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ABSTRACT

A SIMILARITY SOLUTION OF A SECOND-ORDER MODEL OF

FREE TURBULENT JETS WITH A PASSIVE SCALAR

CONTAMINANT AND ITS APPLICABILITY

TO TWO-PHASE JETS

BY

Brian Ronald Cunningham

In this thesis, a second-order model of turbulence

is described for free turbulent axial jets. Differential

transport equations for the Reynolds shear stress, the

turbulence kinetic energy. and the dissipation of energy

are employed. Additional transport equations for the

mean concentration and the square of the root-mean-square

concentration fluctuations of a passive scalar contaminant

are also used. The equations are reduced to their simil-

arity form in plane and axisymmetric jets and solved

numerically.

Possible additions to the model to approximate the

behavior of two-phase jets are discussed and a survey of

the literature on two-phase jets is presented.



TABLE OF CONTENTS

Page

LIST OF TABLES O O I O O O O O O O O O 0 iii

LIST OF FIGURES . C O C O C O O O O C 0 iv

Section

I. INTRODUCTION . . . . . . . . . . . 1

II. THE NEED TO MODEL . . . . . . . . . 3

III. DEVELOPMENT OF THE MODEL . . . . . . . 7

IV. REDUCTION OF THE MODEL TO SIMILARITY FORM . 17

V. RESULTS AND DISCUSSION . . . . . . . . 32

VI. TWO-PHASE JETS . . . . . . . . . . 45

VII. CONCLUSIONS AND RECOMMENDATIONS . . . . . 55

REFERENCES . . . . . . . . . . . . . . 58

ii



Table

1.

LIST OF TABLES

Page

Sensitivity of the spreading rate on

or] I Ch I and Gt; 0 o o o o o o o o 33

Sets of constants evaluated . . . . . . 33

Constants used in the model equations

for the passive contaminant properties . . 36



Figure

1.

2a.

2b.

10.

LIST OF FIGURES

The’t-h-cmodel . . . . . . . .

The model equations written for the

plane jet 0 O O O O O I I O O

The model equations written for the

axisymmetric jet . . . . . . .

Some properties of the axial jet in

the region of similarity . . . . .

The similarity equations to be solved

for the contaminated plane jet . . .

The additional similarity equations to

solved for the contaminated plane jet

The similarity equations to be solved

for the uncontaminated axisymmetric jet

The additional similarity equations to

be solved for the contaminated

axisymmetric jet . . . . . . .

Comparison of predictions of the mean

axial velocity and mean contaminant

concentration profiles in the plane jet

with experimental data . . . . .

Comparison of predictions of the turbu-

lence of kinetic energy and the square

of the root-mean-square contaminant

concentration fluctuations in the plane

jet with experimental data . . . .

Comparison of predictions of the mean

axial velocity and mean contaminant

concentration profiles in the axisym-

metric jet with experimental data . .

iv

Page

13

16

16

18

22

25

28

30

40

41

42



Figure

11.

12.

Comparison of the prediction of the

turbulence kinetic energy with experi-

mental data and the prediction of the

square of the root-mean-square contam—

inant concentration fluctuations in

the axisymmetric jet . . . . . .

Comparison of the prediction of the

normalized square of the root-mean-

square contaminant concentration fluc-

tuations in the axisymmetric jet with

experimental data . . . . . . .

Page

43

44



I . INTRODUCTION

The renewed interest in coal as an energy source,

along with increased environmental restrictions on its

use, has initiated several technical problems. Two of

the more obvious problems to be solved are the needs for

efficient designs of the combustion chamber for the pul-

verized coal and the cleaning system for the stack gases.

In order to obtain a better design for these devices, a

more complete understanding of the turbulent flow fields

present within them than currently exists is desirable.

The turbulence in the above examples consists of

two phases, a continuous fluid (gaseous) phase and a dis-

crete particulate phase. A common method of mixing the

pulverized coal with air in combustion chambers is to use

axial jets issuing from injection nozzles. Because of

this, and the sufficient literature available on measure-

ments of velocity and concentration profiles within axial,

free turbulent jets, a model for both planar and axisym-

metric geometries of this type of jet has been chosen for

study here.

Initially, the model is developed for a single-

phase jet, along with the equations required to describe

the behavior of a passive scalar contaminant within the

l



jet. Examples of such a contaminant include the addition

of another gaseous compound or a temperature difference

between the entering jet fluid and the ambient fluid such

that bouyancy effects are negligible. In a later section,

possible additions to the model to accommodate the effects

of a two-phase flow will be discussed.

The following section describes the difficulty

encountered in solving the exact equations governing the

jet and the subsequent necessity to model certain terms

appearing in the equations. In Section III, the model for

the single-phase jet is developed. Section IV deals with

the reduction of the model equations to their form in the

self-preserving, or similarity, region of the jet along

with the appropriate boundary conditions. Although this

region of the jet is not the focus of attention for coal

combustion chambers, most of the reported data is pre-

sented in this region. In addition, the partial differ-

ential equations of the model are reduced to ordinary

differential equations, thereby simplifying their solution.

The results of the calculations using the self-

preserving form of the model are then presented in Section‘f

and compared to experimental data found in the literature.

A review of the literature on two-phase jets follows in

Section VI. Finally, conclusions are drawn and recommen-

dations for further studies are proposed in Section VII.



II. THE NEED TO MODEL

The mathematical description of the conservation

of momentum for a fluid of constant densitycp, and

viscosity,/l, is given by the Navier-Stokes equations as

33' a}? _ 4 -

P55 *fuia’3"v?*/”VL“ I” (2.1)

and the equation of continuity

v-Zuo. (2.2)

For a fluid in turbulent flow, the most understandable

approach for working towards a solution to the equations

is to consider each of the instantaneous velocity com-

ponents,zg , to be composed of a time-steady component,

UJ‘, and a fluctuating velocity component around LE , Us .

Thus, “5 =1]; +1.5, with DJ =11; and L3?! 0, where the

overbar represents averaging with reSpect to time. This

technique was first prOposed by Reynolds and is known as

a Reynolds decomposition.

Upon substitution of this convention into (2.1) and

(2.2), using the continuity equation and taking the time-

average of (2.1), it is readily seen that the resulting

equation for the mean velocity contains the gradient of

the double velocity correlation 4%; arising from the non-

3



linear term in (2.1). Consequently, it is necessary to

deveIOp additional relations describing the behavior of

the qfly within the jet. In this study, transport equa-

tions obtained through manipulations of the Navier-Stokes

equations are developed for each of the 55? .

However, once this is done, it is seen that these

equations contain triple velocity (third order) correla-

 

tions, ugugul’l . This trend continues in the transport

equations for the third and higher order terms so that the

system of equations and unknowns can never be closed.

Consequently, a unique, exact solution of the equations

is impossible. A closure hypothesis is therefdre assumed

so that a unique solution can be found. That is, the

assumption is made that the higher order terms are de-

scribed by known functions of the lower order modelling

variables.

An example of a first order closure is given by the

eddy viscosity for the Reynolds shear stress‘I(zfifiz ) as

, AD

$745? (2.3)

whereIIQ is the eddy viscosity. This modelling scheme

draws an analogy between the viscous shear stress in a

Newtonian fluid and the turbulence shear stress. The only

difference is that the eddy viscosity is not an intrinsic

property of the fluid, but a property of the flow and may

vary across the jet.



In this study, a second order closure is employed

and transport equations for terms of higher order than

the &:Z are not developed. However, it is noted from

previous works using each of the Efi; separately [c.f.

Wood (1978)], that the normal stresses are of the same

order of magnitude and behave similarly. As a result of

this, the normal stresses are not considered separately

here but are summed and only equations for the turbulence

shear stress,‘t, and the turbulence kinetic energy,

h(3%lzi ), are used.

In any modelling scheme for free turbulent jets,

expressions for a velocity scale and a length scale are

required. In some of the simpler models [c.f. Reynolds

(1976)], the length scale may be given by an algebraic

expression. In this study, the length scale is given

implicitly through the dissipation of the kinetic energy,

E. The dissipation occurs primarily at the smallest

scales of the turbulence which at high Reynolds numbers

may be assumed to be locally isotropic. It has been shown

for isotrOpic turbulence [Hinze (1975)] that the dissipa-

tion is proportional to MT? , where Q is the characteris-

tic length scale of the turbulence. A transport equation

for'5(ay%§¥£) can also be obtained through manipulations

of (2.1). Thus, the model used in this study is a‘Ph-E ,

or three-equation, model since differential transport



equations are employed for the three turbulence quantities

mentioned above.

Because the behavior of a two-phase jet is an

important but not well-understood application of turbu-

lence modelling, the profiles of a passive scalar con-

taminant mean concentration and its root-mean-square

fluctuations are modelled as being an asymptotic limit of

the particulate profile in a two-phase jet as the size

and loading of the particles tend to zero. Thus, differ-

ential equations are developed to describe the transport

of a passive contaminant as well.



III. DEVELOPMENT OF THE MODEL

The equation for the mean velocity in a jet at high

Reynolds numbers can be obtained from equation (2.1) after

a Reynolds decomposition and time averaging as

u —" = 4—0237
text ark It). (3.1)

To obtain an equation for i5? , (2.1) written in the

i-direction, multiplied by 4? is added to (2.1) written

in the j-direction multiplied by u; . After liberal use

of the continuity equation and time-averaging, the

resulting equation may be written as

311-au' 7‘ ‘22; 9.5:)

akalhu‘(TE-:3 (UJulia3:th ”V”,13:13. 11,023“9;U) j) 313' 31

(at)
(c) (3 . 2)

J

Siiju'0,, [Vag—"fi";(&-(1.!*Sd-hufH)

“I (t)

 

Since only high Reynolds number jets are being

considered here, the dissipation occurring mainly at the

small scales (term b) can be written as

J

245-2312)“;ng
(3.3)

because the small scales can be assumed to exhibit local

isotropy. The viscous and pressure diffusion (term e)

may be neglected as another result of high Reynolds

number flow.



The pressure-strain correlation (term c) can be

broken into two parts [Launder, Reece, and Rodi (1975)],

the first being a result of fluctuating quantities and

the second arising from the interaction of the mean rate

of strain and turbulence fluctuations as

au.’3U

1’(r:jw‘;}i)= (are); +<¢.,+¢,.),,.

(3.4)

The first term is almost universally modelled as

.. .. .. - _E_ *7";

(é‘d*¢dl\,o ‘ c; h(U;UJ' ' g’giJ-h)’ (3.5)

where c1 is a constant. Since this term is zero for

isotropic turbulence and is linear in the departure from

isotropy, it tends to make the components of the Reynolds

stress tensor isotrOpic. The term related to the mean

rate of strain has been modelled by Launder, Reece, and

Rodi (1975) as

“£54504"! («J 3813?) (3’6)

where

_, - ‘— afi- -;-. 22'

139' (u‘ ”21”?) haih),

P is the rate of production of turbulence kinetic energy

(= 151311), and X, is a constant. The pressure-strain

correlation is also zero for isotrOpic turbulence.



Since a second order closure is being used, the

gradient diffusion (term d) triple correlation must be

modelled in terms of the second and lower order modelling

variables. It is noted that the correlation J5EE; is a

third order tensor symmetric in.i, J, and h so any model

for this term must also display this characteristic.

The approximation

(3.7)

prOposed by Launder, Reece, and Rodi (1975) satisfies the

above condition and is adopted here.

Thus, equation (3.2) may now be written in its

modelled form as

1 5 1—;

(1..)th(75:) (@1135;Why?) SSiJ'f-‘qh(u."fi"§'8;h)((915.3 5"?)

- h .ACU’u;\ -——-Lu,'u.',) ...—-.9(uu)
.8ado;{mg—*— 3.2.. .uh .7541) (3 )

The model transport equation for the turbulence

shear stress ‘1’ ( :u,’u; ) is obtained from equation (3.8) by

setting i=1 and‘jaz. Because of boundary layer assump—

tions, cross-stream gradients are much greater than the

streamwise gradients, the 5%, terms are neglected on the

R.H.S. of (3.8) . Also, 33"»2173 so that the equation for

A. 3‘:

T'may be written as
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- ar all. T 3‘””1137:. = We”),32 - an 'E .Qffik 52‘) (3.9)

ADVECTION = PRODUCTION - DISSIPATION + DIFFUSION

where it is noted that umef h and the assumption is made

that the "diffusion" of the shear stress depends only on

the gradient of the shear. In the region of the cross-

section of the jet where advection and diffusion balance

each other, (3.9) can be solved for as

it (3.10)

which is recognized as the same form as equation (2.3)

where 572 behaves as an eddy viscosity. Most two-

equation models, which solve differential tranSport

equations only for the turbulence velocity and length

scales and use an equation of the form of (2.3) for the

turbulence shear stress [Rodi and Spalding (1970)]

instead of a differential equation for T such as (3.9).

The model transport equation for the turbulence

kinetic energy h( E 3’2 m') is also obtained from equation

(3.8). By settingj.=i and making the corresponding

assumptions made in the T equation, the result is

”3.. .1912}... a PM:
”hark ‘ 5 " chix‘ z 5'11.)- (3.11)



11

The derivation of the dissipation equation is

similar to that of equation (3.2) but with (2.1) written

in the i-direction and differentiated with respect to 1;

before being multiplied by 1134-: . The resulting equation

is given by _

Ua-‘gw.LU." )) au(i”!i’ifi+ 35%)

ufii“5&1gamewe ”52:. mag-fl«was
a.

«Megan a Man, We?

“I” 0113'2. 32,“)“yak"hdrlii’a)2.96115—3:, 31:) (3-12)
(e)

”£3"1:31?)

Term (a) of (3.12) is recognized as being important only

in low Reynolds number flows and is neglected in further

considerations.

Following Hanjalic and Launder (1972), term (b),

upon contraction of the indices, yields components of the

dissipation and their approximation

au’Au :1!ad’ .—22’“4;” _1J a M) g

.91 Age: 311 3;, n )2 “Wk 31,. (3.13)

is adopted. For sufficiently high Reynolds numbers,

terms (c) and (f) may be considered together as being

characteristic of the cascade of energy from the large

to the dissipative small scales of the turbulence. .As

such, the modelling approximation should be independent

of the viscosity of the fluid. The suggestion of Hanjalic

and Launder (1972) that
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2.”; 911.! at! 3‘1)! ‘ a.

37: 2:4,, 71;) 27’ 3271,) cu i’ (3.14)

is accepted. Term (d) can be intepreted as the diffusion

due to velocity fluctuations of the dissipation. As in

term (d) of equation (3.2) this term is also tensor sym-

metric and the modelling can be accomplished similar to

the previous cases. Additional simplifications can be

made beyond those for (3.7), however, so that the result-

ing approximation is

H( an a” )_ (?_ UT!—a

75"». ”#152, 71,: E ”h 1 at, (3.15)

Term (e) represents the diffusion of the dissipation

caused by pressure fluctuations. Although modelling of

this term results in a form similar to (3.4), the terms

contain higher order derivatives than previously

encountered. Therefore, accepting the suggestion of

Hanjalic and Launder (1972), this term will be neglected.

The modelled transport equation for the dissipa-

tion of kinetic energy can now be written as

- 3.: £2- 2

6a

- - — §_ h s

uh“)..- 6"12 - C“ h+c€ 3%;(5 324); (3.16)

where the assumptions made in the development of the 1'

and h equations are applied here as well. Figure l



l3

summarizes the T-h-e model written in the form of

ADVECTION = PRODUCTION - DISSIPATION + DIFFUSION.

 

ADVECTION 2- PRODUCTION - DISSIPATION + DIFFUSION

- at , aft. 1' h a?

uh 52h - ‘CTHQ 52‘ " an £5 +c‘t‘5’x 'c' 37.,

- 6h at]

Uh at, " ‘ 37's,, “ 5 *chg(?a”k5x.

- a1; _. cf. .2} 1;;
Uk 3‘“ -' '4‘! h 3'2: " c“ h + 6‘ 3&(2952‘

   
Figure l.--The‘t-hr£ Model.

'In addition to the model for an uncontaminated jet,

a model for the mean concentration and the root-mean-

square concentration fluctuations of a passive scalar

contaminant are desired as well. Such a contaminant

could be an additional fluid-phase compound of the same

density as the jet fluid or a temperature field within

the jet, provided any bouyancy effects are negligible.

It is hoped that the predictions obtained will be useful

for future applications in dilute solutions of two-phase

flows.

The instantaneous scalar field in a steady flow is

given, upon a Reynolds decomposition, by



l4

(Jh‘uh)fih(é+ 9’) = Id!3:913‘(é+6)/ (3.17)

where the instantaneous concentration is given by e=é+e’

as in the velocity and I is the molecular diffusion

coefficient for 6. An equation for the mean concentration

profile is obtained by time-averaging (3.17) and is given

by

:
{
Q
I
D
C

C
:
I .g’ fir: :’ afié

At high Reynolds numbers, the molecular diffusion

of the contaminant is negligible relative to the turbu-

lent flux iii; and is left out of further considerations.

Again, the streamwise derivative of the turbulent flux is

much less than the cross-stream derivative and is also

neglected.

Following the work of Spalding (1971), the turbu-

lence flux can be modelled by a transport hypothesis as

‘

. :--.L

la - 4

R
0
:

3
3- (3.19)

Q
.
-

m
:

E

:
r
b
i
l

E

e m
'
3
3
.
.

::~-C,e

Q
; R
‘

A

which fits the form of an eddy viscosity divided by a

turbulent Schmidt number multiplying the gradient of the

mean concentration. This is analogous to the eddy

viscosity model [equation (3.10)] for the turbulence
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shear stress, Uflfi . Thus, the model equation for the

mean concentration profile is

- E 123

Uh. .94,"46.9.42 a") (3.20)

The equation for the root-mean-square of the fluc-

tuations is obtained by multiplying equation (3.17) by e’

and then time-averaging. This results in

- )EGO)_ $39

uh a: 1“672:4 Mesa-'3flame» (3.21)

Using the previous model for 45; and an analogous

substitution for (410%0 , along with a dissipation hypo-

thesis as presented by Spalding (1971) given as

Jig-:— ’ a --—-

(“9 Axkaxh) - Chime), (3.22)

the model equation for the root-mean-square fluctuations

of a passive scalar contaminant becomes

- ) 1 ‘3- __
soaha—(r42c.;(:-z>-c.§<e-~»w31—1-15)

Figures 2a and 2b present the complete model

equations written for the plane and axisymmetric jets.
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”*::*”33'§‘ ‘4'“332' ‘cn‘f +¢ra§(:3’§

WW “3% -2 +4.51%???)
0.3%?“ 333: @531; --c.. '51 . efflgi-fi

'.J-?*’33-§=
“£5.93 53%)

5293913?" “4735); * as???” * 0 MW?)  
 

Figure 2a.--The model equations written for the plane jet.

 

. AT - a {2 i T

”333 ‘ ”95%: " ‘Cnhar‘ 'cng‘g +Ot#%.(r% g?)

‘ i5 - 9h 93 1

‘32 . '9? 3 ' I 57“ ' E +0650? 9%)

[la-4V“: 42.51””! '2. 932
”a '7' 'kar ‘cuu ‘ afiarhifi)

- J- - éé , i -

”z 33 ‘ ”r 3? " “fig-4% 457')

- (”'9 . at?) 5‘ e: ‘ —.— a h‘ (a?)

Uzia'ei'!’*”r‘5‘r"’ 2.6.. £( r) " fl”) “ Cfi‘l'a-J'E er)

  
 

Figure 2b.--The model equations written for the axisym-

metric jet.



IV. REDUCTION OF THE MODEL TO

SIMILARITY FORM

In the self-preserving (similarity) region of the

jet, each of the measurable flow characteristics is

described by a scaling function evaluated along the axis

and a function of the dimensionless distance,‘, from the

axis which is explicitly independent of axial position.

With the proper scaling functions, the solution of the

model equations in this region is simplified since the

partial differential equations can be reduced to ordinary

differential equations in the similarity variable 1. In

addition, the initial conditions at the nozzle exit of

the jet do not influence the flow in the self-preserving

region so only boundary conditions at the axis and the

edge of the jet need specification.

The spreading rate of the jet, which is defined

as the slope of the half-width, is shown in Figure 3 along

with some of the other properties of the jet in the simi-

larity region. The reduction of the model will be per-

formed for the plane jet first and then for the axisym-

metric jet.

To automatically satisfy the condition of continuity

imposed by (2.2), the stream function” WXz,y) is defined

such that

17
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‘rx‘wonr ,

Instantaneous ‘fi;

edge of the jet 0 .fl “4,30

@ g

\ a, ‘ Q

af’a

“ Vb-‘ ‘.531!“ v a.

¢'sg'. .
-‘. \ '3lu‘

\ "" a, “‘1. ‘

_ “m A=z

\

Jk‘)’;

dz.

Modelled

edge of the jet

(1:

" Spreading rate = d 1:)"

I   
Figure 3.--Some preperties of the axial jet in the region

of similarity.
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oW'
£35 ‘53“. and )*!%§:. 1. (4.1)

Equation (3.1), neglecting the streamwise derivatives of

the Reynolds stresses, can be written with the substitu-

tions of (4.1) as

333%” -2’,£§3 “’53. (4.2)

In the region of similarity,

V: Maia) R1) and T2 Ufa) gm (4 .3)

where if ”Kiwis the dimensionless distance from the axis,

Um is the velocity scale measured along the axis, and

is the length scale of the jet as a function of axial

position. Substitution of (4.3) into (4.2) yields

(.1; 151...)”. .1. am9)) N"-- 3.

U... 31 (4.4)

where the primes now denote differentiation with respect

to 1

Because in the region of similarity the functions

f and 9 cannot depend eXplicitly on either 2 or y, it is

necessary that

J: ”'29.:”commr a. and in 49—19): Cowman 0-21 4 . 5a ,b)di
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It is noticed from (4.5b) that

.1. mm = 43 + 1 Ad...

”In d1 31 ”MD—f .

Consequently, it is readily seen that the length scale

must be linear in 2, so

2(2) =),(z-b) (4.6)

where b is the virtual origin of the flow and ), is an

unknown proportionality constant. In the self-preserving

region, b<<z, and will be left out of further considera-

tions.

Using this result, the axial dependence of the

velocity scale can be solved from (4.5a) as being

Jun 0. A
._..= .- 3 or fl :9 "' (4.7a b)
out A. z "‘ '2 '

where Al is some constant and n1 = GWKL . To evaluate

the power n1, the conservation of the momentum flux

across the width of the jet is employed. Thus,

,Lgafyfm.a5=5>u:9](r'cp)‘.l( 7“?) iu'flfli'lva'x = WW7: (4.8)
O ‘0 ‘0

In order for (4.8) to be valid, it is readily seen that

nl = -% is required. Therefore,

4a

UkC?)= 9,2, (4,9)
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Substitution of the above relations for the length

and velocity scales into (4.4) yields the equation for

the mean axial velocity in similarity form as

X I, I{(gf) :8.
(4.10)

Introducing the similarity forms for h and E and

using the previous forms for the mean velocities and 7’,

[1,: mm 921)
(4.11a)

DA: -),U..(I)(‘i {hp-flip) (4.11b)

T: ulm 3(1) (4.11.»

h= UiGYN’O (4.11d)

c: (03.6%)”) "‘13; (4.12e)

the equations for‘T, h, and E for the plane jet can be

reduced to their respective similarity forms as

4133.31.33.)

.. 3,“? + {Hf}

-c,.1>9" -cz.?+ calm (4.13a)

u

'39 - m + Cur-:5?) (4.13b)

‘%(59'm+¥m') -C‘,:P3£u ‘Ca'g.’ C((Emm’). (4°13C)

Equations (4.10) and (4.13 a, b, c) can be further

reduced to a system of first order ordinary differential

equations by making the following substitutions:
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H= 4” (4.14a)

113'
= c

R T "’ (4.14b)

i: C 1:2,

h "‘ (4.14c)

3., w
‘ m (4.14d)

The resulting system of nine first order differential

equations required to solve the model for the uncontam-

inated jet are presented in Figure 4.
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Figure 4.--The similarity equations to be solved for the

uncontaminated plane jet.
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At the center of the jet, boundary conditions are

imposed by symmetry,

1=olt=s:g=¥:o and H=I. (4.15a)

The remaining four boundary conditions are imposed at

the edge of the jet (y a 312). At this location both the

mean velocity and the kinetic energy become zero. As a

result, the dissipation of the kinetic energy is modelled

as being controlled only by the turbulence structures

within the jet, this term must also vanish at the edge of

the jet. Thus,

at 1:1) ?=m:H=t=0. (4.15b)

For the concentration profiles, the similarity

forms are

9 = 5.3) 300 and 573' = 9:0.) “00) (4 . 16a ,b)

where €L.is the scaling function for the concentration and

is measured along the axis.

The model equation for the mean concentration is

therefore written as

ide~ , ' -P$’l

*- enjr)~°3'i).$%= (Id-é)

so that for similarity to exist,

2
0.

afi”:cousn~r:a3 and 9,53,2’ (4.17am
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To evaluate the power a3, the heat flux integral

across the jet is investigated and reveals that

fl

.. . . ‘ ‘5 ’ .
fereaua“ €193,611.” 743,1"!!! 3353(1) Rapalrl-conlsmmr. (4 . 18)

Consequently, a3 = k is required, which is the same axial

dependence displayed by the scaling velocity, and

w

9.93.2." (4.19)

The similarity form of the equation for the mean con-

taminant concentration is written as

-%(£%)'= 36(25): (4.20)

With the above substitutions, the model equation

for the root-mean-square concentration fluctuations can

be written

t ,1 i a I

-h,(¥¢+i$«’)=20.‘?-;(,1)-Cg?+CO(L,:‘), (4.21)

Equations (4.20) and (4.21) are reduced to a system of

first order equations by the following substitutions:

7t:

§=Ce7ni (4.22a)

. 1314'

3'0“ m. (4.2213)

The resulting system of four equations to be solved

for the passive contaminant is presented in Figure 5. At

the center of the jet, the value of the mean concentration
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is normalized and symmetry dictates that the derivative

of the fluctuations be zero. Consequently,

at x(:0 , 33’ and S: 0. (4.23a)

At the edge of the jet, both the mean and fluctuating con-

centrations are set to zero since molecular diffusion of

the contaminant has been neglected from the model, so that

at ‘13)) 83430. (4.23b)

 

,. m

3‘ a“?

0; S? c )
"W 3' . ..

3': ':.(Hct+i-Fd')‘2Ce.?-;€j~)
+ 6912‘;

   

Figure S.--The additional similarity equations to be

solved for the contaminated plane jet.

Since the variables describing the concentration

of the passive contaminant do not appear in the equations

for the uncontaminated jet, the two sets of equations are

not coupled. Thus, the solution of the‘rhss model for the

uncontaminated jet may be obtained first and these results

may be used to solve the equations for the contaminant

later.

For the axisymmetric jet, the stream function is

again defined such that the condition of continuity is
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automatically satisfied with

(V
Z’rih‘

I”- -

and {2’ 52"?“0 (4.24)

0 5
'

where r is the radial direction and z is again the axial

direction. Equation (3.1), neglecting the streamwise deri-

vatives of the Reynolds stresses, is written

au. 311

”1'3" ”*3?I " 31”). (4.25)

In the region of similarity,

l.

sz’yaflfi) and Tanyagé’o (4.26a,b)

where r): V/pm. Substitution of (4.26a,b) into (4.25)

results in

0.! d2 9 ""4..- (4 27)

$ ’ '

3Main“) - (‘13)

This indicates that again,

9(2):),2 (4.28)

where, as in the case of the plane jet, the effect of the

virtual origin on has been deleted.

Substitution of (4.28) into the first term of (4.27)

leads to

“a.

U...‘ 9‘1 ) (4.29a)
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as in the case of the plane jet. The power n2 is again

obtained from the momentum flux integral corresponding

to (4.8) and shows that n2 2 -l for the similarity region

of the axisymmetric jet. Thus,

4

41.4mm. (4.30)

Using the similarity forms

u.= >4.u..zz)(9'(\)- 3:91)) (4.3la)

.L I

“2‘ 41.42) {5(1) (4.32)»)

and the previous expressions for T, h , £ , é , andrd- used

in the case of the plane jet, the model equations for

13 h, and 8 for the aXisymmetric jet can be respectively

reduced to

"K3343? -mmg) - any? + 0,0,2?) (433a)

4.61%”??? ’ ’38:“ ‘ I“ * ck (17‘3” (4.33b)

_).(qg',,”$m’):-Ct,?($t§')- 6611!;- + C‘QtJ-J')’ (4.33c)

This system is also reduced to a first order system

by making the following substitutions:

H = ‘7‘) (4.34a)

. cpa. I

2' c7713 (4.34b)
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t= Ch? (4.34c)

S: 4: fig (4.34d)

The resulting system of equations to be solved for the

axisymmetric jet is presented in Figure 6 and is subject

to the same boundary conditions described for the plane

jet.

 

(0': 1H

3“.“ fiflfi

, P's “Aw

m’: mS/c‘w-

3320133949; .

': ‘i‘(2)tH84 pa') 9 Cu "J” + 61,?Ir‘ W}

t" ‘3' (Inf/241V) + m . + 3'“ - V1
. , m o

f: "s-‘.'(‘Iv’m+~°~) + 6:: $ + 0:. gu- 5/4   
Figure 6.--The similarity equations to be solved for the

uncontaminated axisymmetric jet.

With the similarity forms mentioned above, the

model equation for the mean concentration of the passive

contaminant reduces to

2 9 29..) 4 ‘P‘ ' ’ (4 35)

2.?) *(e.:.~.- 9) = 642—5?)

from which it is seen that again the scaling function

takes the form

 

*The term 1V1 is not used in the calculations because of

a singularity in it at‘l=0. [c.f. Rotta (1975)]
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“a

6,93 z. (4.36)
3.

As before, the constant a4 is obtained by examining the

heat flux integral corresponding to equation (4.18) and

results in

-)

942): "3.2. (4.37)

Making this substitution in (4.35) gives the similarity

form of the equation for the mean contaminant concentra-

tion as

Wag = (39(13'28): (4.38)

The similarity form of the equation for the root-

mean-square of the concentration fluctuations can now be

immediately written as

A( ' ' ”’33? ms 7‘ ' ’ i- '1¥q+¥q):lcq1 m - c511? «P 6‘0! 71%). (4.39)

Equations (4.38) and (4.39) are also reduced to a system

of first order equations by the substitutions of (4.22a,b).

The resulting system of four equations to be solved for

the passive contaminant is presented in Figure 7.

The boundary conditions employed differ slightly

from those in the case of the plane jet because of diffi-

culties encountered in the calculations. The previous

condition that the mean concentration be zero at the
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edge of the jet is replaced by a symmetry condition of

the mean concentration at the axis of the jet. The

resulting boundary conditions are thus

1:04 33330 and fig] (4.40a)

3’ =0.

1 ’ 0‘ (4.40b)

 

I: m

l 458

3': - %(“8+’?%’)' ‘4 .
3’: ‘%‘(2H¢+f«')-ZCQ :2) +691. "995' g/xl

  
 

Figure 7.--The additional similarity equations to be

solved for the contaminated axisymmetric jet.

An analytic form for the mean passive contaminant

concentration is obtainable from equation (4.38) for the

axisymmetric jet and from (4.20) for the plane jet.

However, the resulting expression contains an integral

that must be calculated numerically. Consequently, the

profile is calculated from the differential equations

already described.

The numerical scheme used to perform the calcula-

tions was developed by WOod, based on Keller's (1974) box

scheme with Newton iterations. The algorithm is designed

to solve systems of non-linear first order ordinary
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differential equations associated with two-point boundary

value problems.



V. RESULTS AND DISCUSSION

In the measurements of the physical characteristics

of a free turbulent jet, the most easily made and consis-

tent measurement is that of the spreading rate of the jet.

It is also found that the calculated spreading rate is

quite sensitive to the set of constants employed in the

model. Thus, the comparison of the calculated spreading

rate to the data is used here as the primary test of the

model. The other major comparison between the calculated

results and the reported data is the value of the turbu-.

lence kinetic energy at the jet axis. This provides a

basis for determining the ability of the model to predict

the magnitude of the turbulence intensity relative to the

mean velocity, although the reported data is less consis-

tent [Wood (1978)] for this value than for the spreading

rate.

The sensitivity of the spreading rate in the axisym-

metric jet on the constants On, Ch , and Cuwas investi-

gated and the results are presented in Table 1. It is

seen that of these three, the spreading rate is the most

sensitive to changes in (kg. The percentage change in

the spreading rate is almost six times as great as the

change in Cu.
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Because the calculated spreading rate is greater

for the axisymmetric jet than the plane jet and the

opposite occurs in the experimental data, the Spreading

rate is severely over-estimated in the axisymmetric jet

when the same set of constants is utilized for both

geometries. As a result, several empirical modifications

to the constants have been suggested [c.f. Pope (1978)]

to better predict the spreading rate in the axisymmetric

jet. The suggestion by Launder et. a1. (1972) that

c,=ca-.ou7((fa—10L“ W75”; (5.1)

is used here for the axisymmetric jet. Modifications to

(k,presented by POpe (1978) were not investigated because

of the strong agreement between the authors listed in

Table 2 on its value.

Table 2 lists the sets of constants evaluated and

the resulting spreading rates for the plane and axisym-

metric jets, with the modification of (1.. given in

parentheses. From Table 2, it is seen that the set of

constants proposed by WOod (1978) give the best overall

agreement with the spreading rates from the experimental

data of .11 for the plane jet and .087 for the axisym-

metric jet [Launder and Morse (1977)]. These constants

were used in the remaining calculations and the results

are presented in Figures 8 through 12.
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The constants employed in the evaluation of the

passive contaminant properties are listed hiTable 3. The

value of C.’ is adopted directly from Chen and Rodi (1975) .

The diffusion coefficient for the contaminant fluctuations

is modelled as the ratio of the eddy viscosity to a turbu-

lent Prandtl-Schmidt number. For the eddy viscosity

fitting the form of equation (2.3), the coefficient cg,

is typically assigned a value of .09. The Prandtl-

Schmidt number for plane and axisymmetric jets has been

reported by Launder (1976) and Spalding (1971) to be .9

and .7, respectively, thereby accounting for the two

values for Cg, given in Table 3.

I Although the model predicts that C. be multiplied

by a factor of two, the actual multiplying factor used

in the calculations is 1.6 so that a value of .133 is

reported here for Co. instead of the same value as C.’ .

Chen and Rodi report a value for C‘as 1.25. However,

from.Launder (1976) this value corresponds to bouyant

flows, and a value as high as 2.0 for Ca is reported.

Thus, the value 1.7 for Ca‘ is used here as an interme-

diate between these two extremes. No attempt beyond this

has been made here to obtain an optimum set of constants

to best fit the available data.

Figure 8 presents the profiles of the mean axial

velocity and the mean contaminant concentration versus

the similarity variable, 1 , across the plane jet. The
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TABLE 3.--Constants used in the model equations

for the passive contaminant properties

 

.165 .1 (.129) .133 1.7

 

profiles of the turbulence kinetic energy and the square

of the root-mean-square contaminant concentration fluctua-

tions for the plane jet are presented in Figure 9.

Figures 10 and 11 give the corresponding results for the

axisymmetric jet.

In Figure 9, it is noticed that the kinetic

energy of the turbulence exhibits a maximum some distance

from the axis of the jet. The location of the maximum,

corresponds quite well with the data of Bradbury (1965).

Since the kinetic energy is produced from the mean shear

rate, AéSZ, , it is expected that.the maximum kinetic

energy should occur near the location of maximum produc-

tion of energy. Comparison of Figures 8 and 9 shows

that this is the case here. Although the value of the

maximum kinetic energy is under-estimated, the value

relative to the value at the axis is in close agreement

with the data.

The profile for the kinetic energy in the axisym-

metric jet presented in Figure 11 does not agree with the

data of Wygnanski and Fiedler (1969) nearly as well as
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for the plane jet. This is not entirely unexpected since

the mean velocity profile in Figure 10 is significantly

over-estimated by the model. Even though the predicted

profile of the kinetic energy is wider than the data, the

lack of a maximum energy away from the axis is in agree-

ment with the experimental measurements. The value of the

kinetic energy at the axis is again underestimated but

the proportional increase over the same value for the

plane jet is comparable to that of the data.

The predicted mean contaminant concentration pro-

files presented in Figures 8 and 10 are wider than the

mean axial velocity profiles for both geometries, which

is consistent with the experimental data. However, the

'curves do not exhibit the inflections in the outer

regions of the jets that are evident in the data of

Bashir (1973) and Becker, Hottel, and Williams (1976),

reSpectively. The most likely reason for this behavior

is that in an actual jet, the flow is largely intermittent

between high turbulence levels and ambient conditions in

the outer region. The model employed here assumes a

sharp interface between a fully turbulent jet flow and a

stationary ambient. Since the turbulence induced fluxes

of contaminant concentration are much greater than molecu-

lar diffusion fluxes, the predicted profile is expected

to be greater than the actual profile.
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In Figure 9, the square of the root-mean-square

contaminant fluctuations is presented along with the data

of Bashir (1973). The predicted profile agrees well with

the data in the central region of the jet but is under-

estimated near the axis and the edge of the jet. The

predicted value of .032 at the axis is significantly less

than Bashir's .052, although no other data was found to

compare either profile with. The set of constants used

in the model were not varied either so that an optimiza-

tion of the constants may lead to better agreement.

The normalized contaminant fluctuations in the

axisymmetric jet are presented in Figure 12 with the data

of Becker, Hottel, and Williams (1967). As with the

mean contaminant concentration profile, the inflection

exhibited by the data is not present in the calculated

profile. The explanation offered for this is the same as

in the previous case. The over-prediction of the profile

may also be partially attributable to the over-prediction

of the mean velocity. Chen and Rodi (1975) present the

results of their calculations for the same quantity and

report a value at the axis of about 0.16 whereas this

study estimates the corresponding value as 0.045. Again,

an optimization of the constants may lead to a better

agreement between these two values.

Since it is hoped that this model can serve as a

precurser to modelling efforts of two-phase flows,
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numerical results as accurate as possible are desired.

Consequently, the desire to obtain a single set of con-

stants to be universally used to describe all free shear

flows may justifiably be over-ridden by the need to

obtain more accurate results for a particular flow and

geometry. The empirical modification of Ca. suggested by

Launder et. a1. (1972) adopted here is an example of this.

Since the universality of the constants is already lost

through the use of this modification, further adjustments

to the constants to better approximate the experimental

data are seen as justifiable.

The model has shown that it can adequately describe

the characteristics of the free turbulent jet and the

agreement between the calculated results and the reported

data may be improved by adjusting the constants for the

specific geometry in question. Thus, further inquiry into

two-phase jets based on this model is considered to be

acceptable.
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VI. TWO-PHASE JETS

The description of two-phase jets is inherently

more complicated than that of single-phase jets. One

major contribution to this is the strong coupling of

the heat and momentum transport processes between the

phases which can significantly alter the structure of the

flow, especially for the case of high concentrations of

relatively large, heavy particles.

In the modelling efforts of two-phase flows, two

approaches are commonly used. One method involves consi-

dering the fluid-particle suspension as a single inhomo-

geneous continuum. The internal stresses arising from

interactive forces between the phases are described by

constitutive equations in terms of the bulk variables.

The other approach, which is used here, is to consider

the suspension as two separate continua that interact

with each other through explicit body forces. This

requires the use of a continuum hypothesis for the

particulate phase which is strictly valid only under the

restrictions of relatively dense suspensions of fine

particles [Hinze (1972)]. Even when these restrictions

are not fully satisfied, the procedure often followed is

to assume the validity of the hypothesis and compare
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the results of the calculations with experimental data

to check the assumption.

In this section, some general characteristics of

two-phase jets are discussed along with some requirements

of modelling schemes. The model equations applicable to

two-phase jets are also looked at and some modelling

efforts of the interaction terms [c.f. Damon et. a1.

(1977), Melville and Bray (l979a,b)] are examined. In

addition, some of the specific physical characteristics

of two-phase jets and their differences from single-phase

jets are discussed.

In the results of the calculations of the profile

of a passive scalar contaminant concentration, it was

found that the profile of the scalar across the jet is

significantly wider than the profile of the axial velocity.

However, when the transition is made from passive scalar

to discrete particulate contaminants, the opposite trend

occurs; that is, the particles' profile is narrower than

the velocity profile. Danon et. a1. (1977) found that

as the particle loading increased, the width of the jet

decreased which is taken as an indication of a reduction

in the turbulence level within the jet. Melville and

Bray (l979a) have indicated that the effect of the

particle loading on the fluid may become significant

in the mass, momentum, and energy balances in the primary

(fluid) phase. This effect is made clear in the work of
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Laats and Frishman (1970) in which they found that neither

the velocity nor the particulate profile attained a self-

preserving form in heavily loaded jets. When sufficiently

light loadings are used, Melville and Bray (l979a) have

reported that all of the particle mass flux profiles

attained a self-preserving form.

To a first approximation, Melville and Bray

(l979b) assert that the particle transport may be

described by a dependence of the turbulent Schmddt

number, which is the ratio of the turbulent momentum and

mass diffusivities, on the particle loading and flow

characteristics. The dependence is restricted by the

requirement that the Schmidt number decays to that of an

uncontaminated jet as the particle loading tends toward

zero. Abramovich and Girshovich (1973) propose that the

dependence on particle loading is linear for the case of

finely divided particles that are totally entrained by

the fluid. They also assert that the Schmidt number

increases toward infinity as the coarseness of the par-

ticles is increased.

Assuming that the previously discussed continuum

hypothesis applies, the following equations of continuity

for the two phases may be written [Danon et. a1. (1977)] as

£(h¢)+31((b¢)ufl: O (6.1)
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and 5%“) +52; wag) =0. (6.2)

Here, ¢ represents the volume fraction of the particu-

late phase, which is much less than unity, and lg and

U73 are the fi-direction components of the fluid phase

and particulate phase velocities, respectively.

The conservation of momentum in the fluid phase

may be expressed as

5( :2 1 a‘ ,-- (venu- + (u- )1); -.-° 4' “ .
a). A 31‘( 4 L5) fa&*yéfi'élg +}F; (6.3)

where Fi' the body force term arising from interactions

between the two phases, has been described [Danon et. a1.

(1977), Melville and Bray (l979b)] by Stokes law as

_ 18

F.- - 7.4 4504.14). (5.4)

Since it is found that the mean velocities of the two

phases are virtually equal in the region of similarity

[c.f. Danon et. a1. (1977), Melville and Bray (l979b)],

an additional equation for the momentum in the particulate

phase is not required. Fenton and Stukel (1976), however,

in their study of a two-phase, two-dimensional wake,

employed an equation for the momentum of the particulate

phase.

Noting that 5<< I , LR:D; , and time-averaging,

equations (6.1), (6.2), and (6.3) may be re-written as
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5.9. ". -

‘ a ‘71

3% (54;): 5230 e504), (6.6)

91!.-

and UJ 3;:J=§j(-u.'7_uj+d)LawwT,31)”) (6.7)

respectively, for high Reynolds numbers. For light load-

ings, the resulting force term in (6.7) is seen to be

negligible. Thus, there is only an insignificant effect

on the momentum profile across the jet as a result of

interactions between the two phases.

The turbulence kinetic energy equation for the

fluid phase may be obtained from equation (6.3) in the

same manner as in the single-phase jet. The resulting

equation is the same as (3.11) with the exception that

 

the term

1?! - - __ __ ..

A‘RUN '11))”.‘(9' + (”r2 -a.-’)u.-’ ¢ 4 (14,;- -u.-’mm] (6 .8a)

is added to the R.H.S. of (3.11) in the two-phase model

equation. The first term in (6.8a) is approximately zero

by the approximate equality of the mean velocities and

the third term is considered to be negligible relative to

the second because it is third order in the velocity

fluctuations. Thus, the remaining additional term to

(3.11) is
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I "7—7— "2117(miwgui 4; (6.813)

and is referred to as the “added dissipation."

In order to obtain a solution to the kinetic

energy equation, it is necessary to model the

correlation. This is accomplished by observing that

2119- -(up'.'-U.-’)u£eo, (6.9)

where the upper bound represents the case when the parti-

cles are stationary with respect to the turbulent fluid

fluctuations and the lower bound corresponds to the case

where the particles exactly follow the turbulent fluid

fluctuations. Danon et. al. (1977) have proposed that

this correlation be modelled as

~(u1:.--u{)u5 .— 218(1- wEur/i,» (6.10)

where B is an empirical constant, tp is the particle

response time scale, and te is the time scale of the

smallest eddies given by

BA! P 2d; ya.

{1’ 7 ‘ 1, and if (2'). (6.11)

This model is seen.to satisfy the upper and lower bounds

of (6.9) when the ratio tp/te tends toward infinity and

zero, respectively, although no justification for the

exponential form has been offered.
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For sufficiently small values of tp/te, (6.10)

can be linearized by a Taylor series expansion of the

exponential to

.——-——

1 -

-(u.;--u.-')u.-’ = 180%.) ‘ 18‘st 3%.. 9:”: (6 .12)

which is linear in particle loading and agrees with the

result of Owen (1969).

When the linearized model of (6.12) is attempted

to be cast into a similarity form, it is found that the

dependence on axial position of this term is not compa-

tible with the rest of the terms in the kinetic energy

equation. The same behavior is exhibited by the added

terms to the turbulence shear stress and energy dissipa-

tion equations. Consequently, another method of solving

the model equations is required to calculate the profiles

across the two-phase jet.

From the experimental work of Laats and Frishman

(1970), information can be obtained concerning the effects

of particle size and initial loading on the spreading

rate and mean velocity distributions as well as on the

turbulence structure within the two-phase jet. For values

of K, , the initial mass ratio of the particulate phase

to the fluid phase, between 0.0 and 0.05, the fluid

velocity distribution at the nozzle exit is about the

same as in the turbulent region further downstream with
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U...#7135- The subscript om indicates the maximum

value at the nozzle exit and the superscript °'denotes

the average value at the nozzle exit. However, upon

further increasing the initial loading to l;~0.7, the

fluid velocity distribution becomes almost uniform (€5‘~1.0)

at the nozzle exit. The initial velocity distribution

of the particulate phase exhibits the opposite trend,

with the distribution becoming more non-uniform with

increasing 2; for a given particle size as well as with

increasing particle size for a given.kg.

The data also reveals that the particle mass

flux g(kg particles/mzsec) attains a self-preserving

form for $§~1.0 whereas the mean axial fluid velocity

profile fails to become similar. Although absolute

similarity does not occur for the mean fluid velocity,

the deviation from self-preservation is not large and is

readily evident only for fine particles. Consequently,

the experimenters concluded that the velocity profile may

be considered to be similar over discrete segments of

”4) without significant error.

Division of the relative particle mass flux, g/gm,

by the relative velocity, U/Um, gives the relative con-

centration of the particles{X/Km, providing that the

difference between the mean velocity of the two phases

may be neglected. Thus,
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24 = 21.82 ._. £07m) (6.13)

kg Lbflk 'g(0flhw),

taking the velocity profile to be of a self-preserving

form. The values f,“ and r...“ denote the distance from

the axis where the particle mass flux and axial velocity

are half of their respective maxima along the axis. The

relative concentration profile can be self-preserving

only if the ratio of the half-widths, mu c‘9/cw )

becomes constant for increasing values of 1V0 . This is

not the case in the experimental data of Laats and

Frishman (1970) so that the particulate concentration

profile does not become self-preserving.

It has been seen that the particle mass flux

attains a self-preserving form but the fluid velocity

and particulate concentration do not. Since the product

of the particulate concentration and velocity, which has

been shown to be virtually the same as the fluid velocity,

is the flux, it is apparent that the deviations of the

concentration and velocity from similarity balance each

other. Laats and Frishman (1970) observed that for fine

particles the width of the concentration profile

increases with increasing axial position whereas the

opposite occurs for coarse particles.

The deformation of the velocity profile from

similarity is attributed to the momentum transport between
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the two phases. Since the jet entrains ambient fluid and

the velocities of the two phases are nearly the same,

conservation of the total momentum within the jet dic-

tates that in the far field essentially all of the

momentum is carried in the fluid phase. The momentum

transfer is greatest near the axis and diminishes near

the edge of the jet [c.f. Laats and.Frishman (1970)].

Since the net momentum transfer is from the particles,

it is expected that the particle size and concentration

should be influential in determining the rate of transfer.

The data of Laats and Frishman (1970) confirm this and

reveal that the rate of momentum transfer increases with

initial particle loading, 1; , and with decreasing

particle size. In addition to supplying a source for

momentum transfer between phases, the particles also tend

to decrease the turbulent momentum transport across the

jet, thereby retarding the rate of particulate diffusion

and the spreading rate of the jet.



VII. CONCLUSIONS AND RECOMMENDATIONS

After examining the literature available for two—

phase flows, it is readily seen that the actual flow is

much more complicated than the treatment given it here.

It is possible, however, that for light loadings of

fine particles the gross features, such as the spreading

rate of the jet and the profiles of the mean velocity and

particulate concentration, may be approximated by the

inclusion of ”added dissipation" terms in the T-k-t model

as discussed earlier. Since the deformation from simi-

larity of the mean velocity and particulate concentration

profiles are not large in experiments with heavily loaded

jets [Laats and Fishman (1970)], the deformation becomes

unobservable in experiments with lightly loaded jets

[Melville and Bray (1979a)].

Although the profiles in lightly loaded jets appear

to become self-preserving, the present modelling terms do

not permit a self-preserving form of the equations in the

modified 248-: model. Consequently, a solution in the

self-preserving region is not obtainable with this model

for two-phase jets. An algorithm to solve partial differ-

ential equations is therefore required to obtain down-

stream profiles. The absence of a similarity solution is

55
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not considered to be a great hindrance to applications of

models of two-phase jets to physical systems, however,

since most of the applications of two-phase flow, such

as coal combustors, occur in the developing region of

the jets.

The T'h'i model for single-phase jets gives reason-

able results for the predicted profiles of the mean axial

velocity and contaminant concentration as well as the

turbulence kinetic energy and the square of the root-

mean-square contaminant concentration fluctuations.

However, the need to modify the set of constants to achieve

a better fit to experimental data for different geometries

indicates the absence of a sufficiently complete physical

representation of the turbulence. The most serious result

of the incompleteness of the model is the behavior of the

predicted spreading rate in the plane and axisymmetric

jets. The model predicts that the axisymmetric jet

spreads faster than the plane jet although the Opposite

is observed in the actual flows.

Since the proposed modifications to the set of

constants used in the model are empirical [c.f. Pope

(1978)], their use prohibits the desired universality of

the constants. Consequently, the use of sets of con-

stants that best fit the experimental data of a given

flow geometry are recommended for the model in its present
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state of development if the model is to be extended to

two-phase flows.
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