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ABSTRACT

FINITE ELEMENT METHODS FOR PERIODIC

SOLUTIONS OF DYNAMICAL SYSTEMS

By

Mohamed Shendy El-Mandouh

This dissertation deals with the problem of computing the

normal modes of nonlinear Hamiltonian systems. The normal modes

are assumed to exist and depend continuously on the total energy

E for E in some range.

The finite element method. in which the time variable is

discretized, is applied to such systems and transforms the mathe-

matical prOblem that is governed by nonlinear differential equations

into one governed by a set of nonlinear algebraic equations which

is to be solved for various values of E.

I The main contribution in this work is to establish the

existence of solutions of the nonlinear algebraic finite element

equations by a contraction mapping argument. This is done by

relating the Jacobian of the discrete prOblem to that of the exact

prdblem. Furthermore. if the exact prOblem has an isolated branch

of solutions for some E in a neighborhood of E then. corres-0'

pondingly the finite element solution that exists for E0 is also

isolated and can be uniquely continued, for small mesh size h,

in a neighborhood of E0. Algorithms for implementing the numerical

work are discussed and some illustrative numerical results are

also presented.
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Chapter 1 Introduction

This dissertation concerns numerical solutions of a class

of nonlinear dynamic systems known as Hamiltonian systems. Such

systems of ordinary differential equations arise in celestial

mechanics as well as in physics and many branches of engineering.

In the language of engineering mechanics we may describe such

systems as being composed of discrete masses that are inter-

connected by perfect, nonlinear elastic springs.

The study of periodic solutions of such dynamic systems

has remained a central problem in nonlinear mechanics since the

days of Lagrange, Hamilton, Jacobi, Hill and Poincare. A

fairly comprehensive account of the early work, up to 1920.

can be found in a monograph by Birkhoff [1].

There has in fact been a large body of literature published

on the subject of periodic solutions of nonlinear ordinary dif-

ferential equations. It would be futile to attempt here an exhaus-

tive review of past work. We mention briefly in passing that for

single. second order nonlinear ordinary differential equations.

use of the phase plane along with functional-analytic and

topological techniques have proven fruitful in leading to many

explicit results on the necessary and sufficient conditions for

the existence of periodic solutions [2.3]. For systems of

nonlinear ordinary differential equations in which nonlinearities

are small, perturbation methods have been used [4,5,6].

The study of periodic solutions of general systems of

nonlinear ordinary differential equations is a difficult subject.



For the so-called Hamiltonian systems. however. some research

has been done. In particular, when the system has m degrees

of freedom and is linear with a positive definite potential

V(x). x = (x1.x2.....xm). it has exactly m, periodic solutions

known as the normal modes. When the potential V(x) contains

terms higher than the quadratic, the approximation of it by a

linear system is justified when the total energy E of the system

is small. As E increases and terms in V(x) higher than the

quadratic become important, it is natural to ask what become

of the linear normal modes.

In 1948, Seifert [7] showed that the nonlinear system with

a convex potential possesses for any E > 0 at least one

periodic solution that joins two distinct points x on V(x) = E

in the "configuration space" x. Seifert's method is geometric

in nature and relies on the fact that solutions of the system are

geodesics in the x-space with time t being a parameter.

In a series of papers [8-12] Rosenberg considered a class

of periodic solutions of such Hamiltonian systems that are

generalizations of the normal modes of the linear systems and

referred to them as nonlinear normal modes. Rosenberg also gave

precise definitions for such normal modes in terms of solutions

of certain nonlinear boundary value problems.

A question of theoretical interest is the existence of

periodic solutions of nonlinear Hamiltonian systems. Using the

variational approach, by which special periodic solutions can be

formulated as critical points of convex functionals on manifolds

defined by constant integrals of the potential or kinetic energy



of the system. Berger [13-16] and Gordon [17] have proved the

existence of periodic solutions that are even or odd in time.

Under more stringent assumptions on the potential function V(x).

Weinstein [18] has proved the existence of at least m periodic

solutions of a Hamiltonian system with m degrees of freedom.

A related work is due to Moser [19]. More recently Rabinowitz

[20,21] has also established the existence of periodic solutions.

using the variational approach. for prescribed total energy or

given period of the motion.

In this dissertation we are concerned with the normal modes

of nonlinear Hamiltonian systems for given total energies E.

The normal modes will be assumed to exist and depend continuously

on E for E in some range and we shall develop numerical

methods for their computation. we mention that Rosenberg was

the first to recognize that for m‘z 2 a nonlinear Hamiltonian

system may possess more than m normal modes at some E and

this number may change as E changes. Such "superabundant normal

modes" obviously cannot exist for systems that are linear or

nearly linear for such systems are known to possess exactly m

normal modes.

For m = 2. Yen [22.23] and Johnson and Rand [24] have both

developed alternative characterizations of the normal modes and

used such characterizations to establish the continuous dependence

of the normal modes on E and shed light on the question of

bifurcation of new normal modes. These works involve, essentially.

embedding the normal modes into a family of solutions of initial

problems, characterized by a parameter, a say.: The solutions



of the systems generate a continuous mapping f(o) that also

depends continuously on E and the normal modes correspond to

the zeros of f(o).

There do not seem to exist any quantitative methods for

nonlinear Hamiltonian systems of the type discussed above. In

this dissertation we shall apply the finite element method to

such systems and compute their normal modes for fixed total

energy E. Upon discretizing the time variable t with mesh

size h. the mathematical prdblem is transformed into a nonlinear

algebraic one which is to be solved for various values of E.

An important question that arises immediately is whether such

discretization, for small h, by the finite element method.

preserves the normal modes of the system. This question is

especially intriguing in view of the fact that the normal modes

correspond to critical points. that are saddle point in general,

in the variational formulations and projection type methods

such as the finite element method. do not preserve saddle points.

The main contribution in this dissertation is to answer

the above question in the affirmative under suitable conditions.

The existence of solutions of the nonlinear algebraic finite

element equations is established by a contraction mapping [25]

argument by relating the Jacobian of the discrete problem to

that of the exact problem. Furthermore. by the implicit function

theorem [25] we know that if the exact problem has an isolated

solution for some E = E0 say. then this solution can be uniquely

continued in a neighborhood of B We shall show that. corres-O.

pondingly, the finite element solution that exists for E0 is



also isolated and can be uniquely continued. for small mesh size

h, in a neighborhood of E We shall also address the0'

question of numerical algorithms and present a number of numerical

results.

The organization of this dissertation is as follows. In

Chapter 2 we present some background materials. We shall present

there the mathematical problem, define special classes of periodic

solutions such as the normal modes and discuss the general ques-

tion of existence of the normal modes under given E and the

continuous dependence of the normal modes on E. In Chapter 3

we apply the finite element method to such systems and present

our results on the existence of solutions of the nonlinear algebraic

problem and their convergence to the exact solutions as the mesh

size h tends to zero. We shall also discuss there the continu-

ation problem as E varies and the numerical algorithm. In

Chapter 4 we present numerical results for example problems with

m = 1 and m = 2. Chapter 5 contains the summary and conclusions.



Chapter 2 Periodic Solutions of Hamiltonian Systems

In this chapter we review some background materials on

periodic solutions of nonlinear autonomous systems. In Section

2.1 we formulate the mathematical problem and discuss the

several classes of periodic solutions whose numerical approxima-

tion are sought in Chapter 3. In Section 2.2 we discuss the

general questions of existence of such periodic solutions for given

total energy E of the system. their continuous dependence on

E, and their bifurcations.

2.1. Normal Modes of Nonlinear Systems

We shall consider autonomous systems of ordinary differential

equations of the form

2

—-3‘-d + grad V(x) = 0 9-“

dtz

where x(t) = (x1(t). x2(t).....xm(t)) is an m vector-valued

function of time t and V(x) = V(x1.x2.....xm) is a C1 real-

valued function of x1.....xm. known as the potential or potential

energy function. Further assumptions on V(x) are to be specified.

Such systems are often referred to as Hamiltonian systems and arise

naturally in many physical problems. An example is given below.

Consider the mechanical system as shown in Figure 2.1. It

consists of m masses, not necessarily equal, that are intercon-

nected by nonlinear springs. The first and the last of the masses.

m1 and mm, are connected to the ground by the end springs 51
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Figure 2.1 An m degree of freedom system



and Sm+1’ We assume that the coordinates '§i are chosen such

that 'xi = 0, i = 1.2,....m, correspond to an equilibrium con-

figuration of the system. We also assume that each spring force

S. is an odd function of its deflection 111 from equilibrium.
1

The equations of motion are then

 

62321 _ _ _ _

with E6 = Efi+1 = 0. We assume further that the spring forces

may be represented by their finite Taylor's expansion. It now

follows from (2.2) and the oddness of each Si in its argument

 

 

that

(12% £31 _ j 1|’a'L-u _ _ j

m. = a..(x._ -V§.) - a. .(x.-x. )
1. dtz j=1,3,... 13 1 1 1 j=l,3.... 1+1) 1 1+1

i = 102,000,!“ (203)

'with £6 = §fi+l = 0. By the change of variables

Xi 8 “Ii/2 3:10 i = 1.20.0001“ (2.4)

and defining the potential energy function V(x1.x2....,xm) to

be

r.
m+1 1 aii xi-l x. j+1

‘7‘“) = E’ _ Z j+1 ‘ U2“??? (2'5)
1’1 j-1'3'ooo 1111-1 mi

the system (2.3) becomes

 

i=--§V_ i=l'2'ooo'm

We shall assume.henceforth.that the potential function V(x)

in (2.1) is convex. positive definite and an even function of x

with V(0) = 0 and V(x) tending to infinity as [x] a a. These



assumptions ensure the existence of periodic solutions of the

system (2.1), which we shall establish in the next two sections.

The assumptions of convexity and evenness of V(x) may also be

relaxed in some instances, as we shall point out later.

Taking the inner product of (2.1) with gf- and integrating

with respect to t. we Obtain

3:222 + V(x) = E (2.6)

where E is a constant in time. the total energy of the system.

The over dot in (2.6) denotes differentiation with respect to t.

Equation (2.6), often referred to as the first integral of (2.1),

expresses the conservation of energy.

For a given total energy E of the system and with the

assumptions that we make on V. the solution x(t) thus lies

in the closed domain given by V(x) g E. It is well known that

when the system (2.1) is linear with V(x) = Q(x) where Q(x)

is a positive definite quadratic form, it possesses a set of m

normal modes, each of which is a periodic motion with a pefiod

independent of E. When V(x) is of the form Q(x) + N(x) where

[N(x)l = 0(le3) for small x. the families of periodic solu-

tions of (2.1) for small x may be considered as perturbations

of the normal modes of the linear system. We now consider several

special classes of periodic solutions of the system (2.1).

Among periodic solutions :x(t) of the system (2.1) with

a least period T, i.e. x(t-FT) = x(t) we wish to consider:

(1) Odd periodic solutions

x(0) = x(«r/2) = 0. x(-t) = -x(t):
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(2) Even periodic solutions

he) = 5c(T/2) = 0. x(-t) = x(t)

(3) Normal modes

x(0) = Sch/4) = o, x(-t) = -x(t), x(t) = x(T/Z-t)

Any solution x(t) of (2.1) gives rises to a curve, or a

"trajectory", in the x-space, with t being a parameter. For

a periodic solution, this trajectory is completely described by

x(t) for~ t in one period. As we indicate above. for a given

E, the trajectory lies in the closed domain V(x) g E. It is

clear that if x = 0 at some t. then the point x(t) is on

the bounding surface V(x) = E. Thus a trajectory intersects

the bounding surface V(x) = E if x ever vanishes. It can

also be established easily that if a trajectory intersects V(x) =E,

it must do so orthogonally. The odd periodic solutions described

above give rise to trajectories that pass through the origin of

the x-space but need not intersect V = E. The even periodic

solutions described above correspond to curves that interesect

the bounding surface V = E but need not pass through the origin.

The normal modes described above correspond to curves that pass

through the origin and intersect V = E and are those studied

by Rosenberg [8-12].- The normal modes are thus special cases

of both odd and even (by a change of time origin) periodic solu-

tions. We remark that while the existences of odd periodic solu-

tions and normal modes depend on our assumption of evenness of

V(x) in x. The existence of even periodic solutions does not

need this assumption. A well known result in this latter regard

is due to Seifert [7].
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In the case when V(x) = Q(x), each normal mode is a straight

line as the xi's are proportional to one another. Now since

V(x) = E is an ellipsoid, the m principal axes are the normal

modes.

In Chapter 3 we shall consider numerical methods for determin-

ing the special classes of periodic solutions of (2.1), with their

existence being assumed. In the remainder of this chapter we shall

discuss the existence of such periodic solutions and their

continuous dependence on the tOtal energy E of the system.

2.2. Existence of Periodic Solutions. Their Continuous Dependence

on the Total Energy and Bifurcations

As we mentioned in the Introduction, the question of existence

of periodic solutions of the system (2.1) has been studied by

many authors. we shall consider here the periodic solutions of

(2.1) for a given total energy E. we remark that the periods

of the periodic solutions are functions of E and are to be

determined along with the solutions. For the purposes of theo-

retical discussions of such periodic solutions and of their

numerical computations. it is convenient to make the change of

variable t = ms in (2.1) where w is some frequency parameter

to be determined. The resulting system is

;%'x” + grad V(x) = 0 (2.7)

m

where the prime denotes differentiation with respect to s. We

shall then seek 27-periodic solution x(s) of (2.7) under the
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condition

—1—2-x’2+V(x) =3 (2.8)

2w

which follows from (2.6), along with the solution for w.

It is obvious that such solutions of (2.7) and (2.8) correspond

to va-periodic solutions x(t) of (2.1) and (2.6).

Under the assumptions that we made on V(x) in Section 2.1.

the problem described by (2.7) and (2.8) is known to have at least

one periodic solution for each E. we outline below one such

existence proof based on the calculus of variations [26].

Let us consider the following variational problems:

v

(I) Determine the critical points of I [x'(s)]2ds over

0

the admissible class of functions AR defined by

AR = [x(s)Ix(s). x’(s) E L2[0,v] m vector-valued function such

that

' v

x(0) = x(v) = 0 and satisfies I V(x(s))ds = R}

0 v

(II) Determine the critical points of I [x'(s)]2ds over

0

the admissible class of functions AR defined by

AR = [x(s)lx(s).x’(s) E L2[0,v] m vector-valued functions such

that

v v

I V(x(s))ds = R and I grad V(x(s))ds 0]

O O

v/Z

(III) Determine the critical points of I [x’(s)]2ds over

0

the admissible class of functions AR defined by

AR = [x(s)lx(s), x’(s) 6 L2[O,F/2] m vector-valued function such

that
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W/Z

x(0) = 0 and I V(x(s))ds = R}

0

R in each problem above is a positive real number.

The Euler-Lagrange equations for each problem above can be

shown to reduce to

x” + B grad V(x) = 0 (2.9)

where the Lagrange multiplier B is a positive number owing

to the convexity assumption on V(x) and is identified with wz.

Also for Prdblem (II) above we have the natural boundary conditions

x'(0) = x'(1r) = 0 (2.10)

and for Prdblem (III) above we have the natural boundary condition

x’(w/2) = 0 (2.11)

Thus the solutions for Prdblem (I) can be extended as odd 2v-

periodic solutions, those for Problem (II) can be extended as

even ZF-periodic solutions, and those for Problem (III) can be

extended as Zv-periodic solutions that are normal modes.

The existence of solutions for Problems (I) and (II) has been

established by Berger [14,15]. A similar existence proof,

patterned after [14], can be made for Problem (III). The periodic

solutions exist for all positive values of R and depend on R

continuously.

The existence of periodic solutions for given E can now be

made with the aid of the following lemma.

Lemma. In each of Problem (I), (II) and (III) above, the

total energy E is a continuous function of R such that E a 0

as R a 0 and E a a as R a w.



'
4
-

be
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Proof. Let :xR(s) and wR denote the solution of any of

the three prdblems for a given R. By (2.8) we have

E = -l§'x'2 + V(xR)

ZwR R

Since xR and w depend continuously on R, so does the
R

right hand side above. Thus E = E(R) 'is continuous in R.

Integrating the above from 0 to L. where L = F for Prdblems

(I) and (II). and [L =‘F/2 for Prdblem.(III), we Obtain

E -.l..l_ L [ ' ]2 L v d ] 12(R) -‘ ZIO xR(s) dS+I0 (XR(8)) s (2. )

2wR

As R .. 0 we have It V(xR(s))ds .. 0. Since V(x) is positive definite

O

the above implies xR(s) = 0 as R a 0. By (2.7) we hare

1' ‘ 2 '9
'3 ]' [xlgsn ds = j‘ grad V(xR(s))-x.R(s)ds (2,13)

wR 0 0

Thus the left-hand side tends to zero as R a 0. It then follows

from (2.12) that E a 0 as R e 0. 0n the other hand as R a a,

L .

we have I V(xR(s))ds « a. As the first term on the right of

0

(2.12) is nonnegative, we thus have E a a as R a m. The lemma

is now proved.

The above lemma implies that the range of E(R) for R12 0

is the entire half line [0,m). For every E > 0 there is a

corresponding R and hence there is a periodic solution. The

solutions. however. need not depend continuously on E. we

shall address the question of continuous dependence of the

periodic solutions on E later in this section.

The existence of more than one family of periodic solutions can

be established for small B when V(x) is of the form Q(x)-+N(x)
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'where Q(x)in a positive definite quadratic form and N(x)

contains terms of degree higher than two in x. More specifically,

we have the following theorem due to Liapunov [27].

Theorem 2: . Suppose that the V(x) above is real analytic

grad V(x) = Ax + 0(lxl2) (2.14)

where A is m x m. real symmetric and nonsingular with positive

eigenvalues if S 1; g..._§ 1i (1 g k g m). Then the system (2.1)

possess k distinct periodic families of solutions near x = 0,

provided that the eigenvalues (11.12.....1k) satisfy the

irrationality conditions

11x31 5! integers i,j = 1, 2.....k, i a! j (2.15)

The above theorem has been generalized by Berger [16].

Theorem 2,2. With the same hypotheses on V(x) as in the

above theorem, the system (2.1) possesses. for small R > 0, k

families of periodic solutions x(i)(R), i = l.2.....k, that are

continuous in R, ‘with the associated periods tending to ZF/li

as R a 0. These families are distinct if V(x) is even or if

the numbers (11.12....,1n) satisfy the irrationality condition

(2.15) of Liapunov.

Remark. The periodic solutions in Theorems 2.1 and 2.2 above

can be made odd or even periodic solutions or normal modes if V(x)

is assumed to satisfy the evenness assumption.
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Remark. The proof of Theorem 2.2 makes use of the varia-

tional problem discussed earlier. Using the lemma discussed

earlier we can thus establish the existence of more than one

branch of periodic solutions for small E.

The existence of at least m branches of periodic solutions

for small E for systems with potential V(x) of the form

Q(x) + N(x) 'was also established by Weinstein [18]. The exis-

tence of at least one periodic solution for a general given E

was also proved by Gordon [17], Rabinowitz [20], in addition to

the work of Seifert [7] cited earlier. It is to be noted that.

in general, it is not clear whether such periodic solutions must

depend on E continuously. Although the periodic solutions

established by Berger depend on the parameter R continuously.

as we pointed out above, and by the lemma in this section E

also depends on' R continuously, the inverse function R = R(E)

need not be continuous and the question of continuous dependence

of the periodic solutions on E is not answered.

For m = 2. Yen [22. 23] and Johnson and Rand [24] established

the continuous dependence of special classes of periodic solutions

on E. More specifically, Yen's results apply to normal modes

along which V(x) is monotone and the results of Johnson and Rand

apply to what they referred to as "minimal normal modes". In both

these works the normal modes are embedded into one parameter

families of solutions of initial value prdblems, characterized

by a scalar parameter. a say. A certain mapping f(o) is

generated by solutions of the initial value prdblems. The normal

modes correspond to roots of f(o) = 0. In particular, as
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E changes, the simple roots of f(o) = 0 continue to exist and

depend continuously on E. Thus the normal modes that correspond to

the simple roots of f(a) = 0 are continuous functions of E.

Rosenberg [10] noted that a Hamiltonian system with m

degrees of freedom may possess more than m distinct normal

modes. In both the works of Yen and Johnson and Rand just cited,

it was pointed out that such bifurcations occur at multiple root

of f(o) = 0. Similar results on the continuous dependence of

periodic solutions of Hamiltonian systems on E and their

bifurcations are to be expected for general m > 2. by generalizing

the works mentioned above.

We conclude this section by reformulating the questions of

continuous dependence of the periodic solutions on E and of

bifurcation of the periodic solutions in a functional-analytic setting.

We substitute 1 for l/w2 and rewrite equations (2.7) and

(2.8) as

T(x, LE) = O . (2.17)

The Jacobian matrix of (2.16) and (2.17) with respect to (x,x).

which we denote by J , is equal to

(X, X)

fx fl)

T T

L... X )x .1  

We assume that for E = E periodic solutiomsof (2.16) and (2.17)
00

xb = x(EO) and 10 = x(Eo) exist. The Jacobian matrix in (2.18)

at E = E0 depends on x0 and 7‘0 and defines the linear

eigenvalue problem
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w 0

E (2.19)J

(x .1 )
0 0 v 0

where w = w(s) lies in the same space as x and v is a real

number. It is well known that if J is nonsingular, i.e.

(x0. 10)

equation (2.19) above has only the trivial solution w‘= 0, \2= 0,

then by the implicit function theorem, equations (2.16) and (2.17)

have a unique solution x(E) and x(E) for E near E0, hence

the periodic solution (xo,xo) may be continued. 0n the other

hand, if equation (2.19) has nontrivial solutions for (wpv)

bifurcations occur at E = E The number of branches of periodic0.

solutions near the bifurcation point EO depends on the dimension

of the null space of J(n 1 ), i.e. the number of linearly

0' 0

independent solutions (wpv) of (2.19). We shall consider this

question in more detail in the next chapter.



Chapter 3 Application of The Finite Element Method

In this chapter we apply the so-called finite element method

to Obtain approximate solutions for the class of prOblems defined

in Chapter 2. We introduce the finite element method and develop

the finite element equations in Section 3.1. We show in Section

3.2. upon assuming that such a problem has an exact solution. that

the finite element equations for small mesh size also have

solutions converging to the exact one as the mesh size tends to

zero. In Section 3.3 we discuss the continuation prOblem as

the total energy E is varied that yields isolated branches of

solutions. Finally, in Section 3.4, we present a numerical algo-

rithm which is used to Obtain the approximate solutions. we also

consider in Section 3.4 the prOblems of bifurcation and switching

of solutions at some E where different branches of solutions

meet.

3.1. The Finite Element Equations

The finite element method [28] is closely related to the well

known classical Rayleigh-Ritz and Ritz-Galerkin methods. Let us

first consider the variational prOblem of finding the critical

points of some functional I(u), say over some infinite dimensional

space H. The Rayleigh-Ritz method consists in replacing H by a

sequence of finite-dimensional subspaces [St]' L = 1.2.... .

Approximate solutions are then obtained by determining the critical

points of the functional I over such finite dimensional subspaces.

19
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In practice, some sequence of linearly independent "base functions"

m1.¢2....

that is dense in H is chosen and the subspaces 5L are taken as

5‘ = span{ml,m2,...,¢n ] for some integer nLo With n5 ” °

L

as L ~ a. A trial function u‘ in SL is of the form

“L

ul' =23 qicpi (3.1)

1=1

with q1,q2....,qn being unknown coefficients. The critical

L

points of I(u‘) over S‘ are given by the set of qi's

i = l,2,...,n£, that are solutions of the equations

.31- --
aqi-O l- 1,2,...31'1‘ (302)

Let us now consider the problem of solving the following

equation

Lu = f (3.3)

where L is an operator over an infinite dimensional subspace

H and f is a given element in the range of L. If < . >

denotes some inner product, then (3.3) is equivalent to

<Lu.v> = <f,v> V v 6 H (3.4)

Moreover, if L is a differential operator and < , > is an

integral, then integration by parts together with the boundary

conditions can reduce the smoothness requirements on elements of

H. A solution of the resulting system is referred to as a weak

solution. The Ritz-Galerkin method consists in substituting the

u‘ given in (3.1) above into (3.3) and then determining the qi's

i = 1.2,....n£, such that

(Lu‘,v‘> = <f,v£> V v‘ 6 SL , (3.4)

or equivalently
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(Lu‘,¢i> = <f,¢i> for all i = 1.2.....n‘ (3.5)

which is a system of n1 equations in the qi's i = l,2....,n‘.

Equation (3.5) implies that one must determine the qi's

i = l,2,....nL such that the error

8‘ = L(i§1 qimi) "' f (3.6)

is orthogonal to each of the qi's i = l,2,...,n‘.

We note that in general the Ritz-Galerkin method is applicable

to a broader class of prOblems as solutions of variational prOblems

satisfy their Euler-Lagrange equations which we take to be (3.3),

while not every equation of the form (3.3) has a variational

formulation with (3.3) being the associated Euler-Lagrange equations

the two methods are often equivalent.

In the finite element method, the subspaces. which we denote

laysh

computations. Also, since h here is a "mesh size" the subspaces

are construced in a systematic way that simplifies the

Sh become dense in H' as h a 0. As an illustration let us

consider the space B of all scalar-valued functions on the interval

[0,r] subject to some smoothness requirements. The finite element

subspaces are constructed as follows:

(a) The domain [0,v] of x(s). x(s) e B, is divided into

subintervals by means of points

= 0, s = F (3.7)81 = 81-1 + hi i = 1'2'ooo'n and n

so

which are called nodes or nodal points. We define the mesh

size h by

h = max..hi (3.8)

lgign
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The open subintervals si_1 < s < si, i = l.2,...,n, are called

finite elements. We suppose the subintervals are such that

h a 0 as n a a.

(b) A "shape function" in the form of a polynomial of fixed

degree r'z l is introduced over each finite element i = l.2,...,n.

Each shape function is thus characterized by r + 1 parameters.

(c) These shape functions are joined at the nodes by

certain smoothness requirements and made to satisfy certain

required boundary conditions to yield the so-called trial functions.

The requirements mentioned above result in the elimination of some

of the parameters.

(d) The number of the remaining free parameters characterizes

the dimension of the finite element subspace which we call Th.

h
Let this number be v say. The construction of T above implies

the existence of a set of base functions (3, j = 1,2,...,v, with

3

local support, such that

h

Th = span{¢lpooo.¢g} (3.8)

As x = (x1(s).....xm(s)) is a vector-valued function, in

our prOblem, we use Th X Th x...X Th m-times as our finite

h
element subspace which is denoted by S . Then any trial function

uh 6 Sh is of the form

uh = (u?....,ug)

where

v

u? = 32:31 q(i-1)v+j (Q(s) for i = 1,2,...,m (3.9)
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The weak formulation of our problem introduced in Chapter

1<u”,v> + <grad V(u),v> = 0 V v e H

where < . > denotes the L2[0,v] inner product for PrOblems

I and II, and L2[0,%] for Problem III. Upon integrating the

first term of the above equation by parts and using the boundary

conditions we get

-x<u’,v’> + (grad V(u),v> = 0 V v 6 H (3.10)

Hence the Ritz-Galerkin equations are

-xh<(u?)’.(Y§)’> + <(grad V(uh))i,Y§> = o (3.11)

for all 1.g j‘g v and l g,i g,m.

Now since in is also undetermined, we add to our system of

equations the averaged energy equation. i.e..

h

Ayou") '. (uh) ’> + <V<uh).1> - FE = 0 (3°12)

We thus have in (3.11) and (3.12) a system of v x m + 1 equations

in the unknowns q(i-l)v+j and 1h.

Our main task in the next section is to show that the above

system possesses a solution (uh,xh) that converges to the exact

solution (u,l) as the mesh size h tends to zero.

3.2. Existence of Approximate Solutions and Their Convergence

In this section we shall show that under suitable conditions,

if the problem described in Chapter 2 has an exact solution.

(u(E).1(E)) say, for a range of E then the discrete prOblem also

has a solution (uh,xh) converging to (u.x) as the mesh size

h tends to zero. We assume that the exact solution u here is

an even periodic solution.
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In order to establish the above we introduce the space

H = {x(s) [x(s) is a vector-valued function such that

x(s).x’(s) E L2[0,v]]. H is a Hilbert space with the inner

product

<x.y>H = I: [x(s) -Y(s) +x'(s) oy’(s) ]ds (3.13)

and the corresponding norm

”KHZ = I: [lX(S)|24'lx'(s)l2]ds (3.14)

  
If we denote by < . > and H' the I?[O'F] inner product and

2

norm respectively, it immediately follows that

max(HxH2.Hx'H2) gluxH for all x 6 H (3.15)

Let {H denote the set of all bounded linear functionals on H

which is a Banach space under the norm

“f“ = sup lf(x)l (3.16)
xEH

||X||=1

‘where l-l denotes absolute value. For simplicity we shall not

make distinction between norms on H and H. It can be easily

checked that the product spaces H x I! and H x 12 under the

norms

|l(u.k)|l= Hull-+11] V(u.>.) e H x m (3.17)

N(f.X)H = “f“ + 11] V(f.1) e‘fi x n: (3.18)

are Banach spaces.

h
Let us consider now the finite element subspace S and

define P to be the projection of H onto Sh, i.e.

<u.vh>H = <Pu.vh>H v vh 6 sh : (3.19)
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let P1 be a mapping from H x I! onto Sh X I? defined by

P1(u.x) = (Pu.x) V(u.1) e H x I: (3.20)

then P1 is well defined since P is.

Let us also define d) to be the mapping from H x ]R into

E)<R 1w

¢<uoX) = (f(u0)\)oT(uo)\)) V(u.).) E H X R (3021)

where f(u.x) is defined implicitly by

v F

f(u,x)ov = -1 I u'ov'ds + I grad V(u)-vds V v E H (3.22)

o o

and T(u.x) is given by

.1 v 2 v

T(u.>.) I ]u'l ds +J‘ V(u)ds - 1TB (3.23)

o o
2

we shall denote by fh(u,l) the restriction of f(u,x) to Sh,

that is

r v

fh(u,‘).) ovh = -)( ‘f u_'- (vh) ’ds 4» f grad V(u) vhds V vh E Sh (3.24)

o 0

Finally, we let 9 be the mapping that restricts elements of

N

H x R to those of Sh x R which is defined by

gun) = 03“.» V(f.x) e H x n (3.25)

In what follows we shall assume that V(x) is such that. for

all x.y E H we have

lvm)-va =oflh-ym (12m

(12.131-3%! =0(llx-yH) Isism (3.27)
l

and

111.31%-25y:ayj5—51! = 0(Hx-yll) 1 g i. jgm (3.2a)



26

We now show that

lim N(bh (u. 1) - (13h (Pu, 1) H = 0 (3. 29)

h-O

where it is understood that the norm is taken over Sh x R, not

H x R . This proves the consistency of the diagram in Figure

3. 1.

Theorem 3.1. For all (m1) 6 H x ]R we have

"(b (u: X) ' 4) (Put X) H S M 0U u) "u - P11” (3.30)

where M is a constant that depends on 1 and 11.

Proof. Since "0 (u. 1) - d) (Pu. 1) H = Hf (u, x) - f (Pu. 1) II

+ lT(u. x) - T(Pu, 1)] it suffices to estimate each term in the right

hand side of the above equation

IIf(u.l)-f(Pu,1)II = sup I (f (u. l) -f(Pu.1))°vl

VEH

IIVI|=1
1r 1r

sup I-l I (u' - (Pu) ') ov’ds +J‘ (grad V (u)

H o 0v6

llV||=1

- grad V(Pu))-v dsl

g sup (muu'- (Pu) ’llzllv’l|2+]: mun-Pun)
VEH

IIVI|=1

lVlds}

g :25 HHHW- (Pu)’IIZHV'l|2+0(Ilu-Pull)lIVHZ}

||V||=1

g sup {leIIu-Pull+0<|lu-Pull)1|!le

VEH

Ilvll=1

g ([1] +C(u,>.)) IIu-PuH
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Hle 4) >'fix12 ,

(u: )x) \ (f (“I X) 0T (up X))

\

\

\

\
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P1 \ g

\

\

\

\

\

\

V \ ~V

shxm l) thlR

(Pu. x)
(fh (u, 1).'r(u. 1))

  
A (fh (Pu. x) . T (Pu. 1))

Figure 3.1. Consistency diagram
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‘where we have used the Schwartz ineq1a1ity, (3.15) and (3.27). Thus

we may write

||f(u.x) - f (Pmk) H _<. 61 (um llu- Pull (3.31)

where Cl is a constant that depends on u and 1. Similarly,

.1 F 2 2 w

lT(u.1)-T(Pu.x)l=12] [(u’) - ((Pu)’) ]ds+] (V(u)-v(1>u))dsl
O O

_<. Lgiulu'n; - n (Pu) '11:) +0 (Ilu- Punw

_<. Lgimu'uz + n (Pu) 'uz) <||u’l|2 - || (Pu) 112)

+oqm-PMD

g iglulu'nz + "(Pm '|12)(|u'- (Pu) '112 mu. - pun)

g (1231 (Hull + (Pun) +<=2 (u. n 1“): - Pun

Thus we may write

]T(u,).) -T(Pu.).)] 3 c3 (11,1) Hu-PuH (3.32)

where C3 is a constant that depend on u and 1. Upon adding

(3.31) and (3.32). we get'

 

H¢(u.X)-¢(Pu.k)H g.M(X.u) Hu-Pu|

If we assume that our finite element subspace Sh is consistent

of order p ‘with H, i.e.

Hu-PuH = 0(hp) (3.33)

(For example if Sh is piecewise linear then p = 2 [28]). Using

from (3.30) and (3.33), we now conclude that

H¢(u.x)-¢(Pu.X)H.S.M1(u.X)hp (3.34)

Next we establish the following corollary.
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Corollary.

H¢P(u.x)-¢P(Pu.x)u s.M1(u.1)hp (3.35)

Proof. This follows immediately from the fact that

900 = ¢h and Hfh(u,1)-fh(Pu.l)H = sup ([fh(u.x)-fh(Pu.x)]-vh]

h h
v es

h
“V “=1

_<. sup l<f(u.x) —f(Pu.m-vl

VEH

HvH=1

Definition. We say that fibh(Pu.l)] is consistent of order

p with ¢h(u.x) if (3.35) holds.

Let us now consider the Jacobian matrix of ¢(u,1) with

respect to (u.l). which we refer to as J(u.l)' It is a bounded

linear mapping from H X Ii into itself defined as

J W fu fl W = qu + Vf)‘

(up A)
v . T T v Tfiw-thv

-).<W $v ’> + <K (u) -W.v> - v<u’.v ’>

VV 6 H

l<u '.w '> + <grad v (u) ~w. 1> +-;-’ Ilu ’H§

(3.36)

where (w.v) 6H x R and K(u) is Hessian matrix of V(u). We

note that the Jacobian defined here differs, slightly in notations.

from that introduced in (2.8).

Lemma 3.1. p

"Jm' l) - J(Pu, 1) H g N (u, l)h (3.37)

Proof. Let us consider for (w.v) 6 H x I!

w

(J(uo)\) -J(Puo)\)) V



30

(mm) -K(Pu))-w.v>-v<u’- (Pu) '.v’>

)(u’ - (Pu) ’,w’> +<(grad V(u) -grad V(Pu)) -w.1>+32‘(||u'll§

  . - H (Pu) 'IIj) - vVeH

It follows that

w

”J (11: X) - J (Pu! X) H = (W, $51211le H (J (110 X) - J (P110 A)) [V] H

||WH+lvl=l

(w. v‘ EHXIR vEH

||w||+ Vl=1 lvH=1

= sup sup [<(K (11) -K(Pu))-w,v>

(
- v<u’- (Pu) ’oV’>]

+ l).<u’ - (Pu) ’.w’>+<(grad V(u)

- grad V(Pu)) .w, l> + 32“”qu

- ”(no 'ngm

sup <8“: <0<l|u-Pu||)||w||2|1v\|2+lvlllu’

n

w: v) EHle

IIWI|+|vl=1 Vlll

- (Pu) ’IIZHV’IIZ) + m ((u' - (Pu) 'nznw'u2

+ 0 (Nu - Pun) 1an +1.21]..- (Pu) 112

(Hu'u2 + n (Pu) 'nzn

s sup {0 (Nu - Pull) llwll + M llu - Pull

(w, V) (5me

le|+lvl=1

+ Ill llu - PUHHWII + 0 (llu - Pu”) “W”

+ M (nun + um") um; - Pull)
2
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s 0 (llu- PUII) + (l + Ill + Hui!) llu - PUH

where we have used the Schwartz inequality, (3.15), (3.28) and

the inequality "Pu” g “u”. We have thus shown

IIJ (u, x, - Jam, 1) H s N101. x) Ilu - Pull (3.38)

Upon using (3.33), we now have

- P

“J (u. x) J “an, x) H S N (up >011

Let us recall the Banach lemma [29]: Suppose that A and

E are square matrices such that A-1 exists and HA-IHHEH < 1,

then (A + E) -1 exists and

H (A+E)'1|l _<. __UA'_1.U_

1 - IIA‘lll llEll

Lemma 3.2. If J(u l) is invertible. i.en if J71 exists

I u. k)

then there exists an h >t0 small enough so that J1 exists

1 (Pu. x)

for all h E a3,hl] and is uniformly bounded.

Proof. Let us choose hl small enough such that

“.1111, A) ”N (u. 1) hi; < 1

then from (3.37)

 

-1
1pm.“ HHJm' x) -J(Pu'n“ < 1 for all h 6 0.111]

The Banach lemma with A = J(u.x) and E = J(PU.X)..J(u,X) implies

that J(Pu,x) exists and

-l

-l "J (u.l)"

“J(Pu.>.)” $1 = a(u.x.h) for h 6 (0.5]
“J.”(u x) ”NJ (Pu X)- J(Ilp A) H

[3 .39)

Moreover since from (3.37) we have
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a(u.>(,h) 5 o(u,1,hl) for all h 6 (0.hl] (3.40)

it follows that

-l
Hqu'M“ g o(u. 1.111) for all h 6 (0.111] (3.41)

which shows that J is uniformly bounded.

(Pu. l)

gfinition. let p be a small positive real number and

let us define the following two spheres

Sp (u.>.) = {(w.\)) E H x R HIu-w||+ ll-vl g p}

sgwum = {(whwh) 6 sh x 1R! Hwh-Puu +IX-vhl s 9}

Let us now consider the Jacobian matrix of ¢h(uh._ in). which we

h
will denote as J(uh.>.h)' which is equal to Jmh' 1h) restricted

to Sb x R, i.e. For all (wh,vh) 6 Sh x R we have

wh wh

Jfiuh.xh) Vh = J(uhdh) Vh

-1h<"(wh) ', (vh) ’> + <x (uh) .wh.vh> - vh< (uh) ’. (vh) ’>

h

1h< (uh) ’. (wh) ’> +<grad V(uh) -wh.1> +¥2— II (uh) 1|: vVh 6 sh (3.42)

We now prove the following lemma.

Lemma 3.3. J?xh 1h) is uniformly Lipschitz continuous on

0

SB(Pu.l). that is, for all (xh, 1h), (yh,uh) 6 813(Pu. 1) we have

h h n
IIJrth'xh) -J hmh) I] s L(p.u.1) H (x ,1 ) - (y .1111) l] for all h 6 (0,111]

h

(Y

(3 .43)

where L is a constant depending on u.l and p.
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2322;. Let us considfir

”if. in) " Jfiyho L115) :h]

r_ uh - u“) < m”) ’. (vh) '> + < (K (xh) - K (yh) ) . J‘.vh> - vh< (xh) ’

- (yh) '. (vh) '>

 
. h

_ + >3,— <|1<xh)'I|§-I(<yh>'n§)

b

=[ I] (3.44)

b2

It can be easily shown, using a similar argument as in Lemma 3.1..

that

nbln _<. (lxh- uh] + (L1 shah) + 1) nxh-yhm (Ilwhll + M1)

 

or

Hblll 3 L2 who“) (leh -th| + Ixh - uh!) (Hwhll + ml) (3.45)

and I

lbzl s m" - uh] uxhu + luhl nxh- yhn + a. (xhdrh) + “’9‘” g 1th1!)

nx" -th|} (nwhn + Mn

0..-

lbzl _<. L4(xh.y") (llxh _th + Ixh - phi) (HwhH + lvhh (3.46)

From (3.44) through (3.46) we can conclude that

llJfixh’ 1h) -J’}yh,uh, H s L(p.u.x) H 032)“) - (yhmh) II

where L depends on p.u and 1 since

max<l|yhllollxhlh s upun + p s M + p (3.47)

xh< (xh) '. (wh) ’> - uh< (yh) ’. (w“) '> + < (grad v (xh) - grad v (yh)) ~wh. 1>

 J
VvaSh



34

and

hit

maxdx luhl) s m + p (3.48)

Remark. As a consequence of lemma 3.3 we have, if (yh, uh)

is replaced by (Pu. l) .

IIJ’th, (h) - J (Pu, A) ll _<. L (P.u. 1) p (3 .49)

Lemma 3.4. There exist p0 > 0 and ho < hl sufficiently

small such that ¢h(uh.lh) on S: (Pu.x) satisfies

0

II (uh. 1h) - (whmh) ll g BIN)h (uh. 1h) -<bh (whmh) n for all n < no (3.50)

where (uh. 1h) and (wh.vh) are in Sh (Pu. 1) and B is a

po

constant that depends on h l.u.
o'po'

Proof. Consider (bh(uh. 1h) - (bh (wh. vh). Upon applying the

mean value theorem [29] we get

h h
u -w

(bh (11h. 1h)T - 43h (Whovh)T = :6 h (3.51)

l -v

where

3‘5 1 h= J dt (3.52)

J‘o (tuh + (l - t)wh, tlh + (l - t) uh)

and T denotes matrix transposition. Let us consider the difference

~
1

Jh - J(PII0X) = J‘0 [Jh h(tu + (1 - t)wh.txh + (1 - t) v“) ' J (Pu. 1) 1‘“

From (3.43) we have

Iv 1

”Jb-J(Pu. l) H g «[0 “fltuh-i- (l- t)wh,t).h+ (l - t) vb) -J(Pu. 1) ”dt

1 h h
g L(p.u.x)]o [t]! (u .1)- (Pu,>.)||+(1—t)

|l (w’hvh) - (Pu. 1) ”]dt
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S L (p111: k)%{ H (uh: Ah) ' (Pu: X) H + H (who Vh) " (Put A) H}

Hence,

’3:
HJ -J(Pu' 1) H S L(p.u.x)p (3.53)

Now from Lemma 3.2 we know that

-1
”J(Pu,x)u s o(h,x.u) for all h 6 (0,hl]

Thus if we choose hO < hl and p0 < 9 such that

W

J(Pu,l) and E = Jh

”-1
and implies that (Jh) exists and satisfies

n (3)-1H g _1"J-“l’&g§"
1 II“

the Banach lemma applies With A = ' J(pu,x)

  

 

 

' ”J (Pu. x) ' J (Pu. 1) H

(I. (“I X: ho)

S 1 " (1(11. X: ho) L (poo up A) 90 all h 6 (0,310]

(3.55)

Hence from (3.51) we get

IV

(uh. 1") - (wh. vh) = (1") '1 ab" (uh. 1") T - <1)" (wh. v“) T)

which implies. upon using (3.55). that

h h h a (110.11, M

n (u ' X ) - (Wh'v ) H S 1 ' Q(horuo X) L (Poona 1) p0

H‘bh (uh. 1h) - ((5 (whwh) || (3. 56)

Q(ho.u,l)

1 '- (1 (ho; 11. X) 13(90an A) 90

 

Setting B = we get (3.50).

We now make use of our assumption that the system ¢(w.v) = 0

has a solution (u(E).l(E)) for some range of E and consider

some fixed E.
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Definition. we say that (u.1) is an isolated solution

if J(u.1) is invertible.

We are ready to adjoin all the above lemmas to the fact that

(u.1) is an isolated solution of ¢(w.v) = 0 to show that the

finite element approximate system i.e.

¢h(who Vh) = O

. h h

has a solution (u .1 ) close to (u.1).

Theerem 3.2. Let (u.1) be an isolated solution of

(Mu. 1) = 0 for a given E and let [¢h(Pw.v)] be consistent

of order p with ¢h(w.v). that is (3.34) holds. Then for

< p and hO < hl sufficiently small. (>h(xh.vh) = 0 has

h

po

po

a unique solution (uh.1h) in S (Pu.1) for all h‘g ho.

Moreover (uh.1h) satisfies

H(pu,x)-(uh.1h)n.g_A(po.h.u.1)hp (3.57)

Proof. Let us define Yh(xh.vh) by

Yh(xh.vh) = (xh.vh)T - J7éu'x)¢h(xh.vh)T (3.58)

then Wh(xh.vh) maps 5: (Pu.1) into itself. To show this let

0
h

(xh.vh) E Sp (Pu.1) and consider

0

wh(xh.vh) - (Pu.x)T (xh.vh)T - (Pu.1)T - J};u'x)¢h(xh.vh)T

-1 h h h hT

J(Pu.>.)[J(Pu.1) (x ) ]
-Pu.vh-1)T-¢ (x .v

-1 h h T h T
J(Pu.1)[J(Pu.1)(x -Pu.v -1) -+¢ (Pu.1)

- ¢h (Xho Vh) T + ¢h (no A) T " ¢h (Pu. A) T]
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The mean value theorem implies that

0h (Pu. ”.1.-th (xh.vh)T=3hJ(xh-Pu.vh- 1)T

where

N l

Jh = I0 J1]?— (xhwh) + (l-t) (Pu. 1nd"

Upon using (3.35) we get

N

Ihh (xh. sh) - (Pu.1) TN .4 (min, (, u (1: (p... ,0 - Jhn

[ll (xh - Pu. vh - 1) H +141 (u. 1) hp]

Also since “J(%u.1)”'$ o(ho.1.u) for all h'S’hO and

NJ (Pu, 1) - Jhll s L (90.11. 1) (>0 we get

“Yh (xh' Vh) ' (Pu: 331.” S O. ”10' A: 11) L (Pop U: K) PO + Ml (up X)C1(hoo 1. ‘1) hp.

Upon choosing po and ho sufficiently small to guarantee that

P

who. 1. u)L(Po.u. 1) < %. a (110.1.11”!1 (u.1)hg < 39 (3.59)

we get

llwhmhmh) - (Pu. MT]! < 90 (3.60)

Hence

Vh (xht Vh) 6 sh (Pu: X)

p0

Next. we show that Yh(xh.vh) is a contraction map on

h . . h h h h . h

Sp (Pu.1). that 13. if (x .v ) and (y .u ) are in Sp (Puo1)

0 ' 0

we have

”Yh (xho Vh) ' Wh (Yb: Uh) H S, K“ (xho Vh) " (Yho Uh) H (3061)

where K is a constant less than unity. To show this let us consider

h

thchmh) - Yb (Y .1111) = (xh.vh)T- (Yh.uh)T

-l h h h T h h h
-J(Pu,)‘){¢ (2‘ 0V) -¢ (Y IHF}
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'1 .vh)T-(yh.uh)TJ-Jh[(xh.vh)T-(yh.uh)TJ
_ h

‘ J(I>u.1){J(ls>u.1)[‘X

1 - J“) [ (xh. vh) T - (yh. J) T)
= J(Pu.1)(J(Pu.1)

Hence

N

H?" (ah. vh) - 1“ (Yb. uh) u s “371141) (I u: (p... x, - ah) )1 sh. J) T - (yh. uh) Tu

.g a(ho.1.u)L(pO.1.u)"(xh.vh)T-(yh.uh)TH ‘ (3.62)

If we set K = o(ho.1.u)L(po.1.u). then (3.59) implies that

K < 1. Thus Yh(xh.vh) is a contraction map on Sh (Pu.1).

p0

Now since 8: (Pu.1) is convex. Brower's fixed point theorem

.. °hhh hh
[25] implles that Y (x .v ) has a unique fixed point (u .1 ).

say. in 52 (Pu.1) for all h E (0.ho]. We thus have

0

Yh(uh.1h) = (uh.1h)T (3.63)

which implies that

¢h(uh.1h) = 0 (3.64)

Moreover if we cm sider

(uh.1h)T--(Pu.1)T = wh(uh.1h)--(Pu.1)T

= Yh(uh.1h) - than. 1) + ‘i’h(Pu. 1) - (Pu. 1)T

N(uh.1h)-(Pu.1)H.$ HYh(uh.1h)-Yh(Pu.1)H+-"Yh(Pu.1)-(Pu.1)TH

g 11.17;“, x, ”(1.1)....” - 35H u (9.1") - (Pu. x) u

. “yh(Pu.1)-(PuoX)T“

911..
"here = [o J(t(Pu.1)+(1--t)(uh.1h))dt

Hence

H (uh: Ah) ' (Pu: X) H S (1 (hot 10 u) L (poo up X) H (uh: 411) ' (Pu: )x) H

+ Hwh(Pu.1)-(Pu.1)TH
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(1-a(ho.1.u)L(pO.u.1»H(uh.1h)'-(Puo1)H.S ”Yh(PuoX)"(PuoX)TH

(3.65)

Also since

it" (Pu. 1) - (Pu. 1)T = (11;. 1) d)“ (Pu. 1)T

= J-(11>u.1) [¢h(Pu.1)T-¢h(u.1)T]

‘we Obtain upon using (3.35) that

”(h (Pu. 1) - (Pu. MT” g ”J'alm' 1) n Ml(u.1)hp (3.66)

Combining (3.65) and (3.66). we get

M1 (u. X) a (h 0 7w u)

1’” S l - a(ho.1.u)L(po.u.1)

Ml(u.1)o(h .1.u)

1 - a (ho. 1. u) L (pom. 1)

 

I] (uh.1h) - (Pu. hp Vh g ho (3.67)

 

Taking A(po.ho.u.1) = (3.68)

then completes the proof of the theorem.

As a result of the proof above we also have the following.

Cerollary. The discrete solution (uh.1h) converges to the

exact solution (u.1) as the mesh size tends to zero.

Proof. ‘We write

(uh.1h) - (u.1) = (uh.1“) - (Pu.1) + (Pu.1) - (u.1)

Thus

H (uh.1h) - (u. 1) H g H (uh.1h) - (Pu. 1) H + H (Pu. 1) - (u. 1) U

h h
gl] (u .1 ) - (Pu. 1) H +n||Pu-u|| (3.69)

Combining (3.69) with (3.67» and from.(3.33) we Obtain

ll (uh.1h) - (u. 1) H S D(u.1.ho. pomp Vh 6 (0.ho] (3.70)

and the corollary is proved.
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We conclude this section by remarking that the solutions

considered here are even periodic solutions. These solutions

become normal modes if they also satisfy the condition x(F/Z) = 0.

In fact. the proofs in this section are also valid. with minor

modifications. for odd periodic solutions as well as for normal

modes. In order to treat odd periodic solutions the natural

boundary conditions x’(0) = x’(v) = 0 are to be replaced by the

boundary conditions

x (0) 0. x (Tr) = 0 (3. 71)

Hence the space H is taken to be

H = (x(s)lx(s) is vector-valued function such that

x(s). x'(s) 6 L2[0.v]. with x(0) = x(v) = 0]

with the inner product

. r

<x.y>H = I x'(s).y’(s)ds (3.72)

. O

and the corresponding norm

7T

”X“2 = $0 IX’(s) lzds (3.73)

Moreover. since for the above space

uxu2 3 M (3.74)

(3.15) is valid and all the results of Section 3.2 hold. Similarly.

to treat the normal modes the natural boundary conditions

x’(0) = x’(v) = 0 are to be replaced by the boundary conditions

x(0) = 0, x’(Tr/2) = 0 (3.75)

and the space H is taken to be
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H = [x(s)lx(s) is vector-valued function such that

x(s). x(s)’ 6 L2[O.V/2] with x(0) = 0]

‘with the inner product and norm are as given by (3.71) and (3.72)

respectively. Hence all results of Section 3.2 hold.

3.3. The Continuation of The Solution

We consider the continuation problem for the solution

(uh.1h) of ¢h(uh.1h) = 0 with E being the continuation

parameter. We show such a solution (uh.1h) can be continued if

it is isolated. Also. we show that under certain conditions. a

solution (uh.1h) may be continued by skipping over bifurcation

points where the JacObian matrix is singular.

3.3.1. Continuation of an Isolated Solution

In Section 3.2 we proved that if the exact prOblem ¢€v.v) = 0

has an isolated solution (uo.10) for a given E = E0. then the

discrete prOblem ¢hfwh.vh) = 0. for small mesh size h. corres-

pondingly has an isolated solution (uh.1g) for E e E0. More-

over. if we assume that the exact prOblem has an isolated branch

of solutions (u(E).1(E)) in a neighborhood of E0. say

IE-—EOI < e. where e is a positive real number. then the

following theorem can be proved.

Theorem 3.3. The finite element solution (ug.1g) can.be

uniquely continued. for small mesh size h. in the neighborhood

]E-EOI < e.
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Proof. By Theorem 3.2. for each E in IE-Eol < e. the

discrete prOblem has an isolated solution (uh(E).1h(E)) with

h h

0 x0
u a uh(E = 1h(EO). Moreover. by writtingo).

(uh(E).1h(E)) - (uh(Eo).1h(Eo)) = (uh(E).1h(E)) - (u(E).1(E))

+ (u(E).1(E)) - (u(Eo).1(Eo)) + (u(Eo).1(EO)) - (uh(Eo).1h(Eo))

and upon using (3.69) and the continuous dependence of (u(E).1(E))

on E. we have

h h h

H (u (E) o )1 (ED) " (u (E0) 0 X (EO)) H S 5 (E00 5) (3 o 76)

with 6 a 0 as e a 0. Hence (uh(E).1h(E)) depends continuously

h h

on E. Furthermore. for all E in IE-EOI < e éafifignn guiégaj

  

satisfies P h. -

du E

dE

J“ h h h = ¢§<uh(E).1h(E)) (3.77)
(11 (13).). (E)) 31.51%.

E

Now since Jh h is invertible and ¢E(uh(E).1h(E))
h

(u (E0) 0 X (E0) )

= (0.-F). we have

  

duh E q

dE
0

h = [Jh h h J ’1 (3.78)

d) (g) (u (E).1 (2)) -W

- d3 4

h ' h

Hence (Qflaéfil'.éiaé§1) is uniquely defined for all E in

IE-Eol < 6. This then implies that the solution (uh(Eo).1h(Eo))

can be uniquely continued with the continuation parameter E.

In the following theorem we show that Newton's method can

be used to generate this approximate branch of solutions

(uh(E).1h(E)).
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Theorem 3.4. Let (uh(E).1h(E)) be the isolated branch of

solutions of ¢h(wp.vh) = 0 for E in IE-E0l < 6 mentioned

above. Suppose that there exist constants L(€.EO) and

p = p(e) > 0 such that

h h
nah -Jh u.g L(e.E )

(uh(Eo).1h(Eo)) (w .v ) 0

II (uh (:30).1h (130)) - (wh 12h)“ (3.79)

for (wh.vh) E 82(uh(Eo).1h(Eo)). Then if 6 is chosen small

enough such that

”(Jh
-l 2

(uh(E ) 1h(E ))) H
O ' O

.1
e L(Eo.e) < 2 (3.80)

. h h w .
Newton iterates {(Wn'vn)}n=0 defined by

(a) (w§.v3) = (uh(Eo).1h(Eo)) (3.81)

(b) (w§+1.v:+l)T = (wflav:)T-[Jh h h 1-1 ¢h(w§.v:)

° (Wno Vn)

n: 0,132.... (3082)

converges for each E in lE-—Eo] < 6.

Proof. The existence of p = p(e) is known from Theorem

3.3. From Lemma 3.3 we know that L(e.Eo) exists.

Let us consider

h h T h h T _ Th

(W10 V1) " (Woo V0) " "[ h h .woo V0

(wol V0)

0 f - h 0

Now since - J . hence non-singular. and
h h h h

h h h
¢ (u (so).1 (30)) = 0 for E.= 30 we get
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)1 mi. (31‘) - (.313) n s H (ah 1'11) He)h (1h (30) .1h (30))
h h

(u we) . 1 (30))

3 1W“
-1

) ll lE-E Ih h 0
(u (so) .1 (30))

or

H (whmlf) - (.313) H < Hm“ h J’llle (3.84)
1 h

(u (so).1 (130))

Moreover. since for the quadratic convergence of Newton's method

[29] we require

Hm" h h ]-l" H (wilt Vii) " (W30 V3) ||L(€oEO) < % (3.85)

(11 (E )ox (E ))

0 0

Thus. by (3.84) condition (3.80) suffices for the quadratic

convergence of Newton's iterates [(w:.v:)};=o to the unique

solution (uh(E).1h(E)) of ¢h(wh.vh) = 0 for each E in

[E-EO] < 6.

3.3.2. Continuation Past a Bifurcation Point

An energy E = Es where J(u.1) becomes singular and dif-

ferent branches of solution meet is called a bifurcation point.

For E in a neighborhood of E8 the number of branches of solu-

tion changes. The number of "bifurcated branches of solution"

depends on the dimension of the null space of J(u.1)°

Let us consider the situation as depicted in Figure 3.2

where in a neighborhood of E5 the number of branches of solu-

tion changes from one to three. The corresponding situation for
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finite element equations ¢h(vp.vh) = 0. with h being small

but fixed. need not have a corresponding bifurcation point as

illustrated in Figure 3.3. On the other hand the equation

¢h(vp.vh) = 0 may have a corresponding bifurcation point as shown

h
in Figure 3.4. i.e.. there exists a bifurcation point E8 at

which Jh h h h is singular. The change of signs in the

(u (Es)o)\ (E

h

s
)

determinant of the Jacobian matrix J guarantees
h h h h

(u (Es) . 1 (138))

the existence of such bifurcation point. In this case we show

in the following theorem that we can jump over such a bifurca-

tion point in continuing the solution from E1 to E2 as shown

in Figure 3.4.

Theorem 3.5. Let (uh(E).1h(E)) be a smooth branch of

solutions of ¢h(vP.vh) = 0. on which Jh h h is non-

(u (E) o )s (3))

singular for E E [E1.E2] - (E2). Suppose that there exist

constants L(p.E) and p > 0 such that

Ith h h -Jh h h H s L(p.E) II (uh(E).1h(E)) — (whnah) H
(‘1 (E)a)\ (E), (W 0V)

(3.86)

for (wp.vh) E 52(uh(E1).1h(El)). Then if E is such that

(N(Jh )'lI]}ZIE-Ell L(P.E) <% (3.87)
h h

(u (E1) . 1 (131))

. . . . h h

11:0 w1th 1n1t1al guess 6.70.10)

h
s.

the Newton's iterates {(w:.v:)}

= (uh(E1).1h(E1)) converges for E ¥ E

Preo . Similar to that of Theorem 3.4.
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Figure 3.2. The prOblem 0(w.v) = 0 has

Es as a bifurcation point
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Figure 3.3. The problem ¢h(wh. vh) = 0 _ does not have

a corresponding bifurcation point.



48

    

   

 

\ I
\‘

 
 

I i
I “"‘"."“""

l I i

' I I

i v' I
| I

i i I

i . I
1. Jh E A E

E1 E8 2

h
Figure 3.4. The problem (I) (whwh) = 0 has

a corresponding bifurcation point E2.
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3.4. A Numerical Algorithm

In this Section we present an algorithm for determining an

isolated solution branch as well as for treating bifurcated

branches. The algorithm depends in part on the assumed form for

the potential energy function. V(x) = Q(x) + N(x). where Q(x)

is quadratic in x and N(x) contains higher order terms.

(Under slight modification it can be applied to a more general

V(x)).

As V(x) = Q(x) + N(x). for sufficiently small values of

the energy E the nonlinear part of grad V(x). i.e.. grad N(x).

acts as a small perturbation to its linear part. i.e.. grad Q(x).

we know that this linearized prOblem

-1h <(uh)’.(YE)’> + <grad Q(uh).Y2> 0 (3.88)

i = lprooooV

has exactly m-distinct linear normal modes each with frequency

independent of E. we start our algorithm by Obtaining these

m-primary branches.

Our algorithm consists of the following steps:

Step 1. Solve the linearized problem (3.88) which can be

written as

h .

A0 = 1 80 (3.89)

which is a generalized eigenvalue prOblem. The matrices A and

B above each contains m x m blocks with block size v x v.

The eigenvalues and the corresponding eigenvectors of (3.89)

are obtained using the "EISPACK" which is a collection of FORTRAN



SO

subroutines* which compute the eigenvalues and/0r the eigenvectors

of various classes of matrices [30].

By using the above routines we Obtain m x v eigenvalues

counting multiplicity and their corresponding eigenvectors. As

we know that the linear problem has exactly m distinct normal

~modes it is necessary to omit the extraneous eigenvalues and

eigenvectors introduced above.

We normalize each of the representative elements to the

desired energy level by using the linear part of (3.12). that is

12
2 <(uh) ’. (uh) ’> + <0 (uh) .1> = 78 (3.90)

which can be rewritten as

h

iz-QTBQ + QTAQ — WE = 0 (33-91)

We now let (uh.1:) denote one of these representative normalized

solutions. where u2(s) = ((uh(s))1.... (u:(s))m) and

h ' h ._
(uL(S))i =j21q(i-1)V+j Yj(S)l- l.2.....m

Step 2. Apply Newton's method to (3.11) and (3.12) with

initial guess (u2.1:) to generate the sequence of iterates

[(w:.v:)} defined by

(a) O;Wth)= (11L.LKb (3 o 92)

h h T_ h h T -lhhhT

(b) (“n+1'Vn+1’ ’ (wn+l'vn+l) "(J:wh vh)) ¢ n'vn)

n' n

(3.93)

 

*These subroutines are translations of the ALGOL procedures

published in the handbook series of Springer-Verlag by Wilkinson

and Reinch [31]. _
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Solving (3.93) is equivalent to solving the linear system of

equations

h h h T _ h h T
J( h vh) (bwh.0vn) — (wh.vn) (3.94)

Wn' n

where

h _ h _ h _ h _ h '
6w - wh+1 w . bun - Vn+l Vn (3.95)

To solve (3.94) we use Gaussian elimination procedure with partial

pivoting to decompose Jh h h into a product of a lower triangu-

(W 0V )
n n

lar matrix L and an upper triangular matrix U. i.e.. we find a

permutation matrix P such that

th = LU (3.96)

(wh Vb)
n' n

Solving (3.94)_is equivalent to solving the two linear systems

h h T _
U(5un.61u) - Y

and ‘ (3.97)

_ -1 h h T
LY - P (bun.61n)

Iterative improvement and double precision can be used to increase

the accuracy of the solution [32]. With the assumption that

Jh is nonsingular. the above sequence of iterates converge

(uh 1h)
L' L

to some limit. (u2.12) say.

Step 3. Increase the continuation parameter E by a small

amount 6E and repeat Step 2. with initial guess now set to be

(u¥.12). In doing this we may have skipped over singular points.
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The steps 2 and 3 above generate an approximate solution

branch (uh(E).1h(E)).

Step 4. We return to the neighborhood of each singular point

and locate it accurately (i.e. use false position or bisection to

determine the zero E: of det Jh h h ). In particulan,simple

(u.1)

or odd order roots can be determined by the sign change in

det Jh h h . (It is thus necessary to record the number of row

(u oh)

changes in the LU-decomposition with partial pivoting.)

Step 5. To switch over to a bifurcated branch we must

compute an approximation to a point on this bifurcated branch.

To obtain such approximation we must construct several distinct

h h

tangent vectors (Qflaéfil'.§13é§1)' at the point E = E: best

approximating the bifurcation value for E. we illustrate how

this construction can be done in the following.

h h

Let us recall that %§;. %%5) is the solution of

h h
h du d; T _ _ T

(u ok )

which implies

h h
h du h d1 _

u 1

and

h h
h du h d1T + T —— = -1r (3.99)
“1h dE 1h E

For the solvability of (3.98) we must have

Fh e R (Fh ) (3.100)
h h

1 u
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where R(th) denotes the range of the operator th. Moreover.

u u

if Fh is singular Jh will also be singular under
uh (uh.1h) -

mild conditions [33]. It suffices to study singular solutions at

which (3.100) holdstogether with

dim N(th) = codim R(th) = k‘2 1 (3.101)

u 11

From (3.101) we have the existence of elements v? E Sh and

Y?* E (Sh)*. where "4" refers to the adjoint space such that

N(F:h) span[v?.....v:} (3.102)

N((FEh)*) span (y$*.....y:*] (3.103)

with

<vg‘*.v*;> aij 1 s 1.3 s k

New from (3.100) we can conclude that there exists a unique element

VS 6 SI,1 such that

h .
Fh+8hyo=0; <v§.yo>=0 1g3gk (3.104)

Hence from (3.98) and (3.104) we have

h k
du Z th

-_ = a o o (3 O 105)

dB j=0 j j

where

h d)“ h duh .
a = and a. = <Y*.'-——> 1.S j‘g k (3.106)
C) dB 3 j dE h h

du. d1.

In order to construct several distinct tangents (753' 7%?)

i = l. 2..... we need to determine different sets of a? 0 g j g k.

Techniques to obtain such a? can‘be found in [33. 34]. We now
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take

h

du (E )

uh (E) = uh (E0) + (E-EO) fit—'9—

dxh(E ) (3.106)

h _ h _ _____J;_

l (E) — 1 (BC) + (E 130) dB

as an initial guess to a solution on a bifurcated branch and

return to Step 2. where E is taken far enough from 30 to

insure that the convergence of Newton's method is not to the origi-

nal or primary branch of solution.

As an alternative algorithm that may be less costly, especial-

ly in the case when m > 2 we make the following modifications:

Let us consider the Jacobian matrix
P

Fh Fh

h _ h h

th‘“ "

h h

b u 1 

where th is a (mxv) x (mxv) matrix th and T h are

u l u

column and row vectors of order m x v, and T h is a scalar.

X

To solve (3.94) it suffices to determine yh and 2h satisfying

h

F h y = P h (3.107)

u l

th zh = uh (3.108)
n

u

and then

01" = (T .zh+>.h)/T - Th 'yh (3.109)
n uh n 1h h

n n un

h _ h h h

bun - z - blny (3.110)

. . . . h . Jh

We apply Gauss1an elimination to F h . instead of all h h ,

n (Una Kn)

to Obtain matrices P1,L1 and U1 such that



h _

n

h h h
and to compute the null vectors of F h and (F h)* at E = E

u u s
n n

we solve

th vb = buh (3.112)

u

(th)*(yh)* = auh (3.113)

u

h denotes the last correction in Newton's scheme inwhere 0u

Step 2.

The economy in this alternative algorithm comes from the fact that

the LU-decomposition of th has already been performed.

u



Chapter 4 Numerical Results

In this chapter we apply the numerical algorithm discussed

in Chapter 3 to some special classes of prOblems introduced in

Chapter 2 with V(x) = Q(x) + N(x) where Q(x) is quadratic in

x. In Section 4.1 we review properties of the so-called piecewise

linear shape functions that are used in the construction of the

finite element subspace Sh. In Section 4.2 we consider free

vibrations of nonlinear undamped single degree of freedom systems.

with the special form of V(x) mentioned above. for which exact

solutions are known. The approximate finite element solutions

are compared with the exact ones so as to assess the accuracy of

the former. In Section 4.3 we consider free vibrations of non-

linear systems with two degree of freedom and present examples in

which bifurcated branches of solutions exist. In Section 4.3 we

also compare the finite element solutions with approximate solu-

tions Obtained by a finite difference scheme.

4.1. The Linear Elements

In order to obtain approximate finite element solutions we

h the space of scalar-valued functions which arechoose for T

linear over each finite element and continuous at the nodes which

we assume to be equally spaced, i.e.

+ h i = l.2....,n and s = O. s = F (4.1)
8i = si-l 0 n

h = 1T/n (4.2)

56
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It can be easily verified that the functions defined by

h
‘YO(s)=--SH+1 ogsgh (4.3)

is)" (1-1) (i-l)h$s$ih

12(3) = (4.4)

-%+ (1+1) ihgsg(i+1)h

¢Wm =§-m-1) (45)
n h °

constitute a basis for Th [28 ] (Figure 4.1). Hence v = n + 1

and any trial function uh E Sh is of the form uh = (ug.....u:)

where

h n h
ui= j§0q(i-l)n+j ‘1’].(s). lgigm (4.6)

Upon assuming that V(x) = Q(x) + N(x) where Q(x) is quadratic

and N(x) is quartic the finite element equations become

-1h 30 + A0 + N(Q) = 0 (4.7)

1h

3- QTBQ+':'2LQTAQ+M(Q) -1TE=0 (4.8)

where A and B are m(n-+l)xm(n-+l) block matrices in which

each block is an (n-hl)x(n-+l) matrix whose entries are scalar

multiples of the following tridiagonial positive definite matrices

with entries

figh' i = j #[0 or n

’T h h h
I Yi Y. ds =4 3' i = j = O or n (4.9)

O 3

h . .

g ll-Jl=1

g0 otherwise 
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Y: (s)

\ _ N /
5'-Th jh 75H)?! (n-1)h nh 

Figure 4.1 Piecewise linear basis functions



 

r

2' i = j ¥ 0 or n
h

n %- i = j = 0 or n

h I h I

j‘ 01'.) (1.) ds = (4.10)

o 1 3 1
1; li-jl = 1

L0 otherwise

and Q is m(n4-1) vector whose entries are the q(i-1)(n4-1)4-j°

M(Q) is a scalar quartic function in q(i-l)(n4-l);jNWith coef-

ficients involving the quantities

01:”k = j: nggvgvfi ds

'% i=j=k=za¥0 orn

%. i = j = k = L = 0 or n

= ( 3% 1=j=z.|i-k|=1 (4.11)

5110- iéj.£=k.li-kl=1

L0 otherwise 
and N(Q) is the gradient of M(Q) with respect to Q.

we conclude this section by remarking that if the boundary

conditions x(0) = x(fi) = 0 are imposed on elements of Th,

then v = n - 1, Th = spanf??.....?§_l}, and q(i-l)(n-+1) = 0

= q(i-1)(n-+1)-+n. for 1.3 i g,m. The resulting nonlinear

algebraic system of equations as given by (4.7) and (4.8) is then

modified by deleting the first and the last rows of each block of

matrices A and B. Similarly if we are concerned with the

approximate normal modes the mesh size h is equal to '§% instead

of E’ and the boundary condition x(0) = 0 is to be imposed on
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elements of Th. Hence v = n, Th = spaan?.....Y:} and

q(i-l)(n-+1) = 0 for 1.g i g_m. The resulting nonlinear alge-

braic system of equations as given by (4.7) and (4.8) is then

modified by deleting the first row of each block of matrices

A and B.

4.2. Problems with a Single Degree of Freedom

The governing equation of motion for the free vibration of a

single degree of freedom system in Figure 4.2 is

3:'+-g-V;=0 (4.12)

where without loss of generality the mass is normalized to unity.

The first integral of the system (4.12) is

2 + V(x) = E (4.13)in}

For a given total energy E equation (4.13) describes an

equi-energy curve in the (x.x) plane (known as the phase

plane) with time being the parameter. It is known [35] that a

solution x(t) of (4.12) is periodic if and only if the corres—

ponding equi—energy curve is closed.

Let us consider the special form of V(x) we mentioned in

Section 4.1, that is

a a

V(x) = 71- x2 + 73- x4 (4.14)

where a1 and a3 are constants with a1 being positive. These

constants are known as spring constants. Furthermore the spring

is said to be "hard" if a3 is positive. and is said to be "soft"

if a3 is negative. We have a "linear" spring if a3 vanishes.
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\
/

  

 

Figure 4.2 A single degree of freedom system
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From equation (4.13) and the assumption of al > 0 we may

conclude that in a neighborhood of the origin x = O. x = 0 in

the phase plane, the equi-energy curves are all closed and

nearly ellipses. The maximum displacement A is readily shown

to satisfy the relation

A2 = -al-fi/ai-+4a3E (4.15)

a3

Obtained by setting x = 0 in (4.13) and solving for x2. The

above formula (4.15) holds for hard springs as well as soft

springsand yields real and positive A2 for small and positive

E. On account of the symmetry of equi-energy curves in x and

x the period T of the motion can be expressed in terms of

elliptic integrals [ 36]. For the case of a hard spring

 

 

T = 4 K(kyg) (4.16)

«a +a A2

2 l 3

A
2 a3 ' v . . .

where k = v and K(k ,-) is the complete elliptic
l 2 l 2

2(a -+a A )

1 3 v/2 d

integral of the first kind, i.e. I ---JQ--- and for the
 

0 \/l -k§ sinch

case of a soft spring

__A@__ K «2,15. (4. 17)1':

2
V/2a14-a3A

 

 

2 “W“
where k2 = ----—§-. we note, however, that (4.17) yields

2a -+a A
l 3 -a A2

unbounded solutions as a3 a 1 since k2 a 1 and hence K a a.

1

Thus (4.17) applies only for the range of energy levels or amplitude

where (4.17) yields bounded solutions.
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It is also known that, unlike the linear case (a3 = 0),

the period of oscillation in general depends on the amplitude A.

Figure 4.3 depicts the relationships between the amplitude A

and the "circular frequency" w = %F- in the cases of linear, hard.

and soft springs.

In Figure 4.4 the equi-energy curves are shown for hard

springs and they are all closed curves. The arrows on the curves

indicate the direction in which the point (x(t),x(t)) moves with

increasing t.

For soft springs the situation are somewhat more complicated

where closed curves occur only for a range of small energy E,

beyond which the equi-energy curves become open curves and periodic

solutions are no longer possible see Figure 4.5.

In what follows we present several examples for the case of

soft and hard springs. Approximate solutions are obtained by

the finite element equations derived above and are treated as a

continuation problem with the continuation parameter being E. In

these examples we consider V(x) as given by (4.14). The amplitude

of vibration is given by (4.15) and the frequency of vibration is

as given by (4.16) for hard springs and by (4.17) for soft springs.

In Figures 4.6 through 4.19. we present both the exact

solution and the finite element solution for one degree of freedom

systems with soft springs. Different mesh sizes are used. and

the relationships between the frequency of vibration and the average

energy as well as the relationships between the frequency and the

amplitude of vibration, which for the finite element solution uh(s)



33 < 0

soft

64

 

linear

a3 > 0

hard

  \
V

E

Figure 4.3 Dependence of amplitude on frequency with

different types of spring characteristics
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Hard springs.Figure 4.4 The equi-energy curves.

 

E < O 

Soft springs.-energy curves 0Figure 4.5 The equi
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is taken as max Iuh(ih)l. as shown. Since exact periodic

0gign

solutions exist only for a finite range of energies, after which

solutions become unbounded, finite element solutions likewise

exist only for a finite range of energies. These two ranges are

close to each other as the mesh size h becomes smaller. Our

continuation technique as described in Section 3.4 fails to

converge beyond this finite range of energies as the JacObian

matrix, which depends on the solution. is unbounded.

In Tables 1 through 4 below we recast some of the numerical

results shown in Figures 446 through 4.13. These tables

serve to exhibit the absolute and relative errors in the computed

finite element solutions. The absolute error in each case is

the absolute value of the difference between the exact solution

and the computed finite element solution. The relative error is

the absolute error divided by the absolute value of the exact

solution.

TABLE 1 Errors of the finite element solutions for a single

degree of freedom system. a1 = .896. a3 = -.16.

 

 

 

 

     

Step Size F/S W/9

Error in Frequency

Averaged Energy +7 Absolute Relative Absolute Relative

0 .015 .016 .005 .005

.3 .015 .016 .005 .005

.9 .015 .019 .005 .006

l. .016 .022 .005 .007

1.1 .020 .030 .006 .009

1.2 .061 .106 .013 .023

1.21 .____ ____ .016 .029

1.22 _____ _____ .022 .040

1.23 _____ _____ .034 .064
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TABLE 2 Errors of the finite element solutions for a single

degree of freedom system. a1 = .896, a3 = -.16.

Step Size 1T/5 77/9

Error in Amplitude

Absolute Relative Absolute Relative

Average Energy

0 0 0 0 0

.3 .013 .15 .003 .005

.9 .013 .16 .003 .005

1.0 .05 .030 .005 .006

1.1 .08 .040 .005 .006

1.2 .085 .043 .017 .008

1.21 ____ ____ .022 .010

1.22 ____ _____ .028 ' .013

1.23 _____ _____ .041. .019     
 

TABLE 3 Errors of the finite element solutions for a single

 

 

 

 

degree of freedom system. a1 = .896. a3 = -l.6.

Step Size 1T/6 1T/12

Error in Frequency

Absolute Relative Absolute Relative

Average Energy

0 .011 .011 .003 .003

.06 .012 .012 .003 .003

.09 .013 .013 .003 .003

.11 .014 .020 .004 .006

.121 .045 .080 .009 .016

.122 .077 .141 .011 .021

.123 .016 .032

.124 .030 .062     
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TABLE 4 Errors of the finite element solutions for a single

degree of freedom system. a1 = .896, a3 = -1.6.

 

 

 

 

Step Size W/6 7/12

Error in Amplitude Absolute‘ Relative Absolute Relative

Average Energy

0 0 0 0 0

.06 .009 .024 .002 .006

.09 .013 .025 .003 .006

.11 .017 .028 .004 .007

.12 .026 .040 .006 .009

.121 .032 .045 .007 .010

.122 .040 .058 .008 .011

.123 .____ .____ .009 .013

.124 _____ ____. .013 .018       
The results in Tables 1 through 4 indicate that for any

nonlinear soft spring constant the absolute and the relative errors

in both the frequency and the amplitude depend on the mesh size

used as well as the averaged energy. As the averaged total

energy increases the absolute and relative errors increase

slightly. As the averaged energy approaches the critical value

where periodic solutions fails to exist the change in both the

relative and absolute errors become rather significant. Further-

more, from Figures 4.6 through 4.13 we can conclude that the

computed frequency always underestimates the exact frequency

and the computed amplitude always overestimates the exact one.

The range of errors encountered in both absolute and relative

errors varies from less than 1% to about 7%, for the mesh sizes,
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v/b and w/lz. hence our finite element method provides reasonably

accurate approximations.

Figures 4.14 through 4.19 show similar results for systems

with hard springs. Since exact periodic solutions exists for all

energy level. a solution branch can be followed as far as we

wish. The finite element equations also have the same property

and the finite element solutions can.be continued as far as we

wish.

TABLE 5 Errors of the finite element solutions for a single

 

 

 

 

degree of freedom system. a1 = .896, a3 = .6.

Step Size F/S 1T/9

Error in Frequency

Absolute Relative Absolute Relative

Average Energy

0 .015 .016 .005 .005

O 04 O 016 O 016 O 005 O 005

.12 .016 .016 .005 .005

.2 .017 .017 .005 .005

.3 .018 .017 0006 0006

.54 .019 .017 .006 .006

.78 .020 .017 .006 .006

.9 .030 .018 .007 .007     
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TABLE 6 Errors of the finite element solutions for a single

 

 

 

 

degree of freedom system. a1 = .896, a3 = .6.

Step Size TT/S 17/9

Error in Amplitude

Absolute Relative Absolute Relative

Average Energy

0 0 0 0 0

.04 .005 .018 .002 .005

.12 .009 .02 .003 .006

.2 .012 .02 .004 .006

.3 .015 .021 .005 .007

.54 .021 .022 .007 .007

.78 .026 .023 .008 .007

.9 .028 .024 .009 .008      
TABLE 7 Errors of the finite element solutions for a single

 

 

 

 

degree of freedom system. a1 = .896, a3 = 1.6.

Step Size W6 Ir/ 12

Error in Amplitude

Absolute Relative Absolute Relative

Average Energy

0 .011 .011 .003 .028

.4 .015 .012 .004 .003

.8 .017 .012 .004 .003

1.2 .019 .012 .005 .003

1.6 .020 .012 .005 .003

2.0 .021 .012 .005 .003

2.8 .023 .012 .006 .003

3.6 .024 .012 .006 .003

4.4 .025 .012 .006 .003

5 .026 .012 .007 .003      
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TABLE 8 Errors of the finite element solutions for a single

 

 

 

 

degree of freedom system. a1 = .896, a3 = 1.6.

Step Size n/6 v/12

Error in Amplitude

Absolute Relative Absolute Relative

Average Energy

0 0 0 0 0

.4 .018 .023 .004 .006

.8 .023 .024 .006 .006

1.2 .027 .024 .007 .006

1.6 .029 .024 .007 .006

2.0 .032 .024 .008 .006

2.8 .035 .024 .008 .006

3.6 .038 .024 .009 .006

4.4 .040 .024 .01 .006

5 .042 .024 .01 .006      
In Tables 5 through 8 the relative and absolute errors

in the frequency and the amplitude for the case of hard springs“

are represented. As the averaged energy increases the changes

in the relative and absolute errors are not significant. The

errors in these tables do not exceed 4% in the range of E

considered. Figures 4.14 through 4.19 show that both the computed

frequency and the computed amplitude underestimate the corres-

ponding exact ones.

 



72

_
R
M
P
L
I
T
U
D
E

 
”

’
_
_
,
.
.

:
5
”C?

CD

Oh I“' r FT I I rs [

0:43 3-36 ~:64 9:72 3:90

” FREQUENCY

Figure 4.6 Amplitude -Frequency relationships. One degree

of freedom system. Soft spring. The spring constants:

a= .896 and a3 = -1.6. -—|-—— Exact solution. _.@_‘_ finite

element solution h=1r/12. and + finite element solution

h=1r 6.

 
L

')

5:
,

k
0

(1



H
V
E
R
H
B
E
~
t
N
E
R
D
Y

73

 

r
.

1

l

-
5
8

l

0

 

0
.
0
5

1

CU

C')

C3

C3

C3   7 r I

n r: n r“

0-113 0.36 0:14 0:72 0-.

FREQUENCY

Figure 4.7 Average energy -Frequency relationships. One

degree of freedom system. Soft spring. The spring constants:

a1 = . 896 and a3 = -l.6. + finite element solution h = 1r/6,

.9— finite element solution h=1r/12 and —[-— exact solution.



1
4

H
V
E
R
H
G
E
.
~
[
:
_
N
E
R
U
Y

0
:
0
6

CD

CD

CD

3:43

1

_(

 

74

  
«:64 0-72

I

L
)

L
0

C
)

L
3

C
i
)

L
0

FREQUENCY

Figure 4.8 Average energy - Frequency relationships. One

degree of freedom system. Soft spring. The spring constants:

a1
= .896 and a =-1.6. _g_ exact solution and __@._ finite

element solution h = 1r/12.



‘3
‘
3
3

1
‘~

-
1
'
J

R
M
P
L

I

q

C3

C3

CD

CD

CD

('3

3-43 3

 

75

 

 

I

.36 8:64 0,): C
.
)

U
)

C
')

FREQUENCY

Figure 4.9 Amplitude-Frequency relationships. One degree

of freedom system. Soft spring. The spring constants:

a1
= .896 and a

3
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112

.
9
0

1   1.70 
0.00 0.40 0.80 11.20 1.60 2.00

X1

Figure 4.44 Loci of points on V(x1.x2) = E that correspond

to normal modes. Two degrees of freedom system. Finite

element and finite difference solutions (h==W/5). (a1==b1

=.8. A1=-.2. a3=.3. b1=.1 and A3=O). .g. . .9.

Finite element superabundant modes and -4-— . -£r-finite

difference superabundant modes.



Chapter 5 Summary and Conclusions

We have been concerned with the computation of families of

periodic solutions of nonlinear Hamiltonian systems. The periodic

solutions here are generalizations of the normal modes of linear

systems, for which the potential energy function is quadratic and

positive definite. When the potential-energy V(x) ycontains

terms higher than quadratic. the approximation of it by a linear

system is justified only when the total energy E of the system

is small. As E increases, terms of V(x) higher than quadratic

become important. It is natural to ask what become of the linear

normal modes.

In Chapter 2 we formulated the mathematical problem and

identified periodic solutions of the above mentioned system with

critical points of some convex functional on manifolds defined by

constant integrals of the potential energy of the system. ‘We

showed that for a given total energy E the variational prOblem

had at least one periodic solution. Continuous dependence of such

periodic solutions on the total energy E, however, was assumed.

In Chapter 3 the so called finite element method, in which

the time variable was discretized. was applied to obtain approximate

solutions for the class of nonlinear autonomous differential

equations mentioned above. We showed. upon assuming that such a

problem had an isolated solution for a given energy level E0,

that the finite element equations, for small mesh size h, also

had a corresponding isolated solution. This was established by
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a contraction mapping argument by relating the Jacobian of the

discrete problem to that of the exact problem. Furthermore, if

the exact problem had an isolated branch of solution for some E

in a neighborhood of E then, correspondingly,the finite element00

solution at E ‘was also isolated and could be uniquely continued.
0

Also in Chapter 3 we showed that under certain conditions we could

continue a solution beyond a bifurcation point. A numerical

algorithm which was presented that had been used to obtain approxi-

mate solutions. Techniques for switching solution branches at a

bifurcation point by constructing several distinct tangent

vectors at such a point were also included in Chapter 3.

In Chapter 4 the numerical algorithm discussed in Chapter 3

was applied to some special class of problems where the potential

energy function contained quadratic terms plus higher even order

terms. We first considered a single degree of freedom nonlinear

system, with the special form of potential energy function men-

tioned above, for which exact solutions were known. The approxi-

mate finite element solutions Obtained using the so called piece-

wise linear functions were compared with the exact ones so as to

assess the accuracy of the former. We also considered in Chapter

4 two degrees of freedom nonlinear systems and presented examples

in which bifurcated branches of solution existed. Finally, we

compared the finite element solutions with approximate solutions

obtained by a finite difference scheme.

In conclusion, isolated solutions are preserved by finite

element method and can be uniquely continued. Bifurcation point

need not be preserved by the finite element method. However, if
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a bifurcation point is preserved, then a solution can be con-

tinued past such a point. and bifurcated branches can also

be obtained numerically.

One question that may be raised at this point is whether

other discrete consistent schemes. for example. schemes that are

derived from the finite difference method, also preserve isolated

periodic solutions. Another direction of future research is to

develope more efficient numerical algorithms that avoid explicit

computations of the tangent vectors at bifurcation points along

the lines of work in [33, 34, 37].

Finally, we point out that the methods developed here can

perhaps be extended to forced vibration prOblems governed by

non-autonomous systems of ordinary differential equations with

periodic driving forces and possibly damping.
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