

OVERDUE FINES: 25¢ per day per item

RETURNING LIBRARY MATERIALS:

Place in book return to remove charge from circulation records

ECOLOGY OF <u>PRATYLENCHUS</u> <u>PENETRANS</u> ASSOCIATED WITH NAVY BEANS (PHASEOLUS VULGARIS L.)

Ву

Alma Patricia Elliott

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Entomology

1980

ABSTRACT

ECOLOGY OF <u>PRATYLENCHUS</u> <u>PENETRANS</u> ASSOCIATED WITH NAVY BEANS (PHASEOLUS VULGARIS L.)

By

Alma P. Elliott

A "holistic" approach was used to study the ecology of <u>Pratylenchus penetrans</u> associated with navy beans. Studies on the pest system included determination of the field distribution and incidence of <u>Pratylenchus penetrans</u> in Michigan bean fields. The pathogenicity of <u>P. penetrans</u> to navy bean cv Sanilac was evaluated and the susceptibility of dry bean varieties to <u>P. penetrans</u> was examined. The influence of environmental factors of temperature and moisture on the development of the pathogenic relationship between <u>P. penetrans</u> and navy beans was studied. Effects of interacting components of mycorrhizae and kidney beans which are grown in rotation with navy beans were examined.

The research findings indicated an aggregate-type field distribution of \underline{P} . \underline{P} penetrans, and this expresses the need for careful design of experimental sampling

procedures and analyses of nematode data. Pratylenchus spp. was found in 68% of Michigan bean fields. A pathogenic relationship between P. penetrans and navy bean cv Sanilac was observed. However, the degree of susceptibility of varieties to P. penetrans varied, and three tolerant varieties (Gratiot, Saginaw and Kentwood) were identified. The population dynamics of P. penetrans varied over two navy bean growing seasons.

The pathogenic relationship between P. penetrans and navy beans was emphasized by adverse conditions of temperature, soil type and soil moisture. Reproduction of P. penetrans was reduced at 15 and 30 C, respectively and at high and low soil moisture levels corresponding to -5 and -1000 centibars, respectively. Optimum conditions for growth and development of P. penetrans were 25 C and a soil moisture level corresponding to a matrix potential of -50 centibars. These conditions were also optimum for plant growth in the absence of P. penetrans.

Mycorrhizal associations with <u>G</u>. <u>fasciculatus</u> increased growth and yield of navy bean cv Sanilac. The detrimental effects of <u>P</u>. <u>penetrans</u> on navy beans were minimized in the presence of <u>G</u>. <u>fasciculatus</u>. The research data provided information which could be used

for development of management strategies for control of P. penetrans in dry bean production.

ACKNOWLEDEGEMENTS

The author would like to express deep thanks to all persons who contributed to the development and progress of the Ph.D program. Profound thanks and deep gratitude are due to the Chairman of the Guidance Committee, Dr. G. W. Bird, for his ingenious asssistance and kind support throughout the program. Sincere appreciation and thanks are expressed to Dr. D. L. Haynes for his patience and perseverance in assisting the author with development of philosophical perspectives. Deep thanks are expressed to Dr. T. Edens for his kind support and assistance throughout the program. Sincere thanks are due to Dr. A. Smucker for his assistance with numerous questions and support throughout the program. Deep thanks are expressed to Dr. G. Safir for his willing assistance and support throughout the program.

The author is grateful to the Chairman of the Department of Entomology, Dr. J. Bath, for his support and encouragement throughout the program. Sincere thanks are expressed to Mr. K. Dimiff for his assistance with data processing on the CDC 750. Thanks are due to Dr. R. Kunze for his assistance with research involving soil

moisture. Special thanks are due to Mr. John Davenport for his assistance with field research. Sincere thanks are expressed to Ms. R. Hannewald and Ms. B. Wyse for their assistance in typing the dissertation. Sincere thanks and deep gratitude are expressed to Ms. Laura Meal for most competent and excellent input in typing and editing the final copy of the dissertation.

Alma P. Elliott

TABLE OF CONTENTS

																					Page
LIST	OF S	FABLE	s.	•	•		•	•	•	•	•	•	•		•	•	•	•	•	•	хi
LIST	OF 1	FIGUR	ES	•	•		•	•	•	•	•	•	•	•		•	•	•	•	. х	xii
1.0	INT	RODUC	TIO	1	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
1.1	Agr	icult	ura	l P	ro	duc	ti	.on	S	/st	en	ns	•			•	•		•		1
1.2		roach syste		th.	e :	Stu • •	dy •	•	f I	es •	•t-	·Cı	•	•	•	•	•	•	•	•	3
1.3		atode		obl				_		cu I	ltu	ıra	1								4
1 4		ducti temen		•	-	· ·	-	-	-	•	•	•	•	•	•	•	•	•	•	•	4
1.4										•	•	•	•	•	•	•	•	•	•	•	5
1.4	4.1	Appr prob										:ne	•	•			•	•			6
1.4	4.2	Over	all	re	se	arc	h	ob;	jed	cti	.ve)	•	•			•	•	•	•	7
1.4	4.3	Rese	arcl	1 0	ut.	lin	е	•	•			•	•		•		•			•	7
1	1.4.3	3.1	The	pe	st	sy	st	.em		•		•			•			•	•		7
	1.4.3	3.2	Pest	t-c	ro	p i	nt	er	act	ic	ns	3					•			•	7
	1.4	4.3.2	.1			uen															
				_		met tur					- -Jine	• •	. a t	·ur	. e	•	1 a		•		8
1.4	4.4	Infl	ueno	ce (of	in	te	ra	cti	inc	1 C	on	מסכ	ne	nt	s					8
]	1.4.4		Myco										_			•	•				8
]	1.4.4		- Rota						- I	(id	lne	y	be	ar	ıs			•			9
2.0	LITE	ERATU	RE I	REV:	ΙE	₩.	•	•	•	•	•	•	•	•	•	•	•	•		•	10
2.1	Prat	ylen	chus	מ ז	ene	>+r	an	s										_		_	10
	1.1	Taxo			<u> </u>			_	•	•	•	•	•	•	•	•	•	•	•	•	10
	1.2	Morp	_	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	11
	1.3	Dist										•	•	•	•	•	•	•	•	•	13
	1.4	Life			-11	an	u		5 L		_	16	•	•	•	•	•	•	•	•	14
		1.1	-		i m	· ·		•	•	•	-	•	•	•	•	•	•	•	•	•	17

]	Page
2.1.4.1.1 Inoculation	•	18
2.1.4.1.2 Incubation	•	18
2.1.4.1.3 Infection	•	19
2.1.4.2 Secondary cycles	•	20
2.1.5 Symptomatology	•	20
2.1.6 Ecology		21
2.1.6.1 Temperature		22
2.1.6.2 Soil nutrients	•	23
2.1.6.3 Soil moisture	•	24
2.1.6.4 Interactions with fungi	•	25
2.1.6.5 Nematode-nematode interactions	•	25
2.2 Navy Beans (Phaseoulus vulgaris L)	•	27
2.2.1 Importance	•	27
2.2.2 Marketing	•	28
2.2.3 Supply and price		28
2.2.4 Production factors affecting yield	•	29
2.2.4.1 Environmental factors	•	29
2.2.4.2 Navy bean varieties		30
2.2.4.3 Cultural practices		30
2.2.4.4 Soil fertility factors		32
2.2.4.5 Bean diseases	•	33
2.2.4.6 Nematode diseases		35
2.3 Symbionts in Association with Navy Beans	•	36
2.3.1 Mycorrhizae	•	36
3.0 EXPERIMENTAL		42
	•	
3.1 General procedures	•	42
3.1.1 Soil samples	•	42
3.1.1.1 Field samples	•	42
3.1.1.2 Greenhouse samples	•	42
3.1.2 Root samples		42

		Pa ge
3.1.2.1 Field samples		42
3.1.2.2 Greenhouse samples	•	42
3.1.3 Nematode extraction		43
3.1.3.1 Soil samples		43
3.1.3.2 Root samples		43
3.1.4 Identification and calculation of nematode population densities		44
3.1.5 Extraction of vesicular-arbuscular mycorrhizal spores from soil		44
3.1.6 Identification of vesicular-arbuscular		
mycorrhizae in root samples	•	45
3.1.7 Converting time to accumulated degree days		45
3.1.8 Plant growth analysis	•	46
3.1.9 Soil moisture characteristic curves	•	47
3.2 Pest system	•	49
3.2.1 Field distribution of Pratylenchus	•	49
penetrans		49
3.2.1.1 Method	•	49
3.2.2 Indcidence of Pratylenchus penetrans in		
dry bean fields of Michigan	•	52
3.2.2.1 Method	•	52
3.2.3 Development of an experimental popula-		55
tion of <u>Pratylenchus penetrans</u>	•	55 55
	•	33
3.2.4 Identification of the life cycle stages of Pratylenchus penetrans		57
3.2.4.1 Method		57
3.2.5 Results		59
3.2.5.1 Field distribution of Pratylenchus penetrans	•	59
3.2.5.2 Incidence of P. penetrans in dry bear	ı	
fields in Michigan	•	77
3.2.5.3 Development of an experimental population of P. penetrans		83

							P	age
3.2.5.4 Identificati stages of \underline{P} .					•	•		91
3.2.6 Discussion					•	•		96
3.3 Pest-crop Interaction	ns .				•		•	109
3.3.1 Pathogenicity .					•	•		109
3.3.1.1 Method					•	•		109
3.3.2 Susceptibility of to Pratylenchus		_						110
3.3.2.1 Method					•			110
3.3.3 Responses of San tion with differ	ent in	itīal p	opul	atio	n		-	
densities of Pra								
3.3.3.1 Method	• • •	• • •	• •	• •	•		_	112
	• • •					-	-	113
3.3.4.1 Pathogenicit	_							113
3.3.4.2 Susceptibili ties to Prat								119
3.3.4.3 Responses of infection win Pratylenchus	th diff	erent	dens	itie	s c			131
3.3.5 Discussion								169
3.4 Influence of Environ								176
Temperature and Mois					•			
3.4.1 Influence of tem	_		• •				•	1/6
3.4.1.1 Effect of di different in lenchus pene of navy bean	itial of trans of and of	densiti on grow on fina	es of the and populations	f <u>Pr</u> nd y oula	aty iel tic	d n		176
densities of								
3.4.1.1.1 Method						•	•	1/6
3.4.1.2 Interactions penetrans as over the gro	sociate	ed with	navy	y be	ans			178
3.4.1.2.1 Method	_							
3 4 1 3 Pagults	•				-	-		179

					I	Page
3.4.1.	and d of P. yield final	t of different in penetrans of navy be population netrans.	nitial de on growt eans and	nsities h and on	5	179
3.4.1.	3.2 Interand P	actions of penetrande	s associa	ted with	h	188
3.4.1.4	Discussion					193
	luence of		ure			198
3.4.2.1	Developme	nt of soil	moisture	charac-	_	
		curves for				198
3.4.2.	1.1 Metho	d				198
3.4.2.2		P. penetra			th	
	navy bean		• • • •	• • • •	• •	199
	2.1 Metho		• • • •	• • • •	• •	199
3.4.2.3	densities and yield	interaction in ture and in of P. pendo of navy both in the control of the control	nitial po etrans on eans and	pulation growth on popu-	n -	202
3.4.2.	3.1 Metho			 -		202
3.4.2.4	Results .					203
3.4.2.	4.1 Develochara	cteristic (203
3.4.2.		actions of ure and P. ith navy b	penetran	s assoc	ia- 	204
3.4.2.	populatrans beans	soil mois ation dens on growth and on po	ture and ities of and yiel pulation	initial P. pened d of nav	vy	
	_	penetrans		• • • •	• •	220
3 4 3 Die	cuesion					226

			Page
3.	.5 Interactions of P. penetrans and Mycorrhizae		233
	3.5.1 Effect of initial population densities of Glomus fasciculatus on growth and yield	f	
			233
	3.5.1.1 Method		233
	3.5.2 Interactions of P. penetrans and G. fas- ciculatus and effect on growth and yield		
	of navy beans		234
	3.5.2.1 Method		234
	3.5.3 Results		235
	3.5.3.1 Effect of initial population densition of Glomus fasciculatus on growth and		
	yield of navy beans	• •	. 235
	3.5.3.2 Interactions of P. penetrans and G. fasciculatus and effect on growth		220
	and yield of navy beans		
_	3.5.4 Discussion		
3.	.6 Rotation Crops - Kidney Beans		256
	3.6.1 Susceptibility and control of P. penetral associated with five dry bean varieties		256
	3.6.1.1 Method		256
	3.6.2 Results		256
	3.6.2.1 Susceptibility and control of P. penetrans associated with five		
	dry bean varieties	• •	256
	3.6.3 Discussion		257
3.	.7 Comparison of Population Dynamics of P. penetrans Associated with Navy Beans Over Two		. 259
	Growing Seasons	• •	239
	3.7.1 Population dynamics and control of P. penetrans associated with navy beans in 1978		259
			259
	3.7.2 Population dynamics and control of P. penetrans associated with navy beans	- •	
	in 1979		260

																		I	Page
3	3.7.2.1	Meth	od	•		•	•	•	•	•	•	•	•	•	•	•	•	•	260
3.7	.3 Resi	ults		•		•	•	•	•	•	•	•	•	•		•	•	•	261
3	3.7.3.1	Popu of P navy	. pe	ene	tra	ns	as	ssc	ci	at	eċ	l w	7it	:h		•	•	•	261
3	3.7.3.2	P. p	enet	cra	ns a	ass	00	:ia	ate	d	wi	th	r	a	JУ				
		bean																	
3.7	7.4 Disc	cussi	on	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	266
4.0	GENERAL	DISC	ussi	ОИ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	268
4.1	An Over	view	of t	the	Res	sea	arc	h	Fi	nd	lin	ıgs	3	•	•	•		•	268
4.2	A Concer Navy Bea														ing	JS	•	•	268
5.0	SUMMARY	AND	CONC	CLU	SIO	NS	•	•	•	•	•	•	•	•	•	•	•	•	271
6.0	APPENDI	X A		•		•	•	•	•	•	•	•	•		•	•	•	•	275
7 0	BIBLIOGI	RAPHY				_	_						_		_			_	336

LIST OF TABLES

Table		Page
3.1	Analysis of field distribution of Pratylenchus penetrans	60
3.2	Occurrence and densities of Pratylenchus Spp. (root lesion nematodes) recovered from 80 dry bean fields in Michigan	82
3.3	Occurrence of plant-parasitic nematodes in relation to soil type and bean variety	84
3.4	Pratylenchus spp. (root-lesion nematodes) associated with navy bean and colored beans in Bay and Montcalm counties	88
3.5	Occurrence of plant-parasitic nematodes recovered from 80 dry bean fields in Michigan in 1978	89
3.6	Occurrence and population densities of Tylenchorhynchus (stunt nematodes) Tecovered from 80 Michigan dry bean fields in 1978	90
3.7	Morphometric characters of the life cycle stages of Pratylenchus penetrans associated with navy beans	94
3.8	Morphometric characters of Pratylenchus penetrans	95
3.9	Allometric characters of the life cycle stages of Pratylenchus penetrans associated with navy beans	. 97
3.10	Differences in allometric characters of Pratylenchus penetrans life cycle stages	98
3.11	Key to the life cycle stages of Pratylenchus penetrans	108

Table		Page
3.12	Influence of temperature on population cohort of \underline{P} . penetrans associated with navy beans	182
3.13A	Volumetric soil moisture content as related to matrix potential	200
3.13B	Mechanical composition of soils	200
3.13C	Percent soil moisture associated with different matrix potentials	200
3.14	Dynamics of the population cohort of P.penetrans associated with navy beans	26
Al	The effect of Pratylenchus penetrans on height of six dry bean varieites	275
A2	The effect of <u>Pratylenchus penetrans</u> on root weight of six dry bean varieties	276
A3	The effect of Pratylenchus penetrans on leaf area of six dry bean varieties	277
A4-1	Influence of initial population density of P. penetrans on root population dynamics of P. penetrans associated with navy beans	278
A4-2	Influence of initial population density of P. penetrans on soil population dynamics of P. penetrans associated with navy beans	278
A4-3	Influence of intial population densities of P. penetrans on total (root + soil) population dynamics of P. penetrans associated with navy beans	279
A 5	Effect of different initial densities of P. penetrans on weight of navy bean roots over the growth period	279

Table		Page
A6	Effect of different intital densities of P.penetrans on leaf area of navy beans over the growth period	280
A7	Effect of different initial densities of P. penetrans on shoot fresh weight of navy beans over the growth period	280
A8	Effect of different initial densities of \underline{P} . penetrans on dry weight of navy bean shoot system over the growth period	281
A9	Interactions of initial density of P. penetrans and temperature on final root densities of p. penetrans	282
A10	Interactions of initial density of P. penetrans and temperature on final soil population densities of P. penetrans	282
All	Interactions of initial density of P. penetrans and temperature on final total population densities of P. penetrans	283
A12	Effect of P. penetrans on height of navy bean plants at different temperatures	283
A13	Effect of P. penetrans on weight of navy bean roots at different temperatures	284
A14	Effect of P. penetrans on dry weight of navy bean shoot system at four different temperatures	284
A15	Effect of P. penetrans on yield of navy beans at different temperatures	285
A16	Effect of temperature on total population densities (root & soil) of p. penetrans associated with navy beans over the growth period	286

Table		Page
A17	Effect of temperature on root densities of \underline{P} . penetrans associated with navy beans over the growth period	286
A18	Effect of temperature on soil densities of P. penetrans associated with navy beans over the growth period	287
A19	Influence of temperature and P. penetrans on shoot dry weight of navy beans over the growth period	287
A20	Effect of temperature and P. penetrans on root area of navy beans	288
A21	Effect of temperature and P. penetrans on root weight of navy beans over the growth period	288
A22	Effect of temperature and \underline{P} . penetrans on height of navy bean plants over the growth period	289
A23	Effect of temperature and \underline{P} . penetrans on shoot fresh weight of navy beans over the growth period	289
A24	Effect of temperature and P. penetrans on length of navy bean roots over the growth period	290
A25	Effect of temperature and P. penetrans on leaf area of navy beans over the growth period	290
A26-1	Effect of soil moisture on final root populations of Pratylenchus penetrans associated with navy beans	291
A26-2	Analysis of variance	291
A26-3	Interactions of soiltype and soil moisture on final root densities of P. penetrans associated with navy beans	292

Table		Page
A26-4	Interactions of soil type and initial density od P. penetrans	292
A26-5	Interactions of soil moisture and initial density of \underline{P} . $\underline{penetrans}$	292
A27-1	Effect of soil moisture and P. penetrans on final soil population densities of Pratylencus penetrans associated with navy beans	293
A27-2	Analysis of variance	293
A27-3	Interactions of soil type and initial density of P. penetrans on final soil densities of P. penetrans associated with navy beans	294
A27-4	Interactions of soil type and soil moisture	294
A27-5	Interactions of soil moisture and initial density of \underline{P} . \underline{p} enetrans \underline{P}	294
A28	Effect of soil moisture on final total (root + soil) densities of \underline{P} . $\underline{penetrans}$ associated wirh navy beans $\underline{\cdot}$. $\underline{\cdot}$. $\underline{\cdot}$.	295
A29-1	Effect of P. penetrans on length of navy bean roots grown at six different soil water potentials	296
A29-2	Analysis of variance	296
A29-3	Interactions of soil moisture and initial density of P. penetrans on length of navy bean roots	297
A29-4	Interactions of soil type and soil moisture	297
A30-1	Effect of P. penetrans on dry weight of navy bean plants grown at six different soil water potentials	298

Table		Page
A30-2	Analysis of variance	298
A30-3	Interactions of soil type and soil moisture on shoot dry weight of navy beans	298
A30-4	Interactions of soil moisture and initial density of \underline{P} . $\underline{penetrans}$	298
A30-5	Interactions of soil type and initial density of P. penetrans	298
A31-1	Effect of P. penetrans on height of navy bean plants grown at six different moisture levels	300
A31-2	Anlaysis of variance	300
A31-3	Interactions of initial density and soil moisture on height of navy bean plants	301
A31-4	Interactions of soil type and initial density of P.penetrans	301
A31-5	Interactions of soil mositure and soil type	301
A32-1	Effect of P.penetrans on root area of navy bean plants grown at six different water potentials	302
A32-2	Analysis of variance	302
A32-3	Interactions of initial density of P. penetrans and soil moisture on area of navy bean roots	303
A32-4	Interactions of soil type and initial density of \underline{P} . $\underline{penetrans}$	303
A32-5	Interactions of soil moisture and soil type	303

Table		Page
A33-1	Effect of P. penetrans on yield of dry beans grown at six different matrix potentials	304
A33-2	Analysis of variance	304
A33-3	Interactions of soil type and soil moisture on yield of navy beans	305
A33-4	Interactions of soil moisture and initial density of \underline{P} . $\underline{penetrans}$	305
A33-5	Interactions of soil type and initial density of \underline{P} . $\underline{penetrans}$	305
A34-1	Effect of interactions of soil water potential, soil type and initial population densities of P. penetrans on root population densities of P. penetrans over time	306
A34-2	Interactions of soil type, soil moisture and initial density of P. penetrans on root population densities of P. penetrans at 1056 DD 10 C. Analysis of variance	307
A34-3	Interactions of soil type and soil moisture on final root densities of \underline{P} . $\underline{penetrans}$ associated with navy beans	.308
A34-4	Interactions of soil type and initial density of \underline{P} . $\underline{penetrans}$	308
A34-5	Interactions of soil moisture and initial density of \underline{P} . $\underline{penetrans}$	308
A35-1	Effect of interaction of soil water potential, soil type and different initial population densities of P. penetrans on soil population densities of P. penetrans over time	309

Table		Page
A35-2	Interactions of soil moisture, soil type and P. penetrans on soil densities of P.penetrans at 1056 DD 10 C. Analysis of variance	310
A36-1	Effect of soil moisture ,soil type and initial population densities of Praty-lenchus penetrans on final population densities of P. penetrans	311
A36-2	Analysis of variance	311
A36-3	Interactions of soil type and soil moisture on final population densities of P. penetrans	312
A36-4	Interactions of soil moisture and initial population density of P.penetrans	312
A36-5	Interactions of initial population density of \underline{P} . $\underline{penetrans}$ and soil type	312
A37-1	Effect of interactions of soil water potential, soil type and different initial population densities of P. penetrans on navy bean root weight over time	313
A37-2	Analysis of variance	314
A37-3	Analysis of variance	314
A37-4	Analysis of variance	315
A37-5	Analysis of variance	315
A37-6	Interactions of initial density and soil moisture on weight of navy bean roots roots	316
A37-7	Interactions of soil type and initial density of P. penetrans	316
A37-8	Interactions of soil mositure and soil type	316

Table		Page
A38-1	Effect of interactions of soil water potential, soil type and different initial population densities of P. penetrans on navy bean shoot dry	
	weight over time	317
A38-2	Analysis of variance	318
A38-3	Analysis of variance	318
A38-4	Analysis of variance	319
A38-5	Analysis of variance	319
A38-6	Interactions of soil moisture and <pre>P.penetrans</pre> on shoot dry weight of <pre>navy beans</pre>	320
A38-7	Interactions of soil type and soil moisture	320
A38-8	Interactions of soil type and initial density of \underline{P} . $\underline{penetrans}$	320
A39-1	Effect of interactions of soil water potential, soil type and different initial population densities of P. penetrans on height of navy bean over times	321
A39-2	Analysis of variance	322
A39-3	Analysis of variance	322
A39-4	Analysis of variance	323
A39-5	Analysis of variance	323
A40-1	Effet of soil type, soil moisture and initial density of Pratylenchus penetrans on yield of navy beans	324
A40-2	Analysis of variance	324

Table		Page
A40-3	Effect of interactions of soil type and P. penetrans on yield of navy beans	325
A40-4	Interactions of soil moisture and initial density of \underline{P} . $\underline{penetrans}$	325
A40-5	Interactions of soil type and soil moisture	325
A41	Effect of different densities of Glomus fasciculatus on growth and yield of navy beans	326
A42	Effect of different densities of G. fasciculatus on area , weight and length of navy bean roots and on mycorrhizal root infection and number of spores	. 327
A43	Percent infection of root systems of navy beans by <u>G</u> . <u>fasciculatus</u>	328
A44	Spore density of <u>G</u> . <u>fasciculatus</u> associated with navy beans	328
A45	Effect of interactions of P. penetrans and G. fasciculatus on fresh weight of navy bean plants	329
A46	Effect of interactions of P. penetrans and G. fasciculatus on shoot dry weight of navy beans	329
A47	Effect of interactions of P. penetrans and G. fasciculatus on leaf area of navy bean plants	330
A48	Effect of interactions of P. penetrans and G. fasciculatus on height of navy bean plants	3 30.
A49	Effect of interactions of P. penetrans and G. fasciculatus on weight of navy bean roots	331

Table		Page
A50	Effect of interactions of P.penetrans and G. fasciculatus on area of navy bean roots	331
A51	Effect of interactions of P. penetrans and G. fasciculatus on length of navy bean roots	332
A52	Susceptibility of five dry bean varieites to P. penetrans and control of P penetrans with an input of aldicarb (Temik 15G)	333
A53	Population dynamics and control of Pratylenchus penetrans associated with navy beans (1978)	334
A54	Population dynamics and control of P.penetrans associated with navy beans (1979)	335

LIST OF FIGURES

Figure		Page
2.1	Life cycle of Pratylenchus penetrans	16
3.1	Plot plan for the study of the field distribution of Pratylenchus penetrans	50
3.2	Sampling scheme for subplots	51
3.3	Plot plan for the study of the field distribution of Pratylenchus penetrans in the ploughed and unploughed sections of the field	53
3.4	Plot plan for the randomized block designs	54
3.5	Counties included in a survey of P. penetrans in dry bean fields in Michigan	56
3.6	Distribution of P. penetrans in the field	65
3.7	Distribution of \underline{P} . $\underline{penetrans}$ in subplots	66
3.8	Distribtuion of P. penetrans from samples consisting of one soil core	67
3.9	Soil distribution of \underline{P} . $\underline{penetrans}$ from the section of the field covered with rye	68
3.10	Soil distribution of P. penetrans in subplots from the section of the field covered with rye	69
3.11	Soil distribution of P. penetrans from samples consisting of one soil core from the section of field covered with rye	70
3.12	Root distribution of P. penetrans in the section of the field covered with rye	71

Figure		Page
3.13	Root distribution of P. penetrans in subplots from the section of the field covered with rye	72
3.14	Root distribution of <u>P. penetrans</u> from samples consisting of one core from the section of the field covered with rye	73
3.15	Distribution of P. penetrans (soil + root) in the section of the field covered with rye	74
3.16	Distribution of <u>P. penetrans</u> (root + soil) in subplots from the section of the field covered with rye	75
3.17	Distribution of P. penetrans (root + soil) from samples consisting of one core from the section of the field covered with rye	76
3.18	Distribution of P. penetrans in the ploughed section of the field	78
3.19	Distribution of \underline{P} . penetrans in subplots in the ploughed section of the field	79
3.20	Distribution of \underline{P} . $\underline{penetrans}$ from samples consisting of one soil core in the ploughed section of the field	80
3.21	Distribution of P. penetrans in random- ized block design plots	81
3.22	Total soil and root population densities of Pratylenchus penetrans associated with navy beans exposed to an initial density of one female and one male P. penetrans	92
3.23	Morphometric characters and biomass of life cycle stages of Pratylenchus penetrans	93

Figure		Page
3.24	Influence of initial soil population densities of P. penetrans on final soil population densities (A & B), and final root population densities (C & D) of P. penetrans associated with navy beans	114
3.25	Influence of different initial population densities of P. penetrans on leaf area (A) and height (B) of navy bean plants	116
3.26	Effect of different initial population densities of P. penetrans on shoot fresh weight (A), shoot dry weight (B), root weight (C), and root length (D) of navy beans	117
3.27	Effect of different initial population densities of P. penetrans on navy bean yield	118
3.28	Population dynamics of \underline{P} . $\underline{penetrans}$ associated with \underline{six} navy bean varieties	120
3.29	Influence of P. penetrans on height of six navy bean varieites over the growth period	121
3.30	Influence of P. penetrans on root weight of six navy bean varieties over the growth period	124
3.31	Effect of P. penetrans on yield of six navy bean varieties	127
3.32	Effect of P. penetrans on relative growth rate of six navy bean varieties over the growth period	128
3.33	Relationship between total (Root + soil) final population densities of P. penetrans and initial soil population densities of P. penetrans	132

Figure		Page
3.34	Population dynamics of P. penetrans associated with navy beans exposed to an initial density of 320 P. penetrans per 100 cm ³ soil	134
3.35	Root-lesions produced by P. penetrans on navy bean roots	135
3.36	Comparison of a noninfected and a P. penetrans infected navy bean root system	137
3.37	Relationships between navy bean plant height and initial soil population density of P. penetrans at different periods of growth	140
3.38	Relationship between height of navy bean plants and initial population density of P. penetrans at different growth periods	142
3.39	Effect of P. penetrans on height of navy bean plants over the growth period	143
3.40	Effect of P. penetrans on heights of navy bean plants over the growth period	145
3.41	Effect of different initial population densities of P. penetrans on root area of navy bean plants	147
3.42	Relationship between root area of navy bean plants and the log of initial density of P. penetrans at 688 DD 10 C	149
3.43	Comparison of linear regression functions and a second degree polynomial function for the relationship between root area of navy bean plants and accumulated degree days	151
3.44	Influence of different initial population densities of P. penetrans on root area of navy bean plants over the growth period	152

Figure		Page
3.45	Influence of initial population densities of P. penetrans on root area of navy bean plants over the growth period	154
3.46	Effect of different initial population densities of P. penetrans on yield of navy beans	156
3.47	Relationship between yield of navy beans and log of initial population density of P. penetrans	157
3.48	Effect of P. penetrans on growth of navy beans	159
3.49	Comparison of growth of navy bean plants in the absence of P. penetrans and in the presence of an initial density of 320 P. penetrans per 100 cm ³ soil	161
3.50	Influence of different initial population densities of P. penetrans on relative growth rate of navy bean plants over the growth period	163
3.51	Influence of different initial population densities of P. penetrans on relative growth rate of navy beans over the growth period	165
3.52	Influence of temperature on population densities of P. penetrans associated with navy beans	180
3.53	Influence of temperature on final total (root + soil) densities of P. penetrans associated with navy bean plants exposed to different initial population densities of P. penetrans	181
3.54	Effect of temperature on height (A) and shoot dry weight (B) of navy bean plants exposed to different initial densities of P. penetrans	184

Figure		Page
3.55	Effect of temperature on root weight of navy bean plants exposed to different initial densities of P. penetrans	186
3.56	Effect of temperature on yield of navy bean plants exposed to different initial densities of P. penetrans	187
3.57	Influence of temperature on population dynamics of P. penetrans over the growth period of navy beans	189
3.58	Effect of P. penetrans on shoot dry weight of navy beans over the growth period at four temperatures	190
3.59	Effect of temperature on shoot dry weight of noninfected and P. penetrans infected navy bean plants over the growth period	191
3.60	Effect of P. penetrans on root area of bean plants over the growth period at four temperatures	192
3.61	Influence of temperature on yield of noninfected and P. penetrans infected navy beans	194
3.62	Volumetric soil moisture content associated with three soil types at different matrix potentials	205
3.63	Influence of interactions of soil type and soil moisture (A), soil type and initial density of P. penetrans (B) and soil moisture and initial density of P. penetrans (C) on final root population densities of P. penetrans	206
3.64	Influence of interactions of soil type and initial density of P. penetrans (A), soil type and soil moisture (B), and soil moisture and initial density of P. penetrans (C) on final soil population densities	
	of P. penetrans	207

Figure		Page
3.65	Influence of soil moisture on total population densities (root + soil) of P. penetrans associated with navy beans in three soil types	209
3.66	Influence of interactions of soil moisture and initial density of P. penetrans (A), and soil type and soil moisture (B) on root length of navy beans	210
3.67	Influence of interactions of soil type and soil moisture (A), soil moisture and initial density of P. penetrans (B) and soil type and initial density of P. penetrans (C) on shoot dry weight of navy beans	211
3.68	Influence of interactions of soil moisture and initial density of P. penetrans (A), soil type and initial density of P. penetrans (B) and soil moisture and soil type (C) on heights of navy bean plants	213
3.69	Influence of interactions of soil moisture and initial density of P. penetrans (A), soil type and initial density of P. penetrans (B) and soil moisture and soil type (C) on root area of navy bean plants	214
3.70	Influence of interactions of soil moisture and soil type (A), soil moisture and initial density of P. penetrans (B) and soil type and initial density of P. penetrans (C) on yield of navy beans	215
3.71	Influence of soil moisture expressed as matrix potential on yield of noninfected and P. penetrans infected navy beans grown in three soil types	216

Figure		Page
3.72	Influence of interactions of soil moisture and soil type (A), soil type and initial density of P. penetrans (B), and soil moisture and initial density of P. penetrans (C) on root population densities of P. penetrans at 1056 DD 10C	221
3.73	Influence of interactions of soil type and soil moisture (A), soil moisture and initial density of P. penetrans (B) and soil type and initial density of P. penetrans (C) on final total densities (root + soil) of P. penetrans associated with navy beans	222
3.74	Influence of interactions of soil moisture and initial density of P. penetrans (A), initial density of P. penetrans and soil type (B) and soil moisture and soil type (C) on root weight of navy beans plants at 1746 DD 10C	224
3.75	Influence of interactions of soil moisture and initial density of P. penetrans (A), soil type and soil moisture (B) and soil type and initial density of P. penetrans (C) on shoot dry weight of navy bean plants at 1056 DD 10 C	. 225
3.76	Influence of interactions of soil type and initial density of P. penetrans (A) soil moisture and initial density of P. penetrans (B) and soil type and soil moisture (C) on yield of navy beans	227
3.77	Relationship between percent vesicular- arbuscular mycorrhizal root infection of navy beans and log of initial spore density of <u>G</u> . fasciculatus	236

Figure		Page
3.78	Effect of <u>G</u> . <u>fasciculatus</u> on shoot dry weight (A) and leaf area (B) of navy beans	239
3.79	Effect of <u>G</u> . <u>fasciculatus</u> on root area (A) and root weight (B) of navy bean plants	240
3.80	Effect of <u>G</u> . <u>fasciculatus</u> on height of navy bean plants	241
3.81	Effect of G. fasciculatus on yield of navy beans	242
3.82	Influence of G. fasciculatus and G. fasciculatus plus P. penetrans on development of vesicular-arbuscular mycorrhizal infection in navy bean roots (A) and on spore densities of G. fasciculatus (B) over the growth period	243
3.83	Population dynamics of P. penetrans associated with navy beans exposed to P. penetrans and P. penetrans plus G. fasciculatus respectively	246
3.84	Influence of P. penetrans, G. fasciculatus and P. penetrans plus G. fasciculatus on root area of navy bean plants over the growth period	248
3.85	Relationship between root area and degree days of noninfected plants and navy bean plants infected with P. penetrans (A), G. fasciculatus (B) and p. penetrans plus G. fasciculatus (C)	249
3.86	Influence of P. penetrans, G. fascicu- latus and P. penetrans plus G.fascicu- latus on leaf area ratio of navy bean plants over the growth period	252

Figure		Page
3.87	Influence of P. penetrans, G. fascicu- latus and P. penetrans plus G. fascicu- latus on yield of navy beans	253
3.88	Population dynamics of P. penetrans (A) and control of P. penetrans with an input of alidcarb for control of P. penetrans associated with five dry bean varieties	258
3.89	Population dynamics of P. penetrans associated with navy beans in 1978 and 1979	262
4.1	Components of the P. penetrans - navy bean ecosystem	269

1.0 INTRODUCTION

1.1 Agricultural Production Systems

Agricultural production systems represent vital linkages in the complex structual components of the world. The output of these systems is a function of natural and synthetic inputs such as climate, soil factors, fertilizers, plant varieties, pest and pest control inputs. Optimum production and economic returns from agricultural production systems are obtained through effective management of these variables.

The output and economic returns of agricultural production systems can be significantly reduced by the detrimental effects of pests, and therefore pest management is a significant component. In many crop production systems pest control involves a single management factor effected through the use of pesticides. The continual use of pesticides, however, may lead to further development of the deleterious side effects of a "pesticide syndrome" (van den Bosh et al. 1971). The beneficial effects of pesticides cannot be discounted. However emphasis must be placed on the development of integrated methods (cultural, biological and chemical) for management of

pests in crop production systems. The concept of pest management defined as the coordination and implementation of pest control strategies that will result in favorable economic, ecologic and sociologic consequences (Bird, 1979) must be adopted to achieve optimum economic returns from crop production systems. The concept of integrated pest management is recognized and practiced by a significant number of farmers in the context of "farming practices". The application of this concept in modern-day agricultural systems has however been less than desired. This is related to the immediate economic gains which have resulted from the use of pesticides. Lack of understanding of the pest-crop ecosystem has also impeded the developement and implementation of integrated methods of pest control.

The use of large monocultures in agricultural systems, the resulting decrease in species diversity, and the development of pest resistance to pesticides has resulted in increasing pest problems in crop production. These factors together with the awareness of the problem of depleting energy reserves has lead to an interdisciplinary movement to make integrated pest management a reality. New approaches to implementation of pest management are essential for greater success. Implementation techniques, and applications of the concept have been addressed by several

researchers (Stern et al. 1959; Haynes et al. 1973;
Orishchenko 1974; Waters and Ewing, 1974; Tummala, 1974;
Shoemaker, 1974; Polyakov, 1974; Haynes and Tummala,
1974; Croft et al. 1976; Harsh, 1977; Haynes and Tummala,
1978; Ferris, 1976).

1.2 Approach to the Study of Pest-crop Ecosystems

In the past the "reductionist" approach was adopted in conducting studies on pest-crop interactions, in attempts to achieve pest control. This involved a concentration of effort on one pest and one crop. Pestcrop interactions, however are influenced by other components of the ecosystem. To truly determine and understand the nature of pest-crop interactions it is necessary to adopt a "holistic" approach to the study of pest-crop This is achieved through studies on the ecosystems. separate components of the pest-crop system and also through studies on the interdependence of each component of the system. The principles of a "holistic" approach are based on the separation of the pest-crop system in to components of (1) the object of control (the pest) (2) the associated crop (3) other interacting components of the system. Because of the complex nature of ecosystems it is almost impossible to examine all possible interactions of the components. Studies are generally limited

to first, second and third order interactions (Tummala and Haynes, 1979). Moreover, the components of the system can be divided into controllable factors such as plant variety, soil type and uncontrollable factors such as temperature, moisture and humidity. The number of controlled and uncontrolled factors involved in any study can be varied.

1.3 Nematode Problems in Agricultural Production

Plant parasitic nematodes are pests which function by detrimentally affecting the physiological mechanisms of plants. Growth is usually retarded with consequent reduction in yield and economic returns. The development of effective feasible nematode control practices could aid in increasing output and economic returns from agricultural production systems. The development of these control practices will be influenced by the nature of the pest-crop system, natural resources and socio-economic conditions. Moreover, projections of future conditions should be considered in developing control methods, as practices developed to suit prevailing conditions could become obselete in the future due to changes in various aspects of the pest-crop system, and socioeconomic conditions. In the light of the diminishing natural energy

resource, the development of low energy control inputs must be considered. This requires a decrease in the use of high energy nematicide inputs, and the development of an integrated nematode control approach which embraces well-balanced use of multifactor control strategies such as nematode resistant varieties, crop rotation, optimum planting dates, biological and chemical control. The development and implementation of this integrated control concept, however, requires a sound understanding of the functioning of the nematode-crop systems. This understanding can only be achieved through appropriate research on pest-crop ecosystems.

1.4 Statement of the Problem

Root-lesion nematodes <u>Pratylenchus</u> spp. are common in many crop production systems in Michigan. <u>Pratylenchus</u> penetrans is the most predominant species. It is a pathogen of many field crops such as potatoes, corn, soybeans, oats and wheat. Dry beans are commonly grown in rotation with many of these crops, and the presence of <u>P. penetrans</u> in dry bean roots has been reported (Bird, 1977). The nature of the relationship between this nematode pest and dry beans has not previously been established. In order to develop effective control strategies for management of this nematode pest it is necessary to study the ecology

of P. penetrans associated with dry beans.

1.4.1 Approach to the study of the problem

A primary prerequisite for development of optimum control practices is an understanding of the behavior of the pest-crop ecosystem. To determine the relationships which govern the behavior of the <u>P</u>. <u>penetrans</u>-navy bean system, a holistic approach was adopted whereby the pest-crop system was separated into the following components:

- (1) the object of control the pest, P. penetrans
- (2) the associated crop Phaseolus vulgaris
- (3) other interacting components (mycorrhizae, rotation crops, bacteria and fungi).

Scientific experimental procedures were used in this investigation to study the relationships which govern the behavior and interdependence of each component of the total pest-crop system. The established relationships are expressed in the form of mathematical equations, which could be used for computer simulation of a model of the pest-crop system. This model could also be used for development of control strategies for management of P. penetrans. The development of the model was not undertaken as part of this disseration. The research was limited to studies on the pest, the associated crop, and two other interacting components (mycorrhizae and crops grown in rotation with

with navy beans.

1.4.2 Overall research objective

To establish the ecological relationships which govern the behavior of the \underline{P} . $\underline{penetrans}$ - $\underline{Phaseolus}$ $\underline{vulgaris}$ system.

1.4.3 Research outline

1.4.3.1 The pest system

- (1) Determine the field distribution of \underline{P} . penetrans.
- (2) Determine the incidence of P. penetrans in dry bean fields in Michigan.
- (3) Develop and maintain a population of P.

 penetrans for use in this research study.
- (4) Identify and develop a key to the stages in the life cycle of P. penetrans.

1.4.3.2 Pest-crop interactions

- (1) Evaluate the pathogenicity of \underline{P} . penetrans associated with dry beans.
- (2) Study population dynamics of \underline{P} . penetrans associated with navy beans.

1.4.3.2.1 <u>Influence of environmental parameters</u> of temperature and moisture

- (1) Determine the effect of temperature on the population dynamics of <u>P</u>. <u>penetrans</u> under field and greenhouse conditions.
- (2) Examine the influence of temperature on germination, growth and development of dry beans.
- (3) Study the influence of temperature onP. penetrans and dry bean interactions.
- (4) Determine the effect of soil moisture on the population dynamics of P. penetrans.
- (5) Observe the effect of soil moisture on growth and development of dry beans.
- (6) Determine the effect of <u>P</u>. <u>penetrans</u> on dry beans at different soil moisture potentials.

1.4.4 Influence of interacting components

1.4.4.1 Mycorrhizae

- (1) Determine the effect of mycorrhizal associations on growth and development of dry beans.
- (2) Examine the interactions of mycorrhizae andP. penetrans on dry beans.

1.4.4.2 Rotation crops - Kidney Beans

(1) Examine the effect of P. penetrans on different cultivars of dry beans and identify tolerant or resistant cultivars for use in the management of P. penetrans.

2.0 LITERATURE REVIEW

2.1 Pratylenchus penetrans

2.1.1 Taxonomy

The root-lesion nematode (Pratylenchus penetrans) is a member of the phylum: Ashelmintha, class: Nematoda, subclass: Secernentea, order: Tylenchida, suborder: Tylenchina, superfamily: Tylenchoidea, family: Pratylenchidae, subfamily: Pratylenchinae, and genus: Pratylenchus. It was described by Bastain in 1865, as Tylenchus obtusus. This description and illustrations, however, were inadequate for specific identification of the species. De Man described the same species in 1880, and is generally credited with identifying the first Pratylenchus penetrans. The species was first found on potatoes by Cobb in 1917. In 1922 Micoletzy placed this nematode in a new subgenus called Chitinotylenchus and the genus Tylenchus was synonymized with Anguillulina Gervais and Van Beneden by Baylis and Daubeney in 1926. In 1934 Filipjev's classification of the Tylenchida (which is the present-day classification of the group) defined Chitinotylenchus as a distinct genus excluding Pratylenchus. With the aid of the monographs of Sher and Allen (1953) and

Loof (1960), the species was placed in a new genus called Pratylenchus. The correct citation for this nematode is Pratylenchus penetrans (Cobb, 1917) Filipjev and Shuurmans-Stekhoven 1941.

2.1.2 Morphology

Pratylenchus penetrans (Cobb, 1917) Filipjev and Shuurmans -Stekhoven 1941 is vermiform in all stages, with females ranging in length from 343-811 µm and males varying from 300-514 µm (Corbett, 1973). The species is characterized by its broad head with conspicous sclerotization, and a lip region which is flat in the front with well rounded margins. It has a typical tylenchoid oesophagus with a stoma containing a stomatostyle which is 13-16 µm in length. The median bulb is moderate in size and the oesophagal glands overlap the intestines ventrally in a lobe about 1.5 times the body width. The excretory pore is opposite the oesophageal-intestinal junction, with the hemizonid occupying about two-thirds of a body annule immediately in front of it. The location of the vulva is sub-equatorial, and the reproductive system is monodelphic. This nematode has a short post-uterine sac which is undifferentiated and varies in length from 1.0 to 1.5 of the vulval body width. The species is characterized by its distinctly spherical spermatheca. The tail is generally rounded with a smooth

tip and 15-27 annules on the ventral surface. The cuticular annulations are fine and the lateral field contains four incisures, the outer bands of which may be partly areolate, while the central field may contain oblique striae near the vulva, becoming areolate behind the vulva but not extending to the top of the tail.

The male nematode is similar in morphology, with a lateral field containing four incisures extending to the bursa, occasionally with oblique lines in the central field near the mid-body. The spicules are slender with well-marked manubria and ventrally arcuate shafts 14-17 μm in length. The gubernaculum is simple and about 3.9-4.2 μm in length. The tail is twice as long as the anal body diameter (Corbett, 1973).

There are, however, significant intraspecific morphological variations in this species (Roman and Hirshman, 1969; Tarte and Mai, 1976). Tarte and Mai (1976), observed pronounced heteromorphism among specimens of Pratylenchus penetrans. Variations in tail shapes were distinct. Several shapes of stylet knobs were characterized, and 50% of the specimens observed had knobs which were anteriorly flattened and indented. The shape of the spermatheca also varied from round to oval. Variations in the lateral field were present, and in some cases a fifth lateral line was observed. They concluded that environmental

factors and particularly host plants influenced such morphometric characters as body length and width, oesophagus and stylet length, tail terminus, growth of the ovary and shape of the median bulb.

2.1.3 Distribution and host range

Pratylenchus penetrans is the most important species of this genus, causing injury to a wide range of economic plants. Members of this genus are commonly called root-lesion nematodes because of the characteristic lesions which they produce on infected roots (Godfrey, 1929). P. penetrans has a wide host range, occuring on over 350 plant species (Corbett, 1973). Host species of economic importance include field crops such as tobacco, alfalfa, cotton, soybean, dry beans; cereals e.g. wheat, corn, oats; vegetable crops such as: tomato, potato, carrots; fruit trees such as: apple, peach, strawberry, cherry and many ornamentals and turfgrasses.

P. penetrans is commonly found in the northeastern states of the U.S.A., southern Canada and Europe infecting corn and potatoes (Dickerson et al. 1964), onions (Bergeson, 1962), celery and other field crops (Townshend, 1963).

In the U.S.S.R., P. penetrans has been found in the roots of cotton, potato, beans, rye, wheat, tomato and strawberry, causing significant damage (Krall and Riispere,

1965). This nematode has been described as the most widespread and economically important plant-parasitic nematode in Michigan (Knierim, 1963; Knobloch and Bird, 1980)

2.1.4 Life cycle

Pratylenchus penetrans is an obligate parasite with overlaping primary and secondary life cycles, varying from 37-86 days, depending on temperature. cycle is shortest at a soil temperature of 30 C, although fewer eggs are deposited at this temperature than at temperatures of 20-24 C (Mamiya, 1971). Reproduction takes place by amphimixis (Hung and Jenkins, 1969; Thistlewaite, 1970), involving cross fertilization and formation of two polar nuclei in the maturing oocytes. Chromosome division figures indicate that meiosis occurs. Eggs are laid singly in the soil or in roots of infected plants (Corbett, 1973). Mamiya (1971) estimated an oviposition rate of 0.8-1.1 eggs per day for 35 days. Firststage juveniles are formed within the egg four to five days after oviposition, and under the influence of hatching stimuli, eggs containing the first-stage juvenile hatch to release second-stage juveniles in six to seven days after egg laying (Thistlewaite, 1970). Free-living in the soil the second-stage juveniles orient themselves towards

susceptible roots by a heat gradient and enter the zone of maturation in the plant roots. Adult males and females are formed following three additional molts (Figure 2.1).

Soil temperatures influence the length of each stage (Mamiya, 1971) and optimum temperatures for reproduction have been given as 21-23 C (Christie, 1959; Mamiya, 1971). Various other environmental factors such as moisture, oxygen supply and soil pH also influence reproduction, growth and survival of P. penetrans (Morgan and McLean, 1968; Willis, 1972; Corbett, 1973). Barker et al. (1975) also observed that the rate of reproduction was influenced by light intensity. Soil type influences survival (Townshend and Webber, 1971), which is generally higher in sandy soils as compared to heavier clay soils. P. penetrans overwinters in all stages in the soil or in the roots of infected plants, becoming quiescent by the mechanism of anhydrobiosis. Fourth-stages and adults, however, are the most important overwintering stages (Kable and Mai, 1968; Miller, 1968; Dunn, 1972). Optimum temperatures for overwintering are given as 1.0-4.5 C.

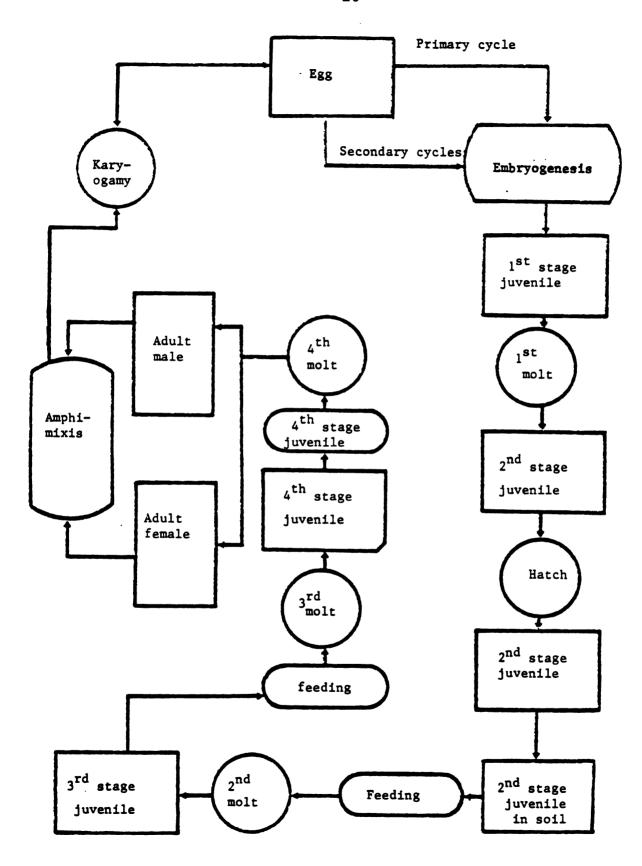


Figure 2.1 Life cycle of Pratylenchus penetrans

2.1.4.1 The primary cycle

The primary cycle is the first life cycle initiated by the pathogenic stages after a period of overwintering (Figure 2.1). The cycle involves periods of inoculation, incubation and infection. The exact mechanism of attraction to susceptible roots is not Thermotropic responses by P. penetrans have been reported by El-Sherif and Mai (1968). Klinger (1965) suggested however that the attraction of nematodes to the roots is related to chemical stimuli, especially carbon dioxide and amino-acids. Generally attraction occurs in the immediate vicinity of the roots at distances of about 1-2 cm away. Lavallee and Rohde (1962), also observed the attraction of P. penetrans to plant roots. This theory is supported by Shepard (1970) who pointed out that nematodes are equipped with neuro-sensory systems and their behavioral patterns are influenced by environmental factors. Root exudates in the soil could possibly act as chemical stimuli and behavioral patterns of nematodes could be set into action. This could involve secretory processes of the oesophagal glands of nematodes. The behaviorialactivated nematodes could then respond to gradients of

stimuli such as heat or chemical substances from root exudates.

2.1.4.1.1 Inoculation

Inoculation represents the period of the life cycle during which nematodes are stimulated to move towards and penetrate susceptible plant roots. The second, third and fourth stages, and adult males and females can be used to inoculate plants in research experiments, but generally fourth stage juveniles and adult males and females are the most pathogenic stages. These migrate towards the roots and with the aid of their stylets they rupture the cell wall and penetrate the plasmalemma and enter the root cortex, migrating through and between the parenchyma cells. Inoculation is temperature dependent (Rohde, 1963; Dickerson et al. 1964; Sonitrat and Chapman, 1970).

2.1.4.1.2 Incubation

The incubation period follows the inoculation period and ends with the appearance of plant disease symptoms. Reports indicate that incubation periods vary depending on the host plant. In some plant species the incubation period is short and root-lesion symptoms develop within a few hours producing a brown coloration in the cytoplasm of the infected cells. In other species this

may take several hours to occur (Mountain and Patrick, 1959; Pitcher et al. 1960).

2.1.4.1.3 Infection

Infection represents the stage in the life cycle following the appearance of symptoms and ending with the final response of the host plant to the pathogenic nematode. During the infectious period nematodes migrate into the cortex, where they feed and reproduce or move to other cortical areas of the root system. They usually align themselves with the longitudinal axis of the root, just outside the epidermis (Rohde, 1963).

As the nematodes feed on the cellular material the cells become disorganized and much of the cytoplasm disappears or retreats together with the nucleus, against the cell wall. Necrosis of cells follow the path of the nematodes. That part of the epidermal layer adjacent to the nematodes becomes discolored and appears deep brown in color extending into large groups of cells. The nematodes continue to feed on the cortical cells and later the cell walls disintegrate and cavities appear in the cortex. The walls of these cavities are sometimes lined with brown tissue. P. penetrans is an obligate parasite and does not exist in saprophase for any length of time. As soon as the nematodes become associated with dead tissue they migrate

away and penetrate new living tissue (Pitcher et al. 1960; Rohde, 1963; Dickerson et al. 1964; Odihirim and Jenkins, 1965; Troll and Rohde, 1966).

2.1.4.2 Secondary cycles

Secondary cycles are generally initiated by progeny of the first generation (Figure 2.1). The length of the cycles and the number of generations are largely dependent on the host plant and temperature. Secondary cycles can be initiated by migration of pathogenic nematodes from infected roots to healthy roots, or from inoculation through movement of pathogenic stages in the soil, towards susceptible roots. The stages of the secondary cycle are similar to those of the primary cycle, and result in formation of necrotic root tissue, which may slough off. Bacteria and fungi can enter the necrotic wounds, and cause a complex disease syndrome to develop (Corbett, 1973).

2.1.5 Symptomatology

The intensity of symptoms of the root-lesion disease caused by <u>P</u>. <u>penetrans</u> varies depending on the host plant and environmental conditions. Within susceptible plant species marked differences occur in the relative amount of visual symptoms observed. In general, however, the primary symptoms appear as necrotic lesions

on the roots. Root-lesions first appear as tiny watersoaked spots, but these soon turn brown or almost black.

The lesions appear mainly on the young feeder roots, but
they may be found anywhere along the root system. Lesions
generally coalesce with each other by expanding longitudinally along the root axis, but they may also expand
laterally girdling and killing the entire root. As the
lesions enlarge, the infected cells in the cortex collapse
and the discolored area appears constricted. The secondary
symptoms include yellowing of leaves, which reduces the
photosynthetic capabilities of the plant, resulting in
stunting and general poor growth of the plants.

These symptoms result from the inefficient functioning of the diseased root system which is unable to allow adequate uptake of water and nutrients from the soil (Mai, 1960; Pitcher et al. 1960; Mountain, 1961; Dickerson et al. 1964).

2.1.6 Ecology

Environmental conditions greatly influence population dynamics of \underline{P} . $\underline{penetrans}$ and the development of plant diseases caused by root-lesion nematodes.

2.1.6.1 Temperature

Disease development is to a large extent influenced by temperature, as the activity and survival of the nematodes are governed by this factor. Acosta and Malek (1979) reported on the influence of temperature on population development of different species of Pratylenchus on soybean. P. penetrans and P. scribneri showed greatest reproduction potential at a temperature of 25 C. It has been reported that P. penetrans increases in the soil in late summer and early autumn, and decreases in late spring and early summer (Di Edwardo, 1961; Miller et al. 1963; Ferris, 1967; Olthof, 1971; Olthof and Potter, 1973). The fluctuations are a result of migration of the nematodes in the roots early in spring and summer and out of the roots in late summer. Although the population dynamics is greatly influenced by temperature the host crop with which the nematodes are associated has a significant influence on population development.

The inital population density is also of great importance and Oostenbrink (1966) observed that the initial population density at the time of planting was a consistant parameter for estimating decreases in yield of the host crop. He found a significant linear relationship between initial population densities and tuber weight of potatoes

infected with <u>P. penetrans</u>. Olthof <u>et al</u>. (1973) also observed a positive correlation between yield loss and initial population densities of <u>P. penetrans</u> associated with potato roots. Seinhorst (1966) observed that a minimum density of 1.0 <u>P. penetrans</u> per gram of soil was necessary to cause damage to some crops. Oostenbrink (1966) reported that densities from 0.4 to 1.0 per gram of soil in sandy soils and densities of 0.7 to 2.0 per gram in organic or loam soil were required to cause significant reduction in yields of crops infected with <u>P. penetrans</u>. El-Sherif and Mai (1966) observed a linear relationship between numbers of <u>P. penetrans</u> that invaded roots and numbers transferred to plants when the initial inoculum density was above 200.

2.1.6.2 Soil nutrients

Population densities are also affected by soil nutrients, either directly or indirectly through the influence of soil microorganisms. Walker (1969) demonstrated that additions of nitrogen to soil decreased populations of P. penetrans. Kirkpatrick et al. (1964) observed similar responses, and noted that populations were significantly reduced in plants which received high rates of potassium. Interactions of nematicides and fertilizers can also influence population densities

(Vitosh et al. 1978).

2.1.6.3 Soil moisture

Soil moisture is essential for movement and survival of nematodes. Excess soil moisture results in detrimental effects on populations by limiting their movement and reducing their oxygen supply. In general, population densities are higher in sandy soils which are well aerated and permit retention of adequate amounts of soil moisture. Thompson and Willis (1970) reported that significantly lower root and foliage growth of Empire birdsfoot trefoil (Lotus corniculatus L.) was observed at a soil moisture level of 50% field capacity when compared to growth at a moisture level of 70-100% field capacity. Population development was higher at the higher soil moisture level. Kable and Mai (1968) reported that the rate of population increase in P. penetrans was greatest at moderate soil water potentials and least at high water potentials. They concluded that the widespread occurrence of high population densities of P. penetrans in sandy soils was related to an interaction of soil temperature soil moisture and soil type.

2.1.6.4 Interactions with fungi

The root-lesion nematode disease can predispose plants to infection by fungi, e.g. Aphanomyces euteiches on peas, Fusarium oxysporum on lucerne and peas, Verticillium alboatrum and Verticillium dahliae on eggplant, peppermint, peppers, potatoes, strawberries and tomato (Miller and Edginton, 1962; Bergeson, 1963; Rich and Miller, 1964; Mountain and McKeen, 1965; Miller et al. 1967; Olthof and Reyes, 1969). Studies on the role of P. penetrans and Meloidogyne spp. in dry rot of kidney beans caused by Fusarium solani f. spp. phaseoli indicated that low inoculum densities of the fungus caused greater infection of dry root rot than high inoculum densities. However nematode infection had no significant effect on the severity of the disease (Hutton et al. 1972). Oyekan and Mitchel (1972) reported on the development of a synergistic interaction between Pratylenchus penetrans and Fusarium oxysporum in a wiltresistant pea cultivar (Wisconsin perfection).

2.1.6.5 Nematode-Nematode interactions

Reports on the interaction of nematodes and their effects on yields are limited. Freckman and Chapman (1972) reported that Heterodera trifolii (Goffart) and Pratylenchus penetrans (Cobb) did not affect the penetration

of either nematode on red clover roots. Studies on the dynamics of field populations of Hoplolaimus columbus and Meloidogyne incognitia indicated that in some fields H. columbus replaced M. incognita while in other fileds the distribution of the species remained constant (Bird et al. 1974). Gay and Bird (1973) also reported on the influence of concomitant Pratylenchus brachyurus and Meloidogyne spp. on root penetration and population dynamics. McIntyre and Miller (1976) reported on the interactions of Tylenchorhynchus claytoni and P. penetrans in tobacco roots. They observed that population densities of P. penetrans were reduced in roots which were previously exposed to T. claytoni.

2.2 Navy Beans (Phaseolus vulgaris L.)

2.2.1 Importance

Navy beans are an important part of the diet of many people in numerous parts of the world. They are relatively inexpensive and highly nutritious, containing high amounts of protein, and smaller amounts of phosphorus, iron and vitamin B (Andersen, 1955). Dry beans are produced in many countries, and the major world producing countries include Brazil, U.S.A., Mexico, Yugoslavia and Italy (Martin and Leonard, 1967). In the U.S.A., the leading bean producing states include Michigan, California, Idaho, Colorado and Nebraska. Over 90% of the beans produced in the humid section of the U.S.A. are grown in Michigan and New York. Bean production ranks third in value in Michigan field crops, navy beans forming the major class of beans (Erdman et al. 1965).

Total estimated 1979 U.S. dry bean acreage was 1396.6 thousand acres and total Michigan dry bean acreage was 500 thousand. Bean production has remained constant from 1978 at an estimated level of 86,000 tons. Consumption however, has increased and is estimated at 80,000 tons.

2.2.2 Marketing

The canning industry forms the main market for navy beans. About 85-90% of the beans destined for domestic consumption are canned and the remainder are packaged and sold as dry beans. Other navy bean products include vegetable beans (beans in tomato sauce without meat), beans and ground beef, beans and weiners, beans and vienna sausages, beans with bacon soup, beans with molasses and baked beans (Anonymous, 1971).

2.2.3 Supply and price

The navy bean industry is characterized by considerable fluctuations from season to season. While the grower price fluctuates during a marketing season, retail prices of canned beans have remained relatively stable over the last few years. As bean production is concentrated in the Saginaw valley and the Thumb district, unfavorable weather in these areas can cause fluctuations in the total supply of navy beans.

The domestic demand for navy beans is quite inelastic. Also, there is a low influence of small California white beans (which is the only other bean which
can be substituted for navy beans in the canning industry),
on navy bean domestic demand. Therefore decreases in
supply of navy beans would result in significant increases

in price (Anonymous, 1971).

2.2.4 Production factors affecting yield

The main reasons for the decline in navy bean yields have been attributed to (1) unfavorable environmental conditions of temperature and moisture, (2) choice of bean variety, (3) cultural practices, (4) soil fertility factors, (5) diseases and use of uncertified seed.

2.2.4.1 Environmental factors

The navy bean plant is a warm season annual adapted to a variety of soils. Optimum temperatures for growth range from 19 to 25 C (Martin and Leonard, 1967). High temperatures interfere with seed setting while low temperatures are unfavorable for growth. Austin and MacClean (1972) observed that temperature and moisture can affect bean germination, photosynthesis and respiration. They observed that rates of photosynthesis were lower in plants grown in low temperature regimes than for plants grown in high temperature regimes. Bean seeds germinate poorly in damp soils, and slow growing seedlings are subject to maggot injury, damping off and root rot diseases. In order to meet the moisture requirements for germination, beans are generally planted early in June in Michigan (Andersen et al. 1975). Adverse soil physical conditions result in detrimental

effects in dry bean production (Smucker and Mokma, 1978).

2.2.4.2 Navy bean varieties

A considerable amount of research has been carried out on bean breeding and varietal development, in order to produce high yielding disease resistant varieties (Anonymous, 1971; Adams, 1978). Improved varieties include Robust, which was the first virus resistant variety, Michilite, which is not only virus free but also shows improved quality, Sanilac, which was the first upright disease resistant bush-type bean plant, Seaway, Seafarer and Gratiot which are early maturing varieties. These improved varieties are grown on approximately 80% of the bean acreage in Michigan, Ontario and to a lesser extent in New York, Chile, Australia and Hungary (Anonymous, 1971).

2.2.4.3 Cultural practices

Navy bean plants thrive best in medium textured soils which are high in organic matter, and are provided with adequate drainage. Cultivation usually involves general practices for row crops, with emphasis on seedbed preparation and subsequent tillage for weed control. A 1977 survey of cultivation practices in bean producing areas in Michigan indicated that 35% of the farms were plowed in the spring and 61% in the fall. Two-thirds of

these farms showed indications of poor soil structure. Andersen et al. (1975) reported that excessive tillage was practiced on many of the farms resulting in compaction problems and inefficient root growth. It is generally recommended that the soil should be tilled only when dry and only to a depth that includes the compacted zone.

It is recommended that beans should be grown in rotation with suitable crops which will return substantial amounts of organic matter to the soil. In Michigan crops which are used in rotation with beans include, corn, soybean, sugarbeets, alfalfa and small grain. About 30% of the farmers, however, grow continuous beans for about 3 years and this increases conditions of poor soil structure and also encourages development of some bean diseases. A number of herbicides are used effectively for weed control and Eptam is the most effective and widely used herbicide in bean production. Generally bean seeds are planted in rows 20 to 40 in. apart at shallow depths of 2.5-5.0 cm under adequate soil moisture conditions. Under favorable irrigated humid conditions a desirable stand of beans develops use of planting rates of 40-100 lbs/acre (Martin and Leonard, 1967; Andersen et al. 1975). Cultivation practices, however, depend on the location, soil type and climatic conditions. The importance of choosing

a suitable planting density depending on location and method of production has been noted (Leakey, 1972; Williams et al. 1973; Pinchinat, 1974; Edge et al. 1974; Mafra et al. 1974; Scarisbrick et al. a976).

2.2.4.4 Soil fertility factors

A considerable amount of research has been carried out on the fertility requirements for bean production (Lange et al. 1958; Barker et al. 1966; Bans, 1967; Shea et al. 1968; Melton et al. 1970; Mugwira and Knezek, 1971; Edge et al. 1975). Beans respond more favorable to a long-term soil improvement program involving growing of green manure, fertilized leguminous forages and similar fertility enhancing practices, than they do to direct application of fertilizers (Rather, 1942). Moreover, germinating seedlings can be injured by the direct application of commercial fertilizers. This can be avoided by correct placement of the fertilizers. Andersen et al. (1975) reported that beneficial results can be achieved from band application of fertilizer at planting time. Studies on fertility requirements for bean production indicate that nitrogen and phosphorus are the two most important soil nutrients which are needed for adequate growth. The leguminous nature of navy bean plants enable them to obtain some of their nitrogen requirement from

symbiotic associations with nitrogen-fixing bacteria - Rhizobium phaseoli. Edge et al. (1975) described bean plants as poor nitrogen fixers.

Application of nitrogen fertilizers is necessary in fields which show nitrogen deficiency. In most soils nitrogen fertilizers appear to be more effective when added in the nitrate rather than in the ammonium form (Barker et al. 1966). Zinc, phosphorus and lime interactions with bean yields have been studied (Melton et al. 1970; Mugwira and Knezek, 1971). Reports indicate that yields on acid soils are generally decreased when zinc is applied. Ruschel et al. (1966) also observed effects of interactions between nitrogen fixation and other nutrients on bean yields.

2.2.4.5 Bean diseases

Navy beans are susceptible to a number of diseases caused by bacteria, fungi, viruses, insects and nematodes. Three types of bacterial blights have been observed in bean fields. These include, common bacteria blight caused by <u>Xanthamonas phaseoli</u>, fuscous blight caused by <u>Xanthamonas phaseoli</u> var <u>fuscans</u>, and halo blight caused by <u>Pseudomonas phaseolicola</u>.

Andersen <u>et al</u>. (1975) reported the presence of common and fuscous blights in 75 bean fields in Michigan. Rains,

heavy dew and humid weather favor the development of the disease. The common and fuscous blights are enhanced by warm weather while halo blight is promoted by cool weather.

A number of fungal diseases are known to affect bean production. These include bean anthracnose caused by Colletotrichum lindemuthianum, sclerotina wilt or white mold caused by Sclerotinia sclerotium, fungus root rots caused by Fusarium solani, F. phaseoli, damping off and seed decay caused by Pythium aphanidermatum, Pythium debaryanum and Rhizoctonia solani.

also cause bean diseases. Extensive breeding programs have resulted in the production of some disease resistant varieties. The Sanilac variety is resistant to bean anthracnose, and to Phaseoli virus 1 strain which causes common bean mossiac disease, but it is moderately susceptible to X. phaseoli and X. phaseoli var fuscans, which cause common and fuscous bacterial blights. The Monroe bean variety is resistant to both virus strains, while Michilite is partially resistant to virus 1 strain.

Most of the other bean varieties grown in Michigan are susceptible to these diseases. Management strategies involving suitable crop rotation, use of certified seed, use of bactericides and fungicides can be effective in

controlling these diseases.

2.2.4.6 Nematode diseases

Reports on nematode diseases of dry beans indicate that the crop is susceptible to a number of nematode species within many genera such as, Meloidogyne, Meterodera and Pratylenchus (Blazey et al. 1964; Rhoades and Beeman, 1967; Sen and Jensen, 1969; Taylor et al. 1970; Hartmann, 1971; Ngundo and Taylor, 1974; Freire, 1976; Thomason et al. 1976).

Blazey et al. (1964) investigated the resistance of 55 common bean varieties to Meloidogyne incognita. Seventeen varieties were found to be partially resistant but not immune to this species, for occassionally small galls and females were found even in resistant varieties. Freire (1976), in a study of nematodes associated with beans, found M. incognita, M. javanica, Helicotylenchus nanus, Criconemoides spp., Pratylenchus brachyurus, Hemicycliophora lutosa and Xiphenema spp. in the rhizosphere of the bean roots. Considerable reduction in yields were observed in bean plants infested with M. incognita and M. javanica.

2.3 Symbionts in Association with Navy Beans

2.3.1 Mycorrhizae

Many plants are known to form symbiotic mycorrhizal associations which enhance their growth. The fungus provides the plant with nutrients while the plant in return supplies the fungus with carbon in the form of carbohydrates which are assimulated through the photosynthetic activity of the plant.

Mycorrhizae can be classified as ectomycorrhizae, endomycorrhizae and ectendomycorrhizae. The ectomycorrhizae produce a hypal mantle around the plant roots and an intercellular cortical net of hyphae known as the Hartig Net. Endomycorrhizae are characterized by hyphae which form a loose fungal network in the soil, and also penetrate the root cortex inter and intracellularly. Ectendomycorrhizae exhibit features of both ecto- and endo-mycorrhizae. They form a hyphal mantle and also penetrate the root cortex intracellularly.

Endomycorrhizae are fungi of the Endogonaceae (Phycomycete) and can be divided into septate and non-septate fungi (Gerdemann, 1969). Vesicular-arbuscular mycorrhizae are found in four genera of the Endogonaceae. These are: Gigaspora, Glomus, Acaulospora and Sclerocystis. Vesicular-arbuscular mycorrhizae have been described as

being dimorphic and composed of thick-walled non-septate hyphae, with thin-walled side branches which may lay down septa (Nicolson, 1959; Mosse, 1977). Hyphae of variable sizes are found within the root cortex, but the stele is not infected. Arbuscles which are specialized haustorical structures of the fungus are formed intracellularly as a result of extensive dichotomous branching of the main infection hyphae (Cox and Sanders, 1974). These arbuscles aid in the symbiotic association with plants. Thin-walled spherical structures known as vesicles may be produced intercellularly or intracellularly in the cortical tissue. Vesicular-arbuscular mycorrhizae produce globose, subglobose or eliptical to avoid spores which contain globules of oil. Gigaspora produces azygospores which are borne singly in the soil. These are subglobose and are borne terminally on a bulbous suspension-like cell.

The most widespread V-A endomycorrhizal fungi are found in the genus Glomus (Gerdemann and Trappe, 1974). These fungi produce chlamydospores which are borne on undifferentiated nongametangial hyphae. Spores are usually terminal, however intercalary spores and spores with more than one basal attachment sometimes occur. Two important species of the genus commonly found in Michigan are Glomus fasciculatus and Glomus mossea

(Kotcon, 1978; Bird and Safir, 1979).

Beneficial effects obtained from mycorrhizal associations have been attributed to increase in the absorption surface provided by the extensive branching hyphae of the fungi in contact with soil nutrient reserves. Increases in growth have been related mainly to increase in uptake of phosphorus, but increases in uptake of water, nitrogen, potassium, boron aluminium, manganese and zinc have also been observed (Ross and Harper, 1970; Ross, 1971; Sanders and Tinker, 1971; Ross, 1972; Hattingh et al. 1973; Mosse et al. 1973; Bird, 1974; Tinker, 1975; LaRue et al. 1975; Bowen et al. 1975; Safir, 1977).

Environmental factors such as temperature, light and moisture can affect the development of mycorrhizal associations (Mosse, 1973; Hayman, 1974; Furlan and Fortin, 1977). The degree of mycorrhizal infection may vary greatly depending on the degree of shading which plants receive (Hayman, 1974; Redhead, 1975). The relationship between mycorrhizal infection and soil moisture is not clearly defined, but this is influenced largely by the soil type, the mycorrhizal fungus and the host plant. Generally, optimum soil water required for plant growth enhances mycorrhizal infection. Tinker (1975) reported that soil fertility

associations. Generally soils of low fertility favor mycorrhizal infection while soils of high fertility levels may even retard the development of mycorrhizal associations. Mosse (1977) however observed that mycorrhizal associations can be established in soils which contain high levels of phosphorus when relatively high levels of mycorrhizal inoculum are used. The beneficial effects of mycorrhizal associations are therefore of greater significance in soils of low to moderate fertility.

Reports indicate that mycorrhizal associations can influence the development of plant diseases.

Vesicular-arbuscular mycorrhizal interactions with pathogenic organisms have been observed (Schenck and Kinlock, 1974). Reduction of infection by Thielaviopsis basicola in mycorrhizal plants was observed (Baltruschat et al. 1973; Schonbeck and Dehne, 1977). Ross (1972) observed interactions of Phytophthora megaspermae var sigae and vesicular-arbuscular mycorrhizae associated with soybeans. Daft and Okusanya (1973) reported that tomato aucuba mossiac virus increased in plants as the mycorrhizal infection increased. Mycorrhizal onion roots however are less susceptible to pink root diseases caused by Pyrenochaeta terrestris (Safir, 1968;

Becker, 1976).

Mycorrhizal-nematode interactions are complex. O'Bannon et al. (1979) observed that T. semipenetrans infected roots grown in infested G. mossea soil did not show evidence of vesicle development but arbuscular development was observed. Interactions of Heterodera solanacearum and vesicular-arbuscular mycorrhizae reduced mycorrhizae and nematode densities and also yield of Tobacco (Fox and Spasoff, 1972). Studies on interactions of Meloidogyne spp. and Heterodera spp. and vesicular-arbuscular mychorrhizal fungi indicated that high population densities of Meloidogyne spp. were associated with low densities of mycorrhizal spores (Schenck and Kinlock, 1974; Schenck et al. 1975). The results of Schenck et al. (1975) support the findings of Baltruschat (1973) indicating an antagonistic relationship between vesicular-arbuscular mycorrhizae and low nematode densities. Schenck et al. (1975) also pointed out that the species of mycorrhizae influenced the nature of the interaction between vesiculararbuscular mycorrhizae and nematodes. Interactions between mychorrhizal fungi and nematodes are not always detected. Hussey and Roncadori (1978) observed no interaction between Pratylenchus brachyurus and

vesicular-arbuscular mycorrhizae, but plant growth was increased by vesicular-arbuscular mycorrhizae.

3.0 EXPERIMENTAL

3.1 General Procedures

3.1.1 Soil samples

3.1.1.1 Field samples

Soil samples were taken by inserting a conical shaped nematode soil sampler to depth of 5-15 cm in the soil. Six soil cores were taken to fill the soil sampler. The soil was then transferred to plastic bags and stored at 4 C until they were processed for nematode densities.

3.1.1.2 Greenhouse samples

The total quantity of soil in a pot was taken as the soil sample.

3.1.2 Root samples

3.1.2.1 Field samples

Bean plants were uprooted with the aid of a narrow bladded shovel. Roots from six plants were taken to make a composite sample.

3.1.2.2 Greenhouse samples

The entire root system was carefully removed and used to represent a sample from one replicate of

any treatment.

3.1.3 Nematode extraction

3.1.3.1 Soil samples

A modified centrifugation-flotation technique (Jenkins, 1964) was used to extract nematodes from soil samples. Both living and dead nematodes were recovered with this method. In this method 100 cm³ of soil from the composite sample were added to three gallons of water in a plastic pail. The soil was mixed for three minutes and the sediment was allowed to settle. soil suspension was poured through a 100 mesh sieve on to a 400 mesh sieve. The soil with nematodes was then washed from the sieve into a 20 ml centrifuge test tube. The soil suspension was centrifuged at 42g for 4.5 min. The tube was removed from the centrifuge and the supernatant liquid was decanted. A sucrose solution with a specific gravity of 1.14 was added to the soil and contents were thoroughly mixed and centrifuged again for 2.5 min. The supernatant liquid containing the nematodes was poured on to a 400 mesh sieve and the nematodes were washed from the sieve into 5 ml test tubes.

3.1.3.2 Root samples

Nematodes were extracted from the roots by a shaker technique. In this method two g of root tissue

were placed in a 125 or 250 ml flask, and 50 ml of an incubation solution (a mixture of 10 ppm Ethoxyethyl mercuric chloride (EMC) and 50 ppm Dihydrostreptomycin sulfate (DSS)), was added to the flask and placed on a gyratory shaker at 100 rpm for three days. Nematodes were recovered by decanting the solution from the flask on to a 400 mesh sieve. Nematodes were washed from the sieve into 5 ml test tubes.

3.1.4 <u>Identification and calculation of</u> nematode population densities

Five ml suspensions from nematode extraction procedures were poured into calibrated petri dishes divided into 10 longitudinal sections. Nematodes were identified and the number of nematodes in 2 sections (1/5 area) of the petri dish were enumerated with the aid of a compound microscope and a stereoscope. Enumerated values, multiplied by 5 were averaged to express density per 100 cm³ soil and density per 1 g root tissue, respectively. At low densities the number of nematodes in each section of the petri dish were counted.

3.1.5 Extraction of vesicular-arbuscular mycorrhizal spores from soil

Vesicular-arbuscular mycorrhizae spores were extracted from soil using a modified centrifugal-flotation

technique. The method was similar to that outlined in Sec. 3.1.3.1 with a slight modification in the specific gravity of the sucrose solution. In this method for extracting vesicular-arbuscular spores a sucrose solution with a specific gravity of 1.37 was used.

3.1.6 <u>Identification of vesicular-arbuscular</u> mycorrhizae in root samples

Internal hyphae and vesicles were observed by a staining technique. In this method 2.0 g of root tissue were cut thinly and immersed in 10% Potassium hydroxide (KOH) for one hour. The roots were rinsed with distilled water and acidified in 10% Hydrochloric acid (HCL) for one hour. The roots were then removed from the acid and stained with acid fuschin-lactophenol solution for 30 min. Roots were cleared in lactophenol. Arbuscles, vesicles and hyphae were identified with the use of a Spencer compound microscope and percentage root infection was calculated.

3.1.7 Converting time to accumulated degree days

Sampling dates were expressed as the number of accumulated heat units, termed degree days. These heat units or degree days represent the amount of energy

available for growth and development of organisms and plants. The daily minimum and maximum temperatures were used to calculate degree days and the sum of degree days for each sampling period was calculated as the accumumlated degree day value. The base temperature used for calculation of degree days was 10C. Daily temperatures were recorded in degree fahrenheit and a conversion factor of 0.556 was used to convert degree days from degrees fahrenheit to degrees centigrade. The equation for accumulated degree days is:

$$(DD_{10\hat{C}}) = (\underline{Min T + Max T}) - 50) \times 0.556$$

where $DD_{10\ C}$ is accumulated degree days at base 10 C Min T = Minimum temperature in degrees fahrenheit Max T = Maximum temperature in degrees fahrenheit (Vander Brink et al. 1977).

3.1.8 Plant growth analysis

Quantitative growth analysis involving use of growth indeces was conducted. The effect of <u>P</u>. <u>penetrans</u> on relative growth rate of plants and leaf area ratios were examined. The relative growth rate provides a valuable overall index of plant growth. The mean value of relative growth rate (R) was calculated using the equation:

$$R = \frac{\ln dW_{2} - \ln dW_{1}}{T_{2} - T_{1}}$$

where R = relative growth rate per week

 W_2 = dry weight of navy bean shoot system at time T_2

 W_1 = dry weight of navy bean shoot system at time T_1

T = time in weeks

Leaf area ratio represents the ratio of leaf area to total plant shoot dry weight (Evans, 1972). This growth index was calculated using the equation:

$$LAR = \frac{L}{W}$$

where LAR = Leaf area ratio

L = leaf area

W = shoot dry weight

3.1.9 Soil moisture characteristic curves

Soil moisture characteristic curves for three soil types were developed using the method described by Richards (1965), and modifications of this method. The method involved estimation of percent moisture associated with specific matrix potentials, with the use of pressure plates. The percent gravimetric moisture was calculated from the equation:

% Gravimetric moisture = Weight of soil water weight of oven dried soil

and the percent volumetric moisture was calculated by multiplying the gravimetric moisture by the bulk density of the soil:

- % Volumetric
 moisture = Wt. of soil H₂O
 Wt. O.D. soil x Wt. of O.D. soil
 Volume of soil
- % Volumetric
 moisture = % gravimetric moisture x bulk density

where bulk density = Wt.O.D. soil
Volume of soil

O.D. soil = oven dried soil

3.2 Pest System

3.2.1 Field distribution of Pratylenchus penetrans

3.2.1.1 Method

A field site measuring 238.60 x 15.24 sq. m in size covered with a rye cover crop was used to study the field distribution of <u>Pratylenchus penetrans</u> in 1977. The field was divided into 184 plots. Each plot measured 3.81 x 3.81 sq. m in size (Figure 3.1). A soil sample consisting of six soil cores was collected from each plot.

Four of these plots were randomly chosen and each plot was divided into 16 subplots, each subplot measuring 0.96 x 0.96 sq. m in size (Figure 3.2). A soil sample consisting of six soil cores was taken from each subplot.

One of the 16 subplots was selected from each of the four main plots. Six soil samples each consisting of one soil core were taken from the selected subplots within the four main plots (Figure 3.2, A, B, C, D).

Following sampling the field was divided into two equal sections. The upper half of the field was ploughed while the lower half was left with the rye cover crop. The field was allowed to remain as described over the winter. In the spring (April, 1978), the field

1	2_	3	4
8	7	6	5.
9	10	11	12
16	15	14	13
9 16 17	18	19	20
24	23	22	21
25	26	2.7	2.8 2.9
32	31	30	29
33	34	2 E	36
40	39	38	36
41	42	43	44
48	47	46	4.5
49	50	51	52
56	5.5	54	53
57	58	50	6.0
64	63	62	61
65	66	67	68
72	71	70	69
73	74	75	76
80	79	78	77
81	82	83	84
88	87	86	85
89	90	91	92
96	95	94	93
97	98	99	100
104	103	102	101
105	106	107	108
112	111	1110	109
113	114	115	116
120	1119	118	117
121	122	123	124
128		126	125
129	130	131	132
136	135	134	133
137	138	139	140
144	143	142	141
145 152	146	147	148
152	151		149
153		155	156
160	159		
162	162	163	164
168	167	166	165
169	170	171	172
176	175	174	173
177	178	179	180
184	183	182	181

Figure 3.1. Plot plan for the study of the field distribution of Pratylenchus penetrans.

	3 ₁ - PL	DT 2 4		_		B ₂ - P	LOT 52	
1	2	3	4		1	2	3	4 ^B
8	7	A 6	5		8	7	6	5
9	10	11	12		9	10	11	12
16	15	14	13		16	15	14	13
	83 - PL	OT 122		•		B ₆ _ P(.OT 173	
1	2	3	4		1	2	3	4
8	C 7	6	5		8	7	6	5
9	10	11	12		9	10 ^D	11	12

Figure 3.2. Sampling scheme for subplots.

was divided into 184 plots. The above sampling scheme was repeated (Figure 3.3) and soil and root samples were taken from the lower half of the field covered with rye. In June, 1978 the upper half of the field was divided into 48 plots for a randomized block design experiment. Each plot was 6.09 x 3.46 sq. m in area (Figure 3.4). The lower half of the field was divided into 24 plots measuring 12.18 x 6.92 sq. m in area respectively (Figure 3.4). A soil sample consisting of six soil cores was collected from each plot.

Soil and root samples were analysed for densities of P. penetrans (3.1.3-3.1.4). The data were analysed for variance/mean ratios. Other indeces of dispersion including Green's index, the dispersion constant K and the reciprocal of K (1/K) were also calculated. The chisquared test was used to determine whether the distribution was random, aggregate or regular. Goodness of fit test for a negative binomial distribution was applied to test the distribution from the initial sampling scheme (Figure 3.1-3.2).

3.2.2 <u>Incidence of Pratylenchus penetrans in</u> dry bean fields in Michigan

3.2.2.1 Method

In order to determine the significance and nature of nematode problems in Michigan dry bean

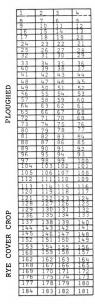


Figure 3.3. Plot plan for the study of the field distribution of Pratylenchus penetrans in the ploughed and unploughed sections of the field.

48	
47	2
46	3
45	4
44	5
43	6
42	7
41	8
40	9
39	10
38	11
37	12
36	13
3 5	14
34	15
33	16
32	17
30	18
29	19
28	20
27	21
26	22
25	23
25	24

1 2 3 4
3
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Figure 3.4. Plot plan for the randomized block designs.

production, a survey on the incidence of nematodes in 80 dry bean fields was conducted. The 80 sampling sites were selected from a total of seven counties (Figure 3.5). Fifteen sampling sites were selected in Bay and Montcalm counties respectively. Ten sampling sites were selected in the other five counties of Huron, Saginaw, Tuscola, Sanilac and Gratiot respectively. Each sampling site consisted of one hectare (10,000 sq. m). Two soil and root samples for nematode analysis were collected from each site (3.1.1.1 and 3.1.2.1). Nematodes were extracted, identified and enumerated (3.1.3-3.1.4). Information on associated soil type and bean variety was collected.

The percent occurence of nematode species in each county was determined.

3.2.3 Development of an experimental population of Pratylenchus penetrans

3.2.3.1 <u>Method</u>

A culture of <u>P</u>. <u>penetrans</u> was developed on navy beans to provide a source of inoculum densities for greenhouse experiments. One hundred navy bean plants cv Sanilac were propagated in sterilized sandy clay loam soil in the greenhouse. One week after germination, two holes were made in the soil around the bean roots,

State of Michigan

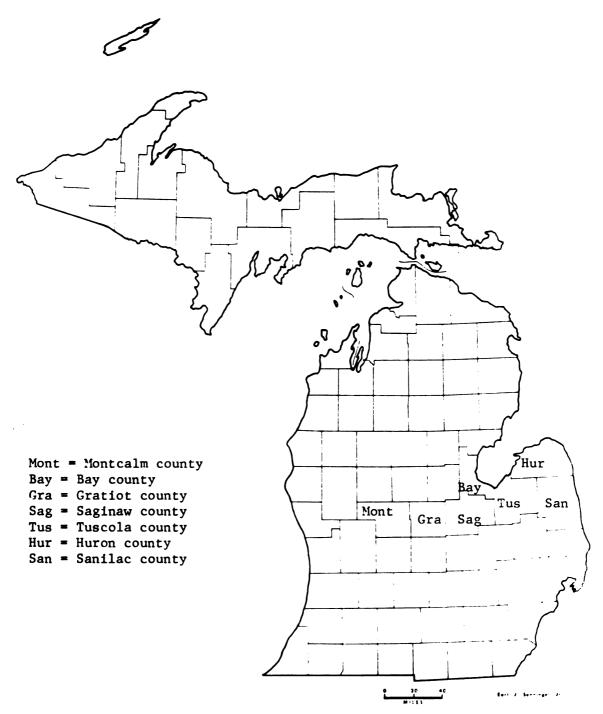


Figure 3.5. Counties included in a survey of \underline{P} . penetrans in dry bean fields in Michigan.

and one male and one female <u>P</u>. <u>penetrans</u> suspended in 50 ml of water in beakers were added to the holes in the soil. The holes were sealed and plants were watered daily. Population densities were allowed to develop for a period of ten months. Sanilac navy beans were planted three times during this period.

Soil and root samples were taken (3.1.1.2 and 3.1.2.2) and nematodes were extracted, identified and enumerated (3.1.3-3.1.4).

The extracted nematodes from this population were used to inoculate roots of navy bean plants which were propagated in sandy clay loam soil in large culture boxes in the greenhouse. Navy beans were replanted regularly to maintain the population of P. penetrans. Inoculum densities of P. penetrans for greenhouse experiments were obtained from populations developed in these culture boxes.

3.2.4 Identification of the life cycle stages of Pratylenchus penetrans

3.2.4.1 Method

In order to study the population dynamics of

P. penetrans it was necessary to identify and develop

a key to the different stages in the life cycle of

P. penetrans. Navy bean roots were taken from the

culture boxes and <u>P. penetrans</u> were extracted from these roots (3.1.3.2). Temporary slides of different stages (identified visually) were prepared. Morphometric characters of (a) body length (b) body width (c) oesophagus length (d) ovary length and (e) anal length were measured with the use of a calibrated ocular micrometer in a compound microscope. Allometric characters of (1) "a" value (body length/body width) (2) "b" value (body length/oesophagus length) and (3) "c" value (body length/anal length) were calculated.

The biomass of nematodes was calculated as:

((Body width) 2 x (Body length)) (Andrassy, 1956; Norton,

16 x 100,000

1977). The data were statistically analysed to determine mean values for each stage, standard deviations and coefficients of variation. Analyses of variance and Student Newman-Keuls test were applied to determine significant differences in morphometric and allometric characters among different stages in the life cycle of P. penetrans. A key to the life cycle stages of P. penetrans based on differences in morphometric and

allometric characters was developed.

3.2.5 Results

3.2.5.1 Field distribution of \underline{P} . penetrans

The variance/mean ratios for all sample sets were greater than one by the chi-squared test (Table 3.1). The chi-squared test indicated that the distribution of P. penetrans over the whole field (Figure 3.6) was aggregated (Table 3.1A). The distribution was also aggregated in subplots from which 16 samples were taken (Figure 3.7; Table 3.1B). The degree of aggregation was lower in subplots from which soil samples consisting of one soil core was taken (Figure 3.8; Table 3.1C). For two of these sets agreement with a random distribution was obtained by the Pearson Hartley statistic (Elliott, 1973; Table 3.1C). This random distribution was supported by the high reciprocal K values (Table 3.1C).

Goodness of fit test for a negative binomial distribution indicated that the field distribution of \underline{P} .

penetrans determined for the sampling scheme involving the whole field (Figure 3.6) was significantly correlated with a negative binomial distribution (Table 3.1).

The distribution of P. penetrans in the unploughed section of the field covered with a rye cover crop (Figures 3.9-3.17) was aggregated (Table 3.1D-L) except for one sample set (Table 3.1I). The distribution of total population densities in roots plus soil was of an aggregate

Table 3.1: Analysis of field distribution of Pratylenchus penetrans

Sample	Sample level & No.	ı×	s ²	x s	Green's Index	К2	1/K	x ²	df	Distribution
A	184	13.98	133.50	9.53	0.003	1.63	0.63	9.20	3	Neg B
В	16	16.19	288.69	14.12	0.05	1.06	0.94	1.20	н	Neg B
B ₂	16	12.25	110.60	9.02	0.04	1.45	0.69	0.54	ю	Neg B
В	16	11.87	95.32	8.03	0.04	1.61	0.62	7.63	9	Neg B
B4	16	12.30	83.80	6.81	0.03	2.04	0.49	1.67	႕	Neg B
c_1	9	3.66	4.66	1.27	0.01	12.61	0.08	6.39	2	Random
c_2	9	4.33	7.47	12.80	0.50	5.57	0.18	8.62	2	Random
င္မ	9	12.16	70.17	5.77	0.07	2.35	0.43	5.24	6	Neg B
C ₄	9	9.50	36.30	3.82	0.05	3.14	0.32	3.28	m	Neg B

A-C initial complete sampling scheme
$$K = \frac{\bar{x}^2 - (s^2/n)}{s^2 - \bar{x}}$$

$$K = \frac{\bar{x}^2 - (s^2/n)}{s^2 - \bar{x}}$$

$$S^2 = \frac{\bar{x}(x - \bar{x})^2}{\bar{x}}$$

Table 3.1 con't

Sample	Sample level & No.	ı×	s ₂	x x	Green's Index	×	1/K	×	Distribution
Ω	92	25.91	1002.45	38.67	0.001	0.68	1.47	d = 70.92	Aggregate
П	16	15.81	395.36	25.00	0.10	0.59	1.69	375.10	ŧ
E 7	16	20.06	272.73	13.59	0.04	1.52	99.0	203.94	=
E E	16	10.25	261.53	25.52	0.15	0.35	2.86	382.72	Ξ
표 4	16	13.06	140.59	10.76	0.05	1.26	0.79	161.47	Ξ
Fl	9	14.67	202.67	13.81	0.147	96.0	1.04	69.07	=
F2	9	8.33	82.67	9.92	0.18	0.75	1.34	49.62	=
я З	9	4.30	68.27	15.80	09.0	0.11	0.09	79.38	=
표 4	9	31.50	125.90	3.99	0.005	10.42	0.10	19.98	=

D-F sampling scheme for lower half of field covered with rye cover crop (soil samples)

$$d = (\sqrt{2x^2} - \sqrt{2v - 1})$$

v = degrees of freedom

Table 3.1 con't

eve	Sample level & No.	ı×	s ₂	x x	Green's Index	X	1/K	× ×	Distribution
ღ	92	25.65	1262.69	49.69	0.02	0.52	1.93	d = 64.63	Aggregate
н	16	14.19	290.16	20.44	80.0	99.0	1.51	306.72	=
- Н2	16	30.69	590.09	19.22	0.02	1.61	0.62	288.41	=
Н3	16	8.81	107.49	12.20	0.79	0.71	1.41	183.72	=
H 4	16	18.63	300.78	16.14	0.05	1.16	98.0	242.17	=
$_{1}^{1}$	9	2.00	11.20	2.24	0.04	3.73	0.27	11.20	Random
12	9	00.6	186.40	20.70	0.40	0.30	3.30	103.33	Aggregate
13	9	10.67	143.47	13.45	0.19	0.68	1.47	67.23	=
14	9	10.17	196.97	19.36	0.30	0.40	2.50	96.84	=

G-I sample scheme for lower half of field covered with rye (root samples)

Table 3.1 con't

Sample	Sample level & No.	ı×	s ₂	x s	Green's Index	Ж	1/K	x x	Distribution
ŋ	92	51,11	2413.73	47.22	0.01	1.09	0.91	d = 78.25	Aggregate
K ₁	16	30.00	608.53	20.28	0.03	1.48	0.68	304.42	=
K ₂	16	50.69	748.09	14.76	0.02	3.16	0.28	221.79	Ξ
ж 3	16	19.06	594.06	31.06	0.01	0.57	1.19	467.50	Ξ
K 4	16	31.69	483.29	15.25	0.10	2.16	1.75	228.75	E
$^{\rm L_1}$	9	19.67	163.47	8.31	0.08	2.50	0.40	41.55	Ξ
L_2	9	17.33	173.47	10.00	60.0	1.73	0.58	50.05	Ξ
L ₃	9	15.00	128.00	8.53	80.0	1.80	0.55	42.66	=
L4	9	41.67	441.07	10.58	0.04	4.16	0.24	52.92	=

J-L sample scheme for the lower half of field covered with rye (soil plus root)

Table 3.1 con't

Sample level	le 1 & No.	ı×	s ²	× 8	Green's Index	Ж	1/K	× 2	Distribution
X	92	14.31	245.50	17.78	0.01	1.84	1.19	d = 43.42	Aggregate
N	16	17.50	216.00	12.34	0.04	1.47	0.68	185.14	:
N ₂	16	9.53	62.76	6.59	0.04	1.63	0.61	98.78	:
N 3	16	15.18	155.63	10.25	0.04	1.59	0.63	153.80	:
N 4	16	10.00	58.80	5.80	0.03	1.85	0.54	88.20	z
01	9	12.00	239.60	19.97	0.26	0.46	2.17	99.83	=
02	9	4.83	14.96	3.09	0.07	2.05	0.49	15.48	=
03	9	10.33	231.06	22.37	0.34	0.31	3.22	111.83	E
04	9	8.83	58.50	6.63	0.11	1.37	0.73	33.12	=
Ъ	48	53.41	403.90	7.50	0.003	8.24	0.10	352.78	E
ø	24	63.45	1255.56	19.78	1.58	3.33	0.30	455.01	=

N-O sample scheme for the ploughed half of field
P - sample scheme for the randomized block design of 48 plots
Q - sample scheme for the randomized block design of 24 plots

18 16 0 7 13 0 0 3 36 17 0 0 0 7 7 26 32 34 7 10 26 48 5 26 14 0 3 0 11 21 34 3 7 23 21 14 11 6 9 25 8 30 35 0 16 23 7 34 6 9 6 13 17 4 20 30 22 13 39 42				
13 0 0 3 36 17 0 0 32 34 7 10 26 48 5 26 14 0 3 0 11 21 34 3 7 23 21 14 11 6 9 25 8 30 35 0 16 23 7 34 6 9 6 13 17 4 20 30 22 13 39 42 30 12 12 38 13 23 15 30 3 14 14 3 7 4 0 4 11 16 9 25 30 10 10 8 18 13 5 12 7 9 12 4 <td>27</td> <td>0</td> <td>36</td> <td>35</td>	27	0	36	35
36 17 0 0 0 7 7 26 32 34 7 10 26 48 5 26 14 0 3 0 11 21 34 3 7 23 21 14 11 6 9 25 8 30 35 0 16 23 7 34 6 9 6 13 17 4 20 30 22 13 39 42 30 12 12 38 13 23 15 30 3 14 14 3 7 4 0 4 11 16 9 25 30 10 10 8 18 13 5 12 7 9 12 4 <td>18</td> <td>16</td> <td>0</td> <td></td>	18	16	0	
0 7 7 26 32 34 7 10 26 48 5 26 14 0 3 0 11 21 34 3 7 23 21 14 11 6 9 25 8 30 35 0 16 23 7 34 6 9 6 13 17 4 20 30 22 13 39 42 30 12 12 38 13 23 15 30 3 14 14 3 7 4 0 4 11 16 9 25 30 10 10 8 18 13 5 12 7 7 15 7 33 7 15 7 <td>13</td> <td>0</td> <td>0</td> <td>3</td>	13	0	0	3
32 34 7 10 26 48 5 26 14 0 3 0 11 21 34 3 7 23 21 14 11 6 9 25 8 30 35 0 16 23 7 34 6 9 6 13 17 4 20 30 22 13 39 42 30 12 12 38 13 23 15 30 3 14 14 3 7 4 0 4 11 16 9 25 30 10 10 8 18 13 5 12 7 9 12 4 7 7 15 7 33 7 15 7 <td>36</td> <td>17</td> <td>0</td> <td>0</td>	36	17	0	0
26 48 5 26 14 0 3 0 11 21 34 3 7 23 21 14 11 6 9 25 8 30 35 0 16 23 7 34 6 9 6 13 17 4 20 30 22 13 39 42 30 12 12 38 13 23 15 30 3 14 14 3 7 4 0 4 11 16 9 25 30 10 10 8 18 13 5 12 7 9 12 4 7 15 7 7 33 7 15 7 30 7 7 20	0	7	7	26
14 0 3 0 11 21 34 3 7 23 21 14 11 6 9 25 8 30 35 0 16 23 7 34 6 9 6 13 17 4 20 30 22 13 39 42 30 12 12 38 13 23 15 30 3 14 14 3 7 4 0 4 11 16 9 25 30 10 10 8 18 13 5 12 7 9 12 4 7 7 15 7 33 7 15 7 33 7 15 7 35 31 10 2	32	34	7	10
11 21 34 3 7 23 21 14 11 6 9 25 8 30 35 0 16 23 7 34 6 9 6 13 17 4 20 30 22 13 39 42 30 12 12 38 13 23 15 30 3 14 14 3 7 4 0 4 11 16 9 25 30 10 10 8 18 13 5 12 7 9 12 4 7 7 15 7 33 7 15 7 35 31 10 1 17 25 32 31 27 32 31 10		48	5	26
7 23 21 14 11 6 9 25 8 30 35 0 16 23 7 34 6 9 6 13 17 4 20 30 22 13 39 42 30 12 12 38 13 23 15 30 3 14 14 3 7 4 0 4 11 16 9 25 30 10 10 8 18 13 5 12 7 9 12 4 7 7 15 7 33 7 15 7 37 32 31 10 17 22 44 6 0 5 24 19 20 7 7 20 <td>14</td> <td>0</td> <td>3</td> <td>0</td>	14	0	3	0
11 6 9 25 8 30 35 0 16 23 7 34 6 9 6 13 17 4 20 30 22 13 39 42 30 12 12 38 13 23 15 30 3 14 14 3 7 4 0 4 11 16 9 25 30 10 10 8 18 13 5 12 7 9 12 4 7 7 15 7 33 7 15 7 17 25 32 31 27 32 31 10 17 22 44 6 0 5 24 19 20 7 7 20 </td <td>11</td> <td>21</td> <td>34</td> <td>3</td>	11	21	34	3
8 30 35 0 16 23 7 34 6 9 6 13 17 4 20 30 22 13 39 42 30 12 12 38 13 23 15 30 3 14 14 3 7 4 0 4 11 16 9 25 30 10 10 8 18 13 5 12 7 9 12 4 7 7 15 7 33 7 15 7 33 7 15 7 37 32 31 10 17 25 32 31 27 32 31 10 17 22 44 6 0 5 24 19 20 7 7 20 8 38 7 23 17 11 19 6 35 31 4 21 5 21 5 13 0 <	7	23	21	14
16 23 7 34 6 9 6 13 17 4 20 30 22 13 39 42 30 12 12 38 13 23 15 30 3 14 14 3 7 4 0 4 11 16 9 25 30 10 10 8 18 13 5 12 7 9 12 4 7 7 15 7 33 7 15 7 30 7 15 7 30 7 25 32 31 27 32 31 10 17 22 44 6 0 5 24 19 20 7 7 20 8 38 7	11			25
6 9 6 13 17 4 20 30 22 13 39 42 30 12 12 38 13 23 15 30 3 14 14 3 7 4 0 4 11 16 9 25 30 10 10 8 18 13 5 12 7 9 12 4 7 7 15 7 33 7 15 7 17 25 32 31 27 32 31 10 17 22 44 6 0 5 24 19 20 7 7 20 8 38 7 23 17 11 19 6 35 31 4 21 <	8	30		0
17 4 20 30 22 13 39 42 30 12 12 38 13 23 15 30 3 14 14 3 7 4 0 4 11 16 9 25 30 10 10 8 18 13 5 12 7 9 12 4 7 7 15 7 33 7 15 7 17 25 32 31 10 5 24 19 20 7 7 20 8 38 7 23 17 11 19 6 35 31 4 21 5 21 5 13 0 0 5 2 4 0 6 2	16	23	7	34
22 13 39 42 30 12 12 38 13 23 15 30 7 4 0 4 11 16 9 25 30 10 10 8 18 13 5 12 7 9 12 4 7 7 15 7 33 7 15 7 33 7 15 7 17 25 32 31 10 17 25 32 31 10 17 22 44 6 6 0 2 31 20 7 7 20 8 38 7 23 31 10 6 2 13 0 6 2 13 0 2 2 4 12 1 1 1 1 1 1 <	6	9	6	13
30 12 12 38 13 23 15 30 3 14 14 3 7 4 0 4 11 16 9 25 30 10 10 8 18 13 5 12 7 9 12 4 7 7 15 7 33 7 15 7 17 25 32 31 27 32 31 10 17 22 44 6 0 5 24 19 20 7 7 20 8 38 7 23 17 11 19 6 35 31 4 21 5 21 5 13 0 0 5 2 4 0 6 2	17	4	20	30
13 23 15 30 3 14 14 3 7 4 0 4 11 16 9 25 30 10 10 8 18 13 5 12 7 9 12 4 7 7 15 7 33 7 15 7 17 25 32 31 10 5 24 19 20 7 7 20 8 38 7 23 17 11 19 6 35 31 4 21 5 21 5 13 0 0 5 2 4 0 6 2 0 5 4 18 2 5 14 4 12 10 22 2 <t< td=""><td>22</td><td>13</td><td>39</td><td>42</td></t<>	22	13	39	42
3 14 14 3 7 4 0 4 11 16 9 25 30 10 10 8 18 13 5 12 7 9 12 4 7 7 15 7 33 7 15 7 17 25 32 31 10 17 22 44 6 6 0 5 24 19 20 20 7 7 20 8 38 7 23 17 11 19 6 35 13 4 21 5 21 5 13 0 13 0 0 5 2 4 18 2 1 5 18 18 2 18 0 5 4 18 2 2 18<	30	12	12	38
7 4 0 4 11 16 9 25 30 10 10 8 18 13 5 12 7 9 12 4 7 7 15 7 33 7 15 7 17 25 32 31 10 17 22 44 6 0 5 24 19 20 7 7 20 8 38 7 23 17 11 19 6 35 31 4 21 5 21 5 13 0 0 5 2 4 0 6 2 0 2 6 18 0 5 4 18 2 5 14 4 12 10 22 2	13	23	15	30
11 16 9 25 30 10 10 8 18 13 5 12 7 9 12 4 7 7 15 7 33 7 15 7 17 25 32 31 27 32 31 10 17 22 44 6 0 5 24 19 20 7 7 20 8 38 7 23 17 11 19 6 35 31 4 21 5 21 5 13 0 0 5 2 4 0 6 2 0 2 6 18 0 5 4 18 2 5 14 4 12 10 22 2 13 0 10 22 9 14 0 4 4 5 10 10 0 0 42 14 10 4 4 5 10 10	3	14	14	3
30 10 10 8 18 13 5 12 7 9 12 4 7 7 15 7 33 7 15 7 17 25 32 31 27 32 31 10 17 22 44 6 0 5 24 19 20 7 7 20 8 38 7 23 17 11 19 6 35 31 4 21 5 21 5 13 0 0 5 2 4 0 6 2 0 5 4 18 2 5 14 4 12 10 22 2 13 0 10 22 2 14 0 4 <	7	4	0	4
18 13 5 12 7 9 12 4 7 7 15 7 33 7 15 7 17 25 32 31 10 17 22 44 6 0 5 24 19 20 7 7 20 8 38 7 23 17 11 19 6 35 31 4 21 5 21 5 13 0 0 5 2 4 0 6 2 0 2 6 18 0 5 4 18 2 5 14 4 12 10 22 2 13 0 10 22 9 14 0 4 4 5 10 10 0 0 0 42 12 38 14 24	11	16	9	25
7 9 12 4 7 7 15 7 33 7 15 7 17 25 32 31 27 32 31 10 17 22 44 6 0 5 24 19 20 7 7 20 8 38 7 23 17 11 19 6 35 31 4 21 5 21 5 13 0 0 5 2 4 0 6 2 0 2 6 18 0 5 4 18 2 5 14 4 12 10 22 2 13 0 10 22 2 14 0 4 4 5 10 10	30	10	10	8
7 7 15 7 33 7 15 7 17 25 32 31 10 17 22 44 6 0 5 24 19 20 7 7 20 8 38 7 23 17 11 19 6 35 31 4 21 5 21 5 13 0 0 5 2 4 0 6 18 0 5 4 18 2 5 14 4 12 10 22 2 13 0 10 22 9 14 0 4 4 5 10 10 0 0 0 42 12 38 14 24		13	5	12
33 7 15 7 17 25 32 31 10 17 22 44 6 6 0 5 24 19 20 7 7 20 8 38 7 23 17 11 19 6 35 31 4 21 5 21 5 13 0 0 5 2 4 0 6 2 0 5 4 18 2 5 14 4 12 10 22 2 13 0 10 22 2 14 0 4 4 5 10 10 0 0 0 42 13 0 0 42 14 0 0 4 15 10 10 <td>7</td> <td></td> <td>12</td> <td></td>	7		12	
17 25 32 31 27 32 31 10 17 22 44 6 0 5 24 19 20 7 7 20 8 38 7 23 17 11 19 6 35 31 4 21 5 21 5 13 0 0 5 2 4 0 6 2 0 2 6 18 0 5 4 18 2 5 14 4 12 10 22 2 13 0 10 22 9 14 0 4 4 5 10 10 0 0 0 42 12 38 14 24				
27 32 31 10 17 22 44 6 0 5 24 19 20 7 7 20 8 38 7 23 17 11 19 6 35 31 4 21 5 21 5 13 0 0 5 2 4 0 6 2 0 5 4 18 2 5 14 4 12 10 22 2 13 0 10 22 9 14 0 4 4 5 10 10 0 0 0 42 12 38 14 24	33	7	15	7
17 22 44 6 0 5 24 19 20 7 7 20 8 38 7 23 17 11 19 6 35 31 4 21 5 21 5 13 0 0 5 2 4 0 6 2 0 2 6 18 2 5 14 4 12 10 22 2 13 0 10 22 9 14 0 4 4 5 10 10 0 0 0 42 12 38 14 24	17	25	32	31
0 5 24 19 20 7 7 20 8 38 7 23 17 11 19 6 35 31 4 21 5 21 5 13 0 0 5 2 4 0 6 2 0 2 6 18 0 5 4 18 2 5 14 4 12 10 22 2 13 0 10 22 9 14 0 4 4 5 10 10 0 0 0 42 12 38 14 24	27	32	31	10
20 7 7 20 8 38 7 23 17 11 19 6 35 31 4 21 5 21 5 13 0 0 5 2 4 0 6 2 0 2 6 18 0 5 4 18 2 5 14 4 12 10 22 2 13 0 10 22 9 14 0 4 4 5 10 10 0 0 42 12 38 14 24	17	22	44	6
8 38 7 23 17 11 19 6 35 31 4 21 5 21 5 13 0 0 5 2 4 0 6 2 0 2 6 18 2 5 14 4 12 10 22 2 13 0 10 22 9 14 0 4 4 5 10 10 0 0 0 42 12 38 14 24	0	5	24	19
17 11 19 6 35 31 4 21 5 21 5 13 0 0 5 2 4 0 6 2 0 2 6 18 2 5 14 4 12 10 22 2 13 0 10 22 9 14 0 4 4 5 10 10 0 0 0 42 12 38 14 24	20	7	7	20
35 31 4 21 5 21 5 13 0 0 5 2 4 0 6 2 0 2 6 18 0 5 4 18 2 5 14 4 12 10 22 2 13 0 10 22 9 14 0 4 4 5 10 10 0 0 0 42 12 38 14 24	8	38	7	23
5 21 5 13 0 0 5 2 4 0 6 2 0 2 6 18 0 5 4 18 2 5 14 4 12 10 22 2 13 0 10 22 9 14 0 4 4 5 10 10 0 0 0 42 12 38 14 24	17	11	19	6
0 0 5 2 4 0 6 2 0 2 6 18 0 5 4 18 2 5 14 4 12 10 22 2 13 0 10 22 9 14 0 4 4 5 10 10 0 0 0 42 12 38 14 24	35	31	4	21
4 0 6 2 0 2 6 18 0 5 4 18 2 5 14 4 12 10 22 2 13 0 10 22 9 14 0 4 4 5 10 10 0 0 0 42 12 38 14 24	5	21	5	13
0 2 6 18 0 5 4 18 2 5 14 4 12 10 22 2 13 0 10 22 9 14 0 4 4 5 10 10 0 0 0 42 12 38 14 24	0	0		2
0 5 4 18 2 5 14 4 12 10 22 2 13 0 10 22 9 14 0 4 4 5 10 10 0 0 0 42 12 38 14 24	4	0	6	
2 5 14 4 12 10 22 2 13 0 10 22 9 14 0 4 4 5 10 10 0 0 0 42 12 38 14 24	ŋ	2	6	18
12 10 22 2 13 0 10 22 9 14 0 4 4 5 10 10 0 0 0 42 12 38 14 24	0	5	4	18
12 10 22 2 13 0 10 22 9 14 0 4 4 5 10 10 0 0 0 42 12 38 14 24	2	5	14	
9 14 0 4 4 5 10 10 0 0 0 42 12 38 14 24	12		22	2
4 5 10 10 0 0 0 42 12 38 14 24	13	0	10	22
0 0 0 42 12 38 14 24	9		0	4
12 38 14 24	4	5	10	10
	0	0	0	42
10 3 12 18	12	38	14	24
L	10	3	12	18
	Ц	لـــا		L

Figure 3.6. Distribution of \underline{P} . $\underline{penetrans}$ in the field.

	B ₁ - PL0	T 24			B ₂ - Pl	OT 52	
14	36	0	6	36	23	11	8
26	4	8	5	•	10	O	4
41	11	8	9	0	15	5	15
20	2	38	CF	27	8	5	25
	B ₃ - PU	OT 122			B ₄ - թլ	OT 173	•
12	17	22	0	6	2	o	30
15	18	a	•	16	6	23	o
26	30	19	5	10	2	19	9
15	2	3	2	19	15	21	18

Figure 3.7. Distribution of \underline{P} . penetrans in subplots

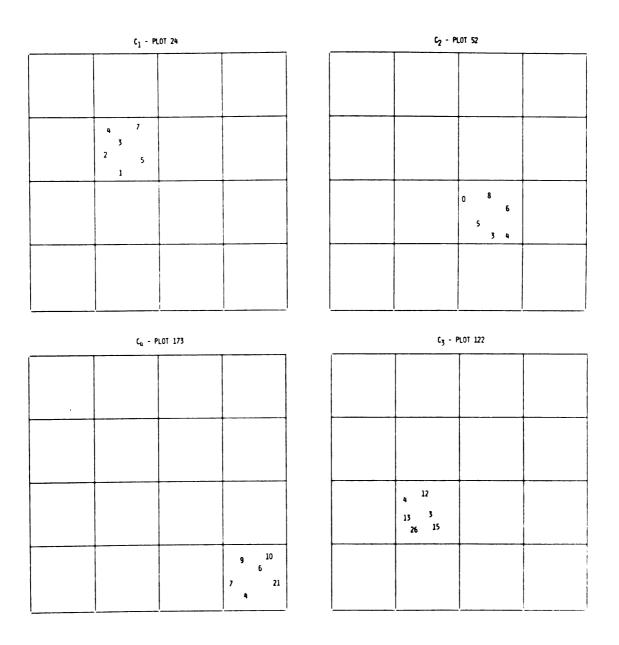


Figure 3.8. Distribution of \underline{P} . $\underline{penetrans}$ from samples consisting of one soil core.

15	10	16	0
3	0	79	10
33	0	28	59
0	40	21	0
16	2	8	0
21	0	133	12
0	12	0	6
16	84	19	16
14	2	77	0
4	86	0	23
9	35	31	11
0	2	0	52
66	12	41	15
7	21	114	4
8	0	4	5
0	22	10	45
39	2	1	7
16	0	8	4
65	74	48	94
118	28	52	2
19	34	20	4
85	84	100	7
0	52	30	12

Figure 3.9 Soil distribution of P. penetrans from the section of the field covered with rye.

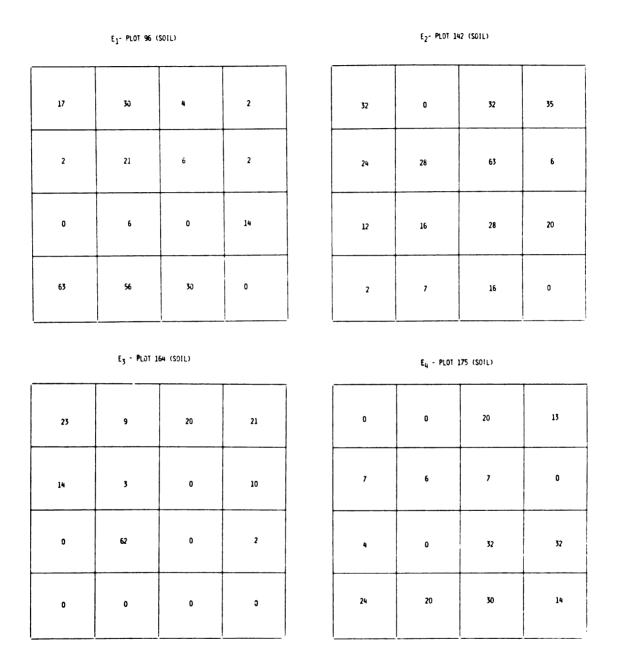


Figure 3.10. Soil distribution of \underline{P} . $\underline{penetrans}$ in subplots from the section of the field covered with rye.

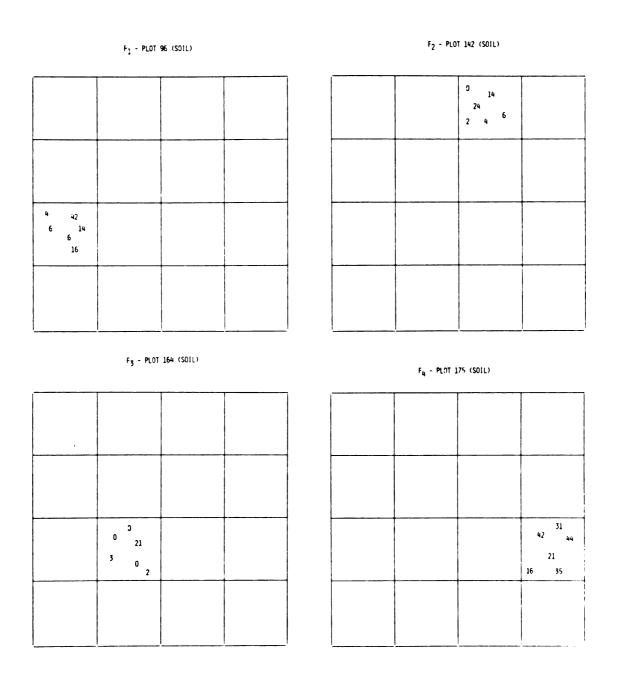


Figure 3.11. Soil distribution of \underline{P} . $\underline{penetrans}$ from samples consisting of one soil core from the section of field covered with rye.

16	2	18	16
15	70	164	25
14	27	42	16
2	0	0	68
16	3	35	0
16	4	42	84
8	13	6	102
20	20	0	4
45	0	0	24
12	16	14	2
7	12	0	2
30	23	10	156
80	17	2	2
102	46	50	30
0	10	0	0
6	60	28	31
0	96	180	44
43	34	0	15
4	J	36	38
4	0	20	7
44	5	9	2
46	0	4	14
0	16	1	3

Figure 3.12. Root distribution of \underline{P} . penetrans in the section of the field covered with rye.

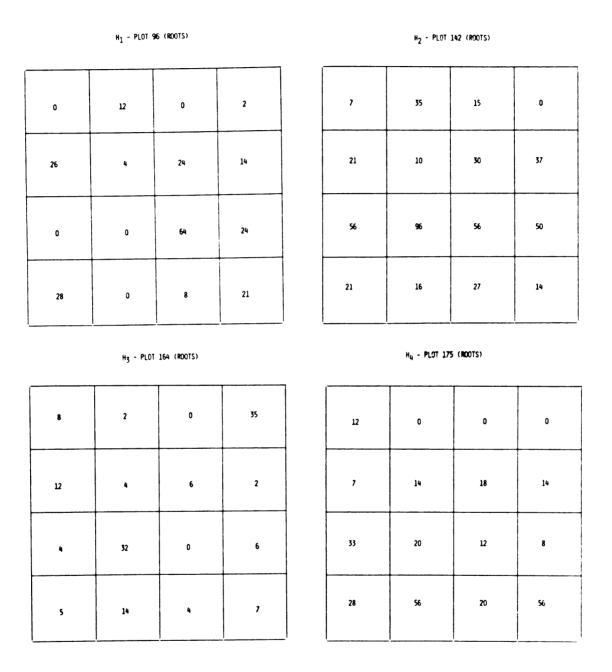


Figure 3.13. Root distribution of \underline{P} . penetrans in subplots from the section of the field covered with rye.

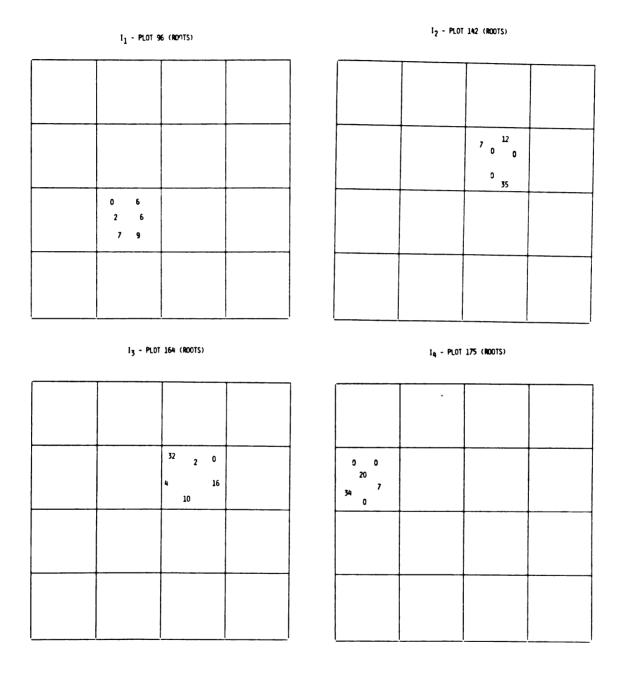


Figure 3. 14. Root distribution of P. penetrans from samples consisting of one core from the section of the field covered with rye.

31	12	34	16
18	70	243	35
47	27	70	75
2	40	21	68
32	10	43	0
37	4	175	96
8	25	6	108
36	104	19	20
59	2	77	24
16	102	14	25
16	47	31	13
30	30	10	208
146	29	43	17
109	67	164	34
8	10	4	5
6	82	38	70
39	93	181	51
59	34	8	19
69	74	48	132
122	28	72	9
63	39	29	6
131	34	104	21
0	68	31	15

Figure 3.15. Distribution of P. penetrans (soil + root) in the section of the field covered with rye.

K1 - PLOT 96 (SOIL + ROOTS) K2 - PLOT 142 (SOIL + ROOTS) v K3 - PLOT 164 (SOIL + ROOTS) K4 - PLOT 175 (SOIL + 800TS) .

Figure 3.16. Distribution of \underline{P} . $\underline{penetrans}$ (root + soil) in subplots from the section of the field covered with rye.

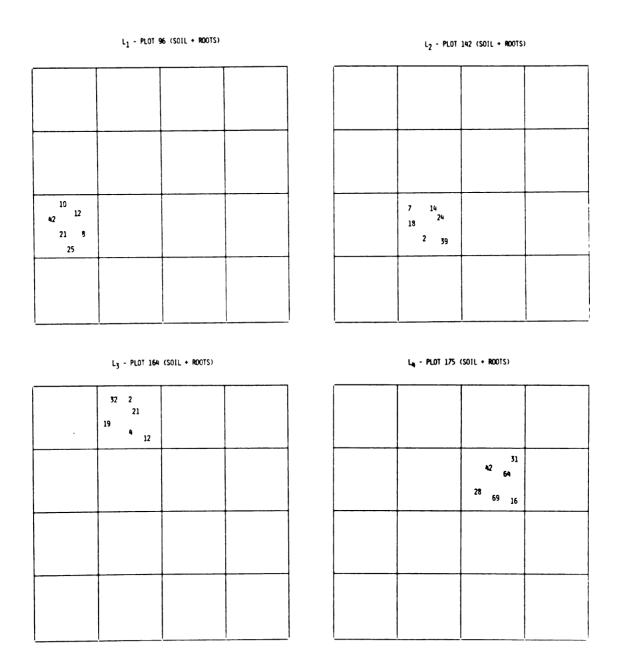


Figure 3.17. Distribution of \underline{P} . $\underline{penetrans}$ (root + soil) from samples consisting of one core from the section of the field covered with rye.

nature (Table 3.1J L).

The mean numbers of P. penetrans in the ploughed section of the field (Figures 3.18-3.20; Table 3.1M, N, O) were higher for the large sample set of 92 plots (Table 3.1M) compared to the mean numbers of P. penetrans from the smaller subplots from which 16 and 6 samples were collected (Table 3.1N, O). The variance/ mean ratios were greater than one indicating an aggregate distribution. The distribution in the randomized block design plots was also aggregate (Figure 3.21; Table 3.1P, Q).

3.2.5.2 Incidence of P. penetrans in dry bean fields in Michigan

The survey of 80 dry bean fields in Michigan indicated that plant-parasitic nematodes inhabit dry bean fields. The two most commonly recovered genera were root-lesion nematodes (Pratylenchus spp.) and stunt nematodes (Tylenchorhynchus spp.) (Table 3.2). Pratylenchus spp. were found in 68% of the 80 fields and Tylenchorhynchus spp. were present in 45% of the 80 fields. Pratylenchus penetrans was the most predominant Pratylenchus spp. observed in dry bean fields.

The percent occurrence of <u>Pratylenchus</u> spp. increased by county in the following order:Saginaw > Huron > Sanilac > Gratiot Bay > Tuscola > Montcalm (Table 3.2). This is as expected in the sandy clay loam soil characteristic of Montcalm county.

3 5	0	3	25
4	ງ	C	23
0	16	ე 7	23 23 13 17 12 0
0 24 0 7 0 17	16 3 70		13
0	70	75 5 0	17
0	4	5	12
7	13	<u>ე</u>	<u>ე</u>
0	75	19	
17	40	49	22
0	50	2	6
11 10 0 2 3	50 23	20 49	13 7
10	8	49	7
0	9	13 0 20	3
2	2	C	6
3	10	20	1 5
	20	0	16
20	10	15	25
10 20 2	5	0	40
10	5	6	24
10	5	14	24 3
10 5	10	25	5
10 25	5	5 20	20
25	15	20	10

Figure 3.18. Distribution of \underline{P} . penetrans in the ploughed section of the field.

	M ₁ - PLOT 15	(PLOUGHED)				N ₂ - PLOT 24	(PLOUGHED)	
25	15	э	5		5	15	0	16
28	19	18	16		2	17	0	5
5	16	5	28		18	16	0	25
0	25	15	60		15	13	10	5
	N ₃ - PLOT 5	2 (PLOUGHED)		•		N ₄ - PLOT 70	B (PLOUGHED)	
16	20	0	25		17	10	5	12
12	5	10	40		20	5	25	18
20	40	10	5		3	5	0	16
0	5	25	10		12	10	5	0

Figure 3.19. Distribution of \underline{P} . penetrans in subplots in the ploughed section of the field.

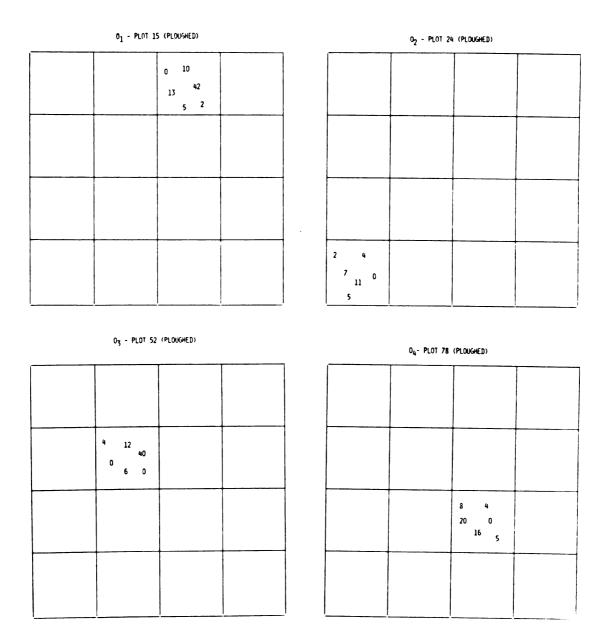


Figure 3.20. Distribution of \underline{P} . $\underline{penetrans}$ from samples consisting of one soil core in the ploughed section of the field.

P- (48 PLOTS)

79	
	82
48	34
68	59
80	81
35	74
57	60
44	50
92	75
22	26
76	56
60	54
65	96
56	52
66	20
57	40
37	6
44	46
35	52
40	55
55	29
8	64
60	70
70	60
40	48

Q- (24 PLOTS)

70	
91	
84	
94	
102	
61	
65	
35	
31	
20	
18	
38	
54	
99	
133	
24	
21	
66	
105	
134	
68	
42	
22	
46	

Figure 3.21. Distribution of \underline{P} . penetrans in randomized block design plots.

Occurrence and densities of Pratylenchus spp. (root-lesion nematodes) recovered from 80 dry bean fields in Michigan. Table 3.2.

County	Fields	Percent	Nematodęs per 100cm		Percer	Percent Occurence	9	
	Sampred	occar rence	soil & g root	0	0-10	11-50	51-100	100
Montcalm	15	100	150b	0	0	13	40	47
Вау	15	80	72ab	20	20	13	13	33
Sanilac	10	09	19a	40	10	30	20	0
Saginaw	10	10	34a	06	0	0	0	10
Huron	10	20	10a	20	10	40	0	0
Tuscola	10	06	32a	10	20	09	0	10
Gratiot	10	7.0	18a	30	30	30	10	0

Column means followed by the same letters are not significantly different (P=0.05) according to the Student Newmans Keuls Test.

Higher population densities were generally associated with sandy soils (Table 3.2). Population densities were also higher on kidney beans, and this is related to the soil type as this variety is produced mainly on sandy soils in Bay and Montcalm counties. In Saginaw county a high population density of Pratylenchus spp. was found in one bean field where the soil was characterized as a Granby loamy sand (Table 3.3). In Bay and Montcalm counties Pratylenchus spp. were associated with both colored and navy beans, but the population densities were lower on navy beans in Bay county (Table 3.4). On a statewide basis 13% of the 80 fields surveyed were infested with population densities > 50 Pratylenchus spp. per 100 cm³ soil plus 1.0 g root tissue (Table 3.5).

Tylenchorhynchus spp. were found in all seven counties. The frequency of occurrence was lower than for Pratylenchus spp. and population densities were relatively low. (Tables 3.3-3-6).

3.2.5.3 Development of an experimental population of P. penetrans

Thirty-six percent of the 100 Sanilac navy bean plants inoculated with one male and one female Praty-lenchus penetrans were infected with this nematode species and produced recoverable nematode populations.

Occurrence of Plant-parasitic nematodes in relation to soil type and bean variety. Table 3.3

County	variety	type	100cm ³ soil + g	100cm ³ soil	· dds
			root tissue		ı
Montcalm	Seafarer	Nester Loam	230ab	0	
	Seafarer	Nester Loam	146a	0	
	Seafarer	Nester Loam	25a	0	
	Seafarer	Nester Loam	11a	0	
	Seafarer	Nester Loam	105a	20	
	Kidney	Nester Loam	56a	0	
	Kidney	Isabella Sandy Loam	75a	0	
	Kidney	la	290ab	33	J
	Kidney	Isabella Sandy Loam	85a	0	•
	Kidney	lla	60a	0	
	Cranberry	11a	45a	0	
	Cranberry	11a	450b	40	
	Cranberry	11a	290ab	10	
	Cranberry	lla	1.00a	8	
	Yellow Eye	Isabella Sandy Loam	275a		
	Sanilac	Kawkawlin Sandy Loam	10a	0	
	Sanilac	Kawkawlin Loam	10a	0	
	Sanilac	Brookston Loam	0a	0	
	Sanilac	Kawkawlin Loam	15a	17	

Column means followed by the same letter are not significantly different (P=0.05) according to Student-Newmans Keuls Test.

Table 3.3 Cont'd.

· dds	85	
Tylenchorhynchus 100cm ³ soil	0 0 0 0 0 0 0 0 0 0	0a 0a 0a 10ab 5a 5a 10ab 10ab 0a
Pratylenchus spp. 100cm ³ soil + g root tissue	5a 13a 102b 216c 170c 0a 270d 52ab 0a 55ab 160c	0a 0a 25a 0a 14a 20a 0a 0a
Soil type	Kawkawlin Loam Wisner Clay Loam Kawkawlin Sandy Loam Kawkawlin Sandy Loam Iosco Sandy Loam Ogemaw Sandy Loam Wisner Clay Loam Iosco Sandy Loam Iosco Sandy Loam Kawkawlin Loam Kawkawlin Loam	Klimanagh Loam Guelph Loam Klimanagh Loam Shebeon Loam Klimanagh Loam Avoca Loam Shebeon Loam Shebeon Loam Klimanagh Loam Klimanagh Loam
Bean variety	Seafarer Kidney Kidney Kidney Kidney Kidney Cranberry Cranberry Cranberry	Seafarer Seafarer Seafarer Seafarer Seafarer Seafarer Seafarer Seafarer Seafarer
County	Bay Cont'd.	Huron

Column means followed by the same letter are not significantly different (P = 0.05) according to Student-Newmans Keuls Test.

Table 3.3 Cont'd.

County	Bean variety	Soil type	Pratylenchus spp. 100cm ³ soil + g root tissue	Tylenchorhynchus spp.
Saginaw	Seafarer Seafarer Seafarer Seafarer Sanilac Sanilac Sanilac Sanilac	Wisner Clay Loam Kibbie Very Fine Sandy Loam Granby Loamy Sand Sims Clay Loam & Parkhill Loam Capac-Parkhill Loam Parkhill-Klimanagh Loam Sloan Loam Saranac Silty Clay Loam Charity Silty Clay Loam	0a 0a 355b 0a 0a 0a 0a	0a 10a 10a 10a 0a 0a 0a 0a
Tuscola	Seafarer Seafarer Seafarer Seafarer Seafarer Seafarer Sanilac Sanilac	Q	132b 35a 0a 10a 25a 10a 27a 30a 30a	0a 15a 10a 10a 0a 5a 0a

Column means followed by the same letter are not significantly different (P=0.05) according to Student-Newmans Keuls Test.

Table 3.3 Cont'd.

soil	. 87	ı ma a
Tylenchorhynchus 100cm ³ soil	0a 15a 0a 0a 0a 11a 10a 2a 2a	52 52 02 102 103 52 03
Pratylenchus spp. 100cm ³ soil + g root tissue	0a 35a 0a 0a 12a 60a 60a	10a 63b 12a 0a 40ab 30ab 10a 20a
Soil Ptype 1	ND """"""""""""""""""""""""""""""""""""	ill lidge vee C vill iill i Loa kenri
Bean variety	Seafarer Seafarer Seafarer Seafarer Seafarer Sanilac Sanilac Sanilac	Sanilac Sanilac Sanilac Sanilac Sanilac & Seafarer Kidney Kidney
County	Sanilac	

0.05) II Column means followed by the same letter are not significantly different (Paccording to Student-Newmans Keuls Test. ND = not determined

Pratylenchus spp. (root-lesion nematodes) associated with navy and colored beans in Bay and Montcalm counties. Table 3.4.

Bean type	County	Fields sampled	Percent occurrence	$\frac{P. Penetrans}{100 \text{cm}^3 \text{ soil}} + g \text{ root}$		Percent 0-10	Percent Occurrence 0 0-10 11-50 51-100 100	nce 1-100	100
Navy beans	Montcalm	Ŋ	100	103	0	0	40	20	09
Navy beans	Вау	Z	06	æ	20	09	20	0	0
Colored beans	Montcalm	10	100	145	0	10	10	20	30
Colored beans	Вау	10	80	104	20	0	10	20	20

Occurrence of plant-parasitic nematodes recovered from 80 dry bean fields in Michigan in 1978. Table 3.5.

Nematode	Nematodes per 100cm ³ soil + g root	Percent Occurrence	0	Perce 1-10	nt Occu	Percent Occurrence 1-10 11-50 51-100 100	100
Root-lesion nematode (Pratylenchus spp.)	26	8 9	31.3	11.2	11.2 27.5	12.5	17.5
Stunt nematode (Tylenchorynchus spp.)	Ŋ	45	55.0	33.8 11.2	11.2	0	0

Occurrence and population density of Tylenchorhynchus Spp. (stunt nematode) recovered from 80 Michigan dry bean fields in 1978. Table 3.6

County	Fields Sampled	Percent Occurrence	Nematodes per 100cm ³		, a	Percent Occurrence	ψ	
•	•		soil + g root	0	11-10	11-50	51-100	100
Montcalm	15	33	89	99	13	20	0	0
Вау	15	40	5a	09	26	13	0	0
Sanilac	10	40	3a	09	20	20	0	0
Saginaw	10	20	2a	80	20	0	0	0
Huron	10	40	4 a	40	ហ	10	0	90
Tuscola	10	50	5a	20	40	10	0	0
Gratiot	10	7.0	ба	30	09	10	0	0

0.05) Column means followed by the same letters are not significantly different (P = according to the Student-Newmans Keuls Test.

The total population densities in soil and roots associated with navy bean plants varied considerably (Figure 3.22). The symbols above the X axis represent plants infected with P. penetrans, while the large proportion of symbols on the X axis represents non-infected plants. The highest population density was 250 P. penetrans per 100 cm³ soil plus 1.0 g root tissue (Figure 3.22).

3.2.5.4 Identification of the life cycle stages of P. penetrans

Four morphometric characters were significantly different (P = 0.05) among the five stages of <u>P</u>. <u>penetrans</u> which were studied (Figure 3.23). Considerable variation in body length of females from the experimental population was recorded. The mean length of a female was 566.3 μ m with a standard deviation of 55.8 μ m (Table 3.7). Differences in body width were significant (P = 0.05), (Table 3.8).

Oesophagus length and stylet length were also significantly different (P = 0.05) among stages, but the range in values for all stages was relatively narrow (84.8-137.0 μ m) for oesophagus length and (10.2-17.3 μ m) for stylet length (Table 3.7). Significant differences in allometric characters were observed among stages

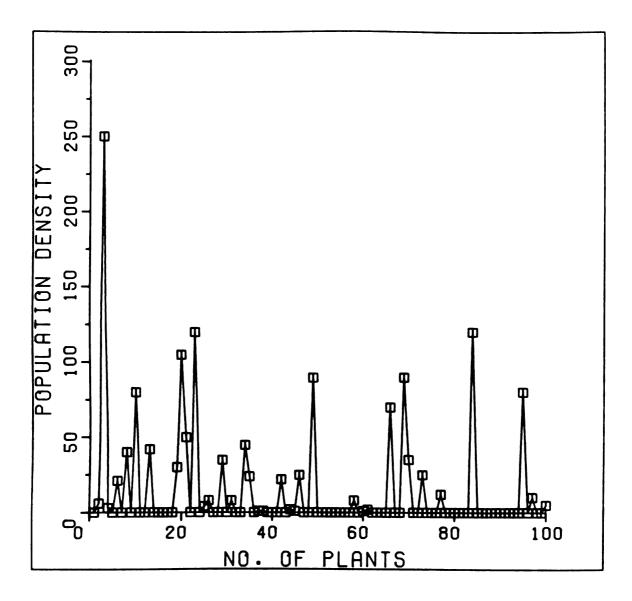


Figure 3.22. Total soil and root population densities of Pratylenchus penetrans associated with navy beans exposed to an initial density of one female and one male P. penetrans.

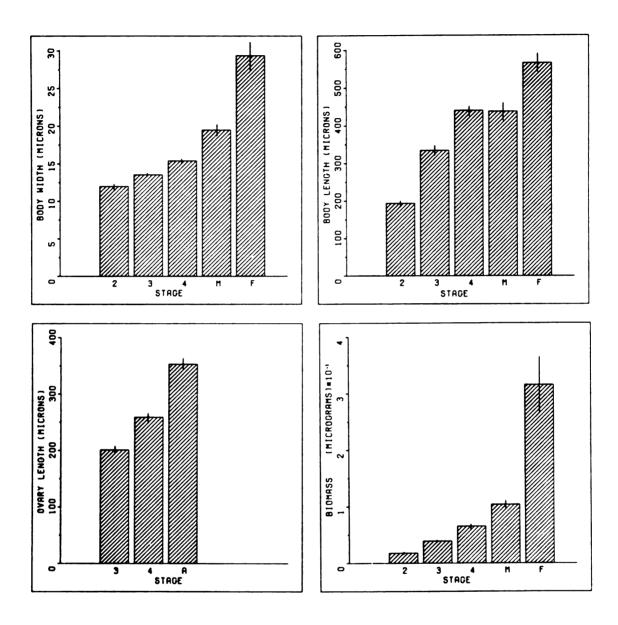


Figure 3.23. Morphometric characters and biomass of life cycle stages of Pratylenchus penetrans.

Vertical bars represent 95 % confidence intervals.

Morphometric characters of the life cycle stages of Pratylenchus penetrans associated with navy beans. Table 3.7

			- 1		
Character	2 nd	3rd	Life cycle st 4 th	stage Male	Female
Morphometric Body length (SD) (CV) (%)	193.3 18.4 9.5	334.4 30.6 9.2	440.2 28.9 6.6	437.8 52.7 12.0	566.3 55.8 9.9
Body width (SD) (CV) (%)	12.0 0.9 7.8	13.6 0.6 4.1	15.4 0.7 4.4	19.5 1.9 9.5	29.4 4.2 14.4
Oesophagus length (SD) (CV((%)	84.8 7.1 8.4	113.6 6.0 5.2	123.1 4.2 3.4	127.9 5.9 4.6	137.0 8.9 6.5
Stlyet length (SD) (CV) (%)	10.2 1.4 13.5	13.7 0.7 5.4	15.4 0.5 3.1	15.0 0.8 5.1	17.3 1.4 8.2
Tail length (SD) (CV) (%)	10.8 0.8 7.8	15.6 0.7 4.4	23.6 2.9 12.1	24.8 1.0 4.1	30.1 5.7 18.8
Ovary length (SD) (CV) (%)		201.8 14.6 7.3	258.5 18.0 6.9		352.5 21.6 6.1

Morphometric characters of Pratylenchus penetrans life cycle stages. Table 3.8

Life cycle stage	Body Length	Body Width	Oeaophagus Length	Stylet Length	Tail Length	Ovary Length
2nd	193.3a	12.0 a	84.8	10.2a	10.8a	
3 rd	334.4b	13.6b	113.6b	13.7b	15.6b	201.8a
4th	440.2c	15.4c	123.Ic	15.4c	23.60	258.5b
Adult Males	437.8c	19.5d	127.9d	15.00	24.8c	
Adult Females 566.3d	s 566.3d	29.4e	137.0e	17.3d	30.1d	352.50

Column means followed by the same letter are not significantly different (P=0.05) according to the Student Newman Keuls test.

(Table 3.9-3.10).

3.2.6 Discussion

The study of the field distribution of Pratylenchus penetrans indicated that an aggregate-type distribution approximating a negative binomial type distribution was characteristic for the distribution of P. penetrans in the field. The nature and distribution of nematodes in the field is of great importance in determining sampling pattern, and number of replicates to use in experimental procedures. The nature of statistical analysis and transformations which should be applied to data are also to some extent dependent on the nature of the distribution of the pest (Beall, 1941; Kleczkowski, 1955; Wayman, 1959; Hayman and Lowe, 1961; Taylor, 1961; Kendall, 1948; Elliott, 1973). Logarithmic transformations involving coding of data containing zero values are useful in analysing nematode data (Wallace, 1973; Barker and Nusbaum, 1971).

The number of samples which should be taken is dependent on the degree of precision desired and this in turn is limited by the relative economics involved. The results from the nematode distribution study indicated that large variations are encountered in sampling nematode populations in the field. Use of small numbers of samples

Allometric characters of the life cycle stages of Pratylenchus penetrans associated with navy beans. Table 3.9

	life	life cycle stage	a v		
Character	2 nd	3rd	4 th	Males	Females
Allometric 1					
a value	16.2	24.7	•	22.7	19.5
(SD) (CV) (%)	10.3	8.8	7.4 7.4	4.2 18.5	2.4 12.3
2 4 4 5 110 6		0	v c	ب ج	L <i>P</i>
(SD)	0.3	. 0 . 4	.00	. o	. o . 4
(CV) (%)	8.5	11.9	5.4	10.1	9.6
က					
c value	17.8	21.4	•	17.6	19.2
(SD)	1.0	1.6	2.2	1.6	2.6
(CV) (%)	5.8	•	•	9.1	13.8
4					
Biomass (G)	0.018	0.038	0.065	0.104	0.316
(SD) (CV) (%)	22.43	14.01	12.39	16.83	34.6
= Body length/B	y width	ار ا	4 =	Body width	Body width x Body length
<pre>2 = Body length/ ta: 3 = Body length/ ta:</pre>	Vesophagus length tail length	ngtn		16 x 1	100,000

Differences in allometric characters of Pratylenchus penetrens life cycle stages. Table 3.10.

		Allometric character	character	
Stage	"a" value ²	"B" value	"c" value	Biomass (ug)
2 nd	16.2a	2.3a	17.8ab	0.018a
₃ rd	24.7d	2.9b	21.40c	0.038a
4 th	28.56e	3.6c	18.6ab	0.065b
Adult Males	22.7c	3.4c	17.6a	0.104c
Adult Females	19.5b	4.1d	19.2b	0.326d

l Column means followed by the same letter are not significantly different (P = 0.05) according to the Student Newman Keuls test.

²Body length/body wieght

³Body length/oesophagus length

4 Body length/tail length

⁵Body width x body length

16 x 100.000

in experimental procedures could therefore lead to inaccuracies. The most desirable procedure is to take large numbers of samples usually greater than 50 (Langdon, 1963; Elliott, 1973; Goodell, 1978). Unfortunately while large sample numbers ensure relatively accurate biological information, there are disadvantages associated with time and cost involved in taking and processing large numbers of samples.

Therefore a compromise must be made between statistical accuracy, labor and cost to determine the optimum sample size. First it is necessary to determine the degree of experimental error which can be tolerated and still retain a substantial amount of accuracy. The percent error can be expressed as the standard error of the mean (S.E.). The ratio of the standard error to the mean (S.E./ $\bar{\mathbf{x}}$) represents an index of precision (D) (Elliott, 1973). The calculation of the index varies depending on the nature of the distribution, i.e. whether normal, poisson or aggregated (negative binomial). For the normal or random distribution the index of precision is calculated as:

$$D = S.E_{\bar{x} / \bar{x}}$$

$$D = \frac{1}{x} \sqrt{\frac{s^2}{n}}$$

and the number of samples which should be taken is calculated from this equation as:

$$n = \frac{s^2}{D^2 \bar{x}^2}$$

For a poisson type distribution the index of precision is calculated as:

$$D = \frac{1}{x} \sqrt{\frac{x}{n}}$$

and the number of samples which should be taken is calculated as:

$$n = \frac{\bar{x}}{D^2 \bar{x}^2}$$

The calculation of the index of precision for an aggregate type distribution approximating a negative binomial distribution involves calculation of the parameter K which is an index of dispersion (Elliott, 1973). Various methods for calculation of K can be employed (Elliott, 1973). The choice of method is to some extent dependent on the mean values, number of samples and degree of aggregation. With a calculated K value the index of

precision for a negative binomial distribution can be calculated as:

$$D = \frac{1}{\bar{x}} \sqrt{\frac{\bar{x}}{n} + \frac{\bar{x}^2}{n K}}$$

$$D = \sqrt{\frac{1}{n \cdot x} + \frac{1}{n \cdot K}}$$

and the number of samples which should be taken is calculated as:

$$n = \frac{1}{D^2} \left(\frac{1}{\bar{x}} + \frac{1}{K} \right)$$

For example if a standard error of the mean equal to 20% can be tolerated then

$$D = 0.2$$

and

$$n = \frac{1}{0.2^2} \left(\frac{1}{13.98} + \frac{1}{1.63} \right)$$

$$n = 17$$

for the sample size which should be taken for sample level A of Table 3.1 where the mean value was 13.98 and K was 1.63. In this analysis K was calculated according to the moment method (Elliott, 1973) from the equation:

$$K = \frac{\bar{x}^2}{s^2 - \bar{x}}$$

where \bar{x} is the arithmetic mean and S^2 is the variance of the sample. In this study a sample size of 184 was employed for estimating the mean value of the population of \underline{P} . penetrans in the field for this sample level. Calculations indicate that allowing for a standard error of 20% of the mean, a sample size of 17 could be employed. The sample size would however increase as the degree of precision is increased. For example if a standard error of only 5% of the mean could be tolerated then

$$D = 0.05$$

and

$$n = \frac{1}{0.05^2} \left(\frac{1}{13.98} + \frac{1}{1.63} \right)$$

$$n = 308$$

Therefore to obtain a precision of a 5% error the optimum sample size is 308. This is larger than the sample size employed. The relative cost of taking and processing these samples however limited the sample size to 184.

Calculation of a desirable sample size based on the degree of error which can be tolerated is valuable however for initial decisions on choice of sample size.

Experimental procedures for the survey of 80 bean fields in Michigan involved collecting two samples of six soil cores from one hectare size areas within bean fields. With this sampling procedure Pratylenchus spp. were found in 68% of the fields and Tylenchorhynchus spp. were present in 45% of the 80 fields. The results of the study on field distribution of Pratylenchus penetrans indicated that nematodes are generally found in an aggregated-type distribution in the field, and therefore detection of nematodes through use of random sampling procedures should involve use of large sample sizes. However the economic and time factors involved in conducting this survey limited the sample size to two replicates. This allowed for only one degree of freedom in analysis of variance, and large within field variances were obtained resulting in a few significant differences (P = 0.05) among population densities within a field (Table 3.3). The absence of plant parasitic nematodes in some fields could be related to the inability to detect populations from an aggregate-type distribution with the use of random sampling procedures.

The results, however, indicated the presence of plant parasitic nematodes in bean fields and can be viewed as an "alert", which should not be neglected.

The highest population densities were generally associated with sandy soils. This is expected and in agreement with report findings on relationships between nematode population densities and soil types (Oostenbrink, 1966; Norton, 1978).

Information from this survey can be useful in conjunction with information on economic thresholds of P. penetrans. The population densities in fields in different counties together with an economic threshold density could be used to estimate economic losses due to this nematode species in dry bean production in the counties examined. The data though useful has its limitations in that the observed densities are related to a particular time of the season and may be higher or lower at other periods. The dynamic nature of the nematode species must also be considered in estimating losses. The data provides a basis for thought for research on interactions of Pratylenchus spp. and dry beans.

The development of an experimental population of P. penetrans was necessary to ensure that individuals

used in preparing inoculum densities for research experiments were obtained from similar genetic source and should be typical of one race of this species. population densities obtained at the time of sampling is no indication of the maximum reproductive potential of this species on beans. The length of the life cycle varies depending on the temperature and the associated host crop. The absence of populations associated with 64% of the 100 bean plants could be due to the high mortality, detection procedure inefficiency (Kotcon, 1979), or to the life cycle stage at the time of sampling. Nematodes could have been present in the egg stage or first stage larvae within the eggs and samples were not processed for detection of these stages. The presence of P. penetrans on 36% of the bean plants indicated that these nematodes were able to survive, move towards susceptible roots, penetrate, feed and reproduce within these roots. While some of the females may have been fertilized before inoculation, males were added to increase the likelihood of fertilization.

Morphometric characters of nematodes are influenced to a large extent by the environmental conditions of moisture, temperature and also the host crop. Tarte

and Mai (1976) observed considerable variation in morphometric characters of P. penetrans developed on alfalfa callus tissue. Comparison of morphometric characters of the population of P. penetrans developed on Sanilac navy beans in culture boxes in the green-house at a temperature of 77 ± 10 C with the original population of P. penetrans described by Sher and Allen (1953) and Loof (1960) indicated some differences. The mean length, "a" value and "b" value for the female described by these taxonomists were 530 µm, 26 and 5.8 respectively, while values of 566 µm, 19.5 and 4.1 were obtained for similar morphometric and allometric characters of the female from the population developed for research experiments in the greenhouse.

Although differences in body width were statistically significant (P = 0.05), identification of life cycle stages through use of this morphometric character is not feasible because of the narrow range in values and small size involved. The narrow range in values obtained for oesophagus and stylet lengths respectively limit the usefulness of these characters for identification of stages. Because of the significant differences and wide ranges in values for body length, ovary length, biomass, "a" value, "b" value and "c" value these

morphometric and allometric characters were used to develop a key to the life cycle stages of <u>Pratylenchus</u> <u>penetrans</u> (Table 3.11). The egg and first stage larvae were not easily recovered and can be readily identified if found. These two stages were not included in the key because they were not extracted and enumerated in the sampling procedures.

Table 3.11 Key to the life cycle stages of Pratylenchus penetrans

1.	Spicules absent, body length 193.3-566.3 µm 2
	Spicules present, body length, 4378 ± 52.7 µm
	biomass, 0.104 \pm 0.017 μ g, "a" value, 22.7 \pm 4.2
2.	Body length, 193.3 ± 9.5 μg, ovary not visible,
	biomass, 0.018 ± 0.001 µg, "a" value, 16.2 ± 1.7,
	"b" value 2.3 ± 0.2, vulva not conspicuous
	Second-stage juveniles
	Ovary present, body length greater than 193.3 +
	9.5 μm
3.	Ovary length, 201.8 \pm 14.6 μm "a" value,
	24.7 ± 2.2, "b" value, 2.9 ± 0.4, ovary slightly
	conspicuous Third-stage juveniles
	Body length greater than 334.4 \pm 30.6 μm , vulva
	highly conspicuous, ovary well-developed 4
4.	Body length, 440.2 \pm 28.9 μ m, ovary length, 258.5 \pm
	18 μ m, biomass, 0.065 \pm 0.008 μ g, "a" value, 28.6 \pm
	2.1 Fourth-stage juveniles
	Body length, 566.3 \pm 55.8 μ m, ovary length, 352.5 \pm
	21.6 µm, vulva highly conspicuous, ovary well-
	developed, spermatheca present, "a" value, 19.5 ±
	2.4, "b" value, 4.1 ± 0.4, "c" value, 19.2 ± 2.6,
	biomass, 0.316 ± 0.108 µg Adult female

3.3 Pest-crop Interactions

3.3.1 Pathogenicity

A survey on the incidence of nematodes in dry bean production in Michigan indicated that root-lesion nematodes (<u>Pratylenchus</u> spp.) were present in bean fields and <u>P. penetrans</u> was the most predominant plant parasitic nematode species encountered. The objective of this study was to evaluate the pathogenicity of <u>Pratylenchus</u> <u>penetrans</u> on dry beans.

3.3.1.1 Method

The experiment involved a completely randomized design of six replicates of six treatments including population densities of 0, 25, 50, 100, 150 and 300

P. penetrans per 100 cm³ soil. Thirty-six 4.72 cm clay pots were filled with 3000 cm³ sandy clay loam soil containing the desired densities which were obtained by mixing steam sterilized sandy clay loam soil with

P. penetrans infested soil from culture boxes in the greenhouse. Three navy bean seeds cv Sanilac were planted in the soil in each pot. Plants were thinned out two days after germination leaving one seedling in each pot. The plants were watered daily and maintained at 80 ± 10 C in the greenhouse for a period of 95 days. Plant height, leaf area, shoot fresh weight, root weight, root length

and dry bean yield were recorded after this growth period. Shoot systems were oven dried at 30 \pm 5 C and shoot dry weight was recorded. Soil and root samples were taken for nematode analyses (3.1.1.2 and 3.1.2.2). P. penetrans were extracted and enumerated (3.1.3-3.1.4).

3.3.2 Susceptibility of six navy bean varieties to Pratylenchus penetrans

Because of genetic variability the response to infection by plant parasitic nematodes may vary among cultivars of plant species. The discovery of nematode resistant or tolerant bean varieties is important for development of nematode control practices in dry bean production. This study was designed to determine the effect of P. penetrans on six navy bean cultivars.

3.3.2.1 Method

The experiment involved a completely randomized design of three replicates of six bean varieties. One hundred and twenty-six 2.36 cm clay pots were filled with 1000 cm³ noninfested P. penetrans steam sterilized sandy clay loam soil, and 126 similar clay pots were filled with 1000 cm³ sandy clay loam soil containing densities of 150 P. penetrans per 1000 cm³ soil respectively. The desired densities were obtained by mixing steam sterilized

<u>P. penetrans</u> infested soil obtained from culture boxes. Three navy bean seeds of each variety - Sanilac, Seafarer, Gratiot, Saginaw, Kentwood and Tuscola respectively were planted in the soil in each pot. Plants were thinned out two days after germination leaving one seedling in the soil in each pot. Plants were watered daily and maintained at 75 ± 10 C in the greenhouse for a period of 108 days. Plant height, shoot dry weight, leaf area and yield were recorded at seven intervals during this growth period. Relative growth rates were calculated (3.1.8). Soil and root samples were taken for nematode analyses (3.1.1.2 and 3.1.2.2) and <u>P. penetrans</u> were extracted and enumerated (3.1.3-3.1.4).

3.3.3 Responses of Sanilac navy beans to infection with different initial population densities of Pratylenchus penetrans

Plants are subject to inherent ontogenic drifts, and responses to pests and diseases vary at different stages in the growth and development of plants. The objective of this study was to examine the responses of navy bean plants to infection with varying densities of P. penetrans at different periods during the growth and development of these plants, and to examine the population

dynamics of P. penetrans associated with navy beans.

3.3.3.1 Method

The experiment consisted of four replicates of eight treatments including population densities of 0, 5, 10, 20, 40, 80, 160 and 320 P. penetrans per 100 cm^3 soil. Three hundred and eight 2.36 cm clay pots were filled with 1000 cm³ steam sterilized sandy clay loam soil. P. penetrans were extracted from roots of navy bean plants removed from culture boxes in the greenhouse and a suspension containing a calculated density of P. penetrans was prepared. The desired densities for this experiment were then added to the soil in respective pots. Forty-four 2.36 cm clay pots were filled with steam sterilized sandy clay loam soil to serve as controls. Three navy bean seeds cv Sanilac were planted in the soil in each pot. Plants were thinned out two days after germination leaving one seedling in the soil in each pot. Plants were watered daily and maintained at 80 ± 10 C in the greenhouse for a period of 95 days. Plant height, leaf area, shoot fresh weight and root weight of plants were recorded at 10 intervals during the growth period. Shoot systems were oven dried at 30 \pm 5 C and shoot dry weight was recorded.

Dry bean yield was taken at the end of the 95 day

growth period. Soil and root samples were taken at 11 intervals (3.1.1.2 and 3.1.2.2) and \underline{P} . penetrans were extracted and enumerated (3.1.3-3.1.4). Data on shoot dry weight were used to calculate the relative growth rates of plants (3.1.8). Initial nematode mortality was calculated for each initial density of \underline{P} . penetrans. Sampling dates were converted to accumulated degree days (3.1.7).

3.3.4 Results

3.3.4.1 Pathogenicity

Final root and soil population densities of \underline{P} . penetrans were significantly (P = 0.05) higher than initial population densities (Figure 3.24). Regression of the log of the final root population densities on log of the initial population densities of \underline{P} . penetrans indicated a significant linear correlation and the equation for the relationship is:

$$log Y = 0.10 + 0.99 (log X)$$

$$R = 0.99$$

where $Y = \log$ of final densities of \underline{P} . $\underline{penetrans}$ plus one and $X = \log$ of initial densities of \underline{P} . $\underline{penetrans}$ plus one. The regression line for this relationship indicated that population densities in navy bean roots increased with increase in initial soil population densities of

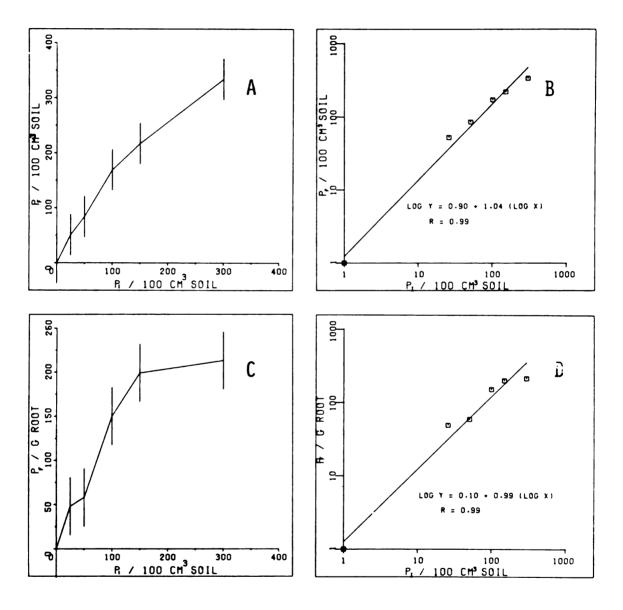
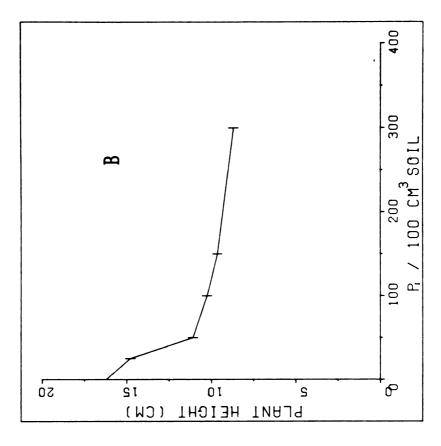
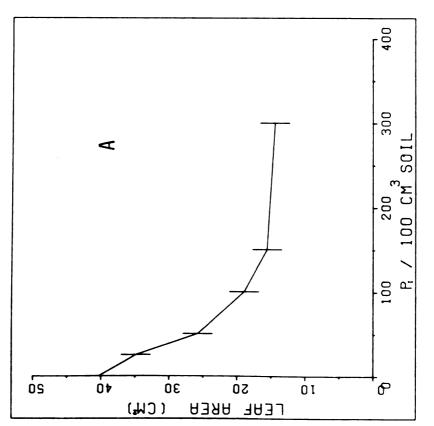


Figure 3.24. Influence of initial soil population densities of P. penetrans on final soil population densities (A & B), and final root population densities (C & D) of P. penetrans associated with navy beans.

Vertical bars represent 95 % confidence intervals.


P. penetrans (Figure 3.24D).


Final soil population densities increased with increase in initial soil population densities (Figure 3.24C). Regression of the log of initial soil densities on soil final densities of \underline{P} . $\underline{penetrans}$ indicated a significant linear relationship with a high correlation coefficient value (R = 0.99) (Figure 3.24B). The equation for the relationship is:

$$Log Y = 0.90 + 1.04 (log X)$$
 $R = 0.99$

where $Y = \log$ of final densities of \underline{P} . penetrans plus one and $X = \log$ of initial densities of \underline{P} . penetrans plus one.

The growth and yield of plants exposed to initial soil densities of 50, 100, 150 and 300 P. penetrans per 100 cm³ soil were significantly (P = 0.05) lower than that of noninfected plants exposed to an initial soil density of 0 P. penetrans (Figures 3.25-3.27). At the time of harvest the initial density of 25 P. penetrans per 100 cm³ soil had no significant (P = 0.05) effect on plant height, shoot fresh weight, leaf area and root length. Shoot dry weight was significantly (P = 0.05) decreased by this density while root weight and root length were significantly (P = 0.05) increased by 25 P. penetrans per 100 cm³ soil (Figure 3.26B,C & D).

Influence of different initial population densities of P. penetrans on leaf area (A) and height (B) of navy bean plants. Figure 3.25.



Figure 3.26. Effect of different initial population densities of P. penetrans on shoot fresh weight (A), shoot dry weight (B), root weight (C), and root length (D) of navy beans.

Vertical bars represent 95 % confidence intervals.

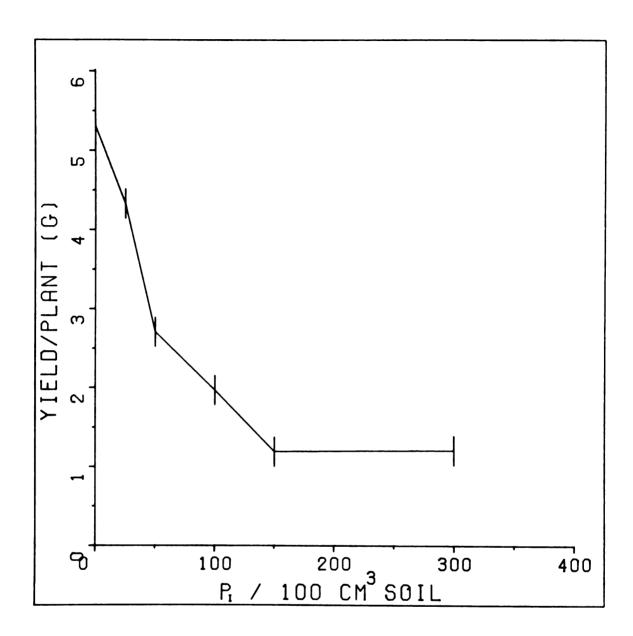


Figure 3.27. Effect of different initial population densities of P. penetrans on navy bean yield. Vertical bars represent 95 % confidence intervals.

3.3.4.2 Susceptibility of six navy bean varieties to Pratylenchus penetrans

P. penetrans were recovered from roots of all six bean varieties. Higher total root and soil densities of P. penetrans were associated with Sanilac, Seafarer and Tuscola varieties compared to Gratiot, Saginaw and Kentwood varieties (Figure 3.28). Three maxima in population densities were evident at 357, 927 and 1132 DD 10 C respectively on Sanilac, Seafarer and Tuscola varieties. Population densities associated with Gratiot and Kentwood varieties initially decreased until 340 DD 10 C and then steadily increased reaching maxima 785 DD 10 C (Figure 3.28). This was followed by another decrease at 927 DD 10 C and then an increase at the end of the growth period (Figure 3.28).

Plant heights were significantly lower for

P. penetrans infected plants of Sanilac, Seafarer and

Tuscola bean varieties (Figure 3.29A-C; Table Al). Plant
heights increased with increase in degree days reaching
a plateau at 1110 DD 10 C (Figure 3.29). The difference
in response to infection by P. penetrans is evident from
the equations for the relationship. For noninfected

Tuscola plants the equation for plant height is:

$$Y = 36.79 - 6152/X$$
 ($R^2 = 0.99$)

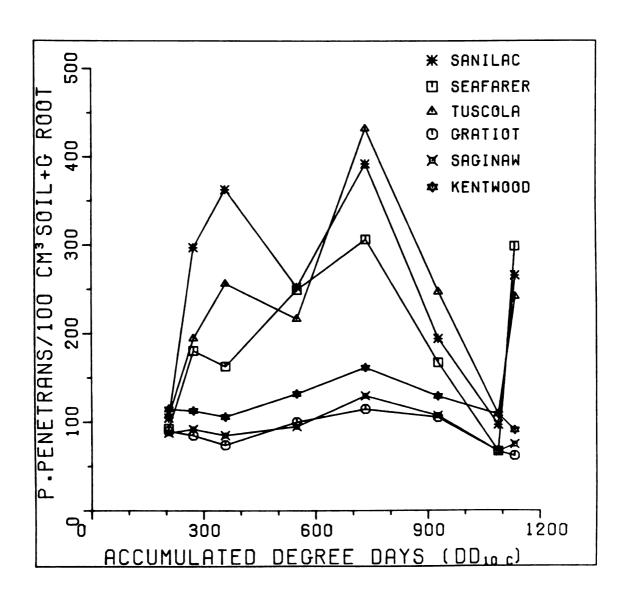


Figure 3.28. Population dynamics of \underline{P} . $\underline{penetrans}$ associated with six navy bean varieties.

Figure 3.29. Influence of P. penetrans on height of six navy bean varieties over the growth period.

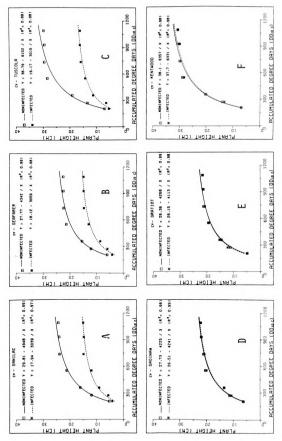


Figure 3.29.

where Y = plant height and X = accumulated degree days at base 10 C. For \underline{P} . penetrans infected Tuscola plants, however, the equation for the relationship is:

$$Y = 19.17 - 3015/X$$
 ($R^2 = 0.98$)

The comparison of the two equations show that plant heights were lower in \underline{P} . $\underline{penetrans}$ infected plants. For \underline{P} . $\underline{penetrans}$ infected Gratiot plants the relationship between plant height and accumulated degree days is:

$$Y = 26.36 - 4268/X$$
 ($R^2 = 0.99$)

and for noninfected Gratiot plants the equation for the relationship is:

$$Y = 26.15 - 4113/X$$
 ($R^2 = 0.98$)

Comparison of these two equations show that heights of Gratiot plants were not significantly influenced by P. penetrans.

The relationship between root weight and accumulated degree days correlated well with a second degree polynomial type relationship as expressed by the curves in Figure 3.30A-F. Root weight increased to maxima at 750 DD 10 C and then decreased rapidly until 1088 DD 10 C (Figure 3.30). Root weights of Sanilac, Seafarer and Kentwood varieties were significantly lower (P = 0.05) in P. penetrans infected plants compared to those of noninfected plants, while for Gratiot, Saginaw and Kentwood varieties there

Figure 3.30. Influence of <u>P</u>. <u>penetrans</u> on root weight of six navy bean varieties over the growth period.

Equations for the relationships between root weight and accumulated degree days at base 10 C.

Y = root weight; X = accumulated degree days. NI = noninfected; $I = \underline{P}$. $\underline{penetrans}$ infected

cv- Sanilac

NI: Y = -2.76317835468 + 0.021347254052 X- 0.000001659285771 X^2 ($R^2 = 0.92$)

I: Y = -0.93304277061 + 0.00924446617497 X- 0.000007408234021 X^2 ($R^2 = 0.86$)

cv- Seafarer

NI: $Y = -2.84413943365 + 0.0219605136831 X - 0.0000170987044 X^2 (R^2 = 0.87)$

I: $Y = -0.810740336604 + 0.00841788236324 X - 0.000006740109478 X^2 (R^2 = 0.87)$

cv- Tuscola

NI: $Y = -2.92376327034 + 0.0234429064198 X - 0.00001790035985 X^2 (R^2 = 0.92)$

I: $Y = -0.87282288469 + 0.00981501061033 X - 0.0000078876075 X^2 (R^2 = 0.87)$

cv- Saginaw

NI: $Y = -2.39974783238 + 0.0196105924317 X - 0.00001514828469 X^2 (R^2 = 0.96)$

I: Y = -2.44222442166 + 0.0199420467434 X- 0.00001556483007 X^2 ($R^2 = 0.97$)

cv- Gratiot

NI: Y = -2.33094449815 + 0.019195936554 X- 0.00001478955799 X^2 ($R^2 = 0.90$)

I: Y = -1.99770667355 + 0.0183378954379 X- 0.00001444678826 X^2 ($R^2 = 0.90$)

cv- Kentwood

NI: $Y = -2.8314348122 + 0.0250758319854_2X$ - 0.00001946851258 X^2 ($R^2 = 0.87$)

I: $Y = -2.65487564121 + 0.0241572456405 x - 0.00001882603424 x^2 (R^2 = 0.89)$

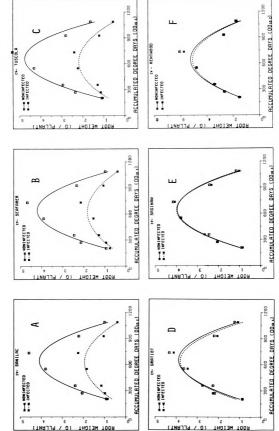


Figure 3.30.

were no significant (P = 0.05) differences in root weight of noninfected and \underline{P} . penetrans infected plants (Figure 3.30; Table A2).

Leaf area of Sanilac, Seafarer and Tuscola plants were significantly (P = 0.05) decreased by P. penetrans while differences in leaf area in noninfected and P. penetrans infected Saginaw, Gratiot and Kentwood varieties were less marked (Table A3).

Dry bean yield from Sanilac, Seafarer and Tuscola varieties were significantly (P = 0.05) lower in \underline{P} . penetrans infected plants than in noninfected plants (Figure 3.31). For Gratiot, Saginaw and Kentwood varieties there were no significant (P = 0.05) differences in dry bean yield in \underline{P} . penetrans infected and noninfected plants (Figure 3.31).

For the varieties Sanilac, Seafarer and Tuscola the relative growth rates of P. penetrans infected plants were lower than those of noninfected plants (Figure 3.32A, B, C). For Sanilac plants, relative growth rate was higher in noninfected plants throughout the growth period (Figure 3.32A), while growth rate of noninfected plants of Seafarer and Tuscola varieties were higher than that of P. penetrans infected plants from initial growth up to 930 DD 10 C, after which there was no difference in

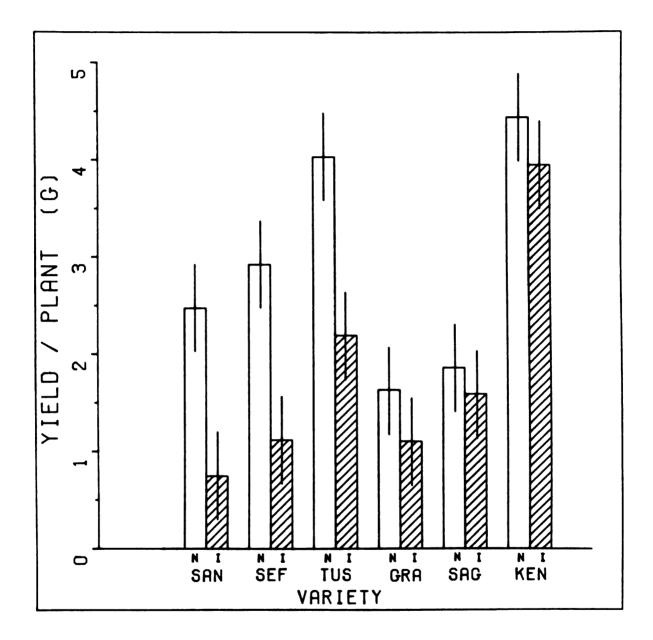


Figure 3.31. Effect of P. penetrans on yield of six navy bean varieties.

Vertical bars represent 95 % confidence intervals.

N = noninfected; I = P. penetrans infected San = Sanilac, Sef = Seafarer, Tus = Tuscola Gra = Gratiot, Sag = Saginaw, Ken = Kentwood.

Figure 3.32. Effect of P. penetrans on relative growth rate of six navy bean varieties over the growth period.

Equations for the relationships between relative growth and accumulated degree days at base 10 C.

Y = relative growth rate per week; X = accumulated degree days.

NI = noninfected ; I = P. penetrans infected

```
cv- Sanilac
```

NI: $Y = 0.0755662541602 + 0.0009430491099 X^2 - 0.000001340226071 X^2 (R^2 = 0.89)$

I: Y = 0.0575269502686 + 0.00108419798777 X- 0.000001352304453 X^2 ($R^2 = 0.92$)

cv- Seafarer

NI: Y = 0.0789468044517 + 0.0009585056417 X- 0.000001357854103 X^2 ($R^2 = 0.85$)

I: Y = 0.02323289969 + 0.0009318011136 X- 0.000001231264458 X^2 ($R^2 = 0.85$)

cv- Tuscola

NI: $Y = 0.0705445316036 + 0.0009825407043 X - 0.000001353147372 X^2 (R^2 = 0.78)$

I: $Y = 0.0026517726648 + 0.00104944243762 X - 0.0000013249396614 X^2 (R^2 = 0.86)$

cv- Saginaw

NI: $Y = 0.0640298556787 + 0.0010262552332 X - 0.000001387527968 x^2 (R^2 = 0.80)$

I: Y = 0.0708459814593 + 0.00100470707048 X- 0.000001391798334 X^2 ($R^2 = 0.79$)

cv- Gratiot

NI: $Y = 0.0800559470947 + 0.00101491572655 X - 0.000001412741105 X^2 (R^2 = 0.85)$

I: $Y = 0.080009763156 + 0.0009800761301_X - 0.000001407212762_X^2 (R^2 = 0.89)$

cv- Kentwood

NI: $Y = 0.0405285386304 + 0.00106061667648 X - 0.000001423001624 X^2 (R^2 = 0.89)$

I: $Y = 0.028449637433 + 0.00107961761902 X - 0.000001439563895 X^2 (R^2 = 0.88)$

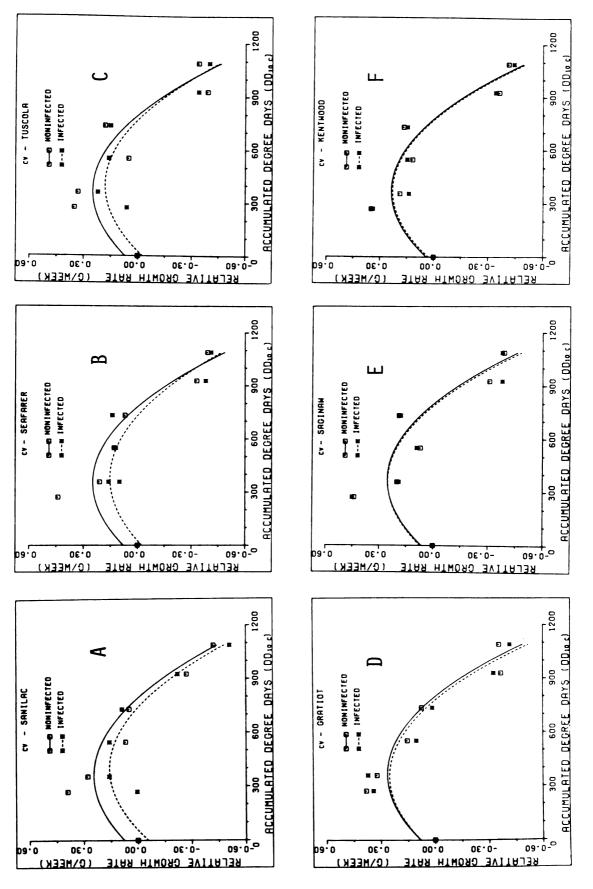


Figure 3.32.

relative growth rates in noninfected and P. penetrans infected plants (Figure 3.32).

Relative growth rates of P. penetrans infected and noninfected Saginaw, Gratiot and Kentwood bean plants were similar (Figure 3.32D-F). The relationship between relative growth rate and degree days correlated well with a second degree polynomial type relationship as indicated by the equations and curves for the relationships between relative growth rate and accumulated degree days (Figure 3.32).

For Sanilac noninfected plants the equation for the relationship is:

$$Y = 0.0755662541602 + 0.0009430491099 X$$

- 0.000001340226071 X^2 ($R^2 = 0.89$)

while the equation for Sanilac P. penetrans infected plants is:

$$Y = 0.057526902686 + 0.00108419798777 X$$

- 0.000001352304453 X^2 ($R^2 = 0.92$)

where Y = relative growth rate per week and X is accumulated degree days at base 10 C. The comparison of the equations shows the differences in growth rate of infected and noninfected plants.

A comparison of equations expressing the relationship between relative growth rate and accumulated degree days for noninfected and infected plants of Gratiot variety indicated that there was no significant difference in relative growth rates of noninfected and P. penetrans infected plants. For noninfected plants the equation for the relationship is:

$$Y = 0.0800559470947 + 0.00101491572655 X$$

- 0.000001412741105 X^2 ($R^2 = 0.85$)

and for P. penetrans infected plants the equation for the relationship is:

$$Y = 0.080009763156 + 0.0009800761301 x$$

- 0.000001407212762 x^2 ($R^2 = 0.89$)

3.3.4.3 Responses of Sanilac navy beans to infection with different densities of Pratylenchus penetrans

Final total population densities in roots and soil associated with navy beans increased with increase in initial population densities of P. penetrans and the relationship between the log of initial and the log of final densities was correlated with a linear function (Figure 3.33) and expressed by the equation:

$$Log Y = 0.34 + 0.93 (log X)$$
 (R = 0.96)

where Y = log of final densities of \underline{P} . penetrans plus one and X = log of initial densities of \underline{P} . penetrans plus one. The percentage initial mortality was 20%, 20%, 50%, 11%, 24% and 38% for initial densities of 5, 10, 20, 80, 160



Figure 3.33. Relationship between total (Root + soil) final population densities of P. penetrans and initial soil population densities of P. penetrans.

and 320 P. penetrans per 100 cm³ soil respectively. For an initial density of 40 P. penetrans per 100 cm³ soil the initial mortality was not obtained as population densities were higher than initial density at the time of sampling at 254 DD 10 C (Tables A4-1,2 & 3).

Population densities fluctuated over time. Two maxima in root population densities were evident and three maxima in soil population densities were observed (Figure 3.34) for populations associated with an initial density of 320 P. penetrans per 100 cm³ soil. Root population densities increased steadily from initial growth until 523 DD 10 C and then decreased until 603 DD 10 C. Densities increased after this period reaching the second maxima at 865 DD 10 C (Figure 3.34). In the soil, densities decreased initially as nematodes entered the roots until 341 DD 10 C. The three maxima in population densities were observed at 434, 603 and 1094 DD 10 C (Figure 3.34).

Lesions were present on roots of plants exposed to \underline{P} . \underline{P} penetrans (Figures 3.35-3.36). These lesions are characteristic of the damage caused by root lesion nematodes.

The heights of plants exposed to initial densities of 20, 40, 80, 160 and 320 \underline{P} . penetrans per 100 cm³ soil

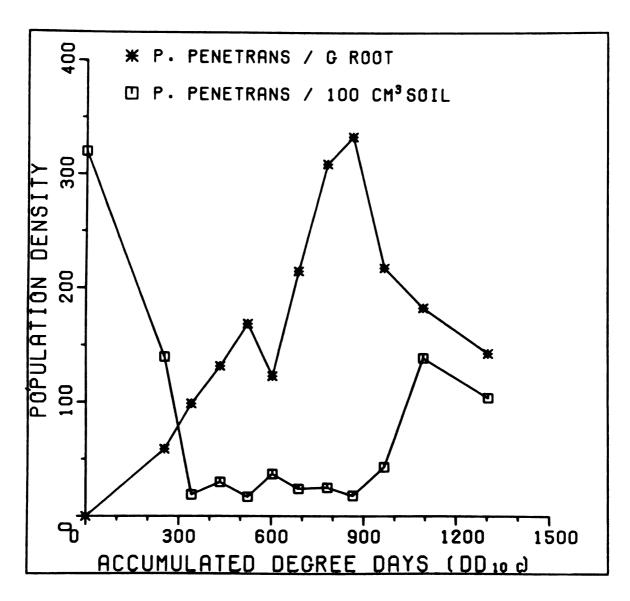


Figure 3.34. Population dynamics of P. penetrans associated with navy beans exposed to an initial density of 320 P. penetrans per 100 cm³ soil.

Figure 3.35. Root-lesions produced by <u>P. penetrans</u> on navy bean roots.

P_i = initial population density per 100 cm³ soil.

Le = lesion

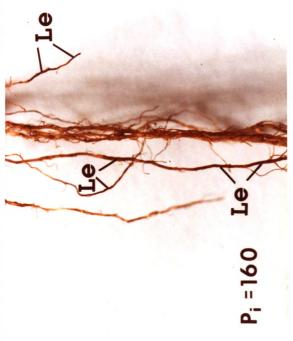
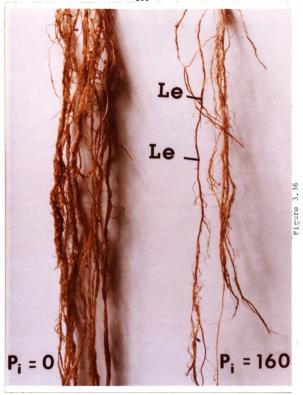
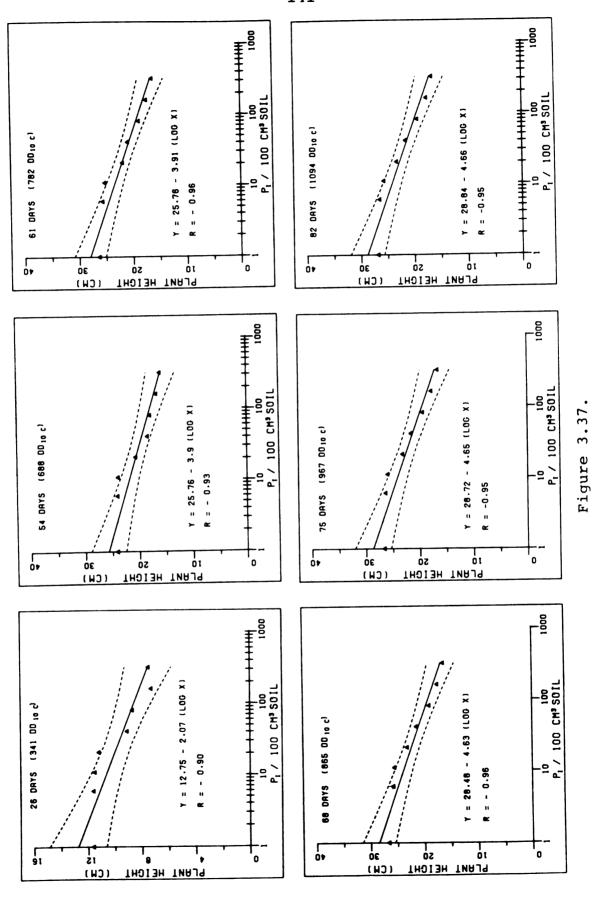
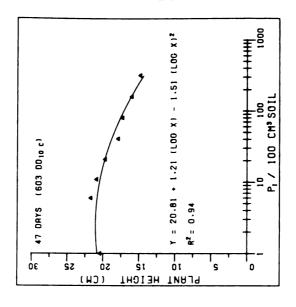



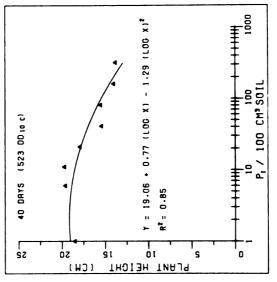
Figure 3.35

Figure 3.36. Comparison of a noninfected and a P. penetrans infected navy bean root system.

Le = lesion.




were lower than the heights of noninfected plants (Figures 3.37-3.40). The relationship between plant height and log of initial population density was adequately expressed by linear functions with significant correlation coefficients (R) values for six time periods (341, 688, 782, 865, 967 and 1094 DD 10 C) (Figure 3.37). However for the time periods associated with 434, 523 and 603 DD 10 C the relationship between plant height and the log of initial population densities was correlated to second degree polynomial relationships (Figure 3.38). The curves for these relationships indicated increases in plant height at low initial population densities of P. penetrans. These increases in plant height were not evident at the other six time periods of growth.


The relationship between plant height and accumulated degree days was curvilinear indicating increases in plant height with increase in degree days (Figures 3.39-3.40).

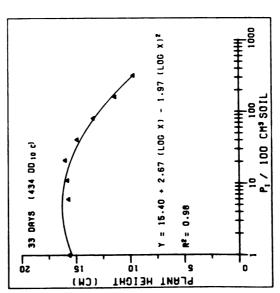

Initial population densities above 20 P. penetrans per 100 cm³ soil significantly (P = 0.05) reduced root area of plants (Figures 3.41-3.42). The relationship between the log of initial population densities of P. penetrans and root area of navy beans was expressed

Figure 3.37, Relationships between navy bean plant height and initial soil population density of \underline{P} . $\underline{penetrans}$ at different periods of \underline{growth} .

Relationship between height of navy bean plants and initial population density of \underline{P} . $\underline{penetrans}$ at different growth periods. Figure 3. 38.

Figure 3.39. Effect of <u>P</u>. <u>penetrans</u> on height of navy bean plants over the growth period.

Equations for the relationships between plant height and accumulated degree days at base 10 C.

Y = plant height; X = accumulated degree days P_i = initial soil population density of \underline{P} . penetrans per 100 cm³soil.

$$P_i = 0$$
 $Y = 34.21 - 7519 / X (R = -0.99)$

$$P_{\uparrow} = 5$$
 $Y = 33.94 - 7369 / X (R = -0.99)$

$$P_i = 10 \quad Y = 33.32 - 7176 / X \quad (R = -0.99)$$

$$P_i = 20 \quad Y = 29.52 - 6064 / X \quad (R = -0.99)$$

$$P_i = 40 \quad Y = 27.34 - 5759 / X \quad (R = -0.99)$$

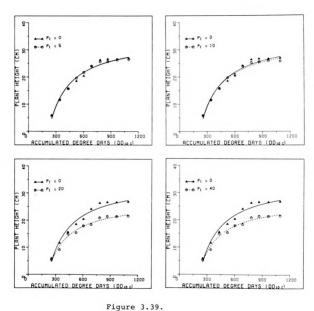
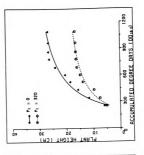
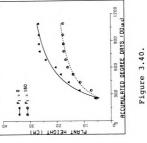


Figure 3.40. Effect of <u>P</u>. <u>penetrans</u> on heights of navy bean plants over the growth period.

Equations for the relationships between plant height and accumulated degree days at base 10 C.


Y = plant height ; X = accumulated degree days. P_i = initial soil population density of \underline{P} . $\underline{penetrans}$ per 100 cm³ soil.


$$P_i = 0$$
 $Y = 34.21 - 7519 / X (R = -0.99)$

$$P_i = 80 \quad Y = 24.84 - 5042 / X \quad (R = -0.99)$$

$$P_i = 160 \quad Y = 22.87 - 4724 / X \quad (R = -0.98)$$

$$P_i = 320 \quad Y = 21.40 - 4374 / X \quad (R = -0.98)$$

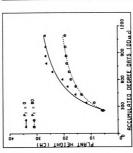


Figure 3.41. Effect of different initial population densities of \underline{P} . $\underline{penetrans}$ on root area of navy bean \underline{plants} .

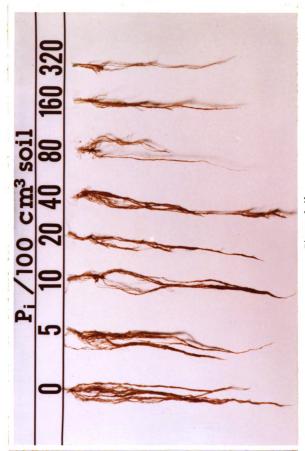


Figure 3.41

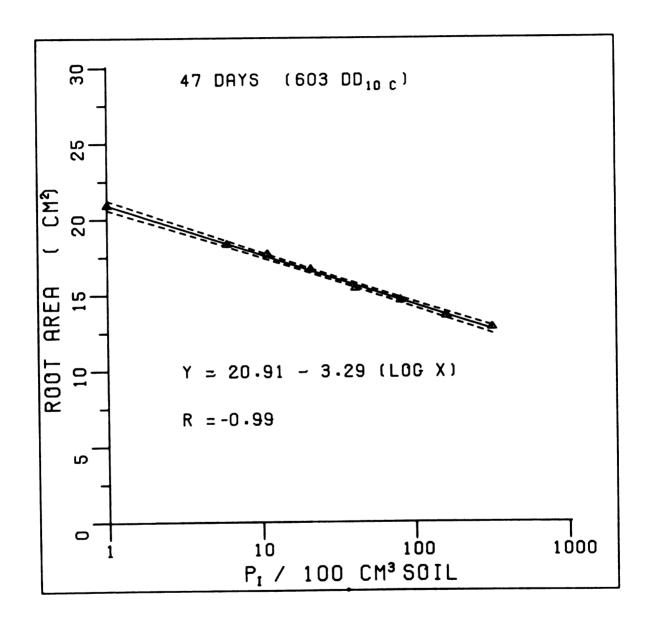


Figure 3.42. Relationship between root area of navy bean plants and the log of initial density of P. penetrans at 688 DD 10 C.

as a linear function indicating decreases in root area with increase in initial population densities of P. penetrans. This is supported by the high correlation coefficient R = 0.99 (Figure 3.42).

The relationship between root area and accumulated degree days was first examined as a linear function from 254 to 688 DD 10 C and from 782 to 1094 DD 10 C (Figure 3.43). The low degree of correlation expressed by the R value, however indicated that a linear function did not adequately express the relationship. Second degree polynomial functions were developed to express the relationships between root area and accumulated degree days (Figures 3.43-3.45).

Leaf area, shoot fresh weight, shoot dry weight and root weight were significantly (P = 0.05) decreased by initial population densities above 40 P. penetrans per 100 cm³ soil (Tables A5-A8). Dry bean yield was significantly reduced by initial population densities above 40 P. penetrans per 100 cm³ soil (Figure 3.46). The relationship between initial densities of P. penetrans and dry bean yield was expressed by a linear function (Figure 3.47) and the equation for the relationship is:

Y = 3.16 - 0.73 (log X) (R = -0.97)

where Y = dry bean yield and X = initial density of

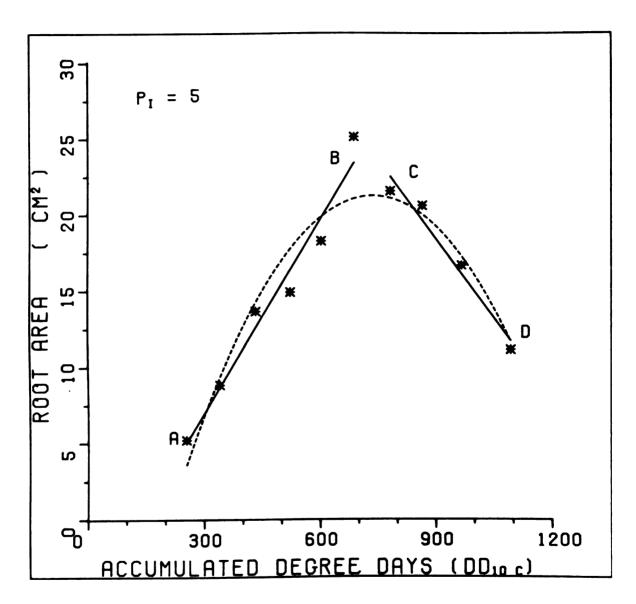


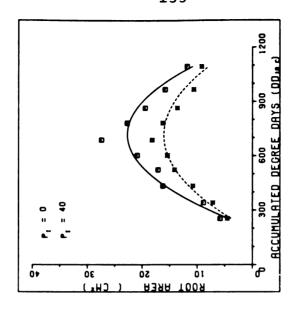
Figure 3.43. Comparison of linear regression functions and a second degree polynomial function for the relationship between root area of navy bean plants and accumulated degree days.

Figure 3.44. Influence of different initial population densities of P. penetrans on root area of navy bean plants over the growth period.

Equations for the relationships between root area and accumulated degree days at base 10 C.

Y = root area ; X = accumulated degree days.

 P_i = initial soil population density of \underline{P} . penetrans per 100 cm³ soil


$$P_i = 0$$
 $Y = -21.0092565907 + 0.12148432406 X- 0. 0008441463627 X^2 ($R^2 = 0.89$)$

$$P_i = 5$$
 $Y = -19.8948515196 + 0.111595512098 X- 0.000075622876 X^2 $(R^2 = 0.91)$$

$$P_i = 10$$
 $Y = -18.7327810622 + 0.108994759853 X- 0.00007494743561 X^2 ($R^2 = 0.92$)$

$$P_i = 20$$
 $Y = -16.667328816 + 0.0969584251 X- 0.00006708621327 X^2 $(R^2 = 0.94)$$

$$P_i = 40$$
 $Y = -13.1817518989 + 0.0816703379272 X $-0.00005761614299 X^2$ ($R^2 = 0.92$)$

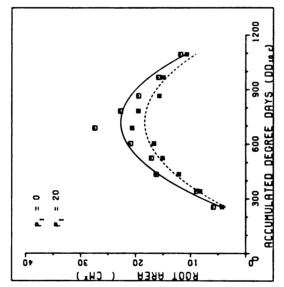
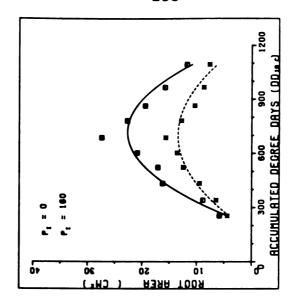
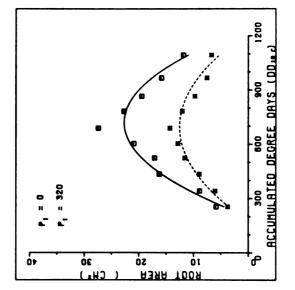


Figure 3.44.

Figure 3.45. Influence of initial population densities of P. penetrans on root area of navy bean plants over the growth period

Equations for the relationships between root area and accumulated degree days at base 10 C.


Y = root area ; X = accumulated degree days


 P_i = initial soil population density of \underline{P} . $\underline{penetrans}$ per 100 cm³ soil.

$$P_i = 80$$
 $Y = -9.65024395178 + 0.0677302399367 X $-0.00004783616595 X^2$ $(R^2 = 0.89)$$

$$P_i = 160$$
 $Y = -9.58037983025 + 0.0655903000395 X $-0.00004671772711 X^2$ $(R^2 = 0.87)$$

$$P_i = 320$$
 $Y = -9.75174063684 + 0.0640076154808 X -0.000045979134 X^2 $(R^2 = 0.89)$$

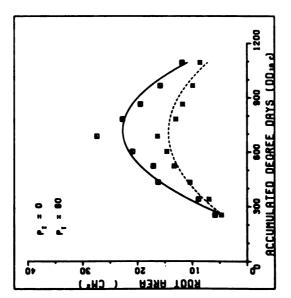


Figure 3.45.

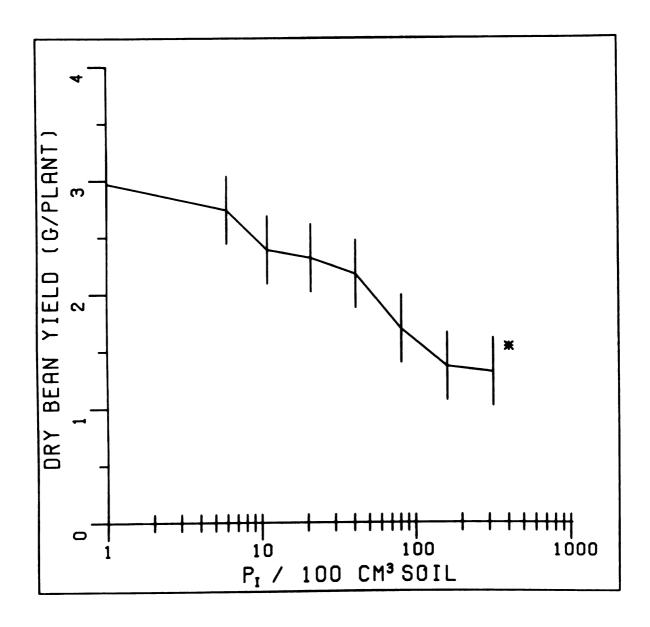


Figure 3.46. Effect of different initial population densities of P. penetrans on yield of navy beans.

Vertical bars represent 95 % confidence intervals.

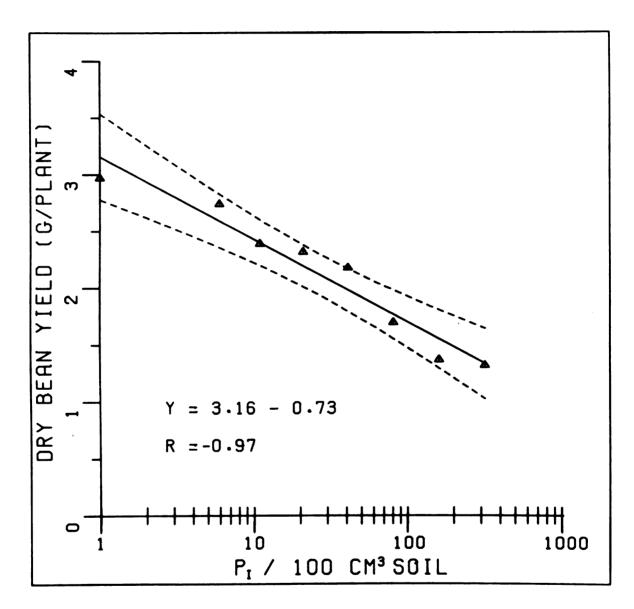


Figure 3.47. Relationship between yield of navy beans and log of initial population density of P. penetrans

P. penetrans plus one. The signficant degree of correlation and confidence intervals (Figure 3.47) indicated that the relationship was appropriately described by this linear function.

The growth response of plants varied depending on the initial population density of P. penetrans

(Figure 3.48-3.49). Growth was not significantly reduced by low initial densities (Figure 3.48) but significant reduction in growth was observed at higher densities (Figure 3.48-3.49).

The relative growth rate of plants was reduced by population densities above 20 P. penetrans per 100 cm³ soil (Figures 3.50-3.51). The relative growth rate of noninfected plants and plants exposed to an initial density of 5 P. penetrans per 100 cm³ soil followed similar trends over the growth period (Figure 3.50A). The relationship between relative growth rate and accumulated degree days was expressed as second degree polynomials (Figure 3.50-3.51). The equation for the relationship for noninfected plants is:

Y = 0.105434974483 + 0.00142888178201 X- 0.000001991528545 X^2 ($R^2 = 0.67$)

while the equation for the relationship for plants exposed to an initial density of 5 \underline{P} . penetrans per 100 cm³ soil is:

Figure 3.48. Effect of \underline{P} . penetrans on growth of navy bean plants.

Figure 3.48

Figure 3.49. Comparison of growth of navy bean plants in the absence of P. penetrans and in the presence of an initial density of 320 P. penetrans per 100 cm soil.

Figure 3.50. Influence of different initial population densities of P. penetrans on relative growth rate of navy bean plants over the growth period.

Equations for the relationships between relative growth rate and accumulated degree days at base 10 C

Y = relative growth rate per week; X = accumulated degree days.

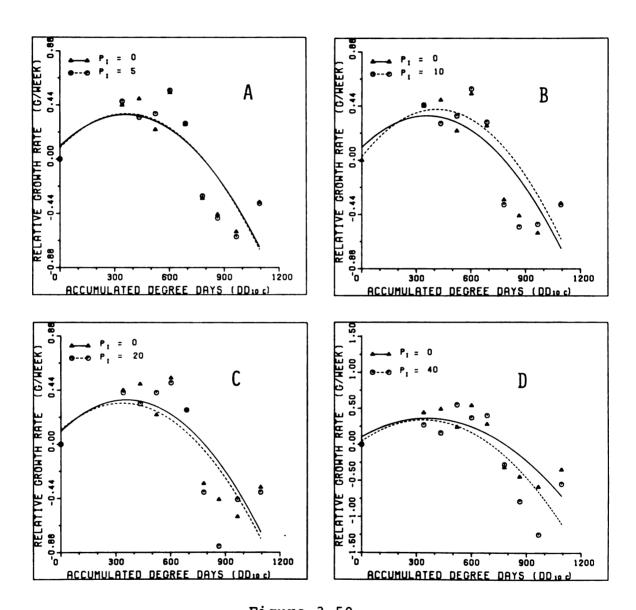
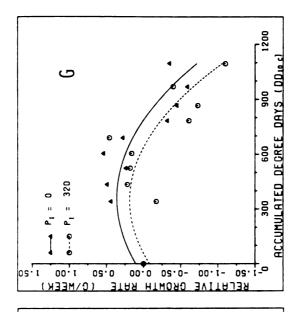
 P_i = initial soil population density of \underline{P} . penetrans per 100 cm³ soil.

$$P_i = 5$$
 $Y = 0.0942405452017 + 0.0015116983398 X $- 0.000002072951014 X^2$ ($R^2 = 0.69$)$

$$P_i = 10$$
 $Y = 0.0291013809244 + 0.00186911335134 X $- 0.000002266413232 X^2$ $(R^2 = 0.67)$$

$$P_i = 20$$
 $Y = 0.116545193601 + 0.00129545095131 X $- 0.000001922417876$ X^2 $(R^2 = 0.58)$$

$$P_i = 40$$
 $Y = 0.0450555327553 + 0.00172991654509 X $- 0.000002540119343 X^2$ (R² = 0.63)$

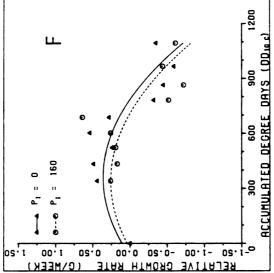

Figure 3.50.

Figure 3.51. Influence of different initial population densities of P. penetrans on relative growth rate of navy beans over the growth period.

Equations for the relationships between relative growth rate and accumulated degree days at base 10 C.

- Y = relative growth rate per week; X = accumulated degree days
- P_i = initial soil population density of \underline{P} . penetrans per 100 cm³ soil.
- $P_i = 0$ Y = 0.105434974483 + 0.00142888178201 X $<math>- 0.000001991528545 X^2$ (R² = 0.67)
- $P_i = 80$ Y = 0.02864789416 + 0.00150419931867 X $<math>- 0.000002090975285 X^2$ $(R^2 = 0.50)$
- $P_i = 160$ Y = 0.0.0362586010281 + 0.0012996133828 X 0.000001903869134 X² (R² = 0.59)
- $P_i = 320$ Y = 0.0128353084284 + 0.00161252592496 X<math>- 0.000002408870322 X^2 $(R^2 = 0.73)$

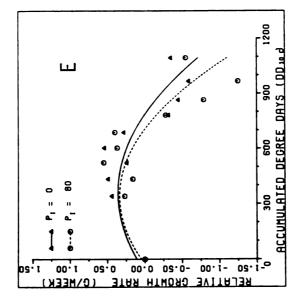


Figure 3.51

$$Y = 0.0942405452017 + 0.00151169383398 X$$

$$- 0.000002072951014 X^{2} (R^{2} = 0.69)$$

This indicated the similarity in growth response between noninfected plants and plants exposed to an initial density of 5 P. penetrans per 100 cm³ soil.

A comparison of relative growth rates of noninfected plants and plants exposed to an initial density of 10

P. penetrans per 100 cm³ soil indicated that initially the relative growth rate of infected plants was lower than that of noninfected plants (Figure 3.50B). After 260 DD 10 C, however, the growth rate of infected plants increased above that of noninfected plants (Figure 3.50B). The differences in relative growth rates for these two treatments (0 and 10 P. penetrans per 100 cm³ soil) are also evident from the equations for the relationships. For plants exposed to an initial density of 10 P. penetrans per 100 cm³ soil the equation is:

Y = 0.0291013809244 + 0.00186911335134 X

 $-0.000002266413232 \text{ x}^2 \quad (\text{R}^2 = 0.67)$

and the equation for noninfected plants is:

Y = 0.105434974483 + 0.00142888178201 X

 $-0.000001991528545 x^2 (R^2 = 0.67)$

Comparison of the first terms of these two equations indicates the initial lower growth rate in infected plants,

while comparison of the second terms of the equations indicates the increase in relative growth rate in infected plants after 260 DD 10 C.

The relative growth rate of plants exposed to initial densities of 20 and 40 P. penetrans per 100 cm³ soil respectively followed similar relative growth rate trends as that of noninfected plants from initial growth until 175 DD 10 C and 325 DD 10 C respectively. After these periods the relative growth rate of infected plants were lower than that of noninfected plants (Figures 3.50C, D).

The relative growth rate of plants exposed to an initial density of 80 P. penetrans per 100 cm³ soil was slightly lower than that of noninfected plants (Figure 3.51E). Growth rates were similar at 300 DD 10 C following which the growth rate of infected plants remained lower than that of noninfected plants (Figure 3.51E). The relative growth rate of plants exposed to an initial density of 160 and 320 P. penetrans per 100 cm³ soil respectively were lower than that of noninfected plants throughout the growth period (Figure 3.51F, G). For plants exposed to an initial density of 320 P. penetrans per 100 cm³ soil the equation for the relationship between relative growth rate and accumulated degree days is:

$$Y = 0.0128353084284 + 0.00161252592496 X$$

- 0.000002408870322 X^2 ($R^2 = 0.73$)

and the equation for the relationship in noninfected plants is:

$$Y = 0.105434974483 + 0.0014288178201 X$$

- 0.000001991528545 X^2 ($R^2 = 0.67$)

Comparison of these two equations indicates the decrease in growth rate in plants exposed to an initial density of 320 \underline{P} . $\underline{penetrans}$ per 100 cm³ soil. Growth rates were lowest in plants exposed to the highest initial density of 320 \underline{P} . $\underline{penetrans}$ per 100 cm³ soil (Figure 3.51G).

3.3.5 Discussion

penetrans on navy beans indicated that this plant parasitic nematode species can penetrate navy bean roots, feed and reproduce. The plant response to infection by this nematode varied depending on the bean variety and the initial population density of P. penetrans. The results of the study on pathogenicity (3.3.4.1) indicated that densities of P. penetrans above 25 per 100 cm³ soil can affect the physiological functioning of plants resulting in detrimental growth and significant reduction in dry bean yield of Sanilac bean variety.

In this study the lowest initial population

density included in experimental procedures was 25 P. penetrans per 100 cm³ soil. Examination of the regression of the log of initial density of P. penetrans on the log of final densities of P. penetrans indicated the necessity for studies involving lower initial densities of P. penetrans. The importance of initial population density in relation to final density and yield of plants has been stressed (Wallace, 1973; Oostenbrink, 1966; Seinhorst, 1966; Norton, 1978). The need to examine effects over the growth period was also evident. Evans, (1972) pointed out that in considering relationships between plants and their environments the complete cycle should be examined. Studies over time could assist in elucidating critical periods when some state of the environment, the pest and plant species interact to determine the functioning of the ecosystem.

Sanilac, Seafarer and Tuscola navy bean varieties were highly susceptible to infection by P. penetrans, while Gratiot, Kentwood and Saginaw varieties were more tolerant to infection by this nematode species. P. penetrans penetrated roots of all varieties and reproduced. The response to infection, however, differed among varieties, in that growth parameters such as plant height, root weight, and relative growth rate were not significantly decreased

in Gratiot, Saginaw and Kentwood varieties, while detrimental effects on these growth parameters were observed for Sanilac, Seafarer and Tuscola varieties.

The yield of dry beans from Sanilac, Seafarer and Tuscola varieties respectively were reduced by infection with P. penetrans while there was no significant decrease in yield from P. penetrans infected Saginaw, Gratiot and Kentwood varieties. All varieties were exposed to similar initial densities of 150 P. penetrans per 100 cm³ soil. The lower population densities maintained on Saginaw, Gratiot and Kentwood varieties and the observation that these densities had no significant detrimental effect on growth and yield of these varieties indicate that these three varieties are to some extent tolerant to P. penetrans.

The plants' response to infection was such that the reproductive potential of \underline{P} . penetrans was reduced on Saginaw, Gratiot and Kentwood varieties compared to the reproductive potential on Sanilac, Seafarer and Tuscola varieties respectively.

If the number of generations of \underline{P} . penetrans is related to the number of maxima in population densities, three generations were evident on Sanilac, Seafarer and Tuscola varieties respectively and, two generations on

Saginaw varieties and one generation on Kentwood variety (Figure 3.28). However because of the overlapping nature of life cycles of <u>P</u>. <u>penetrans</u> the number of generations associated with a particular crop is not always determined by the number of maxima in population densities of <u>P</u>. penetrans.

The discovery of bean varieties tolerant to P. penetrans is critical for development of optimum integrated management strategies in bean production. The choice of variety however is dependent on other factors such as effects of other pests, yields and economics of production. For example while Gratiot bean variety is tolerant to P. penetrans it has not gained economic importance in Michigan, and this is related to the yields and time to maturity of bean seeds (Adams, In the study on responses of Sanilac navy beans to infection with different initial population densities of P. penetrans at different intervals during the growth period (3.3.2.1) the initial densities ranged from 5 to 320 P. penetrans per 100 cm³ soil. The low range was chosen to observe effects which were not studied in the experiment on pathogenicity (3.3.1.1). Sanilac navy bean variety was chosen as it appeared to be highly susceptible to P. penetrans. The significance of initial

nematode density as a determining factor on yield and population dynamics of nematodes has been noted. Olthof and Potter (1973) observed a positive correlation between yield and initial density. Robbins et al. (1978) reported on an inverse relationship between yield and Pratylenchus spp.

A salient feature of the research findings is that low densities of P. penetrans can cause increases in plant growth. This was also evident from the study on pathogenicity (3.3.1.1) where root weight and root length of navy beans were increased by population densities of 25 P. penetrans per 100 cm³ soil (Figure 3.25). Increased growth responses to infection by low densities of nematodes have been observed (Wallace, 1973), and is related to a resistance response of the plant to infection by P. penetrans.

The threshold density for damage was 40 P. penetrans per 100 cm³ soil. The threshold density is however dependent on temperature, soil moisture and the associated host crop (Wallace, 1973; Norton, 1978). While all replicates of treatments did not respond to the same degree, typical responses are evident in Figures 3.36, 3.41, 3.48 & 3.49 Some degree of stunting was observed but this is not. always evident in the field.

The periods of sampling were converted to degree

days as this concept of degree days allows for correlation between a physiological determination factor of temperature with physiological development of plants and organisms.

The relative growth rate of plants was studied by sampling at close intervals during the growth period. Because of the small size of plants, changes over one day periods would not be measurable hence the choice of weekly sampling intervals. Examination of relative growth rates allows broad generalized observations on the growth pattern of plant species over time. Relative growth rate is a physiological growth index and examination of the relationship between this growth index and a physiological time parameter of degree days is appropriate as the growth of plants is influenced to a large extent by temperature. There are however practical difficulties associated with the use of the physiological index of relative growth rate (Evans, 1972). In practice it is not possible to use the same plant to determine initial dry weight and final dry weight for any two growth or sampling periods. requires use of two different plants which may not be identical in growth form and genetic makeup. The use of large numbers of replicates and uniform genetic planting material can, however reduce the error associated with application of relative growth rates.

The results from studies on relative growth rate indicated that generally at low population densities of P. penetrans, relative growth rates were initially lower than in noninfected plants, but with time the P. penetrans infected plants were able to overcome the detrimental effects associated with infection by P. penetrans and relative growth rates were similar in P. penetrans infected and noninfected bean plants during the latter phases of plant growth. Exceptions to this were observed. In one case infection by low densities of 10 P. penetrans per 100 cm³ soil increased the relative growth rate of bean plants (Figure 3.50B). This could be related to a resistance response of the plant to infection. At high densities relative growth rate was generally lower in infected plants throughout the growth period. Relative growth rate responses vary depending on the plant species. Slinger (1976) observed initial decreases followed by increases and then further decreases in relative growth rate of carrots (Daucus carota L) over the growth period. The initial decrease however can be correlated with changes in source-sink relationships associated with formation of the tap root. For navy beans relative growth rate initially increased reaching a peak during the growth period and then decreased at the onset of senescence.

3.4 <u>Influence of Environmental</u> parameters of hemperature and Moisture

3.4.1 Influence of Temperature

Growth, development and activity of organisms are influenced by temperature. For most organisms there is a threshold temperature below which reproduction and development cannot take place, and above which detrimental effects on growth results. Temperature can be considered as a source of heat units or energy available to facilitate biological processes. The following studies were designed to examine the effect of temperature on P. penetrans associated with navy beans.

3.4.1.1 Effect of different temperatures and
different initial densities of Pratylenchus
penetrans on growth and yield of navy beans
and on final population densities
of Pratylenchus penetrans

3.4.1.1.1 Method

The experiment consisted of a 2 x 2 factorial design of three replicates of four treatments of <u>P</u>. <u>penetrans</u> at four temperatures. <u>P</u>. <u>penetrans</u> treatments included densities of 0, 25, 150 and 300 per 100 cm³ soil. Temperatures studied included 15, 20, 25 and 30. Forty-eight 2.36 cm clay pots were filled with 1000 cm³ sterilized

sandy clay loam soil. Four temperature control chambers were arranged to hold 12 of these clay pots respectively. The temperature control chambers were maintained at 15, 20, 25 and 30 C respectively. P. penetrans were extracted from roots of Sanilac navy bean plants propagated in culture boxes in the greenhouse. A suspension containing a calculated density of P. penetrans was prepared. appropriate densities for this study were added to the soil in pots by extracting calculated aliquants of the suspension and transferring these to the soil in pots. Three navy bean seeds were planted in the soil in each pot. Two days after germination, plants were thinned out leaving one seedling in the soil in each pot. Plants were watered daily as required and maintained in the temperature chambers in the greenhouse for a period of 96 days. Plant height, shoot dry weight, root weight and dry bean yield were recorded after this period. Soil and root samples were taken for nematode analyses (3.1.1.2 and 3.1.2.2) and P. penetrans densities were determined (3.1.3-3.1.4).

3.4.1.2 Interactions of temperature and

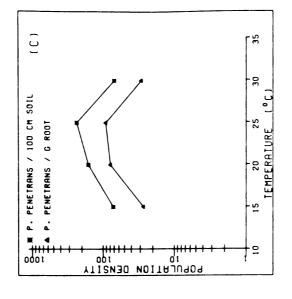
P. penetrans associated with

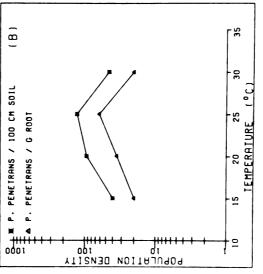
navy beans over the growth period

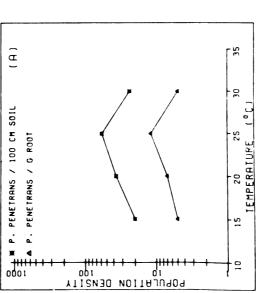
3.4.1.2.1 Method

A 2 x 2 factorial design of three replicates of two densities of P. penetrans (0 and 150 per 100 cm³ soil) and four temperatures (15, 20, 25 and 30 C) was used in this study. Twenty-four 2.36 cm clay pots containing 1000 cm³ sandy clay loam soil were arranged in each of the four temperature chambers maintained at 15, 20, 25 and 30 C respectively. P. penetrans were extracted from roots of navy bean plants which were propagated in culture boxes in the greenhouse. A suspension containing a calculated density of P. penetrans was prepared. Calculated aliquants of this suspension were added to soil in 12 of these pots to obtain an initial population density of 150 P. penetrans per 100 cm³ soil. The soil in the other 12 pots served as controls. Three navy bean seeds cv Sanilac were planted in the soil in each pot. Plants were thinned out three days after germination leaving one seedling in the soil in each pot. Plants were watered daily and maintained at the 15, 20, 25 and 30 C respectively in the greenhouse for a period of 91 days.

Shoot fresh weight, leaf area, plant height, root


area, root weight and root length were recorded at four intervals during the growth period. Shoot systems were oven dried at 30 ± 5 C and shoot dry weight was recorded. Dry bean yield was recorded after the 91 day growth period. Soil and root samples were taken at 4 intervals for nematode analysis (3.1.1.2 and 3.1.2.2) and P. penetrans densities were determined (3.1.3-3.1.4).


3.4.1.3 Results


3.4.1.3.1 Effect of different temperatures and different initial densities of P. penetrans on growth and yield of navy beans and on final population densities of P. penetrans

Final soil population densities of P. penetrans
were lower than root densities (Figure 3.52; Tables A9-A11).

Population densities increased with increase in temperature reaching maximum densities at 25 C and then decreasing above this temperature (Figures 3.52-3.53). The highest densities were associated with soil infested with the highest initial density of 300 P. penetrans per 100 cm³ soil. Interactions of temperature and P. penetrans had a significant effect on final population densities (Figure 3.53). For all sampling periods and at all temperatures the highest percent of the population cohort consisted of females (Table 3.12). The percentage of

Influence of temperature on population densities of P. penetrans associated with navy beans. Figure 3.52.

penetrans per 100 cm³ = initial density of 25 P.

soil soil penetrans per 100 cm³ soil penetrans per 100 cm³ soil 150 P. 300 P. unitial density of initial density of (B) (B) (C)

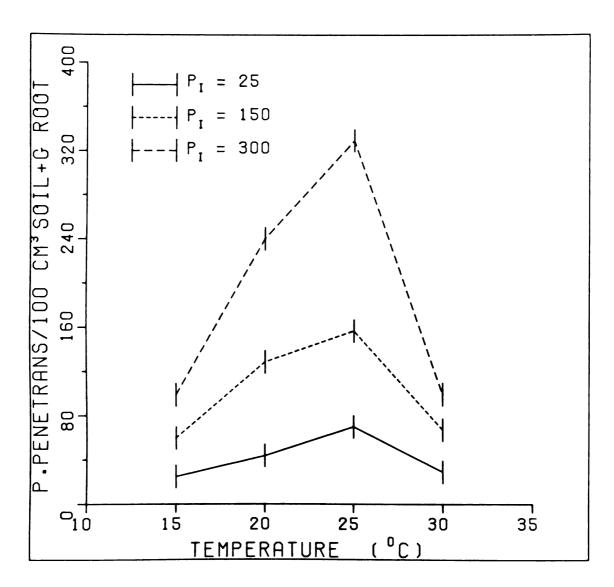
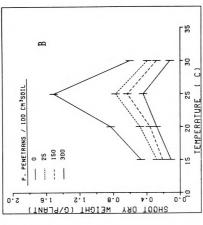


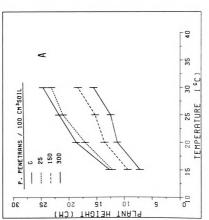
Figure 3.53. Influence of temperature on final total (root + soil) densities of P. penetrans associated with navy bean plants exposed to different initial population densities of P. penetrans.

Table 3.12 Influence of temperature on population cohort of \underline{P} . $\underline{penetrans}$ associated with navy beans

	Life cyc	le stage	(percen	t of pop	ulation)	
Temp	Time	F	М	2 nd	3 rd	4 th
15	14	45.9	14.2	9.2	8.2	22.4
	35	51.5	16.5	10.3	7.2	14.4
	57	49.1	10.3	16.4	7.8	16.3
	92	44.2	12.2	3.9	5.5	34.2
20	14	41.7	14.4	18.2	6.1	17.6
	35	46.3	16.1	16.8	5.4	15.4
	57	44.5	15.1	19.4	10.5	10.4
	92	40.2	10.2	12.0	8.1	29.5
25	14	45.4	15.4	15.3	5.4	18.9
	35	39.3	20.8	17.3	9.2	13.3
	57	39.0	19.0	17.0	10.6	14.2
	92	45.8	10.7	4.3	6.3	32.9
30	14	33.3	16.7	25.6	7.7	16.7
	35	40.9	12.5	19.3	12.5	14.8
	57	32.7	10.2	24.5	16.3	16.2
	92	41.6	11.5	8.8	8.7	29.2

F = female


M = male


males was generally three times lower than that of females. At the end of the growth period the order of magnitude of the population cohort was females > fourth stage juveniles > males > third stage > second stage at 15 C.

At 20 C the order of magnitude was females > fourth stage juveniles > second stage juveniles > males > third stage juveniles. At 25 C the order was females > fourth stage juveniles > males > third stage juveniles > males > third stage juveniles > males > third stage juveniles > second stage juveniles > males > third stage juveniles > fourth stage juveniles, and at 30 C the order was females > fourth stage juveniles > males > second stage juveniles > third stage juveniles > third stage juveniles > third stage juveniles > third

Plant height, root weight, shoot dry weight and dry bean yield were significantly (P = 0.05) influenced by interactions of temperature and P. penetrans (Tables A12-A14). Plant heights increased with increase in temperature (Figure 3.54). There was no significant (P = 0.05) difference in plant height of noninfected plants and plants exposed to an initial density of 25 P. penetrans per 100 cm³ soil at temperatures of 15 and 25 C respectively (Figure 3.54A). Plant height was significantly (P = 0.05) reduced by population densities of 150 and 300 P. penetrans per 100 cm³ soil at temperatures of 15, 20 and 30 C respectively (Table A12).

Shoot dry weight was significantly (P = 0.05) reduced by all densities of P. penetrans at the four

Effect of temperature on height (A) and shoot dry weight (B) of navy bean plants exposed to different initial densities of \overline{P} . penetrans. Figure 3.54.

temperatures studied. For all temperatures dry weight increased with increase in temperature reaching maxima at 25 C and then decreasing (Figure 3.54B; Table Al4).

There was no significant (P = 0.05) difference in root weight of noninfected plants and plants exposed to an initial density of 25 P. penetrans per 100 cm³ soil at all four temperatures (Figure 3.55; Table Al3). Root weight was significantly (P = 0.05) reduced by higher densities of 150 and 300 P. penetrans per 100 cm³ soil at all four temperatures (Figure 3.55). Root weight increased with increase in temperature reaching maxima at 25 C and then decreasing with further increase in temperature (Figure 3.55).

Dry bean yields were significantly reduced by the highest density of 300 P. penetrans per 100 cm³ soil at 15 C. At 20 and 25 C yields were reduced by all population densities while at 30 C yields were reduced by 150 and 300 P. penetrans per 100 cm³ soil (Figure 3.56; Table Al5). Dry bean yields increased with temperature in noninfected and infected plants reaching maxima at 25 C and then decreased with further increase in temperature (Figure 3.56).

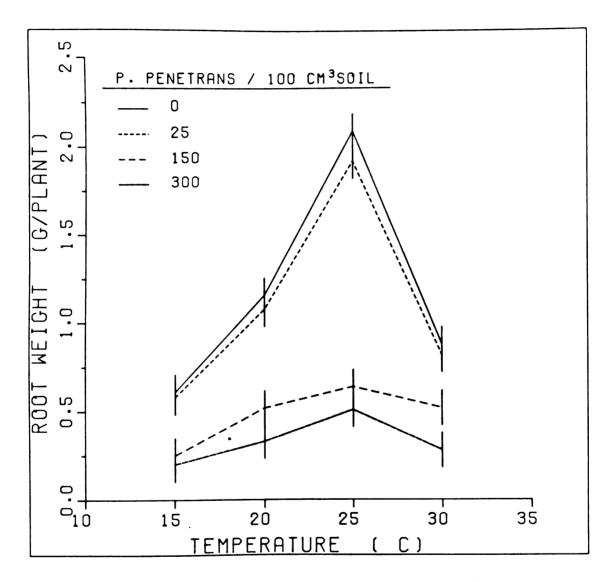


Figure 3.55. Effect of temperature on root weight of navy bean plants exposed to different initial densities of \underline{P} . $\underline{penetrans}$



Figure 3.56. Effect of temperature on yield of navy bean plants exposed to different initial densities of <u>P</u>. penetrans

3.4.1.3.2 Interactions of temperature and P. penetrans associated with navy beans over the growth period

steadily increased from day 12 to day 91 of the growth period at temperatures of 15, 20 and 25 C respectively (Figure 3.57; Table Al6). At 30 C total population densities increased reaching maxima at day 35 of the growth period. Soil population densities of P. penetrans decreased initially as nematodes entered roots and later increased as nematodes migrated from decaying roots into the soil at the end of the growth period (Tables Al7-Al8).

Shoot dry weight was significantly reduced by

P. penetrans at harvest at all temperatures (Figure 3.58;

Table Al9). Dry weight increased over the growth period reaching maxima at 57 days of growth and then decreased (Figure 3.59) after this period.

Root area of noninfected and infected plants increased over the growth period reaching maxima at 57 days of growth (Figure 3.60; Table A20). P. penetrans decreased root area at temperatures of 15, 20 and 25 C respectively (Figure 3.60; Table A20).

Root weight, plant height, shoot fresh weight, root length and leaf area were significantly (P = 0.05)

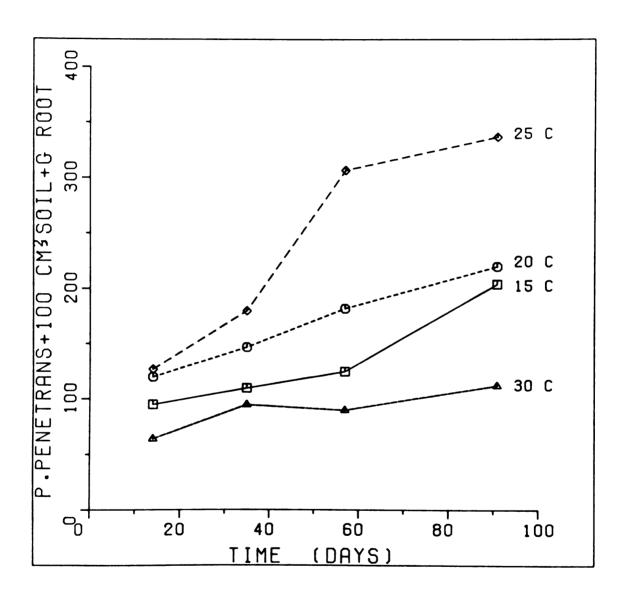


Figure 3.57. Influence of temperature on population dynamics of \underline{P} . $\underline{penetrans}$ over the growth period of navy beans.

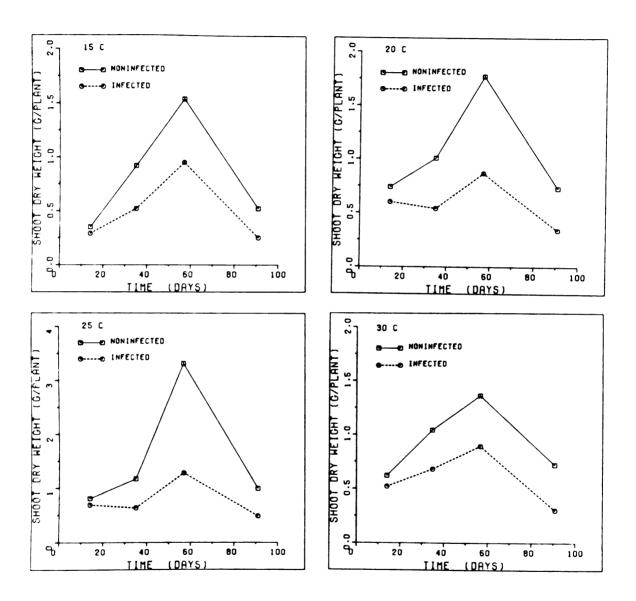
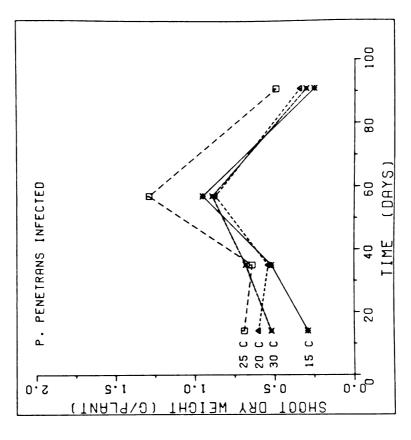
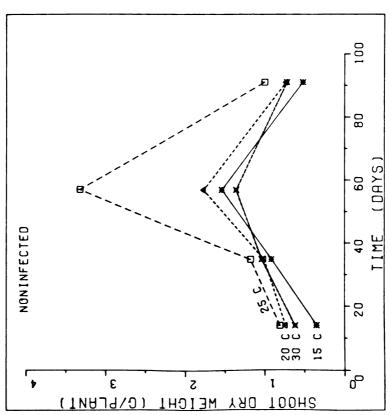




Figure 3.58. Effect of <u>P</u>. <u>penetrans</u> on shoot dry weight of navy beans over the growth period at four temperatures.

penetrans Effect of temperature on shoot dry weight of noninfected and P. infected navy bean plants over the growth period. Figure 3.59.

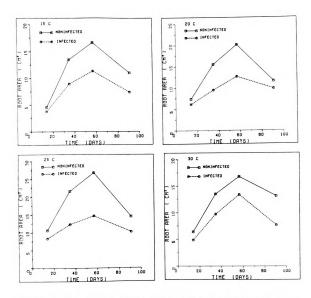


FIgure 3.60. Effect of P. penetrans on root area of navy bean plants over the growth period at four temperatures.

reduced by \underline{P} . penetrans at 57 days of growth (Tables A21-A25).

Dry bean yield was significantly (P = 0.05) reduced by P. penetrans at all temperatures (Figure 3.61). Dry bean yield of noninfected plants increased with increase in temperature reaching maxima at 25 C. Dry bean yield was significantly (P = 0.05) lower at 30 C compared to yields at 20 and 25 C (Figure 3.61).

3.4.1.4 Discussion

The importance of the influence of temperature on growth, reproduction and infection of nematodes has been noted and several reports on effects of temperature on growth and development of nematodes and effects on plant growth and yield have been documented (Chapman, 1957; Patterson et al. 1967; Mamiya, 1971; Radewald et al. 1971; Wallace, 1973; Dunn, 1973; Miller and Rich, 1974; Acosta and Malek, 1979; Malek, 1980).

The results of studies on effects of temperature on P. penetrans and effect on growth of navy beans indicated that temperature significantly influenced P. penetrans effect on navy beans. Lower population densities associated with navy beans at 15 C indicated lower development and reproduction at this temperature. This suggests that 15 C is below the threshold temperature for development and

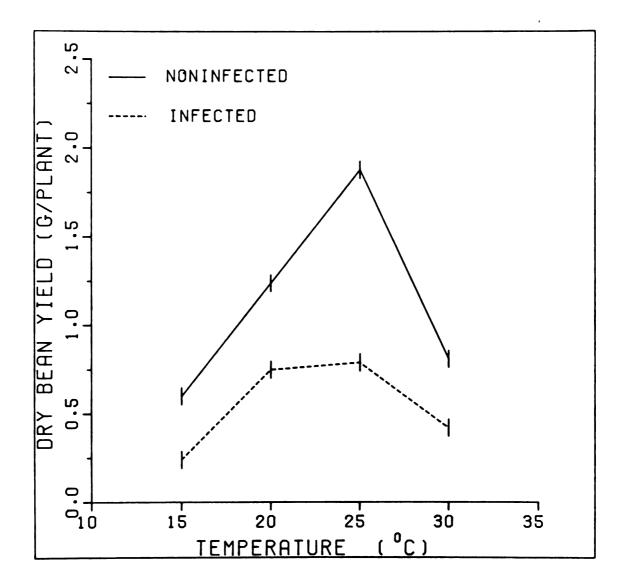


Figure 3.61. Influence of temperature on yield of noninfected and P. penetrans infected navy beans.

Vertical bars represent 95 % confidence intervals.

reproduction of <u>P</u>. <u>penetrans</u> associated with navy beans. Higher population densities were observed at 20 and 25 C compared to densities at other temperatures. The highest population densities were observed at 25 C and this indicates that this temperature is optimum for development and reproduction of <u>P</u>. <u>penetrans</u> on navy beans. Acosta and Malek (1979) observed similar responses of maximum densities of <u>Pratylenchus penetrans</u> and <u>P</u>. <u>vulnus</u> associated with soybeans. Decreases in population densities of <u>P</u>. <u>penetrans</u> at 30 C were observed and similar responses were observed by Mamiya (1971), who observed reduced oviposition at temperatures of 30 C compared to oviposition at 20-24C.

Population densities of P. penetrans increased with time at all temperatures. The fluctuations in densities observed in previous studies were not evident, and this is related to the choice of sampling date. Limitations in space in temperature control chambers dictated the number of pots which could be utilized in this study and consequently influenced the number of sampling periods. The four sampling intervals chosen appeared to correspond to maxima in population densities. In order to obtain detailed responses on population dynamics of P. penetrans associated with navy beans it is necessary to sample as often as

possible with a minimum of six sampling periods.

The higher densities associated with navy beans at a temperature of 25 C is related in part to the greater availability of food from larger root systems formed at this optimum growth temperature. Poor plant growth and smaller root systems with less food source could be responsible in part for the lower densities observed at 15 and 30 C respectively. The nature of the population cohort was also influenced by temperature. The proportion of second stage juveniles increased over the growth period indicating reproduction was taking place. Final population densities consisted generally of higher percentages of females and fourth stage juveniles compared to other stages. This could be related to the ability of these stages to withstand adverse effects of toxins from decaying roots to a greater extent than other younger stages and males.

The detrimental effect of high and low temperatures on physiological processes in plants contributed to decreases in bean yields. Metabolic processes which promote assimilation of carbohydrates for plant growth and transport of these products are temperature dependent (Leopold, 1964), and at low temperatures the enzyme and hormonal systems which initiate and maintain these processes may not function efficiently.

The influence of temperature on P. penetrans and effects on navy beans is important for the development of nematode control strategies in navy bean production. The recommended planting date for navy beans in Michigan is late May to early June. At this time in Michigan temperatures range from 15 to 18 C. At these temperatures population densities are maintained at low densities due to the lower reproductive potential and high mortality. The percentage of crop loss is dependent on the initial density of P. penetrans, therefore crop losses can be minimized in the presence of low initial densities of P. penetrans. The choice of an early planting date when densities are low can be considered as an effective control strategy. The choice of planting date is, however, influenced by other factors besides optimum temperature for low densities of P. penetrans as optimum temperatures for germination significantly influences yield.

3.4.2 Influence of Soil Moisture

Soil moisture is an important environmental parameter which influences the growth and development of plants, nematodes and other organisms. Soil moisture is highly dependent on soil type. Nematode activity occurs mainly in the thin film of water surrounding soil particles and through pore spaces, therefore, soil moisture and pore space which are influenced by soil type are critical for survival of nematodes. This study was designed to examine the interactions of soil type, soil moisture and P. penetrans associated with navy beans.

3.4.2.1 Development of soil moisture characteristic curves for three soil types

3.4.2.1.1 Method

In this experiment the volumetric percentage of moisture associated with four matrix potentials was determined in order to develop soil moisture characteristic curves for a sandy clay loam, a sandy loam and a clay loam respectively. Two replicates of 10 cm soil cores were prepared for each soil type. The soil cores were placed in a tray containing water and allowed to become saturated. The saturated soils were then subjected to pressures of 4, 30, 100 and 1500 centibars. The soils were weighed

prior to saturation with water. After moisture was removed from the soils at the respective pressures soils were reweighed. Soil cores were then oven dried at 105 C and reweighed. The percentage moisture associated with each pressure was calculated for each soil type (3.1.9). Soil moisture characteristic curves for each soil type were developed by plotting percent soil moisture versus matrix potential in negative centibars where soil matrix potential corresponded to pressures of 4, 30, 100 and 1500 centibars.

3.4.2.2 Interactions of soil type, soil moisture and P. penetrans associated with navy beans

3.4.2.2.1 Method

The experiment consisted of a three factorial design of three replicates of two levels of P. penetrans (0 and 150 per 100 cm³ soil) at six moisture levels corresponding to soil matrix potentials of 5, 10, 50, 100, 500 and 1000 negative centibars, in three soil types including a sandy clay loam, a sandy loam and a clay loam (Table 3.13). Fifty-four 1 liter wax lined polythene cups were filled with 1000 cm³ of each soil type. Soils were adjusted to the desired matrix potentials (Table 3.13C) by weighing soils in cups and adding calculated

Table 3.13A Volumetric soil moisture content as related to matrix potential

Matrix potential -	Volumetric percent moisture			
(-centibars)	Clay	Sandy clay	Sandy	
	loam	loam	loam	
0	58.99	53.33	36.06	
4	50.83	35.66	30.35	
30	48.48	30.72	24.18	
100	45.11	28.53	19.34	
1500	40.10	26.82	13.53	

Table 3.13B Mechanical composition of soils

	Clay loam	Sandy clay loam	Sandy loam
% clay	36.52	22.52	18.88
% silt	32.36	11.08	13.44
% sand	31.12	66.40	67.68

Table 3.13C Percent soil moisture associated with different matrix potentials

Matrix	Volumetric percent moisture			
potential (-centibars)	Clay loam	Sandy clay loam	Sandy loam	
5	48	33	25	
10	47	31	25	
50	44	27	21	
100	45	28	19	
500	39	26	15	
1000	38	25	14	

quantities of water required to adjust soil water content to the desired matrix potentials. The soil in these cups was sterilized initially and served as noninfested P. penetrans soil.

Fifty-four similar polythene cups were filled with sterilized soil from each soil type to give 18 cups of each soil type (three replicates for each treatment). A suspension containing a calculated density of P. penetrans was prepared by extracting P. penetrans from navy bean roots propagated in culture boxes in the greenhouse. Calculated aliquants of this suspension of nematodes were pipeted in to the soil in these cups to give initial densities of 150 P. penetrans per 100 cm³ soil. Soils were adjusted to the desired moisture potentials by weighing and adding calculated quantities of water (Table 3.13C).

Two navy bean seeds cv Sanilac were planted in the soil in each cup. Plants were thinned out leaving one seedling in the soil in each cup. Soils were maintained at the desired moisture potentials by weighing to an accuracy of 1.0 g, and adding appropriate quantities of water. Plant height, shoot dry weight, root area, root length and weight were recorded after 92 days of growth. Dry bean yield was determined at the end of the period. Soil and root samples were taken for nematode

analyses (3.1.1.2 and 3.1.2.2) and \underline{P} . penetrans densities were determined (3.1.3-3.1.4).

3.4.2.3 Effect of interactions of soil type, soil

moisture and initial population densities

of P. penetrans on growth and yield of navy
beans and on population densities of
P. penetrans

3.4.2.3.1 Method

The experiment consisted of a 3x3x4 factorial design of three replicates of three soil types at three moisture levels with four initial population densities of P. penetrans. The soil types included a sandy clay loam, a clay loam and a sandy loam. The soil moisture levels corresponded to matrix potentials of 5, 50 and 1000 negative centibars respectively. Initial densities of P. penetrans included 0, 25, 150 and 300 P. penetrans per 100 cm³ soil.

Three hundred and twenty-four wax-lined polythene cups were filled with 1000 cm^3 of the appropriate soil type to obtain the desired number of replicates. A suspension of \underline{P} . Penetrans was prepared by extracting nematodes from navy bean roots propagated in culture boxes in the greenhouse. The desired densities (25, 150 and 300 \underline{P} . Penetrans per 100 cm 3 soil) were added to the soil by

transferring aliquants of this suspension to the soil in appropriate cups. One hundred and eight wax lined polythene cups were filled with steam sterilized appropriate soil types to obtain the desired number of replicates. These soils served as controls containing a density of O P. penetrans per 100 cm³ soil. Soils were adjusted to the desired moisture levels and maintained at these levels by weighing and adding water as required (Table 3.13). Two bean seeds were planted in the soil in each cup. Plants were thinned out leaving one seedling in the soil in each cup. Plant height, leaf area, shoot dry weight and root weight were recorded at four intervals during the growth period of 94 days. Dry bean yield was determined after this period. Soil and root samples were taken for nematode analyses (3.1.1.2 and 3.1.2.2) and P. penetrans densities were determined (3.1.3-3.1.4).

3.4.2.4 Results

3.4.2.4.1 Development of soil moisture characteristic curves for three soil types

The soil moisture characteristic curves developed for the three soil types indicated that the percent soil moisture increased in the order of sandy loam > sandy clay loam > clay loam. High moisture content was

associated with the clay loam even at a matrix potential of -1000 centibars (Figure 3.62).

3.4.2.4.2 Interactions of soil type, soil moisture and P. penetrans associated with navy beans

Final root population densities of P. penetrans were significantly influenced by interactions of soil type and soil moisture (Figure 3.63; Tables A26-1-A26-5). Population densities were lowest in the clay loam and highest in the sandy loam (Figure 3.63). Densities of P. penetrans were lowest at a matrix potential of -1000 centibars (Figure 3.63A, C). Population densities were highest at a matrix potential of -50 centibars in all soil types (Figure 3.63A, C).

Soil population densities of P. penetrans were also low at a matrix potential of -1000 centibars increasing with increase in soil moisture at a matrix potential of -50 centibars and then decreasing at high soil moisture levels corresponding to -5 centibars (Figure 3.64B, C). Final densities of P. penetrans in soil were influenced by interactions of soil type and soil moisture (Figure 3.64; Tables A27-1-A27-5). Population densities were significantly (P = 0.05) lower in the clay loam compared to densities in the other soil types (Figure 3.64A, B;

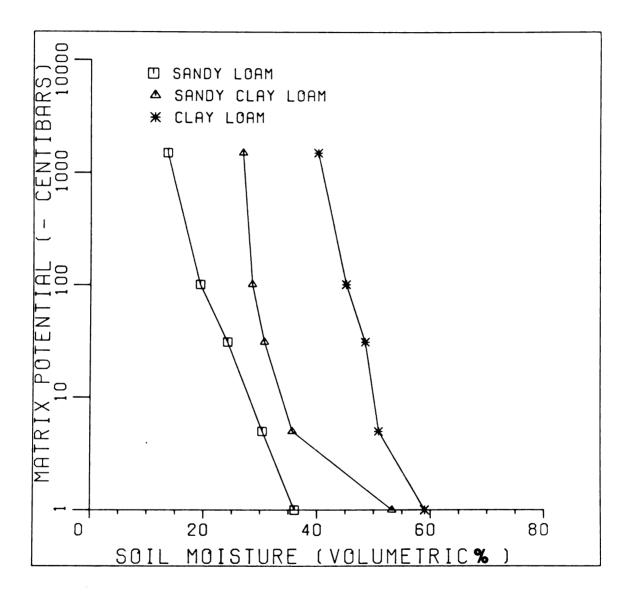
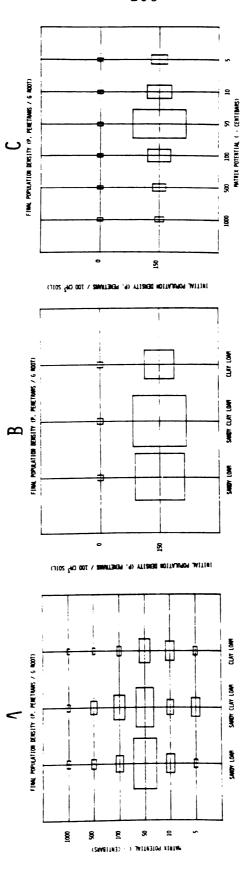
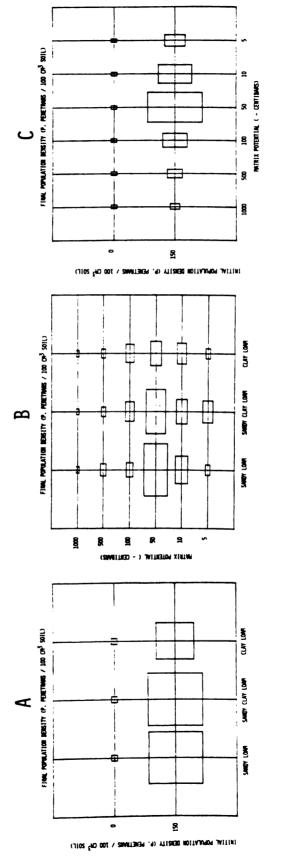




Figure 3.62. Volumetric soil moisture content associated with three soil types at different matrix potentials.

Influence of interactions of soil type and soil moisture (A), soil type and initial density of P. penetrans (B) and soil moisture and initial density of P. penetrans (C) on final root population densities of P. penetrans. Figure 3.63.

 \overline{P} . penetrans (A), soil type and soil moisture (B), and soil moisture and initial density of \overline{P} . penetrans (C), on final soil population densities of \overline{P} . penetrans. Influence of interactions of soil type and initial density of FIgure 3.64.

Table A27-1).

Total population densities in soil and roots associated with navy beans were lowest in the clay loam soil, and highest in the sandy loam (Figure 3.65). For all soils P. penetrans densities were lowest at the highest moisture level and highest at the moisture level corresponding to a matrix potential of -50 centibars (Figure 3.65; Table A28).

Length of navy bean roots were significantly influenced by interactions of soil type and soil moisture and interactions of soil moisture and P. penetrans (Figure 3.66; Tables A29-1-A29-4). Lengths of navy bean roots were greatest at a soil moisture level corresponding to a matrix potential of -50 centibars (Figure 3.66). Root length was significantly reduced by P. penetrans at a moisture level corresponding to a matrix potential of -5 centibars in all three soil types (Figure 3.66). Root lengths were lower in P. penetrans infected plants compared to noninfected plants in all three soil types (Figure 3.66).

Shoot dry weight was significantly influenced by interactions of soil type and soil moisture (Figure 3.67; Tables A30-1-A30-5). Shoot dry weights were significantly decreased by P. penetrans at all soil moisture levels (Figure 3.67A, B; Table A30-1). Averaged over soil

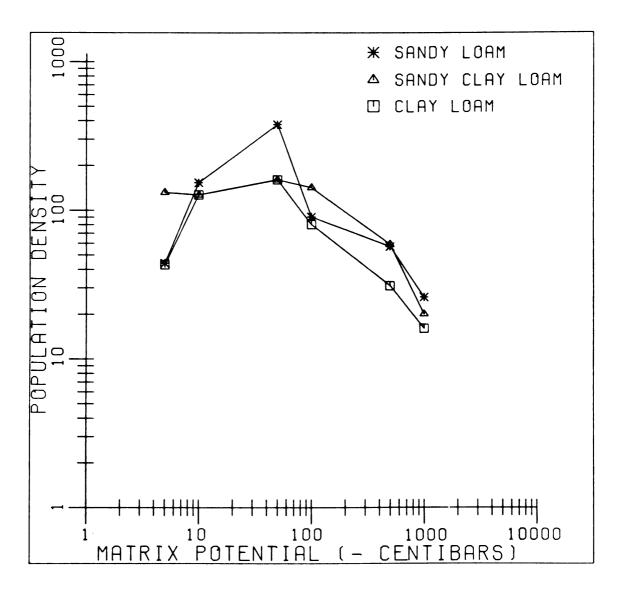
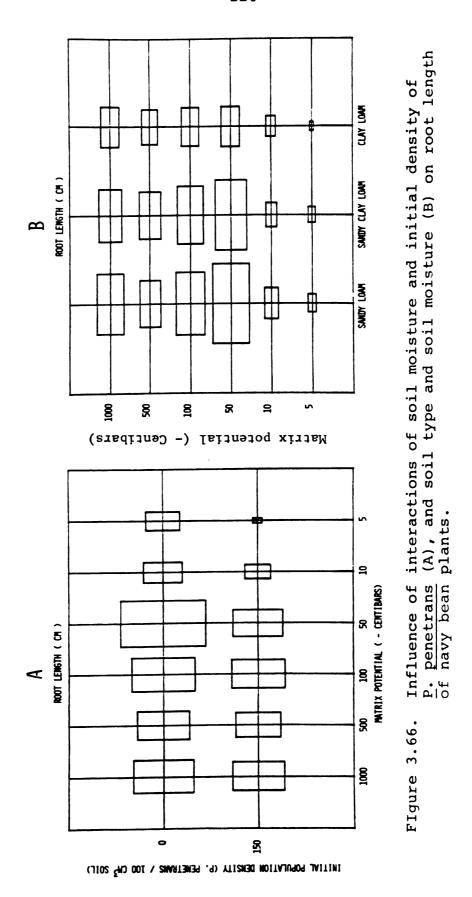
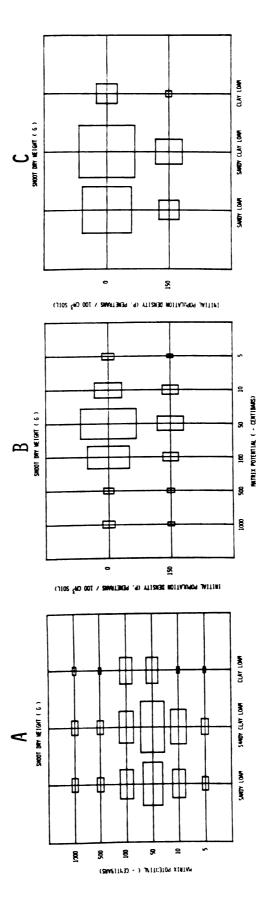
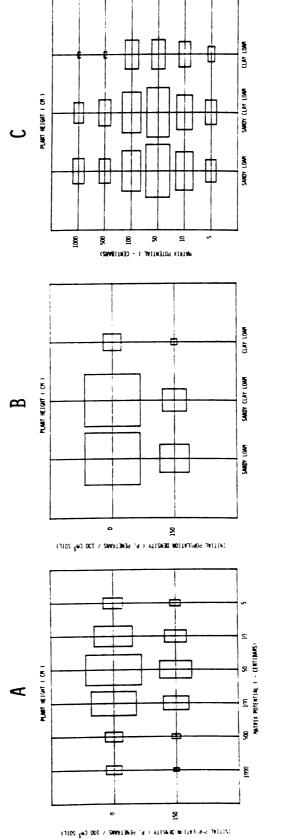
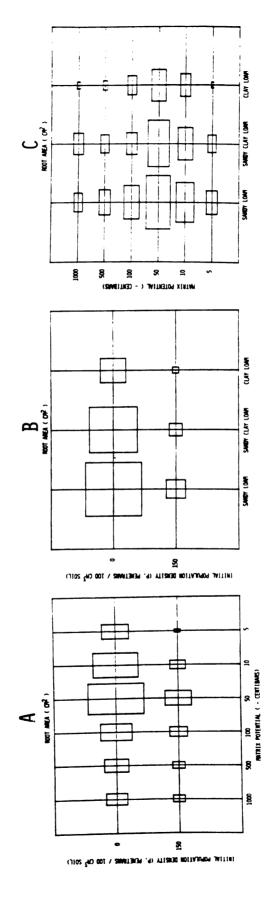




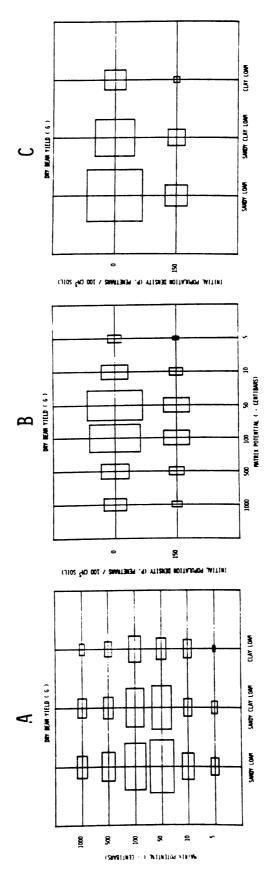
Figure 3.65. Influence of soil moisture on total population densities (root + soil) of P. penetrans associated with navy beans in three soil types.


Influence of interactions of soil type and soil moisture (A), soil moisture and initial density of P. penetrans (B) and soil type and initial density of P. penetrans (C) on shoot dry weight of navy beans. FIgure 3.67.

moisture levels, dry weight was significantly (P = 0.05) reduced by \underline{P} : penetrans in all soil types (Figure 3.67A, C). Shoot dry weight was lowest in the clay loam soil in noninfected and \underline{P} . penetrans infected plants (Figure 3.67A, C).


Plant heights were influenced by interactions of soil type, soil moisture and P. penetrans (Figure 3.68; Tables A31-1-A31-5). Plant height was reduced by P. penetrans in all soil types (Figure 3.68B, C). Plant heights were lower at high moisture levels and increased at moisture levels corresponding to a matrix potential of -50 centibars (Figure 3.68A, C).

Root areas of plants were influenced by interactions of soil type and P. penetrans (Figure 3.69; Tables A32-1-A32-5). P. penetrans decreased root area at all soil moisture levels (Figure 3.69A). Root area was lowest in the clay loam in P. penetrans infected plants.


Yield of dry beans were influenced by interactions of soil type, soil moisture and P. penetrans (Figure 3.70; Table A33-1-A33-5). P. penetrans reduced bean yields in all three soil types at each moisture level studied (Figure 3.70). Highest yields were obtained at the soil moisture level corresponding to a soil matrix potential of -50 centibars (Figure 3.70-3.71). Lowest yields were obtained at high soil moisture levels corresponding

P. penetrans (A), soil type and initial density of P. penetrans (B), and soil moisture and soil type (C) on heights of navy bean plants. Influence of interactions of soil moisture and initial density of Figure 3.68.

Influence of interactions of soil moisture and initial density of P. penetrans (A), soil type and initial density of P. penetrans (B) and soil moisture and soil type (C) on root area of navy bean plants. Figure 3.69.

Influence of interactions of soil moisture and soil type (A), soil moisture and initial density of \overline{P} . penetrans (B) and soil type and initial density of \overline{P} . penetrans (C) on yield of navy beans. Figure 3.70.

Figure 3.71. Influence of soil moisture expressed as matrix potential on yield of noninfected and P. penetrans infected navy beans grown in three soil types.

Equations for the relationships between navy bean yield and matrix potential.

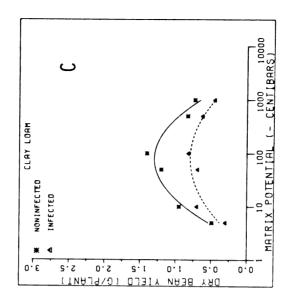
Y = navy bean yield; X = matrix potential NI = noninfected; I = P. penetrans infected

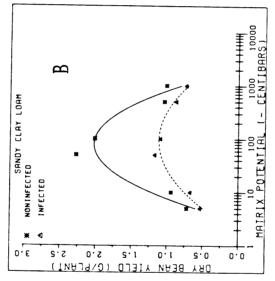
Sandy loam

NI: $Y = -1.3430390178 + 3.94734232927 X -1.03799212599 x^2 (R^2 = 0.93)$

I: $Y = -0.497700825489 + 1.89670676671 X - 0.510629921261 X^2 (R^2 = 0.82)$

Sandy clay loam


NI: Y = -1.56876476974 + 3.78813577679 X - 0.999015748033 X² (R² = 0.84)


I: $Y = -0.391307829268 + 1.5361323444 X - 0.388188976379 X^2 (R^2 = 0.94)$

Clay loam

NI: $Y = -0.612844452488 + 2.01878376449 X - 0.532283464568 X^2 (R^2 = 0.91)$

I: $Y = -0.245989441013 + 1.09555877425 X - 0.287992125985 X^2 (R^2 = 0.80)$

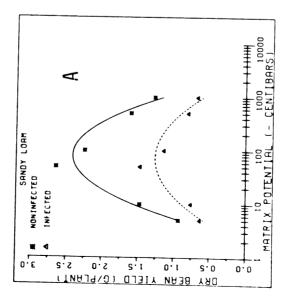


Figure 3.71.

to a matrix potential of -5 centibars (Figure 3.70A,B). The relationships between dry bean yield and matrix potential were expressed as second degree polynomials (Figure 3.71) and the curves for these reationships adequately describe the relationships.

In the sandy loam soil yields from noninfested plants were significantly higher than yields from noninfested plants in the sandy clay loam and clay loam respectively (Figure 3.71). The equation for yield of noninfested plants in the sandy loam soil is:

$$Y = -1.3430390178 + 3.94734232927 X$$

 $-1.03799212599 X^2 (R^2 = 0.93)$

where Y = dry bean yield and X = matrix potential while the equation for yield from <u>P.penetrans</u> infected plants from the sandy loam soil is:

$$Y = -0.497700825489 + 1.89670676671 X$$

- 0.510629921261 X^2 ($R^2 = 0.82$)

The differences in the terms in these two equations indicate the decrease in yield in \underline{P} . \underline{p} enetrans infected plants.

In the sandy clay loam soil the equation relating yield to matrix potential for noninfected plants is:

$$Y = -1.56876476974 + 3.78813577679 X$$
$$-0.999015748033 X^{2} \qquad (R^{2} 0.84)$$

while for P. penetrans infected plants the equation is:

$$Y = -0.391307829268 + 1.5361323444 X$$

- 0.388188976379 X^2 ($R^2 = 0.94$)

Reduction in yield is indicated in the equation for yield in \underline{P} . $\underline{penetrans}$ infected plants compared to the equation for yield in noninfected plants.

For noninfected plants from the clay loam soil the equation for the relationship between yield and matrix potential is:

$$Y = -0.612844452488 + 2.01878376449 X$$

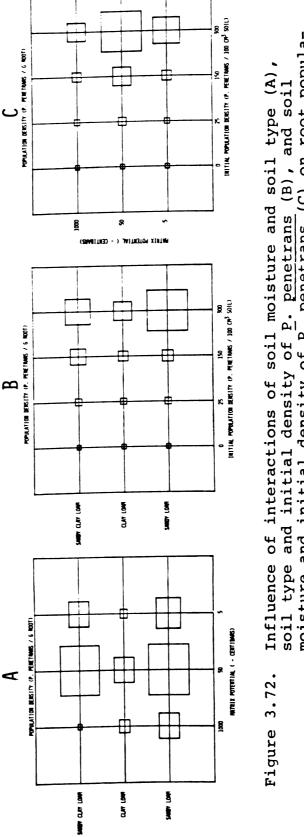
- 0.532283464568 X (R² = 0.91)

while the equation for yield from P. penetrans infected plants is:

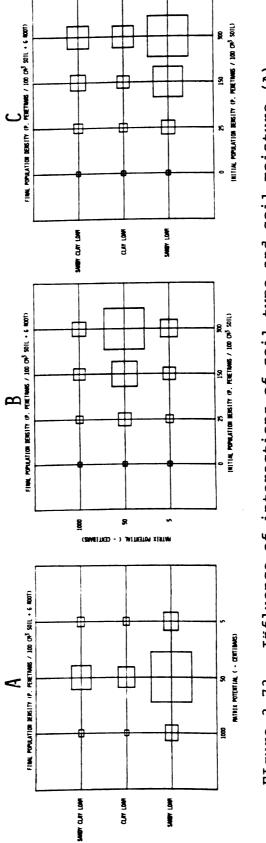
$$Y = -0245989441013 + 1.09555877425 X$$

- 0.287992125985 X^2 ($R^2 = 0.80$)

The decrease in yield in <u>P.penetrans</u> infected plants is evident in the last equation and the decrease in yields in this type compared to yields from plants in the sandy loam and sandy caly loam respectively is also significant.


3.4.2.4.3 Effect of interactions of soil type, soil moisture and intial population densities of P. penetrans on growth and yield of navy beans and on population densities of P. penetrans

Root population densities increased with increase in degree days up to 1407 DD 10 C and then decreased (Table A34-1). Densities were influenced by interactions of soil type, soil moisture and initial density of P. penetrans at 1056 DD 10 C (Figure 3.72; Tables A34-2-A34-5). Root densities were lowest at matrix potentials of -1000 and -5 centibars respectively (Figure 3.72A, C).


Soil densities of \underline{P} . penetrans were lowest at 1407 DD 10 C and highest at the end of the growth period. Densities were influenced by interactions of soil type, soil moisture and initial density of \underline{P} . penetrans at 1056 DD 10 C (Tables A35-1-A35-2).

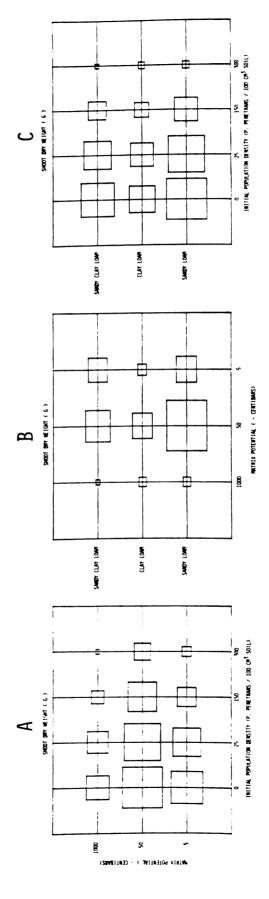
Final total densities at 1407 DD 10 C were lower in the clay loam at all moisture levels (Figure 3.73; Table A36-1). At 1056 DD 10 C final total densities in roots and soil were significantly influenced by interactions of soil type, soil moisture and initial density (Tables A36-2-A36-5).

Root weight was not influenced by three-way interactions of soil type, soil moisture and initial density

Influence of interactions of soil moisture and soil type (A), soil type and initial density of P. penetrans (B), and soil moisture and initial density of P. penetrans (C) on root population densities of P. penetrans at 1056 DD 10 C.



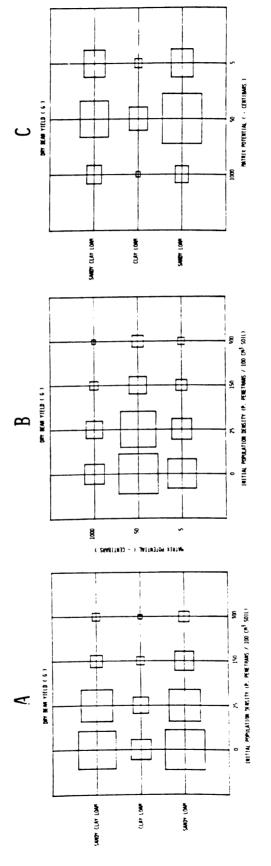
Influence of interactions of soil type and soil moisture (A), soil moisture and initial density of P. penetrans (B) and soil type and initial density of P. penetrans (C) on final total densities (root + soil) of \overline{P} . penetrans associated with navy beans. FIgure 3.73.


of P. penetrans at any sampling period during growth (Table A37-1). However root weight was influenced by interactions of soil type and soil moisture as well as interactions of soil type and initial density (Table A37-2). There was also a significant difference in root weight of plants grown in the sandy clay loam soil and in the clay loam soil at matrix potentials of -5 and -1000 centibars respectively (Figure 3.74; Tables A37-1-A37-8) at 1746 DD 10 C.

At 1056 DD 10 C there was no significant difference (P = 0.05) in shoot dry weight of P. penetrans infected and noninfected plants in the three soil types at an initial density of 25 P. penetrans per 100 cm³ soil (Figure 3.75; Tables A38-1-A38-8). Dry weight was not influenced by interactions of soil type, soil moisture and initial density at any sampling period during growth (Tables A38-2-A38-8). Dry weight was significantly reduced at high and low soil moisture levels (Figure 3.75A, B).

There were no significant interaction (P = 0.05) of soil type, soil moisture and initial density on height of bean plants (Tables A39-1-A39-5). At 285 DD 10 C plant height was influenced by interactions of soil type and soil moisture, soil type and initial density of \underline{P} . penetrans and initial density of P. penetrans and soil

Influence of interactions of soil moisture and initial density of P. penetrans (A), initial density of P. penetrans and soil type (B) and soil moisture and soil type (C) on root weight of navy bean plants at 1746 DD 10 C. FIgure 3.74.


Influence of interactions of soil moisture and initial density of P. penetrans (A), soil type and soil moisture (B) and soil type and initial density of P. penetrans (C) on shoot dry weight of navy bean plants at 1056 DD 10 C. Figure 3.75.

moisture (Table A39-2). Plant height increased with increase in degree days over the growth period (Table A39-1). Plants were highest at a matrix potential of -50 centibars (Table A39-1). Plant heights were significantly (P = 0.05) reduced by densities of 150 and 300 P. penetrans per 100 cm³ soil (Table A39-1).

High and low soil moisture levels corresponding to matrix potential of -5 and -1000 centibars respectively reduced yield of dry beans in all soil types (Figure 3.76; Table A40-1). Interactions of soil type and soil moisture, soil type and initial density of P. penetrans, and soil moisture and initial density of P. penetrans, respectively significantly (P = 0.05) influenced dry bean yields (Figure 3.76; Tables A40-2-A40-5). Navy bean yields were significantly reduced by population densities of 150 and 300 P. penetrans per 100 cm³ soil respectively. Yields were lowest in the clay loam soil and highest in the sandy loam (Figure 3.76A, C). Highest yields were obtained at a matrix potential of -50 centibars (Figure 3.76B).

3.4.3 Discussion

Soil moisture characteristic curves for the three soils indicated that percent volumetric moisture content of soils increased with increase in matrix potential. The

Influence of interactions of soil type and initial density of P. penetrans (A), soil moisture and initial density of P. penetrans (B) and soil type and soil moisture (C) on yield of navy beans. Figure 3.76.

soil moisture characteristic curve obtained for the sandy loam is as expected for this soil type (Baver, 1956).

For the clay loam, however, the soil moisture characteristic curve is slightly different from that expected and percent soil moisture associated with low matrix potentials was somewhat higher than expected (Baver, 1956). The high moisture content could be due to inadequate removal of water at high pressures to the thickness of the soil cores used in experimental procedures. Adjustments were made in calculation of soil moisture content for the clay loam soil in determining soil moisture levels for other experiments.

The higher population densities associated with the sandy loam soil is in agreement with reports on nematode movement in sandy soils (Oostenbrink, 1966; Wallace, 1973; Norton, 1978). Nematodes live and move in the thin film of water surrounding soil particles and this movement is facilitated in coarser textured soils with large pore spaces than in fine textured soils with small pore spaces. Although soil moisture content is generally lower in sandy soils nematode survival is generally higher in these soils at adequate moisture levels. The higher population densities in sandy soils are also related to optimum temperatures which are attained in these drier soils in contrast to lower temperatures in

wetter cold clay soils.

The optimum soil moisture level for survival and reproduction of P. penetrans was at a matrix potential of -50 centibars. This matrix potential corresponded to volumetric soil moisture contents of 21, 27 and 44 percent in the sandy loam, sandy clay loam and clay loam respectively. In general population densities of P. penetrans increased with decrease in matrix potential reaching highest densities at -50 centibars and then decreasing at lower soil moisture levels. In the sandy loam and clay loam the rate of decrease in population densities of P. penetrans was greater than in the sandy clay loam soil. This is related to the ability of sandy clay loam soils to maintain optimum soil moisture levels because of drainage.

In the clay loam soil moisture content remained high even at high and low matrix potentials and reduction in densities of P. penetrans could be related to lack of oxygen which is expected under high soil moisture conditions. Kable and Mai (1968) observed similar decreases in population densities at high and low moisture levels. Townshend and Webber (1971) observed greater survival of P. penetrans at low moisture levels compared to survival at high moisture levels.

At low moisture levels plant roots were stimulated

to penetrate deeper into the soil matrix to obtain moisture, hence the increase in root length at high matrix potentials. Plant growth as indicated by shoot dry weight was greatest at a moisture content corresponding to -50 centibars. Plant growth was generally poor at high and low matrix potentials in both noninfected and P. penetrans infected navy bean plants. This is related to the lack of oxygen in wet soils and the inability of plants to maintain their water balance due to transpiration requirements in dry soils. The relationship between availability of soil moisture and expression of damage by P. penetrans on tobacco has been observed by Townshend and Marks (1976), who reported increased growth at high moisture regimes in contrast to growth at low moisture regimes. Tobacco plants infected with P. penetrans required less moisture compared to moisture requirements for noninfested plants and this is expected due to the higher growth rate of noninfested plants and greater transpiration requirements.

The higher cation exchange capacity of clay soils and higher associated organic matter content should enhance growth of plants at adequate soil moisture levels (Lyon et al. 1958). However the beneficial effects of cation exchange capacity and organic matter associated with clay soils can be negated under adverse soil moisture conditions. The sandy loam soil is also an adequate soil

type for plant growth under optimum moisture conditions. However rapid drainage can occur in these soils and result in soil moisture deficiencies. Nematode movement is enhanced in sandy loam due to the suitable size of pore spaces.

In the sandy clay loam and sandy loam soils it was evident that at a soil moisture level corresponding to -50 centibars an initial population density of 25

P. penetrans per 100 cm³ soil could be tolerated on navy beans without significant losses in dry bean yields. In the clay loam however yield could be reduced by this initial population density at a moisture level of -50 centibars.

The need for adequate management of soil moisture in dry bean production is evident. Soil moisture influences temperature and to a large extent the functioning of plant disease and pest systems. The use of appropriate irrigation scheduling in bean production can overcome problems of moisture stress, while adequate drainage can alleviate problems associated with excess soil moisture. Use of an early planting date can also reduce problems of soil moisture stress. Temperatures are generally high at the time of flowering and moisture requirements are high at this period. If beans are planted early at adequate temperatures for germination, the physiological process of flowering can

be attained before moisture stress conditions begin.

Assimilates can be transferred to the reproductive sink in the absence of moisture stress and thereby increase the probability of high yields. Therefore the choice of planting date is critical for avoiding moisture stress problems during some growth phases of navy beans.

3.5 Interactions of P. penetrans and Mycorrhizae

Endomycorrhizae are commonly found in bean production systems, and the need to examine the significance of this component of the P. penetrans-navy bean system is important. The following studies were designed to examine the effects of Glomus fasciculatus on growth and yield of navy beans and to examine interactions of this mycorrhizal fungus and P. penetrans and the effect on growth and yield of navy beans.

3.5.1 Effect of initial population densities of Glomus fasciculatus on growth and yield of navy beans

3.5.1.1 Method

The experiment consisted of a randomized design of four replicates of six treatments including population densities of 0, 10, 50, 100, 500 and 1000 spores of Glomus fasciculatus. Forty-eight 3.72 cm clay pots were filled with 3000 cm³ of sandy clay loam soil containing the desired densities which were obtained by mixing steam sterilized soil with soil containing spores of G. fasciculatus.

Three navy bean seeds were planted in the soil in each pot. After germination plants were thinned out leaving one seedling in the soil in each pot. Plants

were watered daily and maintained at a temperature of 85 ± 10 C in the greenhouse. Shoot fresh weight, leaf area, plant height, root weight, root area and root length were recorded after a period of 56 days of growth (517 DD 10 C). Shoot systems were oven dried and shoot dry weight was recorded. After a period of 96 days dry bean yields were taken from the remaining 24 plants and dry bean yields were recorded. Vesicular-arbuscular root infection was determined (3.1.6) and spore density of Glomus fasciculatus was determined (3.1.5).

3.5.2 Interactions of P. penetrans and G. fasciculatus and effect on growth and yield of navy beans

3.5.2.1 Method

The experiment consisted of a randomized design of four replicates of four treatments including initial population densities of (1) 300 P. penetrans per 100 cm³ soil (2) 1000 spores of G. fasciculatus per 100 cm³ soil (3) 300 P. penetrans per 100 cm³ soil plus 1000 spores of G. fasciculatus per 100 cm³ soil and (4) 0 P. penetrans per 100 cm³ soil plus 0 G. fasciculatus per 100 cm³ soil.

One hundred and twelve 3.72 cm clay pots were filled with 3000 cm 3 soil containing desired densities of P. penetrans and G. fasciculatus, which were obtained by

mixing steam sterilized sandy clay loam soil with \underline{P} .

penetrans infested soil and soil containing spores of
G. fasciculatus respectively.

Three navy bean seeds were planted in the soil in each pot. After germination plants were thinned leaving one seedling in the soil in each pot. Plants were watered daily and maintained at 85 ± 10 C in the greenhouse. Growth parameters of plant height, leaf area, shoot fresh weight, root weight, root area and root length were recorded at 14 day intervals over the growth period of 98 days. Shoot systems were oven dried at 30 ± 5 C and shoot dry weight was recorded. Leaf area ratios were calculated (3.1.8). Soil and root samples were taken for nematode analyses (3.1.1.2 and 3.1.2.2) and P. penetrans densities were determined (3.1.3-3.1.4). Vesicular-arbuscular root infection was determined (3.1.6). Soil samples were analyses to determine spore densities of G. fasciculatus (3.1.5).

3.5.3 Results

3.5.3.1 Effect of initial population densities

of Glomus fasciculatus on growth and

yield of navy beans

Glomus fasciculatus germinated and colonized navy bean roots (Figure 3.77; Tables A41-A42). Colonization

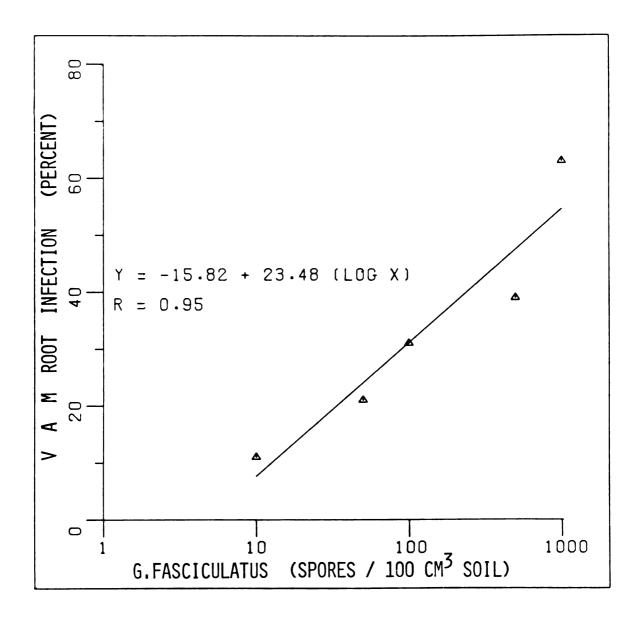


Figure 3.77. Relationship between percent vesicular-arbuscular mycorrhizal root infection of navy beans and log of initial spore density G. fasciculatus

levels at 517 DD 10 C ranged from 11% in plants exposed to an initial density of 10 spores of <u>G</u>. <u>fasciculatus</u> per 100 cm³ soil to 63% in plants exposed to an initial density of 1000 spores of <u>G</u>. <u>fasciculatus</u> (Table A42). The relationship between vesicular-arbuscular root infection and initial spore density of <u>G</u>. <u>fasciculatus</u> was expressed as a linear function and the relatively high degree of correlation (R = 0.95) and confidence intervals indicate that the linear relationship is appropriate. The equation for the relationship is:

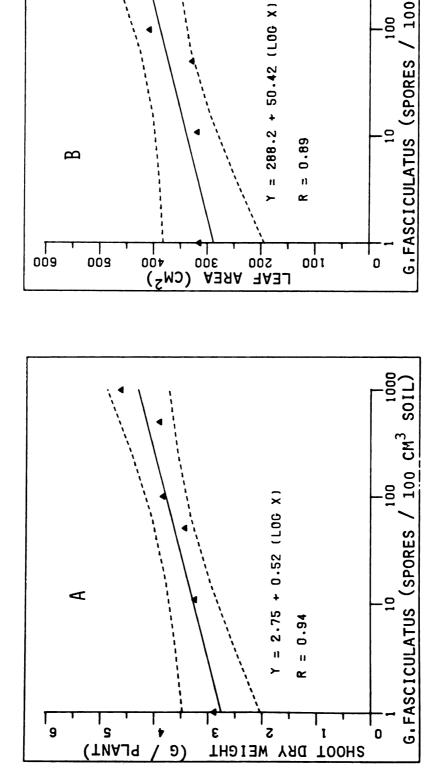
Y = 15.82 + 23.48 (log X) (R = 0.95) where Y = percent vesicular-arbuscular root infection and X = log initial density of spores of <u>G</u>. <u>fasciculatus</u>, and the equation expresses the increase in root colonization by <u>G</u>. <u>fasciculatus</u> with increase in initial spore density.

Final spore densities were greater than initial spore densities of 10, 50 and 100, but lower than the initial densities of 500 and 1000 (Table A42).

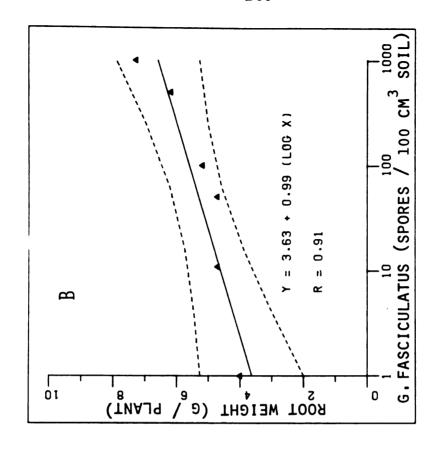
Shoot fresh weight, shoot dry weight, leaf area, plant height, root area and root weight were significantly increased by initial spore densities of 100, 500 and 1000 G. fasciculatus per 100 cm³ soil (Tables A41-A42).

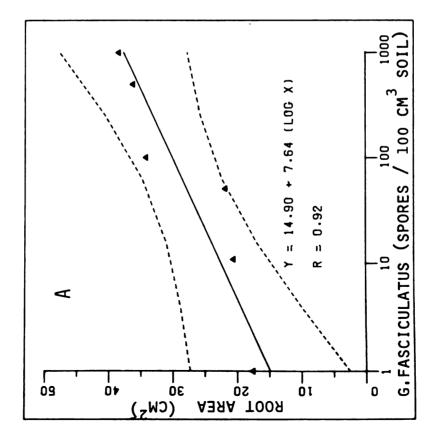
Linear regression functions were developed to express the relationship between plant growth parameters

and log of initial spore density of <u>G</u>. <u>fasciculatus</u>
(Figures 3.78-3.80). These linear regression functions adequately espressed the relationship except for the relationship between log initial spore density and root area (Figure 3.79A). The wide confidence intervals associated with this function indicated a low degree of significance. The equations for the linear functions indicated the increase in shoot dry weight, leaf area, plant height, root weight and root area with increase in initial spore density of <u>G</u>. <u>fasciculatus</u> (Figures 3.78-3.80). Dry bean yield increased with increase in initial spore density of <u>G</u>. <u>fasciculatus</u> and the relationship between these two variables is adequately described by the linear function expressed by the equation:


Y = 2.15 + 0.396 (Log X) (R = 0.96) where Y = dry bean yield and X = log initial spore density of G. fasciculatus (Figure 3.81).

3.5.3.2 Interactions of P. penetrans and


G. fasciculatus and effect on growth


and yield of navy beans

Vesicular-arbuscular root colonization increased with increase in degree days (Figure 3.82; Table A43) and the relationship between vesicular-arbuscular root infection and degree days was expressed by second degree polynomials for plants infected with G. fasciculatus and

Effect of G. fasciculatus on shoot dry weight (A) and leaf area (B) of navy bean plants. Figure 3.78.

Effect of G. fasciculatus on root area (A) and root weight (B) of navy bean plants. Figure 3.79.

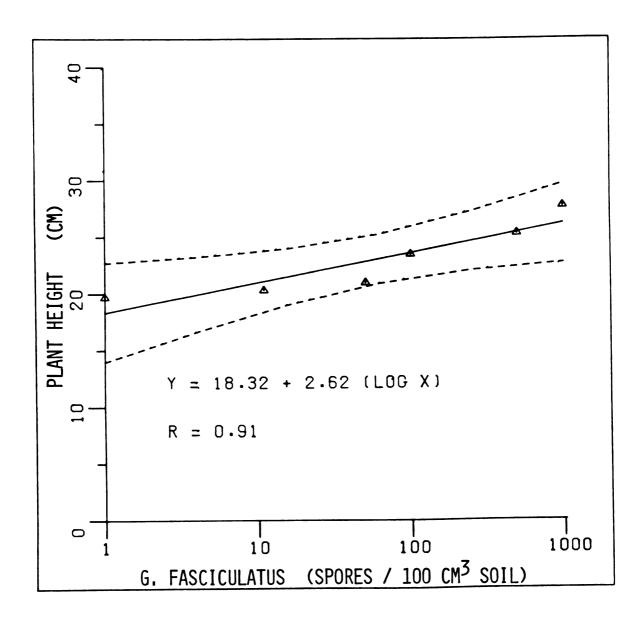


Figure 3.80. Effect of \underline{G} . fasciculatus on height of navy bean plants.

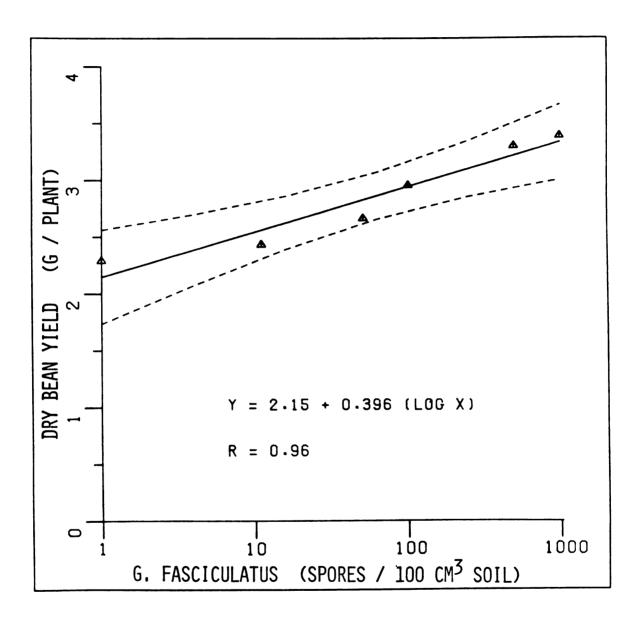
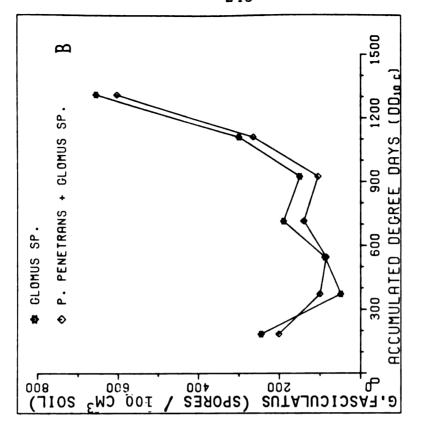
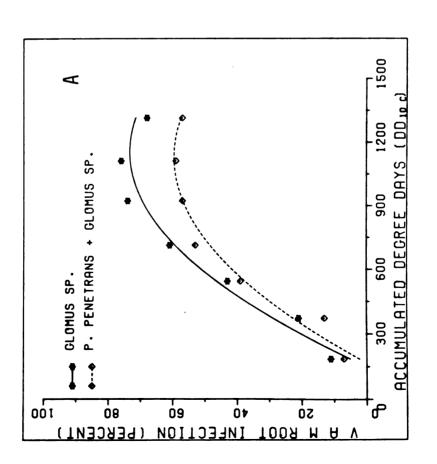




Figure 3.81. Effect of \underline{G} . $\underline{fasciculatus}$ on yield of navy beans.

Influence of G. fasciculatus and G. fasciculatus plus P. penetrans on development of vesicular-arbuscular mycorrhizal infection in (B) navy bean roots (A) and on spore densities of G. fasciculatus over the growth period. Figure 3.82.

G. fasciculatus plus P. penetrans (Figure 3.82). Vesicular-arbuscular root infection was reduced in plants infected with both P. penetrans and G. fasciculatus compared to plants colonized with only G. fasciculatus (Figure 3.82A). The equation for the relationship between vesicular-arbuscular root infection and degree days in plants exposed to only G. fasciculatus is:

$$Y = -23.5352315148 + 0.167913586149 x$$

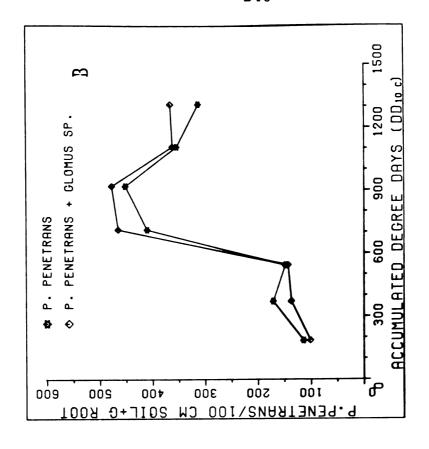
- 0.00007271347219 x^2 ($R^2 = 0.96$)

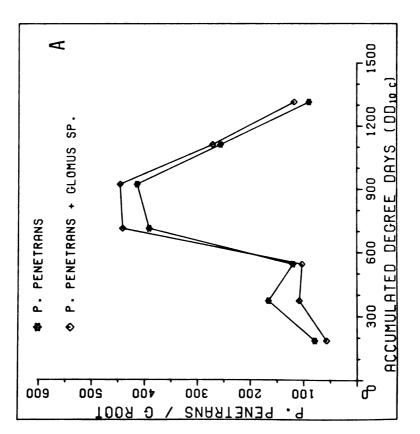
and for plants infected with both <u>G</u>. <u>fasciculatus</u> and <u>P</u>. <u>penetrans</u> the equation for the relationship is:

$$Y = -22.5500367928 + 0.145471967184 X$$

- 0.0000643638763 X^2 ($R^2 = 0.95$)

the high degree of correlation indicated by the R² value indicates that the relationship is adequately described by the second degree polynomial function.


Mycorrhizal spore density associated with soil initially infested with only <u>G</u>. <u>fasciculatus</u> was significantly (P = 0.05) higher compared to densities associated with soil infested with both <u>G</u>. <u>fasciculatus</u> and <u>P</u>. <u>penetrans</u> (Figure 3.82B; Table A44). Spore densities fluctuated throughout the growth period, and final spore densities were higher than initial spore densities of <u>G</u>. <u>fasciculatus</u> (Figure 3.82B).


Population densities of P. penetrans were higher

in plants infected with only P. penetrans at the beginning of the growth period. After 56 days (715 DD 10 C) population densities were higher in plants infected with both P. penetrans and G. fasciculatus (Figure 3.83B).

Two maxima in population densities were observed at 343 and 603 DD 10 C respectively. Densities reached a maximum at 603 and remained relatively constant at these densities until 965 DD 10 C in plants infected with only P. penetrans. A similar trend was observed in plants infected with both P. penetrans and G. fasciculatus except for a slight increase in densities between 603 and 965 DD 10 C (Figure 3.83A). Total densities in roots plus soil followed a similar trend except for a leveling off of densities in the presence of both P. penetrans and G. fasciculatus (Figure 3.83).

Growth parameters of shoot fresh weight, shoot dry weight, leaf area, plant height, root weight, root area and root length were significantly (P = 0.05) increased by colonization with <u>G. fasciculatus</u> (Tables A45-A51). Dry weight of plants infected with both <u>P. penetrans</u> and <u>G. fasciculatus</u> were significantly higher (P = 0.05) compared to plants colonized with only <u>G. fasciculatus</u> after 14 days of growth (185 DD 10 C) (Table A46). There were no significant (P = 0.05) differences in dry weight and leaf area in plants infected with

Population dynamics of P. penetrans associated with navy beans exposed P. penetrans and P. penetrans plus G. fasciculatus respectively. Figure 3.83.

G. fasciculatus plus P. penetrans, compared to controls after 14 days of growth (185 DD 10 C) (Tables A46-A47).

P. penetrans significantly (P = 0.05) decreased all growth parameters (Tables A45-A51). Root area was lowest in plants infected with P. penetrans and highest in plants colonized with G. fasciculatus. Root area increased throughout the growth period reaching maxima at 715 DD 10 C and then decreased after this period (Figure 3.84). The relationship between root area and degree days was expressed as second degree polynomial functions (Figure 3.85). For control plants the equation for the relationship is:

$$Y = -3.40464028328 + 0.0552470297167 X$$

- 0.000037776936613 X^2 ($R^2 = 0.90$)

The increase in root area in plants infected with \underline{G} .

fasciculatus was evident from the equation for the relationship between the two variables:

$$Y = -6.60066024855 + 0.0974171382959 X$$

- 0.00006676630977 X^2 ($R^2 = 0.87$)

and the decrease in root area in plants infected with

P. penetrans is observed in the equation for the relationship between the two variables:

$$Y = -1.760739383 + 0.0386747170543 X$$

- 0.00002693062666 X^2 ($R^2 = 0.92$)

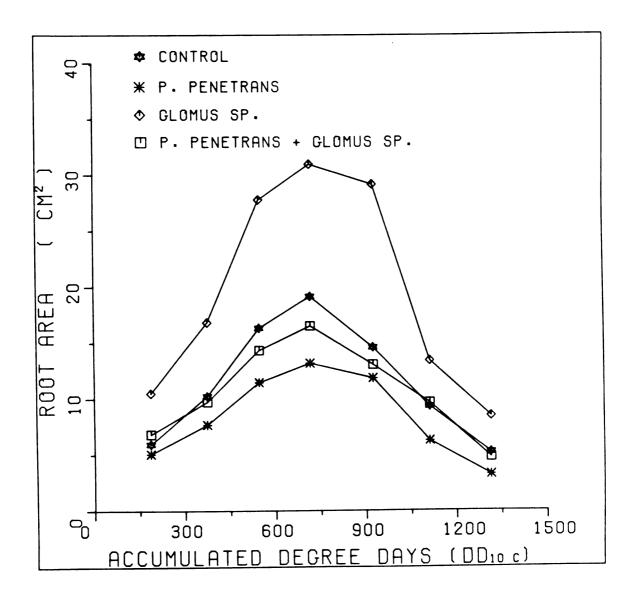
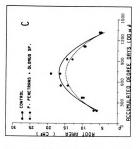
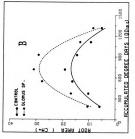


Figure 3.84. Influence of P. penetrans, G. fasciculatus and P. penetrans plus G. fasciculatus on root area of navy bean plants over the growth period.


Figure 3.85. Relationship between root area and degree days of noninfected plants and navy bean plants infected with \underline{P} . $\underline{penetrans}$ (A), \underline{G} . $\underline{fasciculatus}$ (B) and \underline{P} . $\underline{penetrans}$ plus \underline{G} . $\underline{fasciculatus}$


Equations for the relationships between root area and accumulated degree days at base 10 C
Y = root area, X = accumulated degree days base 10 C.

Control (noninfected) y = -3.40464028328 + 0.0552470297167 X $-0.00003776936613 X^2 (R^2 = 0.91)$

 $Y = -6.60066024855 + \frac{fasciculatus}{0.0974171382959} X -0.00006676630977 X^{2} (R^{2} = 0.87)$

 $Y = -0.7735052\overline{54102} + 0.04334\overline{7173572} X$ -0.000029999118087 X² (R² = 0.94)

< ₹

NO CONTROL

SO CHE

10 15 10 15

Figure 3.85.

300 600 900 1200 1 ACCUMULATED DEGREE DAYS (DD.s.2) Leaf area ratios of plants fluctuated throughout the growth period (Figure 3.86) and were highest in plants infected with <u>P. penetrans</u> and lowest in plants colonized with <u>G. fasciculatus</u>.

Dry bean yield was significantly (P = 0.05) increased in plants colonized with <u>G</u>. <u>fasciculatus</u> (Figure 3.87). There was no significant (P = 0.05) difference in yield of dry beans from control plants compared to plants infected with both G. fasciculatus and P. penetrans.

3.5.4 Discussion

and navy beans resulted in increased growth and yield in mycorrhizal bean plants. Spore densities above 50 G.

fasciculatus per 100 cm³ soil significantly increased growth and yield of navy beans. The adverse effects of P. penetrans on growth and yield of dry beans can be minimized by the presence of mycorrhizal associations between navy beans and G. fasciculatus.

The mode of action and the function of the fungus in interactions with \underline{P} . $\underline{penetrans}$ and navy beans is unclear. Population densities of \underline{P} . $\underline{penetrans}$ were not significantly (P=0.05) different in plants infected with \underline{P} . $\underline{penetrans}$ compared to densities in plants infected with both \underline{P} . $\underline{penetrans}$ and \underline{G} . $\underline{fasciculatus}$, therefore the mode of action

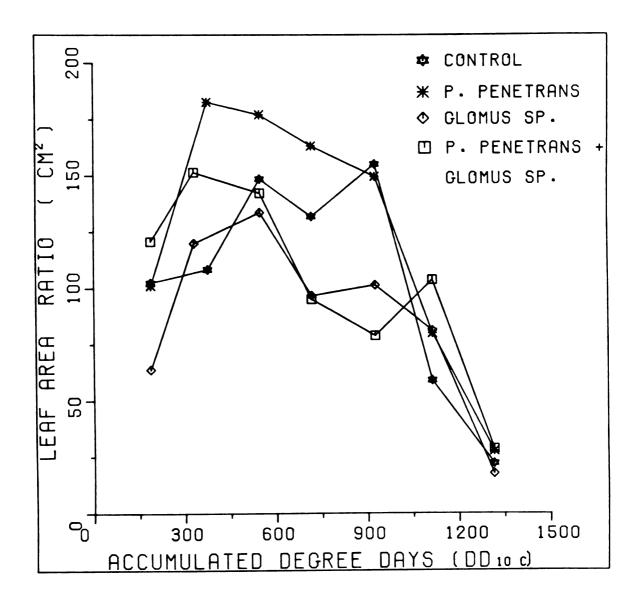


Figure 3.86. Influence of P. penetrans, G. fasciculatus and P. penetrans plus G. fasciculatus on leaf area ratio of navy bean plants over the growth period.

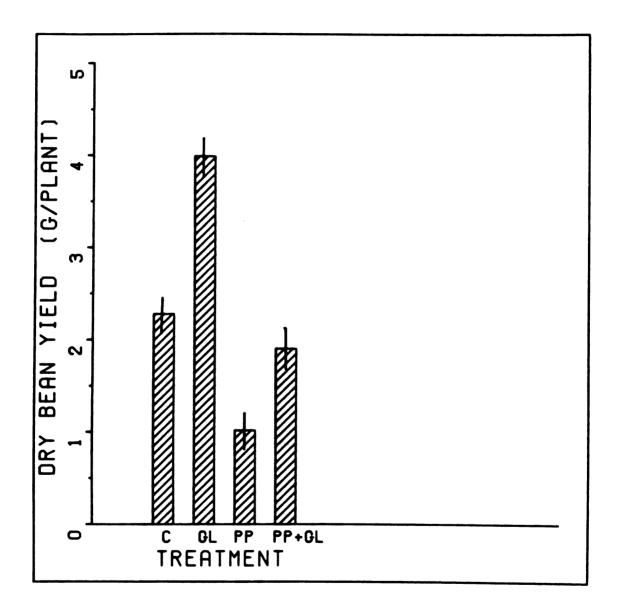


Figure 3.87. Influence of P. penetrans, G. fasciculatus and P. penetrans plus G. fasciculatus on yield of navy beans.

of the fungus was not related to reduction of population densities. Reports indicate that interactions of nematodes and mycorrhizal fungi are complex (Fox and Spasoff, 1972; Baltruschat, 1973; Schenck and Kinlock, 1974; Schenck et al. 1975). In some reports increases in nematode population densities were observed and this could be related to the increased food source provided by the larger healthier root system produced by the beneficial symbiotic association of the plant and mycorrhizal fungus. Decreases in population densities in the presence of mycorrhizal associations suggest an antagonistic interaction between fungi and nematodes.

Reports on increased growth of plants in the presence of mycorrhizal fungi, contribute the increased growth to increased nutrient availability. It has been hypothesized that the fungus transfers the nutrients to the plant through a symbiotic relationship (Gray and Gerdemann, 1967; Rhodes, 1976). The exact mechanism by which phosphorus is transferred is unknown however, Tinker (1975) proposed that bulk flow and cyclosis are involved in the translocation of phosphorus from the fungi to the plant. The beneficial effects of mycorrhizae are influenced by soil fertility and is promoted in soils of low fertility in contrast to soils of high fertility (Tinker, 1975).

The presence of certain species of mycorrhizae in navy bean production systems can be considered as a beneficial phenomenon, and maintenance of optimum densities of beneficial mycorrhizal fungi should be incorporated into management strategies in navy bean production. The influence of pesticides on mycorrhizal associations should be considered in development of nematode control strategies. Various reports indicate that pesticides influence mycorrhizal populations and associations (Nesheim and Linn, 1969; Kleinschmidt and Gerdemann, 1972; Bird et al. 1974; Backman and Clark, 1977; Bailey and Safir, 1977).

tode control strategy in management of navy bean production systems is dependent on the species of mycorrhizal fungus. The nature of the indigenous species must be determined and the effect of introducing other species should be evaluated before recommended strategies can be developed. Where the beneficial mycorrhizal species is not indigenous it can be introduced by first propagating plants in soil infested with the species in the greenhouse and transferring these plants to the field (Khan , 1972; 1975). In the field population densities of mycorrhizal fungi can be increased by effective crop rotation with plants inoculated with the desired beneficial mycorrhizal species.

3.6 Rotation Crops - Kidney Beans

3.6.1 Susceptibility and control of <u>P.penetrans</u>
associated with five dry bean varities

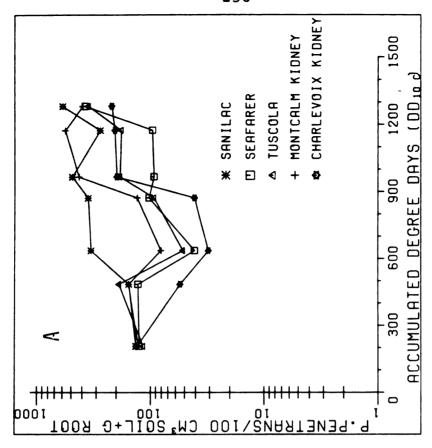
3.6.1.1 Method

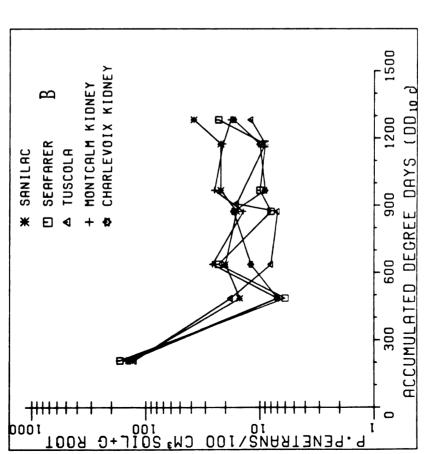
Five dry bean varieties were planted in a randomized block design of five replicates of plots treated with aldicarb (Temik 15G) for control of P. penetrans and five replicates of plots containing initial densities of 116-134 P. penetrans per 100 cm³ soil. Each plot consisted of four rows 6.1 m in length and 0.9 m apart. Aldicarb was applied in 0.2 m bands at the time of planting on June 5, 1979 (207 DD 10 C). The dry bean cultivars used were Sanilac, Seafarer and Tuscola navy beans, and Montcalm kidney and Charlevoix kidney beans. Soil and root samples were taken for nematode analysis at six intervals during the growing period. Population densities of P. penetrans were determined (3.1.1.1 and 3.1.3.2; 3.1.3-3.1.4). The two center rows of each plot were harvested on October 25, 1979 (1281 DD 10 C), and dry bean yield was recorded.

3.6.2 Results

3.6.2.1 Susceptibility and control of P.penetrans associated with five dry bean varieties

Population densities of <u>P.penetrans</u> fluctuated throughout the season, and two maxima in densities were


associated with Sanilac navy beans and Montcalm kidney beans (Figure 3.88). Lowest densities were associated with Charlevoix Kidney beans and Seafarer navy beans (Figure 3.88; Table A52). Densities associated with Montcalm Kidney beans decreased towards the end of the season in contrast to an observed increase in densities associated with other varieties at similar growth periods (Table A52).


Aldicarb (2.0 lb per acre) was effective in reducing population densities of \underline{P} . \underline{P} penetrans associated with all five varieties (Figure 3.88B; Table A52). Aldicarb was effective in maintaining population densities of \underline{P} . \underline{P} penetrans at low densities throughout the season (Table A52).

Yield of dry beans were significantly (P = 0.05) higher in plots with low densities of \underline{P} . penetrans obtained through treatment with aldicarb compared to yields from plots with high densities of \underline{P} . penetrans in the absence of nematode control inputs (Table A52).

3.6.3 Discussion

Sanilac, Seafarer and Tuscola varieties were highly susceptible to <u>P</u>. <u>penetrans</u>. Seafarer appears to be less susceptible than Sanilac variety. Montcalm Kidney beans were highly susceptible to <u>P</u>. <u>penetrans</u> and maintained high densities of <u>P</u>. penetrans. This indicates that rotation

Population dynamics of P. penetrans (A) and control of P. penetrans with an input of aldicarb for control of P. penetrans associated with five dry bean varities. Figure 3.88.

of navy beans with Montcalm kidney beans could lead to increased densities of \underline{P} . $\underline{penetrans}$ and $\underline{greater}$ reduction in yields in susceptible navy bean varieties. Lower population densities of \underline{P} . $\underline{penetrans}$ were maintained on Charlevoix kidney and this variety is a more suitable choice for rotation in a nematode control program for navy beans.

3.7 Comparison of Population Dynamics of

P. penetrans Associated with Navy Beans

Over Two Growing Seasons

Because of changes in environmental conditions over periods of time, variations in seasonal patterns of population dynamics may occur from year to year. This study was designed to compare population dynamics of P. penetrans associated with navy beans in 1978 and 1979 navy bean growing seasons in Michigan.

3.7.1 Population dynamics and control of

P. penetrans associated with navy
beans in 1978

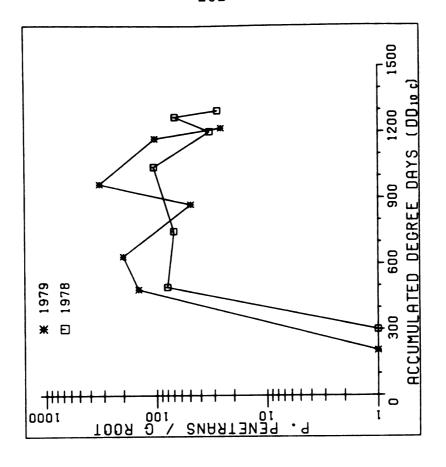
3.7.1.1 Method

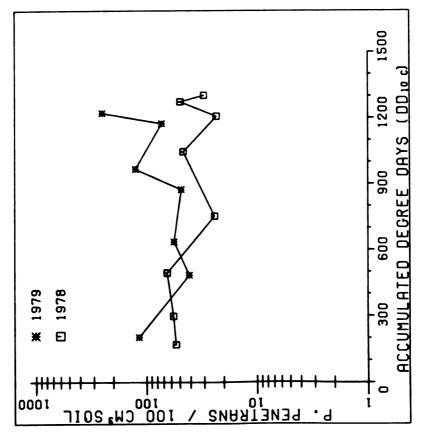
Six replicates of navy beans cv Sanilac were planted in a randomized block design on a sandy clay loam soil at Michigan State University Montcalm experimental farm. Six replicates of seven nematicide

treatments were included for evaluation for nematode control. Each plot consisted of four rows 6.1 m in length and 0.9 m apart. Three fumigant nematicide treatments of Di (2-chloroisopropyl) ether (Nemamort 8E) were applied in-row 19 days prior to planting. The nonfumigant nematicides were applied (in-row) at the time of planting on June 21, 1978 (171 DD 10 C). Soil samples for nematode analysis were taken prior to the application of soil fumigants and at the time of planting. Soil and root samples from treatments were taken at six intervals during the growing season (3.1.1.1 and 3.1.3.2; 3.1.3-3.1.4). The center two rows of each plot were harvested on October 20, 1978 (1301 DD 10 C) and the yield of navy beans recorded.

3.7.2 Population dynamics and control of P. penetrans associated with navy beans in 1979

3.7.2.1 Method


Five replicates of navy beans cv Sanilac were planted in a randomized block design in a sandy clay loam soil at Michigan State University Montcalm experimental farm. The average initial density was 116 P. penetrans per 100 cm³ soil. Five replicates of seven nematicide treatments were also included for evaluation for nematode


control. Each plot consisted of four rows 6.1 m in length and 0.9 m apart. All nematicide treatments were applied in 0.2 m bands at the time of planting on June 5, 1979 (207 DD 10 C). A foliar oxamyl (Vydate L) spray was applied three weeks after planting (392 DD 10 C). Soil and root samples were taken for nematode analysis (3.1.1.1 and 3.1.3.2; 3.1.3-3.1.4) at six intervals during the growing season. The two center rows were harvested on September 21, 1979 (1221 DD 10 C).

3.7.3 Results

3.7.3.1 Population dynamics and control of P. penetrans associated with navy beans in 1978

Three maxima in soil and root population densities of <u>P</u>. <u>penetrans</u> were observed during the growth period (Figure 3.89). Root densities were highest at 1044 DD 10 C and decreased towards the end of the season (Figure 3.89B). The highest percentage of the population cohort consisted of females at all sampling periods (Table 3.14). The percentage of males were three times lower than that of females but was higher than that of other life cycle stages. The percentage of fourth stage juveniles increased and was higher at the end of the season than at the initial growth period at 300 DD 10 C (Table 3.14).

Population dynamics of P. penetrans associated with navy beans in 1978 and 1979. Figure 3.89.

Table 3.14 Dynamics of the population cohort of

P. penetrans associated with navy beans in 1978.

Popula	tion coh	ort (per	cent pop	ulation)
DD 10 C	F	М	2 nd	3 rd	4 th
300	60.6	18.0	6.6	6.5	8.2
495	48.0	17.6	15.5	6.8	12.1
700	59.1	20.4	8.6	3.3	8.5
1044	56.3	16.6	11.9	5.6	8.6
1205	50.9	17.5	7.0	5.3	19.3
1272	45.7	17.2	19.8	7.8	9.5
1301	44.6	17.9	7.1	5.4	25.0

F = female

M = male

Population densities were reduced by all nematicide treatments (Table A53). Soil and root densities of P. penetrans remained relatively low throughout the growing season in plots treated for nematode control (Table A53). Navy bean yields were significantly (P = 0.05) increased in plots treated with aldicarb for nematode control. Yields were significantly (P = 0.05) reduced in plots treated with Di (2-chloroisopropyl) ether (Nemamort 8E) at 36 lb per acre (Table A53).

3.7.3.2 Population dynamics and control of P. penetrans associated with navy beans in 1979

Two maxima in root population densities were observed (Figure 3.89; Table A54). Root densities of P. penetrans increased reaching an initial maximum at 636 DD 10 C and then decreased until 872 DD 10 C. Another maximum in population densities was attained at 966 DD 10 C (Figure 3.89; Table A54). Soil population densities of P. penetrans fluctuated throughout the season decreasing rapidly during the early part of the season as nematodes entered the roots and later increasing towards the end of the season as nematodes migrated from decaying roots (Figure 3.89).

Population densities of \underline{P} . \underline{P} penetrans were decreased with an input of aldicarb for nematode control (Table A54).

Aldicarb at 0.5 lb per acre did not significantly (P = 0.05) reduce population densities throughout the season (Table A54). Root population densities were significantly (P = 0.05) decreased by treatments of oxamyl at 1.0 lb per acre and oxymal at 1.0 lb per acre plus a foliar oxamyl spray (Table A54).

Comparison of population densities in untreated plots over 1978 and 1979 navy bean growing seasons indicated some differences in the population dynamics of P. penetrans over the two different growing seasons. maxima in soil population densities were observed in 1978 in contrast to two maxima in soil densities in 1979 (Figure 3.89). While soil densities of P. penetrans decreased at the end of the growing season in 1978, densities increased at this time in 1979. Soil and root population densities were higher in 1979 compared to densities in 1978 (Figure 3.89). Three maxima in root population densities were evident in 1978 and 1979 (Figure 3.89). In 1978 P. penetrans densities decreased after the maximum at 1044 DD 10 C, while in 1979 densities increased after the first maximum at 636 DD 10 C reaching another peak at 966 DD 10 C (Figure 3.89). The growing season was shorter in 1979 compared to 1978.

In 1979 dry bean yields were significantly higher in plots treated with aldicarb at rates above 0.5 lb per

acre (Table A54). Yields were also higher in plots treated with oxamyl at 1.0 lb per acre plus a foliar oxamyl spray at 1.0 lb per acre.

3.7.4 Discussion

Population densities of P. penetrans fluctuated throughout the growing season on navy beans.

Soil densities generally decreased early in the season as nematodes entered roots and then remained relatively low throughout the season. P. penetrans is an endoparasite and the low soil densities are expected. Soil densities increased towards the end of the season as nematodes migrated from decaying roots.

of aldicarb, at rates above 0.5 lb per acre. Oxamyl was also effective in controlling P. penetrans. While Di (2-chloroisopropyl) ether offered some degree of control phytotoxicity was evident as indicated by the lower yields obtained with the application of this input. Phenamiphos was also effective in controlling P. penetrans but use of this input also resulted in some degree of phytotoxicity.

The need for development of more cultural and biological methods for control of \underline{P} . $\underline{penetrans}$ associated with navy beans is evident. Research on biological control of \underline{P} . $\underline{penetrans}$ is limited and should increase in the

future (Ramaro, 1972; Saka, 1975). The choice of varieties tolerant to \underline{P} . penetrans should be examined in conjunction with the economics of production of chosen varieties.

4.0 GENERAL DISCUSSION

4.1 An Overview of the Research Findings

Research findings indicated that Pratylenchus
penetrans was found in 68% of Michigan bean fields. This
nematode species was pathogenic to navy beans and significant decreases in yields of navy bean resulted in the
presence of P. penetrans at densities above 25 per 100 cm³
soil. Varieties which were tolerant to P. penetrans were
identified. Temperature, soil type and soil moisture
significantly influenced the pathogenic relationship between
P. penetrans and navy beans. Mycorrhizal associations with
navy beans also influenced the development of the rootlesion disease on navy beans. Kidney beans were also
susceptible to P. penetrans. Population dynamics of P.
penetrans varied over two navy bean growing seasons.

4.2 A Conceptual Model of the P. penetrans-navy Bean system based on Research Findings

A model of the <u>P</u>. <u>penetrans</u> navy bean system was developed, based on research findings (Figure 4.1). In this research study the interacting components of mycorrhizae and other crops grown in rotation with navy beans were examined. The approach to this study however, indicated a

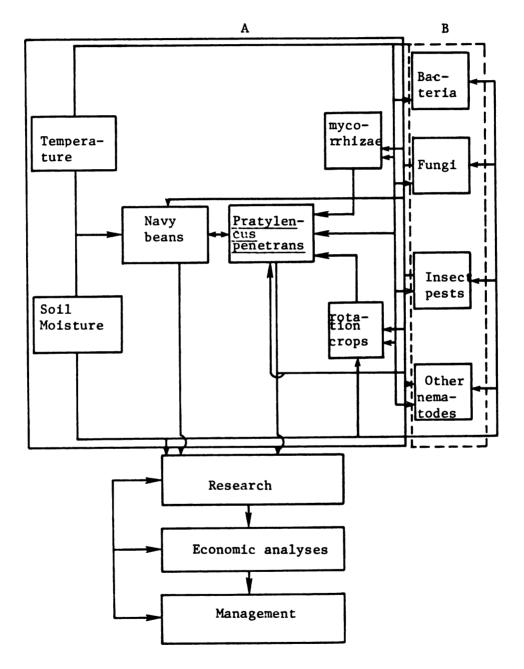


Figure 4.1. Components of the <u>P</u>. <u>penetrans</u> - navy bean ecosystem.

Components studied are enclosed in bold lines (A). Other interacting components are enclosed in dotted lines (B).

number of other interacting components. The model indicates that navy bean production is influenced by <u>P. penetrans</u>. The relationship between this crop and pest is influenced by environmental factors of temperature and moisture (Figure 4.1). Interacting components of mycorrhizae and other crops grown in rotation with navy beans also influence the pathogenic relationship between P. penetrans and navy beans.

The development of effective management strategies requires detailed examination of the research findings, and economic analyses of control strategies. The research findings indicated that population densities of P. penetrans were lowest at low temperatures. This indicates that planting dates should be considered as a control option if possible. Low temperatures are generally associated with early planting dates, and choice of early planting dates which are suitable for adequate germination of beans could reduce the yield loss of navy beans, as percentage yield loss is proportional to the initial P. penetrans density. Control of soil moisture is another management input which was identified. The detrimental effects of P. penetrans are emphasized under soil moisture stress or in the presence of excess soil moisture.

The incorporation of bean varieties which are tolerant to P. penetrans should be included in control programs.

5.0 SUMMARY AND CONCLUSIONS

Pratylenchus penetrans occurs in an aggregated type distribution in the field. This therefore requires that analyses of data involve suitable transformations which assist in normalizing data. The log transformation is recommended or log plus a constant when data contain zero values.

Pratylenchus spp. were present in bean fields in Michigan and high densities were associated with sandy soils and Kidney bean varieties. Tylenchorhynchus spp. were also associated with dry beans, and future research on the effect of this species on navy beans is necessary. The predominant Pratylenchus spp. was P. penetrans and this species is generally considered the most economically important species in this genus.

Pathogenicity studies indicated that this species was detrimental to growth and yield of navy beans. The response to infection by this species varied depending on the bean variety. Studies indicated that varieties of Sanilac, Seafarer and Tuscola navy beans and Montcalm Kidney beans were highly susceptible to P. penetrans, while Saginaw, Gratiot and Kentwood navy bean varieties were tolerant to P. penetrans.

The pathogenic relationship between P. penetrans and navy beans was influenced by temperature. Growth and yield of navy beans were reduced at temperatures of 15 and 30 C respectively. Optimum growth and yield were obtained at a temperature of 25 C. Population densities of P. penetrans were also influenced by temperature. Densities were highest at 25 C indicating maximum reproduction and survival at this temperature. Densities were lower at 15 and 30 C respectively, indicating lower reproduction or higher mortality.

Interactions of soil type and soil moisture influenced the development of the root-lesion disease on navy beans. Optimum growth and development of P. penetrans was obtained at a soil matrix potential of -50 centibars.

Population densities of P. penetrans were higher in the sandy loam and this is expected as movement and activity of nematodes are promoted in sandy soils due to the presence of large pore spaces and more favorable temperatures. Growth and yield of beans were generally poor in the clay loam and this was due to the large volume of water retained by this soil type with its numerous small pore spaces and great water holding capacity due to slow drainage. Growth and development of beans were decreased at high and low moisture levels corresponding to matrix potentials of -5 and -1000 centibars. Population densities of P. penetrans were

decreased at these two moisture levels. The importance of adequate management of soil moisture in bean production was demonstrated.

The detrimental effects of P. penetrans on navy beans were minimized in the presence of mycorrhizal associations of G. fasciculatus and navy beans. Growth and yield of navy beans were increased by mycorrhizal associations of G. fasciculatus and navy beans in the absence of P. penetrans. The exact mechanism of the interaction of G. fasciculatus and P. penetrans is unclear and further research in this area is necessary.

Considering aspects of control choice of rotation crops should be carefully examined. The maintenance of low densities of P. penetrans at low temperatures indicate that choice of planting dates corresponding to temperatures high enough to allow adequate germination but low enough to maintain low densities of P. penetrans is advisable. Choice of early planting dates is also recommended for preventing problems associated with moisture stress at mid-season.

While control of \underline{P} . \underline{P} enetrans was obtained with a management input of aldicarb, the use of the input should be examined from economic feasibility studies. The use of all control inputs should theoretically be economically

analysed. However the use of economic thresholds as a decision criteria in control programs is not always feasible because of the difficulty associated with assigning monetary values to control inputs such as planting date, and crop rotation. The model indicates that continual updating of the research on this system is necessary to maintain control of P. penetrans.

The research findings contribute to the understanding of the P. penetrans-navy bean ecosystem. The studies on the behavior of this system and the effects of interacting components provide information for development of management strategies for control of P. penetrans in bean production. While the research study addressed effects of environmental parameters of temperature and moisture and interacting components of mycorrhizae and Kidney beans, more detailed studies on other components such as insect pests, bacteria, fungi, other nematodes and other crops grown in rotation with navy beans are necessary for a more comprehensive understanding of the pest-crop ecosystem, and for development of more effective management of P. penetrans in bean production systems. These data should be adequate for simulation of a model of the P. penetransnavy bean system. It would be essential however to validate such a model under varying field conditions in bean production. This model could then be used for development of management strategies.

APPENDIX

6.0 APPENDIX A

Table Al: The effect of Pratylenchus penetrans on height of six dry bean varieties.

						Accumula	ited deg	Accumulated degree days $(\mathrm{DD}_{50}\mathrm{F})$	(DD ₅₀ F)					
	ř	368	4	488	642	12	987	17	13	1318	1668	5.8	19	1956
				ī	Initial population density (\underline{P} . penetrans/100 cm 3 soil)	pulation	density	(P. pene	trans/10	ocm³so	i1)			
	0	150	0	150	0	150	0	0 150	0	150	0	150	0	150
						4	lant he	Plant height (cm)						
Sanilac	5.2ab	4. la	5.2ab 4.la 11.9bc	5.6a	16.1c	9.0a	21.2c	21.2c 11.9a	23.9c	23.9c 14.9a		24.1b 14.8a	24.4b	15.0a
Seafarer		4.la	6.0ab 4.1a 12.1bc	5.9a	15.5c	8.6a	21.4c	21.4c 13.0ab	22.5bc 14.8a	14.8a	22.5b 14.9a	14.9a	22.60b	14.93a
Tuscola	96.9p	5.3ab	5.3ab 13.3bc	6.3a	19.0d	11.2b	28.3d	14.1b	29.4d	15.7a	29.3c	15.8a	29.5c	15.9a
Gratiot	4.9ab	4.8ab	4.9ab 4.8ab 11.17b	12.2bc	14.40	15.3c	19.4c	19.2c	21.2b	20.7b	21.3b	21.2b	21.5b	21.6b
Saginaw	6.3b	6.2ab	6.3b 6.2ab 11.4bc	10.7b	13.4bc	13.5bc	20.5c	20.5c 20.0c	21.2b	20.8b	22.1b	21.9b	22.4b	22.3b
Kentwood		7.0b 7.1b 13.9c	13.9c	13.2bc	20.3d	20.0d	28.9d 28.3d	28.3d	30.0d	29.7d	30.3c 30.0c	30.0c	30.8c	30.7c

Column means followed by the same letter(s) are not significantly different (P = 0.05) according to the student Newman Keuls multiple range test.

Table A2: The effect of Pratylenchus penetrans on root weight of six dry bean varieties.

						Accumula	Accumulated degree days $(\mathrm{DD}_{50}\mathrm{F})$	ee days	(DD ₅₀ F)					
	Ř	368	488	8	642	2	987	37	1318	8	1668	89	1956	56
					Initial po	Initial population density (P. penetrans/100 cm ³ soil)	density	(P. pene	trans/10	0 cm 3 sc	11)			
	0	150	0	150	0	150	0		0	150	0	150	0	150
						Roc	Root weight (g/plant)	(g/plan	t)					
Sanilac	0.9la	0.9la 0.85a	2.06b	0.98a	2.39bc	1.15a	3.8cd		1.84ab 4.59bc	2.25a	2.22b	2.22b 1.04a	0.99bc	0.39a
Seafarer	0.93a	0.75a	2.13b	0.93a	2.45bc	1.27a	3.9cd	1.53a	4.67bc	2.13a	2.32b	1.05a	0.96b	0.37a
Tuscola	1.08a	1.08a 1.04a	2.35b	1.13a	2.94c	1.28a	4.31de	2.22b	5.34cd	2.593	2.73b 1.19a	1.19a	1.61d	0.53a
Gratiot	0.87a	0.87a 0.86a	2.18b	2.26b	2.26b	2.76bc	3.65c	3.46c	4.34b	4.13b	2.21b	2.06b	1.24c	1.08bc
Saginaw	0.90a	0.84a	2.05b	2.03b	2.44bc	2.64bc	3.78cd	3.78cd 3.76cd	4.14b	4.06b	2.41b	2.31b	1.14bc	0.99bc
Kentwood	1.53b	1.53b 1.46b	2.63b	2.69b	3.43d	3.36d	4.79e	4.76e	6.07d	5.74d	2.70b	2.70b 2.66b	1.76d	1.69d

Column means followed by the same letter(s) are not significantly different (P = 0.05) according to the student Newman Keuls multiple range test.

Table A3: The effect of Pratylenchus penetrans on leaf area of six dry bean varieties.

	4		151		22.02a	18.99a	24.41.	58.75b	45.95ab	113.50c	
	1954		0		67.13b	65.465	64.35b	64.91b	47.83ab	116.670 1	
	8		150		77.89a	58.52a	66.14a	1,7,89ab	143.22ab	220.876	
	1668		0		204.38b	186.40b	189.20b	138.53ab	147.86ab 143.22ab	222.77b	
	8		150		214.72ab	170.48a	217.75ab	313.72bcd	285.19bc	392.29cd	
	131	i1)	o		382.23cd	.64.97cd	355.31cd	157.61cd	330.54cd 285.19bc	420.09d	
£	7	tial population density (P. penetrans/100 cm soil	150		135.31a	114.03a	148.69a	249.07bc	212.43b	316.13c	
Accumulated degree days (DD ₅₀ F)	987	penetrans	0	2m2	247.45bc 135.3la	251.22bc 114.03a	298.84bc	225.74b	220.91b	290.25bc	
ted degree	12	density (P.	150	Leaf area cm	79.01a	71.86a	90.45ab	182.10f	107.62bc	165.46ef 173.34ef	
Accumula	642	oppulation	0		144.5d	135.18d	171.23ef	152.21de 182.10f	116.72c	165.46ef	
	488	Initial p	150		77.93bc	40.67a	44.86a	46.62a	58.23ab	78.53bc	
	4		0		65.3 tabc	65.19abc	65.64abc	48.22a	60.25abc	86.99c	
	368		150		28.70ab	29.82abc	47 23cde	23.75a	44.17bcde 39.44abcd	52.76de	
			0		32.07abc 28.70ab	34.22abc	60.07e	25.45a	44.17bcde	54.41de	
		Bean	Variety		Sanilac	Seafarer	Tuscola	Gratiot	Saginaw	Kentwood	

Column means followed by the same letter(s) are not significantly different (P = 0.05) according to the student Newman Keuls multiple rance test.

		INI	TIAL PO	PULATIO	N DENSI	TY/100	em ³ SOII	_
	0	5	10	20	40	80	160	320
DD 10 C		Pop	ulation	Densit	y/ <u>P</u> . <u>per</u>	netrans	/g root	
254	0a	2a	3a	5a	12a	33ъ	47c	5 9c
341	0a	2a	6a	9a	20ъ	39c	85d	99€
434	0a	3a	13ab	19ab	23b	53c	94d	132e
5 23	0a	5 b	19ab	29bc	44c	113d	149e	169f
6 03	0a	8a	19a	19a	2 0a	83ъ	115c	123c
688	0a	18a	30a	34a	37a	137Ъ	192c	215c
782	0a	8a	15a	49a	55a	160Ъ	292c	309c
865	0a	1 7ab	38ab	58ab	80ab	117Ъ	332c	333c
967	0a	9a	29a	45a	65a	154Ъ	208ъ	218b
1094	0a	3a	14a	20a	45a	127Ь	168c	183c
1305	0a	2 a	8a	12a	28a	114Ъ	115b	143b

The row means followed by the same letter(s) are not significantly (P = 0.05) different according to the student Newman Keuls multiple range test.

Table A4-2: Influence of initial population density of \underline{P} . $\frac{penetrans}{penetrans} \text{ associated with navy beans.}$

		INI	TIAL POP	ULATION	DENSIT	Y/100	em ³ SOII	
	0	5	10	20	40	80	160	3 20
DD 10 C		Fi	nal Popu	lation	Density	/100 cr	m ³ soil	
254	0a	2a	5a	5a	29a	38a	75b	140c
341	0a	3a	4a	5a	7 a	10ab	13ab	19b
434	0a	la	2ab	4ab	5ab	10bc	15c	3 0d
5 23	0a	2ab	4ab	6ab	7 a b	9b	15c	17c
6 03	0a	4a	12ab	13ab	20bc	27bc	30bc	37c
68 8	0a	3ab	6a	8bc	9bc	14c	13c	240
782	0a	3a	7a	12ab	19bc	20bc	23bc	250
865	0a	2a	3a	7 a	10ъ	12ъ	15Ъ	185
967	0a	7ab	12ab	22bc	25bcd	27bcd	39cd	430
1094	0a	15ab	25abc	48bcd	60cd	77d	117e	139€
1305	0a	20ъ	18b	24b	49c	63d	103e	104e

The row means followed by the same letter(s) are not significantly (P=0.05) different according to the Student Newman Keuls multiple range test. DD 10 C=1000 accumulated degree days at base 10 C=1000 c

Table A4-3: Influence of initial population densities of P. penetrans on total (root + soil) population dynamics of P. penetrans associated with navy beans.

		INI	TIAL POP	ULATION	DENSIT	Y/100	cm ³ SOII	·
	0	5	10	20	40	80	160	320
DD _{10C}		Final	Populat.	ion Den	sity/10	0 cm ³	soil + q	root
254	0	4	8	10	41	71	122	199
341	0	5	10	14	27	49	98	118
434	0	4	15	23	28	63	109	162
523	0	7	23	3 5	51	122	164	186
603	0	12	31	32	40	110	145	160
688	0	21	36	42	46	151	206	239
782	0	11	22	61	74	180	31 5	334
865	0	19	41	65	90	129	347	351
967	0	16	41	67	90	181	247	261
1094	0	16	39	68	105	204	285	322
1305	0	22	26	36	77	177	218	247

Row means followed by the same letter(s) are not significantly (P=0.05) different according to the Student Newmans Keuls multiple range test.

DD 10 C = accumulated degree days at base 10 C.

Table A-5: Effect of different initial densities of P. penetrans on weight of navy bean roots over the growth period.

		INITI	AL POPULA	TION DENS:	ITY P. PE	NETRANS/	100 cm ³	SOIL
	0	5	10	20	40	80	160	320
DD _{10C}			Roo	t Weight	(g/plant)			
254	1.03a	1.02a	0.99a	1.48b	0.99a	0.95a	0.87a	0.73a
341	1.73b	1.64ab	1.63ab	1.50ab	1.19ab	0. 8 5ab	0.45ab	0.78a
434	2.56c	2.98cd	3.40d	2.94cd	1.97b	1.42a	1.21a	0.97a
523	3.67b	3.66b	4.06b	3.18b	2.46a	2.19a	1.8 8a	1.48a
603	3.98c	3.79c	3.78c	3.50c	2.83b	2.48ab	2.36ab	1.77a
688	4.35d	3.93cd	3.84bcd	3.67abcd	3.2labc	2.91ab	2.75al	2.85a
782	4.21b	4.13b	3.86ab	3.76ab	3.28ab	3.07a	2.84a	2.92a
865	3.87d	3.48cd	3.29cd	3.10c	2.51b	2.26b	1.93ab	1.40a
967	2.41b	2.24b	2.01b	1.98b	1.50a	1.51a	1.18a	1.13a
1094	1.56b	1.50b	1.41b	1.26b	0.97ab	0.82a	0.75a	0.56a

 $[\]neg Row$ means followed by the same letter(s) are not significantly (P = 0.05) different according to the student Newman Keuls multiple range test.

Table A6: Effect of different initial densities of P. penetrans on leaf area of navy beans over the growth period.

		I	NITIAL PO	PULATION	DENSITY/1	00 cm ³ SO:	IL	
	0	5	10	20	40	80	160	320
DD _{10C}				Leaf A	rea/cm ²			
254	39.06°c	45.16b	43.66b	33.97b	25.29a	23.77a	20.76a	17.63a
341	70.9 3c	72.48c	71.88c	69.96c	50.88b	40.72ab	40.66ab	31. 89a
434	123.26e	122.14e	117.70de	112.50d	76.49b	63.72b	60.43b	48.47
523	196.83 a	195.27c	188.01c	181.28b	153.03c	118.87b	97.17c	83.92a
603	308.99f	307.40f	306.30f	270.86e	238.32d	203.40c	162.96b	124.57a
688	431.68g	408.85fg	400.67f	369.15e	296.61d	246.52c	212.79b	138.94
782	308.76f	307.85f	303.25f	223.70e	190.24d	129.50c	112.22b	82.48a
865	189.62d	179.52d	176.24d	112.61c	107.56c	71.79b	50.21ab	35.20a
967	104.22c	103.14c	100.74c	75.63b	72.08b	39.13a	31.42a	24.08
1094	53.79d	51.11d	49.23d	34.34c	25.22b	19.04ab	13.12a	9.73

Row means followed by the same letter(s) are not significantly (P = 0.05) different according to the Student Newman Keuls multiple range test.

Table A7: Effect of different initial densities of P. penetrans on shoot fresh weight of navy beans over the growth period.

		INIT	IAL POPUL	ATION DEN	SITY/100	cm ³ SOI	L	
	0	5	10	20	40	80	160	320
DD _{10C}			F	resh Weig	ht/g			
254	1.845	1.77b	1.72ab	1.56ab	1.51ab	1.49ab	1.3lab	1.21a
341	2.27bc	2.48c	2.86d	2.23bc	2.04bc	1.89ab	1.76a	1.51a
434	3.83c	4.12c	4.26c	3.19b	2.94ab	2.53ab	2.26a	2.16a
523	6.53c	6.94c	7.27c	6.09c	4.93b	4.34ab	3.23a	3.08a
603	9.82d	11.42e	12.39e	9.37d	7.63c	6.24b	5.26ab	4.19 a
688	14.89d	16.10d	15.97d	11.79c	9.03b	7.93b	6.73b	4.42a
782	12.39c	14.47c	13.38c	8.50b	8.30b	5.94a	5.12a	3.86a
865	7.77c	9.15d	8.98d	5.93b	5.44b	4. 08a	3.38a	2.93a
967	5.39cd	5.75d	6.22d	4.50c	3.58b	3.01ab	2.42a	2.08a
1094	3.16c	4.53c	4.65c	3.10b	2.26ab	2.03a	1.50a	1.34a

Row means followed by the same letter(s) are not significantly (P = 0.05) different according to the Student Newman Keuls multiple range test. DD 10 C = accumulated degree days at base 10 C

Table A8: Effect of different initial densities of P. penetrans on dry weight of navy bean shoot system over the growth period.

			INITIAL P	OPULATION	DENSITY/	100 cm S	OIL	
	0	5	10	20	40	80	160	320
DD 10C				Dry We	ight/g			
254	0.77d	0.73cd	0.68bcd	0.66bcd	0.65abc	0.60ab	0.54ab	0.50a
341	1.20c	1.18c	1.08c	1.03c	0.85b	0.78ab	0.69ab	0.59a
434	1.96b	1.65b	1.58b	1.44b	1.00a	1.92a	0.82a	0.74a
523	2.47c	2.39c	2.28c	2.18c	1.73b	1.10a	1.01a	0.89a
603	4.23e	4.17e	4.07e	3.60d	2.49c	2.07b	1.31a	1.05a
688	5.64d	5.52d	5.51d	4.77c	3.72b	3.44b	2.49a	1.66a
782	4.04c	4.02c	3.99c	3.20b	2.81b	2.16a	1.48a	0.90a
865	2.55d	2.48d	2.19d	1.39c	1.26b	0.89ab	0.72ab	0.54a
967	1.41c	1.31c	1.29c	0.89b	0.80ab	0.68ab	0.46ab	0.36a
L094	0.99d	0.91d	0.90d	0.60c	0.46bc	0.35abc	0.25ab	0.12a

Row means followed by the same letter(s) are not significantly (P = 0.05) different according to the Student Newman Keuls multiple range test. DD 10 C = accumulated degree days at base 10 C.

Table A9: Interactions of initial density of \underline{P} . penetrans and temperature on final root densities of \underline{P} . penetrans.

		Tempe	rature (C)		
Initial density P penetrans/	15	20	25	30	
P. penetrans/ 100 cm ³ soil	Final	Population	Density (\underline{P} .	penetrans/g	root)
0	0a	0a	0a	0a	
25	5b	7 b	12c	5b	
150	20d	35b	62f	20d	
300	27de	79f	92 f	29de	9

Column means followed by the same letter(s) are not significantly (P = 0.05) different according to the Student Newman Keuls multiple range test.

Table Al0: Interactions of initial density of \underline{P} . $\underline{penetrans}$ and temperature on final soil population densities of \underline{P} . $\underline{penetrans}$

		Temp	perature (C)		
Initial density P. penetrans/	15	20	25	30	
100 cm ³ soil	Final	Population I	Density (P.	penetrans/100	cm ³ soi
0	0	0	0	0	
25	20b	37c	59cd	24b	
150	40c	94ef	128fc	45cd	
300	72de	162g	237i	70de	

Column means followed by the same letter(s) are not significantly (P = 0.05) different according to the Student Newman Keuls multiple range test.

Table All: Interactions of initial density of \underline{P} . $\underline{penetrans}$ and temperatures on final total population densities of \underline{P} . $\underline{penetrans}$.

		Temperature (C)						
Initial density P. penetrans/	15	20	25	30				
100 cm ³ soil	P. penetrans/100 cm ³ + g root							
0	0a	0a	0a	0a				
25	25b	44c	70d	29b				
150	60d	129f g	157g	67de				
300	99ef	240h	329h	99def				

Column means followed by the same letter(s) are not significantly (P = 0.05) different according to the Student Newman Keuls multiple range test.

Table Al2: Effect of \underline{P} . $\underline{penetrans}$ on height of navy bean plants at different temperatures.

		Temperatu	re (C)	
P. penetrans/	15	20	25	30
100 cm ³ soil		Plant H	eight (cm)	
0	12.7c	18.7f	21.8g	24.7h
25	12.2c	17.lef	21.1g	23.2gh
150	9.4b	13.6cd	15.3de	18.4f
300	7.2a	11.3bc	12.5c	15.6de

Column means followed by the same letter(s) are not significantly (P = 0.05) different according to the Student Newman Keuls multiple range test.

Table Al3: Effect of \underline{P} . $\underline{penetrans}$ on weight of navy bean roots at different temperatures

		Temperatu	re (C)	
P. penetrans/	15	20	25	30
100 cm ³ soil		Root Wei	ght (g)	
0	0.61ab	1.16c	2.09d	0.88bc
25	0.58cd	1.08c	1.92d	0.82bc
150	0.25a	0.52ab	0.64ab	0.52ab
300	0.20a	0.33a	0.51ab	0.28a

Column means followed by the same letter(s) are not significantly (P = 0.05) different according to the Student Newman Keuls multiple range test.

Table Al4: Effect of P. penetrans on dry weight of navy bean shoot system at four different temperatures.

		Temperatu	re (C)	
P. penetrans/	15	20	25	30
100 cm ³ soil		Shoot Dry Wei	ght (g/plant	.)
0	0.47cd	0.83f	1.51g	0.60de
2 5	0.28ab	0.48cd	0.77ef	0.39c
150	0.21a	0.36b	0.63de	0.28ab
300	0.lla	0.28ab	0.44cd	0.12a

Column means followed by the same letter(s) are not significantly (P = 0.05) different according to the Student Newman Keuls multiple range test.

Table Al5: Effect of \underline{P} . $\underline{penetrans}$ on yield of navy beans at different temperatures.

		Temperatur	e (C)	
P. penetrans/	15	20	25	30
100 cm ³ soil	N	avy Bean Yie	ld (g/plant)	
0	0.89bc	2.43e	3.46f	1.30cd
25	0.78abc	1.04bc	1.55d	0.91bc
150	0.49ab	0.93bc	1.07bc	0.70ab
300	0.26a	0.57ab	0.78abc	0.56ab

Column means followed by the same letter(s) are not significantly (P=0.05) different according to the student Newman Keuls multiple range test.

on total population densities (root & soil) of P. penetrans associated with navy beans over the growth period. Effect of temperature Table Al6:

			150		64b	95b	906	112b
	30		0	cam ³ soil)	Oa	0a	0.8	0a
		.00 cm ³ soil)	150	Total population density (P. penetrans/ 100 cm ³ soil)	127c	180c	307e	337d
	25	Initial density (P. penetrans $/$ 100 cm 3 soil)	0	density (P.)	Оа	0a	0a	0a
<u>remperature c</u>	0	ensity (P.	150	. population	120c	147c	182d	220c
Temp	20	Initial de	0	Total	0 a	0a	0a	0a
	15		150		95a	110b	125c	204c
			0		0a	0a	0a	0a
			Day of growth		14	35	57	91

Effect of temperature on root densities of P. penetrans associated with navy beans over the growth period. Table A17

			150		52b	8 7 P	75b	30b
	30		0	soil)	0	0a	0a	0
		00 cm ³ soil)	150	Root population density (P. penetrans/ 100 cm ³ soil	89c	174c	289e	110d
	25	Initial density (P. penetrans / 100 cm ³ soil)	0	(P. penetra	0	0a	0a	0
Temperature C		sity (P. pa	150	tion density	72c	135c	167 d	74c
Tempera	20	Initial den	0	Root popula	0	0a	0a	0
	15		150		4 0b	80p	109c	72c
			0		0	0a	0a	0a
		,	Day of Growth		14	35	57	91

Column means followed by the same letter are not significantly (P = 0.05) different according to the Student Newman Keuls multiple range test.

P. penetrans associated Effect of temperature on soil densities of with navy beans over the growth period. Table A18:

Temperature C	20 25 30	Initial density (P. penetrans / 100 cm ³ soil)	0 150 0 150 0 150	Soil population densities (P. penetrans / 100 cm ³ soil)	38c	1p	0a 13b 0a 20b 0a 22b	227d
Temperature	20	[nitial density	150	il population den	49c	12b	13b	147c
		[150 0	න 	•	30c 0s		132c 0a
	15		0		0 a	0a	0a	0 a
			Day of growth		14	35	57	91

different 0.05) H Means followed by the same letter are not significantly (Paccording to the Student Newman Keuls multiple range test.

Influence of temperature and P. penetrans on shoot dry weight of navy beans over the growth period. Table A19:

			_	Temperature C	ire C				
	15		20		25		30		
			Initia	l density	(P. pe	netrans	Initial density (P. penetrans / 100 cm 3 soil)	soil)	
Day of			Shoot	Shoot dry weight	it (g)				
growth	0	150	0	150	0	150	0	150	
14	0.35a	0.29a	0.74b	0.60ab	0.81b	0.69	0.62ab	0.52ab	
35	0.92ab	0.52a	1.01c	0.54a	1.18d	0.64ab	1.04c	0.68ab	
57	1.54a	0.95a	1.77a	0.87a	3.32b	1.29a	1.36a	0.89a	
92	0.52b	0.25a	0.73c	0.36ab	1.00d	0.49b	0.72c	0.30a	
Means	Means followed by the	ام	ame letter(s)	are not	signifi	cantly ((P = 0.05)	are not significantly $(P = 0.05)$ different	

according to the Student Newmans Keuls multiple range test.

Effect of temperature and P. penetrans on root area of navy beans. Table A20:

				Temperature C	re C			
	Ţ	[5	2	Q	25		30	
			Initi	Initial density (P. penetrans / 100 cm ³ soil)	P. penetran	s / 100 cm ³	soil)	
Day of		•	,					
growth	0	150	0	150	0	150	0	150
				Root area (cm^2)	(cm ₂)			
14	4.57a	3.78a	7.36abc	6.13ab	10.06c	8.30bc	6.4ab	4.87ab
35	13.5ab	9.00a	15.53b	9.5a	21.6c	12.27ab	13.53ab	9.7 0 a
57	16.7bc	11.43a	20.17c	12.67ab	26.8 3d	14.67ab	16.77bc	13.37ab
91	1.03abc	7.41a	11.62bc	9.86ab	14.50c	10.19ab	13.15bc	7.68a
Means f	Means followed by the same	the same	letter(s)	are not si	gnificant	ly differe	letter(s) are not significantly different (P = 0.05)	15)
accordi	ng to the	Student Ne	according to the Student Newman Keuls Multiple Range Test.	Multiple	Range Tes	ن د		

Effect of temperature and P. penetrans on root weight of navy beans over the growth period. Table A21.

1 1101 1 1	Temperature C	20	Initial density (P. penetrans / 100 cm ³ soil)	150 0 150 0 150 0 150	Root weight (g/Plant	.69a .56a 1.05b .76a	1.37b .71a 2.42c 1.09ab 1.43b .	1.03a 2.22c 1.10a 3.27d 1.44ab 2.01bc 1.05a	.36a 1.22bc .42a 1.49c .63a .84ab .45a
	Temperatur	20	Initial density (P. pe	0 150	Root weight (g.	.69a	1.37b	2.22c 1.	1.22bc .
0 0 54a 81abc 82ab		15		150		•	•	ij.	•

0.05) Means followed by the same letter(s) are not significantly different (P = according to the Student Newman Keuls Multiple Range Test.

Effect of temperature and P. penetrans on height of navy bean plants over the growth period. Table A22:

according to the Student Newman Keuls Multiple Range Test.

Effect of temperature and P. penetrans on shoot fresh weight of navy beans over the growth period. Table A23:

Temperature C	15 44 25 30	Initial density (P. penetrans / 100 cm ³ soil)	150 0 150 0 150 0 150	Shoot Fresh Weight (g/Plant)	0.78a 0.98ab 0.83ab 1.12c	0.95ab 2.09b 1.79ab 3.17c 1.68ab	1.41a 6.31c 2.95b 8.34d 3.59b	0.90ab 2.22c 1.09b 3.44d 1.22b 1.79c
	15		150		0.78a	0.95ab	1.41a	0.90ab
		•	0		0.85ab	1.79a	3.58b	1.76c
			Day of growth		14	35	57	91

Means followed by the same letter(s) are not significantly different (P = 0.05) according to the student Newman Keuls Multiple Range Test.

Effect of temperature and P. penetrans on length of navy bean roots over the growth period. TableA24:

Day of growth		15 150 5.4a 6.3a	Initial densi Root Le		C 25 rans / 100 c 0 - 8.7b	3 soil) 150 7.1ab	30 0 6.7ab	150 150 6.2a 6.4a
	15.9ab 9.3ab	12.0a 5.7a	34;0c 16.7d	18.9b 12.1bc	37.4c 21.8e	19.8b 13.0bc	19.6b 16.6c	11.7a 9.0ab
followed	by t	he same	Means followed by the same letter(s) are not significantly (P = 0.05) different	re not sign	nificantly	(P = 0.05)	different	

according to the Student Newman Keuls Multiple Range Test.

Effect of temperature and P. penetrans on leaf area of navy beans over the growth period. TableA25:

			150		11.97ab	61.89ab	65.96ab	6.51a		
	30		0		16.62b	93.82c	89.52ab	9.17a		
		3 soil)	150		16.65b	73.78e	90.98ab	14.32a		
	25	ans / 100 cm	0		17.92b	132.86d	188.52d	28.29b		
Temperature C		Initial density (P. penetrans / 100 cm ³ soil)	150	(cm ²)	12.58ab	60.84ab	76.22ab	12.13a		
Te	20		0	Leaf Area (cm ²)	15.36b	104.22c	141.27c	24.23b		
	[2		150					7.31a	41.30a	55.24a
			0		8.90a	65.76ab	98.57b	12.97a		
			Day of growth		14	35	57	91		

Means followed by the same letter(s) are not significantly different (P=0.05) according to the Student Newman Keuls Multiple Range Test.

Effect of soil moisture on final root populations of Pratylenchus penetrans associated with navy beans Table A26-1:

P. Penetrans/100cm ³ Soil	s/100cm ³	Soil	Matrix potential	l (- Centribars)	bars)		
	$_{ m i}^{ m P}$	10000	200	100	20	10	5
	0	0	0	0	0	0	0
Sandy Loam	150	12	20	45	175	54	14
	0	0	0	0	0	0	0
Sandy Clay Loam	150	10	34	75	132	40	55
	0	0	0	0	0	0	0
Clay Loan	150	4	7	19	73	57	15
LSD (5% = 27)	(7						

Table A26-2: Analysis of variance

Source					
Total	DF	SS	MS	Ēτι	Sig Level
	107	202426.74074			
A	-1	58427.25926	58427.25926	110.10738	0.00000
В	2	40192.40741	8.4814	15.14869	0.00000 ***
ບ	7	4232.01852	2116.00926	3.98766	0.02278 *
AB	5	•	8038.48148	15.14869	0.00000
AC	2	4232.01852	2116.00926	3.98766	0.02278 *
вс	10	8472.31481	847.23148	1.59663	0.12501
ABC	10	8472.31481	847.23148	1.59663	0.12501
ERROR	72		530.63889		
A = Initial	population density	Y B #	matrix potential	C= soil type	

Table A26-3. Interactions of soil type and soil moisture on final root densities of P. penetrans associated with navy bean

M	atrix p	otenti	al (- Ce	entiba	cs)
1000	500	100	50	10	5
populat	ion den	sity (P. peneti	cans/g	root
6	10	23	88	27	7
5	17	38	66	20	28
2	4	10	37	28	8
	1000 populat 6 5	1000 500 population dense 6 10 5 17	1000 500 100 population density (6 10 23 5 17 38	1000 500 100 50 population density (P. penetro 6 10 23 88 5 17 38 66	population density (P. penetrans/g 6 10 23 88 27 5 17 38 66 20

Table A26-4. Interactions of soil type and initial density of \underline{P} . penetrans

	Initial	populati	on dens	ity P _i /100cm ³	soil
Cod 1		0		150	
Soil type	Final pop	ulation d	ensity	(P. penetrans	/g root)
Sandy loam		0		53	
Sandy clay loa	em	0		58	
Clay loam LSD (5 %) = 13		0		29	
Table A26-5. Matrix potential	density o	f P. pene	trans	of (P,/100cm	2
(-Centihare) -		<u>V</u>		penetrans/10	
1000	•	0		9	
50 0		0		20	
100		0		46	
50		0		127	
10		0		50	
5		0		28	

LSD (5 %) = 16

Effect of soil moisture and P. penetrans on final soil population densities of Pratylenchus penetrans associated with navy beans Table A27-1:

P. penetrans/100cm ³ Soil	s/100cm ³	Soil	Matrix potential (- centibars)	al (- centik	ars)		
	$_{f i}$	1000	500	100	50	10	5
Sandy Loam	0	0	0	0	0	0	0
1	150	14	37	45	202	100	30
Sandy Clay	0	0	0	0	0	0	0
Loam	150	10	25	49	166	87	77
Clay Loam	0	0	0	0	0	0	0
1	150	13	24	62	87	72	28
LSD $(5\$ = 31)$	1)						
P = initial P. penetrans/100	P. pene	trans/100c	cm ³ Soil				

Analysis of variance Table A27-2:

	el		*	* *		*			
	Sig. Level		0.00000	00000.0	0.08911	0.00000	0.08911	0.16895	0.16895
	ഥ		154.72609	16.08391	2.50091	16.08391	2.50091	1.46896	1.46895
	MS		108743.78704	11304.00926	1757.67593	11304.00926	1757.67593	1032.39815	1032.39815 702.81481
	SS	300065.21296	108742.78704	56520.04630	3515.35185	56520.04630	3515,35185	10323.98148	10323.98148 50602.66667
	DF	107	٦	2	7	2	2	10	10 72
Source	Total		A	В	υ	AB	AC	вс	ABC ERROR

A = Initial population density of P. penetrans B = Soil matrix potential C = Soil type

Table A27-3. Interactions of soil type and initial density of P. penetrans on final soil densities of P. penetrans associated with navy bean

	Initial der	nsity (P.	pei	netrans/100cm ³	soi	.1
Soil Type		0		150	2	
Final	population	density	(P.	penetrans/100c	m.	soil
Condu loom		^		71		
Sandy loam		U		71		
Sandy clay loar	n	0		72		
Clay loam		0		48		

TableA27-4. Interactions of soil type and soil moisture

		Matrix	potent	ial (-ce	ntibar	s)
Soil Type	1000	500	100	50	10	5
Final popula	ation de	nsity (P.	penet	rans/100	cm ³ so	il
Sandy loam	7	19	23	101	50	15
Sandy clay loam	5	13	33	84	43	39
Clay loam	6	12	31	43	36	14
LSD (5 %) =						

TableA27-5. Interactions of soil moisture and intital density of P. penetrans

Initial popu	ılation d	density (P _i /100cm ³ so	il)
	0	150	
ntial	density	(P. penetrans/100cm ³	soil
	0	11	
	0	28	
	0	58	
	0	152	
	0	87	
	0	45	
		inal population density ntial ars) 0 0 0 0 0 0 0 0 0 0	onal population density (P. penetrans/100cm arial ars) 0 11 0 28 0 58 0 152 0 87

Effect of soil moisture on final total (root + soil) densities of P. penetrans associated with navy beans. Table A28:

P. penetrans/100cm Soil	$\bar{s}/100$ cm	Soil	Matrix potential (- centribars)	entlal (- cen	ribars)		
	P t	1000	500	1000	50	10	5
Sandy Loam	0	0	0	0	0	0	0
1	150	26	57	90	377	154	44
Sandy Clay	0	0	0	0	0	0	0
Loam	150	20	59	142	298	127	132
Clay Loam	0	0	0	0	0	0	0
1	150	17	31	71	160	129	43

Effect of P. penetrans on length of navy bean roots grown at six different soil water potentials Table A29-1:

		Matrix pote	potential (- cent	centibars)		
	p _i 1	1000	00 100	0 50	10	5
	0 1	9.1 16	Root Length	(cm) 25.	8 13.8	8 13.0
sandy ciay Loam Clay	150 1 0 1 150 1	• •		.6 16.		7 8.2 1 12.3 2 8.2
. •	0 15 0 15 13			.7 16.	11.	111
(LSD 5%) = 1.8 P _i = initial	8 P. penetrans	s density/100cm	00cm ³ Soil			
Table A29-2:	Analysis of	f Variance				
Source Total	DF	SS	MS	ĘŦ	Sig. Level	
K		1652.24852	77 4527	CCVL 3		
¢ മ		2.4340	170.48681	66.47859	*** 00000.0	
ပ		4.1590	97.0795	7.8546	.0000	
AB	S	.302	.6605	.2764	.0000	
AC	2	10.48130	5.24065	2.04351	0.13702	
ВС	10	.835	.6835	.6061	.0092	
ABC	10	27.93537	2.79354	1.08929	0.38192	
A = initial P.	penetrans	nsity	= matrix	potential C = soil	type	

Table A29-3. Interactions of soil moisture and initial density of P. penetrans on length of navy bean roots.

Initial population density (P. penetrans/100cm³ soil Matrix potential 0 150 (- Centibars) Root Length (cm) 1000 16.8 15.4 500 15.4 14.1 17.3 15.6 100 50 21.3 14.9 12.9 10 10.9 12.1 7.8 LSD (5 %) = 1.0

Table A29-4. Interactions of soil type and soil moisture

Soil Type	1000	500	1000	50	10	5	
	Root Length (cm)						
Sandy loam Sandy clay loam Clay loam LSD (5 %) = 1.4	17.7 16.3 14.3		18.2 17.2 14.1	20.9 19.2 14.4	12.8 11.7 11.1	10.6 10.3 9.2	

Effect of P. penetrans on dry weight of navy bean plants grown at six different soil water potentials Table A30-1:

		Ma	Matrix potential	ial (- centibars)	ars)		
	ъ. 1	1000	500	100	50	10	ι ດ ·
Sandy Loam	0	6.0	hoot dry	ht 4	1.0	7.	6,0
Sandy Clay Loam Clay	150 150 150	0.35 0.27 0.17	0.32 0.29 0.18 0.15	0.38 0.38 0.76	0.63 0.63 0.63	0.78 0.56 0.16 0.17	0.15 0.15 0.15
(LSD 5%) = 0. P_i = initial	0.14 1 population	n density of	١٩	penetrans/100cm ³ soi	-		
Table A30-2:	Analysis	of Variance					
Source Total	DF	SS	MS	F	Sig. Level		
A	107	9.14680	.2160	9.8089	** 00000.		
щU	7 N	.9099	0.78198 0.60564	44.89147 34.76830	*** 00000°0	* *	
AB AC BC	5 2 10	0.74809 0.09627 0.54076	0.14962 0.04813 0.05408	8.58912 2.76320 3.10432	0.00000 *** 0.06979 0.00244 **		
ABC ERROR	10	0.17024	0.01702	0.97732	0.47068		

B = matrix potential C = soil type

A - initial P. penetrans density

TableA30-3. Interactions of soil type and soil moisture on shoot dry weight of navy beans

	Ma	trix pot	ential		oars)	
Soil Type	1000	500	100	50	10	5
	Shoot dry weight (g)					
Sandy loam	0.30	0.31	0.57	0.82	0.56	0.30
Sandy clay loam	0.32	0.30	0.62	0.97	0.67	0.34
Clay loam	0.20	0.17	0.53	0.52	0.17	0.16
LSD $(5 \%) = 0.10$						

Table A30-4. Interactions of soil moisture and initial density of \underline{P} . $\underline{penetrans}$

Matrix potential	Initial population	density (P _i 100/cm ³ soil)			
(- Centibars)	0	150			
	Shoot dry v	Shoot dry weight (g)			
1000	0.31	0.23			
500	0.28	0.24			
100	0.78	0.36			
50	1.0	0.53			
10	0.6	0.38			
5	0.3	0.22			
LSD (5 %) =					

Table A30-5. Interactions of soil type and initial density of \underline{P} . penetrans

Initial population density (P, 100/cm³ soil)

	population money	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	0	150
	Shoot dry weight	(g)
Sandy loam	0.60	0.35
Sandy clay loam	0.66	0.41
Clay loam LSD (5 %) = .06	0.35	0.22

Effect of P. penetrans on height of navy bean plants grown at six different moisture levels. Table A31-1:

Table A31-3. Interactions of initial density and soil moisture on height of navy bean plants

Initial density 3		Matrix p	otentia	l (-cent	tibars)	
Initial density P. penetrans/100cm soil	1000	500	100	50	10	5
5011	1	Plant hei	ght cm/	g root		
0 150 LSD (5 %) = 0.8	11.9	12.3 10.4	-	20.7 15.5	16.8 13.3	

Table A31-4. Interactions of soil type and initial density of P. penetrans

	Initial population density	(P _i /100cm ³ soil)
Soil Type	0	150
	Plant height(c	rm)
Sandy loam	17.1	13.6
Sandy clay loam	17.2	12.9
Clay loam LSD $(5 \%) = 0.5$	12.0	10.4

TableA31-5. Interactions of soil moisture and soil type

Soil Type	Matrix potential (-centibars) 1000 500 100 50 10 5 Plant height (cm)					
Sandy loam Sandy clay loam Clay loam LSD (5 %) = 1.0	12.9 11.8 7.8	13.3	17.2 17.2 14.0	20.4 19.6 14.2	16.5 15.5 13.0	12.8

Effect of P. penetrans on root area of navy bean plants grown at six different water potentials Table A32-1:

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Soil Wat	Water potential	(- Centibars)	ırs)		
Loam 0 5.56 6.34 6.88 10.08 8.65 6.25 3.4 7.2 3.4 5.22 6.22 4.72 3.4 5.8 1.0 6.22 4.72 3.4 5.8 1.0 6.22 4.72 3.4 5.8 3.6 6.22 4.72 3.4 5.8 3.6 6.22 4.72 3.4 5.8 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.5 3.5 3.5 3.5 3.9 2.2 3.9 3.5		P,	1000	Root are	100 cm2)	50	10	r.
Clay 0 5.12 5.33 6.17 9.67 8.04 5.8 3.9 2 2.9 3.61 5.33 3.92 2.9 3.91 5.8 3.92 2.9 3.91 5.0 3.58 4.99 7.32 6.28 3.99 2.9 3.99 7.32 6.28 3.99 3.99 7.32 6.28 3.99 3.99 7.32 6.28 3.99 3.99 7.32 6.28 3.99 7.32 6.28 3.99 7.32 6.28 3.99 7.32 6.28 3.99 7.32 6.28 3.99 7.32 6.28 3.99 7.32 6.28 3.99 7.32 6.28 3.99 7.32 6.28 3.99 7.32 6.28 7.95 6.00000 *** A32-2: Analysis of Variance		0	.5	۳.	8.	0.0	9.	5.4
150 4.56 3.60 3.61 5.33 3.92 2.99 150 2.94 3.42 4.99 7.32 6.28 3.99 150 2.94 3.42 4.13 4.53 3.52 2.33 158) = 0.74 initial P. penetrans density/l00cm ³ soil A32-2: Analysis of variance B DF SS MS F Sig. Level 107 410.20931 1 147.84588 147.8458 65.04378 0.00000 *** 5 129.14776 25.82955 61.36976 0.00000 *** 5 27.92629 5.58526 13.27030 0.00000 *** 10 3.67304 0.36730 0.87270 0.18512 10 3.67304 0.36730 0.87270 0.56228		0		. m		9	. 0	. ∞
150 3.53. 3.58 4.99 7.32 6.28 3.9 158) = 0.74 initial P. penetrans density/100cm ³ soil **A32-2: Analysis of Variance **Born DF SS MS F Sig. Level 107 410.20931 147.84588 351.27465 0.00000 *** 5 27.92629 5.58526 61.36976 2 54.75177 27.37589 65.04378 0.00000 *** 5 27.92629 5.58526 13.27030 0.00000 *** 10 3.67304 0.36730 0.87270 0.56228 10 3.67304 0.36730 0.87270 0.56228		150	.5	9.	9.	٤,	6.	6
150 2.94 3.42 4.13 4.53 3.52 2.3 58) = 0.74 initial P. penetrans density/100cm ³ soil A32-2: Analysis of Variance 107 410.20931 1 147.84588 147.84588 5 129.14776 2 5 27.37589 6 5.04378 10.00000 *** 5 27.92629 5 5.58526 13.27030 0 0.00000 *** 5 27.92629 5 5.58526 13.27030 0 0.00000 *** 5 27.92639 5 5.8526 13.27030 0 0.00000 *** 5 27.92639 5 5.8526 13.27030 0 0.00000 *** 7 2 30.30365 0 0.42088	Λī	0	.53	.5	6.	۳,	.2	6.
## benetrans density/100cm ³ soil A32-2: Analysis of Variance Bornous P. Penetrans density/100cm ³ soil A32-2: Analysis of Variance Bornous P. SS MS F Sig. Level 107 410.20931 147.84588 351.27465 0.00000 *** 5 129.14776 25.82955 61.36976 0.00000 *** 5 27.92629 5.58526 13.27030 0.00000 *** 5 27.92629 5.58526 13.27030 0.00000 *** 10 3.67304 0.60155 1.42925 0.18512 11 3.67304 0.36730 0.87270 0.56228	ı	150	6.	. 4	۲.	• 5	. 5	· 3
A32-2: Analysis of Variance By DF SS MS F Sig. Level 107 410.20931 1 147.84588 1 147.84588 5 129.14776 2 25.82955 6 1.36976 0 0.00000 *** 5 27.92629 5 5.58526 1 3.27030 0 0.00000 ** 10 3.67304 0 0.36730 0 0.87270 0 0.56228	(5%) = 0 initial	74 P.		m				
By DF SS MS F Sig. Level 107 410.20931 1 147.84588 1 147.84588 25.82955 61.36976 0.00000 ** 5 129.14776 25.82955 65.04378 0.00000 ** 5 27.92629 5.58526 13.27030 0.00000 ** 10 3.67304 0.36730 0.087270 0.56228	Table A32-2:	Analys	of Va	Q.				
107 410.20931 1 147.84588 351.27465 0.00000 ** 5 129.14776 25.82955 61.36976 0.00000 ** 2 54.75177 27.37589 65.04378 0.00000 ** 5 27.92629 5.58526 13.27030 0.00000 ** 2 10.54544 5.27272 12.52773 0.00000 ** 10 3.67304 0.36730 0.87270 0.56228 72 30.30365 0.42088 0.87270 0.56228	Source Total	DF		MS	μ.		ig.	
1 147.84588 351.27465 0.00000 ** 5 129.14776 25.82955 61.36976 0.00000 ** 2 54.75177 27.37589 65.04378 0.00000 ** 5 27.92629 5.58526 13.27030 0.00000 ** 10 54544 5.27272 12.52773 0.00002 ** 10 3.67304 0.36730 0.87270 0.56228		107	0.2093]			
5 129.14776 25.82955 61.36976 0.00000 ** 2 54.75177 27.37589 65.04378 0.00000 ** 5 27.92629 5.58526 13.27030 0.00000 ** 10 54544 5.27272 12.52773 0.00002 ** 10 3.67304 0.36730 0.87270 0.56228	_		7.8458	47.8458	21	2746	** 00000·	
2 54.75177 27.37589 65.04378 0.00000 ** 5 27.92629 5.58526 13.27030 0.00000 ** 10 54544 5.27272 12.52773 0.00002 ** 10 6.01549 0.60155 1.42925 0.18512 ** 10 3.67304 0.36730 0.87270 0.56228	~	ഗ	9.1477	5.8295	_	3697	** 00000.	
5 27.92629 5.58526 13.27030 0.00000 ** 2 10.54544 5.27272 12.52773 0.00002 ** 10 6.01549 0.60155 1.42925 0.18512 10 3.67304 0.36730 0.87270 0.56228	<i>r</i> .\	7	.7517	7.3758		437	** 00000.	
2 10.54544 5.27272 12.52773 0.00002 ** 10 6.01549 0.60155 1.42925 0.18512 11 3.67304 0.36730 0.87270 0.56228 OR 72 30.30365 0.42088	-	5	262	.5852	c	2703	** 00000.	
10 6.01549 0.60155 1.42925 0. 10 3.67304 0.36730 0.87270 0. OR 72 30.30365 0.42088	C \	7	454	.2727	2	5277	.00002 **	
10 3.67304 0.36730 0.87270 0.5622 OR 72 30.30365 0.42088	<i>r</i> \	10	154	.6015		4292	•	
72 30.30365 0.420	ABC	10	730	.367		872	.5622	
	OR	72	036	.420				

Table 32-3. Interactions of initial density of \underline{P} . penetrans and soil moisture on area of navy bean roots

Initial density P. penetrans/100cm ³	Matri	x poten	tial	(-centib	ars)	
P. penetrans/100cm soil	1000	500	100	50	10	5
5011		root	area	(cm ²)		
0 150 LSD (5 %) = 0.4	4.7 3.6	5.1 3.7	6.0 4.3	9.0 5.4	7.7 4.1	5.4 2.9

Table A32-4. Interactions of soil type and initial density of P. penetrans

Initial population density	(P _i /100cm ³ soil
0	150
root area	(cm ²)
7.4	4.5
6.7	4.0
4.9 0	3.5
	7.4 6.7 4.9

TableA32-5. Interactions of soil moisture and soil type

Soil Type	Mat 1000	rix pot	ential	(-Cent.	ibars) 10	5
		roo	t area	(cm ²)		
Sandy loam Sandy clay loam	4.5 4.8	5.2 4.5	6.0 4.9	8.2 7.5	6.7 6.0	5.0 4.4
Clay loam LSD (5 %) = 0.52	3.2	3.5	4.6	5.9	4.9	3.1

Effect of P. penetrans on yield of dry beans grown at six different matrix potentials. Table A33-1:

		M	Matrix potential	Ţ	Centibars)		
	P ₁	1000	00 <u>Pean yiel</u>	100 d (q)	20	10	5
1						l	
Sandy Loam	0 (1.27	.60	2.24	2.64	1.47	0.93
	150	0 67	0	বা	4.	. 7	9.
Sandy Clay	0	.01	4	0	7	6.	7
Loam	150	.73 0	7	0.		•	.5
Clay	0	.73 0	3	4.		σ.	4.
	150	.45	2	ω.	• 6	. 7	m.
(LSD 5%) = 0.23 P_1 = initial \underline{P} .	.23 P. penetrans	ans					
,	•	•					
Table A33-2:	Analysis	of variance					
Source							
Total	DF	SS	MS	Ľτι	Sig. Lev	Level	
	107	_					
Ą	· ~	2800	.2800	7.1772	.00000	***	
В	Ŋ	13.65045	2.73009	99	0000	***	
Ü	7	6551	.8275	8.8162	.0000	* * *	
AB	Ŋ	.6207	.3241	.8889	.0000	**	
AC	2	0.72540	0.36270	8.82723	00037	***	
вс	10	.7348	.1734	.2222	000.	**	
ABC	10	.4517	.0451	1.09935	0.37451		
ERROR	72	2.95849	0.04109				
A = initial s	initial soil density	of P. penetrans	B = B	matrix potential	C = soil type		

TableA33-3. Interactions of soil type and soil moisture on yield of navy beans

Soil Type	1000	ix poter	100	50	10	5
		Dry bear	n yield	(g)		
Sandy loam	0.96	1.20	1.83	2.06	1.11	0.78
Sandy clay loam	0.87	0.96	1.55	1.72	0.80	0.62
Clay loam	0.59	0.72	1.11	0.95	0.83	0.40
$LSD^{-}(5 \%) = 0.16$						

Table A33-4. Interactions of soil moisture and initial density of P. penetrans

Tuitiel dongity	Matr	rix poter	ntial (-centib	ars)	
Initial density (P _i / 100 cm ³ soil)	1000		100			5
(Pi 100 Cm soll)		Dry bear	yield	(g)		
0 150 LSD (5 %) = 0.08	1.0 0.62		1.88 1.10			0.71 0.49

TableA33-5. Interactions of soil type and initial density of P.penetrans

	Initial	population	n density	$(P_i/100cm^3 so$	il
Soil Type		0		150	
		Dry be	an yield	(g)	
Sandy loam		1.69		0.96	
Sandy clay loam		1.33		0.84	
Clay loam		0.93		0.60	
$LSD^{-}(5 \%) = 0.16$					

	'	285			1056			1407			1746	
				Soil wate	er pote	~	- Centibars	(8)			9,7	
	1000	50	5	1000	0 50 5	5	1000	0 20	5	1000	20	2
				ᆈ	penetrans/g		root					
andy	Sandy Loam											
	0	0	0	0	0	0	0	0	0	0	0	0
.0	2	10	2	က	6	2	17	29	15	7	9	7
0.0	22	20	25	12	55	15	25	105	22	7	22	0
00	300 40 125	125	59	9	8.7	59	40	112	45	19	52	15
lay i	Loam											
	0	0	0	0	0	0	0	0	0	0	0	0
	7	7	2	3	7	7	10	20	7	٣	4	Н
09	15	30	17	10	22	7	20	9	17	10	24	14
00	40	9	39	30	20	22	27	92	28	3	39	7
andy	Loam											
	0	0	0	0	0	0	0	0	0	0	0	0
	7	14	2	4	10	2	22	42	24	4	æ	9
0	35	86	30	12	22	15	24	190	52	20	80	20
0	72	138	86	64	122	77	42	287	62	32	72	44
	101	ć						00				

Interactions of soil type, soil moisture and intial density of P. <u>penetrans</u> on root popualtion densities of <u>P</u>. <u>penetrans</u> at 1056 DD 10 C Table A34-2:

Analysis of variance

Total	DF	SS	MS	Ĺ	Sig. Level
	107	98681.43519		1	4
A	7		1909.28704	15.69277	k d
	7		3881.73148	31.90464	K
	က		18065.21914	148.48125	*** 00000.0
æ	4	1831.81481	457.95370	3.76400	*
t)	9	10748.53704	1791.42284	14.72402	0.00000
BC	9	7981.87037	1330.31173	10.93407	0.0000.0
ABC	12	3581.51852	298.45988	2.45309	0.00967 **
ERROR	72		121.66667		

A = soil type
B = matrix potential
C = initial density of P. penetrans / 100 cm³ soil.

TableA34-3. Interactions of soil type and soil moisture on final root densities of P. penetrans associated with navy bean

	Matrix	potential	(-Centibars)	
Soil Type	1000	50	5	
F	inal population	density (P. penetrans/	root)
Sandy clay loam	.5	38	20	
Clay loam	11	20	8	
Sandy loam	20	39	24	
LSD $(5 \%) = 6$				
				
Table A34-4. I	nteractions of density of P. p		and initial	
	Initial popula	ation densi	ty (P _i /100cm ³	soil)
Soil Type	0	25	150	300
	Final population	on density	(P. penetrans,	/g root
Sandy laom	0	6	27	50
Sandy clay loam		4	13	34
Clay loam	. 0	5	16	87
LSD $(5 \%) = 8$	•	•	1 0	.

TableA34-5. Interactions of soil moisture and initial density of \underline{P} . $\underline{penetrans}$

Matrix potential	Initial popu	lation de	ensity (P _i /100c	m soil)
(~Centibars)	0	25	150	300
Fin	nal population	density	(P. penetrans/	100cm ³ soil
1000	0	3	11	33
50	0	9	33	86
5	0	3	12	53
LSD(5 %) = 8				

Effect of interaction of soil water potential, soil type and different initial population densities of P. penetrans on soil population densities of P. penetrans over time. Table A35-1:

(DD, QC)
days
degree
Accumulated

Pi 1000 50 Soil Water potential (-0 Sandy Clay Loam P. penetrans/100cm 0 0 0 0 25 5 9 5 5 5 150 12 25 12 5 5 10 26 19 5 5 36 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 1 7 6 1 4 6 1 6 1 6 7 1 6 1 6 1 6 1 6 1 6 9 5 1 2 5 1 6 1 6 6 9 6 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 <	(-Ce			2/1		
5 1000 0 0 5 5 12 5 15 2 0 0 5 11 7 6 10 5 10 5 15 19						
P. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1000	20	5	1000	20	2
0 0 0 12 5 25 13 2 36 15 2 36 0 0 0 5 11 25 7 6 14 10 5 12 7 10 47 15 19 45	100cm ³ soil					
5 5 25 12 5 30 0 0 0 5 11 25 7 6 14 10 5 12 0 0 0 7 10 47 15 19 45	0	0	0	0	0	0
12 5 30 0 0 0 5 11 25 7 6 14 10 5 12 0 0 0 7 10 47 15 19 45	2	10	•	,	49	&
0 0 0 5 111 25 7 6 14 10 5 12 0 0 0 7 10 47 15 19 45	4 €	12	IO ===	17	09 86	30
5 11 25 7 6 14 10 5 12 0 0 0 7 10 47 15 19 45	0	0	0	0	0	0
7 6 14 10 5 12 0 0 0 7 10 47 15 19 45	2	9	2	6	22	15
10 5 12 0 0 0 7 10 47 15 19 45	٣	13	4	15	35	12
0 0 0 7 10 47 15 19 45	4	14	7	27	122	44
7 10 4 7 15 19 4 5	0	0	0	0	0	0
15 19 45	12	20	4	29	81	25
	10	22	80	. 66	144	55
18 69 24 18 62 22	15	34	6	. 09	244	62

(LSD 5%) = 7 P_{i} - initial P_{i} penetrans density per 100cm³ soil.

Interactions of soil moisture, soil type and P. penetrans on soil densities of P. penetrans at $1056~\mathrm{DD_{10}C}$. Table A. 35-2:

41
Ψ
ce
ہے
an
ıο
-1
Н
ď
ī
>
44
0
•
ഗ
٠,
Ø
>
\vdash
ď
An

Source Total	DF	SS	MS	Ĺtų	Sig Level
C B A	107 2 2 3	26759.21296 3203.62963 6956.90741 6789.21296	1601.81481 3478.45370 2263.07099	41.99951 91.20490 59.33762	*** 00000°0 *** 00000°0
AB AC BC	400	1466.75926 2027/70370 2499.31481	366.68981 337.95062 416.55247	9.61459 8.86105 10.92199	*** 00000° 0
ABC ERROR	12	1069.68519 2746.00000	89.14042 38.13889	2.33726	0.01363 *

A = soil type B = matrix potential C = initial density of \underline{P} . penetrans / 100 cm³ soil

Effect of soil moisture, soil type and intital population densities of Pratylenchus penetrans on final population densities of P. penetrans TableA36-1:

Soil Type	ım Clay Loam Sandy Loam	Soil Water Potential (-Centibars)	5 1000 .50 5 1000 50 5			r	Final population density (P _E /100 ³ soil)	0	26 16 33 89	39 25 59 26 121 224 75	50 92 316	
		Soil Wate	5				Final popu	0	σ	39	62	
	Sandy Clay Loam		.50					0	54	82	150	
	Sandy		Initial 1000	>				0	7	24	38	00 1 103/
			Initia	densit	rrans/	100cm	soil	0	25	150	300	100

Table A36-2: Analysis of variance.

	Sig. Level		0.0000	0.0000.0	0.00000	0.00000 ***	0.0000.0	0.0000.0	0.00000	
	Ē		94.32099	172.43316	225.72749	14.71834	19.44169	43.50004	5.08955	
	MS		26581.92593	48595.81481	63615.44136	4147.98148	5479.13580	12259.35802	1434.35802	281.82407
	SS	501728.32407	53163.85185	97191.62963	190846.32407	16591.92593	32874.81481	73556,14815	17212.29630	20291.33333
	DF	107	7	7	e	4	9	9	12	72
Source	Total		Ą	В	ပ	AB	AC	ВС	ABC	ERROR

C = initial density of P. penetrans/ 100 cm³ soil.

B = matrix potential

A = soil type

Table A36-3. Interactions of soil type and soil moisture on final population densities of B. penetrans

		Matrix	potentia	l (-Centiba	rs)
Soil type	-	1000	50	.5	
	Final	population	n density	$(P_f/100cm^3)$	soil
Sandy clay loar		20	72	27	
Clay loam		17	61	23	
Sandy loam LSD $(5 %) = 0$		47	150	53	
		ons of soi		e and initi etrans	al
Matrix	Initia	l population	on den s it	y (P _i /100cm	³)soil
potential		25	150	300	
(-Centibars)	Final p	population	density	(P _f /100cm ³	soil
1000		17		53	
50	(48		208	
5 LSD (5 %) = 12	(0 19	47	73	
TableA30-5. In	nteractio	on of init	ial popul	ation densi	ty
	Initial			(P _i /100cm ³	soil)
Soil type		0 25		300	
	Final po	opulation o	density ($P_{f}/100cm^3$ s	oil)
Sandy clay loar	n (0 23		83	
Clay loam		18	37	80	
Candir laam	1	n 12	110	171	

Sandy loam LSD (5 %) = 12

Effect of interactions of soil water potential, soil type and different initial population densities of \overline{P} . penetrans on mavy bean root weight over time. Table A37-1:

285	Centibars) 1000 1ant) 1.20 1.17	50	5	1000	1746	
Soil wa 5 1.12 1.12 1.22 1.0.84 1.0.98 1.0.98 1.0.72 1.0.72 1.0.72 1.0.72 1.0.72	1 1 1		5	1000	50	
1.12 1 1.22 1 1.22 1 0.84 1 0.75 1 1 0.75 1 1 0.72 1 0 0.58 0			1.45	0.94	3	.
1.12 1.77 3.07 1.22 1.73 3.27 0.84 1.34 1.64 0.75 1.12 1.29 0.98 1.88 2.63 0.72 1.03 1.40 0.58 0.92 1.14			1.45	0.94		,
1.12 1.77 3.07 1.22 1.73 3.27 0.84 1.34 1.64 0.75 1.12 1.29 1.0.98 1.88 2.63 0.83 1.55 2.49 1.0.72 1.03 1.40 0.58 0.92 1.14			1.45	0.94		
1.22 1.73 3.27 0.84 1.34 1.64 0.75 1.12 1.29 1 0.98 1.88 2.63 0.83 1.55 2.49 1 0.72 1.03 1.40 0.58 0.92 1.14 1 0.92 2.11 3.51 1.93 3.12					1.21	0.97
0.75 1.12 1.29 0.75 1.12 1.29 0.98 1.88 2.63 0.72 1.03 1.40 0.58 0.92 1.14			1.33	06.0	1.31	0.98
6 0.75 1.12 1.29 13 0.98 1.88 2.63 17 0.83 1.55 2.49 4 0.72 1.03 1.40 9 0.58 0.92 1.14 17 0.92 2.11 3.51 6 1.11 1.93 3.12	0.71	1.25	1.10	0.67	0.74	0.56
1 0.98 1.88 2.63 1 0.83 1.55 2.49 1 0.72 1.03 1.40 0 0.58 0.92 1.14 1 0.92 2.11 3.51	99.0	0.98	1.01	0.48	0.72	0.48
1 0.98 1.88 2.63 1 0.83 1.55 2.49 1 0.72 1.03 1.40 0 0.58 0.92 1.14 0 0.92 2.11 3.51 1 1.11 1.93 3.12						
0.92 2.11 3.51 0.93 1.12 1.11 1.93 3.12	2.08	1.89	1.44	1.10	1.12	1.01
0.72 1.03 1.40 0.58 0.92 1.14 0.92 2.11 3.51 1.11 1.93 3.12	1.75	2.20	1.15	1.04	1.07	0.76
0.58 0.92 1.14 0.92 2.11 3.51 1.11 1.93 3.12	0.99	1.0	0.77	92.0	0.75	0.54
0.92 2.11 3.51	0.80	0.78	0.62	0.42	0.70	0.49
0.92 2.11 3.51 1.11 1.93 3.12						
1.11 1.93 3.12	2.38	1.94	1.62	1.56	1.23	1.25
	2.12	2.20	1.33	1.40	1.34	0.91
0 0.88 0.83 0.79 1.59 1.90 1.67	1.13	1.14 (98.0	98.0	0.70	0.49
0 0.74 0.64 0.62 1.01 1.91 0.92	1.07	0.98	08.0	0.82	0.55	0.40
SD 5%) 0.24 0.48		0.46			0.21	
D = initial D nonetrane density ner 100/cm soil						

0.00001 *** 0.00134 ** 0.00006 *** *** 00000 0 Level Level penetrans 0.96060 0.64568 0.27626 0.55021 0.74434 Sig. Sig. ابط of 0.243032.82856 7.26192 36.81966 34.22930 0.76698 0.70208 13.11280 10.65635 61.29158 initial density 7.20715 2.55393 0.70608 1.23601 Γı Ēų 11 O 1.86623 5.99453 10.73391 0.31952 0.11237 0.05438 0.13432 0.04256 0.49536 0.57695 0.12295 0.17513 0.31711 MS MS matrix potential Analysis of variance 1.47546 0.67422 0.65260 0.53728 0.25537 2.97217 12.60262 1.15390 0.63904 4.86009 1.26843 65.77282 3.73247 11.98907 32.20174 SS SS 11 Д 107 Table A.37-3: 107 12 PF DF 127 soil type 328 226 4 9 9 4 9 9 Source Source ERROR ERROR Total Total ABC ABC 11 BC AC AB AC m U m U K K

Analysis of Variance

37-2:

¥.

Table

Table 7 A.37-4: Analysis of variance

Source Total	DF	SS	MS	Ĺ	Sig Level
Ą	107	39.14379	9.58544	3.43078	3774 *
В	7	2.6839	.3419	.8640	.00081 **
U	ო	.3764	. 7921	.9429	.0000
AB	4	.5653	.6413	.7583	.0078
AC	9	1.05935	0.17656	1.03466	0.41015
ВС	9	.7793	.2965	.7379	.1245
ABC	12	0.22217	0.01851	0.10850	
THE	7	7007.7	00/1.		
Table A37-5	••	Analysis of	Variance		
Bource					
Total	DF	SS	MS	Ēų	Sig Level
	107	.4214			
A	7	0.45950	.2297	.4206	.00272
В	7	.9638	0.48191	13.46758	0.00001 ***
ບ	ю	.8985	.2995	4.2624	.00000
AB	4	.7551	.1888	.2761	.0008
AC	9	0.36886	0.06148	1.71803	0.12909
BC	9	.1873	.0312	.8727	.5192
ABC	12	0.21173	0.01764	0.49309	0.91237
ERROR	72	.5764	.0357		

C = initial density of P. penetrans B = matrix potential A = soil type

Table A37-6. Interactions of initial density and soil moisture on weight of navy been roots

Initial density	Matrix	c potential (-centibe	ars)
of P. penetrans/ 100cm ³ soil	1000	50	5
100cm ³ soil		root weight (g)	
0	1.2	1.2	1.1
25	1.1	1.2	0.9
150	0.8	0.7	0.5
300 LSD (5 %) = .12	0.6	0.7	0.5

TableA37-7. Interactions of soil type and initial density of P. penetrans

	Initial	population	density	$(P_i/100cm^3 soil)$
Soil Type	0	25	150	300
		root	weight ((g)
Sandy loam	1.0	1.1	0.7	0.6
Sandy clay loam	1.1	0.9	0.7	0.5
Clay loam LSD (5 %) = 0.12	1.3	1.2	0.6	0.6

TableA37-8. Interactions of soil moisture and soil type

	Matri	x potential	(- Centibars)
Coil Muno	1500	50	5
Soil Type —]	root weight (g)
Sandy loam	0.7	0.8	0.7
Sandy clay loam	1.0	0.9	0.7
Clay loam	0.7	0.7	0.8
LSD (5 %) =			

Effect of interactions of soil water potential, soil type and different initial population densities of \overline{P} , penetrans of navy bean shoot dry weight over time. Table A38-1:

		785		Accumulated degree days $(\mathrm{DD}_{10}\mathrm{C}_{10}$	d degre	e days (DD10C	7			1746	
		687	S	Soil Water	1056 Sotenti	1	Centibars)	140/			1/40	
	100	5	5	100	50	2	100	20	5	100	50	2
				Dry v	veight	Dry weight (g/plant	•					
ıdy	Clay L	Jam		Sandy Clay Loam								
	0.47	0.67	0.52	1.32	2.48	1.46	0.74	96.0	0.64	0.36	0.52	0.50
	0.44	09.0	0.48	1.25	2.21	1.37	0.71	0.80	0.57	0.33	0.49	0.43
	0.43	0.59	0.43	0.88	1.34	06.0	0.55	0.72	0.48	0.24	0.40	0.37
_	0.39	0.50	0.42	0.65	1.03	0.71	0.38	0.48	0.31	0.19	0.29	0.21
γγ	oam											
	0.35	0.47	0.40	1.51	2.62	1.91	0.84	0.75	0.42	0.37	0.47	0.36
	0.36	0.43	0.38	1.12	1.74	1.35	0.76	0.65	0.41	0.36	0.43	0.34
_	0.35	0.41	0.36	0.87	1.02	0.95	0.71	0.50	0.35	0.28	0.34	0.31
	0.30	0.33	0.27	0.64	0.82	0.75	0.53	0.32	0.30	0.18	0.31	0.24
ıdy	Loam											
	0.46	0.73	0.47	1.57	3.21	2.12	0.71	0.84	99.0	0.38	0.64	0.52
	0.42	0.70	0.45	1.51	1.85	1.65	99.0	0.81	0.58	0.36	09.0	0.49
_	0.41	0.63	0.48	96.0	0.73	06.0	0.50	0.68	0.48	0.28	0.55	0.31
	0.38	0.51	0.40	0.78	0.43	0.92	0.45	0.43	0.28	0.19	0.32	0.25
30 5	(8)	90.			0.48			0.12			0.08	
11	nitial	density	of P.	penetrans,	$/100$ cm 3	soil						

Table A. 38-2: Analysis of Variance

Source Total	DF	SS	MS	ĹŦŧ	Sig. Level
A	107	1.47	.2064	8.9382	0000
В	7	.4805	0.24027	68.59132	*** 00000.0
ນ	m	.1929	.0643	8.3592	.0000
AB	4	.0844	.0211	.0289	.0003
AC	9	0.00522	0.00087	0.24841	0.95844
BC	2	.0309	.0051	.4711	.2003
ABC	12	.0179	.0014	0.42610	0.94813
ERROR	. 72	0.25221	0.00350		
Table A.	A.38-3:	Analysis c	of variance		
Source	, C	S.	×××	[i	level pig
A	107	53.99690	1435	8258	4419
B	2 0	5.0442	2.52212	14.50897	0.00001 ***
ပ	ĸ	27.9079	.3026	.5151	.0000
AB	4	.6683	.1671	.9612	.4341
AC	9	1.52282	0.25380	1.46005	
BC	9	.1300	.8550	.9185	.0002
ABC	12	0.92055	0.07671	0.44130	0.94094
ERROR	72	.5158	.1738		
A = soil type	type	,	B = matrix potential	C = initial P. penet	tial density of penetrans

Table A.38-4: Analysis of Variance

3 2 2 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3				
	07 4.07567		,	,
	.0847	0.04238	4.22134	
	.8694	.4347	.2990	* 00000.
	.8285	.6095	0.7089	.0000
AB 4	3896	.0974	.7025	0000
	0271	.0045	4514	8416
BC 6	0.07828	0.01305	1,29952	0.26848
	0.0749	.0062	0.62231	0.81650
OR 7	2 0.72287	0.01004		
Source Total DF	SS	MS	Ĺ	Sig Level
Т	7585			
2	0.09656	.0482	0.8446	.0000
B 2	4160	0.20801	72	*** 00000°0
	7552	.2517	6.5462	.0000
AB 4	.0767	.0191	3096	.003
AC 6	0.03375	0.00562	1,26335	2851
BC 6	.0076	.0012	.2845	.942
	0.0521	.0043	0.97564	0.47994
ERROR 7	2 0.32054	0.00445		
A = soil type	B = matrix	ix potential	C = initial density	of

Table A38-6. Interactions of soil moisture and \underline{P} . penetrans on shoot dry weight of navy beans.

Initial density P. penetrans/100cm ³ soil	1000	tential (- entib 50 ot dry weight (g	5
0 25 150 300 LSD (5 %) = 0.04	0.37 0.35 0.27 0.18	0.54 0.51 0.43 0.31	0.46 0.42 0.33 0.24

Table A38-7. Interactions of soil type and soil moisture

Soil type	1000	50	5
	S	hoot dry weigh	t
Sandy loam	0.28	0.42	0.38
Sandy clay loam	0.30	0.39	0.31
Clay loam	0.31	0.53	0.39

TableA38-8. Interactions of soil type and initial density of P. penetrans.

	Initial p	opulation d	lensity (P _i /l	.00cm ³ soil
Soil Type	0	25	150	300
		Shoot	dry weight	(g)
Sandy loam	0.46	0.42	0.34	0.23
	0.40	0.38	0.31	0.25
Clay loam LSD (5 %) = 0.04	0.51 !	0.48	0.38	0.25

Effect of interactions of soil water potential, soil type and different initial population densities of \underline{P} . $\underline{penetrans}$ on height of navy bean over time. Table A39-1:

			5			16.5	13.9	11.8	11.7		15.3	13.1	10.4	10.2		18.5	16.5	12.6	11.9		
	1746		50			27.0	18.7	17.1	17.3		25.2	15.7	14.3	13.2		32.1	20.6	17.7	16.1	2.1	
			1000			14.2	13.4	9.5	9.5		12.7	12.5	10.1	0.6		17.1	14.7	10.6	10.9		
			. 5			16.4	13.4	11.9	10.9		15.1	13.2	10.3	8.4		18.5	16.5	11.8	8.7		
	1407		50			26.4	18.9	15.7	16.4		23.3	18.9	13.8	12.9		32.2	21.2	17.6	16.2	2.0	
(DD100)		- Centibars	100			12.5	13,6	9.6	8.5		12.8	12.3	10.1	7.7		17.4	14.9	10.5	7.8		
ee days (`	5	Plant Height (cm)		11.9	10.1	0.6	7.9		8.4	7.7	7.8	7.1		15.2	11.3	9.8	7.3		per/100cm ³ soil
ed degr	1056	potential	20	ant Hei		19.3	14.8	12.9	11.2		16.1	12.4	11.5	9.5		21.2	16.6	14.3	12.8	1.8	per/100
Accumulated degree days $(\mathrm{DD}_{10}^{\mathrm{C}})$		Soil water	100	Pl		9.0	7.5	7.8	6.4		6.5	7.6	6.2	5.9		11.3	9.6	7.7	6.5		penetrans
			2			6.1	5.3	3.1	3.4		4.3	3.5	3.3	3.4		8.9	8.9	4.9	3.9		
	285		.50		am	8,2	8.3	5.3	4.9		5.5	4.7	4.3	4.0		12.4	10.4	9.9	5.2	8.0	density of P.
			1000		Clay Lo	4.2	4.3	3.3	5.9	маш	3.5	3.3	3.4	3.1	Loam	8.9	4.9	3.5	3.3.	(8)	$P_i = initial de$
				Р. 1	Sandy	0	25	150	300	Clay I	0	25	150	300	Sandy	0	25	150	300	(LSD 5	P. = i

Table A. 39-2: Analysis of Variance

Source Total	DF	SS	MS	Ħ	Sig. Level
₹ B O	107 2 2 3	553.37667 123.72167 144.18667	61.86083 72.09333 48.08432	123.08346 143.44289 95.67256	*** 00000°0 *** 00000°0
AB AC BC	499	3.12 7.18 8.69	.7816 .5314 .1150	1.5036 8.9645 6.1979	
ABC ERROR	12	6.02296 36.18667	0.50191 0.50259	0.99865	0.45917
Table A.39	9-3:	Analysis of			
Source Total	DF	SS	MS	Ĭ÷.	Sig. Level
₹ BO	107 2 2 3	1731.11657 164.20019 871.45130 358.95657	82.10009 435.72565 119.65219	30.96926 164.36160 45.13443	*** 00000°0 *** 00000°0
AB AC BC	499	10.48426 49.34204 70.80870	2.62106 8.22367 11.80145	0.98870 3.10208 4.45167	0.41931 0.00928 ** 0.00069 ***
ABC ERROR	12	15.00019 190.87333	1.25002 2.65102	0.47152	0.92502
A = soil	type	B = matrix	ix potential	C = initial density	of P. penetrans

Table A. 39-4: Analysis of variance

Source Total	DF	SS	MS	נֿין	Sig Level
	107	76.4091			
Ą	7	147.12389	9	4.1098	.0000
В	7	02.5372	1.2	213.45293	*** 00000.0
ပ	က	186.2899	95.4299	29.6019	.0000
Ç,	•		7	7	
AB	4, 1	29.62889	•	1//74.7	•
AC	9	84.6687	.1114	.6250	** 05000.
BC	9	9.5531	9.9255	.8080	* 00000.
ABC	12	6.9274	.2439	0.73545	0.71239
ERROR	72	219.68000	3.05111		
Table A.	.39.5:	Analvsis of V	ariance		
Source					
Total	DF	SS	MS	댼	Sig Level
	107	21.1318			
A	7	176.7207	8.3603	5.4532	.0000
В	7	1158.43574	579.21787	166.85034	0.00000
ပ	m	004.1207	34.7069	6.4161	.0000
AB	4	4.9720	.2430	. 7983	.1385
AC	9	34.10815	5.68469	1.63754	0.14926
BC	9	4.9087	.4847	.2382	0000.
ABC	12	6.	.49	0.43015	0.94627
ERROR	72	9.9466	4714		

C = initial density of P. penetrans B = matrix potential A = soil type

Effect of soil type, soil moisture and initial population density of Pratylenchus penetrans on yield of navy beans Table A40-1:

			5		•	1.12	_			
	Sandy Loam		20		2.84	2.67	1.39	0.86		
	Sar		1000		1.14	1.05	0.68	0.25		
		(bars)	5	1/ plant)	0.89	09.0	0.36	0.17		
96	Clay Loam	1(-Centibars)	20	yield (1.63	1.34	0.65	0.38		
Soil Type	Clô	Water Potentia	1000	Navy bean yield (g/	0.58	0.52	0.25	0.16		
	loam	110	2		1.90	1.68	0.59	0.37		
	Sandy clay loam		20		2.28	2.0	0.89	0.64	_	
	Sar		1000		1.57	1.18	0.39	0.21	(58) = 0.24	
			P.		0	25	150	300	rsd (5	

Table A40-2: Analysis of Variance

F Sig. Level		99.86585 0.00000 ***		5.65740 0.00051 ***	0.00002	0.00003	1,52328 0,13578	
MS	10117	5.93527	9.27575	0.33623	0.38497	0.37157	0.09053	0.05943
SS	59.78197	11.87054	27.82724	1.34493	2.30981	2.22939	1.08639	4.27913
DF	107	7 7	m	4	9	9	12	72
Source	ĸ	¢α	ပ	AB	AC	ВС	ABC	ERROR

A = soil type B = matrix potential C = initial density of P. penetrans

Table A40-3. Effect of interactions of soil type and \underline{P} . $\underline{penetrans}$ on yield of navy beans.

	Initial po	pulation d	lensity (P _i /	100cm ³ soil)
Soil Type	0	2 5	150	300
		Yie	ld (g)	
Sandy clay loam	1.92	1.62	0.63	0.41
Clay loam	1.03	0.82	0.42	0.24
Sandy loam	2.04	1.62	0.98	0.55
LSD $(5 \%) = 0.16$				

Table A40-4. Interactions of soil moisture and initial population density of P. penetrans.

Matrix	Initial p	opulation o	density (P _i /	100cm ³ soil
Matrix potential (-Centibars)	0	25	150	300
		Y16	eld (g)	
1000	1.09	0.92	0.44	0.21
-50	2.25	2.0	0.98	0.63
5	1.64	1.13	0.61	0.35
LSD $(5 \%) = 0.16$				

Table A40-5. Interactions of soil type and soil moisture

	Matri	x potential	(-Centibars)
Soil Type	1000	50	.5
		Yield (g)	
Sandy clay loam	0.83	1.46	1.34
Clay loam	0.38	0.99	0.50
Sandy loam	0.78	1.94	1.17
LSD $(5 \%) = 0.14$			

Effect of different densities of Glomus fasciculatus on growth and yield of navy beans. Table A41.

Gr fasciculatus spores/100 cm ³ soil	Fresh Wt. g/plant	Dry Wt. g/plant	leaf area cm ² plant	Pt. height Dry bean yield cm g/plant	ean yield
0	12.17a	2.88a	314.58a	19.68a 2.29a	29a
10	14.72b	3.24ab	318.91a	20.28ab 2.4	2.43ab
50	15.0b	3.44ab	329.38a	20.93ab 2.6	2.66ab
100	17.53c	3.85b	408.94b	23.43bc 2.99	2.95bc
200	19.684	3.92c	429.89b	25.27d 3.33c	13c
1000	20.80d	4.64c	454.28b	27.69d 3.39c	3 6 c

Column means followed by the same letter(s) are not significantly different (P=0.05) according to the student Newmans Keuls Multiple Range test.

Effect of different densities of G. fasciculatus on area, weight and length of navy bean roots and on mycorrhizal root infection and number of spores of G. fascicultus. Table A42.

Glomus sp spores/	Root area cm ² /plant	Root weight g/plant	Root length % root cm/plant infectiom	% root infectiom	Root weight Root length % root No. of spores/g/plant cm/plant infectiom 100 cm ³ soil
0	17.5a	4. 0a	18.18a	0a	0 a
10	20.61a	4.7 la	18.78a	llab	34a
50	21.88a	4.72a	21.91a	21bc	68a
100	34.28b	5.19ab	28.62b	31cd	148b
200	36.37b	6.19b	32.23c	39d	396c
1000	38.57b	7.28c	37.03d	63d	612c

0.05) Column means followed by the same letter(s) are not significantly different (P = according to the student Newmans Keuls Multiple Range test.

fasciculatus Table A43. Percent Infection of root systems of navy beans by G.

	86	1314		0a	289	0a	57b	
	84	1112		0a	29L	0a	29b	
	70	924		0a	74c	0a	57b	
Day of Growth	56	Accumulated degree days (DD ₁₀ C) 372 545	Percent infection	0a	61 b	0a	23p	
Day of Gr	42	d degree 545	Percent	0a	4 3b	0a	3 9 b	
	28	Accumulated 372		0a	21c	0a	13b	
	14	185		0a	110	0a	+ 7b	
			Treatment	Control	Glomus sp.	P. penetrans	P. penetrans -	Glomus sp.

TableA44. Spore density of G. fasciculatus associated with navy beans

	86		1314		0a	e55b	0a	q£09	
	84		1112		0a	300b	0 a	265 b	
	70	(DD ¹⁰ C)	, 924	ار soil	0a	15b	0a	1055	
rth	56	legree days	715	:Y / 100 cm s	0a	190b	0a	146b	
Day of Growth	42	Accumulated degree days $(\mathrm{DD}_{10}^{\mathrm{C}})$	545	Spore density	0a	. q88	0a	87 b	
-	28	Acc	372	S	0a	46p	0a	1000	-
	14		185		0a	245b	0a	+ 201b	
				Treatment	Control	Glomus sp.	P. penetrans	P. penetrans +	Glomus sp.

Control = 0 P. penetrans + 0 Glomus fasciculatus Glomus sp. = 1000 G. fasciculatus spores/ 100 cm^3 soil P. Penetrans = 300 P. penetrans per 100 cm^3 soil P. penetrans + Glomus sp. = 300 P. penetrans = 1000 Glomus sp. spores per 100 cm^3 soil P. Penetrans
P. penetrans

0.05) Column means followed by the same letter(s) are not significantly different (P = according to the Student Newman Keuls Multiple Range test.

P. penetrans and G. fasciculatus on fresh weight Effect interactions of of navy bean plants. TableA45.

G. fasciculatus on shoot dry Effect of interactions of P. penetrans and weight of navy beans. Table A46.

Day of Growth

	14	28	42	26	70	84	86
		Acc	Accumulated c	degree days	(DD10G)		
	185	372	545	715	924	1112	1314
Treatment		Shoot	ot dry weight	ght (g)			
Control	0.21a	0.84b	1.90b	2.99b	1.23b	0.68b	0.49b
Glomus sp.	0.623	1.26c	3.20c	4.95c	2.39c	1.07c	0.94c
P. penetrans	0.16a	0.44a	0.80a	1.54a	0.67a	0.26a	0.19a
P. penetrans -	+ 0.43b	0.75b	•	3.05b	1.34b	0.69b	0.29ab
Glomus sp.							

Control + = 0 P. penetrans + 0 G. fasciculatus Glomus sp. = $1000 \, \frac{G}{G}$. Fasciculatus $\frac{100}{F}$ cm³ soil.

P. penetrans = $300 \, \frac{P}{P}$. penetrans per $100 \, \frac{P}{P}$. penetrans + $\frac{1}{2}$ spores per $\frac{1}{2}$ soil $\frac{P}{P}$. penetrans + $\frac{1}{2}$ spores per $\frac{1}{2}$ soil

Column means followed by the same letters are not significantly different (P = 0.05) according to the student Newman Keuls multiple range test.

Effect of interactions of P. penetrans and G. fasciculatus on leaf area of navy bean plants. Table M47.

		Da	Day of Growth	:h			
	14	28	42	56	70	84	86
		Accu	mulated de	Accumulated degree days (DD10C)	(DD10C)		
	185	372	545	715	924	1112	1314
Treatment			Leaf area (cm ²)	a (cm ²)			
Control	21.50a	90.92a	282.21b	393.99b	190.67b	41.06b	10.90ab
Glomus sp.	39.44ab	151.10b	427.52c	478.31c	242.14c	86.76d	16.685
P. penetrans	16.17a	80.04a	141.69a	251.31a	100.19a	19.99a	5:27a
P. penetrans +	51.92b	113.66ab	287.39b	375.29b	105.59a	71.45c	8.33ab
Glomus sp.							

Effect of interactions of P. penetrans and G. fasciculatus on height of navy bean plants. TableA48.

		D	Day of Growth	th			
	14	28	42	56	70	84	86
		Acc	umulated d	Accumulated degree days $(\mathrm{DD}_{10}^{\mathrm{C}})$	$(DD_{10}C)$		
	185	372	545	715	924	1112	1314
Treatment			Plant	Plant height (cm)			
Control	6.30a	9.00a	14.70b	19.30b	22.80b	25.00b	25.70c
Glomus sp.	9.10b	13.20b	20.30c	27.10c	27.30c	28.60c	28.80d
P. penetrans	5.80a	8.30a	9.40a	12.00a	16.30a	16.70a	16.90a
P. penetrans	F 7.90b	10.30a	16.20b	18.70b	20.605	24.00b	24.60b
Glomus sp.							

Control + = 0 P. penetrans + 0 G. fasciculatus Glomus sp. = $1000 \, \frac{G}{G}$. fasciculatus spores / $100 \, \mathrm{cm}^3$ soil P. penetrans = $300 \, \mathrm{P}$. penetrans per $100 \, \mathrm{cm}$ soil P. penetrans + G penetrans + G penetrans + G penetrans + G soil G penetrans + G spores per G soil

(P = 0.05)Column means followed by the same letters are not significantly different according to the student Newman Keuls multiple range test.

fasciculatus on weight اق Effect of interactions of P. penetrans and of navy bean roots. Table 49.

		1	Day of Growth	wth				
	14	28	42	56	70	84	98	
		Acc	umulated o	Accumulated degree days $(\mathrm{DD}_{10}^{\mathrm{C}})$	(DD10C)			
	185	372	545	715	924	1112	1314	1
Treatment			Root weight (g)	ght (g)				
Control	0.85b	1.94b	3.60b	3.83b	2.15b	1.50b	0.95b	
Glomus sp.	1.68c	3.48c	6.30c	5.78c	4.14c	3.21c	1.62c	
P. penetrans	0.53a	1.13a	1.85a	1.71a	0.98a	0.55a	0.41a	
P. penetrans +	- 0.92b	2.27b	4.17b	3.69b	2.18b	1.23ab	0.72b	
Glomus sp.								

navy of fasciculatus on area וט P. penetrans and Effect of interactions of bean roots. Table 50.

		Ω	Day of Growth	th			
	14	28	42	56	70	84	98
		Acc	umulated d	Accumulated degree days	(DD_10^C)		
	185	372	545	715	924	1112	1314
Treatment			Root area	(cm ²)			
Control	5.91a	10.16a	16.26b	19.10b	14.52a	9.27b	5.20b
Glomus sp.	10.45b	16.76b	27.77c	30.93c	•	13.34c	8.43c
P. penetrans	5.03a	7.61a	11.38a	13.09a	11.78a	6.28a	3.21a
P. penetrans +	- 6.79a	9.64a	14.25b	16.44b	12.97a	9.60b	4.76b
Glomus sp.							

Control + = 0 P. penetrans + 0 G. fasciculatus Glomus sp. = $1\overline{0}$ 00 G. fasciculatus spores / 3100 cm³ soil
P. penetrans = 300 P. penetrans per 100 cm³ soil
P. penetrans + Glomus sp. = 300 P. penetrans + 100 Glomus sp. spores per 100cm³ soil

Column means followed by the same letters are not significantly different (P=0.05) according to the student Newman Keuls multiple range test.

G. fasciculatus on length and P. penetrans Effect of interactions of of navy bean roots. Table A51.

	14	28 Acc 372	Day of Growth 42 56 umulated degree	Day of Growth 42 56 70 Accumulated degree days (DD ₁₀ C) 545 715 924	70 (DD ₁₀ C) 924	84	98
Treatment Control Glomus sp. P. penetrans P. penetrans + Glomus sp.	5.50b 8.90c 3.00a 5.90b	10.30b 16.80c 7.30a 11.30b	Root Length (cm) 17.30b 24.30 28.60c 38.20 11.10a 13.60 13.70a 18.30	24.30c 38.20d 13.60a 18.30b	19.50b 27.90c 11.70a 17.00b	13.90b 18.50c 8.60a 11.40b	12.20c 17.30d 8.10a 10.80b
Control + = 0 P.] Glomus sp. = 1000 P. penetrans = 30 P. penetrans + Glom	omu	T 5 3	spores3/ er 100cn	sciculatus spores3/100 cm ³ s r 100cn soil penetrans + 1000 G	soil Glomus sp.	spores per	G. fasciculatus spores3/100 cm ³ soil cans per 100cn soil 300 P. penetrans + 1000 Glomus sp. spores per 100cm ³ soil

Column means followed by the same letters are not significantly different (P = 0.05) according to the student Newman Keuls multiple range test.

Susceptibility of five dry bean varieites to P. penetrans and control of P. penetrans with an input of aldicarb (Temik 15 G). Table A52:

	L		ı		۱	q		ŭ	q											
	128				74c	37a			34ab	4 a		5 a		4 a		2a			2a	
	1173			a)	134a	56a	136a	490P	152a	8a		5a		4 a		9a			3а	
	966 1173 1281			No./g root tissue	448b	82a	162a	408b	179a	18a		8a		11a		16a		1	5a	
	872			root t	249b 4	15a	9a	80a	9a	4a		2a		3a		3 a			5 a	
	1	Q		1 6/.	320b	36a	40a	62b	27a	18a		15a		6a		22a			10a	
	966 1173 1281 485 636	Pratylenchus penetrans at DD		No.	No.	130b	113b	174b	138b	45a	10a		2a		17a		5a			2a
	1281	etran			518c	338bc	324bc	332bc	184ab	34a		18a		8a		16a			15a	
	1173	us per			142c		44bc		53ab	14a		4a .		5a (12a 🗆			7a .	
	996	lench			39b	lla	23a	17a	18a	4 a		2a		5a		7 a			4a	
DD 10C	872	Praty		soil	104e	88bc	84pc	51bc	32ab	12a		6a		4a		lla			12a	
۵	636		٠		14a		12a	19a	4a	2a		8a		2a		4a			2a	
	485			N./100cm ³	25b	16ab	15ab	18ab	10a	5a		4 a		la		2a			5a	
	207				134a	126a	116a	128a	133a	131a		168a		125a		149a			140a	
		Yield	(cwt./A)		12.44a	16.76b	17.99b	10.30a	18.53	19.91b		25.06c		24.21c		22.29c		,	25.83c	
	Bean Variety	orm-	ulation and rate		Sanilac.	Seafarer]	Tuscola	Montcalm Kidney		-	Seafarer + Temik 15G		Tuscola + Temic 15G		Montcalm Kidney +		Charlevoix Kidney +		a.i./A.	

column means followed by the same letter are not significantly different (P=0.05) according the Student Newman Keuls multiple range test. * DD $_{10}$ accumulated degree days base 10C =

x 0.556

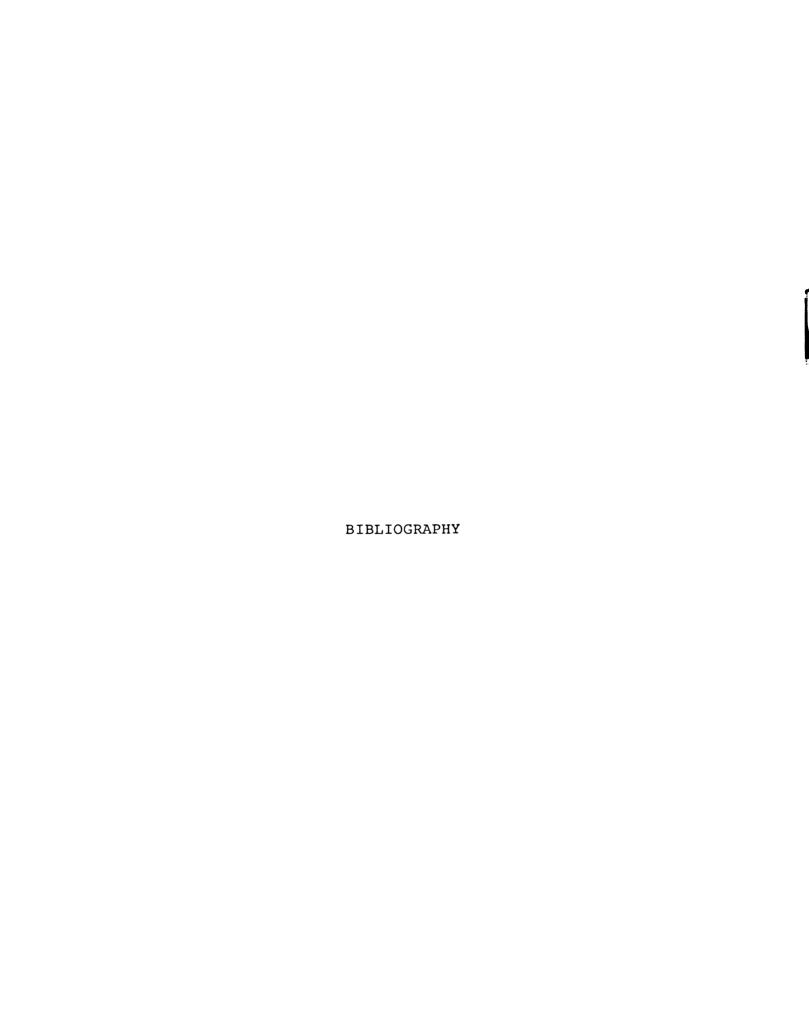
(min. daily temp. + max. daily temp)

Table A 53: Population dynamics and control of Pratylenchus penetrans associated with navy beans [1978].

Treatment formulation	Vield					Pre	atyle	chus	Pratylenchus penetrans at ${ m DD}_{ m 10}$	ans a	t DD ₁	, 1¢			
and rate per acre	cwt/acre			NO	No. per 100cm ³ /soil	0.5 %	10:1				No. p	No. per g root tissue	oot ti	issue	
		171	300	495	171 300 495 750 1044 1205 1272 1301	1044	1205	1272	1301	495	750	495 750 1044 1205 1272 1301	1205	1272	1301
Check	19.2c	54a	57b	65b	24ab	46b	23b	46p	306	79c	q69	105b	32b	67b	27c
Temik 15G 0.75 lb ai/acre	22.5d	52a	56a	7a	2a	13a	5a	5a	8a	3ab	0a	2a .	la	5a	6ab
Temik 15G 1.5 lb ai/acre	24.4d	59a	29b	14a	la	4 a	la	11a	13a	3ab	la	5a	0a	2a	2a
Vydate 10G 3 lb ai/acre	24.8 d	51a	25b	12a	la	7a	7a	14a	7a	3ab	4 a	8a	la	3a	2a
Nemamort 8E 1b/acre	16.8bc	65a	18a	17a	la	13 a	6a	7а	8a	10b	9a	16a	la	4 a	llab
Nemamort 8E 24 lb/acre	14.5b	53b	11a	19a	2a	14a	la	7а	8a	5ab	3a	17a	la	11a	19bc
Nemamort 8E 36 lb/acre	10.0a	52a	7a	12a	5a	7a	5 a	11a	13a	4ab	2a	20a	la	5a	18bc
Nemacur 15G 5 lb/ai/acre	16.96bc	4 6a	54b	9a	la	11a	la	4a	4 a	la	0a	6a	la	4 a	2a

*1 ${
m DD}_{10}$ = accumulated degree days (base 10 C).

**2 Column means followed by the same letters are not significantly different according to the Student Newman Keuls Multiple Test (P = 0.05).


Table 54: Population dynamics and control of P. penetrans associated with navy beans (1979).

Treatment, Formulation and Rate of Acre	Yield (cwt/A)			- '	Pratyl	Pratylenchus penetrans	penet	at	* 00					
				No.	No./100cm ³	3 soil				Ž	No./g root tissue	oot tis	ssue	
		207	485	636	872	996	1173	1221	485	636	872	996	1173	1221
Check.	13.91a	117a	41b	26b	4 8b	125b	72b	250b	145c	200b	4 8c	328b	103b	25b
Vydate L 1.0 lb a.i./A.	16.76ab	89a	15a	12a	12a	20a	17a	85a	16a	76a	6ab	17a	9a	4 a
Vydate L 1.0 lb a.i./A plus 1.0 lb a.i/A foliar														
spray.	22.21bcd	98a	20a	7a	10a	34a	13a	80a	17a	12a	6ab	12a	16a	4 a
Terr-o-cide 54-45 1.0 gal./A	16.52ab	132a	18a	14a	13a	20a	16a	54a	72b	120a	24ab	4 a	8 8	llab
Temik 15G 0.5 lb														
a.i./A	19.14abc	121a	35b	17a	33ab	24a	19a	122a	4 1a	104ab	37bc	45a	20a	14ab
Temik 15G 1.0 lb a.i./A	21.29bcd	116a	12a	11a	20a	10a	12a	51a	15a	12a	16ab	18a	14a	5a
Temik 15G 1.5 lb a.i./A	24.14cd	111a	6a	8a	13a	6a	10a	38a	9 8	q 9	10ab	10a	9 a	3a
Temik 15G 2.0 lb a.i./A	25.06d	122a	7a	5a	9a	3a	5a	34a	4 a	4a	3a	9a	5a	За
*					Ì									

(min. temp. + max. temp) - 50F DD = accumulated degree days 10CF =

x 0.566

**
Column means followed by the same letter are not significantly different (P = 0.05) according to the Student
Newman Keuls multiple range test.

7.0 BIBLIOGRAPHY

- Acosta, N. and R.B. Malek. 1979. Influence of temperature on population development of eight species of <u>Pratylen-chus</u> on soybean. J. Nematol. 11:229-232.
- Adams, M.W. 1978. <u>Varieties</u>. <u>In</u>. <u>Dry Bean Production-Principles and Practices</u>. <u>Ext</u>. <u>Bull</u>. <u>E-1251</u>, <u>Cooperative Ext</u>. <u>Serv</u>., <u>Michigan State University</u>, <u>East Lansing</u>.
- Andersen, A.L. 1955. Dry bean production in the Eastern states. Hort. Crops. Res., Washington, D.C.
- Andersen, A.L., L.S. Robertson, J.R. Black, M.H. Erdman and R.F. Ruppel. 1975. Navy bean production methods of improving yield. Ext. Bull. E-854 No. 46, Cooperative Ext. Serv., Michigan State University, East Lansing.
- Anonymous. 1971. Focus on Michigan Bean Industry. Michigan Science in Action. 16. Michigan State University Agric. Exp. Stat. Report, East Lansing.
- Austin, R.B. and M.S. MacClean. 1972. Some effects of termperature on rates of phytosynthesis and respiration of Phaseolus vulgaris L. Photosynthetica. 6:41-50.
- Backman, P.A. and E.M. Clark. 1977. Effect of carbofuran and other pesticides on vesicular-arbuscular mycorrhizae in peanuts. Nematropica. 7:13-17.
- Bailey, J.E. and G.R. Safir. 1977. Effect of benomyl on soybean endomycorrhizae. Phytopathology. (In press).
- Baltruschat, H., R.A. Sikora and F. Schonbeck. 1973.

 Effect of V-A mycorrhiza (Endogone mosseae) on
 the establishment of Thielaviopsis basicaola and
 Meloidogyne incognita in tobacco. No. 0661 2nd
 Int. Congr. of Pl. Path. 1973. Minneapolis. (Abstr.).

- Bans, K.S. 1967. Effect of applied nutrients on soil fertility, chemical composition and yield of field beans. Indian J. of Agronomy. 12:200-206.
- Barker, K.R. and C.. Nusbaum. 1971. Diagnostic advisory programs. In Plant Parasitic Nematodes. Vol 1.
 B.M. Zuckerman, W.F. Mai and R.A. Rohdes (eds).
 Academic press, New York. 349 pp.
- Barker, K.R., R.S. Hussey and H. Yank. 1975. Effects of light intensity and quality on reproduction of plant parasitic nematodes. J. Nematol. 7:364.
- Barker, A.V., R.J. Volk and W.A. Jackson. 1966. Growth and nitrogen distribution in bean plants (Phaseolus vulgaris L.) subjected to ammonium nutrition. Effects of carbonates and acidity. Soil Sci. Soc. Amer. Proc. 30:228-252.
- Baver, L.D. 1956. Soil Physics. John Wiley and Sons Inc. 489 pp.
- Beall, G. 1941. The transformation of data from entomological field experiments so that analyses of variance becomes applicable. Biometrika. 32:243-262.
- Becker, W.N. 1976. Quantification of onion vesiculararbuscular mycorrhizae and their resistance to Pyrenochaeta terristris. Ph.D. Thesis. Univ. of Illinois, Urbana-Champagne, Illinois.
- Bergeson, C.B. 1962. A report on testing of onion varieties for resistance to lesion nematodes. Pl. Dis Rept. 46:535-539.
- Bird, G.W. 1974. Mycorrhizae. Staff paper. Dept. of Entomology, Michigan State University, East Lansing.
- Bird, G.W. 1977. Effect of experimental nematicides on the root-lesion nematode (<u>Pratylenchus penetrans</u>) and navy bean yields. Nematicide Reports. Dept. of Entomology, Michigan State university, East Landing
- Bird, G.W. 1979. The transdisciplinary nature of pest management. Paper presented at the IX th meeting of Int. Congr. of Pl. Protection, Washinton, D.C.

- Bird, G.W. and G.R. Safir. 1979. Interactions of vesicular-arbuscular mycorrhizae and northern root-knot nematodes on growth and development of onion plants in relation to weeds. Annual Report. Racham Research Endowment Fund.
- Bird, G.W., O.L. Brooks and C.E. Perry. 1974. Dynamics of concomitant field populations of Hoplolaimus columbus and Meloidogyne incognita. J. Nematol. 6:190-194.
- Bird, G.W., J.R. Rich and S.V. Glover. 1974. Increased endomycorrhizae of cotton roots in soil treated with nematicides. Phytopathology. 64:48-51.
- Blazey, D.A., P.G. Smith and S.T. Mugwira. 1964. Nematode resistance in the common bean. J. of Heredity. 55:20-22.
- Bowen, G.D., D.I. Bevege and B. Mosse. 1975. Phosphate physiology of vesicular-arbuscular mycorrhizas.

 In. Endomycorrhizas F.E. Sanders, B. Mosse and B. Tinker (eds.). Academic press. London, New York, San Francisco.
- Chapman, R.A. 1957. The effects of aeration and temperature on the emergence of species of Pratylenchus from roots. Pl. Dis. Rept. 41:836-841.
- Christie, J.R. 1959. Plant nematodes: their bionomics and control. Calif. Exp. Stat. Report. 256 p.
- Cobb, N.A. 1917. A new parasitic nema found infecting cotton and potatoes. J. Agric. Res. 11:27-33.
- Corbett, D.C.M. 1973. Description of <u>Pratylenchus</u>
 penetrans. Commonwealth Institute of Helminthology.
 William Clowes and Sons Ltd. London.
- Cox, G.C. and F.E.T. Sanders. 1974. Ultrastructure of the host fungus interface in a vesicular-arbuscular mycorrhiza. New Phytol. 73:901-912.
- Croft, B.A., J.L. Howes and S.M. Welch. 1976. A computer based extension pest management delivery system. Envir. Entomol. 5:20-34.

- Daft, M.J. and B.O. Okusanya. 1973. Effect of Endogone mycorrhiza and plant growth. V. Influence of infection on the multiplication of viruses in tomato, petunia and strawberry. New Phytol. 72:975-983.
- Dickerson, O.J., H.M. Darling and G.D. Griffin. 1964.

 Pathogenicity and population trends of <u>Pratylenchus</u>
 <u>penetrans</u> on potato and corn. Phytopathology.

 54:317-322.
- Di Edwardo, A.A. 1961. Seasonal population variations of Pratylenchus penetrans in and about strawberry roots. Pl. Dis. Rept. 45:67-71.
- Dunn, R.A. 1972. Importance of depth in soil, presence of host roots and role of eggs as compared with vermiform stages in overwintering of Pratylenchus penetrans at Ithaca. N.Y. J. Nematol. 4:221-222.
- Dunn, R.A. 1973. Effect of temperature on survival and reproduction of <u>Pratylenchus penetrans</u> (Cobb 1917). Filipjev and Shuurmans -Stekhoven. 1941. Ph.D. Thesis. Cornell Univ., Ithaca, New York.
- Edge, O.T., U.W.U. Ayonoadu and L. Mughogho. 1974.
 Response of intermediate beans to varying plant
 populations. Jurialba. 34:1000-1003.
- Edge, O.T., L.K. Mughogho and U.W.U. Ayonoadu. 1975.
 Responses of dry beans to varying nitrogen levels.
 Agronomy J. 67:251-254.
- Elliott, J.M. 1973. Some methods for statistical analyses of samples of benthic invertebrates. Freshwater biological association. Scientific Publ. No. 25.
- El-Sherif, M. and W.F. Mai. 1966. Frequency of penetration of alfalfa roots by <u>Pratylenchus penetrans</u> in relation to inoculum density. Nematologica. 12:90.
- El-Sherif, M.A. and W.F. Mai. 1968. Thermatropic responses of <u>Pratylenchus penetrans</u> and <u>Ditylenchus dipsaci</u>. Nematologica. 14:5-6.
- Erdman, M.H., L.S. Robertson, R.G. White, M.W. Adams and A.L. Andersen. 1965. Field bean production in Michigan. Ext. Bull. 513. Farm Science Series.

- Evans, G.C. 1972. The Quantitative Analysis of Plant growth. Studies in Ecology. Vol 1. Univ. of Calif. Press, Berkely. 734 pp.
- Ferris, H. 1976. Development of a computer-simulation of a plant-nematode system. J. Nematol. 8:255-263.
- Ferris, J.M. 1967. Factors influencing population fluctuations of <u>Pratylenchus penetrans</u> in soils of high organic content. I. Effect of soil fumigants and different crop plants. J. Econ. Ent. 60:1708-1714.
- Fox, J.A. and L. Spasoff. 1972. Interaction of <u>Heterodera</u> solanacearum and <u>Endogone</u> giganta on tobacco.

 J. Nematol. 4:224-225. (Abstr.).
- Freckman, D.W. and R.A. Chapman. 1972. Infection of red clover seedlings by <u>Heterodera trifoli</u> Goffart and Pratylenchus penetrans (Cobb). J. Nematol. 4:23-28.
- Freire, F. Das C.O. 1976. Nematodes associados ao deijoeiro na Zona da Mata, Minas Gerais, e aspectos da relacao entre alguns cultivares e as especies Meloidogyne incognita e M. javanica Tese Mag. Sc. Vicosa, Brazil, Universidade Federal de Vicosa.
- Furlan, V. and J. A. Fortin. 1977. Effects of light intensity on the formation of vesicular-arbuscular endomycorrhizae on Allium cepa by Gigaspora calospora New Phytol. 79:335-340.
- Gay, G.M. and G.W. Bird. 1973. Influence of concomitant Pratylenchus brachyurus and Meloidogyne spp. on root penetration and population dynamics. J. Nematol. 5:212-217.
- Gerdemann, J.W. 1969. Fungi that form vesicular-arbuscular type of endomycorrhizae. <u>In Mycorrhizae</u>. E. Haeshazlo (ed). U.S.D.A Forest Serv. Misc. Pub. 1189. 25pp.
- Gerdemennn, J.W. and J.M. Trappe. 1974. The endogonaceae in the Pacific Northwest. Mycologia MemoirNo. 5. 76 p.
- Godfrey, G.H. 1929. A destructive root disease of pineapples and other plants due to <u>Tylenchus</u> <u>brachyurus</u> n sp. Pytopathol. 19:383-387.

- Goodell, P.B. and H. Ferris. 1978. Investigations into optimum sample size and pattern for estimating nematode densities. J. Nematol. 10:289. (Abstr.).
- Gray, L.E. and J.W. Gerdemann. 1967. Influence of vesicular-arbuscular mycorrhizas on uptake of phosphorus-32 by <u>Liriodendron</u> tulipifera and <u>Liquidambar</u> styraciflua. Nature . 213:106-107.
- Harsh, S.B. 1977. Management information systems: Role of telefarm and telplan projects. Dept. of Agric. Econ., Michigan State University, Agric. Econ. Staff paper No. 77.
- Hartmann, R.W. 1971. Inheritance of resistance to rootknot. Soc. Hort. Sci. 96:71-80.
- Hattingh, M.J., L.E. Gray and J.W. Gerdemann. 1973. Uptake and translocation of 32P-labelled phosphate on onion roots. Soil Sci. 116:383-387.
- Hayman, D.S. 1974. Plant growth response to vesicular-arbuscular mycorrhizas. VI. Effect of light and temperature. New Phytol. 73:71-80.
- Hayman, B. and A. D. Lowe. 1961. The transformation of counts of the cabbage aphid (Brevicorne brassicae (L).).
 N.Z.J. Sci. 4:271-278.
- Haynes, D.L. and R.L. Tummala. 1974. Development and use of predictive models in management of the cereal leaf beetle population. In. Modeling for Pest Management. R.L. Tummala, D.L. Haynes, and B.A. Croft (eds). Michigan State University, East Lansing.
- Haynes, D.L. and R. L. Tummala. 1978. Application of computer technology to pest management. <u>In. Pest</u> Control Strategies. Academic Press. New York.
- Haynes, D.L., R.K. Brandenburg and P.D. Fisher. 1973. Environmental monitoring network for pest management systems. Envir. Entomol. 2:888-889.
- Hung, C and W.R. Jenkins. 1969. Oogenesis and embryology of two plant parasitic nematodes <u>Pratylenchus penetrans</u> and P. zeae. J. Nematol. 2:352-356.
- Hussey, R.S. and R.W. Roncadori. 1978. Interaction of Pratylenchus brachyurus and Gigaspora margarita on cotton. J. Nematol. 10:16-20.

- Hutton, D.G., R.E. Wilkinson and W.F. Mai. 1972. Effect of two plant parasitic nematodes on Fusarium dry rot of beans. Phytopathology. 63:749-751.
- Jenkins, W.R. 1964. A rapid centrifugation-flotation technique for separating nematodes from soil. Pl. Dis. Rept. 48:692.
- Kable, P.F. and W.F. Mai. 1968. Influence of soil moisture on Pratylenchus penetrans. Nematologica. 14:101-122.
- Kendall, M.G. 1948. The Advanced Theory of Statistics. 3 vols. Griffin, London. 419-436.
- Khan, A.G. 1975. Mycorrhizae and their significance in plant nutrition. Biologica (Special Supplement). April:42-48.
- Khan, A.G. 1975. Growth effects of vesicular-arbuscular mycorrhiza on crops in the field. In. Endomycorrhizas F.E. Sanders, B. Mosse and P.B. Tinker (eds). Academic Press, London. 419-436.
- Kirkpatrick, J.D., S.D. VanGundy and W.F. Mai. 1964.
 Interrelationships of plant nutrition, growth and plant parasitic nematodes. Plant Anal. Fer. Prob. 4:189-225.
- Kleczkowski, A. 1955. The statistical analysis of plant virus assays: A transformation to include lesion numbers with small means. J. Gen. Microbial. 13:91-98.
- Kleinschmidt, G.D. and J.W. Gerdemenn. 1972. Stunting of citrus seedlings in fumigated nursery soils related to the absence of endomycorrhizae. Phytopathology. 62:1447-1453.
- Klinger, J. 1965. On the orientation of plant nematodes and some other soil animals. Nematologica. 11:4-18.
- Knierim, J.A. 1963. Nematodes associated with crop plants in Michigan. Michigan Agric. Exp. Quart. Bull. 46: 254-262.
- Knobloch, N. and G.W. Bird. 1980. Plant parasitic nematodes of Michigan, with special reference to the genera of the Tylenchorhynchinae (Nematoda). Nematology Report. Dept. of Entomology, Michigan State University East Lansing.

- Kotcon, J. 1979. Studies on the ecology of nematodes associated with vegetables grown in organic soils.

 M.S. Thesis. Michigan State University, East Lansing.
- Krall, E.L. and W.R. Riispere. 1965. Effect of <u>Pratylenchus</u> on the development of some field and garden <u>crops</u>.

 <u>In. Nematode diseases of agricultural plants</u>. Proceedings of the 6th All-union conference on plant Nematology. 66:157-161.
- Langdon, K.R. 1963. Procedures for determining numbers of soil samples to be taken in various surveys and certification inspection situations. Florida Dept. of Agric. Div. Pl. In. Mimeo N-50. 4 pp.
- Lange, A.H., W.L. Ehrler and K.C. Hamner. 1958. Effect of environment on uptake-transport of calcium and phosphorus by bean plants. Proc. Amer. Soc. Hort. Sci. 73:349-354.
- La Rue, J.H., W.B. McClellan and W.L. Peacock. 1975.

 Mycorrhizal fungi and peach nursery nutrition. Calif.

 Agric. 29:6-7.
- Lavellee, W.H. and R.A. Rohde. 1962. Attractiveness of plant roots to <u>Pratylenchus penetrans</u> (Cobb).

 Nematologica. 8:252-260.
- Leakey, C.L.A. 1972. Effect of population and fertility level on yield and its components in two determinate cultivars of Phaseolus vulgaris L. J. of Agric. Sci. 79:269-267.
- Leopold, A.C. 1964. Plant Growth and Development. McGraw Hill Book Company, New York.
- Loof, P.A.A. 1960. Taxonomic studies on the genus Pratylenchus (Nematoda). Tijdsch Plziekten. 66:29-90.
- Lyon, T.L., H.O. Buckman and N.C. Brady. 1958. The Nature and Properties of Soils. 5th Ed. McMillan 591 pp.
- Mafra, R.C., C. Vieria, J.M. Braga, C. Queira and D. Brandes. 1974. Effects of plant density and sowing date on growth of Phaseolus vulgaris L. and on nutrient uptake. Experimental. 17:217-237.

- Mai, W.F. 1960. Growth of apple seedlings in relation to soil temperature and inoculation with <u>Pratylenchus penetrans</u>. Phytopathology. 41:123-126.
- Malek, R.B. 1980. Population response to temperature in the subfamily Tylenchorhynchinae. J. Nematol. 12:1-5.
- Mamiya, Y. 1971. Effect of temperature on the life cycle of <u>Pratylenchus penetrans</u> on cryptomeria seedlings and observations on its reproduction. Nematologica. 17:82-92.
- Martin, J.H. and W.H. Leonard. 1967. Principles of field crop production. The MacMillan Company. New York Colbier MacMillan Ltd. London. 1044 pp.
- McIntyre, L. and P.M. Miller. 1976. Competitive interaction of <u>Tylenchorhynchus</u> claytoni and <u>Pratylenchus</u> penetrans in tobacco roots. Phytopath. 66:1427-1430.
- Melton, J.R., B.G. Ellis and E.C. Doll. 1970. Phosphorus and lime interactions with yield and zinc uptake by Phaseolus vulgaris L. Soil Sci. Soc. Amer. Proc. 34:91-93.
- Miller, P.M. 1968. The susceptibility of parasitic nematodes to subfreezing temperatures. Pl. Dis. Rept. 52:768-772.
- Miller, P.M. and L.V. Edington. 1962. Effects of paper and sawdust soil ammendments on meadow nematodes and subsequent verticillium wilt of tomatoes. Pl. Dis. Rept. 46:745-747.
- Miller, P.M. and S. Rich. 1974. Effect of soil temperature on control of <u>Pratylenchus penetrans</u> by three contact nematicides. Pl. Dis. Rept. 58:708-710.
- Miller, P.M., C.W. Boothroyd and W.F. Mai. 1963. Relationship of Pratylenchus penetrans to roots of corn in New York. 53:313-315.
- Miller, P.M., L.V. Edington and A. Hawkin. 1967. Effect of soil fumigation on verticillium wilt, nematodes and other diseases of potato roots and tubers. Am. Potato J. 44:316-323.

- Morgan, G.T. and A.A. McLean. 1968. Influence of soil pH on an introduced population of Pratylenchus penetrans. Nematologica. 14:311-315.
- Mosse, B. 1973. Advances in the study of vesiculararbuscular mycorrhiza. Ann. Rev. Phytopathol. 11:171-196.
- Mosse, B. 1977. Plant growth responses to vesicular-arbuscular mycorrhiza. X. Responses of Styosanthes and maize to inoculation in unsterile soils. New Phytol. 78:277-288.
- Mosse, B., D.S. Hayman and D.J. Arnold. 1973. Responses to vesicular-arbuscular mycorrhiza. V. Phosphate uptake by three plant species from P-deficient soils labelled with 32P. New Phytol. 72:809-815.
- Mountain, W.B. 1961. Studies on the pathogenicity of Pratylenchus penetrans. Recent Ad. in Bot. 1:414-417.
- Mountain, W.B. and C.D. McKeen. 1965. Effects of transplant injury and nematodes on the incidence of verticillium wilt of eggplant. Can. J. Bot. 43:619-624.
- Mountain, W.B. and Z.A. Patrick. 1959. The peach replant problem in Ontario. VII. The pathogenicity of Pratylenchus penetrans (Cobb 1917) Filip and Stek 1941. Can. J. Bot. 37:459-470.
- Mugwira, L.M. and B.D. Knezek. 1971. Growth and plant zinc distribution in two navy bean varieties fertilized with zinc. Communications in Soil Sci. and Pl. Anal. 2:407-413.
- Nesheim, N.O. and M.B. Linn. 1969. Deletarious effects of certain fungitoxicants on the formation of mycorrhizae on corn by Endogone fasciculatus and corn root development. Phytopathology. 59:297-300.
- Ngundo, B.W. and D.P. Taylor. 1974. Effects of Meloidogyne spp. on bean yields in Kenya. Pl. Dis. Rept. 58:1020-1023.
- Nicolson, T.H. 1959. Mycorrhiza in the <u>Gramineae</u>. I. Vesicular-arbuscular endophytes, with special reference to the external phase. Trans. Brit. Mycol. Soc. 42:421-438.

- Norton, D.C. 1978. Ecology of Plant parasitic nematodes
 John Wiley and Sons. New York. 268 pp.
- O'Bannon, J.H., R.N. Nemec and N. Vorles. 1979. The influence of Glomus mossea on Tylenchus semipenetrans infected and uninfected citrus lemon seedlings.

 J. Nematol. 11:247-250.
- Odihirim, R.A. and W.R. Jenkins. 1965. Host parasite relationships of <u>Impatiens balsamina</u> and certain nematodes. Phytopathology. 48:763-766.
- Olthof, T.H.A. 1971. Seasonal fluctuations in population densities of <u>Pratylenchus penetrans</u> under rye-tobacco rotation in Ontario. Nematologica. 17:453-459.
- Olthof, T.H.A. and J.W. Potter. 1973. The relationship between population densities of <u>Pratylenchus penetrans</u> and crop losses in summer-maturing vegetables in Ontario. Phytopathology. 63:577-582.
- Olthof, T.H.A. and A.A. Reyes. 1969. Effect of <u>Pratylenchus</u> penetrans on verticillium wilt of pepper. J. Nematol. 1:21-22.
- Olthof, T.H.A., C.F. Marks and J.M. Elliott. 1973. Relationship between population densities of <u>Pratylenchus penetrans</u> and crop losses in flue-cured tobacco in Ontario. J. Nematol. 5:158-162.
- Oostenbrink, M. 1966. Major characteristics between nematodes and plants. Medb Landb. Hogech. Wageningen. 66:1-46.
- Orishchenko, A.D. 1974. The role of forecasts in planning control measures for plant protection. In. Modeling for Pest Management, Concepts Techniques and Applications. R.L. Tummala, D.L. Haynes and B.A. Croft (eds.). Michigan State University, East Lansing.
- Oyekan, P.O. and J.E. Mitchell. 1972. The role of <u>Pratylen-chus</u> in root rot complexes of canning peas. Phytopathol. 62:369-373.
- Patterson, Sister Mary T. and G.B. Bergeson. 1967. Influence of temperature, photoperiod and nutrition on reproduction, male-female-juvenile ratio and root to soil migration of <u>Pratylenchus penetrans</u>. Pl. Dis. Rept. 51:78-82.

- Pinchinat, A.M. 1974. Yield of common bean <u>Phaseolus</u> vulgaris L. depending on density and sowing site. Field crops Abtr. 365.
- Pitcher, R.A., Z.A. Patrick and W.B. Mountain. 1960.

 Some studies on the host parasite relationships of

 Pratylenchus penetrans (Cobb) to apple seedlings.

 I. Pathogenicity under sterile conditions. Nematologica.
 5:309-314.
- Polyakov, I. Ya. 1974. Development and role of forecast models for pest control programs. In. Modeling for Pest Management. R.L. Tummala, D.L. Haynes and B.A. Croft (eds.). Michigan State University, East Lansing.
- Radewald, J.D., J.H. O'Bannon and A.I. Tomerlin. 1971.

 Temperature effects on reproduction and pathogenicity of Pratylenchus coffea and P. brachyurus and survival of P. coffea in roots of citrus. Jambihiri. J. Nematol. 3:390-394.
- Ramaro, G.V.S.V. 1972. Effects of nematode trapping fungi on the biology of lesion nematode Pratylenchus penetrans (Cobb) Filipjev and Shuurmans-Stekhoven.

 Ph.D. Thesis. Univ. of Illinois, Urbana-Champagne, Illinois.
- Rather, H.C. 1942. Field Crops. McGraw Hill Book Company. New York.
- Redhead, J.F. 1975. Endotrophic mycorrhizas in Nigeria.

 Some aspects of the ecology of endotrophic mycorrhizal association of Khaya glandifoliola C.D.C. In. Endomycorrhizas. F.E. Sanders, B. Mosse and P.B. Tinker (eds.). Academic Press London. 469-484.
- Rhoades, H.L. and J.F. Beeman. 1967. Efficacy of some experimental nematicides applied in-row on vegetables. Florida State Hort. Proceedings. 80:156-161.
- Rhodes, L.G. 1976. Effects of vesicular-arbuscular mycorrhiza on sulfate, calcium and zinc uptake by onion plants. Ph.D. Thesis. Univ. of Illinois, Urban-Champagne, Illinois.
- Rich, S. and P.M. Miller. 1964. Verticillium wilt of strawberries made worse by soil fungicides that stimulate meadow nematode populations. Pl. Dis. Rept. 48:246-248.

- Richards, L.A. 1965. Physical condition of water in soil. In. Methods of Soil Analysis. Part 1.

 Physical and mineralogical properties including statistics of measurement and sampling. Agronomy 9.

 Amer. Soc. Agron., Madison, Wisconsin.
- Robbins, R.T., O.J. Dickerson and J.H. Kyle. 1978. Pinto bean yield increased by chemical control of Pratylenchus spp. J. Nematol. 4:28-32.
- Rohde, R.A. 1963. Lesion injury to carrot. Phytopathology. 53:886-887.
- Roman, J. and H. Hirshman. 1969. Morphology and morphogenesis of six species of Pratylenchus. J. Nematol. 1:363-386.
- Ross, J.B. 1971. Effect of phosphate fertilization on yield of mycorrhizal and nonmycorrhizal soybeans. Phytopathol. 61:1400-1403.
- Ross, J.B. 1972. Influence of Endogone mycorrhiza on Phythophthora root rot of soybean. Phytopathol. 62:886-897.
- Ross, J.B. and J.A. Harper. 1970. Effect of Endogone mycorrhiza on soybean yield. Phytopathol. 60:1552-1556.
- Ruschel, A.P.B., D.P. P De Souza and J. Dobereeiner. 1966.

 Effects of magnesium, boron, molybdenum and liming on symbiotic nitrogen fixation of beans (Phaseolus vulgaris). Campo Grande, Brasil, Instituto de Pesquis sas e experimenta cao Agronpecuaria de Centro. Sul Boletin Tecnico no. 17.
- Safir, G.R. 1968. The influence of vesicular-arbuscular mycorrhiza on the resistance of onion to Pyrenochata terrestris. M.S. Thesis. Univ. of Illinois, Urbana-Champagne, Illinois.
- Safir, G.R. 1977. Vesicular-arbuscular mycorrhizae and crop productivity. <u>In. Biology of Crop Production</u>. P. Carlson (ed.). Academic Press. New York.
- Saka, V. 1975. Biological control of lesion nematode Pratylenchus penetrans. M.S. Thesis. Univ. of Massachusetts.

- Sanders, F.E. and P.B. Tinker. 1971. Mechanism of absorption of phosphate from soil by Endogone mycorrhizas. Nature London. 223:278-279.
- Scarisbrick, D.H., M.K.V. Carr and J.M. Walker. 1976.
 The effect of sowing date and season on the development and yield of navy beans (Phaseolus vulgaris) in southeast England. J. Agric. Sci. 86:65-76.
- Schenck, N.C. and R.A. Kinlock. 1974. Pathogenic fungi, parasitic nematodes and endomycorrhizal fungi associated with soybean roots in Florida. Pl. Dis. Rept. 58:169-173.
- Schenck, N.C., R.A. Kinlock and D.W. Dickson. 1975.
 Interaction of endomycorrhizal fungi and root-knot nematodes on soybean. In. Endomycorrhizas. F.E. Sanders, P.B. Tinker (eds.). Academic press. London.
- Schonbeck, F. and H.W. Dehne. 1977. Damage to mycorrhizae and nonmycorrhizal cotton seedlings by Thielviopsis basicola. Pl. Dis. Rept. 61:266-267.
- Seinhorst, J.W. 1966. The relationship between population increase and population density in plant parasitic nematodes. I. Introduction and migratory nematodes. Nematologica. 12:157-169.
- Sen, A.K. and H.J. Jensen. 1969. Host parasite relationships of various plants and the Hop cyst nematode Heterodera humuli. Pl. Dis. Rept. 53:37-40.
- Shea, P.F., G.C. Gerloff and W.H. Gabelman. 1968. Differing efficiencies of potassium utilization in strains of snap beans (Phaseolus vulgaris L). Plant and Soil. 28:337-346.
- Shepard, A.M. 1970. The influence of root exudates on the activity of some plant parasitic nematodes.

 In. Root diseases of soil borne pathogens. Part Proc. 1st Int. Congr. Plant Pathol. London. T.A. Tousson et al. (eds.). Berkeley and Los Angeles Calif. Univ. Pres. 134-137.
- Sher, S.A. and M.W. Allen. 1953. Revision of the genus Pratylenchus (Nematoda: Tylenchidae). Univ. of Calif. Publ. Zool. 57:441-470.

- Shoemaker, C. 1974. Management models for integrated pest control, Mathematical structure and solution.

 In. Modeling for Pest Management. R.L. Tummala,
 D.L. Haynes and B.A. Croft (eds.). Michigan State University, East Lansing.
- Slinger, L.A. 1976. Ontogeny of <u>Daucus carota</u> in relation to <u>Meloidogyne hapla</u> with a preliminary endomycorrhizal study. M.S. Thesis. Michigan State University, East Lansing.
- Smucker, A.J.M. and D.L. Mohma. 1978. Environmental requirements and stresses. In. Dry bean production Principles and Practices. Ext. Bull. E-1251, Co-operative Ext. Serv., Michigan State University, East Lansing.
- Sonitrat, S. and R.A. Chapman. 1970. Penetration of alfalfa roots by different stages of Pratylenchus penetrans (Cobb). J. Nematol. 2:270-271.
- Stern, V.M., R.F. Smith, R. van den Bosh and K.S. Hagen. 1959. The integration of chemical and biological control of the spotted alfalfa aphid. Part 1. The integrated control concept. Hilgardia. 29: 81-101.
- Tarte, R. and W.F. Mai. 1976. Morphological variation in Pratylenchus penetrans. J. Nematol. 8:185-195.
- Taylor, L.R. 1961. Aggregation, variance and the mean.
 Nature London. 189:732-735.
- Taylor, D.P., W.E. Schlosser and A.T. Saas. 1970. First report of the reniform nematode Rotylenchulus reniformis from Lebanon. Pl. Dis. Rept. 54:435-436.
- Thistlewaite, B. 1970. Reproduction of <u>Pratylenchus</u> penetrans (Nematoda: Tylenchida). J. Nematol. 2:101-105.
- Thomason, I.J., J.R. Rich and C.F. Omelia. 1976. Pathology and histopathology of <u>Pratylenchus scribneri</u> infecting snap bean and lima bean. J. Nematol. 8:347-352.
- Thompson, L.S. and C.B. Willis. 1970. Reproduction of Pratylenchus penetrans and growth of birdsfoot trefoil as influenced by soil moisture and cutting management. Can. J. Pl. Sci. 50:499-504.

- Tinker, P.B. 1975. Effects of vesicular-arbuscular mycorrhizas on higher plants. Symp. Soc. Exp. Biol. 29:325-349.
- Townshend, J.L. 1963. The pathogenicity of <u>Pratylenchus</u> penetrans to celery. Can. Pl. Sci. 43:216-222.
- Townshend, J.L. and C.F. Marks. 1976. Available soil moisture and the expression of damage caused by Pratylenchus penetrans in flue cured tobacco. Nematologica. 22:65-70.
- Townshend, J.L. and L.R. Webber. 1971. Movement of <u>Pratylenchus penetrans</u> and moisture characteristics of three Ontario soils. Nematologica. 17:47-51.
- Troll, J. alnd R.A. Rohde. 1966. Pathogenicity of Pratylenchus penetrans and Tylenchorhynchus claytoni on turfgrass. Phytopathol. 56:995-998.
- Tummala, R.L. 1974. Concept of on-line pest management.

 In. Modeling for Pest Management. R.L. Tummala,
 D.L. Haynes and B.A. Croft (eds). Michigan State
 University, East Lansing.
- Tummala R.L. and D.L. Haynes. 1979. A study to determine ecologically compatible agroecosystem design. Proc. of 10th Annual ISA. Pittsburgh Conference: Modeling and simulation. Vol. 10:1011-1017.
- van den Bosch, R.T.F. Leigh, L.A. Falcon, V.M. Stern,
 D. Gonzales and K.S. Hagen. 1971. The development
 of integrated control of cotton pest in California.

 In. Biological Control. C.B. Huffaker (ed). Plenum
 Press, New York. 377-394 pp.
- Van Der Brink, C., N.D. Strommen and A.L. Kenworthy. 1977. Growing degree days in Michigan. Research report 131. Agric. Exp. Sta. Michigan State University, East Lansing.
- Vitosh, M.L., G. W. Bird and J. Noling. 1978. The influence of selected production management inputs on nutrition and yield of Superior potatoes. 1978 Montcalm Exp. Sta. Report. Michigan State University, East Lansing.

- Walker, J.T. 1969. <u>Pratylenchus penetrans</u> populations as influenced by microorganisms and soil ammendments. J. Nematol. 1:260-263.
- Wallace, H.R. 1973. Nematode Ecology and Plant Disease Edward Arnold. Ltd. London. 228 p.
- Waters, W.E. and E. Ewing. 1974. Development and role of predictive modeling in pest management systems. In Modeling for Pest Management. R.L. Tummala, D.L. Haynes and B.A. Croft (eds). Michigan State University East Lansing.
- Wayman, P.A. 1969. A least squares solution for a linear relationship between two observed quatities. Nature London. 184:77-78.
- Williams, C.F., C. Crabtree, H.L. Mack and W.D. Lavs. 1973. Effect of spacing on weed competition in sweet corn snap beans and onions. J. Amer. Soc. Hort. Sci. 98:526-529.
- Willis, C.B. 1972. Effects of soil pH on reproduction of Pratylenchus penetrans and forage yields of alfalfa. J. Nematol. 4:290-295.