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ABSTRACT

MATERIAL FUNCTIONS FROM LARGE-AMPLITUDE
OSCILLATORY SHEARING OF POLYISOBUTYLENE IN CETANE BY
A MODIFIED R-16 WEISSENBERG RHEOGONIOMETER

By

David James Henry Cross

Early investigators who used the unmodified Weissenberg
Rheogoniometer (WRG) encountered some inadequacies in the
machine design which permits the cone-plate gap to open. The
enhancements are the replacement of the bending cantilever
beam by a stationary piezotron load cell and the use of
weights to prevent the dove-tail slide and torsion-head
assembly from moving. The objective is to collect material
functions from oscillatory shearing in the nonlinear region
of polyisobutylene in cetane by using a modified R-16 WRG.
There is a considerable amount of scatter in the data
presumably due to variations in room temperature; nevertheless,
the following trends are apparent. For nonlinear behavior
the dynamic storage moduli and loss moduli are related to the
odd components of the Fourier series for shear stress. The
frequency response over a range of strain amplitudes shows that
the storage modulus increases with the increase in frequency.
At each test frequency, the strain response curve shows that
the storage modulus decreases linearly with the increase in
shear strain. The loss modulus is a function of frequency

only.
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CHAPTER I
INTRODUCTION

1.1 Background on Materials

Two extreme laws for the behavior of materials are
Newton's law of constant viscosity and Hooke's law of
constant elasticity. For example, water at constant temper-
ature and pressure obeys Newton's law, while rubber obeys
Hooke's law quite accurately to large deformations. Yet,
materials which obey one of these two laws are regarded as
common everyday materials, and they pose no problem to the
engineer. Modern engineering is increasingly involved in the
processing of non-Newtonian fluids such as suspensions,
polymer solutions and melts which behave much differently
than water or rubber does. Latexes, polymer solutions and
melts are examples of pseudoplastic behavior. A contrasting
behavior is dilatant fluids which are particulate dispersion
such as concentrated suspensions, slurries, and resins in
plasticizer. Pseudoplastic behavior shows a decrease in
viscosity with shear rate, while dilatant behavior shows an
increase in viscosity with shear rate.

The shear rate is the instantaneous rate of strain. A
simple shear strain, shown in Figure la, is similar to a pack
of playing cards. This deformation causes successive layers
of the volume element to move in their planes relative to the
reference plane in such a way that the displacement of a
layer is proportional to its distance from the reference

plane. The dimension perpendicular to the plane of shear,
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Figure la. Simple Shear Strain

Figure 1lb. Simple Shear Stress






such as length AB in Figure la remains constant. The
relative displacement of the top and bottom layer divided by
their separation, Yg/yY, is called simple shear strain. This
term may be abbreviated to 'shear strain', 'strain', or
'shear' for the deformation in Figure la. The angle of
shear,Y , is related to Y2 /2 by tanY =682 /% . If the
deformation is small, y , expressed in radians, equals the
shear strain.

The force providing a shear stress is shown acting on
the top surface of the volume element of material in Figure
1b. An equal opposite force must be applied to the bottom
surface if the element is to remain at rest or steady motion.
Also, equal opposite forces must be applied to the other two
surfaces, as shown in Figure 1lb, if the element is not to
experience angular acceleration. The forces that are
pafallel to the surfaces are known as shear stress, while
forces that are normal to the surfaces are known as normal
stresses. The term stress implies a force per unit area and
has units of pressure.

If the stress is removed for the deformation shown in
Figure 1lb, the strain may or may not return to zero. Flow
occurs when the strain does not eventually return to zero.
If flow occurs for an infinitesimal stress the material is a
liquid, otherwise it is considered a solid. Many seemingly
solids, such as clay, will flow above a certain "yield"
stress. The flow in Figure 1 is a particular example of

streamline flow. The fluid elements at that point follow the






same path which need not be a straight line. Inelastic
materials show no recovery of strain or energy. Some liquids
such as many adhesives demonstrate partial recovery of strain
and energy; these liquids are called elastic liquids. If the
deformation and recovery of the material is instantaneous,
then it is ideally elastic. Some responses can be quite slow
as with many polymers which are referred to as viscoelastic.
Walters® strictly uses this term as viscoelastic solid, but
most researchers use it for liquids.

Viscoelastic liquids that are sheared in their linear
region obey Hooke's law. Williams? gave the concise
definition of linearity, that "the ratio of stress to strain
for any history is a function of time only." The strain,
whether constant or not, imposed on this liquid at all times
before time zero had been increased by a factor, the stress
at earlier time would have increased by the same factor.
Likewise, if the stresses had been applied to the earlier
times the strains would have been proportional to the
stresses. Linearity implies the principle of superposition,
which can be interrupted in two ways. The first way is that
when simultaneous small strains are imposed on the
viscoelastic liquid, the resultant stress is proportional to
the sum of the individual strains acting separately. The
second way is successive strains imposed on the viscoelastic
liquid, which may cause certain types of nonlinear behavior
to also appear as discussed by Williams. Normally,

non-linear behavior appears by imposing a large strain on a



viscoelastic liquid.

When a strain rate is imposed suddenly on a fluid, the
initial stress may not be maintained for two reasons, besides
inertial effect. The first reason is the linear versus
non-linear region, because part of the mechanical energy
supplied to the material may be stored as elastic energy.
The stored energy appears as elastic strain recovery when the
stress reduces to zero. The second reason for a change in
stress is that the structure changes. Perhaps weak bonds
between suspended particles are broken, or long chain
molecules become aligned. No elastic strain recovery is
observed when stress reduces to zero. The stress usually
decreases, but may increase with time. An irreversible loss
of viscosity indicates a permanent degradation of the fluid.
If the viscosity returns to its original value after the
material has relaxed long enough with no strains imposed, the
behavior is either rheopexy or thixotropy. Rheopexy
behavior is the increase in viscosity with time of shearing,
while thixotropy behavior is the decrease in viscosity with
time of shearing. Bauer and Collins® have given the history
of the use of thixotropy.

Thixotropic and viscoelastic behaviors could be confused
if changes in stress are caused by changes in temperature.
Or, viscoelasticity could be confused with rheopexy if the
recovery of the material was not observed when strain is
removed. Other differences between elastic and thixotropic

material are the initial stress of a viscoelastic material is






controlled by the inertia of the fluid, whereas the initial
stress of a time dependent material depends on initial
viscosity. Most polymers exhibit both elastic and time
dependent behavior.
1.2 Rheometry

Rheometry is the science of measuring the deformation
and flow of fluids, and a rheometer such as the Weissenberg
Rheogoniometer, is a measuring instrument. Measurements of
fluids exhibiting both elastic and time dependent behavior
are best made on a rotational rheometer where shearing can be
done as long as desired. Figure 2a show the ideal cone and
plate geometry that is often used on a Weissenberg
Rheogoniometer. A cone with a radius R has its axis perpen-
dicular to a plate, the vertex of the cone being in the
surface of the plate. The cone rotates or oscillates with a
relative angular velocity of w. The angle 6o between the
cone and the plate is usually less than 5° and may be as
small as 0.3°. Large angles are not normally used because
the analysis of the results for non-Newtonian fluids is
complex. Some theoreticians, such as Cheng,* have derived
explicit formula for the shear rate at the cone in time-
independent non-Newtonian fluids for large cone angles, but
the assumption that the free fluid surface forms part of a
sphere may not be justified. Small gap causes the shear rate
to be uniform, the inertia of the sample to be less, the
temperature rise to be minimized, and a small sample to be

sufficient. For streamline flow the shear rate at any point
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is approximately given by:

Y = rw = o
r sin 6o 6o
where for small cone angle sin 60 = g0 . Shear rate is
independent of position in the gap. This property gives the
cone and plate an enormous advantage when studying time
dependent behavior because all elements of a sample have the
same shear history. For uniform shear rate the shear stress,
W, is a constant throughout the small gap. The torque, W, on
the plate is the summation of narrow rings between radius r
and r +8 r which gives
SW = 12mr2ér
The total torque is
w = SR 2np%tar = 21R3t/3

In most practices the tip of the cone is ground flat as shown
in Figure 2b to a radius R

X
R amrirdr=2m (RP- RI)T/3.
i §

which gives
W=/
If Rl equals 0.1 R the torque is reduced by 0.1%. The total
torque is reduced by less than 0.1% because the parallel
section of the cone contributes to the torque on the plate.

1.3 Basic Equations and Assumptions

The cone and plate rheometer is a popular apparatus,
because experiments with this geometry measures forces
generated by known velocity profiles that have only material
functions as unknowns. Velocity profiles and torque-stress

relationship can be derived from the equation of motion,



which is Newton's second law of motion, and from the equation
of continuity, which is the 'conservation of mass' principle.
For a geometric volume element, V, fixed in space and
bounded by a surface S, the rate of change of momentum with V
and across S are controlled by the body forces throughout V
and the surface forces over S. The relevant momentum balance

can be expressed as:

rate of rate of rate of sum of
momentum = momentum - momentum + forces of (1.3.1)
accumulated in out system

Bird, Stewart, and Lightfoot® consider the rates of flow of
the component direction of momentum into and out of the
volume element. Momentum flows into and out of the volume by
convection and by molecular transfer. There are nine
components of the convective momentum flux pvv which is the
"dyadic product" of the mass velocity vector pvv and the
velocity v. Similarly, there are nine stress components to
the stress tensor 1. The single vector-tensor equation for

the momentum balance equation (1.31) is

L ov = - Vepvv  =Ve1 -Vp tpg (1.3.2)
< ALy
rate of increase rate of mom. rate of mom. sum of
of mom.per unit gain by gain by viscous other
volume convection transfer per forces
per unit vol. unit volume on sys.

The rate of momentum gain by convection term can be combined
with the rate of accumulation term by means of the

substantial time derivative, D/Dt. The substantial time
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derivative is the derivative following the streamline flow of

velocity vector v . The equivalent equation to (1.3.2) is

pDv ==V e 1-Vp + pg
Dt (1.3.3)

This form of the equation of motion is a statement in the
form of mass times acceleration equals the sum of forces;
Newton's second law of motion. The arbitrary volume element
moving with the fluid is accelerated because of the forces
acting on it.

The equation of continuity is developed by writing a
mass balance over the geometric volume element. By a similar

method, the conservation of mass is as follows:

o
©

= piT e W)

o
+

(1.3.4)

The term, Dp /Dt is the substantial derivative of density.

The corresponding equations of (1.3.3) and (1.3.4) for
spherical polar coordinates are given in Bird, Steward, and
Lightfootf In the analysis of spherical flow the use of
spherical coordinates allows the description of velocity in
terms of fewer velocity components and results in a
simplification of the boundary conditions. The equations in
are general for all problems of spherical flow and for
Newtonian or non-Newtonian fluids. For the cone and plate
geometry the assumptions are as follows:

(1) Flow is strictly tangential, sov¢=f(r,ﬂ

and\)r=ve = 0,

(2) No bulk flow occurs,






(3) "Inertia" effects are negligible,

(4) Gap angle between cone and plate is less than
5°,

(5) Cone and plate are of radius R,

(6) Free surface of the liquid is part of a sphere of
radius R with its center at the cone vertex,

(7) Surface-tension forces are negligible.

After applying these assumptions to the generalized equa-
tions, the three components of the equation of motion for

steady state reduce to

r-comp. - Xﬁi _ 1, 3 (r%trr) (1ee-109) (1:53:5)
. = r? = + = «3.
O-comp. - pvi¢cotd = - 1 3 (Teesin®)+1dpcotd (1.3.6)
r T sino 00 r
¢-camp. 0 = - 1 3 (r’tr$)-1 3Ted -1rd -2cot® (1.3.7)
r? 3r r Jde r r

with the following boundary conditions:

at 0 =m/2 , Vv =0 (1.3.8)
at 0 =17/2 +0,, Vv =rwsin O (1%:3%9)
at r =0 , Vvo =0 (1.3.10)

Equation (1.3.9) is the condition for steady rotational

shearing. For oscillatory shearing, (1.3.9) would be

at © = m/2 + @l Vo = rw sin O;sin wt (1351 L);
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The equations (1.3.5) through (1.3.11) are still general for
Newtonian and non-Newtonian fluids. In order to use these
equations to derive velocity profiles, however, the various
stresses must be substituted with expressions for velocity
gradients and fluid properties. Nally’ derives the velocity
profile in steady location shear as an infinite series
involving Bessel and associated Legendre functions for
Newtonian fluids. For non-Newtonian fluids, the derivation
of the velocity profile would require a rheological model
such as the Power-law model.®

The equation of energy is developed by an energy balance
over geometric volume element. The relevant balance can be

expressed as:

rate of net rate of net rate net rate
internal internal and of heat of work
and kinetic = kinetic + addition - done by (1.3.12)
energy energy in by by system
accumulated convection conduction on sur-
roundings

Although this first law balance does not include all forms of
energy, it generalizes the work and kinetic energy effects.
The kinetic energy is the pv?/2 on a per unit-volume basis
for the fluid in motion. The internal energy is the random
translational, rotational, and interaction energy of the
molecules which depends on the local temperature and density
of the fluid. The single vector-tensor equation for the

energy balance equation (1.3.12) is®
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)

3T P (U + v?/2) = - (Veov(U + V?/2) - (V-q)
rate of energy rate of energy rate of energy
gained in by in by
convection conduction
+p (veg) - (Vepv) - (Ve(x+v))
rate of work rate of work rate of work (1.3.13)
done on fluid done of fluid done on fluid
by gravity by pressure by viscous forces

Each of the terms in equation (1.3.13) is on a per unit
volume basis. By mathematical manipulation of equation
(1.3.13) and use of the equation of continuity and motion,
the rate of energy gained by convection can be combined with
the rate of accumulation term by means of the substantial
time derivative, D/Dt. The substantial time derivative is
the derivative that follows the streamline flow. The

equivalent equation to (1.3.13) is

p M= - (V) - p(Tew) - (1:TW) ke
where the double dot product (T:VV) = (Ve (z+v))-(v-(V-1)).
The (1:Vv) is the viscous dissipation term which is left
when pD(v?/2) is substituted by the equation of mechanical
energy. The equation of mechanical energy is written as

D(v?/2)

BT = = (veVp) = (ve(Ve1)) + p(Veg)

The terms, such as/(v-:Vpland p(veg) , cancel out of equation

(1.3.13) after the substitution.
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For the calculation of temperature rise, the equation
(1.3.14) for thermal energy is more useful in terms of heat
capacity and fluid temperature than in terms of internal
energy. Again by mathematical manipulation and the use of
the equation of continuity, the total derivative of internal
energy U, and the fact that the substantial derivative is

linear operator, the equation of energy becomes

pev = 2T = - (7eq) -1 3 (Vev) - (17w (1.3.15)

The corresponding equation of (1.3.15) in spherical polar
coordinates are given in Bird, Steward, and Lightfoot.!?

In a rheogoniometer, the same sample of material can be
sheared indefinitely, the temperature rise due to viscous
shear heating is frequently a problem at low shear rates.
Bird and Turian''made very good approximations of the
temperature rise distribution for both Newtonian and
non-Newtonian fluids in a cone-plate instruments.

The energy equation describing the temperature profile
in the fluid region between the cone and plate is obtained
from the general energy equation by the appropriate
simplification. For small gap angles the equation of motion
has an approximate solution in which it is assumed the
components of the velocity have the form Vvé= rf (e), v,=0,vg= 0.
The energy equation for constant thermal conductivity k
reduces to

3 4 9 ,sin@®3T 1 3V - cotevyy=g

1 23T
klzz 37 ("5 *srsme 0t 56)]—Te¢(; kR T (1.3.16)
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The term Te¢ in equation (1.3.16) is the heat generated by
irreversible mechanical energy degradation which is the
(-1:9v) term in equation (1.3.14). The normal stress
components trr, Tee, T¢¢, which are generally not zero, do not
contribute to the (-1:VV) , because the associated
components of the dyadic Vv are identically zero for the
assumed velocity profile. For the torque W: that is applied
to rotate the cone at an angular velocity w, thee¢ -
component of the viscous portion of the stress tensor T and

the ¢ - component of the velocity v are approximately given by

Te¢ = 3w/2m R? (1.3.17)

vé = wr(m/2-0)/60 (1.3.18)

A further approximation is sin©=1 and cot0=0 , since© is
nearly equal to m/2. Equation (1.3.16) has the following

boundary conditions:

at 0 =m/2 T = To (1.3.19)
at 0 =m/2 + Qo o 1 {1+3.:20)
at r =0 T = To (1%:35:21)
at r =R 3T/3r = o (1.3.22)

The boundary conditions (1.3.19), (1.3.20) and (1.3.21) state
that the metallic surfaces of the cone and plate stay at

temperature To where as the last boundary condition (1.3.22)
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indicates that no heat loss occurs at the liquid-air
interface.

Although the geometry is such that an exact solution of
the equation of motion and heat conduction is fairly
difficult, Bird and Turian satisfactorily estimated the
temperature rise by use of calculus of variations. In the
derivation they did not need to use any specific rheological

model to obtain the following formula:

(T - To)max = 3WwO0/16 T k R (1+3:19)

This equation estimates the maximum temperature rise from
experimental conditions even for non-Newtonian fluid with
normal stresses. A rheogoniometer typically has a maximum
speed of 1000 r.p.m. and maximum torque bar of 1200 g (force)
cm. A cone and plate may have a radius R = 1 cm and gap
angle Oo=m/180 radian. Most organic fluids have a
thermoconductivity on the order of 0.001 cal/cm/sec/C. For
these values and using the conversion factors 980 erg/g-cm
and 4.186 x 107 erg/cal, the equation (1.3.19) gives (T-To)
max = 3C.
1.4 Motivations

Data on materials showing linear viscoelastic behavior
with experimental error under small shear is well documented
since the advent of Dr. Weissenberg's'’first design of a
rheogoniometer in 1948. Many authors such as Ferry'® and

Lodge!'“have written on linear viscoelastic theory. Although
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the linear region gives useful information, manufacturers
apply large shear rates during processing, so mathematical
models for large deformation is a necessity which makes
nonlinear models more practical than linear models. Until a
decade ago there was little attempt at theoretical analysis
of the nonlinear behavior in a form suitable for practical
application. More recently proposed nonlinear theories, such

as Acierno's,??

involve parameters which must be evaluated
from experiments at large deformations.

An obvious way to increase the rate of shear for
oscillatory or rotational shearing in a rheogoniometer is to
decrease the cone-plate gap angle O0 , or to increase the
angular velocity w. In oscillatory shearing an increase in
the amplitude of the oscillation increases the angle of shear
or the shear strain yo. Large-amplitude oscillatory shearing
is a way to increase the shear rate without increasing the
angular velocity which can throw the test fluid out of the
cone-plate gap by centrifugal force. Another way of testing
the dynamic behavior of a material under nonlinear conditions
is to shear it steadily and to super-impose a low-amplitude
oscillatory shear so that linear methods can be used to
relate the shear strain to the stress variations. Various
superpositions will produce different waveforms for measuring
the primary and secondary stresses which depends on the type
of polymers under test. Walters'® has summarized this type of

test and its theory.
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In 1969 MacDonaldf Marsh, and Ashare made large-
amplitude oscillatory tests wusing a Weissenberg
rheogoniometer, but it was necessary to watch for waveform
distortion caused by instrument defects. The waveform
distortions prompted many investigators to modify their
rheogoniometer. In 1970, Lee'’ , et. al. published a paper
on modifications on their R-16 Weissenberg rheogoniometer.
They installed a versatile oscillatory mechanism that allowed
both amplitude and frequency variation. Also, they replaced
the solenoids for torque and normal force measuring with
piezoelectric load cells. Their modifications were not
completely satisfactory, so new designs were being developed
at the time of their publication. In 1972 Higman'®? intro-
duced a new torque and normal thrust measuring system for
both the R-16 and R-18 Weissenberg rheogoniometers. The
modifications by Higman consisted of a torque and normal
thrust piezoelectric transducer which replaced the air
bearing displacement transducer for the torque measurement
and the servo-cantilever displacement transducer for the
normal thrust measurement in the standard rheogoniometer.
Also in 1972, Meissner'® published a new machine design of a
cross-beam support to increase axial rigidity in the
rheogoniometer. In 1973, MacDonald?’ used the rheogoniometer
with the cone-plate geometry for superimposing a low-
amplitude harmonic strain during steady shearing. MacDonald
discussed in his paper some problems in the test, such as,

those associated with the slackness in the gears. In 1977,
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Crawley and Greassley?! incorporated both the piezoelectric
load cells and the cross-beam support for an enhanced axial
and torque measuring system.

The industrial need for nonlinear models has led many
investigators to collect data by a variety of high shear rate
experiments. The Weissenberg rheogoniometer is a versatile
machine which allows the testing of nonlinear models by such
experiments. Unfortunately, the recent venture into the
nonlinear region has shown the need for mechanical enhance-
ments to the Weissenberg rheogoniometer. The original or
unmodified R-16 Weissenberg rheogoniometer had measuring
devices called linear variable differential transducer or
LVDT, that requires a movement for recording forces. The
opening of the cone-plate gap and the twisting of the
stationary plate violates the spherical geometry and the no
"slip" boundary condition of the basic equations and
assumptions. The movement of rigid machine members is a
design flaw that became only noticeable because the recent
testing of polymers in the nonlinear region produced much
larger forces than earlier tests in the linear region. Data
that were collected by unmodified rheogoniometer in the
nonlinear region of viscoelastic fluids are questionable.
Before models such as the set of differential equations
proposed by Acierno et. 51.22 can be used to predict the
stresses in materials subjected to large deformation, the
models need to be evaluated against data collected from

modified rheogoniometers.
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1.5 Objectives
Walters ?® distinguishes between two objectives which are
related for rheological measurements.
Objective 1 -
...involves a straightforward attempt to determine
the behavior of non-Newtonian liquids in a
number of simple rheometrical flow situations
using suitably defined material functions. The
simple desire here is to seek a correlation bet-
ween molecular structure and material behavior or
alternatively between material properties and
observed behavior in practical situations.
Objective 2 -
...is more sophisticated and decidely more
difficult. It involves the prediction of behavior in
non-simple flow situations from the results of simple
rheometrical experiments.
Fortunately, many industrial process involve simple flow
geometrics and the material functions that are determined can
be used for similar applications. The progress that has been
made on Objective 2 is for certain types of materials such as
viscoelastic liquids. The most reliable data has been
collected from the linear region. This data has been used to
develop constitutive equations for use in the stress equation
of motion and continuity to predict behavior for practical
flows. Contrarily, the data from the nonlinear region is
questionable because the measuring machines such as
rheogoniometer will bend some stationary parts because large
forces are exerted by some polymers that are undergoing large
shearing. The R-16 Weissenberg Rheogoniometer needs to be

modified so that the data collected can be used to develop

constitutive equations for the nonlinear region for shearing.
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With respect to the collection of data from the nonlinear
region, the state of the art is closer to Objective 1.

Consequently, the objective of this thesis is to collect
material functions from oscillatory shearing in the nonlinear
region of polyisobutylene in centane by using a modified R-16
Weissenberg Rheogoniometer.

Polyisobutylene in cetane was chosen because it is
available from the National Bureau of Standards (NBS) as a
viscoelastic fluid. Also, a number of rheologist have
reported the data on it. A comparison with reported data
would verify our modifications as a bonafide approach for
measuring nonlinear behavior.

Our R-16 Weissenberg Rheogoniometer is a gracious gift
from Dow Chemical Company of Midland, Michigan. Unfortunate-
ly, the rheogoniometer had received a thorough usage at Dow
Chemical and many electronic parts need replacing. Since we
had limited funds, we decided to do as much of the repairs
and modifications ourselves. Our research funds were spent
on a piezoelectric load cell and a torsion bar assembly. The
piezoelectric cell was used for the normal stress measuring,
because the normal force servo mechanism was completely
inadequate. The materials of interest in our work are
polymer solution of high concentration, and these have time
constants of a few seconds. Spriggs, et. gi.z“have shown
that the unmodified normal force servo mechanism can be used
only on materials with a time constant of a minute or more.

The new torsion bar assembly allows us to change the torsion
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bar to a stiffer bar without changing the sample fluid and
resetting the cone-plate gap. The torsion bar assembly was
bought because there was not enough funds to buy both the
piezoelectric load cell and a temperature controller. The
money that was spent on the torsion bar assembly was well
spent, because the experiments can always be conducted by
only allowing the minimum movement of the plate to measure
the shear stress.

The temperature controller was not working because the
heating element was burnt out. If the on-off temperature
controller was working, it would not benefit the experiment
because previous data on polyisobutylene in the literature
were collected at 25 to 30C which is ambient. Also, the
controller had a very course temperature scale which could
not indicate the temperature better than plus or minus 5C.
By necessity, the experiments were conducted at room
temperature during the Winter. Since the electronic tube
equipment dissipated heat, sufficient time was given before
shearing to allow the room temperature to become stable.
During the summer months the experiments were conducted after
sundown, because the room temperature would go down and the
heat dissipated from the electronic equipment would compen-
sate to help keep the temperature leveled. This method for
room temperature control is not a substitute for a room
thermostat which the old laboratory does not have.

Consequently, this thesis is more of a feasibility study
to determine the quality of the data collected from the

nonlinear region.






CHAPTER II

METHOD OF APPROACH

2.1 Material Functions from an Unmodified WRG

The viscosity,n , defined by the canonical equation
n () = we (/¥ 2.1

is a material function. Material functions are physical
properties which may depend on strain, strain rates, or shear
stress, etc. Also, for steady shear flow of non-Newtonian

fluids the remaining stress distribution is

™ =164 = 0 2.2
Trr -1e0 = vy (Y) = Y'ZN1 ) 2.3
Tes -T60 = v, (Y) = *'(ZN2 ) 2.4

The flow in the cone-plate gap is described by three material
functionsn 'V 1V, . The variable n is best called the shear-
dependent viscosity or "apparent viscosity"; Vl, v, are
called the first and second normal stress difference, and N

17
N2 are by definition called the first and second normal
stress coefficients. For Newtonian liquids the apparent
viscosityn is a constant and the normal stress differences
vy and Vo are zero at all shear rates. The elastic liquids
will behave as Newtonian liquids if shear rate is small
enough, because the normal stress difference tends to zero
faster than the apparent viscosity goes to a constant or

"zero shear" viscosity. For most viscoelastic fluids, the

23
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apparent viscosity is a monotonic decreasing function which
decreases from a zero-shear value to a lower value at higher
shear rates. The lower value may not be observed, since it
can be several orders of magnitude lower than the zero-shear
viscosity.

In a preliminary investigation, the steady state
shearing offers little information on needed enhancements for
dynamic measurements. Stress growth or stress relaxation
curves give "diagnostic" information on the machine's
capability to respond to a sudden change of shear rate such
as a step input. The time constant is the time for the shear
stress to reach 67% of its steady state value, and the
shorter the time constant the better. The unmodified
Weissenberg Rheogoniometer or WRG appears at first to be well
suited for this test. The cone or lower platen can be
rotated for as long as necessary to achieve steady
conditions, and the clutch and brake mechanism should stop
the rotation in 10 milliseconds (ms.) The rotation of the
plate or upper platen should be negligible for most materials
or very small as relaxation proceeds. However, Batchelor,
Berry and Horsfall?®have found three potential flaws during
studies on stress buildup and decay in polyisobutylene.
Firstly, the impact of the clutch striking the driving plate
may introduce a small spurious torque. Secondly, a fast
switch must be used to switch off the clutch current and
switch on the brake current otherwise the lower plate may

"free wheel" for a time. And lastly, the motion of the upper
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platen as the torque falls rapidly may introduce a strain
rate which is comparable to the initial shear rate.

The best way to check this last flaw is to repeat the
measurement using a stiffer torsion bar to detect any
differences. During start-ups the normal force causes a
slight separation of the cone and plate, and radial flow of
the sample does occur. Part of the normal force generated by
the fluid goes to overcome the shear stresses of the radial
flow so a fraction of the force is not measured. The normal
force will build up slower than the real rate of increase
should be. Meissner?® increased the response of the
unmodified WRS by increasing the cone-plate gap angle. The 8
degree cone-plate angle preferred by Meissner reduces the
time for peak stress to be reached, but the edge of the fluid
breaks apart at much lower shear rates. Also, Galvin and
Whorlow?’have studied the change of the cone-plate angle and
normal force buildup in polyethylene. Chang, Yoo, and
Hartnett?® studied a series of normal stress measurements
with several cantilevers to obtain data which show that the
normal force in transient experiment approach asymptotic
values as the cantilever rigidity increases. These
asymptotic values were taken as representing the material
response. Kearsley and Zapas’®have concluded that even when
mathematical correction to all known errors are taken into
account, the transient normal stress measurement are not
reliable on the unmodified WRG.

Another dynamic test besides transient stress growth is
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small-amplitude oscillatory shearing. The input shear rate
by the cone with the motion given by equation (1.3.11) is
approximately described by the following equation

= Wi i i (2.5)
- Yo singt (2.6)

where Yo is the strain rate amplitude. The corresponding

stress distribution for viscoelastic materials is

re =y (-n' sinwt + %cos wt) (2.7)

Trd =Ted =Trr - Tee = Tee - Top = 0 (2.8)
where n' is the 'dynamic viscosity' and G' is the 'dynamic
rigidity'. For a Newtonian fluid, equation (2.7) implies
that the stress is proportional to the shear rate so G' = 0
and n' is the constant viscosity. For Hookean solid the
converse is suggested by equation (2.7). Generally, most of
the literature shows the mathematics with complex variables.

The equation (2.7) is now given by

Tre = yn* exp (iwt) (2.9)
where n%* = n' - i %=n'—in" (2.10)
which n* is called "complex dynamic viscosity" and n" is the
"loss viscosity'. Similarly, the literature uses the
definition
SpEg (2.11)

as the 'complex modulus' and

L UE (2.12)
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where G" is called the 'loss modulus'. The assumption of
small-amplitude oscillatory-shear experiment is that the
material deforms linearly. Equation (2.5) and (2.7) indicate
that the harmonic strain results in a harmonic stress of
amplitude proportional to the strain amplitude with a phase
lag which is independent of amplitude. This assumption is
tested by varying the strain amplitude on the amplitude
ratio, 7y/y, , while shearing at a common frequency.

For all viscoelastic liquids in the linear region the
complex viscosity n* goes to the zero shear viscosity no as
the frequency of oscillation goes to zero. The amplitude
ratio goes to zero and the phase lag goes to m/2 as the
frequency of the oscillation goes to zero. Some experiments
are conducted to identify the system's natural frequency, wo,
because machine's resonance at the natural frequency voids
all measurements. The machine's resonance causes the
amplitude ratio to go to one and the phase lag to go to zero,
hence, the machine is insensitive to the material properties
of the test fluid. Fortunately, the natural frequency can be
changed by using a different torsion bar. The most common
practice is to collect data above and below the natural
frequency and to draw a smooth curve through the
discontinuity.

Although there is a "natural frequency" in the normal
force direction, it seems to be at a high enough frequency to
unaffect the stress measurement, regardless, whether a

cantilever beam or a piezoelectric load cell is used.






2.2 Enhancements to the R-16 WRG

Normal stress growths in simple rotational shear and
first normal stress difference in oscillatory shear are
impractical experiments with the unmodified WRG, because the
normal force measurement uses the cantilever beam. In the
nonlinear region the normal stress differences oscillates
with the frequency 2w at a displacement level which
independent of time. A peak force during oscillatory
shearing of polyisobutylene might be 10 N(Newtons). Such a
produced force may move the upper platen (plate) upward about
1 pym (micron) and may move the lower platen (cone) and
cantilever beam downward about 10y m. Figure 3a shows a
force, F, acting downward on the cantilever beam. The
depression due to its own weight at any point on a uniform

beam which is rigidly clamped horizontally at one end is

vy = Wl (2 - aLx + 61%) / (24 ED) (2.14)
where E is Young's modulus, W is the weight per unit length,
and I is the second moment of area of the cross section.
Figure 3b shows a rectangular cross section bar, which is
bent in a plane perpendicular to the edge of length b.

The second moment is given by
= 3
I = bd /12 (2.15)

The load, F, at the end increases the depression by

v, = Fx* (3L - x) / (6 EI) (2.16)
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UNMODIFIED WRG

= [

Figure 3a. Cantilever Beam and Clamp

I:IJ

d
<-—Db —

Figure 3b. Cross-Section Area of Beam
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F at x = L, becomes

Yyt ¥, = 13 (F/3 + wWL/8) / (EI) (2.17)

The cantilever beam is replaced as an enhancement by a
piezoelectric load cell, which has a movement of about 0.1
um. Naturally, the upper platen does move upward by more
than 1uym. A force greater than or equal to 10N is required
to restrict the upper platen to 1 um. This enhancement is
simply accomplished by standard weights that are usually used
for a balancing scales. The most benefit from added weights
is placing the weights as close as possible to the upper
platen. Figure 4 shows a C-ring which can be placed on the
upper platen. Depending on the gage of metal, the C-rings
are cut to a diameter for a specific weight. A pair of
C-rings affords more symmetry, but the C-rings do increase
the moment of inertia. The increased moment of inertia
affects the acceleration term in the equation of motion of

the upper platen. The equation of motion is approximately

given by,
_ .d% 2mR® o' d¢ 2mR 3
Wy cosut = IgZ, 35~ 3 @ * (3go— C' + )

(2.18)

where W o cos wt is the harmonic torque, I is the moment of
inertia, ¢ is the angle the platen rotates through, and C is
the spring constant for the torsion bar. The C-rings are
temporary and inexpensive device, which minimizes the upward
movement of the upper platen.

Usually a Honeywell Visicorder is used to trace the

harmonic stresses and strain on ultraviolet sensitive paper.
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MODIFIED WRG

Figure 4. Sketch of C-ring
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The analysis of the galvaniometer recording is tedious and
not very accurate. Although the galvaniometer gives
qualitative information, a computer gives the means to
analysis the signals from the transducers. The IBM 1800 is
an analog/digital computer which uses a digital voltmeter,
DVM, to convert the electrical signals between =-10 volts to
+10 volts into discrete numerical values for the computer
program. The Fourier method, which is programmed for tabular
data gives the equations for the shear stress and normal
stress in terms of a series of sines and cosines. These
equations are used to compute the material functions. The
IBM 1800 computer is interfaced with a Calcomp plotter, which
provides a trace of the signal for qualitative purposes.

2.3 Material Function from a Modified WRG

The modified WRG is best evaluated by varying only one
enhancement at a time. All stress growth and relaxation
experiments use the IBM 1800 computer and the Calcomp plotter
which offer more consistency during comparisons. With the
piezoelectric load cell installed, the tests are conducted
with and without C-Rings. If the stress growth curve is
shaped more similar to the step increase function with the
C-ring, then the modification is an enhancement. Naturally,
the stress relaxation curve is shaped as a step decrease
function.

The modified WRG does not offer any advantage for small
amplitude oscillatory shearing, but an experiment that was

done by the unmodified WRG needs to be repeated by the
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modified WRG for comparison. The computer interface does
permit the calculation of more difficult material functions.
Williams and Bird®‘’discussed the time-dependent behavior of
normal stresses exhibited by fluids is small-amplitude
oscillation. They solved the equation of motion for the
cone-plate geometry to relate the amplitude and phase
relationship of the oscillating stresses to experimental
measurements. The results are expressed in terms of a
"complex normal stress coefficient," ¢*, and a "normal
d

stress displacement function," = , which are given by

definition,

cx= - Qrgda - 8o

Gy %%_ (2.19)
d _ _ _Re{d ¢-d e}

02 Bg 060 |2 (2.20)

v o
(2.21)

glvisada g,

' and g" are the real and imaginary parts (2.22)
Y =7 /2+0, (2.23)
T35 = Re {dj + 193 exp(2i wt)} for § = r,e, (2.24)

39 is the complex amplitude of the stress, and Q is the
amplitude of the angular velocity of the cone, radian/sec.
The equation of motion for oscillatory shearing are the

same as the equations for steady rotation except the equation
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(1.3.7) for the ¢ - component is
v _ 1 3 (r’tr¢) _1 3 Te¢ _Trd _ 2 cot O Ted
Kl

P T r® r v (2.25)
since Ve = Vo (r, ©, t). For small amplitude oscillatory
shearing, the T, ¢ terms are assumed to be small when compared
to other terms in equation (2.25). Another assumption is
that the normal components of stress which are perpendicular

to the flow direction are equal. When these two assumptions

are made, the equation of motion becomes:

o gfg - _dtee T¢$ - Tee .
T or r (2.26)
. !ﬂi v 3188 cotf R P
p —cot = T D8 # = (169 -1e8)/ , (2.27)
v o ! 9 Tedp _ 2coth
O B TR B T (2.28)
The boundary conditions are:
At 0@ =1/ 2 vé =0 (2.29)
At 0O =m /2 + Qo ve = r Q 8in wt , (2.30)
At r=0 $=0. (2.31)

The modified WRG is best suited for large-amplitude
oscillatory shearing. MacDonald, Marsh, and Ashare *'studied
the rheological behavior for large-amplitude motion. Since

shear stress is a continuous function of time, the Fourier
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expansion is

T00 = nfo A2n+1 6052n+1 (wt+ ¢)

(2.32)
where ¢ is the phase shift occurring between the input strain
and the output stress. The assumption of a linear velocity
profile in the fluid has been shown valid for small cone
angles of less than 4 degrees and angular velocity less than
119 sec _l. The large-amplitude complex viscosity is defined
by

n(wo,y®) = - % n'(w,y0) - in" (w,y0)

(2.33)

With large strain amplitudes or high frequency, shear stress
measured on the plate shows higher odd harmonics. Equations
(2.32) and (2.33) reduce to small-amplitude shear stress and
complex viscosity in the limit of small strain amplitudes.

If the higher harmonics can be determined, then experiments
may be used to fit fluid models to experimental results.

Walters and Jones®?

have concluded that the amplitude of
the third harmonic could be very small because the spring
constant and the moment of inertia can be large. The
exception is near one-third of the natural frequency, which
may resonant similar to the natural frequency for the first
harmonic. Their experiments on Newtonian fluid and a

viscoelastic liquid clearly indicate a third harmonic content

at the one-third of the natural frequency. A similar
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resonance occurs near one-fifth of the natural frequency
which is caused by the fifth harmonic. If the nonlinear
effects are not noticeable, the oscillatory experiment could
be performed at frequency close to wo/(2M + 1), M =1, 2,
3ais

The normal stresses have nonlinear effects that are
caused from large-amplitude shearing. Akers and Williams?®’®
used the total force method to determine the first normal
stress difference, which was complicated by machine-
compliance problems. Christiansen and Leppard®" used
flushed-mounted transducers to investigate the first and
second normal stress differences. Tanner’® correlated the
normal stress data for polyisobutylene solutions from 28
papers. The first normal stress data are correlated as a

function of concentration, molecular weight, and shear stress.






CHAPTER III

DESCRIPTION OF APPARATUS AND EXPERIMENTS

3.1 Unmodified R-16 Weissenberg Rheogoniometer

The Weissenberg Rheogoniometer to be described in Figure
5 is the model R-16 manufactured by Sangamo Controls LtdJZ®
It is an intermediate successor to a series of machines,
developed from the original ideas of Weissenberg, which were
intended to measure not only shear stress in steady rotation
but also oscillatory stresses and normal stresses.

A 1 hp, 1800 rpm, synchronous motor drives a 60-speed
gearbox covering about six decades of angular velocity in
approximately logarithmic index so that the period of
oscillation of the platen can be varied from 0.016s. to 1.325
X 104 s. It is necessary to stop the motor to change gears.
The output shaft of the gearbox is connected to a drive box
containing an electromagnetic brake-clutch unit which allows
the stopping and starting of the platen within 10 ms while
the gearbox is still running. Also the drivebox comprises a
variable sinewave generator for oscillatory tests. The
horizontal output shaft of the drive box has a worm gear
engaging with a worm wheel on the main vertical drive shaft
of the machine. The test fluid is held between the platen
attached to the top of the drive shaft and a platen attached
to the bottom of the air bearing rotor in the torsion head.
Normally the upper platen is a flat plate and the lower
platen is the cone, but they may be interchanged for thinner

fluids.
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WEISSENBERG RHEOGONIOMETER

Torque

Torgue bar transducer

Air bearing

Upper platen
oven
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