ABSTRACT

A NUMERICAL METHOD FOR THE SOLUTION OF PROBLEMS
IN THREE DIMENSIONAL ELASTICITY

by Hotten A, Elleby

A numerical method was developed based on expanded finite
differences of the displacements of the nodal points for use in the
solution of problems involving solid bodies, The method presented
was derived using the equilibrium of the region around a nodal point
of the finite difference grid as the basis of solution rather than the
classical approach which uses the equilibrium of the nodal point as
the basis for solution.

To investigate this method, the solutions using this method
were found for a concentrated line load acting on the surface of a
cube, a concentrated load acting on the cube, a distributed load act-
ing on the cube, an eccentric load acting on a beam column, and a
beam column under constant applied moment. These solutions were
also studied with respect to variations in Poisson's ratio.

The solution of these problems was determined without the use
of external fictitious nodal points to satisfy the boundary stress con-
ditions, and also without the use of superposition of solutions when

the problems contained singularities.
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The solutions of these problems converged very rapidly with
respect to decreasing grid spacing, except in the proximity of
singularities.

The equations became very unstable as Poisson's ratio
approached one-half, This is the case of zero dilatancy of the
material which means the average stress at a point is independent
of the strains at that point. However, within the usual range of
Poisson's ratio, the solutions appear to have an accuracy of at least
three percent when not in close proximity to points of singularity

and with a reasonable choice of grid size.
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CHAPTER 1

INTRODUCTION

Advances in computer technology in the past few years have
made possible the development of high speed, large storage digital
computers. Problems which formerly required many hours of com-
putation, or were limited by the available storage capacity, can now
be solved with much less difficulty. Therefore, it is now possible to
work problems, involving a great amount of calculation and a large
amount of storage capacity, that would previously have been avoided
because of the impracticability of solution.

The study of three dimensional solids is an area that for this
very reason has only recently been given attention outside of those
problems which can be solved in closed form, or those problems
which can be reduced to a less complicated level, i.e., one or two
degrees of freedom instead of three, such as, problems in plane
stress, plane strain, torsion, etc.

This dissertation will investigate the stress distribution in
three dimensional elastic solids using a special numerical method
developed by the author. This dissertation will be limited to solid
rectangular parallelepipeds which have at least two planes of symmetry
at their centroid. This dissertation will also investigate the effect of

Poisson's ratio on the stress distribution within the solid.



The solution of problems in three dimensional solids has been
considered by many authors. One proposed method of solution has
been the application of a frame-work or a lattice type analogy as
suggested by Hrennikoff (2), D'appolonia and Newmark (1) as well
as McHenry (7)., Another method has been to use a direct stiffness
matrix for various basic solid shapes as suggested by Melosh (8),

The method which will be presented in this dissertation will
also be an analogous method based on a three dimensional grid-work
system, except that this method will be concerned with the equilibrium
of a region around a nodal point of the grid, as opposed to the classical
approach which satisfies equilibrium based on the derivatives of the
sbt.:resses at the nodal point and which is also based on the assumption
that the stress condition at the point is the average representation of
the region around the point. In essence, the method to be presented
uses a solid model to represent the solid region around the point, and
will be concerned with the equilibrium of this solid model.

The solution of the three dimensional equilibrium equations is
found by applying Lagrangian linear interpolation formulas. The
resulting equations will be in the finite difference form, except they
will be representative of the solid instead of the nodal point and thus
be appropriately called "Expanded Differences."

Chapter II will discuss the development of the theory used in

the proposed method, and will compare this method to the classical



approach when such a comparison will be helpful to the general
understanding of the method. The technique of applying this method
for the general solution of a problem will be developed in Chapter IIIL.
Chapter IV is devoted to the application of the method to a few
selected example problems. These include, concentrated loads
(concentric and eccentric), a distributed concentric load, and also
the solution using this method for a beam-column with an applied
moment and zero end shear, Chapter V summarizes the use of the
proposed method. Appendix A indicates the programming in Fortran

language for one of the example problems.



CHAPTER II

THEORETICAL DEVELOPMENT OF THE METHOD
OF EXPANDED DIFFERENCES

The three dimensional relationships between stress and strain
have been known for many years. These relationships have been
presented in detail by many authors (6), (9), (10), (13), (14)
and (15). In the derivations which follow, it will be assumed that
the material is isotropic, homogeneous and can be considered to be
a continuum. Also, that Hooke's Law is an adequate representation
of the relationship between stress and strain. It will also be assumed
that the functions which will be used to represent the stresses and
deformations within the body will possess piecewise continuity across
the grid lines in the body.

The three principal axes will be called X, Y and Z and the dis-
placements of a point within the body will be called u, v and w in the
X, Y and Z directions respectively.

The equations which relate stress to strain for three dimensions

in elastic solids are:
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In the previous equations E is Young's modulus, v is Poisson's ratio,

and G is the shearing modulus where,

E

215 7) (2)

G =
N\ is Lamé's constant,

vE
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N

and e is the dilatation per unit volume of a point,

ou 0Ov ow (4)

Equations 1 can be written in a somewhat more usable form for
computation purposes when the following terms are defined,

E

() (1-20) (5)

El

and,
a =1-2v (6)

Using these constants, equations 1 become,
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These equations relate the stress at a point to the displacement
derivatives at the point. The exact displacement functions
u(x, vy, z), vix,y,z) and w(x,y, z) are usually not available as con-
tinuous functions throughout the whole body except for a very few
special cases, and thus, various numerical methods must be developed
to attain approximate solutions. There are also series solutions
available using the Neuber -Papkovitch equations, (9) and (11).

The displacement functions are derived (or approximated) by
simultaneously satisfying internal equilibrium and compatibility of the
body along with the external boundary conditions either in terms of
stress or displacement.

The equations of equilibrium are:

ZF =0
X

ZF =0 (8)
y

SF =0
Z

If we assume that u, v and w are continuous functions we can derive
the following equilibrium equations of an infinitely small element

(dx, dy, dz) as follows for zero body forces.
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Substituting Equations 7 into these Equations 9, the equilibrium
equations can be written in terms of the displacements which means
that compatibility of displacement will be automatically satisfied.
These equations are:
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These equations are generally known as the Navier -Stokes
equations of equilibrium. These equations satisfy equilibrium at a
poinf within the body and everywhere within the body, providing u, v
and w are continuous functions in x, y and z. If u, v and w are not
continuous functions throughout the entire body, such as in the case
when the displacements in the body are specified only at points, as
for example in a grid work of nodal points, then equilibrium is only
satisfied at the nodal points where the derivatives of these discon-
tinuous functions are obtained. These derivatives will only be
accurate to the order of the equation assumed passing through the
nodal points, and the equilibrium equations will be only accurate to

the degree in which these derivatives represent the true average



conditions around the point. The accuracy of the final solution will
then be dependent upon the accuracy of the displacement functions and
the size of grid employed. The classical method of solving the
equilibrium equations in terms of the grid work, is to substitute into
the equilibrium Equations 10 the normal second order finite difference
approximations for the needed derivatives (4) and then write the
finite difference equations for every nodal point of the grid work in
the solid. This will lead to a set of linear simultaneous algebraic
equations which can then be solved by various methods (12). The
existence and uniqueness to solutions of the partial differential
Equations 10 has been shown by Korn (3) and Lichtenstein (5), for
first and second boundary value problems under general conditions.

The method as outlined above is the classical method of solving
three-dimensional problems based on the Navier-Stokes equilibrium
equations. As mentioned previously, these equations only satisfy,
in general, the equilibrium of a nodal point in the grid work of the
body. It would seem that a solution that converges faster (with
respect to the size of the grid) could be obtained by satisfying
equilibrium within a region around the nodal point instead of simply
at the nodal point alone.

The basic philosophy of the method to be described stems from
the fundamental viewpoint that the prime interest is in satisfying

equilibrium throughout the entire body. It would seem then that since



a grid work is being used to represent the solid body, the equilibrium
equations can be written in terms of the forces in the body‘as repre-
sented by the grid system, rather than using the derivatives of the
stresses at each nodal point in the grid system, as is presented in
Equations 9.

The stresses at any point within the body are given in terms of
the first derivatives of the displacement functions. Assuming straight
line variation of displacement between nodal points, the first deriva-
tive of one of these functions along a grid line and in the direction of
the grid line between two nodal points will be a constant. Therefore,
the point where this derivative can be best represented is at the cen-
ter of the particular grid line segment. This idea can then be ex-
tended to all three coordinate axes which leads to the concept that the
equilibrium equations can be formed by using the summation of forces
on the planes passing through the center of the grid lines and per-
pendicular to them as sho;vn in Figure 1. When there are no body
forces, the sum of the forces acting on the planes surrounding a
nodal point can then be set equal to zero for equilibrium. In the
classical approach it can be shown that the equilibrium equations can
be formed by representing the average stress on these planes as the
stresses which exist at the intersection of the coordinate axes with
these planes (Figure 2). In the method to be developed, the average

stress will be computed from the expanded derivative in each
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Figure 1. Isometric view of basic model octants surrounding the
reference nodal point, and also the rectangular parallelepipeds of
which they are a part.
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classical finite difference solution of the three diri.ensional
equilibrium equations.
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Figure 3. Position of the centroidal stresses on the first octant,
1, of the model, and also the nodal points which determine the
internal displacement functions within this octant.
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quadrant of the plane, and the equilibrium equations will then be
determined from these stresses (Figure 3). With linearity assumed
in both cases, the total sum of the forces acting on any plane through
the body will be the same, but the forces when resolved to the nodal
point will be different, depending on the curvature of the stress pat-
tern. The efficiency of the method will become apparent when com-
paring the relative convergence of the two solutions.

This method can be described by comparing the volume en-
closed by the planes which pass through the center of the grid line
segments around a nodal point to a solid model. The displacement
functions for an octant of the model will be determined by the parallel-
epiped of nodal points of which that octant is a part (Figure 1),
Linearity will be assumed between the nodal points of this rectangular
parallelepiped and will be used in determining the displacement
functions. The displacement functions will be continuous within the
parallelepiped, but they will be only piecewise continuous across the
grid line boundaries. The model to be used in deriving the equilibrium
equations will be, in general, composed of the eight smaller octants
which surround the nodal point and each of which is one octant of the
parallelepiped of nodal points which is used to determine the displace-
ment functions. The dimensions of one of these smaller octants will
be one -half of the dimensions of the parallelepiped used in determin-

ing the displacement functions. The equations of stress within an
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octant of the model will be determined from the first derivatives of
the displacement functions within the octant. The resulting stress
equations will be, in general discontinuous across the boundaries
between the octants of the model because the displacement functions
are, in general, only piecewise continuous across these boundaries,
The eight octants which surround a nodal point will have forces
acting on their faces (Figure 3) as determined by the displacements
of the nodal points of which that octant is a part. These forces can
then be used to determine the equations of equilibrium.

The displacement functions within a particular octant will be
derived by using an extension of the Lagrange interpolation formula
within the boundaries of the eight nodal points needed for linearly
describing the stresses and displacements between nodal points.

Before the equations of displacements are determined for each
octant, it will be convenient for future developments to define the
method to be used in identifying the relative position of the nodal
points surrounding the reference nodal point from which equilibrium
equations will be formed, and also in identifying the eight separate
octants surrounding the reference nodal point. The position of a
functional value with reference to the centroidal nodal point of the
model can be indicated by showing the function to be dependent on
three arguments I, J and K which will be the vector components of

the point in the x, y and z directions respectively from the reference
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nodal point., These three arguments will uniquely describe this point.
For example, u(l, J, K) would be a typical use of these arguments.
This quantity would signify the u displacement of the point atT+J+K
with respect to the reference nodal point. A particular octant of the
solid model can be identified by a set of vectors —I‘, T and K which are
set equal to the vector components of the grid lines coinciding with
the internal edges of that particular octant. There are then eight
sets of identification vectors, one for each possible octant. If we

number the octants (n) one through eight, and express the grid

h_, and h

spacings hl’ 2 3

in the x, y and z directions respectively, a
table of the eight sets of identification vectors for the octants can be

formed as follows:

TABLE 1
OCTANT IDENTIFICATION VECTORS
n I i K
1 hl h2 h3
2 h1 h2 —h3
3 h1 -h2 h3
4 h1 -h2 -h3
5 -hl h2 h3
6 -h1 h2. —h3
7 -h1 —h2 h3
8 -h1 -h2 -h3
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These sets of identification vectors can be made into sets of unit

vectors by dividing them by their respective grid spacings and thus,

Ba =L/
B, =13 /h, (12)
Bs, = K, /by

The x, y and z coordinates of a point within an octant can then be
expressed in the following form:

n rln B1n hl

=r, B, h <r <1 1

n an 2n 2 0=r (13)
n "~ T3n3n"3

The x, y and z coordinates of nodal points governing an octant can

be expressed in somewhat the same form by setting the value of T

r, and T, to be equal to zero or one. The constants m_, m_ and m

1 2 3

can be used to represent these values of r where,

m1 =0, 1
m2=0,1 (14)
m3=0, 1

The x, y and z coordinates of a nodal point for a particular octant
can then be expressed as follows and omitting the vector notation for

convenience,
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xnm1 - m1 Bln h1

= h
ynmz m, Bon B (15)
znm3 - m3 B3n 3

The interpolation equations for the displacement functions
between the nodal points will be found by using an extension of the
Lagrange interpolation formula for equal intervals as found in Kunz
(4). The development of the equation for a single dependent varia-
ble and only one argument x is as follows.

Suppoée, f(xo), f(xl), e eaees f(xn) are the functional values for

arguments x » X where the interval between the x's is

0’ Xl, ......

a constant h and,

X =x.+ mh (0 Sm < n)
m 0
(16)
x  =xg .+ rh
o th . . .
In finding an n  -degree polynomial P(x) passing through the n+l
points (xo,f(xo)), (xl,f(xl)), ...... , (xn,f(xn)), let am(r) be an

th
n -degree polynomial that is zero (possesses roots) for all the
tabulated arguments except x o and for this argument it is equal to

one, i.e.,

_Jo for k # m
am(rk) ‘{1 fork =m (17)

From these equations it follows, a.m(r) has n zeros 0, 1, ....,
m-l, m+l,...., n and that am(rm) =1, Itis found from satisfying

these conditions that,
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r(r-1)(r-2)...(r-mt+l)(r-m-1)..(r-n)

am(r) - m(m-1)(m-2)...(+1)(-1)..(m-n)
n-m [n+1]
m! (n-m)! (r-m)
The equation for the interpolating polynomial P(x) that passes
through all points becomes,
n n-m [n+1]
- (-1) r
P(x) = m=0 m! (n-m)! (r-m) f(Xrn) (19)
or,
n
P(x) =r:io a (r)f(x ) (20)
also,
P(x, ) =a (r )(x) =f(x) (21)

The same development can be used to find the interpolation

equation for a dependent variable which is a function of two arguments

x and y. Suppose that f(xo, yo), coes f(xo, ynz), ceees f(xnl, yo), cees
f(xnl, ynz) are functional values for arguments xo, yo;. .o xnl, ynl

where the interval between the x's is a constant h. and between the y's

1
is a constant hZ and,

_ < <
xrnl -x0+mlh1 (0 - m, -nl)

_ < <
ymz‘yoJ’mzhz (0 -m, -n)

(22)

X = xo + rlhl
Yy o EYetroh,
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To find polynomial P(x, y), a function of two arguments, x and y
which passes through all of the points one may proceed as follows.

Let a (r ,r
m m, 1" "2
for all the tabulated arguments except x _,y , and for this argu-
i B

) be the polynomial that is zero (possesses roots)

ment it is equal to one, i.e.,

0 for kl # m,

r ) = 0 forkz#m (23)

2
1 for k1 = ml,kz‘=m2

In order to determine the two variable polynomial which will satisfy

the above conditions, consider,

jO for k1 4 m, '
a (r1 ) = (24)
1 kl \1 for kl = m1
e
0 for k2 # m,
a (r, )= 2 - (25)
m, 2y
2 \1 for kZ = rn2

It follows that if there is a polynomial that satisfies Equation 24
and another polynomial that satisfies Equation 25, then,

aml(rl) 'amz(rz) zamlmz(rl.rz) (26)

Equation 26 must be an identity because Equation 24 satisfies Equation
23 for the zeros in the x direction and Equation 25 satisfies Equation
23 for the zeros in the y direction and therefore the two multiplied

together must satisfy the combined conditions of Equation 23. The
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form of the polynomials for Equations 24 and 25 has already been

determined in Equation 18, The polynomial amlmz( T rz) becomes,

(-1) (ny-my) (nz-mz)rl[nﬁl]r2 [ny+1]

a (r.,r.) = ' ' ' - ' - (27)
m,m, 1’2 m, ! m,! (nl-ml). (nZ rnz). (r1 rnl)(r2 mz)
The equation of the interpolating polynomial P(x, y) that passes
through all of the functional values becomes, P(x,y)
n n, (_1)(n1+n2-m1-m2)ri[n1+l]rz[n2+2]
Px,y) = Z z —n ' ' f(x ,y ) (28)
m =0 m,=0"1"2 (n)-m )t ny=mp)H r) -m) (ry -m,) " m, m,
S U
= Z =z
1 2 1 2
also, P(x, , ¥y )
Xk1 kZ
= a (r, ,r, ) f(x ,y )=£f(x , ) (30)
k [
k1 2 1k1 2k2 k1 kZ kl Si(2

»

If the dependent variable is a function of three arguments x, y and z,
the polynomial that passes through all points can be determined in the
same manner as in the last two cases. The subscript 3 will be used
to refer to those variables in the z direction. The polynomial which

possesses zeros at all of the tabulated arguments except for the

unique set of arguments x__ ,y , x becomes,
m.’  ‘m m
1 2 3
a (ror,r,)=a_ (r)-a_(r))-a_ (r)) (31)
mlmzm3 172" 73 m, 1 m, 2 m, 3



21

a r,r
mmm(l'

yT,)
123 23

(n+n_+n_-m_ -m_-m_) [n+1] [n_+1] [n_+1]
) (-1)""1 72 73 1 2 3 r1 1 rz 2 r3 3 (32)
- m1! mZ! m3! (nl-ml)! (nz-mz)! (n3—m3)! (rl-ml) (rz-mz)(r3-m3)

The equation of the interpolating polynomial P(x, y, z) which passes

through all of the functional values becomes,

P(x,vy, z)
| nz n3

= Z z z a (r.,r_,r.)f(x

- = = - ’ ’ » Y » Z ) (33)
ml-O mZ—O m3—0 mlm2m3 1" 273 m1 mZ rn3

In order to apply this polynomial to the particular problem at
hand, there must be included the position of the octant, and the dis-
placement function that is being determined. This can be done in the
following manner.

Because of linearity in x, y and z,
n =n, = n, = 1

the octant identification number

o}
1

-
1l

the displacement function number

then,

un(x,y,Z) fln(x,y,Z)

"

vn(X.y.Z) fzn(X.y.Z) (34)

“%(X.V.Z) f3n(x,y,2)
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The general polynomial P.m(x, y, z) that passes through all of the

tabulated displacements for one of the above equations becomes,

L 1 Lo By mama) 0 ) (e 1)
b = 1''1 22
Pin(x'y’z)zrn:O m_=0 m_=0 (r.-m )(r,-m_)
1 2 3 1 1 2 2
r_(r -1)
' (3 : ez ) (35)
r,-m;) i "nm’ ‘nm.’ "nm,

The derivative of this function with respect to x, y or z can be
performed in the usual manner. For example, the derivative of this

function with respect to x would be the following:

1 1 1 (3-m.-m_-m_), 2
8P1n 0z > > (-1) 1 72 773 (r1 -Zm1r1+ ml)
% m.,=0 m_=0 m_=0 2
1 2 3 (rl-ml) (rZ-mz)(r3-m3)
r2r3(r2-1)(r3-1) Bln
h fl(xnm’ynm’znm) (36)
1 1 2 3
but,
_ 2
m, = m,
therefore,
1 1 1 (3-m, -m_-m
8P1n oz 5 5 (-1) 1 72 773 r2r3(r2-1)(r3-1)
ax rn1=0 m2=0 m3=0 (rz-mz)(r3-m3)
Bln
© —f
h l(xnm'ynm’znm) (37)
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The derivatives of Equation 35, as can be seen from the exam-
ple derivative in Equation 37, are functions of only two of the three
arguments, and being that they are linear equations, they form
warped plane surfaces with respect to these two arguments,

If it is desired, the previous equations can also be shown in
matrix form. As an example, Equation 35 is shown in matrix form
on page 25. When Equation 35 is expanded, for a particular variable
displacement function, as for example u, it will appear in the follow-

1’ r2 and r3 and also I, J and K are the variable

ing form, where r
quantities for a particular octant from Table I, and with the .subscript

n omitted from these variables for convenience,

‘ u(rl,.rz,r3) =u(0,0,0) + rl[u(I, 0, 0)-u(0,0,0)]
+ rz[u(O, J,0)-u(0, 0, 0)]
+ r3[u(0, 0, K) -u(0, 0, 0)]

+ rlrz[u(I, J,0)-u(0,J,0)-u(I,0,0)+u(0,0,0)] (38)

+ r,r.[u(0,J,K) -u(0,J,0)-u(0, 0,K)+u(0, 0, 0)]

+ r1r3[u(1, 0,K)-u(I,0,0)-u(0,0,K)+u(0,0,0)]

+r oo [u(l, 3, K) -u(1, 7, 0) -u(0, J,K) -u(L, 0, K)
+u(I, 0,0)+u(0,J,0)+u(0,0,K)-u(0,0,0)]

1

When Equation 37 is expanded in the same manner as in the

above equation, it will appear as follows:
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ou(r,,r,,r.) B
12" 3 1In
ax - h [u(I’ 0; 0)'u(0, 0, 0)]

1
B.%2
h“ [u(I, J, 0) -u(0, J, 0) -u(I, 0, 0)+u(0, 0, 0) ]
1
B1 r3
+ }‘1‘ [u(I, 0, K) -u(0, 0, K) -u(I, 0, 0)+u(0, 0, 0) ] (39)
1
B1 r2r3
+ “—h— [u(1, J,K) -u(0, J,K) -u(I, J, 0)+u(0, J, 0)
1

-u(l, 0,K)+u(0, 0, K)+u(I, 0,0) -u(L, 0,0)]

Equation 35, which represents the general equation for the u,
v and w displacement function within a particular octant, can also be
transformed to the following form for a more general view of the

type of equation involved,

u =AO+Alx+ AZy+A3z +A4xy+A5xz + A6yz +A7xyz
v = BO+ le+ B2y+ B3z + B4xy+ BSXZ + B6yz + B7xyz (40)
w = C0+ C1x+ C2y+ C3z+ C4xy+ Csxz+ C6yz+ C7xyz

If these equations are substituted into the equations of f:ompatibility,
which are given by various authors (6), (10), (13) and (15), it will
be found that compatibility of displacement is satisfied. If these
equations are substituted into the equations of equilibrium in terms
of displacement, Equation 10, it will be found that these equations
are not identically satisfied. However, when the solution for the

displacements at the nodal points has been determined, the equations
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of equilibrium will be satisfied for the region of the nodal point.

The conclusion can also be reached that since the body is being
represented as a mesh work of nodal points with linearity assumed
between the nodal points, the accuracy of the solution will be dependent
on the size of the mesh chosen, since the linear lines will then be able
to represent the true configuration of the displacement functions with
less error,

As was stated previously, the determination of the equations of
equilibrium is to be developed on the basis of the integration of the
forces acting on the surfaces of the octants which are formed by
passing planes through the mid-point of the mesh lines (Figure 3).
The average stress on any octant's surface will be the stress that
occurs at the centroid of the octant's surface. This is due to the fact
that the stress surface is a warped plane, and the average elevation
of a warped plane surface occurs at the centroid of the area covered.
The appropriate values of r for the centroid of the stresses on the
surfaces of an octant are shown in Table II. To find the stress at one
of these points, substitute the appropriate derivatives, as illustrated
in Equation 39, into the stress functipn, Equations 7, and introduce
the required values of the variables for that particular octant and

then substitute in the values of r taken from Table II.
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TABLE 1I
STRESS rln rZ.n r3r1
o 1/2 1/4 1/4
xn
o 1/4 1/2 1/4
yn
o 1/4 1/4 1/2
zn
T 1/2 1/4 1/4
xyn
T 1/2 1/4 1/4
xzn
T 1/4 1/2 1/4
yXn
T 1/4 1/2 1/4
yzn
T 1/4 1/4 1/2
zZxn
T 1/4 1/4 1/2
zyn

The positive direction of the total force on an octant should be
made consistent with the major coordinate axes. The stresses are
considered positive according to the usual conventions. Therefore,
the vector direction of the stress must be determined, by multiplying
the stresses by the appropriate B coefficient for the octant on which

the stress appears. Thus,

— ——

o = B a
xn In xn
— ——

a =

B
yn chyn

— - F
0-zn 3nozn

T—‘ = .B—-. T

xyn In xyn
— - E—A

szn lnszn (42)
— —

T = B T

yzn 2n yzn
— —

T =

B, 7
yxn 2n yxn

w—

|

B. T
zZXxn 3n zxn
—

°|

B, T
zyn 3n zyn
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The total vector force acting on an octant can then be deter-
mined by summing the individual average vector stresses by the area
over which they act. This produces three total vector forces for any

— e —y ...
octant (Fx, Fy and Fz) . If the grid divisions are all the same, a,
then,

h. =h_ =h_=a (43)

=
=2 =0 47 + T (44)
aZ xn yxn zxn

e _ o

— = 1 _ _ )

22 * Tea [“*“)[ 9u(0, 0, 0) -3u(0, 0, K) -3u(0,J,0)

-u(0,J,K)+%9u(I, 0,0)+3u(l, 0,K)+3u(l, J,0)+u(l, J,K)]

+(l-a)* 2B, B_ [-3v(0,0,0)-3v(I,0,0)-v(0,0,K)
n 2n

1
-v(I,0,K)+3v(0,J,0)+3v(I, J, 0)+v(0,J,K)+v(I, J,K)]

+(I-a)-2B nB3n[-3w(0, 0,0)-3w(I1,0,0)-w(0,J,0)

1
-w(I,J, 0)+3w(0, 0, K)+3w(I, 0, K)+w(0, J, K) +w(L, J,K)]]‘
+aE!' %; [-9u(0, 0, 0) -3u(0, 0, K) -3u(I, 0, 0)

~u(1, 0,K)+9u(0, J, 0)+3u(0, J, K)+3u(L, J, 0)+u(l, J, K)
+2B1B2.[-3v(0, 0,0)-3v(0,J,0)-v(0, 0, K) -v(0, J, K)
+3v(I1,0,0)+3v(I, J,0)+v(I, 0,K)+v(I, J,K)] - 9u(0, 0, 0)
-3u(1, 0, 0) -3u(0, J, 0) -u(I, J, 0)+9u(0, 0, K)+3u(L, 0, K)
+3u(0, 3, K)+u(L, J,K)+ 2B_B, [-3w(0, 0, 0)-3w(0, 0, K)
-w(0,J,0) -w(0,J, K)+3w(I, 0, 0)+3w(I, 0, K)+w(I, J, 0)

+w(I, J,K):ﬂ
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or,

oo

.iiz’i: T [—(9+27a)u(0, 0,0)+(-3+3a)[u(0,0,K)+u(0,J,0)]
+(-1+5a)u(0, J, K)+(9+3a)u(L, 0, 0)+(3+5a)[u(L, J, 0)
+u(l, 0,K) +(143a)u(l, J,K)+2 - Blnan['3v(o’ 0, 0)
+(3-6a)v(0,J,0)-v(0,0,K)+(1-2a)v(0,J, K) (45)
+(-3+6a)v(1,0,0)+3v(I, J,0)+(-142a)v(I, 0,K)+v(I, J,K)]
+2-B, B_ [-3w(0,0,0)+(3-6a)w(0,0,K)-w(0,J,0)

In 3n
+(1-2a)w(0,J,K)+(-3+6a)w(I, 0,0)+3w(I, 0, K)
+(-1+2a)w(I,J,0)+W(I,J,K)]]

Similarly,
Foo
—%=Tg;[-(9+z7a)v(o,0,0)+(-3+3a)[v(o,o,K)+v(1,o,0)]

a

+(-1+5a)v(1, 0,K)+(9+3a)v(0,J, 0)

+(3+5a)[v(I,J,0)+v(0,J,K) #(1+3a)v(I, J, K)
ter BlnBZn[
+(1-2e)u(l, 0,K)+(-3+6a)u(0,J,0)+3u(l,J, 0) (46)

-3\1( 0’ Op O)+( 3-6d )u(I’ 09 0) "u( 0, o» K)

+(-1+2a¢)u(0,J,K)+u(l, J,K)]+2' B n1'3311[-3w(0,0,0)

2
+(3-6a)w(0,0,K)-w(L,0,0)+(1-2e¢)w(I, 0, K)
+(-3+6a)w(0,J,0)+3w(0,J,K)+(-1+2e¢)w(L, J, 0)

+W(I.J.K)]]
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and,
F
zZn E! -
> =1—6:['(9+27¢)W(0' 0, 0)+(-3+3a)[w(L,0,0)+w(0,J,0)]
a

H-1+5a¢)w(I, J, 0)+ 9+3a)w(0, 0, K)
+(3+5a)[w(0,J,K)+w(I, 0,K) ]+ (14+3a)w(I, J, K)

+2° B n[-3v(0, 0,0)H3-6a)v(0,J,0)-v(L0,0)

ZnB3
+1-2a)v(1,J,0)+(-3+6a)v(0,0,K)+3v(0, J, K) (47)

+(-142a)v(L, 0,K)+v(I,J,K)]+2" ' B n13311[-3u(o, 0, 0)

1
+(3-6a)u(1,0,0)-u(0,J,0)+(1-2a)u(l, J, 0)
+(-3+6a)u(0,0,K)+3u(l,0,K)+(-1+2a)u(0,J, K)

+(u(I,J,K)]]

These three equations represent the three principal vector
forces acting on each octant. The general total force acting on an
octant would then be the sum of these three vectors. The total force
acting on the planes surrounding a nodal point would then be the sum
of the forces on the individual octants. If the octants used are to be
actually part of the physical solid body, then the number of octants
surrounding a nodal point can vary from one octant for a corner,
two octants for an edge, four octants for a surface to eight octants
for an interior nodal point.

The method for combining these forces into the proper equilib-

rium equations will be discussed in the following chapter.



CHAPTER III

METHOD OF SOLUTION

The general solution of solid problems using the octant force
equations developed in the last chapter is obtained by simultaneously
solving a set of equilibrium equations formed from the nodal points
of the whole body.

Each nodal point in the body, in general, has three degrees of
freedom of displacement. There is available an equation of equilib-
rium in the direction of each unknown displacement component.
Therefore, there is one equation for each unknown displacement
throughout the whole body, forming a complete and solvable set of
equations with no ambiguity.

In the interior of the body, the equilibrium equations are
formed by summing the vector forces on all eight octants to zero in
each of the principal directions. The equilibrium equations formed
on the boundary, however, require fairly close attention, especially
in those regions where the curvature of the displacements along the
boundary is comparatively large. In the interior of the body the
equilibrium equations are formed by essentially taking the difference
of two first order equations, thus, forming a second order difference.
On the boundary, there are two alternatives to the solution. The

first method would be to eliminate the octants that are not actually
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part of the body and use the boundary forces as part of the equilib-
rium equations for the affected nodal points. This will then lead to
a first order solution in the neighborhood of the boundary, which will
lead to small error, for small curvatures of the boundary displace -
ments. The second method would be to create external fictitious
nodal points one grid spacing removed from the boundary. These
fictitious nodal points can be determined by substituting the boundary
stress conditions for their finite difference equivalents in terms of
these fictitious points. The stresses on the boundary will be correct
and the equilibrium equations will be of the second order throughout
the body. The first method will be applied to the solution of the
example problems in the following chapter because of their relative
simplicity.

Using the first method, the general equation for the equilibrium
of a nodal point can be shown as follows:

8 8
F =0=2 T F + Z X
n=

n=1 1

8 8
F =0= X T F _+ Z Y (48)
n= =

8 8
F =0= XX T F + £ Z
n= =

If there are no body forces and the nth octant exists, T =1 and
n

X =Y = Zn = 0. If the nth octant does not exist and there are no
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body forces, then Tn = 0 and Xn, Yn and Zn are the appropriate
boundary forces in terms of the boundary normal force and shearing
forces. The identification subscripts which occur in the equations
for the forces on the octants, Equations 45 to 47, are at this point
only identified with respect to the reference nodal point where the
equilibrium equation is being formed. For a complete set of
equations, the reference nodal point for the equilibrium equation
must be referenced to the main centroidal axis system of the whole
body. This can be accomplished if we define the distance to the nodal

point in the following manner,

X, = La L =012 3, .....
VM = Ma M=0,1, 2, 3, .....
ZN = Na N=0,1, 2, 3, .....

Therefore, the identification of the position of a nodal point for a

particular displacement function can be indicated as follows:

u(I,J,K)L’ M, N - u(La+l, Ma+J, Na+K)
= 0
v(I,J,K)L’ M, N v(La+I, Ma+J, NatK) (50)
= + +
w(l, J, K)L, M, N w(La+I, Ma+J, Na+K)

The general equations of equilibrium of a nodal point with respect to

the main centroidal axis system then become:
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8 8

=T F + >§ xn =0

n=l Py MmN LM,y Pl L M N

8 8

=T F + =Y =0 (51)

8 8
Z T F__ + =z =0
n=1 % MmN *LMN 27! "p M N

In general, the system of equations produced for a given body
with even a fairly small number of grid spacings, would yield a
tremendous number of equations to be solved simultaneously. This
would then eliminate as a possible method of solution the methods
using the inverse of the coefficient matrix. The remaining choices
are those which use relaxation and iteration. These methods are

comparatively simple for the types of equations being used for solu

tion, because there are only 57 basic types of equations. The only
variables of this system of equations will then be the location of the
reference nodal point (L, M and N), the type of equation to be used
(one of the 57 basic types) and the boundary forces, if present at that
particular nodal point. The equations can, therefore, be written
with these variables built into them. In order to converge to a solu-
tion by iterating on the equations thus formed, a relaxation or even
an over relaxation procedﬁre can be adopted. If this is done, the
relaxation of the equations can proceed until the change in the values

of the displacements between iterations is a small acceptable value.
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This value represents the convergence error of the iteration solution.
When this method of iteration is applied to the previous general
equations of equilibrium, the equations can be represented in the

following form,

8 8
R (L, MN)=Z= T F + = X
x n=1 ", M,N *L,M,N 1=l " M, N
8
-z T (9+27a) (52)
n=1 Py M N
u(L, M, N) =u(L,M,N) ..+C R (L, M, N) (53)
new old r x
8 8
R (LLM,N)= 2 T F + Y
y n=1 ", M,N Y"L,M,N n=1 p M, N
8
> Tn (9+27a) (54)
n=1 "1, M, N
v(L, M, N) =v(L,M,N) .. +C R (L, M,N) (55)
new old ry
8 8
R (L,M,N) = £ T F + T Z
n=l " M,N “"L,MN 17l "L M,N
8
- Z T (9+27a) (56)
n=1 %1 M, N
w(L,M,N)___=w(L,M,N)_ . +CR (L MN) (57)

Where, the acceptable error
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= e ERx(L, M, N) ZRy(L, M, N) ?RZ(L,M,N) (58)
and, Cr is the over relaxation constaﬁt that can be used when
desired.

When the error in the displacements has converged to the small
error, e, the stresses at the nodal points can be determined using
Equations 7. These stresses can then be used for the usual purposes

and applications,



CHAPTER IV

EXAMPLE PROBLEMS

The example problems that will be shown in this chapter are
for the purpose of demonstrating the application of the method and the
behavior of the equations involved under different types of loading
conditions.

The first is an example problem which will be used to compare
the stress distribution in a solid cube supported on a plane surface
under the loading of a line load acting perpendicular to the top sur-
face along the centroidal X-Axis (Figure 4) when computed with the
proposed method and Poisson's ratio equal to zero, to the stress
distribution computed using the plane stress and plane strain classical
solution of a thin plate, with a concentrated load acting at the center
of one edge. The classical solution will be solved using the Airy's
stress function (15) and finite difference methods, The stress
distribution for various other values of Poisson's ratio will also be
shown using the proposed method. The stress distribution, for
Poisson's ratio equal to zero, is unique because the normal stress
is dependent only on the normal derivative. Thus, when the boundary
conditions are constant in the direction of one of the principal axes,
the stress distribution on any plane perpendicular to that axis is a

constant, When Poisson's ratio is not zero, the normal stresses are

37



38

dependent on all three normal derivatives and the stress distribution
will vary along this axis.

The second problem will consider the stress distribution in a
solid cube due to the application of a concentrated load acting in the
direction of the Z-Axis at the intersection of the centroidal Z-Axis
and the surface of the cube (Figure 5). The effect of Poisson's ratio
on the stress distribution will also be investigated.

The third problem will find the stress distribution in a solid
cube due to a distributed load over a small concentric area on the
surface of the cube (Figure 6). This stress distribution will be com-
pared to the solution determined in problem two. This problem will
also demonstrate whether some of the effects of the changing of
Poisson's ratio are due to the nature of the concentrated load, or due
to the behavior of the equations when the ratio approaches a value of
one -half. When Poisson's ratio is one-half, the dilatation of the
material is zero, and in such a case, the average stress for a point
in the body is indeterminate, and only the differences between the
average stress and normal stresses are determinate. Therefore, a
solution of problems using the displacements of the body is impossible.

The fourth problem will show the stress distribution in a beam-
column due to the action of an eccentric load (Figure 7). This will
correspond to the case of a post-tensioned member, or a column with

an eccentric load.
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The fifth problem will find the stress distribution in a beam-
column subjected to the theoretical stress distribution of a beam under
constant moment (Figure 8). Since the solution of this problem is
already known, the problem will demonstrate the relative error
associated with the use of this method's first order equilibrium
equations at the boundary surfaces in conjunction with a variable

Poisson's ratio.
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Figure 4. Isometric view of cube with line load for Example
Problem One.
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Figure 5. Isometric view of cube showing concentrated load
on the Z-Axis for Example Problem Two.
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Figure 6. Isometric view of cube showing concentric
distributed load over si.all portion of the top surface for
Example Problem Three.
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Figure 7. Isometric view of a beam-column showing the
location of the eccentric load for Example Problem Four.
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Figure 8. Isometric view of a beam-column showing the
surface stress distribution for the applied moment for
Example Problem Five.
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EXAMPLE PROBLEM NUMBER ONE

In this first problem, we will find the stress distribution in a
cube due to a line load acting along the X-Axis on the surface of the
cube as is shown in Figure 4, The solution will be found for three
different grid spacings. The grid spacing in any particular solution
will be the same in all three principal directions. Each solution
using the proposed method, with Poisson's ratio equal to zero, will
also have a parallel solution computed using the classical biharmonic
approach using finite differences. For the first grid, we will use a
grid spacing of B/4, for the second grid, we will use a grid spacing
of B/8 and for the third grid, we will use a grid spacing of B/16.
For purposes of comparison between the various solutions, we will
specify that the average stress on any X-Y plane be unity. Therefore,
the computed stresses will be stress concentration factors for the
assumed unit average stress, If we consider the line load to be
distributed over a one-half grid spacing on either side of the loaded
line, then we can develop the following relationship between the speci-
fied unit stress on the cross section, the stress on the distributed

line load, and the size of the grid spacing.

a = grid spacing
B = dimension of cube
N = number of segments in B length

Therefore,
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B = Na
Q = stress on loaded area
then,
QaB = 1B
or,
Q-=12-1-n
a

By inspection, the w displacements will be symmetrical with
respect to the centroidal Y-Z and X-Z planes on any X-Y plane, and
the u and v displacements will be anti-symmetrical with respect to
these same planes.

The numerical solution is, therefore, required in only one
quadrant of any X-Y plane, All boundary forces can be set equal to
zero except for those nodal points which lie along the loaded area.
In the equations of equilibrium, for the nodal points, the boundary
forces can be expressed in the equation in terms of the boundary
stresses because the grid spacing is a constant. Therefore, the
equations can be divided by the area over which the stresses act,

It will be convenient for programing purposes to write the
equations such that the boundary forces can be included in the equa-
tions. This can be done by entering the equation with the proper
nodal displacement incremented by some value and when leaving the
equation subtracting this incremental value, leaving the nodal

displacement at the correct value, This technique and the method
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of determining stresses can be demonstrated as follows. As an
example, part of the equation of equilibrium for a quadrant on the
Z surface (Equations 47 and 48) can be written in the following form,

1
'iE'g; [-(9+27a)w(0,0,0)+ etc.* "]+ Kczbounda.ry = 0 where

K is an arbitrary constant for the boundary stresses. Defining,

E'(9+27a)
l6a

_E'(9+ Z7a)v
l6a

E'(9+27a)u

I =
v l6a

the equation can be written in the following form,

E-(9+"27a )w'(0,0,0)+... etc.]/(9+ Z7a] +bi°‘mdary= 0
Setting
w'(0,0,0) = w'(0,0,0) =w'(0.0,0) -C
then
C = Ko_zboundary

as a correct substitution. When the equation has been relaxed
(Equations 56 and 57), C can be eliminated as part of the w
displacement,

w(0,0,0) = (w(0,0,0)-C) + C
This is a very simple means of expressing the boundary forces,

since C can be chosen as any convenient constant consistent with the
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boundary stress distribution.

When the stresses are determined from the primed values of
the displacements, the equations must be corrected for the value of
K and for the elastic constants. As an example of the procedure, the

o'z stress at a nodal point L, M, N would be determined in the following

manner:
8v
o (L, M,N) = E! [(l+a)—+ (1- a)—+ By
E" l6a ow' ou' 9v'
= —_— o ot (lea) &, &V
K E(9r27a) (1) 5+ (1-e) 5+ 50

The normal finite difference equations for these derivatives, Kunz
(4), would be substituted giving the correct stresses for the given
loading condition.

The solution to the problem as a plane strain problem for
Poisson's ratio equal to zero, was found by applying the familiar
biharmonic solution as explained by S. Timoshenko and J. N,

Goodier (15),

Y 8z oy Y doyoz

which satisfies equilibrium for zero body forces.
Then, v4¢ = 0 for compatibility.

For the boundaries,

or,

= —_— 4 —_—
] Vay zaz
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The solution of the values for phi and its normal derivative on
the boundary is shown in Figure 9. An approximate solution of the
stress distribution within the boundaries is found by dividing the plate
into the same grid sizes as used in the other method, computing the
phi values on the boundary, determining the fictitious phi values once
removed from the boundaries by using the known value of the slope
of the phi function normal to the boundary, and then writing the
biharmonic operator in terms of phi for all points with an unknown
phi value. This will lead to a set of linear algebraic equations which
can be solved by the same methods applied to the three -dimensional
equations., The stress distribution for the plate can be determined
by using the known relationships between the stresses and phi. A
typical comparison between the three-dimensional solution and the
biharmonic solution can be seen in Table 3. In this table, the magni-
tude of the stress at various elevations on the Z-Axis is tabulated for
the three grid sizes and these values are compared as a percentage
to the extrapolated value of the function assuming an error of the
second order, A graphical representation of this table is shown in
Figure 10 for elevations z = 0, z = B/2, and z = 15B/16. Similar
tables and graphs would show approximately the same trends for the
two methods.

The values of c, and o on the Z-Axis are shown in Figures 11

and 12 respectively for z = 0, z = B/2 and z = 7B/8 for varying
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Poisson's ratio and for the grid spacings of B/8 and B/16. The
values of c, at z = 15B/16 for the same parameters are shown in
Figure 13. From these figures, it can be seen that as Poisson's
ratio approaches one-half, the divergence between the solutions of
the two grids greatly increases even when comparatively far from
the loading surface. This would seem to indicate that the convergence
of the equations to the true solution with increasing Poisson's ratio
is not dependable for large grid spacings. It will also be noted, that
within the usual range of Poisson's ratio for structural materials,
0.1 to 1/3, that the discrepancies between the solutions for the two
grid sizes are small when comparatively far from the loaded surface
where the singularity exists. For solutions of the stress distribution
near the singularity, increasingly small grid spacings would be
necessary. This is clearly evident in Figure 13 which shows the o,
stress at z = 15B/16 for various Poisson's ratios and the two smaller
grid sizes. The values for the larger of the two grid spacings were
computed on the basis of straight line interpolation between z = 7B/8
and the assumed distributed stress on the top surface. The lower
line represents an assumed stress over one grid spacing of B/8 or a
stress of 8 at the top surface and the upper line for the smaller grid
length of B/16 or a stress of 16 on the top surface. The Flamant (15)
solution for a concentrated load for z = 15B/16 and z = 7B/8 also is

indicated in Figures 11 and 13 for Poisson's ratio of zero. The
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agreement between the Flamant solution and the numerical method
solution seem to indicate that as far as the vertical stress distribu-
tion is concerned, the solution in the neighborhood of the concentrated
load is the Flamant solution. However, this will not be true for the
T and crY stress distributions. The o stress does not exist as part
of the Flamant solution because the problem is assumed to be that of
the solution of a flat plate in plane strain or plane stress., In the
Flamant solution, the cy stress is always of the same sign. In the
real problem under investigation, we are not dealing with the semi-
infinite plane and it is required in this problem that the sum of the
normal stresses on any vertical section be zero, and therefore, the
O'Y stress will be of varying sign so as to satisfy this condition. The
Flamant solution for cry on the Z-Axis is zero and the . stress on
the Z-Axis would be the c, stress multiplied by Poisson's ratio
(assuming the plane strain solution). Figure 14 shows the o and o
stress on the Z-Axis for a Poisson's ratio of 0.3 and a grid spacing
of B/16.

The Flamant solution can be used in the neighborhood of the
concentrated load for the vertical stresses because the boundary
conditions on the surface where the load is applied agree in both
cases. The Flamant solution can not be used for the horizontal
stresses because the boundary conditions on the vertical planes do

not agree., The relative importance of this consideration would be
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unimportant for design purposes in materials which are equally
as strong in tension as in compression.” However, in
materials which are not equally as strong in tension as in compres -
sion, such as concrete, the presence of tension in the material could
be of concern. The presence of these tension stresses will be even
more marked in the example problem to follow which is the case of
the concentric concentrated load.

As an example of the general distribution of the stresses
throughout the block, lines of constant stress for o O'Y and o on the
Y-Z plane with x = 0 are shown in Figures 15, 16 and 17 respectively

for the grid spacing of B/16 and with Poisson's ratio of 0.3,
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EXAMPLE PROBLEMS TWO AND THREE

Problems two and three will be treated together because of the
similarity between them (see Figures 5 and 6). In problem two, the
load will be assumed to be distributed over an area enclosed by lines
one -half of the grid spacing in each direction. Two grid sizes will
be used, B/8 and B/16. In problem three, the load will be distributed
in such a manner using a grid spacing of B/16 such that the stress
distribution on the surface closely approximates that of the stress
distribution for problem two with the grid spacing of B/8. Compari-
sons can then be made between all three solutions at the same time.
In order to achieve an exact duplication of the stress distribution for
the grid spacing of B/8 in problem two with the next possible finer
grid, the grid spacing would have actually had to have been divided by
three. This would have meant many more equations to solve and of
course the solution time would have been mu;h longer. The grid
spacing of B/16 was, therefore, chosen to accomplish this purpose
as reasonably as possible.

As in problem one, problem two and three possess the same
type of symmetry which will require only one quadrant solution on the
X-Y plane for a solution of the whole. In problem two, the magnitude
of the distributed stress for the concentrated load for a unit average
stress on the X-Y plane will be NZ, where N is the number of grid

spacings in width B. In problem three, the total load acting on each
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nodal point must be such that it agrees with the nodal loads caused

by the stress distribution of problem two with a grid spacing of B/8.
The resulting stress distributions are shown in Figure 18. The
method of setting up the boundary equations and computing the stresses
from the displacements will be the same as in problem one.

The solution for the stress distribution in the neighborhood of
the concentrated load in problem two should approach the theoretical
solution of a concentrated load on a semi-infinite body, or that of a
concentrated distributed load on a semi-infinite body, These solutions
will be computed and compared with the numerical solution when
possible. The theoretical solution for the distributed load will be
computed on the assumption that the load is distributed over a circu-
lar area whose radius is one-half of the grid spacing.

Figures 19 and 20 show the o stress at various elevations on
the Z-Axis. The theoretical solutions are shown for those elevations
of z equal to or greater than 7B/8. As in problem one, it can be
seen that the convergence of the two grid spacings becomes poor as
Poisson's ratio approaches one-half. From the results of these two
problems, the explanation of the poor convergence lies entirely in
the size of grid chosen to represent the body. This is quite evident
when the solution for the larger grid size of problem two is compared
to the solution of the smaller grid size in problems two and three.

When z is not in close proximity to the loaded area, the solutions for
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the two small grid sizes agree with small error even though the stress
distribution of the concentrated load is different. However, as
Poisson's ratio approaches one-half, the solution of the larger grid
size diverges sharply from the two smaller grid size solutions. This
definitely means that the equations are unstable when Poisson's ratio
approaches one-half and the effect of this instability is greater on the
overall solution as the grid size becomes larger., It will be noted,
however, that within the usual range of Poisson's ratio the solutions
are in close agreement,

Figures 21 and 22 show the o and O'Y stress for various eleva-
tions on the Z-Axis. The theoretical solution for a concentrated
distributed load is shown for z = 7B/8 and z = B,

As in problem one, there is a great discrepancy between the
theoretical and numerical solution for these horizontal stresses.
This is again attributed to the lack of agreement of the boundary
conditions on the vertical faces. Some of the discrepancy can also
be attributed to the largeness of the grid with respect to the area
which is loaded.

Figures 23 and 24 show the constant stress lines of problem
two on the Y-Z plane for . and o, respectively with Poisson's ratio
of zero and for a grid spacing of B/16. Figures 25 and 26 show the
constant stress lines on the Y-Z plane of problem three for o and

. respectively for the same parameters, These figures are again

-
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as in problem one only examples of the types of stress diagrams that
could be constructed for different planes in the body.

It will be noticed in comparing Figures 23 and 24 to Figures 25
and 26, that the difference between the two solutions is minimal

except in the region of the concentrated load.



68

90 _ -
- —— - — - - grid spacing B/8 Problem Two

grid spacing B/16 Problem Thre

grid spacing B/16 Problem Tw
- - Dist, Theory B/16 )

70 4 — ———— Dist, Theory B/8
—— —-=--—~Conc. Load Theory /

10 -
z=b/2
g —O-
|
0 i—' R - | I 1 N I | T - "lU
0 0.1 0.2 0.3 0.4 0.5
a
4 >
G
I
I
! !
2 1 /
/
/
z=0 /
i // p
‘ _ .__-O;/,J
0(?-'.:':“,'_-1.”.—77.—??*:7 G S _{;‘ Y
0 0.1 0.2 0.3 0.4 0.5

Figure 19. Values of ¢, on the centroidal Z-Axis for various
values of z plotted with respect to Poisson's ratio,



69

300 1 - grid spacing B/16 Problem Three
- —_———_—— grid spacing B/8 Problem Two
grid spacing B/16 Problem Two |
—— - - —— Dist. Theory B/16 !
j —— — =~ — Dist, Theory B/8 :
| — - -~ -— Conc. Load Theory
200 A
. z=15B/16
| / e~
//
' Boa AT
%’_:;’“_;;:;:—:9"’" —om T ("
e —
|
100 -
l
i 0
| i
e = - - — . /f}._,/{:( C)
Qe — —— —— = = —Q—— -~ T - -
¥ - - — e e — e — = —d —_
0 +-- - HRES R A S ' vom— = g/
0 0.1 0.2 0.3 0.4 0.5

Figure 20, Values of o, on the centroidal Z-Axis for z = 15B/16
plotted with respect to Poisson's ratio.



70

0
60 - ;
______ grid spacing B/8 Prob. Two /
grid spacing B/16 Prob. Two /A/
- grid spacing B/16 Prob. Three /! _
/ 3 ;
30 - ' /
7
i z=7B/8 o /
| T, S
0 Lf; e s A g P ; ———— Y
0 0.1 0.2 0.3 0.4 0.5

o~
o

1 q o":;‘l‘ e q

—
o

|
t
5
i
i
l
4
!
'
C‘
"\
il
<

o

0.1 0.2 0.3 0.4

[g]

!
g
|
|
|
|
0 i e . - i - . o mm ,_f._,4_..‘_. L)
b 0:1 0;2 0.I3 0.I4 0.5

Figure 21. Values of o, and oy On the centroidal Z-Axis for various
values of z plotted with respect to Poisson's ratio.

/



71

300
1; ———————— grid spacing B/8 Problem Two
; grid spacing B/16 Problem Two S
| - grid spacing B/16 Problem Three /
| - - Dist, Theory B/8
| / -
— --- — Dist, Theory B/16 P
/
)
P ,
200 - o /)
- /
ol (,/'
i //
i// a
i / :
100 ° e _
z=0B - .
e e
~ .
//’ —4,,!,2“"‘
//" - - (//‘:L\'/
-~ _ =TT ro_. - '/
Y- T T L -—ns 7
i e— e T
e —
0+ S . : R .
0 0.1 0.2 0.3 0.4 0.5

Figure 22. Values of o, and oy on the centroidal Z-Axis for z=B
plotted with respect to Poisson's ratio.



Figure 23. Lines of constant ¢, on the Y-Z plane with x=0
for Poisson's ratio of 0 (+ = comp.). Problem Two,
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Figure 24. Lines of constant o, on the Y-Z plane with x=0
for Poisson's ratio of 0 (+ = comp.). Problem Two.
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Figure 25. Lines of constant o, on the Y-Z plane with x=0
for Poisson's ratio of 0 (+ = comp.). Problem Three.



Figure 26. Lines of constant o, on the Y-Z plane with x=0

for Poisson's ratio of 0 (+ = comp.). Problem Three.
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EXAMPLE PROBLEM FOUR

In this problem (Figure 7), the stress distribution will be
investigated in a beam column which is acted upon by an eccentric
concentrated load. The problem will be divided into two parts, In
the first part, the load will be considered to be concentrated on a
square area centered around the nodal point, whose dimensions will
be equal to the grid spacing which for this first part will be B/4
(Figure 27a). In the second part, the load will be considered to be
concentrated on a rectangular area centered around two consecutive
nodal points along the upper surface X-Axis, whose dimensions will
be one grid spacing in the Y-Axis direction, and two grid spacings
in the X-Axis direction. The grid spacing for this second part will
be B/8 (Figure 27b). The assumed eccentricity in the first part will
be B/4 and in the second part 3B/16.

Symmetry will be assumed to exist across the centroidal Z-X
plane, therefore, eliminating one-half of the structure for solution.
As in the previous problems, the w displacements on the plane z = 0
will be set equal to zero, Displacements of nodal points lying on the
plane of symmetry will also be assumed zero in the normal direction,
The equations of equilibrium and method of solution will be handled
in the same way as in problem one,

The solution will in each case be computed for Poisson's ratio

0of 0,0, 0.2, 0,3 and 0.4. The solutions for values of Poisson's ratio
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nearer 1/2 will not be computed because of the instability of the
equations as evidenced in the previous problems.
At a distance from the load, the stress distribution in the beam

column will be governed by the equations:

. P, Pex
%% " a i
or,
P 2
2" A (1+162x)
B

If we substitute into the equations above the value of the eccentrici-
ties for part one and two, the stress distribution across the beam
would be:

for part one:

0

3x

" & (1T
for part two:
P 9x
" x Utag)

In both parts, the average stress on the cross section of the beam
column was set equal to 500, The stress distribution associated with
this average stress would be the computed stress distribution from
the above equations if the beam column was infinitely long, and if
there was no error introduced because of the approximate nature of

the equations.
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Figure 28 shows the axial stress along the X-Axis in part one
with z equal to zero and for Poisson's ratios between 0,0 and 0, 4.
The error in the extreme fiber stress with respect to a true straight
line variation varies from -4%to +2% Figure 29 shows the same
stress distribution for part two. The error in the extreme fiber
stress for this case varies from -2%to +2% which is a smaller range
than in part one. The theoretical stress distributions for part one
and two are indicated in Figures 28 and 29 by the broken lines. These
stress distributions are based on the stress distribution in the
infinite beam column. Figures 30 and 31 show the vertical stress
distribution on the centroidal X-Axis for part one and two respectively
with Poisson's ratio of 0.2, Only the distribution in proximity to the
loaded surface is shown since the lines from the base to approxi-
mately B/2 are parallel. Figures 32 and 33 show the lines of constant
vertical stress on the centroidal X-Z plane for part one and two
respectively with Poisson's ratio of 0.2, In both cases, it can be
seen that the trajectories are virtually vertical between the base of
the column and the center of the column., Figure 34 shows the lines
of constant stress o on the centroidal X-Z plane with Poisson's ratio
of 0,2 for part two, The maximum tension stress is approximately
one -tenth of the maximum theoretical compression fiber stress or
two-tenths of the average stress which would be of considerable

interest in design practice if the material happened to be concrete.
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It can be seen from these figures that the stress distribution
agrees with the theoretical stress distribution when comparatively
far from the loaded surface. The error varies with respect to
Poisson's ratio and the range of the error decreases with decreasing
grid spacing. Tension stresses that are small in comparison to the
compression stress exist and may in some circumstances cause

concern.,
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EXAMPLE PROBLEM FIVE

In this problem (Figure 8), the accuracy of this proposed
method will be studied by comparing the known stress distribution in
a beam under constant moment and zero shear to the solution which
results from the numerical method using the first order boundary
equations. Figure 35a shows the assumed stress distribution on a
line parallel to the X-Axis on the upper surface of the beam. Fig-
ure 35b and Figure 35c show the assumed boundary nodal stresses
for grid spacings of B/4 and B/8 respectively. Symmetry was
assumed to exist only with respect to the X-Z plane. The solution
will be handled as in the previous problem. Figure 36 shows the
outside fiber stress for solutions with various values of Poisson's
ratio for the two grid spacings. In Figure 36, the error associated
with a base stress of 500 is also shown. Within the usual range of
Poisson's ratio (0.2 to 0,3), the error ranges from -2.761% to
-0.782% for a grid spacing of B/4 and from -0.38% to +0,870%
for a grid spacing of B/8. As in the previous problems, the accu-
racy of the solution is dependent on the value of Poisson's ratio, and
instability of the equations becomes progressively worse as Poisson's

ratio approaches 1/2.
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Figure 35, Assumed stress distribution acting on beam (a),

nodal forces as determined by contributing areas, (b), for

grid spacing of B/4, and nodal forces as determined by con-

tributing areas (c) for grid spacing of B/8.
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CHAPTER V
SUMMARY AND CONCLUSIONS

A numerical method for the solution of the equilibrium equations
for a three-dimensional body in terms of its displacements has been
presented. The method is designed to satisfy the equilibrium equa-
tions for a region around a nodal point of the grid system employed to
represent the body. The applicability of the equations was studied by
applying them to various repzjesentative problems. The example
problems for this study were chosen to show the disadvantages as well
as the advantages of this method. The problems were also solved
without any use of refinements that would tend to give better results.
This objective was accomplished by first, not making use of fictitious
nodal points to satisfy the boundary equations, which leads to first
order equations with respect to the boundary, and second, by solving
problems with concentrated loads on the boundaries which leads to
singularities. Since, solutions of problems in three-dimensional
elasticity which make use of the displacement functions are impossible
when Poisson's ratio is one-half, because the dilatancy of the body is
zero, the solutions were also studied with respect to this ratio
approaching one-half.

In problem one, when v = 0 it was found that the solution

of the numerical method presented was better than the

91
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claséical solution with respect to grid size. It was also found that
as Poisson's ratio approached one-half, the solutions became
unstable,

In problems two and three, it was found that the instability of
the equations was a function of the grid size. This is clearly evident
because the solutions for the fine grid in problem one and problem
three agree very well when not in close proximity to the load, but
the coarse grid diverges sharply from this solution when Poisson's
ratio approaches one-half.

In problem four, the solution of. the concentrated eccentric
load, when compared at a distance from the concentrated load, agreed
with small error to the theoretical solution of the infinite beam column,
which agrees with St. Venant's theorem. The maximum tension stress
was approximately 20% of the average stress.

In problem five, it was found that in using the first order
boundary conditions, the error within the usual ranges of Poisson's
ratio was comparatively small,

In reviewing the results for these problem’é, a number of
conclusions can be drawn:

1. A general method has been presented which can be used

to solve problems in three dimensional elasticity, Up to
this time very little literature has been available concern-

ing the numerical solution of stress distribution problems
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in three dimensions. The method is applicable to all
problems that can be described by a suitable mesh, and
is limited only by the capability of the computer.

This method includes as a possible variable the use of
Poisson's ratio. The primary influence of Pcisson's
ratio is in its effect upon the stress distribution in the
region of a concentrated load. When the equilibrium
equations on the boundary use the boundary forces rather
than the boundary displacement derivatives, there is a
secondary effect of Poisson's ratio that is introduced into
the solution. If Poisson's ratio is limited to values less
than 0. 4, the accuracy of the solution is good.

The solutions appear to converge monotonically with
respect to decreasing grid spacing. It has also been
shown that when v = 0 the method presented in this thesis
compares more favorably to the exact solution than the

classical numerical solution with respect to grid spacing.

There are a number of refinements that can be included in the

solution of a problem in three dimensional bodies that were not used

in the presentation of the method. First, fictitious points once re-

moved from the boundaries could be used to satisfy the boundary stress

conditions. This would then lead to equilibrium equations on the

boundary of the second order rather than that of the first order.
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There are, however, a number of drawbacks in this approach. At

the intersection of surfaces, there are more unknown nodal displace-
ment values involved in the fictitious points than there are stress
equations available. This leads to approximations as to the curvatures
of the boundary surfaces at these points, and thus some error may be
introduced.

Second, the well known subtractive process can be used to
eliminate singularities from the numerical solution. This also would
present some difficulties. The boundary conditions to be used in such
a process would involve defining the displacements on some surfaces,
and the stresses on other surfaces which would lead to some compli-
cations in writing the computer program necessary for the solution of
the problem. It would, however, lead to a very accurate solution in
the region of the singularity.

There are many avenues for the future development of this
method. The application of the refinements to some problems should
be attempted to evaluate their potential as useful inclusions in a
general solution. The application of the use of these expanded differ-
ences should be attempted with plate problems to determine their
applicability in this situation.

In conclusion, a numerical method for solution of three dimen-

sional elasticity problems has been presented, and by all implications
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seems to be a method which is easy to use, and which gives good
results for comparatively small grid spacings for the usual structural

materials.



VI APPENDIX

FORTRAN COMPUTER PROGRAM FOR
EXAMPLE PROBLEM FIVE

96
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PROGRAM BEND
FORMAT STATEMENTS
S00 FORMAT(SX s 16HPOISSON'S RATIO= F7.4)
100 FORMAT(SX+19HNUMBER OF CYCLES = JIS5¢SXe7HRMAX = ,E14.8)
101 FORMAT (315) .
102 FORMAT(2X +312+2Xe9(El11e5+1X))
103 FORMAT (3XeSHI J Keb6Xs2HUI 10X e2HV3 910X 12HW3 ¢ 10X eIHSXX ¢ PN e IMHSYY s
19X eBHSZZ ¢ IX s SHTXY ¢ X ¢ IHTXZ ¢ 9X s BHTYZ e 14 4/1HO)
104 FORMAT(1H1 +SXes19HPROB FOR H A ELLEBY.«/1HO)
DIMENSION U(1377)eVI(13T77)sW(1I37T7)RX(1377)¢RY(1377)RZ(1377)1IB(8)
FoRX1C1377)eRY1(1377)RZ1(1377)
COMMON UsVeWeIRXIRYIRZeSXX sSYYsSZZeTXY¢TXZeTYZIR11IR2:RI1RAGRSR6
IRT.R8
GOVERN=,,0000001
NUMBER=0
RZ1(1)=0+07
RZ1(2)=0.04
RZ1(3)=0.0
RZ1(A4)=-0.04
RZ1(5)=~0.07
RX1(¢(1)=0,0
RX1(2)=0.2
RX1(3)=0.3
. RX1(4)=Q.4
RX1(S)=0.45
RX1(6)=0+49
RX1(7)=3.0
RX1(8)=3,0
RX1(9)=5,0
RX1(10)=5,
RX1(¢(11)=3¢
RX1(12)=9,
RX1(¢(13)=9,
RX1(14)=5S,
RX1(15)=9,
N4=]
NS=2
600 CONTINUE
DO 11 L=1.1377
UL )=0e
VIL)=0e
11 w(L)=0.
PAUSE 200
601 IF(SENSE SWITCH 1) 130+602
602 REWIND S5
READ TAPE SesUeViWINUMBER«NANSIRZI(1)sRZ1(2)sRZ1(I)eRZI114)
IRZ1(S)sRZ1(6)+RZ1(T7)+RZ1(B) +RZ1(9) ’
REWIND S
130 N = RX](3#NS5+4)
N2= RX] (IMNS+5)
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N3= RX1 (3#NS5+6)
P1=RX1 (N4)
AL=l.~Pl1~-P1
RO=1 s +AL+AL+AL
R1=9,#R0O
R2=R0~-4 .,
R3=R0—-2++AL+AL
R4=RO+8e¢
RS=aR3+4.
R6=R0O
R7=-~RO0-R0+5,
R8z=~RO+AL+2.
R18=8.#R1
R24=4  #R2
R32=2+#R3
R44=4  #R4G
RS2=2 ¢« #RS
Ni1=N-1
N12=N2-1
N13=sN3-1
N132=N13+2
IF(N=1) S04+:504,.115
11S CONTINUE
DO 123 MU=1,20
118 JF(SENSE SWITCH 3) 603.10
603 REWIND S
PAUSE 300
WRITE TAPE SsUsV.WIINUMBERINAG NS RZ1I(1)+RZ1(2)RZI(I)eRZ1(4)
I1RZ1(S5)sRZ1(6)+RZ1(7)¢RZ1(8) RZ1(9)
REWIND S
NU = 1
GO TO 116
Z AXIS AT THE SURFACE
10 I=1
NUMBER=NUMBER+ ]
KaN3
J=1
L=LAKE(I ¢ JeK)
wWL)=wW(l.)-RZ1(])
CALL ZS(L +271¢0+909090¢0+04+0)
WL )=w(L)+RZ1 (1)
CALL XS(L ¢=71¢0+0¢0+0¢0+0+0)
SYMETRICAL X AXIS ON THE PLUS Z SURFACE
20 DO 204 1=24Nl
LesLAKE(] ¢ JoK)
W(L)=w(L)-RZ1(])
CALLZS(L+=719=73+40¢0¢0¢0+0¢0)
wWiL)=wW(L)+RZ1(1)
CALLXS(L +=71¢=7300¢000+0¢040)
204 CONTINUE



27

21

13

134

214

26

16

99

OUTSIDE Y EDGE AT SYM INTERSECTION
I=N
L=LAKE(I ¢ VoK)
wW(L)=wW(L)-RZ1 (1)
CALLZS(L +=-7330¢0¢0:0:0+¢04Q)
WiL)=wW(L)+RZ1(])
CALLXS(L+=7320¢0¢0¢0¢0+¢040)
DO 214 U=2¢Nl12

SYM Y AXIS ON Z SURFACE

1=1
LeLAKE(] ¢ JeK)
wWL)y=w(L)-RZ1(1])
CALLZS(L +=71+=8990+0¢0¢0¢0+0)
WL)=W(L)+RZ1(1])
CALLXS(L ¢+=71+¢=-89¢0+0¢0+0+0+0)
CALLYS(L+=71¢-8940¢0¢0:¢0+¢0+0)
SURFACE PLUS Z AXIS
DO 134 1=24N1
L=LAKE (]I vJeK)
WL)=w(L)-RZ1(1I)
CALLZS(L +—719-89¢=7391-91+0¢0¢0+0)
WiL)=wW(L)+R2Z21(1)
CALLYS(L +—=719=89¢=73¢-91+0¢0¢0+0)
CALLXS(L ¢+=T71e-89¢=73¢=91:0¢0+0:0)
CONT I NUE

OUTSIDE EDGE Y AX1S

I =N
L=LAKE(1esJeK)
wWL)=w(L)-RZ1(1])
CALLZS(L ¢=73¢=91¢0+¢0+0¢0+04+0)
WL)=W(L)+RZ1 (1)
CALLYS(L oe=739-91+¢0+0¢0¢0¢0+0)
CALLXS(L ¢=73¢=91+¢0¢00000¢040)
CONT I NUE

JaN2
OUTSIDE EDGE X AT SYM INTERSECTION
I=1
L=LAKE (] ¢+ JsK)
wWL)=w(L)-RZ1(1I)
CALLZS(L +—=89+040¢0:0¢0+040)
W(L)=w(L)+RZ1 (1)
CALLXS(L +=89¢0¢0¢0+0¢0+040)
CALLYS(L +—89+¢04¢0+0¢0¢0+0+0)
OUTSIDE EDGE X AXIS
DO 164 I=2.NI
LaLAKE(]+JeK)
W(L)swW(L)-RZ1(1I)
CALLZS(L +-89+=91+0+0:¢0+0+0¢0)
WL)=W(L)+RZ1 (1)
CALLYS(L +—89+¢=91+0¢0¢0+0:¢04+0)



164

19

18

31

314

14

29

100

CALLXS(L +~89+-914090¢0+¢0¢0+0)
CONT INUE
CORNER

I=N

LsLAKE(I ¢+ JeK)

W(L)=wW(L)-RZ1(1)

CALLZS(L +-91+¢0¢0¢0¢0+0¢0¢0)

WL)=w(L)+RZ1 (1)

CALLYS(L +-91+¢0:0+¢0+0+0+0.0)

CALLXS(L +=91¢040+0¢0+0¢04+0)

DO 184 K1=2+N13

K=N132-K1

J=1

INSIDE Z AXIS

I=1

Lal AKE(]+JsK)

CALLZS (L +91¢=71+0+0¢0+0+¢0+0)

CALLXS(L+919=71¢0+0¢0¢0¢0+0)

INSIDE Y SURFACE

DO 314 [=2.N1

L=LAKE(I +JeK)

CALLZS(L ¢89¢91¢=71¢=73:0:0¢0:0)

CALLXS(L +89¢91 ¢=T71+=73¢0¢0¢0+0)

CONT INVUE

SYM Z AXIS ON. X SURFACE

I=N

Ll AKE(I ¢JeK)

CALLZS (L. +89¢—-73¢090¢0¢0¢0+0)

CALLXS (L +89+s=73¢020¢0¢0+0+0)

DO 144 U=2,N12

INSIDE X SURFACE

I=1

L=LAKE(]:JeK)

CALLZS(L+73+¢91¢-899=71¢0¢0+0+0)

CALLXS(L+73¢91¢~89¢=71:0+0¢0+0)

CALLYS(L +73¢914~894=71+0+¢0¢090)

CENTRAL INTERIOR POINT

DO 294 1=2¢Nl

L=LAKE(] ¢« JeK)

RZ(L)=(~RIBAW(L)I+R24¥ (WIL+1)+W(L=1)+W(L+D)+W(L.=9) )I+RI2# (W(L.+10)+
IWL-10)+W(L+8)+W(L-8))+RA4GH (W(L+81)+W(L-81))I+RS2¥(W(L+72)+W(L-T72)
2H+WL+90) +W(L-90) +W(L+80)+W(L-80)+W(L+82)+W(L-82) )+RO6* (W(L+T1)+W(L~
371)+WL+T73)+WL=73)+W{L+89)+W(L.~89)+W(L+P1 ) +W(L~F1 ) )I)+12.#(V(L+90)
A+V(L=-90)=VIL+72)-V((L=T2)+U(L+82)+U(L-82)~U(L+80)=U(L—=80) )+2 ¥ (V(L
S+91)4+V(L=91)+V(L+89)+V(L-B9)~V(L+T1)~=VI(L=T71)=V(L+73)=-V(L=T3)+U(L+
691 )+U(L=91 ) +U(L+T3)+U(L-73)=U(L+71)=U(L=T71)=-U(L+89)-U(L-89)))/R18

WL)=W(L)+]1.29%RZ (L)

RY(L)=(~R18#V(L)+R24¥(V(L+81)+V(L-81)+V(L+1)+V(L-1))+R3I2#(V(L+80)
14+VL=80)+V(L+82)+V(L-82) )+RAG¥ (V(L+9)+V(L=-9) )+RS2# (V(L+10)+V(L.~10)
24V(L+B8)+V(L=B)+V(L+72)+VIL=T72)+V(L+90)+V(L=90) )+RE6* (V(L+T71)+V(L-T1



294

144

254

1S

154

184

33

334

101

3)+VIL+T73)+V(L=T3)+V(L+89)+V(L=-89)+V(L+91 )+V(L=91))+12. % (U(L+10)
A+U(L-10)-U(L+8)=U(L-8)+W(L+90)+W(L-90)-W(L+72)=W(L-T72))+2* (U(L+F1
SIFUIL=91 ) +U(L+T71)+U(L=T71)-U(L+73)-U(L=73)-U(L+89)-U(L-89)+W (L+91)
6+WLL-91)+W(L+89)+W(L-89)-W(L+71)=-W(L-T71)-W(L+73)-W(L~73)))/R18

VIL)=V(L)+1.25%#RY (L)

RX(L)=(-R18#U(L)+R24*¥ (U(L+81)+U(L-81)+U(L+9)+U(L-9))+RI2#(VU(L+90)
1+U((L=90)+U(L+72)+U(L~T72) )+R44* (U(L+1)+U(L—-1))+RS2¥ (U(L+10)+U(L~10)
2+U((L+8)+U(L-8)+U(L+82)+U(L-82)+U(L+80)+U(L-80) )+R6F* (U(L+T71)+U(L~-T1
3)+U(L+73)+U(L=73)+U(L+89)+U(L-89)+U (L+91)+U(L~91))+12, % (V(L.+10)
4+V(L-10)-V(L+8)-V(L-8)+W(L+82)+W(L~-82)-W(L+BO)=W(L~80))+2+.* (V(L+91
SI+V(L=-91)+V(L+T71)+V(L=71)-V(L+73)-V(L-73)-V(L+89)-V(L=-89)+W(L+91)
6+W(L-91)+WIL+73)4+W(L-73)~-W(L+T71)~-W(L=71)-W(L+89)-W(L-89)))/R18

UL ) =UL ) +1 25#RX (L)

CONT INUE

SURFACE PLUS X AXIS

1=N

LesLAKE(I +JeK)

CALLZS(L+71¢89¢=914=73+0:¢0+04¢0)

CALLYS(L+71¢894=91¢=73+90¢0¢0+0)

CALLXS(L ¢714899-91¢~73+0+0+0+0)

CONT I NUE

J=N2

SYM Z AXIS ON Y SURFACE

I=1

LsLAKE(]I ¢ JoK)

CALLZS(L +73¢-89+0¢0¢000+040)

CALLXS(L +73¢—89+090¢0:0+0+0)

CALLYS(L+73¢-894¢0+0+0¢0¢0+0)

CONT I NUE

SURFACE PLUS Y AXIS

DO 154 [=2,N1

L=LAKE(]I ¢ JeK)

CALLZS(L+71¢73¢-8%9¢=91+0+040+0)

CALLYS(L¢710673¢~-899=-91+40¢0¢0+0)

CALLXS(L+71¢73¢-89¢=91:0e¢000+0)

CONT INUE

OUTSIDE EDGE Z AXIS

I=N

L=aLAKE(] ¢ JoK)

CALLZS(L+710-91+¢09030+40¢0¢0)

CALLYS(L+719-91¢09090+0+04+0)

CALLXS(L +71¢=914090¢0+0+0+0)

CONTINUE

K=1

J=1

INSIDE X AXIS

DO 334 1=2.N1

L=LAKE(1+Je¢K)

CALLXS(L +91+4899095040+40:040)

CONTINUVE



23

32

324

234

24

244

28

123
400

106
121
107

102

X AXIS AT THE SURFACE
I=N
L=LAKE(I +JeK)
CALLXS(L +89+¢040¢0+00¢0+0+0)
DO 234 J=2¢N12
INSIDE Y AXIS
I1=1
L=LAKE(I +JeK)
CALLYS(L ¢91¢73¢40+40+0+¢0+0+0)
CALLXS (L +91¢73+0¢0+0¢0+0.0)
INSIDE Z SURFACE
DO 324 [=2¢N1
L=LAKE(]+JeK)
CALLYS(L+71+73:89¢91¢0+00¢010)
CALLXS(Le71¢73¢894914040+40+0)
CONT INUE
SYM Y AXIS ON X SURFACE
1=N
L=LAKE(]+JoK)
CALLYS(L+71089¢0+0¢0¢0+0+0)
CALLXS(L +71¢8990+0+0+¢0+040)
CONTINUE
J=N2
Y AXIS AT THE SURFACE
I=1
LaLAKE(I+JsK)
CALLYS(L¢73+04000¢0000000)
CALLXS(L+73¢0¢0¢0:0¢0¢0+0)
SYM X AXIS ON Y SURFACE
DO 244 [=2,N1
L=LAKE(I+JeK)
CALLYS(L+714730¢040¢000:040)
CALLXS(L e71¢730060+040:+:0,+,0)
CONTINUE

OUTSIDE Z EDGE AT SYM INTERSECTION

I=N

L=LAKE(]I ¢ JsK)
CALLYS(Le71¢040¢0¢0+0¢0+0)
CALLXS(L+7140404000¢0¢0+0)
CONT I NVE

CONT I NUE

RMAX=0e

DO 110 I=14N

DO 110 JU=1sN2

DO 110 K=1,N3
L=LAKE(I ¢ JoK)

IF (ABSF (RMAX)-ABSF (RX(L)))
RMAX=RX (L)

I1F (ABSF (RMAX)-ABSF (RY(L)))
RMAX=RY (L)

106+121,4121

1071220122
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122 IF(ABSF (RMAX)-ABSF (RZ(L))) 108+1100110
108 RMAX=RZ (L)
110 CONTINYE
IF (ABSF (RMAX)-GOVERN) 125,125+401
125 N4A=N4+}
NUMBER=0
NU=2
IF(N4=6) 700+700+701
700 GO TO 116
701 NS=NS5+1
N4=1
RZ1(1)=0.15
RZ1(2)=0.12
RZ1(3)=0.08
RZ1(4)=0.04
RZ1(5)=0.0
RZ1(6)=-0.04
RZ1(7)=-0.08
RZ1(8)=-0e12
RZ1(9)==0e15
IF(N5-=3)7024702+703
703 NU=1
702 GO TO 116
401 GO TO 115
116 PRINT 104
REWIND S
WRITE TAPE SesUoVesW NUMBERINGINSIRZ1 (1) eRZ1I(2)RZI(3I)sRZ1(4) ¢
IRZ1(S)eRZ1(6) 1RZ1(T7)+sRZ1(8) +RZ1(9)
REWIND S5
PRINT 100 :NUMBER +RMAX
PRINT 103¢ N
PRINT 101 +NoN2:N3
PRINT S00.P1
DO 120 K=14N3
DO 120 I=1¢oN
DO 120 J=14N2
L=LAKE (] ¢ VoK)
CALL STRESS (IsJsKoNIN2:N3)
120 PRINT 102 IeJeKoU(L) sVIL)oWIL) +SXXsSYYeSZZeTXYeTXZTYZ
PAUSE 100
GO TO (504+130)NU
S04 CONTINUE
STOP
END
SUBROUTINE STRESS(1¢JeKeNsN2sN3)
DIMENSION U(1377)eV(1377)9sW(1377)eRX(1377)IsRY(1377)+RZ2(1377)+18(8)
COMMON UoVoWsRXIRYIRZoSXXoeSYYeSZZeTXY s TXZeTYZeR1+sR2:R3RA:RS5:R6
1R7+R8
AL=RB+R6-2,
AlLl=AL+1e.



45

11
12

13

104

ALM]I=]1.~AL
L=LAKE(] sJeK)
NI1=N-1
AN1=N1
N12=N2-1
AN12=N12
AN=N
AN1 1 =AN=1.5
C1=400000e¢/(AN1¥R1)
CA=C1l1#*#AL 1
CB=C1*AL
CC=Cl#ALM1
Lli=L+1
L2=L-1
L3=L+9
L4=L-9
LS=L+81
L6=L-81
LX=L1
LXX=L2
LY=L3
LYY=LA&
LZ=L5
LZZ=L 6
UC=1.
VC=1le.
wWC=1e.
IF(I-1)2+:2:3
LXX=L
UC=2e.
IF(N-1)4,4,5
LX=L
UC=2,
IF(JU=176+647
LYY=L
VC=2e.
IF(N2-J)8+849
LY=L
VC=2.
IF(K-1)10410911
LZZ=L
wC=2.
IF(N3-K) 12+,12413
LZ=L
wWC=2,
CONT I NUE
UXX=UCR (U(LX)-ULXX))
UYY=VC#(UCLY)-U(LYY))
UZZ=WC#(U(LZ)-U(LZZ))
VXX=UCH(VI(LX)=VILXX))
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VYY=VCR(VILY)-VILYY))

VZZ=WCH¥(V(LZ)-V(LZZ))

WXX=UCH (W (LX)-W(LXX))

WYY=VCR(W(LY)=WI(LYY))

WZZ=WCH(W(LZ)-W(LZZ))

SXX=CAR#UXX+CCH(VYY+WZZ)

SYY=CARVYY+CCH (UXX+WZZ)

SZZ=CA#WZZ+CCH* (UXX+VYY)

TXY=CB#(UYY+VXX)

TXZ=CB®#(UZZ+WXX)

TYZ=CB®#(VZZ+WYY)

RETURN

END

FUNCTION LAKE £ +Je¢K)

LAKE = ] + J%*9 + K#81 - 90

END

SUBROUTINE XS (L+IB1+IB2,1B3+1B4,1BS.IB6+,1B7+1B8)

DIMENSION U(1377)eV(1377)eWl1377)sRX(1377)eRY(1377)sRZ(1377)+18(8)
COMMON UsVeWIRXIRY IRZeSXXsSYY 1SZZeTXY e TXZeTYZ:R11R2:RIRARSR6
1R7.R8

IB(1)=181

IB(2)=1B2

IB(3)=183

1B(4)=]1B4

1IB(S)=185

1IB(6)=18B6

IB(7)=1B7

IB(8)=188

XSUM=0.

DO 9 M=1,8

AM=M-1

1A=1

JA=9

KA=81

Al=le

A2=1e.

A3=1e.

IFCIB(M))247+3

KA=-81

A3==1o.

IF(IB(M)-KA)4,7+5

JA==-9

A2=-1.

IF(IB(M)—KA~JA)E6+7+8

1A=~1

Al==1e

CONT I NUE

XSUM= (~R 1 ¥U (L) +R2% (U(IL+KA)+U(L+JA) ) +RIFU(L+JA+KAI+RAFU(L+TA I +RS¥* (
TUCL+TA+JA) +UL+KA+TA) ) +RGBU(L+TA+JAHIKA ) +2 FALT HAX (=3, #VIL)+R7THVIL
24+JA)~VL+KA)+RB*¥V(L+JA+KA)~RT7¥V(L+IAI+I¢ XV (L+IA+JA)~REBAV(L+IA+KA)
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SH+VIL+TA+JA+KA ) )42 RAL RAJH (=3 o ¥W(L ) +R7¥W(L+KA) -W(L+JAI+REBHW (L +JIA+
4KA)~R7*W(L+JA)+3 e ¥ WL+ TA+KA)-RBAW(L+IA+JA) +W(L+]A+JA+KA) ) ) /R]
S5+XSUM

CONT INUE

AM=8,

RX(L ) =XSUM/AM

UL)I=U(L)+1 625#RX (L)

RETURN

END :

SUBROUTINE YS (L+1B1+1B2,1B3+184,185+18B6+187+188)

DIMENSION U(1377)eV(1377)eW(1377)eRX(1377)¢RY(1377)eRZ(1377)+18(8)
COMMON UsVsWIRXIRYIRZsSXXeSYYsSZZsTXYsTXZeTYZsR]1+R2:RI+RG:RS+R6E
1R7.R8

IB(1)=18B1

IB(2)=1B2

I18(3)=183

IB(4a)=1B4

IB(5)=185

IB(6)=1B6

1B(8)=1B8

1B(7)=1B7

YSUM=0,

DO 9 M=} ,8

AM=M-1

1A=]

JA=9

KA=81

Al=1le.

A2=1,

A3=1e.

IF(IB(M))24¢7+3

KA=-81

Ad=-1.

IF(IB(M)~=KA)4,47+5

JA==9

A2x=-1.

IF(IB(M)~-KA=JA)E+7.8

IA=-1

Al==lo.

CONT I NUE
YSUM=(‘RI*V(L)+R2*(V(L+KA)+V(L*IA))+R3*V1L+1A+KA)*R4*V(L#JA)+R5*(
IVILFIA4JA)Y+VIL+JAHKA) ) +RE¥V(L+TA+JAHKAI+2 o HA L HA2 X (=3 UL I+RTHU(L
2+TA)~U(L+KA)I+RB¥U(L+IA+KA)=R7#U(L+IA)+3 ¢ #U(L+TAMJA)-REB¥UL{L* JAH+KA)
S4+ULFHTA+JAIKA) ) +2 RA2RAIH (=3 o R W (L) +R7¥W(L+KA)-WIL+TA)+REBMW{L+1A
44KA) ~R7AW(L+JA) +3 o #W(L+JA+KA) ~REB#W(L+IA+JA)+W(L+TA+JA+KA Y ) ) /R
S+YSUM

9 CONTINUE

AM=8,

7 RY(L)=YSUM/AM

VIL)=VIL)+1 «25%#RY (L)
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RETURN
END
SUBROUTINE ZS (L+IB1+.1B2.1B3+]B4+IBS+1B6+1B7+188)
DIMENSION U(1377)eV(1377)+W(1I3T77)RX(1377)sRY(1377)eRZ(1377).1B(8)
COMMON UsVeWsRXIRY IRZsSXX+SYYsSZZeTXY s TXZsTYZsR1+IR2+R3I +RA4:RSR6
1R7+R8
IB(1)=1B1
I1B(2)=1B2
1B(3)=183
1B(4)=1B4
IB(5)=IBS
IB(6)=1B6
IB(7)=18B7
IB(8)=]B8
ZSUM=0,
DO 9 M=]1,8
AM=M-1
IA=1
JA=9
KA=81
Al=1le
A2=1e¢
A3=1e
IF(IB(M))247+3
2 KAx=-81
A3=~1e
3 IF(IB(M)=KA)&+7+5
4 JA=-9
A2=—~1.
S IF(IB(M)~-KA-~JA)E+7+8
6 [A=m-~]
Als=1e
8 CONTINUE
ZSUM=z= (—R1¥WIL)+R2# (WIL+TA)+W(LFJA) ) +RIXWILF+IA+JA)+RERYW (LKA YHRSH
1(W(L+JA+KAYF+W L+ TA+KA) ) +ROEMW(LFTAFJAFKA) $2 ¢ RAHAIR (=3 ¥V (L) +RTHV(
2L4AJA) =V (L+TAI+REB#V(L+IA+JA) ~RTHV(L+KAI+3 o #V(L+JAHKA ) ~RBFV L+ JA+KA)
3+VILH+TA+JAGKA) )42 AT #AJH (=3 e ¥U(L ) +R7HU(L+TA)~U(LF+JAI+RB¥U(L+ 1A+
QUA) -R7RU(L+KAI+3 e #UL+TAH+KA) -RBRU(L+JA+KAI+U (L + 1A+JA+KA ) ) ) /R]
S+2ZSUM
9 CONTINUE
AM=8,
7 RZ(L)=ZSUM/AM
WL)=sW(L)+1e25%RZ (L)
RETURN
END
END



VII BIBLIOGRAPHY

D'APPOLONIA, E. and NEWMARK, N. W., A method for the
solution of the restrained cylinder under compression, lst
U.S. National Congress of Applied Mechanics, 1952, pp. 217-
226.

HRENNIKOFF, A., Solution of problems in elasticity by the
frame work method. Journal of Applied Mechanics, vol. 8,

no. 4, Dec. 1941, pp. A-169 - A-175.

KORN, A., Mathematical Annalen, vol, 75, 1914, pp. 497-544,
KUNZ, K. S., Numerical Analysis, McGraw-Hill Book Com-
pany, Inc., New York, 1957,

LICHTENSTEIN, L., Mathematisch Zeitschrift, vol, 20, 1924,
Pp. 21-28. |
LOVE, A. E. H,, A treatise on the Mathematical Theory of
Elasticity, 4th ed., Cambridge University Press, London, 1927,
McHENRY, D., A lattice analogy for the solution of stress
problems, Journal of the Institution of Civil Engineers, No. 2,
Dec. 1943,

MELOSH, R. J., Structural analysis of solids, Journal of the
Structural Division of the American Society of Civil Engineers,
vol. 89, no. ST4, pt. 1, Aug. 1963.

NEUBER, H., Z. Angew. Math. Mech., vol. 14, p. 203, 1934,

108



10,

11.

12,

13,

14,

15,

109

NOVOZHILOV, V. V., Theory of Elasticity, Israel program
for scientific translations, Jerusalem, 1961.

PAPKOVITCH, P, F., Compt. Rend., vol. 195, 513, p. 754,
1932,

SALVADORI, M. G. and BARON, M, L., Numerical Methods
in Engineering, 2nd ed,, Prentice Hall, 1961.
SOKOLNIKOFF, I. S., Mathematical Theory of Elasticity,
McGraw-Hill Book Company, Inc., New York, 1956.
SOUTHWELL, R. V,, Theory of Elasticity for Engineers and
Physicists, 2nd ed., Oxford University Press, London, 1941,
TIMOSHENKO, S. P, and GOODIER, J. N., Theory of Elas-
ticity, 2nd ed., McGraw-Hill Book Company, Inc., New York,

1951,



ROCM USE onLy







