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ABSTRACT

AUTOMATIC SPEECH RECOGNITION BASED ON

A NEW SEGMENTATION PROCEDURE

By

Earl J. Craighill

A procedure for segmentation of an acoustical speech signal is cru-

cial to the design of any system for automatic Speech recognition (ASR),

yet no adequate scheme currently exists. This study proposes and inves—

tigates the implementation of a procedure for segmenting input in the form

of connected speech from divers speakers using unlimited vocabularies.

A segmentation procedure which assigns linguistic elements, such as

phonemes, to contiguous acoustical signal intervals would be hopelessly

complex because of the many-to~many correspondence between currently used

linguistic elements and portions of the acoustical signal. Instead, we

propose a method for dividing the acoustical signal into analysis epochs

with minimal linguistic specification so that they are independent of

speaker and context.

Each epoch is defined by homogeneous signal characteristics; that is,

a generation model is identified with associated parameters, and nonlinear

time—varying differential equations are derived for these parameters. The

equations are used to track the parameter values, and an epoch boundary is

set at the point where they no longer predict (within a threshold) the

characteristics of the observed speech signal. From the functional forms

of the differential equations, we derive further processing algorithms

I
"

I
'

I





Earl J. Craighill

(analogous to data—dependent adaptive filters) for each epoch. Identi—

fication of the functional forms gives a gross linguistic classification

which forms the basis for classification of the epoch.

The differential equations are characterized in terms of sliding

moment averages of envelope and zero-crossing estimates on bandpass—

filtered speech signals. This method of estimation is amenable to low-

cost hardware implementation and requires few computations; thus, connected

speech may be analyzed in real time without overloading a standard general—

purpose computer. Asynchronous, real-time classification is achieved by

decomposition of the decision algorithm by a process similar to that used

in Kilmer's model of the reticular formation.

Overlapping bandpass filters are used to give an initial separation

of acoustical features. Experimental evidence shows how this reduces

the speaker dependence of further acoustical measurements. A decision

logic structure is specified and discussed, showing that it is possible

to select appropriate preprocessing procedures to focus attention on

significant features of an acoustical signal epoch and to accentuate sig—

nal characteristics closely correlated with linguistic features. This

preprocessing, when coupled with the syntactical structures developed

from theoretical linguistics, is hopefully a first step in recognizing

human connected speech from different speakers.
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INTRODUCTION

I—A Overview

A procedure for segmentation of an acoustical signal is crucial to

the design of automatic speech recognition (ASR) systems. As yet, however,

no adequate procedure exists for real—time automatic recognition of con—

nected human speech from several speakers. Principles from communication

theory and linguistic theory must be incorporated in order to derive an

efficient segmentation procedure. The language of modern communication

theory, familiar to the electrical engineer, most appropriately describes

the input with which we are concerned. For this study, we limit the input

to connected phrases of naturally spoken human language that have been

transduced into time—varying analog voltages. The output of an ASR system,

usually in the form of a sequence of linguistic elementsf is generally

described in the framework of linguistic theory, primarily phonology.

At first glance, the goals of communication theory and phonology

(namely, an accurate description of the current state of the process,

acoustical signal, or sequential linguistic elements) seem to be com—

patible. However, when one considers the large number of variations in

the acoustical signal possible for any given linguistic element, the

situation becomes hopelessly complex. Many attempts have been made to

eliminate this variation and thereby preserve only the meaningful

*These linguistic elements may be phonemes, distinctive features or

words. We are specifically thinking of only one level of classifi—

cation rather than a composite process such as identification of

phonemes and then morphemes. Our recommendation for a first element

is smaller than the usual phoneme or distinctive feature.

 



relationships of the linguistic elements. Successful decoding of this

complex acoustical signal by human listeners involves at least the

application of knowledge acquired from previous experiences of hearing

and speaking natural language and the listener's expectation of what will

be said. Thus, at this level, the basic assumptions of engineering

communication theory are no longer valid, and there is no applicable

strong property of ergodicity.

The purpose of this thesis is to describe a segmentation procedure

which not only specifies basic units for recognition but also gives an

adequate description of the complicated speech acoustical signal. This

description is prescribed by the requirements of further linguistic

decoding (words, phrases, ...). Further, the segmentation procedure

that identifies lower units will direct the higher levels of decoding

so that the search space is kept within practical bounds. The segmen—

tation procedure requires three subsystems based on a parametric

generation model of the acoustical signal:

(1) Initial estimation of parameters.

(2) A classification based on parameter estimates for

signal types.

(3) Selection of appropriate time-varying filters operating

on the input to give refined parameter measurements.

The requirements of these diverse topics are discussed in terms of a

representation of the acoustical signal which is developed from the

viewpoint of time-varying differential operators. Its use in deriving

estimators and detecting initial changes in these estimators is verified

experimentally.



 

In the remaining sections of this chapter, currently used segmen—

tation procedures are discussed in light of the complex nature of the

information—bearing features present in the human speech acoustical signal.

A parallel interrelated feature structure is described that is capable

of recognizing a shift of the pertinent information from one feature

to another. Linguistic information is conveyed with respect to two

levels (the vowels of an utterance form a primary, and the consonants

are incorporated by perturbations of this primary substrate). In order

to unravel this complicated structure, broad classes of speech sounds

that represent different types of signal characteristics must be defined;

this classification can then be used to direct further analysis for

recognition. By this method, formant* theory is related to higher levels

of linguistic decoding. Various preprocessing schemes are considered

which are commonly applied to ASR'systems for the purpose of isolating

individual formants. To satisfy the requirement for real—time operation,

a preprocessing scheme is chosen which uses a bank of overlapping wide-

band filters (with sufficient bandwidth to avoid distortion) to remove

noise and to provide a compact representation of the salient features

required for the recognition task. Real—time operation requires decom—

position of the decision process resulting in fewer computations and a

recognition structure tailored to the complicated overlapping nature of

the speech signal.

 

a:

By a formant, we mean the resulting time waveform for one cavity of

the vocal tract excited by glottal pulses, or frication noise.



 

 

In Chapter Two, the acoustical properties of the Speech signal

are modeled as a composite nonstationary stochastic process and the

mathematics of communication theory are used formally to describe the

process's complicated nature. One isolated formant is modeled by a

time—varying differential operator involving envelope, frequency, and

bandwidth parameters. The inadequacies of fixed—frequency types of

analysis (such as sliding Fourier transforms) are discussed, and require—

ments for low—distortion filtering are derived. Then the transient

response of linear filters to envelope and frequency changes found in

typical acoustical signals is derived in a way that offers new insight

into the behavior of analysis procedures and defines requirements for

the preprocessing Wideband filters. Formulas for real—time pointwise

estimators of the significant parameters are derived, and a predictive

differential equation segmentation procedure is specified which will

specify epochs in the acoustical signal having homogeneous signal

characteristics.

In Chapter Three, this segmentation procedure is discussed within

the framework of traditional linguistic theories. The complicated

structure of human communications requires additional mechanisms

(1) To determine the linguistically significant changes

in signal parameters,and

(2) To incorporate contextual information into the decision

process (which, in turn, resolves ambiguities and

directs further classification).

Structural theories are modified to include recognition and to show

the effects of linguistic rules on lower elements (effects of stress



on vowels, etc.). The use of the segmentation recognition procedure

proposed here is basic to a feed forward system, thus eliminating compli—

cated feedback analysis—by—synthesis techniques.

In Chapter Four, the formant representation and segmentation

results allow application of state—of-the—art detection/recognition

techniques* to a restricted speech signal (without the complex inter—

relationships between features). Study of the Bayes minimum risk

solution reveals that the primary concept is a probability mixture

formula for the outputs of nonlinear estimation filters, each tailored

to a possible generating model for the input signal and (correlated)

noise. Several difficulties are noted for implementation of this opti—

mal solution: realization of the nonlinear filters, correlation between

different (suboptimum) filter outputs, and conflict between classifications

on different filter outputs.

It is concluded that a heuristic recognition scheme tailored more

to the filter bank used in this study would be a better choice. Tech—

niques are developed to reduce the dependence among the probabilities

computed on the different filter outputs.

A first—level recognition system which can operate asynchronously

in real time is described. A nonlinear iterative structure determines

‘which filters have pertinent formant information. Specialized algorithms

derived from linguistic rules are then applied to these filter outputs

to determine the needed information for classification of this particular

*

Section I—E contains a discussion of terminology that is used in this

study for the pattern recognition discussions.



signal epoch. The output is a classification which is compatible with

higher levels of linguistic analysis. A second stage with formant

tracking filters guided by the initial classification gives the ability

to focus attention on only the desired acoustical features. Thus, the

complex acoustical signal can be segmented in time into homogeneous

epochs and also concurrent features of varying frequency with well-defined

mathematical models and time—varying parameters.

A total system design incorporating this segmentation procedure

as a first step will facilitate the use of human speech as input to

machines for robot control, text manipulation, command and control of

space vehicles, and many other man/machine tasks.



I—B THE STRUCTURE AND INTERRELATIONS 0F ACOUSTICAL FEATURES-IN

HUMAN SPEECH SIGNALS

The object of an ASR system is to determine recurrent elements from

measurements made on acoustical speech signals. Figure 1 shows a composite

of several approaches to Automatic Speech Recognition based on the theo—

retical encoding of speech shown in the upper block. This theoretical

encoding is motivated by Hockett's1 disCussion of a GHQ (grammatical head—

quarters) emitting a discrete flow of morphemes which are encoded into a

discrete flow of phonemes. Then, a speech transmitter converts the dis—

crete flow of phonemes into a continuous speech signal.

The determination of parameter values for each idealized element

<3

is motivated by the following studies. Peterson and Barney measured

first and second formant frequencies of nine English vowels in a fixed

:5

consonantal context (the word h_____d). Gerstman re—worked their data,

normalizing for each speaker, showing a sufficient amount of separability

of the measurements for vowel classification (in a fixed context for

isolated words), The correspondence between a fixed frequency or hub

of origin and consonants was first proposed by Potter, Kopp, and Green.4

Classification of stop consonants by association with a frequency value

was modified by Cooper et alb and Yilmazi They proposed consistent

measurements for stop—consonant classification could be made relative to

the following vowel fonnant frequencies. The slurring box accounts for

perturbations (hopefully slight) of these parameter values caused by

environment and speaker variations.

The first step in recognition is a division of the acoustical speech

into time epochs. The segments studied may be separated by epochs (portions
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of signal) rather than points, as in the case of Reddy7 who analyzes

only steady—state portions (i.e., portions with constant values of

envelope and frequency) and ignores the transition portions between

them. The opposite approach is taken by Dixon et al.“ in their analysis

and segmentation procedure. They define a new element called the

transeme, which is a "dynamic segment describable on a production basis

as the transition from one relatively steady—state articulatory con—

figuration to another."

The criterion for segmentation and further analysis may not be

related to linguistic elements at all, as in the case of Gazdag.9 His

segmentation points are determined completely in terms of the measurement

procedure that he uses to analyze the speech waveform; hence they are

independent of any exterior linguistic criterion. ASR systems developed

along these lines have no ability to ignore Speaker and environment

variations or free phonetic variation; i.e., in midwest English, prevoicing

before [b] or [d] is optional. Usually a separate "case" (pattern

class) is set up for each; hence the success that these various ASR

systems have in isolated sound situations or in one—perSOn conversational

speech cannot easily be extended to connected conversational speech

for many speakers.

Harris10 has discussed the extremely difficult problem of trying

to define linguistic elements as direct descriptions of portions of

the flow of speech. He finds it convenient in his analysis to define

certain elements which extend over quite long periods and others which

extend over short periods. ”In the course of reducing our elements to

simpler cmnbinations of more fundamental elements, we set up entities



10

such as junctures and long components which can only with difficulty be

considered as variables directly representing any member of a class of

portions of the flow of speech." (p. 18) A similar formalization in the

early work of Fant, Jakobson et a1?1 describes distinctive features that

are parallel rather than serial descriptions of the acoustical waveform.

Extensions of this approach by Chomsky and Halle12 are discussed at the

end of this section. Bobrow, Klatt, and Hartley 1“ have proposed an ASR

system based on this idea and derived independent parallel features from

the acoustical signal and performed classification on those features.

Other ASR systems using independent features have been proposed by Hill14

is

and FOCht. Bobrow et aL discuss the difficulties of recognizing conver—

sational speech for divers speakers in terms of:

(1) Consistency of each speaker in repeating words

for training (giving rise to phonetic variation)

(2) Speaker—dependent variation in their measurements

(shifts in formant frequency location)

(3) Segmentation of longer utterances.

These difficulties are caused in part by the extremely complex

nature of parallel features and the interrelations between them. Ohmanlfi

has studied various vowel/consonant/vowel (VCV) combinations and has

stated that it is impossible to treat even these short utterances as

three successive gestures. It is possible to analyze them only by con—

sidering the stop—consonantal gesture as superimposed on the substratum

1’7

determined by the two vowels and the transition between them. Houde



 

has investigated this further by means of X—ray movies of the configu—

ration of the tongue during articulation. The dynamic trajectories of

points on the tongue during articulation of VchV nonsense words can

be decomposed into target—directed (targets are long duration steady—

state vowel positions) and deviation (900 to target—direction) components.*

Five facts are clear:

(1) The deviation component is characteristic of the con—

sonant ([b] and [g] were used).

(2) The characteristic deviation for [b] and [g] was not

toward a target or hub but rather a consistent defor—

mation of articulator (primarily tongue) configuration.

(3) Targets of preceding vowels are changed by the conse—

nant (i.e., I in Tlge] has a different steady state

position than I in [I b e J).

(4) Stress placement affects vowel target positions.

(5) Timing of target—directed component was dependent only

on distance between target positions and not on speed

of articulation, speaker or consonantal environment

for the limited data investigated.

We can discuss these results in a way more compatible with lin—

is

guistic theory by use of Lamb's concept of a medium as a most unrestricted

(or most predictable) form and then describe the pertinent features which

convey information as perturbations of that medium. He defines a phonetic

 

3|:

This decomposition is slightly different from Houde's, in order to

demonstrate the concept of overlapping features.
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feature as distinctive if its presence is not determined by its environ—

ment. This idea may be extended to explain the Ohman and Houde data by

stating that the vowel—to—vowel transition is actually the medium for

the consonantal distinctions.

We should define acoustical features more generally than just

those defining linguistic events.* These acoustical features may be

classified as:

(l) Linguistic

(2) Speaker signature

(3) Speaker emotional state.

The interrelationship of all these features that are present simultane—

ously, preceding or following in time, may be correlated with the dominant

(distinctive) feature, but this correlation is usually situation (speaker,

context) dependent and thus can introduce much variation in determining

recurrent elements. It has been pointed out by Harris that time of start

and stop of different acoustical features may not be coincident in time.

Thomas1U suggests that a Speaker is able to adjust only one formant fre—

quency; other frequencies are allowed to fall where they may. He states

further that this formant is always the second, but the data presented by

Ohman does not support this. Rupert20 has studied isolated words spoken

by three males and two females; he suggested that:

 

*By "linguistic" we mean the specific content of the Speech waveform

that is being used to communicate a discourse or text. For the purposes

of man/machine communication, this definition will be sufficient. We

do not wish to get into a discussion of various gestures, intonations,

etc., which can also convey information.
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(1) Each speaker does consistently control at least one

acoustical (linguistic) feature which is usually less

than the entire acoustical signal (i.e., one or two

formants).

(2) Although the controlled feature(s) (say, second for—

mant) may not be the same in absolute value for all

speakers, the time patterns are similar and can be

identified by their recurrent nature.

(3) There is a high degree of recurrence across speakers

of these controlled features.

(4) Other acoustical features (may be correlated with

linguistic) that occur vary considerably according to

speaker, phonetic environment, etc.

Ohman has proposed a motor—control model to partially explain his

data as saying that for a VcV sound there are independent signals (or

parameters in our theoretical model) for the first vowel, the consonant

and the second vowel. The various muscles work in a coordinated fashion

to produce continuous changes in articulatory configuration. This approach

has actually been used to some extent in the work of Reddy. He first

classifies his segments into phoneme classes (vowel, fricative, stop,

nasal, liquid) and then performs a specialized analysis on each segment

which is directed by the phoneme class label.

Based on this discussion we formulate the following premises about

a feature description of the speech signal:

(1) Only a subset of the acoustical features present in a

time epoch of speech are linguistically significant;



 

(2)

(3)

(4)

14

this subset can be recognized by the precise repeatable

nature of its members. We do not mean precise values

(formant frequencies : 500 hz, 1500 hz, and 2400 hz)

but rather, precise time behavior within physical

(motor control) and linguistic* constraints.

Epochs of the acoustical signal can be equivalenced

to classes determined by a subset of linguistic acous—

tical features. These classes can be defined(by

the choice of the subset of features) in such a way

that they are situation (context, speaker) indepen-

dent. Roughly, the class labels are a generalization

of the consonant, vowel labels used by linguists and

also a refinement of Reddy's phoneme classes and

Rupert's production modes (PM's).

Further feature analysis is simplified considerably,

and a more precise syllable (canonical form) analysis

can be performed by a directed—search technique based

on the above classification. This removes the inherent

circularity in many classification schemes involving

normalization (analogous to the Visual recognition

problem of finding an object of interest to focus on

while it is out of focus).

Once vowel (peak of syllable —— Hockett) classes are

specified, they set up a primary formant transition

structure.

 

* ..

As noted by Ohman, consonantal variations of formant transitions are

different for Russian speakers than for English speakers.



(5)

(6)
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Consonantal modifications are with respect to the

primary formant structure and hence will be termed

secondary.

There is interaction between primary and secondary

acoustical features, but the class labels can be

assigned independent of this interaction.

The concept of precisely controlled features determined by phonetic

environment at first appears similar to the distinctive features matrices

proposed by Chomsky and Halle as the final linguistic idealized description

of the speech waveform. However, there are two crucial distinctions:

(l)

(2)

Significant features are chosen, and other (redundant)

features are eliminated based on the simplicity of

description and reduction of logical complexity in the

encoding process. In speech recognition, the human

is generally unaware of mathematical formulations when

he is learning to speak; hence, the features he selects

to emphasize and control precisely are chosen for

communication with another human being and immunity

to noise for that communication. Hence, an ASR system

must determine the precisely controlled features that

are present rather than formulate hypotheses about

which ones would be easiest to analyze if they were

present.

Their concept of opposition is with respect to elements

that can occupy the same time epoch (minimal pair).

This involves a comparison of definite (albeit





 

situation—dependent) measurements of the present input

with some representative set of measurements for the

opposing element. Many investigators have noted the

difficulty in this approach (Hemdal and Hughesgl).

The relative opposition concept of Rupert and Yilmaz

does not have this difficulty, because a time epoch is

compared to the preceding and successive epochs for

its relevant opposition measurements. Hence, normali—

zation becomes less of a problem.

In the following sections, we will expand these premises and show experi—

mental evidence indicating a different description of the acoustical

speech signal is necessary for an ASR system which more accurately

measures timing and frequency characteristics.



 

I—C SEGMENTATION OF THE ACOUSTIC SPEECH SIGNAL INTO ANALYSIS EPOCHS

The optimistic goal of some segmentation procedures is to define

time points and the acoustical signal such that the resulting sequence

of signal epochs will correspond to a sequence of idealized linguistic

elements. One then simply decides which linguistic elements each

epoch is most like. In the previous section we discussed this approach

and the resulting difficulties, especially in conversational speech

involving long phrases. Bobrow et a1. state that the purpose of seg—

mentation should be a selection of appropriate measurements to be

made, dependent on the phonetic context. Reddy's phoneme classes are

directive in the sense that they select appropriate decision procedures

to be uSed in analyzing each of his segments. We are thus led to a

procedure that will define time boundaries and also prescribe a par—

ticular type of analysis to be performed between these time boundaries.

The resulting epochs may not necessarily correSpond one-to—one to the

final sequence of linguistic elements. As an example, we might consider

a word such as ”back" spelled phonetically [b a k] that has been modified

by tape cutting at the beginning and the end to remove all noise bursts

related to the consonants. The resulting acoustical signal would contain

only a vowel—like portion, and only two time boundaries would occur at

the beginning and end of this epoch. However, if the tape cutting has

not been too severe, a person would still perceive the entire word; hence,

further analysis should determine from the transitions that the generating

sequence of linguistic elements is more like three: consonant/vowel/

censonant, rather than one vowel.

17
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A segmentation procedure should also identify the significant

controlled acoustical feature within the time boundaries. Rupert

discusses how this reduces the variability induced by situation—dependent

acoustical features. This would amount to attention focusing that

includes as a special case formant tracking. By ignoring all but the

distinctive controlled features, a large amount of noise rejection can

be accomplished. Further segmentation need not be impaired by this

attention focusing, because, as proposed by Rupert, it should be the

precisely controlled features that govern the segmentation. However,

the beginning of new features outside the area of attention must be able

to "capture" the recognition choice so that a feature does not dominate

long after it has ceased being significant.

The object of our segmentation procedure, to act as a direction

for analysis, must then be able to isolate homogeneous epochs of signal,

since in order to make reliable measurements we must have a tailored

measurement algorithm (i.e., it is extremely difficult to track a for—

mant during a fricative or noise—like portion of the acoustical signal,

Thomaslg). This suggests a representation of the acoustical waveform

that shows isolated acoustical features and gives an adequate description

of the signal properties so that segmentation and class identification

can be performed.

The concept of homogeneous segments must be augmented somewhat

because of the special nature of speech signals. In order to analyze

a generalized acoustical signal generated by a complex scheme, as in

human speech, one could use standard communication theory techniques

of identifying a state model for each epoch (i.e., a set of differential
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equations, n—degree polynomial fit, etc.) and then say the epoch has

physical homogeneity as long as the model is valid. Then the switching

times or segmentation points will correspond to changes in models. We

must also consider linguistic homogeneity as discussed previously;

there are several portions (acoustical features) of the total speech

signal which are not linguistically significant. Therefore, the homo—

geneous property is with respect to both the physical measurements

of the signal and the linguistic significance of these measurements.



  



 
 

I-D PREPROCESSING OF THE ACOUSTICAL SPEECH SIGNAL

Preprocess1ng of acoustical speech signals, when inspired by modern

communication theory techniques, has been dictated more by what is avail—

able rather than by what is appropriate. Researchers have attempted to

justify application of existing techniques by analogy with color (light

frequency) perception (Yilmaz) or human perceptual experiments. The

former approach can be though of as looking at the world through rose—

colored (harmonic) glasses. The latter technique must be used with

caution, since the capabilities of the human brain are not available

in an ASR system.

The complicated nature of speech signals involves a predominant

pitch frequency, which does not contain linguistic information (at a

lower unit level), plus several components with time—varying frequencies.

An acceptable analysis is possible but requires much computation (Schafer

and Rabiner 2). A real—time ASR system intended to make efficient use

of a machine cannot afford this luxury. The problem involves more than

waiting for a faster computer or a trickier algorithm when one wants to

recognize connected speech from several speakers. In this section we

will discuss the complicated nature of human speech signals and form a

basis for specification of a preprocessing scheme tailored to the nature

of ASR requirements.

The primary goal of preprocessing is to specify a transformation

(filtering) which will: (1) remove noise (including other, confounding

features of speech as discussed in the previous section); and (2) provide

a compact representation of the salient features required for the recog—

nition task. We cannot expect a straightforward application of standard

20
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techniques based on homogeneous models* to achieve these goals. The

generation of the acoustical speech signal is best modeled as a composite

stochastic process (that is, a heterogeneous mixture of several interdepen—

dent time—varying systems). In addition, experiments measuring human

perception of acoustical events indicate that man's ability to discriminate

frequency is more acute than his perception of differences in intensity

(Flanaganffl' We will show that the commonly used filtering techniques

have poor frequency resolution, which adversely affects ASR system per—

formance in natural human conversation.

If we assume that the signal is generated by a homogeneous process,

the most efficient transformation would match this generation process, as

attempted by Weiner—Hopf or Karhunen—Loeveg5 filtering. The difficulty

(and success) in using these methods depends on the initial selection of

the representation criterion and representation constraints.

The formation of the input signal minimizes, according to the chosen

criterion, the differences between the output and an idealized signal. The

criterion chosen has a considerable effect on the final form of the filter.

There are many problems in which the mean squared error formulation is

required in order to obtain any useful mathematical results. However,

another criterion may be better suited to a particular estimation problem.

For example, a filter designed for minimum mean squared error would be

used successfully in the case of a stochastic signal (fricative), where

the mean value and bandwidth of the frequency energy distribution are

sufficient statistics. On the other hand, in the case of a vowel formant

 

One characterization of a homogeneous process is a set of differential

equations of a prescribed form with (time—varying) parameters and a

fixed forcing function.
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the peak of the frequency energy distribution is much more important than

the mean value, necessitating a maximal likelihood criterion. Thus,even

assuming that we can apply the more sophisticated techniques of communication

theory to the speech preprocessing problem, we will generally need more than

one "optimumH filter for a speech signal because of the changing nature of

the speech acoustical signal.

The set of all possible inputs must be limited (by the filtering

operation) in order to achieve rejection of noise and unwanted signals.

This "allowable" subset is usually defined by a set of constraints (dif-

ferential equation in the Kalmanr}formulation). Along with providing rejec—

tion capabilities, this would make the recognition problem easier by limiting

the search space. However, the set of constraint equations, in order to

be useful, must be a very accurate description of the instantaneous (rather

than some average) "state" of the speech signal, implying that the classifi—

cation must be known in advance in order to perform the preprocessing trans—

27

formation. Halle has proposed a feedback type ASR system (analysis by

synthesis) to perform this circular classification. However, in view of

the large number of computations implied by such a procedure and the pre—

vious discussion of the nature of the speech signal, we would propose the

following: At the marking of a change in the speech signal decide which

of several classes the new epoch belongs to and which "portion" of the

total signal energy contains the significant information. Then, tailor

a "filter" to this portion and perform the required transformation for as

long as the desired features remain in the signal (determined by observing

the results of the transformation).
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We have already discussed how different criteria lead to several

filters or transformations. Also, the parallel nature of the acoustic

feature in a Speech acoustical signal indicates multifiltering as a first

step. We can summarize some of the requirements of a multifiltering

pre—processing to remove noise and unwanted signals.

(1) Simile — Preservation of the necessary characteristics of

a selected portion of the total acoustical signal. The

subspace resulting from the filter transformation should,

at this stage, preserve the input's characteristics (for

instance, if the filter were a bandpass, time—invariant

filter, this criterion would require preservation of the

amplitude and phase relationships of the input within

the 3 dB bandwidth of the filter).

(2) Rejection - Removal of extraneous acoustical characteristics,

including background noise and other speech features, such

as other formants or the pitch component (for bandpass

filters, this would require extremely good attentuation

outside the 3 dB bandwidth).

(3) Continuity _ At least one of the filters should contain a

feature throughout its duration (for bandpass filters with

a vowel glide of the second formant in the input signal,

that extends from 1400 Hz to 2800 Hz, at least one of the

bandpass filters should have 3 dB bandwidth to encompass

this range). This is desirable because we do not want

artifact boundaries particular to a specific set of

filters introduced when a feature transverses filter
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boundaries. If this condition is not satisfied, a much

more complicated decision network must be used to eli—

minate these artifact boundaries.

Further complications arise because of the wide frequency range,

extending over many octaves, and the extreme variations in amplitude. Five

contiguous l/l octave filters are required to cover the intelligible range

of speech (one more if high—quality speech transmission is required), and

the amplitude ranges over 120 dB with short—term variations on the order

of 20—30 dB. One of the most popular instruments for displaying and repre-

senting speech signals is the sonagram, a 2-dimensional graphical display

of frequency versus time, with intensity indicated by shading on the dis—

play. It has been shown that the sonagram is a physical approximation of

the generalized sliding Fourier series (Lernenj ), that is, a Fourier series

computed over a time interval that is stepped along the acoustical signal.

The difficulties in analyzing speech can be discussed in terms of the

sliding Fourier series and the parameters involved. First, the length of

the interval over which the series coefficients are computed must be

greater than the period of the lowest frequency component of interest.

Measurement of formant frequencies is further complicated during vowel—

like portions by the pitch frequency (proportional to the repetition rate

of the glottal pulses). The range of these pitch frequencies is from 80

to 400 Hz. The time period over which the Fourier series coefficients are

computed must be greater than the pitch period (say two or three times the

largest, «125—30 ms), or a great deal of variation will occur depending on

*

the phase of the pitch frequency . Thus, there is a lower bound on

 

*

The ideal situation would be to synchronize the Fourier series computa—

tion period with the pitch periods. This requires a pitch detector and

a device to decide on presence of pitch periods. The resulting frequency

resolution is still on the order of the pitch frequency.





 

frequency resolution on the order of the pitch frequency. Sliding Fourier

power spectra for both Wideband (65—6500 Hz) and bandpass filtered vowel

glides are shown in Appendix D. The irregular form of the spectra is due

to the pitch component. Also, the high power of this component relative

to higher frequency components (which carry the linguistic information)

requires a significant dynamic range (50 dB is shown in Fig. D-l); even

then, formant frequencies are difficult to identify. It would be expected

that bandpass filtering should isolate these peaks, as is seen in Figure D—2.

However, we should note that there are several problems that still are not

solved:

(1) When two energy peaks are in the same filter, a decision

must be made as to which peak corresponds to a formant

and whether the other peak is simply a harmonic of the

pitch frequency or a second formant. Ideally, it would

be nice to treat one formant in every filter; however,

this is overly optimistic.

(2) Measurement Resolution ~ This is possibly a special

case of (l) in that the measurement scheme (sliding

Fourier series, for instance) has a certain resolution;

i.e., a certain minimum distance must be present between

two peaks for them to he recognized as two separate peaks.

The problem that can occur here is that different speakers

may have different spacing, so that for one a two-formant

"sound" may appear as a broad single peak while for the

other the same "sound" will appear as two close narrow

peaks.

(3) Frequency Glides (large values of derivatives of frequency)

that move in and out of filters and across filter boundaries.
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The ideal approach, of course, is to treat a feature

as a continuous event, independent of the filter band—

widths, so that artifacts would not be introduced.

(4) Correlation of Formants in Adjoining Filters — Since

the filters are overlapping, the formant could be

present in two filters; important types of information

29

may be found by comparing adjoining filters (Hanne ).

(5) Requirements (2) and (3) above are actually contradic—

tory and cause, in the case of bandpass filters, a situ—

ation where in order to contain a formant glide within

one filter, the bandwidth would be entirely too wide

for adequate rejection and for emphasis of the many

types of speech features encountered.

(6) The effects of the pitch component are not completely

removed by 25—30 ms computations, time window tapering,

or bandpass filtering as has been suggested by researchers.

These problems for bandpass filters, or, as has been shown by

22

Schafer and Rabiner, for even more sophisticated types of frequency

analysis, are caused by the inappropriate nature of any fixed—frequency

type of analysis for speech processing. The criteria for using such

analysis on (1) steady—state phenomena, such as constant vowels or nasals,

(2) vowel glides (great changes in frequency of formants) and (3) noise—

like signals, very quick , random transient—type phenomena, are

in general quite incompatible. Further, it has been shown by Hanne that

for several measurement schemes, the estimation of formant frequencies

(natural modes) of the acoustical signal approaches a harmonic of the pitch

frequency rather than the true'value.
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A recent article by Lecours and Sparkes has indicated that narrow—

band filters enhance the frequency pattern of vowels, whereas Wideband

filters more accurately show the transient time behavior of stop conso—

nants (rapid envelope onset —— a fact well known to users of sonagraphs).

Hanne has pursued this prefiltering idea further with a more sophisticated

system of overlapping filters to estimate first formant frequencies within

3 percent. Flanagan'ska’ml study indicates that this approach is closer

to the frequency estimation error in human recognition. Thomaslv has also

used Wideband filters to emphasize frequency regions to show second—formant

variations more clearly. Both Hanne and Thomas have argued that the effect

of filtering speech signals can be predicted or inferred from usual steady—

state filter analysis. However, Fig. 2 shows a sonagram of a common English

word, indicating a frequency derivative on the order of 10,000 Hz per second.

This high value of frequency derivative is known to give quite unpredictable

and unexpected outputs from time—invariant linear filters (Baghdadyél,

32 as

Wiener and Leone , Cannon and Duncan ). One should reexamine the criterion

for filter bandwidth in terms of the time—varying properties that can occur

in speech signals. The inverse relationship between rise time and band—

width indicates that a fixed bandwidth bank of filters must be a compromise

at best. The effect of an analysis period on the order of 25—30 ms is to

average or smear quick transient phenomena. Discu551on of recognition

errors in various systems using this type of techniques (Reddy7) indicates

that many consonants, especially stop consonants, are missed due to this

smearing or averaging. The usual reason given for the recognition errors

is the low energy and short duration of these speech sounds. One possible

solution would be to vary the computing period inversely with frequency





   

 

“95mm:

x. ,n‘

jg 1‘. 2100—1200 _    I 90 ms — 10,000 Hz/sec

246 ms 365 ms

275 ms

FIGURE 2 SONOGRAM OF ENGLISH WORD, RUDDER,

SHOWING HIGH VALUE OF FREQUENCY

DERIVATIVE
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(long periods for low frequency and short periods for high). The resulting

coefficients would not be for an orthogonal expansion,and also vastly

differing waveforms can occur in the same frequency region.

Figure 3 shows both Wideband (65 to 6500 Hz) and bandpassed time

acoustical signals from recordings of four speakers saying medial [b]

from [umbif] (see Appendix A for a description of the experimental

pseudo—language used).

Bandpass filters can emphasize characteristics in the real—time

waveform of extremely short transient-type bursts (release of the stop

consonant [b] for different Speakers, both male and female). Although the

Wideband waveforms (Figure 3, first page) show very little similarity, it

is possible by bandpass filtering to find similar waveforms for the different

speakers (Figure 4). The rejection of other features in the acoustical

signal, as well as noise, by the filtering has made this posSible. It

will be noted that the most consistent and similar waveforms across

speakers need not, and often do not, occur in the same frequency range

(filter).

It has been argued by researchers that other acoustical clues for

the perception of a stop consonant exist, namely the transition into the

following vowel. Cooper et a1.5 investigated perception of synthetic

1F .
J has shown w1thinitial vowels with frequency glide onsets. Ohman

sonagrams of actual speech that these results may not apply to connected

human speech sounds. His data showed that, for medial stOp consonants,

the common notion of a formant hub does not hold; that is, there is no

consistent point of origin for a given consonant, say [b], to which and

from which vowel formants tend.
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487.5 ms FILE 24 M04 A 19 EH 1 512.5 ms

549.0 ms FILE 6 M06 19 BE 1 574.0 ms

695.1 ms FILE 5 MD8 19 MJ 1 720.1 ms

550.0 ms FILE 4 MD6 19 BA 1 575.0 ms

OUTPUTS OF OVERLAPPING BANDPASS FILTERS [M] TO [8]]

 

‘w-JI“

FIGURE 4 CONSISTENT TIME WAVEFORMS FOR SEVERAL SPEAKERS

FROM DIFFERENT BANDPASS FILTERS
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The choice of a set of filters for preprocessing the acoustical

signal ranges from a set tailored to several classes of acoustical signals,

possibly along with different representation criteria, to a set of contigu—

mm narrow bandpass filters. The second approach has been extremely popular,

especially for speech synthesis using vocoders. A familiar characteristic

of narrowband filters, i.e., ringing, when excited with a sharp increase

or decrease in amplitude or frequency is not consistent with the require-

mmw of simile. For a period of time after a sudden change in amplitude

or frequency, the output of the filter is not representative of the input.

fins problem will be discussed in the next chapter.

To avoid these difficulties, we have chosen a Wideband (half—power

bandwidth greater than one third the center frequency) overlapping filter

bank (See Appendix B). The particular choice of the number of filters

and the bandwidth of each filter was made in order to satisfy the three

Mmted requirements. We shall see that the type of multiband filtering

used here fulfills these requirements to a certain degree but has several

limitations which must be corrected in the decision algorithm that follows

the multiband filtering. The reason for these limitations is obvious.

A time—invariant filter based on steady—state sinusoidal considerations

OIJViously is not representative of the speech acoustical signal. However,

there are several reasons for this choice over the admittedly better set

of tailored filters, These reasons include:

(1) The hardware is readily accessible

(2) A large number of investigators
have used Wideband

preprocessing

{v

Gazdag ,

filtering in proposing and implementing

an I

schemes, including Hanne , Reddy , Thomas ,

Shafer et a1 and Yilmaz .
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(3) Adequate representations have not been tailored

to the time—varying acoustical signal,

(4) Few decision structures have been studied which are

tailored to this type of multiband filtering

preprocessing.

Another popular related analysis tool is the Fourier transform,

especially since the introduction of the "Fast Fourier Transform" algorithm

byCooley andTukey."J The Fourier transform equations can be modified so

Umt each coefficient computation may be thought of as a (digital) filter

Operation. Hence, the complete transform computation may be considered

a multi—bandpass filter processing.*

Much can be learned by considering a multi—bandpass filtering

scheme with the intention of using it only as a first step and deriving

from it further requirements for a tailored multi-filtering scheme.

A popular approach for parameterization of the filter outputs is

t0 compute coefficients for an orthogonal series representation. However,

me Criterion commonly used for these computations is complete represen—

taltion of the entire signal and minimization of the error between the

orthogonal series and the original signal. This is not what is needed

f0? an input to an ASR system. We would rather like to see only those

Imrameters necessary for recognition. FlanaganM has modelled the Speech-

generation process as either a two—pole linear filter excited by the

flOttal DUISeS (for vowels and oral continuants) or a filter excited by

Mute noise with variable bandwidth in the center frequency (for frica—

’ - ' . - r (nves. stop consonants). The various parameters of input, envelope an!

F“‘--—-
.

In the next chapter we will see that the Fourier coeffi01ent computafiion

acts like a narrowband digital filter and hence is subJeet to ringi g.

g d
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filter bandwidth and center frequencies are considered to be time-varying.

Thus, he would propose two parameters for each of our acoustical features,

related to center frequency and bandwidth. Rupert has suggested that there

are also consistent spectral shapes to the acoustical features which have

been only slightly considered by previous investigators. These shape

functions appear to be easily described by at most four parameters; say,

the first four moments of the spectral density. They were first derived

from sonagrams, but inspection of machine-calculated power spectra

(Appendix D) shows that they may be more artifacts of the hardware than

ccnmistent features of speech acoustical signals. However, Sittonflg has

studied the first four moments of reciprocal zero—crossing distributions

and found more consistent results.

Thus, one is led to different estimates of center frequency (and

higher moments) for a narrowband (unimodal) spectral density. Zero—crossing

counts immediately come to mind. There are many schemes and investigations

". l‘.

of zero-crossings for analysis of speech signals (Cherry and Philips. ).

However, these measures were usually made on the total signal and, as

can be seen by considering the sum of two sinusoids with variable ampli—

tudes, the resulting output can be very difficult to interpret unless

the signal has its spectral energy concentrated in a narrow frequency

band. Thomas has used zero-crossing analysis on the output of his

bandpass filter to estimate second formants; he finds an extremely good

representation for vowels and indicates trouble only fer very low power

portions of the acoustical signal (fricatives, stop consonants). The

use of bandpass filters followed by zero—crossing counts to estimate the

a?

frequency structure of formants has been demonstrated (Peterson ,

29

Hanne ).
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Recently, Scarnfli has discussed the fine structure of zero—crossings

for speech—like signals having formants and pitch frequency components.

He uses wide (1 octave) filters to isolate formants and shows the effect

of pitch periods on formant frequency estimation. The errors involved in

zero—crossing analysis are on the order of l/number of zero crossings and

therefore proportional to frequency. The case with Fourier series analysis

is different, in that the frequency—location error is fixed at ié the

lowest frequency component (in this case, the pitch frequency).

Zero—crossing counts can be related to instantaneous frequencies

31 as

(Baghdady , Lerner ) and thus incorporated into a discussion of quasi—

stationary response of linear filters. However, few investigators have

pursued this approach in the case of speech signals. Reddy7 uses zero—

crossing measures as an estimation of steady-state frequencies and also

some envelope measurements (primarily relative envelope changes). We

will discuss on a slightly more theoretical basis the relationships

between zero—crossing measures and instantaneous envelope measurements in

the next chapter. There are obvious benefits to be derived from the use

of both derived time series in that the interpretation of zero—crossing

counts is greatly enhanced by specification of the nature of the speech

Signal (i.e., if it is a vowel portion or a fricative portion, etc.),

which can be determined by investigation of the envelope time series.

The subject we will investigate in the following chapters involves

prefiltering by a bank of overlapping bandpass filters with the criterion

that significant acoustical features appear in at least one of the filters

over their duration. This presents a new type of recognition problem,

involving the logic to decide which filter has the significant output and

to perform a preliminary classification as discussed previously. This

is the topic of the next section.





I-E DECOMPOSITION OF PATTERN RECOGNITION ALGORITHMS

The use of multiband overlapping filters to preprocess speech

signals presents a specialized type of pattern—recognition.processor, For

the sake of clarity, we will adopt the widely used mathematical formulation

in our discussion of this problem: The inputs to pattern—recognition

devices are parameters, distinguishing characteristics of a physical

event. A measurement is the numerical value of a parameter. A pattern
 

vector, then, is an ordered set of measurements of a physical event; each

measurement can be thought of as a component. The distance in pattern

vector space between two vectors is a geometric measure of their closeness.

A typical, but not always appropriate, distance is the standard Euclidean

sum of squared differences of each component._ A pattern—recognition

 

algorithm is an assignment of class labels to the pattern vectors. In a
 

typical pattern-recognition algorithm, each input pattern vector to be

classified is compared with a number of reference vectors by a distance

measure. The input vector is then assigned the label of that reference

vector for which the distance is minimized. An ideal pattern—recognition

algorithm would result in a dichotomization of the pattern vector space

with unique class labels for each disjoint region. In the cases where

this is not possible, the output of our pattern—recognition (PR) algorithm

can be a degree of presence (DOP) vector, which has one component for each

 

class label. The DOP vectors indicate the relative assignment for each

class (say, normalized distances) and hence are a generalization of the

single class label output.

A directed search is a special type of pattern—recognition algorithm
 

that trades sequential operations for multidimensional single operations;
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i.e., in the reference vector comparison case, a subset of reference vectors

is selected by first examining few components and eliminating large port—

tions of the pattern vector space from further search. Plasticity is a

description of a particular type of pattern—recognition algorithm that

allows changes in the pattern vector to DOP vector mapping, depending

on a subset or all of the pattern vectors (the terms "learning" and

"adapting" have been used for this process). A deterministic pattern—

recognition algorithm is one which has no plasticity; that is, an a priori

fixed mapping of vectors into classes, possibly by setting thresholds on

mamurements. Normalization is a process which we will distinguish from

Um pattern—recognition algorithm as being more concerned with the deri—

vation of the parameter measurements. Although there are analogous types

ofstandardization processes that do occur in pattern—recognition algorithms,

it will facilitate the discussion to make this distinction.

We can now consider a schematic of the logic required for a pattern—

recognition algorithm for our multi—bandpass filters and its operation.

In Figure 5, the output of each bandpass filter goes into a measure—

ment device, producing an n~dimensional pattern vector for a time epoch

(physical-event) of the acoustical signal. These may be coefficients of

an orthogonal expansion over a certain time interval, coefficients of

a differential equation or another set of appropriate measurements (mean

ValueS, maximum value derivatives, maximum value standard deviations, etc.).

For a Continuous output of the bandpass filter, these types of measurement

require time interval marks, which we will assume for now are generated

elsewhere or are a Part of the measurement scheme. The output DOP vector

iS of ..
dimen51on r, the number of speech sound classes, discussed in

L
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Section D (on the order of 4—6). When referring to operations or pro—

perties of individual filter outputs, we will denote these as local, and

when talking about properties of the entire bank of filters, we will denote

these as global. By the particular choice of our filters, we see that a

local property is one that is restricted to a certain frequency range.

We will talk formally about "closeness" of pattern vectors in terms of

as

clusters in the sense of Ball and Hall. That is, we will say a set of

pattern vectors is clustered if the intra—cluster distances are small

(relative to a threshold, or to inter—cluster distances). The homogeneous

property, which we introduced in our definition of acoustical semnents,

is with respect to both the physical measurements of the signal and the

linguistic significance of these measurements. We might reformulate

that property in terms of our definitions; physical measurements have

some significance and consistency if they form a cluster (denoted as a

physical cluster) in the pattern vector space. It may not always be the

case that these physical clusters have linguistic significance. For

example, a frequency measurement on a low—order filter primarily exhibits

the pitch frequency. In this case, the physical clusters would correspond

to different pitch frequencies and not to different linguistic events. At

the opposite extreme, a physical cluster might be related to two distinct

linguistic events, such as a medial Lb], which has a very small amount of

silence before the burst release, or a great amount of background noise

such that it is difficult to distinguish from a fricative such as [f].

The resulting measurements for both the [b] and the [f] would tend to

lie "close" to each other and, hence, lie in one physical cluster. Thus,

the linguistic clusters would correspond to one physical cluster. At

first, it appears that appropriate class labelling of the physical clusters
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would define the linguistic significance; however, as indicated previously,

the difficult task of assigning an exterior linguistic criterion to physical

measurements subject to speaker, environment, and free phonetic variations

will require a more sophisticated, plastic type of correspondence. The

intention of keeping the actual decision algorithm simple so that it may

be implemented in real time (with a minimal amount of computation) requires

a better solution to the problem than simply keeping track of all the

physical clusters and then making a correspondence to a set 01 linguistic

labels. This type of approach requires, for example, storage of a large

number of reference vectors (say, one for each physical cluster), comparison

to these at each step of the decision algorithm, and a continual updating

of these reference vectors due to slowly drifting measurements. In our

problem, this approach is not feasible because of the variations due to different

speakers. Bobrow and Klatt13 have shown a decision algorithm (applied

to the speech recognition problem) which is a directed search using

decision—tree type logic that reduces the computational limitations

(amount of storage, number of comparison speed of classification) of the

Iusual multidimensional pattern recognition algorithm. Their procedure,

applied to a speech measurement situation in which the variations discussed

above are removed, would result in an effective ASR algorithm. Their

technique, of course, will fail in the situation where a large number of

reference vectors are saved for comparison.

The concept of precisely controlled features can be related here,

also, to physical clusters, in that if other perturbing influences are

removed, these precisely controlled features should result in "tight"

physical clusters. This approach in itself should reduce considerably

the amount of variation and hence the number of physical clusters needed
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for description. This is then what we mean by attention focusing; i.e.,

the selection of a portion of the speech signal with precisely controlled

features and tight physical clusters for further processing.

The complexity of the decision logic in Fig. 5 for an ASR system is

dependent upon whether a decision for assigning a class label can be

dichotomized into a number of local decisions followed by a global decision

. 40

(analogous to the Zeiger decomposition of automata), i.e., Is the dimen—

sionality of the pattern vectors on the order of mxn or n (where m is the

number of modules and n is the number of measurements in the input pattern

vector for each module)? In the situation where two estimation criteria

are appropriate (not necessarily simultaneously) for an n parameter problem,

hence leading to two "filters", (as discussed in Section])), we would say

the dimensionality is n rather than Zn, but "shifts" according to the input.

The local decision would be based on "best" estimate according to the local

criterion and the global decision would then be the choice of which esti—

mator was most appropriate by examining the variance of the parameter

estimator, for instance.

This variance measure of the estimation process can be generalized

to handle the many more difficult and varied situations in ASR systems. We

can also measure the quality of the DOP vector, e.g., the peakedness measure

41

introduced by Kilmer et a1 . A quality measure of the specific classifi—

cation of an input pattern vector indicates the significance of the esti—

mation of the measurements and consistency of the pattern vector w.r.t

previous classifications.
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Knowing that the complexity of PR algorithms goes up exponentially

with the number of dimensions, a decomposition can result in real—time

computations. The discussion of the previous sections indicates that this

is the case for speech, in that the entire Wideband acoustical signal

is not precisely controlled and does not contribute in its entirety to

the linguistic information. The choice of a logic structure, then, depends

on this decomposition. We propose to show in Chapter IV that this is

valid and indeed enhances the physical measurements in such a way as to

reduce variations and improve the probability of success of classification.

Kilmer et al. have studied parallel recognition structures of the

type shown in Fig. 6 and have demonstrated that an iterative nonlinear

Shakedown net (called S-RETIC)* is capable of arriving at a consensus

of opinion among the local pattern—recognition elements (denoted modules),

solving conflicts that may arise and selectively tuning to particular

modules that have made a high—quality decision. We feel that this type

of logic—structure is ideally adapted to the requirements of an ASR

system. In particular, the bandpass overlapping filters have a mixture

of correlation with neighboring filters and a high degree of local specifi—

city because of the precisely—controlled features in speech signals (cor—

responding to the local redundancy of potential command concept of the

S—RETIC). The parallel computations involving low—dimensionality (on the

order of the dimensionality of each module) allow a minimal amount of

computation.

*By S~RETIC, we mean the algorithm that performs the iterative nonlinear

shakedowu as described in Kilmer et a]. (1967) and not the complete

simulation study. Effectively, we denote S—RETIC for the computer program

which corresponds to the B parts of the modules with their interconnections.
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In order to get some feeling as to how S—RETIC arrives at its decision

and also to consider an alternative procedure for using a number of pattern—

recognition elements in unision, we can consider the probability distribu—

42 43

tion approximation techniques first discussed by Lewis and Brown . In

order to apply their techniques to PR problems, we will consider each

component of the DOP vector as being a conditional probability distribution

Pl(CL/xk)' L = l, . . ., r, defined over the (module) input pattern vector

<

space, Xk (xkexk) for each class, O{ (see Fig. 6). The DOP vector is com—

k , , k

puted from stored conditional distributions Pk(X /C¥) [or an input x by

Bayes formula (assume P(C£) = l/r).

r

k k ' k

' . z . / P C I~E~1)1369/“ ) Pku mp. Z k(x / p (

£21

The only requirements on the stored distributions is that they be non—

negative for all C XR and normalized such that
L,

E; .P (xk/C ) : l t : 1, . . ., r (I—E—Z)

k t

k

X

. , k

We can apply Lew1s and Brown's techniques to Pk(X /CL)’ kzl, . . . m.

for one class by considering each pattern-recognition module as computing

a low order approximation to the true distribution. Chow45 defines the

structure of a pattern recognition algorithm as the function form of the

probability distributions, particularly the condition dependencies among

the components of the pattern vectors. He describes the Lewis-Brown

approximation as structure adaptation. Hence, a parallel net of modules

with lateral communication between local PR computations allows at least

m different structures for each class. S—RETIC then selects the appro—

priate structure.





46

So far in our discussion, we have been considering decision struc—

tures that, except for the possibility of operating with minimal computations

and less complexity, appear similar to those termed template—matching in

Section B. This static type of pattern classification has little hope of

working with connected conversational speech. The structure we are proposing

has more flexibility built into it and operates like the PR algorithm we

have described for isolated sounds where timing marks are well defined. The

philosophy behind the design of the STL—RETIC program was to operate in I

an asynchronous manner, rolling over from one decision to another based

on input changes. This structure is exactly the type that is needed for

dynamic speech recognition; when one classification is chosen, such as

silence preceding a word, and a new feature begins. It has been demonstrated

by Kilmer that the change in the input (as reflected by the change in the

local DOP vectors) is sufficient to cause a change in the overall global

DOP vector. It will possibly be necessary to also determine changes in the

input measurements. We propose to do this by detecting inherent changes

in the physical characteristics of the signal and then deciding if these

changes are significant enough to cause a recomputation of the global

decision.

We will return to these questions in Chapter IV. First, however, we

consider in Chapter II the nature of the acoustical waveform and discuss

a procedure for detecting inherent changes in that waveform. In order to

Specify a training procedure for a plastic PR algorithm, an external classi—

fication criterion is needed. The lack of a one—to—one correspondence

between acoustical and linguistic events rules out completely unsupervised

learning. In Chapter III, structural linguistics is discussed in order to

provide this criterion.





II REPRESENTATION OF TIME-VARYING SIGNALS

Representation of signals that result from transformations by a

time—varying differential operator of standard signals present many

difficulties, particularly to engineers with backgrounds in linear time—

invariant differential operator analysis. Two representations are

commonly used, the analytic signaffisand the sliding Fourier transform

methodsgg

II-A Analytic Signals
 

The analytic signal representation is an attempt to define pre-

cisely the empirical notions of envelope and frequency. The primary

advantage of this representation is that it separates the envelope and

phase portions of the signal; in addition, the resulting Spectrum is one

sided (i.e., there is no mirror negative frequency portion). This cor—

responds to most spectra "pictures" and makes various moment calculations

practical.

The Spectrum of a real signal u(t) for t €(—m,m) is the Fourier

transform

(1 J

U(jw) = J u(t) e3.ULJt dt .*

~CI)

The Hilbert transform of the real signal x(t) defined on the interval

”m < t < m as the Cauchy principal value of the integral

9 1 O) x(o.)

h ,
x (t) E t_0 'do , “m < t s w (II-A-l) 

"CO

 

*

We will adopt the convention of denoting the spectrum of a real function

of time by capital letters.
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h

is another useful transform. The new real signal x (t) has the following

properties (Titchmarsh47):

(1) x(t) = cos(wt + e) xh(t) = sin(wt + o)

(2) Under rather general conditions if x : yh; xh : -y

(3) th : amt); r > 0

z o , 1“ z o

: JX(f); t s 0

We can now define the analytic signal corresponding to x(t)
 

 

x(t) : x(t) + jxh(t) (II—A-Za)

: a(t) eja(t) (II—A—Zb)

where

a(t) :AAlfx2(t) + xh~(t) (II—A-Zc)

u(t) : arctan{xh(t)/x(t)} (II-A—Zd)

The analytic signal x(t) has the one—sided spectra mentioned before, because

of Property (3) and the definition. This signal is complex (the real portion

is the original signal). Since the process of taking the real part of a

complex function is a linear operation, it commutes with other linear

operations such as convolution, differentiation, and integration.
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Equation II—A-Zb gives us an interpretation of the analytic signal

representation as a phasor in the complex plane with time-varying magni—

tude and angle (with respect to the real axis). We may denote these quan-

tities as the envelope and phase functions, terms motivated by the use of

the analytic signal in various modulation studies (Baghdadyal, Weiner

and Leonsz). The instantaneous frequency is defined as the time

derivative of the phase function.

d

wi(t) = da(t)/dt (II—A—3)

The analytic signal, although giving an instantaneous time descrip—

tion, can be used effectively for only a limited set of signals, namely

those with slowly varying envelope and frequency functions. In order to

enlarge this set of signals, we will introduce another definition which

will be useful in discussing second—order time—varying differential opera—

tors. The derivative of an analytic signal may be written as a product

of the analytic signal and a new signal, bX(t), which we will denote the

prebandwidth signal.

  

 

d§(t) d { ja(t)t _ 1 da(t) , dd(t)‘ A
_dt__ = a? a(t)e J _ {a(t) dt + J _dt__} x(t) (II—A~4)

where

d 1 d a(t) . da(t)

bx(t) = a(t) dt + 3 dt

*

The name of this function follows the convention of Deutsch and

camera“6 definition of effective bandwidth. First shift the Spectrum
 

 

* A

Deut5ch48 denotes x(t) as the pre-envelope signal because its magnitude is

the envelope. '





A .

of x(t) to its center frequency. This frequency shift can be included

in bx(t) by a property of Fourier transforms

Xs(jw)g X{j(w + wo)}(})- e_‘jw0t x(t) = §S(t) (II—A—5a)

b (t) a(t)/a(t) + j(&(t) - w

x5

O) (II—A-Bb)

When we is the center frequency of X(jw), the complex portion of b s

x

reflects the time variations of instantaneous frequency about the mean.

The effective bandwidth, BW, is the second moment of the Spectrum

about the mean.

00 2

  

00 A

BW‘ g f;m w ‘X (w)‘ dw : _m lth (tl dt

I lxsw)!2 dw J_ ‘xs(t)'2dt
..m 00

(I)

As

I Jb S(t) x (t) dt
—co X

L a2 (t) at

(I)

2

 

 

The magnitude of bXS is an upper bound for the effective bandwidth

by the Schwarz inequality and thus is a measure of an instantaneous
 

bandwidth

sz

CD CD

, 2 2 s ,
j;m lbXS (t)| a (t) dt Jlm a (t) dt

{bxs (t)|2 dt (II—A—7)[
A

c
h
fi
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A

Another interesting relationship between bx(t) and x(t) is (for x(t) # 0):

d A A d “

: --— : —-— 1 t --bx(t) dt (t) // x(t) dt { 0s X( )} (II A 8)

In speech analysis, a logarithmic scale for amplitude (loudness) has

often been used. By taking a derivative (with appropriate definitions

for the complex logarithm) we can replace the transcendental function with

a function more easily computed on a digital machine.

Now, consider a second—order time—varying linear differential

equation (DE).

Q + a1(t)x +a (t) Q :: a(t) (II—A—9)

where a1(t) and ao(t) are real functions denoting the time—varying para—

meters (for example, of a formant-producing cavity in Speech generation).

A

u(t) is an excitation function which may be stochastic (fricatives) or

deterministic (glottal pulses). Introducing the prebandwidth function,

[ bx(t) + b:(t) + al(t) bx(t) + a2(t) ] x(t) : 13(t) (II—A~10)

A

The homogeneous solution of the reduced DE (u(t) : 0) involves solution

of a Ricatti equation for bx’ which can be solved if a1 and a2 are constant.

' *

= b + (b + (b +~<2 )(b + c )) = O

X X X 1 X 1
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where

0 ll

N
I
H

a + a2/4 — a (II—A—llb)
l l 2

c = %a + /a2/4 — a (II—A—lla)
1 1 1 2

c1 and c: are the pole locations for the time-invariant system given by

Eqn. (II—A—lO). When the constants c1 and c: are complex, the magnitude

of st, the shifted prebandwidth function, has the damping factor a1/2,

which is an accepted "bandwidth" for this system. Thus, our definition is

useful in relating bandwidth to a system that may have an infinite value

for BW (this happens for certain values of a1 and a2).

When a1(t) and a2(t) vary Slowly with time, so that bX R10, we

can still define cl(t) and c:(t) by Eqn. (II—A—ll) and we can define time—

varying poles without Fourier transforms. In general, Eqn. (II—A—lO) must

be solved by numerical integration, but the function bX is related to the

crucial parameters of a system described by Eqn. (II—A—9) and can provide

insight into the system's behavior. Analysis of higher-order time—varying

systems by this approach is not as easy as the analysis of time—invariant

systems, where reduction to second—order systems is achieved by partial

fraction expansions. The lack of a superposition principle, plus the com—

putational difficulty with sums of analytic functions, further complicates

the generalization.

The analysis of the dynamic characteristics of one isolated for—

mant is possible (and more tractable) with the introduction of the

prebandwidth function. Real differential equations (DE) for the envelope

and frequency functions can be derived by Substituting the definition of

bx from Eqn. (II-A—4) into Eqn. (II-A—lO) and separating the result into

real and imaginary parts, giving
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[:(t) + a1(t)é(t)+a{a2(t) - (19%)} a(t)] [COS{Q(t)} — sin{°1(t)fl

= a(t) cos {y(t)l (II—A—lZa)

[®(t) + 2w(t)é(t)/a(t) + a1(t)w(t)]a(t)[cos{a(t)} + sin{d(t)l]

= a(t)sin{y(_t)} (II-A-le)

where

§(t) = a(t)eja(t)

3(t) = g(t)eJY(t)

w(t) = d<t>

The equation for the envelope (II—A—lZa) is of the same form as

the total signal DE with a "natural frequency" reduced by w2(t). The DE

for the frequency is nonlinear in w and a and shows the effect of damping

on the natural frequency.

We can change (II—A-12a) by substituting for the second derivative

of the envelope

on
d .

. r)

a(t)/a(t) = a; {a(t)/a(t)} + {a(t)/a(t)}“.

Then we can rewrite (II—A—12) as

d . . 2 _ . a

a? {a/a} = g/aCcosy/{cosa - sind}] + w - ap — ala/a — {a/a} (II—A—lBa)

d a

asz} = g/a[siny/{cosa + sina]] — Zwa/a + alw , (II—A—13b)

 





If we identify w and a/a as state variables, then Eqn. (II—A-13)

is in the form of a nonlinear vector differential equation. For Speech

acoustical Signal representation, these state variables are invariant to

amplitude scale changes as seen from their differential equations; further,

they form the real and imaginary part of the prebandwidth function.

AS noted in Chapter 1, Speech acoustical signals fall into a number

of classes, depending on the values of the four Signal parameters al(t),

a2(t), g(t), and Y(t) in our single formant model. InSpection of Eqn. (II—A-13)

indicates that the derivatives of the two state variables depend only on

the state variables and these four time—varying parameters. Thus, if we

were to Specify the two state variables and their derivatives as functions

of time, we could perform the Speech Signal classification. This procedure

does not require us to solve the complex nonlinear differential equations

or to perform any type of matrix inversion that would be necessary to iden—

tify the time—varying model parameters.

When a(t) is a train of unipolar glottal pulses (each being 2 to

12 ms in duration), u(t) can be represented by the excitation enve10pe g(t),

For this Situation, the sinusoidal oscillation terms can be removed from

Eqn. (II-A—12). This is achieved by the physical process of envelope

detection and lOWpass filtering. In Section D, this filtering Operation

is investigated and a criterion for selecting the cutoff frequency is given

to minimize distortion of the solution of the differential equation and

maximize the smoothing of the oscillation terms.

When the excitation signal is stochastic, we cannot obviously

reduce the complexity of the differential equation (i.e., g(t) may
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not adequately represent the total characteristics and y(t) may also be

required to adequately describe the random fluctuations). Under certain

conditions, it is possible to assume that the excitation function a(t) is a

Gaussian random process with expected value of 0(E(G) = O) and has independent

increments with a uniform energy versus frequency distribution (white noise).

The differential operator described by Eqn. (II—A—lO) will then specify an

autocorrelation function for x(t). Kelly and Reed49 Show that the envelope

and phase functions for x(t) and their derivatives have the following

A

probability densities for each fixed t when x(t) is a stationary process.

p(a, 01, h, w) = p(a)p(01)p(a)p(w/a) (II—A—l4)

where

p(a) T R(O) Rayleigh with mean 0, E{x2} : CB

p(a) T N(0, Bxe) Normal with mean 0 and variance Bxg.

p(a) I U(0, 2“) Uniform between 0 and 2h

p(w/a)-’ NUT), Bxg/az)

_ d
U.) = E{ IUJI}

” gEtxgl/[Etkgfl — we.
c.

B

x

This indicates that the angle, envelope, and envelope derivative

are statistically independent for each t (independent random variable).

Thus, no information is lost by removing the OSCillatory terms in

Eqns.(II-A—12) and (II-A~13). For bandpass spectral densities (like those

we are considering), where the energy is concentrated in a range Aw about E,

the envelope and phase function energy distributions are concentrated

25

in a similar range about w = O (Davenport and Root ). Also, the uniform

distribution of the phase contains no parameters of the generating equations.





 

 

a

Abramsonbo has defined Bx for stochastic processes as the mean

Square bandwdith. For ergodic stationary processes it is equal to the effec—

tive bandwidth, BW2, given by Eqn. (II-A-6), which is applicable to deter—

ministic processes. Thus the instantaneous bandwidth function, bx(t) is

related to bandwidth measurements for deterministic and stochastic

(stationary) processes. Further, for second—order differential operators,

Eqn. (II—A—lO), all the parameters of the process can be determined from

first—order probability distributions (cf. Eqn. II—A—14), It is not necessary

to estimate autocorrelation functions or spectral relationships between

bx(t) and the parameters of the differential operator (Eqn. II-A—lO). Since

this operator determines the autocorrelation fumztion, these remarks apply

to nonstationary processes also.

Many speech sounds can be modeled by stochastic processes with sta—

tionary autocorrelation functions (giving time-invariant Spectral densities).

However, the short duration and low relative energy of these sounds does

not allow a ”steady—state' Spectral density approach. Thus we must consider

transient responses. In the next section we will discuss the problems of

uSing Spectral estimation techniques and the transient response of linear

SyStems to envelope and frequency changes.





II—B. Sliding Fourier Series
 

The recent development of the Cooley-Tukeya4 algorithm for fast

digital computation of Fourier series coefficients has caused much interest

in Fourier frequency analysis. Modern communication literature

uses "Fourier analysis” to refer to a particular use of any set of

orthogonal functions to approximate a given signal by the following

form:

f(t) ~Z akcpk(t) (II-B—l)

kZO

where the set of functions {wk(t)jk20 is such that for some interval of

time [a,b] and some weight functions h(t) (definition of orthogonal functions)

.b

. 2

Jah(t) en(t) ¢m(t) dt = cnénm (h(t) > o) (II—B—2)

where 6 = 1 n=m

nm

= 0 otherwise;

the ak'S are constants.

For any N, and for any given finite energy function f(t), the integral

weighted squared error defined by

N

h - — > t 3j: (t) ‘rm akCPk( )l at

is minimized by the constants

b

ak = I; h(t)f(t)mk(t)dt . (II-B-3)
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The most popular orthogonal set is the set of trigonometric functions, with

h(t) = 1 over [a,b]. However, the trigonometric functions have finite

energy only over finite intervals. Therefore, the class of functions we can

represent by Eqn (II-B—l) with trigonometric functions must be non—zero only

on a finite interval.

A finite energy representation over an infinite interval is achieved

by defining the truncated time function

f(t) -T/2 S t S T/2 (II-B-4)HfT(t)

H
Q
.

0 otherwise

*

and then repeating fT(t) every T seconds. A Fourier series of the form of

Eqn. IIeB—l can be used, with

d

(t) : cos kw t

o

d d

2 . t ' (,0 2217@2k_l(t) Sin kwo , o /T

Some of the properties of the finite Fourier series are:

‘T/2 . _

‘ kw t

(1) a2' : Re[ f(t) e3 0 dt
k d-T/Z

/2 'kw
a : —ImJT f(t) eJ 0t dt

Zk'l —T/2

(2) f(t) V‘ ra cos(km t) a Sin kw t} i q Q 0

”’ ’ 1 2k 0 t Zk—l o ' ‘-1 -

k40

V j(kw t + (pk) Z { ‘ }
~i “ 0 2 c 03 w )

Re A Cke kc k Ot + qk

C 9 ‘l1 s + a d

k “ X‘2k ’ 2k—l

 

*

This representation is a good approximation only over the interval [~T/2,

T/2],
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t
m g arctan{a /a

k 2k—l ZkJ

Notice in property (2) the resemblance to the form for analytic signals.

*

The analytic Signal corresponding to this series is

Y" 83' {kwot + cpk}

f(t) a. 2 k (11-3-5)

Now, consider some implications of these properties for time—varying

Signals, especially signals with varying frequency. Looking at

Property (2) again, the series is a sum of cosine functions with

constant amplitude and constant phase. (Guilleminbl) states that the

approximation of arbitrary functions by this type of series is due

to constructive (and destructive) interference between sinusoidal

functions of different frequencies. The natural association of the

Fourier coefficients with a frequency distribution (analogous to

Laplace and Fourier transform theory) causes some problems due to

the interference phenomena. Figure 7 shows a particular waveform

defined over a finite period ‘Ta’ T The transform of y(t)

L

i

bi

 

r g .1 . ‘ .

(assume I‘a _ 3Tb) lb .

i r2|!(f f )T /4}

S F eijiyfll 5 n1 «t b ft. : l/T.

~ = n _ 4 ‘L

 

To put the series in true analytic form, Baghdady considers each term

as a phasor and defines the amplitude and phase function for the

resulting phasor sum, a construction that may have some intuitive appeal

but is no help at all computationally.
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Wt)

 
FIGURE 7 SHORT TRANSIENT PHENOMENON WHICH IS DIFFICULT

TO ANALYZE WITH FOURIER SERIES
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and indicates that Fourier coefficients computed over [0,T], for Tsz, would

be significantly nonzero for several values of k other than k0 : T/Tt'

The nonzero coefficients are necessary to cancel out ck0 cosianot + mkol

over 0 S t S T/2. The distribution of energy among the ck's is mis—

leading to an intuitive concept of frequency associated with y(t).

A remedy that has been suggested for these problems is to make

T smaller (less than Tb/2) and compute a sliding Fourier series (i.e.,

starting the computation at increasing times). The resulting computations

can be interpreted as "time—varying" ck's and Vk's. (However, this

approach adversely affects the computational savings of the Cooley—Tukey

method.) We may then ask if a representation of the form

, wkm
x(t) A4 E: ck(t) e (II—B—6)

kBO

would combine the properties of the analytic function and Fourier series.

We can get some insight into the behavior of this series in the case when

¢k(t) = wkt + 9k. The Fourier transform of f(t) in that case is

‘ JG

X(jw) A. 2“ E. e k Ck(w—wk) ; W > 0 (II—B—7)

R40

wh .ere Ck(w) 15 the Fourier transform of ck(t). Thus, the convolution sum

1
n Eqn, (1 I~B—7) has smeared all the ck(t) functions together.

Ari (Example of a set of ck(t)'s results from the "sliding" defi—

niti

on of Ifourier coefficients,

1.... ' L-
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t

ck(t) = Loo §(o)¢k(t—o)do (II-B—8a)

where tk(0) = ¢k(0), one of a set of orthogonal functions and the "duration

(non—zero time interval or effective time width) of t is much less than

A

that of x. In particular

t ~ ,_

Ck(t) = l- I ;’:(o)erk(t Cy)“do (,II—B—8b)

t
-w ~ ~‘w o

z e‘J kt I §(o)e J k do

'L—T

We see that the calculation of sliding Fourier trigonometric coefficients

can be interpreted as the output of the linear filter with input x(t) and

impulse response

h(t) = e OStST (II—B—Q)

= 0 otherwise

We might ask how ck(t) would look for various situations, especially

for time—varying frequencies (as in Speech formants, FM modulation

systems, etc.). To answer that question precisely, we must develop

Some methods of looking at the response of linear filters to a

general class of inputs. Before developing such a method, we might suggest

what the ck(t)'s Should display.

A

Suppose the input x(t) is a constant amplitude sine func—

_ *

tion with a linearly varying frequency, wi(t) (wi(tk) = wk, k=1,2,3,4).

‘________________

)I:

We denote an instantaneous frequency function by wi (t) when it may be

Confnsed with values of frequency.

1'



I

01 (t)
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t2 T:

“(23(1)

[3 #

Ic4(t)

t4\

FIGURE 8 IDEALIZED FOURIER COEFFICIENT RESPONSE TO VARYING
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Then, each ck(t) corresponds to a frequency wk’ k=l...4, which should

ideally look like Figure 8. In the next section we Show that this is

possible only with restrictions which are too severe for the class of

speech acoustical signals.



 



II—C Response of Linear Filters to Analytic Signals
 

When inputs to a linear filter (used to separate different for—

mants in speech signals, say) contain amplitude and frequency derivatives

of significant magnitude, the usual transform—superposition method of

analysis becomes unwieldy, especially in determining transient response.

1 Leon and Weiner,32 and Cannons;3 have suggested a differentBaghdady,3

approach to this problem; they use the analytic signal and convolution

integral to Show the nature of the output of a linear filter in a more

enlightening manner. Their approach is a generalization of standard sinu—

soidal analysis using Fourier series. If the input to a filter is a

sinusoid that starts at t : 0

[j wot]

x(t) : ae t I
V

0 (II—C-la)

and the filter has Fourier transform H(jw), which is rational, with

simple poles at the point 5 = S S , Sn, then the output of the1; 2, ..-

filter is

n

jwot --‘ Skt

o(t) : aH(jw )e + a Ak e

0 (II—C—lb)

k=l

with

(S-s ) H(s)

k

Ak

s—jw _

0 ask

The first term in Eqn. (II’C—lb) is the Steady—state or stationary

solution, and the second is the transient term. The stationary solution

is simply the input multiplied by the Fourier transform of the filter

evaluated at the input frequency. When the input has a time-varying

65
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amplitude and/or frequency, the form of Eqn. (II-C—lb) is duplicated by

0(t) = a(t)eja(t) H(jw(t)) + e (II-C-lc)

where

0(t) ' is the output of the filter

a(t)eja(t) is the analytic signal form of the input

H(.) is the complex Fourier transform of the filter

impulse response

w(t) is the instantaneous frequency of the input

6 is the transient or distortion term.

The first term, called the quasi-stationary term, is merely a complex

number times the input, giving an amplitude and phase change. Thus, the

idea of ”frequency selection” by filtering has a definite meaning when

6 is small compared to the quasi—stationary term. The transient or dis—

tortion term results from the filter's attempt to "follow" the changing

input. Baghdady (and others) have bounded the distortion term and restricted

the set of inputs to satisfy the bound in order to use the quasi—stationary

term as an approximation to the output of the filter. The class of linear

filters was limited in these studies to those described by rational functions

of the frequency variable.

For the representation problems we are considering, this class

of filters is not general enough (a. ”Fourier coefficient” filter is

not of that type), nor do we have control over the class of inputs in

the same manner. We will find the following definitions notationally

(and possibly,intuitively) convenient.
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The Fourier transform pair for a real function h(t) is

co

H(jy) = §_m h(t) (9—3“)t dt (II—C—Za)

h(t) : I m H(jY) e'm’t dy w : 2ny (II—C-Zb)

Baghdady, Leon, and Cannon now define the quasi—stationary response of

the filter as (for input instantaneous frequency, wi(t))

m -Jw.(th3

H(jwi(t)) 3f h(0)e 1 do (11_c_3)

___CD

However, this is not a precise definition of a filter reSponse to the

instantaneous frequency unless the frequency changes slowly. Assume

that h(t) is nonzero only over a finite interval LO’ThJ' Then,

*

wi(t+0) for 0 s a 5 Th 15 given (for mi analytic in [0,Th]) by

. . k

w.(t+0) = w.(t) + w.(t)0‘+-E: 24 w(k)(t)
1 1 1 k!

k22

and so a more exact definition results by using w_(t+U),

l

T Gk+l w (k)(t))

. h .ML(tfl3 -( k‘ 1
d f '

2 J h(o)e 1 n'e

O kc—‘l

H(jw.(t)) J d0 (11-0-3')

1

This (k3finiticnl ha unwitfl(h¢ for silluitions “dtfli signiflxuuit fre—

quency derivatives, although it is more accurate than Eqn. (II—C-3).

Of course, the two definitions are compatible if Thwi(t) \R wi(t).

 

*

We use the notation w for the "irst derivative of w with reSpect to

its dependent variable and w for higher derivatives.



68

Our approach will be to use Eqn. (II—C—3) as a definition, but

with a generalized frequency term, i.e.

d Th Jy(t,to)o

H(j¢(t,t0)) = J h(o)e do (II~C—4)

0

where

d

=3 S S 'w(t’to) f(wi(t+t0)) 0 t0 Th to fixed

We can illustrate by an example. The Fourier transformation of Eqn. (II-B—9)

is:

3w (0) _.w0

' e k e J doH 'wk(J )

<i(w—wk)T/2
sin(w—w )T/2

: e k (II—C—Sa)
 

(w~wk)T/2

and for the frequency function t(t,to)

‘J[¢(t’t )-w lT/Z - t t )~w T/2
Hk(3¢(t)) : e o k Sln(t( . o k)#_ (IluC—Sb)

(y(t,tO)—wk)T/2

Thus, the coefficient c has a maximum value whenever t(t,t0) = w
k k

as we had shown in Figure 8.

The calculation of the distortion term will be facilitated

by the definition

t -Jwfl

H(jw,t) = J h(o) e do (II—C—6a)

__OO

—Jwt t jw(t—o)

= e I h(O)e do (II—Ce6b)

-00

{h(t) * ejwt} / ejwt ‘ (II—C-6c)
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53 H

Kharkevich calls this function the "running Spectrum. It can be

shown that this definition introduces artifacts into the spectrum,

although it does have the limiting preperty

m -jwo

(1) H(jw,m) = H(jw) : e h(o)do

Another property is

(2) ‘37:" H(jw,t) = h(t) e‘jwt

From Eqn. (II-C-GC) we can see that the running Spectrum is a normalized

transient response of a filter with impulse reSponse h(t) to an analytic

sinusoid signal.

The output of a filter with impulse response h(O) and input

x(t) = a(t)ejw(t) is

t .

a t—o

0(t) = j. a(t—G)eJ ( ) h(0)do (II—C—7)

—00

We make the following assumptions

h(o) = o; O < o; o > Th (II-C-8a)

€ .
. -JUJO

le f0 h(O)e do = O (II—C—8b)

6:_'0

Equation (II—C-88)is realistic, since most digital computer applications

require this truncation. Equation (II—C—8b) simplifies the exposition

by not allowing terms of the form Km6(t) in h(t). Using integration by

parts, the output becomes
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f Th 30(t-G)

0(t) : J a(t—o)e h(o)do

r- T JQ( t—O) .j‘llo \

h d . l
= J C) a(t-o)e {e 65 H(JW,O)I do

J[a(t—o)+to] Th

2 [a(t—o)e H(j¢,g)]

0

d

JTh ES a(t-o) jWG

O -——3(?:5y— + deg a(t—o) — t1] x(t—o)e H(jw’0)dg

By the assumption in Eqn. (II-C—Bb) the first term evaluated at zero is

ZGI‘O.

l

J[0(L—Th) 4 Wle

:‘I( t—Th) e H( .j W)

T

. h f 311:0

+ J {bx(t—O)-Jtlx(t—o)th(o) * e } do

0

0(t)‘ H

0 (t) + 0 (t) (II—C-Q)

q d

We denote by oq(t) the quasi-stationary portion of the output

transient reSponse and by od(t) the distortion term. The quasi—stationary

term shows, explicitly, that the output is delayed from the input by an

amount on the order of the interval over which h(t) # O. A reference

different than the one commonly used minimizes phase distortions

occurring in od(t) compared to use of the usual reference, t. The dis—

tortion term integrand is the prebandwidth function for the input times

f “to

1h(0) * eJq I , a transient response term for the filter. For exponential

filter functions (resulting from rational transfer functions), this term is
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(II-C—lO) 

:
7

A (
'
1
‘

v

*
-

(
D II

which correSponds to one factor in the distortion term in Cannon and

Duncan's result when t is the instantaneous frequency.

The interpretation of H(jw,O) as a transient response (Eqn. II-C—6)

shows us that the distortion term is a weighted average of the filter's

ability to track frequency and amplitude changes. The term t(t,t0) is

indicative, also, of the precautions necessary in interpreting the response.

That is, for t(t,to) = wi(t) + towi(t) , we have a "pseudo—frequency,"

to®i(t), biasing the instantaneous frequency wi(t). An attempt to include

this bias in the distortion terms complicates the result tremendously.

H(.) evaluated at the biased instantaneous frequency term is actually

the predominant output when to®i(t) is signficant. (See the following

example.)

We could ask whether tomi(t) is ever significant in the class

of signals we wish to represent. Figure 2 (in Sec. I-D) shows a typical

formant frequency transition from samples of the spoken word ”rudder."

This frequency transition has been inferred from a sonograph display. The

range (over several Speakers) of the frequency derivative wi(t) is from

5000 to 15000 Hz/sec or 5 to 15 Hz/msec. So, computation times on the

order of 20 to 30 ms can have biases of i 100 to 450 Hz. If we take

an idealized "formant transition" of the form:

£(t) = em“) (II-C-ll)
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 where ¢(t) = 2000 Hz 0 S t S .020

2n

= 2000 - 300[3(t/.030)2 — 2(t/.030)3] .020 s t s .050

= 1700 Hz. .050 s t s .070

p(t) gives a cubic transition from 2000 Hz to 1700 Hz with a maximum

second derivative of 10,000 Hz/sec. (see Figure 9a).

Figure 9 compares the magnitude of the actual output, 0(t), with

the magnitude of the quasi—stationary term for five Fourier coefficient

filters with 201MB computing period. Also shown is a curve of the envelope

maxima across the five filters. Figure 9a shows the quasi-stationary

term evaluated at the input instantaneous frequency, w = @'(t). Figure 9b

shows the quasi—stationary term evaluated at a biased instantaneous

frequency.

W = wi(t) + Th/Zdi(B) , T : 20 ms (II-C-lZ)

As is seen, this biased term gives a good correspondence between the

quasi-stationary envelope maxima and the actual output envelope maxima.

(Note that this delay distortion is not due to nonlinear delay versus

frequency characteristics),

The implications of this analysis for the signals we are con—

sidering are obvious. Sliding Fourier spectra with computation periods

on the order of 20 ms cannot adequately show frequency changes in the

input without bias.
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Another example of enve10pe delay changes due to changing frequency

can be seen in Figure 10. Power Spectra for a vowel transition of band-

limited Speech (module 6; bandpass, 577—1867 Hz) are shown. The vowel

transition for a male speaker, from unstressed /u/ to stressed /a/,

is also shown in Appendix [L The sliding Spectra are computed every 15 ms

over a 25 ms interval. Two vowel peaks are present in this filter, with

one peak changing in center frequency from 902 Hz at 405.1 ms to 1445.Hz

at 53C’ms. The estimated frequency derivative at 480 ms is 9200 Hz/S.

The absence of a significant second peak at 480 ms (relative to the lower

peak) can be explained by envelope delay, which is caused by the bias fre—

quency due to the great change in both frequency and envelope of the cor—

responding formant. These ”holes" occur frequently in Spectra of Speech

Signals, as iS noted by Schafer and Rabinergz and require complicated logic

to avoid errors in formant peak tracking systems. The technique used by

Schafer and Rabiner gives better frequency resolution at the cost of

numerous computations (4 minutes on a GE—635 computer to compute two

formants and pitch period for two seconds of speech). They first compute

a cepstrug to reduce the influence of the pitch frequency and then display

the magnitude of the cepstrum transform along a spiral arc (see Figure 11)

rather than along the unit circle. The spiral arc correSpondS to a straight

line in the s—plane. (Schafer and Rabiner call this procedure the chirp

z—transform.) Improved frequency resolution results from passing close

 

:5:

A Cepstrum is computed taking the log of the Fourier transform. Two

convolved time waveforms can then be separated if their frequency

dIStributions are approximately disjoint.
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TIME

 

577 Hz 1867 Hz

FILTER 3dB . I

BANDWIDTH I

\————’-"\’/"/\‘

   

  

PWR 4630.0 529.7 ms

 

 

 1445 Hz

I PWR 5279.8 504.8 ms

   

I 1395 Hz

 l PWR 4255.0 479.9 ms

 

PWR 2359.7 455.0 ms

—
_
—
—
-
_
—
—
r

 

981 Hz I

   PWR 1759.3

 

  

 

PWR 2013.2 405.1 ms

 

   “T I I I I I I T T

40 H7 FILE 3 MD6 LIN MAGN FREQUENCY —— 3333 Hz

BANDPASS FILTERED SPEECH [ul TO [0] TRANSITION   
(See Appendix D for description 01 labeling.)

FIGURE 10 FORMAT ENVELOPE AND FREQUENCY TRANSITION

CAUSING DELAY DISTORTION
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II
3 PLANE S PLANE

I

/\x x
POLES OF

x* (3)

=— x 

X

POLES OF X(s) /

  
FIGURE 11 CORRESPONDENCE OF Z—PLANE SPIRALS AND S-PLANE LINES

FOR THE CHIRP Z—TRANSFORM (From Rabiner, Schafer and Radar)
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to the poles of X(jw). We can express this concept in our formulation

by letting I be a complex variable rather than purely imaginary. The

choice of t to minimize od(t) would be an approximation bX(t) throughout

A

[t—Th, t]. When x(t) is generated by a second—order linear time—invariant

A

operator, the real part of bx is the real part of the complex pole in X(jw),

We can see, then, how frequency resolution is enhanced, although

enve10pe delay is still present since no provision was made for frequency

derivative compensation. Schafer and Rabiner's techniques require a classi—

fication process to limit the input signals to male, nonnasal vowels and

an iterative process to find the best Spiralarc. to achieve good discrimi—

nation. If the characteristics of the input were known, we could reduce

the number of computations by appropriate choice of filter transfer func—

tion. This is the technique used in modern\scan-frequency analysers where

the phase of the IF filter transfer function is matched to the frequency

derivative (scan rate) of the input, (Kincholoeb4 ). If we knew bx(t)

and the signal class, we could parallel Kincholoe's techniques by adjusting

a time—varying filter to select a formant by center frequency tracking,

minimize delay distortion by adjustment of the filter phase function to

match the frequency derivative, and improve frequency discrimination

(rejection of other formants) by bandwidth matchingf Such a Scheme is

shown in Figure 12,

The estimation of bx(t) requires classification of the input

signal (as we discussed in Chapter I) and results in a ”rough" initial

estimate bx(t) which is used to generate a mixing Signal CXpI-bx(t)I.

 

*

As noted by Kincholoe, the matched phase function would attenuate adjacent

formants whose frequency derivatives are not matched in the same manner

shown in Figure 9.
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The filter can then be specified using standard Laplace transform tec

niques where the dependent complex variable of the transfer function

the difference between the mixing signal's complex ”frequency" {g;(t)

and that of the input. The estimate is improved by a feedback loop.

The delay distortion caused by frequency and amplitude changes is est

mated and then corrected by a variable ideal delay. Equation (II*C—€

can be used to analyze the feedback 100p, but it can also provide a

Synthesis procedure for a digital algorithm which significantly reduc
 

the computations necessary to implement the scheme shown in Figure 12

Assuming that bx(t) is given, the majority of the computations are re

to implement the filtering (mixing and delay require one operation, e

per point of time).

There are two types of digital filter algorithms, transversa

recursive. Transversal filters compute an output value from delayed

values and are basically discrete convolutions (or correlations) of t

form:

N—l

2 ‘ .
k2]. 2 co.

.-
o leijlk-j , , (II

bJ:

The number of operations (one addition and one multiplication) per po

*

of time is N. Recursive filters compute an output value from delayed

and output values. The algorithm is derived from the z transform of

:1:

The Cooley—Tukey algorithm for computing Fourier coefficients is of

form and for this Special case requires only «dogr N, where r is the

greatest divisor of N.
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filter time function.

 

-1 -m

- — Z . . . a z

0(z 1) _ P(z 1) _ a0 + a1 + + m

- — — — _ -n

I(z 1) Q(z 1) l + blz l + . . . + bnz

m n

= ) 1 ‘ 0 I —c-14Ok 1.. a), k-j + A bj k—j ( I )

jzo J20

.. -' S

where z 1 e‘JA‘ is an ideal delay of time A

m is the number of zeroes

n is the number of poles.

The number of operations per time point is m+n.

We can use the quasistationary term from Eqn. II-C-9 to approxi—

mate the filter Operation in one operation per time point. The prefiltering

classification and estimation of bx(t), along with feedback correction,

allow this approximation to yield precise frequency tracking (the amplitude

distortion is not relevant). The appropriate (narrowband) filter characteris—

tics are stored by means of the complex transfer function H('). The value

of the input at each time instant is multiplied by the value of this func—

tion at the estimated bias frequency. This method cembines the relatively

low number of operations of the recursive filter with a desirable feature

of the transversal filter. This feature is its ability to change the filter

coefficients. If this is done with a recursive filter, an additional

transient distortion is introduced. Thus we can achieve an approximate

time—varying digital transfer function with a low number of operations,

given an estimate of bx(t) and a classification of the input.
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The classification system must be able to determine rough, but

unbiased estimates of parameters of the incoming signal. The overlapping

filter bank discussed in Chapter I can provide a basis for the estimation

with some restrictions. In order to maintain similg between the outputs

and input of a filter (within the effective bandwidth), Thwi(t) must be

less than the acceptable frequency resolution error. Thus a "worst case"

bandwidth requirement can be derived which would introduce negligible

frequency bias for all Speech signals (although the bandwidth would be

excessive for some).

InSpection of sonograms of English words Spoken by several

Speakers indicates that the maximum value of ®i(t), 15,000 Hz/second,

occurs frequently from 800 Hz up to 3,000 Hz. (Above this frequency it

is hard to make reliable inferences.) Figure IKSshows bandwidth requirements

for several percentage resolution errors. The bandwidth is determined from T

h

(approx. rise—time) for linear-phase filters by the relation

BT .s 1 (II-C-l3)

where

B = J A(w) dw/A(o)

O

{.00

T = J h(s) ds/h(o) as .8T

h
0

f m -'wt

A(w) = ‘kJ h(t)e 3 dt

‘00

B gives a measure of bandwidth that is approximately equal to the half

power and effective bandwidths (for filters with very sharp rolloff like

those we are using, this approximation is better). T is a measure of

 

*

Defined in Section I-D, p. 23.
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rise time, usually between the 10 percent and 90 percent points on a

step—response envelope curve. Figure 13 Shows that our choice of

bandwidths (Sec. I-D) is adequate in view of the inference from

33

Flannagan's data that a just noticeable difference in frequency

for human experiments ranges from approximately 5 percent at 1000 Hz

to approximately 3 percent at 2000 Hz. The data for this experiment

results from individual variation of the first and second formant

frequencies in a four—formant synthesized vowel.

In the next section we look at the outputs of such a filter

bank and attempt to segment the speech signal into homogeneous epochs

with center frequency and bandwidth as parameters.

 





II-D ESTIMATION AND SEGMENTATION OF INSTANTANEOUS SIGNAL PARAMETERS

The preceding section demonstrates how complex acoustical signals,

such as those encountered in speech analysis, are represented most appro—

priately by instantaneous time functions related to the envelope, instan—

taneous frequency, and pre—bandwidth function. Differential equations

for these functions have been derived for a single isolated formant. The

bandpass pre—filtering that we have specified in Appendix B attempts to

isolate formants. However, the inadequacies of fixed—frequency bandpass

filters and the presence of inherent background noise in any realistic

 

environment indicate that these differential equations will not be an

exact representation. Therefore, a general form for these differential

equations that can be expected to describe the signal parameters as seen

on the outputs of our bandpass filters is more appropriate. In the

following, we will denote the ratio a/a as br (the real part of bx)'

l r r

i— b = f (b . w, g/a, v, n , t) (II-D—la)
dt .t 1

1w r

i7 : 1‘,)(b , w, g/a, ‘Y. T1,. 0 (II-D 1b)

where fl and [O are nonlinear time—varying functions for the derivatives

of the state variables. TR and WE are stochastic processes which represent

the unwanted Signals and other noise.

The classical theorems on "best” estimators deal with asymptotic

properties as the number of samples becomes large. These results are of
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exact representation. Therefore, a general form for these differential

equations that can be expected to describe the signal parameters as seen

on the outputs of our bandpass filters is more appropriate. In the

following, we will denote the ratio a/a as hr (the real part of bx)'

d r

— b = f (hr, w, g/a, v, T] . t) (II-D—la)
dt ,t 1

iw

% = 1;,(br, w, g/a, v, TL. L) (II—D 1b)

where [1 and fa are nonlinear time—varying functions for the derivatives

of the state variables. TE and WE are stochastic processes which represent

the unwanted signals and other noise.

The classical theorems on "best” estimators deal with asymptotic

properties as the number of samples becomes large. These results are of
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little help in estimating instantaneous values. A multiple regression

analysis would fit a polynomial of Specified degree to the observations

over a fixed interval. However, this method requires a priori knowledge

that is not available (maximum degree of the polynomial and a fixed

interval for fit) and much computation (usually a matrix inversion

(Donahue7l). Thus, pointwise estimates are required.

*

For time—invariant differential Operators with either stochastic

or deterministic excitation, the two common parameters are mean frequency

(E) and bandwidth (BWZ). The mean frequency for analytic signals is well

A

defined in terms of the spectrum X(w). We can derive a formula in terms

 

of the time functions a(t), a(t) and w(t).

I uX(w) X*(w)dw

oo 03

_ m 1 P A* d A .

w = m = e J x —— (t) dt// I ad(t)dt

2 J 0 dt

I a (t)dt ~®

..CD

 

H:

where the second integral is due to a step discontinuity at the origin.

 

.(t) . 2 m * d A + m a

a(t) + Jw(t)] |x(t)l dt +-J¥f (t) a? x(o )dt I a (t)dt

..(I)

._ ”a - __1__"°°-_ _ shop] I‘m.
w : JO? (t)w(t)dt + ZfljLJ0a(t)a(t)dt + ——§——- J_ma (t)dt.

 

*

Because the process is ergodic we W111 use time averages rather than

expectations.
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A

Since we assume that x is a well-behaved, finite energy function, a2(®) : O.

_ .00 CO

[ 2 F 2 ,
w = J a (t)w(t)dt J a (t)dt (II-DeZa)

0 _w

The effective bandwidth can be converted to a similar form

(from II—A—7)).

J lb (t)l2a2(t)dt

Bwr2 z 0 x9

‘m

J0a2(t)dt

 

  

..00 ,3 ‘10.)

. J br (t) a2(t)dt J0(w(t)—E)2ad(t)dt

de = O + (II—D—Zb)

Cma2(t)dt m 2l . a (t)dt
.0 0 

Thus for constant coefficient Operators we have weighted time average

formulas for intuitive parameters. For time—varying Operators, we

are not so fortunate. In order to derive formulas we need an assump—

tion that is Often true for physical systems. We call a process

locally ergodic if we may reasonably approximate ensemble averages by

sliding time averages, i.e.

t

‘t 1.‘

E{c(t)f R: - J c(G)dO (II—D-3)

I T t

-T

Basically the assumption is that the time behavior Of the parameter c(t)

is "smooth" with reSpect to the statistical variations. This procedure

is incorporated in many engineering systems, and we are merely recognizing

this Often—invoked assumption explicitly. The determination of T is a

key to this approach and depends on the nature Of the processes. We will

discuss its choice later.
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Equation (II-D—3) can now be rewritten to give averaging equations

for time-varying Operators.

 

 

t t

a(t) s I a2(t)w(t)dt/j a2(t)dt (11—13—421)

t—T t-T

t a t .

J br (t)a2(t)dt J (w(t)—U3(t))‘ia2(t)dt

13w"3(t)rsb'd (t) = t—T + t-T (II-D—4b)

XS t t

j a2(t)dt I a2(t)dt

t-T t-T

Notice that (II—D-4b) gives a sliding time average Of b S(t)

X

and hence the time average BW(t) is denoted bXS(t). In Appendix E, the

relationship between Sliding standard deviations and derivatives is shown.

TO summarize the arguments in Appendix E, the most estimator for the enve—

10pe is derived from the Ifllbert transform. The absolute value estimator

gives some distortion, primarily during epochs with changing frequency,

but requires much less computation than the Wilbert transform estimator.

For real—time recognition Of connected speech, the following

estimation procedure (shown in Figure 14 and discussed in detail in

Appendix E) is proposed. The output of a (wide) bandpass filter is passed

to absolute value enve10pe and zero crossing frequency estimators. LOWpass

filters then remove unwanted oscillations. In Appendix E, the best choice

for the time constant of these filters (called subinterval length) is shown

to be on the order Of l to 2 ms.

A Sliding mean and standard deviation is then computed on the

output of each bandpass filter. This procedure has been chosen for its

adaptability to real—time operation, its low—cost hardware implementation,
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and the minimal degradation Of any further processing that may be

>k

required.

Pictures Of bandpass—filtered Speech acoustical signals indicate

that fricatives such as [f] from [umbif] can be analyzed in a Similar

fashion. The instantaneous envelope and frequency estimators (both

real—time and derivative) retain the stochastic nature Of the bipolar

signal (Figure 15). The subinterval length of 1.2 ms and

sliding average length of 10 ms appears to be adequate for the frequency

range shown (see Appendix C for filter bandwidths). Comparison of the

bipolar signal (Figure 15a) and instantaneous estimators (Figure 15b)

 

indicates that a narrowband assumption, which has been incorporated in

the local ergodic assumption, is appropriate.

Consideration Of many cases for different Speakers and utterances

indicates that the zero crossing-absolute magnitude enve10pe repreSentation

occasionally fails to represent bandpass—filtered Signals adequately.

The primary case where an ambiguous representation arises is when two

energy peaks occur in the same filter (for example, the case discussed

in Chapter I and illustrated in Appendix D). In the filter of bandpass

577—1867 Hz (Module 6), a (relatively) strong energy peak continues at

750—800 Hz from 370 ms to 700 ms. At 430 ms, a second energy peak begins

t0 "move" away from 902 Hz toward 1445 Hz. ApprOpriate choice Of filter

band bandwidths could isolate these peaks; however, this approach would

M

*

For instance, if frequency resolution must be increased, the sliding

mean length can easily be increased, averaging the previous time series

again. However, more frequency resolution cannot be gained by further

aVeraging of the output Of a sliding Fourier series computation; a new

tranSform must be computed.
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require a fixed bandwidth filter tailored to each Speaker and utterance.

For our particular choice of filters (described in Appendix B), the zero

crossing-absolute magnitude representation (Figure 17) follows the

stronger low—frequency energy peak.

One method of isolating the more interesting high—frequency

energy peak is by first computing the time derivative of the bandpass—

filtered acoustical signal and then the zero crossing—absolute magnitude

representation. Several factors recommend this approach. Cherry and

Phillips indicate an increase from 65 to 92 percent intelligibility by

using the derivative (hardware derived) Of the wideband acoustical

 

Signal for their zero—crossing intelligibility studies. Thomas, referring

to this increase, states that the pre—processing accentuates the second

formant, which (he proposes) contains the significant linguistic information.

For isolated formants, the increased intelligibility can be

due to an emphasis Of information-bearing parameters which are related

d§(t) A

tO the prebandwith function (recall that dt : bx(t)x(t) ). In 

the wideband Signal case, high frequencies are emphasized, as we see if

we consider the transfer function of an ideal differentiator (linearly

increases with frequency). Most physical differentiators* are necessarily

approximations and incorporate smoothing to high—frequency variation.

A typical transfer function of this approximation is depicted in

Figure 16, where lower frequencies are deemphasized (with reSpect to

higher frequencies). Thus, Cherry and Phillips’ results can be

 

*

In this study, a cubic interpolation is made between extrema Of the band—

pass filtered Speech signal, and this interpolation equation is differen—

tiated.
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FIGURE 16 SMOOTHED DIFFERENTIATOR TRANSFER FUNCTION
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explained if Thomas' hypothesis is true. Resulting zero—crossing-absolute

amplitude representations are thus able to "capture" other energy peaks.

The frequency estimate (upper left plot of Figure 17b) for Module 7

(derivative of Module 6 filter) and utterance 16 BE 1 clearly shows the

frequency transition that was difficult to find in the Fourier series

(Appendix D), or in the zero crossing frequency estimate for the undif-

ferentiated Signal (upper left plot of Figure l7a)T The resulting transition

is depicted even in a situation where bandpass filter selection was not

appropriate (for this particular case). The form of the transition is

what one might assign by eye to the sliding Fourier series in Appendix D

 

and also looks very similar to the dynamic articulator (tongue) trajectories

depicted by Houde for vowel—to-vowel transitions.

Figure 17 shows another feature of the absolute amplitude—zero

crossing representation. The sliding standard deviation is plotted against

the sliding mean for the absolute amplitude (lower right) and zero crossings

(upper right). In both cases (17a and 17b), the bivariate samples

form a tight group during the first vowel segment (before 430 ms) and

then cross a ”bridge" toward a new group during the transition. The

differentiated zero crossing case (Figure l7b——upper right) is the most

dramatic. The two—dimensional plots can only approximate the actual

four—dimensional situation, but it is still possible to recognize a

coherent time behavior that is not apparent with standard preprocessing.

 

*

The series of numbers, 0—9, indicates contiguous sample points simul—

taneously on all four plots. The "INDEX OF ZERO" gives the time of the

starting zero in milliseconds.
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This dynamic behavior is further diSplayed by various estimators

related to the bandwidth function. Two utterances are considered, the

. . _ h
B to E vowel tranSition from [duat ] [16 BE 1, Figure 17] and the utterance

[umbif] [19 EH 1, Figure 15]. The following estimators are derived from

Eqns. (D—2) and (D-4):

1. Real part—-sliding standard deviation divided by

sliding mean Of envelope

a. For the real—time bandpass signal

b. For the derivative of the bandpass signal

2. Imaginary part——Sliding standard deviation of the

zero crossing frequency

 

3. DER/ENV——sliding mean of derivative envelope divided

by Sliding mean Of enve10pe.

These estimators are shown in Figures 15c and 18. Several points are evident

from the figures.

1. Bandwidth function estimates all have a stable "nature"

for certain epochs with significant perturbations at

the boundaries.

2, These epochs correspond (for some of the time series)

to natural Speech signal "groupings” (say, Reddy’s

phoneme classes).

3. The ”nature" can be grossly defined in a consistent

manner for strong deterministic signal groups (vowels)

as Opposed to weak stochastic (fricative) groups by

the deviations of the bandwidth function about an epoch

mean value.

4. The bandwidth function is relatively normalized across rather

large amplitude variations while still Showing variation

for different groups.
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These results indicate that the first step in a procedure for

segmenting connected speech is to identify the points in the (filtered

speech) signal where "fundamental changes" occur in the "nature" of the

signal. The precise definition of the terms "fundamental change" and

"nature" involves specification of a real—time clustering* algorithm and

the four time series which give a dynamic representation of the signal.

The changes and nature are relative to information we can derive from the

particular signal we have at this time (thus termed real time). Since

we are dealing with signals that are heterogeneous in nature, any general

assignment of functional models to simplify the representation or

 

reduce computations would surely cause higher error rates, at least part

of the time (for further inferences based on the functional models, for

instance) or ambiguous interpretations of derived measurements. The

Clustering procedure is real time, Operating on data as they arrive

without requiring further passes through the data; self—normalizing and

not dependent on a priori knowledge; conceptually simple (in terms of

number of adjustable parameters); requires little storage and few compu—

tations; and gives a more revealing stabilized (in terms of stochastic

variability) dynamic representation of the original output along with

the marking of points of significant change.

 

*The procedure is termed "clustering” in order to relate a process for

dynamic (differential equation generators) transient phenomena to the

usual static data clustering techniques (ISODATA, Ball and Hall, 1967).

A precise relationship between the static and dynamic clustering exists

when one can choose a functional model for a set of differential

equations and then estimate the parameters of this model. The set of

all parameters would then, for a given time cpoeh, be one vector of the

type that is discussed in static clustering procedures.
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In the defined state Space, the time trajectory of the differen—

tial equations varies about some mean value and the clustering would

define limits about that mean value which expand and contract, depending

on the time—varying parameters of the differential equations. For the

single formant model (and for other higher ordered systems as well), a

time-varying mean value and standard deviation can represent the time

series state variable value and its first derivative. To show this

variation, consider a normalized variable 2 at time n by the formulas

Zn 2 n n (II—D—S)

for the two time series (envelope y; and frequency y;) and describe the

variations in terms of the distribution of this error term. InSpection

of this (flflUlLity indiealixs that lunnmilization is 1xnffi3nned by tJu)(livi—

sion by the sliding standard deviation. The segmentation procedure asks

the question: Is the differential model, defined by our two time series

for each state variable, adequate to describe the variations in the input

signal. For that reason, we will consider predictive instead of synchronous

normalized variables. That is, instead of using values of 2 at time n,

we will look at distribution of the expected next value of z. If we

write this out in a slightly different form, it becomes:

y‘ 2 m' + 0 y‘ (II—D—6)
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Defining n3 as the difference between the mean value and the observed

value at each time n,

y —y zE’JzJ—TT: j:1,2 (II-D—7)

which is a discrete version of (II—D—l). The terms on the right side of

(II—D—7) are functions of the state variables, excitation parameters, a

stochastic term and time (n 2 1).

These equations can occur in some classical estimation problem

formulations:

(l) deterministic but unknown equation

= M + f (M )

n s nn+1

(2) observation equation (sample function generation)

: X — X : "

yn m+l n g(mn) + gnf(mn)

where

gn are independent, identically distributed random

variables for each n, independent of 111D and x

n

at time n with moments ul, u2, u3, u4,

(3) observation equation (ensemble generation)

d

\ = = O .. :: 4'

n+1 mn n/n mn Ez{\n}

a d 2

on = Ez{(xn_mn) }
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where

Zn is a random variable with moments v1, v2,

V3, V4, ...

The difference between ii) and iii) is primarily one's point of view

(derivatives versus expected values of moments). The relation between

these, which is empirically shown in Appendix E, can be derived by taking

CXpected values of ii) and iii),

k
l
_

‘
.

E§LXn+J.- Kn} :: g(mn) +f(mn) ul

1! E {U z } 2 G v (II—D—8)

z n n n 1

Thus, the [our time series for enve10pe and frequency and their

derivatives adequately represent the bipolar bandpass signals and the

deviations from these time series can be exhibited in the normalized

predictive variables defined by (II—D—G) where y; : xi are the subinterval

averages and Ki is the sliding mean and Si is the sliding standard deviation

for envelope (3' =1) and frequency (,j:2). Then the points where these four

time series no longer represent the input signal can be determined by a

statistical test based on the distribution of the nonualized predictive

variables. This distribution can be estimated by use of the samples np

to t 11110 11

.1“ VJ}. ,
[r 2 r r-l \:1,2 r:1,2,...n—l (II—H—Q)

35
r—l

In general, these values will not be symmetrical about zero because of

the nonlinearities. We need an estimation technique more powerful than
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the currently pepular procedures which are based on the normal distribution.

Because of the local ergodic assumption, there will be continuous changes in

the parameters rather than "jumps" between two or more ranges of values. Thus,

the distribution for each epoch will be unimodal (bimodal distributions will

yield two epochs), and a modified t—test with an Edgeworth approximation to

the distribution is apprOpriate.

The segmentation procedure, then, uses normalized predictive samples

derived from sliding mean and standard deviation time series to estimate

four moments, the coefficients of an Edgeworth series. If the probability of

occurrence (from the Edgeworth distribution) of the normalized values of

envelope and frequency exceed a predetermined threshold, then that sample

is included in the present epoch. If the probability falls below this

threshold, then the sample is declared a dexlshot. This procedure is useful

in identifying (and eliminating) data values of questionable use (such as

parity errors, computational errors, external impulse noise) which arise

quite often in digital processing of acoustical signals.

The definition of a segment point is an extension of the concept

of a wildshot. If the data continue to give low probability, it is

quite natural to assume that their "nature” has changed and that a new

epoch should be marked. This is controlled by two factors, the number

of wild shots and the length of time within which this number of wild-

shots must occur. (For example, two wild shots during four time

units may define a segment point.) Examples of the segment points

resulting from a computer algorithm based on this procedure are shown

in Figures 18 and 19. Figure 18 demonstrates dramatically
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that the procedure is most sensitive to changes in bandwidth estimators

and not in the enve10pe or frequency estimators. This is not a limitation

since simple thresholds can detect significant changes in these time

series. Figure 19 shows how the fixing of locations for segment points

depends on the choice of the criterion and threshold. There are several

important observations related to the 7 regions depicted in Figure 19:

(l) Erroneous data (caused by a computation error)

are detected and flagged (2)

(2) The values of threshold and segment criteria

depend on the instantaneous nature of the signal

(1, 3, 6, and 7)

(3) Immediately after a segment point, a higher threshold

should be set to eliminate false alarms (e.g., the

threshold might decay exponentially to the set value)

(5, 6)

(4) The definition of homogeneity of the epochs is insen-

sitive to amplitude variations even during highly

transient behavior (4)

(5) Comparison with Figure 18 indicates that male/female

differences do not affect the algorithm.

In summary, the acoustical speech signal is viewed as a composite

nonstationary stochastic process and the mathematics of communication theory

is used formally to describe and discuss its complicated nature. One

isolated formant is modelled by a time—varying differential operator with

stochastic or deterministic driving functions. The parameters of this

model are related to steady—state concepts of envelope, frequency and bandwidth.
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A derivatkniof the transient response for linear filters has been used to

show how fixed-frequency analysis (such as sliding Fourier transforms) are

inadequate and misleading for representation of Speech signals (eSpecially

the transient portions of these signals). This analysis also defines

requirements for the preprocessing wideband filters and the sliding averages

used for the pointwise estimators. Formulas for these pointwise estimators

of enve10pe, frequency and bandwidth are derived, and a predictive dif-

ferential equation segmentation procedure defines as an epoch those samples

of the acoustical Speech which have homogeneous characteristics.

The envelope and frequency estimators are standard absolute-value

and zero—crossing counts averaged over a short interval to show the dynamic

behavior of the parameters. Additional preprocessing (derivatives of the

bipolar signal) increases the ability to isolate significant features. Using

differential equation and statistical moment methods, we have defined time—

varying bandwidth estimators which have a stable behavior during epochs

corresponding to natural speech classes. They reveal information about the

diriving function as well as the differential operator and are normalized

with reSpect to large variations in envelope and frequency.

The segmentation procedure, defined on sliding mean and standard

deviation time series for envelope and frequency, is most dependent on

variations in the bandwidth function. It also eliminates erroneous (out-of—

plaee) data, is invariant to scale changes (due to male-female and amplitude

differences, etc.) but requires a sephisticated (plastic) threshold which

depends on the recognition and use of the epochs. This is the subject of

the following chapters.



 



CHAPTER III

THE USE OF LINGUISTIC THEORY FOR

THE DECODING OF SPEECH ACOUSTICAL SIGNALS

III-A Introduction

The difficulties of making a correspondence between physical

measurements and linguistic events (which we denote as code units), as

discussed in Chapter I, lead us to consider the use of contextual con-

straints to reduce the ambiguities. Linguistic theory has been formulated

in an attempt to characterize the complicated internal relationships within

one language. In order to make any progress along this course, we must

distinguish between characterizing the total knowledge that a language

user may ideally acquire (all grammatical sentences, for example) and

characterizing the production or perception of particular utterances

(referred to as competence and performance, respectively). Chomsky and

others have proposed finite models that generate all grammatical sentences

of a language. An ASR system must be considered in the second sense,

however, and one can justifiably ask whether formal language models merely

cloud the issues. For communication between two humans this may be true,

but the intended use of our ASR system is with a computer system incorporating

a quasi-formal language (FORTRAN, AIGOL) to perform functions. The con-

straints imposed by dynamic real—time decoding of human language (even

in a restricted context such as simple declarative sentences) demand a

slightly different interpretation of the procedures suggested by linguistic

theories.
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In discuSSing the incorporation of contextual conSLraints into

an ASR system to improve its operation we will consider the following

topics:

(1) Error—types and correction

(2) Natural use of spoken language

(3) System memory and real—time operation requirements

(4) Flexibility of recognized vocabulary add-on and

delete

(5) Junctures in connected Speech

(6) Interface with existing computer operations

(7) Divers speakers.

(1) Error types and correction--Norma1 definitions of "error
 

(caused by misclassification due to noise, etc.) do not ade—

quately represent natural speech situations by postulating that

individuals do not always produce the ”correct" phoneme (or

equivalent code unit) sequence because of variations in dialect,

accent, speed of articulation, etc. Even "perfect" classifi—

cation into code units will yield sequences that differ signifi-

cantly from stored messages. A more general definition of

”error" should include production as well as misclassification

types of errors. Code unit production errors can be further

broken down into:

1. Substitution (miSSpelling) errors

2. Omission errors

3. Insertion errors.





 

111

An ASR system which corrects production errors as well as

misclassification errors could conceivably work on the

principle of identifying in the "best" way the code units

and then correcting (by the use of contextual constraints

or other means) the code unit sequence (Alterbs, ReddysG).

For limited vocabularies and one Speaker, the correction

can be performed by correlation with stored messages

(Bobrow et al.13). However, such an approach requires

much computation and can require meaningless measurements

(computing pitch periods in a fricative segment, finding

formants in a silent segment before step—releases). Fur-

ther, omission errors can be exceptibnally disastrous because

they can cause synchronization errors. (Alter attempts to

protect against omission errors by requiring Specialized

names for FORTRAN variables.) A better approach would be

to have a directed classification, where only the required
 

and meaningful measurements are computed.

(2) Natural Use of Spoken Language—-One can avoid some of
 

the problems discussed above by an apprOpriate choice of

vocabulary (throwing out problem words) or by requiring the

Speaker to articulate his words precisely. However, these

alternatives are not compatible with a Situation in which

the normal use of language must be preserved (e.g., in

storing a dialogue between two humans, even with limited

vocabularies). In addition, it is known that considerable

training is required for someone to be able to control his
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articulations in a consistent manner. We are, then, forced

to emulate the human's ability to decode Speech acoustical

signals and to determine the cues important to him (and

communicated by him) rather than those convenient for a

machine.

(3) System Memory and Real—Time Operation Requirements——

Modern computers with large random—access auxiliary memories

permit the use of large vocabularies, but ASR systems for

these vocabularies must provide a directed search to reduce

computation time and computing requirements (e.g., by limiting

the number of templates to be compared). It seems undesirable

to tie up an entire computer to decode a speech input and

then not to be able to do something with the decoded input.

Engineering solutions for ASR systems are often ad hoc

procedures which are "tailored" for memory economy and compu—

tation Speed and which may work quite well for the situation

and vocabulary for which they were specifically designed.

However, extension of these procedures to larger vocabularies,

more Speakers, etc., is often a patchwork procedure resulting

in a hodge—podge system which may or may not preserve the

original economy.

(4) Flexibility of Recognized Vecabulary Add-on and Delete——

Changing the vocabulary by adding or deleting one word (incre—

mental expansion) is not easy with ad hoc systems. Either a new

section must be incorporated, or large amounts of reprogramming

are required. The problem of code unit sequences with errors enters

here too. A good closeness measure for code units must be defined in





 

order to use a system without adding Special case analyses for

each "perturbed" sequence. The search for an appropriate close—

ness measure for human perception of phonemes, for example, has

not been fruitful.

Specific problem procedures have an additional difficulty

with errors. Suppose the English word "blink" is decoded as

"blik" in one case or "bnik" in another. The ASR system must

find a best fit for these sequences from its past experience.

In normal English, both ”blik” and "bnik" are not found. Therefore,

the only action taken would be to find the best fit. There is

no way to determine that "bnik" can 2333: occur in English

(which says something aboutifle "errors present") and that "blik"

is a possible English word and possibly a new event. Ad hoc

procedures have no way of deriving facts about the procedure
 

operation. This is similar to storing a multiplication table

when a multiplication rule would be more general and compact.

(5) Junctures in Connected Speech——Decoding of continuous Speech
 

texts requires the introduction of junctures (spaces, commas,

periods) not needed in isolated word situations. The ambiguity

resulting from lack of junctures can be seen in the following

three examples:

1

1. (Space) The phoneme sequence /ae ne m/ decoded as

"a name" or "an aim”

2. (part of "They are flying planes.'

Speech)

(”They” refers to

gliders or peeple?)

3. (period) "John is trying to understand this sentence

is a problem” (the period could be placed

either before "to” or after "understand").
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Code-unit——code~word decoding when length of code word is

not fixed has been discussed under the subject of uniquely deci—

pherable (UD) error-free codes. The constraints on such a code

(AshE‘7 ) are much too exacting for a natural speech situation.

The constraints can be paraphrased for instantaneous codes, which

are special types of UD codes. No code word can be a prefix of any

other code word. Any sub$et of a natural language meeting this

requirement would have little communicative power left. A UD

code that is not instantaneous may be found for some situation,

but real-time operation would suffer, as is seen in the following

example from Ash.

Let wl . . . wn 1 be code words, and 0,1 be code units:
+

“I 0

w1

«1 01

w2

w «I 0 . . 01

11+l K—;~Wi~.iJ

n

This is a'UD code, but it is not instantaneous. The unique

decoding of the first code unit of the sequence 0 . , . 01 into

. . A I n+1
w1 must wait until n+1 elements are encountered.

Synchronization errors causing omission and insertion are

disastrous for a UD code, and substitution errors could be disas—

‘trous without error correction before decoding into code words.

'Fhis situation is not likely to be successful for correcting pro—

(Jiurlion errors.

((5) Interface with Existing Computer Operations——One of the
 

useful applications of an ASR system is in conjunction

with artificial intelligence tasks. We will denote these
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tasks as text manipulation (TM) programs (information

storage and retrieval, questions and answer programs).

Presently existing TM programs have no flexibility in

interpreting their input representation (typewriters,

punched cards), i.e., using semantic information to

resolve ambiguities. An ASR system could conceivably

be independent of TM operations. However, the need

for interaction for proper interpretation of natural

language texts is apparent, and a system should not be

limited by ignoring the possibilities. In addition, as

mentioned previously, most computer Operations make use

of quasi—formal languages for communication with users

as well as definition of tasks, making the interactive

possibilities of ASR systems very attractive.

(7) Divers Speakers——Many of the problems of incrementally
 

eXpandable vocabularies and production errors are caused by

allowing many Speakers to use the ASR system. Two different

situations are possible: In the first, the Speaker is known

previously and, hence, Specific adjustments can be made; in the

second the speaker is not known previously and a Speaker nor—

malization period is necessary at the beginning of the use period.

The variations induced by Operating with several Speakers (or

with the same speaker in different emotional states, for example)

constitute one of the major difficulties of applying idealized

formal language models. No explicit account is given in the

present theories for these variations. It is evident that

these variations cannot be completely removed without interaction
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between the grammatical system and the lower expressive system

(describing the code units).

The seven interrelated topics discussed above give some indication

of the problems involved with incorporating contextual constraints into

ASR systems. After an eXposition of some of the concepts of formal language

modeling (from Chomskyiawe will proposed a different approach for

operating with these requirements.

We will define a (specific) language L as a set (possibly infinite)

of texts (each text may be one word, one Sentence, one paragraph, etc.),

finite in length, constructed from a finite set of elements (code units).

The fundamental aim of a linguistic system is the separation of grammatical
 

texts which are members of L from ungrammatical texts not in L. A
 

grammar is a model of L in that it produces texts coming from L. The

usefulness of the model is determined by how the texts it produces are

related to the grammatical texts. A linguistic theory abstracts general

principles about successful grammars and thus gives us a way to compare

grammars for different languages. ASR systems perform a linguistic

analysis and are thus able to be studied in linguistic theory. Ad hoc

systems are not easy to fit into a general theory.

But why attempt to fit an ASR system into a theory of grammars that

generate infinite sets of texts when the number of reSponses must be

finite? A review of the preceding discussion should answer this question.

First, impossible ("bnik") events are distinguished from improbable (”blik")

events. Secondly, the problems of incremental eXpansion are simpler. We

may be recognizing only a finite subset of any grammar's finite set of

producible texts, but we can change the membership of the subset within
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the larger set much more easily than we could with some bounded finite

set.

We have already seen a dichotomization of a total system into

TM and ASR systems. This is in accord with the arguments of linguistic

theoreticians for such a division.* Linguistic theory does unify these

these two seemingly independent tasks. The two parts (or Chomsky's

components) are:

(1) The allowable sequences of words or grammatical sentences

for a specific language

(2) The composition of the "words".

Rules are given to form sentences from ideas and sounds from ”morpheme"

representations. In addition to the organizational advantages we gain from

such structuring, we can also give more precise definitions to such nebulous

terms as "morpheme", ”sentence", and "meaning". The vagueness results from

the many uses in different theories in striving to overcome the inadequacy

of "the written word” in representing spoken utterances.

A morpheme is generally accepted to be the smallest unit that

conveys meaning. Its more precise specification is discussed within the

linguistic theory presented later. These morphemes form the interface

between the two levels in Figure 20(correSponding to code words in Figure l).

The purpose of the grammatical system is the coding of ideas into morpheme

sequences, and the purpose of the phonological system is the coding of

morpheme sequences into Speech signals. The primary weakness of this

V

definition of morpheme is the use of 'meaning". There has been a

revival of interest in semantics, the study of meaning, but we still have

*

”A language is a tremendously involved system and it is quite obv1ous

that any attempt to present directly the set of grammatical phoneme

sequences would lead to a grammar so complex it would be practically

useless.” Chomsky
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no concrete guidelines for study of natural language use by humans. When

we limit ourselves to communication with a machine, the situation can

be a bit more promising. The restricted definition of "meaning" is, in

this situation, in terms of machine response. Two morpheme sequences

have different meanings if they give different responses. Machine reSponses

could be different programs for compiling, different descriptors for

indexing, etc. In restricted cases, such as the computer applications

we are discussing here, an unambiguous workable definition Of meaning

can be given. It must be dependent on the actual linguistic theory used

for its precise Specification.

In the next two sections, we will make use of a linguistic

 

theory (Lamb's stratificational theorylg) in specifying an ASR system

with the desired features. The language model prOposed by Lamb must be

augmented to give explicit formulation of "supra—segmental" features.

We suggest that the difficult task Of juncture identification requires

these features. Most linguists agree and give implicit status to these

features by calling them supplementary. The features we will use are:

(l) Juncture phon— modification

(2) Speaker expression

(3) Intonation and stress patterns.

The stratificational approach is used here in deference to trans—

formational grammars because Of the compatibility with ASR system require—

ments discussed previously and summarized here.

In the stratificational theory:

(1) Different strata reflect the distinction between

representations of ideas where loops occur without

regard to direction or to the linear time—ordered



 



(2)

(3)

“ms, 'the(m

junctu reS,

lZU

representation closest to the speech acoustical

signal (i.e. John hurt himself ~ Johfzgjggjgurt.

We use this dichotomization to treat the predictable

”error—like” phenomena discussed previously.

Grammar rules are explicitly identified by the types

of sequences on which they may operate, the number of

units at which they must look, and the types Of phe—

nomena used to index them.

Only those rules required for the particular text

need be applied, and we need not apply all rules. The

primary classification indexes the subset of rules.

tput of our ASR system will be sequences Of morphemes with

This input can be used with several TM programs now available.





III—B Stratification Model for Generative Phonology
 

In current linguistic theory, the two parts discussed above in

the Introduction are called the grammatical system and the phonological

system. (LamblH refers to these levels as the upper and lower strata.)

As we saw, our particular requirement for the interface between the two systems

is a sequence of context-free morphemes plus junctures. It is not clear

that there exists a complete set of rules to perform this task for unrestriced

use of American English or even that finding such a set is feasible, but

we wish to show a structure which will use such a hypothetical set Of

context rules for possibly a subset of English. Work with well—Specified

 

pseudo—languages indicates that this goal is a realistic one.

We go along with Lamb18 in defining the following articulatory

feature types:

(1) Universal for all human Spoken language

(2) Automatically present when specific language is

Spoken (but not accounted for in (1))

(3) Distinctive presence not predicted by environment

and expressing meaning to a listener

(4) Nondistinctive but autOmatically accompanying

*

distinctive features.

Thus, we can envision Spoken communication as a.neutral medium with dis—

tinctive variations which convey the desired information. This model

leads us to rank the two representations on a given stratum vertically;
 

*

Though not explicitly stated by Lamb, we believe that these types are

sometimes quite variable and may be consistent only in one Speaker's

pronunciation (ideolect). This concept is discussed in the next section.
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*

these ranks will be specified by the suffixes defined below:

—on -— an objective (as possible) statement of the events

-eme -— the result of an analysis of the events with reSpect

to a Specific language for the purpose of identifying

only distinctive events.

The property of distinctiveness is a very important one which,

in one form or another, is fundamental to language usage and theoretical

models to describe language. We cannot have any concrete understanding

of the behavior of the two ranks without further Specifying "events".

The difficulties that arise in attempting to resolve this problem involve

 

other fundamental concepts and lead to the primary contribution of Lamb,

his separate strata. One of the most controversial topics in modern

linguistics involves units and the segmentation of the Speech Signal

that results from defining units.

H

It would seem natural to call the ”s on the end of ”boys” a

type of unit (since it indicates plural) different from that of the "S"

in "stone”, since the first is a unit of meaning and the second is only

one element in a sequence of Similar elements which have some meaning

because they are grouped together in a particular order. The phonological

system gives rules for constructing these sequences (for a given language)

from distinctive units. (For example, words can be formed from the 26

 

I

The original distinction was between "—etic” and "-emic' ("phonetic being

an objective description of sounds that are perceived and "phonemic"

being what is linguistically distinctive). The term "phonon" replaces

"allophone" or "phone", and "morphon" replaces "morphophoneme" (thank

goodness!). The new terminology is more symmetrical and less burdensome

(although the term "phonon" has been used by physicists in another

"context").
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English graphemes.) However, the confusion that may result from a stin—

ation such as the one in our example, plus the requirements of 'context-

free" strings demands a separate code for meaning units (morphemes) and

lower units which make up these meaning units.

One other example may motivate our discussion of Lamb's model.

The Spelling of English words is often effected by neighboring meaning

units (context sensitive). The natural example is the way in which nouns

I

are affected when they become plural ("knife" to ”knives", 'wife" to "wive§').

This is a typical form of linguistic alternation. The pronunciation of

V! 1!

these words presents another problem, because the final 3 is pronounced

 

H H

like a z . This change is independent of the preceding alternation

("bed" to "beds") if performed in the correct order (change I a v; then

2 after voiced,s after unvoiced). Thus, there is a need to separate

these two processes.

Lamb Specified two strata in his model of phonology: the

morph— stratum and the phon- stratum. It is very difficult to give precise

definitions to these terms (at least in anything short of a full article).

More often, a construction or generative algorithm is given which results

in a precise quantity. Each of Lamb's strata has —emic units as upper

interface and —onic units as lower interface (cf. Figure 21). The

definition of the stratum label is best understood in terms of its

upper distinctive unit. A morpheme is generally accepted as a minimal

element, either a meaning unit or a grammatical unit. The following

is a list of definitions for a phoneme; each of them contains a small

grain of truth:
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(1) "A bundle of distinctive features"

(2) "A class of phones in free variation or complementary

distribution'

(3) "A minimal term in phonological opposition".

We \vc311ilci prefer a definition analogous to that for the morpheme: "A

ph011c2u1e3 _is a minimal element of distinctive expression". We hope that

this; 113 as truthful as any other Short definition.

Each stratum, then, is simply a correSpondenee or set of inter-

PFelJEltxi()n rules for relating its upper and lower units. The purpose of

 

the Ciilcliotomization (although a huge one—shot scheme is often suggested),

just £155 in the discussion of the grammatical system and the phonological

SySt(3"l, is to allow independent analysis in each stratum. Because the

units; Cit the interface must be context—free sequences (at least with the

prescerlt: state of the art), the operation within each stratum is to

H

una ,
IE1VC1" the context dependencies. An example on the phon— stratum

w
0u1(1 1)(> helpful. Many dialects of American English do not articulate

the ‘ - .. . . .
1r11tial vowel in "before” precisely; it becomes /:v as in "bufl"

rath ‘ . . 11 .H . . . . . . .

(311 13han /1/ as in beef . The difference is distinctive for the

I)a111 " H I! H - . H H

lDIJff and beef but ev1dently not in before . At the upper

illtol‘ ~r .

[‘1<:C of the phon— level the coding would be the same for both

dial

QC Lall variations of "before” (i.e. /bifr/) but would distinguish

/q)of/ from "beef" /bif/.

The actual mechanics of this context unravelling involves two

tVDQR

()f rules and the unit epoch (duration in time) of each stratum.

711110 1 ‘

(”llérth of the morpheme corresponds (approximately) to the syllable, and

the 1

C3I1E:th of the phoneme correSponds (even more approximately) to the
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givipuienne or Arabic letter of printed language. In line with our defi~

tiitxicui (3f the ~on unit as an objective description of events, the

Inorqoruoii is the same length as the phoneme and the phonon is Smaller than

the phoneme .

The two types of rules, called realization and composition,

estak)l.j43h relations between these units (cf. Figure 22).

(l) Realization rules are the code for the —eme unit in terms

of the smaller -on units. Conditioning by neighboring

—on units is accounted for here (as in our example above).

(2) Composition rules are the code for transforming the

—on unit of a higher level into the ~eme unit of the

 

lower level. Conditioning by virtue of belonging to

a unit of the higher level (i.e., stress on a morph—

length unit affects vowel phonemes) is accounted for

here. Alternation caused by linguistic constraints

is also accounted for here.

We C(11)

(wif(3:)

as /VV{1_j~

vowe]~

This

and t; he

morbhc) 11 s occurr

impo

I‘eturn to our example. Suppose we have the morpheme string ——

(Pt) —- to be encoded. The realization rules would code (wife)

1“/ and (Pi) as /S/, with the conditioning rules selecting the

i
EQII idc after /w/. The composition rules would change /wa f/ to

i

wa

/ \”/' E>ecause of the alternation caused by the plural (cL FigureZB).

C3><€1mple also shows another distinction between the morph- level

phon— level mentioned above. Notice that the alternation of

ed only within the syllable. This is the restriction

as

(3‘1 on this stratum. The alternation of the plural morphon /s/ to

(311use of the/v/ ending of the previous syllable is performed in

l>1 . . .. . .1(311~ level, so the length of influence of each level’s rules is
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def111(3(j. gas within syllables for the morph— and within clusters (vowel

or consonant) for the phon—.

Several features of this model which are particularly attractive

for 21111;cnnation can be summarized:

(1)

(2)

(3)

Relation of units —— time length and types —— stresses

the relation of a sequence to its members, to the

sequence of separate time chchs, and to the combina—

tion of components (features) in one time epoch.

The operations within a stratum occur nearly independent

of the other strata. This is done by separating the

objectives and operation on units within each upper unit.

(Again the extent to which any natural language, eSpe—

cially English, can be so described, is not known at the

present time.)

The correspondence rules within a stratum are typed;

that is, an algorithm which would implement the rule

can be very Specific with respect to inputs, outputs,

and procedures. We have

(a) Realization rules —— encoding of sequences into

higher units

(b) Composition rules

1. Alternation —— alternative "spellings"

2. Conditioning -— rewrite, depending on

a. Neighboring units

b. Membership in higher unit.

 





 

III~(3 Recognition Phonology
 

The stratificational model discussed in the previous section

luw rnzxrljy properties useful to a recognition system. The dichotomization

into .rIGBZII‘ly independent strata with Specification of interaction by means

of scexzcexsal types of rules is extremely useful in Specifying the training

and tissee of an automated recognition system. The stratificational model is

mn13c>lr1363d to be a two—way model (ChomskySB), for recognition as well as

geneex‘211:j_on, but we find that this is not entirely true. Three problems

arise :

(l) The lowest unit (closest to acoustical signals) of

a generative phonology (Lamb's or any other) is still

in terms of abstract quantized units that reflect

economical encoding rather than good correspondence

with features of the acoustical signal.

(2) This ideal sequence is still ambiguous (in general)

unless the Specific rule used at each point in the

encoding is also known. In recognition situations

we do not know the rules used until the correct

sequence is known.

(3) Formal language representations only Show redundant

features in a secondary or "tacked on" fashion for

the same reasons of economy mentioned in Item 1.

The more realistic situation that apparently operates

in human communication will be discussed below.

The higgr‘lbl redundant nature of the correspondence between acoustic features

and perweeeived sounds suggests a slightly different approach than looking

130

 



   



 

for "primary and secondary features". Human speakers generally have

individllal language pronunciations, called ideolects; i.e. , one person

might find that a particular articulatory situation causes a noise burst

of a specific center frequency with no modification of the following  
vowel , and his listener agrees that he "heard" a "b". Another Speaker

finds that precise modification of the following vowel with no Specific

noise burst elicits the same response. One cannot say that there is a

Primary feature here; the listener's responses to both Speakers are equally

positive, We might call this property of the listener a dialectal generali—

zation- Each person may learn a particular set of features that must be

 

controlled precisely in order to communicate. The remainder of the features

(redUndant in Lamb's terms for this Speaker) are not precisely controlled;

thus they may vary considerably with respect to many speakers. This variation

will occur above that caused by lack of speaker normalization (suggested

by Thomas ,19 Gerstmana). Perceptual experiments with repeated words corro—

box-ate this conclusion, and the work of Rupert20 shows that this approach

15 needed for situations involving diverse speakers. In the light of this

disc - . . . . . .

usslon, we propose a model which av01ds the def10191101es mentioned

above _

To overcome the first inadequacy, the same arguments that lead

Lamb to a two—strata view of generative phonologies suggest a three—

strata mono} of recognition phonology. This addition may also be useful

in a generative phonology, as Lamb has suggested.

Note first that acoustical features can be considered as either

$0801th Or relative with respect to Speakers; i.e., schemes can be

deViSe

Q Which measure stridency (to distinguish vowel—like and fricative—
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liker) , (:liecked (stop—release) silence and local envelope maxima without

speal<eslr liormalization, whereas specific formant placement, duration, Stress

mul 1111:()r1ation are very Speaker dependent. We can then define a third stratum

with 111)}:e3r units called acoustemes. An acousteme is a minimal distinctive

unit C:c>1flresponding to a homogeneous (with respect to both relative and

abscL1111:£3 acoustic features) epoch of the acoustic signal. Some implications

of this definition are:

(1) It is a specific definition not only with reSpect to

a particular language but also with respect to a par—

ticular Speaker and utterance; i.e., different utterances

of a given phrase, even from the same speaker, could give

different sequences of acoustemes.

(2) The distinctiveness property requires that only the

controlled features can be involved.

(3) The segmentation is performed with respect to controlled

feature changes and hence induces a useful criterion.

The 14111_ts; thus defined, while more accurately representing the specific

acous t:i(3a1 signal, also behave like units of higher strata and exhibit

many ()1? the same linguistic phenomena,

The four terms diagrammed in Figure 24 (diversification——A may

becomes 1’ or Q; neutralization-—B and A may become Q; zero realization——

C may n0t have a corresponding unit; empty realization——S may be filled

in) Gaul ‘bezused to describe the various ways in which a speaker actually

perfcxrnls the dynamic task of selecting which features are to be controlled

and wlliczlt are to "float”. Examples of these are found in the work of

Ruperta 0

u n

on isolated words. Several of the phenomena occur in before .
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Diversification is seen by the different types of formant structure in

the diphthong on the end. Zero realization is almost always seen in

initial "13" with the lack or prerelease voicing. Empty realization is

exempl ified in the extra state or fill—in after the release of "b".

Neutral ization, which is evident on higher levels ("bitter" becomes

"bidder" ) , is an alternate explanation of the modification of the

diph tll on g .

Lack of knowledge of the Specific rules used to generate the

acoustical signal and the resulting ambiguity in decoding requires another

n10dification. This ambiguity primarily causes extreme difficulty in place—

ment of junctures (word, phrase, sentence) in the morpheme sequence. An

attempt at recovering this information can be made by attaching another

rank to the model. The third type of information primarily affects lower

Strata , such as stress and intonation patterns. This information has not

been included in any word recognition system known to date. It is well

known that these patterns delineate phrases and sentences. Other types

of ' ~ . . . . .
1n IOrmation occur in Smaller units; hence this rank operates on different

Strata also For the present, we will label this rank the hyper- —on,

WhiCIl :iridicates how the information is abstracted at each stratum. The

-Oni(’ ul‘lits are the most objective description of the events. The -emic

units Elrws generalizations which Show the distinctive events; the hyper—

-OniC: 111‘lits are derived from the —onie units and Show events which affect

lowel‘ llrlits. For instance, stress is a feature of a whole morpheme but

affekytég (generally) only the vowel phonemes. Figure 25 shows the

amnion L ed model .

(l) Hyper—morphon features include stress and intonation

patterns.
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(2) Hyper—phonon features include juncture phonological

variation.

(3) Hyper—acouston features include Speaker identity and

speaker emotional state.

What this implies in a recognition system is a different type of

structure than that suggested by a generative approach, namely a directed

algorithm in which predominant features control the search for more fuzzy
 

features and decide which of them are actually needed. This can be accomplished

in the generative model simply by attaching a priority to the set of rules

so that we can dynamically select the proper rules to be applied. The

 

priority would be a function of the high reliability features (in a degree

of presence) filled in by long-term statistical expected events.

Figure 25 shows the augmented generative phonology model which

may have the two—way property necessary for recognition. At the least,

this figure points out the major problem in recognition of natural language

type vocabularies, the number of ”feedback” paths. That is, if one starts

with the acoustical signal and tries to proceed upward through the model,

every step is affected by a higher level. Decisions made on the first

stratum will cause a certain interpretation of higher strata which will

feed back a conditioning of the lower stratum causing a different decision,

and so on.

We will prOpose a system based on this model without the feedback

and discuss it in the next section. It will look roughly like Figure 2&5.



 



 

 

H
Y
P
E
R
M
O
R
P
H
O
N

I
H
Y
P
E
R
P
H
O
N
O
N

F
E
A
T
U
R
E
S

F
E
A
T
U
R
E
S

 

 

 
 

 
 

 

 

  

C
l
a
s
s
i
f
i
m
t
i
o
n

a
n
d
T
i
m
e

M
a
r
k
s

 

 

S
P
E
E
C
H

A
C

'
N
P
U
T
—
—
‘
—
'

R
E
C
O
G
N
I
T
I
O
N

 
 

  
 

A
C

R
e
p
r
e
s
e
n
t
a
t
i
o
n

 
 

 i
I

l

S
H
O
W
I
N
G
:

A
C
O
U
S
T
—

P
H
O
N

M
O
R
P
H

M
O
R
P
H
E
M
E

N
.
i
_
_
_
_
.

+
_
_
>

1
.

P
a
r
a
l
l
e
l

s
u
p
e
r

s
e
g
m
e
n
t
a
l

e
x
t
r
a
c
t
i
o
n

S
T
R
A
T
U
M

S
T
R
A
T
U
M

S
T
R
A
T
U
M

S
E
Q
U
E
N
C
E

2
.

D
e
c
o
m
p
o
s
i
t
i
o
n

i
n
t
o

s
t
r
a
t
u
m

 

 
 

 
 

  
 
 

 
 

 
 

 

F
I
G
U
R
E

2
6

R
E
C
O
G
N
I
T
I
O
N

S
Y
S
T
E
M
W
I
T
H
O
U
T

F
E
E
D
B
A
C
K

137





IV RECOGNITION STRUCTURES FOR REAL-TIME SPEECH PROCESSING

Dynamic recognition of connected Speech is much more difficult than

most pattern—recognition problems. In the first place, the complex

acoustical signal requires some modification or filtering to accentuate

its significant characteristics. Secondly, the unknown nature of the

precise generating model at each instant poses an identification problem.

Thirdly, the dynamic changing nature of the information content of the

acoustical Signal requires a sequential decision structure. In this

chapter, we will attempt to define an adequate structure for real-time

recognition of the acoustical Speech signal according to the models

developed in Chapter II and the criteria developed in Chapter III.

IV A. Reduction of Dimensionality Using Bayes' Formulation

Speech—recognition algorithms that permit real—time computation

require low—dimensional representations (input pattern vectors). We will

use modern communication techniques to show how the representation/

recognition schemes develOped here can reduce the normal dimensionality

of the input acoustical signals. The results of Section II-A indicate

that we may represent each single formant present in the acoustical signal

by a two—dimensional state vector with an associated differential equation

(Eqn. II—A—l3). Further, the results of Section II—D show that our

segmentation procedure permits a time partition of the acoustical signal

into epochs, each of which can then be classified in sequential fashion.

Lainiotis59 considered signal detection and recognition in a

recent paper and attempted to determine a "natural" dimensionality. His

problem formulation, however, does not account for the complicated
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relationships between features described in Section I-B. Thus, we have

to restrict the conceptual model of information—bearing features to fit

into this signal—detection model. First we must assume that one formant

contains the significant linguistic information at any one time. This

idea is proposed in the literature by Thomas19 and implied in the theo—

retical linguistic work of Fant, Jakobsen, and Halle,11 describing their

distinctive feature matrices. Thus, one regards other formants present

in the acoustical signal as correlated noise and therefore only a distur—

bing character for the true signal (dominant formant). In addition, we

must restrict the type of driving function allowed in the state variable

differential equations. Fricatives and nasals can be adequately modeled

with white excitation processes, but vowel—driving functions (pitch

pulses) are not easily accounted for. For this particular formulation,

one can consider only whiSpered vowels. Yilmaz6 and others have followed

this approach in their studies, since there is some degree of intelli—

gibility in whiSpered vowels.

We must emphasize at this point that these restrictions,

although discussed in the literature, are made merely to permit the

mathematical formulation of sequential detection theory. However, we can

consider the implications of the theoretical results based on this

restricted Speech model and use these results to make further inferences

about the more general speech signal case. Suppose we are given the

following noisy observations:

y(t, 520) = H(t, g0) {(t, EU) + v(t) o e I‘
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of the stochastic signal (one of the ensemble of possible Speech "sounds")

represented by a state vector x(t, go), where

H(t,80) is the transmission matrix

v(t) is a white guassian noise process, independent of x,

with zero mean and unit variance

is a parameter vector specifying the differential equations

“‘0'

generating x (Eqn. II—A—13)

Tb is the index set for 0. Each 0 refers to a single

discrete value of the parameter vector 90 (i.e. the

range of each component must be discrete)

k

d 'ls'tl' t'st- t<t <t <...<t <t.an a set of Signa w1 Cling 1me I 1}i=1 1 2 3 k-l k

The natural dimensionality, or structure, is then determined by the para—

meter vector 20' In addition to having different values for each component

for different 0, 90 may have fewer or more components or may reference

different noise structures (one or two correlated formants).

Lainiotis shows that the pattern—recognition/detection problem

of determining the presence of one of M signals from these noisy obser—

vations when the signals are generated by differential equations of

unknown functional form has a Bayes minimum—risk solution of the following

form:

(1) A bank of nonlinear Kalman—Bucy filters is derived

based on Elegy possible form of the differential

equations, that is one for each 0 6 I8. The output

of each K—B filter is a conditional mean; i.e.
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“’(t/vt 'Vk-1 Ua) is the ex e ted value of the state
330 k? a ) 0 p0

vector for each possible hypothesis Ha (signal ya(t)

is present) a = 1, ..., m, conditioned on the present

and allz (t t) t S tsignaling interval, Vk k—l’ k’

. . . k-l .
past Signaling intervals, Va 2 (uh/Ha was active)

a

and the value of the parameter vector 20.

(2) The expected value of the signal process is derived

from the conditional means from each K—B filter by a

mixture probability formula

 

rv t k-l 28 a t k-l
= 6 vyo,(t|vk, Va ) PLGI k, V0, )

06

IO

9 ) (IV—A—l)

k-l O!

O! ’ -U

0 ea N t

H(t,_O) xa(t|vk, v

k-l a

a , 20') is the conditional mean of
1

where E (tlvt V

—a k’

thezlposteriori distribution computed by means on a

. * . . . 60 el
nonlinear time—varying filter (Kushner, Kalinapur )

d

H(t,§0) is a matrix which converts the state vector

«1 rv a t k—l

5 into the observed signal y and P(901\)k,VOZ ) is the

learneda posteriori probability of the parameter vector

a

value 90 conditioned on the present signal interval and

all past signal intervals when HCY was active.

“x

*

Lainiotis specifies only linear differential equations, but the extension

t0 the nonlinear case is obvious.
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(3) The likelihood ratio for each hypothesis, Ha’ is then

computed using a correlator/estimator formula (Kailathsg)

with the input signal and the conditional mean'

k—l

a ), and a standard Bayes criterion is used3:13!“le V

for the decision.

Even for the restricted speech model, and assuming the nonlinear

estimation filters can be implemented, this is still an inadequate

solution. The primary difficulty is the mixture formula (Eqn. IV—A—l).

Although this formula is optimum in the Bayes sense for randomly selected

3' *

generating models (Wainstein and Zubakovfa), one would not expect the

 

convergeda posteriori probabilities of each model parameter vector

value 2:1 to be either 1 or O; i.e. the formula (Eqn. IV-A—l) reduces to

selection of one filter. Then the conditional mean, y& , will be a

sum of an output from the "correct" filter (given the particular signal

and noise conditions) and others that are based on noise or other

unwanted signals. For high signal—to-noise ratios (ratio of inner to

outer distances for a pattern-recognition case), with apprOpriate models,

l-O probabilities may be learned; in Speech, however, this is very

difficult, because of the large class of "signal—like" noise processes.

Implementation of the optimum solution involves many difficulties.

Some of these problems are discussed below:

 

*

The comparison for a parameter measurement/detection problem is between a

inixture formula and choice of the maximum probability (likelihood ratio).

For large m (number of filters),a factor of two minus signal—to—noise ratio

is required to maintain the same probability of error.
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1. Implementation of Filter Bank

The nonlinear estimation filters are physically unrealizable

(they require an infinite number of components). Sub-

optimum techniques are available (Byrd6$), but they sacrifice the ability

of the optimum filters to match the transient response in order to have

appropriate asymptotic behavior. As was pointed out in Chapter II, con—

nected Speech signals from divers speakers contain critical dynamic por—

tions requiring good transient response in the preprocessing stages. Thus,

the heuristic criteria deve10ped in Chapter II are more appropriate.

The optimum formulation requires a model of the desired

signal plus unwanted (correlated) signals and noise for each filter. For

the suboptimum case, however, this is not always desirable, eSpecially

if one is not sure of the exact structure of the undesirable signals.

GroneEShas shown that under certain conditions the performance of linear

threshold elements with adjustable weights can be decreased by increasing

the number of inputs. In attempting to classify isolated words from one

speaker using the zero-crossing counts and energy levels from eight

bandpas filters, performance measures increased as a function of the

number of inputs but then began to decrease. The posited explanations

were:

(1) Assumptions about the pattern statistics were

not correct.

(2) The number of sample patterns was insufficient.

(3) Incorrect structure or training algorithms were

used.

(4) Training was not allowed to continue to convergence.
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Determination of the proper number of inputs to give a maximum

performance is difficult to accomplish except in special cases. One

example from Groner may help.

When one is using Euclidean distance differences to classify

pattern vectors, an additional measurement degrades performance when

 

n n n

2n+l

2; > z ..
Wi + 4o n2 . Q13

1:]. 1:1 3:1

where [wij] i,j = l, .... n is the correlation matrix of

the existing n measurements

wb is the variance of the new

new measurement

qt i = l, ..., n is the correlation of the new

measurement with each old

measurement.

Hence the performance is degraded by the addition of a new

measurement which is correlated with the others and which adds noise

(proportioned to W6) to the recognition process.

*

2. Independence of Filter Bank Outputs

The mixing formula (IV—A—l) is based on the assumption of

randomly selected generating models and optimum least-mean—squared-

 

*

Probabilities computed on two input sets X3 and X2 are independent if

p(xk,x£) = P(xk)P(x£).
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error estimation filters. The highly structured and situation—dependent

interrelationships of acoustical features make the former assumption

very suSpect. Further, the choice of suboptimum filters again indicates

a set of dependent probabilities. In order to achieve the superior

performance of a mixture formula, Wainstein and Zubakov apply the central

limit theorem for a sum of independent random variables. Thus it would

be beneficial to the performance if the mixture probabilities were

independent. A second observation about such sums is pertinent here.

The study of robust estimators shows that convergence to a stable value

is quicker for arbitrarily distributed random variables if "outliers"

(events significantly removed from the mean) are not included. In this

context, probabilities assigned to certain filter outputs can be "outliers"

due to reasons cited in the discussion of the implementation of the

filter bank. The long training period that may be required even for

optimum classifiers (which is lengthened due to outliers) is especially

detrimental in the Speech situation. The plastic structure must be

responsive to "drifts" and slow changes in the input's salient features.

Thus, for the suboptimum filter bank specified in Chapter II

and Appendix B, we need to investigate recognition structures which form

near independent probability estimates and mixture formulae which reduce

the undesirable effects of outliers. We will Show in Section B how

the Lewis‘B—Brown¢b probability approximation technique attempts to compute

independent probabilities and in Section C how the S—RETIC algorithm

of Kilmer+1 operates to eliminate outliers.





IV B. Quasi—Independent Probability Distributions

The discussion in the last section indicated that the set of

aixxneriori probabilities computed on the outputs of the preprocessing

filters should be independent in order to increase recognition performance.

This will be difficult to achieve because of the overlap of the input

sets——one for each probability computer--and also because of the correlated

nature of the inputs.

«2 46
The Lewis-Brown ’ iterative technique can be used to reduce

the dependence between the probabilities. The notation follows that

of Section I-E. Suppose we have (for a given class Ct) a set of m low-

order distributions {Pk}:_1 such that

Pk(x) 4 O k = l, ..., m for all x

fpkh‘) dX r: 1 k :1, ..., m

x€Xk

where Xk* is the set of n inputs for the kth probability computer. Then,

if we consider the entire m x n dimensional pattern vector for a given

class and hypothesize a "true" distribution, each low—order probability

distribution, Pk(Xk), satisfies a marginal property; integration of the

"true" probability distribution over all components not contained in

k k

X equals Pk(X ). Brown gives an iterative procedure for determining,

 

For Speech, one input, xi, might be one component of a four-component

state vector representing the output of one filter of an m-filter

k
(overlapping) bank. X , then, is the state vector (n=4) for each filter.
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among all products of low—order distributions that satisfy the marginal

property, the one that minimizes an information measure of the close—

neSs to the "true" probability distribution. Brown defines an

iterative procedure as follows: Given an initial (a priori) m x n

. . . o . .th . . .
distribution P (x), define the j iteration, j = l, 2, 3, ...

probability distribution, PJ

{P }m

k k2].

, from the Set of low-order distributions

33(X) gé'1(x) Pk(x) / Pi’l(x)] (Iv—B-l)

th th

That is, multiply the (j-l) probability distribution by the k low—order

distribution, where k j modulo m, and divide by the marginal distribution.

._ ._1

P? 1(x) = I. P‘J (x)dx (IV—B—Z)

< .

k

x e X

Brown shows that the distribution PJ does satisfy the marginal requirement

for all j and does converge to a limiting distribution with the minimum

information preperty.

At first it appears that Pj will contain low—order distributions

raised to a power but if we rewrite the marginal distribution (B—2) we can

see that this is not so.

PJ_1(X) _ Pk(x) gj—l(x)

gfl‘2(x) ° k

where the g's will be defined. Substitution of this into Eqn. (IV—B—l)

gives (after m iterations)
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Ill

P300 = r1 2km / aid) 3 = m, m+1, (IV-B-3)

k=1

where

gj(X) = gj-l (X) j # k modulo m

k k

. m .

gJ(X) = I U P (X) / gJ(X) dx j = k modulo m

k " k t=i I; it

Note that gi(x) is a function of x e Xk and hence the gi functions tend to

make {Pk}::1 a set of independent probability distributions so that a product

rule for recombination applies. The computation of gi requires, for a given

module, an integration over the set of measurements not contained in the input

to that module. The gi functions have the same limiting prOperty as discussed

in Brown. To see this, define the limiting probability distribution

Pr(x) = Lim Pj(x) (IV—B-4)

j—aCD

r

and recall from Brown that g has the following marginal properties

[llr(x)dx : Pk(x) k = l, ..., m (IV—B—5)

k

x €3X

r

Substituting for E from Eqn.(IV—B-3) and Eqn. (IV-B—4) (with proper

assumptions to give interchange of limits, integrals, and products)
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I Pr(x)dx : Lim j‘ Pj(x)dx

: Elm gk (yj: Bk(x) k = l, ., m

and

'—1

g: (X)

Lim j = l (IV—B—G)

it” gk(X)

Thus, it is necessary only to compute the iterative definitions

l
1. An example may clarify the role that the g; functions play. Let

(

of g

P (x x

o

3 .

2, x3) be an a priori distribution over X(:R . Let the two-dimenSional
1 )

(n22) lower-order distributions (m—Z) be (where P with no indices denotes

the marginal distribution of the indicated arguments)

l

Pl(x) : P(xl,x2) X = (x1, x2)

P (x) : P(x x ) X2 : (x x )

z 2’ 3 2’ 3

Then

J .

gl(x) 2 1 J : 1) 3) o.-

g‘im) = P(x2) j = 2, 4,

and

Pr : Pj : [)(X X )P (X /X ) J :: 2 3

1’ 2 3 2 ’ ’

Note that any a priori distribution is allowed and does not affect the

final result. The effect of the gi functions in this simple example is to

change the marginal distribution into a conditional distribution. Chow's45
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approximate scheme for learning conditional dependencies is analogous

(allowing conditioning on one variable only) but the use of the gi functions

allows one to determine the structure of the problem for any set of

lower—order distributions (possibly in a theoretical sense only, as the

computations may become unwieldy eSpecially if the lower—order distributions

change).

In summary, we have shown how an iterative procedure for approxis

mating probability distributions is a mathematical model for learning

conditional dependencies such as those found between Kilmer'sqq‘STC—RETIC

modules. The reduced formulae deve10ped here require only integration

and multiplication and no powers (as in the original scheme). These

iterative formulae develop only the conditional dependencies and do not

depend on measurements that are independent. That is, if Xk and Xq

are nonoverlapping,independent input sets, then the integration set to compute

gi need not include Xq. The resulting approximation formula is a product

which implies independent measurement sets. Thus, they form an appropriate

set of mixture probabilities discussed in the last section.



 

 



IV C. Specification of First—Level Decision Structure
 

At this point, we have Specified a set of m state vector represen~

tations of the input signal, each state vector having dimension n, and a set

of a posteriori distributions for the probability of each state vector,

given one classification C&, t : l, ..., r. We wish to decide, on the

basis of this information (and possibly other information which needs to be

Specified), the appropriate subset of state vectors that best repreSents

the pertinent features in the input signal. We can write a general

formula to compute r numbers to decide between the different classifications

(hypotheses), including the Bayesian approach developed in the last

two sections.

S : zlfk(pkt) t : 1, ..., r (IV-C-l)

where fk is a monotonic, nondecreasing, continuous function and P

kt

ispk(C£/Xk), the a posteriori probability of class C iven the inputE g

k

set X . This formula includes a large number of likelihood functions.

We will discuss these different formulations and relate them to the

specific problem of Speech recognition.

The usual (1KH(I)()IIHODOLODIC functitnni<3f the probabilities

is the natural logarithm, which converts a product of independent

probability distributions, as discussed in the previous section, into a

summation. Since the function is monotonically nondecreasing, a decision

test based on the probabilities alone will have similar results for a

function of those probabilities. Another function of this type is discussed
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in Kilmer.+1 There, the purpose was to emphasize probabilities that weredif—

ferent from a. uniform value, l/r. Thus, if a given P& was significantly

k

greater than or less than %, the f function would tend to emphasize this

particular probability.

The formulation (Eqn. IV—C-l) also allows several types of cost

factors to be included in the decision quantities. Various cost factors

are discussed in the literature. One of the most pertinent to the study

is an information measure that is related to the amount of information in

the a posteriori distribution p(Cfl), given xk, t = 1, ..., r. Here the

implication is that a module input should be considered very strongly in

the decision if there is a significant peaked distribution among the var-

ious categories. Another possible interpretation of a cost function of

the input Xk, especially for suboptimal systems operating in noisy environ-

ments, is a quality measure which could be determined in two ways: first,

in terms of the distance from the cluster centers of the input variable.

This would indicate whether the input were quite far from the majority of

inputs seen previously with respect to the given set of learned categories

(where we are not concerned with unknown or new input classes). This type

of cost factor would indicate that low values of a posteriori probability

have less influence, especially in the case of an insufficient or small

number of training patterns. This is so because the majority of known

probability distribution estimation techniques give much worse estimates

of the tails of a distribution (events with low probability of recurrence)

than they do of more densely populated modes. Another type of quality

measure based on the physical characteristics or measurements (low signal—

to—noise ratio of input, extremely high background interference, etc.)



 



153

would lessen the effect of noisy inputs. These types of cost factors can

easily be incorporated into the formulation (Eqn. IV-C~1).

The third thing that may be included in this formulation is

prior distributions. Lainiotis only used the prior distributions as

thresholds for comparison of likelihood ratios that he generated. In

Speech it is well known that successive speech segments are highly dependent

(redundancy of about 33 percent); hence there is much information in

the probability of a given segment, given the last decision or classification

of the preceding segment. Thus, we must augment Bayes' formula that was

stated in Section I—E to include this conditional probability.

k k—l f k ] [ k—l ‘
P(C&/X ,x )—LP(X m, / (P(c£/c&_l)p(c&_l/x )j (IV—C-2)

This should be incorporated in such a way that when the a posteriori

probabilities computed on the present input do not contain sufficient

inforuudjlnl to give zltwiliable estinu1h3 of the lnngNTt category, (in?

conditional distributions should be used. Even with the different

interpretation given to cost factors and prior distributions it is

possible to formulate a recognition problem for a restrictive speech

signal within the Bayesian framework, as discussed in the previous two

sections. However, there are several events,e5pecially for subOptimal

systems Operating in noisy environments, that will have a probability

), t = 1, ..., r; k = 1,matrix P = .., m, which does not give
I)

( tk

acceptable decisions using Eqn. IV-C—l. This can be due to conflict

between modules having high probabilities for one class and other

modules having high probabilities for another class. This situation involving





154

"outliers," as discussed pnadoqum can occur because of: (l) inappropriate

assumptions; (2) presence of noise in the input that is very much signal—

like (white noise that looks like a fricative, sinusoidal inputs that

look like vowels or nasals, etc.), or (3) a dichotomization of inputs;

that is one module may have the same input for two completely different

classes of the input signal. An example of this would be during a nasal,

when a high—frequency—bandpass filter might have a strong formant that

looks vowe1~like, whereas the presence of no Signal in other filters

and low energy of pitch frequency component would indicate that this

signal interval is not a vowel. This type of correlation, of course,

Should be incorporated by the Lewis~Brown+2’+8 approximation technique, but

it may not be a sufficient mechanism.

Wainstein and Zubakoéxhave used the central limit theorem with

reSpect to likelihood ratio formulae, such as Eqn. IV—C—l for the fol—

lowing reasons: given that the individual terms (probabilities, like—

lihood ratios) are independent events and given certain restrictions

on the tails of the distribution of these events (that they are well

behaved and go to zero sufficiently fast as the value of the event goes

to infinity), the distribution of the sum tends toward the normal

distribution. As is well known, this is an asymptotic prOperty, but it

illustrates two things: (1) convergence to a definite value, and (2) this

value is not a local minimum, since the asymptotic distribution is uni—

modal (these theorems have been proven for a larger class of distributions

than the normal, but with similar convergence and unimodal properties).

Thus one can expect a stable rule for finding a maximum value with a

guaranteed convergence property. The problem that occurs with low proba—

bility outliers is that it will take a large number of terms in the summation
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to counteract its effects. In our situation, where there is such a mix-

ture of probability distributions and a large number of possibilities for

generating such outliers, one cannot sit back and hope that they will only

occur with a small probability. Several theorems have been proven (Hertz7o)

where the tail behavior of the even distributions has been relaxed by

eliminating outliers and still obtaining the central limit theorem. This

of course is intuitively the correct thing to do in order to maintain the

convergence and unimodel properties.

The discussion of causes for outliers' occurrence leads one

to consider two approaches: One is to use a Bayes decision formulation

 

but compute a larger dimension probability distribution, possibly over

the entire m X n dimensional Space. The discussion of the first chapter

has indicated empirical objections to this approach. With respect to

the discussion in the first two sections of this chapter, the module

concept can be justified by stating that the filtering representation

scheme presented in Chapter Two is better matched to the natural dimen-

sionality of each feature and thus is better able to eliminate unwanted

signals and noise and thus to isolate individual features. Second, as

pointed out by Groner, too many inputs to a suboptimal design Bayes

decision network very often add noise and thus degrade the overall

classification performance. Thus, it would seem very natural that the

first level of decision logic would be to extract the features as separate

entities and then, on the basis of this extraction, look for the inter-

relationships and more detailed properties of the features.
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The other possible decision structure is to allow interconnections

between the modules that allow lateral passage of gross information. Kilmer“r1

has considered this problem and has related the S—RETIC modal computations

to nonlinear summative schemes such as Eqn. IV—B—l. He shows that, based

on three symmetries that are assumed for such systems, "S—RETIC computes

a mode [detection/classification] function, F, that no S-RETIC net without

a and 6 [lateral] connections but with nonlinear summative output scheme

could compute even though it is allowed more equipment." The three

symmetries that are assumed for these systems are as follows (note that

the first two are typical for Bayesian schemes of the type discussed):

 

(1) We must be able to compute the same classification

decision regardless of which module has the proper

information. This is especially necessary in

slurucl), at; is (JVlthnt. in lfiigUIW: 4, s11n3v [Jie :aanu:

module will not always have the appropriate classi—

fication information, eSpecially when different

speakers are eXpected to be using the system.

Further, Figure 17 indicates how different processing

schemes will isolate the pertinent information,

dependent on the surrounding feature environment.

(2) The evaluation scheme must be the same for any

classification decision (the computation of 8% is

independent of t, t = l, ..., r).
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(3) Strength—of—effect symmetry. Given prior distri—

butions, an average (summative) decision across the

net and conflicting decisions, any two can overcome

the third or any one can overcome the other two, whether

the other two are in favor of the same classification

or conflicting classifications. This symmetry states

that the decision rule must give equal weight and

operate in an equal fashion in judging the effects

of these three possible situations that can occur

simultaneously.

 

[The last symmetry requires the lateral communication, since

Bayesian schemes have the first two symmetries (any of the formulae from

Wainstein and Zubakov discussed previously) but when faced with the type

of situation depicted in (3) will not operate in a consistent or appropriate

manner.) To paraphrase Kilmer's statement, in light of the outlier

situation, it is seen that the lateral communication is necessary to

decide among the probability matrix and the prior distribution matrix,

which modules should work in conjunction and be averaged together to

determine the output and which should be considered outliers and eliminated.

The S—RETIC algorithm is iterative and thus the intuitive arguments we

are presenting here are intended for understanding rather than analysis,

but the importance of Kilmer's statement about decision algorithms of this

nature is that the structure must be implemented in this way or else the

performance will suffer.
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In the next section, we will specify a first—level recognition

system that operates according to these principles and incorporates the

S—RETIC type of decision logic. We will see how the state variable

representation presented here can be incorporated in a dynamic real-time

asynchronous decision network.

 



 

 

 



 

IV D. Proposed First-Level Recognition Block Diagram

The purpose of this study is to Specify a mathematical model and

a system block diagram that are tailored to the acoustical speech signal,

rather than the converse. The deficiencies of state-of—the—art solutions

derived by means of a Bayes minimum—risk criterion have been discussed:

It is necessary to use a restricted speech model; it is very difficult to

implement the nonlinear estimation filters that are required; a high

dimensionality is required because of the complicated interrelationships

of the speech signals. Even the optimal filters' outputs will be dependent,

in a probabilistic sense; the mixture probability formula allows the

possibility of adding together nonsimilar waveforms, based solely on the

learned probability of presence. Adding to these difficulties those that

have been discussed for suboptimal solutions, which can give rise to

outlier probabilities for particular classes, one is left with a very

negative picture. There are several other requirements of a recognition

system that are difficult to include in a Bayes formulation, which will

be mentioned here to help Specify the recognition system:

(1) Significance of the marked change——The segmentation

marks that are derived from the inherent signal

characteristics must be monitored with reSpect to

past occurrences of the Speech signal to determine

whether the marked change is due to noise (parity

error...), another energy peak entering the filter

bandwidth, the actual start of a new feature, a change

from one feature to another, or the finish of a

feature.
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(2) Correlation with overall system behavior——Each

module decision must be compared with all other modules

to determine if this is a new feature, whether an

energy peak has moved from one filter to another,

or whether (one of) the predominant feature(s)

has finished.

(3) Precisely controlled features——The main criterion

for classifying a pertinent feature is whether it

is repeatable for different Speakers and contexts,

whether it is a transition of prescribed form, and

 

whether the terminal state of the transition is

predictable before the end in case the segment is

terminated.

The Bayesian formulation of course has a different philosophy

toward marked changes, in that they are assumed to be a true segment and

the mixture probability formula is used to decide on the actual significance.

Since in a speech recognition system these marked changes also have

linguistic meaning in higher levels (determining the consonant/vowel

relatiaiships, directing higher—level analysis, ...), there must also be

a decision on their validity. AS is well known, the overall system

behavior must not be degraded in allowing individual modules to make

classification decisions. It has been demonstrated that the S-RETIC will

work in a correlated fashion as a total system rather than m individual

systems, each screaming for its own way (as in pandemonium machines).

This is a very serious requirement which will not necessarily be satisfied

by using a simple mixture formula. The particular method of training the
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classification network is well Specified in our Section I—C and the work

of Rupert“). We can see that the requirements of precisely controlled

features are very pertinent to determining a consistent system performance.

The work of Houde-iv7 also indicates that recognizing transients can be

performed because of the consistent and precise form of articular transitions.

Since it appears from the preprocessing pictures that these transitions

also exist in the acoustical waveform, we can see that this is a desirable

and necessary requirement for efficient recognition.

As was mentioned previously in the discussion of the filter bank,

the fixed-frequency filters that were used are not tailored to actual

Speech characteristics, especially during frequency—transition epochs.

 

As can be seen from the three requirements stated above for the recognition

system, there might also be difficulties for specific systems that have

set filter bandwidths, in that energy peaks can move across filter boun—

daries. Depending on the skirt reSponse of the filter it may be very

difficult, for a particular filter, to distinguish an energy peak which

moves into a filter from one that simply begins in that filter. For this

reason and to avoid a very complicated classification system which must

make these additional decisions, we should make use of the time—varying

tracking filters discussed in Section II—D. We will outline a procedure

for their use in conjunction with the classification system. First we

make the assumption that at any one given instant of time the filter bank

is constructed such that there is at least one filter that isolates the

pertinent feature information (here the use of the word "filter" indicates

the derivative calculations as well as the actual bandpass filter Operation,

since the combination of filtering and differentiation is sometimes
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required to isolate the desired feature). Given that assumption, we can

then Specify a tracking filter, shown in Figure 12, in the following way.

At a marked change, we make a classification of the overall system input

(i.e., each module decision is calculated and then an overall global

decision is arrived at from these local decisions). Then, based on this

decision, selected filters which have the pertinent features are activated

to start tracking. The estimates of frequency and bandwidth are used, as

indicated in Figure 12, to modify the input signal further to emphasize

the particular pertinent features. Thus, other formants entering this

particular filter will not affect the tracking filter output. Also,

 

it will be possible to allow the tracking filter to operate across the

filter bank boundaries. The combination of this tracking filter with the

fixed—frequency filter bank will then lock on certain features and follow

them throughout their duration, emphasizing the chracteristics which may

be needed for higher—level classification.

These requirements allow us to Specify a recognition and pre—

processing structure which matches the nature of the Speech signal and

allows higher—level linguistic classification. This structure is shown

in Figure 27. The wideband Speech Signal is processed by the overlapping

filter bank. Each filter output is operated on by a measurement device

similar to that described in Section II-E. The inherent Signal changes

are detected to give derivative segmentation indicators. The measurement

outputs from A1,1 go to A21, which is the acousteme class selection. Here

the stored precisely controlled feature information is compared to the

input and local class decisions are made. Based on these local class

decisions, the outputs of A21 correSponding to degree of presence (DOP)

vectors shown in Figure 6 are compared with the derivative segmentation
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information to give a local time marker. This local time marker incor—

porates the predictive segmentation on the state vectors, which correspond

to physical clusters, and also probability changes in the DOP vectors,

corresponding to linguistic clusters. The two types of time markers are

integrated to give a local time marker for the ith module. Based on the

table of DOP vectors and the local time marker information, a Shakedown

net with parallel communication and initial condition information deter-

mines an overall global decision and also decides which modules contain the

pertinent acoustical features. This decision network also computes a global

time marker, which is a segmentation point in the input acoustical signal

 

and also an acoustical class decision. Based on this information, a

library is searched for the required computations to determine further

classification. The decision and pointer information is also used with

an attention—focusing device (called the attention selection switch) which

selects pertinent filters and performs the tracking operation on these

filters, based on the bandwidth and frequency information . The lower

box, which is discussed in Chapter III, computes suprasegmental features

such as pitch contours and stress placement, based on the filter outputs,

the wideband signal, global time markers and ac decisions. The supra—

segmental information is used in higher-level decisions shown here in

the terminology of Rupert's Relative Oppositions, to give a first—level

output which is an acousteme class label and a list of RO's to completely

determine the first~1evel output and input to the next level.

The block diagram gives an integrated philosophy of speech recog—

nition, rather than a particular implementaton. The requirements that were

Specified throughout this report have led to this type of structure. The

particular names and implementation, although specific, indicate the
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necessary sort of structure that is required. We have tried to indicate

from as much experimental evidence as is available the feasibility and

practicality of this particular approach. However, nothing short of a

full—scale implementation and testing will actually prove its worth.

 



  

 



V CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY

This study has Specified a segmentation procedure which also is the

first level of analysis of a total system intended to give a commanded

reSponse based on recognition of thespeech input. Section I—A contains

a summary of the arguments presented which lead to this Specification.

The deficiencies of current segmentation procedures in trying to mark

Signal epochs in the Speech acoustical signal exist because they are not

adequately tailored to the complex speech acoustical signal. The

complicated interrelationships of pertinent linguistic features in the

acoustical signal necessitates a more sophisticated procedure; that is,

 

one which first isolates individual, primary features and then further

processes them to determine secondary features, defined as perturbations

of the primary features. The general purpose of this study is to specify

a first level recognition system which isolates individual formants, then,

guided by a syntactic and semantic structure, computes the necessary

measurements. The purpose of this thesis is to describe a segmentation

procedure within this general specification which not only specifies

basic units for recognition but also gives an adequate description of

the complicated speech signal. Further, the segmentation procedure that

identifies lower units will direct the higher levels of decoding so that

the search space is kept within practical bounds.

By formant, we mean the resulting time waveform for one cavity of

the vocal tract excited by glottal pulses, or frication noise. Thus,

vowels and continuants may have three predominant formants; some frica-

tives have one formant, and silent portions have none. Each formant is
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assumed to be generated by a second order time-varying differential

equation driven by either a pitch pulse or white noise source. First

order differential equations are derived for four state variables.

terms of these state variables, a procedure for isolation and acdentuation

of the formants present in the acoustical signal at any one time is given

which:

(1)

(2)

(3)

(4)

(5)

(6)

Uses a wideband overlapping fixed—frequency filter bank

and real—time processing to attempt to isolate individual

formants (the criterion is that at least one filter pro—
 

cessing combination sufficiently isolates each formant).

Derives gross measurements of the state variables from the

observed acoustical signal.

From these measurements, identifies a model for the

current state of the acoustical signal and thus speci-

fies how many formants are present and which estimation

formulae are appropriate.

Selects the filter/processing combination which best

isolates each formant.

Tailors an estimation procedure to track each formant and

give reliable estimates of the state variables to be used

for furhter analysis of the speech signal.

Uses a predictive comparison to determine when a given

model is no longer valid.
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Experimental evidence shows that this procedure can achieve the

ation of the pertinent features from the nonessential (possibly

elated) portions of the speech acoustical signal and also isolation

background noise. Also, the processing can reduce speaker depen—

e (examples given in Chapter 2).

This study also specifies a real—time procedure, which is a combin-

i of analog and digital processing, to accomplish the feature rep-

itation. It involves:

(1) Estimation of the parameters of a dynamic time-varying

differential equation model for single formants; and

[2) Use of these estimates to isolate and accentuate the

single formants.

representation shows the varying parameters of frequency, bandwidth,

Implitude and gives a compact (low memory requirement) representation

11y the information necessary for further linguistic processing.

levelepment of this real—time procedure is partially mathematical

Id in part on an attempt to relate the results to theoretical studies

timation of time—varying parameters), but it is mainly empirical,

se of the inadequacy of any mathematically tractable model to Show

omplete, complicated nature of the Speech acoustical Signal.

Linguistic theory is needed in addition to this acoustical signal

ssing technique to give a proper learning criterion for the pattern—

nition portions of the algorithm. The inadequacies of existing

etical linguistic studies to properly account for complicated acoustical

1 properties are pointed out, and an alternative theoretical

work is described to incorporate these properties.
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Busstudy has resulted in the block diagram specification of a first—

It is evident that many of the results can belevel recognit ion system .

Existingcmmmaimm by implementation and testing of the prOposed system.

ummnaranalysis programs can be used to design and check out the various

Further theoretical work is suggestedpafls afthe recognition system.

The adequate analysis of thebynmchcfi the discussion in this study.

trmwimfl:response of nonlinear time—varying estimation filters (extensions

deahmm—Bucy filters), can possibly be achieved through use of the

quasfémeady—state formulation and prebandwidth function definitions

givanzh1Chapter II. The detection/estimation problem formulated in

Chapmn‘IV may possibly be treated through a combination of these techniques

:Rn'the particular models developed here to give significant theoretical

results in the relatively new areas of nonlinear filtering and time-varying

signal recognition. Also the formulae for deriving bandwidth estimates

and thecan be very useful for investigation of time—varying systems,

linguistic studies that have been Specified can be continued further for

natural spoken American English to define and evaluate linguistic elements

that aiwelnore closely related to the acoustical signal. The effective

use of’sniprasegmental features such as pitch and intonation has only

suggested in this study but will surely be useful for further progressbeen

The techniques deve10ped here for.n recognition of connected Speech.

epresenting 'the acoustical signal give a very practical method for

onunateyr :analysis of (suprasegmental) features such as stress or intona-

through linguistic and communi—Lon patterns. The integrated approach,

ti<1n ‘trueories, gives methods to attack the complicated problem of

ecifying the interactions and effects of these features on all levels

linguistic element recognition.
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APPENDIX A

Description of Sapir's Pseudo-Language

The choice of a data base is governed by two conflicting criterion.

In order to allow computer analysis, it must be of a limited size, but

also, the data base must be representative; i.e., it must Show:

(1) phonetic patterns determined by some consistent rules

as are normally found in natural languages

(2) phonetic "slurrings" by native speakers

 

(3) several speakers pronunciation, including male and female

and various accents

(4) long phrase environments with stress and intonation

patterns.

It is very difficult to find such a data base among common American English

because of the assimilation of words from other languages and the many

dialects that exist. For that reason, we have chosen a pseudo—language

from which we will draw our experimental utterances. These linguistic

forms were constructed by Donald Stark from data suggested in Edward Sapir£36

"Sound Patterns for Speech", (June, 1925) (See Pikey7p. 156). This data

was intended to serve as an illustration of a classical phonetic analysis

and, as such, points out several of the more difficult problems that would

be encountered by an ASR system operating on a natural language. _The

phonetic chart for this pseudo-language is shown below.
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Phonetic Chart for Sapir's Language B

a e e i u o o

Vocoids (a°) (6') (e-) (i') (no) (0°) (0°)

Semi-Vocoids (?) h (w) (y) (l) m n

Non-Vocoids p t k

Stops (ph) (th) (kh)

b d g

Fricatives (f) (9) S (x)

v d z g

Several rules, with regard to conditional variants for this language,

 

were proposed by Sapir:

(1) long vowels (denoted by v-) can arise only when the

syllable is opened and stressed

(2) The glotal stop (?) is not an organic constant, but, as

in North German, an attack of initial vowels. This rapid

onset is lost in mid-utterance position

(3) W and y are merely semi—vocalic developments of u and i

that correspond to a glide between adjoining vowels

(4) L arises merely as a dissimilated variant of n

(5) Aspirated (denoted by C“) p, t, and k are characteristic

of this pattering at the end of the word. It is a reverse

of the American—English habit

(6) F, O, and x similarly arise from the unvoicing of final

v, d, and g. Z and S also alternate in this way, but

there is a true 5 besides.

The linguistic forms are given below. The English "translations" are

Inerely to give an indication of how the utterances are composed from the

shorter forms by typical natural language rules.
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Table A—2. Experimental Linguistic Forms from Sapir's Language B

 

l. L'hoo.sek“] 'She is tired' i4. ['naeaagnn] 'smoke'

2. ['hoo.SexJ 'bear' 15. L' aaaa.om] 'working'

3. ['hoo.zex] 'onion' 16. [dw.'ath] 'horse'

4. [bo.'gif] 'to answer' 17. ['?eg.n kh] 'bloody'

5. [po.'gin] 'dish' 18. ['voo.e0] 'man'

6. ['gaa.yph] 'round' 19. [?um.'bif] 'four'

7. ['gaa.na] 'tarantula' 20. ['?e .go] 'fire'

8. ['?ai.ba] 'white' 21. [hil.'duul 'cloudy'

9. [?a1.baa] 'knife' 22. ['taa.ha] 'Square'

10. ['?m21.bas] 'radish' 23. ['daa.os] 'water'

11. ['duu.e] 'two' 24. L'kaa. oph] 'acrid'

12. ['?el.bas] 'three' 25. ['haa] 'you'

13. ['71 .go] 'even though' 26. [po.'gin] 'I wash'

27. [maak.'soth. 'al.ba] 'white stones'

28. [’zcl.gi. um.'bif] 'four houses'

29. ['daa.oz. o.'ke0] 'She carries water'

30. ['h00.zeg. 'duu.e] 'two onions'

31. ['voo.ed. ' aaa2.om] 'the man is working'

32. [dw. 'ath. um. 'biv.am] 'his four horses'

33. [po.'gil. 'gaa.yph] 'round dish'

All symbols that are used are taken from Pike and are given with their

English equivalents in that book. The non—English sound, g, is a voiced x

or lambda, as it is commonly called by phoneticians. It is a sound common

to several African languages. The glotal stop, ?, appears in some German

dialects and also, may be a part of American—English pronunciation that

has been neglected. The choice of speakers were four: one American male
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(EH), one African male (BE), one African female (BA), one American female

(MJ). These people had previous training in linguistics, but were not

accomplished phoneticians, so that their pronunciations of these words

were more natural, not academically stilted. Their linguistic background

allowed them to comment on the exact nature of those pronunciations.

This data does not have any r's or 1's, as commonly found in American

English. The result is that this is a slightly easier case because of

the lack of complicated vowel glides. They do exist, however, between

adjacent vowels so that this is not a completely academic data base. All

utterances that are referenced in this paper are indexed by the following

method: a seven—character label is assigned, the first two characters

correspond to the utterance number given in the list above, a blank

separates them from the next two characters, which are the initials

assigned to the individual making the utterance, and the last two

characters are assigned to the repetition number of the utterance

(i.e., if the speaker has said the same utterance three times, then the

last number will reflect this as l, 2, or 3 -- for example, 16 EH 2 is

the Sixteenth utterance in the list, dwath, said by Earl Herrick (EH)

and it is his second repetition.

This data base is sufficient for the study of very many questions

arising in automatic recognition of natural speech.

(1) Automatic machine determination of existing phonetic

patterns. There is a sufficient data set available

to perform that experiment.

(2) The actual phonetic variations caused by different

speakers of this basic data. This is the primary

question that we are investigating in this research.
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(3) Measurement of stress and intonation and other supra—

segmental features.

(4) Determination of stress variation of vowels.

(5) Determination of syllable and word boundaries.

There are a total of 258 utterances on the analog tape from the

four speakers with repetitions. A subset of these were chosen for an

initial reCOgnition experiment and these were subsequently filtered and

digitized as described in Appendix B. That subset is:

I -
h

4. [b0. gif] 16. [dw at ]

18. ['voo.e0] 19. [9um.'bif]

h

27. [ma3k.'sot . 'al.ba]

 

28. ['zol.g1 um.'bif]

31. ['voo.ed .' ae ae . em]

32. [dw.'ath . um.'biv .am]
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APPENDIX B

Recording Apparatus Used to Collect Experimental Data

The recording of the experimental data on analog tape was performed

on the apparatus shown schematically in Fig. B—l.

The subjects were seated in a quiet office and arranged around a

microphone so that they were talking in a conversational—type atmosphere. The

microphone used was an EV Model 654 Dynamic Non—Directional Microphone and it

was input to a Type 122 Tektronix Pre—Amplifier, then to Channel 2 of an

 

FR 1100 Ampex Recorder with 1/2-inch instrumentation tape at a speed of

thirty inches per second. In order to minimize timing variations in re-

cording/reproducing due to wow and flutter and possibly the use of different

recorders with possibly different speed adjustments, a timing waveform was

also recorded on another channel simultaneously. The timing circuit was

provided by a Tektronix Type 114 Pulse Generator fed directly into

Channel 5 of the Ampex FR 1100 Tape Recorder. The input was a 20—micro—

second pujgp repeated every 50 microseconds for a timing frequency of 20 kHzf This

analog tape was then processed using the equipment shown schematically in

Fig. B—2 and B—3. First, the analog tape was marked with start pulses on

Channel 7 indicating beginning points for the words that were to be pro—

cessed and converted to digital samples. Six separate passes of the analog

tape were used to get the various filtered combinations that were required.

The use of the start pulses assured a uniform beginning point on all the

 

no:

The output variation in a lO—KC square wave, with reference to the input

for a record/reproduce situation, was as much as 80 to 100 microseconds.
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Fig. B—l. Apparatus for Recording Speech Signals on Analog Tape
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[n Fig. B~J, the following operations are shown:

I) The analog tape was mounted on another FR 1100 Ampex

Recorder. The reproduced output was passed through a

Khron—Hite 315AR variable bandpass filter set to lower

limits of 75 Hz and upper limit of 6500 Hz, then to a

BrHel—Krujer bank of third octave filters. This bank

is shown in Fig. B-3 with further hardware and soft-

ware recombination of these filter outputs to achieve

the bandpass overlapping filter outputs as desired.

The B-K filter bank was chosen because of its linear—

phase characteristics, 50 dB per octave skirts for

adequate bandpass filtering and ability to sum adjacent

filters to increase bandwidth. Sampling was done on a

CDC 3100 computer giving continuous A/D operation on an

analog tape using a l2-channe1 multiplexer and a lO—bit

A/D converter. The data were then sorted on digital

magnetic tapes and used for further processing.

The A/D sampling rate was controlled by the timing wave—

form reproduced from the analog tape, minimizing variations

from the desired 50 microsecond sample interval.

Start pulses from Channel 7 initiated A/D operations (via

30—interruptin the A/D converter). A manual interrupt was

used for termination.
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APPENDIX C

TIMSER

A Program for Interactive Analysis of Time Series

MSER-—Techniques for Interactive Manipulation of SEquential

ns——is a program ensemble that runs on the CDC 3300 at SRI.

developed to allow a user to edit and transform time series

tively, observing the results on a CRT display. The time

of primary interest are bipolar, one—dimensional time series

8 the result of A/D operation on an analog voltage)and unipolar

riate time series (such as the envelope and zero—crossing count  
ries derived from the bipolar sampled analog signal). Figure 1

n overview of the operations available to perform these two

f analysis.

ata

WTMSR—4Rne-Dimensional Bipolar Time Series; i.e., the output
 

an A/D conversion of an analog waveform from magnetic tape.

a system allows inputting data from up to three tapes, which may

fferent sampling time intervals, accuracy (range of data), and

length. No capability is available now to unpack multiplexed data;

, it could be implemented by modifying a single subroutine. The

ers that are needed to read each magnetic tape are read in from

:ard. These tape parameters are fixed for each magnetic tape;

30

n/

(1) Tape ID (4 BCD Characters);

(2) Length of record;

(3) Sample time interval;

(4) Logical unit; and

(5) Range of the data, 8 bits (i 256) to 12 bits (i 2048).
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‘ucture of the magnetic tapes is typical for A/D operations; namely,

.ry number of records per file and data blocked by end-of-file marks,

arbitrary number of files. A compass subroutine enables quick

ng for files.

EgTMSRifUnipolar Multiple Time Series; i.e., results of sampling
 

.terrelated analog waveforms or results of processing one—dimensional

gital time series.

Iese time series are stored in random—access files that have

.ble structure, depending on four parameters:

(1) Length of record

(2) Number of records

(3) Number of modules

(4) Number of dimensions.

four parameters are contained in a header at the start of each file

e assumed to be constant for that file. Use of a virtual-core storage

(PUTGET) permits storage of up to 200 files. Maximum record length

ited to 200; however, the rest of the parameters are bounded only by

ble disk storage. The number of dimensions is the number of different

cries in this file. The number of modules is a sub-file structure

llows a within—file breakdown of data. For instance, there may be

1 processing schemes for one multiple time series which the user

to compare. The number of records parameter refers to each module.

)tions Available to Both Programs
 

.crofilm Hard Copy
 

is possible to obtain hard copy of the actual picture on the

splay. This is done by dumping the octal diSplay buffers onto

Lc tape and then converting them to microfilm pictures on the

) display,later, as a batch job.
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pmments and Titles
 

he user can type in a title or a comment on the CRT diSplay;

comments are transmitted to the hard copy. This is useful for

ting where you are in your analysis and for titling microfilm

BS.

un—Time Computations
 

limited incremental compiler, allowing the user to manipulate,

e, scale, or transform the time series, will soon be added. The

ill be able to type up to 10 algebraic equations (which may perform

ear transformation, lead—lag averaging, magnitude, absolute value,

of squares computations, normalizing by maximum value, etc.)

 
gand Transformation Capabilities
 

AWTMSR

)ata on magnetic tapes is transferred to a circular virtual~core

', that is, a buffer with a fixed length; when this length is

led the first data introduced is overwritten. The user can select

Ie of three magnetic tapes from the keyboard; at this time, a data

.s read in with the tape parameters discussed above. Arbitrary

:ion of files and records from that tape can be made so that the

.ar buffer may contain an allocation of data not necessarily the

[S the original tape. From the circular buffer the time series are

'ted to octal display buffers for the CRT display. A pointer is

;o determine the origin of display in the circular buffer. It is

)le to change plot parameters, including the number of points in

Irve, the number of curves on the screen, and the scale of the

The pointer can automatically increment through the buffer allow-

Ipid editing. The user may also reference (save) one or more curves

2 screen and edit others for comparison. Once a curve is saved,

rr modification of the plot parameters will not affect it. Various

13 are available for rapid editing of data from several tapes.



 

A
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III euiddtion to the editing capability, RAWTMSR allows some computations

9 performed on the time series. There are two types:

(IL) Fixed Computations--including Fourier series and a

smoothed time derivative computation. These compu—

tations can be made on any selected portion of the

data in the circular buffer by setting limit pointers.

The resulting time series are stored in a temporary

scratch buffer, located in core, and immediately dis-

played above the last reference curve. These curves

are automatically referenced so that further computa-

tions or moving of time series will not remove them.

(13) Run—Time Computations--These computations will be
 

performed by the incremental compiler. They can be

performed either on data from the circular buffer,

again indicated by beginning and ending pointers, or

on data in the scratch buffer in core.

The result of any of the above computations will be written over

ything in the scratch buffer and immediately displayed. Permanent

cords of the computations can be made either by the hard copy option

' by printing the scratch buffer contents.

For example, the combination of these fixed run—time computations

an result in the following display: First, pointers are set in the

cratch file and a Fourier transform is computed. Then the incremental

ompiler is called, and a logarithmic transformation of the magnitude of

he Wnufier series is computed and normalized. Then another Fourier

;ransfinmn on the resulting time series, is computed and displayed. The

mmulthnzwaveform, called a cepstrum, is useful in speech analysis.

Hm pnnxdure of introducing the data in the scratch file, assigning

txginnhm;and ending pointers, and calling a subroutine to do the compu—

thg iscmmmon to many forms of time series analysis; namely, autocorrela-

thnlcmmmtations, convolution operations with matched filters, etc. and

alkms ageneral structure for incorporation of additional Operations.
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XX ixyrxical hard copy (microfilm) picture (Fig. 4 in the text, repeated

> irujixzates some of the editing capabilities. Wave forms from four

eiwerrt :files (4, 5, 6, 24) and three different tapes (MD4, MD6, MD8) are

layed simultaneously. Each waveform is labeled with the beginning and

ng time references (from the start of each file) computed from the

|1£3 irrterval parameter for each tape. File names (19 BA 1, 19 MJ 1,

3F} 1, 19 E311) and a general comment (CUTPUTS flF flVERLAPPING BAND PASS

IHBRS [JWW Tfl [Bl]) are also displayed.

PTKYUMSFt

TfiueTPROTMSR program allows a study of the interrelationships of time

ixxs selected frmn random access files. Four two-dimensional

.tteI'1910ts are diSplayed. The selection of the plot parameters for

fl1<1f these four plots allows the plotting of an individual time series

rsus its index, the scatter plots of two time series (from the same

le, but not necessarily the same record or module), and comparisons of

atter plots from four different files. The structure of the files on the

SR is completely determined by the parameters (discussed above) in the

:ader; thus, it may vary from one file to another. An index function

ivolving four parameters (instead of the three commonly available in

ortran) is used in a separate subroutine called INDEX so that

he usual Fortran requirements of predetermined dimensions and maximum

alue of each dimension are not necessary. A file directory showing the

tarious parameters zuul file ixknrtification (kNui fronliflua header is zuniilable

itlnxn‘option for selecting the files. Various options are available

to Hmfllitate the comparison of the four scatter plots;

0) A time sequence option,which allows ten points on

each scatter plot to be labeled 0 through 9 according

to their sequential index. These ten labels are

then incremented through the scatter plot, showing the

sequential relations.

C» An overlay option, which plots all [our scatter plots

0]] COIIIIIION ilXt‘S.
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(3) Automatic incrementing of either dimensions, modules,

or records for rapid editing.

ui—dzinue compiler can be used in this program to generate a new file and

a“; seat (Df derived time series from any of the existing files. Similar

es <3f ‘transformations, as discussed before, are available here.

1\ tyqxical picture (Fig. 17b in the text, repeated here) shows four

nultaneous time series plots, the two on the left are univariate plots

1 time two on the right are bivariate (scatter) plots. Labels on the

ttxnn are added by the user. Each plot is labeled with a file name

6 EH3 1) three index parameters (D1 M5 R2) or TIME (indicating the

idexfl writh maximum time shown (480 ms). Names of the D index are also

louni (ABS ENV). Scale for each axis is shown by a factor (X 4) which

iltiplies the original data.  





APPENDIX D

SLIDING POWER SPECTRA

Sliding power spectra are computed from the A—D tapes described in

Appendix B‘by means of the TIMSER display program ensemble. Each curve

displays the square root of the power spectra computed over a fixed time

interval (25 milliseconds for all curves in this appendix).

Spectrum smoothing is done by multiplication of the time waveform

by the following taper function:

2 2

(1-x ) , —leSl

 

This smoothing is performed to minimize the effects of the pitch frequency

and give better side lobe response (see Blackman and Tukey).

The labels on each picture give fundamental frequency (40 hz), file

number and tape ID (corresponding to module), linear or log magnitude

plot, maximum frequency, utterance and speaker label, and filter band—

width. The label for each curve shows the start time and the square root

of power (all curves in this appendix are stepped 15 milliseconds).

Each curve is normalized to the maximum frequency component. The

linear magnitude plots show percentage of the maximum component. The

log magnitude plots show dB relative to the maximum component (50 dB

range).
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APPENDIX E

INSTANTANEOUS ESTIMATORS 0F TIME—VARYING PARAMETERS

It has been shown that representation of a class of acoustical signals

can be reduced to estimation of the time—varying frequency and envelope and

their derivatives. A common estimator of the instantaneous frequency is

a sliding average of the zero crossings of x.

 

t

w(t) : K J z(o)do (E—la)

1 t4

*

Or for discrete samples

n

113 = KE 2. (E—lb)
n 1 k J

J

Where K is a normalizing constant

1

Z = 1 if X. S 0 and Xj > 0

1

or x, Z 0 and x, < O

J-i J

0 otherwise.II

A

A reasonable estimator of the envelope of x(t) is the sliding mean

of the absolute value of the real part.

t

[a(t) = % J |x(o)ldo (E—Za)

t-T

 

‘We will denote all estimators by adding a tilde (the estimate of w 151:)

and the sliding sum of length R over the index 3 from n—k+1 to n as

u
.
f
\
/
j
p
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‘
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for discrete samples

n

N 1 ‘5 I

a 2 — _

n ka ‘le
(E 2b)

3

A

Axuyther estimator for the envelope of x(t) can be derived from equa—

A

on (II—JL—Bc), that is, an average of the magnitude of x(t). The Hilbert

'ansform of an arbitrary function can be obtained by means of a complex

56

.gital filter (Crystal and Ehrman) operating on the real signal.

The computation of these estimators involves a non-linear, no—

emory operation followed by a low—pass filter.’

he problem of removing the oscillatory terms from the state variable dif—

erential equations as discussed in Sec. II—A and the selection of T (or k)

s analogous to the selection of the cutoff frequency for the lOWpass filter

shomuin Figure E—l. An effective measure for stationary signals is the mean

so

Squmxabandwidth. Abramson has shown that the mean squared bandwidth (see II-A-

14) dfxwt), the result of the nonlinear, no—memory Operation, is Computed by

*

thezknlowing formula:

B' :: E{(V’E2%}E{X2} B: (E-3)

E v0

<
0

 

‘_

*

Wecbmfiw the derivative of a function, v, with respect to its argument

as v’.
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For the situations we are considering, Bi is equal to a constant related to

the non-linear operation times the mean squared bandwidth of the input.

For example, the bandwidth of the envelope function (using II—A-l4) for

stationary Gaussian processes

941-.) = a(t)eja(t)

13:2...4— : 1398 2 (E—4)

E {32} X

A

where xs is the shifted (low pass) version of x. Use of a full wave

detector (absolute value) as an estimator of the envelope gives a band—

width (Abramson)

- E{(g')2} E{x2} B? = I E{ (13:7 )2} E{x2} B:

EI g2} EI leg}

 
 

: B.f (E—S)

The mean frequency can be derived by converting v(t) to an analytic

signal with discontinuous phase

C(t) = b(t)e‘jp(t) |x(t)l -I- jlxh(t)l (13-6)

x(t) : a(t)eja(t)

where

h(t) = a(t)

5(1) = 0’(t) + C(t)

g(t) is a step function which increases by W whenever x(t) = 0.



 

Using (II—D—2), the mean frequency, O, is given by:

(D 00

f b2(t)é(t)dt J a2(t)oz(t)dt I a2(t)dI;(t)

o 0 [1

S
I

I I

+

_ ——-——-—————

(D 00 CD

— L b2(t)dt J0 a2(t)dt I0 a2(t)dt

 where [1: {tlx(t) = 0}

Since the discontinuities at t e [7 are steps (first order), the last

integral is zero. Consequently, 5 becomes

(1)

_ I a”(t)oz(t)dt

w = J...— (13-7)
CO

Jo a2(t)dt
l

 
For signals generated by time—varying differential operators, the

mean square bandwidth is not an effective criterion. Rather, the instan—

taneous fluctuations of the bandwidth must be considered. We can fix an

69

upper bound by using a Chebyshev inequality for stochastic processes (Parzen)

for the time interval [t t j .

1 2

 

T, 1 ~ _ 1

flag, besmI > “I s —— Eta... bewr} ..-...

EfijztStz lbxs(t)l2] S %[E{\bxs(t1)|2} + Eflbxsug) 2}]

ta 21% 2 E

+ LlET bxs(t) J E{ bxs(t) } dt (E—8b)
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[.A J is the probability of the event A

[ - 1 is the statistical expectation with respect to P.

bxs(t)' is constant (time—invariant generating equation), we have

r

amping coefficient b )

[t StSt ‘bxs(t)| > Am] S br/(Aw)2

have seen, the magnitude of bXS is related to both the effective band—

for deterministic system impulse reSponses and effective bandwidth for

arying differential operators with white noise driving functions. We may

Aw to the bandwidth of our bandpass pre-filters and then use this rela—

ip to determine a length of average [tl,t2] (which is related to the

frequency). The bound, then, depends on not only the instantaneous

of our state variables, but also the instantaneous values of their

:ives. We can use these relationships to investigate the properties

:ific estimators.

1e estimation of the derivatives of the state variables is, in general,

Iy for noisy observations. A more stable estimator is derived by alge-

Bu

Ianipulation of the stochastic derivative (Parzen) of a time series

=1} with finite second moment. (yn may be the discrete envelope samples,

or the zero crossing samples, Zn)

H
Q
.

L.I.M. Yn ’ Yn~1

A40 A

 

..I.M. is the usual limit in mean definition and A is the sample time

each discrete sample. For computer applications, A is fixed and the

average 0f the square 0f Ayn is more appropriate (for locally ergodic

es).   



n

~ 2.1: (y _, r (m
n M k J' J-1

J

n

l ~g 1 2 9

= EA an + E yn—k - yn . 2 Elk nyJ-l _ m 1

J'

where

n

a; 312 y
n k k j

J

n

gig-£2

(y
_m.§

n k k j n

3'

Thus, the sliding variance is a factor in the mean square sliding stochastic

derivative (and has a shorter name). Reliable estimation of a significant

derivative requires a small value of k (the number of points averaged) while

reduction of stochastic variation requires a large value. By using the

sliding variance, these requirements are partially reconciled by eliminating

terms primarily due to stochastic noise. Also, the sliding variance is

more stable than a simple difference of the sliding mean which reduces to

1 /

E (yn _ yn-k)‘

Let us summarize the alternatives for selection of a total estimation

process.

1.) Sub—interval length — This is the number of points to be

summed corresponding to the first low—pass filter in

Figure E—l. In order to compute the proper sliding

averages, these intervals are non—overlapping rather than

sliding.

ii.) Sliding average length — The value, k, in the formulas

for the various estimators relates to both standard

deviation and mean value.
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) Envelope estimator — Either absolute value of the input

signal or a Hilbert envelope (the square root of

the sum of the squares of the input signal and its

Hilbert transform).

Derivative estimators — For each of the envelope esti—

mators we may define three derivative estimators:

One—Point Difference for Sliding Mean

A] n n—l

(1) I; = .1.\ ya - ilk 33 (E—lOa)
1 kLk J k J

J J

Sliding Standard Deviation

n ‘ n 1/2
T) '1: . a a ll, 3 2]

2 : — r, _ — E—lOb() 32(n) [kLk(}J) (kLk yj) ( )

J J

Mean Square Derivative

n

(3) 5,1(n)=L%Zk(y:— (11)]

a . . .

where yJ 18 the J-th estimate of the envelope.

1/2

)tO that the last two estimators only give the magnitude of the

2 but not the sign.

'der to make choices between these different alternatives, we

Iresentation criterion to compare waveforms (which will be the

timates of the underlying signal properties). We note that mean

or is inappropriate for the types of comparisons we wish to

The reason is its insensitivity to very sharp derivative

An alternative criterion can be derived by use of the Chebyshev

discussed in Equation (E—8). By algebraic manipulation of

ality using the weighted difference between the two waveforms,

ive at a criterion that gives a better comparison. For two

 

 



A

 



waveforms, y (n) and y (n), n = l, 2, . . . N define the Chebyshev

1 2

weighted error by:

. 2 1/2 1/2
N 2

g _[_1_(e2(1) + e2(N) > + 1; [C(11) _ e(n-l) j < e(n))

C _ 2 N N (n) _ y (:14) y (n)/
y:(l) y:( ) “:2 ye a 2 (E_11)

where

an): a(m -an)

The assumption of local ergodicity must be invoked to relate this measure

to the probability of exceeding a bound as in Eqn. (E—8) (much the same as

the justification for mean square criteria). However, Eqn. (E-ll) can be

used to compare estimators. In Figure —2, two estimates and a smooth

envelope are shown. The rapid variations are averaged by the mean square error

computation so that the value for the two estimators is approximately

equal (0.098 and 0.101). However, using the Chebyshev weighted measure,

the difference in the two estimators is apparent, indicated by a calculated

value of 0.2974 for the rapidly varying one and 0.1689 for the smooth

one.

Envelope and frequency estimators must work in different situations

ranging from slow but large magnitude variation and possibly a smooth fre—

quency transition (such as during vowel formant portions) to rapid, small

amplitude and frequency changes (which occur during fricatives). We will

first consider the typical vowel onset which occurs in the order of 50

to 100 milliseconds (see Figure 3). In order to compare our different

estimators, we will use the following idealized vowel onset waveform:
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Let §(t) = a(t)eja(t) OStS.050 (E-lZ)

Where

t

u(t) = 80 + jo arc tan Ia(s)/1001n(s) ds

d(t) = w t + B It {Ms/.05)8 _ 2(s/.05)2} ds
0 O 0

a is initial amplitude (= 10. )

w is initial frequency (: 2n 2000)

B is frequency deviation

H(-)is a I.I.D. r.v. with Gaussian distribution with mean independent

of a(') and a(-) at time t with mean E(n) : l and standard deviation Oa(n) = a

By selecting values for the parameters; frequency deviation; BO, and amplitude

noise standard deviation; a”, we can generate time functions with complex

nonlinear behavior in order to investigate the stability properties of the

estimators we have chosen. Figure E—2 shows the ideal envelope derivative

(B0 = a2 : 0) and two envelope derivative estimators for the Hilbert envelope

of x(t).

Even for this idealized model, we have five parameters to change in

order to investigate the properties of the three envelope derivative esti-

mators: (l) absolute or Hilbert envelope, (2) variation of subinterval

length, (3) variation of sliding average length, (4) amount of frequency

deviation, and (5) envelope standard deviation. Typical values for varia-

tions of number of these parameters are shown in Tables E—l, E—2, and

E—3 and Figures E-2, E-3, and E-4. Table E—l and E—2 show variation of

the sliding average length for Bo=0 and various values of envelope standard

deviation for both absolute and Hilbert envelope derivative estimators.

Figure E—3 shows a typical plot from Table E-2. Table E—3 indicates variation
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induced in envelope derivative estimators by frequency changes. Figure E-4

shows the Chebyshev weighted error for the three envelope derivative esti—

mators as the subinterval length is increased (evaluation of the stability

of the derivative estimators is sufficient to tell us about the estimation of

the enve10pe itself). Rather than discuss all these data in detail, we

will state the choice of estimator subinterval length and sliding average

length and give reasons for that choice.

We note from Table E—l and E—Z that the Hilbert and absolute

envelope estimators have almost exactly the same values of Chebyshev

weighted error when there is no frequency deviation. Because of the

additional complexity in computing the Hilbert envelope, this would

recommend the absolute value envelope as an estimator. However, Table

E—3 shows that for frequency deviations the absolute value estimator

gives an order of magnitude higher Chebyshev weighted error than the

Hilbert envelope estimator.

Note that the behavior or the sliding standard deviation as an

estimator of envelope derivative behaves much more stably and gives, in

most cases, a lower Chebyshev weighted error. Table E—3 for absolute

value envelope estimator shows this very dramatically. For this estimator,

sub—interval lengths on the order of 0.5 to 2 milliseconds give approximately

the same Chebyshev weighted error. This result can be anticipated from the

form of the mathematical relationships between the three derivative esti—

mators since both the l—point sliding difference and mean square derivative

have unaveraged terms that vary as the random samples. For this reason,

as shown in Figure E—tl they are very dependent on the variation of the

sub— interval average values.
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TABLE E-l ENVELOPE DERIVATE CHEBYSHEV WEIGHTED

ERRORS USING HILBERT ENVELOPE ESTIMATOR

  

        

  

    

mmdope Estimator Envelope Estimator

ufl Dev. 1 2 3 Std. Dev. 1 2 3

.2 .0540 .0916 .0514 .2 .0615 .0470 .0616

.1 .1076 .1830 .1093 .1 .1230 .0939 .1227

.6 .1618 .2712 .1619 .6 .1815 .1409 .1832

.8 .2150 .3650 .2208 .8 .2161 .1879 .2132

1.0 .2687 ' .1553 ;.2769 1.0 .3076 , .2348 .3037 j

1 ms sliding average 6 ms sliding average

1 ms sub interval 1 ms sub interval

flWflope Estimator Envelope Estimator

rd Dev. 1 2 3 Std. Dev. 1 2 3

I I I

3 0256 .0396 .0280 .9 1 .0111 2 .0226 i .0119

-1 .0515 .0791 .0553 .1 f .0827 § .0156 1 .0830 f

: I = “i

-6 .0776 .1196 .0816 .6 g .1212 3 0688 § 1232 1

-8 . .1011 f .1591 § .1070 i .8 i .1658 1 .0922 g .1622

1-0 i .1308 ' .1995 E .1116 g 1.0 i .2071 I .1157 E .2002

8 ms sliding average 10 ms sliding average

1 ms sub interval 1 ms sub interval

 





Envelope

.td. Dev.

.2

Envelope

Std. Dev.
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TABLE E—2 ENVELOPE DERIVATIVE CHEBYSHEV WEIGHTED

ERRORS USING ABSOLUTE VALUE ESTIMATOR

 

  

Estimator

l 2 3

.0543 .0916 .0518

.1085 1830 .1102

.1628 2741 .1662

.2170 3649 1 2226

.271: 4552 E.2791  

4 ms sliding average

1 ms sub interval

Estimator

 

I

1

 

l 2 J

.0256 E .0396 0280

.0514 g .0793 0552

.0776 E .1192 .0817

.1040 g .1593 1072 ‘

.1307 .1995 .1318 E

8 ms sliding average

1 ms sub interval

Envelope

Dev.Std.

‘)
...4

1.

Envelope

Std. Dev.

i
\
;

0

 

  

Estimator

1 2 3

I

.0614 .0470 0616

.1228 .0941 1226

.1843 .1412 .1831

.2458 .1883 .2433

.3073 .2353 E .3037

6 ms sliding average

1 ms sub interval

Estimator

 

  

l 2 3

.0413 .0227 .0419

0827 .0456 .0830

1211 .0687 I .1231 I

1657 .0921 g .1622 5

.2072 .1157 1 .2002 A

10 ms sliding average

‘1 ms sub interval

I
1
"
1



Sliding

\verage

4

6

8

10

Ereq.

Dev.
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TABLE E-3 EFFECTS OF FREQUENCY CHANGE 0N ENVELOPE

DERIVATIVE ESTIMATORS-l MS SUBINTERVAL

 

   

 

     

 
 

        

Est‘ 'stimator Sliding Estimator

l 2 3 Average 1 2 3

1.805 1.831 .031 4 .2066 .2599 .2057

1.405 1.172 .644 6 .1077 .1369 .1122

1.155 .8593 .432 8 .0990 .0693 .0993

.8641 .6001 .199 10 .0836 .0383 .0826

Absolute envelope derivative Hilbert envelope derivative

vs. sliding average vs. sliding average

Freq. dev. - 0.25 Freq. dev. : 0.25

Estimator Estimator

Freq.

1. .5 3 DCV . 1 ‘3 1

.75 H) .2745 .I.286 .05 .0129 .LH(X1 .0136

.6717 .1400 .0978 .10- 0750 0255 0852

.6482 .2533 1.295 .15 .1685 .0115 .2001

1.035 .3862 2 512 .20 1351 0:88 1172

.8641 .6001 1.199 .25 .0836 .0383 .0826

Absolute envelope derivative Hilbert envelope derivative

vs. freq. dev. vs. freq. dev;

sliding average x 10 ms sliding average : 10 ms
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Figures E-4 and E—5 show an increase in the estimation error for

larger values of subinterval length and sliding average. Reference to

Figure 13 and the corresponding discussion of distortion in linear filters

induced by large frequency changes explain this increase. The intuitive

notion of longer averaging time can be misleading in this complex situation.

The error rates in Figure E-4 and E-5 were derived for a(t) = 100.

There appear to be two sources of variance in envelope estimation:

the first is induced by the small number of samples,which would require

longer averaging times,and the second is the distortion caused by the

time—varying parameters, which would require shorter averaging times. We

must select a compromise value,which appears to be approximately 1 ms

subinterval length and 6—10 ms sliding average length.

We may conclude that,for this idealized Speech acoustical signal,

the most stable estimator is the Hilbert envelope with sliding standard

deviation as a derivative estimator. The sliding mean of the absolute

value of x(t) gives some envelope estimation distortion, primarily during

epochs with changing frequency, but requires much less computation.
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