) for i = 1,2,... . Then {8(a)} is the intersection of a

 

decreasing family of non-empty compact sets, h(Vi 0 (Mn - C))

Since {h(a)] c:e, Theorem 1.6 b) of [8], p. 226 implies there is

 

a positive integer 10 so that h(Vi 0 (Mn - C)) c:e.

O
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Consider Vi (an open neighborhood of a). Then

0

h(vi 0 (Mn - C)) - h(vi 0 (Mn - C)) c: 9. let b e v].L n c.

O O 0

Now let W1 8 bUi of ii) for i = 1,2,..., so the W1, i = 1,2,...,

form a neighborhood basis for b in, Mn' Thus 3 jo so that

wj cvi. 30 w 0(Mn-C)cvi moan-C) and

o o 3o o

h(b)€h(W moan-C))cthwi nmn-cnce.

O O

 

1

Thus h(vi ) C19 and so h is continuous at a. But a

was an arbitrary element of C, hence h is continuous.

iv) To Show that h: Mn «‘Mn is surjective, we observe

that as h is continuous and Mn is compact, h(Mn) is compact,

hence closed in the T2 Space Mn. But Mn is connected and C

is O-dimensional thus Mn - C = Mn. Now h(Mp)ZD h(Mn - C)

= h(Mn - c) = M“ - c with h(M“) closed, so 804“) :> M“ - c = M“.

v) h is injective by the following.

As h is a homeomorphism of Mn - C, SO is h-l, and so by i),
/,

ii) and iii) there is a continuous map ,(h- ) from Mn to Mn

/’ /’\

so that (hi)! n = h 1. Note that (h'1)h| n = h'lh = 1 n ,

M -C M -C M -C

the identity map on Mn - C. But 1 | = 1 also,
n n n

M M -C M -C

and as Mn is a T2 Space with Mn - C dense in Mn we have

”R n n
(by 1.5(2), p. 140 of [8]) (h )h: M ..M is the identity map

on Mn. Thus h is injective.

vi) Since h is a continuous bijective map from the

compact Space Mn to the T 2 Space M“, h is a homeomorphism

(by Theorem 8, p. 141 [14]).[3
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Theorem 2.2: Let MP be a closed n-manifold which is the carrier

of a finite simplicial complex, T, c<: Mp,'C is 0-dimensional and

closed, n 2 2 and Mn - C is 1-movable. Then either C has an

invert point or there exists p, c E C, p i c, where each homeo-

morphism, h of C has h(c) = c and h(p) = p, and given

6 > 0, there exist (Open in C) neighborhoods 9p of p and 9C

of c with 9pc: Sp , ec<: Sc and a homeomorphism h of C

:3 Se

such that h(C - 9p) C 9c (thus p and c are the only fixed

points of C). This h is the restriction to C of a homeomorphism

of Mn onto itself with the above property for 9p and 9C open

. n

in M .

Proof: i) There exists a sequence Ki’ i = 1,2,... of compact connected

sets CMn - C such that Mn - K.i c:{x E Mn‘dist (x,C) 5 xi]

and xi 4 0. To construct the [Ki], let T(O)=T, let T(1) be

the barycentric subdivision of T(i-1) for i = 1,2,..., and xi

be the mesh of T(i). Then xi 4 0 (Theorem 5-20, [10]). Let

L1 = [s E T(1)‘ ‘3‘ n C = ¢] and thus the number of components

. . . n . .

of ‘Li‘ is finite, say L1’L2""’Lt; ‘13] CZM - C which is

path connected (connected by Corollary 1, p. 48 of [11], and

each point has a path connected neighborhood so Theorem 5.5, p.

116 of [8] gives path connected), thus there exists arcs pj

n

in S - C from a point oft L1 to a point of Lj for

i i

j = 2,...,t.. Let K. = ( U L ) U ( U p ) which is clearly
i i j=1 j j=2 j

connected, C Mn - C and compact and K1 2 ‘Lil' If s 6 Mn - Ki

then S is a point of simplex of T(1) which also contains a

point of C and has diameter 5 xi; so dist (S,C) 5 xi.
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ii). For each positive integer t there exists a compact

connected set Mt such that Mt<:.Mn - C and the diameter of each

component of Mn - Mt is < %3 and Mn - Mt C:{x 6 M3‘ dist (x,C)

< %]. Construct Mt as follows for each positive integer t.

As C is O-dimensional, for each b 6 C, there is an

open neighborhood, 9P, of b in Mn with (boundary 9b) 0 C = ¢

and 9b C {x 6 Mn‘dist (x,b) < %E . C is compact so a finite

number of these suffice, say 9b ,...,eb , to cover C. Let

1 L

n L L n

N=(M ~Ueb)U(Uboundary 9b). Then NCM -C,N is

i=1 3 i=1 1'

clearly compact, and each component of MD - N is a subset of

one of the 9b and thus has diameter < the diameter of 9b '< %3

J' 1

As N 0 C = ¢, we have d distance (N,C) > 0, SO there is a

xi from i) so that xi < minimum (d,%), Thus N czxi and

each component of Mn - K1 is thus a Subset of one in Mn - N

and has diameter < %u Let Mt = Ki’ then clearly Mn - Mt C

{x 6 Mn‘ dist (x,C) 5 xi} C {x E Mn‘dist (x,C) < %].

iii) As Mn - C is l-movable, there exist homeomorphisms

n . _
ht of M - C onto itself such that ht(Mt) 0 Mt - ¢. But

ht(Mt) is connected and so a subset of one of the connected com-

ponents of (Mp - Mt) - C, which must be a subset of one of the

components of Mn - Mt’ all of which have diameter < %u So

ht(Mt) has diameter < %u Now, for all t, Mt # ¢, so there

co. a w' a . . .
ex1sts a sequence < t>t=l ith t E ht(Mt) But this sequence is

. n .

in a compact space, M,, and so has a Subsequence which converges

in M“, say <a a c 6 Mn.

>00

tj j=l

Thus the sequence of compact connected sets [ht (Mt )}:=1

converges to c.
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We now show that c E C. Assume c é C. So d = distance

(c,C) > 0. Then there exists j1,j2,positive integers,so that

dist (c,a.) < 2, for all j 2 j , and -l;-< Q3 and diameter

t 4 l tj 4

2

d . . _ . . .
htj(Mtj) < 4 for all j 2 32. Thus for all j 2 J0 max1mum (11,32),

n. 9.-
ht amt )<: {x E M ‘dist (x,c) < 2} - Sc So for each

,d/2'

x E ht (Mt ) we have dist (x,C) 2 d/2 (else dist (c,C) < d,

1o jo d

a contradiction) and so dist (x,C) 2 §'>»%-> fl— > El— . By ii)

j2 jo

we have x é Mn - Mt (if not, dist (x,C) < fl—) thus

J0 jo

x 6 Mt . But then ht (Mt ) 9 Mt which contradicts the first

jo jo jo jo

sentence of iii), i.e. ht(Mt) 0 Mt = ¢, as Mtj # ¢. Thus the

0

assumption c d C is false and so c 6 C.

iv) Note Lemma 2.1 says that any homeomorphism of Mn - C

extends to a homeomorphism of Mn. Thus we have for each j a

homeomorphism gt which is the extension to Mn of ht , and

J J

so [g (M )}? converges to c.
t, t, j=l

J J

v) Assume C has no invert point (x is an invert point of

the topological Space X means for each open neighborhood 9 of x,

there exists a homeomorphism h of X so that h(X-e) : e). For

each j = 1,2,..., let Uj be the component of Mn - Mt. that has

J
. '

C oc E Uj There is a k so that gtk(Mtk)<: Uj and Mtj M.tk So

g (M )<: U ; denote this g by h . Let a be that component

tk tj j Ck tj j

- d -of M9 Mt such that fit,(9j) 2 Mt. an hence ht (ej) 2 Mp Uj

J

which is connected and contains Mt . C has more than one element

(or else it would have an invert point) so let 2 E C, 2 # c.

let x = distance (z,c). Then there is a positive integer jO
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ga But Uj has diameter

s <£ and c€U.,so 245m. Thus zEMn-U ch (9,)
j 2 J J J t. J

J

and hence h-1(z) E 9.. But h ‘ is a homeomorphism of C

t j t C

J 1 3

onto itself, so h- (z) E C H e . Let b = h-1 (2). Then

t j j t
1 (Mo)

on

<bj>j=1 is a sequence in compact C, and SO has a Subsequence

so that for each integer j 2 jo, l/j <

<

"
I
H

L
—
b
I
H

<bj>:=1 (with j1 2 jo) which converges to a point, say p, of

L

C. Thus the sequence <9. 2:=1 converges to p.

JL

So, given 6 > 0, there exists an L such that 9. C13

J’L p,€

and —1- s L s l< s, so U, C S (as c E U, which has

t .1 L J CSS J

i, L L L

diameter < -l"< e) and h (e ) 2 Mn - U, . Denote h ‘

tj tj jL JL tj C

L L L

by h and 0. U C by e and U, n C by U . Then.for h = h ,

6 JL 6 J, c e

6p = 96, 9C = ue,we have h(ep) :2 C - 9C and so h(C - 9p) 6; 9C. Note

9C3 ,UCS

e c

-l

6 P’s , h (C - 9C)<: 9p. It remains to Show that

:6

P € 0p = 9 V's, p * c, and that p and c are fixed points

a

under homeomorphisms of C.

vi) p # c. Suppose p = c. Let 0 be any open neighbor-

hood of p. Then for some positive number a, S = S C10-

P:€ C93

Now by v) there exist open sets 9 and Us neighborhoods of p

s

and c respectively and a homeomorphism h of C so that

h(C - 9 ) G U and e c S and U C S . But C - e

e 6 6 6 C38

: - S c C - s h C - c h C - c U c S c .Cm 9e°(°)‘98ec,e9

,6

Thus p = c is an invert point of C. This is a contradiction.

vii) There does not exist a homeomorphism h of C onto

itself such that h(p) = c. Suppose there were a homeomorphism

h of C such that h(p) = c. Let 9 be an open neighborhood
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of c. Then for some 8 > 0, Sc BC: 9. let a = 1/2 min (B, dist

3

. S =adSchi(c,p)) > 0 So Sc,a fl p,a ¢ n C,a e, 8 continuous

so there exists 5 > 0 such that h(S ) c:S and 5 < a-

P,O C d3

AB C is O-dimensional there exists a clopen (closed and open)

neighborhood B of p, B c:S So h(B) CSC a is a clopen

9p.6'

neighborhood of c. Since B is a neighborhood of p, there

exists a A > 0 such that Sp xC B and T«< a. By v) there

exist open sets 9x and UK and ahomeomorphism f of C so

that CS U CS

9). m.’ i c

homeomorphism u of C by letting “‘3 = h

a d f C - CZU . Def' e an ( 9x) A in

_ -l

‘3’ LL1MB) ' h lhgs)

and ”‘C-(B U h(B)) = the identity on C - (B U h(B)) (this is

a homeomorphism as B and h(B) are clopen, so C - (B U h(B))

also is clOpen, and h and h.1 are homeomorphisms). Consider

the homeomorphism fu on C. u(C - Sc ) Clp(C - h(B))<:

9 B

C - h B = C - B CZC - S . So f C - 9 (I f C - S C:u. ( ) psi M ) M C:S)

f C - S <: f C - CZU C:S C:S c: . Th S 'S a( p,x) ( 9x) A Csh C,a 9 u c i n

invert point of C. But this is a contradiction.

viii) p[c] is a fixed point of C; i.e. both are fixed.

Suppose not, then there exists a homeomorphism f of C so that

f(p) # p [f(c) ¥ c], then f(p) é {p,c} [f(c) é {p,c]], as no

homeomorphism of C can send p to c or c to p by vii).

Given any neighborhood 9 of c[p] there is a 5 > 0 so that

C 9]. Let a = l-min(B, dist (p,c), dist (f(p),c),

SCSB ’B 2

dist (f(p),p)) [a = 1/2 min (B: diSt (p,c), dist (f(c),c),

C19 S

[ P

dist (f(c),p))]. As C is O-dimensional, there exists a clopen

neighborhood B of p[c] with B c:S [B C:S ] where

P,5 CS6

6 > 0 is that given by the continuity of f so that
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f(S ) , 6<a [f(Sc O<a].

C Same ,5) C Sf<c>.a’

Thswehavef CS andso fBCC-S

U (B) f(p),a ( ) p30

[f(B) C Sf(¢),cr and so f(B) C C - Sc a].

Psé

But B is a clOpen neighborhood of p[c] so there iS a

)(>0 with h<a so that SPACB[SCKCB]. Byv) there

9 9

exist open sets 9A, UK and a homeomorphism hh so that

-1
h C-e CU d h - ad 8 ,U CS .

if i) i a" i“ Ui)cei “ 9).: m. i c.>.

h hf h -8 ch C-ST us K (B)<: h(C p,a) X( p h - C:SQC h(C 9).)CU C
A

-1 -1 -1 -1

- - h -Eh). f(B) C h). (C Sew) C h). (C Sc») C x ((3 UK) C 9). C SPA]

-1 , -

and hhf(B)[hk f(B)] is clOpenm 13 n hA£(B) = @[B n hllf(B) = ¢].

:1.

Define ahomeomorphism u of c by “‘13 =hxf|B

and #1 = identity on
-1

p‘ = (h f) l -
hxf(B) A hxf(B) c (B U hxf(B))

C - (B U hkaBD

-1 _ -1

MB hi “3’ ”‘hilfm — (h).

identity on C - (B U hklf(B))].

f)-1‘ 1 , and p,‘ =

- -1
hx f(B) C-(B U h)\ f(B))

Consider the homeomorphism bl” of C [h;1p of C].

u(C - e) Cp,(C - hxf(B)) = C - u(h)\£(B)) = C - B C C - SPAC C - 9)\

so hAu“: - 9) C h)‘(C - 9A) C Uh C Sc,), C SC“), C SC:B 7.: 9. Hence

c is an invert point of C, a contradiction.

- -1
[MC - e) c h(c - hx1f(B)) = c - p,(h)\ f(B)) = c - B c: c - SCAG

c - U so hilum - 9) Ch-l (C-Ux)CeCs CS C S C

A A PSA pad PaB

Hence p is an invert point of C, a contradiction.]

e 0

ix) If p i 9e for some , then let a = 1/2 minimum

0 so

(so, dist (p,c)). So there exist open sets 9 and Ua and a

a

homeomorphism h of C such that h (C - e ) CCU , c E U ,

a a a a a

gas ,ch
a c

. f la a da p,a I p E 90’ rep ce 96, US’ n h, by
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a d h t' l . f . h a U =ea, Ua’ n 0 respec ive y I p i en T en 3 an n a ¢

C - 0we have ha(p) ha(C 9a)<: Ua and p 4 no Thus p is not a

fixed point after all,aicontradiction. Hence p E ed as above.

And for the new choice of e = e and e = U , and h = h we

P a C a CY

have p 6 9p. Making this change for all 60 such that p é 9

e
0

gives us the theorem.l:J

Theorem 2.3: The non-invert point case in the conclusion of

Theorem 2.2 cannot occur.

‘nggfz Assume as in the non-invert point case in the conclusion

of Theorem 2.2, that there exist p, c E C, C a compact 0-dimensional

metric space with h(p) = p and h(c) = c for all homeomorphisms

h of C onto itself. Also given any 3 > 0, there exist open

neighborhoods 9p of p and 9c of c, With apt: Sp , 6C C:S

96 C36

and a homeomorphism h of C onto itself such that h(C - 9p) 3 6C

(note that h"1 is thus a homeomorphism of C onto itself Such

-1
that h (c - 9C) c 9p).

He eweha that hC-S ChC- C CSnc ve ( p,6) ( 9p) 9C C’s

'1 -l

a d h C - S CZh - C2 C23 .

n ( Cae) (C 9C) GP Pss

Now let d = 1/3 distance (p,c), so d > 0 and Since C

is 0-dimensiona1 there exist clopen sets D0 and E0 With

p 6 D0 C S and c E E Note D0 n E0 = o. As D0p,d C Sc

0 d'

and E0 are open, there exists an do > 0 so that Sp,aO<: D0

and S CZE , so a s d . So by the hypotheses there exists

c,a0 0 0

of C onto itself such that hO(C - S )c:

a

a homeomorphism. h0

C:

S . S h - C - ‘ . tp’ao 0 0(C E0) ho(C chdo) C Sp,ao L.D0 LB GO

C-(DOUEO)CC-E

O

0’ then h0(GO) CZDO. Note GO and hO(GO)
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a
. 0 .

are clOpen sets. Let d1 = minimum {3,‘§-,‘5 distance ({p,c},

G0 U h0(GO))}. Then there exist clopen sets D1 and E1 with

p 6 D1 C Sp’dl and c E E1 C Sc,d1' As D1 and E1 are open,

there exists an a > 0 so that S c:D and S c:E ,

1 p,a1 l c,a1 1

so a s d . By the hypotheses there exists a homeomorphism

h

h

(homo) U D1) C C - D1, then h1(Gl) C E

l

1

1 l

of C onto itself Such that h1(C - S

(C -Dl) ch1(C - S ) c s
P 01 C,a1

P301

CE. Let

1

1.

GI

) C S . So

C,dl

= D -

0

Define inductively di’ Di’ E1, ai’ hi’ and G1 as follows

 

a.

for each integer i 2 2. Let d, = minimum [973 1.1, l-distance

i-l i 21 2 2

({p,c}, U (Gj U hj(Gj)))], then there exist clopen sets D,

j=0
1

and E1 Wlth p E Di C Sp’di and c E Ei C Sc,di' As Di

and E. are open, there exists an a. > 0 so that S C1D.
1 1 p,ai 1

and 8 CE,. Note that D,CD, and E,CE .

c,a i 1 1-1 1 i-l

homeomorphism hi of C onto itself such that hi(C - S

1

Now if i is even, by the hypotheses there exists a

So hi(C - E1) C hi(C - Sc )

’ai

CZD,. LEt

930- 1

(hi-1(Gi-1)U Ei) C C - E1, then hi(Gi) C Di'

h.
i

If i is odd, by the hypotheses there exists a homeomorphism

of C onto itself Such that hi(C - S

hi(C - Di) C hi(C - Sp

3

i

p,ai

CE.’ mt

1

(hi_1(Gi_1) U Di)<: c - Di, then hi(Gi)<: Ei.

G.
1

’ i

Gi ' Ei-z '

) C:S . So

Define the function f of C onto itself by f‘G = h

h-l

flhimi) = i ‘hi(Gi)’

D.
i

are clopen for all

f(P)

i, the G.
i

= c, and f(c) = p.

and hi(Gi)

1

Since E1 and

are clopen for

) c:S

i G.
1

P.a.°
1
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all i (inductively as CO is clopen and all the hi are homeo-

morphisms), and the family of sets {H‘H = C1 or hi(Gi) for some

non-negative integer i} is easily seen to be pairwise disjoint,

we have that f is a bijective function of C onto itself which

co

is continuous on U (G. U h,(G,)) = C - [p,c]. As d s 2:3 the

. i 1 i i 1

i=0 2

l

Di's converge to p and the Ei s converge to c, thus for i

= 2k+l, D. = {p} U U G U U h (C ), while for i = 2k,

1 a j=k+l 2j+1 j=k+l 2j 2j

a)

E. = {c} U U G . U U h (C , ). So for i even f(E.) CiD,

i j=k+1 23 j=k 2j+l 2j+l 1 1-1

and for i odd f(Di) CZE . By this, f is easily seen to be con-

i-l

tinuous also at p and c. Hence f, a bijective continuous func-

tion from a compact space to a Hausdorff Space, is a homeomorphism.

But f(p) i p (and f(c) # c) which contradicts our

hypotheses. Hence our assumption of the existence of a Space

satisfying the properties of the non-invert point case in the

conclusion of Theorem 2.2 was false.EJ

Theorem 2.4: If Mn is a closed n-manifold, C is a compact

n n n

0-dimensional subset of M , and M - C is l-movable, then M

is an n-Sphere.

Proof: Let Mn and C be as in the hypothesis and Suppose Mn

were not an n-sphere. A result of D. Galewski, Corollary 1.14

of [9] is that C has an open neighborhood, U, which imbeds in

B“. So Mn - U is a compact subset of Mn - C. d = distance

n

(c, M - U) > 0. Let c, {Mt }, gt be as in the proof of

J J

Theorem 2.2. c E U, which is open, and Mn is a n-manifold with-

out boundary, so there is an Open set V which is homeomorphic

n

to E and c E V CZU. Since the g (M.t ) converge to c, there

tJj
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is a positive integer y Such that gt (M.t ) c:V for all integers

J J

l

j > y. There is an integer b > y so that g’< d. Now, tb 2 b

l 1 n n
so —Sh<d' Hence M 2(M -U), so gt (M -U)Cgt (Mt)CV.

th th b b b

So gt (Mn - U) is contained in the interior of a closed n-cell,

b

D, with bicollared boundary in V. Hence Mn - U is contained

in a closed n-cell (gtb)-1(D) with bicollared boundary, which

shall be taken as the initial n-cell in the proof of Theorem 1 of

[7]. Thus the "standard decomposition" of [7] which is obtained, Pn U

R = M“, has Mn - U<: Pn so R CZU. This says R has a neighborhood, U,

which can be imbedded in E“. But this contradicts Theorem 4 of [7].[3

Theorems 2.2, 2.3, and 2.4 together imply immediately the

following corollary.

Corollary 2.5: If Mn is a closed n-manifold, C a closed 0-

dimensional subset of Mn, Mn - C is l-movable and n 2 2, then Mn

is the n-sphere and C has an invert point.

Corollary 2.6: Let C be any Cantor set in E“, n 2 2. Then

En - C is not l-movable.

2522;: Let h be the inverse of the Stereographic projection homeo-

morphism, h: En a Sn - [p] C Sn, p 6 8“. So h] n is a homeomorphism

of En - C onto Sn - ({p] U h(C)) and H = [p] UCh(C) is clearly

O-dimensional and closed. Suppose En - C were l-movable, then by

Corollary 2.5, H has an invert point. But {p} is the only isolated

point of H and so H has no invert point. This is a contradiction.[]

Because of Corollary 2.5, let us now look at the comple-

. n

ments of some O-dimen81onal subsets of S .
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Notation for lemma 2.7 is as follows: let "Cantor set"

mean a O-dimensional compact, perfect metric space, let

n+2

x - (x1,x2,...,xn+2) E E

Sn+l = {x E En+2‘ ‘x‘ = 1}

nS n+1‘
= 0}

[x E S
xn+2

SI = {X E sn+1‘

p = (1,0.....0) e an“ .

Lemma 2.7: Let C be a 0-dimensional compact set, C C Sn - [p],

n 2 1, A<: 81 - [p], and a a homeomorphism from C onto A. Then

Sn+1 - C is homeomorphic to Sn+1 - A by the restriction to

+ +

8n 1 - C of an extension of a to Sn 1. There exists such an

A and a for each such C.

Proof: 1) The stereographic projection, g from Sn+1 - [p] to

En+1 = En X E1 can be taken so that g(Sn - {p]) = En x {0] and

8(81 ' [P}) = [(03'0-:0)} X E1°

ii) Thus C and A are compact and so g(C) and g(A)

are homeomorphic by g a g and compact,and so closed.

-1‘

8(0)

Also g(C) : En X {0] and g(A) C {(0,...,0)] x E1. So by Klee's

n+1 = n

Theorem 3.3 [15], 3 a homeomorphism h(3 E E X B1 such

that h(g(C)) = g(A) and h]

+1

g(C) = gag-1‘g(c). Extend g-1hg

to h, a homeomorphism of Sn onto itself, by h(p) = p. Then

1
h is a homeomorphism of Sn+ and h(C) = A. Note:

- - -1 -1 -1 -1 -1
fi‘c = 8 1hglc * s 1h\g(c) = s (h|g(c)) = 8 gas |g(c) = g gag s\C =

a‘c = a. So h] n-l is the desired homeomorphism.

S
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iii) C C Q_ (a "Cantor set") 5 S“. C has at most a

d

countable number of isolated points (as Sn is 22- countable)

say {ai]:=1, For each i, there clearly exists a "Cantor set",

T. C:Sn with a. E T. and diameter T < 1.,

i 1 1 i i

Q

Let g_= C U ( U Ti) C 5“. Now, the T1 are compact,

i=1

thus closed, and 0-dimensional in ‘Q, so that Theorem II 2. of

[11] applies to give 9_ is a O-dimensional metric space. Q

clearly has no isolated points and so is a perfect Space. Let

c be a point of :§ . If c E C, then c E Q, If c E C, then

d = distance (c,C) > 0. So there is a positive integer n with

%-< %u Thus the neighborhood N6 = {x E Sn‘distance (c,x) < e]

of c for s = %' is disjoint from TK for all K 2 n (else

d d

 

d 5 distance (c,aK) < §'+'§'= d). Thus N6 0 (ginTK) = ¢ for

all e S %3 But N 0'9 f ¢ for any 6 > 0, so for each

d e n-1 n-1

0 < e < ‘3 N C (C U U T ) # ¢. Thus c E (C U U T ) =

2 e _ K __ K

K—l K—l
n-l ‘_

C U U TK G C, Thus g. C Q and so g_ is closed, therefore

K'l

compact. Hence .9 is a "Cantor set".

iv) It is well known that any 2 "Cantor sets" are

homeomorphic (reference Corollary 2-98 of [10]). Since there

is clearly a homeomorphic image B of the standard Cantor set

in S1 - {p}, there is a homeomorphism f from g. onto B,

and so, f(C) G B C S1 - [p] is the desired set A.[:l

Lemma 2.8: Let C be a Cantor set C Sn - [p] (with notation

as in.Iemma 2.7) n 2 1. Then Sn+1 - C is l-movable.
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Proof: Using the notation of Lemma 2.7 and of i) in its proof,

let D be the Standard Cantor set in [0,1] C E1 and

{x E E1\x +-l'+-t E D for some integer t] and consider
2

{(0,...,0)} x F C {(O,...,0)} x EICEn x E1. Then

F

2

ll

En X E1 - H is l-movable. Since if M is a compact set in

T=Ean1

t
-
l

ll

1 1

H, then S={yEE1|(x,y)EMcEan -HcEan

n . .
for some x E E ] is compact. So there eXiStS (an integer L > O

with ‘y‘ < L for all y E 8. Define h: T ~ T by h(x,y) = (x,y

+ 2L). h is clearly a homeomorphism of T onto itself with M H h(M) = ¢.

n+1

Now g-1|T is a homeomorphism from T onto S -

-l n+1 n+1
([p] U 8 (H)) and f. S a 3 defined by f(x1,x2,...,xn+2)

is a homeomorphism of St“.1 onto itself= (-x1,X2, o o o ,Xn+2)

. 1 l
with f(S ) = S .

Let A = f({p} U g-1(H)) which is a Cantor set since

[p] U g'1(H) clearly is a Cantor set.

Now 0 E F, so {(0,...,0)] X {0] E H. Thus

-1 -1
p = f(-l,0,...,0) = f g ({0,...,0] X {0}) E f g (H). Also

f(p) # p. 80 p E A and Ac: 81 - [p]. Since any two Cantor

sets are homeomorphic there exists a homeomorphism a from C

onto A. So Lemma 2.7 applies and Sn+1 - C is homeomorphic to

Sn+1 ' A, WhiCh by f = f-I‘ is homeomorphic to Sn+1 -
Sn+1_A

([p] U 3-1(H)) which is homeomorphic by g to T which is

l-movable. Thus Sn+1 - C is l-movable.[3

Lemma 2.8 followed by Corollary 2.5 proves that a Cantor

set has an invert point (this could of course be shown directly).

The following theorem is a counterexample to the converse of

Corollary 2.5, in dimension 2 3; that is, Cc: S“, n 2 3, and C
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has an invert point does not imply that Sn - C is l-movable.

Theorem 2.9: For each integer n 2 3, there exists a Cantor set

c in sn with sn - c not l-movable.

Proof: Let B be a wild Cantor set in Sn (such exist by [3]),

then where p E Sn - B and g: Sn - p 4 En is the stereographic

projection homeomorphism, B is wild in Sn - p and g(B) is wild

in B“. By Corollary 3 of [19], g(B) contains a Cantor set A

which is wild at each of its points in E“. There exists a trans-

lation homeomorphism f of En with f(A) CZE2 X (0,+m) X En-Bcz

E2 X E1 X E“.3 = En (as A is compact). Let L' be the

standard Cantor set in E1. Then L = L' X {(0,—l,0,0,...,0)]<:

1 -

E X Eu 1 = En is a tame Cantor set in E“.

Clearly f(A) U L is a Cantor set in En which is locally

wild at each point of f(A) and locally tame at each point of L.

Let C = g-1(f(A) U L). There is a constant, K, large

2

2

2 2 ,

[(x1,...,xn) E En‘ x1 +'x2 S K and x3 = x4 =...= xn = 0] gives

n

three connected components for E - T, the two bounded ones are

enough so that T = [(x1,...,xn) E En] xi +-x +...+ xi ' K] U

u' and v', containing reSpectively f(A) and L.

So Sn - g-1(T) has three connected components, with two

of them u = g-1(u') and v - g-1(v') containing respectively

g'1(f<A)> and s'lm.

Suppose Sn - C were lwmovable. let L = 1/4 min {dist

(g'1£(A>, g'1(L>), dist (g'lf<A), s'1<r>>, dist (s'1(L). g'1(T)>,

diam (g-1f(A)), dist (p,c), diam g-1(L)].
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In the proof of Theorem 2.2, there exists a tj with

0

‘thl/tjO < L and ht (Mt. ) C Sc,L W1 ht a homeomorphism of

jo JO 30

Sn - C. iFrom lemma 2.1, ht extends to a homeomorphism h

jo
n

of S onto itself. L was chosen so small that no component

of Sn - Mt contains points of both g-1f(A) and g-1(L)

j0

(as g‘1(T) separates g-1f(A) and g-1(L),while g-1(T)CMt ).

jo

But Sn - Sc L is connected and so contained in a single connected

3

component of Sn - h(Mt ). But L was chosen so Small that

jo

Sn - Sc L contains an open neighborhood of a point from each of

9

g‘luA) and 3‘10». say a e g'luA). b e g'la.) and a e 9,.

. n n

beeb,ea and 9b are Open In S sand eaUebcs -Sc,L

Thus h-1(ea U eb)<: some connected components of Sn - MC

1 1 1 jo
and so {h‘ (a), h' (b)} is a subset of either g' f(A) or

g-1(L). In the first case let a = h-1(b) E g-1f(A) and m = h,

and in the second case let a = a and m = h-l. Then m is a

homeomorphism of Sn and a E g-1f(A) with m(a) E g-1(L). AS

h is an extension of ht and p EMt (by the choice of L)

1 jo jo- n

{9:CP(P)} C [Pal-1(1)) :h (9)} C S ' C.

n

Since 8 - C is a connected manifold, for any two

points (and so for p and m(p) in particular) of

Sn - C there is a homeomorphism Y' of Sn - C onto Sn - C

which is the identity outside of and on the boundary of an n-cell

in SD - C, and Y'(¢(p)) = p. Extend Y' to a homeomorphism

Y of Sn onto itself by Y] n = Y' and Y‘C = identity on C.
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Thus Ym is a homeomorphism of Sn with Ym(p) = p and

so Ym‘ n is a homeomorphism of Sn - p onto itself. Hence

S -p 1

p = g(Y¢‘ n )g- is a homeomorphism of En onto itself which

8'?

sends g(a) E f(A) to an element B of L.

Then there exists an open neighborhood 9 of g(a)

with e c: 1:2 x (o,+m) x End and Me) c: E2 x (40,0) x En'3.

So M9 n(f(A) U 1.)) -- Me n f(A)) c L which is tame in s“

and so f(A) U I. is locally tame at g(a) E f(A). This is a

contradiction as f(A) U L is wild at each point of f(A). Thus

Sn - C is not l-movable.D

There is perhaps a chance of proving the following converse

of Corollary 2.5 when n = 2, because of Lemma 2.11 and Theorem 2.13.

Conjecture 2.1Q If C is a closed O-dimensional subset of 82

and C has an invert point, then 82 - C is l-movable.

2

Lemma 2.11: If C is a 0-dimensional compact Subset of S and

h is a homeomorphism of C onto itself, then there exists a

A. 2 .

homeomorphlsm h of S onto itself so that h‘ =h.

uggggf: i) C is a subset of a 0-dimensional, compact, perfect

subset A of 82. First C is a second countable metric

Space (as 82 is such), and hence has at most a countable number

of isolated points, say [xi‘i E I} for some I<: [1,2,...].

For each i E 1, xi has a open neighborhood N with N c:Sx 1

1’1

and a homeomorphism g: N d E2 with g(xi) = (0,0). Let

A

xi

g-l(B) where B is the standard Cantor set in [0,1] X

2

[0} CZE . Then AX is a 0-dimensional, compact, perfect Subset

i
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of 82 with x E A <: S 1 . Let A = C U U A . Then by

"i xi’i' iEI xi

Theorem 11 2, of [11], A is O-dimensional, A clearly has no

isolated points, and as diameter Ax < %' with A and C

. x
i

closed for all i E I it is quite easy to Show that A is

closed. Thus A is also perfect and compact in 8

ii) Let x E $2 - A. Then there is the stereographic

projection homeomorphism s: $2 - {x} 4 E2. Let B' be the

standard Cantor set in [0,1] X [0}, thus a perfect, compact,

O-dimensional set in E2, as is S(A). As components of 0-

dimensional sets are points, Theorem I of [1] applies and there

is a homeomorphism t of E2 onto itself with t(s(A)) = B'.

Now let B = t(s(C)). If it were true that for every homeomorphism

. . 2
g of B CZE2 onto itself, there IS a homeomorphism g of E

onto itself with §|B = g, then we would be through. For given a

homeomorphism h of C onto itself, g = ts hS-lt-I‘B is a

homeomorphism of B onto itself, and so extends to homeomorphism

A 2 h A - - A

g of E onto itself with g‘B = g. Thus f s 1t 1 tg s isll

2

a homeomorphism of S - [x] onto itself and so extends to a

2

homeomorphism h of S onto itself by h(x) = x and

* * -1 -1
h‘sz - f. NOW h‘C = f‘C = S t g ts‘c (and as tS(C) =

'{X}

'1 '1 _ -1 -1 -l -l _ -1 -1 -1 -1 _

B): s t gts‘c - s t (tshs t )ts|C - (s t ts)h(s t ts)‘c _

h\C = h.

iii) Thus it remains only to show that if g is a homeo-

morphism of B, a closed subset of the standard Cantor set C [0,1] x

x 2

{0] C1E2, onto B then there is a homeomorphism g of E onto itself

with §|B = g. 80 suppose such a B and g are given. Define
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l 2
a homeomorphism r from B onto a closed subset of [0] X E C:E

by r(y,0) = (0,2) where g(y,0) = (2,0). Then by Klee's Theorem

3.3 [15], there exists a homeomorphism f of E2 onto itself

with f‘B = r. L: E2 « E2, defined by L(x,y) = (y,x), is a

homeomorphism of E2 onto itself and so let g = L - f.[3

Corollary 2.12: Let c C 3n - {p} c: s‘“+1 - [p] as in Lemma 2.7.

Then any homeomorphism of C onto itself extends to a homeo-

morphism of Sn+1 onto itself.

Proof: Let h: C a C be a homeomorphism of C onto itself. By

Lemma 2.7 there exists a homeomorphism a: C a A (Of C onto a

set A c 81 - {p]) and this homeomorphism extends to a homeo-

, ._ n+1 .
-

morphism a of S onto itself. Then ah: C w A is a

homeomorphism satisfying the hypotheses of Lemma 2.7, so there is

a homeomorphism B of Sn+1 onto itself and B‘C - ah-

, - -l n+1 ,

ConSider the homeomorphism (a) B of S onto itself,

o'lah = h.l'J(E)'la\c = (E)'1(e\c> = (Efloh -((E)'1‘A)oh

Theorem 2.13: $2 - C is l-movable when C is a "Cantor set".

‘nggf: Let us use the notation for Lemma 2.7 with n = 1. If p E C,

then there is q E $2 - C and there is a homeomorphism h of 82

onto itself with h(q) = p. Thus without loss of generality we may

assume p E C. So let g be the stereographic projection of

$2 - [p] onto E2. Then g(C) is a "Cantor set" in E2 and

g(S1 - [p]) is a line in E2. There exists a "Cantor set", say

B, on g(S1 - {p]). 80 by Theorem I of [1] there is a homeomorphism

f of E2 onto itself with f‘g(C) a homeomorphism from g(C)

onto B. Thus Q = g-lf g is a homeomorphism of $2 - [p] onto
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itself and so has an extension, say Y, to $2 by Y‘ 2 = Q

8 -{PJ

and Y(p) = p. Then letting the C and n of Lemma 2.8 be

3-1(3) and 1 respectively, Lemma 2.8 tells us that S2 - g-1(B)

is 1-movable. But Y(C) = g-1(B) so Y‘ 2 is a homeomorphism

S -C

2 2 -

from S - C onto S - g 1(3). Hence 82 - C is l-movable.[]



CHAPTER III

SIMPLICIAL CDMPLEXES AND 1-MOVABILITY

In this chapter we will first prove some lemmas and a

theorem to enable us to prove the main re8ult of this chapter,

. . (n-2)
which is that ‘K‘ - ‘K j is l-movable for each n-dimen-

K(q) is theSional abstract simplicial complex K, where

q-Skeleton of K and n 2 3. We then observe that a l-movability

condition and engulfing theorems trivially give characterizations

of the n-sphere using a theorem of Doyle and Hocking in [7]. We

will then give many examples Showing that even when K is a

compact combinatorial n-manifold we cannot claim |K‘ - \L‘ is

1-movable, when L is a q-dimensional subcomplex of K, 0 S q S n

or even when L = K(q) for 0 S q 5 [Egg].

When a is simplex, a E ‘o‘, B C ‘0], a-B will denote

the set {to + (1-t)e|t 6 [0,1], 3 e B}, at will denote the

t-skeleton of 0 considered as the simplicial complex consisting

of all the faces of o, and <o> will denote the set ‘0‘ - ‘6‘

as in [22] with & = 80 = C(n-l).

Lemma 3.1: Let a be an n~simplex, C a compact set, c ¢ ¢,

o‘“'2)|, U \o‘“'2’\
in ladC<: ‘0‘ - l a neighborhood of

with U'fl C = ¢. Let 6 be the barycenter of 0. Then there

is a pseudo-isotopy [Ht] of lo] onto ‘0‘ which is fixed on

”(WIN and has H1(C) c: a-qas‘ - E).

35
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§r_og_§: We may consider [6‘ to be linearly embedded in En and

Bn to be the n.- ball with center 6 and radius large enough,

say R, so that ‘6‘: B“. There is a homeomorphism h of ‘0‘ onto

Bn induced by the radial projection of |°(n-1)‘ onto bdy 8“.

Now, h(U) n h(C) I ¢ (as 6.0 C 3 ¢) SO d = distance

(h(B),h(c))>0. Let Dn be the n-ball with center 6 and radius

R - d/2. Then (a - h(U)) - (a - (radial projection from a of

h(U) onto bdy Dn))is disjoint from h(C).

let {Gt} be the obvious pseudo-isotopy that shrinks

Dn radially down to 6 and sends each ray from 6 onto itself.

(l-t)(x-6) + 6 for ‘X-a‘ s R - d/2

ct“) = (it-a) R + (lx-6j-R)[R-(1-t) (R-d/2)] ) + ..

|x-a| ( ' ' d/2 °

for R 2 ‘x-6‘ 2 R - d/Z

where the points x and 6 are considered as vectors from the

origin and

2 2 2

1(y13y2’°°°ayn)‘ =(y1 +y2 +-~-+ yn)% .

Thus G1(h(C)) C 6. (bdy Bn_ h(U)) and so [Ht] where

Ht = h-lcth is the desired pseudo-isotopy on o as

h also preserves rays from 6.[3

Lemma 3.2: Let a be an n-simplex, 6 its barycenter, and F

a compact subset of ‘6‘ - ‘O(n-l)‘.

Then there is a pseudo-isotopy [Ht] of ‘0‘ onto ‘0‘

which is fixed on ‘O(n-l)‘ and has H1(F) = O.
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Proof: Construct Bn and h as in Lemma 3.1 and let d = distance

(bdy Bn,h(F)).Then d > 0. let 1)“ be the n-ball of radius

R - d/2 and center 6 with {Gt} as in Lemma 3.1. Then as

h(F) c n“, Gl(h(F)) = a, so letting

1
HC = h Gth’ [Ht] is the desired pseudo-

isotopy on ‘0‘ .[3

Lemma 3.3: let a be an n-simplex with barycenter 6 and

Tl’T2’°"’Tn+l the (n-l)-faces of a. Let iGt be a pseudo-

isotopy of ‘Til onto lTi‘ fixed on ‘Ti(n-2)| for each

i = 1,2,...,n+l. Then there is a pseudo-isotopy [Ht] of lo]

onto M with Ht‘l'iil =iGt for tE[0,l] and i=l,2,...,n+l.

Proof: Let [Gt] be the pseudo-isotopy of \c(n-l)‘ defined by

Gt‘lTil = iGt for i = 1,2,...,n+l and t E [0,1]. Using polar

coordinates in lo] (as in [22], p. 117), [Ct] extends to the

pseudo-isotopy [Ht] by

Ht([dsl]) = [Gt(o)s k]-

[Ht] clearly has the desired properties. [3

Theorem 3.4: Let K be a simplicial complex (not necessarily

(“‘2)‘

 

locally finite) of dimension n, A be a subset of ‘K| - ‘K

which has A n ‘6‘ compact for each 6 E K. Then there are two

pseudo-isotopies, [Ft] and [Gt], of ‘K‘ onto \K‘ which are

(“'2)‘
fixed on ‘K and have
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c1F1(A)cT= U 6-? U U {’r)

sex-K(“'1) ¢€K(“'1)-K(n'2)

T is (n-l)-face of o and A n.<T> # ¢

and A n <o> E ¢

l2:gg£; For each (n-l) simplex T of K, obtain, from the con-

struction in.Iemme.3.2(with ¢ # F = A n ‘7‘ = A n \T‘ - ‘T(n-2)"

T as the o' of lemma 3.2) U1. = h.1(Bn - D“) a closed neighbor-

hood of |T(“‘2)\ in \¢| with ¢ = UT n F = UT n A n |T\ = UT n A

and let {THt] = {Ht} (the pseudo-isotopy of Lemma 3.2 for the above

F) when A n [T] E ¢; when A n ‘T‘ = ¢, let THt = identity on ‘T\

and UT = ‘7‘. TH1(‘T\ - UT) : {6]. Now, for each n-Simplex o of K,

n+1

let TlsTZ....,Tn+1 be its (n-1)-faces. Then U = 9:1 UTi is

“*1 (n-2) (n-2)
a closed neighborhood of U ‘Ti | = ‘o \ in 130‘: By Lemma 3.1

i=1

(With 0 = o, U = U, and C = A n ‘0‘) there is a pseudo-isotopy

{OFt] (the pseudo-isotopy [Ht] of Lemma 3.1) of ‘0‘ onto

‘6‘ which is fixed on ‘g(n-1)‘ and has

CF10. n M) c 5 ~ (\o(“‘1)| - if)

when A H <d> E ¢. ‘When A n <o> = ¢, let {oFt} be the pseudo-

isotopy which is fixed on ‘0‘. OFt = identity on ‘6‘ for all

t E [0,1]. Hence there is a pseudo-isotopy {Ft} of ‘K‘ onto

‘K‘ defined by Ft‘|1“ = identity on ‘7‘ £01? each T e ROI-1)

K(n-1). Now by Lemma 3.3and Ft‘lo‘ = opt for each a E K -

(letting a = o, 6 = 6, Ti = Ti for i = 1,2,...,n+1, iGt = THt)

we obtain the pseudo-isotopy [Oct] = the [Ht] of Lemma 3.3.

Hence, there is a pseudo-isotopy [Gt] of ‘K‘ onto ‘K‘

defined by
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K(in-1)

II C
)

Gt“o‘ o t for each 0 E K -

G l = H for each T E K(n-1) - K(n-2)

t l'ri Tt

= , , (n-2)

Gt“T‘ identity on ‘T‘ for T E K

G and F are both clearl fixed on K(n-2) and{t} it} y I

G1F1(A) c T is easily verified.[3

Lemma 3.5: let A be a compact Subset of a normal space X,

and [Ht] a pseudo-isotopy of X.

If there is a homeomorphism, g, of X onto itself with

g(H1(A)) n H1(A) = ¢, then there is a homeomorphism, f, of X

onto itself with f(A) n A = ¢.

‘25232: As X is normal, g(H1(A)) and H1(A) closed, we have

disjoint open sets U and V with U 2 g(H1(A)) and V 2 H1(A).

9 = 8-1(U) 0 V is open and H1(A) C e C V, g(e) C U, and

U<: X - 9. Let H: X X [0,1] a X be the pseudo-isotopy {Ht}.

Then H-1(9) is open and H-1(e):3 A x {1] which is compact

in X X [0,1]; so there is a S E [0,1] with H-1(9)23 A x (S,l].

Let p = (1+S)/2. Then Hp is a homeomorphism of X onto

itself and Hp(A)<: 9. Let f = Hglg Hp. Then f(A) = Hglg Hp(A)

c Hglgm) c H1310» c H;1(X-e) c Hglcx-upm) c Hglmpa-A» = x-A.

So f(A) nA = ¢.EJ

Lemma 3.6: Given an n-Simplex 6, n 2 3, with its vertices ordered

as indicated a = {a1,a2,...,an+1], let Ti, i = 1,2,...,n+1 be

the (n-l)-faces of o with their vertices ordered as induced and

indicated by the ordering of the vertices of o,

T. = [alsazsooosa Then there is a well defined
1 i-l’ai+l’°°°’an+l}'
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set [a,51,82,...,5n*1] Cl‘o‘ dependent only on the ordering of

the vertices of o with a E <o>, Bi E <Ti> for i = l,2,...,n+l,

n+1 n+1

and (U a-Bi) 0(U C-Ti) =¢.

i=1 i=1

Proof: We will use barycentric coordinates throughout. u E 6-?

n+1

for some i, when u = ( 2 [fl+£] aj) + 15—F- i for some

i

 

=1 (n+1) n n+1

i

t E [0,1], and so each coordinate of u is one of at most two

+1
. l-t t 1-t “ 21

_ + - — o =p0351ble values, (n+1 n) and n+1 let oz .121 (n+1) (n+2) aj E <o>

1-1 2

and for each 1 = l,2,...,n+l let Bi = (.121 n—j_(n+l) aj)

n+1 ZII'E

+ j;§+1n(n+l) aj E <Ti>' Then v E 6-31 for some i, when for

some 3 E [0,1]

  

i-l
_ st 2(l-S)j, 2(1-s)i

V ' (j21(n(n+l) + (n+1)(n+2)) a3) + (n+1) (n+2) ai

, “*1 (amuse, 2(1-8)j )
j=§+1 n(n+l) (n+1) (n+2) j

Observe the coeffic1ents of a1,a2,...,ai_1,ai+1,.

the barycentric coordinates of v, are all different values.

.. a in

’ n+1

But this is n different values and n 2 3, SO

n+1 n+1

( U 8 °‘?) (l( U 0" B.) = ¢ .[3
. 1 . i
i=1 i=1

Theorem 3.7: Let K be an n-dimensional simplicial complex (not

necessarily locally finite), n 2 3.

Then ‘K‘ - ‘K(n-2)‘ is l-movable.

Proof: Let A<: ‘K‘ - \K , A compact. We need only Show
 

a homeomorphism, f, Of ‘K‘ - ‘K(n-2)| onto itself with

f(A) n A = ¢. Since A is compact, A H <d> # ¢ for at most a
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finite number of shmplices a E K (by Corollary 19 of [22], p. 113),

also A and K satisfy the hypotheses of Theorem 3.4. Let

{01’02’°°°’Op} = {o E K-K(n-1)‘<o'> n A if (15} and

(n-1)_K(n-2)|A n.<T> E ¢ or T is a face of a.

[AISA2’°°°’>\q} = {T E K
for some i E {1,2,...,p} 1}

with o, E q if i E j and xi # I for i E j. Now let

1 J

q

T= U 8.°i)U(kU{i})o

(I=l,2,...,p 1 k =1 R

i f3k s a face 0 Ci

J

Then by Theorem 3.4, followed by lemma 3.5 applied twice, the

existence of a homeomorphism, h, of [K] - ‘K(n-2)| onto itself

with h(T) 0 T = ¢ would imply the existence of the required f,

and hence the theorem.

Let S = {v E K‘v is a vertex of either oi for some

i - 1,2,...,p or some xk for some

k = 1,2,...,q] .

S has only a finite number of elements,so they can be ordered

by counting them, v1,v2,v3,...,vL. This ordering of S induces

an ordering of the vertices of each Oi’ i = 1,2,...,p and of

each xk’ k = 1,2,...,q.

Now, for each k = 1,2,...,q, either is not the face
"k

of any oi’ i = 1,2,...,q, in which case choose 6 to be any

k

element of <xk> - [1k], or xk is an (n-l)-face of Oi for an

i E {1,2,...,p}. In the latter case let Oi be the o of

Lemma 3.6, then xk = T for some j E {l,2,...,n+l]. Define

J

6k = the Bj of Lemma 3.6. Note that 6 is well defined for
k
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each R since the ordering of the vertices of xk induced by

S is the same as that induced by the ordering of the vertices

of any a which hast xk as a face, t E [1,2,...,p].

As Xk and 6k are both elements of <xk>, it may be

easily shown using Lemma 2 of [22], p. 116, that there is a

homeomorphism gk of ‘xkl onto itself which is fixed on

<n-2) ,
‘xk | and gk(Xk) 6k. Define a homeomorphism g of

(“‘1)‘
‘K onto itself by

g‘lka = gk for each k = 1,2,...,q

and g‘
(n-l) _

\K ‘

q

(n-l)‘ - = identity on [K Eil‘xk‘ .

allA
k=1 k

For each n-simplex, o 6 K, let Og be the homeomorphism

of ‘0‘ onto ‘0‘ which has defined
8‘ = 8‘ s

o (“-1) (“-1)

\o l \c l

by Cg([a,t]) = [g(a),t] (using polar coordinates in ‘0] as

in [22], p. 117). Then define the homeomorphism, g, of ‘K|

onto itself by g‘|K(n-l)| = g and g‘\o\ = og for each

s e K - K(n-1).

Now for each a E K - K(n-1), let do = 8 if

c E [61,oz,...,op] and a0 = the a of Lemma 3.6 for o = Ci

1

under the ordering of the vertices of oi induced by that of S.

Now define the homeomorphism ah of ‘0‘ onto itself given by

(again using polar coordinates)

Oh([a,t]) = t a0 +(1-t) a .

(“'1)‘
Note h is the identity on ‘6 . Define the homeomorphism,

o
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h, of ‘K‘ onto itself by

6| = h for each a e K - K("'1)

\ol 0

and 5‘ |r(“'1>‘ .

\K

= identit on

<n-1>| y

Now let h = hg. h is clearly a homeomorphism of \K] onto

itself and hl'o‘ is a homeomorphism of ‘0‘ onto itself and

h‘<o> is a homeomorphism of <o'> onto itself for each 0 E K.

Thus to show h(T) n T ¢, we need only show

(*) h(T n <o>) n (T n <o>) ¢ for each s E K.

This is clearly true for each 0 E K with T n <o> = ¢.

$232.1: 0 E K(n-2). T 0 \K(n-2)‘ = ¢ so T H <O> = m- (*) is

true 0

§§§g_2. a E K(n-1) - K(n-2) and T H <d> E ¢. Then a = 3k

for some k E {1,2,...,q]. But T n«<xk> = Xk and

h<1k> = fia<xk) = fi<g(xk)> = fi<gk<xk>> = fi<5k) ‘ 5k

(n-l)‘.
as 6k E [K But 6k E Xk, so

h(T n <a>) n (T n <o>) = {5k} n {xk} = ¢. (*) is true.

_ K(n-l)
Case 3. o E K and T fl-<o> E ¢. Then a = oi for

some i E [1,2,...,p]. So T H <oi> C T n ‘01]

= U 6, - 1k . Now for A1 a face of o.

3k is face of Ci 1
k

h(oi-ik) - fi§(ai-ik) = fiél‘oi‘(ai-ik>

fi<oog<a,-ik>> = fi<ai-g(xk)> = fiei gk(lk))
1

= h(°i'5k) = h|\oi\(°i°5k) = c:(°i°5k) = 00,6k
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= a°6k. (where a is the a of lemma 3.6 for our ordering

of vertices)

= a-Bj (where Bj is the Bj of Lemma 3.6 for our ordering

of vertices and 01 = o and 3k = Tj).

n+1

So hCT ni<oi>) c {J “'51 (the a and Bj being those of

J=1

Lemma 3.6 with our ordering of

vertices and Ci 8 o)

A n+1 A

and T n <O->'§ U 6o°kk ‘ U 6wt, . (the a and T 's

1 - 1 J J
xk is a face of 61 j=l

and k E {1,2,...,q] being those of Lemma 3.6

with our ordering of

vertices and Oi = o).

n+l n+1

But lemma 3.6 gives us ( U a-B ) n (lJ 6-T,) = ¢, hence

i=1 1 i=1 3

h(T n <oi>) n (T n (01>) = ,5. (a) is true. [I]

Let us consider Open n-manifolds that have been obtained by

the removal of a closed set from a closed n-manifold. The follow-

ing theorem is trivially given by the sphere characterization

theorem of Doyle and Hocking [7].

Theorem 3.8: Let Mn be a closed n-manifold, A be a closed sub-

n n n n

set of M , A C V C M with V homeomorphic to E , and M - A

be l-movable. Then Mn is an n-sphere.

‘nggfz Let M“, A, and V be as in the hypothesis. Then A is

compact and so contained in the interior of an n-ball, B C:V, with

bicollared boundary. Let B be the initial n-ball with bicollared

boundary in the proof of Theorem 1 of [7] for the manifold it“.

Then Mn = U U R with U homeomorphic to En and U U R a

"standard decomposition" as in [7] and B C U. Now
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My - A = (U - A) U R and R is compact in M“, hence compact in

Mn - A. ‘Mn - A is 1-movable so there is a homeomorphism h of

Mn - A onto itself with h(R) n R = q). Thus h-1(U - A) is a

neighborhood of R and U - A is a Euclidean domain (can be

imbedded in En),so h-1(U - A) is also a Euclidean domain. But

then Theorem 4 of [7] says that Mn is homeomorphic to S“. [3

Thus any engulfing theorem that says a closed subset A

of a closed n-manifold Mn is engulfed by an open n-cell tells us

that if Mn - A is 1-movable then. Mn is an n-sphere, also if

Mn is not an n-Sphere then Mn - A is not l-movable. SO the

engulfing theorems of Newman in [18] and Zeeman in [25] give

Corollaries 3.9 and 3.10 respectively.

Corollary 3.9: let X be a locally tame closed set of dimension

s n-3 in M, a p-connected closed topological n-manifold without

boundary (thus n 2 3). Then M - X is l-movable implies that M

is an n-sphere.

Igrggf: Let X and M be as in the hypothesis. Then since there

is an open set V, homeomorphic to En and so (p-l)-connected, in

M and M - V is compact the main theorem of [18] applies to insure

the existence of a homeomorphism, h, of M onto itself with X<:.h(V).

But h(V) is homeomorphic to En and so Theorem 3.8 implies that

M is an n-Sphere. D

Corollary 3.10: Let Mn be a connected closed combinatorial

n-manifold, n 2 3. Let q s n-3 and ni(Mp) = 0 for i = 0,1,...,q.

If Mn - ‘Ll is l-movable where -L is some subcomplex of dimension

q of some triangulation of M“, then Mn is homeomorphic to S“.
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2:22;: Assume the hypotheses. The result may then be obtained as

a corollary to Corollary 3.9. An alternate proof is to Observe

that Theorem 1 of [25] is that ‘L‘ lies in the interior of an

open n-ball in M“. A8 ‘L‘ is closed in My and an Open n-ball

is homeomorphic to En, Theorem 3.8 implies that Mn is an n-sphere.EJ

We now have some examples that restrict the possible improve-

ment of Theorem 3.7 in certain ways.

Corollary 3.11: Let q and n be integers such that 0 S q S n-3

and q 5 [Egg]. Then there exists a finite n-dimensional simplicial

complex K (that is even a combinatorial n-manifold without boundary)

having ‘K‘ - |K(q)‘ not l-movable.

q+l X n-q—l

Proof: There is a finite triangulation, K, of S S that

is a combinatorial n-manifold. As n-q-l 2 q + 1,

wild) = view) x view"1

(Q)‘

) = 0 for i = 0,1,2,...,q. Suppose

[X] - lK were 1-movable. Then by Corollary 3.10, \K‘ is

homeomorphic to the n-Sphere. But [K] is homeomorphic to

q+l n-q-l

S X S , which is not homeomorphic to the n-Sphere. This

(Q)‘
is a contradiction, so ‘K‘ - \K is not l-movable.[3

For an n-dimensional simplicial complex K, we have the

(Q)‘
question of whether or not ‘K‘ - ‘K must be l-movable. The

answer is affirmative for q = n (since ¢ is l-movable),

(n-l) . . . .

q = n - 1 (since ‘K‘ - ‘K \ is the diSjOint union of open

n-simplexes, each homeomorphic to E“, and so clearly l-movable),

and for q = n-2 (by Theorem 3.7). The answer is negative when

n 2 3, and 0 s q 5 [Egg] (by Corollary 3.11). When

n-2 .
[—§—] < q < n-Z, the answer is unknown at present.
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Remark 3.12: Observe that when the codimension, n-q, is 0,1,

or 2 we have [K[ - [K9[ is l-movable. However when n-q 2 3,

if we let n = 2q +-2, then Corollary 3.11 gives an example where

[K[ - [K(Q)[ is not 1-movable. Hence for each p > 2 we cannot

have the theorem that [K[ - [K(n-p)[ is l-movable, so 'Theorem

3.7 has the best fixed codimension possible.

Example 3.13: There is a n-dimensional,infinite, locally finite

simplicial complex, K, that is a combinatorial n-manifold and a

triangulation of En = E1 X En"1 (so that those simplices whose

carrier is a subset of E1 X ([O,+m) X En-Z) form a triangula-

tion of [O,+m) X En-l) with the following property. Every

homeomorphism h that is a translation along the first factor

by some integer d (i.e. h(x,y) - (x +-d,y)) is a simplicial

map (that is, h(v) is a vertex of K for each vertex of K

and whenever v1,v2,...,vk are the vertices of a simplex of K,

h(vl),h(v2),...,h(vk) are vertices of a simplex of K). Thus

such an h has h([K(q)[) = [K(q)[ for each integer q,

0 S q S n, and so h[ is a homeomorphism of

lK\-IK(")\

[K[ - [K(q)[ onto itself.

Let q be an integer, 0 S q S n-1, and A be a compact

subset of [K[ - [K(q)[, then A<: [-a,a] X En-1 for some integer

a > 0. So the homeomorphism h that is a translation by the

integer 3a along the first factor has h a homeo-

K[-[K(q)

( \ \

morphism of [K[ - [K q)[ onto itself and A n h(A) = ¢. Hence

[K[ - [K(q)[ is l-movable, and so examples of l-movability occur

for all integers q and n with 0 S q S n-l.
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Suppose we consider (as a relaxation of the previous ques-

tion) the possible l-movability of [K[ - [L[ where K is an

n-dimensional finite simplicial complex that is even a compact

combinatorial manifold, L is a subcomplex of K(q), L E K(q).

There are three basic possible relationships possible for K and

L as follows:

a) K has no boundary

b) K has non-void boundary, 5K, and L n 5K = ¢

c) K has non-void boundary, 3K, and L 0 5K # ¢ .

For each of a), b), and c) we have an example with [K[ - [L[

l-movable and another one with [K[ - [L[ not l-movable (except

for b), where no l-movable example could exist), for each pair

of integers n and q, n 2 2, 0 S q S n.

1) For a) l-movable, let X = 6, for an (n+l)-Simplex o, L be a

q-simplex of K, with its faces. Then [L[ is cellular in

[K[, so [K[ - [L[ is homeomorphic to [K[ less a point, SO

n

to S less a point, so to En and so 1-movab1e.

2) For a) not l-movable, let K be a triangulation of S1 X Sn-1

and L be the faces of a fixed q simplex of K. Then [L[

is a subset of an open subset Of [K[ that is homeomorphic

to E“, and S1 x S".1 is not homeomorphic to 8“. Thus

Theorem 3.8 would be contradicted if [K[ - [L[ were l-movable,

and so [K[ - [L[ is not l-movable.

3) For b) not 1-movable, let K be a complex that triangulates

S1 X [Dn-1[ where DH”1 is a (n-l)-dimensional simplex and

K has an n-simplex o with 0 0 3K = ¢. Let L be the

faces of a fixed q-dimensional face of 0. Then [K[ - [L[
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n-2

is a n-manifold with boundary homeomorphic to S1 X S

but then the boundary is compact so Theorem 5.1 implies that

[K[ - [L[ is not l-movable.

For c) l-movable, let K be the first barycentric subdivision

of the faces of a fixed n-simplex. When q S n-l let L be

the faces of a q-simplex of boundary K, and when q = n let

L be the faces of a n-simplex of K that has exactly n of

its vertices in boundary K. In either case [K[ - [L[ is

homeomorphic to [K[ less a single point, and so homeomorphic

to [0,+m) x En'l. Thus [K[ - [L[ is l-movable.

For c) not l-movable, let K be the second barycentric Sub-

n-l[

division of a complex that triangulates S1 X [D where

D“.1 is a (n-1)-dimensional Simplex. For q S n-l let L

be the faces of a cellular q-simplex of boundary K, and for

q = n let L be the faces of a n-simplex with exactly n of

its vertices in boundary K and L n boundary K cellular in

[5K[. In either case, Remark 5.2 tells us that if [K[ - [L[

is 1-movable, then so is B = boundary ([K[ - [L[) =

[aK[ - [L[, which is homeomorphic to [3K[ - [p] for a point

p E [5K[. But p has an open neighborhood homeomorphic to

En-l. When n > 2, Theorem 3.8 says that [5K[ is homeomorphic

to Sn-l. But [aK[ is homeomorphic to S1 X Sn-Z, thus not

homeomorphic to Sn-l. Hence [K[ - [L[ is not l-movable.

When n = 2, [5K[ - [p] is homeomorphic to (SIX [0,1]) - {x}

(for x E S1 X [0,1]), which has exactly one compact component.

This contradicts Theorem 5.1 and so [5K[ - [p], hence B, hence

[K[ - [L[ is not l-movable.



CHAPTER IV

PRODUCTS AND k-MOVABILITY

In this chapter we prove a theorem about products and

then give some examples showing that the non-compactness hypothesis

of the theorem cannot be dropped and that even under fairly strong

restrictions the converse of the theorem does not hold.

Theorem 4.1: If X is a non-compact k-movable topological Space
 

and all compact Subsets of X are closed, and Y is any tOpological

Space, then X X Y is k-movable (k any positive integer).

Proof: Let X and Y be as in the hypotheses. Given a compact

subset, K, of X X Y, L = p1(K) is compact in X (where pi is

the projection of X X Y onto the ith factor). So there exist

compact subsets of L, say L1,L2,...,Lk, and homeomorphisms of

k

1,h2,...,hk, so that L = U Li and

i=1

1,2,...,k.

X onto itself, say h

L U hi(Li) = w for i

Now for each i = 1,2,...,k we have Li is compact,

thus closed, and so p;1(Li) is closed and K1 = K O p;1(Li)

is closed in K and so compact. Define the homeomorphism fi

of X X Y onto itself by fi(x,y) = (hi(:)’Y)'

It is now easily seen that K = U Ki’ the K
1

i=1
-1

and fi(Ki) : fi(p1 (Li)) : fi(Li x Y) c: hi(Li) x Y. But

are compact,

K c: L x Y, so K n fi(Ki) : (L x Y) n (hi(Li) X Y) =

(L Ohi(Li)) XY=¢XY=¢.D

50
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Remark 4.2: The non-compactness of X when k = l in Theorem 4.1

cannot be dropped (even if we require X and Y to be manifolds)

as Sm is l-movable and Sm X Sm is not l-movable. Note that a

closed n-manifold is l-movable if and only if it is invertible

(this is easily seen by the definitions), and invertible if and

only if it is a n-sphere (see [5] Theorem 1, and in [6] the state-

2

ment on p. 959), and Sm X Sm is not homeomorphic to S m.

Remark 4.3: The converse of Theorem 4.1 with k = 1 does not

hold as there exists a non-compact non-l-movable metric space G

with G X G homeomorphic to E6, and E6 is l-movable.

Let G be the decomposition Space G of E3 of R.H. Bing

in section 2 of [2]. The union of the family of non-degenerate

inverses of points G is a subset of the set A (which is a

topological solid Sphere with two handles) of p. 485 of [2]. A

is clearly compact. But G is a quotient space of E3, say by

the quotient map g, so g(A) is a compact subset of X. Assume

G is l-movable, then there exists a homeomorphism h of G onto

itself such that A n h(A) = ¢. Let 2 be one of the points

of G which has a non-degenerate inverse. Then h(z) has a

degenerate inverse and so h(z) has a neighborhood homeomorphic

to E3, and hence 2 has a neighborhood homeomorphic to E3,

so G is locally E3 at 2. But this contradicts Theorem 13

of [2].

Now, A. Boals has shown in [4] that G X G is homeo-

morphic to E .
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Remark 4.4: The converse of Theorem 4.1 does not hold for any k
 

even if we require X and Y to be manifolds, either one of which

may be Specified to be compact and either one of which may be

specified to be l-dimensional.

This may be seen by using the following facts.

3) If an n-manifold Mn has compact boundary then it is not

k-movable for any positive integer k (see Theorem 5.1),

b) (0,1) X [0,1) is homeomorphic to [0,1] X [0,1).

Now (0,1) x ([0,1) x s“) is homeomorphic to ((0,1) x [0,1)) x s“,

which is homeomorphic (using b)) to ([0,1] x [0,1)) x s“, which

is homeomorphic to both [0,1] X ([0,l) X S“) and

[0,1) x ([0,1] x s“).

For each positive integer k, (0,1) is k-movable, so

Theorem 4.1 tells us that (0,1) X ([0,1) x S“) is k-movable. But

[0,1],[0,l),[0,l) X S“, and [0,1] X Sn. are all manifolds with

compact boundary, and so they are not k-movable by a).

Thus counterexamplesto»the converse of Theorem 4.1 are

x = [0,1], Y = [0,1) x sn and x = [0,1), Y = [0,1] x s“ .



CHAPTER V

MANIFOIDS AND k-MOVABILITY

In this chapter we prove that if M is a l-movable n-manifold

with boundary then the boundary of M is not compact and number of

compact components of the boundary of M is either zero or infinite.

Further statements concerning k-movability and manifolds with boundary

are followed by the theorem that a connected Hausdorff Space that

is the union of k Open subsets homeomorphic to En must be k-

movable. This theorem has the corollaries that every open connected

triangulable n-manifold is n-movable and that for n 2 5, every

contractible open n-manifold is 2-movable. A closed k-movable n-mani-

fold is the union of (k+l) open n-cells.

Theorem 5.1: If M is a kamovable manifold with boundary then the
 

boundary of M is not compact and the number of compact components

of the boundary is either zero or infinite.

2322;; Let M be a k-movable manifold with boundary and suppose

that the boundary of M, B, is compact. Then ¢ E B = .U Bi with

the B1 compact, B1 E ¢, and there exist homeomorphism;—1

h1,h2,...,hk of M onto itself with B H hi(Bi) = ¢ for

i = 1,2,...,k. But then B H h1(B1) = ¢ and this cannot happen

Since a homeomorphism of a manifold onto itself has the boundary

as the image of the boundary.

Now let M be a k-movable manifold with boundary and

suppose that the boundary of M, B, has a finite non-zero number

53
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of compact components. Let D be the union of the compact com-

k

ponents of B. Then ¢ # D = U D1 with the D1 compact and

1'1

D1 f ¢, and there exist homeomorphisms h1,h2,...,hk of M onto

itself with n n hi(Di) -= ,5. So D n h1(D1) = ,5. But h1|B, the

restriction to the boundary,of a homeomorphism of a manifold onto

itself, is a homeomorphism of B onto itself,and as such,sends

a compact component of B onto a compact component of B. Hence

¢ ,4 hlml) . h1|B(D1) c D and D n 111(1)) 5‘ ¢. This is a con-

tradict ion. B

Each homeomorphism of a manifold onto itself when restricted

to the interior is a homeomorphism onto the interior and when

restricted to the boundary is a homeomorphism onto the boundary.

Thus we have the following remark.

Remark 5.2: If M is a k-movable n-manifold with boundary then
 

both the interior of M and the boundary of M are k-movable

spaces.

Remark 5.3: If we let M be the n-ball, then the interior of M
 

is homeomorphic to En and so k-movable while the boundary of M

is Sn and so k-movable. But M has a compact boundary and so

(by Theorem 5.1) M is not k-movable. Hence the converse of

Remark 5.2 is not true.

Remark 5.4: By Theorem 5.1, no compact manifold can be the boundary
 

of a k-movable manifold. However if N is any non-compact k-

movable n-manifold, then N is homeomorphic to the boundary of

the (n + 1)- manifold N X [0,1). N X [0,1) is k-movable by Theorem 4.1.
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Theorem 5.5: A connected Hausdorff space X that is the union

of k open subsets homeomorphic to En is k-movable.

k

Proof: Let B be a proper non-void compact subset of X = U X

i=1

is open and homeomorphic to En by a

i,

where for each 1, X1

a En. For each b g B, b E Xj for some

b

} ( ) for some real t > 0.

b

b

1 -1
B c U gJ (80 t ), g.1 (S0 t ) is open in x for all b E B, and

bEB b ’ b b ’ b N

-l
B is compact implies that B G U g (S ) and b 6 B for

j 0,t L
L=1 bL bl,

L = 1,2,...,N, and N some positive integer. For each

homeomorphism gi: X1

jb E {1,2,...,k} and so b E g SO,tb

i = 1,2,...,k let X 3 maximum {tb ‘L E {1,2,...,N}} and

L k
-l . .

g C O B 0Bi B H gi (SO,X) Xi Then B QiiBi Since B 18 a proper

subset of X, there exists an x E X - B, and there exists for each

i - 1,2,...,k, a homeomorphism fi of X onto itself with

fi(g;1(0)) = x. But X - B is Open and fig;1 are continuous

functions for i = 1,2,...,k so there is a real number t > O

with f gT1(S ) CZX - B for i = 1,2,...,k. Let p be a

i 1 0,t

homeomorphism of En onto itself that is the identity outside

some compact set and ”(S ) c:S . Then for each i = 1,2,...,k

0,), 0,t

ii = g; pgi is a homeomorphism of X1 onto itself that is the

identity outside some compact subset of Xi. So

Ji(x) for x 6 X1

pi(x) = is a homeomorphism of X onto

x for x E X - X1

itself. Let hi 8 fiui a homeomorphism of X onto itself. Then

- -1 -1 -1

“1031) '3 fiuimi) " fi“i(Bi) '3 gigi ”31(31)C figi ”31(81 (804))
-l -1

Cifigi “(80,x) Cifigi (SO,t)(: X - B. -Hence B n hi(Bi) ¢ for
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i = 1,2,...,k.EJ

Corollary 5.6: Every Open connected triangulable n-manifold is

n-movab 18 0

Proof: The theorem of [13] says that every open connected triangul-

able n-manifold is a union of n open n-cells. The corollary

follows immediately by applying Theorem 5.5.[3

Corollary 5.7: If Mn is a k-connected n-manifold without boundary

and q is the minimum Of k and n - 3 then Mn is ([qn—] + 1)-

movable.

Proof: Theorem 1 Of [20] (also Theorem 2 Of [16]) gives the result

that Mn can be covered by [J—] +-1 open n-cells. The corollary

follows immediately by applying Theorem 5.5.[]

Corollary 5.8: For n 2 5, a contractible Open n-manifold is 2-

movable.

Proof: Let MP be a contractible Open n-manifold with n 2 5. SO

n
M is n-connected and Corollary 5.7 (with q = n - 3) says that

M“ is ([n“7] + l)-movable. As n 2 5, [;§§] = 1.[J

Theorem 5.9: Let Mn be a closed n-manifold. If Mn is k-movable,
 

then Mn is the union of (k+l) Open n-cells.

‘PEggf: Let Mp be a k-movable closed n-manifold. Let U<: Mn and

U be homeomorphic to an Open n-cell. Then R = Mn - U is a proper

compact subset of MF. SO there exist compact subsets R1,R2,...,Rk

of R and homeomorphisms, h1,h2,...,hk, Of Mp onto itself with

R = S’Ri and R n h 1(Ri) = ¢ for i = 1,2,...,k. SO for each

i=11
-1

i 8 1 ,2,...,k, h.(R.1)(: U, and so R. Clhi (U). But then
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u, h11(U), h;1(U),..., h;1(U) are (k+1) Open n-cells and clearly

k
n

M =UU u h'1(U).D

i=1j



CHAPTER VI

CERTAIN OPEN 3-MANIFOLDS AND l-MOVABILITY

The l-movability of certain classes of open 3-manifolds is

considered in this chapter. The complexity of the proof Of Theorem

6.1 is to insure that the homeomorphism Obtained has compact support.

This gives the result that the monotone union of 3-dimensional non-

trivial products of domains is l-movable if E1 is one Of the

factors an infinite number Of times. Examples both Of a l-movable

union and Of a non-l-movable union exist when E1 appears at most

a finite number of times. We then prove that every W-Space (con-

tractible Open 3-manifold that can be triangulated by a countable,

locally finite simplicial complex which is a combinatorial manifold

without boundary and each compact subset of which can be imbedded

in S3) is l-movable. This has a corollary that all contractible

domains in E3 are l-movable.

Theorem 6.1: Let A be a proper non-void compact subset of E1 X B,

where B is an Open manifold. Then there is a homeomorphism h

Of E1 X B onto itself such that A D h(A) = ¢ and h is the

1

identity map outside a compact subset Of E X B.

Proof: Let A and B be as in the hypothesis, and for i = 1,2

let pi be the projection onto the ith factor from E1 X B. Now

p1(A) is compact in E1, so for some real number a > O,

p (A)<: -a,a . (A) is compact in B and so has an open

1 p2
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neighborhood N with compact closure, N, in B. Let X = distance

(p2(A), B - N) > O, and L = maximum distance (b, B - N). let

bEB

dis a e - - -t “c eih’B N) , a continuous function from B to the real num-
b 2

M) x

bers. Then 0 s has) s-l; and 1 s p,(b) for b e p2(A) while

g(b) = 0 for b E B - N. Define a homeomorphism gb Of E1

onto itself by

 

 

for t S -Za t

for -2a s t s -a (t:za)-(3au,(b) + a) - 2a

gh(t) = for -a s t s a t +-3ap(b)

3a t-a 3a;

f a s t S-4L'+ 28 + a - 3a b + 3a + a
or x 1.1, + a A M > Mb)

A

for 3—:”-+2a_<t

Define the function h from E1 X B onto itself by

h(t,b) = (gh(t),b). h is clearly continuous and has as inverse

the continuous function f given by f(t,b) = (ggl(t),b).

If (t,b) E A then b E p2(A) and so p(b) 2 1, while

t E p1(A) and so -a < t < 3. Hence p1(h(t,b)) = gh(t) =

t + 3au(b) > -a + 3au(b) 2 -a + 3a = 2a. Then h(t,b) E A.

If (t,b) E E1 X B - [-2a, 2%L-+ 28] X d§), then either

t E (-m,-Za) U (giL'+-Za,-+m) or b E B - N. In the first case

gh(t) = t for all b E B and in the second case g(b) = 0 so

gh(t) = t for all t E E1. Hence in either case h(t,b) = (gh(t),b) =

(t,b), and h is the identity Outside the compact set

[~2a, 3—2’9 + 2a] x N.U

CD

Corollary 6.2: Let X = U Xi where X is a manifold, and for

i=1

each 1, X1 is open in X and homeomorphic to E1 X B

 

i With Bi
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an open manifold, X.i C Xi+1. Then X is l-movable.

giggi: Let X, the Xi's, and the 81's be as in the hypothesis

with g1: X1 4 E1 X Bi 3 homeomorphism for each i. Let A be

a proper non-void subset of X. We have A<: Xj for some j.

Applying Theorem 6.1 to gj(A)<: E1 X Bj’ there is a homeomorphism

h of E1 X Bj onto itself with gj(A) fl h(gj(A)) = ¢ and h

is the identity Outside a compact subset, L, of E1 X Bj' SO

gglh gj is a homeomorphism Of Xj onto itself that is the

identity outside the compact Subset g31(L) and has

-1 -l

j h gj)(A) = ¢. But Xj and X - gj (L) are Open in X

and so g-lh g, extends tO a homeomorphism f of X onto

J J

A n (g

-1

itself, defined by f(x) = X_ for X E X ‘ gj (L)

gjlh gj(x) for x E Xi

A n f(A) = ¢. Thus x is 1-movah1e.[]

Let D be a domain in E3 which is the monotone union

Of Open non-trivial products of domains Ai X Bi for i = 1,2,...

For each i let dimension A1 3 dimension Bi’ then as

l S dimension A1 5 dimension Bi 3 2 and dimension A1 + dimension

Bi = 3, it must be true that dimension A1 = 1 and dimension Bi = 2.

The only connected l-dimensional manifolds are E1 and 81, so

either A1 = E1 for an infinite number of i or Ai = S1 for

all but a finite number Of i. In the first case, Theorem 6.2

tells us that D is l-movable. In the second case, there is an

example where D is l-movable and another where D is not 1-

movable (Examples 6.3 and 6.4 respectively).

Example 6.3: Let D = (-m,m) X B where B is any Open manifold
 

Of dimension 2. D is l-movable by Theorem 4.1 and
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Q

n = u (-i,i) x B.

i-l

” 1 1 2
Example 6.4: Let D = u s x Bi = s x (E - {(1,0),(-1,0)})

i=1

 

l 2 2 . .
c: S X E , where Bi = E - (8(1’0)‘,5)1US(_1’0)Kai) TO show

that D is not l-movable, consider the compact set A of D

given by A = 81 X T where T = ([-2,0,2} X [-2,2]) U

([-2,2] X {-2,2}).

If D is l-movable, there exists a homeomorphism h Of

D onto itself with A n h(A) = ¢. There is a strong deformation

retraction, r, of D onto A, so the inclusion map, i, of A

into D induces an isomorphism, i*, from n1(A,a) onto n1(D,a)

for a E A. h|A is a homeomorphism from A onto h(A) and so

induces an isomorphism (hIA)* from n1(A,a) onto n1(h(A),h(a)).

n1(A,a) is isomorphic to n1(Sl,S) X n1(T,t) = Z X G where

(s,t) = a, G is a free group on two generators and Z is the

group of the integers under addition.

Now, A is connected and so h(A) is a subset of U,

one of the components of D - A. Observe that each component of

D - A is S1 X V where V is a component of E2 - ({(-l,0),

(1,0)} U T). Let V be that component Of E2 c ({(-1,0), (1,0)} U T)

for which 0 = 51 x v. Let h(a) = (u,v) e s1 X(E2 - {(-1,o),(1,0)}).

But then V has a strong deformation retraction onto F where

v E F and F is homeomorphic to 81. SO there exists a strong defor-

mationremraction, x, of S1 X V onto 81 X F. Then the induced homo-

morphism, X*: from. 111(S1 X V,(u,v)) onto 111(31 X F,(u,v)) is an

isomorphism. But n1(U,(u,v)) = 111(81 X F,(u,v)) = n1(Sl,u) X

n1(F,v) = Z X Z.
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Let j be the inclusion map from, h(A) into D.

h

D ----)-D

i j commutes.

A -—h—+h(A)

A\

SO

h

nlo,a)——*—>n1(n.h<a>>

T“, j* commutes .

n1<A.a)Wn1<h<A).h(a>>
*

Since the other three homomorphisms are isomorphisms, so is j*,

the homomorphism Of fundamental groups induced by j.

Where the homomorphisms o and B are those induced by

set inclusion, the following diagram commutes.

nICDsh(a))

Ti, n1<u,h(a>>

n1<h(A>.h<a)) °’

But j* is an isomorphism, so a is injective. So a is an

injection of Z X G into 2 X 2. But 2 X G is not abelian and

Z X Z is abelian. This is a contradiction. Hence D is not

l-movable.

Let us now consider the 1-movability of a certain class

Of 3-manifolds, the W-Spaces.

Definition 6.5: A.W-sBace is a contractible Open 3-manifold that

can be triangulated by a countable,locally finite simplicial complex
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which is a combinatorial manifold without boundary, and each compact

subset of the Open 3-manifold can be imbedded in S3.

 

Theorem 6.6: Every W-Space is l-movable.

Proof: Let U be a.W-space. Theorem 1 Of [17] is the result that

Q

U = U H where each H is a cube with handles, H c interior H .

i=1 i i i i+l

Let A be a compact subset Of U, then there is a positive integer

j so that A.C interior H . There exists a pesudo-isotopy,

J

{Gt} t 6 [0,1], Of Hj so that 61(A) C T c Hj and a N so that for

t 6 [0,1] Gt is the identity map outside, N, the compact closure of

a neighborhood of AUT (where T is the union of a finite number

of line segments and is homeomorphic to 3 $1 ; L is the

number Of handles on the cube with handle: fhat is Hj). SO this

pseudo-isotopy extends to one of U by defining Ct(x) = x for

all x 6 U - Hj and t E [0,1]. But since T is the union of a

finite number of line segments in H , there is a homeomorphism

J

h of U onto itself so that T n h(T) = ¢. Now, 61(A) n h(Gl(A))

: T D h(T) = ¢ so G1(A) n h(Gl(A)) = ¢. Hence Theorem 3.5 applies

and there exists a homeomorphism, f, of U onto itself with

f(A) n A = ¢. Therefore U is l-movable. U

Corollary 6.7: All contractible domains in E3 are l-movable.

“3529;: let D be a contractible domain in E3. It is well known

that any domain in a Euclidean space can be triangulated by a

countable,locally finite simplicial complex which is a combinatorial

manifold without boundary. D, and so each compact subset Of D,

can be imbedded in 83. Thus D is a W-Space, and Theorem 6.6

applies . U
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