
ABSTRACT

A NUMERICAL METHOD FOR THE SOLUTION OF PROBLEMS

IN THREE DIMENSIONAL ELASTICITY

by Hotten A. Elleby

A numerical method was developed based on expanded finite

differences of the displacements of the nodal points for use in the

solution of problems involving solid bodies. The method presented

was derived using the equilibrium of the region around a nodal point

of the finite difference grid as the basis of solution rather than the

classical approach which uses the equilibrium of the nodal point as

the basis for solution.

To investigate this method, the solutions using this method

were found for a concentrated line load acting on the surface of a

cube, a concentrated load acting on the cube, a distributed load act-

ing on the cube, an eccentric load acting on a beam column, and a

beam column under constant applied moment. These solutions were

also studied with respect to variations in Poisson's ratio.

The solution of these problems was determined without the use

of external fictitious nodal points to satisfy the boundary stress con-

ditions, and also without the use of superposition of solutions when

the problems contained singularities.
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The solutions of these problems converged very rapidly with

respect to decreasing grid spacing, except in the proximity of

singularitie s .

The equations became very unstable as Poisson's ratio

approached one -half. This is the case of zero dilatancy of the

material which means the average stress at a point is independent

of the strains at that point. However, within the usual range of

Poisson's ratio, the solutions appear to have an accuracy of at least

three percent when not in close proximity to points of singularity

and with a reasonable choice of grid size.
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CHAPTER I

INTRODUCTION

Advances in computer technology in the past few years have

made possible the development of high speed, large storage digital

computers. Problems which formerly required many hours of com-

putation, or were limited by the available storage capacity, can now

be solved with much less difficulty. Therefore, it is now possible to

work problems, involving a great amount of calculation and a large

amount of storage capacity, that would previously have been avoided

because of the impracticability of solution.

The study of three dimensional solids is an area that for this

very reason has only recently been given attention outside of those

problems which can be solved in closed form, or those problems

which can be reduced to a less complicated level, i.e., one or two

degrees of freedom instead of three, such as, problems in plane

stress, plane strain, torsion, etc.

This dissertation will investigate the stress distribution in

three dimensional elastic solids using a special numerical method

developed by the author. This dissertation will be limited to solid

rectangular parallelepipeds which have at least two planes of symmetry

at their centroid. This dissertation will also investigate the effect of

Poisson's ratio on the stress distribution within the solid.



The solution of problems in three dimensional solids has been

considered by many authors . One proposed method of solution has

been the application of a frame -work or a lattice type analogy as

suggested by Hrennikoff (2), D'appolonia and Newmark ( l) as well

as McHenry (7) . Another method has been to use a direct stiffness

matrix for various basic solid shapes as suggested by Melosh (8).

The method which will be presented in this dissertation will

also be an analogous method based on a three dimensional grid-work

system, except that this method will be concerned with the equilibrium

of a region around a nodal point of the grid, as opposed to the classical

approach which satisfies equilibrium based on the derivatives of the

stresses at the nodal point and which is also based on the assumption

that the stress condition at the point is the average representation of

the region around the point. In essence, the method to be presented

uses a solid model to represent the solid region around the point, and

will be concerned with the equilibrium of this solid model.

The solution of the three dimensional equilibrium equations is

found by applying Lagrangian linear interpolation formulas . The

resulting equations will be in the finitedifference form, except they

will be representative of the solid instead of the nodal point and thus

be appropriately called "Expanded Differences . "

Chapter II will discuss the development of the theory used in

the proposed method, and will compare this method to the classical



approach when such a comparison will be helpful to the general

understanding of the method. The technique of applying this method

for the general solution of a problem will be developed in Chapter III.

Chapter IV is devoted to the application of the method to a few

selected example problems. These include, concentrated loads

(concentric and eccentric), a distributed concentric load, and also

the solution using this method for a beam—column with an applied

moment and zero end shear. Chapter V summarizes the use of the

proposed method. Appendix A indicates the programming in Fortran

language for one of the example problems.



CHAPTER II

THEORETICAL DEVELOPMENT OF THE METHOD

OF EXPANDED DIFFERENCES

The three dimensional relationships between stress and strain

have been known for many years. These relationships have been

presented in detail by many authors (6), (9), (10) , (13), (14)

and ( 15) . In the derivations which follow, it will be assumed that

the material is isotropic, homogeneous and can be considered to be

a continuum. Also, that Hooke's Law is an adequate representation

of the relationship between stress and strain. It will also be assumed

that the functions which will be used to represent the stresses and

deformations within the body will possess piecewise continuity across

the grid lines in the body.

The three principal axes will be called X, Y and Z and the dis-

placements of a point within the body will be called 11, v and w in the

X, Y and Z directions respectively.

The equations which relate stress to strain for three dimensions

in elastic solids are:

Bu Bu 6v

crx-Xe+ZG-é-; Txy—G(5;+5;)

8v Bu 8w
2 + — : —-— —cry Xe 2G 8y sz G (az + 8x) (1)
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2 X + 2 -- : —-— ——

0.2 e G 82 Tyz G (82 + By)



In the previous equations E is Young's modulus, v is Poisson's ratio,

and G is the shearing modulus where,

E

G: 2(l+v) (2)

x is Lamé's constant,

vE

=(1+V)(l-2v) (3'

 

X-

and e is the dilatation per unit volume of a point,

8“ Emir
‘ax By an

(4)

Equations 1 can be written in a somewhat more usable form for

computation purposes when the following terms are defined,

_ E

" 2(1+v)(l-2v)

 

E.
(5)

and,

a=l—2v (6)

Using these constants, equations 1 become,

6x : E'[(1+a)%3+(1-a)('g%+ '3'?”

0y = E'[(l+a)%§-+(1-¢)(%E’+ 3'31]

(,2 = E'[(1+a)-g-E+(1-¢)(%E+ '33)]
TxyzE’a(g_§+%})

(7)

szzE'a (33+ ‘33)

TyzzE'a(g-:-+g%)



These equations relate the stress at a point to the displacement

derivatives at the point. The exact displacement functions

u(x, y, z) , v(x, y, z) and w(x, y, z) are usually not available as con-

tinuous functions throughout the whole body except for a very few

special cases, and thus, various numerical methods must be developed

to attain approximate solutions. There are also series solutions

available using the Neuber-Papkovitch equations, (9) and (11) .

The displacement functions are derived (or approximated) by

simultaneously satisfying internal equilibrium and compatibility of the

body along with the external boundary conditions either in terms of

stress or displacement.

The equations of equilibrium are:

EF=O

x

23F =0 (8)

Y

2F =0

z

If we assume that u, v and w are continuous functions we can derive

the following equilibrium equations of an infinitely small element

(dx, dy, dz) as follows for zero body forces.
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Substituting Equations 7 into these Equations 9, the equilibrium

equations can be written in terms of the displacements which means

that compatibility of displacement will be automatically satisfied.

The se equations are:

E' 33+ E'a Vzu l
l

0

E'%:—+E'aV2v=O _ (10)

E' 33+ E'a Vzwz o

where,

_..._a_i._§i, 82
— 2 2 2

8x 8y Bz

V2
 

(11)

These equations are generally known as the Navier-Stokes

equations of equilibrium. These equations satisfy equilibrium at a

point within the body and everywhere within the body, providing u, v

and w are continuous functions in x, y and z. If u, v and w are not

continuous functions throughout the entire body, such as in the case

when the displacements in the body are specified only at points, as

for example in a grid work of nodal points, then equilibrium is only

satisfied at the nodal points where the derivatives of these discon-

tinuous functions are obtained. These derivatives will only be

accurate to the order of the equation assumed passing through the

nodal points, and the equilibrium equations will be only accurate. to

the degree in which these derivatives represent the true average



conditions around the point. The accuracy of the final solution will

then be dependent upon the accuracy of the displacement functions and

the size of grid employed. The classical method of solving the

equilibrium equations in terms of the grid work, is to substitute into

the equilibrium Equations 10 the normal second order finite difference

approximations for the needed derivatives (4) and then write the

finite difference equations for every nodal point of the grid work in

the solid. This will lead to a set of linear simultaneous algebraic

equations which can then be solved by various methods (12) . The

existence and uniqueness to solutions of the partial differential

Equations 10 has been shown by Korn (3) and Lichtenstein (5), for

first and second boundary value problems under general conditions.

The method as outlined above is the classical method of solving

three-dimensional problems based on the Navier-Stokes equilibrium

equations. As mentioned previously, these equations only satisfy,

in general, the equilibrium of a nodal point in the grid work of the

body. It would seem that a solution that converges faster (with

respect to the size of the grid) could be obtained by satisfying

equilibrium within a region around the nodal point instead of simply

at the nodal point alone .

The basic philosophy of the method to be described stems from

the fundamental viewPoint that the prime interest is in satisfying

equilibrium throughout the entire body. It would seem then that since



a grid work is being used to represent the solid body, the equilibrium

equations can be written in terms of the forces in the body as repre-

sented by the grid system, rather than using the derivatives of the

stresses at each nodal point in the grid system, as is presented in

Equations 9.

The stresses at any point within the body are given in terms of

the first derivatives of the displacement functions. Assuming straight

line variation of displacement between nodal points, the first deriva-

tive of one of these functions along a grid line and in the direction of

the grid line between two nodal points will be a constant. Therefore,

the point where this derivative can be best represented is at the cen-

ter of the particular grid line segment. This idea can then be ex-

tended to all three coordinate axes which leads to the concept that the

equilibrium equations can be formed by using the summation of forces

on the planes passing through the center of the grid lines and per-

pendicular to them as shown in Figure 1. When there are no body

forces, the sum of the forces acting on the planes surrounding a

nodal point can then be set equal to zero for equilibrium. In the

classical approach it can be shown that the equilibrium equations can

be formed by representing the average stress on these planes as the

stresses which exist at the intersection of the coordinate axes with

these planes (Figure 2). In the method to be developed, the average

'stress will be computed from the expanded derivative in each
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Figure l. Isometric view of basic model octants surrounding the

reference nodal point, and also the rectangular parallelepipeds of

which they are a part.
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Figure 2. Position of stresses as used in Equations 9 for the

classical finite difference solution of the three dimensional

equilibrium equations.
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quadrant of the plane, and the equilibrium equations will then be

determined from these stresses (Figure 3). With linearity assumed

in both cases, the total sum of the forces acting on any plane through

the body will be the same, but the forces when resolved to the nodal

point will be different, depending on the curvature of the stress pat-

tern. The efficiency of the method will become apparent when com-

paring the relative convergence of the two solutions.

This method can be described by comparing the volume en-

closed by the planes which pass through the center of the grid line

segments around a nodal point to a solid model. The displacement

functions for an octant of the model will be determined by the parallel-

epiped of nodal points of which that octant is a part (Figure l) .

Linearity will be assumed between the nodal points of this rectangular

parallelepiped and will be used in determining the displacement

functions. The displacement functions will be continuous within the

parallelepiped, but they will be only piecewise continuous across the

grid line boundaries . The model to be used in deriving the equilibrium

equations will be, in general, composed of the eight smaller octants

which surround the nodal point and each of which is one octant of the

parallelepiped of nodal points which is used to determine the displace-

ment functions. The dimensions of one of these smaller octants will

be one —half of the dimensions of the parallelepiped used in determin-

ing the displacement functions. The equations of stress within an



l4

octant of the model will be determined from the first derivatives of

the displacement functions within the octant. The resulting stress

equations will be, in general discontinuous across the boundaries

between the octants of the model because the displacement functions

are, in general, only piecewise continuous across these boundaries.

The eight octants which surround a nodal point will have forces

acting on their faces (Figure 3) as determined by the displacements

of the nodal points of which that octant is a part. These forces can

then be used to determine the equations of equilibrium.

The displacement functions within a particular octant will be

derived by using an extension of the Lagrange interpolation formula

within the boundaries of the eight nodal points needed for linearly

describing the stresses and displacements between nodal points .

Before the equations of displacements are determined for each

octant, it will be convenient for future developments to define the

method to be used in identifying the relative position of the nodal

points surrounding the reference nodal point from which equilibrium

equations will be formed, and also in identifying the eight separate

octants surrounding the reference nodal point. The position of a

functional value with reference to the centroidal nodal point of the

model can be indicated by showing the function to be dependent on

three arguments I, J and K which will be the vector components of

the point in the x, y and z directions respectively from the reference
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nodal point. These three arguments will uniquely describe this point.

For example, u(I, J, K) would be a typical use of these arguments.

This quantity would signify the u displacement of the point atT+ 3+ K

with respect to the reference nodal point. A particular octant of the

solid model can be identified by a set of vectors T, Tand K which are

set equal to the vector components of the grid lines coinciding with

the internal edges of that particular octant. There are then eight

sets of identification vectors, one for each possible octant. If we

number the octants (n) one through eight, and express the grid

,h,andhspacmgs hl 2 3 in the x, y and 2 directions respectively, a

table of the eight sets of identification vectors for the octants can be

formed as follows:

TABLE I

CCTANT IDENTIFICATION VECTORS

n i" 3" K

1 h1 h2 h3

2 h1 h2 —h3

3 h1 —h2 h3

4 h1 -h2 --h3

5 —h1 h2 h3

6 -h1 h2 —h3

7 -h1 -h2 h3

8 -h1 -h2 -h3
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These sets of identification vectors can be made into sets of unit

vectors by dividing them by their respective grid spacings and thus,

B1n : In /h1

u—i : —-I h

B2n Jn/ 2 (12)

B3n : Kn/h3

The x, y and z coordinates of a point within an octant can then be

expressed in the following form:

n — rln B1n hl

_. < <n r2nB2nh2 0 .. r -1 (13)

zn : r3nB3nh3

The x, y and z coordinates of nodal points governing an octant can

be expressed in somewhat the same form by setting the value of r1,

r2 and r3 to be equal to zero or one. The constants m1, m2 and H13

can beused to represent these values of r where,

m1 = 0, 1

H12 = 0, l (14)

m3 = 0, l

The x, y and z coordinates of a nodal point for a particular octant

can then be expressed as follows and omitting the vector notation for

convenience,
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xnml : rnl B1n h1

ynmz : m2 an ha (15)

Znm3 : m3 B3n h3

The interpolation equations for the displacement functions

between the nodal points will be found by using an extension of the

Lagrange interpolation formula for equal intervals as found in Kunz

(4). The development of the equation for a single dependent varia-

ble and only one argument x is as follows.

Suppose, f(x0), f(x1), . . . , . ., f(xn) are the functional values for

arguments x0, x ...... , xn where the interval between the x's is
1!

a constant h and,

xm=xo+mh (OSmSn)

(16)

x = x0 .+ rh

. . th . . .

In finding an n -degree polynomial P(x) pas Sing through the n+1

p01nts (xo,f(x0)), (x1,f(xl)), ...... , (xn,f(xn)), let am(r) be an

th . .

n -degree polynomial that 18 zero (possesses roots) for all the

tabulated arguments except xm, and for this argument it is equal to

one, i.e.,

0 forkrfm

am(rk) ‘{l for k = m (17)

From these equations it follows, am(r) has n zeros 0, 1, . . . . ,

m-l, m+l, . . . ., n and that am(rm) = 1. It is found from satisfying

the se conditions that,



l8

_ r(r-l)(r-2).. .(r-m+l)(r-m-l)..(r—n)

— m(m-l)(m-2)...(+l)(-l)..(m-n)

 

 

 

: (_1)n-m r[n+1] (18)

m! (n-m)! (r-m)

The equation for the interpolating polynomial P(x) that passes

through all points becomes,

11 n-m [n+1]

P(x) = >2 (,‘1' r ccx > (19)
m. (n-m)! (r-m) m

m=0

or,

n

P(x) = E a (r)f(x ) (20)

m m
m=0

also,

P(xk) = akcrkmxk) = fuck) (21)

The same development can be used to find the interpolation

equation for a dependent variable which is a function of two arguments

x and y. Suppose that f(x0, yo), . . .,f(x0, ynz), . . . ., f(xn1, yo), . . .,

f(xn , ynz) are functional values for arguments x0, y0;. . .; xnl, ynl

where the interval between the x's is a constant h and between the y's

1

is a constant h2 and,

= < <
xml x0 + mlh1 (O - m1 — n1)

_. < <

ymz‘yo‘LrIihz (0 "m2 ”‘2'

(22)

x = x0 + rlh1

y 2 Yo + rzhz
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To find polynomial P(x, y), a function of two arguments, x and y

which passes through all of the points one may proceed as follows.

Let a (r , r

mlmZ l 2

for all the tabulated arguments except x , y , and for this argu-

ml ”‘2

) be the polynomial that is zero (possesses roots)

ment it is equal to one, i.e.,

F0 forqufm

 

l

amm (r1 , r2 )=< 0 forkzafmZ (23)

1 2 k1 kZ

K 1 for kl =ml,k2‘=mZ

In order to determine the two variable polynomial which will satisfy

the above conditions, consider,

0 forklim

1

am (rl ) = _ (24)

: V
1 R1 1 for k1 m1

0 for k # m

a (r ) = 4 2 2 (25)

”‘2 2k
2 l for k2 = m2

It follows that if there is a polynomial that satisfies Equation 24

and another polynomial that satisfies Equation 25, then,

am (rl)°am (r2) aamm (rl,r2) (26)

1 2 l 2

Equation 26 must be an identity because Equation 24 satisfies Equation

23 for the zeros in the x direction and Equation 25 satisfies Equation

23 for the zeros in the y direction and therefore the two multiplied

together must satisfy the combined conditions of Equation 23. The
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form of the polynomials for Equations 24 and 25 has already been

determined in Equation 18. The polynomial a (r , r ) becomes,
mlmz l 2

( _1)(n1-m1)(nZ-m2)r1[nl+l]rz [n2+ 1]

 

 

a (r ,r ) = ' ' ' ' (27)

mlm.Z 1 2 m1. m2.(n1—m1).(n2 m2). (r1 m1)(r2 m2)

The equation of the interpolating polynomial P(x, y) that passes

through all of the functional values becomes, P(x, y)

n1 n2 (-1)(n1+nZ-m1-mz)ri[n1+l] r2[n2+2]

m1=0 m2=0 ml‘mz' (n1'm1" 'nz‘mz" (r1'm1' 'rz'mz' m1 m2

”1 n2

_ E E

l 2 1 2

also, P(xk . Yk')

l 2

= a (r ’1‘ )f(x .Y )=f(x . ) (30)
k I

R1 2 1k1 2k2 kl k2 kl 33<2

If the dependent variable is a function of three arguments x, y and z,

the polynomial that passes through all points can be determined in the

same manner as in the last two cases. The subscript 3 will be used

to refer to those variables in the z direction. The polynomial which

possesses zeros at all of the tabulated arguments except for the

unique set of arguments x , y , x becomes,

m m m

1 2 3

a'rn m m (r1, r2, r3) : am (r1) .am (r2)° a'rn (r3) (31)

123 l 2 3
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)
aLrn m m (r1, 1'2’ r3

(n +n +n —m -m —m) [11 +1] [n +1] [n +1]
(-1) l 2 3 l 2 3 r1 1 r2 2 r3 3 (32)

m1! m2! m3! (ml-m1)! (nZ-mz)! (n3—m3)! (rl-m1)(r2~mz)(r3-rn3)

 

The equation of the interpolating polynomial P(x, y, z) which passes

through all of the functional values becomes,

P(X.y.Z)

n1 n2 n3

- E Z 2‘ a (r r r )f(x
‘ .. _ _ . . :Y .z ) (33)

ml-O mZ—O m3—0 mlmzm3 l 2 3 m1 m2 m3

In order to apply this polynomial to the particular problem at

hand, there must be included the position of the octant, and the dis-

placement function that is being determined. This can be done in the

following manner.

Because of linearity in x, y and z,

n = n = n = l

the octant identification number:
3 I
I

H
.

H the displacement function number

then,

un(X. y. Z) = f1n(X. y. Z)

l
l

vn(X.y.Z) f2n(X.y.Z) (34)

wn(X. y. Z) f3n(X. y. Z)
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The general polynomial Pin(x' y, 2) that passes through all of the

tabulated displacements for one of the above equations becomes,

 

>1: 2': g (..1)'3m1“‘2"m3)r 11(r -l)r2 (r2 -1)

P. (X.y.Z)= __ _ _
1n ml—O mZ—O m3-0 (rl-m1)(r2-m:)

r (r -l)

.(3___§___) fi(X m I Ynm I Z )
(35)

r3 1an3. n 1 2 nm3

The derivative of this function with respect to x, y or 2 can be

performed in the usual manner. For example, the derivative of this

function with respect to x would be the following:

 
 

 

 

l l 1 (3-m -m -m ) 2

apln - 23 2 E (-l) l 2 3 (r1 -2m1r1+ m1)

8x '— m =0 m =0 m =0 2

1 2 3 (rl-ml) (rz-m2)(r3-m3)

r2r3(r2-l)(r3-l) n

h fl(xnm’ym’znm) (36)

1 1 n 2 3

but,

m _ 2

1‘ m1

therefore,

1 l l (3-m -m -3rm)
BPln .. E Z Z (-l) l 2 rr2r32(r -l)(r3-1)

8x m1=0 m2=0 m3: (rZ-m2Hr3-m3)

Bln .

' -—f

h 1(xnm'ynm'znm) (37)
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The derivatives of Equation 35, as can be seen from the exam-

ple derivative in Equation 37, are functions of only two of the three

arguments, and being that they are linear equations, they form

warped plane surfaces with respect to these two arguments.

If it is desired, the previous equations can also be shown in

matrix form. As an example, Equation 35 is shown in matrix form

on page 25. When Equation 35 is expanded, for a particular variable

displacement function, as for example u, it will appear in the follow-

1, r2 and r3 and also I, J and K are the variableing form, where r

quantities for a particular octant from Table I, and with the subscript

n omitted from these variables for convenience,

u(r ,r ,r ) =u(0,0,0)+r

1__ 2 3 1[u(I, 0. 0)-u(o, o, 0)]

+ r2[u( 0, J, 0) -u( 0, 0, 0)]

+ r3[u(0, 0, K) -u(0, 0, 0)]

+ r u(I,J,0)-u(0,J,0)-u(I,0,0)+u(0,0,0)] (38)

1r2'

+r u(0,J,K)-u(0,J,0)-u(0,0,K)+u(0,0,0)]

213'

+ r u(I,0,K) -u(I,0,0)-u(0,0,K)+u(0,0,0)]

1r3[

+ rlrzr3 [u(I, J, K) —u(I, J, 0) -u(0, J,K) -u(I, 0,K)

+ u(I, 0, 0)+u( O, J,.D)+u( 0, 0, K) -u(0, 0, 0)]

When Equation 37 is expanded in the same manner as in the

above equation, it will appear as follows:
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8u(r1, r2, r3) - B1n

8x h

 [u(I, O, 0) -u( 0, 0, 0)]

 

 

1

B1 r2

h“ [u(I.J. 0)-u<o,.1. 0)-u(1, o, 0)+u(0, o, 0)]

1

B1 r3
5 [u(I,0,K)—u(0.0.K)-u<1.0.0)+u(0.0.0)] (39)

1

B1 r21.3
+ —-"—h-——— [u(I, J,K)-u(O,J,K)-u(l, J, 0)+u(0, J, 0)

1

-u(I, 0, K)+u( 0, 0, K)+u(I, 0, 0) -u(I, 0, 0)]

Equation 35, which represents the general equation for the u,

v and w displacement function within a particular octant, can also be

transformed to the following form for a more general view of the

type of equation involved,

u =AO + A1x+ A2y+ A32 + A4xy+A5xz + A6yz + A7xyz

v=BO+B1x+BZy+B3z+B4xy+B5xz+B6yz+B7xyz (40)

w = CO+ C1x+ C2y+ C3z+ C4xy+ CSXZ + C6yz + C7xyz

If these equations are substituted into the equations of compatibility,

which are given by various authors (6) , (10), (13) and (15) , it will

be found that compatibility of displacement is satisfied. If these

equations are substituted into the equations of equilibrium in terms

of displacement, Equation 10, it will be found that these equations

are not identically satisfied. However, when the solution for the

displacements at the nodal points has been determined, the equations
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of equilibrium will be satisfied for the region of the nodal point.

The conclusion can also be reached that since the body is being

represented as a mesh work of nodal points with linearity assumed

between the nodal points, the accuracy of the solution will be dependent

on the size of the mesh chosen, since the linear lines will then be able

to represent the true configuration of the displacement functions with

less error.

As was stated previously, the determination of the equations of

equilibrium is to be developed on the basis of the integration of the

forces acting on the surfaces of the octants which are formed by

passing planes through the mid-point of the mesh lines (Figure 3).

The average stress on any octant's surface will be the stress that

occurs at the centroid of the octant's surface. This is due to the fact

that the stress surface is a warped plane, and the average elevation

of a warped plane surface occurs at the centroid of the area covered.

The appropriate values of r for the centroid of the stresses on the

surfaces of an octant are shown in Table II. To find the stress at one

of these points, substitute the appropriate derivatives, as illustrated

in Equation 39, into the stress function, Equations 7, and introduce

the required values of the variables for that particular octant and

then substitute in the values of r taken from Table II.



TABLE H

STRESS r1n r2!n r3n

0 1/2 1/4 1/4

xn

0 1/4 1/2 1/4

yn

0 1/4 1/4 1/2

zn

T 1/2 1/4 1/4

xyn

T 1/2 1/4 1/4

xzn

T 1/4 1/2 1/4

yxn

T 1/4 1/2 1/4

yzn

T 1/4 1/4 1/2

zxn

T 1/4 1/4 1/2

zyn

The positive direction of the total force on an octant should be

made consistent with the major coordinate axes. The stresses are

considered positive according to the usual conventions. Therefore,

the vector direction of the stress must be determined, by multiplying

the stresses by the appropriate B coefficient for the octant on which

the stress appears. Thus,

——-b —-L

0' : 0'

xn ln xn

.O'_.:E-.O'

yn 2n yn

0' :E‘O’

zn 3n zn

T—‘zfid'l’

xyn ln xyn

“=?

szn lnszn (42)

-—_\ —l

T :BT

yzn 2n yzn

rhz-d

B. T

yxn 2n yxn

*
l l

B T

zxn 3n zxn

“

*
1

B T

zyn 3n zyn
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The total vector force acting on an octant can then be deter—

mined by summing the individual average vector stresses by the area

over which they act. This produces three total vector forces for any

nun—A —L —-N . . . '

octant (Fx' Fy and F2) . If the grid d1v181ons are all the same, a,

then,

h :h :h :a
(43)

and the forces acting on an octant can be developed as follows:

“

F __g ___‘ _‘

fl = 0' + T + T (44)
2 xn yxn zxn

a

If: 1

-——)—(Z— : E' R: [( l+a)['9U(O, 0: 0) -3U.(O, 0: K)-3U(O, J! 0)

a

-u( 0, J, K)+9u(l, 0, 0)+3u(l, 0, K)+3u(I, J, 0)+u(l, J, K)]

+(l-a)'2B B [-3v(0,0,0)-3v(I,0,0)-v(0,0,K)

ln 2n

-v(I, 0, K)+3v(0, J, 0)+3v(l, J, 0)+v(0, J, K)+v(I, J, K)]

+(I-a)'2B B [-3w(0,0,0)—3w(I,0,0)—w(0,J,0)

ln 3n

-w(I, J, 0)+3w( 0, 0, K)+3w(I, 0, K)+w( 0, J, K)+w(I, J, K) ]]

+aE' T6; [-9u( 0, 0, 0) -3u( O, 0, K) -3u.(I, 0, 0)

-u(I, 0, K)+9u(0, J, 0)+3u(0, J, K)+3u(I, J, 0)+u(I, J, K)

+2B1B2 [-3v( 0, 0, 0) —3v(0, J, 0) -v(0, 0, K) -v(0, J, K)

+3V(I, 0, 0)+3v(I, J, 0)+v(I, 0, K)+v(l, J, K)] - 9u( 0, 0, 0)

-3u(l, 0, 0) ~3u( 0, J, 0) -u(I, J, 0)+9u( O, 0, K)+3u(I, 0, K)

+3u( 0, J, K)+u(l, J, K)+ 2B1nB3n[-3w( 0, 0, 0) -3w( 0, O, K)

-w( 0, J, 0) -w( 0, J, K)+3w(I, 0, 0)+3w(I, 0, K)+w(I, J, 0)

+w(I, J,K)fl
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and,

is"
Zn El .

2 =T6;[—(9+27a)w(0,0,0)+(-3+3a)[W(I,O,O)+W(O:J:O)]

a

+( -1+5a)w(I, J, O)+(9+3a)w(0, O,K)

+(3+5a)[w(0, J,K)+w(I, O,K)]+ (1+3a)w(I, J,K)

+2' BZnB

+(1-2a)v(1, J, O)+( -3+6a)v(0, O,K)+3v(0, J, K) (47)

3n[-3v( O, O, O)+( 3-6a )v( 0, J, O) -v(I, O, 0)

+(-l+2a)v(I,O,K)+V(I,J,K)]+2’B B [-3u(0,0,0)

n 3n1

+(3-6a)u(I, 0, 0) -u(0, J, 0)+( l-Za)u(I, J, O)

+( -3+6a)u(0, 0,K)+ 3u(I, O,K)+ ( -l+ Za)u(0, J,K)

+(u(I,J,K)]]

These three equations represent the three principal vector

forces acting on each octant. The general total force acting on an

octant would then be the sum of these three vectors . The total force

acting on the planes surrounding a nodal point would then be the sum

of the forces on the individual octants. If the octants used are to be

actually part of the physical solid body, then the number of octants

surrounding a nodal point can vary from one octant for a corner,

two octants for an edge, four octants for a surface to eight octants

for an interior nodal point.

The method for combining these forces into the proper equilib-

rium equations will be discussed in the following chapter.



CHAPTER III

METHOD OF SOLUTION

The general solution of solid problems using the octant force

equations developed in the last chapter is obtained by simultaneously

solving a set of equilibrium equations formed from the nodal points

of the whole body.

Each nodal point in the body, in general, has three degrees of

freedom of displacement. There is available an equation of equilib-

rium in the direction of each unknown displacement component.

Therefore, there is one equation for each unknown displacement

throughout the whole body, forming a complete and solvable set of

equations with no ambiguity.

In the interior of the body, the equilibrium equations are

formed by summing the vector forces on all eight octants to zero in

each of the principal directions. The equilibrium equations formed

on the boundary, however, require fairly close attention, especially

in those regions where the curvature of the displacements along the

boundary is comparatively large. In the interior of the body the

equilibrium equations are formed by essentially taking the difference

of two first order equations, thus, forming a second order difference.

On the boundary, there are two alternatives to the solution. The

first method would be to eliminate the octants that are not actually

31
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part of the body and use the boundary forces as part of the equilib-

rium equations for the affected nodal points. This will then lead to

a first order solution in the neighborhood of the boundary, which will

lead to small error, for small curvatures of the boundary displace-

ments. The second method would be to create external fictitious

nodal points one grid spacing removed from the boundary. These

fictitious nodal points can be determined by substituting the boundary

stress conditions for their finite difference equivalents in terms of

these fictitious points. The stresses on the boundary will be correct

and the equilibrium equations will be of the second order throughout

the body. The first method will be applied to the solution of the

example problems in the following chapter because of their relative

simplicity.

Using the first method, the general equation for the equilibrium

of a nodal point can be shown as follows:

8 8

F:O=ZTF+ZY (48)
n: :

8 8

F=O=ZTF +Z‘Z

n= :

If there are no body forces and the nth octant exists, T =1 and

n

X = Y = 2n = 0. If the nth octant does not exist and there are no
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body forces, then Tn = 0 and Xn, Yn and Zn are the appropriate

boundary forces in terms of the boundary normal force and shearing

forces. The identification subscripts which occur in the equations

for the forces on the octants, Equations 45 to 47, are at this point

only identified with respect to the reference nodal point where the

equilibrium equation is being formed. For a complete set of

equations, the reference nodal point for the equilibrium equation

must be referenced to the main centroidal axis system of the whole

body. This can be accomplished if we define the distance to the nodal

point in the following manner,

XL = La L = 0, l, 2, 3, .....

yM = Ma M = O, 1, 2, 3, .....

zN = Na N = O, l, 2, 3, .....

Therefore, the identification of the position of a nodal point for a

particular displacement function can be indicated as follows:

u(I, J, K) L, M, N = u(La+I, Ma+J, Na+K)

v(I, J, K) L, M, N = v( La+I, Ma+J, Na+K) ( 50)

w(I, J, K) L, M, N = w( La+I, Ma+J, Na+K)

The general equations of equilibrium of a nodal point with respect to

the main centroidal axis system then become:
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8 8

z T F + z xn :0

“=1 nL,M,N an,M,N n‘l L,M,N

8 8

z: T F + >3 Y =0 (51)

“=1 nL,M,N ynL,M,N n=1 n1., M,N

8 8

2 Tn Fz + 2 z :0

“=1 L, M, N nL, M, N “=1 nL, M, N

In general, the system of equations produced for a given body

with even a fairly small number of grid spacings, would yield a

tremendous number of equations to be solved simultaneously. This

would then eliminate as a possible method of solution the methods

using the inverse of the coefficient matrix. The remaining choices

are those which use relaxation and iteration. These methods are

comparatively simple for the types of equations being used for solu-

tion, because there are only 57 basic types of equations. The only

variables of this system of equations will then be the location of the

reference nodal point (L, M and N), the type of equation to be used

(one of the 57 basic types) and the boundary forces, if present at that

particular nodal point. The equations can, therefore, be written

with these variables built into them. In order to converge to a solu-

tion by iterating on the equations thus formed, a relaxation or even

an over relaxation procedure can be adopted. If this is done, the

relaxation of the equations can proceed until the change in the values

of the displacements between-iterations is a small acceptable value.
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This value represents the convergence error of the iteration solution.

When this method of iteration is applied to the previous general

equations of equilibrium, the equations can be represented in the

following form,

8 8

R(L,M,N)=ET F +23x

x ml n1.,M,N xnL,M,N n=1 nL,M,N

8

€- 2 T (9+27a) (52)

n=1 nL,M,N

u(L,M,N) =u(L,M,N) + c R (L,M,N) (53)
new old r x

8 8

R(L,M,N)=ET F +2Y

y n=1 nL,M,N ynL,M,N n=1 nL,M,N

8

E- E T (9+27a) (54)

n=1 L,M,N

v(L,M,N) =v(L,M,N) + c R (L,M,N) (55)
new old r y

8 8

Rz(L,M,N) = z Tn an + 2: zn

n=1 L,M,N L,M,N n=1 L,M,N

8

.1. >3 T (9+27a) (56)

ml nI_.,M,N

w(L,M,N) =w(L,M,N) + C R (L,M,N) (57)

new old r z

Where, the acceptable error
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=e 2Rx(L,M,N) 2Ry(L,M,N) 2Rz(L,M,N) (58)

and, Cr is the over relaxation constant that can be used when

desired.

When the error in the displacements has converged to the small

error, e, the stresses at the nodal points can be determined using

Equations 7. These stresses can then be used for the usual purposes

and applications .



CHAPTER IV

EXAMPLE PROBLEMS

The example problems that will be shown in this chapter are

for the purpose of demonstrating the application of the method and the

behavior of the equations involved under different types of loading

conditions.

The first is an example problem which will be used to compare

the stress distribution in a solid cube supported on a plane surface

under the loading of a line load acting perpendicular to the top sur-

face along the centroidal X-Axis (Figure 4) when computed with the

proposed method and Poisson's ratio equal to zero, to the stress

distribution computed using the plane stress and plane strain classical

solution of a thin plate, with a concentrated load acting at the center

of one edge. The classical solution will be solved using the Airy's

stress function (15) and finite difference methods. The stress

distribution for various other values of Poisson's ratio will also be

shown using the proposed method. The stress distribution, for

Poisson's ratio equal to zero, is unique because the normal stress

is dependent only on the normal derivative. Thus, when the boundary

conditions are constant in the direction of one of the principal axes,

the stress distribution on any plane perpendicular to that axis is a

constant. When Poisson's ratio is not zero, the normal stresses are

37
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dependent on all three normal derivatives and the stress distribution

will vary along this axis .

The second problem will consider the stress distribution in a

solid cube due to the application of a concentrated load acting in the

direction of the Z-Axis at the intersection of the centroidal Z—Axis

and the surface of the cube (Figure 5) . The effect of Poisson's ratio

on the stress distribution will also be investigated.

The third problem will find the stress distribution in a solid

cube due to a distributed load over a small concentric area on the

surface of the cube (Figure 6). This stress distribution will be com-

pared to the solution determined in problem two. This problem will

also demonstrate whether some of the effects of the changing of

Poisson's ratio are due to the nature of the concentrated load, or due

to the behavior of the equations when the ratio approaches a value of

one -half. When Poisson's ratio is one —half, the dilatation of the

material is zero, and in such a case, the average stress for a point

in the body is indeterminate, and only the differences between the

average stress and normal stresses are determinate. Therefore, a

solution of problems using the displacements of the body is impossible.

The fourth problem will show the stress distribution in a beam-

column due to the action of an eccentric load (Figure 7). This will

correspond to the case of a post-tensioned member, or a column with

an eccentric load.
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The fifth problem will find the stress distribution in a beamw

column subjected to the theoretical stress distribution of a beam under

constant moment (Figure 8). Since the solution of this problem is

already known, the problem will demonstrate the relative error

associated with the use of this method's first order equilibrium

equations at the boundary surfaces in conjunction with a variable

Poisson' 8 ratio.
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Figure 4. Isometric view of cube with line load for Example

Problem One.
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Figure 5. Isometric view of cube showing concentrated load

on the Z—Axis for Example Problem Two.
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Figure 7. Isometric View of a beam-column showing the

location of the eccentric load for Example Problem Four.
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EXAMPLE PROBLEM NUMBER ONE

In this first problem, we will find the stress distribution in a

cube due to a line load acting along the X-Axis on the surface of the

cube as is shown in Figure 4. The solution will be found for three

different grid spacings. The grid spacing in any particular solution

will be the same in all three principal directions. Each solution

using the proposed method, with Poisson's ratio equal to zero, will

also have a parallel solution computed using the classical biharmonic

approach using finite differences. For the first grid, we will use a

grid spacing of B/4, for the second grid, we will use a grid spacing

of B/8 and for the third grid, we will use a grid spacing of B/l6.

For purposes of comparison between the various solutions, we will

specify that the average stress on any X-Y plane be unity. Therefore,

the computed stresses will be stress concentration factors for the

assumed unit average stress. If we consider the line load to be

distributed over a one -half grid spacing on either side of the loaded

line, then we can develop the following relationship between the speci-

fied unit stress on the cross section, the stress on the distributed

line load, and the size of the grid spacing.

a = grid spacing

B = dimension of cube

N = number of segments in B length

Therefore,
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B = Na

Q = stress on loaded area

then,

QaB = 1B

or,

Q = 113- = 1 - N
a

By inspection, the w displacements will be symmetrical with

respect to the centroidal Y-Z and X-Z planes on any X-Y plane, and

the u and v displacements will be anti-symmetrical with respect to

these same planes.

The numerical solution is, therefore, required in only one

quadrant of any X-Y plane. All boundary forces can be set equal to

zero except for those nodal points which lie along the loaded area.

In the equations of equilibrium, for the nodal points, the boundary

forces can be expressed in the equation in terms of the boundary

stresses because the grid spacing is a constant. Therefore, the

equations can be divided by the area over which the stresses act.

It will be convenient for programing purposes to write the

equations such that the boundary forces can be included in the equa—

tions. This can be done by entering the equation with the proper

nodal displacement incremented by some value and when leaving the

equation subtracting this incremental value, leaving the nodal

displacement at the correct value. This technique and the method
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of determining stresses can be demonstrated as follows: As an

example, part of the equation of equilibrium for a quadrant on the

Z surface (Equations 47 and 48) can be written in the following form,

E!

boundary _

16a
[-(9+Z7¢)W(0.0.0)+ etc.'°"]+ Kcrz -— Owhere

K is an arbitrary constant for the boundary stresses. Defining,

__ E'(9+ 27a)

’ 16a

 

_ E'( 9+ 27a)

- 16a

 

__ E'(9-l-Z7a)u

- 16a

u!  

the equation can be written in the following form,

E-(94'27a )w'(0, o, 0)+ . .. etc. ]/(9+ 27a] +bi°undaryz 0

Setting

w'(0, 0,0) = w'(.0, 0,0) = w'(0.0,0) - C

then

C : Kcrzboundary

as a correct substitution. When the equation has been relaxed

(Equations 56 and 57), C can be eliminated as part of the w

displacement,

w(O, O, 0) = (w(O, 0, 0) -C) + C

This is a very simple means of expressing the boundary forces,

since C can be chosen as any convenient constant consistent with the
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boundary stress distribution.

When the stresses are determined from the primed values of

the displacements, the equations must be corrected for the value of

K and for the elastic constants. As an example of the procedure, the

az stress at a nodal point L, M, N 'would be determined in the following

 

manner:

<7 (L.M.N) = E' [(1+a)9-‘3+ (1-a)a_“+ .31.

z 32 8x By

E' 168. aw' 311' avl

: -—- —— 1- —— ......_

K E'(9+27a)[(1+a)az+( (”Bx +3y

The normal finite difference equations for these derivatives, Kunz

(4), would be substituted giving the correct stresses for the given

loading condition.

The solution to the problem as a plane strain problem for

Poisson's ratio equal to zero, was found by applying the familiar

biharmonic solution as explained by S. Timoshenko and J. N.

Goodier (15) ,

2 2. 2

 

Y 32 By Y Byaz

which satisfies equilibrium for zero body forces .

Then, v4¢ = O for compatibility.

For the boundaries,

or, .

2 2

4) :y2?-+za—<p--/(z-a—1+ a4))ds

asaz Y asay
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The solution of the values for phi and its normal derivative on

the boundary is shown in Figure 9. An approximate solution of the

stress distribution within the boundaries is found by dividing the plate

into the same grid sizes as used in the other method, computing the

phi values on the boundary, determining the fictitious phi values once

removed from the boundaries by using the known value of the slope

of the phi function normal to the boundary, and then writing the

biharmonic operator in terms of phi for all points with an unknown

phi value. This will lead to a set of linear algebraic equations which

can be solved by the same methods applied to the three-dimensional

equations. The stress distribution for the plate can be determined

by using the known relationships between the stresses and phi. A

typical comparison between the three -dimensional solution and the

biharmonic solution can be seen in Table 3. In this table, the magni-

tude of the stress at various elevations on the Z-Axis is tabulated for

the three grid sizes and these values are compared as a percentage

to the extrapolated value of the function assuming an error of the

second order. A graphical representation of this table is shown in

Figure 10 for elevations z = O, z = B/Z, and z = 15B/l6. Similar

tables and graphs would show approximately the same trends for the

two methods.

The values of oz and cr on the Z-Axis are shown in Figures 11

x

and 12 respectively for z = O, z = B/Z and z = 7B/8 for varying
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and the associated boundary phi functions for the biharmonic

solution for Example Problem One.
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Poisson's ratio and for the grid spacings of B/8 and B/l6. The

values of oz at z = 15 B/l6 for the same parameters are shown in

Figure 13. From these figures, it can be seen that as Poisson's

ratio approaches one -half, the divergence between the solutions of

the two grids greatly increases even when comparatively far from

the loading surface. This would seem to indicate that the convergence

of the equations to the true solution with increasing Poisson's ratio

is not dependable for large grid spacings. It will also be noted, that

within the usual range of Poisson's ratio for structural materials,

0.1 to 1/3, that the discrepancies between the solutions for the two

grid sizes are small when comparatively far from the loaded surface

where the singularity exists. For solutions of the stress distribution

near the singularity, increasingly small grid spacings would be

necessary. This is clearly evident in Figure 13 which shows the crz

stress at z = 15B/l6 for various Poisson's ratios and the two smaller

grid sizes. The values for the larger of the two grid spacings were

computed on the basis of straight line interpolation between z = 7B/8

and the assumed distributed stress on the top surface. The lower

line represents an assumed stress over one grid spacing of B/8 or a

stress of 8 at the top surface and the upper line for the smaller grid

length of B/l6 or a stress of 16 on the top surface. The Flamant (15)

solution for a concentrated load for z = 15B/16 and z = 7 B/8 also is

indicated in Figures 11 and 13 for Poisson's ratio of zero. The
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agreement between the Flamant solution and the numerical method

solution seem to indicate that as far as the vertical stress distribu-

tion is concerned, the solution in the neighborhood of the concentrated

load is the Flamant solution. However, this will not be true for the

0x and (Ty stress distributions. The 6x stress does not exist as part

of the Flamant solution because the problem is assumed to be that of

the solution of a flat plate in plane strain or plane stress. In the

Flamant solution, the 6y stress is always of the same sign. In the

real problem under investigation, we are not dealing with the semi-

infinite plane and it is required in this problem that the sum of the

normal stresses on any vertical section be zero, and therefore, the

cry stress will be of varying sign so as to satisfy this condition. The

Flamant solution for 0y on the Z-Axis is zero and the 0.x stress on

the Z-Axis would be the oz stress multiplied by Poisson's ratio

(assuming the plane strain solution). Figure 14 shows the 0.x and or

stress on the Z-Axis for a Poisson's ratio of 0. 3 and a grid spacing

of B/16.

The Flamant solution can be used in the neighborhood of the

concentrated load for the vertical stresses because the boundary

conditions on the surface where the load is applied agree in both

cases. The Flamant solution can not be used for the horizontal

stresses because the boundary conditions on the vertical planes do

not agree. The relative importance of this consideration would be
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unimportant for design purposes in materials which are equally

as strong in tension as in compression.“ However, in

materials which are not equally as strong in tension as in compres-

sion, such as concrete, the presence of tension in the material could

be of concern. The presence of these tension stresses will be even

more marked in the example problem to follow which is the case of

the concentric concentrated load.

As an example of the general distribution of the stresses

throughout the block, lines of constant stress for crx, 0'y and (r2 on the

Y-Z plane with x = 0 are shown in Figures 15, 16 and 17 respectively

for the grid spacing of B/16 and with Poisson's ratio of O. 3.
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EXAMPLE PROBLEMS TWO AND THREE

Problems two and three will be treated together because of the

similarity between them (see Figures 5 and 6). In problem two, the

load will be assumed to be distributed over an area enclosed by lines

one -half of the grid spacing in each direction. Two grid sizes will

be used, B/8 and B/l6. In problem three, the load will be distributed

in such a manner using a grid spacing of B/16 such that the stress

distribution on the surface closely approximates that of the stress

distribution for problem two with the grid spacing of B/8. Compari-

sons can then be made between all three solutions at the same time.

In order to achieve an exact duplication of the stress distribution for

the grid spacing of B/8 in problem two with the next possible finer

grid, the grid spacing would have actually had to have been divided by

three. This would have meant many more equations to solve and of

course the solution time would have been much longer. The grid

spacing of B/l6 was, therefore, chosen to accomplish this purpose

as reasonably as possible.

As in problem one, problem two and three possess the same

type of symmetry which will require only one quadrant solution on the

X-Y plane for a solution of the whole. In problem two, the magnitude

of the distributed stress for the concentrated load for a unit average

stress on the X-Y plane will be N2, where N is the number of grid

spacings in width B. In problem three, the total load acting on each
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nodal point must be such that it agrees with the nodal loads caused

by the stress distribution of problem two with a grid spacing of B/8.

The resulting stress distributions are shown in Figure 18. The

method of setting up the boundary equations and computing the stresses

from the displacements will be the same as in problem one.

The solution for the stress distribution in the neighborhood of

the concentrated load in problem two should approach the theoretical

solution of a concentrated load on a semi-infinite body, or that of a

concentrated distributed load on a semi-infinite body. These solutions

will be computed and compared with the numerical solution when

possible. The theoretical solution for the distributed load will be

computed on the assumption that the load is distributed over a circu-

lar area whose radius is one -half of the grid spacing.

Figures 19 and 20 show the O'z stress at various elevations on

the Z—Axis. The theoretical solutions are shown for those elevations

of 2 equal to or greater than 7B/8. As in problem one, it can be

seen that the convergence of the two grid spacings becomes poor as

Poisson's ratio approaches one -half. From the results of these two

problems, the explanation of the poor convergence lies entirely in

the size of grid chosen to represent the body. This is quite evident

when the solution for the larger grid size of problem two is compared

to the solution of the smaller grid size in problems two and three.

When z is not in close proximity to the loaded area, the solutions for
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Distributed load for Problem Two

with a grid spacing of B/8 (a) and for Problem

Three with a grid spacing of B/16 (b).

Figure 18.
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the two small grid sizes agree with small error even though the stress

distribution of the concentrated load is different. However, as

Poisson's ratio approaches one -half, the solution of the larger grid

size diverges sharply from the two smaller grid size solutions. This

definitely means that the equations are unstable when Poisson's ratio

approaches one -half and the effect of this instability is greater on the

overall solution as the grid size becomes larger. It will be noted,

however, that within the usual range of Poisson's ratio the solutions

are in close agreement.

Figures 21 and 22 show the ox and cry stress for various eleva-

tions on the Z-Axis. The theoretical solution for a concentrated

distributed load is shown for z = 7 B/8 and z = B.

As in problem one, there is a great discrepancy between the

theoretical and numerical solution for these horizontal stresses.

This is again attributed to the lack of agreement of the boundary

conditions on the vertical faces. Some of the discrepancy can also

be attributed to the largeness of the grid with respect to the area

which is loaded.

Figures 23 and 24 show the constant stress lines of problem

two on the Y-Z plane for ox and crz respectively with Poisson's ratio

of zero and for a grid spacing of B/16. Figures 25 and 26 show the

constant stress lines on the Y-Z plane of problem three for crx and

oz respectively for the same parameters. These figures are again

p
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as in problem one only examples of the types of stress diagrams that

could be constructed for different planes in the body.

It will be noticed in comparing Figures 23 and 24 to Figures 25

and 26, that the difference between the two solutions is minimal

except in the region of the concentrated load.
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EXAMPLE PROBLEM FOUR

In this problem (Figure 7), the stress distribution will be

investigated in a beam column which is acted upon by an eccentric

concentrated load. The problem will be divided into two parts. In

the first part, the load will be considered to be concentrated on a

square area centered around the nodal point, whose dimensions will

be equal to the grid spacing which for this first part will be B/4

(Figure 27a). In the second part, the load will be considered to be

concentrated on a rectangular area centered around two consecutive

nodal points along the upper surface X-Axis, whose dimensions will

be one grid spacing in the Y-Axis direction, and two grid spacings

in the X-Axis direction. The grid spacing for this second part will

be B/8 (Figure 27b). The assumed eccentricity in the first part will

be B/4 and in the second part 3 B/16.

Symmetry will be assumed to exist across the centroidal Z-X

plane, therefore, eliminating one -half of the structure for solution.

As in the previous problems, the w displacements on the plane z = 0

will be set equal to zero. Displacements of nodal points lying on the

plane of symmetry will also be assumed zero in the normal direction.

The equations of equilibrium and method of solution will be handled

in the same way as in problem one.

The solution will in each case be computed for Poisson's ratio

of 0.0, 0.2, 0.3 and 0.4. The solutions for values of Poisson's ratio
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nearer 1/2 will not be computed because of the instability of the

equations as evidenced in the previous problems.

At a distance from the load, the stress distribution in the beam

column will be governed by the equations:

 

”13.1322
Uz‘A I

or,

P 2

UzzA (1 leZX)

B

If we substitute into the equations above the value of the eccentrici-

ties for part one and two, the stress distribution across the beam

would be:

for part one:

P 3x

(I. 2: (”'5’

for parttwo:

P 9x

crz"A (1+Z—B)

In both parts, the average stress on the cross section of the beam

column was set equal to 500. The stress distribution associated with

this average stress would be the computed stress distribution from

the above equations if the beam column was infinitely long, and if

there was no error introduced because of the approximate nature of

the equations .
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Figure 28 shows the axial stress along the X—Axis in part one

with 2 equal to zero and for Poisson's ratios between 0.0 and 0.4.

The error in the extreme fiber stress with respect to a true straight

line variation varies from -4%to +2070. Figure 29 shows the same

stress distribution for part two. The error in the extreme fiber

stress for this case varies from -2%to +2% which is a smaller range

than in part one. The theoretical stress distributions for part one

and two are indicated in Figures 28 and 29 by the broken lines. These

stress distributions are based on the stress distribution in the

infinite beam column. Figures 30 and 31 show the vertical stress

distribution on the centroidal X-Axis for part one and two respectively

with Poisson's ratio of O. 2. Only the distribution in proximity to the

loaded surface is shown since the lines from the base to approxi-

mately B/2 are parallel. Figures 32 and 33 show the lines of constant

vertical stress on the centroidal X-Z plane for part one and two

respectively with Pois son's ratio of 0. 2. In both cases, it can be

seen that the trajectories are virtually vertical between the base of

the column and the center of the column. Figure 34 shows the lines

of constant stress 6x on the centroidal X-Z plane with Poisson's ratio

of 0.2 for part two. The maximum tension stress is approximately

one -tenth of the maximum theoretical compression fiber stress or

two -tenths of the average stress which would be of considerable

interest in design practice if the material happened to be concrete.
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It can be seen from these figures that the stress distribution

agrees with the theoretical stress distribution when comparatively

far from the loaded surface. The error varies with respect to

Poisson's ratio and the range of the error decreases with decreasing

grid spacing. Tension stresses that are small in comparison to the

compression stress exist and may in some circumstances cause

Concern .
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EXAMPLE PROBLEM FIVE

In this problem (Figure 8), the accuracy of this proposed

method will be studied by comparing the known stress distribution in

a beam under constant moment and zero shear to the solution which

results from the numerical method using the first order boundary

equations. Figure 353. shows the assumed stress distribution on a

line parallel to the X-Axis on the upper surface of the beam. Fig-

ure 35b and Figure 35c show the assumed boundary nodal stresses

for grid spacings of B/4 and B/8 respectively. Symmetry was

assumed to exist only with respect to the X-Z plane. The solution

will be handled as in the previous problem. Figure 36 shows the

outside fiber stress for solutions with various values of Poisson's

ratio for the two grid spacings. In Figure 36, the error associated

with a base stress of 500 is also shown. Within the usual range of

Poisson's ratio (0.2 to 0.3), the error ranges from -Z.761% to

-O. 782% for a grid spacing of B/4 and from -0.38% to +0.870%

for a grid spacing of B/8. As in the previous problems, the accu-

racy of the solution is dependent on the value of Poisson's ratio, and

instability of the equations becomes progressively worse as Poisson’s

ratio approaches 1/2.
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CHAPTER V

SUMMARY AND CONCLUSIONS

A numerical method for the solution of the equilibrium equations

for a three-dimensional body in terms of its displacements has been

presented. The method is designed to satisfy the equilibrium equa-

tions for a region around a nodal point of the grid system employed to

represent the body. The applicability of the equations was studied by

applying them to various representative problems. The example

problems for this study were chosen to show the disadvantages as well

as the advantages of this method. The problems were also solved

without any use of refinements that would tend to give better results.

This objective was accomplished by first, not making use of fictitious

nodal points to satisfy the boundary equations, which leads to first

order equations with respect to the boundary, and second, by solving

problems with concentrated loads on the boundaries which leads to

singularities. Since, solutions of problems in three—dimensional

elasticity which make use of the displacement functions are impossible

when Poisson's ratio is one-half, because the dilatancy of the body is

zero, the solutions were also studied with respect to this ratio

approaching one-half.

In problem one, when U = 0 it was found that the solution

of the numerical method presented was better than the

91
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classical solution with respect to grid size. It was also found that

as Poisson's ratio approached one -half, the solutions became

unstable.

In problems two and three, it was found that the instability of

the equations was a function of the grid size. This is clearly evident

because the solutions for the fine grid in problem one and problem

three agree very well when not in close proximity to. the load, but

the coarse grid diverges sharply from this solution when Poisson's

ratio approaches one -half.

In problem four, the solution of. the concentrated eccentric

load, when compared at a distance from the concentrated load, agreed

with small error to the theoretical solution of the infinite beam column,

which agrees with St. Venant's theorem. The maximum tension stress

was approximately 20% of the average stress.

In problem five, it was found that in using the first order

boundary conditions, the error within the usual ranges of Poisson's

ratio was comparatively small.

In reviewing the results for these problems, a number of

conclusions can be drawn:

1. A generalmethod has been presented which can be used

to solve problems in three dimensional elasticity. Up to

this time very little literature has been available concern-

ing the numerical solution of stress distribution problems
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in three dimensions. The method is applicable to all

problems that can be described by a suitable mesh, and

is limited only by the capability of the computer.

This method includes as a possible variable the use of

Poisson's ratio. The primary influence of Poisson's

ratio is in its effect upon the stress distribution in the

region of a concentrated load. When the equilibrium

equations on the boundary use the boundary forces rather

than the boundary displacement derivatives, there is a

secondary effect of Poisson's ratio that is introduced into

the solution. If Poisson's ratio is limited to values less

than 0. 4, the accuracy of the solution is good.

3.’ The solutions appear to converge monotonically with

respect to decreasing grid spacing. It has also been

shown that when l/ = O the method presented in this thesis

compares more favorably to the exact solution than the

classical numerical solution with respect to grid spacing.

There are a number of refinements that can be included in the

solution of a problem in three dimensional bodies that were not used

in the presentation of the method. First, fictitious points once re—

moved from the boundaries could be used to satisfy the boundary stress

conditions. This would then lead to equilibrium equations on the

boundary of the second order rather than that of the first order.
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There are, however, a number of drawbacks in this approach. At

the intersection of surfaces, there are more unknown nodal displace-

ment values involved in the fictitious points than there are stress

equations available. This leads to approximations as to the curvatures

of the boundary surfaces at these points, and thus some error may be

introduced.

Second, the well known subtractive process can be used to

eliminate singularities from the numerical solution. This also would

present some difficulties. The boundary conditions to be used in such

a process would involve defining the displacements on some surfaces,

and the stresses on other surfaces which would lead to some compli-

cations in writing the computer program necessary for the solution of

the problem. It would, however, lead to a very accurate solution in

the region of the singularity.

There are many avenues for the future development of this

method. The application of the refinements to some problems should

be attempted to evaluate their potential as useful inclusions in a

general solution. The application of the use of these expanded differ-

ences should be attempted with plate problems to determine their

applicability in this situation.

In conclusion, a numerical method for solution of three dimen—

sional elasticity problems has been presented, and by all implications
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seems to be a method which is easy to use, and which gives good

results for comparatively small grid spacings for the usual structural

materials .



VI APPENDIX

FORTRAN COMPUTER PROGRAM FOR

EXAMPLE PROBLEM FIVE

96
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pnoann BEND

FORMAT STATEMENTS

500 F09MAT15X.16HPO1SSON-S RAT10-.F7.41

100 FORMAT15x.19HNuusER OF CYCLES - .15.5x.7HRMAx . 0614.8)

101 FORflAT(315) .

102 F0RMAT12X.312.2X.91E11.5.1X)1

103 FORMAT (BX-5H! J K.sx.2Hu3.10x.2Hv3.10x.2Hw3.10x.3stx.9x.3Hsvv.

19x.3Hszz.9x.3HTxv.9x.3Hsz.9x.3HTv2.14./1H01

104 FORMATtlHloSXml9HPROB FOR H A ELLEBY./1H01

DIMENSION u113771.v¢13771.w113771.nx113771.RYt13771.RZ113771o13181

1.ax1¢13771.nv1¢13771.Rz1113771

COHHON UQVQUORXORYQRZQSXXQSYY0$ZZITXYoTXZoTYZORl0R20R30940R50960

1R70R8

GOVERNa.0000001

NUMBER-O

nz1¢11=0.07

R21121-0.04

R21131c0.0

921(41--0.04

~RZI(5)--Oo07

3x1111-0.0

RX1(2).°02

9x1131-0.3

,RX1141-0.4

RX1£51.0045

Rx1tsiso.49

RXH7)=3.0

Rx1(8,)3300

RXlt9)85oO

9x11101s5.

RX1(11)83.'

9x11121-9.

Rx1<131s9.

Rx11141~5.

Rx1115139.

N431

Mass

600 COflTINUE

00 11 L81.1377

u<L1=0.

V‘L)=°o

11 U“L)'Oo

PAUSE 200

601 !F(SENSE SUITCH 11 130.602

602 REVIND 5

READ TAPE 50U0V0U0NUHBER0N41N51RZ!(1)ORZI(Z)0RZJ(3)0RZI(4)0

1921(5)9RZI(6)3R21(7).RZI(8)0R21(9) '

REwINo s

130 N u Exusmsmi

~2- RX1(3*N5+5)
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N33 RXI(3*N5+6)

PISRXI(N4)

AL-lo-PI~PI

R03Io+AL+AL+AL

RI'90*RO

RZIRO-Ao

R3'RO*20+AL+AL

R4lRO+80

R5‘R3+‘0

RéaRo

R78~RO-RO+50

R83-RO+AL+2.

RI88805R1

R2‘840*R2

R32=Z.§RS

R4484.*R4

R5282.*RS

NIIN-I

N128N2-1

N13IN3-1

NI3Z=N13+2

IFIN¢II 50495040115

115 CONTINUE

DO 123 HU31020

118 IF(SENSE SWITCH 3) 693010

603 REUIND 5

'PAUSE 300

URITE TAPE 50U0V0U0NUNBE90N40N5mRZI(1)ORZIIZ)IRZI(3)ORZII4)o

IRZI‘SIORZII6)QRZI(7)CRZI(8loRZI(9)

REWIND 5

NU 8 1

' GO TO 316

Z AXIS AT THE SURFACE

10 I31

NUMEER-NUMBERH

K3N3

J31

L3LAKEIIQJ0K)

:UlL)3U(L)~RZI(I)

CALL ZS(L0*7I«0900000000000).

UCL)'U(L)+RZI(I)

CALL XSIL0‘7100000000000000)

SYMETRTCAL x AXIS ON THE PLUS 2 SURFACE

20 DO 204 I320NI

LSLAKE(I0J0K)

mm-mu-Rn (11

CALLZ$(L0‘7I0-73000000000000)

UCLI=U(L)+RZI(I)

CALLX$(L0“7I0‘730000009000003

204 CONTINUE



27

21

I3

134

214

26

I6

99

OUTSIDE Y EDGE AT SYM INTERSECTION

I=N

L‘LAKEIIQJQK)

WIL)3U(L)‘RZI(I’

CALLZS(L9’7300000000000090)

UIL)'U(L)+RZI(I’

CALLXS(L0-7300000000000000I

DO 214 J=20N12

SYM Y AXIS ON 2 SURFACE

I'I

L'LAKEIIOJQK)

UIL)‘U(L)“RZIII)

CALLZSILQ’TI0-89009000000000)

UIL)=U(L)+RZI(I)

CALLXS‘Lo-TI0-89000000000000)

CALLYSILo-7I0-89000000000090)

SURFACE PLUS 2 AXIS

DO 134 I329NI

L3LAKE(I0J0K)

"(LI3U(LI“RZI(II

CALLZSILc-710-89o-730-9I90000000)

WIL)=U(L)+RZI(I)

CALLYSILo-710-890-730-9I00000090)

CALLXSIL0*7I0-890-739*9IOOOOCOOO)

CONTINUE

OUTSIDE EDGE Y AXIS

I'N

L3LAKEII0J0K)

UCL)=U(L)~RZIII)

CALLZS‘L0-730-9I000090000000)

UIL)3U(L)+RZI(II

CALLYSIL0“730-9I000000000000)

CALLXSILw’730-9I000000000000)

CONTINUE

JINZ

OUTSIDE EDGE X AT SYM INTERSECTION

I81

L3LAKECI0J0K)

WILJ=U(L)‘RZIIII

CALLZS‘L0-3900000000000000)

UCL)3U(L)+RZI(II

CALLXSILO‘8900900000000090)

CALLYSIL0'8990009090000000)

OUTSIDE EDGE X AXIS

DO 164 I=ZONI

L8LAKE(I0J0KJ

UIL)'W(L)-RZI(I’

CALLZSILo-890’9I000000000000)

U(L)'U(LI+RZI(II

CALLYSCL0-89o-9I009000900000)
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23

32

324

234

24

244

28

123

400

106

121

107

102

X AXIS AT THE SURFACE

IBN

L'LAKEII0J0K)

CALLXSCL08900000000000000)

DO 234 J=20N12

INSIDE Y AXIS

131

L=LAKEIIOJOKI

CALLYSIL091073000000000000)

CALLXS(L0910730000000000001

INSIDE 2 SURFACE

DO 324 1320N1

L=LAKE(IOJOK)

CALLYS(L07107308909100000000)

CALLXS(L07I07308909100000000)

CONTINUE

SYN Y AXIS ON X SURFACE

I‘N

L=LAKECIoJ0K1

CALLYS(L07I0890000000000001

CALLXSIL071089000000000000’

CONTINUE

J=N2

Y AXIS AT THE SURFACE

I=1

L3LAKEII0J0K)

CALLYSIL07300000000009000)

CALLXSIL073000000000000001

SYM X AXIS ON Y SURFACE

DO 244 I320N1

L'LAKEIIOJOK)

CALLYSIL071073000000000000)

CALLXSIL0710730000000000001

CONTINUE

OUTSIDE Z EDGE AT SYM INTERSECTION

I=N

L8LAKE110J0K)

CALLYSIL07100000000000000)

CALLXSIL07100000000000000)

CONTINUE

CONTINUE

RMAX=00

DO 110 I=10N

DO 110 J=10N2

DO 110 K=ION3

L'LAKEII0J0K)

IFCABSF(RMAX)“ABSF(RX(L))) 10601210121

RMAX=RX(L)

1F¢ABSF(RMAX)“ABSF(RY(L))1 10701220182

RHAX‘RY(L)



103

122 IFIABSFIRMAXI’ABSFIRZ(L111 10801100110

108 RMAX‘RZILI

110 CONTINUE

IF‘ABSF(RMAX)“GOVERN112501250401

125 N4=N4+l

NUMBERSO

NU‘Z

IF(N4-61 70007000701

700 GO TO 116

701 N5=N5+1

N4=1

RZIIII'0015

R21(21=0012

R21131=0008

RZIC4I=0004

R2 1 (51:0 0 O

RZII6)=‘00O4

RZI(7)=‘0008

RZI(81=‘0012

RZI(9)=“0015

IFIN5-3170207020703

703 NU=1

702 GO TO 116

401 GO TO 115

116 PRINT 104

REUIND 5

WRITE TAPE 50U0V0W0NUMBER0N40N50RZI(I)0RZII210R211310R211410

IRZI(5)0RZI(6)0RZII710R211810R21191

REUIND 5

PRINT IOOONUMBER0RMAX

PRINT 1030 N

PRINT 1010N9N20N3

PRINT 5000P1

DO 120 K=I0N3

DO 120 I=IoN

DO 120 J=10N2

L‘LAKEIIOJOK)

CALL STRESS (I0J0K0N0N20N31

120 PRINT 102 I0J0K0UCL10VIL)0U(L10SXX0SYY05220TXY0TX20TYZ

PAUSE 100

GO TO (5040130)0NU

504 CONTINUE

STOP

END

SUBROUTINE STRESSIIOJOKONON20N3I

DIMENSION U(1377)0V1137710UII37710RX1137710RYII377)0R21137710IB‘3)

COMMON U0V0U0RX0RY0RZOSXX0$YY0SZZ0TXY0TXZ0TYZ0RI0R20R30R40R50R60

1R70R8

AL=RB+R6—20

ALIRAL+10
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