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ABSTRACT

MATERIAL FUNCTIONS FROM LARGE-AMPLITUDE

OSCILLATORY SHEARING OF POLYISOBUTYLENE IN CETANE BY

A MODIFIED R-l6 WEISSENBERG RHEOGONIOMETER

BY

David James Henry Cross

Early investigators who used the unmodified Weissenberg

Rheogoniometer (WRG) encountered some inadequacies in the

machine design which permits the cone—plate gap to open. The

enhancements are the replacement of the bending cantilever

beam by a stationary piezotron load cell and the use of

weights to prevent the dove-tail slide and torsion—head

assembly from moving. The objective is to collect material

functions from oscillatory shearing in the nonlinear region

of polyisobutylene in cetane by using a modified R—l6 WRG.

There is a considerable amount of scatter in the data

presumably due to variations in room temperature; nevertheless,

the following trends are apparent. For nonlinear behavior

the dynamic storage moduli and loss moduli are related to the

odd components of the Fourier series for shear stress. The

frequency response over a range of strain amplitudes shows that

the storage modulus increases with the increase in frequency.

At each test frequency, the strain response curve shows that

the storage modulus decreases linearly with the increase in

shear strain. The loss modulus is a function of frequency

only.
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CHAPTER I

INTRODUCTION

1.1 Background on Materials 

Two extreme laws for the behavior of materials are

Newton's law of constant viscosity and Hooke's law of

constant elasticity. For example, water at constant temper—

ature and pressure obeys Newton's law, while rubber obeys

Hooke's law quite accurately to large deformations. Yet,

materials which obey one of these two laws are regarded as

common everyday materials, and they pose no problem to the

engineer. Modern engineering is increasingly involved in the

processing of non—Newtonian fluids such as suspensions,

polymer solutions and melts which behave much differently

than water or rubber does. Latexes, polymer solutions and

melts are examples of pseudoplastic behavior. A contrasting

behavior is dilatant fluids which are particulate dispersion

such as concentrated suspensions, slurries, and resins in

plasticizer. Pseudoplastic behavior shows a decrease in

viscosity with shear rate, while dilatant behavior shows an

increase in viscosity with shear rate.

The shear rate is the instantaneous rate of strain. A

simple shear strain, shown in Figure la, is similar to a pack

of playing cards. This deformation causes successive layers

of the volume element to move in their planes relative to the

reference plane in such a way that the displacement of a

layer is proportional to its distance from the reference

plane. The dimension perpendicular to the plane of shear,



 

SHEAR STRAIN AND STRESS

 

 

 

   

B _

,4 ,7
A 11/ , ,

+ I, L—-—c-———o——--———-u——v—a—LZ

I II/ " ' I

l -

Figure la. Simple Shear Strain
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such as length AB in Figure la remains constant. The

relative displacement of the top and bottom layer divided by

their separation, Yz/Y, is called simple shear strain. This

term may be abbreviated to 'shear strain', 'strain', or

'shear' for the deformation in Figure la. The angle of

shear,Y , is related toll /£ by tan”Y=6£ /£ . If the

deformation is small,y , expressed in radians, equals the

shear strain.

The force providing a shear stress is shown acting on

the top surface of the volume element of material in Figure

lb. An equal opposite force must be applied to the bottom

surface if the element is to remain at rest or steady motion.

Also, equal opposite forces must be applied to the other two

surfaces, as shown in Figure lb, if the element is not to

experience angular acceleration. The forces that are

parallel to the surfaces are known as shear stress, while

forces that are normal to the surfaces are known as normal

stresses. The term stress implies a force per unit area and

has units of pressure.

If the stress is removed for the deformation shown in

Figure 1b, the strain may or may not return to zero. Flow

occurs when the strain does not eventually return to zero.

If flow occurs for an infinitesimal stress the material is a

liquid, otherwise it is considered a solid. Many seemingly

solids, such as clay, will flow above a certain "yield"

stress. The flow in Figure l is a particular example of

streamline flow. The fluid elements at that point follow the



 



same path which need not be a straight line. Inelastic

materials show no recovery of strain or energy. Some liquids

such as many adhesives demonstrate partial recovery of strain

and energy; these liquids are called elastic liquids. If the

deformation and recovery of the material is instantaneous,

then it is ideally elastic. Some responses can be quite slow

as with many polymers which are referred to as viscoelastic.

Walters1 strictly uses this term as viscoelastic solid, but

most researchers use it for liquids.

Viscoelastic liquids that are sheared in their linear

region obey Hooke's law. Williams 2 gave the, concise

definition of linearity, that "the ratio of stress to strain

for any history is a function of time only." The strain,

whether constant or not, imposed on this liquid at all times

before time zero had been increased by a factor, the stress

at earlier time would have increased by the same factor.

Likewise, if the stresses had been applied to the earlier

times the strains would have been proportional to the

stresses. Linearity implies the principle of superposition,

which can be interrupted in two ways. The first way is that

when simultaneous small strains are imposed on the

viscoelastic liquid, the resultant stress is proportional to

the sum of the individual strains acting separately. The

second way is successive strains imposed on the viscoelastic

liquid, which may cause certain types of nonlinear behavior

to also appear as discussed by Williams. Normally,

non—linear behavior appears by imposing a large strain on a



viscoelastic liquid.

When a strain rate is imposed suddenly on a fluid, the

initial stress may not be maintained for two reasons, besides

inertial effect. The first reason is the linear versus

non—linear region, because part of the mechanical energy

supplied to the material may be stored as elastic energy.

The stored energy appears as elastic strain recovery when the

stress reduces to zero. The second reason for a change in

stress is that the structure changes. Perhaps weak bonds

between suspended particles are broken, or long chain

molecules become aligned. No elastic strain recovery is

observed when stress reduces to zero. The stress usually

decreases, but may increase with time. An irreversible loss

of viscosity indicates a permanent degradation of the fluid.

If the viscosity returns to its original value after the

material has relaxed long enough with no strains imposed, the

behavior is either rheopexy or thixotropy. Rheopexy

behavior is the increase in viscosity with time of shearing,

while thixotropy behavior is the decrease in viscosity with

time of shearing. Bauer and Collins3 have given the history

of the use of thixotropy.

Thixotropic and viscoelastic behaviors could be confused

if changes in stress are caused by changes in temperature.

Or, viscoelasticity could be confused with rheopexy if the

recovery of the material was not observed when strain is

removed. Other differences between elastic and thixotropic

material are the initial stress of a viscoelastic material is





controlled by the inertia of the fluid, whereas the initial

stress of a time dependent material depends on initial

viscosity. Most polymers exhibit both elastic and time

dependent behavior.

1.2 Rheometry

Rheometry is the science of measuring the deformation

and flow of fluids, and a rheometer such as the Weissenberg

Rheogoniometer, is a measuring instrument. Measurements of

fluids exhibiting both elastic and time dependent behavior

are best made on a rotational rheometer where shearing can be

done as long as desired. Figure 2a show the ideal cone and

plate geometry that is often used on a Weissenberg

Rheogoniometer. A cone with a radius R has its axis perpen—

dicular to a plate, the vertex of the cone being in the

surface of the plate. The cone rotates or oscillates with a

relative angular velocity of w. The angle 00 between the

cone and the plate is usually less than 5° and may be as

small as 0.3°. Large angles are not normally used because

the analysis of the results for non—Newtonian fluids is

complex. Some theoreticians, such as Cheng,“ have derived

explicit formula for the shear rate at the cone in time-

independent non—Newtonian fluids for large cone angles, but

the assumption that the free fluid surface forms part of a

sphere may not be justified. Small gap causes the shear rate

to be uniform, the inertia of the sample to be less, the

temperature rise to be minimized, and a small sample to be

sufficient. For streamline flow the shear rate at any point
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Figure 2a. Ideal Cone and Plate Geometry

 

Figure 2b. Truncated Cone





is approximately given by:

y = rm = w

r sin 00 00

where for small cone angle sin 00 = 00. Shear rate is

independent of position in the gap. This property gives the

cone and plate an enormous advantage when studying time

dependent behavior because all elements of a sample have the

same shear history. For uniform shear rate the shear stress,

W, is a constant throughout the small gap. The torque, W, on

the plate is the summation of narrow rings between radius r

and r +6 r which gives

SW = T2nr25r

The total torque is

w = f2 2nrzrdr = 2nR3T/3

In most practices the tip of the cone is ground flat as shown

in Figure 2b to a radius R
1

R 2nr21dr=2n (R3- R3)T/3.
R1 1

, which gives

W = f

If Rl equals 0.1 R the torque is reduced by 0.1%. The total

torque is reduced by less than 0.1% because the parallel

section of the cone contributes to the torque on the plate.

1.3 Basic Equations and Assumptions
 

The cone and plate rheometer is a popular apparatus,

because experiments with this geometry measures forces

generated by known velocity profiles that have only material

functions as unknowns. Velocity profiles and torque—stress

relationship can be derived from the equation of motion,



which is Newton's second law of motion, and from the equation

of continuity, which is the 'conservation of mass' principle.

For a geometric volume element, V, fixed in space and

bounded by a surface S, the rate of change of momentum with V

and across S are controlled by the body forces throughout V

and the surface forces over S. The relevant momentum balance

can be expressed as:

rate of rate of rate of sum of

momentum = momentum - momentum + forces of (1.3.1)

accumulated in out system

Bird, Stewart, and Lightfoot5 consider the rates of flow of

the component direction of momentum into and out of the

volume element. Momentum flows into and out of the volume by

convection and by molecular transfer. There are nine

components of the convective momentum flux pvv which is the

"dyadic product" of the mass velocity vectorpvv and the

velocity v. Similarly, there are nine stress components to

the stress tensor IL: The single vector-tensor equation for

the momentum balance equation (1.31) is

8 DV : _ V'OW -V'T _Vp+pg (1.3.2)

’51;— _

rate of increase rate of mom. rate of mom. sum of

of mom.per unit gain by gain by viscous other

volume convection transfer per forces

per unit vol. unit volume on sys.

The rate of momentum gain by convection term can be combined

with the rate of accumulation term by means of the

substantial time derivative, D/Dt. The substantial time
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derivative is the derivative following the streamline flow of

velocity vector v . The equivalent equation to (1.3.2) is

pDv = -V - T- Vp + pg

Dt (1.3.3)

This form of the equation of motion is a statement in the

form of mass times acceleration equals the sum of forces;

Newton's second law of motion. The arbitrary volume element

moving with the fluid is accelerated because of the forces

acting on it.

The equation of continuity is developed by writing a

mass balance over the geometric volume element. By a similar

method, the conservation of mass is as follows:

C "
O

= — p(V ' V).

U H
-

(1.3.4)

The term,Dp /Dt is the substantial derivative of density.

The corresponding equations of (1.3.3) and (1.3.4) for

spherical polar coordinates are given in Bird, Steward, and

Lightfootf In the analysis of spherical flow the use of

spherical coordinates allows the description of Velocity in

terms of fewer velocity components and results in a

simplification of the boundary conditions. The equations in

are general for all problems of spherical flow and for

Newtonian or non-Newtonian fluids. For the cone and plate

geometry the assumptions are as follows:

(1) Flow is strictly tangential, sov¢=f(r,e)

andvr=ve = O,

(2) No bulk flow occurs,



 



(3) "Inertia" effects are negligible,

(4) Gap angle between cone and plate is less than

5°,

(5) Cone and plate are of radius R,

(6) Free surface of the liquid is part of a sphere of

radius R with its center at the cone vertex,

(7) Surface—tension forces are negligible.

After applying these assumptions to the generalized equa—

tions, the three components of the equation of motion for

steady state reduce to

_ _ 3’15: _ _ 1- 8(1‘2Trr) -r comp. p _ 1 __ + (Tee Tod) (1.3.5)

r T r ___F____—

e_comp. — ovzocotO = — 1 §_(Teesino)+w¢coto (1.3.6)

r WEE)— O r

¢-camx O = — l §_(rzrr¢)-l areo -Tr¢ -2cot0 (1.3.7)

r2 3r r Be r r

with the following boundary conditions:

at O = n/2 , v¢ = 0 (1.3.8)

at O = n/2 + 61 , v¢ = rw sin 01 (1.3.9)

at r = O , v¢ = 0 (1.3.10)

Equation (1.3.9) is the condition for steady rotational

shearing. For oscillatory shearing, (1.3.9) would be

at O = fi/2 + 91 v¢ = rw sin Olsin wt (1.3.11)
9
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The equations (1.3.5) through (1.3.11) are still general for

Newtonian and non—Newtonian fluids. In order to use these

equations to derive velocity profiles, however, the various

stresses must be substituted with expressions for velocity

gradients and fluid properties. Nally7 derives the velocity

profile in steady location shear as an infinite series

involving Bessel and associated Legendre functions for

Newtonian fluids. For non—Newtonian fluids, the derivation

of the velocity profile would require a rheological model

such as the Power—law model.8

The equation of energy is developed by an energy balance

over geometric volume element. The relevant balance can be

expressed as:

rate of net rate of net rate net rate

internal internal and of heat of work

and kinetic = kinetic + addition - done by (1.3.12)

energy energy in by by system

accumulated convection conduction on sur-

roundings

Although this first law balance does not include all forms of

energy, it generalizes the work and kinetic energy effects.

The kinetic energy is the mfl/Z on a per unit-volume basis

for the fluid in motion. The internal energy is the random

translational, rotational, and interaction energy of the

molecules which depends on the local temperature and density

of the fluid. The single vector-tensor equation for the

energy balance equation (1.3.12) 159
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8

fl 9 (U + v2/2) = - (V-pV(U + v2/2)) — (V°q)

rate of energy rate of energy rate of energy

gained in by in b

convection conduction

+p (v-g) - (V-pv) — (V-(l'v))

rate of work rate of work rate of work (1.3.13)

done on fluid done of fluid done on fluid

by gravity by pressure by viscous forces

Each of the terms in equation (1.3.13) is on a per unit

volume basis. By mathematical manipulation of equation

(1.3.13) and use of the equation of continuity and motion,

the rate of energy gained by convection can be combined with

the rate of accumulation term by means of the substantial

time derivative, D/Dt. The substantial time derivative is

the derivative that follows the streamline flow. The

equivalent equation to (1.3.13) is

p %% = - (V°q) - 0(V'v) - (l:Vv) (l 3.14)

where the double dot product(livv) = (V-(l-v))—(v-(V-l)).

The (:2VV) is the viscous dissipation term which is left

when pD(v2/2) is substituted by the equation of mechanical

energy. The equation of mechanical energy is written as

D(v2/2)
Dt = — (v-Vo) - (v-(V-l))+ 0(V°g)

The terms, such asKV-Vp)and p(v-g) , cancel out of equation

(1.3.13) after the substitution.
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For the calculation of temperature rise, the equation

(1.3.14) for thermal energy is more useful in terms of heat

capacity and fluid temperature than in terms of internal

energy. Again by mathematical manipulation and the use of

the equation of continuity, the total derivative of internal

energy U, and the fact that the substantial derivative is

linear operator, the equation of energy becomes

OCV = g—: = - (V-q) — T (g—fi)v(V-V) - (l:\7V) (1.3.15)

The corresponding equation of (1.3.15) in spherical polar

coordinates are given in Bird, Steward, and Lightfoot.10

In a rheogoniometer, the same sample of material can be

sheared indefinitely, the temperature rise due to viscous

shear heating is frequently a problem at low shear rates.

Bird and Turianllmade very good approximations of the

temperature rise distribution for both Newtonian and

non-Newtonian fluids in a cone—plate instruments.

The energy equation describing the temperature profile

in the fluid region between the cone and plate is obtained

from the general energy equation by the appropriate

simplification. For small gap angles the equation of motion

has an approximate solution in which it is assumed the

components of the velocity have the form V¢= rf (e),vr=o,ve= o,

The energy equation for constant thermal conductivity k

reduces to

l E)— 28_T 1 8 sinOBT 1 8V — cotev. :0

kl:r2 310 (r 8r)+rzsinO 3—0( m” -Te¢(; 35 T \b)
(1.3.16)
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The term reoin equation (1.3.16) is the heat generated by

irreversible mechanical energy degradation which is the

(-1:Vv) term in equation (1.3.14). The normal stress

componentstrr,ree,r¢¢, which are generally not zero, do not

contribute to the (-T:VV) , because the associated

components of the dyadic Vv are identically zero for the

assumed velocity profile. For the torque W that is applied

to rotate the cone at an angular velocity w, thee¢ -

component of the Viscous portion of the stress tensor 3 and

the¢ - component of the velocityxlare approximately given by

19¢ E 3w/2n R3 (1.3.17)

V¢ E wr(n/2—0)/eo
(1.3.18)

A further approximation is sinOSJ. and cotGEO , sinceO is

nearly equal to w/Z. Equation (1.3.16) has the following

boundary conditions:

at 0 =Tr/2 T =To (1.3.19)

at 0 =fi/2 + 00 T = To (1.3.20)

at P = 0 T = To (1.3.21)

at P = R BT/Br = 0 (1.3.22)

The boundary conditions (1.3.19), (1.3.20) and (1.3.21) state

that the metallic surfaces of the cone and plate stay at

temperature To where as the last boundary condition (1.3.22)
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indicates that no heat loss occurs at the liquid-air

interface.

Although the geometry is such that an exact solution of

the equation of motion and heat conduction is fairly

difficult, Bird and Turian satisfactorily estimated the

temperature rise by use of calculus of variations. In the

derivation they did not need to use any specific rheological

model to obtain the following formula:

(T - To)max E 3Ww00/16 n k R (1.3.19)

This equation estimates the maximum temperature rise from

experimental conditions even for non—Newtonian fluid with

normal stresses. A rheogoniometer typically has a maximum

speed of 1000 r.p.m. and maximum torque bar of 1200 g (force)

cm. A cone and plate may have a radius R = 1 cm and gap

angleOormmeo radian. Most organic fluids have a

thermoconductivity on the order of 0.001 cal/cm/seC/C. For

these values and using the conversion factors 980 erg/g-cm

and 4.186 x 107 erg/cal, the equation (1.3.19) gives (T—To)

max = 3C.

1.4 Motivations

Data on materials showing linear viscoelastic behavior

with experimental error under small shear is well documented

since the advent of Dr. Weissenberg'§2first design of a

rheogoniometer in 1948. Many authors such as Ferry13 and

Lodgelkhave written on linear viscoelastic theory. Although
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the linear region gives useful information, manufacturers

apply large shear rates during processing, so mathematical

models for large deformation is a necessity which makes

nonlinear models more practical than linear models. Until a

decade ago there was little attempt at theoretical analysis

of the nonlinear behavior in a form suitable for practical

application. More recently proposed nonlinear theories, such

as Acierno's,22 involve parameters which must be evaluated

from experiments at large deformations.

An obvious way to increase the rate of shear for

oscillatory or rotational shearing in a rheogoniometer is to

decrease the cone—plate gap angler , or to increase the

angular velocity w. In oscillatory shearing an increase in

the amplitude of the oscillation increases the angle of shear

or the shear strain Yo. Large-amplitude oscillatory shearing

is a way to increase the shear rate without increasing the

angular velocity which can throw the test fluid out of the

cone—plate gap by centrifugal force. Another way of testing

the dynamic behavior of a material under nonlinear conditions

is to shear it steadily and to super-impose a low-amplitude

oscillatory shear so that linear methods can be used to

relate the shear strain to the stress variations. Various

superpositions will produce different waveforms for measuring

the primary and secondary stresses which depends on the type

of polymers under test. WalterslS has summarized this type of

test and its theory.
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In 1969 MacDonaldf Marsh, and Ashare made large-

amplitude oscillatory tests using a Weissenberg

rheogoniometer, but it was necessary to watch for waveform

distortion caused by instrument defects. The waveform

distortions prompted many investigators to modify their

rheogoniometer. In 1970, Lee"7 , et. al. published a paper

on modifications on their R—16 Weissenberg rheogoniometer.

They installed a versatile oscillatory mechanism that allowed

both amplitude and frequency variation. Also, they replaced

the solenoids for torque and normal force measuring with

piezoelectric load cells. Their modifications were not

completely satisfactory, so new designs were being developed

6 .

intro-at the time of their publication. In 1972 Higman1

duced a new torque and normal thrust measuring system for

both the R—16 and R-18 Weissenberg rheogoniometers. The

modifications by Higman consisted of a torque and normal

thrust piezoelectric transducer which replaced the air

bearing displacement transducer for the torque measurement

and the servo—cantilever displacement transducer for the

normal thrust measurement in the standard rheogoniometer.

Also in 1972, Meissner19 published a new machine design of a

cross—beam support to increase axial rigidity in the

rheogoniometer. In 1973, MacDonald20 used the rheogoniometer

with the cone—plate geometry for superimposing a low-

amplitude harmonic strain during steady shearing. MacDonald

discussed in his paper some problems in the test, such as,

those associated with the slackness in the gears. In 1977,
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Crawley and Greassley21 incorporated both the piezoelectric

load cells and the cross-beam support for an enhanced axial

and torque measuring system.

The industrial need for nonlinear models has led many

investigators to collect data by a variety of high shear rate

experiments. The Weissenberg rheogoniometer is a versatile

machine which allows the testing of nonlinear models by such

experiments. Unfortunately, the recent venture into the

nonlinear region has shown the need for mechanical enhance-

ments to the Weissenberg rheogoniometer. The original or

unmodified R-l6 Weissenberg rheogoniometer had measuring

devices called linear variable differential transducer or

LVDT, that requires a movement for recording forces. The

opening of the cone-plate gap and the twisting of the

stationary plate violates the spherical geometry and the no

"slip" boundary condition of the basic equations and

assumptions. The movement of rigid machine members is a

design flaw that became only noticeable because the recent

testing of polymers in the nonlinear region produced much

larger forces than earlier tests in the linear region. Data

that were collected by unmodified rheogoniometer in the

nonlinear region of viscoelastic fluids are questionable.

Before models such as the set of differential equations

proposed by Acierno at. al.22 can be used to predict the

stresses in materials subjected to large deformation, the

models need to be evaluated against data collected from

modified rheogoniometers.
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1.5 Objectives

Walters23 distinguishes between two objectives which are

related for rheological measurements.

Objective 1 -

...involves a straightforward attempt to determine

the behavior of non—Newtonian liquids in a

number of simple rheometrical flow situations

using suitably defined material functions. The

simple desire here is to seek a correlation bet—

ween molecular structure and material behavior or

alternatively between material properties and

observed behavior in practical situations.

Objective 2 —

...is more sophisticated and decidely more

difficult. It involves the prediction of behavior in

non—simple flow situations from the results of simple

rheometrical experiments.

Fortunately, many industrial process involve simple flow

geometrics and the material functions that are determined can

be used for similar applications. The progress that has been

made on Objective 2 is for certain types of materials such as

viscoelastic liquids. The most reliable data has been

collected from the linear region. This data has been used to

develop constitutive equations for use in the stress equation

of motion and continuity to predict behavior for practical

flows. Contrarily, the data from the nonlinear region is

questionable because the measuring machines such as

rheogoniometer will bend some stationary parts because large

forces are exerted by some polymers that are undergoing large

shearing. The R—l6 Weissenberg Rheogoniometer needs to be

modified so that the data collected can be used to develop

constitutive equations for the nonlinear region for shearing.
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with respect to the collection of data from the nonlinear

region, the state of the art is closer to Objective 1.

Consequently, the objective of this thesis is to collect

material functions from oscillatory shearing in the nonlinear

region of polyisobutylene in centane by using a modified R—16

Weissenberg Rheogoniometer.

Polyisobutylene in cetane was chosen because it is

available from the National Bureau of Standards (NBS) as a

Viscoelastic fluid. Also, a number of rheologist have

reported the data on it. A comparison with reported data

would verify our modifications as a bonafide approach for

measuring nonlinear behavior.

Our R—l6 Weissenberg Rheogoniometer is a gracious gift

from Dow Chemical Company of Midland, Michigan. Unfortunate-

ly, the rheogoniometer had received a thorough usage at Dow

Chemical and many electronic parts need replacing. Since we

had limited funds, we decided to do as much of the repairs

and modifications ourselves. Our research funds were spent

on a piezoelectric load cell and a torsion bar assembly. The

piezoelectric cell was used for the normal stress measuring,

because the normal force servo mechanism was completely

inadequate. The materials of interest in our work are

polymer solution of high concentration, and these have time

constants of a few seconds. Spriggs, at. al.2Hhave shown

that the unmodified normal force servo mechanism can be used

only on materials with a time constant of a minute or more.

The new torsion bar assembly allows us to change the torsion
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bar to a stiffer bar without changing the sample fluid and

resetting the cone—plate gap. The torsion bar assembly was

bought because there was not enough funds to buy both the

piezoelectric load cell and a temperature controller. The

money that was spent on the torsion bar assembly was well

spent, because the experiments can always be conducted by

only allowing the minimum movement of the plate to measure

the shear stress.

The temperature controller was not working because the

heating element was burnt out. If the on—off temperature .i

controller was working, it would not benefit the experiment ’

because previous data on polyisobutylene in the literature

were collected at 25 to 30C which is ambient. Also, the

controller had a very course temperature scale which could

not indicate the temperature better than plus or minus 5C.

By necessity, the experiments were conducted at room

temperature during the Winter. Since the electronic tube

equipment dissipated heat, sufficient time was given before

shearing to allow the room temperature to become stable.

During the summer months the experiments were conducted after

sundown, because the room temperature would go down and the

heat dissipated from the electronic equipment would compen—

sate to help keep the temperature leveled. This method for

room temperature control is not a substitute for a room

thermostat which the old laboratory does not have.

Consequently, this thesis is more of a feasibility study

to determine the quality of the data collected from the

nonlinear region.



 



CHAPTER II

METHOD OF APPROACH

2.1 Material Functions from an Unmodified WRG

The Viscosity,n , defined by the canonical equation

0 w) = we (w/ y 2.1

is a material function. Material functions are physical

properties which may depend on strain, strain rates, or shear

stress, etc. Also, for steady shear flow of non-Newtonian

fluids the remaining stress distribution is

Tr¢ =Te¢ = O 2.2

Trr ~Tee = 01(?) = yle (M) 2.3

2.4
Tee -T¢¢ = v2(Y) = y2N2 (+)

The flow in the cone-plate gap is described by three material

functionsn ,v The variablerqis best called the shear—
1")

2 .

dependent viscosity or "apparent viscosity"; V1, v2 are

called the first and second normal stress difference, and N1,

N2 are by definition called the first and second normal

stress coefficients. For Newtonian liquids the apparent

viscosityn is a constant and the normal stress differences

v1, and v2 are zero at all shear rates. The elastic liquids

will behave as Newtonian liquids if shear rate is small

enough, because the normal stress difference tends to zero

faster than the apparent viscosity goes to a constant or

"zero shear" viscosity. For most viscoelastic fluids, the

23
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apparent viscosity is a monotonic decreasing function which

decreases from a zero-shear value to a lower value at higher

shear rates. The lower value may not be observed, since it

can be several orders of magnitude lower than the zero-shear

viscosity.

In a preliminary investigation, the steady state

shearing offers little information on needed enhancements for

dynamic measurements. Stress growth or stress relaxation

curves give "diagnostic" information on the machine's

capability to respond to a sudden change of shear rate such

as a step input. The time constant is the time for the shear

stress to reach 67% of its steady state value, and the

shorter the time constant the better. The unmodified

Weissenberg Rheogoniometer or WRG appears at first to be well

suited for this test. The cone or lower platen can be

rotated for as long as necessary to achieve steady

conditions, and the clutch and brake mechanism should stop

the rotation in 10 milliseconds (ms.) The rotation of the

plate or upper platen should be negligible for most materials

or very small as relaxation proceeds. However, Batchelor,

Berry and Horsfallzshave found three potential flaws during

studies on stress buildup and decay in polyisobutylene.

Firstly, the impact of the clutch striking the driving plate

may introduce a small spurious torque. Secondly, a fast

switch must be used to switch off the clutch current and

switch on the brake current otherwise the lower plate may

"free wheel" for a time. And lastly, the motion of the upper
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platen as the torque falls rapidly may introduce a strain

rate which is comparable to the initial shear rate.

The best way to check this last flaw is to repeat the

measurement using a. stiffer torsion bar‘ to detect any

differences. During start—ups the normal force causes a

slight separation of the cone and plate, and radial flow of

the sample does occur. Part of the normal force generated by

the fluid goes to overcome the shear stresses of the radial

flow so a fraction of the force is not measured. The normal

force will build up slower than the real rate of increase

should be. Meissner26 increased the response of the

unmodified WRS by increasing the cone—plate gap angle. The 8

degree cone-plate angle preferred by Meissner reduces the

time for peak stress to be reached, but the edge of the fluid

breaks apart at much lower shear rates. Also, Galvin and

Whorlow27have studied the change of the cone-plate angle and

normal force buildup jJi polyethylene. Chang, Y00, and

Hartnett28 studied a series of normal stress measurements

with several cantilevers to obtain data which show that the

normal force in transient experiment approach asymptotic

values as the cantilever rigidity increases. These

asymptotic values were taken as representing the material

response. Kearsley and Zapaszghave concluded that even when

mathematical correction to all known errors are taken into

account, the transient normal stress measurement are not

reliable on the unmodified WRG.

Another dynamic test besides transient stress growth is
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small-amplitude oscillatory shearing. The input shear rate

by the cone with the motion given by equation (1.3.11) is

approximately described by the following equation

- ”YO sin(nt (2.5)

- YO Sin(ut (2.6)

where yo is the strain rate amplitude. The corresponding

stress distribution for viscoelastic materials is

V

Tre =1 (—n' sin(nt +-g cos wt) (2.7)

Tr¢ =Te¢ =trr — Tee = Tee - r¢¢ = O (2.8)

where n ' is the 'dynamic viscosity' and G' is the 'dynamic

rigidity'. For a Newtonian fluid, equation (2.7) implies

that the stress is proportional to the shear rate so G' = 0

and n' is the constant Viscosity. For Hookean solid the

converse is suggested by equation (2.7). Generally, most of

the literature shows the mathematics with complex variables.

The equation (2.7) is now given by

Ire = yn* exp (iu)t) (2.9)

where n='= = n' - 1 El = n' — i n" (2.10)

which n* is called "complex dynamic viscosity" and n" is the

"loss viscosity'. Similarly, the literature uses the

definition

G9" 3 G' ‘1' 1G" (2.11)

as the 'complex modulus' and

G" ' “'1' (2.12)
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where G" is called the 'loss modulus'. The assumption of

small-amplitude oscillatory-shear experiment is that the

material deforms linearly. Equation (2.5) and (2.7) indicate

that the harmonic strain results in a harmonic stress of

amplitude proportional to the strain amplitude with a phase

lag which is independent of amplitude. This assumption is

tested by varying the strain amplitude on the amplitude

ratio,To/Yo , while shearing at a common frequency.

For all viscoelastic liquids in the linear region the

complex viscosity 0* goes to the zero shear viscosity no as

the frequency of oscillation goes to zero. The amplitude

ratio goes to zero and the phase lag goes to n/2 as the

frequency of the oscillation goes to zero. Some experiments

are conducted to identify the system's natural frequency, wo,

because machine's resonance at the natural frequency voids

all measurements. The machine's resonance causes the

amplitude ratio to go to one and the phase lag to go to zero,

hence, the machine is insensitive to the material properties

of the test fluid. Fortunately, the natural frequency can be

changed by using a different torsion bar. The most common

practice is to collect data above and below the natural

frequency and to draw a smooth curve through the

discontinuity.

Although there is a "natural frequency" in the normal

force direction, it seems to be at a high enough frequency to

unaffect the stress measurement, regardless, whether a

cantilever beam or a piezoelectric load cell is used.



 



2.2 Enhancements to the R—16 WRG 

Normal stress growths in simple rotational shear and

first normal stress difference in oscillatory shear are

impractical experiments with the unmodified WRG, because the

normal force measurement uses the cantilever beam. In the

nonlinear region the normal stress differences oscillates

with the frequency 2d) at a displacement level which

independent of time. A peak force during oscillatory

shearing of polyisobutylene might be 10 N(Newtons). Such a

produced force may move the upper platen (plate) upward about

1 um (micron) and may move the lower platen (cone) and

cantilever beam downward about lOu m. Figure 3a shows a

force, F, acting downward on the cantilever beam. The

depression due to its own weight at any point on a uniform

beam which is rigidly clamped horizontally at one end is

yl = WX2(X2 — 4Lx + 6L2) / (24 BI) (2.14)

where E is Young's modulus, W is the weight per unit length,

and I is the second moment of area of the cross section.

Figure 3b shows a rectangular cross section bar, which is

bent in a plane perpendicular to the edge of length b.

The second moment is given by

_ 3
I — bd /12 (2.15)

The load, F, at the end increases the depression by

y2 = FX2 (3L - x) / (6 El) (2.16)
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UNMODIFIED WRG

 

 

  

 

Figure 3a. Cantilever Beam and Clamp

[:lJ d

Figure 3b. Cross-Section Area of Beam
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F at x = L, becomes

yl + y2 = 1.3 (W3 + WL/8) / (EI) (2.17)

The cantilever beam is replaced as an enhancement by a

piezoelectric load cell, which has a movement of about 0.1

um. Naturally, the upper platen does move upward by more

than 111m. A force greater than or equal to 10N is required

to restrict the upper platen to 111m. This enhancement is

simply accomplished by standard weights that are usually used

for a balancing scales. The most benefit from added weights

is placing the weights as close as possible to the upper

platen. Figure 4 shows a C—ring which can be placed on the {g

upper platen. Depending on the gage of metal, the C-rings

are cut to a diameter for a specific weight. A pair of

C—rings affords more symmetry, but the C—rings do increase

the moment of inertia. The increased moment of inertia

affects the acceleration term in the equation of motion of

the upper platen. The equation of motion is approximately

given by,

 
_ dzcb 211113 G” dd) 211R3 ,

Wo coswt I Idt2 + 300 13 E + ( 300 G + Cm
(2.18)

wherew 0 cos wt is the harmonic torque, I is the moment of

inertia, ¢ is the angle the platen rotates through, and C is

the spring constant for the torsion bar. The C-rings are

temporary and inexpensive device, which minimizes the upward

movement of the upper platen.

Usually a Honeywell Visicorder is used to trace the

harmonic stresses and strain on ultraviolet sensitive paper.
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Figure 4. Sketch of C-ring
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The analysis of the galvaniometer recording is tedious and

not very accurate. Although the galvaniometer gives

qualitative information, a computer gives the means to

analysis the signals from the transducers. The IBM 1800 is

an analog/digital computer which uses a digital voltmeter,

DVM, to convert the electrical signals between —10 volts to

+10 volts into discrete numerical values for the computer

program. The Fourier method, which is programmed for tabular

data gives the equations for the shear stress and normal

stress in terms of a series of Sines and cosines. These 1.

equations are used to compute the material functions. The

IBM 1800 computer is interfaced with a Calcomp plotter, which

provides a trace of the signal for qualitative purposes.

2.3 Material Function from a Modified WRG 

The modified WRG is best evaluated by varying only one

enhancement at a time. All stress growth and relaxation

experiments use the IBM 1800 computer and the Calcomp plotter

which offer more consistency during comparisons. With the

piezoelectric load cell installed, the tests are conducted

with and without C-Rings. If the stress growth curve is

shaped more similar to the step increase function with the

C—ring, then the modification is an enhancement. Naturally,

the stress relaxation curve is shaped as a step decrease

function.

The modified WRG does not offer any advantage for small

amplitude oscillatory shearing, but an experiment that was

done by the unmodified WRG needs to be repeated by the
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modified WRG for comparison. The computer interface does

permit the calculation of more difficult material functions.

Williams and Bird3°discussed the time-dependent behavior of

normal stresses exhibited by fluids is small-amplitude

oscillation. They solved the equation of motion for the

cone-plate geometry to relate the amplitude and phase

relationship of the oscillating stresses to experimental

measurements. The results are expressed in terms of a

"complex normal stress coefficient," ;*, and a "normal

stress displacement function," rd , which are given by

definition,

C* _ 18¢ — Tee

‘ ' n a v
“a? 53—) (2.19)

d: _ Re{dcb—de}

92 ‘2 >593 ‘2 (2.20)

81’ r9

where (2.21)

cf: : C' — i Q",

U and;" are the real and imaginary parts (2.22)

w ='n/2-+0, (2.23)

Tjj = Re {dj + 133' exp(2i wt)} for j = r,e,<;b (2.24)

T1? is the complex amplitude of the stress, and Q is the

amplitude of the angular velocity of the cone, radian/sec.

The equation of motion for oscillatory shearing are the

same as the equations for steady rotation except the equation
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(1.3.7) for the ¢— component is

~av¢ _ 1 a (rztr¢)_ Bred) m) 2cotOTe¢
p—_—— _— ...—.—

Bt r Sr 80 r r (2 25)

since v¢ = v¢ (r, 0, t). For small amplitude oscillatory

1
r

shearing, the TI ¢terms are assumed to be small when compared

to other terms in equation (2.25). Another assumption is

that the normal components of stress which are perpendicular

to the flow direction are equal. When these two assumptions

are made, the equation of motion becomes: 3|

2 .

p v ¢ = _ Bree + ted - T86 I

r 8r r (2.26)

_ 39: '_ _ l Bree cote ,
p r cot e - r §E——-+ ’37—'(T¢¢ ~tee). , (2.27)

Bub _ 1 816(1) _ 2cot0

p — “‘ F —se ‘7 — “’15 ' (2.28)

The boundary conditions are:

At 0 =fi / 2 V0 = 0 r (2.29)

At 0 :n /2 + 00 v¢ = r 0 Sin wt-l (2.30)

At r = 0 ¢ = O . (2.31)

The modified WRG is best suited for large-amplitude

oscillatory shearing. MacDonald, Marsh, and Asharealstudied

the rheological behavior for large-amplitude motion. Since

shear stress is a continuous function of time, the Fourier
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expansion is

_ 2n+1
19¢ - 2 A2n+1 Cos (wt+ ¢)

n—o

(2.32)

where ¢ is the phase shift occurring between the input strain

and the output stress. The assumption of a linear velocity

profile in the fluid has been shown valid for small cone

angles of less than 4 degrees and angular velocity less than

—1
119 sec . The large-amplitude complex viscosity is defined

by

n‘" (w ,Y°) = — 10— n'(w,Yo) - in" (wmo)
yo

(2.33)

With large strain amplitudes or high frequency, shear stress

measured on the plate shows higher odd harmonics. Equations

(2.32) and (2.33) reduce to small-amplitude shear stress and

complex viscosity in the limit of small strain amplitudes.

If the higher harmonics can be determined, then experiments

may be used to fit fluid models to experimental results.

Walters and Jones32 have concluded that the amplitude of

the third harmonic could be very small because the spring

constant and the moment of inertia can be large. The

exception is near one—third of the natural frequency, which

may resonant similar to the natural frequency for the first

harmonic. Their experiments on Newtonian fluid and a

viscoelastic liquid clearly indicate a third harmonic content

at the one—third of the natural frequency. A similar
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resonance occurs near one—fifth of the natural frequency

which is caused by the fifth harmonic. If the nonlinear

effects are not noticeable, the oscillatory experiment could

be performed at frequency close to wo/(2M + 1), M = 1, 2,

3...

The normal stresses have nonlinear effects that are

caused from large—amplitude shearing. Akers and Williams33

used the total force method to determine the first normal

stress difference, which was complicated by machine-

compliance problems. Christiansen and Leppard3” used

flushed—mounted transducers to investigate the first and

second normal stress differences. Tanner35 correlated the

normal stress data for polyisobutylene solutions from 28

papers. The first normal stress data are correlated as a

function of concentration, molecular weight, and shear stress.



 



CHAPTER III

DESCRIPTION OF APPARATUS AND EXPERIMENTS

3.1 Unmodified R-16 Weissenberg Rheogoniometer 

The Weissenberg Rheogoniometer to be described in Figure

5 is the model R—16 manufactured by Sangamo Controls Ltd?6

It is an intermediate successor to a series of machines,

developed from the original ideas of Weissenberg, which were

intended to measure not only shear stress in steady rotation

but also oscillatory stresses and normal stresses.

A 1 hp, 1800 rpm, synchronous motor drives a 60—speed

gearbox covering about six decades of angular velocity in

approximately logarithmic index so that the period of

oscillation of the platen can be varied from 0.0165. to 1.325

x 104 s. It is necessary to stop the motor to change gears.

The output shaft of the gearbox is connected to a drive box

containing an electromagnetic brake-clutch unit which allows

the stopping and starting of the platen within 10 ms while

the gearbox is still running. Also the drivebox comprises a

variable sinewave generator for oscillatory tests. The

horizontal output shaft of the drive box has a worm gear

engaging with a worm wheel on the main vertical drive shaft

of the machine. The test fluid is held between the platen

attached to the top of the drive shaft and a platen attached

to the bottom of the air bearing rotor in the torsion head.

Normally the upper platen is a flat plate and the lower

platen is the cone, but they may be interchanged for thinner

fluids.

37
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WEISSENBERG RHEOGONIOMETER
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Figure 5. Weissenberg Rheogoniometer Internal

(from Sangamo Controls Ltd.)
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The torsion head consists of a torque bar, which is

available in a wide range of stiffnesses, that is clamped at

the top and attached at the bottom to the rotor of an air

bearing which holds the upper platen. The twist in the

torque bar is measured with a linear variable inductance

transducer. The armature is connected to a radius arm 100 mm

long clamped to the bottom of the torque bar. With the Farol

electronic equipment the range of measurable torques ranges

8 Nm to 20 Nm. the entire torsion headfrom about 2 x 10—

assembly including the air bearing and torque transducer can

be moved vertically along a dove—tail slide, its movement

near the lower platen is measured by a second transducer so

the platens may be separated for cleaning and returned back

to the same cone-plate gap. The tip of the cone is usually

grounded away by a known amount. The location of the cone

relative to the plate is critical for the best operation of

WRG.

For many years the only normal force measuring system

for the WRG was the servo arrangement shown in Figure 637 The

lower platen is driven through a beryllium copper diaphram

which has a high torsional rigidity but allows free vertical

movement. A rod connected to the lower platen holder passes

down through a hollow drive shaft and ends in a ball. This

ball is kept centered in a conical bearing mounted on the

cantilever. When a downward force is exerted to the lower

platen, the movement is detected by a null—detecting

transducer below the cantilever and the original position of
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the platen is returned by lifting the end of the cantilever.

The end is moved by a plunger that is loaded by a strong

spring below the cantilever and is controlled by a micrometer

above the cantilever. The movement of the micrometer is

proportional to the force on the platen. The micrometer can

be adjusted by hand. In practice a servomotor which is

controlled by the null-sensing transducer makes the necessary

adjustment. The movement of the end of the cantilever is

measured by another transducer. The servo—system returns the

middle of the cantilever spring back to its original position

within 0.1 mm is a couple seconds, but the cone—plate gap

may not return back to 0.1 m.

The WRG uses a variable amplitude, variable frequency,

harmonic rotation which can be superimposed on a steady

rotation. Figure 73%hows a circular cam eccentrically

mounted on a shaft driven through bevel gears and a gearbox

to give oscillation frequencies up to 60 Hz. The oscillation

thimble rotates a lever arm, which by a transfer slide,

rotates the actuator. The lever pivot can be moved from the

indicated position until it is line with the transfer slide,

which reduces the oscillation to zero. The platen shaft is

driven via a worm gear which oscillates by the actuator or

rotates by a separate motor and gearbox. The details that

are not shown include spring to keep the worm shaft in

contact with the actuator and to keep the worm in firm

contact with the worm wheel. The spring prevents backlash.

Also, the axial cam on the end of the camshaft which contacts
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UNMODIFIED WRG
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a spring loaded follower is not shown in Figure 7. The cam

provides an opposing load on the oscillatory drive motor and

gearbox to the load which is produced by the main cam.

Hence, backlash in the gears is avoided which would be caused

by cyclic bad variations. The sinewave that are produced for

worm shaft amplitudes between 0.025 and 1.0 mm are free of

distortions.

For temperature control the platens may be surrounded by

an electric oven. At lower temperature the oven may be

cooled or heated by circulating silicone fluid through the

double walled chamber from a thermostat. The enclosure may

be filled with an inert gas. Although a thermocouple may be

attached to the upper platen, it is doubtful that the actual

fluid temperature is being measured at the extreme

temperatures of -50°C to 400°C, which the machine was

designed. The temperature controller and pen recorder were

inoperable, so experiments were conducted at room temperature

during the entire research.

The R—16 WRG is a second hand, machine that. was

graciously donated from Dow Chemical. After the WRG was

installed and running, some peculiar waveforms occurred

during oscillatory shearing of an NBS calibration oil. A

spike appeared on the shear stress waveform at large strain

amplitude and at all frequencies. While using the Honeywell

Visicorder, the set screw that is located on the front side

of the WRG was turned counterclockwise to adjust the worm

gear and the helical bevel gear until the spike on the
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waveform was eliminated. The gears can introduce vibrations

if they are not meshing properly.

During the moving of the WRG from Dow Chemical, the

torsion head became misaligned from the centerline of the

hollow drive shaft. Using a precision indicator that can

measure to 0.0001 of an inch, the air-bear rotor of the

torsion head was centered for trueness at the top and bottom

of the rotor to within 0.0002 inches.

3.2 Modified R-16 Weissenberg Rheogoniometer 

An overall simplification of the measuring system is

given in Figure 8. Each block represents a possible

electronic fault in the system. The new system has fewer

blocks, hence, the number of possible sources of errors and

the time required for searching is reduced. Low-pass filters

are often used in oscillatory work; Van Rijn39 pointed out

that they should be carefully matched.

The piezoelectric crystal system that was used to

replace the LVDT transducer is a Solartron Corporation model

piezotron and a charge amplifier. The piezotron, which is a

fast response transducer is shown in Figure 9. The electric

charge is proportional to the applied force on the cell. The

piezotron is very rigid with an operating range from 1000 gm

of compression to 500 gm of tension. The operating range for

temperature environment is fronl below —50°C to 250°C.

However, the piezotron is very sensitive to temperature

variations. When the ambient temperature changes by 5-10°C

the electrostatic output from the cell becomes unstable, but
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it has been proposed to install temperature and humidity

control for the room.

In order to amplify the charge from the piezotron, a

Solartron Calibration Charge Amplifier is used. It converts

the electrostatic output from the piezotron cell to a current

and voltage output. The WRG low-pass and the IBM 1800

Analog/Digital computer with the Calcomp plotter or the

Honeywell Visicorder is used to display the output. The

amplifier has five different scales for operating purposes

and a short-long time constant positions. The selection

permits measurements for static response by using a high

input resistance, and for drift—free dynamic operation by

using a low input resistance. When the GND button switch is

pressed, the residual charges from the measuring system is

removed. During the loading of the test polymer an unwanted

charge can build up. The calibration which is shown in

Figure 10 is linear and was made on the four scales.

As discussed in Chapter II the C—ring which is shown in

Figure 4 provide the counterweight to oppose the normal force

exerted by the viscoelastic fluid. The C-rings that are used

in our research are made from aluminum with a diameters from

3 to 5 inches. The slots are cut wide enough to accommodate

the diameter of the air rotor. The C—rings are not used with

the oven, because the weight of oven changes the cone-plate

gap.

The IBM 1800 Analog/Digital computer has about a 60 K

memory, which doesn't allow for a very sophisticated program.
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MODIFIED WRG
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The programs which are given in Appendix A reads the voltages

from the analog input and converts these voltages into

physical parameters. Only the digital voltmeter DVM is used

from the analog portion of the computer system. This voltage

reading is accomplished by a “canned" subroutine which is

accessed by CALL HFAI. The trunk number, which is the

terminal connection, and the number of lines is indicated in

the call statement. The pause between voltage readings is

accomplished by another canned subroutine which is accessed

by CALL HYDLY in terms of milliseconds. The other support

equipment is the card reader, the 1443 line printer, and the

typewriter which are on—line terminals that are accessed by

the file numbers in the Fortran read and write statements.

The Calcomp plotter is wired through teh analog output and

the program accesses the plotter by CALL HYPLT. The plotter

inherently draws straight lines between successive points.

The sinusoidal waves obtain a "curvature" by using many

points. The plotted signals give a qualitative description.

A better plot of transient data is recorded by the Honeywell

1508 Visicorder. The recorder has a maximum recording speed

of 80 inches per second, and it gives time lines in intervals

of 10, 1, 0.1, or 0.01 seconds. The M100—120A galvanometer,

which has a response time of 0.01 seconds, is used during the

recording of transient experiments.

3.3 Laboratory Procedures and Techniques 

The platens were cleaned after every experiment.

Whenever the next run within an experiment was at a reduced
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shear rate from the previous run, the platens were cleaned

and reloaded with a new test sample. Most of the bulk used

sample was removed by paper towel, and any film on the

surfaces and edges of the platens are cleaned by Kimwipes

with acetone. The lower platens were checked for

concentricity and tilt before sample loading, while the upper

platen was checked only between experiments. Whenever the

platens were changed, the platen holder was checked for

concentricity. The lower platen extension piece was centered

at the bottom first then at the top to ensure squareness.

Transducer Calibration. In order to ensure the accuracy
 

of the data it was necessary to perform calibration checks

periodically for the proper function of the rheometer. The

following calibration procedure was generally adopted for all

transducer, transducer meter and amplifier on a monthly basis

or immediately after repairs. The oscillation input, torsion

head, and gap set transducer and transducer meter unit were

calibrated with the help of a micrometer jig for known linear

movements of the transducer armature.

1. The mechanical set zero of the transducer meter is

described in the rheogoniometer operating manual by Sangamo

Controls.

2. Set the transducer meter/amplifier range switch to

"cal" position and adjust to full scale deflection on the

meter by means of "set cal."

3. Adjust the position of the transducer body and

amplifier zero-offset to obtain a null reading on the
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transducer meter.

4. Next adjust the transducer meter unit of the

amplifier so that i 100, 1 35, and i 10 micron movement of

the armature results in a corresponding identical reading on

the amplifier meter with the meter range switch set on "100 "

range.

5. Repeat the above procedure for each of the other

meter range setting 100, 25, 10, 2.5 and 0.25.

By this method the calibrations were verified to be

linear and to be within a maximum error bound of 5 percent

on the most sensitive range 0.25, and generally better on the

other ranges.

gap Setting. The piegotron cell is an expensive

enhancement, so the gap setting must be done carefully. A

white piece of paper provides a good contrasting background.

The alligator leads of a voltmeter are connected to the

adjusting screw of the top and bottom platen. The torsion

head is lowered as close as possible to the bottom platen,

then the voltmeter is watched while slowly turning the

torsion—head handle in clockwise rotation. If a "hard"

contact is made, then the torsion head should be raised high

enough to eliminate any backlash in the lead screw of the

torsion—head slide. When the voltmeter indicates an

electrical circuit is made, the platens have made contact.

The thumb setting screw for the gap setting transducer is

turned to depress the transducer armature by the required

cone—plate gap beyond the null or zero micron point on the
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gap setting meter. The torsion head is then raised high

enough to load the sample.

Sample Loading. Although only 1— to 2— c.c. of the test

sample is required, care must be exercised during loading.

When the sample, such as polyisobutylene in cetane, is poured

on the bottom platen, air bubbles tend to become trapped in

the liquid. A Chemist's spatula can be used to burst the

bubbles from the sample. After all the bubbles have been

removed, the top platen or plate is lowered to just kiss the

convexed puddle of sample. If the sample puddle is concaved,

then an air bubble will be trapped and a new sample must be

loaded. To detect the air bubble a pen flashlight can shine

light through a translucient sample against a contrasting

background of a white piece of paper. As the top platen is

being lowered to the null point of the gap meter, the polymer

sample is squeezed out to the edge of the platens, and it

will start to drip from the cone—plate gap. The spatula can

be used to trim the excess sample during the gap setting.

The polymer sample needs to relax for about 30-minutes to

relieve any stresses that have been induced.

3.4 Experiments for an Unmodified WRG
 

The stress growth experiments used a 7.5 cm diameter

plate with a 1.533 degree cone~p1ate angle. The tests with

the unmodified WRG used a cantilever of 403 gm/micron, torsion

bar of 0.943 dynes—cm/micron and a gearbox setting of 1.6 or

11.3 rpm. During the shear stress growth the Visicorder is
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set at a chart speed of 8 inches/second with a timer at 0.1

second. Since the normal stress growth is much slower, the

Visicorder is operated at 1/2 inch/second with the timer on

1.0 second.

The small-amplitude oscillatory shearing comprises the

frequency response and the strain amplitude response experi—

ments. During the frequency response experiments the strain

amplitude is held constant and the frequency is varied. The

strain amplitude dial is set at a low enough indication such

that operating at the highest frequency permits shearing in

the linear viscoelastic region. Shearing of the polymer is

begun at the lowest frequency and is increased in steps to the

highest frequency. The machine must be stopped to change the

gearbox index for the new frequency. At a strain amplitude of

1.0 the literature indicates a frequency of about 0.6 cycle/

second as an upper limit for linear viscoelastic region.

Since the upper limit is an a posteriori fact, the frequency

is usually increased beyond the upper limit to also collect

data in the nonlinear region.

Similarly for strain—amplitude response experiments, the

strain amplitude dial is changed from zero to the upper limit

for the linear viscoelastic region while the frequency is held

constant. The strain amplitude dial can be moved slowly while

the machine is running. Likewise the strain amplitude is in-

creased above the upper limit for the linear region. The cone

can be changed from 1.533 degree gap angle to 0.5533 degrees

to increase the strain amplitude if necessary.
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3.5 Experiments for a Modified WRG 

The stress growth experiments used a 7.5 cm diameter

plate with a 0.5533 degree cone—plate angle. These experi-

ments test the benefit of using C—rings. The modified WRG

uses the piezotron load cell, torsion bar of 0.943 dyne-cm/

micron and a gearbox setting of 3.0 or 0.45 rpm. To convert

the computer time into the real time corresponding to 0.45 rpm,

a delay factor of 37 is used in the TESTY program. The TESTY

program simply reads and prints the voltages for the torsion,

oscillatory, and piezotron tranducers. For these tests the

shear rate is 9.8/second.

For oscillatory shearing experiments the following input

data is required for the WEISS program,

1.) Number of cycles for averaging (eg 1—5)

Number of the highest harmonic (eg 1—6)

JMAX for the Rhomberg integration (eg 6—7)

Cone angle in degrees (eg 0.5522)

Platen diameter in centimeters (eg 7.5)

Delay/point (eg 9, 37, 109)

Torsion bar constant in dynes—cm/thousandth

(eg 2.395E04)

Strain amplitude dial indication (eg 16.4)

Frequency in cycles/second (eg 0.0952

Range on torsion meter (eg 2.5)

Range on oscillatory meter (eg 100)

Transfer function for piezotron in volts/gm

(eg 0.02).
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The program asks for the above information in this order, and

the format for the entries is printed by the program before

the input is required.

The number of cycles for averaging depends on how well

the signal reading is synchronized to the number of points

read per cycle. A typical range for cycle averaging is from

1 to 5. The number of points for the cycle is determined by

JMAX which is used in the Rhomberg integration. JMAX is equal

to 1 plus 2 raised to the JMAX + 1 power, so JMAX of 7 equals

257 points for the cycle. For a given frequency, the delay/

point is chosen from experience to read the 257 points in the

period. For example, at a frequency of 0.0952 c/s a delay/

point of 109 will cause the digital voltmeter on the IBM 1800

analog/digital computer to read 257 voltages in about 10.5

seconds.



 



CHAPTER IV

ANALYSIS OF DATA PROCESSING

4.1 Dynamic Material Functions

As mentioned in section 2.1 for small-amplitude

oscillatory shearing, the input shear rate is approximately

described by equation (2.6),

y =-?o sin wt

(4.1)

where Yozwyo ' Figure 11 shows a pair of sinusoidal waves

for stress and strain. Point 0 is the point of origin for

the strain waveform, which is given by

Y='Yo cos wt

It is assumed the strain produces a shear stress

T: To cos (wt + 6)

where is the phase shift, so

I :To cos 6 cos wt — To sin 6 sin wt

— Yo (G' cos wt — G" sin mt)

G”.

=G'Y+w—Y

The dynamic storage modulus

G' = (To cos 6)/Yo

gives the phase stress amplitude and loss modulus,

G" = (To sin6)/ yo

gives the quadrature stress amplitude.
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The dynamic viscosity and loss viscosity arises if the

shear rate is considered, as is usually done for essentially

fluid systems. Equation (4.4) becomes in terms of the strain

rate amplitude Yo:

T=Yo (—n'sinwt + n" cos wt) (4.9)

where 0': (To sin 6)/Y o and n"=(TO cos 6)/ Yo

(4.10)

The factorYon'gives a measure of the component of stress in

phrase with the strain rate.

In the above discussion for Figure 11, point 0 is an

arbitrary origin for the measurement of time. Point 0' could

be taken as the origin with respect to shear stress waveform,

so that the strain

y = Yo cos (wt -5) (4°11)

produces a shear stress

(4.12)

T: To cos wt

The phase lag 6 and the strain amplitude ratioro/yoare a

function of the material, and can be regarded as material

properties for linear viscoelasticity, but these quantities

generally will vary with frequency. Only two frequency—

dependent quantities are required to determine the stress for

a harmonic strain, so a variety of different pairs of such

quantities are commonly used depending on the particular

situation.
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Equation (4.11) may be rewritten as

Y: yo cos 6 cos wt + YOsin6sinwt, (4-13)

where yocos6 is the amplitude of the strain component which

is in phase with the stress, andyosin6 is the amplitude of

the strain component which is out of phase with the stress.

For stored and dissipated energy the following quantities are

defined,

J' = (yo cos6)/ TO and J" = (yosin6)/To (4.14)

so that y: TO (J' cos wt + J” sin wt) (4.15) §

and tan a: J”/J' (4.16)

The J' is sometime called the dynamic storage compliance and

J" is called the loss compliance. For ideally elastic solid,

the stress and strain are in phase, 5: 0, J" = 0 and J' is

related to the elastic energy stored in the material with no

energy lost. Similarly for a Newtonian fluid, the stress and

strain rate are out of phase, 506 = 90 degrees, J' = O and J"

is the rate of energy dissipated. Generally for viscoelastic

fluid both J' and J" are nonzero for measuring the degree of

stored and dissipated energy.

By differentiating and using equation (4.12) equation

(4.15) becomes

'Y : J'T - —_ T (4.17)

and also differentiating equation (4.15)

Y = J'T + mJ"T.



 



60

The Euler's equation, which is coswt + i sin wt: exp(i wt)

where i = V-11 , is used for relationship based on the

previous expressions for stress, strain, and shear rate

because sin wt and cos wt are tedious to manipulate.

Equations (4.11) and (4.12) are written as

I = Re (To exp (1 wt)) (4.18)

and y = Re (yo exp (i(wt — 6))

= Re (yo exp (-16 ) exp (iwt) (4.19) i

The complex strain amplitude is yoexp(—i6) , Which is

sufficient to establish both the physical amplitude and the

phase lag of the strain. If the complex compliance J* of the

material is known, where

J* = yo exp (-i6 )/ TO (4.20)

then the stress can be calculated for any strain amplitude.

Also,

3* = 32 (cos 6- i sin6) (4.21)
IO

= J' — i J" (4.22)

so that J* may be found from the previously defined

compliances. J' is the real part of the complex compliance,

but J" is not the imaginary part of the complex compliance.

Although -iJ" is called the imaginary part, J" is real and

positive. In equation (4.20) the complex stress amplitude is

real because the stress was used as the phase reference.

The complex modulus, G* is sometime defined as

G* = 1/J* (4.23)
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So 6* = T——_°eXP (i ‘5) = G' + iG" (4.24)
Yo ’

GI : J'/(J'2 + JHZ )
(4.25)

G” = J"/(J'2 + JHZ ) (4-26)

J) = G'/(G'2 + Gn2 ) (4.27)

J" = GH/(G12+ GHZ )
(4.28)

and tan 6: J"/J' = G”/G' (4.29)

The shear rate is obtained by differentiating the

complex strain in equation (4.19) to give

9 = Re (iw Yo exp (i6) exp(iwt))

= —w yo sin (wt - 6) (4.30)

The complex dynamic viscosity is sometimes defined by

: n 1': : TAO ,

iwyo exp (~16 ) (4.31)

and using equation (4.10), it follows

”*z n' ‘ i n" (4 32)

The advantage of using complex variables is that time

appears in the equation in the form exp (iwt), so such terms

cancel out when stress-strain ratios are taken. At any point

in the calculation in which the complex amplitude of stress

and strain occurs, the physical amplitude and phase shift may

be determined by multiplying the complex amplitude by

exp (iwt) and taking the real part of the expression.
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By analogy to the mechanical equivalent of the

"Q-factor", this may be defined as

Q = 2 n Maximum stored elastic energy

Energy dissipated per cycle

For an initially undeformed ideally elastic solid that is

sheared by a strainyo, the work done is

T dy = G'yzo /2. (4.33)

Apparently, the stored energy is recovered if the strain is

slowly reduced to zero. For viscoelastic fluid, the G'Y%/2 ~

is a measure of stored energy, but the work done in the

deformation and the energy recovered does depend on how the

strain varies with time. For harmonic motion the total work

done on a unit volume per cycle is,

2n/w

f0 1? dt = f :n/w_w Y20(G‘cos wt —G" sin wt)sin wt dt

(4.34)

= TT 'Yzo G"-

From previous definitions, it follows

Q = G'/G” = 1/tan6 (4.35)

4.2 Visicorder Calculation Methods and Problems 

Figure 12 shows a typical Visicorder record for strain

and stress waveforms which should have their centerlines

parallel but not necessarily coincident. The distances

corresponding to a complete cycle and to the phase shift can

be measured from the curves respective centerlines.

0
Alternatively, Walters” shows that the measurements can be
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made along any line parallel to the centerlines such as

ABCDE. The phase difference would be calculated as

6 =n (AB + CD)/AE
(4.36)

Obviously, the ABCDE line must intersect both curves, and it

should be well away from the peaks for reasonable accuracy.

The accuracy is somewhat affected when the peaks for the

wave form are small and the frequency is low. The reason is

the curves become more horizontal so the intersection becomes

ambiguous. The lengths for AB, CD and AE can be measured a

little longer or shorter than the actual length such that a

110% error will be introduced into the phase lag calculation.

This method tends to be tedious and time consuming; it is

more practical to have the signal interfaced with a computer.

Smith et.al.u1 used an accurate method on an oscillo—

scope to measure the plase shift. Figure 13a shows elliptical

traces that are analyzed by measuring the distances correspond-

ing to 2x0, 2FO and 2 x0 sin 6. The force and displacement vol-

tages are analyzed on separate axes. If the phase shift is

small, then Figure 13b shows the major and minor axis of the

ellipse are measured rather than 2>gasin 6. Two expressions

for the area of the ellipse are equated as

§Fdx = fFOcos(wt+6')wasinmt dt = Foxosin6 = nab

thhat Sin6 = abTr/FoxO

Some oscilloscopes include a calibrated phase shift net-

work in the circuits which is adjusted instead of an ellipse.
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If a distorted line appears then higher harmonics exist in

the stress wafeform.

4.3 Computer Programs and Fourier Analysis

The theory of Fourier analysis and formulaes for compu—

ting the Fourier coefficients are given in a text by Church-

hill.“2 For shear stress and strain the phase shift with re-

spect to the origin is computed as

phase shift = arctan(-A1/B1)

and the amplitude is computed as

amplitude = (A? + 89*

where A1 and B1 are the first Fourier coefficients of the

sine and cosine series.

Since the normal stress has a displacement and has twice

the frequency of the shear stress waveforms the phase shift

with respect to the origin is calculated as

phase shift = arctan(-A2/B2)

and the amplitude is calculated as

amplitude = (A: + B§)%

where A2 and B2 are the second Fourier coefficients of the

sine and cosine series for the normal stress waveform. The dis-

placement or total normal force is equal to A0 which is the

integral average of the tabulated normal stress signal. The

phase lag for shear stress or normal stress is simply the phase

shift for the input strain oscillation minus the phase shift of

the output oscillation for the shear stress or normal stress.

The necessary integration of the tabulated function is

computed by the Rhomberg extrapolation method which is program—
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med in a text by Carnahan and Wilkes.“3 IBM also provides a

utility program that calculates the Fourier coefficients based

on a recursion formula. Unfortunately, for the same accuracy

on recovery of the Fourier coefficients the IBM program required

10 times the number of points as required by the Rhomberg inte—

gration. An accuracy of 98% for the recovery was achieved by

numerical simulation of an analytical sine and cosine series

which was not generated with the use of the digital voltmeter

and the WRG. The fewer number of points is particularly impore

tant for oscillations with short periods, because the digital

volt meter may not be able to read the analog voltage signal at

a fast enough speed. Consequently, experiments must be limited

to shearing frequency of less than 1 c/s.





 

CHAPTER V

RESULTS OF THE INVESTIGATION

5.1 Material Functions from an Unmodified WRG 

Figure 14a shows a typical shear stress growth from the

unmodified WRG, which employed the cantilever spring but not

the C-rings. The shear stress growths always showed over-

shooting with vibrationssuperimposed. The vibrations are sus-

pected to be caused by the separating movement of the the

torsion—head assembly and dove—tail slide. The lack of a

brace or added weight permits the tosion-head assembly and the

dove-tail slide to bend in an arc, hence, increasing the cone—

plate gap. The response time for the shear stress growth is

0.01 seconds. Figure 14b shows a typical normal stress growth.

The normal stress growth has a response time of 0.6 seconds.

The response time for normal stress relaxation is 5.2 seconds.

Figure 15 is a frequency response plot of the dynamic

viscosity and the storage modulus that summarizes one of the

oscillatory shearing experiments by the unmodified WRG. The

test conditions can be found in section 3.4. The original pur-

pose was to find the natural or resonance frequency. Although

the phase lag did not become zero, the resonance frequency is

estimated to be 42 cycles/second. A plot of phase lag versus

frequency, which is not shown, has inflections at 14 and 8 cy—

cles/second. Figure 15 uses 8 out of 15 data points because

the use of anymore points would be too close to the natural

frequency.
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UNMODIFIED WRG

 

 

Figure 14a.

Time (Arbitrary)

Shear Stress Growth

 

Figure 14b.

Time (Arbitrary)

Normal Stress Growth
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and Storage Modulus for 1490 Polysobutylene
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Figure 16. Shear Stress and Normal Stress Growths

of 1490 Polyisobutylene in Cetane from a

Modified WRG.
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5.2 Material Functions from a Modified WRG 

Under the test conditions that are given in section 3.5,

there was not a significant enhancement in the response time

for the stress growth experiments. The differences in the

test conditions are the C-rings with weights and the room tem-

peratures. The test without the use of C-rings was conducted

first from a temperature of 23° to 25° C, while the test with

the use of C—rings with weights was conducted second from 26°

to 28° C. Figure 16 shows the plots of the four runs from the

second test. The temperatureincreases approximately a 0.500 per i

plot from plots "a" to "d". Although the response time from

plot "a" did not change from the first test, it did become

longer as the room temperature increased during the second

test. Much of the noticeable differences is in the normal

stress growth since the piezotron as mentioned earlier is sen—

sitive to temperature changes. For the shear stress growths,

there are small differences which may be attributed to the

temperature effects on polyisobutylene.

Figures 17, l8, l9, and 20 are frequency response plots

of the storage modulus that summarizes the oscillatory experi—

ment done on a modified WRG. Figure 17 has a strain amplitude

from 0.5 to 0.53. Since there is a large amount of scatter on

the semilog plot, the curve through the points is not a statis-

tical curve fit. The large deviation of some points is caused

by room temperature effects. The experiments were conducted

on different evenings, so the room temperature varied from 230
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Figure 17. Frequency Response of the Dynamic

Storage Modulus for 1490 Polyisobutylene

in Cetane at 0.5 Strain Amplitude from a

Modified WRG.
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Figure 19. Frequency Response of the Dynamic

Storage Modulus for 1490 Polyisobutylene

in Cetane at 2.1 Strain Amplitude from a

Modified WRG.
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Figure 20. Frequency Response of the Dynamic

Storage Modulus for 1490 Polyisobutylene

in Cetane at 3.3 Strain Amplitude from a

Modified WRG.
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to 35° C. Any experiment that was conducted above 37°C is

not included because of obvious electronic failures that had

occurred. The shearing was conducted at only three frequen—

cies because the input parameter for the delay per point was

obtained by trial and error. Although more frequencies are

needed for a better curve fit, the data does suggest the

drawn curve.

Figure 18 is a frequency response plot of the storage

modulus at a strain amplitude from 1.29 to 1.32. Although there

are points at only two frequencies, a line with a small curva-

ture is drawn through the two sets of points because the pre-

vious figure suggested a curve. Experiments at a frequency of

2.38/second had failed because the room temperature was too

high. Similarly, Figures 19 and 20 are frequency response

plots of the storage modulus at the strain amplitude of approx—

imately 2.1 and 3.3 respectively.

If the curves of Figure 17 through 20 were plotted on one

figure, there would be a family of curves such that the posi-

tion of each of the curves becomes lower with the increase in

the strain amplitude. This is quantified better in the follow-

' ing figure.

Figure 21 is a strain amplitude response plot of the stor—

age modulus at the frequencies of 0.6/second and 3.77/second.

Since there is information at only one strain amplitude for

the frequency of 2.38/second, a line is not drawn for it.

The data for the frequency of 0.6/second suggest a straight
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line, so a straight parallel line is also drawn through

the data for the frequency of 3.77/second. The storage modu—

lus decreases with the increase of strain amplitude. An

extrapolation of the straight lines indicates a "zero shear"

storage modulus of 100 dynes/sq cm and 1000 dynes/sq cm for

the frequencies of 0.6/second and 3.77/second respectively.

Figure 22 is a plot of the loss modulus versus strain

amplitude. The data for the frequency of 0.6/second suggest

a straight horizontal line, so a similar line is drawn for

the other frequency. This figure indicates that the loss modu-

lus is a function of frequency only and not a function of

strain amplitude.

Appendix B contains the data that was used in the pre—

vious figures. Each table which comprises the Fourier com—

ponents, material functions, and computer input is preceded

by its Calcomp figure which is a plot of the raw data. The

Calcomp plots show electrical noise that the low—frequency

pass filters did not remove and the electrical noise that is

induced by long shielded wire from the WRG electronics to

the computer. The computer is located 60 feet away from the

WRG. All the Calcomp plots have a labeled strain curve which

is a single—cycle waveform that goes through the origin.

Shear Stress. Figure 23 is a Calcomp plot of a large—

amplitude oscillatory shear experiment at 0.0952 cycle/second

and a strain amplitude of 3.3. The shear stress waveform is

similar to the strain waveform, but the stress waveform has a

slight phase shift with respect to the origin. The Fourier
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in Cetane at the Frequency of 0.6 and

3.77/second from a Modified WRG.
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MODIFIED WRG
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Calcomp Plot of the Large-Amplitude Oscillatory

Shearing of Polyisobutylene in Cetane at the

Frequency of 0.0952 c/s and Strain Amplitude

of 3.3.
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MODIFIED WRG

Fourier Components and Material FunctionsTable 1.

harmonic l 2

stress An 516.04 4.3158

Bn 120.02 —7.0896

strain An -0.1188 0.0285

Bn 3.2871 -0.0369

normal An 118.75 —466.02

Bn —133.l7 -13.384

shear stress A0 = -l3.81l

shear strain A0 = —0.0768

normal stress A0 = 360.05

Strain Amplitude = 3.2892

Shear Stress

stress amplitude = 529.81

amplitude ratio = 161.08

phase shift = 1.3784

dynamic viscosity = 264.32

imaginary part = 51.492

dynamic rigidity = 30.798

loss modulus = 222.03

Normal Stress

normal stress displacement

amplitude

displacement function

coefficient:

Computer Program Input

interval spacing number

rhomberg jmax

maximum harmonic

cycle averaging number

delay/pOint

257

II
II

II
II

II

O
'
\

109

real part of

imaginary part of

3 4

7.8768 -2.7144

—l6.338 0.4610

0.0081 -0.0014

0.0318 -0.0203

21.578 76.512

-21.425 9.4735

dynes/sq cm

dynes/sq cm

dynes/sq cm

dynes/sq cm

radians

poise

poise

dynes/sq cm

dynes/sq cm

II
||

||
||

II
II

torsion head range

oscillatory range

peak voltage

cone angle

frequency

5 6

5.5888 3.7059

-3.1261 —l.09ll

-0.0050 0.0095

0.0064 -0.0080

-3.9225 -20.l75

—2.2631 —5.1019

360.05 dynes/sq cm

466.21 dynes/sq cm

0.8072 radians

gm/cm

gm/cm

gm/cm

25.0

100.0

0.25

0.5522°

0.0952 c/s
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series is plotted as a superimposed waveform on the raw data

signal. Usually only the odd harmonics are used to evaluate

the Fourier series for the shear stress curve, because the

data substantiates the theory. Table 1 contains both the

odd and even harmonics of the Fourier components. The magni—

tude of the first component is larger than the magnitude of the

secondcomponent and the third is larger than the fourth,and so on.

By starting with equation (4.3) for only the odd harmon—

ics a similar derivation for equation (4.5) gives the follow-

ing,

I = §Y{G' cos(2n+l)wt — G" sin(2n+l)wt}

o 2n+1 2n+1

where

I

G2n+1 = A2n+1/Y°

I

G2n+1 * -B2n+1/Y0

are related to the Fourier An and Bn series for the odd har—

monics. For n=0 , we obtain the equation (4.5) for linear

Viscoelastic theory.

Normal Stress. Figure 23 also shows the normal stress

waveform which is a plot of the data signal. Unlike the shear

stress waveform, the normal stress is a two cycle waveform.

A normal force is produced for each directional movement of the

bottom platen. Unfortunately, the even harmonics do not curve

fit the raw data as well as they should. There is a labeled

superimposed curve for the even harmonics and a labeled super-

imposed curve for both odd plus even harmonics. The superim—

posed curve of odd plus even harmonics always goes through the

normal stress signal by staying within the bounds of the elec—
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trical noise. The closer the match between the superimposed

curves, the better the experimental technique. The unlevel

heights of the peaks are mostly due to the lower platen not

being in the null position before loading the polyisobutylene

sample. With the exception of 82 Table 1 indicates the

relative domance of the even harmonics over the odd harmonics

for the normal stress signal.

Generally, the normal stress displacement increases

with the increase of strain amplitude. For the linear

region, the effects are almost null because the diaphram

may not be flexiable enough. For the nonlinear region,

the effects of increasing strain amplitude is very

pronounced.

Earlier normal stress experiments which are not given

in Appendix B compared low-frequency filters of the Piezotron

amplifier. The first filter, 545A, is a low pass filter of

150 kHz, and the second filter 545A16 is a low pass filter

of 1 kHz. Both the first and second Piezotron filters were

not adequate, because these filters did not diminsh the

electronic noises. The filter system of the Farol electronics

was used for all the experiments in Appendix B.

 



 



 

CHAPTER VI

SUMMARY AND CONCLUSION

6.1 Highlights

Since large shear rates are applied during the proces-

sing of polymers, industries are demanding mathematical models

to describe the large deformation. Early investigators who

used the WRG encountered some inadequacies in the machine de-

sign which permit the cone—plate gap to open. The most impor—

fl
y
v
’
w

r

tant enhancement to the unmodified WRG is the replacement of

the bending cantilever beam by a stationary piezotron load

cell. The second enhancement is the use of C-rings or weights

to prevent the dove-tail slide to rock on pivot. The objec-

tive is to collect material functions from oscillatory shear—

ing in the nonlinear region of polyisobutylene in cetane by

using a modified R—l6 WRG. Besides characterizing the fluid,

stress growth and stress relaxation experiments give a "diag-

nostic" information of the machine's ability to reSpond to a

sudden change of shear rate. The small— and large-amplitude

oscillatory shearing experiments identify the transition from

linear to nonlinear deformation. Similarly, experiments over

a range of frequencies will identify the transition to the

nonlinear region and identify the natural or resonance fre—

quency on the WRG. From these experiments, strain amplitude

and frequency response curves are constructed to characterize

the fluid for formulating models by others.
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6.2 Inferences

The stress growth experiments did not show a signifi-

cant improvement in the response time for the modified WRG.

Instead of using C-rings which do not have enough weight for

the enhancement, a one kilogram weight on t0p of the torsion

head would suffice as a substitute for a brace. For shear

stress growths, there are small differences in the curves

which may be attributed to the temperature effects on poly—

isobutylene.

The main results of this thesis are the frequency and

strain response curves. Unfortunately, there is some scatter

in the data due mostly to variation in room temperature. At

a given shear strain the dynamic storage modulus increases

with the increase in frequency or shear rate. For a given

frequenCy the dynamic modulus decreases with the increase in

shear strain. The loss storage modulus increases with the

increase in frequenCy, but it is not a function of shear strain.

For nonlinear behavior the derivation in Chapters IV and

V is that each odd component of the Fourier cosine series for

shear stress is related to a distinct dynamic modulus and that

each odd component of the Fourier cosineseries is related to

a distinct loss modulus. Since the odd components only show

domance in the linear region for oscillatory shearing, the

dynamic moduli and loss moduli are necessary for nonlinear

mathematical models. As shown in Chapter IV, the other mate—

rial functions are related to the dynamic and loss modulus;

it follows that the other nonlinear material functions are



 



 

   v~~9m5é from the dynamic moduli and loss 6

linear regiOn.





CHAPTER VII

RECOMMENDATIONS

7.1 Temperature Control 

There are some existing problems and needed repairs.

First, the laboratory needs an individual room thermostat that

is capable of heating or cooling the room. The tube elec-

tronics of the Farol power supply increases the room tempera-

ture which has an adverse effect on operations. When the room

temperature reaches 35° C the electronics fail to Operate and

the experiment must be terminated. Secondly, the oven that

surrounds the cone and plate has a broken resistance wire or

heating element, because the circuit in the oven does not pass

any electricity. Thirdly, the thermocouples that contact the

cone or plate are frailed and they need to be replaced. And,

last, the oven pinches on the frictionless air rotor so the

oven needs to be adjusted.

For precise control at non—ambient temperatures there are

many commercial controllers which use either an electric heater

or gas thermostat.

Electric heating. For high—temperature in excess of 100°C,

heater windings can be used in the cone and plate. Raha, Wil—

liams, and Lambuudesign an independent heated cone and plate

for polymer melts. A 250 watt element in the plate is the

main heater and a 22 watt element in the cone is the secondary

heater. The cone and plate reachs temperatures of 300°C in
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about 30 minutes from a cold start. It has an accuraCy of

i l0 C. For on-off controllers, the heated parts should be

massive to smooth the fluctuations. The temperature control-

ler should be near the heaters and thethermocouplesmeasuring

the test temperature should be close as possible to the test

sample.

Gas Thermostat. For temperatures below ambient, air which

has been bubbled through liquid nitrogen can be passed through

the oven chamber surrounding the sample. Another method which

gives better control involves evaporating liquid nitrogen with

a small electric heater and then warming the cold gas to the

required temperature. Van der Wal, gt alfs have described an

automatic control system based on this principle covering the

range —1800 C to +3000 C with an accuracy of : 1°C and long

term stability of 0.050C. For temperatures slightly above am-

bient such as 30°C some compressed filtered air which has been

split from the air supply before the air bearing can be warmed

by a small heater.

Regardless of the mode of heat transfer, a variable con-

troller is preferred over an on-off controller. For accurate

work, the resistance of a platinium resistance thermometer

placed in the oven is compared with the standard resistance

of a Wheatstone bridge circuit. The out of balance current is

prOportional to the error signal between the temperature of the

oven and the temperature to be maintained. The current through

the oven element is controlled by a semiconductor device known

as a thyristorLi6 This conducts current only when both a posi-
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tive voltage is applied and a positive trigger voltage is ap-

plied to a control grid. These trigger signals are applied

at an interval after the start of each positive a.c. voltage

cycle. By varying the delay before the trigger fires the

thyristor,only a fraction of the current cycle is passed.

Hence, the average current through the oven element is varied

over a four to one range. This delay is controlled by an er-

ror signal. The correction applied to the oven current is

prOportional to the temperature error. The oscillation of the

oven temperature due to the time lag between the change of

current and the corresponding change in temperature is reduced

to a minimum. Also, there is no loss of power in the control

circuits as there would be with a simple rheostat.

7.2 Graphics Terminal 

The College of Engineering has some graphic terminals

that are portable. Some terminals that have already been in—

terfaced to the IBM 1800 computer are also available with ther-

moprinters. It would be more convenient to use a graphic

terminal instead of the IBM typewriter that is currently

interfaced with the computer. For convenient use in the laborar

tory, it is necessary to run another line from the computer room

to the laboratory. With the graphics terminal next to the WRG

corrections and adjustments can be made before the hardcopy

of the waveforms or the calculation of the Fourier components.

The 12 input parameters that are given in section 3.5 can be

entered via the graphics terminal. The request for a plot or



 



 

plots of shear stress, normal stress, or shear strain can

be entered as well as starting a new run.
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APPENDIX A

COMPUTER PROGRAM LISTINGS

As mentioned in Chapter 3 this appendix comprises the

listings for the WEISS and TESTY programs. For oscillatory

shearing experiments the following input data is required for

the WEISS program,

1.)

2.)

ll.)

12.)

Number of cycles for averaging (eg. 1—5)

Number of the highest harmonic (eg. 1-6)

JMAX for the Rhomberg integration (eg. 6—7)

Cone angle in degrees (eg. 0.5522)

Planten diameter in centimeters (eg. 7.5)

Delay per point (eg. 9, 37, 109)

Torsion bar constant in dynes — cm/thousandth

(eg. 2.395 E 04)

Strain amplitude dial indication (eg. 16.4)

Frequency in cycles/second (eg. 0.0952)

Range on torsion meter (eg. 2.5)

Range on oscillatory meter (eg. 100)

Transfer function for piezotran in volts/gm

(eg. 0.02).

The program asks for the above information in this order, and

the format for the entries is printed by the program before the

input is required. The usual practice is to bring the IBM 1800

computer up from a cold start. The cold start is to press the

computer ON button, install magnetic tape cartridge into the



 



A2

tape driver, wait for 10 minutes for the green GO light, feed

the two start cards through the card reader. The READY light

on the computer should turn on. Now, the WEISS Fortran pro—

gram can be fed through the card reader. Items 1 through 6

usually remain constant during the experiment, while items 7

through 12 may change between runs of an experiment. Also,

it is not essential for the WRG to be running to answer items

one through six. Item 7 through 12 can only be answered after

entering the guess for the peak voltage which is typically be-

tween 0.4 and 0.6. The peak voltage activates the reading of

the voltage signal by the digital voltmeter, so the WRG needs

to be running at this time.



 



// FOR WEISS

*NONPROCESS PROGRAM

*ONE WORD INTEGER

*IOCS (CARD 1443 PRINTER TYPEWRITER)

*LIST ALL

DIMENSION A(6).B(6).TORSH(257).OSCIL(257).PIEzD(257)

c READ AND PRINT MAXIMUM NUMBER OF POINTS AND HARMONIC NUMBER

READ(2.2000) NAVEC.NHARM.UMAX,CONEA.PTDIA

2000 FORMAT(5x.I10.5x.I10.5x.110.5x.P5.O.5x,F5.O)

NMAX=2**(JMAX+1)+1

2 WRITE(1.2100)

2100 FORMAT(1X.50H DELAY=***** USE FORMAT IS RIGHT JUSTIFIED COL. 1 ,/.

0' TORSION BAR CONSTANT...USE E11 4',/,' STRAIN AMPLITUDE DIAL ..US

EE FORMAT F5.0’./.’ FREQUENCV IN C/S...USE FORMAT F5.0’././.’ TORSI

ION RANGE. OSCIL RANGE. PIEZO TRANS FUNC...USE F5.0/F5.0/F5.0’)

WRITE(1.2150)

2150 FORMAT(’ WHAT IS PHASE VOLTAGE... USE F5.0’)

READ(6.2200) IDLAY:TORKB.SAMPD.FREQ.RANGT.RANGO.TRANF.PHASD

2200 FORMAT(IS./.E11.4,/.F5.0,/.F5.0./.F5.0,/,F5.0./.F5.0./.F5.0)

IF(I0LAY) 100.500.500

500 WRITE(3.3000) NMAX.NHARM,JMAX.FREQ.NAVEX.IDLAY.TORKB.SAMPD

3000 FORMAT(63x.23H INTERVAL SPACING NO. =,I10./.63x.22H MAXIMUM HARMON

SIC NO.=.I10./.63X,15H RHOMBERG dMAX=.IS./.63X,11H FREQUENCY=.E14.7

R,/.63X.21H CVCLE AVERAGING NO.=,110./.63x.14H DELAv/POINT =.110./.

A63x,' TORSION BAR CONSTANT =’.E11.4./.63X,’ STRAIN AMPLITUDE DIAL

s=',P5.2)

WRITE(3.3100) RANGT,RANGO.TRANF.CONEA.PTDIA

3100 FORMAT(63x,' TORSION HEAD RANGE =’F6.2./.63X.’ OSCILLATORY RANGE =

G'.F6.2./.63X,’ PIEzOTRON TRANSFER FUNCTION =',F6.2./,63x.' CONE AN

FGLE=’ F10 5. /. 63x , PLATEN DIAMETER=’.F10.5)

CALCULATE AND INITIALIZE CONSTANTS

GM/ML

NMAX1=NMAX-1

SCALE=1./NAVEC

FACTP=981.8./TRANF/PIE/PTDIA/PTDIA/3276.7/.4O

FACTO= RANGO/. 83/22.334/CONEA/3276. 7

IF(RANGT-. 26) 3 3

3 FACTT= 3. 82*RANGT‘TORKB/. 93/(PTDIA**3)/3276. 7*. 40

GO TO 3333

333 FACTT=3.BZ‘RANGT*TORKB/.90/(PTDIA*‘3)/3276.7*.40

3333 CONTINUE

C INITIALIZE ARRAYS

O 4 d=1,NHARM

A(d)=0.0

B(J)=0.0

4 CONTINUE

DO 5 N=1.NMAX

TORSH(N)=0.0
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OSCIL(N)=0.0

PIEZO(N)=0.0

5 CONTINUE

WRITE(1.2250) -

2250 FORMAT(1X.’WHAT IS THE PEAK VOLTAGE VOLTO...USE FORMAT F5 0')

READ(6.2260) PEAKV

2260 FORMAT(F5.0)

WRITE(3.2270) PEAKV

2270 FORMAT(63X,’ PEAK VOLTAGE VOLTO=’,F10.5)

WRITE(3.2300)

2300 FORMAT(63X.7HWAITING,/)

7 CALL HFAIR(7.1.VOLTO)

IF(-PEAKV+VOLTO) 7.7.8

8 CONTINUE

WRITE(3.1300)

9 CALL HFAIR(7.1,VOLTO)

IF(VOLTO-PHASD) 10.9.9

10 CONTINUE

DD 15 M=1.NAVEC

DO 12 N=1,NMAX1 ,

CALL HFAI(6,3,KT0RS,KOSCI.KPIEz)

TORSH(N)=TORSH(N)-KTORS

OSCIL(N)=OSCIL(N)-KOSCI

PIEZO(N)=PIEZO(N)+KPIEZ

_ CALL DELAY(IDLAY)

12 CONTINUE

15 CONTINUE

TORSH(NMAX)=TORSH(1)

OSCIL(NMAx)=OSCIL(1)

PIEzo(NMAx)=PIEZO(1)

C SCALE AND CONVERSION FACTOR

DO 20 N=1,NMAx

TORSH(N)=TORSH(N)*SCALE*FACTT

OSCIL(N)=OSCIL(N)*SCALE*FACTO

PIEZO(N)=PXEZO(N)*SCALE*FACTP

20 CONTINUE .

wRITE(3.1900)

1900 F0RMAT(57X,63HAVERAGED VALUES FOR SIGNALS TO BE USED FOR FOURIER A

ANALYSIS... )

WRITE(3.1500)

WRITE(3.1400) (I.TORSH(I).OSCIL(I).PIEZO(I).I=1.NMAx)

WRITE(1.1700)

READ(6.1800) ICONT

IF(1-ICONT) 1.25.2

25 CONTINUE

1700 FORMAT(1x,27HCHECK DATA FOR CONSISTANCY. ./.34H TO CONTINUE. TYPE

11 IN COLUMN ONE /)

1800 F0RMAT(I1)

C CALL ON FOURIER ANALYSIS

1000 FORMAT(1X./.48X.17.5112./.48X.6E12.5/48X.6E12.5.//)



 



1100

26

57

58

65

27

29

67

68

31

33

A5

FORMAT(1X.’ ERROR...NMAX NOT GREATER THAN OR EQUAL TO NHARM...ERRO

OR OR ’ERROR...NHARM LESS THAN ZERO...ERROR

CALL FORIT(TORSH2NMAx NHARM A0. AB IER JMAX FREQ. PIE)

IF(IER- 1) 26 27

wRITE(3 1000) (I2 1= 1 6) (A(I) I= L 6). B(IL I=L 6)

wRITE(1 17oo)

READ(6.1800) ICONT

IF(1-ICONT) 1.57.58

CONTINUE

CALL CALCM1TDRSH.A0,A.B.PIE,FREO.XSCAL.YSCAL,NMAX.NHARM)

CONTINUE

PHASD=ATAN(-A(1)/B(1))

THOMX=SQRT(A(1)*A(1)+B(1)*B(1))

WRITE(1.1700)

READ(6.1300) ICONT

IF(1-ICONT) 1.65.2

CONTINUE

GO TO 29

‘ WRITE(3.1100)

CALL FORIT(OSCIL.NMAX.NHARM.A0.A.B.IER,UMAX.FREQ.PIE)

IF(IER-1) 30,31.

wRITE(3.1ooo) (I.I=1,6).(A(I).I=1.e).(B(I).I=1.6)

WRITE(1.1700)

READ(6.1800) ICONT

IF(1-IC0NT) 1.67.68

CONTINUE

CALL CALCM(OSCIL.AO.A.B.PIE.FREQ,XSCAL.YSCAL.NMAx,NHARM)

CONTINUE

PHASG=ATAN(-A(1)/B(1))

GAMMO=SQRT(A(1)*A(1)+B(1)*B(1))

AMPRO=THOMX/GAMMO/2./FREO/PIE

PHASD=PHASG-PHASD

DYVIS=THOMX~SIN1PHASD)/GAMMO/2./PIE/FREQ

STORM=THAMX*COS(PHASD)/GAMMO

WRITE(1.1700)

READ(6.1800) ICONT

IF(1-ICONT) 1.75.2

CONTINUE

GO To 33

wRITE(3.1100)

CALL F0R1T1P1Ezo3NMAX NHARM A0 A B. IER OMAx FREQ PIE)

IF(IER~1) 34 35.

WRITE(3.1000) (131=1 6) (A(I). I=1 6). (8(1). 1: 1. 6)

WRITE(1.1700)

READ(6.1800) ICONT

IF(1-ICONT) 1.77.78

CONTINUE

CALL CALCMIPIEZO.AO,A_B,PIE.FREQ.XSCAL.YSCAL.NMAx,NHARM)

CONTINUE

WRITE(3.SOOO) GAMMO.AMPRO.PHASD.DYVIS.STORM,THOMx
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5000 FORMAT(50X.’ STRAIN AMPLITUDE =’.E12.5,/.50X.’ AMPLITUDE RATIO =

D’.E12.5./.50X.’ SHEAR PHASE DIFFERINCE='.E12.5.RADIANS',/.50X,

TDYNAMIC VISCOSITY=',E12.5.'POISE'./,50X,' STORAGE MODULUS=’.E12.5

H.’DYNES/CM2’./.50X.’ SHEAR STRESS AMPLITUDE=’.E12.5,’DYNES/CMZ’)

CALCULATE THE MATERIAL FUNCTIONS. .COMPLEX NORMAL STRESS COEFFICIENT

C AND NARMAL STRESS DIDPLACEMENT FUNCTION

COMMIT . USE B ARRAY FOR EFFICIENCY ACCORDING WILLIAMS BIRD

C 3(1):H $ 3(2)=K s B13)— 0P s 3(4)=0M s B(5)=s $ BIG)=T s A12)=A

PHASD=ATAN(- A(2)/B(22))/2

A(2)=SQRT(A(2)*A(2)+B(2)*B(2))

PHASD=PHASG PHASD

B(2)=RHO*2 *PIE*FREQ*PTDIA*PTDIA*DYVIS/4.

B(2)=B(2)/(DYVIS*DYVIS+(STORM/2 /PIE/FREO)**2 )

13(2)= RHOPTDIA»PTDIA*STORM/4. /(DYVIS*DYVIS+(STORM/2/PIE/FREO)**2)

3(3)= SQRT(SQRT(B(1)*B(1)/2 +B(2)*B(2))+B(2)/2 )*CONEA*PIE/180.

B(4)=SQRT(SORT(B(1)*B(1)/2.+B(2)*B(2))-B(2)/2.)*CONEA*PIE/180.

8(5)=(((EXP(B(4))-EXP(-B(4)))/2.)*C0$(B(3)))**2.

B(5)=B(5)-(((EXP(B(4))-EXP(-B(4)))/2.)*SIN(B(§)))**2.

B(6)=(EXP(2.*B(4))-EXP(-2.*B(4)))*SIN(B(3))*COS(B(3))/2.

ZD=COS(CONEA*PIE/180.)

ZD=-A0/((2*PIE*FREQ*GAMMO)**2)/SQRT(B(1)*B(1)+B(2)*B(2))/ZD/ZD

ZD=ZD*((((EXP(B(4))-EXP(—B(4)))/2.)YCOS(B(3)))**2.+(((EXP(B(4))-EX

PP(-B(4)))/2.)*SIN(B(3)))**2.)

ZP=A(2)/(2*PIE*FREO)**2/(B(1)*B(1)+B(2)*B(2))/(COS(CONEA*PIE/180.)

*t«2_)

ZPP=ZP*((B(2)*B(5)-B(1)*B(6))*SIN(2*PHASD)-(B(1)*B(5)+B(2)*B(6))*C

SOS(2.*PHASD))

ZP=ZP*((B(2)*B(5)-B(1)*B(6))*COS(2*PHASD)-(B(1)*B(5)+B(2)*B(6))*SI

PN(2.PHASD))

C -------- PRINT OUT THE ANSWERS ----------

WRITE(3.6000) PHASD.A(2),AO.A.2D.2P.2PP

6000 FORMAT(50X.’ NORMAL PHASE DIFFERENCE=’E12.5.’RADIANS’./.50X.’ AMPL

NTIUDE OF NORMAL STRESS’.E12.5.’DYNES/CM2’./.50X.’ AVERAGE DISPLACE

MMENT OF NORMAL STRESS’.E12.5.’DYNE/CM2’./.50X.’ NORMAL~STRESS DISP

FLACIMENT FUNCTION’,E12.5,'GM/CM’./.SOX.’ REAL PART OF COMPLEX NORM

TAL STRESS COEFFICIENT’.E12.5.’GM/CM’,/.50X.’ IMAGINARY PART OF NOR

1MAL STRESS COEFFICIENT’,E12.5.’GM/CM’)

GO TO 1

35 WRITE(3.1100)

100 CONTINUE

1300 FORMAT(63X.16HSIGNALS READ...

1400 FORMAT(63X,15,5X.E12.5.5X,E12.5,5X,E12.5)

1500 FORMAT(63X.1HI,9X.8HTDRSH(1).9X.8HOSCIL(I),9X.3HPIEZD(1) )

CALL EXIT

END
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// FOR FORIT

*NONPROCESS PROGRAM

*ONE WORD INTEGERS

*LIST ALL

SUBROUTINE FORIT(FNT,NMAX,NHARM.AO,A.B.IER.UMAX,FRE0,PIE)

DIMENSION A(6).B(6).FNT(257).FI(7.7)

CHANGE ORIGINALNARRAY TO INTEGRAND .............

DO 1 N= 1.

FNT(N)= FNT(N)*FREO

1 CONTINUE

0 CHECK FOR PARAMETER ERRORS

EPS=0.0005

IE

IF(NHARM) 2.3.3

IE 2

RETURN

IF(NHARM-NMAX) 5.5 4

IER= 15
0
)

RN

COMPUTEEAO - AVERAGE VALUE OVER SYMETRICAL INTERVAL

5 BELDW=-1. 0/2. /FR

UPPER=- BELOW

DO 9 d=1.dMAX

DO 9 I=1.dMAX

FI(I,J)=0.0

9 CONTINUE

CALL ROMBG(BELOW.UPPER.FNT.EPS.dMAX.d.FI.NMAX,ANSWR)

AO=ANSWR

. WRITE(2 6) 0. AD

WRITE(3 7) (d d= 1 dMA

WRITE(3. a) (I (FI(I. d).)0: 1 7) I: 1 7)

DO 10 a: 1 JMAX

DO 10 I=1,UMAX

FIII.U)=0.0

1o CONTINUE

COMPUTE A(N) AND B(N) FOR N=1.2.3....NHARMONIC

DD 11 N=1.NMAX

TIME= (N- (NMAX+1)/2 )/(NMAX—1)/FREO

11 FNT(N)= FNT(N)*COS(2. *PIEPFRE0*TIME)*2

CALL ROMBG(BELDW UPPER FNT EPS JMAX U. FI. NMAX ANSWR)

A(1)= ANSWR

WRITE(3.6) U.A(1)

WRITE(3,7) (O.U=1,7)

WRITE(3.8) (I.(FI(I.d).d=1,7).I=1.7)

DD 16 M=2.NHARM

DO 12 N=1.NMAX

TIME=(N-(NMAX+1)/2.)/(NMAX—1)/FRE0

12 FNT(N)=FNT(N)*COS(2.*M*PIE*FREO*TIME)/COS(2.*(M-I)*PIE*FREOPTIME)





14

16

(
1
)
4
6
)
” M

A8

CALL ROMBG(BELOW.UPPER.FNT.EPS.dMAX.d,FI.NMAX.ANSWR)

A(M)=ANSWR

WRITE(3.6) d.A(M)

WRITE(3.7) (d.d=1.7)

WRITE(3.8) (I.(FI(I,d).d=I.7).I=1.7)

DD 15 U=1.JMAX

DO 14 I=1.dMAX

FI(I.J)=0.0

CONTINUE

CONTINUE

MHALF=(NMAX+1)/2

SAVE=FNT(MHALF)

DO 17 N= 1 NMAX

TIME=(NT(NMAX+1)/2. )/(NMAX—1)/FREO

FNT(N)= FNT(N)»SIN(2 *PIEYFREQiTIME)/COS(2.*NHARM*PIE+FREO*TIME)

CALL ROMBG(BELOW.UPPER.FNT.EPS.dMAX.d,FI,NMAX.ANSWR)

B(1)=ANSWR

WRITE(3 6) J B(1)

WRITE(3 7) (d.d=17)

WRITE(3. 8) (I (FI(I d). 0= 1 7) I= 1 7)

LHALF= (NMAX+1)/2- 1

NHALF=(NMAX+1)/2+1

DO 20 M=2,NHARM

DO 18 N=1.LHALF

TIME=(N-(NMAX+1)/2.)/(NMAX-1)/FREO

FNT(N)=FNT(N)*SIN(2.*M*PIEPFREQ*TIME)/SIN(2.*(M-I)*PIE*FREO*TIME)

DO 19 N=NHALF,NMAX

TIME=(N-(NMAX+T)/2.)/(NMAX-1)/FREO

FNT(N)= FNT(N)nSIN(2. *M*PIE*FREQ*TIME)/SIN(2 *(M-1)*PIE*FREO*TIME)

CALL RDMBG(BELOW UPPER FNT EPS OMAX 0 F1 NMAX ANSWR )

B(M)=ANSWR

WRITE(3.6) d.B(M)

WRITE(3.7) (d.d=1.7)

WRITE(3,8) (I.(FI(I,O).O=1,7).I=1,7)

CONTINUE

.RESTORE ORIGINAL ARRAY FNT ......

DO 21 N=1.LHALF

TIME=(N-(NMAX+1)/2.)/(NMAX-1)/FREO

FNT(N)=FNT(N)/SIN(2.wNHARMtPIErFRE0*TIME)/2./FRE0

FNT(MHALF)= SAVE/2. /FREo

DO 22 N=NHALF NMAX

TIME=(H—(NMAX+1)/2. )/(NMAX—1)/FRE0

FNT(N)= FNT(N)/SIN(2. iNHARM*PIE*FREO*TIME)/2. /FRE0

FORMAT(30X 3H 0:. I5 5X 10H INTEGRAL= E14

FORMAT(30X 3H0 K 7112)

FORMAT(30X.13.1X,7F12.5)

RETURN

END
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// FOR ROMBG

*NONPROCESS PROGRAM

*ONE WORD INTEGERS

*LIST ALL

m
u
m

SUBROUTINE ROMBG(A,B,F,EPS.dMAX.d.FI.NMAX.ANSWR)

DIMENSION FI(7.7).F(257)

PRESET CONSTANTS

DO 7 d=1,dMAX

IBY=(NMAX+1)/2*td

IBEGN=IBY+1

M=NMAX-2

DO 2 I=IBEGN.M.IBY

F2=F2+F(I)

IBEGN=IBY/2+1

F4=0.0

M=NMAX-1

DO 3 I=IBEGN.M.IBY

F4=F4+F(I)

F1(d.1)=(B-A)*(F(1)+F(NMAX)+2.*F2+4.*F4)/5-/N

IF(d-1) 6,6,4

CONTINUE

KM=d-1

DO 5 K=1.KM

dMK=d-K

KPO=K+1

UMKpO= d- K+1

FI(dMK KPO)= (4. **K*FI(JMKPO K)- FI(dMK K))/(4. **K- 1.

IF((ABS(FI(JMKPO KM)- FI(UMK KM))- EPS1) 8.8.6

CONTINUE

CONTINUE

ANSWR=FI(UMK,KPO)

RETURN

END

)
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// FOR CALCM

*NONPROCESS PROGRAM

*ONE WORD INTEGERS

I"LIST

60

5050

5060

5070

91

92

53

54

61

500

501

64

1900

2000

200

ALL

SUBROUTINE CALCM(ARRAY.AO,A,B.PIE.FREQ.XSCAL,YSCAL.NMAX.NHARM)

DIMENSION A(6).B(6),ARRAY(257)

DRAWS ORIENT ABSCISSA ......

CALL HYPLT(O..O..O)

CALL HYPLT(-3.75.0..1)

CALL HYPLT(3.75.0..1)

CALL HYPLT(O.,2.5.2)

CALL HYPLT(O..-2.5.1)

CALL HYPLT(O..O..1)

CONTINUE

WRITE(1.5050)

FORMAT(’ wHAT Is XSCALE AND YSCALE... USE F5.0/F5.0’./)

READ(6.5060) XSCAL,YSCAL

FORMAT(FS.O./.F5.0)

WRITE(3.5070) XSCAL.YSCAL

FORMAT(60X,’XSCALE FOR PLOTTER+’.F10.5.’ YSCALE FOR PLOTTER=’,F10.

55)

N=1

TIMME=(N-(NMAX+1)/2.)/(NMAX-1)/FREQ

ARAY=ARRAY(N)

CALL HYPLT(O..0.,2)

CALL HYPLT(XSCAL.YSCAL.3)

wRITE(1.91)

FORMAT(1X.’DO YOU wANT PLOT OF EXPERIMENTAL DATA.’./.’ TYPE 1 IN c

NNE’./)

READ(6.92) ITRY

FORMAT(I1)

IF(ITRY-1) 61.53.53

CONTINUE

CALL HYPLT(TIME.ARAY.2)

DO 54 N=2.NMAx

TIME=(N-(NMAX+1)/2.)/(NMAX-1)/FREO

ARAY=ARRAY(N)

CALL HYPLT(TIME.ARAY,1)

CONTINUE

CALL HYPLT(O..O..2)

CONTINUE

WRITE(1.500)

FORMAT(1X.’DO YOU wANT EVEN AND/OR ODD HARMONICS...’./.’ USE FORMA

TT I1. ODD IS 1.... EVEN ID 2..... BOTH Is 3'./)

READ(6.501) IPART

FORMAT(I1)

N=1 '

TIME=(N-(NMAX+1)/2.)/(NMAX-1)/EREo

CALL FUNCT(TIME.AO.A.B.PIE.FREQ.G.IPART.NHARM)

ARAY=G

CALL HYPLT(TIME.ARAY.2)

DD 64 N=2,NMAX

TIME=(N«(NAmx+1)/2.)/(NMAx—1)/FREo

CALL FUNCT(TIME.A0,A.B.PIE.FREQ.IPART.NHARM)

ARAY=G

CALL HYPLT(TIME,ARAY.1)

CONTINUE

CALL HYPLT(0..0..2)

WRITE(1.1900) '

FORMAT(1X.’DO YOU wANT To TRY THIS ONE AGAIN... 1 YES. 0 N0’./)

READ(6.2ooo) ITRv

EORMAT(I1)

IF(ITRY-1) 200.60.60

CONTINUE '

CALL HYPLT(0..O..-1)

RETURN

END
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// FOR FUNCT

*NONPROCESS PROGRAM

*ONE WORD INTEGERs

*LIST ALL

SUBROUTINE FUNCT(TIME A0 A B PIE FREQ G IPART NHARM)

C NEED THE FOURIER COMPONENTS

DIMENSION

ANSUM=0.0

BNSUM=0.0

CALCULATION FOR FOURIER SERIES

IF(IPART-z) 1.2.3

1 MSTAR=1

IBv=2

GO TO 4

2 MSTAR=2

IBY=2

GO TO 4

3 MSTAR=1

13v=1

4 CONTINUE

DO 5 N=MSTAR.NHARM.IBY

ANSUM=ANSUM+A(N)*COS(2.*N*PIE*FREQ*TIME)

BNSUM=EBNSUM+B(N)*SIN(2.EN*PIE*FREQ*TIME)

5 CONTIN

G= A0+ANSUM+BNSUM

RETURN

END
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Figure 24. Calcomp Plot of the Large—Amplitude

Oscillatory Shearing of Polyisobutylene

in Cetane at the Frequency of 0.0952 c/s

and Strain Amplitude of 3.3.



 



Table 2.

harmonic

stress An

Bn

strain An

Bn

normal An

Bn

shear stres

shear strai

normal stre

Strain Ampl

Shear Stres

stress ampl

amplitude r

phase shift

dynamic vis

imaginary p

dynamic rig

loss modulu

Normal Stre

normal stre

normal stre

phase shift

normal stre

normal stre

MODIFIED WRG

B2

Fourier Components and Material Functions

1 2

362.99 1.5835

90.843 —4.4929

—0.0534 0.0148

2.1708 -0.0225

115.83 —401.33

-18.462 —9.1217

5 A0 = 2.0177

n A0 = 0.0328

55 A0 = 367.03

itude = 2.1714

s

itude = 374.18

atio = 172.32

= 1.3501

cosity = 281.10

art = 63.053

idity = 37.714

5 = 232.66

ss

55 displacement

ss amplitude

SS

SS

Computer Program Input

interval spacing number

rhomberg jmax

maximum harmonic

cycle averaging number

delay/point

25

displacement function

coefficient:

3 4 5 6

6.0514 —1.1082‘ -1.4292 1.0232

-6.5130 —1.3807 0.6366 0.4978

0.0044 0.0015 -0.0013 0.0008

0.0205 -0.0124 0.0070 -0.0053

18.440 101.08 —8.3871 —27.029

—7.2524 13.278 10.972 —18.245

dynes/sq cm

dynes/sq cm

dynes/sq cm

dynes/sq cm

radians

poise

poise

dynes/sq cm

dynes/sq cm

= 367.03 dynes/sq cm

= 401.43 dynes/sq cm

= 0.7986 radians

= —0.0143 gm/cm

real part of = 0.0696 gm/cm

imaginary part of = 0.1454 gm/cm

7 torsion head range = 2.5

7 oscillatory range = 25

6 peak voltage = 0.6

1 cone angle = 0.5522°

9 frequency = 0.0952 c/s10
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Calcomp Plot of the Large-Amplitude

Oscillatory Shearing of Polyisobutylene

in Cetane at the Frequency of 0.0952 c/s

and Strain Amplitude of 1.31.





MODIFIED WRG

B4

Table 3. Fourier Components and Material Functions

harmonic 1 2 3 4 5 6

stress An 188.44 0.8677 -0.5596 0.1367 —0.2660 0.2248

Bn 94.975 —0.8953 -1.3039 0.0229 -1.6931 -0.2310

strain An -0.1745 0.0065 —0.0016 0.0006 0.0004 —0.0003

Bn 1.3006 0.0038 0.0034 0.0001 -0.0019 -0.0009

normal An —48.366 —105.08 1.1228 25.907 -1.1684 —2.7346

Bn -20.439 —31.539 3.5849 23.028 -3.9873 —1l.003

shear stress A0 = 17.839 dynes/sq cm

shear strain A0 = -0.0001

normal stress A0 = -49.884 dynes/sq cm

Strain Amplitude = 1.3122

Shear Stress

stress amplitude = 211.02 dynes/sq cm

amplitude ratio = 160.81 dynes/sq cm

phase shift = 1.2373 radians

dynamic viscosity = 254.04 poise

imaginary part = 88.005 poise

dynamic rigidity = 52.641 dynes/sq cm

loss modulus = 151.95 dynes/sq cm

Normal Stress

normal stress displacement = —49.884 dynes/sq cm

normal stress amplitude = 109.71 dynes/sq cm

phase shift = 0.7730 radians

normal stress displacement function = gm/cm

normal stress coefficient: real part of = gm/cm

imaginary part of = gm/cm

Computer Program Input

interval spacing number = 257 torsion head range = 1.0

rhomberg jmax = 7 oscillatory range = 25.0

maximum harmonic = 6 peak voltage = 0.42

cycle averaging number = 10 cone angle = 0.5522°

delay/point = 109 frequency = 0.0952 c/s
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Figure 26.

 
 

Calcomp Plot of the Large-Amplitude

Oscillatory Shearing of Polyisobutylene

in Cetane at the Frequency of 0.0952 c/s

and Strain Amplitude of 1.31.



 



Table 4,

harmonic

stress An

Bn

strain An

Bn

normal An

Bn

shear stres

shear strai

normal stre

Strain Ampl

Shear Stres

stress ampl

amplitude r

phase shift

dynamic viscosity

imaginary part

dynamic rig

loss modulu

B6

MODIFIED WRG

Fourier Components and Material Functions

1 2 3 4 5 6

195.93 2.6662 0.8991 0.3121 -1.0033 -0.4566

87.777 -0.7516 —0.0935 0.1268 -l.4421 ,0.2120

-0.1520 0.0068 -0.0014 0.0011 -0.0004 -0.0005

1.3031 0.0031 0.0041 -0.0004 -0.0020 -0.0005

—52.388 -120.14 —0.0225 29.245 —2.228 -3.2796

-32.496 -25.830 3.7987 23.061 —4.5396 -9.4770

5 A0

n Ao

ss Ao

19.129 dynes/sq cm

0.0003

—9.8511 dynes/sq cm

itude = 1.3119

S

itude = 214.69 dynes/sq cm

atio = 163.65 dynes/sq cm

= 1.2657 radians

= 260.96 poise

= 70.042 poise

idity = 49.158 dynes/sq cm

s = 158.20 dynes/sq cm

SSNormal Stre

normal stre

normal stre

phase shift

normal stre

normal stre

—9.8511 dynes/sq cm

122.89 dynes/sq cm

0.7957 radians

ss displacement

ss amplitude

II
II

II
II

II
II

Computer Program Input

interval spacing number

rhomberg jmax

maximum harmonic

cycle averaging number

delay/point

ss displacement function gm/cm

ss coefficient: real part of gm/cm

imaginary part of gm/cm

= 257 torsion head range = 1.0

= 7 oscillatory range = 25.0

= 6 peak voltage = 0.42

= 10 cone angle = 0.5522°

= 109 frequency = 0.0952 c/s
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Calcomp Plot of the Large—Amplitude

Oscillatory Shearing of Polyisobutylene.

in Cetane at the Frequencey of 0.0952 c/s

and Strain Amplitude of 1.31.



 

 



Table 5.

harmonic

stress An

Bn

strain An

Bn

normal

shear stres

B8

MODIFIED WRG

Fourier Components and Material Functions

1 2

204.26 0.98174

69.819 —1.5688

-0.0777 0.0068

1.3080 0.0035

-52.419 -129.47

-48.800 2.1693

s Ao

shear strain A0 = 0.0001

normal stre

Strain Ampl

Shear Stres

stress ampl

amplitude r

phase shift

dynamic vis

imaginary p

dynamic rig

loss modulu

55 A0

itude = 1.3103

s

itude = 215.86

atio = 164.74

= 1.3008

cosity = 265.43

art = 73.460

idity = 43.941

5 = 158.77

SSNormal Stre

normal stre

normal stre

phase shift

normal stre

normal stre

ss displacement

ss amplitude

3 4 5

1.8865 0.0462 -1.0

—0.9018 -0.3374 -0.3

-0.0002 0.0007 -0.0

0.0034 0.0003 -0.0

1.5563 36.224 —4.8

-10.752 25.410 —9.1

17.225 dynes/sq cm

2131.7 dynes/sq cm

dynes/sq

dynes/sq

radians

poise

poise

dynes/sq

dynes/sq

ss displacement function

55 coefficient: real part of

imaginary part of

Computer Program Input

interval spacing number

rhomberg jmax

maximum harmonic

cycle averaging number

delay/point II
II

II
II

II

0
‘
1

torsion head range

oscillatory range

cm

CITl

cm

2131.7

129.48

6

181 -0.3273

436 0.6133

007 -0.0006

019 0.0001

126 -6.6001

877 -2.6846

dynes/sq cm

dynes/sq cm

-0.7177 radians

peak voltage

cone angle

frequency

gm/cm

gm/cm

gm/cm

1.0

25.0

0.42

0.5522°

0.0952 c/s
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Figure 28.

 

 
Calcomp Plot of the Small-Amplitude

Oscillatory Shearing of Polyisobutylene

in Cetane at the FrequenCy of 0.0952 c/s

and Strain Amplitude of 0.5515.



 

  



Table 6.

harmonic

stress An

Bn

strain An

Bn

normal An

Bnm -

shear stress

1

71.816

29.917

0.0037

0.5515

8.8982

63.805

AO

shear strain Ao

normal stres

Strain Ampli

Shear Stress

stress ampli

amplitude ra

phase shift

dynamic Visc

imaginary pa

dynamic rigi

loss modulus

Normal Stres

normal stres

normal stres

phase shift

normal stres

normal stres

5 A0

tude

tude

tio

osity

rt

dity

S
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B10

Fourier Components and Material Functions

5 displacement

s amplitude

s coefficient:

Computer Program Input

interval spacing number

rhomberg jmax

maximum harmonic

cycle averaging number

delay/point

2 3 4 5 6

0.2139 0.8271 —0.0380 -0.5480 0.0433

—0.5894 0.6821 —0.1767 -0.l904 —0.2567

0.0028 -0.0004 0.0002 -0.0008 0.0003

-0.0052 0.0058 —0.0027 0.0006 -0.0020

—136.66 4.066 18.955 0.9066 —9.4814

27.305 -1.7252 —8.054 2.7868 -3.7458

= 0.9234 dynes/sq cm

= 8.1466

= 22.979 dynes/sq cm

= 0.5515

= 77.798 dynes/sq cm

= 141.07 dynes/sq cm

= 1.1692 radians

= 217.09 poise

= 92.18 poise

= 55.131 dynes/sq cm

= 192.84 dynes/sq cm

= 22.979 dynes/sq cm

= 139.33 dynes/sq cm

= -0.6936 radians

s displacement function = -0.0139 gm/cm

real part of = -0.0457 gm/cm

imaginary part of = —0.0156 gm/cm

= 257 torsion head range = 1.0

= 7 oscillatory range = 10.0

= 6 peak voltage = 0.4

= l cone angle = 0.5522°

= 109 frequency = 0.0952 c/s
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Figure 29. Calcomp Plot of the Small—Amplitude

Oscillatory Shearing of Polyisobutylene

in Cetane at the Frequency of 0.0952 c/s

and Strain Amplitude of 0.53613.
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Fourier Components and Material FunctionsTable 7 0

harmonic 1 2

stress An 85.692 —0.0056

Bn 50.322 -1.0898

strain An -0.0744 0.0023

Bn 0.5309 0.0017

normal An 25.510 -116.51

Bn 22.448 53.571

shear stress A0 = 5 0617

shear strain A0 = —0 0036

normal stress A0 =- 10.793

Strain Amplitude = 0.53613

Shear Stress

stress amplitude = 99.375

amplitude ratio = 185.36

phase shift = 1.1791

dynamic viscosity = 286.4

imaginary part = 118.30

dynamic rigidity = 111.67

loss modulus = 171.32

Normal Stress

normal stress displacement

normal stress amplitude

phase shift

normal stress

normal stress coefficient:

-0.2720

—3.6896

-4.9099

3

0.0000

0.0010

0.4003

dynes/sq cm

dynes/sq cm

dynes/sq

dynes/sq

radians

poise

poise

dyneS/sq

dynes/sq

displacement function

real part of

imaginary part of

Computer Program Input

interval spacing number

rhomberg jmax

maximum harmonic

cycle averaging number

delay/point

torsion head range

oscillatory range

4

-0.5486

2.5522

0.0003

0.0004

42.566

15.929

cm

CI'fl

cm

CH1

peak voltage

cone angle

frequency

5 6

0.6556

0.3557

-0.2151

0.1208

-0.0001

—0.0006

-0.0003

0.0000

—4.4282

0.6154

-8.4051

-13.l86

10.793 dynes/sq cm

128.23 dynes/sq cm

0.4307 radians

gm/cm

gm/cm

gm/cm

1.0

25.0

0.5

0.6522°

0.0952 c/sII
||

||
11

ll
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Figure 30.
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Calcomp Plot of the Small-Amplitude

Oscillatory Shearing of Polyisobutylene

in Cetane at the Frequency of 0.0952 c/s

and Strain Amplitude of 0.5340.





Table 8.

harmonic

stress An

Bn

strain An

Bn

normal An

Bn

shear stres

shear strain Ao

normal stre

Strain Ampl

Shear Stres

stress ampl

amplitude ratio

phase shift

dynamic viscosity

imaginary part

dynamic rig

loss modulu

Normal Stre

normal stre

normal stre

phase shift

normal stre

normal stre

B14
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Fourier Components and Material Functions

1 2

91.132 0.3810

62.900 —0.7124

—0.1776 0.0024

0.5036 -0.0032

17.772 —157.96

2.9049 —4.1664

5 A0 = 2.0103

= —0.0030

55 A0 = 123.38

itude = 0.5340

s

itude = 110.73

= 207.35

= 1.3057

= 334.54

= 90.822

idity = 54.326

5 = 200.11

ss

53 displacement

88

SS

SS

amplitude

Computer Program Input

interval spacing number

rhomberg jmax

maximum harmonic

cycle averaging number

delay/pOint

3 4

0.7035 —0.0528

1.1992 —0.3267

-0.0009 0.0003

0.0041 -0.0020

8.3752 12.123

—4.4100 40.225

dynes/sq cm

dynes/sq cm

dynes/sq cm

dynes/sq cm

radians

poise

poise

dynes/sq cm

dynes/sq cm

257
7

’
_
l

0
0
1

108

displacement function

coefficient: real part of

imaginary part of

torsion head range

oscillatory range

peak voltage

cone angle

frequency

5

0.1602

-0.1240

0.0003

0.0015

-1.2140

—5.2268

II
11

II
||

II 1.0

25.0

0.50

0.5522°

0.0952 c/s

6

-0.2194

-0.2399

0.0000

-0.0015

7.6909

-4.3855

123.38 dynes/sq cm

158.01 dynes/sq cm

1.1112 radians

gm/cm

gm/cm

gm/cm
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Figure 31.
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Calcomp Plot of the Small-Amplitude

Oscillatory Shearing of Polyisobutylene

in Cetane at the Frequency of 0.0952 c/s

and Strain Amplitude of 0.5309
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B16 ‘

Table 9, Fourier Components and Material Functions

harmonic 1 2 3 4 5 6

stress An 84.413 0.4778 0.1091 —0.3929 0.5825 —0.5014

Bn 43.781 -0.1251 —5.7583 0.2431 0.0462 0.3822

strain An 0.0107 0.0027 0.0005 0.0002 -0.0006 -0.0019

Bn 0.5308 0.0048 -0.0017 0.0014 -0.0027 0.0019

normal An 25.065 —98.127 —0.0835 37.733 -l.7162 -5.4318

Bn 16.622 91.675 —0.3135 —10.018 4.8512 -3.4076

shear stress A0 = 0.1636 dynes/sq cm

shear strain A0 = 0.0037

normal stress A0 = 16.278 dynes/sq cm

Strain Amplitude = 0.5309

Shear Stress

stress amplitude = 95.091 dynes/sq cm

amplitude ratio = 179.11 dynes/sq cm

phase shift = 1.0722 radians

dynamic viscosity = 262.99 poise

imaginary part = 143.19 poise

dynamic rigidity = 85.649 dynes/sq cm

loss modulus = 157.30 dynes/sq cm

Normal Stress

normal stress displacement 16.278 dynes/sq cm

134.29 dynes/sq cm

-0.4298 radians

normal stress

phase shift

amplitude

normal stress displacement function gm/cm

normal stress coefficient: real part of gm/cm

imaginary part of gm/cm

Computer Program Input

interval spacing number = 257 torsion head range = 1.0

rhomberg jmax = 7 oscillatory range = 25.0

maximum harmonic = 6 peak voltage = 0.50

cycle averaging number = 10 cone angle = 1.533°

delay/point = 108 frequency = 0.0952 c/s
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Figure 32. Calcomp Plot of the Small—Amplitude

Oscillatory Shearing of Polyisobutylene

in Cetane at the Frequencey of 0.0952 c/s

and Strain Amplitude of 0.5097
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Table 10. Fourier Components and Material Functions

harmonic 1 2 3 4 5 6

stress An 66.746 0.1938 0.6951 -0.1101 -0.3502 —0.1118

Bn 30.660 —0.7381 0.7541 —0.2300 -0.2856 -0.2260

strain An -0.0112 0.0029 -0.0004 0.0005 -0.0006 -0.0002

Bn 0.5096 -0.0054 0.0059 —0.0026 0.0007 -0.0021

normal An —7.039 —157.64 5.0370 24.693 -2.679 -2.1033

Bn —143.52 63.296 -13.979 5.274 —8.724 2.864

shear stress Ao =-1.l761 dynes/sq cm

shear strain A0 = 0.0069

normal stress A0 = 44.082 dynes/sq cm

Strain Amplitude = 0.5097

Shear Stress

stress amplitude = 73.451 dynes/sq cm

amplitude ratio = 144.11 dynes/sq cm

phase shift = 1.1622 radians

dynamic viscosity = 221.07 poise

imaginary part = 95.721 poise

dynamic rigidity = 57.256 dynes/sq cm

loss modulus = 132.24 dynes/sq cm

Normal Stress

44.082 dynes/sq cm

169.88 dynes/sq cm

-O.5725 radians

-0.0312 gm/cm

-0.0022 gm/cm

—0.0441 gm/cm

normal stress displacement

normal stress amplitude

phase shift

normal stress displacement function

normal stress coefficient: real part of

imaginary part of II
II

II
II

II
II

Computer Program Input

interval spacing number = 257 torsion head range = 1.0

rhomberg jmax = 7 oscillatory range = 10.0

maximum harmonic = 6 peak voltage = 0.4

cycle averaging number = l cone angle = 0.5522°

delay/point = 109 frequency = 0.0952 c/s
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Figure 33. Calcomp Plot of the Small—Amplitude

Oscillatory Shearing of Polyisobutylene

in Cetane at the Frequency of 0.0952 c/s

and Strain Amplitude of 0.5035



 



Table 11.

harmonic

stress An

Bn

strain An

Bn

normal An

Bn

shear stres

shear strain Ao

normal stre

Strain Ampl

Shear Stres

stress ampl

amplitude ratio

phase shift

dynamic viscosity

imaginary part

dynamic rig

loss modulu

Normal Stre

normal stre

normal stre

phase shift

normal stre

normal stre
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Fourier Components and Material Functions

Computer Program Input

interval spacing number

rhomberg jmax

maximum harmonic

cycle averaging number

delay/point

1 2 3 4 5 6

-0.0053 0.0023 0.0004 0.0002 -0.0009 0.0004

0.5034 —0.0050 0.0047 -0.0024 0.0008 —0.0015

21.315 —133.53 -1.8270 23.904 -2.0541 -3.5800

-104.66 38.570 -5.0959 —4.8236 0.2457 0.6979

5 A0 = dynes/sq cm

= 0.0072

85 A0 = -40.271 dynes/sq cm

itude = 0.5035

s

itude = dynes/sq cm

= dynes/sq cm

= radians

= poise

= poise

idity = dynes/sq cm

s = dynes/sq cm

ss

55 displacement = 40.271 dynes/sq cm

58 amplitude = 138.99 dynes/sq cm

= -0.6342 radians

ss displacement function = 0.02725 gm/cm

ss coefficient: real part of = -0.0014 gm/cm

imaginary part of = -0.0455 gm/cm

= 257 torsion head range = 1.0

= 7 oscillatory range = 10.0

= 6 peak voltage = 0.4

= 1 cone angle = 0.5522°

= 109 frequency = 0.0952 c/s
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Figure 34. Calcomp Plot of the Oscillatory Shearing

of Polyisobutylene in Cetane at the Frequency

of 0.38 c/s and Strain Amplitude of 0.5488
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Table 12. Fourier Components and Material Functions

harmonic 1 2 3 4 5 6

stress An 52.184 35.040 43.115 2.7908 14.493 2.4823

Bn 1136.6 75.346 52.487 17.300 -0.7683 5.1879

strain An —0.0274 0.00056 0.0014 0.0003 0.0008 0.0003

Bn 0.5481 0.0061 0.0020 0.0001 -0.0001 0.0001

normal An 42.898 -274.89 -10.521 31.629 0.5354 8.898

Bn 36.525 -63.680 5.7919 19.427 4.7852 1.8845

shear stress Ao

shear strain Ao

normal stress Ao

30.333 dynes/sq cm

0.0012

50.905 dynes/sq cm

Strain Amplitude — 0.5488

Shear Stress

stress amplitude = 1137.8 dynes/sq cm

amplitude ratio = 2073.2 dynes/sq cm

phase shift = 0.0958 radians

dynamic viscosity = 83.040 poise

imaginary part = 864.33 poise

dynamic rigidity = 2063.7 dynes/sq cm

loss modulus = 198.31 dynes/sq cm

Normal Stress

50.905 dynes/sq cm

282.17 dynes/sq cm

1.3931 radians

normal stress displacement

normal stress amplitude

phase shift

normal stress displacement function gm/cm

normal stress coefficient: real part of

imaginary part of = gm/cm

Computer Program Input

interval spacing number = 129 torsion head range = 25.0

rhomberg jmax = 6 oscillatory range = 25.0

maximum harmonic = 6 peak voltage = 0.5

cycle averaging number = 10 cone angle = 1.533°

delay/point = 36 frequency = 0.38 c/s
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Figure 35. Calcomp Plot of the Oscillatory Shearing

of Polyisobutylene in Cetane at the Frequency

of 0.38 c/s and Strain Amplitude of 0.5390



 



Table 13.

harmonic

stress An

Bn

strain An -

Bn

normal An

Bn

shear stress

shear strain

normal stres

Strain Ampli

Shear Stress

stress ampli

amplitude ra

phase shift

dynamic visc

imaginary pa

1

307.13

538.46

0.0177

0.5387

A0

A0

5 A0

1|tude

tude

tio

osity

rt

dynamic rigidity

loss modulus

Normal Stres

normal stres

normal stres

phase shift

normal stres

normal stres

S

F

0
1
5
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ourier Components and Material Functions

2

47.720

20.420

0.0052

0.0048

3 4

46.307 12.62

—17.415 -2.020

0.0013 0.000

-0.0011 0.000

.9025 dynes/sq cm

.0004

dynes/sq cm

.5390

619.89

1150.1

0.5512

252.28

410.35

979.75

602.32

s displacement

s amplitude

s displacement function

5 coefficient:

Computer Program Input

interval spacing number

rhomberg jmax

maximum harmonic

cycle averaging number

delay/point II
II

II
II

II

0
\

real part of

imaginary part of

dynes/sq cm

dynes/sq cm

radians

poise

poise

dynes/sq cm

dynes/sq cm

II
I!

II
II

II
II

torsion head

oscillatory r

peak voltage

cone angle

frequency

5 6

7 -2.4911 2.5900

3 -13.691 -3.9300

1 0.0002 —0.0003

8 -0.0012 0.0010

dynes/sq cm

dynes/sq cm

radians

gm/cm

gm/cm

gm/Cm

range = 25.0

ange = 25.0

= 0.5

= 1.533°

= 0.38 c/s
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Figure 36. Calcomp Plot of the Oscillatory Shearing

of Polyisobutylene in Cetane at the Frequency

of 0.38 c/s and Strain Amplitude of 0.5200



 

 



Table 14.

harmonic

stress An

Bn

strain An

Bn

normal An

Bn

shear stress

1

301.59

397.81

0.0387

0.5186

42.000

-60.32

Ao

shear strain A0 =

normal stres

Strain Ampli

Shear Stress

stress ampli

amplitude ra

phase shift

5 A0

tude =

tude

tio

dynamic viscosity

imaginary part

dynamic rigidity

loss modulus

Normal Stres

normal stres

normal stres

phase shift

normal stres

normal stres

S

s disp

s ampl

s coef
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Fourier Components and Material Functions

Computer Program Input

interval spacing number

rhomberg jmax

maximum harmonic

cycle averaging number

delay/point

2 3 4 5 6

5.8643 0.3053 0.6018 0.2710 0.1732

5.7880 0.2840 2.7608 —2.8230 1.2150

0.0036 0.0015 0.0009 —0.0011 —0.0002

0.0090 -0.034 0.0030 -0.0027 0.0023

—l79.34 -11.019 34.310 5.638 -5.832

8 48.406 0.7473 —8.359 1.426 —2.087

-5.997 dynes/sq cm

0.0066

56.200 dynes/sq cm

0.5200

= 499.21 dynes/sq cm

= 960.02 dynes/sq cm

= 0.5742 radians

= 218.39 poise

= 337.60 poise

= 806.05 dynes/sq cm

= 521.45 dynes/sq cm

lacement = 56.200 dynes/sq cm

itude = 185.76 dynes/sq cm

= —0.7281 radians

s displacement function = gm/cm

ficient: real part of = gm/cm

imaginary part of = gm/cm

= 257 torsion head range = 2.5

= 7 oscillatory range = 10.0

= 6 peak voltage = 0.4

= 1 cone angle = 0.5522°

= 109 frequency = 0.38 c/s
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Figure 37. Calcomp Plot of the Oscillatory Shearing

of Polyisobutylene Cetane at the Frequency

of 0.38 c/s and Strain Amplitude of 0.5090
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Table 15. Fourier Components and Material Functions

harmonic 1 2 3 4 5 6

stress An 129.50 1.7977 0.4191 0.2459 0.1962 0.0555

Bn 153.56 2.1543 0.1778 1.0867 -1.2885 0.5033

strain An 0.04996 0.0025 0.0008 0.0007 -0.0006 0.0000

Bn 0.5065 0.0085 -0.0029 0.0035 —0.0035 0.0022

normal An 39.028 -196.71 -11.573 37.630 4.9411 -5.9970

Bn -62.249 59.193 3.4550 -16.585 2.4960 2.6140

shear stress Ao =—3.0753 dynes/sq cm

shear strain A0 = 0.0078

normal stress A0 = 30.951 dynes/sq cm

Strain Amplitude = 0.5090

Shear Stress

stress amplitude = 200.87 dynes/sq cm

amplitude ratio = 394.64 dynes/sq cm

phase shift = 0.6023 radians

dynamic viscosity = 93.641 poise

imaginary part = 136.20 poise

dynamic rigidity = 325.20 dynes/sq cm

loss modulus = 223.58 dynes/sq cm

Normal Stress

30.95 dynes/sq cm

205.42 dynes/sq cm

-0.7376 radians

normal stress displacement

normal stress amplitude

phase shift

||
II

II
II

II
II

normal stress displacement function gm/cm

normal stress coefficient: real part of gm/cm

imaginary part of gm/cm

Computer Program Input

interval spacing number = 257 torsion head range = 2.5

rhomberg jmax = 7 oscillatory range = 10.0

maximum harmonic = 6 peak voltage = 0.4

cycle averaging number = l cone angle = 0.5522°

delay/point = 37 frequency = 0.38 c/s
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Figure 38. Calcomp Plot of the Large—Amplitude

OsCillatory Shearing of Polyisobutylene

in Cetane at the Frequency of 0.6 c/s

and Strain Amplitude of 3.4123



 



Table 16.

harmonic

stress An

Bn

strain An

Bn

normal An

Bn

shear stres

shear strai

normal stre

Strain Ampl

Shear Stres

stress ampl

amplitude r

phase shift

dynamic vis

imaginary p

dynamic rig

loss modulu

 

1

507.83

1076.86

-0.1094

3.4106

126.59

-180.15

5 A0

n A0

55 A0

itude =

s

itude

atio

cosity

art

idity

s

SSNormal Stre

normal stre

normal stre

phase shift

normal stre

normal stre
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Fourier Components and Material Functions

3.

0.

14

3.

2

17.971

13.226

0.0476

0.0393

338.44

16.670

3 4 5

12.789 2.6355 3.7482

30.436 2.8214 1.6487

0.0122 -0.0041 0.0004

-0.0086 0.0107 —0.0154

4.0180 49.779 1.1075

-16.688 -5.6510 —9.1564

8435 dynes/sq cm

0221

05.3 dynes/sq cm

4123

1190.6

348.91

0.4727

42.140

82.402

310.65

171.80

55 displacement

ss amplitude

dynes/sq

dynes/sq

radians

poise

poise

dynes/sq

dynes/sq

ss displacement function

55 coefficient: real part of

imaginary part of

Computer Program Input

interval spacing number

rhomberg jmax

maximum harmonic

cycle averaging number

delay/point

129

II
II

II
II

II

1
0
0
1
m
m

torsion head range

oscillatory range

cm

cm

cm

Cm

peak voltage

cone angle

frequency

6

-0.8826

2.8480

—0.0034

0.0113

-l3.858

-3.9132

1405.4 dynes/sq cm

338.85 dynes/sq cm

0.7287 radians

gm/cm

gm/cm

gm/cm

035522°

0.6 c/sII
II

1|
II

II

O a
s
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Figure 39.

 
Calcomp Plot of the Large-Amplitude

Oscillatory Shearing of Polyisobutylene

in Cetane at the Frequency of 0.6 c/s

and Strain Amplitude of 3.3088



 



Table 17.

harmonic

stress An 15

En 65

strain An -0.

Bn 3.

normal An 14

En ~22

shear stress Ao

shear strain Ao

normal stress Ao

Strain Amplitu

Shear Stress

stress amplitu

amplitude rati
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Fourier Components and Material Functions

phase shift

dynamic viscosity

imaginary part

dynamic rigidity

loss modulus

Normal Stress

normal stress

normal stress

phase shift

normal stress

normal stress

Computer Program Input

interval spaci

rhomberg jmax

maximum harmon

cycle averagin

delay/point

l 2 3 4 5 6

71.01 24.476 69.183 —3.8817 -8.7468 5.8667

2.42 —14.578 -58.537 -39.804 —17.486 —3.8251

0331 0.0492 0.0093 —0.0077 0.0015 0.0036

3086 0.0356 -0.0086 0.0057 —0.0193 0.0050

0.32 —82.240 7.7130 —8.6480 0.5716 4.8585

.332 -158.18 2.7542 19.682 1.6368 0.1037

= -29.051 dynes/sq cm

= 0.01034

= 1149.31 dynes/sq cm

de = 3.3088

de = 1701.09 dynes/sq cm

0 = 514.11 dynes/sq cm

= 1.1872 radians

= 126.46 poise

= 51.038 poise

= 192.41 dynes/sq cm

= 476.75 dynes/sq cm

displacement = 1149.30 dynes/sq cm

amplitude = 178.35 dynes/sq cm

= 0.2561 radians

displacement function = gm/cm

coefficient: real part of = gm/cm

imaginary part of = gm/cm

ng number = 129 torsion head range = 10.0

= 6 oscillatory range = 25.0

ic = 6 peak voltage = 0.6

g number = 5 cone angle = 0.5522°

= 9 frequency = 0.6 c/s
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Figure 40. Calcomp Plot of the Large-Amplitude

Oscillatory Shearing of Polyisobutylene

in Cetane at the Frequency of 0.6 c/s and

Strain Amplitude of 3.3048 '



 



Table 18.

harmonic

stress An 1536.64

Bn 71.487

strain An —0.1747

Bn 3.3001

normal An 135.74

Bn 4.7617

shear stress Ao

shear strain Ao

normal stress Ao

Strain Amplitude

Shear Stress

stress amplitude

amplitude ratio

phase shift

dynamic viscosity

imaginary part

dynamic rigidity

loss modulus

Normal Stress

normal stress

normal stress

phase shift

normal stress

normal stress

II
II

II

B34

MODIFIED WRG

Fourier Components

2 3

24.313 74.615

-12.509 -50.855

0.0448 0.01316 -0.0068

0.00180.0419 —0.0099

-81.452 9.1036

-216.14 5.0297

-29.297 dynes/sq cm

0.0128

1198.16 dynes/sq cm

3.3048

= 512.82 dynes/sq

= 1.1883 radians

= 126.20 poise

= 50.771 poise

= 191.43 dynes/sq

= 475.77 dynes/sq

displacement

amplitude

displacement function

coefficient:

Computer Program Input

interval spacing number

rhomberg jmax

maximum harmonic

cycle averaging number

delay/point II
II

II
II

II

o
L
n
o
x
m

1694.79 dynes/sq

real part of

imaginary part of II
II

II
II

II
II

4

-3.0491

-3.5270

—11.949

19.390

cm

cm

cm

and Material Functions

5 6

-8.0004 4.9087

—20.359 -3.3800

-0.0007 0.0037

-0.0249 0.0086

0.7236 2.7453

2.6911 -0.4144

1198.15 dynes/sq cm

230.98 dynes/sq cm

0.2331 radians

129 torsion head range

oscillatory range

peak voltage

cone angle

frequency

gm/cm

gm/cm

gm/cm

10.0

25.0

0.6

0.5522°

0.6 c/sII
II

II
II

II
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Figure 41.

 
Calcomp Plot of the Large—Amplitude

Oscillatory Shearing of Polyisobutylene

in Cetane at the Frequency of 0.6 c/s

and Strain Amplitude of 2.160





Table 19.

harmonic 1

stress An 378.8

Bn 815.2

strain An 0.042

Bn 2.167

normal An 78.97

Bn -213.1

shear stress Ao

shear strain Ao

normal stress Ao

Strain Amplitude

Shear Stress

stress amplitude

amplitude ratio

phase shift

dynamic viscosity

imaginary part

dynamic rigidity

loss modulus

Normal Stress

7

7

9

5

5

4

II
II

II

B36

MODIFIED WRG

Fourier Components and Material Functions

2 3

11.652 5.3933

10.321 13.675

0.0252 0.0051

0.0248 -0.0061

-205.08 —2.311

41.551 -13.143 -

5.0905 dynes/sq cm

normal stress displacement

normal stress amplitude

phase shift

4 5 6

1.3597 0.4375 0.6955

3.0624 -0.6369 1.6052

0.0027 -0.0025 0.0025

0.0086 -0.0077 0.0047

17.973 9.5153 -4.5368

11.832 -0.8590 3.3143

0.0274

398.86 dynes/sq cm

2.160

= 898.99 dynes/sq cm

= 416.20 dynes/sq cm

= 0.4153 radians

= 44.4 poise

= 101.01 poise

= 379.44 dynes/sq cm

= 167.93 dynes/sq cm

398.86

209.25

—0.7051

normal stress displacement function

normal stress coefficient: real part of

imaginary part of

Computer Program Input

interval spacing number

rhomberg jmax

maximum harmonic

cycle averaging number

delay/point

cone ang

II
II

II
II

II

\
D
U
’
l
m
C
h

129 torsion head range

oscillatory range

peak voltage

1e

frequency II
II

II
11

||

dynes/sq cm

dynes/sq cm

radians

gm/cm

gm/cm

gm/cm

10.0

25.0

0.4

0.5522°

0.6 c/s



 



B37

MODIFIED WRG

 

  

s
h
e
a
r

s
t
r
a
i
n

s
h
e
a
r

s
t
r
e
s
s

 

n
o
r
m
a
l

s
t
r
e
s
s

./2 
Figure 42. Calcomp Plot of the Large-Amplitude

Oscillatory Shearing of Polyisobutylene

in Cetane at the Frequency of 0.6 c/s

and Strain Amplitude of 2.1363



 



Table 20.

harmonic

stress An

Bn

strain An

Bn

normal An

Bn

shear stres

shear strain Ao

normal stre

Strain Ampl

Shear Stres

stress ampl

amplitude ratio

phase shift

dynamic viscosity

imaginary part

dynamic rig

loss modulus

B38

MODIFIED WRG

Fourier Components and Material Functions

1 2

1153.93 17.497

555.78 -7.825

-0.0101 0.0224

2.1363 0.0198

106.11 —69.034

—27.803 —120.26

5 A0 =—21.688

= 0.02514

55 A0 = 626.65

itude = 2.1363

5

1280.8

599.54

1.1267

143.61

68.327

257.60

541.39

itude

idity

Normal Stress

normal stre

normal stre

phase shift

normal stre

normal stre

ss displacement

ss amplitude

dynes/sq cm

dynes/sq cm

3

40.838

—l9.004

0.0075

-0.0050

2.4597

—1.9765

4

2.9242

1.2127

0.0013

0.0079

-1.2699

12.633

dynes/sq cm

dynes/sq cm

radians

poise

poise

dynes/sq cm

dynes/sq cm

55 displacement function

55 coefficient: real part of

imaginary part of

Computer Program Input 

interval spacing number

rhomberg jmax

maximum harmonic

cycle averaging number

delay/point

12 9

\
O
U
’
I
O
N
O
N

torsion head range

oscillatory range

peak voltage

cone angle

frequency

5

—3.2

—4.7

-0.0

-0.0

1.0

0.5

626.651

138.67

0.2653

II
II

II
II

II

6

570 4.9478

481 0.5273

005 0.0034

065 0.0062

045 -0.2438

818 -2.0195

dynes/sq cm

dynes/sq cm

radians

gm/cm

gm/cm

gm/cm
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Figure 43. Calcomp Plot of the Large—Amplitude

Oscillatory Shearing of Polysobutylene

in Cetane at the Frequency of 0.6 c/s

and Strain Amplitude of 1.3168



 



Table 21. Fourier Components and Material Functions

harmonic 1 2 3 4 5 6

stress An 715.40 11.649 17.281 0.6266 —l.7119 —0.3267

Bn 493.27 1.0388 3.3791 2.6989 —2.7457 1.9895

strain An -0.0677 0.0113 0.0006 —0.0016 -0.0002 -0.0012

Bn 1.3150 0.0163 —0.0020 0.0046 —0.0043 0.0037

normal An 77.058 -31.903 2.5572 —4.2238 —1.2758 3.7524

Bn —10.780 -67.866 —4.3538 12.301 -1.1712 —0.0144

shear stress A0 = 1.1833 dynes/sq cm

shear strain Ao =—0.0062

normal stress A0 = 341.65 dynes/sq cm

Strain Amplitude = 1.3168

Shear Stress

stress amplitude = 868.98 dynes/sq cm

amplitude ratio = 659.92 dynes/sq cm

phase shift = 1.0186 radians

dynamic viscosity = 149.03 poise

imaginary part = 91.823 poise

dynamic rigidity = 346.16 dynes/sq cm

loss modulus = 660.77 dynes/sq cm

Normal Stress

normal stress displacement = 341.65 dynes/sq cm

normal stress amplitude = 74.991 dynes/sq cm

phase shift = 0.2712 radians

normal stress displacement function = gm/cm

normal stress coefficient: real part of = gm/cm

imaginary part of = gm/cm

Computer Program Input

interval spacing number = 129 torsion head range = 2.5

rhomberg jmax = 6 oscillatory range = 25

maximum harmonic = 6 peak voltage = 0.4

cycle averaging number = 5 cone angle = 0.5522°

delay/point = 9 frequency = 0.600 c/s
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Figure 44. Calcomp Plot of the Large—Amplitude

Oscillatory Shearing of Polyisobutylene

in Cetane at the Frequency of 0.6 c/s

and Strain Amplitude of 1.2982
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Table 22.

harmonic

stress An

Bn

strain An

Bn

normal An

Bn —

shear stress

shear strain Ao

normal stress Ao

Strain Ampli

Shear Stress

stress ampli

1

804.60

300.40

0.2244

1.2787

74.449

24.458

A0

tude =

tude

amplitude ratio

phase shift

dynamic viscosity

imaginary part

dynamic rigidity

loss modulus

Normal Stres

normal stres

normal stres

phase shift

normal stres

normal stres

S

B43

MODIFIED WRG

Fourier Components and Material Functions

2

8.7434

~5.l876

0.0121

0.0080

—61.236

~46.387

25.100

0.3038

263.20

1.2982

858.85

661.57

1.0398

151.32

570.47

335.02

88.865II
II

II
II

II
II

II

s displacement

s amplitude

3

16.160

~8.082

0.0039

-0.0012

0.0109

-5.6975

4 5 6

2.5677 -1.8406 2.0686

-0.8924 -l.94l3 -l.2144

0.0016 -0.0008 0.0015

0.0032 -0.0043 0.00181

4.5209 -0.7214 0.02536

13.330 0.4320 —0.2122

dynes/sq cm

dynes/sq cm

dynes

dynes

/sq cm

/sq cm

radians

poise

poise

dynes

dynes

s displacement function

5 coefficient:

Computer Program Input

interval spacing number

rhomberg jmax

maximum harmonic

cycle averaging number

delay/point

12 9

\
D
U
‘
1
0
‘
1
0
'
1

real part of

imaginary part of

torsion

/sq cm

/sq cm

263.20

76.821

0.2876

||
II

I!
II

II
I!

head range

oscillatory range

peak vo1tage

cone angle

frequency

dynes/sq cm

dynes/sq cm

radians

gm/cm

gm/cm

gm/Cm

10.0

25.0

0.4

0.5522°

0.6 c/s
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Figure 45. Calcomp Plot of the Large—Amplitude

Oscillatory Shearing of Polyisobutylene

in Cetane at the Frequency of 0.6 c/s

and Strain Amplitude of 1.2973



 



Table 23.

harmonic

stress An

Bn

strain An

Bn

normal An

shear stres

shear strai

normal stre

Strain Ampl

Shear Stres

stress ampl

amplitude r

phase shift

dynamic vis

1

190.17

572.01

—0.0311

1.2969

62.847

-115.92

5 A0

n Ao

ss Ao

itude =

s

itude

atio

cosity

imaginary part

dynamic rig

loss modulu

idity

5

Normal Stre

normal stre

normal stre

phase shift

normal stre

normal stre

SS

B45

MODIFIED WRG

Fourier Components

5.

0.

34

1.

II
||

II
II

II
II

II

ss displacement

ss amplitude

55 displacement function

55 coefficient:

Computer Program Input

interval spacing number

rhomberg jmax

maximum harmonic

cycle averaging number

delay/point

and Material Functions

2 3 ,4 5 6

5.013 -0.8333 0.3638 -0.6835 0.5678

8.056 4.5456 2.4911 -0.4537 1.3098

0.0117 0.0009 0.0003 -0.0020 -0.0002

0.0157 -0.0023 0.0047 -0.0041 0.0043

109.16 —7.8308 33.580 3.7231 -12.282

10.086 -3.0701 -8.4400 1.5108 0.0467

9346 dynes/sq cm

0019

6.01 dynes/sq cm

2973

602.797 dynes/sq cm

464.66 dynes/sq cm

0.3450 radians

41.680 poise

115.99 poise

437.30 dynes/sq cm

157.14 dynes/sq cm

= 346.01 dynes/sq cm

= 109.63 dynes/sq cm

= -0.7153 radians

= gm/cm

real part of = gm/cm

imaginary part of = gm/cm

= 129 torsion head range = 10.0

= 6 oscillatory range = 25.0

= 6 peak voltage = 0.4

= 5 cone angle = 0.5522°

= 9 frequency = 0.6 c/s
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Figure 46.

 
Calcomp Plot of the Large—Amplitude

Oscillatory Shearing of Polyisobutylene

in Cetane at the Frequency of 0.6 c/s

and Strain Amplitude of 1.2678



 



Table 24.

harmonic 1

stress An

Bn

strain An 0.023

Bn 1.267

normal An 63.34

Bn -125.7

shear stress Ao

shear strain Ao

normal stress Ao

Strain Amplitude

Shear Stress

stress amplitude

amplitude ratio

phase shift

dynamic viscosity

imaginary part

dynamic rigidity

loss modulus

Normal Stress

4

6

2

8

B47

MODIFIED WRG

Fourier

2

0.0099

0.0193

-92.228

19.720

-0.0011

446.51

1.2678

normal stress displacement

normal stress amplitude

phase shift

Components and Material Functions

3 4 5

0.0018 0.0005 —0.0004

—0.0074 0.0066 —0.0039

-8.9380 24.967 2.3603

0.2509 -12.281 -2.5140

dynes/sq cm

dynes/sq cm

dynes/sq

dynes/sq

radians

poise

poise

dynes/sq

dynes/sq

normal stress displacement function

normal stress coefficient:

Computer Program Input

interval spacing number

rhomberg jmax

maximum harmonic

cycle averaging number

delay/point

1

real part of

imaginary part of

29

\
O
U
’
I
O
N
O
N

torsion head range

oscillatory range

cm

Cm

cm

peak voltage

cone angle

frequency

6

—0.0005

0.0045

-6.9247

3.0130

446.51 dynes/sq cm

94.313 dynes/sq cm

0.6986 radians

gm/cm

gm/cm

gm/cm

||
II

II
II

ll

0 4
:
.



 



 

Figure 47. Calcomp Plot of the oscillatory Shearing

of Polyisobutylene in Cetane at the Frequency

of 0.6 c/s and Strain Amplitude of 0.5194
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B50

Table 25. Fourier Components and Material Functions

harmonic 1 2 3 4 5 6

stress An 49.375 0.9597 -0.4332 —0.0591 -0.0247 0.1878

Bn 251.45 1.3207 1.5757 0.5509 0.6856 0.2675

strain An —0.0269 0.0025 0.0009 —0.0002 —0.0004 0.0001

Bn 0.5189 0.0029 0.0018 0.0014 —0.0004 0.0001

normal An 49.031 -213.70 -6.166 45.695 3.2922 -7.764

Bn -63.090 2.532 —8.618 5.976 0.3984 -1.326

shear stress A0 = 0.2002 dynes/sq cm

shear strain A0 = 0.0095

normal stress A0 = 154.20 dynes/sq cm

Strain Amplitude = 0.5194

Shear Stress

stress amplitude = 256.25 dynes/sq cm

amplitude ratio = 493.17 dynes/sq cm

phase shift = 0.2458 radians '

dynamic viscosity = 31.828 poise

imaginary part = 126.89 poise

dynamic rigidity = 478.37 dynes/sq cm

loss modulus = 119.99 dynes/sq cm

Normal Stress

normal stress displacement = 154.20 dynes/sq cm

normal stress amplitude = 213.72 dynes/sq cm

phase shift = -0.7277 radians

normal stress displacement function = gm/cm

normal stress coefficient: real part of = gm/cm

imaginary part of = gm/cm

Computer Program Input

interval spacing number = 257 torsion head range = 2.5

rhomberg jmax = 7 oscillatory range = 10.0

maximum harmonic = 6 peak voltage = 0.4

cycle averaging number = 1 cone angle = 0.5522°

delay/point = 9 frequency = 0.6 c/s



 



 

Figure 48a. Calcomp Plot of the Oscillatory Shearing

of Polyisobutylene in Cetane at the

Frequency of 0.6 C/S and Strain Amplitude

of 0.5139 for Shear Stress Response



 



Figure 48b.

 

Calcomp Plot of 0xcillatory Shearing

of Polyisobutylene in Cetane at the

Frequency of 0.6 c/s and Strain Ampli-

tude of 0.5139 for Normal Stress Response
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Figure 49. Calcomp Plot of Oscillatory Shearing

of Polyisobutylene in Cetane at the

Frequency of 0.6 c/s and Strain Ampli-

tude of 0.5128



 



 

 
 
 

n
o
r
m
a
l

s
t
r
e
s
s

_
_

.
\

 

 



 



Table 26.

harmonic 1

stress An 456.8

Bn 723.6

strain An 0.094

Bn 0.505

normal An -8.502

Bn 72.20

shear stress Ao

shear strain Ao

normal stress Ao

Strain Amplitude

Shear Stress

stress amplitude

amplitude ratio

phase shift

dynamic viscosity

imaginary part

dynamic rigidity

loss modulus

Normal Stress

8
7

5

1

7
7

II
II

II

B57

MODIFIED WRG

Fourier Components and Material Functions

2

37.668

35.052

0.0067

0.0080

-169.90

317.00

3 4 5 6

46.969 5.7976 1.4019 1.1561

-8.677 7.0847 —5.1237 2.8878

0.0013 0.0010 —0.0001 0.0001

-0.0041 0.0034 -0.0031 0.0024

-8.3708 —6.9140 -2.0253 -0.4645

23.056 18.450 -2.6840 1.4916

-108.91 dynes/sq cm

-0.0020

91.539 dynes/sq cm

0.5139

855.83

1665.5

0.3783

163.15

410.55

1547.8

615.14II
II

II
II

II
II

II

normal stress displacement

normal stress amplitude

phase shift

normal stress displacement function

normal stress coefficient:

Computer Program Input

interval spacing number

rhomberg jmax

maximum harmonic

cycle averaging number

delay/point II
II

II
II

II

0

real part of

imaginary part of

dynes/sq cm

dynes/sq cm

radians

poise

poise

dynes/sq cm

dynes/sq cm

359.66

0.0611

II
II

II
||

||
||

torsion head range

oscillatory range

peak voltage

cone angle

frequency

3

91.539 dynes/sq cm

dynes/sq cm

radians

gm/cm

gm/cm

gm/cm

100.0

25.0

0.5

1.533°

0.6 c/s
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Table 27.

harmonic

stress An

Bn

strain An

Bn

normal An

Bn

shear stress

shear strain

normal stres

Strain Ampli

Shear Stress

stress ampli

amplitude ra

phase shift

dynamic viscosity

imaginary pa

dynamic rigidity

loss modulus

Normal Stres

normal stres

normal stres

phase shift

normal stres

normal stres

normal stres

Computer Program Input

interval spacing number

B59

MODIFIED WRG

Fourier Components and Material Functions

1

368.83 3

636.51 2

0.0974 0

0.5035 0

24.698 -1

68.525 -3

A0 = —4.

A0 = -O.

5 A0 = —13

tude = 0.

tude

tio

rt

II
II

II
II

||
II

II

S

2

1.943

3.316

.0061

.0079

07.86

44.54

3 4 5

27.865 5.1873 0.2399

-38.805 1.4524 -5.3167

0.0012 0.0006 0.0004

-0.0040 0.0030 -0.0028

-8.1107 —2.0691 -2.5524

-18.385 20.494 -2.9447

7462 dyneS/sq cm

0019

1.75 dynes/sq cm

5128

735.65

1434.6

0.3341

124.79

359.50

1355.3

470.45

s displacement

s amplitude

5 function

5 displacement function

5 coeffici

rhomberg jmax

maximum harmonic

cycle averag

delay/point

ing number

dynes/sq cm

dynes/sq cm

radians

poise

poise

dynes/sq cm

dynes/sq cm

= —131.75

= 361.03

= 0.0394

ent: real part of =

imaginary part of =
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torsion head range

oscillatory range

peak voltage

cone angle

frequency

dynes

dynes

6

0.6240

1.3730

0.0005

0.0020

-0.0677

2.0509

/sq cm

/sq cm

radians

gm/cm

gm/cm

gm/cm

gm/cm

100.0

25.0

0.5

1.53
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