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ABSTRACT

A SIMILARITY SOLUTION OF A SECOND-ORDER MODEL OF
FREE TURBULENT JETS WITH A PASSIVE SCALAR
CONTAMINANT AND ITS APPLICABILITY
TO TWO-PHASE JETS

By

Brian Ronald Cunningham

In this thesis, a second-order model of turbulence
is described for free turbulent axial jets. Differential
transport equations for the Reynolds shear stress, the
turbulence kinetic energy; and the dissipation of energy
are employed. Additional transport equations for the
mean concentration and the square of the root-mean-square
concentration fluctuations of a passive scalar contaminant
are also used. The equations are reduced to their simil-
arity form in plane and axisvmmetric jets and solved
numerically.

Possible additions to the model to approximate the
behavior of two-phase jets are discussed and a survey of

the literature on two-phase jets is presented.
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I. INTRODUCTION

The renewed interest in coal as an energy source,
along with increased environmental restrictions on its
use, has initiated several technical problems. Two of
the more obvious problems to be solved are the needs for
efficient designs of the combustion chamber for the pul-
verized coal and the cleaning system for the stack gases.
In order to obtain a better design for these devices, a
more complete understanding of the turbulent flow fields
present within them than currently exists is desirable.

The turbulence in the above examples consists of
two phases, a continuous fluid (gaseous) phase and a dis-
crete particulate phase. A common method of mixing the
pulverized coal with air in combustion chambers is to use
axial jets issuing from injection nozzles. Because of
this, and the sufficient literature available on measure-
ments of velocity and concentration profiles within axial,
free turbulent jets, a model for both planar and axisym-
metric geometries of this type of jet has been chosen for
study here.

Initially, the model is developed for a single-
phase jet, along with the equations required to describe
the behavior of a passive scalar contaminant within the

1



jet. Examples of such a contaminant include the addition
of another gaseous coméound or a temperature difference
between the entering jet fluid and the ambient fluid such
that bouyancy effects are negligible. 1In a later section,
possible additions to the model to accommodate the effects
of a two-phase flow will be discussed.

The following section describes the difficulty
encountered in solving the exact equations governing the
jet and the subsequent necessity to model certain terms
appearing in the equations. In Section III, the model for
the single-phase jet is developed. Section IV deals with
the reduction of the model equations to their form in the
self-preserving, or similarity, region of the jet along
with the appropriate boundary conditions. Although this
region of the jet is not the focus of attention for coal
combustion chambers, most of the reported data is pre-
sented in this region. 1In addition, the partial differ-
ential equations of the model are reduced to ordinary
differential equations, thereby simplifying their solution.

The results of the calculations using the self-
preserving form of the model are then presented in SectionV
and compared to experimental data found in the literature.
A review of the literature on two-phase jets follows in
Section VI. Finally, conclusions are drawn and recommen-

dations for further studies are proposed in Section VII.



II. THE NEED TO MODEL

The mathematical description of the conservation
of momentum for a fluid of constant densityﬂp, and

viscosity, 4 , is given by the Navier-Stokes equations as

ou oo _ I
PSE rPUory = IR UTE 4P (2.1)

and the equation of continuity
v-i =0. (2.2)

For a fluid in turbulent flow, the most understandable
approach for working towards a solution to the equations
is to consider each of the instantaneous velocity com-
ponents,zﬁ , to be composed of a time-steady component,
L-IJ', and a fluctuating velocity component around [‘J ’ Uj .
Thus, Y = Ij; +l{; with UJ- =1:{J' and I-J;?! 0, where the
overbar represents averaging with respect to time. This
technique was first proposed by Reynolds and is known as
a Reynolds decomposition.

Upon substitution of this convention into (2.1) and
(2.2), using the continuity equation and taking the time-
average of (2.1), it is readily seen that the resulting
equation for the mean velocity contains the gradient of

the double velocity correlation quf arising from the non-
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linear term in (2.1). Consequently, it is necessary to
develop additional relations describing the behavior of

the uﬂg within the jet. 1In this study, transport equa-
tions obtained through manipulations of the Navier-Stokes
equations are developed for each of the Jﬁg .

However, once this is done, it is seen that these

equations contain triple velocity (third order) correla-

tions, 4/UjUy . This trend continues in the transport
equations for the third and higher order terms so that the
system of equations and unknowns can never be closed.
Consequently, a unique, exact solution of the equations
is impossible. A closure hypothesis is therefore assumed
so that a unique solution can be found. That is, the
assumption is made that the higher order terms are de-
scribed by known functions of the lower order modelling
variablés.

An example of a first order closure is given by the

eddy viscosity for the Reynolds shear stress T(zﬁﬂz ) as

. ol
T= 24 54 (2.3)

where U, is the eddy viscosity. This modelling scheme
draws an analogy between the viscous shear stress in a
Newtonian fluid and the turbulence shear stress. The only
difference is that the eddy viscosity is not an intrinsic
property of the fluid, but a property of the flow and may

vary across the jet.



In this study, a second order closure is employed
and transport eguations for terms of higher order than
the &38 are not developed. However, it is noted from
previous works using each of the &ﬁ§ separately [c.f.
Wood (1978)], that the normal stresses are of the same
order of magnitude and behave similarly. As a result of
this, the normal stresses are not considered separately
here but are summed and only equations for the turbulence
shear stress, T, and the turbulence kinetic energy,

R(z% a/l ), are used.

In any modelling scheme for free turbulent jets,
expressions for a velocity scale and a length scale are
required. 1In some of the simpler models [c.f. Reynolds
(1976)], the length scale may be given by an algebraic
expression. In this study, the length scale is given
implicitly through the dissipation of the kinetic energy,
€. The dissipation occurs primarily at the smallest
scales of the turbulence which at high Reynolds numbers
may be assumed to be locally isotropic. It has been shown
for isotropic turbulence [Hinze (1975)] that the dissipa-
tion is proportional to uﬁ& , where { is the characteris-
tic length scale of the turbulence. A transport equation
for £(sy§§§%) can also be obtained through manipulations
of (2.1). Thus, the model used in this study is a Tk-€ ,

or three-equation, model since differential transport



equations are employed for the three turbulence gquantities
mentioned above.

Because the behavior of a two-phase jet is an
important but not well-understood application of turbu-
lence modelling, the profiles of a passive scalar con-
taminant mean concentration and its root-mean-square
fluctuations are modelled as being an asymptotic limit of
the particulate profile in a two-phase jet as the size
and loading of the particles tend to zero. Thus, differ-
ential equations are developed to describe the transport

of a passive contaminant as well.



III. DEVELOPMENT OF THE MODEL

The equation for the mean velocity in a jet at high
Reynolds numbers can be obtained from equation (2.1) after

a Reynolds decomposition and time averaging as

2% 2 (TT
U3, = “3n(aR). (3.1)

/

To obtain an equation for 4y , (2.1) written in the
i-direction, multiplied by 4 is added to (2.1) written
in the j-direction multiplied by &’ . After liberal use
of the continuity equation and time-averaging, the
resulting equation may be written as
,lax '3“(””;.7&*”.1/,,_) l‘”:zh%%) ?:—f' 3"2)
(o) cq (3.2)

Tt (U., uy - (uu) P(¢S,‘u4s,‘u)j)

@) (e

Since only high Reynolds number jets are being
considered here, the dissipation occurring mainly at the

small scales (term b) can be written as

c————

d
2’(32?92.)‘ 35, ¢ (3.3)

because the small scales can be assumed to exhibit local
isotropy. The viscous and pressure diffusion (term e)
may be neglected as another result of high Reynolds
number flow.



The pressure-strain correlation (term c) can be
broken into two parts [Launder, Reece, and Rodi (1975)],
the first being a result of fluctuating quantities and
the second arising from the interaction of the mean rate

of strain and turbulence fluctuations as

ou! au
?,(Jﬁ L) (¢q ’dﬁz) + (¢1J* ¢J‘ )2,

(3.4)
The first term is almost universally modelled as
Lh\ = -0 E(oTm
(b=, = - &g (0 - £5;;k), (3.5)

where < is a constant. Since this term is zero for
isotropic turbulence and is linear in the departure from
isotropy, it tends to make the components of the Reynolds
stress tensor isotropic. The term related to the mean
rate of strain has been modelled by Launder, Reece, and

Rodi (1975) as
(bi+90), = -4 lJ - 367 (3.6)

where

P is the rate of production of turbulence kinetic energy
(= %Pji), and XP is a constant. The pressure-strain

correlation is also zero for isotropic turbulence.



Since a second order closure is being used, the
gradient diffusion (term d) triple correlation must be
modelled in terms of the second and lower order modelling
variables. It is noted that the correlation 4y u; is a
third order tensor symmetric in i, }, and k so any model
for this term must also display this characteristic.

The approximation

\ - {U uh)

[ T 75 5 s 5G] 3.7

- R

-u.:ud h"r GSE

proposed by Launder, Reece, and Rodi (1975) satisfies the
above condition and is adopted here.
Thus, equation (3.2) may now be written in its

modelled form as

- ) 9 2
Uualh‘ 3) (u‘uhiéh"’a“h )xh.) Sz)e c-h(”“; h) x(q 3 )
2(ask ,acuu.\\ -—a(u.u.a -—-J(u a7
5 (g F[org e B, ]) (3.8)
The model transport equation for the turbulence
shear stress T( =4y, ) is obtained from equation (3.8) by
setting i =1 and j =2. Because of boundary layer assump-
tions, cross-stream gradients are much greater than the
streamwise gradients, the j%’ terms are neglected on the
R.H.S. of (3.8). Also, 39>>€2i so that the equation for

x 9%,
T may be written as
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L oT . KT
Uui—a ] ‘Cak:%_ - ¥ reb(i %) gl

ADVECTION = PRODUCTION - DISSIPATION + DIFFUSION
where it is noted that 4 u:{ R and the assumption is made
that the "diffusion" of the shear stress depends only on
the gradient of the shear. 1In the region of the cross-
section of the jet where advection and diffusion balance
each other, (3.9) can be solved for as

R 94,
T- - cn)E 3%, (3.10)

which is recognized as the same form as equation (2.3)
where ﬁb% behaves as an eddy viscosity. Most two-
equation models, which solve differential transport
equations only for the turbulence velocity and length
scales and use an equation of the form of (2.3) for the
turbulence shear stress [Rodi and Spalding (1970)]
instead of a differential equation for T such as (3.9).
The model transport equation for the turbulence
kinetic energy k(!laéﬁ?) is also obtained from equation
(3.8). By settingj ={ and making the corresponding

assumptions made in the T eguation, the result is

1L 99 d [k
4 2 ik ) (3.11)

e TE T hg(E 5
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The derivation of the dissipation equation is
similar to that of equation (3.2) but with (2.1) written
in the i-direction and differentiated with respect to 5

before being multiplied by v‘;‘;’j . The resulting equation

is given by aq ST
~ 0 P) _.! i
“hii. Sﬁ?} wa)&(h;)&)) ‘l( )

V5%, AT oY ox
- w____
S T au‘ Uy LY Ju; gP'
w(, X ax,. az) 745 az,;x,) 1}.9:,(3:@ az,) (3.12)
&a
-t
()

Term (a) of (3.12) is recognized as being important only
in low Reynolds number flows and is neglected in further
considerations.

Following Hanjalic and Launder (1972), term (b),
upon contraction of the indices, yields components of the
dissipation and their approximation

Il; J”J‘ffg u; oy g — o,
W 52, {axkaz % az,) R W74 (3.13)

is adopted. For sufficiently high Reynolds numbers,

terms (c) and (f) may be considered together as being
characteristic of the cascade of energy from the large

to the dissipative small scales of the turbulence. -As
such, the modelling approximation should be independent

of the viscosity of the fluid. The suggestion of Hanjalic

and Launder (1972) that
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242U duty otul \ 2
Wiy FTR )zj) 2w azkez,) = Cp ek (3.14)

is accepted. Term (d) can be intepreted as the diffusion
due to velocity fluctuations of the dissipation. As in
term (d) of equation (3.2) this term is also tensor sym-
metric and the modelling can be accomplished similar to
the previous cases. Additional simplifications can be
made beyond those for (3.7), however, so that the result-

ing approximation is

a . AU U ) — J€
Y onl e 52y T2, 7 ek 2oy o, (3.15)

Term (e) represents the diffusion of the dissipation
caused by pressure fluctuations. Although modelling of
this term results in a form similar to (3.4), the terms
contain higher order derivatives than previously
encountered. Therefore, accepting the suggestion of
Hanjalic and Launder (1972), this term will be neglected.
The modelled transport equation for the dissipa-

tion of kinetic energy can now be written as
= - ET&U h PY3
Uh ax,t “Ca %, Cex h ctéa ) (3.16)

where the assumptions made in the development of the T

and R equations are applied here as well. Figure 1
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summarizes the T-kR-£&€ model written in the form of

ADVECTION = PRODUCTION - DISSIPATION + DIFFUSION.

ADVECTION = PRODUCTION - DISSIPATION + DIFFUSION
= dT _ ol T 2 (kI
Uy oy T "l k o, ~ Cra g,; + cré'x‘(? o,
- dk alj 2

Y z -r2s k ok
Uh o4, L € + cbgi_, (c o,
= 9 _ £79U, Py R Je

Uh. axh' - °c£l [ Y 3’2: - c‘-\ h + C‘ ft‘(z é-l‘.)

Figure l.--The T -kR-£& Model.

' In addition to the model for an uncontaminated jet,
a model for the mean concentration and the root-mean-
square concentration fluctuations of a passive scalar
contaminant are desired as well. Such a contaminant
could be an additional fluid-phase compound of the same
density as the jet fluid or a temperature field within
the jet, provided any bouyancy effects are negligible.
It is hoped that the predictions obtained will be useful
for future applications in dilute solutions of two-phase
flows.

The instantanecus scalar field in a steady flow is

given, upon a Reynolds decomposition, by
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mh’”i)ih(é’ °)= 13 ‘)’ﬁt(e+ ) (3.17)

where the instantaneous concentration is given by 6:6+ 6’
as in the velocity and J is the molecular diffusion
coefficient for ©&. An equation for the mean concentration
profile is obtained by time-averaging (3.17) and is given

by

0«

C:I

(uhe) Xaz 3%, . (3.18)

At high Reynolds numbers, the molecular diffusion
of the contaminant is negligible relative to the turbu-
lent flux &:3’ and is left out of further considerations.
Again, the streamwise derivative of the turbulent flux is
much less than the cross-stream derivative and is also
neglected.

Following the work of Spalding (1971), the turbu-
lence flux can be modelled by a transport hypothesis as

e—

Tt . -
U0 ="a.

L
]}

;rﬁa

R
£

™m Ib',.
V9
"?;Iwc

= -C, (3.19)

L
!

[

which fits the form of an eddy viscosity divided by a
turbulent Schmidt number multiplying the gradient of the
mean concentration. This is analogous to the eddy

viscosity model [equation (3.10)] for the turbulence
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shear stress, U/U, . Thus, the model equation for the
mean concentration profile is

35

k98
h 3%, Cea&(e 4, ), (3.20)

The equation for the root-mean-square of the fluc-
tuations is obtained by multiplying equation (3.17) by &’
and then time-averaging. This results in

)(ea)
U, oz, = (e ""u"’i) 'Zueag ag(4<99") (3.21)

Using the previous model for éﬁ? and an analogous
substitution for ¢ /(e¢) , along with a dissipation hypo-

thesis as presented by Spalding (1971) given as
i _’ £ o
¥(&'3x3x) = C £ (58, (3.22)

the model equation for the root-mean-square fluctuations

of a passive scalar contaminant becomes

- o(es) R /28 s
WED e S e aB(F5T) o

Figures 2a and 2b present the complete model

equations written for the plane and axisymmetric jets.
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Figure 2a.--The model equations written for the plane jet.

- at ‘J aa tt
G5 B : cekEF - § i E)

n 0ROk ol .

232 b = - T - € + Ot S r%é%)
1. % . 1% . T o0 N
RS S B AT
Y 3- - 86 - 2L o=
Gzt s et 3 (r ¥ 57)
- (Ee) i )&E) R 98y N
Uza'a'e'i'.'* c e 20, £ ( ") -l $(70) + Cq‘%;;.(r% :r)

Figure 2b.--The model equations written for the axisym-
metric jet.



IV. REDUCTION OF THE MODEL TO
SIMILARITY FORM

In the self-preserving (similarity) region of the
jet, each of the measurable flow characteristics is
described by a scaling function evaluated along the axis
and a function of the dimensionless distance, ), from the
axis which is explicitly independent of axial position.
With the proper scaling functions, the solution of the
model equations in this region is simplified since the
partial differential equations can be reduced to ordinary
differential equations in the similarity variable v In
addition, the initial conditions at the nozzle exit of
the jet do not influence the flow in the self-preserving
region so only boundary conditions at the axis and the
edge of the jet need specification.

The spreading rate of the jet, which is defined
as the slope of the half-width, is shown in Figure 3 along
with some of the other properties of the jet in the simi-
larity region. The reduction of the model will be per-
formed for the plane jet first and then for the axisym-
metric jet.

To automatically satisfy the condition of continuity
imposed by (2.2), the stream function, W(z,y) is defined
such that

17



18

Tx,syYor r

Instantaneous
edge of the jetx\

Modelled
edge of the jet

d(x,)
Y Spreadin = L
p g rate 1;2:1

Figqure 3.--Some properties of the axial jet in the region
of similarity.
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#jg ‘g’ \ and );!%':-" (4.1)

Equation (3.l1), neglecting the streamwise derivatives of
the Reynolds stresses, can be written with the substitu-

tions of (4.1) as

By Yy ety = -2y (4.2)
In the region of similarity,
Y1l s fexy ) and Tz Ui 901) (4.3)

where }= Y/lryis the dimensionless distance from the axis,
Up is the velocity scale measured along the axis, and
is the length scale of the jet as a function of axial

position. Substitution of (4.3) into (4.2) yields
! JUM A d(u 9) " .
(i, Jz) (5. 552) 86 = -8 (4.4)

where the primes now denote differentiation with respect
to 1 .

Because in the region of similarity the functions
f and g cannot depend explicitly on either z or y, it is
necessary that

u{‘ ]u_  CowsmanT < 4, and ﬁm%‘w‘ CONSTANTS B244.5a,b)
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It is noticed from (4.5b) that
L A9 40 D g,
by 3z dt 4, Iz .
Consequently, it is readily seen that the length scale

must be linear in z, so
Qi =) (2-b) (4.6)

where b is the virtual origin of the flow and ), is an
unknown proportionality constant. In the self-preserving
region, b« 2, and will be left out of further considera-
tions.

Using this result, the axial dependence of the

velocity scale can be solved from (4.5a) as being

dib
Z

'%? or ﬂ;=azm (4.7a,b)

oA
>|P

where A, is some constant and n; = a,/), . To evaluate
the power ni, the conservation of the momentum flux
across the width of the jet is employed. Thus,
- ®
_ 20(/e0 o)y =0At u"Tu' 'y =
?u;'J :j(fa,w,dazyu,“(t(l)).h( pAAT T J(FD)dy = eonsanr, (4.8)
-® -© ~o

In order for (4.8) to be valid, it is readily seen that

ny, = -k is required. Therefore,

Y

U, = A,i," (4.9)
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Substitution of the above relations for the length
and velocity scales into (4.4) yields the equation for

the mean axial velocity in similarity form as
A ll_ ’
7 (§¢) = ¢ (4.10)

Introducing the similarity forms for R and £ and

using the previous forms for the mean velocities and 7,

U= Uy fey

(4.11a)
3,z -3 Uuw (1500 1S ) (4.11b)
T: Un@® g (4.11c)
R = Un@ PO (4.114d)
€= (Unpin) mey), (4.12e)

the equations for T, k, and £ for the plane jet can be

reduced to their respective similarity forms as

-)'(-?‘34;{-93') = -0 PE 'cn%&* ct(l"_:‘a')' (4.13a)
O(Fpeifp) = -3f - m 4 G (B (a.13m)
- X(smefm) s -G -0, T q(f}”'): (4.13c)

Equations (4.10) and (4.13 a, b, ¢c) can be further
reduced to a system of first order ordinary differential

equations by making the following substitutions:
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H= §' (4.14a)
t )

R: & (4.14b)

L ch? (4.14c)
</

S (4.144)

The resulting system of nine first order differential
equations required to solve the model for the uncontam-

inated jet are presented in Figure 4.

“+
3

~ <0
1]
2 S,

& P

mS

CeP*

' 2

- e

L4

‘R': 'X.(H84igal) + C‘h?HI + C‘rz '—n#
t= -L(HP45$?? + 3H' + m

Sz °':'.'(5”"”¥"") + Ce "—‘-gﬂ + Cey %z.

t\
"
3

Figure 4.--The similarity equations to be solved for the
uncontaminated »lane jet.



23

At the center of the jet, boundary conditions are

imposed by symmetry,
1=O,t=5=3=¥-‘° and H= |, (4.15a)

The remaining four boundary conditions are imposed at

the edge of the jet (y = A;z). At this location both the
mean velocity and the kinetic energy become zero. As a
result, the dissipation of the kinetic energy is modelled
as being controlled only by the turbulence structures
within the jet, this term must also vanish at the edge of

the jet. Thus,
at 3z, P=m:sH=2t=0. (4.15b)

For the concentration profiles, the similarity

forms are
9: 6, §Q) and &6 = BL@®a0), (4.16a,b)

where 6., is the scaling function for the concentration and
is measured along the axis.
The model equation for the mean concentration is

therefore written as
2 d6.) o ' P2’y
Ma. 578 - 185 = o (5F)
so that for similarity to exist,

2 Q
aeﬁ":consnuna} and e.,f"B,ZJ (4.17a,b)
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To evaluate the power as, the heat flux integral

across the jet is investigated and reveals that
[ 4

. ® e,k e
y%QUanl?"“‘ﬂ :fq.'l,!"ﬂ,l ,\,153(1)?(1)41-401\::7/\'\:7'. (4.18)

Consequently, a; = 32 is required, which is the same axial

dependence displayed by the scaling velocity, and

Y
6.=78,2, (4.19)

The similarity form of the equation for the mean con-

taminant concentration is written as

-2(¢g) = Co (T8, (4.20)

With the above substitutions, the model equation
for the root-mean-square concentration fluctuations can

be written
R\ Y
-)s,(%‘nih'):,ch‘%v- Cq"%:+ C,(t,:‘). (4.21)

Equations (4.20) and (4.21) are reduced to a system of

first order equations by the following substitutions:

,-Pll
8= Co T2 (4.22a)
.p P
$:Ce m ., (4.22b)

The resulting system of four equations to be solved
for the passive contaminant is presented in Figure 5. At

the center of the jet, the value of the mean concentration
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is normalized and symmetry dictates that the derivative

of the fluctuations be zero. Consequently,
at %0, g:1 and R:=Q, (4.23a)

At the edge of the jet, both the mean and fluctuating con-
centrations are set to 2zero since molecular diffusion of

the contaminant has been neglected from the model, so that

at ‘lﬂ) 3’«*0. (4.23b)

,. m
% c‘s:'-

o= C—“"Pa,

¥:-2(Hg +£¢) o

g': -z;\,(HeH_{-?ot')' 2"-6.2',-.,(1') + Co, mpg

Figure 5.--The additional similarity equations to be
solved for the contaminated plane jet.

Since the variables describing the concentration
of the passive contaminant do not appear in the equations
for the uncontaminated jet, the two sets of equations are
not coupled. Thus, the solution of the 7T-k-£ model for the
uncontaminated jet may be obtained first and these results
may be used to solve the equations for the contaminant
later.

For the axisymmetric jet, the stream function is

again defined such that the condition of continuity is
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automatically satisfied with
¥ _ Yy
’f’r* Jr - ria and Z'z"j‘z' -rie, (4.24)

where r is the radial direction and z is again the axial
direction. Equation (3.1), neglecting the streamwise deri-

vatives of the Reynolds stresses, is written

rU‘-au‘ + ru,‘;%' = -fr(rl').

ar (4.25)
In the region of similarity,
t R
P Ui fry) and  T3ULD I (4.26a,b)

where y: ). Substitution of (4.26a,b) into (4.25)
results in

L a/u..r)(n’)'_ ::_9(",)' 0~ ) :_{

-— - a
i d2 \1 1 Ue ¥
é! £y ‘ (4.27)
- SWE) = o
This indicates that again,
f@)=)2 (4.28)

where, as in the case of the plane jet, the effect of the
virtual origin on has been deleted.
Substitution of (4.28) into the first term of (4.27)

leads to

LI
Un= A, 2" (4.29a)
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as in the case of the plane jet. The power n, is again
obtained from the momentum flux integral corresponding
to (4.8) and shows that n, = -1 for the similarity region

of the axisymmetric jet. Thus,
Up(t) = 4,2 (4.30)
Using the similarity forms
U ) Ut (St - 1 Fp) (4.31a)

U th 35O (4.32b)

and the previous expressions for T, R, £, &, and 8¢ used
in the case of the plane jet, the model equations for
T, R, and £ for the axisymmetric jet can be respectively

reduced to
H(28g+4y) - CACE %‘) C P - 600 (4334
-3,@5+8) = - 3(‘.' {) - m + Gy (??:6?,), (4.33b)

->,(4$'vn+¥m')=°‘-'n'%’(‘"'%')' C\ 5+ e,({?—‘g')' (4.33¢)

This system is also reduced to a first order system

by making the following substitutions:

H = ‘Vl (4.34a)

. ?’. ]
R a""'é (4.34b)
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t:0, TF

™ (4.34c)
S= & ﬁ,,,ﬂ (4.344)

The resulting system of equations to be solved for the
axisymmetric jet is presented in Figure 6 and is subject
to the same boundary conditions described for the plane

jet.

£= M

§= "

P's miepr

m’z mS/c.P*

W'z s7(ng'+9)- A% *
R': -{(2\}/34 {-‘8‘) t Cp 4 O PH - R
¥ i (bpssp) s m - 3"":; 40
f::oi (4\””‘*""") +0a B 4 G ;”‘s/'l

Figure 6.--The similarity equations to be solved for the
uncontaminated axisymmetric jet.

With the similarity forms mentioned above, the
model equation for the mean concentration of the passive
contaminant reduces to

(4 48n)g 78y (4.35)
W+ (3.55)% = ()
from which it is seen that again the scaling function

takes the form

*The term 1V\ is not used in the calculations because of
a singularity in it at ) =0. [c.f. Rotta (1975)]
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oy

a":'B 2, (4.36)

£ 8

As before, the constant a, is obtained by examining the
heat flux integral corresponding to equation (4.18) and

results in

-
6.(2)= B, 2, (4.37)

Making this substitution in (4.35) gives the similarity
form of the equation for the mean contaminant concentra-

tion as
2,68 = Co(y I8 (4.38)

The similarity form of the equation for the root-
mean-square of the concentration fluctuations can now be

immediately written as
(25 + o)+ 20 ) TE0- 0 3 ey
(280 + $u) 226 T - Lo VB 4 €, (VI), (4.39)

Equations (4.38) and (4.39) are also reduced to a system
of first order equations by the substitutions of (4.22a,b).
The resulting system of four equations to be solved for
the passive contaminant is presented in Figure 7.

The boundary conditions employed differ slightly
from those in the case of the plane jet because of diffi-
culties encountered in the calculations. The previous

condition that the mean concentration be zero at the
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edge of the jet is replaced by a symmetry condition of
the mean concentration at the axis of the jet. The

resulting boundary conditions are thus
120, $:%:0 and g-l (4.40a)

3’ :O'
v « (4.40b)

‘e M

P

g-3(Hgefg)-

8= ’%’(«2”«44'«')-264 ﬁg’ +Cs, '%s' g/\

Figure 7.--The additional similarity equations to be
solved for the contaminated axisymmetric jet.

An analytic form for the mean passive contaminant
concentration is obtainable from equation (4.38) for the
axisymmetric jet and from (4.20) for the plane jet.
However, the resulting expression contains an integral
that must be calculated numerically. Consequently, the
profile is calculated from the differential equations
already described.

The numerical scheme used to perform the calcula-
tions was developed by Wood, based on Keller's (1974) box
scheme with Newton iterations. The algorithm is designed

to solve systems of non-linear £irst order ordinary
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differential equations associated with two-point boundary

value problems.



V. RESULTS AND DISCUSSION

In the measurements of the physical characteristics
of a free turbulent jet, the most easily made and consis-
tent measurement is that of the spreading rate of the jet.
It is also found that the calculated spreading rate is
quite sensitive to the set of constants employed in the
model. Thus, the comparison of the calculated spreading
rate to the data is used here as the primary test of the
model. The other major comparison between the calculated
results and the reported data is the value of the turbu- .
lence kinetic energy at the jet axis. This provides a
basis for determining the ability of the model to predict
the magnitude of the turbulence intensity relative to the
mean velocity, although the reported daia is less consis-
tent [Wood (1978)] for this value than for the spreading
rate.

The sensitivity of the spreading rate in the axisym-
metric jet on the constants (p, {,, and Cy, was investi-
gated and the results are presented in Table 1. It is
seen that of these three, the spreading rate is the most
sensitive to changes in (l; . The percentage change in
the spreading rate is almost six times as great as the
change in Cg, .

32
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Because the calculated spreading rate is greater
for the axisymmetric jet than the plane jet and the
opposite occurs in the experimental data, the spreading
rate is severely over-estimated in the axisymmetric jet
when the same set of constants is utilized for both
geometries. As a result, several.empirical modifications
to the constants have been suggested [c.f. Pope (1978)]
to better predict the spreading rate in the axisymmetric

jet. The suggestion by Launder et. al. (1972) that

Ceo = Cea - .0667 -zu..(l dfm "”"‘)f. ™ (5.1)

is used here for the axisymmetric jet. Modifications to
C,, presented by Pope (1978) were not investigated because
of the strong agreement between the authors listed in
Table 2 on its value.

Table 2 lists the sets of constants evaluated and
the resulting spreading rates for the plane and axisym-
metric jets, with the modification of @¢ given in
parentheses. From Table 2, it is seen that the set of
constants proposed by Wood (1978) give the best overall
agreement with the spreading rates from the experimental
data of .11 for the plane jet and .087 for the axisym-
metric jet [Launder and Morse (1977)]. These constants

were used in the remaining calculations and the results

are presented in Figures 8 through 12.
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The constants employed in the evaluation of the
passive contaminant properties are listed in Table 3. The
value of C.'is adopted directly from Chen and Rodi (1975).
The diffusion coefficient for the contaminant fluctuations
is modelled as the ratio of the eddy viscosity to a turbu-
lent Prandtl-Schmidt number. For the eddy viscosity
fitting the form of equation (2.3), the coefficient Q.
is typically assigned a value of .09. The Prandtl-
Schmidt number for plane and axisymmetric jets has been
reported by Launder (1976) and Spalding (1971) to be .9
and .7, respectively, thereby accounting for the two
values for (g given in Table 3.

| Although the model predicts that Ca be multiplied
by a factor of two, the actual multiplying factor used
in the calculations is 1.6 so that a value of .133 is
reported here for (e instead of the same value as C., .
Chen and Rodi report a value for Cq‘as 1.25. However,
from Launder (1976) this wvalue corresponds to bouyant
flows, and a value as high as 2.0 for (e, is reported.
Thus, the value 1.7 for Cq, is used here as an interme-
diate between these two extremes. No attempt beyond this
has been made here to obtain an optimum set of constants
to best fit the available data.

Figure 8 presents the profiles of the mean axial
velocity and the mean contaminant concentration versus

the similarity variable, 1 , across the plane jet. The
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TABLE 3.--Constants used in the model equations
for the passive contaminant properties

.165 .1 (.129) .133 1.7

profiles of the turbulence kinetic energy and the square
of the root-mean-square contaminant concentration fluctua-
tions for the plane jet are presented in Figure 9.

Figures 10 and 11 give the corresponding results for the
axisymmetric jet.

In Figure 9, it is noticed that the kinetic
energy of the turbulence exhibits a maximum some distance
from the axis of the jet. The location of the maximum
corresponds quite well with the data of Bradbury (1965).
Since the kinetic energy is produced from the mean shear
rate, a@é&‘ , it is expected that the maximum kinetic
energy should occur near the location of maximum produc-
tion of energy. Comparison of Figures 8 and 9 shows
that this is the case here. Although the value of the
maximum kinetic energy is under-estimated, the value
relative to the value at the axis is in close agreement
with the data.

The profile for the kinetic energy in the axisym-
metric jet presented in Figure 11 does not agree with the

data of Wygnanski and Fiedler (1969) nearly as well as
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for the plane jet. This is not entirely unexpected since
the mean velocity profile in Figure 10 is significantly
over-estimated by the model. Even though the predicted
profile of the kinetic energy is wider than the data, the
lack of a maximum energy away from the axis is in agree-
ment with the experimental measurements. The value of the
kinetic energy at the axis is again underestimated but

the proportional increase over the same value for the
plane jet is comparable to that of the data.

The predicted mean contaminant concentration pro-
files presented in Figures 8 and 10 are wider than the
mean axial velocity profiles for both geometries, which
is consistent with the experimental data. However, the
curves do not exhibit the inflections in the outer
regions of the jets that are evident in the data of
Bashir (1973) and Becker, Hottel, and Williams (1976),
respectively. The most likely reason for this behavior
is that in an actual jet, the flow is largely intermittent
between high turbulence levels and ambient conditions in
the outer region. The model employed here assumes a
sharp interface between a fully turbulent jet flow and a
stationary ambient. Since the turbulence induced fluxes
of contaminant concentration are much greater than molecu-
lar diffusion fluxes, the predicted profile is expected

to be greater than the actual profile.
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In Figure 9, the square of the root-mean-square
contaminant fluctuations is presented along with the data
of Bashir (1973). The predicted profile agrees well with
the data in the central region of the jet but is under-
estimated near the axis and the edge of the jet. The
predicted value of .032 at the axis is significantly less
than Bashir's .052, although no other data was found to
compare either profile with. The set of constants used
in the model were not varied either so that an optimiza-
tion of the constants may lead to better agreement.

The normalized contaminant fluctuations in the
axisymmetric jet are presented in Figure 12 with the data
of Becker, Hottel, and Williams (1967). As with the
mean contaminant concentration profile, the inflection
exhibited by the data is not present in the calculated
profile. The explanation offered for this is the same as
in the previous case. The over-prediction of the profile
may also be partially attributable to the over-prediction
of the mean velocity. Chen and Rodi (1975) present the
results of their calculations for the same quantity and
report a value at the axis of about 0.16 whereas this
study estimates the corresponding value as 0.045. Again,
an optimization of the constants may lead to a better
agreement between these two values.

Since it is hoped that this model can serve as a

precurser to modelling efforts of two-phase flows,
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numerical results as accurate as possible are desired.
Consequently, the desire to obtain a single set of con-
stants to be universally used to describe all free shear
flows may justifiably be over-ridden by the need to
obtain more accurate results for a particular flow and
geometry. The empirical modification of (Ce¢a suggested by
Launder et. al. (1972) adopted here is an example of this.
Since the universality of the constants is already lost
through the use of this modification, further adjustments
to the constants to better approximate the experimental
data are seen as justifiable.

The model has shown that it can adequately describe
the characteristics of the free turbulent jet and the
agreement between the calculated results and the reported
data may be improved by adjusting the constants for the
specific geometry in question. Thus, further inquiry into
two-phase jets based on this model is considered to be

acceptable.
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VI. TWO-PHASE JETS

The description of two-phase jets is inherently
more complicated than that of single-phase jets. One
major contribution to this is the strong coupling of
the heat and momentum transport processes between the
phases which can significantly alter the structure of the
flow, especially for the case of high concentrations of
relatively large, heavy particles.

In the modelling efforts of two-phase flows, two
approaches are commonly used. One method involves consi-
dering the fluid-particle suspension as a single inhomo-
geneous continuum. The internal stresses arising from
interactive forces between the phases are described by
constitutive equations in terms of the bulk variables.
The other approach, which is used here, is to consider
the suspension as two separate continua that interact
with each other through explicit body forces. This
requires the use of a continuum hypothesis for the
particulate phase which is strictly valid only under the
restrictions of relatively dense suspensions of fine
particles [Hinze (1972)]. Even when these restrictions
are not fully satisfied, the procedure often followed is
to assume the validity of the hypothesis and compare

45
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the results of the calculations with experimental data
to check the assumption.

In this section, some general characteristics of
two-phase jets are discussed along with some requirements
of modelling schemes. The model equations applicable to
two-phase jets are also looked at and some modelling
efforts of the interaction terms [c.f. Damon et. al.
(1977), Melville and Bray (1979a,b)] are examined. 1In
addition, some of the specific physical characteristics
of two-phase jets and their differences from single-phase
jets are discussed.

In the results of the calculations of the profile
of a passive scalar contaminant concentration, it was
found that the profile of the scalar across the jet is
significantly wider than the profile of the axial velocity.
However, when the transition is made from passive scalar
to discrete particulate contaminants, the opposite trend
occurs; that is, the particles' profile is narrower than
the velocity profile. Danon et. al. (1977) found that
as the particle loading increased, the width of the jet
decreased which is taken as an indication of a reduction
in the turbulence level within the jet. Melville and
Bray (1979a) have indicated that the effect of the
particle loading on the fluid may become significant
in the mass, momentum, and energy balances in the primary

(fluid) phase. This effect is made clear in the work of
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Laats and Frishman (1970) in which they found that neither
the velocity nor the particulate profile attained a self-
preserving form in heavily loaded jets. When sufficiently
light loadings are used, Melville and Bray (1979a) have
reported that all of the particle mass flux profiles
attained a self-preserving form.

To a first approximation, Melville and Bray
(1979b) assert that the particle transport may be
described by a dependence of the turbulent Schmidt
number, which is the ratio of the turbulent momentum and
mass diffusivities, on the particle loading and flow
characteristics. The dependence is restricted by the
requirement that the Schmidt number decays to that of an
uncontaminated jet as the particle loading tends toward
zero. Abramovich and Girshovich (1973) propose that the
dependence on particle loading is linear for the case of
finely divided particles that are totally entrained by
the fluid. They also assert that the Schmidt number
increases toward infinity as the coarseness of the par-
ticles is increased.

Assuming that the previously discussed continuum
hypothesis applies, the following equations of continuity

for the two phases may be written [Danon et. al. (1977)] as

ﬁ("¢)+§j((l-¢)ud-)-' o) (6.1)




a8
and (¢3* (¢U,43 =0, (6.2)

Here, ¢ represents the volume fraction of the particu-
late phase, which is much less than unity, and LQ and
Uy; are the xj-direction components of the fluid phase
and particulate phase velocities, respectively.

The conservation of momentum in the fluid phase
may be expressed as

2 ((1-8))+ 2 (-t = -
£(0-#>u) 35,(( du)= "5 f;, %_1. '3 6.3)

where Fj, the body force term arising from interactions
between the two phases, has been described [Danon et. al.

(1977) , Melville and Bray (1979b)] by Stokes law as
18,
;,4 W JOIAY (6.4)

Since it is found that the mean velocities of the two
phases are virtually equal in the region of similarity
[c.f. Danon et. al. (1977), Melville and Bray (1979b)],
an additional equation for the momentum in the particulate
phase is not required. Fenton and Stukel (1976), however,
in their study of a two-phase, two-dimensional wake,
employed an equation for the momentum of the particulate
phase.

Noting that 5« | J,‘=L7J , and time-averaging,

equations (6.1), (6.2), and (6.3) may be re-written as
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é -- -
axJ(uJ) =0, (6.5)
i e 1 ==
5, (BL) 5.66%), (6.6)
= Ol f = S
ana ;53¢ a-e(-u,-u‘,-)+ ’di':' ST, (6.7)

respectively, for high Reynolds numbers. For light load-
ings, the resulting force term in (6.7) is seen to be
negligible. Thus, there is only an insignificant effect
on the momentum profile across the jet as a result of
interactions between the two phases.

The turbulence kinetic energy equation for the
fluid phase may be obtained from equation (6.3) in the
same manner as in the single-phase jet. The resulting

equation is the same as (3.11) with the exception that

the term
7.1 ] o —
a* [(ur" ) uie v Uy -diu; @+ G -eld )u.-‘a'] (6.8a)

is added to the R.H.S. of (3.11l) in the two-phase model
equation. The first term in (6.8a) is approximately zero
by the approximate equality of the mean velocities and
the third term is considered to be negligible relative to
the second because it is third order in the velocity
fluctuations. Thus, the remaining additional term to

(3.11) is
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18V (T &
%V(u,‘.-y‘.)ui ) (6.8b)

v

and is referred to as the "added dissipation.”
In order to obtain a solution to the kinetic
energy equation, it is necessary to model the

correlation. This is accomplished by observing that
2R2 ~lup;-uui 2 O, (6.9)

where the upper bound represents the case when the parti-
cles are stationary with respect to the turbulent £fluid
fluctuations and the lower bound corresponds to the case
where the particles exactly follow the turbulent fluid
fluctuations. Danon et. al. (1977) have proposed that

this correlation be modelled as
- Cog-aiyu; = 2R (1 Mf’['u?/i.]) (6.10)

where B is an empirical constant, tp is the particle
response time scale, and te is the time scale of the

smallest eddies given by

4t p da? h
{733}.‘ .-2;’95. and t,= (%), (6.11)

This model is seen to satisfy the upper and lower bounds
of (6.9) when the ratio tp/te tends toward infinity and
zero, respectively, although no justification for the

exponential form has been cffered.
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For sufficiently small values of tp/te, (6.10)
can be linearized by a Taylor series expansion of the

exponential to

SE——— z b
- (- = 2R (8%, ) = LRB zj)?)ra %“ (6.12)

which is linear in particle loading and agrees with the
result of Owen (1969).

When the linearized model of (6.12) is attempted
to be cast into a similarity form, it is found that the
dependence on axial position of this term is not compa-
tible with the rest of the terms in the kinetic energy
equation. The same behavior is exhibited by the added
terms to the turbulence shear stress and energy dissipa-
tion equations. Consequently, another method of solving
the model equations is required to calculate the profiles
across the two-phase jet.

From the experimental work of Laats and Frishman
(1970), information can be obtained concerning the effects
of particle size and initial loading on the spreading
rate and mean velocity distributions as well as on the
turbulence structure within the two-phase jet. For values
of X, , the initial mass ratio of the particulate phase
to the fluid phase, between 0.0 and 0.05, the fluid
velocity distribution at the nozzle exit is about the

same as in the turbulent region further downstream with
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Uow ff ~1.25. The subscript om indicates the maximum
value at the nozzle exit and the superscript ® denotes
the average value at the nozzle exit. However, upon
further increasing the initial loading to ¥,~0.7, the
fluid velocity distribution becomes almost uniform (%5‘*1.0)
at the nozzle exit. The initial velocity distribution
of the particulate phase exhibits the opposite trend,
with the distribution becoming more non-uniform with
increasing %, for a given particle size as well as with
increasing particle size for a given X .

The data also reveals that the particle mass
flux g(kg particles/mzsec) attains a self-preserving
form for 3%"1.0 whereas the mean axial fluid velocity
profile fails to become similar. Although absolute
similarity does not occur for the mean fluid velocity,
the deviation from self-preservation is not large and is
readily evident only for fine particles. Consequently,
the experimenters concluded that the velocity profile may
be considered to be similar over discrete segments of
%9 without significant error.

Division of the relative particle mass flux, g/gm,
by the relative velocity, U/Um, gives the relative con-
centration of the particles, X/Km, providing that the
difference between the mean velocity of the two phases

may be neglected. Thus,
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X . 83/8n _ £(70q) (6.13)
kw  us, '&(Wtub,

taking the velocity profile to be of a self-preserving
form. The values (‘,‘-& and r,s, denote the distance from
the axis where the particle mass flux and axial velocity
are half of their respective maxima along the axis. The
relative concentration profile can be self-preserving
only if the ratio of the half-widths, m(z L foen )
becomes constant for increasing values of %p . This is
not the case in the experimental data of Laats and
Frishman (1970) so that the particulate concentration
profile does not become self-preserving.

It has been seen that the particle mass flux
attains a self-preserving form but the fluid velocity
and particulate concentration do not. Since the product
of the particulate concentration and velocity, which has
been shown to be virtually the same as the fluid velocity,
is the flux, it is apparent that the deviations of the
concentration and velocity from similarity balance each
other. Laats and Frishman (1970) observed that for fine
particles the width of the concentration profile
increases with increasing axial position whereas the
opposite occurs for coarse particles.

The deformation of the velocity profile from

similarity is attributed to the momentum transport between
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the two phases. Since the jet entrains ambient fluid and
the velocities of the two phases are nearly the same,
conservation of the total momentum within the jet dic-
tates that in the far field essentially all of the
momentum is carried in the fluid phase. The momentum
transfer is greatest near the axis and diminishes near
the edge of the jet [c.f. Laats and Frishman (1970)].
Since the net momentum transfer is from the particles,

it is expected that the particle size and concentration
should be influential in determining the rate of transfer.
The data of Laats and Frishman (1970) confirm this and
reveal that the rate of momentum transfer increases with
initial particle loading, %, , and with decreasing
particle size. In addition to supplying a source for
momentum transfer between phases, the particles also tend
to decrease the turbulent momentum transport across the
jet, thereby retarding the rate of particulate diffusion

and the sp:eading rate of the jet.



VII. CONCLUSIONS AND RECOMMENDATIONS

After examining the literature available for two-
phase flows, it is readily seen that the actual flow is
much more complicated than the treatment given it here.
It is possible, however, that for light loadings of
fine particles the gross features, such as the spreading
rate of the jet and the profiles of the mean velocity and
particulate concentration, may be approximated by the
inclusion of "added dissipation" terms in the T-R-& model
as discussed earlier. Since the deformation from simi-
larity of the mean velocity and particulate concentration
profiles are not large in experiments with heavily loaded
jets [Laats and Fishman (1970)], the deformation becomes
unobservable in experiments with lightly loaded jets
[Melville and Bray (1979a)].

Although the profiles in lightly loaded jets appear
to become self-preserving, the present modelling terms do
not permit a self-preserving form of the equations in the
modified 7-R-€ model. Consequently, a solution in the
self-preserving region is not obtainable with this model
for two-phase jets. An algorithm to solve partial differ-
ential equations is therefore required to obtain down-
stream profiles. The absence of a similarity solution is

55
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not considered to be a great hindrance to applications of
models of two-phase jets to physical systems, however,
since most of the applications of two-phase flow, such

as coal combustors, occur in the developing region of

the jets.

The T-h-¢ model for single-phase jets gives reason-
able results for the predicted profiles of the mean axial
velocity and contaminant concentration as well as the
turbulence kinetic energy and the square of the root-
mean-square contaminant concentration fluctuations.
However, the need to modify the set of constants to achieve
a better fit to experimental data for different geometries
indicafes the absence of a sufficiently complete physical
representation of the turbulence. The most serious result
of the incompleteness of the model is the behavior of the
predicted spreading rate in the plane and axisymmetric
jets. The model predicts that the axisymmetric jet
spreads faster than the plane jet although the opposite
is observed in the actual flows.

Since the proposed modifications to the set of
constants used in the model are empirical [c.f. Pope
(1978)] , their use prohibits the desired universality of
the constants. Consequently, the use of sets of con-
stants that best fit the experimental data of a given

flow geometry are recommended for the model in its present
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state of development if the model is to be extended to

two-phase flows.
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