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ABSTRACT

AUTOMATIC SPEECH RECOGNITION BASED ON
A NEW SEGMENTATION PROCEDURE

By

Earl J. Craighill

A procedure for segmentation of an acoustical speech signal is cru-
cial to the design of any system for automatic speech recognition (ASR),
yet no adequate scheme currently exists. This study proposes and inves-
tigates the implementation of a procedure for segmenting input in the form
of connected speech from divers speakers using unlimited vocabularies,

A segmentation procedure which assigns linguistic elements, such as
phonemes, to contiguous acoustical signal intervals would be hopelessly
complex because of the many-to-many correspondence between currently used
linguistic elements and portions of the acoustical signal. Instead, we
propose a method for dividing the acoustical signal into analysis epochs
with minimal linguistic specification so that they are independent of
speaker and context.

Each epoch is defined by homogeneous signal characteristics; that is,
a generation model is identified with associated parameters, and nonlinear
time-varying differential equations are derived for these parameters. The
equations are used to track the parameter values, and an epoch boundary is
set at the point where they no longer predict (within a threshold) the
characteristics of the observed speech signal. From the functional forms

of the differential equations, we derive further processing algorithms







Earl J. Craighill

(analogous to data-dependent adaptive filters) for each epoch, Identi-
fication of the functional forms gives a gross linguistic classification
which forms the basis for classification of the epoch.

The differential equations are characterized in terms of sliding
moment averages of envelope and zero-crossing estimates on bandpass-
filtered speech signals. This method of estimation is amenable to low-
cost hardware implementation and requires few computations; thus, connected
speech may be analyzed in real time without overloading a standard general-
purpose computer. Asynchronous, real-time classification is achieved by
decomposition of the decision algorithm by a process similar to that used
in Kilmer's model of the reticular formation.

Overlapping bandpass filters are used to give an initial separation
of acoustical features. Experimental evidence shows how this reduces
the speaker dependence of further acoustical measurements. A decision
logic structure is specified and discussed, showing that it is possible
to select appropriate preprocessing procedures to focus attention on
significant features of an acoustical signal epoch and to accentuate sig-
nal characteristics closely correlated with linguistic features. This
preprocessing, when coupled with the syntactical structures developed
from theoretical linguistics, is hopefully a first step in recognizing

human connected speech from different speakers.
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INTRODUCTION

I-A Overview

A procedure for segmentation of an acoustical signal is crucial to
the design of automatic speech recognition (ASR) systems. As yet, however,
no adequate procedure exists for real-time automatic recognition of con-
nected human speech from several speakers. Principles from communication
theory and linguistic theory must be incorporated in order to derive an
efficient segmentation procedure. The language of modern communication
theory, familiar to the electrical engineer, most appropriately describes
the input with which we are concerned. For this study, we limit the input
to connected phrases of naturally spoken human language that have been
transduced into time-varying analog voltages. The output of an ASR system,
usually in the form of a sequence of linguistic elements, is generally
described in the framework of linguistic theory, primarily phonology.

At first glance, the goals of communication theory and phonology
(namely, an accurate description of the current state of the process,
acoustical signal, or sequential linguistic elements) seem to be com-
patible. However, when one considers the large number of variations in
the acoustical signal possible for any given linguistic element, the
situation becomes hopelessly complex. Many attempts have been made to

eliminate this variation and thereby preserve only the meaningful

*These linguistic elements may be phonemes, distinctive features or
words, We are specifically thinking of only one level of classifi-
cation rather than a composite process such as identification of
phonemes and then morphemes. Our recommendation for a first element
is smaller than the usual phoneme or distinctive feature.




relationships of the linguistic elements. Successful decoding of this
complex acoustical signal by human listeners involves at least the
application of knowledge acquired from previous experiences of hearing
and speaking natural language and the listener's expectation of what will
be said. Thus, at this level, the basic assumptions of engineering
communication theory are no longer valid, and there is no applicable
strong property of ergodicity.

The purpose of this thesis is to describe a segmentation procedure
which not only specifies basic units for recognition but also gives an
adequate description of the complicated speech acoustical signal. This
description is prescribed by the requirements of further linguistic
decoding (words, phrases, ...). Further, the segmentation procedure
that identifies lower units will direct the higher levels of decoding
so that the search space is kept within practical bounds. The segmen-
tation procedure requires three subsystems based on a parametric
generation model of the acoustical signal:

(1) Initial estimation of parameters.

(2) A classification based on parameter estimates for

signal types.
(3) Selection of appropriate time-varying filters operating
on the input to give refined parameter measurements.
The requirements of these diverse topics are discussed in terms of a
representation of the acoustical signal which is developed from the
viewpoint of time-varying differential operators. Its use in deriving
estimators and detecting initial changes in these estimators is verified

experimentally.




In the remaining sections of this chapter, currently used segmen-

tation procedures are discussed in light of the complex nature of the
information-bearing features present in the human speech acoustical signal.
A parallel interrelated feature structure is described that is capable
of recognizing a shift of the pertinent information from one feature

to another. Linguistic information is conveyed with respect to two
levels (the vowels of an utterance form a primary, and the consonants
are incorporated by perturbations of this primary substrate). In order
to unravel this complicated structure, broad classes of speech sounds
that represent different types of signal characteristics must be defined;
this classification can then be used to direct further analysis for
recognition, By this method, formant* theory is related to higher levels
of linguistic decoding. Various preprocessing schemes are considered
which are commonly applied to ASR systems for the purpose of isolating
individual formants., To satisfy the requirement for real-time operation,
a preprocessing scheme is chosen which uses a bank of overlapping wide-
band filters (with sufficient bandwidth to avoid distortion) to remove
noise and to provide a compact representation of the salient features
required for the recognition task. Real-time operation requires decom-
position of the decision process resulting in fewer computations and a
recognition structure tailored to the complicated overlapping nature of

the speech signal.

*
By a formant, we mean the resulting time waveform for one cavity of
the vocal tract excited by glottal pulses, or frication noise.



In Chapter Two, the acoustical properties of the speech signal

are modeled as a composite nonstationary stochastic process and the
mathematics of communication theory are used formally to describe the
process's complicated nature. One isolated formant is modeled by a
time-varying differential operator involving envelope, frequency, and
bandwidth parameters. The inadequacies of fixed-frequency types of
analysis (such as sliding Fourier transforms) are discussed, and require-
ments for low-distortion filtering are derived. Then the transient
response of linear filters to envelope and frequency changes found in
typical acoustical signals is derived in a way that offers new insight
into the behavior of analysis procedures and defines requirements for
the preprocessing wideband filters. Formulas for real-time pointwise
estimators of the significant parameters are derived, and a predictive
differential equation segmentation procedure is specified which will
specify epochs in the acoustical signal having homogeneous signal
characteristics.

In Chapter Three, this segmentation procedure is discussed within
the framework of traditional linguistic theories. The complicated
structure of human communications requires additional mechanisms

(1) To determine the linguistically significant changes

in signal parameters,and
(2) To incorporate contextual information into the decision
process (which, in turn, resolves ambiguities and
directs further classification).
Structural theories are modified to include recognition and to show

the effects of linguistic rules on lower elements (effects of stress



on vowels, etc.). The use of the segmentation recognition procedure
proposed here is basic to a feed forward system, thus climinating compli-
cated feedback analysis-by-synthesis techniques.

In Chapter Four, the formant representation and segmentation
results allow application of state-of-the-art detection/recognition
tec}miques* to a restricted speech signal (without the complex inter-
relationships between features). Study of the Bayes minimum risk
solution reveals that the primary concept is a probability mixture
formula for the outputs of nonlinear estimation filters, each tailored
to a possible generating model for the input signal and (correlated)
noise. Several difficulties are noted for implementation of this opti-
mal solution: realization of the nonlinear filters, correlation between
different (suboptimum) filter outputs, and conflict between classifications
on different filter outputs.

It is concluded that a heuristic recognition scheme tailored more
to the filter bank used in this study would be a better choice. Tech=
niques are developed to reduce the dependence among the probabilities
computed on the different filter outputs.

A first-level recognition system which can operate asynchronously
in real time is described. A nonlinear iterative structure determines
which filters have pertinent formant information. Specialized algorithms
derived from linguistic rules are then applied to these filter outputs

to determine the needed information for classification of this particular

*
Section I-E contains a discussion of terminology that is used in this
study for the pattern recognition discussions.



signal epoch. The output is a classification which is compatible with
higher levels of linguistic analysis. A second stage with formant
tracking filters guided by the initial classification gives the ability
to focus attention on only the desired acoustical features. Thus, the
complex acoustical signal can be segmented in time into homogeneous
epochs and also concurrent features of varying frequency with well-defined
mathematical models and time-varying parameters.

A total system design incorporating this segmentation procedure
as a first step will facilitate the use of human speech as input to
machines for robot control, text manipulation, command and control of

space vehicles, and many other man/machine tasks.



I-B THE STRUCTURE AND INTERRELATIONS OF ACOUSTICAL FEATURES IN

HUMAN SPEECH SIGNALS

The object of an ASR system is to determine recurrent elements from
measurements made on acoustical speech signals. Figure 1 shows a composite
of several approaches to Automatic Speech Recognition based on the theo-
retical encoding of speech shown in the upper block. This theoretical
encoding is motivated by l{ockett‘s1 discussion of a GHQ (grammatical head-
quarters) emitting a discrete flow of morphemes which are encoded into a
discrete flow of phonemes. Then, a speech transmitter converts the dis-
crete flow of phonemes into a continuous speech signal.

The determination of parameter values for each idealized element
is motivated by the following studies. Peterson and Barney” measured
first and second formant frequencies of nine English vowels in a fixed
consonantal context (the word h__d). Gerstmanﬁ re-worked their data,
normalizing for each speaker, showing a sufficient amount of separability
of the measurements for vowel classification (in a fixed context for
isolated words). The correspondence between a fixed frequency or hub
of origin and consonants was first proposed by Potter, Kopp, and Green.‘
Classification of stop consonants by association with a frequency value
was modificed by Cooper et ulu and Yilmazl: They proposed consistent
measurements for stop-consonant classification could be made relative to
the following vowel formant frequencies. The slurring box accounts for
perturbations (hopefully slight) of these parameter values caused by
environment and speaker variations.

The first step in recognition is a division of the acoustical speech

into time epochs. The segments studied may be separated by epochs (portions
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of signal) rather than points, as in the case of Reddy7 who analyzes
only steady-state portions (i.e., portions with constant values of
envelope and frequency) and ignores the transition portions between
them. The opposite approach is taken by Dixon et al.” in their analysis
and segmentation procedure. They define a new element called the
transeme, which is a "dynamic segment describable on a production basis
as the transition from one relatively steady-state articulatory con-
figuration to another."

The criterion for segmentation and further analysis may not be
related to linguistic elements at all, as in the case of Gazdag.g His
segmentation points are determined completely in terms of the measurement
procedure that he uses to analyze the speech waveform; hence they are
independent of any exterior linguistic criterion. ASR systems developed
along these lines have no ability to ignore speaker and environment
variations or free phonetic variation; i.e., in midwest English, prevoicing
before [b] or [d] is optional. Usually a separate "case" (pattern
class) is set up for each; hence the success that these various ASR
systems have in isolated sound situations or in one-person conversational
speech cannot easily be extended to connected conversational speech
for many speakers.

Harris'© has discussed the extremely difficult problem of trying
to define linguistic elements as direct descriptions of portions of
the flow of speech. He finds it convenient in his analysis to define
certain elements which extend over quite long periods and others which
extend over short periods. "In the course of reducing our elements to

simpler combinations of more fundamental elements, we set up entities
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such as junctures and long components which can only with difficulty be
considered as variables directly representing any member of a class of
portions of the flow of speech." (p. 18) A similar formalization in the
early work of Fant, Jakobson et a1}’ describes distinctive features that
are parallel rather than serial descriptions of the acoustical waveform.
Extensions of this approach by Chomsky and Hallem are discussed at the
end of this section. Bobrow, Klatt, and Hartley = have proposed an ASR
system based on this idea and derived independent parallel features from
the acoustical signal and performed classification on those features.
Other ASR systems using independent features have been proposed by H)'.llH
1

and Focht.b Bobrow et al discuss the difficulties of recognizing conver-
sational speech for divers speakers in terms'of:

(1) Consistency of each speaker in repeating words

for training (giving rise to phonetic variation)
(2) Speaker-dependent variation in their measurements

(shifts in [ormant frequency location)

(3) Segmentation of longer utterances.

These difficulties are caused in part by the extremely complex
nature of parallel features and the interrelations between them. 5hman“
has studied various vowel/consonant/vowel (VCV) combinations and has
stated that it is impossible to treat even these short utterances as
three successive gestures. It is possible to analyze them only by con-
sidering the stop-consonantal gesture as superimposed on the substratum

17
determined by the two vowels and the transition between them. Houde



has investigated this further by means of X-ray movies of the configu-
ration of the tongue during articulation. The dynamic trajectories of
points on the tongue during articulation of VcVcV nonsense words can

be decomposed into target-directed (targets are long duration steady-
state vowel positions) and deviation (900 to target-direction) components‘*
Five facts are clear:

(1) The deviation component is characteristic of the con-
sonant ([b] and Lg] were used) .

(2) The characteristic deviation for [b] and [g] was not
toward a target or hub but rather a consistent defor-
mation of articulator (primarily tongue) configuration.

(3) Targets of preceding vowels are changed by the conso-
nant (i.e., I in [Ige] has a different steady state
position than I in [I b e ]).

(4) Stress placement affects vowel target positions.

(5) Timing of target-directed component was dependent only
on distance between target positions and not on speed
of articulation, speaker or consonantal environment

for the limited data investigated.

We can discuss thesc results in a way more compatible with lin-
18
guistic theory by use of Lamb's concept of a medium as a most unrestricted

(or most predictable) form and then describe the pertinent features which

convey information as perturbations of that medium. He defines a phonetic

*
This decomposition is slightly diflferent [(rom Houde's, in order to
demonstrate the concept ol overlapping features.
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feature as distinctive if its presence is not determined by its environ-
ment. This idea may be extended to explain the Ohman and Houde data by
stating that the vowel-to-vowel transition is actually the medium for

the consonantal distinctions.

We should define acoustical features more generally than just
those defining linguistic events.* These acoustical features may be
classified as:

(1) Linguistic

(2) Speaker signature

(3) Speaker emotional state.

The interrelationship of all these features that are present simultane-
ously, preceding or following in time, may be correlated with the dominant
(distinctive) feature, but this correlation is usually situation (speaker,
context) dependent and thus can introduce much variation in determining
recurrent elements. It has been pointed out by Harris that time of start
and stop of different acoustical features may not be coincident in time.
Thomas“‘ suggests that a speaker is able to adjust only one formant fre-
quency; other frequencies are allowed to fall where they may. He states
further that this formant is always the second, but the data presented by
6hmzm does not support this. l'(upertao has studied isolated words spoken

by three males and wo females; he suggested that:

*By "linguistic" we mean the specific content of the speech waveform

that is being used to communicate a discourse or text. For the purposes
ol man/machine communication, this definition will be sufficient. We
do not wish to get into a discussion of various gestures, intonations,
cte., which can also convey information,
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(1) Each speaker does consistently control at least one
acoustical (linguistic) feature which is usually less
than the entire acoustical signal (i.e., one or two
formants).

(2) Although the controlled feature(s) (say, second for-
mant) may not be the same in absolute value for all
speakers, the time patterns are similar and can be

identified by their recurrent nature.

(3) There is a high degree of recurrence across speakers
of these controlled features.

(4) Other acoustical features (may be correlated with
linguistic) that occur vary considerably according to

speaker, phonetic environment, etc.

Ohman has proposed a motor-control model to partially explain his
data as saying that for a VcV sound there are independent signals (or
parameters in our theoretical model) for the first vowel, the consonant
and the second vowel. The various muscles work in a coordinated fashion
to produce continuous changes in articulatory configuration. This approach
has actually been used to some extent in the work of Reddy. He first
classifies his segments into phoneme classes (vowel, fricative, stop,
nasal, liquid) and then performs a specialized analysis on each segment
which is directed by the phoneme class label.

Based on this discussion we formulate the following premises about
a feature description of the speech signal:

(1) Only a subset of the acoustical features present in a

time epoch of speech are linguistically significant;



(2)

(3)

4

14

this subset can be recognized by the precise repeatable
nature of its members. We do not mean precise values
(formant frequencies = 500 hz, 1500 hz, and 2400 hz)
but rather, precise time behavior within physical
(motor control) and linguis tic* constraints.

Epochs of the acoustical signal can be equivalenced

to classes determined by a subset of linguistic acous-

tical features. These classes can be defined (by

the choice of the subset of features) in such a way
that they are situation (context, speaker) indepen-
dent. Roughly, the class labels are a generalization
of the consonant, vowel labels used by linguists and
also a refinement of Reddy's phoneme classes and
Rupert's production modes (PM's).

Further featurc analysis is simplified considerably,
and a more precise syllable (canonigeal form) analysis
can be performed by a directed-search technique based
on the above classification. This removes the inherent
circularity in many classification schemes involving
normalization (analogous to the visual recognition
problem of finding an object of interest to focus on
while it is out of focus).

Once vowel (peak of syllable -- Hockett) classes are
specified, they set up a primary formant transition

structure.

* .
As noted by Ohman, consonantal variations of formant transitions are
different for Russian speakers than for English speakers.

o
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(5) Consonantal modifications are with respect to the
primary formant structure and hence will be termed
secondary.

(6) There is interaction between primary and secondary
acoustical features, but the class labels can be

assigned independent of this interaction.

The concept of precisely controlled features determined by phonetic
environment at first appears similar to the distinctive features matrices
proposed by Chomsky and Halle as the final linguistic idealized description

of the speech waveform. However, there are two crucial distinctions:

(1) Significant features are chosen, and other (redundant)
features are eliminated based on the simplicity of
description and reduction of logical complexity in the
encoding process. In speech recognition, the human
is generally unaware of mathematical formulations when
he is learning to speak; hence, the features he selects
to emphasize and control precisely are chosen for
communication with another human being and immunity
to noisc for that communication. Hence, an ASR system
must determine the precisely controlled features that
are present rather than formulate hypotheses about
which ones would be easiest to analyze if they were
present.

(2) Their concept of opposition is with respect to elements
that can occupy the same time epoch (minimal pair).

This involves a comparison of definite (albeit






situation-dependent) measurements of the present input
with some representative set of measurements for the
opposing element. Many investigators have noted the
difficulty in this approach (Hemdal and Hughes“'),
The relative opposition concept of Rupert and Yilmaz
does not have this difficulty, because a time epoch is
compared to the preceding and successive epochs for
its relevant opposition measurements., Hence, normali-

zation becomes less of a problem.

In the following sections, we will expand these premises and show experi-
mental evidence indicating a different description of the acoustical
speech signal is necessary for an ASR system which more accurately

measures timing and frequency characteristics.



I-C SEGMENTATION OF THE ACOUSTIC SPEECH SIGNAL INTO ANALYSIS EPOCHS

The optimistic goal of some segmentation procedures is to define
time points and the acoustical signal such that t‘he resulting sequence
of signal epochs will correspond to a sequence of idealized linguistic
elements., One then simply decides which linguistic elements each
epoch is most like. 1In the previous section we discussed this approach
and the resulting difficulties, especially in conversational speech
involving long phrases. Bobrow et al. state that the purpose of seg-
mentation should be a selection of appropriate measurements to be
made, dependent on the phonetic context. Reddy's phoneme classes are
directive in the sense that they select appropriate decision procedures
to be used in analyzing each of his segments. We are thus led to a
procedure that will define time boundaries and also prescribe a par-
ticular type of analysis to be performed between these time boundaries.
The resulting epochs may not necessarily correspond one-to-one to the
final sequence of linguistic elements. As an example, we might consider
a word such as "back' spelled phonetically [b a k] that has been modified
by tape cutting at the beginning and the end to remove all noise bursts
related to the consonants. The resulting acoustical signal would contain
only a vowel-like portion, and only two time boundaries would occur at
the beginning and end of this epoch. However, if the tape cutting has
not been too severe, a person would still perceive the entire word; hence,
further analysis should determine from the transitions that the generating
sequence of linguistic eclements is morc like three: consonant/vowel/

consonant, rathcer than onc vowel.
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A segmentation procedure should also identify the significant
controlled acoustical feature within the time boundaries., Rupert
discusses how this reduces the variability induced by situation-dependent
acoustical features. This would amount to attention focusing that
includes as a special case formant tracking. By ignoring all but the
distinctive controlled features, a large amount of noise rejection can
be accomplished. Further segmentation need not be impaired by this
attention focusing, because, as proposed by Rupert, it should be the
precisely controlled features that govern the segmentation. However,
the beginning of new features outside the area of attention must be able

to "capture' the recognition choice so that a feature does not dominate
long after it has ceased being significant.

The object of our segmentation procedure, to act as a direction
for analysis, must then be able to isolate homogeneous epochs of signal,
since in order to make reliable measurements we must have a tailored
measurement algorithm (i.e., it is extremely difficult to track a for-
mant during a fricative or noise-like portion of the acoustical signal,
Thomnsw). This suggests a representation of the acoustical waveform
that shows isolated acoustical features and gives an adequate description
of the signal properties so that segmentation and class identification
can be performed.

The concept of homogeneous segments must be augmented somewhat
because of the special nature of speech signals, In order to analyze
a generalized acoustical signal generated by a complex scheme, as in
human speech, one could use standard communication theory techniques

of identifying a state model for each epoch (i.e., a set of differential

|
|
e
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equations, n-degree polynomial fit, etc.) and then say the epoch has
physical homogeneity as long as the model is valid. Then the switching
times or segmentation points will correspond to changes in models. We
must also consider linguistic homogeneity as discussed previously;
there are several portions (acoustical features) of the total speech
signal which are not linguistically significant. Therefore, the homo-
geneous property is with respect to both the physical measurements

of the signal and the linguistic significance of those measurements.






I-D PREPROCESSING OF THE ACOUSTICAL SPEECH SIGNAL

Preprocessing of acoustical speech signals, when inspired by modern
communication theory techniques, has been dictated more by what is avail-
able rather than by what is appropriate. Researchers have attempted to
justify application of existing techniques by analogy with color (light
frequency) perception (Yilmaz) or human perceptual experiments. The
former approach can be though of as looking at the world through rose-
colored (harmonic) glasses. The latter technique must be used with
caution, since the capabilities of the human brain are not available
in an ASR system.

The complicated nature of speech signals involves a predominant
pitch frequency, which does not contain linguistic information (at a
lower unit level), plus several components with time-varying frequencies.

An acceptable analysis is possible but requires much computation (Schafer

and Rabiner ). A real-time ASR system intended to make efficient use
of a machine cannot afford this luxury. The problem involves more than
waiting for a faster computer or a trickier algorithm when one wants to
recognize connected speech from several speakers. In this section we
will discuss the complicated nature of human speech signals and form a
basis for specilication of a preprocessing scheme tailored to the nature
of ASR requirements.

The primary goal of preprocessing is to specify a transformation
(filtering) which will: (1) remove noise (including other, confounding
features of speech as discussed in the previous section); and (2) provide
a compact representation of the salient features required for the recog-

nition task. We cannot expect a straightforward application of standard

20
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techniques based on homogeneous models* to achieve these goals. The
generation of the acoustical speech signal is best modeled as a composite
stochastic process (that is, a heterogeneous mixture of several interdepen-
dent time-varying systems). 1In addition, experiments measuring human
perception of acoustical events indicate that man's ability to discriminate
frequency is more acute than his perception of differences in intensity
(Flanagan?ﬂ We will show that the commonly used filtering techniques

have poor frequency resolution, which adversely affects ASR system per-
formance in natural human conversation.

If we assume that the signal is generated by a homogeneous process,
the most efficient transformation would match this generation process, as
attempted by Weiner-Hopf or Karhunen—Loevez5 filtering. The difficulty
(and success) in using these methods depends on the initial selection of
the representation criterion and representation constraints.

The formation of the input signal minimizes, according to the chosen
criterion, the differences between the output and an idealized signal. The
criterion chosen has a considerable effect on the final form of the filter.
There are many problems in which the mean squared error formulation is
required in order to obtain any useful mathematical results. However,
another criterion may be better suited to a particular estimation problem.
For example, a filter designed for minimum mean squared error would be
used successfully in the case of a stochastic signal (fricative), where
the mean value and bandwidth of the frequency energy distribution are

sufficient statistics. On the other hand, in the case of a vowel lormant

One characterization of a homogeneous process is a set of differential
equations of a prescribed form with (time-varying) parameters and a
fixed forcing function.
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the peak of the frequency energy distribution is much more important than
the mean value, necessitating a maximal likelihood criterion, Thus,even
assuming that we can apply the more sophisticated techniques of communication
theory to the speech preprocessing problem, we will generally need more than
one "optimum" filter for a speech signal because of the changing nature of
the speech acoustical signal.

The set of all possible inputs must be limited (by the filtering
operation) in order to achieve rejection of noise and unwanted signals.
This "allowable" subset is usually defined by a set ol constraints (dif-
ferential equation in the Kalman “Eormulation). Along with providing rejec-
tion capabilities, this would make the recognition problem easier by limiting
the search space. However, the set of constraint equations, in order to
be useful, must be a very accurate description of the instantaneous (rather
than some average) "state" of the speech signal, implying that the classifi-
cation must be known in advance in order to perform the preprocessing trans-

24

formation. Halle ’ has proposed a feedback type ASR system (analysis by
synthesis) to perform this circular classification. However, in view of

the large number ol computations implied by such a procedure and the pre-

vious discu on of the nature of the speech signal, we would propose the
following: At the marking of a change in the speech signal decide which
ol several classes the new epoch belongs to and which "portion” of the
total signal energy contains the signilicant information. Then, tailor
a "filter" to this portion and perform the required transformation for as

long as the desired features remain in the signal (determined by observing

the results of the transformation).
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We have already discussed how different criteria lead to several
filters or transformations, Also, the parallel nature of the acoustic
feature in a speech acoustical signal indicates multifiltering as a first

step. We can summarize some of the requirements of a multifiltering

pre-processing to remove noise and unwanted signals.

(1) Simile - Preservation of the necessary characteristics of
a selected portion of the total acoustical signal. The
subspace resulting from the filter transformation should,
at this stage, preserve the input's characteristics (for
instance, if the filter were a bandpass, time-invariant
filter, this criterion would require preservation of the
amplitude and phase relationships of the input within
the 3 dB bandwidth of the filter).

(2) Rejection - Removal of extraneous acoustical characteristics,
including background noise and other speech features, such
as other formants or the pitch component (for bandpass
filters, this would require cxtremely good attentuation
outside the 3 dB bandwidth) .

(3) Continuity - At least one of the filters should contain a
feature throughout its duration (for bandpass filtcrs with
a vowel glide of the sccond formant in the input signal
that extends from 1400 Hz to 2800 Hz, at least one of the
bandpass filters should have 3 dB bandwidth to encompass
this range). This is desirable because we do not want
artifact boundaries particular to a specilic set of

filters introduced when a feature transverses [ilter
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boundaries. If this condition is not satis(ied, a wmuch
more complicated decision network must be used to eli-
minate these artifact boundaries.

Further complications arise because of the wide frequency range,
extending over many octaves, and the extreme variations in amplitude. Five
contiguous 1/1 octave filters are required to cover the intelligible range
of speech (one more if high-quality speech transmission is required), and
the amplitude ranges over 120 dB with short-term variations on the order
of 20-30 dB. One of the most popular instruments for displaying and repre-
senting speech signals is the sonagram, a 2-dimensional graphical display
of frequency versus time, with intensity indicated by shading on the dis-
play. It has been shown that the sonagram is a physical approximation of
the generalized sliding Fourier secries (Lerner‘” ), that is, a Fourier series
computed over a time interval that is stepped along the acoustical signal.
The difficulties in analyzing speech can be discussed in terms of the
sliding Fourier series and the parameters involved. First, the length of
the interval over which the series coefficients are computed must be
greater than the period of the lowest frequency component of interest.
Measurement of f‘ormant frequencies is further complicated during vowel-
like portions by the pitch frequency (proportional to the.repetition rate
of the glottal pulses). The range of these pitch frequencies is from 80
to 400 Hz. The time period over which the Fourier series coefficients are
computed must be greater than the pitch period (say two or three times the

largest, ~ 25-30 ms), or a great deal ol variation will occur depending on

*
the phase of the pitch [requency . Thus, there is a lower bound on
3 .
The ideal situation would be to synchronize the Fourier series computa-
tion period with the pitch periods. This requires a pitch detector and

a device to decide on presence of pitch periods. The resulting [requency
resolution is still on the order of the pitch [requency.
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frequency resolution on the order of the pitch frequency. Sliding Fourier

power spectra for both wideband (65-6500 Hz) and bandpass filtered vowel

glides are shown in Appendix D. The irregular forwm of the spectra is due
to the pitch component. Also, the high power of this component rclative
to higher frequency components (which carry the linguistic information)
requires a significant dynamic range (50 dB is shown in Fig. D-1); even
then, formant frequencies are difficult to identify. It would be expected
that bandpass filtering should isolate these peaks, as is seen in Figure D-2.
However, we should note that there are several problems that still are not
solved:
(1) Wher. two energy peaks are in the same filter, a decision

must be made as to which peak corresponds to a formant

and whether the other peak is simply a harmonic of the

pitch frequency or a second formant. Ideally, it would

be nice to treat onc formant in every filter; however,

this is overly optimistic.

(2) Measurement Resolution - This is possibly a special

case of (1) in that the measurement scheme (sliding

Fourier series, for instance) has a certain resolution;

i.e., a certain minimum distance must be present betwecen

two peaks for them to be recognized as two separate peaks.

The problem that can occur herce is that different speakers

may have different spacing, so that for onc a two-lformant

"sound'" may appear as a broad single pcak while for the

"sound" will appear as two close narrow

other the same
peaks.

(3) Frequency Glides (large values of derivatives of frequency)

that move in and out of filters and across filter boundaries.



(1)

(5)

(6)
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The ideal approach, of course, is to treat a feature
as a continuous event, independent of the filter band-
widths, so that artifacts would not be introduced.
Correlation of Formants in Adjoining Filters - Since
the filters are overlapping, the formant could be
present in two filters; important types of information
29
may be found by comparing adjoining filters (Hanne ).
Requirements (2) and (3) above are actually contradic-
tory and cause, in the case of bandpass filters, a situ-
ation where in order to contain a formant glide within

one filter, the bandwidth would be entirely too wide

for adequate rejection and for emphasis of the many
types of speech features encountered.
The effects of the pitch component are not completely

removed by 25-30 ms computations, time window tapering,

or bandpass filtering as has been suggested by researchers.

These problems for bandpass filters, or, as has been shown by

27

Schafer and Rabiner, for even more sophisticated types of frequency

analysis,

are caused by the inappropriate nature of any fixed-frequency

type ol analysis for speech processing. The criteria for using such

analysis on (1) steady-state phenomena, such as constant vowels or nasals,

(2) vowel glides (great changes in frequency of

formants) and (3) noise-

like signals, very quick , random transient-type phenomena, are

in general quite incompatible. Further, it has been shown by Hanne that

for several measurement schemes, the estimation of formant frequencies

(natural modes) of the acoustical signal approaches a harmonic of the pitch

frequency rather than the true value.
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A recent article by Lecours and Sparkes has indicated that narrow-
band filters enhance the frequency pattern of vowels, whereas wideband
filters more accurately show the transient time behavior of stop conso-
nants (rapid envelope onset -- a fact well known to users of sonagraphs).

Hanne has pursued this prefiltering idea further with a more sophisticated

system of overlapping filters to estimate first formant frequencies within

3 percent. Flanagan's e study indicates that this approach is closer

to the frequency estimation error in human recognition. Thomasw has also
used wideband filters to emphasize frequency regions to show second-formant
variations more clearly. Both Hanne and Thomas have argued that the effect
of filtering speech signals can be predicted or inferred from usual steady-
state filter analysis. However, Fig. 2 shows a sonagram of a common English
word, indicating a frequency derivative on the order of 10,000 Hz per second.
This high value of frequency derivative is known to give quite unpredictable
and unexpected outputs from time-invariant linear filters (Baghdady“,
Wiener and Leon:Q, Cannon and Duncanb.’). One should reexamine the criterion
for filter bandwidth in terms of the time-varying properties that can occur
in speech signals. The inverse relationship between rise time and band-
width indicates that a fixed bandwidth bank of filters must be a compromise
at best. The effect of an analysis period on the order of 25-30 ms is to
average or smear quick transient phenomena. Discussion of recognition
errors in various systems using this type of techniques (Reddyv) indicates
that many consonants, especially stop consonants, are missed due to this
smearing or averaging. The usual reason given for the recognition errors

is the low energy and short duration of these speech sounds. One possible

solution would be to vary the computing period inversely with frequency
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= 10,000 Hz/sec

246 ms 365 ms
275ms

FIGURE 2 SONOGRAM OF ENGLISH WORD, RUDDER,
SHOWING HIGH VALUE OF FREQUENCY
DERIVATIVE
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(long periods for low frequency and short periods for high). The resulting
cocfficients would not bc for an orthogonal expansion, and also vastly
differing waveforms can occur in the same frequency region,

Figure 3 shows both wideband (65 to 6500 Hz) and bandpassed time
acoustical signals from recordings of four speakers saying medial [b]
from [umbif] (see Appendix A for a description of the experimental
pseudo-language used).

Bandpass filters can emphasize characteristics in the real-time
waveform of extremely short transient-type bursts (release pf the stop
consonant [b] for different speakers, both male and female). Although the
wideband waveforms (Figure 3, first page) show very little similarity, it
is possible by bandpass filtering to find similar waveforms for the different
speakers (Figure 4). The rejection of other features in the acoustical
signal, as well as noise, by the filtering has made this possible. It
will be noted that the most consistent and similar waveforms across
speakers need not, and often do not, occur in the same frequency range
(filter).

It has been argued by researchcrs that other acoustical clues for
the perception of a stop consonant exist, namely the transition into the
following vowel. Cooper et al,” investigated perception of synthetic

6 .
% has shown with

initial vowels with frequency glide onsets, Ohman
sonagrams of actual speech that these results may not apply to connected
human speech sounds. His data showed that, for medial stop consonants,
the common notion of a formant hub docs not hold; that is, there is no

consistent point of origin for a given consonant, say [b], to which and

from which vowel formants tend.
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487.5 ms FILE 24 MD4 19 EH 1 5125 ms

548.0 ms FILE 6 MD6 19 BE 1 574.0 ms

695.1 ms FILE 5 MD8 19 MJ 1 720.1 ms
: : |

550.0 ms FILE 4 MD6 19 BA 1 575.0 ms
pecs=soncen L Aadndadiddddd b Addaddiaddid b addiad i { st geesssanes A Rl b Al A (i S | il A S b |
. [] ' (] ' (] . " . ) .

OUTPUTS OF OVERLAPPING BANDPASS FILTERS [M] TO (BI]

Py p—

FIGURE 4 CONSISTENT TIME WAVEFORMS FOR SEVERAL SPEAKERS
FROM DIFFERENT BANDPASS FILTERS






33

The choice of a set of filters for preprocessing the acoustical
signal ranges from a set tailored to several classes of acoustical signals,
possibly along with different representation criteria, to a set of contigu-
ous narrow bandpass filters. The second approach has been extremely popular,
especially for speech synthesis using vocoders. A familiar characteristic
of narrowband filters, i.e., ringing, when excited with a sharp increase
or decreasc in amplitude or frequency is not consistent with the require-
ment of simile, For a period of time after a sudden change in amplitude
or frequency, the output of the [ilter is not representative of the input.
This problem will be discussed in the next chapter.

To avoid these difficulties, we have chosen a wideband (hall-power
bandwidth greater than onme third the center frequency) overlapping [ilter
bank (See Appendix B). The particular choice of the number of filters
and the bandwidth of each [ilter was made in order to satisfy the three
stated requirements. We shall sce that the type of multiband filtcving
used here fulfills thesc requirements to a certain degree but has several
limitations which must be corrected in the decision algorithm that follows
the multiband filtering. The reason for these limitations is obvious.

A time-invariant filter based on steady-state sinusoidal considerations
obviously is not representative of the speech acoustical signal. However,
there arc several reasons for this choice over the admittedly better set
of tailored filters. These reasons include:

(1) The hardware is readily accessible

(2) A large number of investigators have used wideband
preprocessing

filtering in proposing and implementing

) 4 L
. Reddy , Thomas , Gazdag ,

schemes, including Hanne

Shafer et al and Yilmaz .







especially since the introduction of the "Fast Fourier Transform' algorithm

34
(3) Adequate representations have not been tailored
to the time-varying acoustical signal.
(4)  Few decision structures have been studied which are
tailored to this type of multiband filtering
preprocessing.

Another popular related analysis tool is the Fourier transform,

sa

byCooley and Tukey. The Fourier transform equations can be modified so

that each coefficient computation may be thought of as a (digital) filter

operation. Hence, the complete transform computation may be considered

*

a multi-bandpass filter processing.

Much can be learned by considering a multi-bandpass filtering

scheme with the intention of using it only as a first step and deriving

from it further requirements for a tailored multi-filtering scheme.

A popular approach for parameterization of the filter outputs is

to compute coefficients for an orthogonal series representation. However,

the criterion commonly used for these computations is complete represen-

tation of the entire signal and minimization of the error between the

orthogonal series and the original signal. This is not what is necded

for an input to an ASR system. We would rather

Parameters neces

like to sce only thosc

]
sary for recognition. Flanagan has modelled the specch-

generation process as either a two-pole linear filter excited by the

8lottal pulses (for vowels and oral continuants) or a filter excited by

¥hite noise with variable bandwidth in the center frequency (for frica-

tives,

stop consonants). The various parameters of input, envelope and

In the next chapter we will see that the Fourier coelficient computation

acts

B

like a narrowband digital filter and hence is subject to ringing.
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filter bandwidth and center frequencies are considered to be time-varying.
Thus, he would propose two parameters for each of our acoustical features,
related to center frequency and bandwidth. Rupert has suggested that there
are also consistent spectral shapes to the acoustical features which have
been only slightly considered by previous investigators. These shape
functions appear to be easily described by at most four parameters; say,
the first four mements of the spectral density. They were first derived
from sonagrams, but inspection of machine-calculated power spectra
(Appendix D) shows that they may be more artifacts of the hardware than
consistent features of speech acoustical signals. However, Sittoﬁﬂ& has
studied the first four moments of reciprocal zero-crossing distributions
and found more consistent results.

Thus, one is led to different estimates of center frequency (and

higher moments) for a narrowband (unimodal) spectral density. Zero-crossing

counts immediately come to mind. There are many schemes and investigations
el

of zero-crossings lor anal ysis ol speech signals (Cherry and Philipé ).
However, these measures were usually made on the total signal and, as
can be seen by considering the sum of two sinusoids with variable ampli-
tudes, the resulting output can be very difficult to interpret unless
the signal has its spectral cnergy concentrated in a narrow frequency
band. Thomas has used zero-crossing analysis on the output of his
bandpass (ilter to estimate second formants; he finds an extremely good
representation for vowels and indicates trouble only for very low power
portions of the acoustical signal (fricatives, stop consonants). The
use of bandpass filters followed by zero-crossing counts to estimate the
87
frequency structure of formants has been demonstrated (Peterson ,

2y
Hanne ).



.
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Recently, Scarrj has discussed the fine structurc of zero-crossings
for speech-like signals having formants and pitch frequency components.
He uses wide (1 octave) filters to isolate formants and shows the effect
of pitch periods on formant frequency estimation. The errors involved in
zero-crossing analysis are on the order of 1/number of zero crossings and
therefore proportional to frequency. The case with Fourier series analysis
is different, in that the frequency-location error is fixed at *} the
lowest frequency component (in this case, the pitch frequency).

Zero-crossing counts can be related to instantaneous frequencies

3L 28

(Baghdady , Lerner ) and thus incorporated into a discussion of quasi-
stationary response of linear filters. However, few investigators have
pursued this approach in the case of speech signals. Reddyv; uses zero-
crossing measures as an estimation of steady-state frequencies and also
some envelope measurements (primarily relative envelope changes). We

will discuss on a slightly more theoretical basis the relationships

between zero-crossing measures and instantaneous envelope measurements in
the next chapter. There are obvious benefits to be derived from the use
of both derived time series in that the interpretation of zero-crossing
counts is greatly enhanced by specilication of the nature of the speech
signal (i.e., if it is a vowel portion or a fricative portion, etc.),
which can be determined by investigation of the envelope time series.

The subject we will investigate in the following chapters involves
prefiltering by a bank of overlapping bandpass [ilters with the criterion
that significant acoustical features appear in at least one of the (ilters
over their duration. This presents a new type of recognition problem,
involving the logic to decide which filter has the significant output and
to perform a preliminary classification as discussed previously. This

is the topic of the next section.

B N







I-E DECOMPOSITION OF PATTERN RECOGNITION ALGORITHMS

The use of multiband overlapping filters to preprocess speech
signals presents a specialized type of pattern-recognition processor. For
the sake of clarity, we will adopt the widely used mathematical formulation
in our discussion of this problem: The inputs to pattern-recognition
devices are parameters, distinguishing characteristics of a physical
event., A measurement is the numgrical value of a parameter. A pattern
vector, then, is an ordered set of measurements of a physical event; each
measurement can be thought of as a component. The distance in pattern
vector space between two vectors is a geometric measure of their closeness,
A typical, but not always appropriate, distance is the standard Euclidean

sum of squared differences of each component. A pattern-recognition

algorithm is an assignment of class labels to the pattern vectors. 1In a
typical pattern-recognition algorithm, each input pattern vector to be
classified is compared with a number of reference vectors by a distance
measure. The input vector is then assigned the label of that reference
vector for which the distance is minimized. An ideal pattern-recognition
algorithm would result in a dichotomization of the pattern vector space
with unique class labels for each disjoint region. In the cases where
this is not possible, the output of our pattern-recognition (PR) algorithm

can be a degree of presence (DOP) vector, which has one component for each

class label. The DOP vectors indicate the relative assignment for each
class (say, normalized distances) and hence are a gencralization of the
single class label output,

A directed search is a special type of pattern-recognition algorithm

that trades sequential operations for multidimensional single operations;

37
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i,e., in the reference vector comparison case, a subset of reference vectors
is selected by first examining few components and eliminating large port-
tions of the pattern vector space from further search. Plasticity is a
description of a particular type of pattern-recognition algorithm that
allows changes in the pattern vector to DOP vector mapping, depending

on a subset or all of the pattern vectors (the terms "learning" and
"adapting" have been used for this process). A deterministic pattern-
recognition algorithm is one which has no plasticity; that is, an a priori
fixed mapping of vectors into classes, possibly by setting thresholds on
measurements. Normalization is a process which we will distinguish from

the pattern-recognition algorithm as being more concerned with the deri-
vation of the parameter measurements. Although there are analogous types

of standardization processes that do occur in pattern-recognition algorithms,
it will facilitate the discussion to make this distinction.

We can now consider a schematic of the logic required for a pattern-
recognition algorithm for our multi-bandpass filters and its operation.

In Figure 5, the output of each bandpass filter goes into a measure—
ment device, producing an n-dimensional pattern vector for a time epoch
(Physical event) of the acoustical signal. These may be coefficients of
an orthogonal expansion over a certain time interval, coefficients of
2 differential equation or another set of appropriate measurements (mean
Values, maximum value derivatives, maximum value standard devia tions, etc.).
For a continuous output of the bandpass filter, these types of measurement
Tequire time interval marks, which we will assume for now are generated
elsewhere or are a part of the measurement scheme. The output DOP vector

is o .
f dimension r, the number of speech sound classes, discussed in
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FIGURE 5 SCHEMATIC OF MULTIFILTER RECOGNITION LOGIC
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Section D (on the order of 4-6). When referring to operations or pro-
perties of individual filter outputs, we will denote these as M, and
when talking about properties of the entire bank of filters, we will denote
these as global. By the particular choice of our filters, we see that a
local property is one that is restricted to a certain frequency range.

closeness' of pattern vectors in terms of
39
clusters in the sense of Ball and Hall. That is, we will say a set of

We will talk formally about

pattern vectors is clustered if the intra-cluster distances are small
(relative to a threshold, or to inter-cluster distances). The homogeneous
property, which we introduced in our definition of acoustical segments,

is with respect to both the physical measurements ol the signal and the
linguistic significance of these measurements. We might reformulatce

that property in terms of our definitions; physical measurements have
some significance and consistency if they form a cluster (denoted as a
physical cluster) in the pattern vector space. It may not always be the
case that these physical clusters have linguistic significance. For
example, a frequency measurement on a low-order filter primarily exhibits
thg pitch frequency. 1In this case, the physical clusters would correspond
to different pitch frequencies and not to different linguistic events. At
the opposite extreme, a physical cluster might be related to two distinct
linguistic events, such as a medial [b|, which has a very small amount of
silence belore the burst release, or a great amount of background noise
such that it is difficult to distinguish [rom a fricative such as B

The resulting measurements tor both the [b] and the [] would tend to

lie "close" to each other and, hence, lie in one physical cluster. Thus,
the linguistic clusters would correspond to one physical cluster. At

first, it appears that appropriate class labelling of the physical clusters
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would define the linguistic significance; however, as indicated previously,
the difficult task of assigning an exterior linguistic criterion to physical
measurements subject to speaker, environment, and free phonetic variations
will require a more sophisticated, plastic type of correspondence. The
intention of keeping the actual decision algorithm simple so that it may

be implemented in real time (with a minimal amount of computation) requires
a better solution to the problem than simply keeping track of all the
physical clusters and then making a correspondence to a set o1 linguistic
labels. This type of approach requires, for example, storage of a large
number of reference vectors (say, one for each physical cluster), comparison
to these at each step of the decision algorithm, and a continual updating

of these reference vectors due to slowly drifting measurements. In our
problem, this approach is not feasible because of the variations due to different
speakers. Bobrow and Klattm have shown a decision algorithm (applied

to the speech recognition problem) which is a directed search using

decision-tree type logic that reduces the computational limitations

(amount of storage, number of comparison speed of classification) of the
usual multidimensional pattern recognition algorithm. Their procedure,
applied to a speech measurement situation in which the variations discussed
above are removed, would result in an effective ASR algorithm. Their
technique, of course, will fail in the situation where a large number of
reference vectors are saved for comparison.

The concept of precisely controlled features can be related here,
also, to physical clusters, in that if other perturbing influences are
removed, these precisely controlled features should result in "tight"
physical clusters. This approach in itself should reduce considerably

the amount of variation and hence the number of physical clusters needed
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for description. This is then what we mean by attention focusing; i.e.,
the selection of a portion of the speech signal with precisely controlled

features and tight physical clusters for further processing.

The complexity of the decision logic in Fig. 5 for an ASR system is
dependent upon whether a decision for assigning a class label can be
dichotomized into a number of local decisions followed by a global decision

a0
{analogous to the Zeiger decomposition of automata), i.e., Is the dimen-
sionality ol the pattern vectors on the order of mxn or n (where m is the
number of modules and n is the number of measurements in the input pattern
vector for each module)? In the situation where two estimation criteria
are appropriate (not necessarily simultaneously) for an n parameter problem,
hence leading to two '"filters", (as discussed in Section D), we would say
the dimensionality is n rather than 2n, but "shif ts" according to the input.
The local decision would be based on "best" estimate according to the local
criterion and the global decision would then be the choice of which esti-
mator was most appropriate by examining the variance of the parameter
estimator, for instance.

This variance measure of the estimation process can be generalized
to handle the many more difficult and varied situations in ASR systems. We
can also measure the quality of the DOP vector, e.g., the pecakedness measure
introduced by Kilmer et almA A quality measure of the specific classili-
cation of an input pattern vector indicates the significance of the esti-
mation of the measurements and consistency of the pattern vector w.r.t

previous classifications.




.



Knowing that the complexity of PR algorithms goes up exponentially
with the number of dimensions, a decomposition can result in real-time
computations. The discussion of the previous sections indicates that this
is the case for speech, in that the entire wideband acoustical signal
is not precisely controlled and does not contribute in its entirety to
the linguistic information. The choice of a logic structure, then, depends
on this decomposition. We propose to show in Chapter IV that this is
valid and indeed enhances the physical measurements in such a way as to
reduce variations and improve the probability of success of classification.

Kilmer et al. have studied parallel recognition structures of the
type shown in Fig. 6 and have demonstrated that an iterative nonlinear
shakedown net (called SfRETIC)* is capable of arriving at a consensus
of opinion among the local pattern-recognition elements (denoted modules) ,
solving conflicts that may arise and selectively tuning to particular
modules that have made a high-quality decision. We feel that this type
of logic-structure is ideally adapted to the requirements of an ASR
system. In particular, the bandpass overlapping filters have a mixture
of correlation with neighboring filters and a high degree of local specifi-
city because of the precisely-controlled features in speech signals (cor-
responding to the local redundancy of potential command concept of the
S-RETIC). The parallel computations involving low-dimensionality (on the
order of the dimensionality of each module) allow a minimal amount of
computation,

*By S-RETIC, we mean thc algorithm that performs the iterative nonlinear
shakedown as described in Kilmer ct al. (1967) and not the complete

simulation study. Ef(ectively, we denote S-RETIC for the computer program
which corresponds to the B parts of the modules with their interconnections.
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FIGURE 6  QUASI-STATISTICAL FORMULATION OF PR ALGORITHM
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In order to get some feeling as to how S-RETIC arrives at its decision
and also to consider an alternative procedure for using a number of pattern-
recognition elements in unision, we can consider the probability distribu-
4z 43
tion approximation techniques first discussed by Lewis and Brown . In
order to apply their techniques to PR problems, we will consider each

component of the DOP vector as being a conditional probability distribution

Pk(CL/Xk)' £ =1, . . ., r, defined over the (module) input pattern vector

k k
space, X (xkeX ) for each class, C{ (see Fig. 6). The DOP vector is com-

k k
puted from stored conditional distributions Pk(X(/C*) for an input x by

Bayes formula (assume P(Cﬁ) = 1/r).
I
K K o\ Kk
b (C,/x = P (), Z P (x/C)) (1-E-1)
L=1

The only requirements on the stored distributions is that they be non-

negative for all C xk and normalized such that

L’
2 P(xk/C) =1 £t =1, . . ., r (I-E-2)
k £ '
k
X
We can apply Lewis and Brown's techniques to Pk(Xk/CL), k=1, . . . m.

for one class by considering each pattern-recognition module as computing
a low order approximation to the true distribution. Chow45 defines the
structure of a pattern recognition algorithm as the function form of the
probability distributions, particularly the condition dependencies among
the components of the pattern vectors. He describes the Lewis-Brown
approximation as structure adaptation. Hence, a parallel net of modules
with lateral communication between local PR computations allows at least
m different structures for each class. S-RETIC then selects the appro-

priate structure.
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So far in our discussion, we have been considering decision struc-
tures that, except for the possibility of operating with minimal computations
and less complexity, appear similar to those termed template-matching in
Section B. This static type of pattern classification has little hope of
working with connected conversational speech., The structure we are proposing
has more flexibility built into it and operates like the PR algorithm we
have described for isolated sounds where timing marks are well defined. The
philosophy behind the design of the STL-RETIC program was to operate in
an asynchronous manner, rolling over from one decision to another based
on input changes. This structure is exactly the type that is needed for
dynamic speech recognition; when one classification is chosen, such as
silence preceding a word, and a new feature begins. It has been demonstrated
by Kilmer that the change in the input (as reflected by the change in the
local DOP vectors) is sufficient to cause a change in the overall global
DOP vector. It will possibly be necessary to also determine changes in the
input measurements. We propose to do this by detecting inherent changes
in the physical characteristics of the signal and then deciding if these
changes are significant enough to cause a recomputation of the global
decision.

We will return to these questions in Chapter IV. First, however, we
consider in Chapter II the nature of the acoustical waveform and discuss
a procedure for detecting inherent changes in that waveform. In order to
specify a training procedure for a plastic PR algorithm, an external classi-
fication criterion is needed. The lack of a one-to-one correspondence
between acoustical and linguistic events rules out completely unsupervised
learning. In Chapter III, structural linguistics is discussed in order to

provide this criterion.






II REPRESENTATION OF TIME-VARYING SIGNALS

Representation of signals that result from transformations by a
time-varying differential operator of standard signals present many
difficuities, particularly to engineers with backgrounds in linear time-
invariant differential operator analysis, Two representations are

commonly used, the analytic signaf6 and the sliding Fourier transform

methods>>

II-A Analytic Signals

The analytic signal representation is an attempt to define pre-
cisely the empirical notions of envelope and frequency. The primary
advantage of this representation is that it separates the envelope and
phase portions of the signal; in addition, the resulting spectrum is one
sided (i.e., there is no mirror negative frequency portion)., This cor-
responds to most spectra ''pictures' and makes various moment calculations
practical,

The spectrum ol a real signal u(t) for t €(-« =) is the Fourier

trans form

(&3}

U(jw) = J u(t) e*"wt dt .*

-

The Hilbert transform of the real signal x(t) defined on the interval

~® < t < ® ag the Cauchy principal value of the integral

(_i 1 @ x(0)

h ,
x (t) = % —5-do <t <o (II-A-1)

-~

%
We will adopt the convention of denoting the spectrum of a real function
of time by capital letters.
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h
is another useful transform, The new real signal x (t) has the following

properties (Titchmarsh®*”):

(1) x(t) = cos(wt + @) xP(t) = sin(wt + )
(2) Under rather general conditions if x = yh; xh - -y
3) X" = -jx(D; >0

= 0 ; f =0

= jX(1); £ <0

We can now define the analytic signal corresponding to x(t)

A d . h
x(t) = x(t) + jx (t) (II-A-2a)
- at) M (I1-A-2Db)
where
a(t) =)fx2(t) oK (t) (I1-A-2c)
h
a(t) = arctan{x (t)/x(t)} (I1-A-2d)

The analytic signal Q(t) has the one-sided spectra mentioned before, because
of Property (3) and the definition. This signal is complex (the real portion
is the original signal). Since the process of taking the real part of a
complex function is a linear operation, it commutes with other 1linear

operations such as convolution, differentiation, and integration,
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Equation II-A-2b gives us an interpretation of the analytic signal
representation as a phasor in the complex plane with time-varying magni-
tude and angle (with respect to the real axis). We may denote these quan-
tities as the envelope and phase functions, terms motivated by the use of

the analytic signal in various modulation studies (BaghdadySI, Weiner

2

and l..eon3 p The instantaneous frequency is defined as the time

derivative of the phase function
d
wi(t) = da(t)/dt (II-A-3)

The analytic signal, although giving an instantaneous time descrip-
tion, can be used effectively for only a limited set of signals, namely
those with slowly varying envelope and frequency functions. In order to
enlarge this set of signals, we will introduce another definition which
will be useful in discussing second-order time-varying differential opera-
tors, The derivative of an analytic signal may be written as a product
of the analytic signal and a new signal, bx(t), which we will denote the

prebandwidth signal.

dx(t) d Ja(t) 1 da(t) . da(t)] A
20 Ll ®) - (s B8, 8O 3 qra-n
where
d 1 da(t) . do(t)
b = Ty et Y Twm

*
The name of this function follows the convention of Deutsch and

Gabor's*® definition of effective bandwidth., First shift the spectrum

* A
Deutsch®® denotes x(t) as the pre-envelope signal because its magnitude is
the envelope.






A
of x(t) to its center frequency. This frequency shift can be included

in bx(t) by a property of Fourier transforms

X% (Gw) x5+ )l eI Xy = P (I1-A-5a)

a(t)/a(t) + j(&(t) - w) (11-A-5b)

b . (t) o

'S

When wo is the center frequency of X(jw), the complex portion of b s
be
reflects the time variations of instantaneous frequency about the mean.

The effective bandwidth, BW, is the second moment of the spectrum

about the mean.

[e] 2
@ N
- d 2| xS 2 j 4 «s
o G I_mw xSy |[Paw ] ’dtx (t) dt
r @ 2 “ A 2
| Ixs(w), dw J_ xs(t)l dt
- oo

f_w bes(t) ;"cs(t)r dt
= (II"A"G)

L a” (t) dt
{o o]

The magnitude of bxs is an upper bound for the effective bandwidth

by the Schwarz inequality and thus is a measure of an instantaneous

bandwidth

BW’

1}

f_m b s ()] a® (6 dt/f—m a” (t) dt

ib s (£)]° dat (11-A-7)

A
e
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n

. A
Another interesting relationship between bx(t) and x(t) is (for x(t) # 0):

d & A d "
b (t) = = (t)/x(t) = 5 {log x(t)} (II-A-8)
In speech analysis, a logarithmic scale for amplitude (loudness) has
often been used. By taking a derivative (with appropriate definitions
for the complex logarithm) we can replace the transcendental function with
a function more easily computed on a digital machine,

Now, consider a second-order time-varying linear differential

equation (DE).

% + al(t)§ +au(t) | - a(t) (I1-A-9)

where al(t) and a_ (t) are real functions denoting the time-varying para-
meters (for example, of a formant-producing cavity in speech generation).
A

u(t) 1is an excitation function which may be stochastic (fricatives) or

deterministic (glottal pulses). Introducing the prebandwidth function,

[ gx(t) + bi(t) + al(t) bx(t) + az(t) ] Q(t) = S(t) (I1-A-10)

A
The homogeneous solution of the reduced DE (u(t) = 0) involves solution

of a Ricatti equation for bx, which can be solved if a1 and a2 are constant,

¢ X
= bx + (bx + (bx + cl)(bx + Cl)) =0






where

c = %a + [a%/a - a (11-A-11a)
v p 3 1 2

c = %a +,/a°/4a-a (1I-A-11b)
b L b 2 2

c1 and c: are the pole locations for the time-invariant system given by
Eqn. (II-A-10). When the constants c) and c: are complex, the magnitude
of bvs, the shifted prebandwidth function, has the damping factor 31/2,
whick is an accepted "bandwidth" for this system. Thus, our definition is
useful in relating bandwidth to a system that may have an infinite value
for BW (this happens for certain values of al and aﬁ),

When al(t) and az(t) vary slowly with time, so that bx ~ 0, we
can still define c1 (t) and cj(t) by Eqn. (II-A-11) and we can define time-
varying poles without Fourier transforms. In general, Eqn. (II-A-10) must
be solved by numerical integration, but the function bx is related to the
crucial parameters of a system described by Eqn. (II-A-9) and can provide
insight into the system's bchavior. Analysis of higher-order time-varying
systems by this approach is not as easy as the analysis of time-invariant
systems, where reduction to second-order systems is achieved by partial
fraction expansions. The lack of a superposition principle, plus the com-
putational difficulty with sums of analytic functions, further complicates
the generalization.

The analysis of the dynamic characteristics of one isolated for-
mant is possible (and more tractable) with the introduction of the
prebandwidth function. Real differential equations (DE) for the envelope
and frequency functions can be derived by substituting the definition of
bx from Eqn. (II-A-4) into Eqn. (II-A-10) and separating the result into

real and imaginary parts, giving
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I:I{(t) + al(t)é(t)+r{52(t) = u?(t)} a(t):’ [cos{d(t)} . sxn{a(t)p
= g(t) cos {y(t)} (II-A-12a)

[&(t) + 2u(Dac) /alt) + a](t)m(t)]a(t)[cos{m(t)} + sin{a(t) 1]

= g(t)sin{y(t)} (I1-A-12b)

where
Xt = a(p XD

ue) = gt)eIVH

w(t) = a(t)

The equation for the envelope (II-A-12a) is of the same form as
the total signal DE with a 'natural frequency" reduced by &’ (t). The DE
for the frequency is nonlinear in w and a and shows the effect of damping
on the natural frequency.

We can change (II-A-12a) by substituting for the second derivative

of the envelope

alt)/alt) = %t-{é(c)/a(t)] + {at)y/am ),

Then we can rewrite (II-A-12) as

o o 2 ) e

. {a/a} = g/alcosy/{cosa - sina}] + w - a - ala/a - {a/a}  (11-A-13a)

%{w} = g/alsiny/{cose + sina}] - 2wa/a + a w . (II-A-13b)
1






I{ we identify w and a/a as state variables, then Eqn. (II-A-13)
is in the form of a nonlinear vector differential equation. For speech
acoustical signal representation, these state variables are invariant to
amplitude scale changes as seen from their differential equations; further,

they form the real and imaginary part of the prebandwidth function.

As noted in Chapter 1, speech acoustical signals fall into a number
of classes, depending on the values of the four signal parameters al(t),
ag(t), g(t), and Yy(t) in our single formant model. Inspection of Egn. (II-A-13)
indicates that the derivatives of the two state variables depend only on
the state variables and these four time-varying parameters. Thus, if we
were to specify the two state variables and their derivatives as functions
of time, we could perform the speech signal classification, This procedure
does not require us to solve the complex nonlinear differential equations
or to perform any type of matrix inversion that would be necessary tq iden-

tify the time-varying model parameters.

When G(t) is a train of unipolar glottal pulses (each being 2 to
12 ms in duration), G(t) can be represented by the excitation envelope g(t).
For this situation, the sinusoidal oscillation terms can be removed from
Eqn, (II-A-12). This is achieved by the physical process of envelope
detection and lowpass f[iltering. In Section D, this filtering operation
is investigated and a criterion for sclecting the cutoff frequency is given
to minimize distortion of the solution of the differential equation and
maximize the smoothing of the oscillation terms,

When the excitation signal is stochastic, we cannot obviously

rcduce the complexity of the differential equation (i.e., g(t) may
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not adequately represent the total characteristics and Y(t) may also be
required to adequately describe the random fluctuations). Under certain
conditions, it is possible to assume that the excitation function lﬁ(t) is a
Gaussian random process with expected value of O(E(G) = 0) and has independent
increments with a uniform energy versus frequency distribution (white noise).
The differential operator described by Eqn. (II-A-10) will then specify an
autocorrelation function for ),é(t). Kelly and Reedqg show that the envelope

A
and phase functions for x(t) and their derivatives have the following

A
probability densities for each fixed t when x(t) is a stationary process.

p(a, @, ‘;, w) = p(a)p(@p(a)p(w/a) (I1-A-14)
where

p(a) — R(O) Rayleigh with mean o, E{x"} =

p(a) ~— N(O, Bx'?) Normal with mean O and variance BXP’.

p(®) ~ U, 2m Uniform between O and 21

p(w/a)y” N, sz/aa)
o 4 e}

¢ B0 )/e03)] - T

This indicates that the angle, envelope, and envelope derivative
are statistically independent for each t (independent random variable).
Thus , no information is lost by removing the oscillatory terms in
Eqns, (II-A-12) and (II-A-13). For bandpass spectral densities (like those
we are considering), where the energy is concentrated in a range Aw about o,
the envelope and phase function energy distributions are concentrated
in a similar range about w = O (Davenport and Rootm;). Also, the uniform

distribution of the phase contains no parameters of the generating equations.
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Abramson

has defined BxB for stochastic processes as the mean

square bandwdith. For ergodic stationary processes it is equal to the effec-

tive bandwidth, BWZ, given by Eqn. (II-A-6), which is applicable to deter-

ministic processes. Thus the instantaneous bandwidth function, bx(t) is

related to bandwidth measurements for
(stationary) processes., Further, for
Eqn. (II-A-10), all the parameters of
filrst—order probability distributions

to estimate autocorrelation functions

deterministic and stochastic
second-order differential operators,

the process can be determined from

(cf. Egqn. II-A-14), It is not necessary

or spectral relationships between

bx(t) and the parameters of the differential operator (Egqn. II-A-10). Since

this operator determines the autocorrelation func tion, these remarks apply

to nonstationary processes also.

Many speech sounds can be modeled by stochastic processes with sta-

tionary autocorrelation functions (giving time-invariant spectral densities).

However, the short duration and low relative energy of these sounds does

not allow a "steady-state' spectral density approach. Thus we must consider

transient responses. In the next section we will discuss the problems of

using spectral estimation techniques and the transient response of linear

Systems to envelope and frequency changes.






II-B. Sliding Fourier Series

The recent development of the Cooley-Tukeya‘

algorithm for fast
digital computation of Fourier series coefficients has caused much interest
in Fourier frequency analysis. Modern communication literature

uses "Fourier analysis" to refer to a particular use of any set of

orthogonal functions to approximate a given signal by the following

form:

(I1-B-1)

£(t) NZ a)
k=0

9 1
where the set of functions 'Ltpk(t)szo is such that for some interval of

time [a,b] and some weight functions h(t) (definition of orthogonal functions)

b
{ 2
J MO 9,0 @ () e = cfo, (het> > o) (I1-B-2)
where & =1 n=m
nm
=0 otherwise;

the ak's are constants.

For any N, and for any given finite energy function f(t), the integral

weighted squared error defined by
N

_’jh(c) |r(t) —> aktpk(t)l“ dt
is minimized by the constants

b
a = ‘L h(t)f(t)‘Pk(t)dt . (I1-B-3)
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The most popular orthogonal set is the set of trigonometric functions, with
h(t) =1 over [a,b]. However, the trigonometric functions have finite
energy only over finite intervals. Therefore, the class of functions we can
represent by Eqn (II-B-1) with trigonometric functions must be non-zero only
on a finite interval.

A finite cenergy representation over an infinite interval is achieved

by defining the truncated time function

f(t) -T/2 =t £ T/2 (I1-B-4)

fT(t)

e

0 otherwise

%
and then repeating fT(t) every T scconds, A Fourier series of the form of

Eqn, II-B-1 can be used, with

( (t) d cos kw t

Pox = o

(t) d sin kw t w d 2T /T
Pok-1 = Sinokagto o

Some of the properties of the finite Fourier series are:

T2 ‘
kWt
(1) a, - Rel r(L) e’ F0" gt
2k JoT/2
/2 P KW
a - -ImJT fty ¥ ¢0 at
2k-1 12
(2) £(t) Sl cos (kw t) sin kW t} ; a d 0
) B Ces RO rag 0 B U
k=0
. j (kwgt + @) E: { }
~ ) o = C cos{kw t )
Re ) cy@ kS 0" * %k
C = Q 2 i a “
k J 2k 2k-1

*
This representation is a good approximation only over the interval [«T/Z,

T/27.
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L

d
wk = arctan{azk_l/aZRJ

Notice in property (2) the resemblance to the form for analytic signals.
*
The analytic signal corresponding to this series is

T o o ot + k]
f(t) ~ , k (II-B-5)

Now, consider some implications of these properties for time-varying
signals, especially signals with varying f[requency. Looking at
Property (2) again, the series is a sum of cosine functions with
constant amplitude and constant phase. (Guillemin“l) states that the
approximation of arbitrary functions by this type of series is due

to constructive (and destructive) interference between sinusoidal
functions of diffcrent frequencies. The natural association of the
Fourier coefficients with a frequency distribution (analogous to
Laplace and Fourier transform theory) causes some problems due to

the interference phenomena, Figure 7 shows a particular waveform

i
defined over a finite period LTa’ T

The transform of y(t)

b.J
(assune T = §Tb) is:
Can(f-1,)T /4}
; o e'), ['Tb/4 bini L b4 f't - l/TaL
y b 2Tr(f—f)(l) Tb/

*To put the series in true analytic form, Baghdady considers each term
as a phasor and defines the amplitude and phase function for the
resulting phasor sum, a construction that may have some intuitive appeal
but is no help at all computationally.
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y(t)

FIGURE 7 SHORT TRANSIENT PHENOMENON WHICH IS DIFFICULT
TO ANALYZE WITH FOURIER SERIES
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and indicates that Fourier coefficients computed over [0,’[‘1, for 'I‘:Tb, would
be significantly nonzero for several values of k other than ko = T,,'l‘){/‘
The nonzero coefficients are necessary to cancel out cko cos‘IZTTkot + wkoJ
over 0 <t < T/2, The distribution of energy among the ck's is mis-
leading to an intuitive concept of frequency associated with y(t).

A remedy that has been suggested for these problems is to make
T smaller (less than Tb/z) and compute a sliding Fourier series (i.e.,
starting the computation at increasing times). The resulting computations

can be interpreted as "time-varying' ck's and v, (However, this

'
5.

k

approach adversely affects the computational savings of the Cooley-Tukey

method.) We may then ask if a representation of the form

5 3P ()
x(t) ~ z ck(t) e (II-B-6)
k0

would combine the properties of the analytic function and Fourier series.

We can get some insight into the behavior of this series in the case when

#(t) =@t + 8. The Fourier transform of &(t) in that case is

36y
X@w) ~ 2m) e K (ww) w >0 (I1-B-7)

k=0

wi g
here ck(w) is the Fourier transform of ck(t). Thus, the convolution sum

i
M Eqn. (II-B-7) has smeared all the cp(t) functions together.

An exanple of a set of ck(t)'s results from the "sliding" defi-

nity
10n of Fourier coefficients,
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t A
e (t) = J_m x(a)y, (t-0) do (II-B-8a)

where \Uk(c) = q;k(cr), one of a set of orthogonal functions and the 'duration"
(non-zero time interval or effective time width) of { is much less than
A
that of x. In particular
W (t-
B (=026 (I11-B-8b)

s, [EAGE SN G
o) == | x(@e

w o o
'k do

t
w ¢ =
Z el k f %(@)e™
L-T
We see that the calculation of sliding Fourier trigonometric coefficients
can be interpreted as the output of the linear filter with input Q(t) and

impulse response

kat

1
h(t) =7 e 0stsT (I1-B-9)

= 0 otherwise

We might ask how ¢, (t) would look for various situations, especially

for time-varying frequencies (as in speech formants, I'M modulation

systems, cote.).  To answer that question precisely, we must develop
some methods ol looking al the response of Tincar filters to a
general class of inputs, Beflore developing such a method, we might suggest

what the ck(t)'s should display.
A
Suppose the input x(t) is a constant amplitude sine func-
*
tion with a linearly varying frequency, wi(t) (wi(tk) =0, k=1,2,3,4),

\__

We denote an instantaneous frequency function by LU (t) when it may be
con fused with values of frequency.
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| c, (t)
t
1
cz([) w, (t)
{2 =
| c,(t)

N
| c, (1) ’ .
\/\ ,
CAN

FIGURE 8 IDEALIZED FOURIER COEFFICIENT RESPONSE TO VARYING
FREQUENCY INPUT
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Then, each ck(t) corresponds to a frequency wk, k=1...4, which should
ideally look like Figure 8. 1In the next section we show that this is
possible only with restrictions which are too severe for the class of

speech acoustical signals,






II-C Response of Lincar Filters to Analytic Signals

When inputs to a lincar lilter (used to separate different for-
mants in speech signals, say) contain amplitude and frequency derivatives
of significant magnitude, the usual transform-superposition method of
analysis becomes unwieldy, especially in determining transient response.

! Leon and Weiner,33 and Cannon”” have suggested a different

Baghdady,a
approach to this problem; they use the analytic signal and convolution
integral to show the nature of the output of a linear filter in a more
enlightening manner. Their approach is a generalization of standard sinu-
soidal analysis using Fourier series. If the input to a filter is a

sinusoid that starts at t = 0

Giw,t)
x(t) = ae tzo (II-C-1a)

and the filter has Fourier transform H(jw), which is rational, with

simple poles at the point s = 51’ SZ’ e Sn’ then the output of the
filter is
n
Ju,t o skt
o(t) = aH(jw)e + az A e
& (11-C-1b)
k=1
with
s=s,

The first term in Eqn. (II-C-1b) is the steady-state or stationary
solution, and the second is the transient term. The stationary solution
is simply the input multiplied by the Fourier transform of the filter

evaluated at the input frequency. When the input has a time-varying

65
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amplitude and/or frequency, the form of Eqn., (II-C-1b) is duplicated by

ja(t)

o(t) = a(t)e HGw(t)) + € (II-C-1c¢)
where
“o(t) : is the output of the filter
jo(t) | . . . . _
a(t)e is the analytic signal form of the input
H(.) is the complex Fourier transform of the filter
impulse response
w(t) is the instantaneous frequency of the input
€ is the transient or distortion term.

The first term, called the quasi-stationary term, is merely a complex

number times the input, giving an amplitude and phase change. Thus, the

idea of 'frequency selection' by filtering has a definite meaning when

€ is small compared to the quasi-stationary term., The transient or dis-
tortion term results f(rom the {ilter's attempt to 'follow'" the changing
input. Baghdady (and others) have bounded the distortion term and restricted
the set of inputs to satis[y the bound in order to use the quasi-stationary
term as an approximation to the output of the filter., The class of linear
filters was limited in these studies to those described by rational functions

of the frequency variable,

For the representation problems we are considering, this class
of filters is not general enough (a '"Fourier coefficient" filter is
not of that type), nor do we have control over the class of inputs in
the same manner. We will find the following definitions notationally

(and possibly,intuitively) convenient.



67

The Fourier transform pair for a real function h(t) is

@

H(jy) = I_m h(t) e_Jwt dt (II-C-2a)
h(t) = I_m HGY) e'“iwt dy w = 2mYy (II-C-2b)

Baghdady, Leon, and Cannon now define the quasi-stationary response of
the filter as (for input instantaneous frequency, wi(t))

3 -jw. (o
I h(c) e * do (11-C-3)

i (1)) &
H(jw, (1)) =

~0

However, this is not a prccise definition of a filter response to the
instantancous [requency unless the f{requency changes slowly. Assumce

that h(t) is nonzero only over a finite intcrval LO,Th]. Then,

-l

*
wi(t+0) for 0 < 5 = Th is given (for wy analytic in [O,Th]) by

. k
w, (t+0) = W)+ wi(t)O +-§: iT w(k)(t)
k=2

and so a more exacl definition results by using w, (tyv),
1

Ok+l " (k)(r)
d (-Th -jw.(t)() IT- k! 1 )
= J h(o) e o €
o k<l

H(jw, (t)) J & (II-C-3")
1

This definition is unwicldy flor situations with signilicant [(rc-
quency derivatives, although it 1s more accurate than Eqn. (II-C-3).

Of course, the two definitions are compatible if Th&i(t) AN wi(t).

%
We use the notation & for the first derivative of w with respect to
its dependent variable and w for higher derivatives.
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Our approach will be to use Eqn. (II-C-3) as a definition, but
with a generalized frequency term, 1i.e.

T

arh J¢(t,to)o
H(Jw(t,to)) = J h(o)e do (I1-C-4)
0
where
d . . .
W(t>t0) = t(wi(t+t0)) O-tOSTh to fixed

We can illustrate by an example. The Fourier transformation of Eqn. (II-B-9)

is:
jo_©)
HGey = 1 MTe ¥ 7% g
k T J
T Jo
-j (w-w, )T/2 _ '
- e sin(w wk)F/Z (I1-C-5a)
(W=, )T/2
and for the frequency function ¢(t,to)
S3LUCt t ) —w TT/2 (o cyct, t ) -w ) T/2
Hk(J‘v(t)) — e O k Sln(‘l’ o Kk (II.—C—-Sb)
- 2
(¢(t,to) wk)T/
Thus, the coefficient i has a maximum value whenever W(t,to) = wk

as we had shown in Figure 8,

The calculation of the distortion term will be facilitated

by the definition

d t —- Jjwes
H(jw,t) = j h(c) e do (I1I-C-6a)
-0
-jwt,. t jw(t-o)
= e f h(o) e do (II-C-6Db)
- 00

1}

{h(t) * ejwt} ;) eI%t (I1-C-6¢)
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63
Kharkevich calls this function the ''running spectrum." It can be
shown that this definition introduces artifacts into the spectrum,

although it does have the limiting property
®  -jwo
1) H(Gw,®) = HGw) = j e h(c)do
-0

Another property is

d , -jwt
(2) I H(jw,t) = h(t) e

From Eqn. (II-C-6c) we can see that the running spectrum is a normalized
transient response of a filter with impulse response h(t) to an analytic

sinusoid signal.

The output of a filter with impulse response h(J9) and input

Q(t) = a(t)ejw(t) is

t .
a(t-o

o(t) = J a(t-0)ed ¥t 4 (0yao (II-C-7)

-
We make the following assumptions
h(c) = o; oc<o0; 02> Th (II-C-8a)
€ .
. -jwo
Lim JO h(0)e dc = O (II-C-8Db)

€70

Equation (II-C-8a) is realistic, since most digital computer applications
require this truncation. Equation (II-C-8b) simplifies the exposition
by not allowing terms of the form Kwﬁ(t) in h(t). Using integration by

parts, the output becomes
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; Th ja(t-o)
o(t) = J a(t-0)e h(o) do
T ja(t-0) jvo N
h d . !
= J o a(t-o)e {e = H(Jw,c)f do
jlaCt-0)+yo] T
= [a(t—o)e H(jw,o)]
0
T 4 Jlvo
- Jor {393%%§é;l v Eg a(t-0) - ¢]} x(t-o)e  H(jy,0)do

By the assumption in Eqn, (II-C-8b) the first term evaluated at zero is

zero.

|

j[a(t_Tr) i YT, |
1 1 .
a( t.-Th)e HCj )

T

. h ! Jyo
+ J %bx(t—O)—Jw$;(t~o)Lh(G) * o } do
0

o(t)i

it

o (t) + o (t) (I1-C-9)
q d

We denotce by oq(t) the quasi-stationary portion of the output
transient responsc and by od(t) the distortion term. The quasi-stationary
term shows, explicitly, that the output is delayed from the input by an
amount on the order of the interval over which h(t) # 0. A reference
different than the one commonly used minimizes phase distortions
occurring in od(t) compared to use of the usual reference, t. The dis-
tortion term integrand is the prebandwidth function for the input times

( j Yo
Ih(o) * eJq [ » a transient response term for the filter. For exponential

filter functions (resulting from rational transfer functions), this term is
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s
n(t) = e
t 5t
e YA
h(t) * e = (I1-C-10)
Gy - Sl)

which corresponds to one factor in the distortion term in Cannon and

Duncan's result when | is the instantaneous frequency.

The interpretation of H(jw,0) as a transient response (Eqn. II-C-6)
shows us that the distortion term is a weighted average of the filter's
ability to track frequency and amplitude changes, The term w(t,to) is
indicative, also, of the precautions necessary in interpreting the response,
That is, for {(t,t ) = wi(t) + to@i(t) , we have a ''pseudo-frequency,"
to&i(t), biasing the instantaneous frequency wi(t). An attempt to include
this bias in the distortion terms complicates the result tremendously.

H(.) evaluated at the biased instantaneous frequency term is actually
the predominant output when to&i(t) is signficant. (See the following

example,)

We could ask whether to&i(t) is ever significant in the class
of signals we wish to represent. Figure 2 (in Sec. I-D) shows a typical
formant frequency transition from samples of the spoken word ''rudder."
This frequency transition has been inferred from a sonograph display. The
range (over several speakers) of the frequency derivative wi(t) is from
5000 to 15000 Hz/sec or 5 to 15 Hz/msec. So, computation times on the
order of 20 to 30 ms can have biases of * 100 to 450 Hz, If we take

an idealized '"formant transition' of the form:

x(t) = P (I1-C-11)
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where ¢;E) = 2000 Hz o =t = .,020
- 2000 - 300(3(t/.030)° - 2(t/.030)°] ,020 < t < ,050
= 1700 Hz. .050 =t £ ,070

@(t) gives a cubic transition from 2000 Hz to 1700 Hz with a maximum

second derivative of 10,000 Hz/sec. (see Figure 9a).

Figure 9 compares the magnitude of the actual output, o(t), with
the magnitude of the quasi-stationary term for five Fourier coefficient
filters with 20m8 computing period. Also shown is a curve of the envelope
maxima across the five filters. Figure 9a shows the quasi-stationary
term evaluated at the input instantaneous frequency, { = @'(t). Figure 9b
shows the quasi-stationary term evaluated at a biased instantaneous

frequency.

Vo= w (t) + T /20 (B) T = 20 ms (11-C-12)
1 h 1

As is seen, this biased term gives a good correspondence between the
quasi-stationary envelope maxima and the actual output envelope maxima,
(Note that this delay distortion is not due to nonlinear delay versus
frequency characteristics).

The implications of this analysis for the signals we are con-
sidering are obvious. Sliding Fourier spectra with computation periods
on the order of 20 ms cannot adequately show frequency changes in the

input without bhias,
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Another example of envelope delay changes due to changing frequency
can be seen in Figure 10, Power spectra for a vowel transition of band-
limited speech (module 6; bandpass, 577-1867 Hz) are shown, The vowel
transition for a male speaker, from unstressed /u/ to stressed /a/,
is also shown in Appendix D, The sliding spectra are computed every 15 ms
over a 25 ms interval, Two vowel peaks are present in this filter, with
one peak changing in center frequency from 902 Hz at 405.1 ms to 1445 Hz
at 530 ms. The estimated frequency derivative at 480 ms is 9200 Hz/s,
The absence of a significant second peak at 480 ms (relative to the lower
peak) can be explained by envelope delay, which is caused by the bias fre-
quency due to the great change in both frequency and envelope of the cor-
responding formant. These "holes" occur frequently in spectra of speech

signals, as is noted by Schafer and Rabiner 2%

and require complicated logic
to avoid errors in formant peak tracking systems. The technique used by
Schafer and Rabiner gives better frequency resolution at the cost of
numerous computations (4 minutes on a GE-635 computer to compute two
formants and pitch period for two seconds of speech). They first compute

a cepstru$ to reduce the influence of the pitch frequency and then display
the magnitude of the cepstrum transform along a spiral arc (see Figure 11)
rather than along the unit circle. The spiral arc corresponds to a straight

line in the s-planc. (Schafer and Rabiner call this procedurc the chirp

z-transform.) Improved frequency resolution results from passing close

*

A cepstrum is computed taking the log of the Fourier transform. Two
Convolved time waveforms can then be separated if their frequency
distributions are approximately disjoint.
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577 Hz 1867 Hz
FILTER 3dB -
BANDWIDTH PWR 4630.0 529.7 ms

——— N\ ] \__—’-\/\A‘
1445 Hz
| PWR 5279.8 504.8 ms
r~————— N e
1395 Hz

PWR 4255.0

PWR 2359.7

PWR 1759.3 430 ms

PWR 2013.2 405.1 ms

| T i I I I I I T T
40 H; FILE 3 MD6  LIN MAGN FREQUENCY — 3333 Hz

BANDPASS FILTERED SPEECH |ul TO la] TRANSITION

(See Appendix D for description ot labeling.)

FIGURE 10 FORMAT ENVELOPE AND FREQUENCY TRANSITION
CAUSING DELAY DISTORTION
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FIGURE 11 CORRESPONDENCE OF Z-PLANE SPIRALS AND S-PLANE LINES
FOR THE CHIRP Z-TRANSFORM (From Rabiner, Schafer and Radar)
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to the poles of X(jw). We can express this concept in our formulation
by letting { be a complex variable rather than purely imaginary. The

choice of { to minimize od(t) would be an approximation bx(t) throughout

A
[t-Th, t]. When x(t) is generated by a second-order linear time-invariant
A

operator, the real part of bX is the real part of the complex pole in X(jw),

We can see, then, how frequency resolution is enhanced, although
envelope delay is still present since no provision was made for frequency
derivative compensation. Schafer and Rabiner's techniques require a classi-
fication process to limit the input signals to male, nonnasal vowels and
an iterative process to find the best spiralarc to achieve good discrimi-
nation, If the characteristics of the input were known, we could reduce
the number of computations by appropriate choice of filter transfer func-
tion, This is the technique used in modern:scan-frequency analysers where
the phase of the IF filter transfer function is matched to the frequency
derivative (scan rate) of the input, (Kincholoe”® ). If we knew bx(t)
and the signal yolass, we could parallel Kincholoe's techniques by adjusting
a time-varying filter to select a formant by center frequency tracking,
minimize delay distortion by adjustment of the filter phase function to
match the frequency derivative, and improve frequency discrimination
(rejection of other formants) by bandwidth matchingf Such a scheme is
shown in Figure 12,

The estimation of bx(t) requires classification of the input

signal (as we discussecd in Chapter I) and results in a 'rough" initial

estimate b‘(t) which is used to generate a mixing signal exp{—bx(t)}.

*

As noted by Kincholoe, the matched phase function would attenuate adjacent
formants whose frequency derivatives are not matched in the same manner
shown in Figure 9,
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The filter can then be specified using standard Laplace transform tec
niques where the dependent complex variable of the transfer function
the difference between the mixing signal's complex ''frequency" {S;(t)
and that of the input. The estimate is improved by a feedback 1loop.

The delay distortion caused by frequency and amplitude changes is est
mated and then corrected by a variable ideal delay. Equation (II-C-¢
can be used to analyze the feedback loop, but it can also provide a

synthesis procedure for a digital algorithm which significantly reduc
the computations necessary to implement the scheme shown in Figure 12
Assuming that ;;(t) is given, the majority of the computations are re

to implement the filtering (mixing and delay require one operation, e

per point of time).

There are two types of digital filter algorithms, transversa
recursive, Transversal filters compute an output value from delayed
values and are basically discrete convolutions (or correlations) of t

form:

K a\jlk—j k = 1, 2, “ e e (II"
j=b

The number of operations (one addition and one multiplication) per pa

*
of time is N. Recursive filters compute an output value from delayed

and output values, The algorithm is derived from the z transform of

*

The Cooley-Tukey algorithm for computing Fourier coefficients is of
form and for this special case requires only «dogr N, where r is the
greatest divisor of N.
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filter time function.

-1 -m
- - e . z
0o(z 1) _ P(z 1) B ao * a1z * + am
1(z %) Qz™h) 1+ blz—l ...+ an-n
m n
=) ) b0 -c-14
0k L,ajik-j + Zij K- (II-C )
J:O J:O
- -j &s
where z~! eJA is an ideal delay of time A
m is the number of zeroes
n is the number of poles.

The number of operations per time point is m+n.

We can use the quasistationary term from Eqn. II-C-9 to approxi-
mate the filter operation in one operation per time point. The prefiltering
classification and estimation of bx(t), along with feedback correction,
allow this approximation to yield precise frequency tracking (the amplitude
distortion is not relevant). The appropriate (narrowband) filter characteris-
tics are stored by means of the complex transfer function H(*). The value
of the input at each time instant is multiplied by the value of this func-
ltion at the estimated bias frequency. This method cambines the relatively
low number of operations of the recursive filter with a desirable feature
of the transversal filler. This feature is its abilily to change the filter
coefficients. If this is done with a recursive filter, an additional
transient distortion is introduced. Thus we can achieve an approximate
time-varying digital transfer function with a low number of operations,

given an estimate of bx(t) and a classification of the input.
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The classification system wmust be able to determinc roupgh, but
unbiased estimates ol parameters of the incoming signal. The overlapping
filter bank discussed in Chapter I can provide a basis for the estimation
with some restrictions, In order to maintain similg between the outputs
and input of a filter (within the effective bandwidth), Th&i(t) must be
less than the acceptable frequency resolution error. Thus a ''worst case"
bandwidth requirement can be derived which would introduce negligible
frequency bias for all speech signals (although the bandwidth would be

excessive for some).

Inspection of sonograms of English words spoken by several

speakers indicates that the maximum value of @i(t), 15,000 Hz/second,

occurs frequently from 800 Hz up to 3,000 Hz. (Above this frequency it

is hard to make reliable inferences.) Figure 13 shows bandwidth requirements
for several percentage resolution errors. The bandwidth is determined from Th

(approx. rise-time) for linear-phase filters by the relation

BT ~ 1 (II-C-13)
where
B - J AW) dw/A (o)
o)
T = Jo h(s) ds/h(0) =~ .8T
[ ~
AW) = ‘kJ n(tye I at

B gives a measure of bandwidth that is approximately equal to the half
power and effective bandwidths (for filters with very sharp rolloff like

those we are using, this approximation is better). T is a measure of

*
Defined in Section I-D, p. 23.
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rise time,iusually between the 10 percent and 90 percent points on a
step-response envelope curve, Figure 13 shows that our choice of
bandwidths (Sec. I-D) is adequate in view of the inference from

23

Flannagan's data that a just noticeable difference in frequency
for human experiments ranges from approximately 5 percent at 1000 Hz
Lo approximately 3 percent at 2000 Hz, The data for this experiment
results from individual variation of the first and sccond formant
frequencies in a four-formant synthesized vowel.

In the next section we look at the outputs of such a filter

bank and attempt to segment the speech signal into homogeneous epochs

with center f{requency and bandwidth as parameters.






II-D ESTIMATION AND SEGMENTATION OF INSTANTANEOUS SIGNAL PARAMETERS

The preceding section demonstrates how complex acoustical signals,
such as those encountered in speech analysis, are represented most appro-
priately by instantaneous time functions related to the envelope, instan-
taneous frequency, and pre-bandwidth function. Differential equations
for these functions have been derived for a single isolated formant. The
bandpass pre-filtering that we have specified in Appendix B attempts to
isolate formants. However, the inadequacies of fixed-frequency bandpass

filters and the presence of inherent background noise in any realistic

environment indicate that these differential equations will not be an
exact representation., Therefore, a general form for these differential
equations that can be expected to describe the signal parameters as seen
on the outputs of our bandpass filters is more appropriate. 1In the

following, we will denote the ratio a/a as p" (the real part of bx)’

d pr = f (br, w, g/a, Yy, N, t) (I1-D-1la)
dt 1 1
;L:) = e, w, gm, v, L, 0 (II-D 1b)

where fl and {_ are nonlinear time-varying functions f(or the derivatives

2

of the state variables. Th and 1E are stochastic processes which represent

the unwanted signals and other noise.

The classical theorems on "best" estimators deal with asymptotic

properties as the number of samples becomes large. These results are of
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II-D ESTIMATION AND SEGMENTATION OF INSTANTANEOUS SIGNAL PARAMETERS

The preceding section demonstrates how complex acoustical signals,
such as those encountered in speech analysis, are represented most appro-
priately by instantaneous time functions related to the envelope, instan-
taneous frequency, and pre-bandwidth function. Differential equations
for these functions have been derived for a single isolated formant. The
bandpass pre-filtering that we have specified in Appendix B attempts to
isolate formants. However, the inadequacies of fixed-frequency bandpass
filters and the presence of inherent background noise in any realistic
environment indicate that these differential equations will not be an
exact representation. Therefore, a general form for these differential
equations that can be expected to describe the signal parameters as seen
on the outputs of our bandpass filters is more appropriate. 1In the

following, we will denote the ratio a/a as br (the real part of bx).

Lo - r 0", e gm0 (1-D-1a)
dt 1 n |
g—‘: = £, w ga,y 1, ) (I1-D 1b)

where rl and f  are nonlinear time-varying functions f(or the derivatives
of the state variables. Tl‘ and 1| are stochastic processes which represent

the unwanted signals and other noise.

The classical theorems on "best" estimators deal with asymptotic

properties as the number of samples becomes large. These results are of
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little help in estimating instantaneous values. A multiple regression
analysis would fit a polynomial of specified degree to the observations
over a fixed interval. However, this method requires a priori knowledge
that is not available (maximum degree of the polynomial and a fixed
interval for fit) and much computation (usually a matrix inversion

(Donahue’!)., Thus, pointwise estimates are required.

For time-invariant differential operators with either stochastic
or deterministic excitation, the two common parameters are mean frequency
() and bandwidth (BW’). The mean frequency for analytic signals is well

A
defined in terms of the spectrum X(w). We can derive a formula in terms

of the time functions a(t), é(t) and w(t).

J X (w) X (w)dw

@

[ee]

- A% A .
w = — = 1J x %? x(t) dt/‘( a“ (t)dt

J a” (t)dt J <o -

— Q0

+ ju)(t)] &ty |Pat + j <) & Kohat ‘[ a” (t)dt
0 dt

—~ 0

1] Ta)
3 JJ:a(t)

where the second integral is due to a step discontinuity at the origin.

_ . SRR , a”(o*)‘J re
[ ‘{Oa (tHw(t)dt + 211JU oa(t)a(t)dt + =5 J_ma (t)dt.

*
Becausc the process is ergodic we will use time averages rather than
expectations.
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A
Since we assume that x is a well-behaved, finite energy function, a® (®) = o,

(5] w

o = | @(memat [ [ a?t)at (11-D-2a)
Jy J

e o]

The effective bandwidth can be converted to a similar form

(from II-A-7)).

j o (t)|%a® (t)dt
0 x°

BW® =

j a® (t)dt
0
, j B (6 a®(Dat 1o (W(8)-B)?a” (t)at

BW" = 0 + Y (1I-D-2b)
oo o
i a® (t)dt | a® (t)dt
-0 'O

Thus for constant coefficient operators we have weighted time average
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