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ABSTRACT

THE RESPONSE OF A MAGNETOELASTIC PLATE

TO A TRAVELLING LOAD

by

Alaric David Cull

An unsupported, thin, elastic plate immersed in a

strong, static, magnetic field is acted upon by a travel—

ling line load. A theory is developed which describes the

motion of the plate by a set of nonlinear, partial differ—

ential equations in which the displacements are coupled.

Solutions to the linear problem are presented.

Seeking steady-state solutions relative to the

moving load permits the equations of motion to be restated

in terms of a single moving coordinate. The displacements

and the load speed in the resulting set of ordinary

differential equations are expanded as power series in

1 the perturbation parameter, the load intensity. Thereby,

I the linear problem is defined.

The linear solution is the Green's function of the

governing differential equations. For a general magnetic

field, unique displacement solutions cannot be found

 



directly. They are recovered through a single integration

of the prime solutions. (The dependent variables in the

prime problem are the first derivatives of the displace—

ments with respect to the moving coordinate.) The prime

solutions for a general magnetic field are not unique

either. Nevertheless, by augmenting the linear differen-

tialequationsthrough the addition of a judiciously chosen,

small term, the prime solutions to the augmented problem

can be written. The prime solutions to the linear

problem are found by allowing the augmentation parameter

to go to zero.

The solutions consist of two parts, one of which  
trails the load, the other precedes; they are continuous

under the load. For a general magnetic field, one tail

of the displacement solution is bounded, whereas the

other tail is unbounded. The unboundedness is due to a

linear term. In the vicinity of the load the displacement

response is composed of combinations of exponential and

damped, harmonic waves. Of course, the particular form of

a specific solution depends upon the magnitudes of the

load speed and the magnetic field.

A short study of plane, harmonic wave propagation

indicates that for certain, one dimensional, magnetic

fields dilatational and distortional waves propagate as

though the medium was classical, elastic. In general,

however, the magnetoelastic plate is anisotropic, dissi-

pative and dispersive.
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I . INTRODUCTION

Electromagnetic fields and matter interact. This

rather obvious, simple statement encompasses a great deal

of physics and mathematics. For two centuries, the effect

of matter on electromagnetic fields has been investigated

in the discipline of electrodynamics. The opposite

viewpoint--the effect of electromagnetic fields on matter--

may be attributed to the discipline of mechanics. This is

a much younger field of study. In fact, magnetoelasticity,

which involves the interaction between an elastic* solid

and a magnetic field, has a history of less than twenty

years. To contribute to the topic of magnetoelasticity

is the purpose of this dissertation.

Many basic questions concerning the electromagnetic-

elastic system are still the subjects of conjecture. For

instance, what electromagnetic loads are applied to the  
body? Brown [1] suggests that, in the presence of an

external magnetic field Bo' the force and moment per unit I

volume are, respectively,

f = a. x 130 + (ad-W13.~

C = E X (gc X go + ¥.V§O) + g x E0~

*Unless stated otherwise, elastic always means homogeneous,

isotropic elastic. ;

1 H
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where go is the conduction current, M is the magnetization

and r is the position vector. Of course, the existence of

C advocates the use of a couple-stress continuum theory to

describe the mechanical system. No one has attempted to

solve a problem with such a theory. Another related ques—

tion is, how the constitutive equations for an elastic

body are changed by the presence of electromagnetic fields?

Penfield and Haus [2]derive a lengthy stress~strain rela-

tionship which consists of the usual Hooke's law with

several additional terms involving electromagnetic and

mechanical quantities. Although it is generally admitted

that Hooke's law is insufficient, yet it is the only con-

stitutive law used in the literature. In short, the true

physics is unsettled; the recommended laws yield a sophis—

ticated theory, but intractable analysis; so simplifica-

tions are necessary.

Dunkin and Eringen [3] develop in a systematic way a

set of field equations and boundary conditions to describe

the interaction between electromagnetic fields and an

elastic, electrically conducting body. Subsequently, most

authors defer to this theory; so the assumptions included

therein represent the current norm. In essence, they break

the combined system into two parts: an electromagnetic

part and a mechanical part. The mechanical system is

assumed to affect the electromagnetic system in one way--

the electromagnetic field quantities are altered by the
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motion (velocity) of the body. Thereby the static elec—

tromagnetic constitutive equations change form. To

describe the action of the electromagnetic on the mechan—

ical system, two effects are considered to be sufficient.

These consist of the Lorentz force, which neglects the

magnetization term in Brown's expression, and some elec—

tromagnetic surface tractions. There are other common

assumptions. Invariably in the solution of magnetoelastic

boundary value problems, the magnetic field is assumed to

be one-dimensional. At this point, a quotation from

Duhubi [4] is relevant. After making the prior assumptions,

halfway through his paper he reaches the conclusion,

"Computations in the foregoing expressions are too cumber-

some and tedious to carry out. In the next section we

shall see that some simpler results will come out for some

special cases". Whereupon he goes on to make further

assumptions such as infinite conductivity. This state of

affairs is prevalent.

Historically, the study of magnetoelasticity received

its initial impetus from the field of geophysics when, in

1955, Knopoff [5] investigated the effect of the earth's

magnetic field on seismic waves. Shortly thereafter, Banos

[6], who studied the importance of magnetic field direction

on the transmission of plane harmonic waves, coined the

name “magnetoelasticity". It is interesting to note that

the topic was eight years old before any information was
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published comparing the interaction strength of the

electric field to that of the magnetic field. This was

done by Dunkin and Eringen [3] who showed that the contri-

bution of the electric field was relatively insignificant.

Thus its comparative neglect in magnetoelastic theory is

justified. Very few mechanically significant (beams,

rods, plates, etc.)* magnetoelastic studies have been

undertaken; a brief statement now will be made on some of

them.

Dunkin and Eringen [3] and Kaliski [7] investigated

the propagation of plane, harmonic waves in a thin, free

 infinite plate. The transmission of torsional, harmonic  
waves along a free, infinite, circular cylinder was studied

by Suhubi [4]. In all three papers, the magnetic field is

found to act primarily as a damper. Paria [8] discussed

the radial vibrations of a perfectly conducting sphere.

The dynamic stability of a column was examined by Peddieson

and McNitt [9]. Moon [10] [11] also studied the column

stability problem. Peddieson and McNitt, who used Dunkin

and Eringen's theory, found little effect other than

damping. Moon concluded that the buckling load and the

natural frequencies were affected significantly by the

magnetic field. In a re-examination of Moon's work,

Wallerstein [1]], by correcting "for field distortion due

*The further assumption of a homogeneous, isotropic,

elastic solid is implied.
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to the finiteness of the beam“, claims to be able to

improve the theoretical and experimental correlation.

Other than for two exceptions, all these papers have two

things in common: they only deal with free vibrations and

they only use one-dimensional magnetic fields.

The two exceptions are the forced vibrations problems

which occur in [9] and [11]. Peddieson and Mcnitt took a

cursory look at a beam—column acted upon by an sinusoidally

distributed load which decreases exponentially with time.

Excitation by a harmonically oscillating magnetic field

was used in Moon's second paper.

Moon alone has presented experimental data. This work

was performed for his Ph. D. dissertation and is the basis

for both his papers [10], [11]. His physical model differs

markedly from that of Dunkin and Eringen. He chooses to

neglect the body forCe entirely, and claims that only the

M X B0 term in Brown's body couple expression is signifi—

cant. By using a strength of materials approach, he is

able to include the body couple without becoming distracted

by a complicated, couple-stress continuum theory. It is

not surprising that his results disagree with those of

Peddieson and McNitt. Apparently, Dunkin and Eringen's

theory, though more sophisticated, cannot explain Moon's

experimental results.

The subject of this dissertation is the response to

a travelling line—load of a free, infinite plate which is
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immersed in a static magnetic field. It is the first

mechanically significant, boundary value problem to

include either a general forcing function or a general

magnetic field.

Although the study of Timoshenko beams and plates

under the action of travelling loads is highly developed,

the shear effect is neglected in this study. The plate

theory, which can be classified as a dynamic, improved,

von Karman theory, owes much to Hermann [13]. Electromag-

netic aspects of the theory follow the lead of Dunkin and

Eringen. However, the electromagnetic tractions on the

faces of the plate are not included. This simplification

is justified by the findings of both Suhubi and of Dunkin

and Eringen. Their elementary beam [2] and cylinder [4]

studies include no electromagnetic tractions yet they

predict the effects of the magnetic field quite well.

The mechanical and electromagnetic systems are

treated separately. The Lorentz body force is assumed

to describe sufficiently the effect of the electromagnetic

on the mechanical system. By the change in the electro-

magnetic quantities attributable to the particle velocity,

the mechanical system affects the electromagnetic.

The theory in this present magnetoelastic investiga-

tion may not be as sophisticated as possible, yet neither

is it elementary.
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In Chapter 2 a first order, nonlinear, magnetoelastic

plate theory is developed. Several things are accomplished

in Chapter 3: the equations of motion are linearized, a

moving coordinate associated with the travelling load is

introduced, and a technique for describing the steady state

response is presented. Chapter 4 is devoted to the details

of the solution. Some concluSions are drawn in Chapter V.

_
-
L
M
I





 

II. THE EQUATIONS GOVERNING THE MOTION OF A THIN

ELASTIC PLATE IN A STRONG MAGNETIC FIELD

2.1. Derivation of the Equations of Motion from

Elasticity Theory

The Lagrangian description for the deformation of a

continuum is given by*

3 3y. d y.

——— [5 ——£] + f = p 1 . (2.1.1)
jk

3xj axk

 

In this equation, S.k is the second Piola-Kirchhoff stress

tensor; fi is the body force per unit volume; yi are the

cartesian coordinates of the current configuration; xi are

the cartesian coordinates of the initial configuration,

and p is the mass density. A few more words of explana-

tion will facilitate understanding of the notation. The

usual summation convention applies: a repeated index in

a term indicates summation on this index. Figure 2.1

shows that the relationship between the initial position

vector x, the current position vector y and the displace—

ment vector U is

Y1 = ”1 + xi ; (2.1.2)

*The equations of motion and the associated mechanics are

thoroughly discussed by Malvern [14]

8
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Figure 2.1. Displacement Vector U
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therefore

3y. 3U.

—1=—1+5. . (2.1.3)

8x 3x 1k
k k

Moreover, since

Ui = Ui(x, t) (2.1.4)

and since x and t are independent variables, then it is

clear that

———=—.l.=—i . (2.1.5)

Substituting equations (2.1.3) and (2.1.5) into (2.1.1)

introduces the displacement vector U into the equations

of motion which become

 

3x.

3

EU.

+ __£)] + fi p 1 . (2.1.6)[8. (6.
jk 1k 3Xk

Define the displacement field by means of the con—

ventional assumptions for plate deflections which are

3w

Ul = u(xl’ x2, t) - x3 ;—— , (2.1.7)

x
1

3w

U2 = v(xl, x2, t) - x3 ——— , (2.1.8)

3X

2

(2.1.9)U3= w(xl, x2, t) .

(Figure 2.2 clarifies the notation.) Expanding the x1-

component of (2.1.6) yields
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3 [S ( aUl ) a U1
——— . 5. + ——— ] + f =p . (2 1 10)

k k
.

o o

axj J l axk l at2

Accordingly,

3
EU

1

s + ——— . ___.3x.[ 31 (511 ) + s32(512 + )
3 x2

aul azul
+ S. (6 + ———)] + f = p———— (2.1.11)33 13 3x3 1 atz

or

3U 3U

-———[sjl (1 + ——l) + sj2 ——l + sj3 ——l)
3 8x1 3x2 3x3

BUl

+ fl=p—2 .
(2.1.12)

3t

At this point incorporate the assumptions (2.1.7),

(2.1.8) and (2.1.9); thus,

 

2

——3[s.l(1+——3u-xaw)+s
_3u

8x.

- (
j 3 2 32

8x1 8x1 3x

2

- x 3 w ) . 33—] + f

3x 8x 33 3x 1
1 2 1

2 3
= 9,8 g _ X3 _§_2L§j

(2.1.13)

at axlat

Now perform the expansion on subscript j to find

 





l3

23
au 3 w an

———[S (1 + ———-— x ————)-+s (___11
3 2 123X 3x1 3x1 3x2

32w 8w 3 Eu
—x—§)-s —]+—[s (1+—3 13 21axlax2 3x1 8x2 3x1

82w Bu 32w 8w
— x —-——) + S (———-- x ——————) — S ———J3 2 22 3 233x1 3x2 axlaxz 8x1

3 3u 32w Bu

+ -——[S (l + ~—— - x —-——9 + S (-——31 3 2 328x3 3x1 3x1 3x2

32w 3w

— x ) - S ———J + f

33 l
axlax2 3x1

azu 83w

=p[———-- x ——————J . (2.1.14)
3t2 3 axlat2

By analogy, the xz-component of equation (2.1.6) is

 

 

 

8 3v 3 w 8v

g;:[311 (3;; ' X3 3X13X2) + S12 (1 + g;;

32w 3w 3v

‘ X3 3X22) ‘ 13 ‘;;] + ;;;[521 (;;I

32w 3v 82w

_ x3 3XlaX2) + $22 (1 + —;; - x 3X22)

3w 8v 32w

- 23 ;;;J + ;;;[s31 (;;I - x aXlaxz)

av 32w aw

+ 832 (l + g;; - x 3X22) - 33 ;;;]
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32V 33W

+ f2 = p[—2 - x3 —2‘] . (2.1.15)

3x23t

The x3—component is somewhat different from the other

two. If the same procedure is followed, it is found that

a 5 3U3 3203

-—-{S- ( + -—-)l + f = o———— (2.1.16)

axj 3k 3" axk. 3 at2

or

3 3U3 6 3U3

—[s. (6 +——)+s. ( +—_)
3x. 31 31 3x1 32 32 3x

3113 3203 )

+ s. (6 + —-)1 + f = p——— ; (2.1.17
so 33 33 3x3 3 at2

8 3U 3U 3U

——[s.l——3—+ .2—3-+s.3 (1+—§-)1
3x. 3 ex 3 3x 3 3x

1 3

82U3 (2 1 18)4' f3 = 93—127— . . .

Substitution from (2.1.9) gives

8w 3w ] f

———[S. ——— + s. ——— + s. +
31 32 33 3

3x 8x1 3x2

32w

= p... , (2.1.19)

2
8t

Finally, expansion on 3 produces the equation

 





L
1

15

8 8w 3w

[S ——— + S ——— + s ]
ll 12 13

3X1 3X1 3x2

3w 8w

+ —[s — + s —— + s ]
21 22 23

3X2 3X1 3x2

3 3w 3w

+ ———[S ——— + S ——— + s ]
31 32 33

3X3 3X1 3x2

82w

+ f = p——— . (2.1.20)
3 atz ‘

Equations (2.1.14), (2.1.15), and (2.1.20) are a set

of partial differential equations describing the motion

of a thin plate. However, they are too complex for the

present purpose. To reduce these three equations to more

manageable proportions, the magnitude of each term is

investigated. Only the largest terms are retained in

the succeeding theory.

Reasonable assumptions for the magnitudes of the

plate dimensions and for the limits of the cartesian

variables are

a = plate thickness

x3, w = 0(a) (2.1.21)

= . . 2x1, x2 0(L) (2 l 2 )

where L >> a.

In order to define magnitudes for the lateral dis-

placements, appeal is made to equations (2.1.7) and

(2.1.8). Assume that the four terms on the left sides
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of these two equations are of the same order of magnitude.

It then follows that

u = v = 0(a2/L) (2.1.23)

Admittedly, the restriction of u and v to be much smaller

than w is a shortcoming: large amplitude lateral motions

cannot be described with this theory.

To find the order of magnitude of the stress terms in

the equations of motion, assume the constitutive law

., (2.1.24)

6 J
S.. = A
13 Ekk + 211Eiii

in which Aand uare the Lamé constants and Eij is the

Lagrangian strain tensor

3y 8y

E1. = %[—k—k- 51.] .

3 3x. 3x. 3

1 J

Eliminating y in favor of U with the aid of equation

(2.1.2) puts the strain tensor in the more useful form

Bu. Bu. au Bu

Eij = %[—1— + —l + ——’E ———]i] (2.1.25)

axj Bxi 8xi ij

Substitute (2.1.7), (2.1.8), and (2.1.9) into (2.1.25) and

expand each element of Eij' Now use the assumptions

(2.1.21), (2.1.22), and (2.1.23). The final step is to

reject all terms of magnitude less than 0(a2/L2). The

results are

 





 

 

 

l7

311 32W aw

E =— -x —2—+l(—)2
ll 3 2 I

3x 3x1 3x

1

3v 32w 3w 2

E = ___ ' X + —(-—)
22 3 2 2 '

8x2 8x2 8x2

aw 3w
1

E33=§[(——)2+ (—)21 ,
3x 3x

1 2

2

3u 3v 3 w 8w 3w

E12 =—(——+—'- 2X +——-—) I

3x2 3x1 Bxlaxz 3x1 8x2

8v 3w 82w aw au aw

E31-%(-__.x3 ___L_
8x1 3x2 axlax2 3x2 3x1 8x1

32w 3w

+ x ———q

3 2 ’

3x1 3x1

1 au aw 32w 3w av aw

E23 = §(— ——— ——— + x3 -—— - ___ ___

3x2 8x1 3x13x2 3x1 3x2 3x2

32w 8w

+ x3 6x 2 ;——) . (2.1.26)

2 x2

Note that E23 and E31 are recorded here although each is

of the order 0(a3/L3).

The orders of magnitude of the various stresses,

found by substituting (2.1.26) into (2.1.24), are

_ _ 2 2

S11 ‘ S22 ‘ S33 " S12 ‘ O‘Na /L )

= s = 0(Na3/L3) (2.1.27)
S23 31
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where N is a quantity of the same order as the Lamé con-

stants. However, conventional plate theory requires that

$33, as well as $23 and S31, be vanishingly small. In

other words, S33 cannot be greater than S or S
23 31’ 8°

s33 : 0(Na3/L3) . (2.1.28)

To remove the discrepancy in S33 contained in (2.1.27) and

(2.1.28), appeal directly to the x3-component of the equa-

tions of motion, equation (2.1.20).

The expansion of (2.1.20) shows that each term contains

a stress component. All the terms that do not contain S33

are of the order 0(Na3/L4). Reasonably, the S33-term

should be neither superior nor inferior to the other terms.

 

Consequently,

8833 Na3

= 0‘T’
6x3 L

which implies that

533 = 0(Na4/L4) . (2.1.29)

Thus,theorders of magnitude of the six stresses are

assumed to be

_ 2 2
811 — 822 — $12 — 0(Na /L ) ,

_ 3 3
S31 - 823 — 0(Na /L ) ,

533 = 0(Na4/L4) . (2.1.30)

By means of assumptions (2.1.21), (2.1.22), (2.1.23),

and (2.1.30), it is now possible to re-examine the
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equations of motion, (2.1.14), (2.1.15), and (2.1.20)

term by term, thereby identifying the high order terms.

Retaining terms of order 0(Na2/L3) from (2.1.14) and

(2.1.15), and terms of order 0(Na3/L4) from (2.1.20),

reduces the equations of motion ot the following forms:

2
38 BS BS 3 u

L.L._31_.fl-p[ 2

3X1 3x2 3x3 3t

33w

' X I (2.1.31)

3 3x13t2

as12 3322 32 32V
+ + + f2 = p[__§

3X1 3x2 3x3 3t

33w

’ X (2.1.32)

3 3x23t2

3w 3w 3 3w

———[S ——— + s ——— + s ] + ———[s .———
ll 12 13 1

3x1 3x1 3x2 3x2 3x1

3w 3 3w 3w

+ S -—— + S ] + ———[s ——— + s ——— + s ]

22 23 13 23 33

3x2 3x3 3x1 3x2

32w

+ f = p——— . (2.1.33)
3 3t2

Subsequently, these equations are called the first-order

equations.

2.2 Formulation of the Equations of Motion in Terms of

Displacements and Applied Loads

The most common form for plate equations is in terms

of the plate stresses:
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a/2

Mij = I x3sijdx3 (2.2.1)

-a/2

a/2

Ni]. = J' sijcilx3 (2.2.2)

-a/2

Integrating equations (2.l.21), (2.1.32), and (2.1.33) over

the plate thickness yields the following equations.

For example, consider the integration of (2.1.31)

a/2

35 BS 35

(_—ll + ——3l + ——3l + f )dx

3 a 3x 1 3
x1 X2 3

-a/2

' a/2

32u 33w

= p(——— — x ——————)dx

3t2 3 3x13t2 3

—a/2

but,

a/2 a/2 3N

BS 3

11 dx = ___ 5 dx = 11 ,

3 11 3

3X1 3X1 3X1

—a/2 -a/2

a/2 a/2

3521 3 _ 8N21
dx = —— S dX — I

3 21 3 3

3X2 3X2 X2

-a/2 —a/2

a/2

BS
31 a/2

—— dX = [S ] I
J 3x3 3 31 _a/z
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a/2

I fl dz = Fl ,

-a/2

a/2

2

3 u 32H a/g 32H

0— dx = p—— [x ] pa—
2 3 3t 3 —a/2 3t2 I

-a/2

a/2 a/z

33w 3 w x 2

ox dx — p —] = 0 ,3 2 3 2

3xl3t 3xl3t 2 —a/2

-a/2

(2.2.3)

so the resulting equation is

3Nll 3N21 a/2

———— + + [s31]_a/2 + F1

3x1 3x2

32u

= pa—Z .
(2.2.4)

3t

Similarly, (2.1.32) becomes

3N12 3N22 a/2

———— + ———— + [ 32] /2 + F2

—a
3x1 3x2

32v (2 2 5)= pa o 0

3t2
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3w 3W a/2

+ [S -—— + S + ] F

313x 323x 33 —a/2 3
l 2

32w

= paatz ~ (2.2.6)

Next, multiply each term of (2.1.31) and (2.1.32) by

x3, then integrate with respect to x3 over the plate

thickness to find the two equations

 

 

3M 3M 2

11 12 a/

_——— + + [x S ] - N + m

3x 3x 3 31 —a/2 13 l

1 2

a3 33w

= -o—— ————75 (2.2.7)

12 3xl3t

and

3M 3M a/2

21 + 2 + [X3332] a/2 23 m2
3x1 3x2

a3 33w (2 2 8)

= _DI2 3 3t2 ' °
X2

where

a/2

mi = J x3fi dx3

—a/2

Solve (2.2.7) and (2.2.8) for N13 and N23; substi-

tute these results into (2.2.6), and rearrange the terms.

This leads to the equation
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3 M11 3 M12 3 M22 3 3W
2 + 2 + 2 + ___(Nll__ )

3xl 3x13X2 3x2 3x1 3x1

3 3w 3 3w 3 3w

+ -——(N ) + ——-(N ) + ———(N )
22 12 12

3x2 3x2 3x1 3x2 3x2 3x1

+ ——— {[x S ] } + {[x S ] }

a 3 l3 /2 3 23 /2

[ 3w 3w a/2 3m 3m2

+ S -— + S ~-— + ] + + _—

13 x 23 X2 33 -a/2 8x 3X

2

32w a3 34w a3 34w

+ F pa — p— — p—

3 at2 12 3x 231:2 12 3x at2

(2.2.9)

The first-order equations of motion in terms of plate

stresses are (2.2.4), (2.2.5), and (2.2.9).

The advantage of the plate-stress equations is

immediately noticeable-—the boundary conditions on stress

are incorporated into the equations of motion.

In the initial configuration, the upper and lower

faces (x3 = ia/2) are free from shearing effects. However,

there are loads which are normal to the plane of the plate.

2 3w 3w a/2

/ [S3l___ + S ———] = 0

a/2 _

a/2 ' 32 _a 2
3x1 3x2 /

a

[S31]_a/2 = [S32]-
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and

a/2

[333 -a/2 =

Accordingly, the plate stress equations reduce to

 

2
3N 3N 3 u

11 12

— + — + F1 = pa—2 . (2.2.10)
3x1 3x2 3t

3N21 3N22 32v

— + F2 = oa—2 . (2.2.11)

3x1 3x2 3t

2 2 2

3 M 3 M 3 M 3 3w
11 + 2 12 + 22 + (N11 )

3x12 3x13x2 3x2 3x1 3x1

3 3w 3 3w w

* Q‘szr’ " T‘NHJ’ * 7mm? * P
2 2 l 2 2 l

3ml 3m2 32w a3 34w

+ + — + F3 = pa—z — —( 2

3X1 3x2 3t 12 3x1 3t

34w

+ ) (2.2.12)

3x223t2

The next step is to eliminate the plate stresses in

favor of the displacements. This goal is achieved through

the use of the constitutive relations (2.1.24), the strain

displacement equations (2.1.26) and the plate stress

definitions (2.2.1) and (2.2.2). First, change E33,

(2.1.26), to bring it into agreement with assumption

(2.1.30). From equation (2.1.24),
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S33 = A(Ell + E22) + (A + 2u)E33 . (2.2.13)

Therefore, following the assumption for S33 in (2.1.30),

E E - __A____(

33 1 + 2p + E
E11 22) (2.2.14)

The three required stresses, found by substituting (2.2.14)

into (2.1.24), are

 

E vE

s = —————— E + ~————— E ,11 1 _ v2 11 1 _ V2 22

vE E

S = —————— E + E ,22 1 _ V2 11 1 _ v2 22

E

s = E
12 1 + V 12 . (2.2.15)

where E is Young's modulus and v is Poisson's ratio.

Furthermore, substituting (2.1.26) into (2.2.15) defines

the three significant stresses in terms of the displace—

 

 

ments

E 3u 32w 3w 2
s [ — x + -(——-) 1
ll 2 3 2 2

1 - v 3x1 3x1 3X1

2

VB 3v 3 w 3 2

l - v 3x2 3x2 X2

2
E 3V 3 w l(3W )2]

s [——— - X + —
22 3 2 2

l - V 3X2 3X2 X2

VE 3U 32W 3 2

+ [— - X3 2 + §('__‘) ] I
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E 3u 3v 32w

5 = L——— + ——— — 2x12 3
2(1 + V) 3X2 3X1 Bxlaxz

3w 3w

+ "““‘—l 2 (2.2.16)
3x1 3x2

whereupon the plate stresses (2.2.1) and (2.2.2) can be

defined as

 

 

Ea
3w 3V

N {[—+$(——)21 + v[—+l(——)21},ll 1 _ \)2 2 3X 3 2

l 1 X2 x2

Ea 3
3u

N22 2{[— + %(—)21 + v[— + §(—)21},
l "' V X2 X2 3x1 X1

Ea 3u 3v 3w 3w

N12 = "“““[“— + “‘7 + "“ ___] .
2(1 + v) 3x2 3x1 3x1 3x2

Ea3 32w 32w

M = ' ——————-——[-—-— + V ] I
ll 2 2 2

12(1 - v )3x1 3x2

Ea3 32w 32w

M = - —-—-————-—[-———
+ V—-—-] I

22 2 2 2

12(1 — v ) 3x2 3x1

Ea3 32w

M = — . (2.2.17)

12 12(1 + v) 3x13x2

Using (2.2.17) in (2.2.10), (2.2.11), and (2.2.12)

leads to the displacement equations of motion



  

              

 

 

2
3 u l - v azu l + v 82V

R[ 2 + 2 +

3x1 2 3x2 2 8X18X2

3w 82w 1 — v 82w 1 + v aw
+ ———4 2 + ———7) + ———

3x1 3x1 2 3x2 2 3x2

32H

+ F — pa— ,

1 3t2

32v 1 - v 3 V l + v azu

R[ 2 + 2 +

3x2 2 3x1 2 axlaxz

3w 32w 1 - V 32w 1 + v 3w

+ ———( + 2) + ———

3x2 3x2 3x1 2 3x1 3x

32V

+ F = p&- I

2 3t2

34w 234w a a { a
-D( + + ) + ——- R[-——

2 2 4

3X1 8X1 3x2 3x2 3x1 3x

 

 

2
8x1 8x2 8X2 3X1

all

+ ———{R[-—— + %(———)2+ v——— + §(-——)

3x2 3x2 3X2 3X1 3x1

3 1 — au 3V 3W 3W 3W

+ ———{( )R[——- + ——- + -—- ———1———}
3x1 2 3x2 3x1 8x2 8X1 3X

3 1 — v 8v Bu 8w 3w 3W

+ ———{( )R[——— +--+ -—'———}——4 +
8x2 3X1 8X2 3X1 3x2 3Xl
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2 3 4
amz 3 w a 3 w

3x2 3t 12 3x 3t

1

34w

+ ) , (2.2.20)

axzzatz

in which R = Ea/(l - v2) and D==Ea3/12(l - v2)

These three equations govern the motions of the plate.

In the following section, the body—force will be

defined and each of the body-force-terms used above will

be evaluated.

2.3. Magnetoelastic Plate Equations

Details ontflmaelectromagnetic theory of moving bodies

can be found in many texts. Here Sommerfeld [15], from

which a few ideas are transcribed, is used as a reference.

To an observer moving with the body, and to one who

is fixed, different values are witnessed for the same

electromagnetic quantity. The relationships between

fixed-frame and moving-frame values for the several items

are

§'=§+yx%

2=§-YXE~?

F=P+ngka

E=§-yx9'

€=€-oyl
p . = 0 (2.3.1)



  



a”, fi ___ ‘ _ ’:'_' . ,_ .:‘_'.'._ _._...,_._. _n,-=.:, . ..
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Equations (2.3.1) are the non—relativistic
forms of those

quoted by Sommerfeld
(vz/c2 <<l). Primes denote quantities

measured in the moving frame. The symbols are conven—

tional: E is the electric field, 9 the electric displace—

ment, E the magnetic induction, E the magnetic field,

9 the conduction current density, pe the charge density,

and Y the particle velocity.

A fundamental supposition is that the electromagnetic

constitutive equations evaluated in the moving body are

identical to the familiar static body-equations; so

D' = eE'

B' = KH'

J' = OE'
(2.3.2)

In these relations, a, K, and 0 are scalar constants* and

they respectively represent the permittivity, permeability,

and conductivity of the body. Substituting (2.3.1) into

(2.3.2) produces the constitutive equations applicable to

the fixed frame of reference,

D = 8E + (BK — eoK0)Y x g,
~

e
m

= Kg — (6K - 80K0)v x E,

(2.3.3)2
C
4

= p v + 0(E + v x B),
e~ ~ ~ ~

where so and K0 are the free-space values of e and K.

\

*The assumptions of homogeneity and isotropy apply to

electromagnetic properties also.
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Maxwell's equations are unchanged in transforming from

the moving to the fixed frame of reference. They are

3B

-V x E = —3- ,

” at

812
V x H = —— + J ,

~ 3t ~

Vog=per

V - B = O .
(2.3.4)

~

In magnetoelasticity, the magnetic and electric

fields may be expressed as

H=H+h,
~ ~O ~

E = e (2.3.5)0

~

E0 is the large, static, uniform field which exists when

the body is stationary. The motion of the body induces

fields h which is presumed to be small with respect to

go, and e which is presumed to be small in the sense

defined in section 2.4.

The purpose of this section, to introduce the effect

of the electromagnetic system on the mechanical system,

can now be accomplished. Recall from the introduction

that this interaction is taken to be represented suffi-

ciently by the Lorentz body—force,

f = peE + J x B (2.3.6)

Substitute (2.3.3) and (2.3.5) together with the velocity

determined from (2.1.7), (2.1.8), and (2.1.9) into (2.3.6).
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Reduce the resulting expression by dropping all terms which

are

NOW

products of e, h, u, and their derivitives; whereupon

body—force becomes

2 2
= + V' " ' V

f KO? X go OK (~ §O)§o 0K (go Eo)~'

(2.3.7)

the various body-force-terms can be evaluated; they

    

2 2 Bu

Fl = aKo{(e2H03 — e3H02) + K[(H01 - H0 )g;

3v 3w

+ H H —— + H H ——]} ,
02 01at O3 01at

Bu

F2 = aKo{(e3H01 - elH03) + K[H01H02;;

3v 3w

2 2
+(H —H )——+HH_]}I

02 0 8t 03 02at

an

F3 = aK0{(elH02 — e2H01) + K[H01H03;;

3v 3W
2 2

+HH—-+(H -H)—]},
02 03at 03 0 3t

K20a3 2 2 32w 32w 1

m ==_ [(H - H ) + H H ___—-

l 12 01 0 3x 3t 02 013x at
1 2

2

K20a3 32w ( 2 H 2) 3 w ]

m=— [HH—‘II-H — '

1 02 02 0
2 12 0 axlat axzat

(2.3.8)
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The substitution of (2.3.8) into the equations of motion

(2.2.18), (2.2.19) and (2.2.20) yields the first order

magnetoelastic plate equations:

     

 

 

 

    

 

  

 

32u l - \) 82k: 1 + \) 32v 3w 32w
+

R[ 2 + 2 ___“_ + __'( 2
3x1 2 8x2 2 3X18X2 8X1 8x1

1 - v 32w 1 + v 3w 32w

+ 2) + —- --—-]

2 6x2 2 3x2 axlaxz

+ aKG(e H — e H ) + aK2 [(H 2 — H 2)Bu
2 03 3 02 0 01 o ;;

3v 3w 32u

+ H H —— + H H ——1 = pa——— , (2.3.9)
02 Olat O3 01at 8t2

32v 1 - v 82v 1 + v Bzu

R[ 2 + 2 + _—

sz 2 3x1 2 Bxlax2

3w 32w 1 — v 32w 1 + v 3w 82w

+ ———( 2 + 2) + -—— -———-—]

3x2 3x2 2 3x1 2 3x1 axlax2

2 Eu

+ aKo(e3H01 - elH03) + aK O[H01H02;;

8V 8w 32v

2 2
+ (H - H )—— + H H ——] = oa——-

02 0 at 03 02at at2 , (2.3.10)

4 4 34w

  

au 1 3w 2

'1“ 4 + “—27—? 4) +—{R[— + 2""

8x1 8x1 8x2 8X2 8X1 3x1 3x1





 

   

33

+ V— + §(——)2]——} + ~{R[_ + 1(__)2

3X 3x 3x 3x 3x 2 3x
2 2 1 2 2 2

3u v 3w 2 3w 3 1 - v 3u 3V

+v—+§<—>1—1+~u )R[_+_
3x1 3x1 3x2 3x1 2 3x2 3x1

3w 3w 3w 3 - v 3v 3
+——]—}+—{(

)R[—+—
3x2 3x1 3x2 3x2 3x1 3x2

3W 3W 3W a3K20' 2 2 3

+ ‘ —]*} ' “H01 ‘ 1L10)3x1 3x2 3x1 12
3x1 3t

33w 3

+ 2H H ———————— + (H - H ) ]
01 02 02 0 23x13x23t

3x2 3t

2 3u

+ aKo(elH02 - eZHOl) + aK 0[H01H03;;

3v 2 3w 32w

+ H H —— + (H - H )——] + P = pa———
02 03 t 03 0 t atz

a3 34w 34w

‘ (2.3.11)
 - p_( . + I -

12 3x123t2 3x223t2

These equations show that the displacement components

are coupled not only to each other, but also to the elec—

tromagnetic fields. Thus, a complete description of the

behavior must include the plate equations (2.3.9), (2.3.10),

and (2.3.11) together with Maxwell's equations (2.3.4)
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suitably altered by (2.3.5). As it stands, the first

order theory remains intractable for the present purpose.

2.4. Simplification of the First Order Theory

It is assumed in (2.3.5) that the motion of a con-

ductor through a strong, static, magnetic field induces

two very much smaller fields e and h. Equation (2.3.7)

indicates that the only feedback from the electromagnetic

system to the plate is attributable to the e-field through

the eHo-term. The e-field will now be assumed to be small

so that this term may be dropped. Justification for the

omission is based upon a conclusion reached by Dunkin and

Eringen, "that the large, static, electric field as

studied here does not introduce a significant coupling

between dynamic, electromagnetic effects and elastic

effects". Thereby, Maxwell's equations are uncoupled from

the plate equations, and the first—order, magnetoelastic

plate theory is completely contained in the equations of

  

   

 

motion.

2

32u l - v 32u 1 + v 32V 3W 3 W

R[ 2+ 2+ ———+——(

3x1 2 3x2 2 3X13X2 3x1 3x1

2 2

1 — v 3 w l + v 3w 3 w
2 2

+____ )+__—--————]+aKCI[H

a 2 2 3x 3x3x 01
2 x2 2 1 2

23u 3v 3w 32u (2 12)

-H )—+H H -——-+H H ——]=pa——2-, .3.

0 3t 01 023t 01 033t 3t
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32v 1 - v 32v 1 + v 32u
R[ 2 + 2 + ___——

3x2 2 3x1 2 3xl3x2

3w 32w 1 - v 32w 1 + v 3w 32w+ ———(———§ +
2) + ___ ]3x2 3x2 2 3x1 2 3x1 3x13x2

3u 22 2 3v
3w+ aKZOIHOZHOlg— + (H - H0 )g_ + HOZHOB;:1

t

32v

= Da——§ ,

(2.3.13)3t

34w 34w 34w 3 3n 3w 2—D( 4 + 2———§———§-+ 4) + ———{R[——— + —(———)
3x1 3x1 3x2 3x24 3x1 3x1 3x1

3V 3W 2 3W
3W

+ v——— + v(___)]___} + ———{R[-—— + —(----)2
3x2 3x2 3x1 3x2 3x2 3x2

au aw 3w 3 l - v 3u 3v
+v— + 2(-—)21—1+ —{( m— + —

3x1 3x1 3x2 3x1 2 3x2 3x1

3w aw 3w
V 3V 3u

+———1—}+——{( )R[—+—-
3x1 3x2 3x2 3x2 2 3x1 3x2

33w 3w 3w a3K20 2 2 3 W

+———]— ' [(HOl ‘Ho )3 at
x

8x1 3x2 3x1 1
1

33w
33‘”+ 2H H + (H - H0 ) 101 023x 3x 3t 02 3X2 3t

Bu 3" 2 2 3W
2

__
- H )——]

+ a O[H H —— + H H + (HK 01 03at 02 o3at 03 0 at

 



 

 
32w a3 34w 34w

+ p = pa—— o—( + ) . (2.3.14)

3t2 12 3x123t 3x223t2

In the ensuing chapters, this theory is used to study

the response of the plate to a particular excitation P.



III. RESPONSE OF A LINEAR MAGNETOELASTIC PLATE TO

A TRAVELLING LOAD-—GENERAL CONSIDERATIONS

3.1. One—Dimensional Theory

Assume that the load acting on the lateral surfaces

of the plate is a function of X1 and t only:

P = P(xl, t). (3.1.1)

Consequently, all the xz—derivatives in equations (2.3.12),

(2.3.13), and (2.3.14) may be omitted. The resulting

equations of motion are

  

 

 

 

 

32u 3w 32w 2 2 2 3u

R( + ——— ) + aK o[(H -H )——

a 2 a 3x 2 01 0 3t
x1 x1 1

3v 3w azu )

+ H H _ + H H _] = pa , (3.1.2

02 013t 01 0331: 31:2

1 - v 32v 2 3n

( ) R 2 + a" “[H01H02"
3x 3t

1

av 3W 32V

2 2 _ (3.1.3)
+ (H - H )—— + H H ——] — pa——— ,

02 0 3t 03 0231: 3t2

34 a 3u 3w 3w
W 1 2

-D 4 + R———{[—— + §(———) 1?}

3x1 3x1 3x1 3x1 xl

a3K20 33W 3u

 
2 2 2

[(H _ H )——————] + aK O[H H
01 0 3X128t 01 033t
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8V 2 2 6w 8 w

+ H H —— + (H — H )——] + P = pa———
02 033t 03 0 at at2

a3 34w

- D—— ——————— - (3.1.4)

12 axlzat2

Assume further that load P is a travelling load which

is moving in the x —direction with speed S. Specifically,
1

define

P(xl, t) = P(xl — St). (3.1.5)

For steady state solutions relative to the moving load, it

is possible to eliminate the two independent variables x1

and t in favor of a single moving coordinate

'r = x1 - St . (3.1.6)

Accordingly, the various differentiation operations become

 
3"“ dm

axlm dTm

an n dn

_— = (—S) _—

tn dTn

(m+n) d(m+n)

n
____———— = (-S) --———— (3.1.7)

axlmatn dT (m+n)

The equations of motion are no longer partial differential

eguations, but ordinary differential equations; they take

the form:
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2 2

(1—'—)u"+ ”S 22 w w [H — H )u'
pC 2 01 o

p p

+ HOZHOlv' + H03H01w'] = O , (3.1.8)

C 2 — S2 K208

( S )v” — ———— [H H u' + (H 2 — H 2 'c 2 pC 2 01 02 02 0 )V
p

+ H03H02w'] = 0,
(3.1.9)

52 wl'l' s2

-(1-—2)—— 2 2w"+—2{[u' +§(w')21w'}'
Cp 12 a Cp a

K208 H012 — H02 2

_ \ I" Ipc 2 2[ ( 12 ,a w + H01H03u

2 2 P+H H v' + (H — H0 )w'] + —————— = 0 (3.1.10)
02 03 03 pa3C 2

P

in which the classical wave speeds,

C 2 = E/p(l - v2).
P

cs2 = E/2p(l + v) (3.1.11)

are used to redefine the constants

D = (pa3/12)Cp2,

R = pan2 = [2pa/(l — v)]cs2 . (3.1.12)

Before proceeding, it is reasonable to rid the theory

Of any forthcoming dimensional difficulties by nondimen-

sionalizing the variables in the following manner. Let
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U = u/a ,

V = v/a ,

W = w/a ,

Hi = Hoi/E '

C = T/a . (3.1.13)

This last equality defines the differentiation operation

n

d 1 an

In: a—H $5

The force-term P can be represented dimensionally as

2

[‘7] = {—2—} = [:fi/[EE] ;

therefore, the nondimensionalizing quantity chosen for the

force term is pCpZ, whereupon

2

H = P/pCp .

Now the first order magnetoelastic theory can be

written in its final form. The motion of a thin plate,

subjected to a moving load and a strong magnetic field,

is governed by the three coupled nonlinear ordinary

differential equations:

82 KZOsaEZ 2 2

n + l n _ ___ [(H _ H )Ul

(l - —§')U W W 2 1

0C

p P

u I = (3.1.14)
+ H2H1V + H3le ] 0 .

CS - $2 KZOSaEZ I 2 H2)V'

< 2 W" ' 72— IHlflzv + (H2 -
Cp 0 p

. = (3.1.15)
+ 113sz ] 0 ,



 
[
w
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52 WI!" 52

—(l - —2)—— — —2w" + {[U‘ + %—(W')2]W'}‘

c 12 c

p p

KZOSaEZ 2 2 w”'

————[—(H -H)-—+HHU'+HHV'
pC 2 1 12 1 3 2 3

2 2 ,

+(H3 —H)w]+I[=0. (3.1.16)

3.2. Perturbation Expansions

Subsequently, the nondimensionalized travelling load

H in (3.1.16) will be taken as

H = -€6(c) (3.2.1)

where 6(g) is the Dirac delta function, and e, the dimen—

sional load intensity, is a small perturbation parameter.

The minus sign indicates that the load acts in the negative

x3—direction.

Equations (3.1.14), (3.1.15), and (3.1.16) suggest

that each of the deflections U, V, and W is of the order

8; thus the following power series expansions are intro—

duced

w i
U: EU. {-3 I

—1

i=11

v= °§ v 51 ,
. 1—1

1:1

Furthermore, there also may be the necessity, which will

be explained shortly, to expand the load speed as the

Power series
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s = E Sis . (3.2.3)

Substitute these series into the three equations of

motion,(3.l.14), (3.1.15) and (3.1.16), and collect

terms of similar power in e. The resulting equations are

 

 

 

 

 

1 (<2an2

. _ ' '=
e . Lu(Uo) 2 {Hlesov0 + H1H3SOW0 } o ,

pC

p

KZOaEZ

LV(V0) - 2 {HZHlSoUO + H2H3SOWO } = o ,

DC

9

2 ,2

KGa:

_ I I

Lw(Wo) 2 {H3H150U0 + H3H250V0 }
pC

P

-6=0] (3.2.4)

2 ,2
2 KOa: I SW'}

8 : Lu(Ul) — QC 2 {HlHZSOVl + HlH3 0 1

2 1
_KOa:2{

2-H2)SUI+HHSVI

’ 2 (H1 1 o 1 2 1 0
pc

9

I}+Efgi];[]ll_wlwll

+ H1H3SlW0 c 2 0 0 0

p

2 22
K can

I W '

Lv(vl) - 0C 2 {HzHlsoUl + H2H3so 1 }

 

2 ,2

K 0a: 2 2 . + H H s w '
2 {(Hz ‘ H )51Vo 2 3 1 o

DCp
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zsosl

l l

+ HZHlSlUO } + ' ,

2 -2 P
K 0a:

_ l

LW(W1) 9C 2 {H3H150Ul + H3HZSOV1'}

KZOaEZ H12 -

= _
Ill

'

pC 2 { ("_I;'"‘)51Wo + H3H281Vo

p

+ (H 2 — H2)S w ' + H H s U '} — (U "w '

3 1 0 3 1 1 o 0 o

25 s s s

l l '

c 6C

9

2 _2
0a:

_ . ll

Lu (U2) 2 {HlHZSOVZ + H1H3SOW2 ]'

QC

9

KZCaEZ 2 2

u.—

—
I

'

'
— pC 2 {H1 H )(SlUl + SZUO ) + H1H2(Slvl

p

25051
'

' , II

+ szv0 ) + H1H3(SlWl + 82w0 )} + c 2 o

p

_ l n _ I "

w0 w1 W1 W0 ,

KZOaEZ

LV(V2) QC 2 {H2H180U2 + H2H3SOW2 }

2 _2
K can ' | + H 2 H2)(S V I

_ _—E_§_{H2H1(S1U1 + SZUO ) ( 2 — 1 1
p p

1 2

l ' + —— V ” S
+ SZVO')-+H2H3(SlWl + SZWO )} c 2‘ o 1

P

II+ 2V0” 5152 + 2V1 8081) I
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2 12
K 0a:

{H3HlSOU2' + H3H250v2 } 

KZOaEZ H 2 — H2

 "' III
(81W1 + 32w0 )

l

+ H3Hl(SlUl + SZUO' ) + H3H2 (SlVl + SZVO')

2

1
2 2

+ — ' .(H3 H)(SlWl +szow')}+c_2[wolsl

2
 

l

+ II II _ I I
2W $052 + 2Wl SOSl] 12C 2(W0" Sl

+ 2 Im IIII _ I II I
W0 SOS + 2Wl Sosl) [Wl U0 + W0 U1"

 

 

 

2

+ U IW II + U 'W H + 3(W l)2W ll]

0 l 1 o 2 o 0 (3.2.6)

4
e z .....................

where

802 d2 Kzoa:2 2 2 d

Lu = (l — ——2-)——2' - 2 (H1 — H )SO — (3.2.7)

C d C dp C p P C

C52 - 502 d2 KZOaEZ 2 2 d

Lv = (—————§———9——§ ‘ 2 (H2 - H )80 ——(3.2.8)

c dc pC dc

P

S 2 d4 S 2 d2 KZOaEZ

L__ (1_L)___L__+
w I2 2 4 2 2 2

d C d CCp C p C D p

H12 - H2 d3 2 2 d

{(————)80 ——§ - (H3 - H )80 —} (3.2.9)

12 dc dC
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The above equations are simplified if the load speed

is not expanded. These simpler equations are achieved by

setting Si = 0 for if; and S0 = s in (3.2.4)—(3.2.9):

 

 

 

 

 

 

1 KZOaEZ

. _ I l ___
e . Lu(U0) 2 {HlesVO + HlH35W0 } 0

pc

p

2 ~2

K oa:

_ I I =
LV(V0) 2 {HzHlon + H2H3SW0 } 0

pC

p

2 2

K an

Lw(W0) — ———§— {H3HlsU0 + H3H25V0 } — 6 = 0

9C

p

(3.2.10)

2 12
2 K 0a: I l}_ W 'W H

5 1 Lu(Ul) - 2 {HlHZSVl + H1H3sz —-- 0 0

pc

p

2 1
K 0a: I '} _ 0

LV(V1) - 2 {HzHlsUl + H2H3sz _

pC

p

2 -2
K 0a: ' I}

Lw(Wl) — 2 {H3HlsUl + H3H25Vl

pC

p

= _ - ' n (3.2.11)
(U0"W0 + U0 W0 )

2 12
3 K 0a: ' H H W I}

8 : Lu(U2) — 2 {HlesV2 + 1 3s 2

pC

p

_ _ I II_ _WOIWlII W1 W0

2 12

K 0a:

 

I = 0

Lv(v2) — QC 2 {HzHlsUz' + H2H3sW2 }
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KZOaEZ

Lw(W2) — 2 {H3HlsU2 + H3HZSV2'}

pC

p

=_ I II I II I H l l[wlu0 +W0U1 +U0Wl +UlW0'

3 I 2 H

+ 2(w0 ) wO ] (3.2.12)

Lu’ LV and Lw are unchanged.

Through the investigation of the linear theory,

encompassed by both (3.2.4) or (3.2.10), certain load

speeds (critical speeds) may be found for which the dis—

placements become unbounded. For load speeds which lie

outside the neighborhood of a critical speed, equations

(3.2.10), (3.2.11) and (3.2.12) adequately describe the

motion. However, if a solution is to be continued up to

and perhaps beyond a critical speed, recourse must be taken

to the more complicated equations (3.2.4) to (3.2.9).*

3.3. The Linear Solutions as a Green's Function

The linear theory expressed in (3.2.10) is not in its

most convenient form. The notation is simplified somewhat

by making the following substitutions:

A = l — sz/Cp2 ,

2 2-2

Bl - K Gas /pCp ,

 

*Yen and Tang developed this procedure [19].
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= H.H. ,

13 l J

D = (c — s2)/c 2 ,
P

2
S = s/C ;

(3.3.1)
P

whereupon the three equations of motion become

II _ I I I =
AU BlS(ClU + ClZV + C13W ) 0 , (3.3.2)

II _ I I I =DV BlS(C12U + CZV + C23W ) 0 , (3.3.3)

A Blscl
- —w"" + ——w'" + (A-l)W" - B S(C U'

12 12 1 13

I ' =

o a
+ C23V + C3W ) 6(c) . (3 3 4)

Equations (3.3.2), (3.3.3) and (3.3.4) can be viewed

in two ways, as equations either in U', V' and W' or in

U, V and W. Subsequently, any problem for which solu-

tions in the primed variables are sought, will be identi-

fied by the prefix, prime, otherwise the prefix,

displacement, will be used. The absence of nonprimed

terms in the three equations of motion creates difficul-

ties, which shortly will become evident, that prevent the

solution-technique from being used directly to find the

displacement—solutions. However, any prime solution can

be integrated to yield a correspOnding displacement-

solution; so, hereinafter, emphasis is directed towards

finding the prime solutions.
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To complete the description of the prime problem,

require the solutions to be bounded over the entire range

of the independent variable, that is

U', V', W'<<M in - m < c < w (3.3.5)

where M is some finite number.

In Appendix I, the details for finding the solution

to the equations of motion are developed; the linear

solution constitutes the Green's function for the govern-

ing equations. It is shown there that U', V' and W' are

the solutions to the homogeneous differential equations:

AU" - BlS(CIU' + C12V' + C13W ) = 0 , (3.3.6)

_ I I I = . .
DV" B18(C12U + CZV + C23W ) 0 , (3 3 7)

B SC

- ———wA "" + 1 1 m + (A —1)w" — B S(C U'
12 1 13

12

I I = (3.3.8)+ C23V -+C3W ) 0 ,

which satisfy both the boundary conditions (3.3.5) and

the five continuity and jump conditions at c — 0:

[U'] = [V'] = [W'] = 0 , (3.3.9)

[W"] = 0 ' (3.3.10)

m _ _ 3.12 (3.3.11)
[W ] — A -

The bracket-notation is explained in Appendix I.

Substituting the solution

U' rl

(3.3.12)

V' = r2 e

W' r3
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into equations (3.3.6), (3.3.7) and (3.3.8) yields a set

of algebraic equations in the unknowns r1, r2, r3 and A.

These equations can be written in the matrix form

AX - BlSCl, -BlSC12 , —BlSCl3 r1

-BlSC12 , DX - BlSCZ' —BlSC23 r2 = 0.

3 2
-A) /12 + BlSClA /12

‘3 SC , -B SC , r

1 13 1 23 + (A—1)1 — B sc 3
l 3

(3.3.13)

Nontrivial solutions for the amplitude vector,

(r1, r2, r3), exist if the value of the determinant of the

coefficient matrix is equal to zero. The result is the

fifth-order polynomial equation in A,

4 3 2 =
A(boA + 4blh + 6b2A + 4b3A + b4) 0 (3.3.14)

in which

be = -A2D/12,

2
4bl = —BSA[2(m2 + n2)D + (22 + n )A]/12 ,

2
6b2 = -SZ{AD + B2[£2m2 + 2n2)A + (m2 + n2) 01/12},

2
4b3 = le—stzm2 + n2)n2/12 + (22 + m )DA

2
+ (22 + n2)A(A-l) + (m2 + n )(A—l)D] ,

b4 = B282[£2A + m2D + n2(A—l)] . (3.3.15)

The substitution B = BlH2 has been made in these expres-

sions. The direction cosines, 2, m, and n, 0f the magnetic

field vector also have been introduced. Note that a
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complete quintic would contain the term, b5. Here b5

unexpectedly is zero--an important fact, since it assures

the existence of at least one zero root. Presently, this

zero root will prove to be a hindrance to the analysis.

The components of the amplitude vector can be deter—

mined from (3.3.13). For example, the algebraic expres-

sions for rl/r3 and rZ/r3, found by solving the first two

equations, are

rl/r3 BS £n(AD + BS)/d

rZ/r3 = BS mn(AA + BS)/d (3.3.16)

where

d = 11.13)2 + BS [(12 + n2)A + (m2 + n2)D]A

+ BZSZD2

Of course, each distinct value of A generates a distinct

amplitude vector.

At this point, the conventional procedure halts and

some rather less conventional steps are taken. For the

sake of clarity, these will be illustrated now.

Suppose all five values of A are nonzero and-distinct.

Let ll be real and positive; let A2 and K3 be complex

congugates with positive real parts and let A4 and A5

be real and negative.

The solutions for U', V', and W' consist of two parts.

One portion applies to the range —w < C < 0 and the other

portion applies to o < q < m. In other words, there is a

positive portion and a negative portion to each solution.
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The boundedness—condition, (3.3.5), assigns each exponen—

tial factor to one portion or the other; all factors with

exponents which have negative, real parts belong to the

positive portion; the remaining factors, all of which

have exponents with positive, real parts, make up the

negative portion. Thereby, it is certain that U', V',

and W' are bounded within each range, and they are

A C A C A C
1 2 3

Fle + F23 + F3e ;<0

W' = A42; A52; (3.3.17)

>0F4e + Fse C

115 A2C 13; <0
rllFle + rleze + rl3F3e ;

— 3.3.18

U. _ r F eA4C + r F eASC C>0 ( )

l4 4 15 5

A r A A c

l 3 <0erFle + rzzee + r23F3e Q

_ (3.3.19)

V. - r F eA4C + r F eASC ;>0

24 4 25 5

The F's remain to be determined.

Application of the continuity and jump conditions

yield the five equations

Fl + F2 + F3 = F4 + F5 r

= + F

r11F1 + F12F2 + r13F3 r14F4 r15 5 '

= F + r F ,

r21F1 + r22F2 + r23F3 r24 4 25 5
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AlFl + A2F2 + A3F3 = A4F4 + ASFS,

A 2F + A 2F — A 2F — A 2F - A 2p = -12/A
4 4 5 5 l l 2 2 3 3

(3.3.20)

from which the five unknown F—coefficients can be solved.

The solution is complete.

The solution—technique just illustrated is quite

straightforward. Unfortunately, for a true set of A—roots,

difficulties arise at one of the steps: the step at which

each exponential factor is assigned to either the positive

or the negative portion of the solution. This assignment

can be made only if the factor has an exponent with a non-

zero, real part. When the exponent is zero or purely

imaginary,* the factor is bounded and so valid in both

ranges. The result is more unknown F—coefficients than

can be determined from the five jump and continuity condi—

tions. Consequently, a unique solution cannot be found.

Each zero valued A-root creates two F—coefficients

which is one too many. This conclusion justifies the

decision reached earlier: not to pursue the displace—

ment—solution. The displacement—problem has eight A-roots,

four of which are zero. Values for the resulting twelve

F—coefficients cannot be determined because the correspond—

ing jump and continuity conditions supply only eight equa—

tions. Clearly, a displacement-solution cannot be written.

““—

*Later, it is proved that purely imaginary A—roots do not

occur.
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Even with the aid of the artifice introduced below, such

a task would be exceedingly difficult.

In general, the-prime A-polynomial has only one zero

root. It is true that there are special circumstances in

which multiple, zero roots arise, but these are not impor—

tant just now. The following ruse is used to circumvent

the zero-root—difficulty. Judiciously choose a certain

term and add it to the initial differential equations;

then analyze this new problem, henceforth called the

augmented problem, as was just illustrated. The purpose

of the added term is to remove the zero root. Consider

the technique as it is applied to the prime problem.

Augment (3.3.4) with the addition of a damping force

that is velocity—dependent; the differential equation

 

becomes

B SC

_ A ”ll 1 1 || _ H _ l

——12 W W' + (A l)W BlS(Cl3U

l l I:

+ C23V + c3w ) + W 6(C) (3.3.21)

in which n is an arbitrarily small, positive number. The

augmented problem consists of (3.3.2), (3.3.3), (3.3.21)

and (3.3.5). There is only one alteration to the homo-

geneous differential equations: (3.3.8) contains the

extra term, + nW'. The jump and continuity conditions

remain unchanged. Since the augmented A—polynomial con—

tains no zero roots, the augmented solution follows the
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same format as that outlined in the illustration. The

same conclusion is reached; bounded solutions are found.

Solutions to the prime problem can now be retrived.

They are the limits of the augmented solutions as n tends

to zero. However, in practice, the augmented solution is

never completed. Sufficient information is supplied by

the augmented A—polynomial to return to and to finish the

prime problem.

The augmented A-polynomial is just the prime A-poly—

nomial perturbed by a small amount. Four of the roots are

virtually identical in both problems and the fifth, small

root of the augmented problem can be made as close to

zero as desired. In fact, this fifth root is used to allot

a sign to the zero root. As n approaches zero, it defines

a set of either positive or negative numbers, the limit of

which is the zero roOt. Whatever the limit, whether 0+ or

0—, the zero root now can be assigned to only one portion

of the solution; thereby, the zero—root-difficulty is

overcome.

Although an overview of the solution-technique has

been presented above, all the details are missing. To

supply the details for the prime solution is the purpose

of the next chapter.

  





IV. SOLUTION OF THE PRIME-PROBLEM

4.1, General Comments 

The solution technique outlined in Chapter III is

deceptively simple. One step, the evaluation of the

A-roots, was taken for granted. Its tortuous course will

occupy the bulk of this chapter. Most effort will be

expended in analyzing the numerical solutions of the

A-quartic, the quartic part of (3.3.14).

Although general expressions for the four roots of

the A—quartic are available, they are so unwieldy as to

preclude their use. For instance, one step in the proce—

dure is to assign each exponential factor to either the

negative or the positive portion of the solution which

requires that the sign of the real part of each root be

established. To this end, the general expressions are

inefficacious.

The load speed S and the magnetic quantity B are the

two primary parameters. Together they define the operating

regime which can be viewed as the space encompassing all

positive values of S and B. The operating regime is

divided into different regions and within each region,

the character of the solution is different. Since the

character of the solution depends upon the behavior of the
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A—roots, then the determination of their behavior becomes

the pivotal task of the entire procedure.

Most of the attendant algebraic manipulations are

relegated to the Appendices.

4.2. Zero Root—-Augmented Problem 

Before delving into the analysis of the A—quartic,

first examine the zero root. Some of the changes in nota—

tion may appear to be capricious, but they all will be

justified eventually.

The behavior of the zero root is deduced from the

augmented A—polynomial of which the relevant portion is

2 2 + + C ( l 2

2 2 3 3 2

2 2

+ C3C12 + C2‘113 " 2C12‘313C23

— C1C2C3) — nB1282(C122 ~ C1C2) = 0 . (4.2.1.)

Make the C—substitutions defined in (3.3.1). Recognize

that the second term is the product of the roots of the

original quintic equation, one of which is zero; so this

term is zero. The remaining two terms give the expression

2
_nn

A = 2 - (4.2.2)
 

A22 + Dm2 + (A-l)n
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Reduce the denominator with the definitions for A and D,

again taken from (3.3.1). In addition, introduce the

terminology

X = S2 ,

_ 2 2 2 2 _ 2 2

x2 - 2 + m cs /cp 2 + m a (4.2.3)

where the symbol T = Csz/Cp2

In its final form, the expression for A is

2
A = —n n/(X2 - X) (4.2.4)

Taking the limit in (4.2.4) as n-+O specifies the sign

of the zero root at any point in the operating regime.

Since only the direction of the magnetic field enters, and

. < . . . . .

Since X - l, the limit 15 ea51ly interpreted. For
2

X < X2, the zero root is 0— and for X > X2, the zero root

is 0+. Subsequently, this information will be used.

4.3. Discriminant and Type of Roots

In the theory of algebraic equations [16], the dis—

criminant of a quartic is identified as

I3 - 27J2 . (4.3.1)

From (3.3.14), the symbols I and J are

2

I = b0b4 - 4b1b3 + 3b2 , (4.3.2)

b 3J = b 2HI - G2 - 4H3 , (4.3.3)
0 0

and the symbols G and H are

_ 2 3

G — b0 b3 - 3b0blb2 + 2bl , (4.3.4)

2

H — bob2 - bl (4.3.5)
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After I and J are further expanded* by using (3.3.15), it

is found that

I = IO + IlY + 12312 , (4.3.6)

3_ 2 3.
b0 J — J0 + JlY + JZY + J3Y , (4.3.7)

so the discriminant can be written as the sixth order

polynomial in Y,

6 5 4 3 2
C6Y + CSY + C4Y + C3Y + C2Y

ClY + CO . (4.3.8)

All the coefficients in (4.3.6), (4.3.7), and (4.3.8) are

functions of X only. These two variables

x = s2 y = 132 (4.3.9)

define a convenient coordinate system in which to View the

behavior of the X-roots and thereby, the solutions. Note

that the operating regime is the upper quadrant of the

X - Y plane.

The several regions in the operating regime are

delimited by a set of curves, the equal—root loci, which

are defined by the equation

I3 - 27.72 = 0 (4.3.10)

Replace the left side of (4.3.10) with (4.3.8) and solve it

numerically. From the resulting set of values (X, Y) are

*See Appendix II.
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constructed the equal—root loci, a representative example

of which is shown in Figure 4.1.* The Roman numerals

identify the three major regions each of which is divided

by the equal—root locus, X = 1; the part above X = l is

denoted by the letter b; the part below X = l by the letter

a. Subsequently, if the numeral is not accompanied by a

letter, then reference is being made to the total region.

The signs are those of the discriminant. From the defini—

tion (4.3.10), it is obvious that the sign of the discri—

minant can change only by crossing an equal-root locus;

therefore, the sign is constant within each region.

The sign of the discriminant is insufficient to deter-

mine the type of roots. Nevertheless, it is possible to

identify the type of roots without solving the quartic

equation, but to do so, the signs of other two quantities,

H and 3b J—ZHI, are needed. The signs of these three

0

quantities can be combined in several ways. Obviously, the

A-quartic can have real and complex roots which also can

be combined in several ways. There is a correlation between

the sign combinations and the type of root combinations.

Although the procedure being implied is not used, an idea

of this correlation is noted in Table 4.1.

 

*Throughout the remainder of the chapter, this example is

used for illustration.
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II. (+)

41".

 

 

Figure 4.1. Equal-root Loci (1 = m = n)
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Table 4.1. Table of Roots

 

 

 

{7 Sign of ———

3 2
I -27J H 3b0J-2HI Type of roots

+ + + or - 4 complex

+ — — 4 complex

+ - + 4 real

= 0 + or - + or — At least two equal

— + or — + or — 2 real plus 2 complex    
 

Based upon the sign of the discriminant, region II

contains either four complex or four real roots, perhaps

both choices coexist in adjacent, as yet unrecognized,

subdivisions; region I contains two real and two complex

roots, and region III has the same possibilities as

region II. To resolve the dichotomy in regions II and III

is quite easy.

Suppose both choices coexist in region II(b), for

example; then there must be a curve in II(b) across which

the change takes place. At all points on this curve,

there must exist two pairs of equal, real roots. In other

words, the curve is an equal—root locus. But all the

equal—root loci are identified on Figure 4.1; so this

extra curve cannot exist. It can be concluded that the

four roots are either real everywhere or complex
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everywhere within region II(b). To determine which choice

is valid, it is sufficient to solve the quartic equation

at one point. Calculation proves that four complex roots

do not occur. Similar reasoning applies throughout

regions II and III; thus, everywhere in these two regions,

the four roots are real.

It has been proven that only two of the three possible

combinations of root—types occur. Furthermore, only one

combination holds true in each region; these are summa—

rized in the following, short table.

Table 4.2. Type of Roots

 

Region ‘ Type of roots ‘1

 

II, III 4 real

I 2 real, 2 complex    

4.4. Root-Signs

The type of roots in each region have just been

identified, but the root—signs are still unknown. Unless

these signs are specified, there will result a plethora of

solutions. Consider, by way of example, region III.

Throughout this region, the l-quartic has four real roots.

These four, signed numbers can be combined in five differ—

ent ways and each arrangement corresponds to a different

solution. Altogether region III, which consists of

region III(b) and the three, subsequently defined
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subdivisions of region III(a), has twenty feasible solu-

tions. Obviously, the total number of plausible solutions

in the operating regime could become unwieldy. Conversely,

with the root—signs specified, only one solution exists in

each region or subdivision. The value of the root—signs

is quite evident. In their determination, the sum and the

product of the roots can be used to advantage.

The general quartic

(1-11) (1-12) (1-13) (1-14) = 0 (4.4.1)

can also be written in the form

14-213 + 2212 - 222) + 11 = 0 (4.4.2)

where the symbols 2, 22, £22 and n are defined as

,Z=)(1+)(2+)(3+)\4,

22 = 1112 + A113 + 11144-1213 + 1214 + 1314 I

222 = 111213 + 111214 + lll3l4 + )2X3k4 ,

n = Allzl3l4 .

Comparison of (4.4.2) with (3.3.14) shows that

Z = -4b1/b0 (4.4.3)

and

n = b4/b0 (4.4.4)

The other two relationships are neglected because they

introduce more complications than simplifications. Sub-

stitution from (3.3.15) into the right sides of (4.4.3)

and (4.4.4), and incorporation of the definitions for X and

Y from (4.3.9) together with T and X2 from (4.3.3), yield
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3:1 *i
—x Y (X —x)

z =———————#L——— [2(m2+n2) + (n2+42)] (4.4.5)

(l—X)(¢—X)

where

. > 2(m2+n2)m + (42+n2) >

1 — x = - w (4.4.6)

1 2(m2+n2) + (42+n2)

and

12XY(X2-X)

TI = - -—'2——— (4.4.7)

(l—X) (C—X)

where

1 3 x2 3 o . (4.4.8)

The useful information gained frOm (4.4.5) and (4.4.7)

is SGN(n) and SGN(Z). From these two relations, two lines,

X=¢ and X=X2, prove to be important. Along the former, one

root is infinite, whereas along the latter, one root is

zero. Across both lines a change in the sign of one root

occurs; so different solutions exist above and below each

line. On the other hand, although the sum-of the roots is

zero along X=Xl’ the solutions on either side of it have

the same form. Figure 4.2 illustrates the bounds within

which different solutions are applicable.

On Figure 4.3, the variations in SGN(Z), SGN(fi), and

SGN(zero) which is the sign of the zero root from (4.2.4)

are noted.

The information on Figure 4.3 reduces the number of

possible solutions. To illustrate this fact, consider

region II(b) in which there are four real roots. Suppose
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+A +B +C

A = l >\ = I A = r

l -A 2 -B 3 —C

_ +D
X4 — (4.4.9)

—D

where A, B, C, D >0.

From Figure 4.3, SGN(Z) >0 and SGN(n) <0. Of the five pos—

sible ways for combining the four roots, only two satisfy

the SGN- requirements. The two acceptable combinations

consist of three positive roots and one negative root or

three negative and one positive. Thus the number of plaus—

ible solutions is reduced from five to two. A similar

analysis can be made in each region and subdivision. The

results are collected in Figure 4.4 where the symbol CC(i)

gives the sign of the real part of a complex root.

4.5. Correct Choice of Root—Signs

The goal of assigning one root-sign-choice to each

region or subdivision is achieved in this section. Several

fundamental ideas are required. Regions with four, real

roots are treated first.

Figure 4.4 shows that in each region or subdivision

with four, real roots there are two feasible choices for

the root—signs. By adroit use of the equal-root loci, all

of which are identified on Figure 4.1, one choice can be

eliminated. To illustrate the logic involved, consider the

subdivision in region III(a) where X2>X>¢. Here the two
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+++- +++—

—-—+ ———+

+++—

———+

“~=A +—cc(+) +++—

+-cc (-) ———+

++cc(+) ++cc(-) -—cc(+) ++++ -—++

  +—cc + \ +++—

+—cc — —-—+

Figure 4.4. Root—sign Choices
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choices are ++—— and ++++. If both coexist, a curve of

demarcation must separate the two parts of the subdivision.

On such a curve, two l-roots must be equal; in fact, they

are both zero. In other words, the curve is an equal—root

locus: an untenable conclusion. Thus, only one choice is

valid throughout the subdivision and it is found by solv-

ing the A-quartic at one point. A similar argument holds

everywhere in regions II and III. The correct choice of

root signs for these two regions is indicated on Figure

4.5.

In region I, where there are two real and two complex

roots, the equal-root loci do not help. Instead, appeal

is made to the Michailov criterion [17] which is a theory

by which the existence of imaginary roots can be predicted.

The details are developed in Appendix III. The criterion

reduces to the following test. Imaginary roots exist along

the curve

2 2 _
b1 b4 — 6blb2b3 + b0b3 — 0 (4.5.1)

providing

b3/b1 > 0 . (4.5.2)

Numerically, it is found that the two conditions are mutu—

ally exclusive throughout the operating regime——no imagin—

ary roots exist. Consideration of region I(b), in which

the root—sign-choices are +—CC(—) and +—CC(+), illustrates

the value of this result.
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Figure 4.5. Correct Root Choices I

  

 

 





71

Suppose both choices coexist in separate parts of the

region. Along the curve separating the two parts, there

must be either two CC(0) or two CC(w) roots. Immediately,

the latter choice may be rejected because the A—quartic

clearly indicates that two infinite roots occur simultan—

eously only along X=l. The former choice is precisely two,

imaginary roots; by the Michailov criterion, this possi—

bility is also rejected; thus one of the choices for the

root-signs is incorrect. Again, it is identified by

solving the A-quartic at one point in the region. Region

I(b) and the other subdivisions in region I(a) may be

analyzed analogously. The correct choices are noted in

Figure 4.5.

In each distinct region and subdivision, the one

correct choice for the types and signs of the roots has

been identified. So far, these conclusions pertain only

to a single member, first introduced in Figure 4.1, of an

infinite family of l-quartics. In Appendix IV, where an

overview of the entire family is presented, a cursory

glance at any of the figures is sufficient to reveal the

drastic changes in shape that the equal root-loci undergo  
in progressing from member to member. Nevertheless, the

conclusions summarized on Figure 4.5, together with those

on companion Figure 4.6, cover the entire family.

This claim is based upon the fact that the equal—

root loci shown on Figure 4.1 can be continuously deformed

 





72

 

 

  

X 4‘

+++— +—cc(+) +++—

:+

l W

+—cc(-) +---

X: --cc(—) \ ————

+-CC (—) \ +""
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into the equal—root loci of any other member. In other

words, the original regions and subdivisions can always be

recognized. However, there is one situation in which care

must be exercised.

In regions I(a) and III(a), it is possible for the

subdivision between X=X2 and X=¢ to collapse into X=¢

then to reappear on the opposite side of X=T. When this

occurs, a test must be made to determine if the prior

choice of root—signs remains valid. In fact, it does not.

The alternative choices are stated on Figure 4.6.

Together, Figures 4.5 and 4.6 contain all, possible

choices of root-types and signs. Figure 4.5 applies to all

l—quartics for which X2>¢ and Figure 4.6 applies to all

A-quartics for which X2<¢. At last, knowledge of the

A—roots is sufficient to enable one prime—solution to be

assigned to each distinct region and subdivision. At most,

this amounts to eight different solutions for a particular

member of the family. A representative prime solution iS'I

outlined in the next section.

4.6. Sample Prime Solution 

The solution written below applies to region III(a)

in the subdivision X2>X>¢. It follows the procedure

developed in section 3.3.

From Figure 4.5, the A—quartic has four, real roots

with signs, ++——. From Figure 4.3, the zero root is 0'.

Prescribe the roots as follows:
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A1 = 0

)2 = a

A3 = -8

A4,: -y

A5 = w (4.6.1)

with a, B, y, w all positive. The solutions have the

forms

a; ‘ wC

rleZe + rlSFSe

U' =

'BC ‘YC .

r11F1 + r13F3e ‘ + r14F4e ' (4°6'3)

a; w;
r22F2e + r25F5e

v' =

'8: ‘YC
r21Fl + r23F3e + r24F4e , (4.6.3)

at w;
er + F5e

W' =

*8: 'YC
Fl + F3e + F4e , (4.6.4)

where in each case the upper line holds for C<0 and the

lower line holds for c>0.

The jump and continuity conditions give the five

equations

r12F2 + r15F5 = r11F1 + r13F3 + r14F4 ' (4-6-5)

r22F2 + rsts = r21F1 + r23F3 + r24F4 ' (4'6'6)
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F2 + F5 = Fl + F3 + F4 , (4.6.7)

aFZ + wFS = — BF3 — yF4 , (4.6.8)

2 2 2 2 _ _ '
6 F3 + y F4 — a F2 - w F5 — 12/A , (4.6.9)

which can be solved for the five F's in terms of the

l-roots. These expressions may be written directly from

Appendix V:

rli = BS9.n(D1i+BS)/Di , (4.6.10)

r2i = BSmn(A>.i+BS)/Di , (4.6.11)

where

Di = Auxiz+BS[(42+n2)A+(m2+n2)D])i

+B282n2. (4.6.12)

In the last three definitions, i = 1,...5. The F coeffi—

cients are

B282n2(NUMRl)

Fl = —_—-—-—— , (4.6—l3)

dfiyw(DENR)

—D (DT )

F2 = ——3———3— , (4.6.14)

0L (DENR)

D (DT )

F3 = ——§———§— , (4.6.15)

B(DENR)

—D (DT )

F4 = ——5———5— , (4.6.16)

Y(DENR) »

D (DT )

F5 = —§———31—— , (4.6.17)

w(DENR)
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where

12 (DENR) = ' 11213103 (DT2)+B3 (DT3)

—)3(DT4)—w3(DT5)1 (4.6.18)

NUMRl = BYw(DT2)+dyw(DT3)-an(DT4)

—ocBy(DT5) (4.6.19)

in which

_ 2 2 2
DT2 — B (—Y—w)+Y (m+8)+w (-B+y) (4.6.20)

DT3 = a2(—Y—w)+y2(w—a)+w2(u+y) (4.6.21)

DT4 =0(2(-B—00)+82(u1-0()+u)2(01+8) (4.6.22)

_ 2 2 2
DT5 - oc (-B+Y)+B (—Y-a)+v (0+8) (4.6.23)

Appendix V contains a complete compilation of all prime

solutions by means of some general formulas.

4.7. The Displacement Solution

Why is the prime solution determined rather than the

displacement—solution? At this point, it is worthwhile to

review the answer to this question.

The A—polynomial for both the prime problem and the

displacement—problem has zero roots. In general, there is

one zero root in the prime problem and four in the dis—

placement—problem. As already mentioned, it is difficult

to construct a unique solution to a problem whose

A-polynomial has one or more zero root; therefore, the

technique of augmenting the differential equations by
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adding some small term(s) was devised. All augmented

problems have well defined solutions which are bounded

everywhere. The limits of these solutions, as the augmen—

tation parameters go to zero, provide solutions to the

original problems. When the A—polynomial has only one

zero root the procedure works well, but when it has

multiple zero roots, the technique may become intractable.

This is the one reason for solving the prime problem.

Once the prime porblem has been solved, the displace—

ment—solution is determined by integration. For continuity

of the displacement components, each displacement solution

is known within an additive constant. Moreover, if the

displacements are required to approach some steady state

value as the independent variable : tends to +w or -w,

the integration constants may be evaluated. In any event,

the integration constants can be interpreted as rigid—body

translations; thereby, they are unimportant insofar as the

deformation-response is concerned.

The following example illustrates the determination

of a displacement-solution from a prime solution.

Integrating (4.6.4) with respect to ; yields

 

 

a; w:
F e F e _

2 + 5 + CW g<0

a w

W - JW'd; =

-BC -YC
F3e F43 + >0

F g - —————— — —————— + Cw C

l 8 Y
(4.7.1)
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in which Cw- and Cw+ are integration constants. Since W

must be continuous at c=0, then

F F F

cw+=—2+—3+—4+—5+c‘ . (4.7.2)

6 B y w W

Eliminate Cw+ from (4.7.1) with (4.7.2). Both portions of

the solution now contain the constant Cw_: the rigid—body

translation mentioned above.

Note also in (4.7.1) that the displacement—solutions

for a general magnetic field always contain a linear term.

It may occur in either the trailing or the leading portion

of the response. Thus, for a general magnetic field, the

displacement—solution is unbounded. Nevertheless, dis—

placement solutions which are bounded everywhere do exist

in some special situations. A few examples to illustrate

this point will be presented shortly.

The existence Or nonexistence of a bounded displace-

ment—solution depends upon the physical makeup of the sys-

tem. Loosely speaking, if the system has a mechanism

which is capable of either storing or dissipating the

energy associated with the load, then a displacement—

solution which is bounded everywhere is expected. On the

other hand, if such a mechanism is absent, it is reasonable

to anticipate an unbounded displacement-solution

To illustrate these observations, two problems

involving one—dimensional magnetic fields are considered.

When the magnetic field is one—dimensional, the equations
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for the displacement components U, V and W uncouple - a

great simplification. For the present purpose only the

W—component is used. A compilation of all the W—solutions

for the three, one-dimensional magnetic field cases is

contained in Appendix VI. The W—solutions for the zero-

field case are developed in Appendix VII.

Consider first the problem with the magnetic field

oriented in the x -direction. From (3.3.4) the W-equation
l

of the motion is

_ f§wHH + (A-1)W" - Blsc3w' = 6(5) (4-7-3)

By the procedures outlined in Chapters III and IV, the

solution to (4.7.3) can be found. The following differ-

ences in detail exist. In this case, the displacement—

solution can be obtained directly which leads to a quartic

A-polynomial equation with one zero root; so the nonzero

roots are determined from a cubic equation, not a quartic.

The sign of the zero root is determined by augmenting

(4.7.3) with the term -kW. In Figure 4.7, the equal root

loci are shown along with the correct root choices for

each region. In region II, for example, the displacement-

solution is

E + FeBC + GeYC C<0

-EC ;>0 (4.7.4)
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III [_I+I+I0+]

1:1, I—,cc(+) ,0"1
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II [+ICC(")IO ]

Magnetic Field Factor, Y

Figure 4.7. Correct Root Choices III, H = (Hl,0,0)

6(6)

Figure 4.8. W-displacement, Region II, B = (Hl,0,o)
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where

l

E=——- I

BYE

1

F:————.—

B(€+B)(B‘Y)

l

Y(€+Y)(B-Y)

1

H = _ __ , (4.7.5)

€(€+B)(€+Y)

and B, y, andEJare positive numbers. Figure 4.8 is a

sketch of this W—displacement.

Clearly, even when the elastic support is removed,

the system described by (4.7.3) still contains a mechanism

which is sufficient to absorb the energy associated with

the load: the solution is bounded everywhere.

Consider now the problem in which the magnetic field

is oriented in the x -direction. The corresponding

3

W-equation of motion is

 
B SC

_ 1A2W"" + l l W'" + (A—l)W" = 6(C) (4.7.6)

12

Again, the same general procedure is used to find the dis—

placement-solution. ‘In this case, it is evident that the

l-polynomial can be reduced to a quadratic. ‘In other

words, it has two zero roots. Thus the augmentation pro—

cedure requires the addition of two terms, eW' and -kW to

(4.7.6). In this case there is a further difference in

detail from other solutions. Here the augmented
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displacement-solution is completely determined, whereupon

the displacement-solution to (4.7.6) is evaluated by let-

ting k and 5 go to zero. Figure 4.9 contains a sketch of

the equal root loci and the correct root—choices. For

example, in region III the displacement solution is

 

(a-B)-aBC ea;

C<0

a282 aZ(B+a)

_12 _
W - if e BC

§_____ ;>0 (4.7.7)

8 (8+0)

where a and B are positive real numbers. This solution is

sketched on Figure 4.10.

Evidently, upon removal of the elastic and viscous

supports, the system represented in (4.7.6) no longer con-

tains an adequate mechanism to absorb the energy associated

with the load; therefore, unbounded-displacements, in the

form of a linear term in g, occur in the trailing portion

of the response.

The existence of both bounded and unbounded displace-

ment solutions has just been illustrated for some simpli-

fied problems. It is noteworthy that for the two examples

just considered the displacement-solution may be obtained

in two ways: either by seeking the displacement—solution

directly, or by seeking a prime solution and then inte-

grating the result. Although the details have been omitted,

both approaches yield identical solutions. However, when

Va more general magnetic field is involved, the first
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Figure 4.9. Correct Root Choices IV, H = (0,0,H3)

5(4)
—;C

Figure 4.10. W-displacement, Region III, H = (0,0,H3)

 





 

 

 

, 84

approach of obtaining displacement—solutions directly may

become extremely complicated. The following explanation

is offered for this conclusion.

All augmented displacement—solutions are bounded

everywhere. In fact, they all tend to zero as c+iw.

However, the actual displacement solutions are known to be

unbounded. So great care must be exercised not only in

taking the limits of the augmented diSplacement-solutions

as the augmentation parameters go to zero, but also in

interpreting such limits. Similar complications do not

arise in prime problems since all the prime solutions are

bounded. This is another reason for solving the prime

problem.

 





 

V. SOME DISCUSSION AND CONCLUSIONS

5.1. Differential Equations

For this chapter and for Appendix VIII the equations

of motion are rewritten; they take the form

 

 

  

232u 2 2 Eu 3v

C 2 + X[-(m +n )—— + 2m——

P axl at at

3w 32u

+ £n——] = ——7 , (5.1.1)

3t 8t

232v Bu 2 2 3v

Cs 2 + x[£m—— - (2 +n )——

8x1 8t St

SW 82v

+ mn——] = -—— 1 (5.1.2)

3t at

a2 2 8 w a2x(m2+n2) 3 w Bu

- 4 2 + X[2n——

12 P 3x 12 3x1 3t 3t

3v 2 2 8w 02 a2 a4

+ mn—— - (£ +m )—-1 = -§-- —— 2 2 .(5.l.3)

8 3t 3t 12 8x1 at

These three equations are found by linearizing equations

(3.1.2), (3.1.3) and (3.1.4). The load P is dropped. The

material parameters, together with the magnitude of the

85
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magnetic field, are lumped together in the symbol

x = Kngoz/p. The magnetic field is go = Ho(£,m,n).

5.2. Lorentz Force

In equations (5.1.1), (5.1.2) and (5.1.3) the various

components of the Lorentz force are those terms which con—

tain the direction cosines l, m and n. To interpret each

term physically requires a little recapitulation.

The successive simplifications imposed upon the

Lorentz force in section 2.3 reduce it to the expression

§==gx§ = 0K2(nyO)XHo (5.2.1)

in which the velocity y is determined by differentiating

with respect to time the displacements (2.1.7), 2.1.8) and

(2.1.9) and the magnetic field is go»: Ho(2,m,n). Sub-

stituting for y and H0 in (5.2.1) identifies the three

components of f to be
A.

 

 

Bu 8 w

f __

1 at Bxlat

8v 32w

f =4 — -I+Ix
2 8t 3 8x23t

8w

f3 —— 0 (5.2.2)

at

where

-(m2+n2), 2m , in

m = ox m2 , -(42+ n2). mn

n2 , nm , -(22+m2)
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Already, it is possible to draw parallels between the

Lorentz force terms in (5.1.1), (5.1.2) and (5.1.3), and

the definition of the Lorentz force contained in (5.2.2).

However, one additional recollection will be made to make

the correlation clearer.

Refer to equations (2.2.18), (2.2.19) and (2.2.20).

The Lorentz force enters the theory in these equations

through the three Fi-terms and the two 3mi/axi-terms. F.

l

and mi are defined as

a/2

Fi = £a/2 fidx3, i = 1,2,3

a/2

mi = £a/2 fix3dx3, 1 = 1,2 .

Clearly, Fi is a body force and mi is a moment. Fi

depends only upon the first matrix product on the right

side of (5.2.2) and mi depends only upon the second matrix

product. Since mi is a moment, then 8mi/3xi is a shearing_

force. Note that only Bml/Bxl remains in the equations of

motion after section 3.1 since all x —dependence was
2

eliminated there.

The physical meaning of each of the Lorentz force

terms in (5.1.1), (5.1.2) and (5.1.3) can now be identi-

fied. All the terms within the square brackets evolve

from the Fi and so they are body forces. The remaining

term, the third derivative of w in (5.1.3), develops from

Bml/le; therefore it is a shearing force.
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Thus the Lorentz force produces a body force with

components in the three coordinate directions plus a

shearing force in the x -direction.
3

5.3. Couplingiand Magnetic Field

Coupling between the displacement components u, v and

w are due entirely to terms which include the products of

the direction cosines: 2m, in, mn. For this reason it is

a simple matter to catalogue any uncoupled motion against

the appropriate magnetic field. When the magnetic field

acts along one of the coordinate directions the u, v and

w-motions are uncoupled. However, if the magnetic field

is two-dimensional the displacement component orthogonal.

to the plane of the magnetic field is uncoupled from the

other two. For example, for Ho = Ho(£,m,o) the w—motion

is uncoupled from the u and v—motions. In Appendix VIII

these uncoupled motions are used to provide further insight

into some magnetoelastic interactions.

5.4. Displacement Solutions

In section 4.7 and Appendix VI, displacement solutions

for the magnetoelastic plate are discussed. The displace—

ment response is found to consist of two parts one of

which precedes the load and the other trails. For a gen—

eral magnetic field one tail of the solution is always

unbounded—~a linear function of c. Nevertheless, bounded

solutions do exist when the magnetic field acts either in

the x1 or the x2-direction.
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Four types of motion can be identified. The corres—

pondence between the algebraic term and the motion is as

follows:

(I) constant = rigid body translation

(II) linear term = rigid body rotation

(III) real exponential term = exponential wave

(IV) complex exponential term = damped harmonic wave

The linear and constant terms arise from integrating the

prime solution. As mentioned earlier, the linear term may

either precede or trail the load. Insofar as deformation

response is concerned these two rigid body motions are

unimportant. In the regions II and III delimited by the

equal-root loci the travelling waves are all exponential

in form. In Region I both exponential and damped harmonic

waves exist: if the load speed is less than Cp’ the har—

monic waves lead the load; if the load speed is greater than

Cp, the harmonic waves trail.

5.5. Free Waves

In order to get a feeling for the interaction effects

and their magnitudes, some problems in free wave propaga-

tion are considered in Appendix VIII. The investigation

is quite restricted. It pertains only to damped, harmonic.

plane waves propagating in the beam-plate in the direction

of the travelling load. Furthermore, the magnetic field

is limited to the three, one-dimensional cases. Notwith—

standing these limitations, many effects are revealed.
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The presence of the magnetic field makes an otherwise

isotropic material anisotropic. However, plane polarized

waves exist when the magnetic field is aligned either

parallel or perpendicular to the direction of propagation.

Specifically, distortional waves are unaffected by a mag-

netic field orthogonal to the direction of propagation, and

dilatational waves are oblivious to a magnetic field

parallel to the direction of propagation. In general,

the magnetic field introduces dispersion. Its damping

effect reduces the phase velocities below their isotropic—

plate values.

The quantity x indicates the manner in which the

physical properties of a material enter the magnetoelastic

interaction. A large value signifies a strong interaction.

Above some critical value harmonic waves cannot propagate.

Although the effects reported in Appendix VIII appear

to be strong, it must be noted that the flux density is

high: 0.01(KH)cr for aluminum is greater than 0.05 Wb/mz.

5.6. Conclusions

A magnetoelastic—plate theory is presented. Solutions

to the linearized theory encompassed by equations (3.3.2),

(3.3.3) and (3.3.4) have been found for all combinations

of load speed and magnetic field.
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The solution is the Green's function for the equations

of motion. Thereby the solutions for any arbitrary travel-

ling load may be found directly by well established methods.

The effect of the magnetic field is twofold. It makes

the medium anisotropic and its effect upon the motion of

the plate is that of a damper. However, the field strengths

required for significant interactions is large.
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GREEN‘S FUNCTION

Consider the set of differential equations* with vari—

able coefficients

AlU” + A2U' + A3V' + A4W' = fl(;) , (A1.l)

BlV" + B2V' + B3U' + B4W' = f2(§) , (Al.2)

ClW‘"' + C2W'” + C3W" + C4W' + C5U'

+ c6v' = f3(;) , (Al.3)

in which the functions f1' f2, and f3 are continuous and

tend to zero as : becomes infinite. In order that the

solutions can be expressed in the form

00

where

d = (U, v, W) , (Al.5)

f: (fl, f2! f3) I (Al-6)

G11 G12 G13

S = G21 G22 G23

(Al.7)

G31 G32 G33

differentiation*Throughout this section, primes indicate

with respect to c.

94  





 

95

the Green's functions, the elements of matrix G, must have

special properties. To determine these properties is the

purpose of this Appendix. However, before proceeding, a

commonly used motivation for a Green's function—solution

is now presented.

For the purpose of illustration, consider equation

(Al.3). Think of it as describing the transverse displace-

ment of a plate due to the applied force f3. First, suppose

f3 is a single, discrete force acting at the point z = E.

If G (;,€) is the deflection at any point due to a discrete,

unit-force applied at L = 5; then G(c,€) f(£) is the

deflection at any point due to f(g). Take this idea one

step further. Let f3 consist of N discrete forces f3(El),

f3(€2)---f3(En), each of which acts at a different point,

C = El--—€n. Since (Al.3) is linear, simple superposition

gives the resulting displacement,

N

Wm = z G(<:,€n)f3(£n) - (Al-8)

n=l

Logically, the next step is to permit the point forces to

become so numerous that the force distribution f3 becomes

continuous. Now the displacement at any point is

W(c) =f G(c,6) f3(€) dg . (A1.9)

G(C,£) must be continuous since it represents the

diSplacement of a plate. However, it is created by a unit,

point force action as c = E; so perhaps one of its deriva—

tives  
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dnG(€,C)

n n = 1, 2, 3,... (A1.10)

dc

may be discontinuous at this point. This is the justifica-

tion for interrupting the integration when calculating

derivatives in the succeeding development.

The substitution of (Al.4) into (Al.l) gives

d2 °°

A1g;2{j( [611(c,a)fl(a) + 612(c,6)f2(6)

+

d 00

Gl3(C,€)f3(E)]d€} + A2§E{«[ [Gll(6,€)fl(£)

+ G12(C,E)f2(€) + 613(c,6)f3<6)106}

§_{ [G21(c.6)fl(a) + G22(c,€)f2(£)

d;

+A3

d (X)

+ 623(c.6)f3(6)1d6}-+A4g;{j(163l(c,a)fl(a)

+ G32(C,E)f2(€) + G33(C,E)f3(€)]d£} = fl(c)

(Al.11)

The meaning of the derivatives must be established.

A representative example of a first order differen—

tiation is
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d w

A ——[J( G (c,a)f (5)041 = 1im A ——
2d; _m 11 1 8+0 d:

C‘E co

[Jf 611(c.a)fl(a>da + Jf G11(C.€)fl(€)d€]

-w 4+8

(Al.12)

in which the integration has been interrupted at E = c.

After differentiation, the expression on the right becomes

A2{:i$[Gll(CIC-6)fl(c-€) — Gll(c,c+€)fl(c+€)]

” dGll(C,€)
+ Jf fl(g)————————— dg} . (Al.13)

dC
.00

Since G11 and fl are continuous, then

ii§[Gll(C’C—€)fl(c'€) — Gll(c.c+6) fl(c+8)] — 0 ;

(Al—l4)

therefore,

d m ) ( )dflA ——I f G (cri f 6
2dc _m 11 l

” dGll(CI€)

= A2 Jf fl(€)-———gg———‘ d5 ° (Al.15)

—€X)

Using the same procedure, but allowing for a jump in the

first order derivative, yields the expression for second

order derivatives, an example of which 15
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d2 m

A -—l_/-G (c,€)f (£)dg]
10:2 _w 11 1

dGll(C.E) 5:9‘5
= Al{lim[fl(g)——————___]

5+0 €=c+€

w dififc.a)
+ ‘ji f1(€)-————§——-d§}

(Al.16)

_w dC

All other first and second derivatives are defined by

analogous expressions.

Substitute for all first and second derivatives,

according to (Al.15)and(Al.16) in equation (Al.11). The

result is

I l I I

J[{fl(€)[AlGll ' + A2611 + A3G21 + A4G3l ]

I I

+ f2(E)[AlG12" + A2G12' + A3G22 + A4G32 ]

I I I

+ f3(5)[A1G13" + A2G13 + A3G23 + A4G33 ]}d€

' E=C-€

' I

+ A 11m[fl(€)Gll' + f2(E)G12 + f3Gl3 ]

5+0
€=§+e

— A1.17
— fl(c) . ( )

This equation is true if the Green's functions satisfy the

homogeneous differential equations

' ' ' = , .18

A1G11" + A2G11 + A3G21 + A4G31 0 (A1 )

l l = .

A1G12" + A2G12 + A3G22' + A4G32 0 ' (Al 19)

- ' ' = 0 Al.20

A1G13" + A2G13 + A3G23 + A4G33 ' ( ’
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everywhere except at g = C and if at this point G11, G12,

and Gl3 satisfy the conditions

. g=§+e 1

11m Gll'(c,£)l = - (A1.21)

8+0 €=C-€ Al(C)

g=c+e

lim Glz'(c,€)l = 0 . (Al.22)

6+0 €=C-€

g=c+s

lim 613'(c,€)l = o (A1.23)

8+0 E=C'€

The name, jump condition, is applied to expressions such

as (Al.21); the name, continuity condition, is applied to

expressions such as (Al.22) and (Al.23).

The substitution of (Al.4) into (Al.2) yields a simi—

lar set of conditions on the Green's functions G21, G22,

and G23. They must satisfy the homogeneous differential

equations

B1G21"+ B2G21' + B3Gll' + B4G31' = O , (Al.24)

BlG22"+ B2G22' + B3Glz' + B4G32' = 0 , (Al.25)

' (Al.26)' =

31G23"+ 32G23' + B3G13 + B4G33 0 '

everywhere except at E = c, and at this point, they must

satisfy the continuity and jump conditions

 

g=g+e

1im GZl'l = 0 , (A1.27)

6+0 €=C-€

£=§+€ 1

lim G ll = _ (A1.28)

5+0 22 6=;-e Bl(c)
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€=C+€

lim G23'I = 0 . (Al.29)

6+0 g=§—s

The third and fourth order derivatives which arise

from substituting (Al.4) into (Al.3) have expressions

similar to those of a second derivative. For example,

d4 m

d; _m

{ () ( gum-8= c lim[f g G H' g,

1 8+0 1 31 g=r+e

+ [flosmurmo , (Al.30)

and

d3 T

c2 C3t]c;3l(c,6)1el(6)<161

HEW;—E= c {lim[f (5)0 " (4,6
2 8+0 1 31 €=C+€

+ ff(€)G"'(c,E)d€} . (Al.3l)

—(XJ

After using these definitions, it is found that the Green's

'
t'sf the homogeneousfunctions G31, G32 and G33 must sa 1 y

equations

I
I

II
I

C1G3l"' + C2G3l" + C3G31 + C4631

+ C G ' + C G ' = 0 , (Al.32)

5 ll 6 21
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c G "I! + "I

1 32 C2G32 + C3G32" + C4G32'

+ C5G12' + Csté = 0 , (Al.33)

C llll + III I

1G33 C2G33 + C3G33' + C4G33'

+ C G ' + C G ' = 0 - (Al.34)
5 l3 6 23

The appropriate continuity and jump conditions are

 

1' {G l€=c+€ l£=c+e |£=c+s

1m ' , G ' , G ' }= 0 (Al.35)31 ,
6+0 €=C_€ 32 E=C'€ 33 €=c_€

1, {G 'IE=C+€ l£=§+e ]€:C+€

1m ' , G " . G " }=0 , (Al.36)

8+0 31 €=C-e 32 £=C-€ 33 €=c—e

. €=C+e E=r+s

11m{G In! ’ G32nll } = 0 ; (Al.37a)

8+0 31 g=;—e g=;_€

£=§+e 1

G3§"l = — (Al.37b)

€=C-€ C1(C)

In summary, a solution of form (Al.4) to equations

(Al.l), (Al.2) and (Al.3) can be found providing that the

Green's functions satisfy both the associated homogeneous

equations and the appropriate continuity and jump condi-

tions at E = Q. How this result.relates to the solutions

of (3.3.2), (3.3.3) and (3.3.4) is the next consideration.

By taking f = (O, O, 0, f3), equations (Al.l), (Al.2)

and (Al.3) correspond directly to equations (3.3.2),

(3.3.3) and (3.3.4). This reduced expression for f per-

mits considerable simplification in the properties of the

Green's functions since only G13, G23 and G33 are involved
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in the solution. These three Green's functions must

satisfy the homogeneous differential equations

AlGl3" + A2G13' + A3G23'+ A4G33' = 0 , (Al.38)

B1G23" + B2G23' + B3Gl3'+ B4G33' = 0 , (Al.39)

C1G33"" + C2633'"+ C3G33'+ C4633'

+ C5G13' + C6G23' = 0 , (A1.40)

together with the continuity and jump conditions at E = g

 

€=c+€ IE=C+E I|€=C+€ 0

lim G ' , G ' , G = ,

6+0 l3 £=c-€ 23 €=§~e 33 i=c—e

(Al.4l)

€=C+€

lim G33"| = 0 , (Al.42)

3+0 €=c—e

= +5 1

lim G "'15 c = — (A1.43)

6+0 33 g=;-e C1(C)

To be consistent, the variable in the jump and conti-

nuity conditions is now changed from E to c. After their

and G33" remain con-

6. The jump in G3§" also remains, but the

roles are reversed, G 13’ G23', G33'

tinuous at C =

minus sign disappears. This sign change is demonstrated

as follows. Let

GA(6,6) -w<€<c

G n (CIE) ={

33 GB(c,6) c<€<w .

(A1.44)

where

_ (A1.45)
GA(C,C) — GB(C,C)
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With this definition (Al.43) becomes

=C+g l

1im G '"l = G '|

€+0 33 g=§_g B g=§ g=§ Cl(c)

 

(Al.46)

However, if the roles of C and E are reversed by making 5

the parameter, (Al.44) becomes

 

GA(CI€) €<C<w

635' (6,6) = { (Al.47)

GB(C,€) -w<C<€

where

= .48
GA(€I€) GB(€I€) — (Al )

So the jump condition is

)C=€+€ | I (Al 49)lim G III ___ G I _ G l . .

8+0 33 c=€-e A c=€ B c=£

Comparison of (Al.49) with (Al.46) shows that

c=€+s 1

lim G "j = . (Al.50)

540 33 c=£-e cl(g)

In the body of the thesis, a simpler notation is

adopted. The symbol [] is introduced. Its meaning is

readily evident from the example

c=g+e

[G 1 =1nnG | -
33 5+0 33 c=£—€

(Al.51)

With this symbolism, the complete set of jump and contin—

uity conditions are

[G13] = [G23] = [G33] = 0 , (Al.52)
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[613'] = [G23'[ = [G33'] = 0 , (Al.53)

[G33'1 = 0 , (Al.54)

[G3§" = 1/C1(€) . (A1.55)

One final simplification exists. Since the function

f in (3.3.2),(3.3.3) and (3.3.4) is

f(6) = [0, 0, 6(a)] (A1.56)

and since by definition

00

[h(€)5(€-a)dE = Ma)

—00

then (Al.4) yields

CD

U = f G13(C,€)6(€)d£ = 6130:,0) , (741.57)

v = [023,(c.6)6<6)da = G23(c,0) , (Al.58)

w = [633(c,a)6(a)d6 = 63302.0) . (A1.59)

—w

Thus the Green's functions for (3.3.2), (3.3.3) and (3.3.4)

are the displacement solutions. Now the problem can be

restated

Displacement—solutions to (3.3.2), (3.3.3) and (3.3.4)

must satisfy the associated, homogeneous differential

equations

AU" - BlS(ClU' + C12V' + C13W') = 0 , (Al.60)
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II _ l l _

DV BlS(C12U + CZV + C23W‘) — 0 , (Al.61)

A BlSCl

_ Wllll + vqlll + (A_l)wll __ B S(C Ul

1 13
12 12

I I _

+C23V + C33W )— 0‘ , (Al.62)

for all values of C except C = E = 0, at which point they

must satisfy the continuity and jump conditions

[U] = [v] = [W] = 0 , (A1.63)

[U'] = [V'] = [W'] = o , (Al.64)

[w"] = 0 , (Al.65)

[W"'] = —12/A . (A1.66)

Prime solutions to (3.3.2), (3.3.3) and (3.3.4) must

satisfy the same homogeneous differential equations, con—

tinuity and jump conditions with one exception—-(Al.63)

is deleted.
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' definitions of b

 

EXPANSION OF I3—27J2

The discriminant of the quartic is I3—27J2. If the

definitions for I, J, G and H are expanded by using the

b from (3.3.15), it is found that0,00014

2
I — I0 + IlY + IZY , (A2.l)

where

10 = AD2X2/12 . (A2.2)

11 = ADX2[(£2m2 + 2n2)A + (m2 + n2)2D]/72

2 2
—A2DX(22A + mZD — nZX)/12 + AX[2(m + n )D

- 2 2
+ (12 + n2)A][(22 + m2)DA — (2 + m )AX

— (m2 + n2)DX]/48, (A2.3)

and

2 3
12 = x2[(42m2 + 2n2)A + (m2 + n2)D] /(12)

2

— AX2n2(m2 + n2)[2(m2 + n2)D + (22 + n2)A]4(12) .

(A2.4)

Also,

b3 J+JY+JY2+JY3
(A2.5)

0 J: o 1 2 3
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where

in which

H0

H1

G1

+

G2

[(

The factors

A

D
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_ 2 3
— b0 H010 — 4H0 , (A2.6)

= 2 2 2
b0 (HOIl + HlIO) - 12H0 Hl - Gl , (A2.7)

= b 2(H I + H 1 ) - 12H H 2
0 0 2 1 1 0 1

2G1G2 , (A2.8)

_ 2 3 _ 2
— b0 H1I2 - 4Hl G2 , (A2.9)

= A3D2X/72 , (A2.10)

= A2DX[(£2m2 + 2n2)A + (m2 + n2)2D]/6(12)2

A2X[2(m2 + n2)D + (12 + n2)A]2/(4)2(12)2 I

(A2.11)

= A4DZ{2[(9.2 + m2) DA — (22 + n2)A

(m2 + nz)Dx1x;5 + [2(m2 + n2)D

(42 + n2)A]X%}/8(12)2 , (A2.12)

3

= A3x/2{4D[2(m2 + n2)D + (42 + n2)A]

zzmz + 2n2)A + (m2 + n2)2D] — 8AD2n2(m2 + n2)

[2(m2 + n2)D + (42 + n2)A]3}/2(4)3(12)3. (A2.13)

A and D are

l - X

m - X
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Of course, 2, m and n are the direction cosines of the

magnetic field vector.

In equation (4.3.8), the discriminant is written as

a sixth order polynomial in Y. The C— coefficients are:

Co

where

B0

Note that CO

= 10 — BOJO , (A2.14)

= 31 21 — 2B J J (A2.15)
0 1 0 o 1 '

= 3(1 21 + 1 I 2) - B (2J J + J 2) (A2 16)
0 2 0 1 0 0 2 1 ' '

3
— 6101112 + 11 — 2B0(J0J3 + JlJz), (A2.17)

= 3(1 I 2 + I 21 ) - B (2J J + J 2) (A2.18)
o 2 1 2 0 1 3 2 '

2= _ A2.19
31112 2B0J2J3 , ( )

— 3 _ 2 A2.20— 12 B0J3 , ( )

_ 6
— 27/b0

is identically zero.
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MICHAILOV CRITERION

The Michailov Criterion can be stated as follows: if

polynomial

F(A) = c A4 + c 13 + c A2 + c A + 0 (A3 1)
0 l 2 3 4 '

real coefficients, then two additional polynomials

_ _ 2
K(¢) — cn cn_2¢ + ... (A3.2)

0(4) = Cn—1¢ — cn_3¢3 + ... (A3.3)

be defined which combined form a fourth polynomial

Q(¢) = K(¢) + i0(¢) . (A3.4)

¢ vary from O to w. Each time that Q(¢) = 0, F(A) has

imaginary roots, :10, unless ¢ = 0.-

This statement is clarified by developing the details

the quartic

— 4 3 2 A .5F().)_c0). +cl>. +c2A +c31+c4. (3)

ose A = i¢ ;

. 2 4 . _ 3 .

F(1¢) = (c4 — 020 + c0¢ ) + 1(c3¢ 01¢ ) .

2 4

K(¢) = C4 ' (32¢ + C0¢

_ _ c ,3
0(4)) — c3¢ 1

rder for Q(¢) = 0, two conditions must be satisfied:
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<1><c3 — c142) = o (A3.6)

2 4

and c4 — c2¢ + c0¢ = 0 . (A3.7)

From equation (A3.6), either

¢ = 0

or ¢2
C3/C1

Since the first choice does not lead to imaginary values

for A, it is considered no further. The second choice

when substituted into (A3.7) yields the equation

2 _
4 - clczc3 + coc3 — 0 (A3.8)

Equation (A3.8) defines the locus of the purely imaginary

roots of (A3.l) if ¢ is real. This last provision is

equivalent to the inequality

(c3/cl)>0 (A3.9)

Numerical analysis shows that (A3.8) and (A3.9)

cannot be satisfied simultaneously within the operating

regime. Thus, purely imaginary roots do not occur in

regions I(a) or I(b).
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EQUAL-ROOT LOCI

The family of curves which individually and collec-

tively are called the equal-root loci are represented most

simply by the equation

I3 — 27J2 = 0 (A4.l)

In Chapter III, it was decided to plot these curves in a

two dimensional space with the coordinates X = 82 and

Y = B2; one axis corresponds to the load speed and the

other to the strength of the magnetic field. Two factors

remain to be used as parameters, the material property

' 2 2
C = CS /Cp = (l - v)/2 (A4.2)

and the direction cosines of the magnetic field (2, m, n).

Poisson's ratio for the material is arbitrarily set at

V = 0.29; so T = 0.355. The direction cosines are

restricted in three different ways; each generates a dis-

tinct group of curves. The idea is to start each group

with the common loci for 2 = m = n and to complete each

group with the different unidirectional loci. The three

cases may be described as

l

:
3Case 2 —- l//3:fi:l, m -

Case m —- l//3fm§1, n = 4 ,

II 3Case n —- 1//3:n:l, R
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Notwithstanding these several restrictions, Figures A4.l,

A4.2 and A4.3 present a quite general description of the

behavior of the equal-root loci.

The numerical procedure for finding the equal—root

loci is straightforward. Since the coefficient C0 in

(4.3.8) is always zero, then the equation to be solved is

5 4 3 2 _

C6Y +C5Y +C4Y +C3Y +C2Y+Cl— 0. (A4.3)

Recall that all of the coefficients are functions of X

only. For any value of X, (A4.3) can be solved for its

five roots. Thereby, the coordinates of five points on

the equal—root loci are established. This procedure is

repeated a sufficient number of times, for values of X

within the operating regime, so that a well defined set of

curves can be drawn.

Some caution must be exercised in interpreting the

graphs; Figures A4.l, A4.2 and A4.3 are log—log plots,

whereas Figures A4.4 and A4,5 are not. In the latter two

figures, magnified views of two interesting, small regions

are presented; the behavior is best communicated with

natural scales. Recourse to logarithmic scales is neces—

sary to foreshorten the range of the variable Y, yet retain

the many details of the transforming shapes.

Each curve is designated by a number which is the

angle in degrees associated with the dominant direction

cosine. The dominant direction cosine is identified

easily; for example, it is R in Case 2.
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Generally, the trends in each case can be followed

without difficulty; so word descriptions are superfluous.

Nevertheless, a few comments about some unexpected devel—

opments now are made:

Case 2

The curve, 0, bifurcates when 2 = 1. This idiosyn—

cracy can be justified. Usually,(A4.3)has five roots.

For X>l, they consist of two positive and one negative real

roots in addition to a complex, conjugate pair. As 2 + l,

the negative and one positive root assume very large

values while the imaginary part of the complex roots

acquires a very small value. In the limit when 2 = l, the

complex pair becomes the real, equal pair which defines

the curve, 0'. Thereby the sudden appearance of a new

equal-root locus is explained.

Case m

The region designated as I(b) in Chapter IV displays

interesting behavior. It simultaneously narrows and

rotates clockwise. Eventually it collapses onto the line

X = T when m = 1. Figure A4.4 illustrates the terminal

That X = C is indeed an equal—stages of this development.

root locus when m = 1 can be proved. In this limit, both

C6 and C5 are zero and the quantity, D = T - X, is common

to each of the remaining coefficients C4""’Cl'
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Case n

The interesting feature of Case n is a portion of the

equal—root loci for n = 1; it becomes the straight line

48X + (Y — 48) = 0 (A4.4)

Figure A4.5 portrays various stages in the process of

reaching this final state.
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APPENDIX V

COMPILATION OF PRIME SOLUTIONS
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COMPILATION OF PRIME SOLUTIONS

In section 4.6, a sample prime solution is developed.

Since it is a straightforward, though onerous, algebraic

exercise, there is no need for further amplification here.

Altogether, counting from Figures 4.5 and 4.6, there

are ten different prime solutions. Rather than list each

separately, a general formula is given below, from which

each one can be determined. Each solution has the form

[1!

5 r11 ii:
I _

V ' 2 F1 r21 e

w' i=1 1 (A5.1)

where the Ai are the roots of the l—polynomial (3.3.14).

Note that A is always the zero root. From (3.3.16),

 

1

BS£n(1.D+BS)

r _ = ___.i__ , (A5.2)

11 D.
l

BSmn A.A+BS)

r = ( 1 , (A5.3)

21 D

i

2 2

D. = ADli2 + BS[(5LZ+ n2)A + (m + n )Dh‘i

1

4.325412 . » (A54)
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All the F— coefficients are defined by the two expressions

—B282n2(NUMR1)

Fl = ———————~——————— sgn(A1) , (A5.5)

A2A3A4A5(DENR)

(‘1)l+lDi(DTi)

Pi = ——————————————— sgn[Re(A.)] 1=2,..,5

Ai(DENR) 1

(A5.6)

The new symbols introduced in (A5.5) and A5.6) are

NUMR1==A3A4A5(DT2) - A2A4A5(DT3)

+A2A3A5(DT4) - A2A3A4(DT5) , (A5.7)

_ 2 3 _ 3
12(DENR) — A D[A2 (DT2) A3 (DT3)

+ A 3(DT ) - A 3(DT )1 ' (A5.8)
4 4 5 5 ’

in which

_ 2 2 _

+ A 2(A — A ) (A5.9)
5 3 4 '

DT — A 2(A - A ) + A 2(A — A )

3 ’ 2 4 5 4 5 2

2 _ (A5.10)
+ 215 (A2 A4) I

DT = A 2(A - A ) + A 2(A — A )

4 2 3 5 3 5 2

2 _ (A5.11)
+ 215 (A2 A3) I

2 2
_ _ A — A )DT5 — A2 (A3 A4) + 43 ( 4 2

2 _ (A5.12)
+ A4 (A2 A3)
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W-SOLUTIONS FOR ONE-DIMENSIONAL MAGNETIC FIELDS
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W-SOLUTIONS FOR ONE-DIMENSIONAL MAGNETIC FIELDS

In this appendix are recorded all the W—solutions

for problems with one-dimensional magnetic fields. Several

pieces of information are gathered in Figures A6.l, A6.2

and A6.3. Displayed are the equal root—loci, the correct

root-choices in each region and sketches of the corres—

ponding solutions. In the solutions, the exponents B,

y and g are positive real numbers; the subscripts just

refer to the region in which the respective solutions hold.

the solutions are listed beforeFor ease of identification,

each figure.
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W—SOLUTIONS FOR H = (Hl,0,0)

Region I.

81:
El + Fle ;<0

W — -Y c
e l (Glelgc + Hle-lgC) g>o

_ _ 2 2

F =12/As [(8 + )2 +521
1 1 1 Y1 1

G1 = —6/Ai£l(-Y + i€)(Y + B - iE)

Hl = Gl .
(A6.1)

Region II.

B c Y C
2 2

E2 + er + Gze C<0

W “'ng >0

H2e C

E2 = 12/ABZYZEZ

F2 = 12/A82(€2 + 82)(82 - Y2)

G2 =-12/AY2(E2 + Y2)(32 — Y2)

(A6.2)
H = 12/Ag2(£2 + 62)(£2 + Y2)
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Region III .

E = 12/AB3(Y32 + £32)

F = lZ/AB3[(Y3 + B3)2 + £32]

G = 6/Ai€3(Y3 + iE3)(Y3 + 83 + 1&3)

H3 = G3 (A6.3)
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Region I.

 

W—SOLUTIONS FOR g = (0, H2, 0)

B 4
El + Fle 1 §<0

w — . .

-ch 161: -1€lc

G1 (Gle + Hle ) €>0

_ 2 2
El — ~12/ABl(Yl + £1 )

F = 12/A8 [(8 + v )2 + a 21
1 1 1 1 1

G1 = -6/Aigl(-yl + iEl)(Yl + 81 - iEl)

Hl = Gl

Region II.

82; I <0E2 + F2e C

W =

‘YZC _€2C

>0G2e + H2e C

F2 = 12/A82(Y2 + 82) (£2 + 82)

G = 12/Ay2(Y2 + 82)(Y2 - £2)

H2 =-12/A52(€2 + 82)(Y2 _ g2)
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(A6.4)

(A6.5)
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83: v3:
E3 + er + G3e g<0

-EC
3

H3e ;>0

lZ/AB3Y3E3

12/Ae3(a3 + B3)(B3 — Y3)

12/Aa3(€3 + B3)(€3 + Y3) (A6.6)
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W-SOLUTIONS FOR g = (0,0,H3)

 

 

 

 

 

Region I.

—12[2cxl — (alz + 812)c]

3 2 2 “0
A(ocl + 81 )

W =

—a c is c —iB c
1 . 2 1 _ . 2 1

6e [-(ocl + 181) e + (al 181) e

‘ . 2 2 2

AlBlml + 81 )

§>0 (A6.7)

Region II.

A 28 2

0‘2 2

W =

-on C -B 1:

—12[822e — a22e 2 ] ;>0 (A6.8)

2 2 _
Adz 82 (82 a2)

Region III.

a3;

12[(ot3 - B3) - a383] + :Ze ;<0

2 2

Aa3 B3 Aa3 (83 + a3)

W =

-B C

12e 3

C>0___7________

A83 (83 + a3)

(A6.9)
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APPENDIX VII

RAYLEIGH BEAM WITH A MOVING LOAD
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RAYLEIGH BEAM WITH A MOVING LOAD

A Rayleigh beam is a Euler beam with the effects of

rotatory inertia included. The transverse motion of such

a beam under the effect of a moving load is described by

the differential equation

—(A/12)W'"' + (A-l)W" = 6(c) (A7.l)

which obviously is determined from (3.3.4). Using the

Green's function approach to find the prime solution

requires that the solution satisfy the homogeneous differ-

ential equation

—(A/12)W”” + (A—1)W" = 0 (A7.2)

together with the jump and continuity conditions at c = 0

[w'] = o , (A7.3)

[W'fl = 0 ,
(A7.4)

[w""] = —12/A
(A7.5)

Assume that the prime solution to (A7.2) has the form

w' = ex: ;
(A7.6)

substitution leads to the A-polynomial

-(A/12)A3 + (A—1)A = o , (A7.7)

or

A[—(A/12)A2-+(A-1)] = o. (A7.8)
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Besides the zero value, the A—polynomial (A7.8) has the

two roots

A = i V12(A—l)/A = i/lZX/(X—l) (A7.9)

The two roots are real for X>l and imaginary for X<l:

:Vle/(x-l) x>l

A =

:i/lzx7(l-X) x<l (A7.10)

Obviously X=l is important; two distinct solutions exist:

one is valid when X<l and the other when X>l. Some addi—

tional information must be found before these solutions

can be determined.

It is necessary to establish the sign of the real part

of the imaginary roots. To accomplish this end, augment

(A7.2) with the term, —6W'", where e is a small, positive

number; the sign is the same as that of the W'"—term in

(3.3.8). The augmented equation of motion is

—(A/12)W'”' - 6W"' + (A—l)W" = 0 . (A7.ll)l

The augmented A—polynomial is

A[(1-X)A2/12 + eA + x] = o ; (A7.12)

the quadratic portion has the roots

A =1—e H62 — 4x(1—x)/12] % (l—X)/6 . (247.13)

Thus the real part of the complex roots associated with

the augmented problem is

Re(A)==-6G/(1—X)
.

(A7.l4)  
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from which the complex roots in (A7.lO) are recognized to

be

A = o“ :i/IEX7TIiiT
x<1 . (A7.15)

To complete the description of the three roots in

(A7.8), the behavior of the zero root must be determined.

This is accomplished by augmenting (A7.2) with the term,

+nW', which was identified previously in Chapter III;

therefore,

~(A/12)W'"' + (A—l)W" + nW' = 0 . (A7.l6)

The corresponding A—polynomial is

-(A/12)A3 + (A—1)A + n = o . (A7.l7)

For small values of A the A3-term may be overlooked, so

A = —n/(A-1) = n/x . (A7.18)

Accordingly, the zero root in (A7.8) is

A = 0+ (A7.l9)

The two sets of roots«of theA—polynomial (A7.8) are

identified in Table A7.1

Table A7.1. Type of Roots

 

 

Region Roots

+

x<1 0 , 1/12X7(X—l)

x>1 0+, 0' ii/lZX/(l-X)

    
 

Following the solution technique outlined in Chapter

III leads to the bounded prime solutions:
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x>1

—2 + A0; <0

6 e c

I .—

W _ AA 2 “A0;
0 -e c>0 (A7.20)

where

A0 = x x—1

x<1

12 g1 C<°

w' = ————

Axo cos A0; g>o (A7.21)

where

A0 = x 1—x

The integrated prime solution for X>l is

A0; <0
-

+ g
6 2A0; + e C

0 e + C ;>0 (A7.22)

where C- and C+ are integration constants. Since the

deflection of a real beam must be continuous, then

W(o') = W(0+)
(A7.23)

SO

In other words, the sole function of the integration con—

stants is to shift the deflection curve up or down——this

rigid body motion is not too significant. The same conclu—

sion is reached for the integrated prime solution in x<1.  
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Note that it is possible to find the displacement—solution

for the Rayleigh beam directly; these displacement—solu—

tions are identical to the integrated prime solutions.

Neglecting the rigid body motion, the Rayleigh beam deflec—

tions are:

x>1

—2A + e10:

6 g oC

W:—
3 —A ;

AAO e 0

where

=/—71———rA0 12X X l

X<1

12 gkoc

w = ————
3

AAo sin A0;

where

A0 = VlZX/(l-X) .

c<o

g>0 (A7.24)

;<0

g>0 (A7.25)

Figure A7.1 contains a sketch of both solutions

11W

6(a) u

 

Figure A7.1.

X>1

X<1

Rayleigh Beam Displacement

 



 

 



APPENDIX VIII

FREE, DAMPED, HARMONIC WAVES
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FREE, DAMPED, HARMONIC WAVES

Since the magnetic field serves to damp the motion,

it is reasonable to investigate the validity of a damped,

harmonic wave solution to equations (5.1.1), (5.1.2) and

(5.1.3). Assume a solution in the form

u rl

-dt ik(xl-st)

v = r e e
2

w r3 (A8.l)

in which d is the damping coefficient, 5 is the phase

velocity and k is the wave number; all three are positive

quantities. Substituting this solution into the differ-

ential equations leads to the matrix equation

(R + iks JI)Jr = 0 (A8.2)

where

R11 -X£md , -X£nd

R = -X£md , R22 , -and

-X£nd , -and , R33

with

R11 = k2(sz-Cp2) + X(m2+n2)d - d2 ,

R22 = k2(sz—C52) + x(£2+n2)d ' dz ,
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2 12+a2k2 2 aZkZC 2 Xazkzmzmz)d

R33=k[(—)S _ 91+

12 12 12

2 2 12+a2k2 2
+ X(R +m )d — (-—————)d I

12

and

Ill I 'le I -X£n

with

_ 2 2 _ .

Ill — X(m +n ) 2d

_ 2 2 _

122 — X(£ +n ) 2d

2

a2k2(m2+n2) 2 2 12+a2k

I33 = X——-————-——— + X(z +m ) - 2(————————)d

12 12

and I'iS the transpose of (rl,r2,r3). For the amplitude

vector nrto be non-trivial,

IIR + iks II] = o (A8.3)

This equation defines the phase velocity in terms of the

wave number and the damping coefficient. Clearly, the

velocities are functions of l, m and n: the medium is

anisotropic. Some simple cases which describe various

magnetoelastic interactions are now considered.

A. Rayleigh Plate

Remove the magnetic field. The resulting set of

differential equations describe the undamped motion of a

plate, the Rayleigh Plate. Equation (A8.2) reduces to  
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2

S—Cp I0 I0 r1

2

0 Is—CS Io r2 =

2 a2k2 a2k2C 2

O , 0 , S (1+ ) - r3

12

(A8.4)

The three modes of propagation are readily identified.

Dilatational and distortional waves travel undispersed at

phase velocityes Cp and CS, respectively. The medium is

dispersive to flexural motion; the flexural wave speed is

2

52 = (a2k2/12+a2k2)Cp2 = cf

Some interesting motions are predicted by (A8.4). For

example, suppose k+0; then (A8.4) approaches

s -Cp , 0 , r1

2 2 _

2

0 I 0 I S r3 (A805)

Whereupon, if 5+0, then the amplitude vector is

n: = (0,0,r3). In words, for small wave number and phase

velocity the flexural motion deteriorates into rigid body

translation. On the other hand, if k+00 then (A8.4)

approaches

2 r (A8.6)
 



 

 

d
u
n
—
.
.
.
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Whereupon if s+Cp, the solution is 1' = (rl,0,r3). Evi-

dently, a flexural and a dilatational wave propagate

together, but uncoupled. Similarly, there exists an

intermediate wave number at which a flexural and a shear

wave travel uncoupled at the shear wave velocity, CS.

It is expected that the three modes of propagation

existing in the Rayleigh Plate will not be augmented by

the reintroduction of the magnetic field. Although the

magnetic field may not introduce new modes, the differen—

tial equations (5.1.1), (5.1.2) and (5.1.3) indicate that

it can couple the three modes and it can create dispersion

of the dilatational and distortional waves.

B. Magnetic Field Acts in the Direction of Propagation:

g = H(1,0,0)

Alter the differential equations by restricting the

magnetic field to be g = H(1,0,0). Obviously, there are

three uncoupled motions which consist of an undamped dila-I

tational wave, a damped distortional wave and a damped

flexural wave. The effects of the magnetic field on each

mode can be evaluated from (A8.4) in which
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where

_ 2 2 2
R11 — k (s —cp ) — d2

R = k2(SZ—C 2 + 222 S) Xd-d

12+a2k2 a2k2 2 2
R =k2[( )2 2 12+ak 2

33 s ‘ ‘———C ] + Xd — —-—-———d
12 12 P 12

and

-2d , 0 , 0

D: = 0 , X—Zd , O

12+a2k2

0 I O I X_2( )d

12

By selecting d=0, the dilatational wave is seen to

propagate with the phase velocity s=Cp. For d=X/2, a

distortional wave propagates with the phase velocity

sz=Csz~X2/4k2. The flexural wave exhibits the damping

coefficient d = (X/2)(12/12+a2k2) and the velocity

s2 = cf2 — (X2/4k2)(12/12+a2k2)2.

C. Magnetic Field in the Plane of the Plate but Orthogonal

to the Direction of Propagation: H = H(O,l,0)

The differential equations suitably adjusted by the

assumption that g = H(0,1,0) identify three modes of propa—

gation each of which is again uncoupled. Now, the dilata—

tional waves are damped, the distortional waves are

undamped and the flexural waves experience two types of

damping.
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The various combinations of d and s are listed in

Table A8.1. The most interesting aspect of the response

in this magnetic field is that the two different types of

damping which occur in the flexural motion can be compared.

The w—motion is described by the differential equation

  

a2C 2 34w aZX 33w 8w

_ P 4 + _ __ _ X—

12 3X1 12 3X1 3t 8t

32w a2 3 w

= —- —— (A8.7)

The two damping terms, (aZX/12)(83w/3x123t) and Xaw/Bt

are given the names solid and viscous, respectively. By

arbitrarily setting one, then the other, to zero, two

different relationships for the damping coefficient and

the phase velocity result. The two curves on Figure A8.1.

show that the two effects complement each other. The

solid damping, curve 1, increases in value with increasing

wave number while the viscous camping, curve 2, exhibits

the opposite effect. It is interesting to note that the

sum of the two effects, curve 3, is a constant. So their

combined effect creates the same damping on flexural

waves as the viscous damping alone produces on dilata—

tional and distortional waves.
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D. Magnetic Field Normal to the Plane of the Plate: 

131 = H(0,0,1)

When the magnetic field is g = H(0,0,1), the three,

uncoupled modes are again easily recognizable from the

equations of motion. In this case, all three motions are

damped. Moreover, it is the only instance in which solid

damping occurs alone. This suggests an experiment to

discover at what wave length and magnetic field strength

solid damping becomes significant. Table A8.1 contains

the expressions for d and s corresponding to each mode.

E. Magnetoelastic Interactions from Free Wave Propagation

Three interactions between the magnetic field and the

material are listed on Table A8.1. Two, the damping

coefficient and the phase velocity, have already been

mentioned. The third factor, (KH)cr, is the critical flux

density. These interactions are represented graphically

on Figures A8.2 and A8.3. The damping coefficient d

is a measure of the rapidity with which a wave decays.

Figure A8.2 on which the information from Table A8.1

is sketched identifies the linear relationship between the

damping coefficient and the magnetic field strength: the

stronger the magnetic field, the more rapid the decay. In

this figure, the letters p, s and f refer respectively to

the dilatational, distortional and flexural modes; the

bracketted quantity obviously identifies the associated

magnetic field. It is seen that in addition to the two,
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previously identified, undamped modes, p(1,0,0) and

s(O,l,0), the flexural motion is also undamped in the two

limiting cases, f(l,0.0) as k->0° and f(0,0,l) as k+0.

Shortly, some numerical values for d for the different

modes and fields will be presented.

Except for the dilatational mode in the x -field and
l

the distortional mode in the x —field, all the wave speeds
2

are affected in the following way: the phase velocity is

reduced by the magnetoelastic interaction. The effect on

each mode is sketched on Figure A8.3. The dilatational

mode 1' and the flexural mode 3 are least affected; the

flexural mode 3" is most strongly affected. All the

other cases lie in between these two extremes.

Obviously, there exists a critical value of the magne—

tic field strength above which oscillatory motion is not

possible. The expressions for (KH)Cr, listed on Table

A8.1, correspond to the value of X on Figure A8.3 at

which the phase velocity line intersects the X—axis.

Note that specific values for the wave number and the

plate thickness are used in drawing Figure A8-3- They

are k=l(cm)~l and a = /3 cm. Thus the wave length selected

is /2t/3 times the plate thickness.

To get some feeling for the magnitudes involved in

the magnetoelastic interactions, some calculations have

been made for two dissimilar materials. The two materials
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chosen were ATJ graphite and aluminum; the symbols GR and

A1 are used for identification in Tables A8.2 and A8.3.

Obviously the aluminum is much more severely affected

than the graphite.
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