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ABSTRACT
HYBRID COMPUTER SOLUTION OF LINEAR STATE MODELS
By

William C. Ellsworth

g—tx(t) = AX(t),

where X(t) is an n-dimensional vector function of time

and A is an (n x n) real square matrix, is desired in many
éngineering problems . By solving the system of equations o~
a hybrid computer, the digital computer can be assigned the
arithmetic and automated analog set-up, and the analog com-
puter can simultaneously integrate all the state variables,
thus utilizing the best features of both machines. The pr-
cedure can be programmed to require not more than (2n-1,
Potentiometers nor more than 2n operational amplifiers (n
bipolar integrators) on the analog computer. This require-
Ment can be met by tridiagonalizing the A matrix on the
digital computer as well as having the digital computer scale
the transformed system in time, amplitude and init?al condi-

tions before integrating the transformed system on the analog

COmputer.
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In this thesis, an improved methcd for tridiagonalizing
an arbitrary real square matrix is developed based or
Lanczos' method.l! After transforming the given matrix A
by unitary Householder transformations into a similar upper

Hessenberg matrix A the latter is transformed into a tri-

HI
diagonal matrix T = RAHC by appropriate matrices R {with
-1
rows R, ) and C = R (with columns C,). The vectors R,
i i i+1
and C, 4, are obtained recursively in the Lanczos algorithm

starting with vectors R; and C; which are supposed to be
arbitrary. But, if R; and C; lie in certain unknown subk-
spaces, the algorithm breaks down. By choosing Cy; =

(10 --- O]T' and obtaining Ci+1 directly from column (i+l1)

1
of the idempotent matrix U - 2 CjR., the matrices R and C
j=1
become unit upper triangular in the regular case, and the

vector C, is never indeterminate. Whenever the computa+tion
i

+1
of R.+ from the recurrence relation breaks down. this new
i+1

method describes a procedure for continuing the algorithm.

The tridiagonalized system is scaled in time and ampli-

tude by an automated procedure. Time scaling multiplies the

tridiagonal matrix T by a constant {. Amplitude scaling

transforms £T by a diagonal matrix into a final tridiagonal

matrix in which at least {n-1) of the off-diagonal elements

adjacent to the main diagonal are scaled to 0, 0.1, 1. 10, or

100 in magnitude. Thus, at most (2n-1) potentiometers are

needed on the analog computer.
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The tridiagonalization, as well as the setting of the
potentiometers, can be done automatically by the digital

computer. The digital computer can also sample the analog
solution and transforms it back to produce the solution

X(t) for the given initial conditions X(0).

1R. L. causey and R. T. Gregory. "On_Lanczos' Alggr;t?m
for Tridiagonalizing Matrices," Society oi InigZeilaIQGI),
and Applied Mathematics Review, III, No. 4(Oc ,

322-328.
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I INTRODUCTION

In many engineering problems, it is necessary to solve

linear state models of the form
gz-x(t) = AX(t) ‘
(1.1)
F(t) = cx(t)

where X(t) is an n-dimensional vector function of time, A
is an (n x n) constant matrix, F(t) is a p-dimensional
vector function of time, and C is a (p X n) constant matrix.

The homogeneous system of differential equations (1.1)
includes the class of linear state models in which the

drivers can be generated as the solution of the set of

linear differential equations with constant coefficients
shown below.

d

gex(t) = ax(t) + BE(t) |

(1.2)
F(t) = cx(t) + DE(t)

where E(t) is a particular solution of

g——E(t) = GE(t)

dt= -

By combining (1.2) and (1.3), we obtain the system
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o) = 8o [ 59 |- [ 82][ 59 ] o
1.4)
F(t) = [C 21[%}8} cx(t) (

which has the form (1.1).
The object of this thesis is to present a method by

which the hybrid computer may be used to solve equations of

the form (1.1) in a manner which is numerically stable and

optimal in the following sense:

a. It should use a minimum number of operational ampli-

fiers.

b. It should use a minimum number of potentiometers.

To solve equations of the form (1.1) on the analog
computer, one potentiometer is needed for every entry of A

not 0, 1, 10, or 100. To simplify the computation and meet

the criterion of optimality, the matrix A is transformed
into BSAS-I, a scalar multiple of a matrix similar to A,

having at most (3n-2) non-zero entries of which as many as

possible are 1, 10, or 100 in magnitude. However, for

reasons of numerical stability, we wish to avoid methods

requiring the solution of the characteristic equation, such

as the transformation to Jordan form. The proposed method

will require only rational operations and the extraction of

square roots.
The change of variables

t = pr, 2(7v) = sx(t) = sx(gt) (1.5)

transforms the differential equations in (1.1) into
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%E z(t) = psas 'z (1) (1.6)

After this transformation has been implemented on the

digital computer, the resulting equations (1.6) are solved

on the analog computer. The digital computer can then sample

the continuous analog solution periodically, re-transform

the solution back to the problem solution X(t), and print

the entries of X(t) and F(t). The entire process, from

reading the equations (1.1) to printing the solution, can
be made fully automatic using the hybrid computer.

In the solution procedure described in this thesis,
the best properties of both the digital and analog computers
are utilized; the digital computer does the arithmetic,
bookkeeping, and analog set-up, and the analog computer
integrates all the transformed state variables simultaneously.

The means proposed for determining an optimal matrix,
similar to A, without computing the eigenvalues is to trans-
form the matrix A into a tridiagonal matrix T having at
most (3n-2) non-zero entries on or adjacent to the main
diagonal.

Chapter 2 presents five ways for tridiagonalizing a
matrix that are described in the recent literature. Each of
these methods has significant shortcomings which, for algo-
rithmic computation, involve undue complexities and possible

breakdowns.
One type of shortcoming is a numerical instability due

to division by a small quantity. The other type is called

a breakdown and results when the algorithm cannot be continued
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without modifications which may or may not be possible.

Chapter 3 presents an original tridiagonalization algo-

rithm based on Lanczos'[1] method, but which is better

adapted to automation. The new algorithm produces a unit

upper triangular transforming matrix in the regular case,

starting with a computer-determined initial vector which

the computer itself modifies in the irregular cases. Two

theorems are proved which show that the algorithm can always

be implemented, even if a breakdown occurs.

Once the tridiagonal matrix is obtained, it must be

scaled both in time and amplitude. Furthermore, the initial

conditions must also be scaled before the system (1.6) is

ready for solution on the analog computer. As another

original contribution in this thesis, Chapter 4 presents an
automatic scaling procedure whereby as many as possible of

the entries on the three diagonals are assigned the values

0, 1, 10, or 100 in magnitude.



II KNOWN TRIDIAGONAL TRANSFORMATION METHODS

Five recently published methods for transforming an
(n x n) real but non-symmetric matrix into a similar tri-

diagonal matrix serve as a background for the theoretical
development in this thesis. Following a description of the

techniques and shortcomings of each of these methods, a new

and improved method will be presented in Chapter 3.

2.1 Lanczos' Method[ll

Given the arbitrary, real, square matrix A of order n,

Lanczos' method attempts to construct non-singular trans-

formation matrices R and C such that
(2.1.1)

(2.1.2/}

RAC =T

RC = U

where U is the unit matrix and T is tridiagonal of the form

Ft]_ qz 0 © o 0 O
€y t2 dq °°° 0 0
T = O ea t3 e O 0 (2.1.3)

0]
|0 0 0 -+ e th
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Let Ri denote the ith

row of R and ci the ith column
of C; then Ri and Ci are computed recursively startirg with

somewhat arbitrary vectors R; and C; satisfying the relation

Equations (2.1.1) and (2.1.3) require that the entries

in T have the following forms:

= = 1 = .. \

tj; = t; = RyAC;, i =1, --eim (2.1.4)
ti+1,i = ei+1 = Ri+1ACi' i=1, «++, n-1 (2.1.5)
€f 44g = Gy4q = RAC;,,. i =1, cor -l (2.1.6,

Using (2.1.2), it can be seen that (2.1.1) may be written in

two other forms

~
S—

RA = TR (2.1.

AC = CT (2.1.8)

It then follows that

= - -eR. ., 1=1, -, n-1 2.1.9
i +1Ri+1 Ri(A tiU) @Ry * n ( )

(A - t,UjC; - 94365 ¢ i=1, «--, n-1, (2.1.10)

e. .
i+1Ci+1

where g, = e; = 0, R =0, and Cqo = 0.

As an intermediate step for subsequent discussion, le®
the vectors X and Y at stage i be defined as
x =R, (A - £ U - &Ry, (2.1.11)
and
Yy = (A - tiU) - q,C - (20101%3
At the ith iteration, the guantities ti, TP C%*],
9y 41 and Ri+1 are to be determined in the order indicated.

First, t. is obtained from (2.1.4). If the column vector Y
i



in (2.1.12) is not zero, set
e, =1, c.. =v. (2.1.13)
If, on the other hand y = 0, set

e. . =0 (2.1.14)

and choose some vector orthogonal to R;, ---, Ri as Ci+1'
If the row vector X in (2.1.11) is not zero, then q;,, is

computed using (2.1.6) and R, ,, 1is then determined from

R, =—%X (2.1.15)

However, if X = 0, set

q9... =0 (2.1.16)

and choose some vector orthogonal to C;, ---, C; as Ri+1’
normalized so that R. +1C1+1 = 1. These choices of C1+] and
R;,, are consistent with (2.1.6) and (2.1.5), since the

orthogonality criteria require

1+1(AC = Ri+1(ei+1ci+1 T tici * qici—l)
3
- ei+1(Ri?1Ci+1) vt (R1+1 1) "9y (R i+1 1-1'
= e, +0 +0 (2.1.17,
i+
\
(RjA)e; . = (aj, Ry, * E4R;y + &R, JC,
= qi+1(Ri+1ci+1) oty (R1C1+1) MR (Rl 17i+r’
(2.1.18)

=qi+1+0+0.

irectly 1in
The vectors Ri .y and C,, can be expressed di 7

terms of Ry, C;, and A with the help of Lanczos' polynomials.

[3]
Consider the characteristic matrix [XU - T]. Householder
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calls the leading principal ith order minors of 'N\U - T]
Lanczos polynomials. Letting P_l(%) = 0 and PO(X) =1,
the expansion of the minor Pi(k) by cofactors of the last
column yields the recurrence relation
Y — b - \: - \ \
Pi(x) = pi_l(A)(x ;) pi_z(x,eiqi (2.1.19)
Assuming that q; . #Z 0 and ey, #0 for i =2, -+, n
and using (2.1.19), we see by induction that (2.1.9) and

(2.1.10) may be written as

dz """ 9y ,Ry4; = RlPi(A) (2.1.20)
.o = ) . d.
ez ei+1Ci_'_1 Pl(A/Cl (2 21)
. 1 1-1
If P.(N) = = P,.A\"" , then
i Co T4
j=1
i 5-1 i )
= o= 2 2.1.22
RiPi(A) = 2 PpjjRiA 2 PisFy (
J-1 J-1
where F. = RlAj_1 is row j of the Krylov matrix F.
F, Ry
F R;A
N (2.1.23)
-1
F_ r,a"
| L .

Hence, from (2.1.20; and (2.1.22), the matrix R is related

to the Krylov matrix F by the simple formula

= 2.1.24°
R - LTFI (

where L is a lower triangular matrix whose entries 1n

T

. i . v qivi ]
row {i+l1) are the coefficients of A° 1n Pi(%, divided ky

the cumulative product d; S PR
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In Lanczos' method, the vectors R; and C; are chosen
arbitrarily subject to the condition that R;C; = 1. Some
choices of R; and C1 lead to a breakdown because one or both
of the products in (2.1.20} and (2.1.21) vanish, but these
choices cannot be pPredicted in advance because the coeffici-

ents in the polynomial Pi(A) depend on R; and c,.
2.2 Elimination Method

In the Elimination Method, described by Strachey and
Francis[7], the given square matrix A of order n is first

transformed to the lower Hessenberg form

E111 Hyg o --- 0
hgay hg, hgg =+ O

H= |hg; hy, hzs ==+ 0 (2.2.1)

using pivotal condensation with row and column interchanges.
This Hessenberg matrix H, similar to A. is then trarsformed
into tridiagonal form, when possible. by a special case of

Lanczos' Method.

Definition: An elimination transformation of the matrix A
Zetinition

. -1
is an elementary similarity transformation EAE where the
elementary matrix E consists of the unit matrix plus one

-1
off-diagonal element eij’ which is chosen so that EAE has

one more zero entry than A.
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For a 3 x 3 matrix, the reduction to Hessenberg form is
accomplished by one elementary transfermation as follows,

assuming a;, # 0.

Pt
(1]
N
w
o]
W
b
o7}
[ ¥
N
V)
[ V)
[#]
o
[y
|
1]
N
w

(2.2.2)

The primed elements of A' are those that were altered by

the transformation. Note that a zero is produced if
©23 = ai3/a;,. However, if a;, = 0, a transposition of
rows and columns must precede this step. By allowing row

and column interchanges during the transformation to lower

| << t' um
Hessenberg form, we can ensure that leij‘ Z 1 for optimu

numerical stakility.

In the elimination procedure that reduces the lower
Hessenberg matrix to a tridiagonal matrix. the key step is

times row (j+1) from row i(i > j+1;

.

J
to produce a zero in the ij position.

ubt .
to subtract (hij/hj+1,

Row and column

interchanges cannot be used at this stage since +=hey would
Eence

alter the form of the upper triangular portion.

. 3 - . - .
some of the e,.'s may have magnitudes greater than one
1

This may lead to numerical instability.
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Additional difficulties arise if some of the sub-
diagoral entries are Zerxo. Consider an eéxXample in which

H has +the form

r-hll hy, 0 0 ]

H = . (2.2.3)

hgi hgy hy, h44J

Since hy; = 0, this method cannot be used to reduce hg,
and hy; to zero.
An analysis of the transformation from Hessenberg to
tridiagonal form by this method reveals that the transforma-
T

tion is identical with Lanczos' Method in which R; = C, =

[10 :.-- 0], and, consequently, R and C are both lower

triangular.

la
2.3 Kublanovskaya's Method! ]

2] . .
An earlier method of Hessenberg[ ! is essentially

equivalent to the first half of the eliminatio- method in

Producing an upper Hessenberg matrix H similar to A. Giver

an n'th order square matrix A. fird a lower triangular,

non-singular matrix C such that

c'ac = . (2.3.1)

where
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r~ —
hiy ki, hyy - 1n
1 hy; hy, h .
H = 0 1 hzg - h.h . (2.3.2)

| O 0 o --.- hnrl

The columns Ci of C and the entries hij of H are

computed as follows. Let (2.3.1) be written as
AC = CH. (2.3.3)

By investigating column i on both sides of (2.3.3), it can

be seen that

1
AC; = I C.h.. + . (2.3.4)
or

= - ) - 3 h.. . 2.3.5
C.up = (A hiiU,Ci ; C.h ( )

]
bt

Ir general. the first i entries of column i in (2.3.4)

are used to faind hki for x =1, -«+, i. The last (n-i)

entries of (2.3.5) are used to find C,,, Since C is lower

triangular. The process is then repeated with i replaced

m .
by i+1. The author uses [1 0 «--. 0] for Cc;. Cconsider tte

following example.



a;1 a3y ajg 1 o0 0 1 o0 0 hy1 hyp hy,
g1 agy agg 0 c32 O0F[0 c, O 1 hyy ky,
831 232 3agg| |0 c35 c33] |0 cj, C3g3 0 1 hy,

ai hia } —> hjy,
a21 [= |Caq
a3y C32
i = 2:AC2 = C1h12 + C2h22 + C3
812C22 * a;3C3, hiz } —> hy,
A22C23 t+ agzczy| = Cz2h3, } —> hgp if cp, # 0
Q32C22 *+ az3C3za C3zzhzz + c33 } —> C3
a13C33 hyj } —> hjg3
= - « if c,- ¢}
A23C33 (= Cz2hy3 } > hjj 22 7
—_ 2 1f 34 # 0
a33C33 Cgahz3 + c33h3; } hz3; 33 7

In this method, C; is an arbitrary vector, whiclt may
lead to a breakdown whenever cii = 0.

Kublanovskaya describes a transformation to tridiagonal
form that is equivalent to the Elimination Method and has
the same difficulties with stability and breakdown. Given
an upper Hessenberg matrix H of the form (2.3.1), find an

upper triangular, non-singular matrix R such that

-t ‘ (2.3.6)
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where T is tridiagonal of the form

’—tll 1 0 cee 0
t21 t22 1 LI 0
T= 10 t32 tzgz -+ o0 (2.3.7)
0 0 .o
- 0 tnnJ
of T

The rows R, of R and the entries t.. and t, .

i ii i+1,1
are computed recursively as follows. Let (2.3.6) be written
as

RH = TR. (2.3.8)

Upon investigating row i on both sides of (2.3.8), we have

R.H =t R + t; R, + R, (2.3.9)

or

R, = R;(H - t;.U) - t iRy, (2.3.10)

In general, the (i—l)St and it entries of (2.3.9) are

used to find t. . and t.. respectively. The last (n-i)
1,1-1 11

’

entries of (2.3.10) are used to find R;,,- The process is

again repeated with i replaced by (i+1).

Once again, note that R; is an arbitrary vector, which

may lead to a breakdown when r., = 0.

2.4 T Algorithm[sl
When possible, the T Algorithm transforms a square com-

Plex matrix to tridiagonal form by a sequence of similarity
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transformations called quasi-rotation matrices. It does so
by using the (i+1, i) entry and the (i, i+1) entry to arnihi-
late the (j, i) and (i, j) entries at the same stage, where

j > (i+1).

Definition: A matrix R with entries rij is called a quasi-

rotation matrix if and only if det R = # 1 and rij = 6ij

for

[

with the possible exceptions of op' Tpq' fgpr and

Pq ap qq

any p and q (p # q).

The suitable quasi-rotation matrices used at the (i, 3)
stage are determined from ten categories listed in a table.
The categories are listed according to whether the elements
in the (i, j), (3, i), (i, i+1), and (i+1, i) positions are
Z2ero or non-zero. Therefore, a total of sixteen cases re-

sult.
The author admits that this algorithm might involve ex-

téensive programming because of the table look-up. He also

gives a sufficiency theorem for tridiagonalization of a
matrix by the T Algorithm.
For three of the sixteen possible cases, the algorithm

can fail; however, the author presents a modified T Algo-

rithm which yields a matrix that is almost lower triangular.
Application of the T Algorithm to certain matrices leads

to numerical instability. When the algorithm does work, it

leads to a unique transformation matrix.
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2.5 La Budde's Method[5]

This method, like the others, seeks to find non-singular
transformation matrices R and C such that for a square
matrix A of order n,

RAC =T (2.5.1)
and

RC = U (2.5.2)
where T is tridiagonal. Furthermore, the matrices R and C

are each the products of (n-2) matrices; i.e.,
R = r(172) ... g(1) (2.5.3)
oo o1) ..

At stage j in this method, the matrix A has been trans-

formed into a similar matrix A<J) of the form

[ .

Lo
T : Jj rows
A(j) = :wT (2.5.4;

L v,

R e
|

0 : v I B n-j rows

|

_ ! ! _

where T is tridiagonal, Vv and W are (n-j) dimensional column

vectors, and B is an (n-j) x {n-j) submatrix.
Starting with two column vectors X and Y of dimension

L\ .
- (3) (3)
(n-j), we construct the elementary matrices R and C

where
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(4 . U. 0
R\J) = J , C(J) = J . (2.5.5>

T T
0 Un—j+aXY 0 Un_jbeY

. \ .
In order that R(J’C(J) = U, the vectors X and Y must be
related to the scalars a and b by the equation

YTx = - 135%—91 ) (2.5.6)

. . (. LR .
The matrix A(J+1) = R(J)A‘J)C(J) differs from A(J) by

replacing v, WT, and B by V', W’T, and B' where

. T
V' o= (Un_j + axy )v
w'T = wT(un_j + bxy?T) (2.5.7)
Tyn/ T
o= . ) .+ bXy" ).
B (Un_J + axy )B(u, )

The scalars a and b and the vectors X and Y are chosen so

that (2.5.6) is satisfied, all but the first entries of vy

and W' are Zzero, and

p =wTly = yTly. (2.5.8)
The choice is not unique, but it must avoid values of a

and b near zero.

Scalars ¢ and d are defined by

(oW
]
=
?<
Q)
]
=
<

From (2.5.7) and (2.5.9) we obtain
P C
X = (v'—v)g, Y = (Wi-W)g (:

and substituting (2.5.10) into (2.5.9), we have
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1

. d 1 ] . C
S (wyvy - P)g' a- {wyvy - P.g $2.5.11)
Then,
-a—— /}_D_ ‘ = ! / ¢ [— / Y
(cd + p)\cd + p) (Wyvy ) {wyvy ) paj+1,jaj,j+1'$2’5'12)
he solution for — is
The solution r od 1
1 {-p(a+b)bJPZ(a+b)2 +4abp(aj,j+1aj+1’j-P)} (2.5.13)
cd 2ab
In order that all but the first entries of W' and V'
be zero, it is necessary that
_ (4 - _’S)
x’k - _<a)a'kj' yk e \b)ajk (2.5.14)

for x = j+2, °°°, n. Then xj*_1 and yj+1 are expressed as

w o Jd1 L PTP55%5er 50 _a
j+1 cd a R
3.3 (2.5.15)
g2 L L PTmta s Lo
j+1 cd b aj+1,j

In order to solve (2.5.14) and (2.5.15) for the x's
and y's, it is necessary that the scalars a. b, c, and 4 be
finite and non-zero. For some matrices, it can happen that
the scalar product p is zero at some stage; then the algo-
rithm breaks down because %3 = 0. Otherwise,

c or d is arbitrary in (2.5.13), there is no loss of general-

since either

ity if we let d = 1. To solve for c, the product ab as well

as p must be non-zero. The signs of a and b can be chosen

so that the discriminant in (2.5.13) is positive, and the
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sign of the radical is chosen so that ¢ is finite. The dif-
ficulty in choosing a and b is to avoid having p = 0 at the
next stage. Wang and Gregory[gl point out that such a choice
is not always possible.

Parlettls] has shown that when A is an unreduced lower
Hessenberg matrix, this method is identical with the Elimina-
tion Method.

Lanczos' Method appears to be the most general since
the Elimination Method and Kublanovskaya's Method are special
cases of the former. Furthermore, Lanczos' Method appears
to be better than the T Algorithm or the method of LaBudde.
The T Algorithm involves a table look-up with sixteen cases.
LaBudde's Method involves rational operations and the solu-
tion of a quadratic equation at each stage, but with no
assurance of avoiding a breakdown at the next stage.

Becasue of the generality of Lanczos' Method, a modi-
fication of his method is presented in Chapter III. This

modified procedure is then used to tridiagonalize the matrix

A.



IIT A NEW SCHEME FOR TRIDIAGONALIZING AN ARBITRARY
REAL SQUARE MATRIX

In order to bring the new tridiagonalization procedure
into perspective, it is necessary to examine the ways in
which Lanczos' Method can break down. This examination, as
well as an introduction to the new two-step procedure, 1is
presented in Section 3.1. The first step of the procedure
is discussed in Section 3.2. Section 3.3 describes the
second step and includes a lemma and two theorems which
show that it is always possible to transform an arbitrary
real non-symmetric matrix into tridiagonal form without

using the eigenvalues.

3.1 Analysis of the Problem

In order to overcome the difficulties associated with
Lanczos' Method, it is necessary to examine the ways in
which his method can break down. At any stage, three cases
may occur.

The regular case, or Case 1, is the case in which the
algorithm proceeds from one stage to the next without a
breakdown .

There are four ways in which the algorithm can break
down; these are grouped into two irregular cases, Case 2

20
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and Case 3. The reason for this groupinrg will become ap-
parent when we consider how to proceed with the algorithm
following a breakdown.

A breakdown occurs when, at any stage of the algorithm,
we have ei+1qi+1Ri+1Ci+1 = 0. 1In terms of the vectors X
and Y in equations (2.1.11) and (2.1.12), a breakdown occurs
whenever Xy = 0.

We will say that a Case 2 breakdown occurs when either
X =0, or Y =0, or both X =0 and Y = 0. A Case 3 break-
down occurs when X # 0, Y # 0, but XY = 0. To show that

Case 3 can indeed occur, consider the following example.

Let A, R;, and C; be as shown.

- — -
1 -1 1 0 1
0 1 0 1 1
A = , Ry ={1 0 0 0], c, = :
0] 0 1 1 1
0 o o 1 1
For 1 = 1, we would compute t; = R,AC; = 1.
Then

X = Re(B - t,U)

I

0 -1 1 0] 20

and
_67
1
Y = (A - t1U)C1 = # 0
1
Lp
but
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Let m be the deares ¢f the minimal pclynomial. A
case 2 breakdown will always occur at +he (m+1}3& st.zge .,
Tre breakdown, in which X = 0 and Y = 0 is aravoicadsbis

= s

We will show that a simple procedure can

s
o2

e used a+ the
stage i1n which a Case 2 breakdown occurs %o permit continu-
ation with Case 1, Furthermore, a Case 2 kreakdown in which
X # 0 and Y = 0 will never occur. because the rew algorithm
does not generate the columns of C i1n the same manner as
the rows of R. As will be pointed out in a lemra. the
columns Ci of C are computed recrusively as functiors of
rows Ry, <++ Ry_, of R and columns Cy, =--, C_, of C.

As a first step in transforming *the ma+trix A to tri-
diagonal form T, we will transform 1t to upper Hessenberg

ra: : .
form AH by using Householder- "' transformation: to ke de-

scribed in Section 3.2 such that

A, = HAH™ 3.1.1
, (3.1.1)
HEY = U (H 1s uritary’. (3.1.2)
The upper Hessenberg matrix Ay ras *he form
—
]
a a - a
fhar %ha, %hus ki
a . oo a
€2 hz2 h2s e
By = 0 2 Fnza 0 Fral (3.1.3,
0 0 0 cvcoa
The reason for *his transformation 18 e _artrddice the

desired zercs below tre subdiaccoral ty stakle comp.tation.
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A unitary transformation preserves the lengths of vectors
and does not involve division by small quantities.

In the second sStep, a matrix R is computed such that
RAHR-1 = RAHC =T is tridiagonal,‘and has the same sub-
diagonal entries as AH' Whenever AH has a subdiagonal with
nonvanishing entries, Theorem 1, in Section 3.3, shows how
to find an initial vector R, such that there will be no
breakdown in the algorithm. The occurrence of a subdiagonal
Zero entry in AH invalidates the hypothesis of Theorem 1,
but may or may not cause a breakdown.

When a case 3 breakdown does occur, the algorithm
hecessitates returning to the last occurrence of a Case 2
breakdown (whereby the first stage is treated like a Case 2
breakdown), At this point, the algorithm shows, by Theorem
2 in Section 3.3, how to progress one stage past the point
at which the Case 3 breakdown occurred.

The combined two steps of the procedure for tridiagonal-

121 i ' i re-
1zing an arbitrary real non-symmetric matrix A can be rep

sented by the change of variables

v(t) = sx(t) (3.1.4)
where
S = RH (3.1.5)
The original state model
g——x(t) = ax(t). F(t) = cx(t) (3.1.6)
dt
then becomes
d = ( t) = c'y(t) (3.1.7)
- = TY(t), F(t,
ac Y(t) = 1v(t) (
-1 b el
where T = gaAs ™ and c' =c3s .
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3.2 Householder Transformation to Upper Hessenberg Form[3]

As mentioned in Section 3.1, our first aim is to find
a unitary matrix H such that gapg* = AH is in upper Hessen-
berg form. The matrix m is found as the product of (n-2)

Householder matrices Hi; i.e.,
H=H _ ...H . (3.2.1)

Let A = A(l) be partitioned as

N TR
A(l) 11 A

= (3.2.2)
aft) afy)

1) .
where Afi) is an (n-1) dimensional row vector, A§1) is an

1)
(n—l) dimensional column vector, and Agz' is an (n-l) X

(n-1) submatrix. Let g, be defined by

F ()

a; = + JAZ Ayl (3.2.3)

and let X(l) be an n dimensional column vector defined by

o T [0 7 [ o

- - e - - -~ - - d —_—— — -

xgl) tay
‘ 4)
x(1) _ x§1> _ Ag;) -1 o (3.2.4)

(1) 0
AL I A
imi (l)l The
where the sign of g; is chosen to maximize [x2 .

first Householder matrix H,; is defined by
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Hy =U - 2z, (3.2.5)

where Z,; is the following Hermitian idempotent of rank one:

(1) (1)

Z, = _;TjjT;TTT (3.2.6)

It is easily shown that

*

H; = H,, H;H} = B2 = U. (3.2.7)

Transforming A(l) by this H;, a partially transformed

matrix A(z) is obtained:

alz) _ m,a (Ut (3.2.8)
In general, for i =1, ---, n-2, we have
B LT
(1) 1 (i)
A11 | A12
A1) _ __'__"____ , (3.2.9)
L o(igr (i)
0 IA21 |A22
| |

. ’ i
where Aﬁi) is an ith order upper Hessenberg matrix, Afz)
. i) . .
is an (i) x (n-i) dimensional submatrix, A£1> is an (n-i)
dimensional column vector, and Agj) is an (n-i) x (n-i) sub-

matrix. Let

(i)*, (i) (3.2.10)

and
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F- 0 | r-O ) r' 0 7
0 0 0
<) ) |
Ol , (3.2.11)
Xi+1 iai
Sl I VO
(i)
X 0
| ° - J L

(

where the sign of a; is chosen to maximize ]x.iz . As
i

before, the Householder matrix Hi is defined by

. *
) x(1)y (1)
H, =U -2 ( TR (3.2.12)
X
and A(l) is transformed into
(i+1) _ (1) *
A = H;A'"H; - (3.2.13)
When i = (n-2), the resulting matrix A(n_l) is in
upper Hessenberg form; i.e.,
R N )
A, = A = H _,A H _, = HAH* . (3.2.14)

It is noteworthy at this time to point out that if A
is symmetric, the well known method of Givens is precisely

this Householder transformation applied to A, and the final

matrix is tridiagonal.

3.3 A Modified Lanczos Transformation from Hessenberg to

Tridiagonal Form

Given the upper Hessenberg matrix A, our goal is to

describe an algorithm to construct a unit upper
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triangular matrix R (in the event that a Case 3 occurs, R
might not be unit upper triangular) that will transform A

into a similar tridiagonal matrix T; i.e.,

RAR™' = RAC = T . (3.3.1)

In terms of the matrix G RA, this becomes
TR = RA = G . (3.3.2)

The matrices A, G, T, and R have the forms:

p— L= — -

aj;y ajzg Aajz °°° ainp di11 Y912 913 °°° Y1in

€qg agg QAg3 """ agp €g gz2 923 °°° Y9z2n

A=|0 e agg "-ragyl.G=|0 €3 d3z --- 93n
. . 3. .. 6 6 0---e_ g

0 0 0 e @ L nn

(3.3.3)

_tl q2 0 ¢ 0 1 r12 r13 . in

e, ty d3 --+ O 0 1 rpz - Ta2n

T = 0 e t3 e oo 0 , R = 0 0 1 LI r3n
] ) 0 0 0 -1

| o 0 0--rey t i ]

Recurrence Formulas

We equate the ith rows of TR and G in (3.3.2).

. =G, -

(3.3.4)

St

.th /. . . ¢
Comparing the ith, (i+1)" 7, and J {(j > i+l1) entries, 1

can be seen that
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i: ©iTiy 3 vty =9y, (3.3.5)
i+ H . . . .r. . =
i+l e1r1-—1,1+1 * t1r1,1+1 * 9541 9i,i+1 (3.3.6)
j: ©iTi oy, *iTig t LTiey g T 95 (3.3.7)

Since the subdiagonal entries of T are identical to those

of A, then (3.3.5) and (3.3.6) may be used to compute the

coefficients t., and q. in T as functions of R. ., R., and
i i+1 i-1 i
A; i.e.,
. = g,. - e.r, . = a,, +e., . r., . - e.r. .
tl 9ii elrl-l,l 11 i+171,1+1 i71i-1,1
(3.3.8)
. = qg. . - e.r. . - t.r. . 3.3.9
q1+1 g1,1+1 1 1-1,1+1 1 1,1+1 ( )

If 944 # 0, then (3.3.4) may be used to compute the vector

Ri+17

1 - - ) 3.3.10
Ri+1 g (G. e;Ry_, tiRi) ( )

The case where i 4y = 0 will be treated later.

Krylov Factorization

Let F be the Krylov matrix whose rows are the iterates

of R; under A.

(3.3.11)

1

.
R;A

In the regular case, F has a factorization as the triple
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product of a unit lower triangular matrix L, a diagonal

matrix D, and a unit upper triangular matrix v; i.e.,

F = LDV (3.3.12)

where L, D, and V have the forms:

rl O ---0 d, 0 ---0
f21 1 ...0 0 d ... 0
L= , D: )
oy Ang cee 1] 0 0 .4y
- - (3.3.13)
1 Viz e Vin

1,2,..., i-1,i .
Let f(l 2 ... i—1,j) be the minor of F formed from

rows 1,2,---,i-1,i and columns 1,2,---,i-1,3; further, let
th

1,2,---,

leading principal minor
1'21...'

£. = £( ) be the i

1

of F. It can then be shown that the entries in L and V are

expressible as:

: cee i-1.i
z1,2,"‘,J—1;l f1l2l .:!- -
_ f(l,z,"',j—l,j) v, = (1,21---,1—113 .(3.3.14>
Eij - fj ! ij £,

Since D and F have equal leading principal minors, it follows

that

£,
= where fo = 1. (3.3.15)




30
It will now be shown that the upper triangular matrix
V in (3.3.12) is identical to the matrix R in (3.3.1). 7he
vector Ri+1 is a linear combination of tﬂe vecfors Ry, R4A,
cee, RlAi, in which RIAi has a non-vanishing coefficient.
Hence, the matrix R is a left multiple of F by a lower tri-

. -1 . .
angular matrix, say (L'D')™", where L' is a unit lower

triangular matrix and D' is a diagonal matrix. Then,

F = L'D'R = LDV. (3.3.16)

By rewriting (3.3.16) as

(L')™'wp = p'rv7Y, (3.3.17)
where the left side is lower triangular and the right side
is upper triangular, it can be seen that both sides must
be diagonal. Hence, (L')_IL -RV' =Uand D = D'. There-
fore, the factorization (3.3.12) is unique and V = R.

Note that (L'D')™! = (zD)™' is the matrix L, referred
to in equation (2.1.24).
It can be shown that di = dz2qs " 4;, so the 95 4,'S

are related to the entries in D and F by the formulas

. f.
q = di+1 = fl:i_iii (3.3.18)
i+1 © 4. 2
i fi
and
i . .
f. = ;i d. = 11 "7 where d; = £, = fo = 1. (3.3.19)
1 j=2 J j=2 J .
The t.'s are related to the subdiagonal entries in L by
i
= - . for i = 2,---,n-1, (3.3.20)
B1= h21s by = 0y g 7 Ay 5 O
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and t  must be computed using either (3.3.8) with

At stage (i+l), the computation of R; 4, requires that
94, # 0. This condition is met if and only if £, # O.
Hence, the non-vanishing of the leading principal minors
of F is necessary and sufficient for the continuation of
the algorithm in the regular case.

We will now investigate the minors fi as functions of
R; and show, by means of two theorems, that it is always
possible to transform a given Hessenberg matrix to tridiag-
onal form without involving the eigenvalues. Furthermore,
the existence proofs are constructive. Although they may
not be computationally optimal, they do include methods

for determining the vector R; which can be written as

Ry = [1 ry rg =-- rl. (3.3.21)

Let the notation fij(rz, <., Ek) imply that the
entries fi. of the Krylov matrix F depend linearly on
Tz, -+, 1, for 2 2k < (i+j), and if (i+j) = (k+1) = (n+1),

they involve r, explicitly in a term €€z --eyr, . We

emphasize this latter point by underlining Iy in the nota-

tion fij<r2' "**, L ). Hence, the matrix F can be written

in the following form:
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F =

: (3.3.22)

1 r 7]
2 r e o o
3 T

f21(xs) f22(rz.x3) faa(ra rg,rg) . fon(ry, ... x )

n

f31(rg,x,) f32(rg,r3,x,) f33(r2,...,r5)...f3n(r2,...,r )

=3 n

fn1(r2""’£n) fnz(rz""’rn) fna(rz,...,rn)...fnn(rz,...,r )

— DJ

Theorem 1: Given the Hessenberg matrix A in the form of
(3.1.3) in which none of the e;'s are zero (or close to zero),
there exists an initial row vector R; as in (3.3.21) leading
to a unit upper triangular matrix R that transforms the
matrix A to tridiagonal form. More specifically, all fi's

can be made non-zero.

Proof: Form the Krylov matrix F as in (3.3.22). It can
be seen that f; = 1 # 0. Using functionél notation, it can
also be seen that f, = f,(ry,rz). The method proceeds as
follows. For fy, assume temporarily that rz = 0, and select

T2 such that f,; is not zero. Once selected, consider r,

to be fixed from this point on; i.e., fij(rz,rs,...rk) be-

comes fij(r3""rk) in general. Following this line of

thought, we see that f; = fg(rz,rs,r5). Again assume that

Xy = rs; = 0, and select rg such that f,(rz) # 0 and
f3(r3) # 0. Note that at this stage there are four values
of r3 to be avoided since f, is linear in rjz, and f3 is

cubic in rg. Continuing as before, we now assume that rg

is also fixed and fij(r3,r4,...,rk) becomes fij(r4,...,rk).
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In general, at stage i we are finding values of r,
such that fj # 0 for j = i where fj = fj(ri...). This is
always possible since we are dealing with a matrix F of
finite order; hence, there are only a finite number of values
for r, to be avoided at each stage, and since for fi the

term €z...e,r, appears in which the ej's are non-zero.

Therefore, all f.'s can be made non-zero.
1 Q.E.D.

It is important to point out that the ei's may be
completely arbitrary (including zero) and yet have the
factorization work without breakdown. It is only necessary
that one be able to define r, so that the fj's involving

<

r. are not zero for j X i. We shall examine the computa-

tional technique in order to motivate the second theorem.

Computational Technique

Assume that the algorithm for factoring the Krylov

matrix F has computed the vectors Ra,.../Ry. but breaks

down at stage (k+1) because fk+1 = 0. The action taken at

this stage depends on whether the pbreakdown occurs under

Case 2 or Case 3.
Whether or not a breakdown occurs, column Ck+1 is

. d_
computed as a function of Ry, +--:Ry and Cy,....C accor

ing to the following lemma.

Lemma: Let R be a unit upper triangular matrix of order n.

-1
i = an be computed
Then the column ck+1 of the matrix C R c

' f R and
recursively as a function of rows Ry,--+:Ry ©
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columns cl""'ck of C by the formula

k
ck+1 = (U - 151 ClRl )Uk+1 (3.3.23)

where U, is the (k+1)%% column of the unit matrix u.

Proof: Since ¢ = R}, then

k n
U=RC =CR = 3 C;R; + I C.R, . (3.3.24)
i:l i=k+1

The second summation in (3.3.24) defines an idempotent

matrix w + where

k+1
: : ( )
W. =U - 2 C.R. = > C.R. . 3.3.25
k+1 j=1 11 i=k+1 iT1

The last (n-i) entries of C, are zero, and the first
(i-1) entries of Ri are zero since R and C are both unit
upper triangular. Hence, the matrix wk+1 nas the following

form in which C 41 appears as column (k+1):

k+1
r' —
O e O Cl,k+1 LR
: : : : ;
0O ...0 Ck,k+1 .o
= Y B (3.3.26)
W, = |o...0 1
0O ... 0 0 1 ... *
0 ...0 0 0 ... 1
The (k+1)St column of W, ., is W, U,y = G, - Hence,
.3.25).
(3.3.23) follows from (3 ) 0.E.D.

The reason for introducing the above algorithm for

computing the columns Ck+1 of the matrix C will become
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apparent when we next discuss the actual technique of ap-
plying the Krylov matrix factorization.
Consider the Krylov matrix F to be initially partitioned

as follows

F =F, = . (3.3.27)

where Friy is an (n-1) dimensional row vector, Fy is an
(n-1) dimensional column vector, and H; is an (n-1) x (n-1)
submatrix. Since d; is not zero (d; = 1 since r;; = 1),

then F, may be factored into the product of three matrices

Fy= ! ° 0 b Fg /4 - L,0,v; (3.3.28)
g%l v | [0 Fe| [0 U
where
S Ph ¥ (3.3.29)
F, = ™ ,

and where R; = [1 FRl/d1] is read from Vj.

Again, let F, be partitioned as

F, = . (3.3.30)

If d; = qp # 0, then Fp may be factored as follows:

1 F d
1 0 dz 0 R2/ 2 = LyDyVa (3.3.31)
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where R, = [0 1 FRz/dz] from V. and where

dsz -~ F F
Fy = 3 L2 Rz (3.3.32)

In general, at the (k+1)St stage, we have Fk+1 par-

titioned as

dk+1 FR,k+1
Fk+1 = (3.3.33)

FL,k+1 Hk+1

where we have assumed that 4, #0 for i =1, ---, k. Note

that all the previous factorizations may be combined into a

single factorization

rl : 0 rd1
r_l : 0 d, 0
1= 7 )
I I
F = LDV = FL1| |
1 I [l F'—'—r'_ .
1Fia1..01 11 0 1 d 0
17d, ! ([ I [
! | b FL! o ' o !
I [ =Xy I F
i I I | dk' L . | J
— -
1 | FRl/d1
o1 1 F d,
LR O ___
: . (3.3.34)
'3I7 T TFE /&
| | rk/ %
e i
o 10 : Un—x
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Now, assume that dk+1“= 0. This is the first indica-
tion of a breakdown. Tofaetermine whether it is a Case 2
or Case 3 breakdown, we must also examine the entries of
FR,k+1 in (3.3.33). The first row of Fi 4, can be expressed
in terms of the entries q; of the matrix T and the row Rk+1

of the matrix R as

[0°° -0 41 FR, x+1] = Q293" "Gy Ry, - (3.3.35)

The product dz **°qy is non-zero since we assumed

di # 0 for i 1,---,X. Hence, dk+1 = 0 implies that

= 0. In Case 2 where F is the zero vector,

qk+1rk+1,k+1 R,k+1

we choose S P 0, and determine Rk+1 as the sum of the
(k+1)St row of the idempotent W 1 and any desired linear
combination of lower rows. This choice, like the initial
choice of Ry, is not unique. We then continue with the
factorization as before, with the exception that for

i > (k+1),

_ ... .3.36
[0--:0 d; Fpil = Gyyp 4Ry (3.3.36)

where di = Qy4p "9

It is noteworthy to point out at this time that if m

is the degree of the minimal polynomial of A(m < n), then

st .
there will always be a breakdown at the (m+1)” " stage. Since

. .. An-1
A is upper Hessenberg, the Krylov matrix [Cy.,ACjp, /A Ci1l]

th diagonal entry ejzez-°-e . If

= 0.

is upper triangular with m

m < n, then (m+l1) columns are dependent, and €n+1
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If however, Fle+1 has some non-zero entry, one cannot
set qk+1 = 0. This causes a Case 3 breakdown in which
rk+1,k+1 = Rk+1ck+1 = 0. It is the occurrence of a case 3
breakdown that motivates the second theorem.

If a Case 3 breakdown occurs, we must revert to the
last occurrence of a case 2 breakdown, say at stage j (or
to the start if no such breakdown occurred after j=1),
and attempt to select a new vector Rj with the usual con-
straint that rji =0 for i =1, -++, j-1 and rjj = 1. Under
some circumstances, it is not possible to find a vector Rj

for the given Hessenberg matrix A such that frt1 # 0, as

the following example indicates.

Example: Let the matrix A be as follows, and let R; be

represented as indicated in the first row of the Krylov

matrix F.

o o 1 1 x vy
A = 0O O 1], F= |0 0 1l+x+y| . (3.3.37)
0o o 1 0 0 l+x+y

Here it is obvious that f, = 0 for every choice of R;.

Under these circumstances, when an R. cannot be found

such that £ % 0, a series of similarity transformations
k+1

are performed before the factorization is again used. These

i i i and
transformations consist of using the matrices Ra' HR’

H. to be discussed below. The final matrix R may no longer
C

be unit upper triangular as will be shown later in equation

(3.3.46).
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Let R, be a matrix formed from rows Ry, =---, R, of R
and the last (n-k) rows of U. Furthermore, let the matrix

W be defined by

-1
W = R_AR (3.3.38)
where
Ri11 Rig
Ra = . (3.3.39)
0 U

It can then be shown that W has the form

9= - Wii Wiz
We|loeo P08 | - , (3.3.40)
0 Wao

where T;; is tridiagonal, and where B = [bk+2°~-bn] has at

least one non-zero entry, which appeared in a different

form in F in equation (3.3.33). Note that the reason

R.k+1
Wz; = 0 is that had there been an € ., in the upper right
corner, then Theorem 1 indicates that there was an Rj which
would not have led to this Case 3 breakdown; hence, the
assumption that Wpy; = 0 is valid.

The matrix HR is a Householder matrix of the form

0
I , (3.3.41)
R 0 H

Hr

which is used to collapse all the non-zero entries of B
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(3.3.43). Referring to Section 3.2, Hy is row-determined

rather than being column-determined.

W' be defined by

-7

Q|
-d

then W' has the form:
F T1a
W' = | — —
0
Finali;,

o ! o

=
%)
%)

_

R" R
Wiy W
0 W

the transformation defined by

Letting the matrix

(3.3.42)

(3.3.43)

(3.3.44)

in which Hc is a column-determined Householder matrix, has

the effect of transforming Wi, into upper Hessenberg form.

Hence, the form of A'
—
I 0 1 O
| |
Tyy ! '
| - = L -
| |
94 4 0
B el
A' = 0 I t '2
_—_ - .
| |
1€
0 I |A2'2
| I |
- 0

is

-—

.

QO e

(3.3,45)

where the tridiagonal block Tj; is (k+1) x (k+1) and Aj, is

in upper Hessenberg form.
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The result of the,e three transformations is that the
order of the leading tridiagonal block has been increased
by one.

If e = 0 in (3.3.45), then A' has the form of W in
(3.3.40), and the above prqcess would be repeated if B # 0.
However, if B = 0, then A' could be repartitioned to in-
crease the size of the tridiagonal block by one.

If e # 0 in (3.3.45), then Theorem 1 shows that there
is an initial row vector R; for which the Krylov factoriza-

tion again applies. The following theorem has just been

proved.

Theorem 2: When a Case 3 breakdown occurs at stage (k+1)

of the factorization defined by (3.3.27) through (3.3.33),

it is possible to progress to at least the (k+2)nd stage

in three steps: (1) transform A into RaAR;1 = W where R_

is constructed from R as described above, (2) transform w
into HRWH; = W' by row-determined Householder transformations
with product Hp (3) transform W' into HCW'HE = A' by

column-determined Householder transformations with product

HC.
The above transformations can be abbreviated by letting

(3.3.46)

I
2o
jass
x

R

hence,

A' =RAR . (3.3.47)
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The procedure described above transforms an arbitrary
real n by n matrix into tridiagonal form without requiring
a knowledge of the eigenvalues. The operations are linear
except for the square root extractions in the Householder

transformations. The rare exceptional cases are fully ac-

counted for.



IV SCALING

In order to solve a set of linear differential equations

on the analog computer, it is necessary that the variables

lie within the operating range of the computer. Time, ampli-
tude, and initial condition scaling transform the problem
variables to solution variables amenable to the analog com-

puter. The procedure for time and amplitude scaling of the

tridiagonal system of equations described in this chapter
is unique in that for the first time, an explicit method
for scaling is presented which does not rely on the trial
and error method used in the past. This new procedure is
facilitated by the system of equations being in tridiagonal

form.

Let €7 and g5 (0 < g1 < g3) be the low and high values

of the operating range. ¢; is determined by the tolerable

drift of the operational amplifiers while e, is determined
by the capabilities of the read-out devices associated with

the analog computer. As will be shown in Section 4.2, ampli-

tude scaling does not affect the diagonal entries of T.
Furthermore, all terms Vleiqil are unaffected by amplitude

scaling; only the individual entries e; and q; are affected.

Therefore, the time scale factor B is used to transform all

43
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diagonal entries and all Jleiqi| 's to values that are less

than or equal to €5 in magnitude, and amplitude scaling

places the individual off-diagonal entries of the time scaled

matrix (BT) within the operating range.
Finally, initial condition scaling ensures that, for

stable systems of equations, the state variables will also

lie within the operating range.

4.1 Time Scaling

In terms of the elements ti, ej, and qj of the tri-

diagonal matrix T, let the scalars b; and b, be defined by
b, = min(]tii,+-d|ejqj|)
b, = max(,ti|,+-d|ejqj|)

for i =1,+++,nand j = 2,-.-,n. The effect of the time

(4.1.1)

scale factor B is to place b, at the high end of the oper-

ating range; i.e., p is computed by the formula

_ L2
B = 5 - (4.1.2)

The resulting inequality then becomes
0 Z gb; = Rb, = €2 (4.1.3)
where either 0 <g = g£b; or 0 Z Eb; < g1 may exist on the

low end of the operating range.

In terms of a change of variables, time scaling is

applied by letting
t = Bt . (4.1.4)
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Then the system of equations

d -
-ﬁY(t) = TY (t) (4.1.5)
becomes
g?y<f> = (BT)Y (1) . (4.1.6)

4.2 Amplitude Scaling

In order to place the off-diagonal entries of the tri-
diagonal matrix (BT) within the operating range of the ana-
log computer, amplitude scaling is applied next by using
a non-singular diagonal scaling matrix K. The resulting
similar amplitude and time scaled matrix T' is related to

the time scaled matrix (BT) by

1

T' = K(BT)K (4.2.1)
where T' is of the form
, r - r s _
yl 22 0 e o o O 6t1 ]Tz-ﬁqz O o o o O
X z 0 Eﬁﬁe Bt 536 0
T Y2 3 - _|k,Fc2? 2 k,r49s .- '
k
0 X3 yz ... 0 0 ]?Z-ﬁea Ety ... O
_9 0 o ... Yy B 0 0 0 ... P n
(4.2.2)

Note that the product of the opposite off-diagonal terms
remains unchanged by amplitude scaling since
k k

X2y = G Pey) (G 9y T (Gey) () (4.2.3)

i-1
The ki's are determined initially in the form of ratios

(ky /Ry ) -
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Assume temporarily that all ei's and qi's are not
zero; it is then always possible to make X5 and z, equal
in magnitude where

[xi] = ]zil =g ]eiqi| Z e, (4.2.4)

Although this is good for analog stability and accuracy,
in general it necessitates a potentiometer for each X, and
z;,- A reduction in the number of potentiometers needed
can be made if we force either Ixil or ]zi] to have values
of 1, 10, or 100. This is possible, as will now be shown,
with the advantage that except when B JTEIEIT < 0.1, ]xil
will differ from |zi] by less than one order of magnitude.
For each of the (n-1) pairs of entries, let the

scalars c;, c,, and c3 be defined by

c if [eil < |q

c B min (|e. |, |a,]) = 1€
1 = A . )
* * q if ]eil > |qi|
I (4.2.5)
c if |e.| < |a;
_ 2q i i
cp = £ max (le.|. |a.]) = _
2 l ll 1 Cze if Iell > Iqll

Cs B Jleiqil .

It is now necessary to specify values for g; and g5 which

depend on the analog computer. For the Applied Dynamics

AD-4, let gq = 0.1, g = 100, and let oy be defined by

o. = loj-l€1 (4.2.6)

for y =1,...,4; i.e., a; = €1 and ag4 = €2-
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The following table lists the scale factor ratios in

the form (ki/ki—1) for c o and c (?2

19 and cze) depending

q
on the value of Cg .

ki/ki—l
if if

c1 = Cie c1 = Ciq
c3 = ay Bla; /a1 a1 /B e, |
a; < ¢z =Nazay Ql/Bleil Bla; /o
Najaz < 3 = ag quil/az Qz/B‘eil
az < ¢ =~Nazas az/B e, | Blay |7as
Vazas < c3 = as Ba; |/as as/B |e; |
az < c3 =~agag as /B |ey | Bla; |/as
Noza, < c3 = ay Bla; |/as as/B ey |

Although the foregoing scheme appears complicated, it

)
is quite easy to program and ensures that (n-1) of the x;'s

and z.'s will have magnitudes equal to ay - Furthermore,
i

each x. and z, equal to ag, asz. Or a4 in magnitude reduces
i
by one the number of potentiometers needed.
i ., is zero, but not both are zero,
If either e, or q; is
then we will have ¢y = 0 and c, equal to B times the magni-

. ‘11 b
tude of the non-zero entry. The ratio (k;/k,_ ) will be

defined by
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[ Bla;|
k. aq if lqil # 0
=S J (4.2.7)
.
1-1 Qi
. Blell if ]ei]#o

Lastly, if both e, and q, are zero, set

- =1, (4.2.8)

Now that we have (n-1) ratios of the form (k. /kl )
we solve for the ki's by letting k; = 1 and compute the re-
maining ki's by

k, = (k /kl RL I (4.2.9)

for i = 2, +-+,n. Once the ki's are known, we compute T'

by (4.2.2).

Any parameter that is transformed to a value less than

0.1 in magnitude can be replaced by zero due to the limita-

tions in accuracy of the analog computer. The reason for

this is that the circuitry for this value would consist of

a potentiometer, set for the value, coupled into a gain of

one amplifier whose output would be too noisy to be signifi-

cant or reliable. Consequently, there are some problems

that cannot be solved on the analog computer.

Once again, in terms of a change of variables, let Z (7)

be defined by

Z(t) = KY (7). (4.2.10)
The system of equations (4.1.6) then becomes
-1
2z (r) = KETK 2 (1), (4.2.11)

dt
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Oor in terms of the original matrix A, we have

E%Z(T) = £SAS 12 (1) (4.2.12)
where

S = KRH. (4.2.13)

4.3 1Initial Condition Scaling

Initial condition scaling ersures that the dynamic
range of the state variables, as solved on the analog com-
puter, lies within the operating range by imposing a rela-
tionship between one volt and one unit of solution. At

this point, there appears to be no well defined method for

scaling the initial conditions. since the behavior of the

State variables also depends on the system eigenvalues.

One possible method for scaling the initial conditions
is to use an iterative approach which is dependent on the
length of the time interval over which the solution is de-

sired. Let the scalar c, be defined by

cy = max |z, (0) | (4.3.1)

for i = 1,++-,n. Starting with an initial value for the

scale factor a as

)

- -2 (4.3.2)

o 2c,

attempt to solve the system of equations. If no saturation

of the operational amplifiers occurs, then the iritial

choice is sufficient.. If however saturation does occur

decrease o by a small amount and *try again.
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The actual set of equations to be solved by the analog

computer then becomes

S laz 1)) = p sAsT (aZ (7)), (4.3.3)
or under the change of variables Z' (1) = aZ (7)., we have
d_2i(7r) =8 sast 2t (7). (4.3.4)

dt



V  PROGRAM AND EXAMPLES

A discussion of the digital computer program is pre-
sented in Section 5.1 followed by three examples in Section
5.2. The material concerning the program is not intended
to be comprehensive, but. rather to show the program struc-
ture in general. as related to the tridiagonalization and
the scaling. The examples are intended to show numerically

how the program implements the theory of this thesis.

5.1 Program Flow

The logical flow of information in the digital computer

program is indicated in the following two outlines where

each level of indentation represents a decision or action

taken as a result of the decision. These outlines show

only the major operation irvolved ard are not. intended to

be comprehensive. The first outline indicates the lcgic

for the tridiagonalization. and rhe second cutline indica<ss

the logic for the scaling.

1 1 1 1~
Furthermore, each similarity transformation is combirecd

with S8 and S_1 when the transformaricns are gererated; i.e..
1

S is replaced by RS. and s™! is replaced by S "C. These

combinations are not indicated in +he outlines.

51
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Tridiagonalization

At this time it is important to point out that an ex—
haustive search for the proper initial row vector R; is not
practical, in time and programming, unless necessary for an
extremely rare occurrence of a specialized case 3. There
is at least one other method, although not foolproof, which
has been demonstrated to be worthwhile for dealing with the
Case 3 breakdown. The procedure for implementing this
alternate method will now be discussed; this alternate
method was used in the program that computed the examples
in Section 5.2.

Let j be the stage of factorization in which the most
recent Case 2 occurred. After exhausting the limited
choices for R. in attempting to progress past the stage
(k+1) in which the case 3 breakdown occurred, the follow-

ing three transformations are performed:

-1
= 5.1.1
W = R,AR_, ( )
= Tt (5.1.2)
W' = PWP .1.2)
and
At = H'W (H')". (5.1.3)

The matrix R_ is formed from the first (j-1) rows of
a

R and the last (n-j+1) rows of U. I+ can be shown that W

has the form

A Biaf o (5.1.4)

Az1 Az
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where T;; is tridiagonal, and Azé is zero except for the
entry ej in the upper right corner.

Let 4/ be the column in F of (3.3.33) in which the

R,k+1

first non-zero entry occurred with the most recent Rj (now
denoted gj). The matrix P is the unit matrix except for
the entries pﬂi' i =%+1,---,4-1; these entries are -1's.

The matrix W' then has the form:

W'= wp™' = . (5.1.5)
0 P A21 Wéz

The effect of this transformation is to attempt to make

fk+1 # 0 when the Krylov factorization, using R to start

with, again reaches the (k+1)St stage.

Since W,, in (5.1.5) is not necessarily in upper

Hessenberg form, then the Householder transformation H' in

(5.1.3) is applied so that A}, in (5.1.6) is in upper
Hessenberg form.

u o0 T,;, O
A' = wi(H')* =
0 H' Az1 Ay,

(5.1.6)

The Krylov factoriza“ion is again attempted treating

A,  in (5.1.6) as A and R, as Ry The resulting R matrix

is now in the form

(5.1.7)

o
|o

where the first row of R is Ej'



—t
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For a given n and i, le: R! = [r.
i

l---rn] be a row vector

of length k = n-i+1 whose entries r, = 1 and rj = 0 or 1 for

i <3 =n. Ri can be considered to be the binary representa-

tion of £, where ok-1 = L =< 2k 1.

Example: If n = 5 and i = 2, the possible values of ﬂi lie

in the range 23 = 8 =< Ei < 24-1 = 15.

The digital program for the tridiagonalization uses
the above values for R, when R, is the result of a Case 2,
starting at the low end of the range and ranging through
all binary numbers to the high end of the range before it
performs the partial transformation at a subsequent Case 3
stage. It is conceivable that one of these possible Ri's

might not cause a Case 3 to occur, although a previous Ri

did.

In the outline for the tridiagonalization, the follow-

ing symbols (combinations of letters; i.e.. THS is a matrix

name) are used to denote matrices: A, H, H*, B, THS, R, W,

C. F, RA, CA, WT, FT, and Z. With the exception of B, THS,

W, WT, FT, and Z, the remaining symbols parallel the matrices

referred to earlier in the thesis. B, THS, WT, FT, and Z

are used for temporary matrix storage, and W is used to

store the successive idempotents as they are computed. Since

A is assumed to be real., H* is actually H . Furthermore,

is row 1 of the factored Krylov matrix

RI is row I of R, FRI

F (see equation(3.3.33)with k+1 replaced with I), C; is

column I of C. énd W is the idempotent.
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As scalars, the symbols N, I, IT, and JT are used where

N is the order of the matrix, I is a stage of factorization

in which RI+1 is computed, IT + 1 is the most recent Case 2

row in the factorization, and JT (normally equal to zero)

is set to a one when there is a Case 3 at a certain stage

with all the limited choices for the prior Case 2 RIT+1'S

being depleted.

Qutline

(b)

Given the matrix A and order N

Per form Householder transformation (HAH* = B)
Set THS = B (save Hessenberg matrix.B)
Compute R; from binary vectors

Compute C; and Wy

Compute Krylov matrix F

Set T =0, IT = 0, JT = 0 (I is the current stage of

factorization, IT + 1 is the most recent Case 2 stage,

JT is changed to one when a Case 3 has occured with all

possible choices of Ryq,, depleted).
Go to (c)
Does I = N-17
Yes
Go to (h)
No
Set I = I+1
Factor Krylov matrix in place
Test cases

case 1
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Set =
K141 FR,I+1/dI+1
Co

mpute CI+1 and WI+2
Go to (b)

Case 2

Set RA =R, CA =C, WI =W, and FT = F (save
present R, C, W, and F)

Set IT = I and JT =0

Compute RI+1 from binary vectors

Go to (4)

Case 3

Set I IT

Is JT 0?
Yes |
Is IT = 07
Yes |
Are all binary vectors for R; used?
Yes ‘
Set JT =1
Go to (f)
No
Go to (a)

No

Are all binary vectors for RIT+1 used?

Yes
Set JT =1
compute (RA)(THS)(CA) = B

Go to (9)
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No
Set R =RA, C =CA, W=WT, and F = FT
Go to (e)
No
(£) Set B = THS (restore upper Hessenberg or

Partial tridiagonal matrix)

(g) Compute PBP =2
Perform Householder transformation HZH* = B
Set THS = B (save partial tridiagonal matrix)
Compute Krylov matrix using most recent RIT+1
Go to (4d)

(h) compute Rb(THS)Cb =T

Scaling

In the outline for scaling, T is used to denote the

tridiagonal matrix. E, Q, C, and RK are used to denote

vectors where E is the subdiagonal, Q is the superdiagonal,

C is the geometric mean of the sub and super diagonals. and

RK is initially the ratio of the amplitude scale factors

and lastly the vector of amplitude scale factors. Thre

scalars E1. E2. B2. BETA, ard N correspond to zZ3. €2- bo .,

B, and n in Chapter IV.

Outine
Given T, N, E1, E2

Set E Q. = |t;_;, 1l and C; =VE[Q;

1~ tr, 1-1lr 91

for I =2,---,N
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Find B2 = ma t
x (e g ep)
Compute BETA = E2/B2 (tim: scale factor)
Compute (BETA)T = T (tinme scaled)
Comput = = =
pute (BETA)EI El. (BETA)QI Q.. and (BETA)CI = C;
for I = 2[ b .'N

Compute (RK). = ki/k. for i =1 =2,°--,§

I 1-1

Given k; = 1, compute k. in (RK)I for i =1 =2,-+,N

compute (RK)(T)(RK) ! = T (time and amplitude scaled)

5.2 Examples

Three examples are given in this section to illustrate
the tridiagonalization and the time and amplitude scaling
procedures that were presented in Chapters III and IV.

Example 5.2.1 illustrates the Householder transforma-
tion which transforms an aribitrary real non-symmetric

matrix A to upper Hessenberg form AH where,

A, = HAH' . (5.2.1)

Examples 5.2.2 and 5.2.3 illustrate the tridiagonali-
zation and the scaling of an upper Hessenberg matrix AH

where

T o= BSAHS_I- (5.2.2)

Example 5.2.2 illustrates Case 2 operations, and Example

5.2.8 illustrates Case 3 operations.

The IBM 1800 computed these examples using extended
precision which is thirty-one bits of mantissa or roughly

nine decimal places; however, printed answers are rounded

to two or three decimal places. In these examples, 0_j is
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used to denote a number whose characteristic is 107) (0 < 3);
Zeros are shown where an

i.e., small order of magnitude.

exact zero was produced by the computer. Also, the symbol

(—>) is used meaning "is factored into". The Krylov matrix
F is factored in place, where F = LDV is stored as

(L-u) +D + (v - U).

\\\\\\\ V_U
N N
F = LDV = SDU (5.2.3)
N AN
N N
L-U N0
— N

Example 5.2.1: This example illustrates the Householder

transformation of a real non-symmetric matrix A to upper

Hessenberg form A

e
[ -
4 -1 -1 3
1 3 -2 2
A =
2 -2 2 5
2 -1 -4 0
Ag = HAH' (Householder transformation)
— -1
1.000 0 0 0
0 _0.333 -0.667 -0.667
H = o  -0.133 -0.667 0.733
0 _0.933 0.333 0.133
- -
4.0 -1.0 3.0 1.0
-3.0 1.0 -4.4 -0.8
A =
H 0 5.0 o -2.0
0 0.y -1.0 4.0
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Example 5.2.2: This example illustrates the tridiagonali-

zation procedure with a Case 1 followed by two Case 2 fac-

torizations of the Krylov matrix F.

It also illustrates

the results of the time and amplitude scaling procedure.

B = 33.33

r- —
1 2 3 4
0 0 0 0
A =
H 1o 1 3 o
_p 0 0 g
(Krylov factorization)
[~ —-— — a—
1 1 0 0 1 1 0 0
1 2 3 4 11 3 4
s T,
1 5 12 16 1, 4 12 16
!
1 14 39 52 1 :13 39 5%
1 1 0 0 r] 1 0 0
1 1 3 4 1 1 3 4
_____ §>
1 4,1 0 1 4 1 0
| © =
-} 13 1 O g _} 13 0 | g
T = RALC (Tridiagonalization)
—
ri 1 0 51 1
0 1 3 4 0
R = , T =
0 0 1 0 0
0
o o o 1 K

© O o o

13

13

o O |

| &

o 3
3 4
i
o o
0
3 4
1 0]
0 1
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T' = K(BT)K (scaling)
B . ]
1.0 0 0 0 33.3 0.1 0 0
0 333.3 0 0 0 100.0 0 0
K = , T
0 0 1.0 0 0 0.1 0 -0.1
0 0 0 1333.§J 0 0 0 100.9
S = KR (Transforming matrix)
- -
1.0 1.0 0 0
0 333.3 104 1333.3
S =
0 0 1 0
L o 0 0 1333.3]

Example 5§.5.3: This example illustrates the tridiagonali-

zation procedure with a Case 1 followed by a Case 3 factori-

zation of the Krylov matrix F. Instead of changing the

initial row vector R;, this vector is kept so as to illus-

trate the use of the P matrix in (5.1.5) followed by a

Householder transformation. A new Krylov matrix F' is

computed using Ry and is factored with three Case 1's

occurring.

lo o o w1
[y
[y
-
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(Krylov factorization)

1 o
1 1
F =
3 3
9 9
W' = PA_P
r
P =

at =ww ()’

[1.00
0
0]
0]

N -

0 o 1 0

1 o0 11

3 1|1 [3 3

|

10 4] 9 !9
1 0 0 o0
o 1 0 o

;W
o 0 1 o
1 -1 -1 1

0 0 O—(
-0.71 0 0.71
0.58 -0.58 0.58 '
0.41 0.82 0°4h

(Krylov factorization)

F-I.OO
1.00

4.00

13.00

0 0 0

1.22

-0 071 0_9

-2.12 0.58 5.31

-6.36 1.73 18.32

Al

| -3

(Householder transformation)

0 0 o0
0 1 1 0
= | ____ _ ,
13 |3 30 1
I
|
4] 9 911 4
1 1 o0
2 2 1
1 1 o
-3 -2 0
[1.00 -0.71 0, 1.22
-4.24 2.00 -0.82 -4.04
0 1.22 09 -0.71
| 0 0, O 1.00]
1.00 0 0 0
e
1.001-0.71 0_g -1.22
|
4.00,-2.12 0.58 5.31
|
13.00/-6.36 1.73 18.37
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r — —
1.00 0 0 0 {_1.00 0 0 0
1.00 1.00 O_, -1.73 1.00 1.00 0_g -1.73
_________ -_>
4.00 3.00 :0.58 1.63] 1 4.00 3.00 1.00 2.83
| ]
13.00 9.00 :1.73 7.3€J 13.00 9.00 3.00 :2.4E
_ — |
T = RbA'R];1 = RA'C (Tridiagonalization)
1.00 o 0 0 r-l.oo -0.71 O0_;g4 0
0 1.00 0_g -1.73 -4.24 2.00 0.82 0_,4
Rb= , T=
0 0 1.00 2.83 0 1.22 O_g 4.24
o 0 0 1.00 |0 0, 0.5 1.00
B = 50.0

T' = K(eT)K = (Scaling)

— e ot ——
1.00 0 0 0 50.0 75.0 O0_,4 0
0 0.47 0 0 -100.0 100.0 25.0 O0_,,
K = , T'=
0 0 0.77 © 0 100.0 0_g 0.1
| 0 0 0 1630.00 L 0 0_4 0.3 50.0
S = KRy H'P  (Transforming matrix)
. 1.00 0 0 0|

0. -0.67 -0.67 O_g
1.33 0 0_, 1.33

-666.67 0 666 .67 666.67

These three examples have been presented in an attempt to
illustrate the tridiagonalization and the time and amplitude

scaling procedures of Chapters III and 1IV.



VI CONCLUSIONS

In this chapter, a summary of the original results is
presented followed by an indication of some additional areas
of study which have presented themselves through the develop-
ment of this thesis.

In many engineering problems, the need to solve a sys-
tem of simultaneous homogeneous linear differential equa-
tions with constant coefficients arises. This thesis

showed how this system of equations,

g?}((t) = ax(t),

in which X(t) is an n-dimensional vector function of time
and A is an (n X n) real square matrix, can be solved on
the hybrid computer using no more than 2n operational
amplifiers (n bipolar integrators) nor more than (2n-1)
potentiometers, as opposed to the more conventionél means
of solution using n2? potentiometers, on the analog computer.
By tridiagonalizing the matrix A, the former n2? pos-
sible number of non-zero parameters is reduced to at most
(3n-2). since one potentiometer is usually needed for each
non-zero entry, by appropriately scaling the tridiagonal
matrix, the number of potentiometers needed is further re-

duced to (2n-1).
64
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In case automatic patching is desired, usually ac-
complished using one reed relay for each non-zero entry in
the coefficient matrix, a considerable savings in the number
of relays needed is affected by tridiagonalizing the coef-
ficient matrix.

A new procedure for tridiagonalizing an arbitrary real
non-symmetric matrix A, without using the eigenvalues, was
presented in Chapter III. After transforming the matrix A
by unitary Householder transformations into a similar upper

Hessenberg matrix A the latter is transformed into a

H'
tridiagonal matrix T = RAHC by appropriate matrices R (with
rows R;) and C = R™! (with columns Ci)‘ The rows R, are
computed recursively by factoring the Krylov matrix F
whose rows are the interates of R; under AH. The columns
C, are cogputed recursively from an idempotent matrix

i-1

W. =U- 32 C.R. by C
33

= W.U. where U, is the ith column
i j=1 i1 i

i
of the unit matrix.

In Section 3.3, Theorem 1 was proved which showed that
the tridiagonalization is always possible without breaking
down when AH has all non-zero sukdiagonal entries. 1If AH
has at least one zero subdiagonal entry, the hypothesis of
the theorem is invalidated in which case the procedure may
or may not break down. When the procedure does break down,
it does so under either Case 2 or Case 3. Case 2 is
handled by obtaining R, from the idempotent W, - For Case

3, Theorem 2, proved in Section 3.3, shows how to advance

at least one additional stage.
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A lemma was also proved in Section 3.3; this lemma
showed a new method for inverting a unit upper triangular
matrix.

For the first time, an explicit procedure for time
and amplitude scaling was presented. This procedure, pre-
sented in Chapter IV, is facilitated by the system of
equations being in tridiagonal form, and ensures that no
more than (2n-1) potentiometers are needed on the analog
computer.

This thesis will be concluded by indicating some
areas in which additional investigation could be done. It
would be ugeful to extend this solution procedure to en-
compass other forms of differential equations such as
those that are non-linear. Also, the scaling of the initial
conditions could perhaps be accomplished by means other
than the method described in Section 4.3. For instance,
the feasibility of using time-varying initial conditions
over the desired interval of solution, in the form of a
series of steps or as a continuous function, could be in-

vestigated.
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