


This is to certify that the

thesis entitled

Effects of Weed Control Measures in Established Alfalfa on Yield and and Forage Quality

presented by

Dennis Robert Cosgrove

has been accepted towards fulfillment of the requirements for

M.S. ___degree in __Crop Science

Major professor

Date May 10, 1983

O-7639

MSU is an Affirmative Action/Equal Opportunity Institution

RETURNING MATERIALS:
Place in book drop to remove this checkout from your record. FINES will

your record. FINES will be charged if book is returned after the date stamped below.

ROOM USE ONLY

boda ace outly

EFFECTS OF WEED CONTROL MEASURES IN ESTABLISHED ALFALFA ON YIELD AND FORAGE QUALITY

Ву

Dennis R. Cosgrove

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Crop and Soil Sciences

1983

ACKNOWLEDGMENTS

I would like to thank Dr. Michael Barrett for his guidance and patience during the course of this study. I am grateful to have an opportunity to work with him and proud to have him as a friend. Appreciation is also expressed to Dr. J. W. Thomas of the M. S. U. Animal Science Department for his assitance and advice concerning forage analysis. Finally, I would like to thank Drs. Meggitt and Penner and all of the faculty, staff and graduate students concerned with the Michigan State Weed Control Program for their assistance and for making Michigan State University an exciting and enjoyable experience.

TABLE OF CONTENTS

iv
1
3
7
10
15
15
15
27
39
59
59
72
81
101
101
111
129
143
149

LIST OF TABLES

<u>Table</u>		Page
1	Treatments evaluated	12
2	Harvest dates for the 1981 and 1982 growing season	13
3	Orchardgrass control ratings at site one for the 1981 growing season	16
4	Perennial grass control ratings at site one for the 1982 growing season. Treatments applied in 1981/82	17
5	Quackgrass control ratings at site one for the 1981 growing season	19
6	Perennial grass control ratings at site one for the 1982 growing season. Treatments applied 1980/81 and 1981/82	22
7	Perennial grass control ratings at site one for the 1982 growing season. Treatments applied in 1980/81	23
8	Dandelion control ratings at site one for the 1981 growing season	25
9	Dandelion control ratings at site one for the 1982 growing season. Treatments applied in 1981/82	26
10	Dandelion control ratings at site one for the 1982 growing season. Treatments applied in 1980/81 and 1981/82	28
11	Dandelion control ratings at site one for the 1982 growing season. Treatments applied in 1980/81	29
12	First harvest dry matter yields of total forage, alfalfa, grass, and broadleaf weeds as influenced by herbicide treatments at site one in the 1981 growing season.	31

13	Second harvest dry matter yields of total forage, alfalfa, grass, and broadleaf weeds as influenced by herbicide treatments at site one in the 1981 growing season	32
14	Third harvest dry matter yields of total forage, alfalfa, grass, and broadleaf weeds as influenced by herbicide treatments at site one in the 1981 growing season	33
15	Season total dry matter yields of forage and alfalfa as influenced by herbicide treatments at site one in the 1981 growing season	34
16	First harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site one in the 1982 growing season for treatments applied in 1981/82	36
17	First harvest dry matter yields of total forage, alfalfa, grass, and broadleaf weeds as influenced by herbicide treatments at site one in the 1982 growing season. Treatments applied in 1980/81 and 1981/82	37
18	First harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site one for the 1982 growing season for treatments applied in 1980/81	38
19	Second harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site one for the 1982 growing season for treatments applied in 1981/82	40
20	Third harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site one for the 1982 growing season for treatments applied in 1981/82	41
21	Second harvest dry matter yields of total forage, alfalfa, grass, and broadleaf weeds as influenced by herbicide treatments at site one for the 1982 growing season for treatments applied in 1980/81	42
22	Third harvest dry matter yields of total forage, alfalfa, grass, and broadleaf weeds as influenced by herbicide treatments at site one for the 1982 growing season for treatments applied in 1980/81	43
23	Second harvest dry matter yields of total forage, alfalfa, grass, and broadleaf weeds as influenced by herbicide treatments at site one for the 1982 growing season for treatments applied in 1980/81 and 1981/82	44
	V	

24	Third harvest dry matter yields of total forage, alfalfa, grass, and broadleaf weeds as influenced by herbicide treatments at site one for the 1982 growing season for treatments applied in 1980/81 and 1981/82	45
25	Season total dry matter yields of forage and alfalfa as influenced by herbicide treatments at site one in the 1982 growing season for treatments applied in 1981/82	46
26	Season total dry matter yields of forage and alfalfa as influenced by herbicide treatments at site one for the 1982 growing season for treatments applied in 1980/81	47
27	Season total dry matter yields of forage and alfalfa as influenced by herbicide treatments at site one for the 1982 growing season for treatments applied in 1980/81 and 1981/82	48
28	First harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site one in the 1981 growing season	50
29	Percent alfalfa, grass and broadleaf weeds present in first harvest forage as influenced by herbicide treatment at site one in the 1981 growing season	51
30	First harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site one in the 1982 growing season	52
31	Percent alfalfa, grass and broadleaf weeds present in first harvest forage as influenced by herbicide treatment at site one in the 1982 growing season	53
32	Second harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site one in the 1981 growing season	55
33	Third harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site one in the 1981 growing season	56
34	Second harvest, in vitro digestible dry matter and acid detergent fiber content of forage at site one in the 1982 growing season	57
3 5	Third harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site one in the 1982 growing season	58

36	Quackgrass control ratings at site two for the 1981 growing season	60
37	Quackgrass control ratings at site two for the 1982 growing season. Treatments applied in 1981/82	61
38	Quackgrass control ratings at site two for the 1982 growing season. Treatments applied in 1980/81 and 1981/82	62
39	Quackgrass control ratings at site two for the 1982 growing season. Treatments applied in 1980/81	63
40	Dandelion control ratings at site two for the 1981 growing season	65
41	Dandelion control ratings at site two for the 1982 growing season. Treatments applied in 1981/82	66
42	Dandelion control ratings at site two for the 1982 growing season. Treatments applied in 1980/81 and 1981/28	67
43	Dandelion control ratings at site two for the 1982 growing season. Treatments applied in 1980/81	68
44	White cockle control ratings at site two for the 1981 growing season	69
45	First harvest white cockle control ratings at site two for the 1982 growing season. Treatments applied in 1981/82	70
46	First harvest white cockle control ratings at site two for the 1982 growing season. Treatments applied in 1980/81	71
4 7	First harvest white cockle control ratings at site two for the 1982 growing season. Treatments applied in 1980/81 and 1981/82	73
4 8	First harvest shepherd's purse control ratings at site two for the 1981 growing season	74
4 9	First harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site two in the 1981 growing season	75
50	Second harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site two in the 1981 growing season	76

51	Third harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site two in the 1981 growing season	. 7
52	First harvest yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site two for the 1982 growing season for treatments applied in 1981/82	. 7
53	Second harvest yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site two for the 1982 growing season for treatments applied in 1981/82	. 7:
54	Third harvest yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site two for the 1982 growing season for treatments applied in 1981/82	. 8
55	First harvest yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site two for the 1982 growing season for treatments applied in 1980/81 and 1981/82	. 8:
56	Second harvest yield of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site two for the 1982 growing season for treatments applied in 1980/81 and 1981/82	. 8:
57	Third harvest yield of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site two for the 1982 growing season for treatments applied in 1980/81 and 1981/82	. 84
58	First harvest yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site two for the 1982 growing season for treatments applied in 1980/81	. 8
5 9	Second harvest yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site two for the 1982 growing season for treatments applied in 1980/81	. 80
6 0	Third harvest yield of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site two for the 1982 growing season for treatments applied in 1980/81	. 8
61	Season total dry matter yields of forage and alfalfa as influenced by herbicide treatments at site two in the 1981 growing season.	. 8

62	alfalfa as influenced by herbicide treatments at site two in the 1982 growing season. Treatments applied in 1981/82	89
63	Season total dry matter yields of total forage and alfalfa as influenced by herbicide treatments at site two in the 1982 growing season. Treatments applied in 1980/81 and 1981/82	9(
64	Season total dry matter yields of total forage and alfalfa as influenced by herbicide treatments at site two in the 1982 growing season. Treatments applied in 1980/81	91
65	First harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site two in the 1981 growing season	92
66	Percent alfalfa, grass and broadleaf weeds present in first harvest forage as influenced by herbicide treatment at site two in the 1981 growing season	93
67	Second harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site two in the 1981 growing season	95
68	Third harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site two in the 1981 growing season	96
69	First harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site two in the 1982 growing season	97
70	Second harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site two in the 1982 growing season	98
71	Third harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site two in the 1982 growing season	99
72	Percent alfalfa, grass and broadleaf weeds present in first harvest forage as influenced by herbicide treatment at site two in the 1982 growing season	100
73	Quackgrass control ratings at site three for the 1981 growing season	102
74	Quackgrass control ratings at site three for the 1982	103

75	Quackgrass control ratings at site three for the 1982 growing season. Treatments applied in 1980/81 and 1981/82	105
76	Quackgrass control ratings at site three for the 1982 growing season. Treatments applied in 1980/81	106
77	Dandelion control ratings at site three for the 1981 growing season	107
78	Dandelion control ratings at site three for the 1982 growing season. Treatments applied in 1981/82	108
79	Dandelion control ratings at site three for the 1982 growing season. Treatments applied in 1980/81 and 1981/82	109
80	Dandelion control ratings at site three for the 1982 growing season. Treatments applied in 1980/81	110
81	White cockle control ratings at site three for the 1981 growing season	112
82	First harvest white cockle control ratings at site three for the 1982 growing season. Treatments applied in 1981/82	113
83	First harvest white cockle control ratings at site three for the 1982 growing season. Treatments applied in 1980/81 and 1981/82	114
84	First harvest white cockle control ratings at site three for the 1982 growing season. Treatments applied in 1980/81	115
85	First harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site three in the 1981 growing season	116
86	Second harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site three in the 1981 growing season	118
87	Third harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site three in the 1981 growing season	119
88	Season total dry matter yields of forage and alfalfa as influenced by herbicide treatments at site three in the 1981 growing season	120

89	First harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site three in the 1982 growing season for treatments applied in 1981/82	121
90	Second harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site three in the 1982 growing season for treatments applied in 1981/82	122
91	Third harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site three in the 1982 growing season for treatments applied in 1981/82	123
92	Season total dry matter yields of forage and alfalfa as influenced by herbicide treatments at site three in the 1982 growing season for treatments applied in 1981/82	124
93	First harvest dry matter yields of total forage, alfalfa grass and broadleaf weeds as influenced by herbicide treatments at site three in the 1982 growing season for treatments applied in 1980/81	125
94	Second harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site three in the 1982 growing season for treatments applied in 1980/81	
95	Third harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site three in the 1982 growing season for treatments applied in 1980/81	127
96	Season total dry matter yields of forage and alfalfa as influenced by herbicide treatments at site three in the 1982 growing season for treatments applied in 1980/81	128
97	First harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site three in the 1982 growing season for treatments applied in 1980/81 and 1981/82	130
98	Second harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site three in the 1982 growing season for treatments applied in 1980/81 and 1981/82	131
99	Third harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site three in the 1982 growing season for treatments applied in 1980/81 and 1981/82	132

100	influenced by herbicide treatments at site three in the 1982 growing season for treatments applied in 1980/81 and 1981/82	133
101	First harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site three in the 1981 growing season	134
102	Percent alfalfa, grass and broadleaf weeds present in first harvest forage as influenced by herbicide treatment at site three in the 1981 growing season	135
103	Second harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site three in the 1981 growing season	136
104	Third harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site three in the 1981 growing season	137
105	First harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site three in the 1982 growing season	138
106	Percent alfalfa, grass and broadleaf weeds present in first harvest forage as influenced by herbicide treatment at site three in the 1982 growing season	139
1 07	Second harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site three in the 1982 growing season	141
708	Third harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site three in the 1982 growing season	142
109	Savings vs. cost of some herbicide treatments causing significant increases in first harvest forage protein content	147

INTRODUCTION

Hay was Michigans second leading field crop in value of production for the 1981 growing season. Total hay production was 3,894,000 tons of which 3,300,000 tons was alfalfa or alfalfa/grass mixtures. Hay production involved 1,270,000 acres of Michigan farm land in 1981. This hay was either utilized on the farm by livestock producers or sold as a cash crop.

Weeds can reduce the value of alfalfa hay in several ways. Weeds

can compete with alfalfa plants for moisture and nutrients, they can slow

hay drying in the field and they can reduce hay quality (11). Competition

from weeds in established stands of alfalfa can limit alfalfa growth but

since the weeds are harvested along with the forage the total forage pro
duction may not be effected by the presence of weeds. Weeds, however,

are generally of lower quality as an animal feed than alfalfa and, there
fore, weeds in established alfalfa have the potential to lower the quality

of the forage. In addition, competition from weeds reduces the density

and vigor of the alfalfa stand which in turn reduces the alfalfa stand life.

This results in the premature need to plow down the stand and rotate to

another crop or to re-establish the stand which is an expensive procedure.

Controlling weeds can extend the life of the alfalfa stand. This enables

the grower to spread the cost of establishing the alfalfa over a greater

number of years.

Most weed control measures in alfalfa are concerned with stand establishment and much research was done in this area (21, 23, 26, 30). The benefits of weed control programs in established alfalfa are less clear. Some investigators found weed control measures increased either protein content or digestibility of forage (7, 11, 12). These increases, in at least one case, resulted in a higher animal intake of forage and higher milk production. In addition, feeding a forage with a high protein content could reduce the need to purchase expensive protein supplements. In other cases, however, weed control measures have failed to significantly increase protein content or forage digestibility (31). Before weed control programs in established alfalfa become widely accepted more concrete benefits from their use must be demonstrated. The objectives of this study were: (1) to evaluate metribuzin [4-amino-6-tert-butyl-3-(methylthio)-as-triazine-5(4)+)one], pronamide [3,5-dichloro-N-Cl,1dimethyl-2-propynyl)benzamide], simazine [2-chloro-4,6-bis(ethylamino)-**S-t**riazine, and terbacil [3-tert-butyl-5-chloro-6-methluracil] for their efficacy as weed control agents in established alfalfa. (2) To determine the effect of stand density and weed pressure on the performance of these herbicides. (3) To determine the effects of these herbicde treatments on forage yield, and (4) To determine the effects of these weed control measures on forage quality.

LITERATURE REVIEW

The effectivenss of chemical weed control in established stands of al falfa is influenced by several factors. Timing of application effects the spectrum of weeds controlled and also the extent of control. Ilnicki and Hist (18) found no response from curlydock [Rumex crispus (L.)], daisy fleabane (Erigeron strigosus Muhl.) or white cockle (Lychnis alba Mill.) *Fall applications of terbacil, simazine or several other herbicides. Ye 7 7 ow rocket (Barbarea vulgaris R. Br.) and chickweed [Stellaria media (L -) were both controlled with fall or spring applications of the same herb icides. Sheaffer and Wyse (31) found no differences in dandelion (Ta raxacum officinale Weber.) control in the first cutting with spring her bicide treatments compared to fall treatments at two of three sites tested. At the remaining site, spring applied metribuzin at 0.80 kg/ha and 1.1 kg/ha significantly reduced common dandelion populations compared the same treatments fall applied. Arnold and Oneal (3) reported less downy brome [Bromus tectorum (L.)] control from fall applications of met ribuzin and terbacil than spring applications of the same materials. Viste and Sanborn (45) found October applications of pronamide to be optimal for quackgrass [Agropyron repens (L.)] control.

Stand density and the size of the weed population are also important factors which affect weed control in established alfalfa. Davis et al. (6) found quackgrass suppression with pronamide increased as alfalfa stand density increased. Pagano et. al. (24) found total forage yields decreased

following a metribuzin application in areas with severe weed infestations.

In areas with high alfalfa populations, total forage yields were increased.

Fortino (14) observed similar results using metribuzin and determined

that benefits were maximized by alfalfa stands containing 4 or more alfalfa

plants/ft². Triplet et. al. (35) found alfalfa populations as low as 10

to 20 plants/m² were able to utilize resources made available as a result

f a pronamide treatments.

Longevity of weed control is another factor which must be taken into consideration when discussing weed control programs in established alfalfa. Shea ffer and Wyse (31) observed that, of the treatments applied, only but idazole (3[5-Cl,l-dimethylethyl)-1,3,4-thiadiazol-2-yl]-4-hydroxy-1methy1-2-imidazoli-dinone) reduced common dandelion populations the year foll owing treatment. Robison et. al. (29) compared several herbicides and Observed little residual weed control the year following treatment, al \leftarrow hough, in some cases there appeared to be enough herbicide residue to cause alfalfa injury if the treatment was reapplied at the original rate. Rob ison does not specify which treatments caused alfalfa injury. Fawcett al. (12) found annual applications of pronamide were necessary for qua ⊂ kgrass control in stands of alfalfa with 10 to 20 crowns/m² but that control persisted into the second year in stands with 40 to 50 crowns/m². Swan (33) observed that downy brome control from atrazine, (2-chloro-4ethy lamine-6-isopropylamina-5-triazine) simazine, and terbacil decreased to less than half and broadleaf weed control ceased 18 months after applications. Duke (7) reported quackgrass reinfestation of pronamide treated plots occurred in July of the first cropping year following treatment and $^{\mathbf{n_{O}}}$ difference in quackgrass populations among treatments the second cropping year following treatment.

A fourth factor influencing weed control in established alfalfa is

the weed species present. Annual broadleaf weeds such as shepherd's purse

[Capsella bursa-pastoris (L.) medic.] and chickweed are generally easily

controlled. Kapusta (19) reported excellent common chickweed control with

cyanazine (4.5 kg/ha), simazine (1.7 kg/ha) and terbacil (1.1 kg/ha).

Pruss (28) found December applications of simazine at 1.12 kg/ha controlled

shepherd's purse. Pagano et. al. (24) found shepherd's purse to be controlled

by application of metribuzin at 0.56 kg/ha to dormant alfalfa. Peters and

0'Leary (27) obtained shepherd's purse control with spring applications of

terbacil at 0.56 and 1.12 kg/ha, as well as spring applied simazine at 1.12

and 2.24 kg/ha.

Control of perennial broadleaf weeds such as white cockle and dandelions in established stands of alfalfa has proven somewhat difficult. Pearson and Meggitt (25) observed that simazine at 1.12 and 2.24 kg/ha and terbacil at 1.12 kg/ha applied in early spring gave excellent control of white cockle le. Pagano et. al. (24) found 0.84 kg/ha of metribuzin to be necessary for control of white cockle whereas Fortino (14) reported difficulty in white cockle control with metribuzin rates of 1.12 kg/ha. Peters and 0'Leary (27) reported severe chlorosis, but not death, with spring treatments of simazine (2.24 kg/ha), terbacil (0.56 kg/ha) and bromacil (5-bromo-3sec-butyl-6-methyluracil) (0.56 and 1.12 kg/ha). Applications of 2.4-DB [4-(2,4-dichlorophenoxy)butanoic acid] had little effect. Currey and Peters (5) reported partial control of white cockle with late summer applications of either terbacil or simazine at 1.12 kg/ha. Duke and Spear (8) Observed satisfactory control of white cockle with 2.24 kg/ha of simazine spring applied but poor control with 2.24 or 3.36 kg/ha of

simazine applied in the fall. Good control was also observed with terbacil or bromacil at 2.24 kg/ha, but these rates were injurious to the alfalfa.

Several herbicide treatments have been evaluated for control of dandelion in established alfalfa. Duke and Spear (8) observed dandelion control with spring applications of terbacil at 2.24 kg/ha and bromacil 7 -12 and 2.24 kg/ha. However, these rates were injurious to the alfall fa. No treatment gave good control when applied in the fall. Triplett et_ **a1.** (35) found December applications of 2,4-D [(2,4-dichlorophenoxy) acetic acid] reduced the number of seedling dandelions, but did not affect mumber of mature dandelions. Pagano et. al. (24) observed only partial control of dandelions with metribuzin at 0.84 kg/ha. Sheaffer Wyse (31) treated established stands of alfalfa at four separate loca tions with fall and spring applied buthidazole, metribuzin, simazine and 2,4-DB. They observed that on courser textured soils all treatments, except spring applied simazine at one site and spring applied simazine as well as fall applied metribuzin and 2,4-DB at a second site, reduced dandelion populations at the third cutting. Pearson and Meggitt (25) found spring applications of terbacil at 1.12 kg/ha provided good dandelion con trol. Duke and Hunt (9) observed that spring applications of metribuzin were more effective for dandelion control than fall applications. Dutt (10) reported excellent and fair control of dandelion with metribuzin and terbacil, respectively, but does not specify the time of application. Waddington (46) obtained control of dandelion in established alfalfa with dichlobenil (2.2 kg/ha), asulam (methylsulfanilycarbamate) (4.45 kg/ha) or terbacil (1.1 kg/ha).

Of the grass species, quackgrass is the most serious problem in alfalfa stands in Michigan. It is a perennial which reproduces both by

Seed and by underground rhizomes (32). In addition to its highly competitive nature, there is also evidence which suggests quackgrass has an all allelopathic effect on some crops (20). The best quackgrass control from a herbicide program in established stands of alfalfa was obtained through fall applications of pronamide. Viste and Sanborn (45) observed good quackgrass control with pronamide at both 0.84 and 1.68 kg/ha. Duke (7) obtained excellent quackgrass control with pronamide at 1.68 kg/ha whether applied in the spring or fall. Dutt (11) observed nearly complete suppression of quackgrass with fall applications of pronamide at 1.71 kg/ha.

Harver and Conners (16) found excellent quackgrass control with pronamide at 0.84 and 1.68 kg/ha, although the 0.84 kg/ha rate did not provide season long control. Fortino (14) also observed suppression of quackgrass, but not control, using 1.12 kg/ha metribuzin.

Weed Control and Forage Quality

Weed control measures generally lead to higher crop yield. However, this is not always the case with weed control programs in established alfal fa. Effective weed control measures in existing stands of alfalfa often result in lower or unchanged total forage yields. Fawcett and Harvey (12) observed that fall applications of pronamide decreased total forage yields in fields with low alfalfa densities. However, total alfal fa yields were increased with some pronamide treatments. Total forage yields either remained constant or increased slightly in fields with higher alfal fa stand densities. Dutt (10) observed that herbicides either decreased or had no effect on total forage dry matter yields. However, Pronamide applications significantly increased total alfalfa yields. Duke and Spear (8) found total forage yields either remained the same or decreased as a result of herbicide treatments to established alfalfa

infested with several species of broadleaf weeds. Total alfalfa yields

were not changed. Sheaffer and Wyse (31) found no increase in either total

forage yield or total alfalfa yields as a result of controlling common dan
delion in established stands of alfalfa. Although the benefits of weed

control in established alfalfa are not apparent in increased forage yields,

a potential benefit exists in increased forage quality.

Protein content and forage digestibility are both accepted criterion for Forage quality. Cord (4) showed crude protein in alfalfa hay to be negatively correlated with weed content. The digestibility of protein in a forage increases with increasing protein content (13, 15, 17). As alfalfa is higher in crude protein than many weed species (22, 34), increasing the alfalfa component of a forage could increase the protein percentage of that forage.

Forage digestibility is related to the fiber content of the forage. ** i ber fraction of a forage is difficult to define (43). Van Soest cons iders the plant cell walls to represent the total fibre fraction (39), the ell contents being completely digestible by ruminants (40). The plant cel] wall constituents include hemicellulose and cellulose fractions which are Partly digestible, and a lignin fraction which is completely indigestible. Cell wall constituents may be determined using the neutral detergent method of Van Soest and Wine (44). However, this neutral detergent fiber (NDF) shows little correlation to digestibility (42). The acid detergent method of Van Soest (41) only recovers the cellulose and lignin fractions of the cel l wall constituents and shows a better correlation with digestibility (37 - 38). The invitro rumen fermentation technique of Tilley and Terry (36), $^{ ext{Of}}$ **all** methods so far investigated for estimating the dry matter digestibility of a forage, has proven to be the most accurate (1, 42). Several

investigators have used these tests to determine the effects of weed control measures on forage quality. Temme et. al. (34) showed a significant increase in both crude protein and in-vitro digestible dry matter (IVDDM) for trea ted alfalfa compared to untreated alfalfa infested with several annual broadleaf weeds. Fawcett et. al. (12) found significant protein increases in first cutting hay as a result of pronamide applications to alfalfa infested with quackgrass. IVDDM was also increased in all three cuttings. There was no effect on acid detergent fiber content. Dutt (10) found little difference in crude protein (CP) in treated alfalfa infested with perennial broad 7 eaf weeds. However, significant first cutting protein increases • bserved with applications of pronamide to an alfalfa stand heavily infested with quackgrass. In a second study, Dutt (10) found significant increases in both CP and IVDDM as a result of pronamide application to quackgrass infested alfalfa. Duke (7) also reported significant protein increases in the first cutting of pronamide treated alfalfa. Sheaffer and Wyse (31) observed no consistent increases in either CP or IVDDM as a result of controlling common dandelion in established alfalfa.

MATERIALS AND METHODS

Weed control experiments were conducted in established alfalfa at three locations in East Lansing, Michigan.

The soil type at location one was a Riddles-Hillsdale sandy loam (fire-coarse)loamy, mixed typic hapludalfs). A soil test indicated pH 2. 2, 2.41 percent organic matter, 134 kg/ha available P and 102 kg/ha ava \vec{i} able K. Three hundred pounds K_20 was applied after first cutting 1 981 as recommended by the soil test. Site two was a Capac loam (fine-loamy, mixed mesic Aeric Ochraqualfs). A soil test indicated a T 7.2, 3.69 percent organic matter, 92 kg/ha available P and 170 kg/ha ava \vec{a} lable K. One hundred fifty pounds K_2^0 was applied after first cutting ¶ 981 as recommended by the soil test. The soil type at site three also a Capac loam. A soil test indicated a pH of 7.1, 3.88 percent organic matter, 29 kg/ha available P and 349 kg/ha available K. No add itional fertilizer was applied. The alfalfa variety was Vernal at all three sites. Site one was a seven year old stand with a stand density of Plants/m² and severe weed pressure. Site 2 was a 2 year old stand with ▶ lants/m² and light weed pressure. Site 3 was a 2 year old stand with Plants/m² and severe weed pressure.

Visual weed control ratings were made using a 0-100 scale, 0 being no control; 100 being complete control. Ratings were done just prior to each cutting date. Botanical composition of the forage at harvest was determined by cutting a square meter sample from each plot and separating

the forage into alfalfa, broadleaf weed and grass weed components.

Total forage yields were determined three times a year when 10% of the alfalfa plants had blooms present (1/10 bloom stage). Harvest dates for the three sites are shown in Table 2. Herbicides were applied November 24, 1980 and March 23, 1981, and November 24, 1981 and March 29, 1982. Alfalfa was dormant at all applications. Herbicide combinations are shown in Table 1. All treatments were applied with a tractor mounted sprayer deliverying 261 L/ha at 30 psi.

The experimental design was a randomized complete block with four replications. All data was analyzed using analysis of variance techniques.

Yields were determined by cutting a 4.31 m² strip down the middle of each plot with a flail type forage harvester. One thousand gram samples were collected at the time of harvest for dry matter determination. The se samples were dried at 65°C, ground to pass through a 40 mesh screen and stored for later analysis.

Yields were determined and hand separations were performed in 1981 on all plots which received herbicide treatments. In 1982, yields and separations were performed only on forage from plots which received the following treatments: metribuzin (0.56 kg/ha) fall applied, metribuzin (1-12 kg/ha) spring applied, pronamide (1.68 kg/ha) fall applied, and pronamide (1.68 kg/ha) fall applied followed by metribuzin (1.12 kg/ha spring applied as well as the untreated control. These four herbicide treatments were chosen due to the fact that they were representative of the spectrum of weed control observed during the course of the study. Metribuzin (0.56) kg/ha represented treatments providing only annual broadleaf weed control, metribuzin (1.12 kg/ha) spring applied was representative of treatments providing both annual and perennial weed

Table 1. Treatments evaluated.

1	reatment	Rate (kg/ha)	Appl Time	Т	reatment	Rate (kg/ha)	Appl Time
1.	Pronamide	1.12	Fall	7.	Pronamide Metribuzin	1.68 1.12	Fall Spring
2.	Pronamide	1.68	Fall	8.	Simazine	1.40	Fall
3.	Pronamide Simazine	1.68 1.40	Fall Fall	9.	Metribuzin	0.56	Fall
4.	Pronamide	1.68	Fall	10.	Terbacil	1.12	Fall
5.	Metribuzin	0.56	Fall	11.	Metribuzin	1.12	Spring
э.	Pronamide Terbacil	1.68 1.12	Fall Fall	12.	Terbacil	1.12	Spring
6.	Pronamide Terbacil	1.68 1.12	Fall Spring	13.	Untreated		

Table 2. Harvest dates for the 1981 and 1982 growing season. a

			Har	vest		
Site		<u> </u>	I	I	II	I
	1981	1982	1981	1982	1981	1982
I	6/9	6/7	7/17	7/15	9/15	8/20
II	6/9	6/7	7/14	7/12	8/12	8/17
III	6/9	6/7	7/14	7/14	9/1	8/17

 $^{^{\}mathrm{a}}\mathrm{All}$ harvests were made when alfalfa was at the 1/10 bloom stage.

control. Pronamide (1.68 kg/ha) fall applied was representative of treatments which provided control of perennial grasses only and pronamide (1.68 kg/ha) fall applied followed by metribuzin (1.12 kg/ha) spring applied was representative of treatments which provided control of both annual and perennial broadleaves and grasses. Determinations were made on plots which received these treatments in 1980/81, 1981/82 or in both 1980/81 and 1981/82. Forage quality analysis was performed in 1981 on plots which received these treatments in 1980/81 and in 1982 on plots which received these treatments only in 1981/82. No analysis was performed in 1982 on forage from plots receiving treatment only in 1980/81 or in both 1980/81 and 1981/82.

Samples were analyzed for crude protein using the Kjeldahl procedure (2). In vitro digestible dry matter (IVDDM) was determined using the Tilley and Terry technique (36) which involves digestion of 0.5 gram forages samples for 48 hours in rumen fluid obtained from fistulated cows followed by the addition of pepsin, acidification and an additional 48 hour digestion. Samples are then filtered, dried and weighed to determine percent dry matter lost. Acid detergent fiber content was determined using the procedure by Van Soest (41) in which 1.0 gram samples are refluxed in 1.0N sulphuric acid solution containing hexaderyltrimethyl ammonium bromide for 1 hour. These samples are then filtered, dried and weighed to determine percent dry matter lost.

RESULTS AND DISCUSSION

For ease of discussion, the results of this study are arranged by site. Within each site there are three sections: Weed Control, Influence of Herbicides on Forage Composition and Yield, and Influence of Herbicide Treatments on Forage Quality.

SITE I

Weed Control

Orchardgrass (Dactylis glomerata L.) was the most prevalent perennial grass species at the first cutting. Several herbicide treatments provided orchardgrass control in both 1981 and 1982. Pronamide at either 1.12 kg/ha or 1.68 kg/ha (Tables 3 and 4) fall applied gave good orchardgrass control with no significant difference between the two rates. Pronamide (1.68 kg/ha) fall applied in combination with simazine (1.46 kg/ha), metribuzin (0.56 kg/ha), or terbacil (1.12 kg/ha) all provided good orchardgrass control. Metribuzin (0.56 kg/ha) fall applied provided poor control of orchardgrass in both 1981 and 1982. Terbacil (1.12 kg/ha) fall applied provided poor control in 1981 but good control in 1982. Simazine (1.46 kg/ha) fall applied provided fair to good control both Years. Ratings for this treatment were 92% in 1981 and 62% in 1982. Spring applied metribuzin (1.12 kg/ha) provided significantly better

Table 3. Orchard grass control ratings at site one for the 1981 growing season.^a

		% Control		
Herbicide	Rate (kg/ha)	Harvest		
TICI DICIGO	(kg/ila)			
Fall Treatments				
Pronamide	1.12	97a	96abc	
Pronamide	1. 6 8	99a	80bcd	
Simazine	1.46	92a	98ab	
Metribuzin	0.56	29Ь	69d	
Terbacil	1.12	28b	77cd	
Pronamide + Simazine	1.68 + 1.46	100a	94abc	
Pronamide + Metribuzin	1.68 + 0.56	99a	94abc	
Pronamide + Terbacil	1.68 + 1.12	99a	95abc	
Spring Treatments				
Metribuzin	1.12	95a	76cd	
Terbacil	1.12	100a	97abc	
Fall/Spring Treatments				
Pronamide/Metribuzin	1.68 + 1.12	99a	96abc	
Pronamide/Terbacil	1.68 + 1.12	100a	100a	
Control		0Ь	0b	

 $^{^{\}rm a}$ Values in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 4. Perennial grass^a control ratings at site one for the 1982 growing season. Treatments applied in 1981/82^b.

		%	% Control Harvest		
	Rate				
Herbicide	(kg/ha)	I	ΙΙ	III	
Fall Treatments					
Pronamide	1.12	82cdef	72cde	82bcde	
Pronamide	1.68	94ef	72cde	67bcd	
Simazine	1.46	62bc	20ab	62bc	
Metribuzin	0.56	40ab	20ab	52Ь	
Terbacil	1.12	85cdef	55bc	57bc	
Pronamide + Simazine	1.68 + 1.46	94ef	82cde	62bc	
Pronamide + Metribuzin	1.68 + 0.56	97ef	87de	82bcde	
Pronamide + Terbacil	1.68 + 1.12	92cdef	92e	57bc	
Spring Treatments					
Metribuzin	1.12	72bcd	62cd	65bcd	
Terbacil	1.12	82cdef	75cde	67bcd	
Fall/Spring Treatments					
Pronamide/Metribuzin	1.68 + 1.12	77bcde	82cde	94de	
Pronamide/Terbacil	1.68 + 1.12	100f	92e	82bcde	
Control		0a	0a	0a	

 $^{^{\}rm a}$ The perennial grass at the first harvest is orchardgrass. At harvest two and three is quackgrass.

 $^{^{\}mbox{\scriptsize b}}\mbox{\sc Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

although there was no significant difference between the two treatments in 1982. Both metribuzin rates only provided fair control (40% and 72% respectively) in 1982. Similar results were obtained with terbacil (1.12 kg/ha) spring applied. Spring treatment in 1981 provided significantly better control than fall application. However, there was no significant difference between the two application times in 1982. These results may be partly attributed to a dry spring in 1982. The herbicide did not move into the active root zone of the orchardgrass until a significant amount of growth had taken place. Ratings for metribuzin and terbacil spring applied at 1.12 kg/ha in 1981 were 95% and 100% respectively compared to 72% and 82% in 1982. Fall applied pronamide (1.68 kg/ha), followed by metribuzin (1.12 kg/ha) spring applied, provided excellent orchardgrass control in 1981 although the combination did not improve control over either herbicide alone. The same was true with pronamide (1.68 kg/ha) fall applied followed by terbacil (1.12 kg/ha) spring applied. Similar results were obtained in 1982, although pronamide (1.68 kg/ha) fall applied followed by terbacil (1.12 kg/ha) spring applied provided significantly better control than when followed by metribuzin (1.12 kg/ha).

Quackgrass was the most prevalent perennial grass species at the second and third cuttings. Several investigators found pronamide provided very good quackgrass control (7, 11, 45). Similar results were observed in this study. Pronamide at 1.12 and 1.68 kg/ha fall applied provided good quackgrass control in 1981 with no significant difference between the two treatments (Table 5). Pronamide (1.68 kg/ha) fall applied in combination with simazine (1.46 kg/ha), metribuzin (0.56 kg/ha) or terbacil (1.12 kg/ha) provided excellent quackgrass control,

Table 5. Quackgrass control ratings at site one for the 1981 growing season.a

	Pata	% Control			
110	Rate		Harvest		
Herbicide	(kg/ha)	<u>_</u>	<u>II</u>	III	
Fall Treatments					
Pronamide	1.12	100a	96ab	77ab	
Pronamide	1.68	100a	99a	76ab	
Simazine	1.46	70c	87bc	52bcd	
Metribuzin	0.56	0d	30ef	40bcde	
Terbacil	1.12	15d	44de	20de	
Pronamide + Simazine	1.68 + 1.46	100a	99a	64abc	
Pronamide + Metribuzin	1.68 + 0.56	100d	94ab	77ab	
Pronamide + Terbacil	1.68 + 1.12	87bc	88abc	41bcde	
Spring Treatments					
Metribuzin	1.12	87bc	68cd	32cde	
Terbacil	1.12	94ab	97ab	73ab	
5-11/6- to T					
Fall/Spring Treatments	1 (0 , 1 12	100-	00-	71.5	
Pronamide/Metribuzin	1.68 + 1.12	100a	99a	74ab	
Pronamide/Terbacil	1.68 + 1.12	100a	96ab	89a	
Control		0d	0f	0e	

aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

however, metribuzin or terbacil alone at these rates provided poor control. Similar results were obtained with these treatments in 1982 although the degree of control was generally less (Table 4). Pronamide at 1.12 and 1.68 kg/ha gave greater than 90% quackgrass control in 1981 but only 72% control in 1982. Pronamide (1.68 kg/ha) in combination with simazine or metribuzin at the rates mentioned above gave 99% and 44% control respectively in 1981 and 82 and 87% control in 1982. Metribuzin (1.12 kg/ha) spring applied provided significantly better quackgrass control than fall applied metribuzin at 0.56 kg/ha in both 1981 and 1982. Metribuzin (1.12 kg/ha) spring applied in combination with a fall application of pronamide (1.68 kg/ha) provided significantly better quackgrass control than metribuzin alone in 1981. In 1982 there was no difference in the two treatments. Control with this treatment was no better than pronamide (1.68 kg/ha) applied alone in the fall in either year. Pronamide (1.68 kg/ha) fall applied followed by terbacil (1.12 kg/ha) spring applied provided excellent quackgrass control, although control with this combination was no better than either treatment alone in 1981 and 1982. Terbacil (1.12 kg/ha) spring applied provided significantly better quackgrass control than did the same treatment fall applied in 1981 but not 1982. There were few differences in quackgrass control between treatments at the third cutting in either year. Pronamide (1.68 kg/ha) fall applied followed by terbacil (1.12 kg/ha) spring applied provided greater than 80% quackgrass control at the third cutting in both years. The same rate of pronamide followed by a spring treatment of metribuzin at 1.12 kg/ha provided 92% quackgrass control in 1982.

All treatments which were applied in both 1980/81 and 1981/82 gave excellent quackgrass control thoughout the season in 1982 with the

exception of simazine (1.46 kg/ha) fall applied (Table 6). Orchardgrass control with this treatment at the first cutting was not significantly different from the untreated check. Quackgrass control at the second and third cuttings was also poor with this treatment.

Herbicides applied to established stands of alfalfa have been found, in some cases, to provide poor weed control the year following treatment (7, 12, 31). In this study treatments applied in 1980/81 showed reduced perennial grass control in 1982 when compared to treatments applied in 1981/82 or 1980/81 and 1981/82 (Table 7). There were very few significant differences between treatments, although a number of treatments reduced quackgrass populations compared to the untreated control. There was no difference between pronamide 1.12 kg/ha and 1.68 kg/ha fall applied. There were also no significant differences in pronamide applied in the fall with simazine (1.46 kg/ha), metribuzin (0.56 kg/ha), or terbacil (1.12 kg/ha) or with simazine (1.46 kg/ha), metribuzin (0.56 kg/ha) or terbacil (1.12 kg/ha) applied alone. Pronamide (1.68 kg/ ha) + metribuzin (0.56 kg/ha) fall applied did give control than metribuzin (0.56 kg/ha) fall applied alone. None of these treatments gave better than 62% control. Metribuzin (1.12 kg/ha) spring applied gave no better control than metribuzin (0.56 kg/ha) fall applied. Neither treatment was significantly better than the untreated check. Terbacil (1.12 kg/ha) spring applied gave better control than the same treatment applied in the fall. Pronamide (1.68 kg/ha) fall applied + metribuzin (1.12 kg/ha) spring applied was no better than either treatment alone or than metribuzin (0.56 kg/ha) fall applied.

Similar results were observed with quackgrass control at the second and third cuttings, although slightly better quackgrass control was

Table 6. Perennial grass^a control ratings at site one for the 1982 growing season. Treatments applied 1980/81 and 1981/82.b

		9/	Control	
	Rate		Harvest	
<u>Herbicide</u>	(kg/ha)	I	II	III
Fall Treatments				
Pronamide	1.12	84c	85c	85bc
Pronamide	1.68	100c	94c	87bc
Simazine	1.46	45ab	42b	77b
Pronamide + Simazine	1.68 + 1.46	100c	100c	90bc
Pronamide + Metribuzin	1.68 + 0.56	97c	92c	89bc
Course Tuestments				
Spring Treatments Metribuzin	1.12	85cdef	85c	80bc
Terbacil	1.12	97c	89c	77b
Terbacii	1.12	9/6	036	770
Fall/Spring Treatments				
Pronamide/Metribuzin	1.68 + 1.12	100c	90c	90bc
Pronamide/Terbacil	1.68 + 1.12	100c	94c	100c
Control		0a	0a	0a

 $^{^{\}rm a}$ The perennial grass at the first harvest is orchardgrass. At harvest two and three is quackgrass.

 $^{^{\}rm b}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 7. Perennial grass^a control ratings at site one for the 1982 growing season. Treatments applied in 1980/81.b

	_		% Control	
	Rate		Harvest	
<u> Herbicide</u>	(kg/ha)	<u> </u>	II	III
Fall Treatments				
Pronamide	1.12	50bcd	67cd	85cd
Pronamide	1.68	55bcde	42bcd	82bcd
Simazine	1.46	52bcde	40abcd	72bcd
Metribuzin	0.56	15ab	35abc	62bc
Terbacil	1.12	17abc	12ab	57bc
Pronamide + Simazine	1.68 + 1.46	47abcd	47bcd	90cd
Pronamide + Metribuzin	1.68 + 0.56	62cde	45bcd	55bc
Pronamide + Terbacil	1.68 + 1.12	70dc	57cd	70bcd
Spring Treatments				
Metribuzin	1.12	17abc	35abc	42a b
Terbacil	1.12	75de	72d	67bcd
Fall/Spring Treatments				
Pronamide/Metribuzin	1.68 + 1.12	52bcde	70cd	80bcd
Pronamide/Terbacil	1.68 + 1.12	87 e	72d	60bc
· · · · · · · · · · · · · · · · · ·				
Control		0a	0a	0a

 $^{^{\}rm a}{\rm The~perennial~grass}$ at the first harvest is orchardgrass. At harvest two and three is quackgrass.

 $^{^{\}rm b}{\mbox{Values}}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

observed at the third cutting than the second. The better control was probably a result of less quackgrass regrowth in the third cutting.

Spring applications of metribuzin and terbacil were previously found to provide good control of dandelion (8, 10, 35). In this study metribuzin or terbacil spring applied at 1.12 kg/ha alone or in combination with fall applied pronamide (1.68 kg/ha) gave better than 90% dandelion control at the first cutting in 1981 (Table 8). These same treatments provided only fair dandelion control at the first cutting in 1982 with control ranging from 77 to 82% (Table 9). There was no difference in control between treatments with or without pronamide either year. Dandelion control with pronamide alone was not significantly different than the untreated check. Metribuzin (1.12 kg/ha) spring applied provided significantly better dandelion control at the first cutting in both years than did metribuzin (0.56 kg/ha) fall applied. Control at the second cutting was significantly better at the 1.12 kg/ha rate spring applied than the 0.56 kg/ha rate fall applied in 1981. There was no difference between the two treatments at the second cutting in 1982 or at the third cutting in either year. There were no significant differences between fall applications of simazine (1.46 kg/ha), metribuzin (0.68 kg/ha) or terbacil (1.12 kg/ha) at any cutting in 1981 with all treatments providing poor dandelion control. Control ratings with these treatments ranged from 45% to 75% at the first cutting with control decreasing at the subsequent cuttings. Terbacil (1.12 kg/ha) fall applied provided significantly better dandelion control than either fall applied metribuzin (0.56 kg/ha) or simazine (1.46 kg/ha) at the first cutting in 1982. Control with this treatment was poor. There were no significant differences between these treatments at the subsequent cuttings. Duke

Table 8. Dandelion control ratings at site one for the 1981 growing season.a

		%	Control Control	·
	Rate		Harvest	
Herbicide	(kg/ha)	I	II	III
Fall Treatments				
Pronamide	1.12	0e	0f	23cd
Pronamide	1.68	38de	15ef	13cd
Simazine	1.46	67cd	68bcd	47bc
Metribuzin	0.56	42de	60cd	40bcd
		42de 42de		
Terbacil	1.12		54cd	43bc
Pronamide + Simazine	1.68 + 1.46	75bcd	50cd	35bcd
Pronamide + Metribuzin	1.68 + 0.56	66cd	45de	32cd
Pronamide + Terbacil	1.68 + 1.12	72bcd	69bcd	28cd
Spring Treatments				
Metribuzin	1.12	93abc	88ab	69ab
Terbacil	1.12	91abc	79bc	42bc
Terbacii	1.12	Flabe	7300	4200
Fall/Spring Treatments				
Pronamide/Metribuzin	1.68 + 1.12	94ab	68bcd	26cd
Pronamice/Terbacil	1.68 + 1.12	99a	98a	91a
Tronumice, lerbucti	1.00 11.12	33 4	300	J14
Control		0e	0f	Od
			•	

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 9. Dandelion control ratings at site one for the 1982 growing season. Treatments applied in 1981/82.a

			% Control	
	Rate		Harvest	
Herbicide	(kg/ha)	I	II	III
Fall Treatments				
Pronamide	1.12	0a	0a	10ab
Pronamide	1.68	0a	0a	0a
Simazine	1.46	30abc	52bcdef	27abcd
Metribuzin	0.56	35bc	50bcde	32bcde
Terbacil	1.12	65def	40bcd	35bcdef
Pronamide + Simazine	1.68 + 1.46	45bcd	55cdefg	50defg
Pronamide + Metribuzin	1.68 + 0.56	17ab	20ab	17abc
Pronamide + Terbacil	1.68 + 1.12	57cde	37bc	50defg
Spring Treatments				
Metribuzin	1.12	77efg	65cdefgh	62fgh
Terbacil	1.12	77efg	77fgh 🌷	72gȟ
Fall/Spring Treatments				
Pronamide/Metribuzin	1.68 + 1.12	82fgh	67defgh	72gh
Pronamide/Terbacil	1.68 + 1.12	77efg	65cdefgh	60efgh
Control		0a	0a	0a

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

and S

3f 3(

iari

Cont rent

æ `98.

121 ::

::0 gan.

ļr) 'n.

(J)

13 in

ŝŋ.

in 5h(Cij

. . .

Ä,

and Spear (8) also observed poor dandelion control from fall applications of terbacil. None of the fall applied treatments provided better dandelion control in combination with pronamide than alone.

Dandelion control generally decreased as the season progressed.

Control was very poor at the third cutting in both years with few treatments providing great than 60% control.

Treatments applied in both 1980/81 and 1981/82 provided slightly better dandelion control than one year applications in some cases in 1982 (Table 10). Metribuzin (1.12 kg/ha) and terbacil at the same rate spring applied provided very good dandelion control in the first cutting although control decreased as the season progressed. The addition of pronamide (1.68 kg/ha) fall applied did not improve dandelion control. Pronamide (1.68 kg/ha) + metribuzin (1.12 kg/ha) spring applied provided significantly better dandelion control than pronamide (1.68 kg/ha) + metribuzin (0.56 kg/ha) fall applied in all three cuttings.

Dandelion control was reduced in 1982 in plots treated in 1980/81 (Table 11) compared to those treated in 1981/82 (Table 9) or in both 1980/81 and 1981/82 (Table 10). There were no significant differences in dandelion control between any of the broadleaf materials tested at any cuttings with the exception of terbacil (1.12 kg/ha) spring applied in combination with pronamide (1.68 kg/ha) fall applied. This treatment showed significantly better control than any other treatment at the first cutting and several other treatments at the second and third cuttings.

Influence of Herbicides on Forage Composition and Yield

Site one was located in a poor stand of alfalfa (30 plants/m²) with severe weed pressure. Fawcett and Harvey (12) found applications

			Ī.
			-
			-
			;

Table 10. Dandelion control ratings at site one for the 1982 growing season. Treatments applied in 1980/81 and 1981/82.

	Rate		% Control	
Herbicide	(kg/ha)	I	II	III
Fall Treatments Pronamide Pronamide Simazine Pronamide + Simazine Pronamide + Metribuzin	1.12 1.68 1.46 1.68 + 1.46 1.68 + 0.56	0a 0a 70cd 50bc 40b	0a 22ab 55bcd 42bc 27ab	0a 0a 45bc 60cd 27ab
Spring Treatments Metribuzin Terabcil	1.12 1.12	89de 87de	72de 77de	57cd 70cd
Fall/Spring Treatments Pronamide/Metribuzin Pronamide/Terbacil	1.68 + 1.12 1.68 + 1.12	92e 94e	80de 85e	75d 90e
Control		0a	0a	0a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 11. Dandelion control ratings at site one for the 1982 growing season. Treatments applied in 1980/81.a

	Rate	-	% Control Harvest	
Herbicide	(kg/ha)	I	II	III
Fall Treatments Pronamide Pronamide Simazine Metribuzin Terbacil Pronamide + Simazine Pronamide + Metribuzin Pronamide + Terbacil	1.12 1.68 1.46 0.56 1.12 1.68 + 1.46 1.68 + 0.56 1.68 + 1.12	0a 5ab 15abc 37bcdef 25abcd 15abc 25abcd 45cdefg	0a 0a 47bcde 45bcde 30abc 27ab 25ab 30abc	0a 0a 27ab 35bcd 32bc 20ab 22ab 37bcd
Spring Treatments Metribuzin Terbacil	1.12	37bcdef 27abcde	55bcdef 35abcd	35bcd 37bcd
Fall/Spring Treatments Pronamide/Metribuzin Pronamide/Terbacil Control	1.68 + 1.12 1.68 + 1.12	20abcd 77h 0a	30abc 60cdef 0a	22ab 57cde 0a

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

of pronamide to stands with low alfalfa densities to decrease total forage yields, with some increases in alfalfa yield. Pagano et al (24) also found that metribuzin applied to alfalfa stands with severe weed pressure reduced total forage yield. Similar results were observed in this study.

In the 1981 growing season forage yield was either decreased or unchanged by herbicide treatments at the first cutting (Table 12). Herbicide treatments either increased or had no effect on alfalfa yield. Treatments causing reductions in forage yield at the first cutting were terbacil (1.12 kg/ha) spring applied, pronamide (1.68 kg/ha) fall applied followed by a spring application of metribuzin (1.12 kg/ha), and pronamide (1.68 kg/ha) fall applied followed by a spring application of terbacil (1.12 kg/ha). Treatments causing increases in alfalfa yield at the first cutting were simazine (1.46 kg/ha) fall applied, pronamide (1.68 kg/ha) + terbacil (1.12 kg/ha) fall applied, metribuzin (1.12 kg/ha) spring applied, and terbacil (1.12 kg/ha) spring applied.

In the second and third cuttings there were no significant differences in either total forage yield or alfalfa yield with any treatments (Tables 13 & 14).

Season total forage yield was decreased by one treatment, but unaffected by all the others (Table 15). Season total alfalfa yields for the treated plots were not significantly different from that of the untreated check.

The treatments which caused a reduction in season total forage yield were pronamide (1.68 kg/ha) fall applied followed by terbacil (1.12 kg/ha) spring applied.

Table 12. First harvest dry matter yields of total forage, alfalfa, grass, and broadleaf weeds as influenced by herbicide treatments at site one in the 1981 growing season.^a

	D 4		Yield (kg/ha)			
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds	
Fall Treatments Pronamide	1.12	3875abc	2058bc	294bc	1523a	
Pronamide Pronamide Simazine Metribuzin Terbacil Pronamide + Simazine Pronamide + Metribuzin Pronamide + Terbacil	1.68 1.46 0.56 1.12 1.68 + 1.46 1.68 + 0.56 1.68 + 1.12	4217abc 4446abc 5028a 5034a 3444bc 4301abc 4273abc	2579abc 3616a 1995bc 2405abc 2716abc 3079ab 3450a	294bc 114c 296bc 2528a 1740ab 129c 264bc 365bc	1523a 1522a 534bcd 505bcd 891abc 599bcd 958ab 458bcd	
Spring Treatments Metribuzin Terbacil	1.12 1.12	4233abc 3276c	2948ab 3214ab	1235abc 0c	50d 61d	
Fall/Spring Treatments Pronamide/Metribuzin Pronamide/Terbacil	1.68 + 1.12 1.68 + 1.12	3024c 1462d	2561abc 1421c	259bc 0c	235cd 40d	
None		4866ab	1544c	2216a	1106ab	

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 13. Second harvest dry matter yields of total forage, alfalfa, grass, and broadleaf weeds as influenced by herbicide treatments at site one in the 1981 growing season.^a

		Yield (kg/ha)			
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments					
Pronamide	1.12	1507a	1070a	161a	275a
Pronamide	1.68	1444a	1134a	89a	221a
Simazine	1.46	1657a	1289a	50a	92a
Metribuzin	0.56	2498a	1310a	1014a	169a
Terbacil	1.12	1764a	1293a	186a	135a
Pronamide + Simazine	1.68 + 1.46	1484a	1673a	107a	126a
Pronamide + Metribuzin	1.68 + 0.56	1887 a	1251a	79a	135a
Pronamide + Terbacil	1.68 + 1.12	1837 a	1209a	511a	117a
Spring Treatments					
Metribuzin	1.12	1993a	1651a	283a	5 9a
Terbacil	1.12	1540a	1439a	26a	74a
Fall/Spring Treatments					
Pronamide/Metribuzin	1.68 + 1.12	1769a	1450a	254a	65a
Pronamide/Terbacil	1.68 + 1.12	1585a	1300a	82a	64a
None		1562a	909a	449a	203a

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 14. Third harvest dry matter yields of total forage, alfalfa, grass, and broadleaf weeds as influenced by herbicide treatments at site one in the 1981 growing season.^a

	Yield (kg/ha)				
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
	(kg/na)	roruge	Allalla	41433	Weeds
Fall Treatments Pronamide	1.12	1344a	793a	218a	332a
Pronamide	1.68	1960a	1194a	392a	373a
Simazine	1.46	1394a	921a	257a	216a
Metribuzin	0.56	1573a	828 a	508a	236a
Terbacil	1.12	1590a	806a	578a	206a
Pronamide + Simazine	1.68 + 1.46	1344a	879a	192a	273a
Pronamide + Metribuzin Pronamide + Terbacil	1.68 + 0.56 1.68 + 1.12	1388a 1377a	803a 824a	378a 389a	207a 163a
Frondinide + lerbacii	1.00 + 1.12	13//4	024a	309 a	103a
Spring Treatments					
Metribuzin	1.12	1814a	1183a	518a	113a
Terbacil	1.12	1333a	1047a	165a	120a
Fall/Spuing Treatments					
Fall/Spring Treatments Pronamide/Metribuzin	1.68 + 1.12	1293a	771a	347a	174a
Pronamide/Terbacil	1.68 + 1.12	1233a 1574a	1345a	86b	174a 142a
			, 5 100		
None		1336a	561a	568a	207a

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 15. Season total dry matter yields of forage and alfalfa as influenced by herbicide treatments at site one in the 1981 growing season.^a

	Yield (kg/ha)				
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa		
Fall Treatments Pronamide Pronamide Simazine Metribuzin Terbacil Pronamide + Simazine Pronamide + Metribuzin Pronamide + Terbacil	1.12 1.68 1.46 0.56 1.12 1.68 + 1.46 1.68 + 0.56 1.68 + 1.12	6726ab 7622ab 7112ab 8512a 7045ab 6272bc 6795ab 7487ab	4102a 4900a 5834a 4137a 4503a 4795a 5707a 5742a		
Spring Treatments Metribuzin Terbacil	1.12 1.12	7474ab 6148bc	5514a 5702a		
Fall/Spring Treatments Pronamide/Metribuzin Pronamide/Terbacil None	1.68 + 1.12 1.68 + 1.12	5869bc 4667c 7414ab	4489a 4253a 3131a		

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Several treatments significantly reduced grass yield at the first cutting (Table 12). The most effective were pronamide (1.68 kg/ha) fall applied, pronamide (1.68 kg/ha) + simazine (1.46 kg/ha) fall applied, terbacil (1.12 kg/ha) spring applied, and pronamide (1.68 kg/ha) fall applied + terbacil (1.12 kg/ha) spring applied. Broadleaf weed yield was also reduced by several treatments at the first cutting, including metribuzin (1.12 kg/ha) spring applied, terbacil (1.12 kg/ha) spring applied, pronamide (1.68 kg/ha) fall applied + metribuzin (1.12 kg/ha) spring applied and pronamide (1.68 kg/ha) fall applied + terbacil (1.12 kg/ha) spring applied. There were no significant reductions in grass or broadleaf yields from any treatments at the second or third cuttings.

In the 1982 growing season for plots on which separations were performed, total forage yields at the first harvest were decreased by all treatments applied in 1981/82 (Table 16). Alfalfa yield was increased by all treatments except metribuzin (0.56 kg/ha) fall applied. This treatment also showed poor perennial grass and broadleaf control. For plots which received treatment in 1980/81 and 1981/82, all treatments caused a reduction in total forage yield at the first cutting (Table 17), however, only pronamide (1.68 kg/ha) fall applied + metribuzin (1.12 kg/ha) spring applied caused a significant increase in alfalfa yield at the first cutting (Table 17). This treatment provided good perennial grass and broadleaf control at the first cutting. In plots which received treatment in 1980/81, all treatments except metribuzin (0.56 kg/ha) fall applied caused a decrease in total forage yield at the first cutting (Table 18). No treatments resulted in an increase in alfalfa yield. Although there were reductions in total forage yield, the weed control obtained from these treatments was not great enough to allow the

Table 16. First harvest dry matter yields of total forage, alfalfa, grass, and broadleaf weeds as influenced by herbicide treatments at site one in the 1982 growing season for treatments applied in 1981/82a.

		Yield (kg/ha)			
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Metribuzin	1.68 0.56	3019ab 3742c	2250b 1474a	106a 2161c	664a 106a
Spring Treatments Metribuzin	1.12	3043ab	2218b	609ab	106a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	2694a	2411b	228a	85a
None		4537d	1376a	2498c	663a

 $^{^{\}rm a}{\rm Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 17. First harvest dry matter yields of total forage, alfalfa, grass, and broadleaf weeds as influenced by herbicide treatments at site one in the 1982 growing season. Treatments applied in 1980/81 and 1981/82.a

		Yield (kg/ha)				
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds	
Fall Treatments Pronamide Metribuzin	1.68 0.56	2928a 	2250a 	193ab 	898a 	
Spring Treatments Metribuzin	1.12	2474a	2106a	361ab	7a	
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	3221a	3201Ь	2.25a	18a	
None		4537b	1376a	2498c	663a	

 $^{^{\}rm a}{\rm Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 18. First harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site one for the 1982 growing season for treatments applied in 1980/81.

		Yield (kg/ha)				
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds	
Fall Treatments Pronamide Metribuzin	1.68 0.56	3185ab 4117cd	1078a 973a	1369ab 2832c	651a 265a	
Spring Treatments Metribuzin	1.12	3615bc	1189a	2169bc	258a	
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	2773a	689 a	1082a	1002a	
None		4537d	1376a	2498c	663a	

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

alfalfa to respond by an increase in growth. At the second and third cuttings, treatment responses were varied. Total forage yield was either increased or remained the same. This applied whether results of treatments in 1981/1982 (Tables 19 and 20), 1980/1981 (Tables 21 and 22) or both years (Tables 23 and 24) are examined. Alfalfa yield either increased or was unchanged. In most cases, a decrease in total forage yield corresponded with an increase in alfalfa yield. For this reason, in the first experiment there were no significant differences in season total forage yield from any treatments on which separations were performed. Season total alfalfa yield was increased by several treatments. For treatments which were applied in 1981/82 only pronamide (1.68 kg/ha) caused an increase in season total alfalfa yield (Table 25). For treatments which were applied in 1980/81 and 1981/82, metribuzin (1.12 kg/ha) spring applied and pronamide (1.68 kg/ha) fall applied + metribuzin (1.12 kg/ha) spring applied both resulted in an increase in season total alfalfa yield (Table 27). There were no significant differences in alfalfa yield at any cutting or in season total alfalfa yields in 1982 for any treatments which were applied in 1980/81 (Table 26). This is indicative of the poor weed control observed in 1982 from treatments which were applied in 1980/81.

Influence of Herbicide Treatments on Forage Quality

Dutt (10) found the removal of perennial broadleaf weeds from established alfalfa had little effect on protein content of the forage. However, the removal of quackgrass from a severely infested stand significantly increased forage protein content. First cutting forage at site one was infested primarily with orchardgrass and protein content of first

Table 19. Second harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site one for the 1982 growing season for treatments applied in 1981/82.a

		Yield (kg/ha)				
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds	
Fall Treatments Pronamide Metribuzin	1.68 0.56	2386ab 1855a	1727b 835a	136a 142b	522b 178a	
Spring Treatments Metribuzin	1.12	2516b	1450b	877b	189a	
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	2350ab	1411b	800Ь	139a	
None		1913a	954a	803b	156a	

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 20. Third harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site one for the 1982 growing season for treatments applied in 1981/82.a

		Yield (kg/ha)			
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Metribuzin	1.68 0.56	1356a 1115a	797a 526a	311a 431ab	248a 158a
Spring Treatments Metribuzin	1.12	1706ab	954a	543ab	209a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	2256b	715a	1459c	89a
None		1223a	514a	521ab	187 a

 $^{^{\}rm a}$ Values in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 21. Second harvest dry matter yields of total forage, alfalfa, grass, and broadleaf weeds as influenced by herbicide treatments at site one for the 1982 growing season for treatments applied in 1980/81.a

		Yield (kg/ha)				
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds	
Fall Treatments Pronamide Metribuzin	1.68 0.56	2119a 2061a	788a 867a	941b 1008b	390ab 185a	
Spring Treatments Metribuzin	1.12	2094a	1083a	773ab	237a	
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	1825a	855a	372a	598b	
None		1913a	954a	803ab	156a	

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 22. Third harvest dry matter yields of total forage, alfalfa, grass, and broadleaf weeds as influenced by herbicide treatments at site one for the 1982 growing season for treatments applied in 1980/81.a

		Yield (kg/ha)			
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Metribuzin	1.68 0.56	1359a 1043a	423a 390a	739a 471a	196a 182a
Spring Treatments Metribuzin	1.12	1584a	527a	917a	140a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	1182a	306a	678a	197a
None		1223a	514a	521a	187a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 23. Second harvest dry matter yields of total forage, alfalfa, grass, and broadleaf weeds as influenced by herbicide treatments at site one for the 1982 growing season for treatments applied in 1980/81 and 1981/82.

		Yield (kg/ha)			
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Metribuzin	1.68 0.56	2250ab 	1401ab 	262a 	587c
Spring Treatments Metribuzin	1.12	2468ab	2115bc	336ab	17a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	2857Ь	2695c	137a	29a
None		1913a	954a	803b	156ab

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 24. Third harvest dry matter yields of total forage, alfalfa, grass, and broadleaf weeds as influenced by herbicide treatments at site one for the 1982 growing season for treatments applied in 1980/81 and 1981/82.

		Yield (kg/ha)			
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Metribuzin	1.68 0.56	1113a 	645a 	144a 	344a
Spring Treatments Metribuzin	1.12	1633a	849a	630b	125a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	2500b	1612b	677b	218a
None		1223a	514a	521b	187 a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 25. Season total dry matter yields of forage and alfalfa as influenced by herbicide treatments at site one in the 1982 growing season for treatments applied in 1981/82.a

		Yield (kg/ha)		
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	
Fall Treatments Pronamide Metribuzin	1.68 0.56	6750a 6712a	4774b 2836a	
Spring Treatments Metribuzin	1.12	7155a	4622ab	
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	7318a	4521ab	
None		7943a	2842a	

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 26. Season total dry matter yields of forage and alfalfa as influenced by herbicide treatments at site one for the 1982 growing season for treatments applied in 1980/81.

		Yield (kg/ha)		
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	
Fall Treatments Pronamide Metribuzin	1.68 0.56	6576a 7206a	2289a 2230a	
Spring Treatments Metribuzin	1.12	7293a	2800a	
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	6354a	1866a	
None		2943a	2842a	

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 27. Season total dry matter yields of forage and alfalfa as influenced by herbicide treatments at site one for the 1982 growing season for treatments applied in 1980/81 and 1981/82.a

		Yield (kg/ha)		
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	
Fall Treatments Pronamide Metribuzin	1.68 0.56	6261a 	3832ab 	
Spring Treatments Metribuzin	1.12	6576a	5070Ь	
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	8589a	7508c	
None		7943a	2842a	

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

cutting forage was found to be significantly higher than the untreated check for all treatments on which protein analysis was performed in 1981 (Table 28). Of these treatments, metribuzin (1.12 kg/ha) alone or pronamide (1.68 kg/ha) fall applied followed by a spring application of metribuzin (1.12 kg/ha) both contained a higher percentage of alfalfa in the forage (Table 29). The remaining treatments, while not resulting in an increase in alfalfa yield, did result in a reduction in grass or broadleaf percentages in the forage, although, these reductions were not statistically significant. The greatest increase in protein content was found with pronamide (1.68 kg/ha) fall applied followed by a spring application of metribuzin (1.12 kg/ha). This treatment resulted in a forage containing 85.80% alfalfa and 17.11% protein compared to 32.67% alfalfa and 10.30% protein in the untreated check. The smallest protein increase resulted from metribuzin (0.56 kg/ha). Forage receiving this treatment contained 42.28% alfalfa and 13.07% protein. In 1982, all treatments which resulted in a significant increase in alfalfa percentage in the forage also resulted in a significant increase in protein content at the first cutting (Tables 30 and 31). These were all treatments except metribuzin (0.56 kg/ha) fall applied. There were no differences between any treatments showing significant protein increases over the untreated check. The greatest increase in protein content was observed with pronamide (1.68 kg/ha) fall applied. This treatment resulted in forage containing 72.99% alfalfa and 17.20% protein compared to 30.21% alfalfa and 12.78% protein for the untreated check.

Dutt (10) and Fawcett et. al. (12) both observed increases in IVDDM as a result of pronamide applications to quackgrass infested alfalfa, however, there were no significant differences in the IVDMD

Table 28. First harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site one in the 1981 growing season.a

Herbicide	Rate (kg/ha)	%P	IVDDM	ADF
Fall Treatments			%DM	
Pronamide Metribuzin	1.68 0.56	16.30a 13.07b	56.16a 55.79a	43.77b 43.91b
metribuzin	0.30	13.075	55.79a	43.310
Spring Treatments Metribuzin	1.12	14.97ab	56.35a	43.24b
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	17.11a	55.05a	41.24b
None		10.30c	52.49a	46.68a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 29. Percent alfalfa, grass and broadleaf weeds present in first harvest forage as influenced by herbicide treatment at site one in the 1981 growing season.^a

		%		
Herbicide	Rate (kg/ha)	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Metribuzin	1.68 0.56	57.86abc 42.28ab	3.23a 47.37b	38.91cd 10.35ab
Spring Treatments Metribuzin	1.12	79.33 c	19.55ab	1.12a
Fall/Spring Treatments Pronamide/Metribuzin None	1.68/1.12	85.80cd 32.67a	5.73a 42.55ab	8.47ab 24.78bc
		02.77 d	,2,3000	2, 050

 $^{^{\}rm a}$ Values in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 30. First harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site one in the 1982 growing season.^a

Herbicide	Rate (kg/ha)	%P	IVDDM	ADF
Fall Treatments			%D M	
Pronamide Metribuzin	1.68 0.56	17.20a 11.99b	69.01a 64.25a	37.23a 40.57a
Spring Treatments Metribuzin	1.12	17.04a	65.50a	36.65a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	17.18a	65.23a	36.94a
None		12.78b	61.70a	40.25a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 31. Percent alfalfa, grass and broadleaf weeds present in first harvest forage as influenced by herbicide treatment at site one in the 1982 growing season.^a

		%			
Herbicide	Rate (kg/ha)	Alfalfa	Grass	Broadleaf Weeds	
Fall Treatments Pronamide Metribuzin	1.68 0.56	72.99a 37.13b	3.41a 60.17c	23.60b 2.70a	
Spring Treatments Metribuzin	1.12	74.12a	19.4 5ab	6.43ab	
Fall/Spring Treatments Pronamide/Metribuzin None	1.68/1.12	86.58a 30.21b	11.50ab 53.74c	1.92a 16.05ab	

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

with any treatment at the first cut at site one in either year (Tables 28 and 30).

ADF was significantly decreased by all treatments in 1981 (Table 28) but there were no significant differences in 1982 (Table 30).

There were no significant differences in a protein content, IVDMD, or ADF at either the second or third cutting at site one in 1981 (Tables 32 and 33) or 1982 (Tables 34 and 35).

Table 32. Second harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site one in the 1981 growing season.^a

Herbicide	Rate (kg/ha)	%P	IVDDM	ADF
Fall Treatments			%DM	
Pronamide Metribuzin	1.68 0.56	19.46a 17.96a	57.22a 51.91b	34.18a 40.40a
Spring Treatments Metribuzin	1.12	19.61a	57.29a	34.83a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	18.96a	56.26a	36.64a
None		18. 69 a	54.18ab	35.12a

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 33. Third harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site one in the 1981 growing season.^a

<u> </u>	Rate (kg/ha)	Р	IVDDM	ADF
Fall Treatments			%DM	
Pronamide Metribuzin	1.68 0.56	21.27a 20.75a	61.99a 66.24a	31.05a 31.69a
Spring Treatments Metribuzin	1.12	21.19a	62.09a	30.74a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	21.13a	61.64a	30.51a
None		21.39a	61.31a	29.63a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 34. Second harvest, in vitro digestible dry matter and acid detergent fiber content of forage at site one in the 1982 growing season.^a

Herbicide	Rate (kg/ha)	Р	IVDDM	ADF
Fall Treatments		-	%DM	
Pronamide Metribuzin	1.68 0.56	17.40a 17.22a	63.69a 64.59a	32.74a 32.93a
Spring Treatments Metribuzin	1.12	17.22a	64.20a	34.05a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	15.87a	63.41a	34.44a
None		16.82a	63.89a	33.07a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 35. Third harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site one in the 1982 growing season.^a

Herbicide	Rate (kg/ha)	%P	IVDDM	ADF
Fall Treatments			%DM	
Pronamide Metribuzin	1.68 0.56	18.59a 17.33a	62.48a 58.93a	26.77a 28.98a
Spring Treatments Metribuzin	1.12	16.82a	57.80a	30.27a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	15.27a	59.82a	31.47a
None		17.33a	53.39a	27.88a

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

SITE II

Weed Control

Site 2 was a good stand of alfalfa (56 plants/m²) with relatively light weed pressure. Weeds present in the stand were dandelion, quack-grass, white cockle and shepherd's purse. As a result of the good stand and lower weed pressure, weed control ratings were generally higher at site 2 than site 1. Quackgrass control at the first cutting was very good for all treatments except metribuzin (0.56 kg/ha) fall applied and simazine (1.46 kg/ha) fall applied in 1981 as well as simazine (1.46 kg/ha) fall applied in 1982 (Tables 36 & 37). Metribuzin (1.12 kg/ha) spring applied was significantly better than metribuzin (0.56 kg/ha) fall applied at controlling quackgrass. Quackgrass control at the second and third cuttings was also very good, although simazine (1.46 kg/ha) fall applied and metribuzin (0.56 kg/ha) fall applied showed poor control at the second cutting in 1982. All other treatments provided good control.

For treatments which were applied in both 1980/81 and 1981/82, all treatments provided good season long quackgrass control in 1982 with the exception of simazine (1.46 kg/ha) fall applied (Table 38). In experiment 1 perennial grass control was greatly reduced in 1982 in plots which were treated only in 1980/81, however, in experiment 2 this was not the case. All treatments showed good to excellent quackgrass control throughout the season except metribuzin (0.56 kg/ha) fall applied (Table 39). These results are in agreement with Fawcett (12) who observed quackgrass control from pronamide applications to persist into the second year if applied to stands with high alfalfa populations (40-50 plants/m²).

Table 36. Quackgrass control ratings at site two for the 1981 growing season. $^{\rm a}$

	Rate		% Control	
<u>Herbicide</u>	(kg/ha)	I	II	III
Fall Treatments		200		
Pronamide	1.12	100c	99a	99a
Pronamide Simplifie	1.68	100c	99a	100a
Simazine	1.46	77b	99a	99a
Metribuzin	0.56	71b	63b	68b
Terbacil	1.12	100c	100a	100a
Pronamide + Simazine	1.68 + 1.46	100c	100a	100a
Pronamide + Metribuzin	1.68 + 0.56	92bc	100a	100a
Pronamide + Terbacil	1.68 + 1.12	100c	100a	100a
Spring Treatments				
Metribuzin	1.12	100c	100a	100a
Terbacil	1.12	100c	100a	100a
Fall/Spring Treatments				
Pronamide/Metribuzin	1.68 + 1.12	100c	100a	100a
Pronamide/Terbacil	1.68 + 1.12	100c	100a	100a
Control		0a	0c	0c

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 37. Quackgrass control ratings at site two for the 1982 growing season. Treatments applied in 1981/82.

	D. A.		% Control	
Herbicide	Rate (kg/ha)		Harvest II	III
ner bre rue	(κg/ πα /		**	***
Fall Treatments				
Pronamide	1.12	96cd	73bc	93bcd
Pronamide	1.68	100d	93cde	63b
Simazine	1.46	40ab	47b	73bc
Metribuzin	0.56	76c	50b	70bc
Terbacil	1.12	93cd	100e	100d
Pronamide + Simazine	1.68 + 1.46	100d	93cde	96cd
Pronamide + Metribuzin	1.68 + 0.56	100d	80cd	93bcd
Pronamide + Terbacil	1.68 + 1.12	96cd	100e	100d
Spring Treatments				
Metribuzin	1.12	100d	87cde	76bcd
Terbacil	1.12	100d	93cde	100d
Fall/Spring Treatments				
Pronamide/Metribuzin	1.68 + 1.12	96cd	96de	93bcd
Pronamide/Terbacil	1.68 + 1.12	96cd	100e	100d
Control		0a	0a	0a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 38. Quackgrass control ratings at site two for the 1982 growing season. Treatments applied in 1980/81 and 1981/82.a

			% Control			
Herbicide	Rate (kg/ha)	Ī	Harvest II	III		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					
Fall Treatments Pronamide Pronamide Simazine Pronamide + Simazine Pronamide + Metribuzin	1.12 1.68 1.46 1.68 + 1.46 1.68 + 0.56	100c 100c 60b 100c 100c	93c 100c 57b 93c 100c	96c 63b 76bc 90bc 100c		
Spring Treatments Metribuzin Terbacil	1.12 1.12	100c 100c	100c 100c	100c 100c		
Fall/Spring Treatments Pronamide/Metribuzin Pronamide/Terbacil	1.68 + 1.12 1.68 + 1.12	100c 100c	100c 100c	96c 100c		
Control		0a	0a	0a		

 $^{^{\}rm a}$ Values in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 39. Quackgrass control ratings at site two for the 1982 growing season. Treatments applied in 1980/81.

	Rate		% Control	
Herbicide	(kg/ha)	I	II	III
Fall Treatments Pronamide Pronamide Simazine Metribuzin Terbacil Pronamide + Simazine Pronamide + Metribuzin Pronamide + Terbacil	1.12 1.68 1.46 0.56 1.12 1.68 + 1.46 1.68 + 0.56 1.68 + 1.12	93cd 100d 83bcd 53b 100d 60b 73bc 100d	60bc 76cde 60bc 37b 90def 90def 83cde 93def	73bc 90bcd 83bcd 53b 96cd 87bcd 100d 86bcd
Spring Treatments Metribuzin Terbacil	1.12 1.12	93cd 100d	73cd 90def	86bcd 100d
Fall/Spring Treatments Pronamide/Metribuzin Pronamide/Terbacil Control	1.68 + 1.12 1.68 + 1.12	100d 100d 0a	83cde 96ef Oa	80bcd 93cd 0a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Dandelion control at the first cutting in 1981 was very good with terbacil (1.12 kg/ha) fall or spring applied or with metribuzin (1.12 kg/ha) spring applied (Table 40). Control was also good with these treatments in combination with pronamide (1.68 kg/ha) fall applied, however, there were no significant differences between treatments with or without pronamide. Dandelion control at the second and third cuttings was similar to the first cutting. Treatments applied in 1981/82 which gave good dandelion control in 1982 were terbacil (1.12 kg/ha) fall applied, metribuzin (1.12 kg/ha) spring applied, terbacil (1.12 kg/ha) spring applied and these treatments in combination with fall applied pronamide at 1.68 kg/ha (Table 41). All other treatments gave poor dandelion control.

For treatments which were applied in both 1980/81 and 1981/82, similar levels of dandelion control were obtained in 1982 (Table 42) as with the treatments applied in 1981/82 alone (Table 41).

Unlike results observed with quackgrass control at this site, treatments applied in the fall of 1980 with no subsequent application showed no better dandelion control than the untreated check in 1982, with the exception of terbacil (1.12 kg/ha) (Table 43). Treatments applied in the spring of 1981 were significantly better than the untreated check at first cutting, but still showed poor dandelion control.

White cockle control was good at the first cutting in 1981 (Table 44) with all treatments except pronamide treatments and simazine (1.46 kg/ha) fall applied and in 1982 with all treatments except pronamide treatments and metribuzin (0.56 kg/ha) fall applied (Table 45).

Treatments applied in 1980/81 provided poor control in 1982 (Table 46) while treatments applied in both 1980/81 and 1981/82 provided

Table 40. Dandelion control ratings at site two for the 1981 growing season.a

	_		% Control	
Haukiaida	Rate		Harvest	777
Herbicide	(kg/ha)	1	II	III
Fall Treatments				
Pronamide	1.12	29de	66de	13ef
Pronamide	1.68	0e	69de	13ef
Simazine	1.46	55d	83cd	45cdef
Metribuzin	0.56	51d	66de	49cdef
Terbacil	1.12	89bc	99ab	91ab
Pronamide + Simazine	1.68 + 1.46	50d	61e	35def
Pronamide + Metribuzin	1.68 + 0.56	35de	80de	58cde
Pronamide + Terbacil	1.68 + 1.12	87c	97 a b	70bcd
Spring Treatments				
Metribuzin	1.12	100a	100a	95ab
Terbacil	1.12	97abc	99a	83abc
		5, 456	334	00450
Fall/Spring Treatments				
Pronamide/Metribuzin	1.68 + 1.12	99ab	94bc	80abc
Pronamide/Terbacil	1.68 + 1.12	100a	100a	9 8a
•				
Control		0e	0f	0f

 $^{^{\}rm a}$ Values in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 41. Dandelion control ratings at site two for the 1982 growing season. Treatments applied in 1981/82.a

		%		
Herbicide	Rate (kg/ha)	Ī	Harvest II	III
Fall Treatments Pronamide Pronamide Simazine Metribuzin Terbacil Pronamide + Simazine Pronamide + Metribuzin	1.12 1.68 1.46 0.56 1.12 1.68 + 1.46 1.68 + 0.56	0a 0a 43ab 53bc 90de 57bc 67bcd	0a 0a 57bc 47b 93f 60bcd 60bcd	0a 30ab 63bc 70bcd 87cde 67bcd 70bcd
Pronamide + Terbacil Spring Treatments Metribuzin	1.68 + 1.12 1.12 1.12	93dc 100e	86def 90f	83cde 70bcd
Terbacil Fall/Spring Treatments Pronamide/Metribuzin Pronamide/Terbacil	1.68 + 1.12 1.68 + 1.12	86cde 96e 93de	87def 63bcd 80cde	77cd 93de 87cde
Control		0a	0a	0a

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 42. Dandelion control ratings at site two for the 1982 growing season. Treatments applied in 1980/81 and 1981/82.

	Rate		% Control Harvest	
Herbicide	(kg/ha)	I	II	III
Fall Treatments				
Pronamide	1.12	0a	0a	0a
Pronamide	1.68	0a	0a	46b
Simazine	1.46	77bcd	70b	67bcd
Metribuzin	0.56			
Terbacil	1.12			
Pronamide + Simazine	1.68 + 1.46	77bcd	77bc	76bcd
Pronamide + Metribuzin	1.68 + 0.56	63b	70Ь	50bc
Pronamide + Terbacil	1.68 + 1.12			
Spring Treatments				
Metribuzin	1.12	100e	83bcd	77bcd
Terbacil	1.12	100e	100c	93e
Fall/Spring Treatments				
Pronamide/Metribuzin	1.68 + 1.12	100e	96dc	87 e
Pronamide/Terbacil	1.68 + 1.12	66bc	96dc	100e
Control		0a	0a	0a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 43. Dandelion control ratings at site two for the 1982 growing season. Treatments applied in 1980/81.a

	Rate		% Control Harvest	
Herbicide	(kg/ha)	I	II	III
Fall Treatments Pronamide Pronamide Simazine Metribuzin Terbacil Pronamide + Simazine Pronamide + Metribuzin Pronamide + Terbacil	1.12 1.68 1.46 0.56 1.12 1.68 + 1.46 1.68 + 0.56 1.68 + 1.12	0a 0a 37abcde 40abcde 33abcd 23abc 7ab 27abc	Oa Oa 30abcd 23abc 23abc 43bcde 30abcd 30abcd	Oa Oa 57bcd 40abc 57bcd 33ab 43abc 57bcd
Spring Treatments Metribuzin Terbacil	1.12 1.12	67cdef 70def	40abcde 50bcdef	60bcd 73bcde
Fall/Spring Treatments Pronamide/Metribuzin Pronamide/Terbacil Control	1.68 + 1.12 1.68 + 1.12	50bcde 70def 0a	20ab 77fg 0a	47bc 73bcde 0a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 44. White cockle control ratings at site two for the 1981 growing season.a

	Rate		% Control	
<u> Herbicide</u>	(kg/ha)	I	II	III
Fall Treatments Pronamide	1.12	23de	77bc	66b
Pronamide Simazine Metribuzin Terbacil Pronamide + Simazine Pronamide + Metribuzin	1.68 1.46 0.56 1.12 1.68 + 1.46 1.68 + 0.56	0e 40cde 99a 85abc 87abc 81abc	76bc 95ab 55c 95ab 88ab 86abc	79ab 84ab 79ab 97ab 86ab 97ab
Pronamide + Terbacil	1.68 + 1.12	91ab	94ab	71ab
Spring Treatments Metribuzin Terbacil	1.12 1.12	97ab 71bcd	100a 100a	100a 100a
Fall/Spring Treatments Pronamide/Metribuzin Pronamide/Terbacil	1.68 + 1.12 1.68 + 1.12	80abc 66bcd	93ab 100a	100a 95ab
Control		0e	Od	0c

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 45. First harvest white cockle control ratings at site two for the 1982 growing season. Treatments applied in 1981/82.ª

Rate (kg/ha)	% Control
1.12 1.68 1.46 0.56 1.12 1.68 + 1.46	83bcd 83bcd 73bcd 63abc 96cd 80bcd 50ab
1.68 + 1.12	80bcd
1.12 1.12	100d 96cd
1.68 + 1.12 1.68 + 1.12	89bcd 83bcd 0a
	(kg/ha) 1.12 1.68 1.46 0.56 1.12 1.68 + 1.46 1.68 + 0.56 1.68 + 1.12 1.12 1.12 1.12

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 46. First harvest white cockle control ratings at site two for the 1982 growing season. Treatments applied in 1980/81.a

	Rate	
Herbicide	(kg/ha)	% Control
Fall Treatments		
Pronamide	1.12	43abc
Pronamide	1.68	83bcdef
Simazine	1.46	73bcdef
Metribuzin	0.56	33a b
Terbacil	1.12	56abcde
Pornamide + Simazine	1.68 + 1.46	83bcdef
Pronamide + Metribuzin	1.68 + 0.56	66bcdef
Pronamide + Terbacil	1.68 + 1.12	66bcdef
Spring Treatments		
Metribuzin	1.12	56abcde
Terbacil	1.12	50abcd
Fall/Spring Treatments		
Pronamide/Metribuzin	1.68 + 1.12	57abcde
Pronamide/Terbacil	1.68 + 1.12	76bcdef
		•
Control		0a

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

good control (Table 47). White cockle ratings were not made at the second and third cuttings in 1982 due to sparse populations.

Shepherd's purse control was very good in 1981 with all treatments except pronamide at 1.12 and 1.68 kg/ha (Table 43). Shepherd's purse was not rated in 1982 as the infestation was very light.

Influence of Herbicides on Forage Composition and Yield

Pagano (24) and Fortino (14) both observed total forage dry matter increases as a result of herbicide applications to established stands with high alfalfa populations. Site two was located in a stand with high alfalfa populations (40 plants/m²), however, neither forage yield, alfalfa, or broadleaf yield components were affected by any treatments at the first cutting in 1981 with the exception of pronamide (1.68 kg/ha) fall applied and metribuzin (1.12 kg/ha) spring applied which significantly reduced forage yield (Table 49). However, all treatments except simazine (1.46) kg/ha) fall applied and metribuzin (0.56 kg/ha) fall applied caused a significant decrease in grass yield at the first cutting. Few treatments caused significant yield differences in any component at the second and third cuttings although grass yields were reduced by several treatments (Tables 50 & 51). Of the treatments applied in 1981/82 on which botanical separations were performed, only pronamide (1.68 kg/ha) fall applied caused a significant decrease in total yield at the first cutting in 1982 (Table 52). There were no significant differences in alfalfa yield at the first cutting in 1982. All treatments except metribuzin (0.56 kg/ha) fall applied caused a significant decrease in grass yield at the first cutting in 1982. There were no differences in broadleaf yield. Total forage yield was not affected by any treatments at the second cutting (Table 53). Alfalfa

Table 47. First harvest white cockle control ratings at site two for the 1982 growing season. Treatments applied in 1980/81 and 1981/82.a

Herbicide	Rate (kg/ha)	% Control
Fall Treatments Pronamide Pronamide Simazine Metribuzin Terbacil Pronamide + Simazine Pronamide + Metribuzin Pronamide + Terbacil	1.12 1.68 1.46 0.56 1.12 1.68 + 1.46 1.68 + 0.56 1.68 + 1.12	66b 83b 93b - - 79b 83b -
Spring Treatments Metribuzin Terbacil	1.12 1.12	100Ь 100Ь
Fall/Spring Treatments Pronamide/Metribuzin Pronamide/Terbacil Control	1.68 + 1.12 1.68 + 1.12	100b 100b 0a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 48. First harvest shepherd's purse control ratings at site two for the 1981 growing season.^a

Herbicide	Rate (kg/ha)	% Control
Fall Treatments	• • •	
Pronamide	1.12	40c
Pronamide Simazine	1.68 1.46	32cd
Metribuzin	0.56	99ab 100a
Terbacil	1.12	100a 100a
Pronamide + Simazine	1.68 + 1.46	95ab
Pronamide + Metribuzin	1.68 + 0.56	90b
Pronamide + Terbacil	1.68 + 1.12	100a
Spring Treatments		
Metribuzin	1.12	100a
Terbacil	1.12	100a
Fall/Spring Treatments		
Pronamide/Metribuzin	1.68 + 1.12	100a
Pronamide/Terbacil	1.68 + 1.12	100a
Control		0d

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 49. First harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site two in the 1981 growing season. a

	Yield (kg/ha)				
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Pronamide Simazine Metribuzin Terbacil Pronamide + Simazine Pronamide + Metribuzin	1.12 1.68 1.46 0.56 1.12 1.68 + 1.46 1.68 + 0.56	5297a 4547ab 6485a 6555ab 4872ab 4356ab 5398ab	4309a 3520a 3177a 3999a 4214a 3680a 4598a	0b 0b 322ab 231ab 0b 0b 171b	1755a 1027a 2986a 1324a 657a 677a 629a
Pronamide + Terbacil Spring Treatments Metribuzin Terbacil	1.68 + 1.12 1.12 1.12	4250ab 4401ab 4273ab	3823a 4178a 4130a	0b 0b 0b	427a 223a 142a
Fall/Spring Treatments Pronamide/Metribuzin Pronamide/Terbacil None	1.68 + 1.12 1.68 + 1.12	4216ab 2789b 5841a	4217a 2654a 3754a	0b 0b 506a	0a 134a 1580a

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 50. Second harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site two in the 1981 growing season.^a

		Yield (kg/ha)			
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Pronamide Simazine Metribuzin Terbacil Pronamide + Simazine Pronamide + Metribuzin Pronamide + Terbacil	1.12 1.68 1.46 0.56 1.12 1.68 + 1.46 1.68 + 0.56 1.68 + 1.12	3909a 3590a 3757a 3870a 4401a 2587a 3898a 3259a	3672ab 3442abc 3574abc 3067abc 4334a 2305c 3720a 3156abc	725b 0b 24b 303a 27b 11b 0b	229a 148a 159a 499a 40a 272a 177a
Spring Treatments Metribuzin Terbacil Fall/Spring Treatments Pronamide/Metribuzin	1.12 1.12 1.68 + 1.12	4205a 3394a 3489a	4174a 3383abc 3398abc	0b 0b	31a 11a 90a
Pronamide/Terbacil None	1.68 + 1.12	3461a 3662a	3290abc 2363bc	0b 265a	172a 1033a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 51. Third harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site two in the 1981 growing season.a

	_	Yield (kg/ha)			
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments					
Pronamide	1.12	2218a	2105a	5b	107a
Pronamide	1.68	1719cd	1668bc	16	50a
Simazine	1.46	2100abc	2061ab	8b	30a
Metribuzin	0.56	2162ab	2065ab	31b	65a
Terbacil	1.12	1831abcd		15b	38a
Pronamide + Simazine	1.68 + 1.46	1685d	1641c	0Ь	66a
Pronamide + Metribuzin	1.68 + 0.56	1848abcd	1833abc	<u>1</u> b	15a
Pronamide + Terbacil	1.68 + 1.12	2049abcd	2023abc	16	26a
Spring Treatments					
Metribuzin	1.12	2083abc	2056ab	1b	25a
Terbacil	1.12	2162ab	2153a	0Ь	9a
Fall/Spring Treatments					
Pronamide/Metribuzin	1.68 + 1.12	1825abcd		16	29a
Pronamide/Terbacil	1.68 + 1.12	1881abcd	1849abc	16	31a
None		1809bcd	1675bc	63a	70a

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 52. First harvest yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site two for the 1982 growing season for treatments applied in 1981/82.

		Yield (kg/ha)			
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Metribuzin	1.68 0.56	3768a 437 8ab	3609a 4000a	10a 574ab	149a 58a
Spring Treatments Metribuzin	1.12	3785ab	3784a	0a	0a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	4320ab	4295a	6a	19a
None		5021b	3930a	971b	121a

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 53. Second harvest yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site two for the 1982 growing season for treatments applied in 1981/82.

		Yield (kg/ha)			
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Metribuzin	1.68 0.56	3256a 2964a	2979ab 2741ab	14a 206a	263a 16a
Spring Treatments Metribuzin	1.12	2982a	2913ab	55a	0a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	3325a	3308b	0a	17a
None		3192a	2558a	548b	85a

 $^{^{\}rm a}$ Values in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 54. Third harvest yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site two for the 1982 growing season for treatments applied in 1981/82.

		Yield (kg/ha)			
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Metribuzin	1.68 0.56	2336a 2604a	1744a 1492a	35 a 635cd	510a 477a
Spring Treatments Metribuzin	1.12	2532a	1904a	305abc	323a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	2905a	2585a	112ab	209a
None		2751a	1759a	795d	197a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

yield was increased by pronamide (1.68 kg/ha) fall applied + metribuzin (1.12 kg/ha) spring applied. Results were similar at the third cutting (Table 54).

For treatments applied in both 1980/81 and 1981/82 (Table 55), both metribuzin (1.12 kg/ha) spring applied and this treatment in combination with pronamide (1.68 kg/ha) fall applied caused significant decreases in total forage yield in 1982. There were no differences in total alfalfa yield. Total forage or alfalfa yield was not affected at the second or third cuttings by any treatments except pronamide (1.68 kg/ha) fall applied + metribuzin (1.12 kg/ha) spring applied which caused a significant increase in alfalfa yield at the second cutting (Table 56 & 57). For treatments applied in 1980/81 there were no significant differences in either total forage yield or alfalfa yield at any cutting in 1982 (Tables 58, 59, 60).

There were no significant differences in either season total forage yield or season total alfalfa yield from any treatments regardless of application time in 1981 or 1982 (Tables 61, 62, 63, 64). Before weeds can cause a reduction in total alfalfa yield they must be dense enough to compete with the alfalfa for nutrients, water and light. If the weed pressure is such that this is not occurring, total alfalfa yield will not increase as a result of weed removal. This appears to have occurred at the second site.

Influence of Herbicide Treatments on Forage Quality

Protein content was increased at the first harvest by all analyzed treatments in 1981, except metribuzin (0.56 kg/ha) fall applied (Table 65). All treatments which increased forage protein percentage also increased alfalfa percentage, except pronamide (1.68 kg/ha) fall applied (Table 66).

Table 55. First harvest yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site two for the 1982 growing season for treatments applied in 1980/81 and 1981/82.

		Yield (kg/ha)			
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide	1.68	3997abc	3319a	21a	614bc
Spring Treatments Metribuzin	1.12	3785ab	3785a	0a	0a
Fall/Spring Treatments Pronamide/Metribuzin None	1.68/1.12	3041a 5021c	3038a 3930a	0a 971b	3a 121ab

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 56. Second harvest yield of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site two for the 1982 growing season for treatments applied in 1980/81 and 1981/82.

		Yield (kg/ha)			
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Metribuzin	1.68 0.56	2820a 	2494a 	7a 	320a
Spring Treatments Metribuzin	1.12	3089a	3089abc	. 0a	0a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	3301a	3217bc	22a	61a
None		3192a	2558a	548b	85 a

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 57. Third harvest yield of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site two for the 1982 growing season for treatments applied in 1980/81 and 1981/82.

		Yield (kg/ha)			
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Metribuzin	1.68 0.56	2729a 	1487a 	83ab 	1158b
Spring Treatments Metribuzin	1.12	2693a	1882a	165ab	647ab
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	2682a	1973a	32a	676 a b
None		2751a	1759a	795c	197a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 58. First harvest yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site two for the 1982 growing season for treatments applied in 1980/81.

		Yield (kg/ha)			
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Metribuzin	1.68 0.56	4056a 4551a	3638a 3507a	10a 780b	408ab 267a
Spring Treatments Metribuzin	1.12	4254a	3434a	21a	488ab
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	4570a	3701a	38a	831b
None		5021 a	3930a	971b	121a

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 59. Second harvest yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site two for the 1982 growing season for treatments applied in 1980/81.a

		Yield (kg/ha)			
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Metribuzin	1.68 0.56	3072a 3219a	2596ab 2148a	0a 565b	475b 506b
Spring Treatments Metribuzin	1.12	3200a	2901b	0a	298ab
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	2936a	2546ab	5 a	385 ab
None		3192a	2558ab	565b	85 a

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 60. Third harvest yield of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site two for the 1982 growing season for treatments applied in 1980/81.a

		Yield (kg/ha)			
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Metribuzin	1.68 0.56	2523a 2736a	1864a 1615a	266ab 523bc	392ab 599abc
Spring Treatments Metribuzin	1.12	2828a	1603a	239ab	985bc
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	2657a	1677a	53a	927bc
None		2751a	1759a	795c	197a

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 61. Season total dry matter yields of forage and alfalfa as influenced by herbicide treatments at site two in the 1981 growing season.^a

	Yield (kg/ha)			
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	
Fall Treatments Pronamide Pronamide Simazine Metribuzin Terbacil Pronamide + Simazine Pronamide + Metribuzin Pronamide + Terbacil	1.12	11492a	10087a	
	1.68	9856a	8991a	
	1.46	12343a	8996a	
	0.56	11586a	9135a	
	1.12	11105a	10549a	
	1.68 + 1.46	8651a	8064a	
	1.68 + 0.56	11144a	10151a	
	1.68 + 1.12	9684a	9280a	
Spring Treatments Metribuzin Terbacil	1.12	10690a	10445a	
	1.12	9828a	10055a	
Fall/Spring T tments Pronamide/Metribuzin Pronamide/Terbacil	1.68 + 1.12	9506a	9421a	
	1.68 + 1.12	8116a	7861a	
None		11312a	8694a	

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 62. Season total dry matter yields of total forage and alfalfa as influenced by herbicide treatments at site two in the 1982 growing season. Treatments applied in 1981/82.a

		Yield (kg/ha)		
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	
Fall Treatments Pronamide Metribuzin	1.68 0.56	9313a 10199a	8333a 8232a	
Spring Treatments Metribuzin	1.12	9284a	8601a	
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	10550a	10187a	
None		10964a	8247a	

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 63. Season total dry matter yields of total forage and alfalfa as influenced by herbicide treatments at site two in the 1982 growing season. Treatments applied in 1980/81 and 1981/82.

		Yield (kg/ha)		
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	
Fall Treatments Pronamide Metribuzin	1.68 0.56	9486a 	7104a 	
<u>Spring Treatments</u> Metribuzin	1.12	9546a	8735a	
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	8854a	8062a	
None		10964a	8247a	

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 64. Season total dry matter yields of total forage and alfalfa as influenced by herbicide treatments at site two in the 1982 growing season. Treatments appplied in 1980/81.

	Yield (kg/ha)			
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	
Fall Treatments Pronamide Metribuzin	1.68 0.56	9650a 10503a	8098a 7269a	
Spring Treatments Metribuzin	1.12	9969a	7939a	
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	10163a	7924a	
None		10964a	8247a	

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 65. First harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site two in the 1981 growing season.^a

Herbicide	Rate (kg/ha)	P	IVDDM	ADF
Fall Treatments			%DM	
Pronamide Metribuzin	1.68 0.56	16.48a 14.21b	55.19a 51.81a	45.93a 51.37a
Spring Treatments Metribuzin	1.12	16.59a	52.88a	47.60a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	16.78a	53.47a	46.03a
None		13.34b	53.32a	46.83a

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 66. Percent alfalfa, grass and broadleaf weeds present in first harvest forage as influenced by herbicide treatment at site two in the 1981 growing season.

			%	
Herbicide	Rate (kg/ha)	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Metribuzin	1.68 0.56	84.81abc 71.82ab	0b 2.79b	15.19ab 25.39a
Spring Treatments Metribuzin	1.12	96.30cd	0b	3.70b
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	100d	0Ь	ОЬ
None		64.66a	8.37a	26.97a

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Between treatments which provided a protein increase over the untreated check, there was no significant difference in protein content. Forage treated with pronamide (1.68 kg/ha) fall applied + metribuzin (1.12 kg/ha) spring applied contained 100% alfalfa and 16.78% protein. Forage from the untreated check contained 64.66% alfalfa and 13.34% protein. There were no significant differences in protein content between treated plots and the untreated check at the second and third harvest (Tables 67 and 68). There was no difference in IVDDM or ADF at any cutting in 1981 (Tables 65, 67, 68).

There were no significant differences in percent protein, IVDDM or ADF with any treatment at any cutting in 1982 (Tables 69, 70, 71). Although all treatments resulted in forage containing a high percentage of alfalfa, the forage from the untreated check contained 79.52% alfalfa and 18.11% protein (Table 72). This high alfalfa percentage and protein content in the untreated forage resulted in no significant increases in protein content when weeds were removed by herbicide treatment.

Table 67. Second harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site two in the 1981 growing season.^a

Herbicide	Rate (kg/ha)	Р	IVDDM	ADF
Fall Treatments Pronamide Metribuzin	1.68 0.56	18.07a 18.92a	%DM 57.33a 54.34a	40.87a 40.67a
Spring Treatments Metribuzin	1.12	18.40a	58.75a	40.47a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	17.70a	52.85a	41.13a
None		17.68a	56.39a	40. 58a

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 68. Third harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site two in the 1981 growing season.^a

IVDDM	ADF
%DM 61.96a 61.19a	30.77a 33.06a
59.12a	33.92a
61.41a 61.53a	31.75a 31.13a
	%DM 61.96a 61.19a 59.12a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 69. First harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site two in the 1982 growing season.^a

Herbicide	Rate (kg/ha)	P	IVDDM	ADF
	(kg/lia)		%DM	
Fall Treatments Pronamide Metribuzin	1.68 0.56	17.81a 18.07a	68.26a 66.10a	36.77a 37.90a
Spring Treatments Metribuzin	1.12	18. 4 5a	65.99a	38.05a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	17.13a	65.43a	40.12a
None		18.11a	63.40a	35.76a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 70. Second harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site two in the 1982 growing season.^a

Herbicide	Rate (kg/ha)	Р	IVDDM	ADF
Fall Treatments			%DM	
Pronamide	1.68	16.99a	66.18a	34.27a
Metribuzin	0.56	17.50a	67.44a	33.60a
Spring Treatments Metribuzin	1.12	18.29a	64.69a	33.51a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	17.67a	66.22a	32.15a
Pronamide/Metribuzin	1.00/1.12	17.07α	00.224	32.13a
None		18.42a	65.99a	31.78a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 71. Third harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site two in the 1982 growing season.^a

Herbicide	Rate (kg/ha)	Р	IVDDM	ADF
Fall Treatments Pronamide Metribuzin	1.68 0.56	17.10a 17.94a	%DM 66.42a 67.01a	26.80a 26.79a
Spring Treatments Metribuzin	1.12	17.15a	65.23a	27.67a
Fall/Spring Treatments Pronamide/Metribuzin None	1.68/1.12	17.02a 18.83a	65.34a 66.54a	28.79a 27.64a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 72. Percent alfalfa, grass and broadleaf weeds present in first harvest forage as influenced by herbicide treatment at site two in the 1982 growing season.

			%	
Herbicide	Rate (kg/ha)	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Metribuzin	1.68 0.56	95.62ab 85.21ab	0.23b 13.19a	4.15a 1.26a
Spring Treatments Metribuzin	1.12	100a	0Ь	0a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	99.39a	0.16b	0.45a
None		79.52b	18.03a	2.45a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

SITE III

Weed Control

Experiment 3 was located in a good stand of alfalfa (59 plants/m²) in which there was severe weed pressure. Weeds present were quackgrass, dandelion and white cockle. There were several treatments which provided good quackgrass control in this experiment. Results in 1981 (Table 73) and 1982 (Table 74) were quite similar. At the first cutting, pronamide at 1.12 kg/ha and 1.68 kg/ha both provided good quackgrass control. The two rates were not significantly different. Pronamide (1.68 kg/ha) fall applied in combination with simazine (1.46 kg/ha), metribuzin (0.56 kg/ha) or terbacil (1.12 kg/ha) all exhibited good quackgrass control. However, they were no better than pronmaide alone. Metribuzin (0.56 kg/ha) or simazine (1.46 kg/ha) applied alone in the fall did not provide quackgrass control. Terbacil (1.12 kg/ha) fall applied alone did give good quackgrass control in 1982 (Table 34). This treatment was not applied in 1981. Although metribuzin (1.12 kg/ha) spring applied exhibited fair to good quackgrass control at sites one and two, it did not in this experiment. This is perhaps due to the much heavier quackgrass stand present at site three as well as a very dry spring in 1982. Terbacil (1.12 kg/ha) spring applied did provide good quackgrass control. Pronamide (1.68 kg/ha) fall applied followed by a spring application of either metribuzin (1.12 kg/ha) or terbacil (1.15 kg/ha) provided good quackgrass control, but no better than the pronamide alone. Quackgrass control was less in the second and third cuttings for the majority of the treatments. Pronamide (1.68 kg/ha) fall applied showed poor quackgrass control in both cuttings in 1982 (Table 34). Control was improved with this treatment if it was followed by a spring application

Table 73. Quackgrass control ratings at site three for the 1981 growing season.a

	Rate		% Control	
Herbicide	(kg/ha)	I	II	III
Fall Treatments	1 10	00-	90-k	71
Pronamide Pronamide	1.12 1.68	99a 100a	89ab 71bcd	71abc 80abc
Simazine	1.46	38c	39de	41cd
Metribuzin	0.56	26c	58cd	49bcd
Terbacil	1.12			
Pronamide + Simazine	1.68 + 1.46	99a	92ab	66abc
Pronamide + Metribuzin	1.68 + 0.56	100a	93ab	61bcd
Pronamide + Terbacil	1.68 + 1.12	100a	90abc	89abc
Spring Treatments				
Metribuzin	1.12	74b	79bc	73abc
Terbacil	1.12	99a	100a	9 9a
Fall/Spring Treatments				
Pronamide/Metribuzin	1.68 + 1.12	100a	91a	75abc
Pronamide/Terbacil	1.68 + 1.12	100a	100a	93ab
Control		Od	0e	Od

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 74. Quackgrass control ratings at site three for the 1982 growing season. Treatments applied in 1981/82.

	Rate		% Control	
<u> Herbicide</u>	(kg/ha)	Ī	II	III
Fall Treatments Pronamide Pronamide Simazine Metribuzin Terbacil Pronamide + Simazine Pronamide + Metribuzin Pronamide + Terbacil	1.12 1.68 1.46 0.56 1.12 1.68 + 1.46 1.68 + 0.56 1.68 + 1.12	94d 97d 32b 47bc 87d 100d 94d 97d	70cde 50bcd 22ab 42bc 75cde 85ef 60bcde 60bcde	65bcdef 52bcd 57bcde 50bc 82defgh 80defgh 60bcdef 70bcdefg
Spring Treatments Metribuzin Terbacil	1.12 1.12	65bc 82d	50bcd 84ef	45b 85efgh
Fall/Spring Treatments Pronamide/Metribuzin Pronamide/Terbacil Control	1.68 + 1.12 1.68 + 1.12	100d 100d 0a	77cdef 85ef Oa	70bcdefg 82defgh 0a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

of either metribuzin or terbacil at 1.12 kg/ha, although this control was no better than terbacil alone. Metribuzin (1.12 kg/ha) spring applied provided poor quackgrass control throughout the season in 1982 and only fair control in 1981.

For treatments which were applied in both 1980/81 and 1981/82, all provided good quackgrass control throughout the season in 1982 except simazine (1.46 kg/ha) and metribuzin (1.12 kg/ha) spring applied (Table 75). These treatments provided only poor to fair control.

For treatments which were applied in 1980/81, few treatments gave good, season long control in 1982 (Table 76). Terbacil (1.12 kg/ha) spring applied, or this treatment preceded by a fall application of pronamide (1.68 kg/ha), gave good quackgrass control in 1982. All other treatments provided only poor to fair quackgrass control in 1982.

Dandelion control was variable at site 3, but few treatments gave good consistent control. Pronamide (1.68 kg/ha) fall applied + metribuzin (1.12 kg/ha) or terbacil (1.12 kg/ha) in the spring provided the highest levels of dandelion control in 1981 (Table 77) and 1982 (Table 78). All other treatments gave poor to fair control.

Treatments applied in both 1980/81 and 1981/82 appeared to give slightly better dandelion control in 1982 (Table 79). Compared to the 1982 application alone, those treatments which provided good, season long dandelion control when applied in both years were metribuzin (1.12 kg/ha) or terbacil (1.12 kg/ha) applied in the spring. Other treatments provided only fair control.

Of the treatments applied in 1980/81, only pronamide (1.68 kg/ha) + terbacil (1.12 kg/ha) provided good dandelion control in 1982 (Table 80). This control decreased toward the end of the season.

Table 75. Quackgrass control ratings at site three for the 1982 growing season. Treatments applied in 1980/81 and 1981/82.a

	Rate		% Control	
Herbicide	(kg/ha)	I	II	III
Fall Treatments Pronamide Pronamide Simazine Metribuzin Terbacil Pronamide + Simazine Pronamide + Metribuzin	1.12 1.68 1.46 0.56 1.12 1.68 + 1.46 1.68 + 0.56	100c 84c 17ab 100c 74c	80cd 82cd 45b 85cd 85cd	75bcd 82bcd 55b 80bcd 92d
Pronamide + Terbacil Spring Treatments Metribuzin Terbacil	1.68 + 1.12 1.12 1.12	65c 92c	65bc 87cd	65bc 87cd
Fall/Spring Treatments Pronamide/Metribuzin Pronamide/Terbacil Control	1.68 + 1.12 1.68 + 1.12	100c 100c 0a	87cd 97d 0a	85cd 94d 0a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 76. Quackgrass control ratings at site three for the 1982 growing season. Treatments applied in 1980/81.

	Rate		Control Harvest	
Herbicide	(kg/ha)	Ī	II	III
Fall Treatments Pronamide Pronamide Simazine Metribuzin Terbacil Pronamide + Simazine	1.12 1.68 1.46 0.56 1.12 1.68 + 1.46	60cdef 67cdefg 17ab 37bc 52cde	50bcde 45bc 17ab 52bcde 37abc	72cdefg 57bcde 20ab 65cdef 57bcde
Pronamide + Metribuzin Pronamide + Terbacil	1.68 + 0.56 1.68 + 1.12	42bcd 69cdefg	47bcd 57bcdef	55bcd 57bcde
Spring Treatments Metribuzin Terbacil	1.12 1.12	42bcd 100g	35abc 77defg	40bc 85efgh
Fall/Spring Treatments Pronamide/Metribuzin Pronamide/Terbacil	1.68 + 1.12 1.68 + 1.12	70cdefg 97g	57bcdef 87fg	70cdefg 85efgh
Control		0a	0a	0a

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 77. Dandelion control ratings at site three for the 1981 growing season.^a

	Rate		% Control Harvest	
Herbicide	(kg/ha)	I	II	III
Fall Treatments Pronamide Pronamide Simazine Metribuzin Terbacil Pronamide + Simazine Pronamide + Metribuzin Pronamide + Terbacil	1.12 1.68 1.46 0.56 1.12 1.68 + 1.46 1.68 + 0.56 1.68 + 1.12	0g 0g 28f 51de 42e 0g 58d	25f 33ef 48de 69bc 56cd 48de 75ab	29cd 5d 25cd 67ab 48bc 20cd 74a
Spring Treatments Metribuzin Terbacil	1.12 1.12	70c 81b	71bc 75ab	48bc 61ab
Fall/Spring Treatments Pronamide/Metribuzin Pronamide/Terbacil Control	1.68 + 1.12 1.68 + 1.12	80b 90a 0g	81ab 85a Og	62ab 76a 0d

 $^{^{\}rm a}{\rm Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 78. Dandelion control ratings at site three for the 1982 growing season. Treatments applied in 1981/82.a

	Rate		% Control	
Herbicide	(kg/ha)	I	II	III
Fall Treatments Pronamide Pronamide Simazine Metribuzin Terbacil Pronamide + Simazine Pronamide + Metribuzin Pronamide + Terbacil	1.12 1.68 1.46 0.56 1.12 1.68 + 1.46 1.68 + 0.56 1.68 + 1.12	0a 0a 57bcd 50bc 65cde 42bc 27ab 65cde	0a 5a 60bcde 47bc 60bcde 62bcde 37b 70cdef	0a 0a 57b 70bcd 70bcd 65bc 65bc 72bcd
Spring Treatments Metribuzin Terbacil	1.12 1.12	70cde 67cde	52bcd 57bcd	62bc 67bcd
Fall/Spring Treatments Pronamide/Metribuzin Pronamide/Terbacil Control	1.68 + 1.12 1.68 + 1.12	87ef 85def Oa	87fg 87fg Oa	72bcd 82de 0a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 79. Dandelion control ratings at site three for the 1982 growing season. Treatments applied in 1980/81 and 1981/82.a

	5 .		% Control	
	Rate		Harvest	
<u>Herbicide</u>	(kg/ha)	I	II	III
Fall Treatments				
Pronamide	1.12	17ab	20ab	0a
Pronamide	1.68	0a	0a	0a
Simazine	1.46	62cd	70c	67b
Metribuzin	0.56			
Terbacil	1.12			••
Pronamide + Simazine	1.68 + 1.46	67cde	75c	72b
Pronamide + Metribuzin	1.68 + 0.56	47bc	75c	70Ь
Pronamide + Terbacil	1.68 + 1.12			
Spring Treatments				
Metribuzin	1.12	94f	87d	77c
Terbacil	1.12	62cd	80c	77c
Fall/Spring Treatments				
Pronamide/Metribuzin	1.68 + 1.12	89ef	72c	77c
Pronamide/Terbacil	1.68 + 1.12	94f	94 d	87c
Control		0a	0a	0a

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 80. Dandelion control ratings at site three for the 1982 growing season. Treatments applied in 1980/81.a

			% Control	
	Rate		Harvest	
<u>Herbicide</u>	(kg/ha)	I	II	III
Fall Treatments				
Pronamide	1.12	0a	0a	0a
Pronamide	1.68	15abc	0a	0a
Simazine	1.46	10ab	20ab	40bc
Metribuzin	0.56	47bcd	42bcde	47bcdef
Terbacil	1.12			
Pronamide + Simazine	1.68 + 1.46	57de	40bcde	45bcde
Pronamide + Metribuzin	1.68 + 0.56	15abc	22ab	32b
Pronamide + Terbacil	1.68 + 1.12	45bcd	40bcde	45bcde
Spring Treatments				
Metribuzin	1.12	57de	25abc	42bcd
Terbacil	1.12	47bcd	50cdef	50bcdefg
				55555.5
Fall/Spring Treatments				
Pronamide/Metribuzin	1.68 + 1.12	47bcd	35bcd	47bcdef
Pronamide/Terbacil	1.68 + 1.12	85ef	72fg	57cdefgh
			· 3	
Control		0a	0a	0a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

White cockle control was good in 1981 (Table 81) and 1982 (Table 82) with metribuzin or terbacil spring applied at 1.12 kg/ha or these treatments in combination with fall applied pronamide. Although, control with the treatments including pronamide was no better than those without. No other treatments provided good control in both 1981 and 1982. Results were similar in 1982 for treatments which were applied in both 1980/81 and 1981/82 (Table 83) and treatments applied in 1980/81 (Table 84). The 1980/81 treatments provided somewhat less control. The reduction in white cockle control with these treatments was not as severe as that observed with quackgrass or dandelion.

Influence of Herbicides on Forage Composition and Yield

Pronamide (1.68 kg/ha) fall applied + terbacil (1.12 kg/ha) spring applied significantly reduced total forage yield at the first cutting in 1981 at site 3 (Table 85). None of the other treatments effected forage yield. Alfalfa yield at the first cutting was significantly increased by several treatments including: metribuzin (0.56 kg/ha) fall applied; pronamide (1.68 kg/ha) + terbacil (1.12 kg/ha) fall applied; metribuzin (1.12 kg/ha) spring applied; terbacil (1.12 kg/ha) spring applied; and pronamide (1.68 kg/ha) fall applied + metribuzin (1.12 kg/ha) spring applied. Only metribuzin (0.56 kg/ha) fall applied affected grass yield. This treatment had higher grass yield compared to the untreated check. This could be caused by a reduction in broadleaf weed competition provided by the treatment combined with very little grass control at this low rate. This would allow the grass yield to increase.

Several treatments caused significant reductions in broadleaf weed yield at the first cutting. The most effective were pronamide (1.68 kg/ha)

Table 81. White cockle control ratings at site three for the 1981 growing season.a

		******	% Control	
	Rate		Harvest	
Herbicide	(kg/ha)	I	II	III
Fall Treatments				
Pronamide	1.12	0d	73cd	99a
Pronamide	1.68	0d	65cd	87a
Simazine	1.46	85ab	82bcd	100a
Metribuzin	0.56	62bc	83bcd	88a
Terbacil	1.12			
Pronamide + Simazine	1.68 + 1.46	50c	87abc	97a
Pronamide + Metribuzin	1.68 + 0.56	0d	55d	92a
Pronamide + Terbacil	1.68 + 1.12	82ab	86abcd	91a
Spring Treatments				
Metribuzin	1.12	91a	99a	87a
Terbaci1	1.12	86ab	97ab	93a
Fall /Couring Tuestments				
Fall/Spring Treatments	1 60 . 1 10	05-6	01-6-	07-
Pronamide/Metribuzin	1.68 + 1.12	85ab	91abc	97a
Pronamide/Terbacil	1.68 + 1.12	73abc	97ab	95a
Control		0d	0e	0Ь

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 82. First harvest white cockle control ratings at site three for the 1982 growing season. Treatments applied in 1981/82.a

		
Howkinida	Rate	% Cantual
Herbicide	(kg/ha)	% Control
Fall Treatments		
Pronamide	1.12	75bcde
Pronamide	1.68	46bc
Simazine	1.46	72bcde
Metribuzin	0.56	57bcde
Terbacil	1.12	52bcd
Pronamide + Simazine	1.68 + 1.46	42b
Pronamide + Metribuzin	1.68 + 0.56	65bcde
Pronamide + Terbacil	1.68 + 1.12	80bcde
Spring Treatments		
Metribuzin	1.12	92de
Terbacil	1.12	65bcde
		33333
Fall/Spring Treatments		
Pronamide/Metribuzin	1.68 + 1.12	92de
Pronamide/Terbacil	1.68 + 1.12	84bcde
Trondmide/ ici baci i	1.00 - 1.12	010000
Control		0a
		5 4

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 83. First harvest white cockle control ratings at site three for the 1982 growing season. Treatments applied in 1980/81 and 1981/82.a

Howkieido	Rate	% Contuel
Herbicide	(kg/ha)	% Control
Fall Treatments		
Pronamide	1.12	60bc
Pronamide	1.68	65bc
Simazine	1.46	77bc
Metribuzin	0.56	
Terbacil	1.12	
Pronamide + Simazine	1.68 + 1.46	75bc
Pronamide + Metribuzin	1.68 + 0.56	50b
Pronamide + Terbacil	1.68 + 1.12	
Spring Treatments		
Metribuzin	1.12	97c
Terbacil	1.12	100c
Fall/Spring Treatments		
Pronamide/Metribuzin	1.68 + 1.12	97c
Pronamide/Terbacil	1.68 + 1.12	97c
•		
Control		0a

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 84. First harvest white cockle control ratings at site three for the 1982 growing season. Treatments applied in 1980/81.

Herbicide	Rate (kg/ha)	% Control
Fall Treatments Pronamide Pronamide Simazine	1.12 1.68 1.46	55bcde 57bcde 27ab
Metribuzin Terbacil Pronamide + Simazine Pronamide + Metribuzin Pronamide + Terbacil	0.56 1.12 1.68 + 1.46 1.68 + 0.56 1.68 + 1.12	64bcde 62bcde 37abc 50bcd
Spring Treatments Metribuzin Terbacil	1.12 1.12	80cde 84de
Fall/Spring Treatments Pronamide/Metribuzin Pronamide/Terbacil Control	1.68 + 1.12 1.68 + 1.12	70bcde 89de 0a

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 85. First harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site three in the 1981 growing season.^a

		Yield (kg/ha)			
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Pronamide Simazine Metribuzin Terbacil Pronamide + Simazine Pronamide + Metribuzin Pronamide + Terbacil	1.12 1.68 1.46 0.56 1.12 1.68 + 1.46 1.68 + 0.56 1.68 + 1.12	5365a 4654a 5040a 5185a 4457a 4771a 4833a	2801abc 2332bc 2850abc 3763ab 3247abc 2984abc 3941ab	36c 535ab 581ab 806a 26c 20c 0c	2528ab 1786abc 1608bc 617de 1185cd 1815abc 892cde
Spring Treatments Metribuzin Terbacil	1.12 1.12	5185a 4513a	3471ab 4209a	361bc 0c	260de 304de
Fall/Spring Treatments Pronamide/Metribuzin Pronamide/Terbacil None	1.68 + 1.12 1.68 + 1.12	4530a 2940b 4754a	4409a 2868abc 1804c	0c 14c 266bc	121e 57e 2684a

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

fall applied + metribuzin (1.12 kg/ha) spring applied and pronamide (1.68 kg/ha) fall applied + terbacil (1.12 kg/ha) spring applied. Treatments with no reduction in broadleaf weed yields were pronamide (1.12 kg/ha or 1.68 kg/ha) fall applied and pronamide (1.68 kg/ha) + metribuzin (0.56 kg/ha) fall applied.

Total forage, grass, and broadleaf weed yields were not affected by any treatments at the second cutting (Table 86). No treatments produced significant alfalfa yield increases over the untreated check, but there were differences between some treatments. At the third cutting, no treatments effected total forage, alfalfa, grass, or broadleaf weed yield (Table 87).

There were no significant effects on season total forage yields from any treatments compared to the untreated check in 1981, but several treatments showed significant increases in season total alfalfa yield (Table 88).

Unlike 1981, in 1982 none of the treatments applied only in 1981/82 significantly affected total forage yield or alfalfa yield at the first (Table 89), second (Table 90), or third harvests (Table 91). Similarly, season total forage or season total alfalfa yield was not significantly changed by any herbicide treatment in 1982 except spring applied metribuzin (Table 92). Season total alfalfa yield was significantly increased by a spring application of metribuzin (1.12 kg/ha).

Treatments applied in 1980/81 also did not affect total forage yield or alfalfa at any of the three harvests (Tables 93, 94, and 95). Season total forage yield and season total alfalfa yield also were not altered in 1982 by the treatments in 1980/81 (Table 96).

Metribuzin (1.12 kg/ha) spring applied and pronamide (1.68 kg/ha) fall applied + metribuzin (1.12 kg/ha) spring applied both caused

Table 86. Second harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site three in the 1981 growing season.^a

	Yield (kg/ha)				
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Pronamide Simazine Metribuzin Terbacil Pronamide + Simazine Pronamide + Metribuzin Pronamide + Terbacil	1.12 1.68 1.46 0.56 1.12 1.68 + 1.46 1.68 + 0.56 1.68 + 1.12	1803a 2001a 1770a 3270a 2744a 2576a 2391a	1004e 1476abcde 1118de 2560a 2175abc 1816abcde 1899abcde	73a 20a 291a 188a 8a 27a 12a	726a 505a 360a 521a 561a 732a 480a
Spring Treatments Metribuzin Terbacil Fall/Spring Treatments Pronamide/Metribuzin	1.12 1.12 1.68 + 1.12	3080a 2687a 2655a	2741a 2341ab 2092abcd	79a 0a 25a	259a 347a 537a
Pronamide/Terbacil None	1.68 + 1.12	2262a 2139a	1271cde 1364abcde	946a 33a	741a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 87. Third harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site three in the 1981 growing season.^a

		Yield (kg/ha)			
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Pronamide Simazine Metribuzin Terbacil Pronamide + Simazine Pronamide + Metribuzin Pronamide + Terbacil	1.12 1.68 1.46 0.56 1.12 1.68 + 1.46 1.68 + 0.56 1.68 + 1.12	1798a 2094a 2156a 1853a 2946a 2046a 1898a	1213a 1687a 1759a 1162a 2513a 1709a 1681a	360a 141a 95a 69a 10a 5a 2a	224a 266a 302a 615a 422a 331a 215a
Spring Treatments Metribuzin Terbacil Fall/Spring Treatments	1.12	2385a 2162a	2068a 2009a	133a 9a	184a 143a
Pronamide/Metribuzin Pronamide/Terbacil	1.68 + 1.12 1.68 + 1.12	2385a 1792a	2068a 1664a	83a 7a	273a 133a
None		1657a	1441a	46a	170a

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 88. Season total dry matter yields of forage and alfalfa as influenced by herbicide treatments at site three in the 1981 growing season.a

	Yield (kg/ha)		
Rate (kg/ha)	Total Forage	Alfalfa	
1.12 1.68 1.46 0.56 1.12 1.68 + 1.46 1.68 + 0.56 1.68 + 1.12	8966ab 8749ab 8966ab 10309a 10147a 9393a 8966ab	4917f 5580ef 5751def 7988abc 7855abc 6530cdef 7590abcd	
1.12 1.12	10651a 9363a	9211a 8427abc	
1.68 + 1.12 1.68 + 1.12	9571a 6994b	8789ab 6967bcde 5262ef	
	(kg/ha) 1.12 1.68 1.46 0.56 1.12 1.68 + 1.46 1.68 + 0.56 1.68 + 1.12 1.12 1.12 1.12 1.12	Rate (kg/ha) Forage 1.12 8966ab 1.68 8749ab 1.46 8966ab 0.56 10309a 1.12 1.68 + 1.46 10147a 1.68 + 0.56 9393a 1.68 + 1.12 8966ab 1.12 10651a 1.12 9363a 1.68 + 1.12 9571a	

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 89. First harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site three in the 1982 growing season for treatments applied in 1981/82.

		Yield (kg/ha)			
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Metribuzin	1.68 0.56	4204a 4210a	3645a 2849a	33a 704a	526a 656a
Spring Treatments Metribuzin	1.12	4183a	3687a	225 a	257a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	3274a	3128a	23a	122a
None		4215a	2452a	388a	1374a

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 90. Second harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site three in the 1982 growing season for treatments applied in 1981/82.^a

Herbicide		Yield (kg/ha)			
	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Metribuzin	1.68 0.56	2975ab 2577a	2169ab 1770a	1067a 548a	374ab 259a
Spring Treatments Metribuzin	1.12	3033ab	2393ab	309a	330ab
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	3371b	2681bc	464a	228 a
None		2890ab	1896ab	344a	599Ь

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 91. Third harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site three in the 1982 growing season for treatments applied in 1981/82.

		Yield (kg/ha)			
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Metribuzin	1.68 0.56	2291a 2374a	1636a 1777a	211a 245a	444a 351a
Spring Treatments Metribuzin	1.12	2583a	2131a	165 a	287a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	2369a	1918a	111a	339a
None		2600a	1789a	156a	655a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 92. Season total dry matter yields of forage and alfalfa as influenced by herbicide treatments at site three in the 1982 growing season for treatments applied in 1981/82.a

		Yield (kg/ha)		
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	
Fall Treatments Pronamide Metribuzin	1.68 0.56	10223a 9056a	7453ab 6391ab	
Spring Treatments Metribuzin	1.12	9761a	8211b	
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	9067a	7728ab	
None		9448a	5916a	

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 93. First harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site three in the 1982 growing season for treatments applied in 1980/81.

		Yield (kg/ha)			
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Metribuzin	1.68 0.56	4088a 3613a	2127a 1912a	983ab 1218b	978a 483a
Spring Treatments Metribuzin	1.12	4 026a	2615a	841ab	570a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	3974a	2917a	532ab	524a
None		4215a	2452a	388a	1374a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 94. Second harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site three in the 1982 growing season for treatments applied in 1980/81.a

		Yield (kg/ha)			
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Metribuzin	1.68 0.56	2528a 2653a	1678a 1971a	372a 375a	478a 307a
Spring Treatments Metribuzin	1.12	2748a	1762a	502a	444a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	2802a	2189a	177a	435a
None		2890a	1896a	344a	599a

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 95. Third harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site three in the 1982 growing season for treatments applied in 1980/81.

		Yield (kg/ha)			
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Metribuzin	1.68 0.56	2143a 2652a	1222a 1700a	438a 275a	483a 676a
Spring Treatments Metribuzin	1.12	2433a	1640a	288a	505a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	2431a	1776a	2 82 a	380a
None		2600a	1789a	156a	655a

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 96. Season total dry matter yields of forage and alfalfa as influenced by herbicide treatments at site three in the 1982 growing season for treatments applied in 1980/81.a

		Yield (kg/ha)		
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	
Fall Treatments Pronamide Metribuzin	1.68 0.56	8760a 8 926a	5027a 5591a	
Spring Treatments Metribuzin	1.12	9029a	6004a	
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	9213a	6883a	
None		9448a	5916a	

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

significant alfalfa yield increases when applied in both 1980/81 and 1981/82 (Table 97). This effect did not persist into the second harvest (Table 98). At the second cutting, there were no effects on total forage yield or alfalfa yield for any treatments except pronamide (1.68 kg/ha) fall applied + metribuzin (1.12 kg/ha) spring applied which caused a significant increase in alfalfa yield. The same was true at the third cutting (Table 99). Season total alfalfa yield was significantly increased by pronamide (1.68 kg/ha) fall applied + metribuzin (1.12 kg/ha) spring applied in both 1980/81 and 1981/82 and by metribuzin (1.12 kg/ha) applied in the spring of 1981 and again in the spring of 1982 (Table 100).

Influence of Herbicide Treatments on Forage Quality

Only pronamide (1.68 kg/ha) fall applied + metribuzin (1.12 kg/ha) spring applied resulted in a significant protein increase in the forage at the first cutting in 1981 (Table 101). This treatment also resulted in the largest increase in forage alfalfa content (Table 102). Forage receiving this treatment contained 97.10% alfalfa and 19.46% protein. Forage from the untreated check contained 37.39% alfalfa and 16.29% protein. There were no significant differences in protein content at either the second (Table 103) or third (Table 104) harvests in 1981. There also were no differences in IVDMD or ADF content at any cutting at this site in 1981 (Tables 101, 103, 104).

In 1982, pronamide (1.68 kg/ha) fall applied and this treatment followed by a spring application of metribuzin (1.12 kg/ha) both resulted in a significant increase in forage protein content (Table 105). Both treatments also resulted in an increase in alfalfa percentage in the forage (Table 106). Metribuzin (1.12 kg/ha) spring applied also resulted

Table 97. First harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site three in the 1982 growing season for treatments applied in 1980/81 and 1981/82.

		Yield (kg/ha)			
Rate	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Metribuzin	1.68 0.56	4329a 	3234ab	8a 	847a
Spring Treatments Metribuzin	1.12	4749a	4201b	511a	36a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	4109a	4043b	3a	62a
None		4215a	2452a	3 88 a	1374a

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 98. Second harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site three in the 1982 growing season for treatments applied in 1980/81 and 1981/82.

		Yield (kg/ha)			
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Metribuzin	1.68 0.56	2885a 	2228a 	5a 	652b
Spring Treatments Metribuzin	1.12	3074a	2531ab	531a	lla
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	3326a	3299b	5a	20a
None		2890a	18 96a	534a	599b

 $^{^{\}rm a}{\rm Values}$ in each column followed by the same letter are not signficantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 99. Third harvest dry matter yields of total forage, alfalfa, grass and broadleaf weeds as influenced by herbicide treatments at site three in the 1982 growing season for treatments applied in 1980/81 and 1981/82.

		Yield (kg/ha)			
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Metribuzin	1.68 0.56	2733a 	2180ab 	14a 	539a
Spring Treatments Metribuzin	1.12	2774a	2302ab	339a	132a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	2765a	2591b	11a	163a
None		2600a	1789a	156a	655a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 100. Season total dry matter yields of forage and alfalfa as influenced by herbicide treatments at site three in the 1982 growing season for treatments applied in 1980/81 and 1981/82.

		Yield (kg/ha)		
Herbicide	Rate (kg/ha)	Total Forage	Alfalfa	
Fall Treatments Pronamide Metribuzin	1.68 0.56	9947a 	7642ab 	
Spring Treatments Metribuzin	1.12	10596a	9035bc	
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	10199a	9933c	
None		9448a	5916a	

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 101. First harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site three in the 1981 growing season.^a

Herbicide	Rate (kg/ha)	P	IVDDM	ADF
			%DM	
Fall Treatments Pronamide Metribuzin	1.68 0.56	15.80c 16.00c	59.73a 57.64a	43.60a 43.00a
Spring Treatments Metribuzin	1.12	18.55ab	58.12a	43.29a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	19.46a	59.30a	41.04a
None		16.29bc	61.09a	41.79a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 102. Percent alfalfa, grass and broadleaf weeds present in first harvest forage as influenced by herbicide treatment at site three in the 1981 growing season.^a

			%	
Herbicide	Rate (kg/ha)	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Metribuzin	1.68 0.56	50.95ab 71.74bc	10.85ab 15.50a	38.20b 12.76bc
Spring Treatments Metribuzin	1.12	85.18cd	7.08bc	7.74bc
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	97.10e	0c	2.90c
None		37.39a	5.65bc	56.96a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 103. Second harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site three in the 1981 growing season.

Herbicide	Rate (kg/ha)	P	IVDDM	ADF
	1.13/ 1.12/		%DM	
Fall Treatments Pronamide Metribuzin	1.68 0.56	17.08a 16.34a	58.07a 55.83a	36.65a 39.99a
Spring Treatments Metribuzin	1.12	17.47a	56.30a	37.31a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	18.36a	54.78a	38.51a
None		15.95a	55.37a	40.53a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 104. Third harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site three in the 1981 growing season.^a

Herbicide	Rate (kg/ha)	P	IVDDM	ADF
Fall Treatments			%DM	
Pronamide Metribuzin	1.68 0.56	20.32a 22.00a	60.71a 64.85a	35.77a 32.99a
Spring Treatments Metribuzin	1.12	21.75a	62.46a	35.94a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	21.80a	61.20a	34.33a
None		21.57a	66.31a	35.14a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 105. First harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site three in the 1982 growing season.^a

Herbicide	Rate (kg/ha)	P	IVDDM	ADF
Fall Treatments			%DM	
Pronamide Metribuzin	1.68 0.56	18.45ab 16.67c	70.26a 67.37a	34.61abc 36.39ab
Spring Treatments Metribuzin	1.12	17.17bc	67.02a	36.63a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	19.01a	67.15a	34.27bc
None		16.22c	68.38a	33.64c

^aValues in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 106. Percent alfalfa, grass and broadleaf weeds present in first harvest forage as influenced by herbicide treatment at site three in the 1982 growing season.^a

			%	
Herbicide	Rate (kg/ha)	Alfalfa	Grass	Broadleaf Weeds
Fall Treatments Pronamide Metribuzin	1.68 0.56	87.31bc 68.30ab	0.75a 15.87a	11.94a 15.83a
Spring Treatments Metribuzin	1.12	87.83bc	5.96a	6.21a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	95.85c	0.69a	3.46a
None		59.95a	9.61a	30.44a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

in an increase in forage alfalfa content. This resulted in an increase in a forage protein increase, but this increase was not significant. Forage treated with metribuzin (0.56 kg/ha) fall applied did not contain significantly more alfalfa or protein than the untreated check. Protein content of forage at the second (Table 107) and third (Table 108) cutting was not affected by herbicide treatments.

IVDMD was not affected at site 3 in 1982 by any treatments at any of the three cuttings (Tables 105, 107, 108). ADF content of first cutting forage in 1982 was significantly increased by applications of metribuzin at 0.56 kg/ha fall applied and 1.12 kg/ha spring applied. No other treatments at any cutting had an effect on ADF content.

Table 107. Second harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site three in the 1982 growing season.

Herbicide	Rate (kg/ha)	Р	IVDDM	ADF
Fall Treatments Pronamide	1.68	19.36a	%DM 62.76a	31.83b
Metribuzin Spring Treatments	0.56	17.90a	63.23a	32.50b
Metribuzin	1.12	18.43a	61.30a	35.36ab
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	18. 67a	59.35a	37.39a
None		18.78a	61.08a	34.20ab

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

Table 103. Third harvest protein, in vitro digestible dry matter and acid detergent fiber content of forage at site three in the 1982 growing season.

Herbicide	Rate (kg/ha)	Р	IVDDM	ADF
Fall Treatments			%DM	
Pronamide Metribuzin	1.68 0.56	19.20a 18.65a	63.38a 52.06a	30.62a 31.37a
Spring Treatments Metribuzin	1.12	18. 62a	45.47a	31.75a
Fall/Spring Treatments Pronamide/Metribuzin	1.68/1.12	19.20a	46.81a	30.94a
None		18.89a	53.24a	30.38a

 $^{^{\}rm a}\text{Values}$ in each column followed by the same letter are not significantly different at the 0.05 level of probability according to Duncans Multiple Range Test.

GENERAL DISCUSSION

Several general conclusions can be drawn from this research. In terms of weed control efficacy, the herbicide treatments can be grouped into four categories. Metribuzin (0.56 kg/ha) fall applied, terbacil (1.12 kg/ha) fall applied, and simazine (1.40 kg/ha) fall applied all provided control of annual broadleaf weeds, but little control of perennial broadleaves or grasses. Pronamide (1.68 kg/ha) fall applied effectively controlled perennial grasses, but had little or no effect on broadleaf weeds. Spring applications of metribuzin or terbacil at 1.12 kg/ha controlled both annual and perennial broadleaf weed species and had a significant effect on perennial grasses. A combination of fall applied pronamide (1.68 kg/ha), followed by a spring application of either metribuzin or terbacil at 1.12 kg/ha, provided nearly 100% control of both perennial and annual broadleaf and grass species.

Longevity of control from all treatments was poor. Plots which received treatment in 1980/81 with no subsequent application in 1981/82 showed poor weed control in the 1982 growing season. Plots which received treatments in 1980/81 and a second application in 1981/82 showed control in 1982 similar to, but no better than, control in 1981.

Weed control measures were most effective at site II which consisted of a good stand of alfalfa with light weed pressure. At this site, the dense stand of alfalfa was very competitive with the weeds

present which aided in weed control. Also, the alfalfa was better able to compete with weeds for open spaces created by the weed control measures. Weed pressure at sites one and three was severe. Weed control at these two sites was similar, although site one was located in a very sparse stand of alfalfa. Weed control at this site resulted in empty spaces which were filled in by weeds not controlled by the application treatment. Controlling perennial grasses resulted in an increase in broadleaf weeds and vis a verse.

Yield effects from herbicide treatments were observed most dramatically at the first cutting. First cutting forage yields were either reduced or not affected by herbicide treatments. Reductions in forage yield were due to herbicide treatments which removed the weedy component of the forage. Alfalfa yield either increased or remained the same at the first cutting. The effects of herbicide treatments on season total yields were similar to first cutting results. Season total forage yields either decreased or remained the same while season total alfalfa yields either increased or remained the same. As at the first cutting, treatments which caused decreases in total forage yield did so by removing the weed component from the forage. Treatments which provided poor weed control resulted in total forage yields which were not significantly lower than the untreated check due to little or no reduction in the weed component of the forage. Treatments which provided excellent weed control could also result in total forage yields which were not significantly lower than the untreated check due to increases in the alfalfa component of the forage. This was brought about by reduced weed competition with the alfalfa. In some cases, first cutting forage yields were significantly reduced due to removal of the weed component,

but season total forage yields were not significantly different due to the increase alfalfa growth.

Alfalfa yield increases were observed at all three sites, but were observed most often at site three. Site one was a sparse stand of alfalfa which was unable to compete for the additional water and nutrients made available by the weed control measures. Site two was an excellent stand in which the weed pressure present was not a significant yield reducing factor, therefore, the removal of these weeds did not result in significant yield effects. Site three was a good stand of alfalfa with severe weed pressure. The weeds present at this site were a significant factor in limiting alfalfa yield. The stand was also dense enough to respond to the reduced weed pressure. Therefore, of the three sites, treatments at site three resulted in the greatest number of alfalfa yield increases. Alfalfa yield increases were observed in both 1981 and 1982, however, no treatments applied in 1980/81 resulted in alfalfa yield increases in 1982 due to the poor weed control provided by these treatments in 1982.

Of the three parameters chosen to investigate forage quality protein content was the one most affected. In vitro digestible dry matter was not significantly different at any cutting, at any site in either year. Acid detergent fiber content was affected only at the first cutting, at site one in 1981 and site three in 1982. Forage protein content was increased by at least one treatment at the first cutting at all three sites in both years of the study, except the first cutting at site two in 1982. In most, but not all cases, protein increases were observed with treatments which increased alfalfa yield.

If weed control programs in established alfalfa are to be recommended they must represent an economic advantage for the grower

using them. As previously mentioned, of the quality parameters investigated, protein content was the one most affected. Protein increases were observed in at least one case with all treatments tested. In many cases these increases in protein content were accompanied by decreases in total forage yield at the first cutting. When this occurred, the actual increase in total protein harvested/hectare was very small. For this reason calculation of the economic benefits of a treatment should be based on data from treatments which resulted in an increase in forage protein content without decreasing total forage yields. These calculations were performed on treatments meeting this criteria and the results are shown in Table 109. The values in this table are based on the cost of protein as soybean meal. In no case did the savings resulting from protein increases exceed the cost of treatment, indicating these treatments cannot be justified on an economic basis based on increases in protein content.

Increasing stand longevity has been suggested as a potential benefit of weed control programs in established alfalfa. Certainly removing weed competition from an alfalfa stand has this potential, however based upon the results of this study, in order to maintain adequate weed control, annual herbicide applications are necessary. If this is the case, the cost of such a program becomes prohibitive. A more economically feasible approach to the problem of increasing stand longevity, or simply maintaining a relatively weed free stand of alfalfa, seems to be an annual application of simazine (1.46 kg/ha) in the fall. Although this treatment provides only fair control of perennial grasses and broadleaf weeds it is sufficiently inexpensive (\$10.00/ha) to be used on an annual basis. Protein analysis was not

Table 109. Savings vs. cost of some herbicide treatments causing significant increases in first harvest forage protein content.

Treatment	Rate kg/ha	Application time	Savings \$/ha	Cost
	<u>:</u>	SITE I 1981		
Pronamide Metribuzin Metribuzin	1.68 0.56 1.12	Fall Fall Spring	55.47 25.61 43.18	95.55 26.43 52.85
	<u>s</u>	ITE II 1981		
Pronamide Metribuzin Pronamide	1.68 1.12 1.68	Fall Spring Fall +	34.85 36.07	95.55 52.85
Metribuzin	1.12	Spring	38.18	148.40
	<u>s</u>	ITE III 1981		
Pronamide Metribuzin	1.68 1.12	Fall + Spring	28.63	148.40
	<u>SI</u>	TE III 1982		
Pronamide	1.68	Fall	17.86	95.55

performed on any forage receiving this treatment, however, metribuzin (0.56 kg/ha) fall applied provides similar control. This treatment provided a significant protein increase only at the first cutting at site one in 1981. Although increases in forage quality may not be realized from the use of simazine, the suppression in weed growth provided by annual applications along with high fertility and timely cutting could prevent weeds from competing too vigorously with the alfalfa and possibly lengthen the life of the stand. There is a need for more work to be done in this area.

LITERATURE CITED

- 1. Aerts, J.V., D.L. DeBrabander, B.G. Cottyn, and F.X. Buysse. 1977. Comparison of laboratory methods for predicting the organic matter digestibility of forages. Animal Feed Science and Technology 2:337-349.
- 2. A.O.A.C. 1970. Official methods of analysis (Eleventh ed.).
 Association of Official Analytical Chemists. Washington, D.C.
- 3. Arnold, W.E. and W.B. O'Neal. 1973. Downy brome control in established alfalfa. North. Centr. Weed Cont. Conf. Res. Rept. 30:7-8.
- 4. Cords, H.P. 1973. Weeds and alfalfa hay quality. Weed Sci. 21:400-401.
- 5. Currey, W.L. and R.A. Peters. 1968. Control of yellow rocket and other broadleaf weeds associated with established alfalfa. Proc. Northeast Weed Contr. Conf. 22:455-48.
- 6. Davis, H.E., R.S. Fawcett, and R.G. Harvey. 1976. The effect of alfalfa stand density on pronamide control of quackgrass. Proc. North Centr. Weed Contr. Conf. 30:28.
- 7. Duke, W.B. 1970. Effects of RH-315 on quackgrass and established alfalfa. Proc. Northeast. Weed Contr. Conf. 24:220.
- 8. and E.S. Spear. 1969. Weed control in establish legumes. Proc. Northeast. Weed Contr. Conf. 23:212-219.
- 9. and J.F. Hunt. 1972. The effects of 4-amino-3-methylthio-6-t-butyl-1,2,4-triazin-5(4H) one (Bay-94337) on weeds in established alfalfa. Proc. Northeast. Weed Sci. Soc. 26:263-267.
- 10. Dutt, T.E. 1977. Herbicides for perennial weed control in established alfalfa and effects of perennial weeds on forage quality and animal performance. Thesis for degree of Ph.D., University of Wisconsin, Madison, WI.
- 11. Dutt, T.E., R.G. Harvey, R.S. Fawcett, N.A. Jorgensen, H.J. Larsen, and D.A. Schlough. 1979. Forage quality and animal performance as influenced by quackgrass control in alfalfa with pronamide. Weed Sci. 27:127-132.

- 12. Fawcett, R.S., R.G. Harvey, D.A. Schlough, and I.R. Block. 1978. Quackgrass control in established alfalfa with pronamide. Weed Sci. 26:193-198.
- 13. Forbes, R.M. 1950. Protein as an indicator of pasture forage digestibility. J. Animal Sci. 9:231-237.
- 14. Fortino, J. 1977. Influence of metribuzin on weed control and production of alfalfa. Proc. North Centr. Weed Sci. Soc. 1976. 31:102.
- 15. Glover, J., D.W. Dutchie, and M.H. French. 1957. The apparent digestibility of crude protein by the ruminant. I. A synthesis of the results of digestibility trials with herbage and mixed feeds. J. Agr. Sci. 48:373.
- 16. Harvey, R.G. and S.R. Connor. 1971. Selective control of quackgrass in alfalfa with RH-315. Proc. North Centr. Weed Contr. Conf. 26:68-69.
- 17. Holter, J.A. and J.T. Reid. 1959. Relationship between the concentration of crude protein and apparently digestible protein in forages. J. Anim. Sci. 18:1339-1349.
- 18. Ilnicki, R.D. and L.F. Hist. 1969. Weed control in dormant alfalfa. Proc. Northeast. Weed Contr. Conf. 23:222.
- 19. Kapusta, G. 1973. Common chickweed control in established alfalfa. Weed Sci. 21:119-122.
- 20. Kommedahl, T., J.B. Kotheimer, and J.V. Bernardini. 1959. The effects of quackgrass on germination and seedling development of certain crop plants. Weeds 7:1-12.
- 21. Kust, C.A. 1968. Herbicides or oat companion crop for alfalfa establishment and forage yields. Agron. J. 60:151-154.
- 22. Marten, G.C. and R.N. Anderson. 1975. Forage nutritive value and palatability of 12 common annual weeds. Crop Sci. 15:821-827.
- 23. Moline, W.J. and L.R. Robison. 1971. Effects of herbicides and seeding rates on the production of alfalfa. Agron. J. 63:614-616.
- 24. Pagano, G.P., R.H. Ackerman, E.A. Cunningham and P.M. Grehlinger. 1977. Managing alfalfa production with metribuzin. Proc. Northeast. Weed Sci. Soc. 31:104.
- 25. Pearson, S.O. and W.F. Meggitt. 1968. Weed control in established alfalfa with terbacil and simazine. Res. Rept. North Cent. Weed Contr. Conf. 25:56-57.
- 26. Peters, E.J. 1964. Pre-emergence, pre-planting and post-emergence herbicides for alfalfa and birdsfoot trefoil. Agron. J. 56:415-419.
- 27. Peters, R.A. and R.M. O'Leary. 1967. Herbicidal response of white cockle and other winter weeds associated with alfalfa. Proc. Northeast. Weed Contr. Conf. 21:299-302.

- 28. Pruss, W.W. 1969. Control of winter annual weeds in established alfalfa with simazine. Proc. Northeast. Weed Contr. Conf. 23:227-232.
- 29. Robison, L.R., C.F. Williams, and W.A. Laws. 1978. Weed control in established alfalfa. Weed Sci. 26:37-40.
- 30. Schmid, A.R. and R. Behrens. 1972. Herbicides vs. oat companion crops for alfalfa establishment. Agron. J. 64:157-159.
- 31. Sheaffer, L.L. and D.L. Wyse. 1982. Common dandelion control in alfalfa. Weed Sci. 30:216-220.
- 32. Slife, F.W., K.P. Bucholtz, and T. Kommedahl. 1960. Weeds of the North Central States. Univ. Ill. Agric. Exp. Sta. Circ. 718. 262p.
- 33. Swan, D.G. 1972. Effects of herbicides on alfalfa and subsequent crops. Weed Sci. 20:335-337.
- 34. Temme, D.G., R.G. Harvey, R.W. Fawcett, and A.W. Young. 1979. Effects of annual weed control on alfalfa forage quality. Agron. J. 71:51-54.
- 35. Triplett, G.B., Jr., R.W. Vankeuren, and J.D. Walker. 1977. The influence of 2,4-D, pronamide, and simazine on dry matter production of an alfalfa-grass sward. Crop Sci. 17:61-65.
- 36. Tilley, J.M.A., and R.A. Terry. 1963. A two-stage technique for the <u>in vitro</u> digestion of forage crops. J. Brit. Grassland Soc. 18:104.
- 37. Van Soest, P.J. 1964. Symposium on nutrition and forage and pastures: New chemical procedures for evaluting forages. Animal Sci. 23:838-845.
- 38. 1965. Symposium on factors influencing the voluntary intake of herbiage by ruminants: Voluntary intake in relation to chemical composition and digestibitliy. J. Animal Sci. 24:834-843.
- 40. _____. 1967. Development of a comprehensive system of feed analysis and its application to forages. J. Animal Sci. 26:119-128.
- 42. and J.B. Robertson. 1980. Systems of analysis for evaluating fibrous feeds. Proceedings: Standardization of analytical methodology for feeds. Series: International Development Research Centre. 49-59.
- 43. and . 1977. What is fibre and fibre in food. Nutr. Rev. 35:12-22.

- 44. and R.H. Wine. 1967. Use of detergents in the analysis of fibrous feeds. II. Determination of plant cell wall constituents. J. Assoc. Off. Anal. Chem. 50:50-55.
- 45. Viste, K.L. and J.M. Sanborn. 1970. Control of quackgrass in alfalfa by RH-315. Proc. Northeast. Weed Contr. Conf. 24:227-231.
- 46. Waddington, J. 1980. Control of dandelion and sowthistle in alfalfa. Weed Sci. 28:164-167.

