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ABSTRACT

FINITE ELEMENT METHODS FOR PERIODIC
SOLUTIONS OF DYNAMICAL SYSTEMS

By
Mohamed Shendy El-Mandouh

This dissertation deals with the problem of computing the
normal modes of nonlinear Hamiltonian systems. The normal modes
are assumed to exist and depend continuously on the total energy
E for E in some range.

The finite element method, in which the time variable is
discretized, is applied to such systems and transforms the mathe-
matical problem that is governed by nonlinear differential equations
into one governed by a set of nonlinear algebraic equations which
is to be solved for various values of E.

The main contribution in this work is to establish the
existence of solutions of the nonlinear algebraic finite element
equations by a contraction mapping argument. This is done by
relating the Jacobian of the discrete problem to that of the exact
problem. Furthermore, if the exact problem has an isolated branch

of solutions for some E in a neighborhood of E then, corres-

0'
pondingly the finite element solution that exists for Eq is also
isolated and can be uniquely continued, for small mesh size h,

in a neighborhood of Eye Algorithms for implementing the numerical

work are discussed and some illustrative numerical results are

also presented.
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Chapter 1 Introduction

This dissertation concerns numerical solutions of a class
of nonlinear dynamic systems known as Hamiltonian systems. Such
systems of ordinary differential equations arise in celestial
mechanics as well as in physics and many branches of engineering.
In the language of engineering mechanics we may describe such
systems as being composed of discrete masses that are inter-
connected by perfect, nonlinear elastic springs.

The study of periodic solutions of such dynamic systems
has remained a central problem in nonlinear mechanics since the
days of Lagrange, Hamilton, Jacobi, Hill and Poincare. A
fairly comprehensive account of the early work, up to 1920,
can be found in a monograph by Birkhoff [1].

There has in fact been a large body of literature published
on the subject of periodic solutions of nonlinear ordinary 4if-
ferential equations. It would be futile to attempt here an exhaus-
tive review of past work. We mention briefly in passing that for
single, second order nonlinear ordinary differential equations,
use of the phase plane along with functional-analytic and
topological techniques have proven fruitful in leading to many
explicit results on the necessary and sufficient conditions for
the existence of periodic solutions [2,3]. For systems of
nonlinear ordinary differential equations in which nonlinearities
are small, perturbation methods have been used [4,5,6].

The study of periodic solutions of general systems of

nonlinear ordinary differential equations is a difficult subject.



For the so-called Hamiltonian systems, however, some research

has been done. In particular, when the system has m degrees

of freedom and is linear with a positive definite potential

Vi), x = (xl,xz,....xm). it has exactly m periodic solutions
known as the normal modes. When the potential V(x) contains
terms higher than the quadratic, the approximation of it by a
linear system is justified when the total energy E of the system
is small. As E increases and terms in V(x) higher than the
quadratic become important, it is natural to ask what become

of the linear normal modes.

In 1948, Seifert [7] showed that the nonlinear system with
a convex potential possesses for any E > O at least one
periodic solution that joins two distinct points x on V(x) = E
in the "configuration space" x. Seifert's method is geometric
in nature and relies on the fact that solutions of the system are
geodesics in the x-space with time t being a parameter.

In a series of papers [8 - 12] Rosenberg considered a class
of periodic solutions of such Hamiltonian systems that are
generalizations of the normal modes of the linear systems and
referred to them as nonlinear normal modes. Rosenberg also gave
precise definitions for such normal modes in terms of solutions
of certain nonlinear boundary value problems.

A question of theoretical interest is the existence of
periodic solutions of nonlinear Hamiltonian systems. Using the
variational approach, by which special periodic solutions can be
formulated as critical points of convex functionals on manifolds

defined by constant integrals of the potential or kinetic energy



of the system, Berger [13 - 16] and Gordon [ 17] have proved the
existence of periodic solutions that are even or odd in time.
Under more stringent assumptions on the potential function V(x),
Weinstein [ 18] has proved the existence of at least m periodic
solutions of a Hamiltonian system with m degrees of freedom.

A related work is due to Moser [19]. More recently Rabinowitz

[ 20,21] has also established the existence of periodic solutions,
using the variational approach, for prescribed total energy or
given period of the motion.

In this dissertation we are concerned with the normal modes
of nonlinear Hamiltonian systems for given total energies E.

The normal modes will be assumed to exist and depend continuously
on E for E in some range and we shall develop numerical
methods for their computation. We mention that Rosenberg was

the first to recognize that for m > 2 a nonlinear Hamiltonian
system may possess more than m normal modes at some E and
this number may change as E changes. Such "superabundant normal
modes" obviously cannot exist for systems that are linear or
nearly linear for such systems are known to possess exactly m
normal modes.

For m = 2, Yen [22,23] and Johnson and Rand [ 24] have both
developed alternative characterizations of the normal modes and
used such characterizations to establish the continuous dependence
of the normal modes on E and shed light on the question of
bifurcation of new normal modes. These works involve, essentially,
embedding the normal modes into a family of solutions of initial

problems, characterized by a parameter, o say.: The solutions
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of the systems generate a continuous mapping f(a) that also
depends continuously on E and the normal modes correspond to
the zeros of f(a).

There do not seem to exist any quantitative methods for
nonlinear Hamiltonian systems of the type discussed above. In
this dissertation we shall apply the finite element method to
such systems and compute their normal modes for fixed total
energy E. Upon discretizing the time variable t with mesh
size h, the mathematical problem is transformed into a nonlinear
algebraic one which is to be solved for various values of E.

An important question that arises immediately is whether such
discretization, for small h, by the finite element methodqd,
preserves the normal modes of the system. This question is
especially intriguing in view of the fact that the normal modes
correspond to critical points, that are saddle point in general,
in the variational formulations and projection type methods
such as the finite element method, do not preserve saddle points.

The main contribution in this dissertation is to answer
the above question in the affirmative under suitable conditions.
The existence of solutions of the nonlinear algebraic finite
element equations is established by a contraction mapping [25]
argument by relating the Jacobian of the discrete problem to
that of the exact problem. Furthermore, by the implicit function
theorem [25] we know that if the exact problem has an isolated
solution for some E = E, say, then this solution can be uniquely

continued in a neighborhood of E We shall show that, corres-

O.
pondingly, the finite element solution that exists for Eq is



also isolated and can be uniquely continued, for small mesh size

h, in a neighborhood of E We shall also address the

o
question of numerical algorithms and present a number of numerical
results.

The organization of this dissertation is as follows. In
Chapter 2 we present some background materials. We shall present
there the mathematical problem, define special classes of periodic
solutions such as the normal modes and discuss the general ques-
tion of existence of the normal modes under given E and the
continuous dependence of the normal modes on E. In Chapter 3
we apply the finite element method to such systems and present
our results on the existence of solutions of the nonlinear algebraic
problem and their convergence to the exact solutions as the mesh
size h tends to zero. We shall also discuss there the continu-
ation problem as E varies and the numerical algorithm. In
Chapter 4 we present numerical results for example problems with

m=1 and m = 2, Chapter 5 contains the summary and conclusions.



Chapter 2 Periodic Solutions of Hamiltonian Systems

In this chapter we review some background materials on
periodic solutions of nonlinear autonomous systems. In Section
2.1 we formulate the mathematical problem and discuss the
several classes of periodic solutions whose numerical approxima-
tion are sought in Chapter 3. In Section 2.2 we discuss the
general questions of existence of such periodic solutions for given
total energy E of the system, their continuous dependence on

E, and their bifurcations.

2.1. Normal Modes of Nonlinear Systems

We shall consider autonomous systems of ordinary differential

equations of the form

2
9X 4 grad v(x) = 0 (2.1)
at?

where x(t) = (xl(t). xz(t)....,xm(t)) is an m vector-valued
function of time t and V(x) = V(xl.xz,...,xm) is a Cl real-
valued function of XqoeeooX o known as the potential or potential
energy function. Further assumptions on V(x) are to be specified.
Such systems are often referred to as Hamiltonian systems and arise
naturally in many physical problems. An example is given below.
Consider the mechanical system as shown in Figure 2.1. It
congsists of m masses, not necessarily equal, that are intercon-
nected by nonlinear springs. The first and the last of the masses,

m, and m.. are connected to the ground by the end springs S1
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Figure 2.1 An m degree of freedom system



and sm+l' We assume that the coordinates ;i are chosen such

that X. =0, i=1,2...,m correspond to an equilibrium con-

figuration of the system. We also assume that each spring force
Si is an odd function of its deflection u, from equilibrium.

The equations of motion are then

a%x, o o
with ;6 = §h+1 = O, We assume further that the spring forces

may be represented by their finite Taylor's expansion. It now

follows from (2.2) and the oddness of each Si in its argument

that
a%x, Ty _ .y Tin - =y
S j=l?3,... agq (x5 -%5) 7 - j=l?3,... 35414 ®3 = X549)
i=1,2,...,m (2.3)
w%ph ;b = ;ﬁ+1 = 0. By the change of variables
x; = mi/z X, i=12...,n (2.4)

and defining the potential energy function V(xl,xz,...,xm) to

be
m+l ri

a. . x. -1 X, .
1
Vi) = z ey R v R (2.5)
i=1 3=1,3,... I* m 12 5 1/2

the system (2.3) becomes

i=--ay- i=1'2.oooom

We shall assume, henceforth, that the potential function V (x)
in (2.1) is convex, positive definite and an even function of x

with V() = 0 and V(x) tending to infinity as |x| - . These



assumptions ensure the existence of periodic solutions of the
system (2.1), which we shall establish in the next two sections.
The assumptions of convexity and evenness of V (x) may also be
relaxed in some instances, as we shall point out later.

Taking the inner product of (2.1) with %f and integrating

with respect to t, we obtain

. %5:2 +V(x) = E (2. 6)

where E is a constant in time, the total energy of the system.
The over dot in (2.6) denotes differentiation with respect to t.
Equation (2.6), often referred to as the first integral of (2.1),
expresses the conservation of energy.

For a given total energy E of the system and with the
assumptions that we make on V, the solution x(t) thus lies
in the closed domain given by V(x) < E. It is well known that
when the system (2.1) is linear with V(x) = Q(x) where Q (x)
is a positive definite quadratic form, it possesses a set of m
normal modes, each of which is a periodic motion with a perod
independent of E. When V(x) is of the form Q(x) + N(x) where
IN) | = 0(]x|3) for small x, the families of periodic solu-
tions of (2.1) for small x may be considered as perturbations
of the normal modes of the linear system. We now consider several
special classes of periodic solutions of the system (2.1).

Among periodic solutions x (t) of the system (2.1) with

a least period 1, i.e. x(t+T) = x(t) we wish to consider:
(1) 0dd periodic solutions

x(©0) = x(1/2) = 0, x(-t) = -x(t):
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(2) Even periodic solutions
x(0) = k(1/2) =0, x(-t) = x(t)
(3) Normal modes
x(0) = x(1/4) = 0, x(-t) = -x(t), x(t) = x(1/2-1t)

Any solution x(t) of (2.1) gives rises to a curve, or a
"trajectory", in the x-space, with t being a parameter. For
a periodic solution, this trajectory is completely described by
x(t) for t in one period. As we indicate above, for a given
E, the trajectory lies in the closed domain V(x) < E. It is
clear that if X = O at some t, then the point x(t) is on
the bounding surface V(x) = E. Thus a trajectory intersects
the bounding surface V(x) = E if x ever vanishes. It can
also be established easily that if a trajectory intersects V(x) =E,
it must do so orthogonally. The odd periodic solutions described
above give rise to trajectories that pass through the origin of
the x-space but need not intersect V = E. The even periodic
solutions described above correspond to curves that interesect
the bounding surface V = E but need not pass through the origin.
The normal modes described above correspond to curves that pass
through the origin and intergect V = E and are those studied
by Rosenberg [8-12].- The normal modes are thus special cases
of both odd and even (by a change of time origin) periodic solu-
tions. We remark that while the existences of odd periodic solu-
tions and normal modes depend on our assumption of evenness of
V(x) in x. The existence of even periodic solutions does not

need this assumption. A well known result in this latter regard

is due to Seifert [7].
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In the case when V(x) = Q(x), each normal mode is a straight
line as the xi's are proportional to one another. Now since
V(x) = E is an ellipsoid, the m principal axes are the normal
modes.

In Chapter 3 we shall consider numerical methods for determin-
ing the special classes of periodic solutions of (2.1), with their
existence being assumed. In the remainder of this chapter we shall

discuss the existence of such periodic solutions and their

continuous dependence on the total energy E of the system.

2.2. Existence of Periodic Solutions. Their Continuous Dependence

on the Total Energy and Bifurcations

As we mentioned in the Introduction, the question of existence
of periodic solutions of the system (2.1) has been studied by
many authors. We sha;l consider here the periodic solutions of
(2.1) for a given total energy E. We remark that the periods
of the periodic solutions are functions of E and are to be
determined along with the solutions. For the purposes of theo-
retical discussions of such periodic solutions and of their
numerical computations, it is convenient to make the change of
variable t = ws in (2.1) where w is some frequency parameter

to be determined. The resulting system is

4%-x” + grad V(x) = O (2.7)
w

where the prime denotes differentiation with respect to s. We

shall then seek 2r-periodic solution x(s) of (2.7) under the
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condition

—%x'z-i-V(x) = E (2.8)
2w

which follows from (2.6), along with the solution for .

It is obvious that such solutions of (2.7) and (2.8) correspond

to 2mw-periodic solutions x(t) of (2.1) and (2.6).

Under the assumptions that we made on V(x) in Section 2.1,
the problem described by (2.7) and (2.8) is known to have at least
one periodic solution for each E. We outline below one such

existence proof based on the calculus of variations [26].

Let us consider the following variational problems:
T

(I) Determine the critical points of j [x'(s)]zds over
o

the admissible class of functions Ap defined by

= {x(s)|x(s), x“(8) € L,[0,7] m vector-valued function such
AR 2
that

: T
x(0) = x(r) = O and satisfies [ V(x(s))ds = R}
(o)

T
(II) Determine the critical points of I [x'(s)]zds over
(0]

the admissible class of functions Ap defined by
AR = {x(s) |x(s) ,x"(s) € Lz[o,v] m vector-valued functions such

that

u T
J Vx(s))as =R and [ grad V(x(s))ds = 0}
(0] (0]

T/2
(III) Determine the critical points of j [x’(s)]zds over
(0]

the admissible class of functions Ay defined by
Ap = {x(s) |x(s), x’(s) € L2[0,v/2] m vector-valued function such

that
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T/2
x(0) = 0O and I V(x(s))ds = R}
o
R in each problem above is a positive real number.
The Euler-Lagrange equations for each problem above can be

shown to reduce to
x" + Bgrad V(x) = O (2.9)

where the Lagrange multiplier B is a positive number owing
to the convexity assumption on V(x) and is identified with wz.

Also for Problem (II) above we have the natural boundary conditions
x“(0) = x’(r) =0 (2.10)
and for Problem (III) above we have the natural boundary condition
x'(r/2) =0 (2.11)

Thus the solutions for Problem (I) can be extended as odd 2r-
periodic solutions, those for Problem (II) can be extended as
even 2r-periodic solutions, and those for Problem (III) can be
extended as 2r-periodic solutions that are normal modes.

The existence of solutions for Problems (I) and (II) has been
established by Berger [14,15]. A similar existence proof,
patterned after [14], can be made for Problem (III). The periodic
solutions exist for all positive values of R and depend on R
continuously.

The existence of periodic solutions for given E can now be

made with the aid of the following lemma.

Lemma. In each of Problem (I), (II) and (III) above, the
total energy E is a continuous function of R such that E - O

as R ~+~0 and E - o as R = o,



-

be
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Proof. Let xR(s) and wp denote the solution of any of
the three problems for a given R. By (2.8) we have

E ='—15x'2 +V(x,R)
ZwR R

Since X and w depend continuously on R, so does the

R
right hand side above. Thus E = E(R) is continuous in R.
Integrating the above from O to L, where £ =T for Problems
(I) and (1I), and 'L =1m/2 for Problem (III), we obtain

L

) )
[x. (s) ]%ds + V (x, (8))ds] (2.12)
2w§ IO xR S S J‘o XR S S

E® =

As R - O we have ‘["e V(xR (s))ds - O. Since V(x) is positive definite
(e]

the above implies xR(s) =0 as R - O, By (2.7) we have
1’ 4 2 4
-3 J [x5(s) 1°as = [ grad V (xg (s)) - xp (s) ds (2.13)
we o] o)

Thus the left-hand side tends to zero as R - O. It then follows
from (2.12) that E - O as R - O. On the other hand as R - o,

4 .
we have [ V(xy (8))ds - =. As the first term on the right of
o)

(2.12) is nonnegative, we thus have E - « as R - o». The lemma
is now proved.

The above lemma implies that the range of E(R) for R > O
is the entire half line [O,»). For every E > O there is a
corresponding R and hence there is a periodic solution. The
solutions, however, need not depend continuously on E. We
shall address the question of continuous dependence of the
periodic solutions on E later in this section.

The existence of more than one family of periodic solutions can

be established for small E when V(x) is of the form Q (x) +N (x)
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where Q(x) in a positive definite quadratic form and N (x)
contains terms of degree higher than two in x. More specifically,

we have the following theorem due to Liapunov [27].

Theorem 2,1, Suppose that the V(x) above is real analytic

grad V(x) = Ax + 0(|x|2) (2. 14)

where A is m x m, real symmetric and nonsingular with positive
eigenvalues xi £ xg Leo oL xi (1 <X <m). Then the system (2.1)
possess k distinct periodic families of solutions near x = O,
provided that the eigenvalues (xl.xz.;...xk) satisfy the

irrationality conditions
xixgl # integers i,3 = 1,2,...,k, i # 3 (2.15)

The above theorem has been generalized by Berger [16].

Theorem 2.,2. With the same hypotheses on V(x) as in the
above theorem, the system (2.1) possesses, for small R > O, k
families of periodic solutions x(i)(R). i=1,2,...,k, that are
continuous in R, with the associated periods tending to ZW/Xi
as R - 0. These families are distinct if V(x) is even or if
the numbers (xl.kz....,kn) satisfy the irrationality condition

(2.15) of Liapunov.

Remark. The periodic solutions in Theorems 2.1 and 2.2 above
can be made odd or even periodic solutions or normal modes if V (x)

is assumed to satisfy the evenness assumption.
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Remark. The proof of Theorem 2.2 makes use of the varia-
tional problem discussed earlier. Using the lemma discussed
earlier we can thus establish the existence of more than one
branch of periodic solutions for small E.

The existence of at least m branches of periodic solutions
for small E for systems with potential V(x) of the form
Q(x) + N(x) was also established by Weinstein [18]. The exis-
tence of at least one periodic solution for a general given E
was also proved by Gordon [17], Rabinowitz [20], in addition to
the work of Seifert [7] cited earlier. 1It is to be noted that,
in general, it is not clear whether such periodic solutions must
depend on E continuously. Although the periodic solutions
established by Berger depend on the parameter R continuously,
as we pointed out above, and by the lemma in this section E
also depends on R continuously, the inverse function R = R (E)
need not be continuous and the question of continuous dependence
of the periodic solutions on E is not answered.

For m= 2, Yen [22, 23] and Johnson and Rand [24] established
the continuous dependence of special classes of periodic solutions
on E. More specifically, Yen's results apply to normal modes
along which V(x) is monotone and the results of Johnson and Rand
apply to what they referred to as "minimal normal modes". In both
these works the normal modes are embedded into one parameter
families of solutions of initial value problems, characterized
by a scalar parameter, a say. A certain mapping f(a) is
generated by solutions of the initial value problems. The normal

modes correspond to roots of £f(a) = O. In particular, as
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E changes, the simple roots of f(a) = O continue to exist and
depend continuously on E. Thus the normal modes that correspond to
the simple roots of f(a) = O are continuous functions of E.
Rosenberg [10] noted that a Hamiltonian system with m
degrees of freedom may possess more than m distinct normal
modes. In both the works of Yen and Johnson and Rand just cited,
it was pointed out that such bifurcations occur at multiple root
of f(a) = O. Similar results on the continuous dependence of
periodic solutions of Hamiltonian systems on E and their
bifurcations are to be expected for general m > 2, by generalizing
the works mentioned above.
We conclude this section by reformulating the questions of
continuous dependence of the periodic solutions on E and of
bifurcation of the periodic solutions in a functional-analytic setting.

We substitute )\ for l/w2 and rewrite equations (2.7) and
(2.8) as

f(x,\) =0 (2.16)

T (x, )\aE) = 0 (2.17)

The Jacobian matrix of (2.16) and (2.17) with respect to (x,)\),

which we denote by J » 1s equal to
(x4 \)
fx fx
J (%, \) (2.18)
T T
be A

We assume that for E = Eo. periodic solutiors of (2.16) and (2.17)
Xq = x(Eo) and xo = x(EO) exist. The Jacobian matrix in (2.18)
at E = EO depends on X and Ao and defines the linear
eigenvalue problem
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J = (2.19)
(X o A )
0" "o v o
where w = w(s) 1lies in the same space as x and v 1is a real

number. It is well known that if J is nonsingular, i.e.

(Xge o)
equation (2.19) above has only the trivial solution w =0, v=0,
then by the implicit function theorem, equations (2.16) and (2.17)
have a unique solution x(E) and )\ (E) for E near EO' hence
the periodic solution (xo,xo) may be continued. On the other
hand, if equation (2.19) has nontrivial solutions for (w,V)
bifurcations occur at E = EO. The number of branches of periodic

solutions near the bifurcation point E, depends on the dimension

of the null space of J(k x)* i.e. the number of linearly
o’ "o

independent solutions (w,v) of (2.19). We shall consider this

question in more detail in the next chapter.



Chapter 3 Application of The Finite Element Method

In this chapter we apply the so-called finite element method
to obtain approximate solutions for the class of problems defined
in Chapter 2. We introduce the finite element method and develop
the finite element equations in Section 3.1. We show in Section
3.2, upon assuming that such a problem has an exact solution, that
the finite element equations for small mesh size also have
solutions converging to the exact one as the mesh size tends to
zero. In Section 3.3 we discuss the continuation problem as
the total energy E 1is varied that yields isolated branches of
solutions. Finally, in Section 3.4, we present a numerical algo-
rithm which is used to obtain the approximate solutions. We also
consider in Section 3.4 the problems of bifurcation and switching
of solutions at some E where different branches of solutions

meet.

3.1. The Finite Element Equations

The finite element method [28] is closely related to the well
known classical Rayleigh-Ritz and Ritz-Galerkin methods. Let us
first consider the variational problem of finding the critical
points of some functional 1I(u), say over some infinite dimensional
space H. The Rayleigh~-Ritz method consists in replacing H by a
sequence of finite-dimensional subspaces {SL}' 2 =1,2,00.
Approximate solutions are then obtained by determining the critical

points of the functional I over such finite dimensional subspaces.

19
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In practice, some sequence of linearly independent "base functions"
q)l'cpZ' cee
that is dense in H is chosen and the subspaces s, are taken as

Sy = span{ml.vz,...,wnzl for some integer n,, with n, - =

as {4 - », A trial function u, in Sz is of the form

n
q;%4 (3.1)

with SO CYRRRPY: 4 being unknown coefficients. The critical
)

points of I(ul) over S‘ are given by the set of q;'s

is= 1,2.....n£. that are solutions of the equations

2L-o i=1,2
= = lylpeeey (3.2)
aqi 4

Let us now consider the problem of solving the following

equation
Iu = £ (3.3)

where L is an operator over an infinite dimensional subspace
H and f is a given element in the range of L. If <, >
denotes some inner product, then (3.3) is equivalent to
<Ia,v> =<KEf,v> Y v €H (3.4)

Moreover, if L 1is a differential operator and <, > 1is an
integral, then integration by parts together with the boundary
conditions can reduce the smoothness requirements on elements of
H. A solution of the resulting system is referred to as a weak
solution. The Ritz-Galerkin method consists in substituting the
u, given in (3.1) above into (3.3) and then determining the qi's
is= 1,2,...,nz, such that

<Lu‘,vl> = <f,v£> vv, €5, . (3.4)

or equivalently
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<Luz,¢i> = <f,wi> for all i = l,2,....nz (3.5)
which is a system of n, equations in the qi's is= 1.2,....nz.
Equation (3.5) implies that one must determine the qi's
i= 1,2,...,n, such that the error

is orthogonal to each of the qi's i-= 1.2....,n‘.

We note that in general the Ritz-Galerkin method is applicable
to a broader class of problems as solutions of variational problems
satisfy their Euler-Lagrange equations which we take to be (3.3),
while not every equation of the form (3.3) has a variational
formulation with (3.3) being the associated Euler-Lagrange equations
the two methods are often equivalent.

In the finite element method, the subspaces, which we denote

by sP

computations. Also, since h here is a "mesh size" the subspaces

are construced in a systematic way that simplifies the

Sh become dense in H as h - O. As an illustration let us
consider the space B of all scalar-valued functions on the interval
[O,m] subject to some smoothness requirements. The finite element

subspaces are constructed as follows:

(a) The domain [O0,7] of x(s), x(s) € B, is divided into
subintervals by means of points

=0, s_ =T (3.7)

8; =8;,%+h; i=12...,n and n

s
o
which are called nodes or nodal points. We define the mesh

size h by

h = max-hi (3.8)
1<ikn
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The open subintervals 8.7 <s < s, i=1,2,...,n, are called
finite elements. We suppose the subintervals are such that

h-0 as n =+ o,

(b) A "shape function" in the form of a polynomial of fixed
degree r > 1 is introduced over each finite element i =1,2,...,n.

Each shape function is thus characterized by r + 1 parameters.

(c) These shape functibns are joined at the nodes by
certain smoothness requirements and made to satisfy certain
required boundary conditions to yield the so-called trial functions.
The requirements mentioned above result in the elimination of some

of the parameters.

(d) The number of the remaining free parameters characterizes

the dimension of the finite element subspace which we call Th.

h

Let this number be Vv say. The construction of T above implies

the existence of a set of base functions tg. j=1,2,...,Vv, with
local support, such that

™ = span[*?.....wg] (3.8)

As Xx = (xl(s).....xm(s)) is a vector-valued function, in

our problem, we use '1‘h X 'I'h XeooX h m-times as our finite

element subspace which is denoted by Sh. Then any trial function
uh € Sh is of the form
u? = (u?,....ug)
where
v
u? = Z D (5-1) vij w?(s) for i=1,2,...,m (3.9)
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The weak formulation of our problem introduced in Chapter

Au’,v> + <grad V(u),v> =0 Y v € H
where < , > denotes the L2[0,v] inner product.for Problems
I and II, and LZ[O,%J for Problem III. Upon integrating the
first term of the above equation by parts and using the boundary
conditions we get
-x<u’,v’> + <grad V(u),v> =0 VY v € H (3.10)

Hence the Ritz-Galerkin equations are

AP i) 7 (1) > + <(graa v, ¥0> = o (3.11)
for all 1< j<v and 1< i m

Now since xh is also undetermined, we add to our system of

equations the averaged energy equation, i.e.,

h
%((uh) " (uh) >+ <V(uh).1> -TE =0 (3.12)

We thus have in (3.11) and (3.12) a systemof Vv xm + 1 equations
in the unknowns D (1-1) v+j and kh.
Our main task in the next section is to show that the above

system possesses a solution (uh,xh) that converges to the exact

solution (u,)\) as the mesh size h tends to zero.
3.2. Existence of Approximate Solutions and Their Convergence

In this section we shall show that under suitable conditions,
if the problem described in Chapter 2 has an exact solution,
(u(E),\(E)) say, for a range of E then the discrete problem also
has a solution (uh,xh) converging to (u,)\) as the mesh size
h tends to zero. We assume that the exact solution u here is

an even periodic solution.
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In order to establish the above we introduce the space
H= {x(s) | x(s) is a vector-valued function such that
x(8),x’(s) € Lz[o,v]]. H is a Hilbert space with the inner

product
T

<Koy>y = [ [x(8)ey(s) +x’(s) -y’ (s) ]ds (3.13)
(o]

and the corresponding norm

m
Ix[12 = [ [lx() ]2+ |x"(s)]%1as (3. 14)
o]

If we denote by <, > and || the Lz[o.v] inner product and

2
norm respectively, it immediately follows that

max (||x]|,. lx“ll,) < [|x|| for all x € H (3.15)

Let H denote the set of all bounded linear functionals on H

which is a Banach space under the norm

£l = sup |£(x) | (3.16)
X €H
llll=1
where |:| denotes absolute value. For simplicity we shall not
make distinction between norms on H and E. It can be easily

checked that the product spaces H x R and H x R under the

norms

lull + [A] Y@, €H xR (3.17)

| (@, ) ||

€N = €l + Ia] V(E,2) € B x R (3.18)

are Banach spaces.

Let us consider now the finite element subspace Sh and
define P to be the projection of H onto Sh, i.e.

<u,vh>H = <Pu,vh>H Y vh € Sh - (3.19)
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let P1 be a mapping from H x R onto Sh X R defined by

P, (up)) = (Pu,)\) V(u)) €HXR (3.20)

then Pl is well defined since P is.
Let us also define ¢ to be the mapping from H x R into
HX R by
dbm,2) = (FMm,\),T@2\)) V() €HxR (3.21)

where f(u,)\) is defined implicitly by

T W
f£,\)ev==-\[ u'ev’ds + [ grad V(u-vds Vv € H (3.22)
o o

and T(u,\) is given by
T 2 T
T(u,)\) = lz‘j' |lu’las + [ V(wds - 7E (3.23)
o o

we shall denote by fh(u,x) the restriction of £(u,)\) to Sh,

that is

T T
fh(u,k)-vh = =) I uf-(vh)'ds + j grad V(u)-vhds Y vh € sh (3.24)
o o

Finally, we let g be the mapping that restricts elements of
)

Hx R to those of S" x R which is defined by

g(£,2) = (%0 V(1)) €Hx R (3. 25)

In what follows we shall assume that V(x) is such that, for

all x,y € H we have

lvx) =vy)| = o(llx~-yl) (3. 26)
IM’- I =o(x-yl) 1<i<m (3.27)

and
Iax % 3y 2, LV co(x-yl) 1<i Jgm (3. 28)

3
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We now show that
lim ||<l>h (u, \) -d)h (Pu,\) || = 0 (3.29)
h-0

where it is understood that the norm is taken over Sh x R, not

H x R. This proves the consistency of the diagram in Figure

3.1.

Theorem 3.1. For all (u,)\) € H x R we have
b (wsr) = (Pu,2) || < M(A,u) ||u- Pull (3.30)

where M is a constant that depends on )\ and u.
Proof. Since ||¢ (u,2) -=¢ (Pu,N) || = ||£(u, 1) - £(Pu, ) ||
+ |T@,\) -T(Pu,\)| it suffices to estimate each term in the right

hand side of the above equation

£ ,2) = £@u,) || = sup | (£, ) - £(Pu,)))-v|
Vv €H
Ivli=1
T L
= sup |-x [ (u’- (Pu)")-v‘ds+ [ (grad V(u)
vEH o o
|| vil=1
- grad V(Pu))-v ds|
< sup ([A]flu” = (Pu) ‘|, llv’ l|2+f 0 (|[u - Pul))
v €H
| vil=1
|v]as}
< sup Ul e = ew) 7|, lIv7ll, +0 (lu - Pul)) |Iv]],}
IIVH-

< sup (Ixlla = Pul| +0 ([lu - Pull) }]v|
||V|l 1

< (Ir] +c () |lu - Pul|
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HxR b > Hx R |
(a, 1) N (£ (a,2),T(u,)))
\
\
\
\
\
\\ god
\
Pl \ g
\
\
\
\
\
\
Y \ BV
ShXR \4 ShX:R
(Pu, A) (fh (@A) o T (u, 1))

S (£8 (Pu,0) , T (Pu, V)

Figure 3.1. Consistency diagram
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where we have used the Schwartz inequality, (3.15) and (3.27). Thus

we may write
£ ) = £(Pu, ) || < €, (1) [u-Pu (3.31)
1
where Cl is a constant that depends on u and \. Similarly,

I\ T 2 2 T
TN =T, ] = |5 [ (@)= ((Pu) )}ds+ [ (V(u) -V (Pu))as]|
(o) o
< Llg12- 1w 12 +o (u-rulpr
< Ll igari, + 1w 71 i, - 1w 711

+ O (Jlu - Pul))

< Bl up, + 1 @w 1) - @@ ‘N, 40 (fu - paf)

< (L qla] + ialy +c, (a0 I - 2y
Thus we may write
[T (@, 2) -T(Pu, )| < Cy (4, ) lu = Pul| (3.32)

where C3 is a constant that depend on u and ). Upon adding

(3.31) and (3.32), we get’
Id @) =¢Pu, V|| < MOA,w) - Pul.

If we assume that our finite element subspace Sh is consistent

of order p with H, 1i.e.
u-Pull = o(hP) (3.33)

(For example if Sh is piecewise linear then p = 2 [ 28]). Using

from (3.30) and (3.33), we now conclude that

6 (w,2) = (Pu,0) || < My (@, 2) B (3.34)

Next we establish the following corollary.
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Corollary.

14" (w,n) = & (Pu, 0 || < My (w,\) BP (3.35)
1
Proof. This follows immediately from the fact that
gob = ¢" ana [P @, - M@y, | = sup [[£7 (w2 - £ Py, ) 1-97)
h_.h
v'es
h
liv™|l=1

< sup | (£(,)) - £(Pu,2))-v]
vEH
llvil=1

Definition. We say that {¢h(Pu. A) ]} is consistent of order
p with ¢P(u,2) if (3.35) holds.

Let us now consider the Jacobian matrix of ¢ (u,)\) with
respect to (u,)\), which we refer to as J(u. A It is a bounded

linear mapping from H X R into itself defined as

w (£ £ w £ W+ VE

J X
(U, 1) v T T v Tuw+T v

L"u A b

AW v > + <K (1) W, v> = v<u’, v >
= v 2 Vv € H
A<u’,w >+ <grad V(u) sw,1>+3 |l 'Hz

(3.36)

where (Ww,v) € H X R and K(u) is Hessian matrix of V(u). We
note that the Jacobian defined here differs, slightly in notations,
from that introduced in (2.8).

Lemma 3,.1. p
HJ(u' ) -J(Pu, \) I < N(u,A\)h (3.37)

Proof. Let us consider for (Ww,Vv) € H x R
w
-J
(g (a, 2\) (Pu, )\) )
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<(K(u) =K(Pu)) ew,v>=v<u’ = (Pu) ,v"™>
Adu’ = (Pu) ‘', w> +<(grad V(u) -grad V(Pu))-w, 1> +321(||u'||§

L - || (Pw) 'Ilg) Jyven
It follows that
w
17 @, =7 eu, I = (v, v) CHXR 1 2 =9 @u, )’ [Vi\ |
Iwll+] v]=1

= sup Sup |< (K (u) =K (Pu))+w,v>
EHXR
l\VH-

IIW!|+1vl =1
- v<u’ = (Pu) ,v’>|
+ |Aa<u’ = (Pu) ‘, w’>+<(grad Vv (u)

- grad V(Pu)).w 1> + §(||u'|\§

- lew 11
o o ©du-puldlivlliviy + Il
llwll+lvl 1 ||v||-

- @) ‘el + Il = e el
+ 0 (flu - Puf) [l + L’ - 2w 7|,

(lha”ll, + 1l ) 11,0 )

<  sup (0 (Jlu = Pul]) ||w]| + [v] |lu - Pu|
(w, V) FHXR
lwll+] v]=1

+ |xllu = Pulflw]l +0 (Ju - Pul) |||

+ Lk al+ Izalh o - paly

2
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< o(flu=Prul) + @+ r] +lul)) lu-Pul

where we have used the Schwartz inequality, (3.15), (3.28) and

the inequality ||Pu|l < |lu]l. We have thus shown

o (a,2) = J (Pu, 1) I < N, (u,2) |lu - Pul| (3.38)
Upon using (3.33), we now have

o y I < N nP

@ n) "7 (Pu,n

Let us recall the Banach lemma [29]: Suppose that A and
E are square matrices such that A~! exists and ||A-1||||El| <1,

then (A +E) =l exists and

la+e) Y < Ilp"ill
- la "l
Lemma 3,2. If J(u, z) is invertible, i.e., if J -1 a, ) exists

then there exists an h. > 0 small enough so that J, 1 exists
1 (Pu, A\)

for all h € (0,h;] and is uniformly bounded.

Proof. Let us choose hl small enough such that

97 - [N (a, A R <1

(a, A) |
then from (3.37)

-1
197, 9 M9 ,n) =T pu, gl <1 for all h € ©,h)]

The Banach lemma with A = J(u, \) and E = J(Pu. \) -J(u \) implies
that J(Pu, \) exists and
1 [y
"J(Pu, \) I g LE = a(u,\,h) for h € (O.bl]
" (u )\) ” "J (pu )\) (u' )\) " (3 .39)

Moreover since from (3.37) we have
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a(u,),h) < a(u i, hy) for all h € (O,h,] (3.40)
it follows that
-1

197 pu, I < @(@orohy)  for all h € (O,hy] (3.41)

which shows that J is uniformly bounded.

(Pu, \)

Definition. Let p be a small positive real number and

let us define the following two spheres
S, (W) = (fwov) €H x Rfu-wl+]x-v] <o)
spu,n) = (6Pvh) € s® x | WP - pu] + A= VP] <o)

Let us now consider the Jacobian matrix of éh(uh. kh). which we

will denote as Jh h z ). which is equal to J ol ) ) restricted
[ ’
to Sh x R, i.e. For all h h) € S Xx R we have
h h
B n Y {=a,n.n|"
(u o A ) vh T Y at,\) vh

-Xh<“(wh) " (vh) >+ <K (uh) -wh.vh> - i< @ *, (vh) >

h
Mo 4, W™ > +<grad v (uh) 1> +-32L | ™) ’Il?,_ vvb e sP (3.42)

We now prove the following lemma.
Lemma 3.3. Jh h h) is uniformly Lipschitz continuous on
Sg (Pu,2\), that is, for all (xh, xh), (yh. uh) € Sg (Pu,\) we have
J.h h h h
LN J v, h||sL(p.u.x)||(x.x)-(y.u)\l for all h € (0,h;]

(3.43)

where L 1is a constant depending on u,\. and p.
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Proof. Let us consider

h
h w
(Jh(xh. By I, uhy) [ h:l

\V)
0P WPy ey L @ S —re?)) WL v - Ve

- @, e >

h
! + 2 e 13- e 1)

b
[: 1] (3.44)
b,

It can be easily shown, using a similar argument as in Lemma 3.1.,

that

by Il < (AP =P+ @y a®y® + 1 I - ¢l AP+ IVRD

or
bl < Ly Py™ (™ =y + 1P = Py APl + VD) (3.45)
and '
b, < (A = B b 1] g oy P,y o+ L2l Iy
1= = y2 1 P+ 1R
or

15| < 1, y™ (™ - yP I+ P = Ph WP+ VD .46
From (3.44) through (3.46) we can conclude that
3%, by = 3h byl < Teoun) 6Py - @h, WM |

where L depends on p,u and A\ since

max (Y|, IxPI) < Pl + p < |lu|l + o (3.47)

e 7, (WP > - uPay™ L W > +<grad v - graa vi™) Wt 1>

.

vvlesh
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and

max (| A", [WB]) < |A] + 0 (3.48)

Remark. As a consequence of Lemma 3.3 we have, if (yh, ph)

is replaced by (Pu,)),

I7eh 3By =T oy 3y I < TPruan) p (3.49)

Lemma 3.4. There exist Po > 0 and ho < hl sufficiently

small such that bh (uh.xh) on Sg (Pu,)\) satisfies

0
PPy - @™ | < BlIoR @™ - ¢h @,V || for all h < by (3.50)

where (uh, kh) and (_wh.vh) are in sh (Pu,)) and B 1is a

Po
constant that depends on ho. Poe A, u.

Proof. Consider d)h (uh. xh) - (bh (wh. vh). Upon applying the

mean value theorem [29] we get

h
P WP ABT - phwh, VT = B

uh—w

Xh—v

(3.51)

where

’J};=Il gh

dt (3.52)
o (tuh + (1 - t)wh,txh + (1 -1t) vh)

and T denotes matrix transposition. Let us consider the difference

~ 1
= [ % n Jat
o

-3 (Pu, 1) tul + @ - )l e+ -6V I (Pu, )

From (3.43) we have

& 1 sh
157 =3 oy, Il < fo ITeab + 1 - yw?, 2P+ @ - £y v ~ T (py, ) llOE
1 h .h
< L(p,u,x)j'o (el @A™ = Py, ) ||+ A -1t)

| 6 V) = (pu, 2 |Dat
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L L(psu,) %{ " (uho Kh) - (Pu, \) “ + ” (th Vh) - (Pu, 1) ”}
Hence,
I~
1™ = 3 pg, g || < TPruaRI P (3.53)
Now from Lemma 3.2 we know that
nJ'al,u'u | < athru) for all h € (O,h,]
Thus if we choose hy < hl and p, < p such that

/\/
(Pu, ) and E = Jh - J

"h, -1
and implies that (Jh) exists and satisfies

1, -1 “ (Pu I
Il ™ I < —— Tﬁ%-a

the Banach lemma applies with A = J (Pu, 2\)

(Pu, )\) "

a (ua, X:h )
SI-amn, O)L(po.u.x)Po all h ¢ (o’ho]
(3.55)
Hence from (3.51) we get
~/
@AM - PV = @ TR P TR PV T
which implies, upon using (3.55), that
h a( Ouo X)
" (u ) - (whoV )" < 1 - a(h 'u' \) L(pO'u' \) pO
16" WP - b VD | (3.56)

a(ho,u.x)
l-a (hoo u,\) L (pO' u, \) pO

Setting B = we get (3.50).

We now make use of our assumption that the system ¢(unv) =0

has a solution (u(E),\A(E)) for some range of E and consider

some fixed E.
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Definition. We say that (u,\) is an isolated solution

if J(u,x) is invertible.
We are ready to adjoin all the above lemmas to the fact that
(u,\) is an isolated solution of ¢(w.v) = 0 to show that the

finite element approximate system i.e.
@h (Whth) =0
. h .h
has a solution (u’',\’) «close to (u,)\).

Theorem 3.2. Let (u,\) Dbe an isolated solution of
¢(u,\) = 0 for a given E and let {¢h(hw,v)} be consistent
of order p with ¢ (w,v), that is (3.34) holds. Then for
< p and hy < h; sufficiently small, 6P x®, V1) = 0 has

Po
. . h .h . h
a unique solution (u,\") in Sp (Pu,)) for all h < ho.
(o]
Moreover (uh,xh) satisfies
h .h p
“ (Pu, ) = (u, A )” L A(poohoun)\)h (3.57)
Proof. Let us define Yh(xh.vh) by
h, h h _ ,h nT_ -1 h,_h hT
yoo(xT,v) o= (x,v0) J(Pu'x)¢ (x*, v7) (3.58)
h, h h h . . .
then ¥ (x',v’) maps Sp (Pu,)\) into itself. To show this let
(o]
(xh,vh) € SB (Pu,)\) and consider
(o)

Yh(xh.vh) - (Pu,k)T = (xh.vh)T - (Pu.x)T - J?;u.x)¢h(xh.vh)T
1
Py, )\)

-1
J (Pu,

= J? [T (Pu, ) (xh - Pu, N A) T. ¢h (xh. Vh) T]

9 [ eu, ) xP - pu, vV -0 T+o" Py, ) T

= d)h (xho Vh) T + ¢h (u, \) T_ (bh (Pu, \) T]
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The mean value theorem implies that
~
<bh(Pu.k)T-<bh(xh.vh)T=Jh(xh-Pu.vh-x)T
where
B am
=0 T v -0 @9t

Upon using (3.35) we get
o~

nwh(xh,vh)-(Pu.X)T” < “J?%u,x)u “J(Pu,k)'-Jh”

[” (xh - Puo Vh - )\) ” +M1 (u. )s) hp]
-1
Also sinceﬁu“J(Pu'k)H L a(hg,Au) for all h < hy and
[ -3 < L(pgeus M) Py Wwe get
™ e v = w0 T < o thgs MW T (PG us M) g + My (s W) @ (b, Aew) 1P,

Upon éhoosing Po and ho sufficiently small to guarantee that

P
o (hge MWL (Poe ) < 3, alhg,n,wMy (RS <2 (3.50)
we get
[P &P v - eu, ) TI < Po (3.60)
Hence
el v e st o(pu, )
Po
Next, we show that wh(xh,vh) is a contraction map on
Sg (Pu,)\), that is, if (xh,vh) and (yh,uh) are in Sg (Pu, 1)
o (o]
we have
e v - P e i | < rleP W - @R | (3.61)

where K is a constant less than unity. To show this let us consider
W B, 0 - P (yh. Wy o= VT " uh)T

- J}ll,u' M " P oM T - 6" P, WP
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-1 I R T Tl T o P T

h
e, 7 eu, L&

~
_ -1 _ h hhT_ h hT
= T u T pu,y - LT @0 T
Hence
h, h h h,h h 1 ;; h hT h h
- - - - T
“Y (X oV ) Y (Y o M )u S "J(pu')‘) llllJ(pu'x) "" (x eV ) (Y o M ) "
< alhge AW L (poshow) I x v T g, UM T (3.62)
If we set K = a(ho, x.u)L(po. x,u), then (3.59) implies that
K < 1. Thus Yh (xh. vh) is a contraction map on Sg (Pu, 1) .
(o]
Now since sh (Pu,)\) is convex, Brower's fixed point theorem
o
[25] implies that \yh (xh, vh) has a unique fixed point (uh, xh),
say, in Sg (Pu,)\) for all h ¢ (O,ho]. We thus have
0]
P = @M (3.63)
which implies that
" "M = o (3.64)

Moreover if we consider

h WP, APy - pu, T

(u’, kh)T - (Pu,)) T

= PP - P ew) + Ve - Pu T
IR - eu,n || < 1P @A) - ¥ eu, ) || + 190 a0 - Eu, ) T

r~
< 1970, 1 19 (o, 3y = T @A) = a0 |

+ ||¥h (Pu,\) - (Pu,A) T

¥ s
where %= [ Ji¢(pu,n) + -1 @) 9E

Hence

“ (uhc )\h) - (Pu, ) Il La (hoo Aeu) L (poo u, \) " (uho )\h) - (Pu, )\) ”

+ “‘l’h(Puo A) = (Pu, X)T“
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(1 = a (hgs ko) L (P us WY (0% A" = (Pu, ) || < ll¥™ P, 2) - (Pu, 0 T

(3.65)
Also since
¢ eu,) - eu T = 3g, 00 e T
= Tpg, y [0 ®a 0 T =" @, 07
we obtain upon using (3.35) that
n\yh (Pu, \) = (Pu, x)T|| < ||J-(11>u. 3 | My () hP (3.66)

Combining (3.65) and (3.66), we get

M, (u, ) a (hys Ao u)
)‘) " S l-a (hoa )x'u) L (pOO u, )‘)
Ml (u,2\) a (h., \on)

Taking A (Pgohgss)) = T oo L (g w0 (3.68)

| @, - (pu, h? vh < hy, (3.67)

then completes the proof of the theorem.

As a result of the proof above we also have the following.

Corollary. The discrete solution (uh,xh) converges to the
exact solution (u,)\) as the mesh size tends to zero.

Proof. We write
@’ P - @ = (uh.xh) - (Pu,)) + (Pu,)) - (u,)
Thus
I - @l < @®aP - @an | + [[ean - @]
<l @PDy - a0 ||+ ||Pu- vl (3.69)
Combining (3.69) with (3.67), and from (3.33) we obtain

I @\ = @) || < DA by, p)BP Vh e (0, hy] (3. 70)

and the corollary is proved.
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We conclude this section by remarking that the solutions
considered here are even periodic solutions. These solutions
become normal modes if they also satisfy the condition x(r/2) = O.
In fact, the proofs in this section are also valid, with minor
modifications, for odd periodic solutions as well as for normal
modes. In order to treat odd periodic solutions the natural
boundary conditions x“(0) = x°(r) = O are to be replaced by the

boundary conditions

x (0) 0, x(r) =0 (3.71)

Hence the space H 1is taken to be
H = (x(s)|x(s) is vector-valued function such that
x(s), x"(s) € Lz[O,v], with x(0) = x(r) = 0}
with the inner product

. T
<KoY = f x“(s).y’(s)ds (3.72)
. o

and the corresponding norm

m
Ix||% = Io |x " (s) | 2as (3. 73)

Moreover, since for the above space

ll=ll, < llxl (3.74)

(3.15) is valid and all the results of Section 3.2 hold. Similarly,
to treat the normal modes the natural boundary conditions

x“(0) = x“(m) = 0 are to be replaced by the boundary conditions
x(©0) =0, x’'(r/2) =0 (3. 75)

and the space H is taken to be
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H = {x(s)|x(s) is vector-valued function such that
x(s), x(s)’ € Lz[o,v/z] with x(0) = O]

with the inner product and norm are as given by (3.71) and (3.72)

respectively. Hence all results of Section 3.2 hold.

3.3. The Continuation of The Solution

We consider the continuation problem for the solution

(uh,xh) of ¢h(uh,xh) = O with E being the continuation

parameter. We show such a solution (uh.xh) can be continued if

it is isolated. Also, we show that under certain conditions, a
solution (uh.xh) may be continued by skipping over bifurcation

points where the Jacobian matrix is singular.

3.3.1. Continuation of an Isolated Solution

In Section 3.2 we proved that if the exact problem d&w,v) =0

has an isolated solution (uo.xo) for a given E = E then the

ol
h) = 0, for small mesh size h, corres-

pondingly has an isolated solution (ug.xg)

discrete problem ¢h{wh,v
for E = E,. More-
over, if we assume that the exact problem has an isolated branch
of solutions (u(E),\(E)) in a neighborhood of E,, say
IE-EOl < €, where ¢ 1is a positive real number, then the

following theorem can be proved.

Theorem 3.3. The finite element solution (uh,xg) can be
uniquely continued, for small mesh size h, in the neighborhood

lE-Eol < €.
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Proof. By Theorem 3.2, for each E in IE-EOI < €, the

discrete problem has an isolated solution (uh(E).xh(E)) with

ug = uh(Eo). xg = xh(Eo). Moreover, by writting

WrEaPE) - @ EYAPED)) = @A @) - e @)
+ @E),NE) - @(E . (E) + ((EDAEY) - P (ED A" (ED)

and upon using (3.69) and the continuous dependence of (u(E),\ (E))

on E, we have
h h h
| (@™ (E) s A (E)) = (" (EQ) o X7 (EQ)) || < & (Eg€) (3.76)

with 8§ - O as ¢ - O. Hence (uh(E).xh(E)) depends continuously
h h
on E. Furthermore, for all E in |E-—EO| < e @iﬁﬁgﬂn su?égnﬁ

satisfies ©  h )
du (E
dE
& no | = tpa”@®a"E) (3.77)
(0 (E),\" (E)) Ql_(_).d E
E

Now since Jh h is invertible and ¢E(uh(E),xh(E))

h
(U"(Eg) s 17 (Ey))

= (0,-T), we have

Pduh(E)—
dE )
h = [Jh h h ] -1 (3.78)
ax (E) (u (E),) (E)) -T
dE

- -
h ‘ h
Hence (anégl‘ QLaéEl) is uniquely defined for all E in

IE-Eol < €« This then implies that the solution (uh(Eo),xh(Eo))
can be uniquely continued with the continuation parameter E.

In the following theorem we show that Newton's method can
be used to generate this approximate branch of solutions

w? ®,\"@®)).
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Theorem 3.,4. Let (uh(E),kh(E)) be the isolated branch of
solutions of ¢h(wp,vh) =0 for E in IE-EOI < ¢ mentioned
above. Suppose that there exist constants L(e,Eo) and

p=p(e) >0 such that

h
[|a™ -J | < L(e,E

ey " E) - VM | (3.79)

for (wh.vh) € Sg(uh(Eo).kh(Eo)). Then if € is chosen small

enough such that

|

-1,2
)
h h

(u (Eo).x (Eo))

1
€ L(Eo.e) < 5 (3.80)

. h h, . o .
Newton iterates ((wh'vn)]n=o defined by

@  (wgevl) = @ Eg AP (E) (3.81)
(b) (w2+1.vg+l)T = (wﬁ.vg)T-[Jh h h 7t P (wg.vg)

(Wno Vn)
n-= 001120000 (3082)
converges for each E in IE-Eol < €.

Proof. The existence of p = p(e) is known from Theorem
3.3. From Lemma 3.3 we know that L(e,EO) exists.

Let us consider

h hyT h hT Ih -1 ,h,h hT
(Woe Vo)
Now since Jh = Jh » hence non-singular, and
h h h h

h, h h _ _
" (u (Eg) + X" (Eg)) = O for E = E, we get
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ladod) - Dl < ™

-1 h, h h
] (W (E.) s\ (EA))
(o} (a (Eo).)\h ” “¢ u o /o)

(Eg))
h
- 0" gAY

< @

-1
) 1B - B
h h 0
(U™ (Eg) » A7 (Eg))

or

BB = e Il < lITs”

-1
Weo V 1 e (3.84)
o"°o " € . A" &)

Moreover, since for the quadratic convergence of Newton's method

[29] we require

s

h h 17 g VD) - eigeve) L (e,Eg) < 3 (3.85)
(0" (Eg) o 27 (E))
Thus, by (3.84) condition (3.80) suffices for the quadratic
convergence of Newton's iterates {(wg,vg)]:=o to the unique
solution (uh(E),xh(E)) of ¢h(wh,vh) = 0 for each E in

IE-E& < e

3.3.2. Continuation Past a Bifurcation Point

An energy E = Ej where J(u,x) becomes singular and dif-
ferent branches of solution meet is called a bifurcation point.
For E in a neighborhood of Es the number of branches of solu-
tion changes. The number of "bifurcated branches of solution"
depends on the dimension of the null space of J(u.x)'
Let us consider the situation as depicted in Figure 3.2

where in a neighborhood of Es the number of branches of solu-

tion changes from one to three. The corresponding situation for
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finite element equations ¢h(vp,vh) = 0, with h being small

but fixed, need not have a corresponding bifurcation point as

illustrated in Figure 3.3. On the other hand the equation

¢h(vp,vh) = O may have a corresponding bifurcation point as shown
h

in Figure 3.4, i.e., there exists a bifurcation point Es at

which Jh h

h h _h is singular. The change of signs in the
(u (Es)p)\ (Es)

determinant of the Jacobian matrix J guarantees

h _h h , _h
(u (Es) o A (Es) )
the existence of such bifurcation point. In this case we show
in the following theorem that we can jump over such a bifurca-

tion point in continuing the solution from E, to E2 as shown

in Figure 3.4.

Theorem 3.5. Let (uh(E).kh(E)) be a smooth branch of

solutions of ¢h(uP,vh) = 0, on which Jh h h is non-
(u” (E),\" (E))

singular for E ¢ [El’Ez] - {Ez]. Suppose that there exist

constants L(p,E) and p > O such that

Iy h =3 Ll <t @@t E) - WY
(u” (E), 1" (E)) (w oV

(3.86)

hy

for (W, ¢ Sl;(uh(El).xh(El)). Then if E is such that

() @® )" 112|e-E,| L(p,E) < = (3.87)
@ €)) A" (€)) 1 2

h
n=0 )

with initial guess ﬁvg. )‘O
h
s.

the Newton's iterates {(wg.vg)}

= (uh(El).xh(El)) converges for E ¥ E

Proof. Similar to that of Theorem 3.4.
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Figure 3.2. The problem ¢ @w,v) = O has

Es as a bifurcation point
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S'XxXR A

(a)

S XIR A

7

(®)

Figure 3.3. The problem %%, vP) = o does not have
a corresponding bifurcation point.
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h
Figure 3.4. The problem ¢ W, V) = 0 has

a corresponding bifurcation point E:.
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3.4. A Numerical Algorithm

In this Section we present an algorithm for determining an
isolated solution branch as well as for treating bifurcated
branches. The algorithm depends in part on the assumed form for
the potential energy function, V(xX) = Q(x) + N(x), where Q(x)
is quadratic in x and N (x) contains higher order terms.

(Under slight modification it can be applied to a more general
v(x)).

As V(X)) = Q(x) + N(x), for sufficiently small values of
the energy E the nonlinear part of grad V(x), i.e., grad N(x),
acts as a small perturbation to its linear part, i.e., grad Q(x).

We know that this linearized problem

P <@, o)) >+ <graa oM, ¥ = 0 (3.88)

i = 1,2,....\)

has exactly m-distinct linear normal modes each with frequency
independent of E. We start our algorithm by obtaining these
m-primary branches.

Our algorithm consists of the following steps:

Step 1. Solve the linearized problem (3.88) which can be

written as
h .
AQ = )\ 'BQ (3.89)

which is a generalized eigenvalue problem. The matrices A and
B above each contains m x m blocks with block size v x v.
The eigenvalues and the corresponding eigenvectors of (3.89)

are obtained using the "EISPACK" which is a collection of FORTRAN
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subroutines* which compute the eigenvalues and/or the eigenvectors
of various classes of matrices [30].

By using the above routines we obtain m x v eigenvalues
counting multiplicity and their corresponding eigenvectors. As
we know that the linear problem has exactly m distinct normal
‘modes it is necessary to omit the extraneous eigenvalues and
eigenvectors introduced above.

We normalize each of the representative elements to the
desired energy level by using the linear part of (3.12), that is

A

= <@ @ >+ e, = e (3.90)

which can be rewritten as
h

%‘QTBQ +QlAQ - TE = 0 (3.91)

We now let (ug.xg) denote one of these representative normalized

solutions, where ug(s) = ((“2(5))1'°" (ug(s))m) and

whiey). = 2 vHig)i=1,2 m
L(8)); j___lq(i-l)v+j 3 1200000

Step 2. Apply Newton's method to (3.11) and (3.12) with
h
Ll
{(wg.vﬁ)] defined by

initial guess (u xg) to generate the sequence of iterates

(a) (wg.vg) = (ull'._l‘. )\2) (3.92)
h h T h h T -l,h, h hT
®)  Mpe1eVnel) S Wnaevna) - ‘Jl:wh ) O ey
n’'n
(3.93)

*These subroutines are translations of the ALGOL procedures
published in the handbook series of Springer-Verlag by Wilkinson
and Reinch [31]. _
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Solving (3.93) is equivalent to solving the linear system of

equations
gh pop (6w sv)T = (wﬁ.vh)T (3.94)
(w_ oV n
n’ ’n
where
h_.h _ _h h_ . h _ .h '
6wh = Yn+l T Yne p T Vi “n (3.95)

To solve (3.94) we use Gaussian elimination procedure with partial

pivoting to decompose Jh h h into a product of a lower triangu-
(W ,v)
n’ 'n

lar matrix L and an upper triangular matrix U, i.e., we find a
permutation matrix P such that

pgh . = LU (3.96)

h
‘Wnc Vn)
Solving (3.94) is equivalent to solving the two linear systems

h hyT _
U(6un,6xu) =Y

and ' (3.97)
_ =1, h .. hT
LY = P (6un,axn)

Iterative improvement and double precision can be used to increase
the accuracy of the solution [32]. With the assumption that

Jh h _h is nonsingular, the above sequence of iterates converge
(s A7)
L° "L

to some limit, (ug.xg) say.

Step 3. Increase the continuation parameter E by a small
amount ©6E and repeat Step 2, with initial guess now set to be

(ug,xg). In doing this we may have skipped over singular points.
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The steps 2 and 3 above generate an approximate solution

branch (uh(E).xh<E))-

Step 4. We return to the neighborhood of each singular point
and locate it accurately (i.e. use false position or bisection to

determine the zero Eg of det Jh h h ). In particular, simple
(u o)\)

or odd order roots can be determined by the sign change in

det Jh .
(uho )\h)

(It is thus necessary to record the number of row
changes in the LU-decomposition with partial pivoting.)

Step 5. To switch over to a bifurcated branch we must
compute an approximation to a point on this bifurcated branch.
To obtain such approximation we must construct several distinct

h

h h
tangent vectors @iﬁﬁgﬂw QLEéEL). at the point E = Es best

approximating the bifurcation value for E. We illustrate how

this construction can be done in the following.

h ge

h h
Let us recall that (%%;, %%;) is the solution of
h h
h du a ., T T
J G ) = (00'77)
(uha )\h) dE dE
which implies
h h
h du h d4d)x  _
F h aF + F h ag = 0 (3.98)
u N
and
h h
h du ,ph A _ (3.99)
A

T
uh dE

For the solvability of (3.98) we must have

h
Fh

€ R (th) (3. 100)
A u
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where R(th) denotes the range of the operator th. Moreover,
u u
. h . . Jh . ’ .
if F is singular will also be singular under
h h .h :
u (', 2\)
mild conditions [33]. It suffices to study singular solutions at

which (3.100) holdstogether with
. h . h _
dim N (F h) = codim R (F h) =k >1 (3.101)
u u

From (3.101) we have the existence of elements v? € Sh and

vg* € (Sh)*, where "x" refers to the adjoint space such that

N(th) = span{v?.....vi} (3.102)
u
N((F:h)*) = span {v’{*....,{*] (3.103)

with

<Y§.‘*.Y’£> =655 1<ijgk

Now from (3.100) we can conclude that there exists a unique element

Yg € Sh

such that
ht F hYo= O; <V§'Yo> =0 1<3j<k (3.104)

Hence from (3.98) and (3.104) we have
h k

du E th
= = a.vy. (3.105)
dE 3=0 J3
where
h_ ab h auP
a. = and a. =<v*, =/ => 1< j<k (3.106)
(o) dE J j° dE h h
du, dx;
In order to construct several distinct tangents (déu 15%
i=1,2,..., we need to determine different sets of ag 0< j Lk

Techniques to obtain such a? can be found in [33, 34]. We now
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take
h
du (E.)
W@E = P (E)) + (E=-Ey) '711-:—9—
arxb & ) (3.106)
h _,h _ 0
A (E) = A (Eo) + (E Eo) IE

as an initial guess to a solution on a bifurcated branch and
return to Step 2, where E is taken far enough from Eo to
insure that the convergence of Newton's method is not to the origi-
nal or primary branch of solution.

As an alternative algorithm that may be less costly, especial-

ly in the case when m > 2 we make the following modifications:

Let us consider the Jacobian matrix

Fh Fh
Jh _ h h
h . h | ¢ A
h h
u A

where th isa Mmxv) x (mxXxy) matrix th and T n are
A u

column and row vectors of order m x v, and T h is a scalar.
A

To solve (3.94) it suffices to determine yh and zP satisfying

h h h
F hY = F h (3.107)
u A
h h_ _.h
u
and then
= (v LZ2PeAly . - B oeyD (3.109)
n uh n kh h
n n YU
h_ _h h._h
éun =z - 6Xny (3.110)

We apply Gaussian elimination to th » instead of all Jh h h*

n (unv )\n)

to obtain matrices Pl,Ll and Ul such that



PlFuh = L1 Ul (3.111)
n
and to compute the null vectors of th and (th)* at E = Eh
u u S
n n
we solve
F' Y = sul (3.112)
u
h (3.113)

(th)*(vh)* = bu
u

where 6uh denotes the last correction in Newton's scheme in
Step 2.
The economy in this alternative algorithm comes from the fact that

the LU-decomposition of th has already been performed.
u



Chapter 4 Numerical Results

In this chapter we apply the numerical algorithm discussed
in Chapter 3 to some special classes of problems introduced in
Chapter 2 with V(x) = Q(x) + N(x) where Q(x) is quadratic in
x. In Section 4.1 we review properties of the so-called piecewise
linear shape functions that are used in the construction of the

.finite element subspace Sh. In Section 4.2 we consider free
vibrations of nonlinear undamped single degree of freedom systems,
with the special form of V(x) mentioned above, for which exact
solutions are known. The approximate finite element solutions
are compared with the exact ones so as to assess the accuracy of
the former. 1In Section 4.3 we consider free vibrations of non-
linear systems with two degree of freedom and present examples in
which bifurcated branches of solutions exist. In Section 4.3 we

also compare the finite element solutions with approximate solu-

tions obtained by a finite difference scheme.

4.1. The Linear Elements

In order to obtain approximate finite element solutions we

h the space of scalar-valued functions which are

choose for T
linear over each finite element and continuous at the nodes which

we assume to be equally spaced, i.e.
sy =8;,t+t+h 1i=1L,2,...,n and s,=0, s =T (4.1)

h=1m/n (4.2)

56
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It can be easily verified that the functions defined by

h
¥o(8) = -§+1 0<sg<h (4.3)
%-(1-1) (i-1)h < s < ih
i (s) = 4.4)
-ﬁ-+(i+1) ih s < (i+1)h
() =£- (-1 (4.5)
n h *
constitute a basis for TV [28 ] (Figure 4.1). Hence v =n + 1
and any trial function uh € Sh is of the form uh = (ul]'_l,...,u:)
where
2 h
u; = Zo q(i-l)n+j ‘l'j (s)y, 1 <i<m (4.6)

Upon assuming that V(x) = Q(x) + N(x) where Q(x) is quadratic

and N(x) is quartic the finite element equations become
-\h Bo + 20 + N(Q =0 (4.7)

)\h

A QTBQ+%QTAQ+M(Q) -TE =0 (4.8)

where A and B are m(n+1l)xm(n+1l) Dblock matrices in which
each block is an (n+1l)x(n+1) matrix whose entries are scalar
multiples of the following tridiagonial positive definite matrices

with entries

gﬁ i=3j3j#0 or n
T Jh h h
_f‘l’l?jds=4§- i=3j=0 or n (4.9)
o)

¢ li-jl =1

.0 otherwise
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Y (s)

NEVANYA

(3-1)h jh (G+I)h ~ (n-1)h nh

Figure 4.1 Piecewise linear basis functions



2 . o

r i=3 #0 or n
T h N % i=3J=0 or n
J ¥ (¥y) “as = { . (4.10)
(0] = |3 -2 =

“h ll JI 1

(0] otherwise

and Q is m(n+1) vector whose entries are the q(i-l)(n-+l)-+j’
M(Q) is a scalar quartic function in q(i-l)(n-kl);j with coef-

ficients involving the quantities

h, h,h h
iy = I Yi¥5¥y %k 9

f
%? i=j=%kxk=4#0 or n
% i=3j=k=4=0 or n

=<L i=9=4,]i-x| =1 (4.11)

20 ’ *
B sy 0% li-k =1

O otherwise

and N(Q) is the gradient of M(Q) with respect to Q.

We conclude this section by remarking that if the boundary

conditions x(0) = x(Tr) = O are imposed on elements of Th,

then v=Eon- 1. Th = span{‘y?,....?g‘_l}o and q(i_l) (n_’_l) =0

= q(i-l)(n-rl)-fn for 1 < i < m. The resulting nonlinear

algebraic system of equations as given by (4.7) and (4.8) is then
modified by deleting the first and the last rows of each block of
matrices A and B. Similarly if we are concerned with the
approximate normal modes the mesh size h is qual to g% instead

of % and the boundary condition x(0) = O is to be imposed on
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elements of Th. Hence v = n, Th = span[Y?.....Yg} and

q(i-l)(n4-l) =0 for 1 { i {m, The resulting nonlinear alge-
braic system of equations as given by (4.7) and (4.8) is then
modified by deleting the first row of each block of matrices

A and B.

4.2. Problems with a Single Degree of Freedom

The governing equation of motion for the free vibration of a

single degree of freedom system in Figure 4.2 is

’x’+%=o (4.12)

where without loss of generality the mass is normalized to unity.
The first integral of the system (4.12) is

lo
zx

2 ,V(x) = E (4.13)

For a given total energy E equation (4.13) describes an
equi-energy curve in £he (%, X) plane (known as the phase
plane) with time being the parameter. It is known [35] that a
solution x(t) of (4.12) is periodic if and only if the corres-
ponding equi-energy curve is closed.

Let us consider the special form of V(x) we mentioned in
Section 4.1, that is

a
V (x) =71x2+——x (4.14)

where a; and a; are constants with a; being positive. These
constants are known as spring constants. Furthermore the spring
is said to be "hard" if ay is positive, and is said to be "soft"

if ay is negative. We have a "linear" spring if a, vanishes.
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\\ %

Figure 4.2 A single degree of freedom system
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From equation (4.13) and the assumption of a; >0 we may
conclude that in a neighborhood of the origin x = O, x = 0 in
the phase plane, the equi-energy curves are all closed and
nearly ellipses. The maximum displacement A is readily shown
to satisfy the relation

2 -al +/a3 + 4a3E

AT = —= = (4.15)

- N

obtained by setting x = O in (4.13) and solving for x2; The
above formula (4.15) holds for hard springs as well as soft
springsand yields real and positive A2 for small and positive
E. On account of the symmetry of equi-energy curves in x and
§ the period T of the motion can be expressed in terms of

elliptic integrals [ 36 ]. For the case of a hard spring

T = _4 K(kl'%) (4'16)
/ 2
a, +a A
2 1l 3
A
2 3} ' T s
where k7 = and K((k,,3) 1is the complete elliptic
1 2 1’2
2(a, +a,A’)
1 3 /2 4
integral of the first kind, i.e. [ — and for the
° \/I.-ki sinzfp
case of a soft spring
4/2 r
T = K(kz,E' (4.17)
2
2a, +a. A
2 1l 3
2 —ajh .
where k2 = . We note, however, that (4.17) yields
2a, +a,A
1 3 -a A2
unbounded solutions as a3 - 1 since k2 - 1 and hence K = o,
1

Thus (4.17) applies only for the range of energy levels or amplitude

where (4.17) yields bounded solutions.
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It is also known that, unlike the linear case (a3 = 0),
the period of oscillation in general depends on the amplitude A.
Figure 4.3 depicts the relationships between the amplitude A
and the "circular frequency" w = %F in the cases of linear, hard,
and soft springs.

In Figure 4.4 the equi-energy curves are shown for hard
springs and they are all closed curves. The arrows on the curves
indicate the direction in which the point (x (t) ,x(t)) moves with
increasing t.

For soft springs the situation are somewhat more complicated
where closed curves occur only for a range of small energy E,
beyond which the equi-energy curves become open curves and periodic
solutions are no longer possible see Figure 4.5.

In what follows we present several examples for the case of
soft and hard springs. Approximate solutions are obtained by
the finite element equations derived above and are treated as a
continuation problem with the continuation parameter being E. 1In
these examples we consider V(x) as given by (4.14). The amplitude
of vibration is given by (4.15) and the frequency of vibration is
as given by (4.16) for hard springs and by (4.17) for soft springs.

In Figures 4.6 through 4.19, we present both the exact
solution and the finite element solution for one degree of freedom
systems with soft springs. Different mesh sizes are used, and
the relationships between the frequency of vibration and the average
energy as well as the relationships between the frequency and the

amplitude of vibration, which for the finite element solution uh(s)
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is taken as max |uP(ih)|, as shown. Since exact periodic

0<ign
solutions exist only for a finite range of energies, after which
solutions become unbounded, finite element solutions likewise
exist only for a finite range of energies. These two ranges are
close to each other as the mesh size h becomes smaller. Our
continuation technique as described in Section 3.4 fails to
converge beyond this finite range of energies as the Jacobian
matrix, which depends on the solution, is unbounded.

In Tables 1 through 4 below we recast some of the numerical
results shown in Figures 4. through 4.13. These tables
serve to exhibit the absolute and relative errors in the computed
finite element solutions. The absolute error in each case is
the absolute value of the difference between the exact solution
and the computed finite element solution. The relative error is
the absolute error divided by the absolute value of the ex#ct

solution.

TABLE 1 Errors of the finite element solutions for a single
degree of freedom system. a, = .896, a, = -,16.

Step Size T/5 T/9
Error in Frequency
Averaged Energy Absolute Relative | Absolute Relative
o .015 .016 . 005 . 005
.3 .015 .016 . 005 . 005
.9 .015 .019 . 005 . 006
1. .016 .022 . 005 . 007
1.1 .020 .030 . 006 . 009
1.2 .061 . 106 .013 .023
1.21 _ - .016 .029
1.22 - - .022 .040
1.23 - - .034 . 064




67

TABLE 2 Errors of the finite element solutions for a single
degree of freedom system. a; = . 896, aj = -.16.
Step Size T/5 T/9
Error in Amplitude
Absolute Relative | Absolute | Relative
Average Energy
o (o} (o) (0] o]
.3 .013 .15 . 003 . 005
.9 .013 .16 .003 . 005
1.0 .05 .030 . 005 . 006
1.1 .08 .040 . 005 . 006
1.2 . 085 . 043 .017 .008
1.21 - - .022 .0l10
1.22 —_ —_ .028 - .013
1.23 - - .041 .019

TABLE 3 Errors of the finite element solutions for a single

degree of freedom system. a; = . 896, ay = -1.6.
Step Size T/6 T/12
Error in Frequency
Absolute | Relative | Absolute Relative

Average Energy

(o] .011 .011 .003 . 003

.06 .012 .012 . 003 . 003

.09 .013 .013 . 003 . 003

.11 .014 .020 .004 . 006

.121 . 045 . 080 . 009 .016

122 .077 . 141 .011 .021

.123 .016 .032

.124 .030 .062
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TABLE 4 Errors of the finite element solutions for a single

degree of freedom system. a,; = . 896, ay = -1.6.
Step Size T/6 T/12
Error in Amplitude Absolute '| Relative | Absolute | Relative
Average Energy
o o] (o] o o
.06 . 009 .024 .002 . 006
.09 .012 .025 .003 . 006
.11 .017 .028 .004 . 007
.12 .026 .040 . 006 . 009
.121 .032 .045 . 007 .010
122 . 040 .058 . 008 .011
.123 . 009 .013
.124 .013 .018

The results in Tables 1 through 4 indicate that for any

nonlinear soft spring constant the absolute and the relative errors

in both the frequency and the amplitude depend on the mesh size

used as well as the averaged energy.

As the averaged total

energy increases the absolute and relative errors increase

slightly.

As the averaged energy approaches the critical value

where periodic solutions fails to exist the change in both the

relative and absolute errors become rather significant.

more, from Figures 4.6 through 4.13 we can conclude that the

computed frequency always underestimates the exact frequency

and the computed amplitude always overestimates the exact one.

The range of errors encountered in both absolute and relative

errors varies from less than 1% to about 74, for the mesh sizes,

Further-
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/9 and /12, hence our finite element method provides reasonably
accurate approximations.

Figures 4.14 through 4.19 show similar results for systems
with hard springs. Since exact periodic solutions exists for all
energy level, a solution branch can be followed as far as we
wish. The finite element equations also have the same property
and the finite element solutions can be continued as far as we

wish.

TABLE 5 Errors of the finite element solutions for a single
degree of freedom system. a; = . 896, a; = .6.

Step Size T/5 /9

Error in Frequency

Absolute Relative Absolute Relative
Average Energy '

o) .015 .016 . 005 . 005
.04 .0l6 .0l6 . 005 .005
.12 - 016 .0l6 .005 .005
.2 .017 .017 . 005 . 005
«3 .018 .017 . 006 . 006
.54 .019 .017 . 006 . 006
.78 .020 .017 . 006 . 006

.9 .030 .018 .007 . 007
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Errors of the finite element solutions for a single

degree of freedom system. a; = . 896, a; = «6.

Step Size T/5 T/9
Error in Amplitude
Absolute Relative | Absolute | Relative
Average Energy
(o] (o] o o o
.04 . 005 .018 . 002 . 005
.12 . 009 .02 .003 . 006
.2 .012 .02 . 004 . 006
.3 .015 .021 . 005 .007
.54 .021 .022 . 007 .007
.78 .026 .023 .008 .007
.9 .028 .024 . 009 . 008

TABLE 7 Errors of the finite element solutions for a single

degree of freedom system. a; = . 896, ay = 1.6.
Step Size T/6 T/12
Error in Amplitude
Absolute Relative | Absolute Relative
Average Energy
o .011 .011 . 003 .028
.4 .015 .012 . 004 . 003
.8 .017 .012 . 004 . 003
1.2 .019 .012 . 005 . 003
1.6 .020 .012 . 005 .003
2.0 .021 .012 . 005 .003
2.8 .023 .012 . 006 . 003
3.6 .024 .012 . 006 . 003
4.4 .025 .012 . 006 .003
5 .026 .012 .007 . 003
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TABLE 8 Errors of the finite element solutions for a single
degree of freedom system. a; = . 896, ag = 1.6.

Step Size T/6 T/12
Error in Amplitude
Absolute Relative Absolute Relative
Average Energy
(o] (o] o o (0]
.4 .018 .023 . 004 . 006
.8 .023 .024 . 006 . 006
1.2 .027 .024 .007 . 006
1.6 .029 .024 .007 . 006
2.0 .032 .024 . 008 . 006
2.8 .035 .024 . 008 . 006
3.6 .038 .024 . 009 . 006
4.4 . 040 .024 .01 . 006
5 .042 .024 .01 . 006

In Tables 5 through 8 the relative and absolute errors
in the frequency and the amplitude for the case of hard springs—
are represented. As the averaged energy increases the changes
in the relative and absolute errors are not significant. The
errors in these tables do not exceed 4% in the range of E
considered. Figures 4.14 through 4.19 show that both the computed
frequency and the computed amplitude underestimate the corres-

ponding exact ones.
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Chapter 5 Summary and Conclusions

We have been concerned with the computation of families of
periodic solutions of nonlinear Hamiltonian systems. The periodic
solutions here are generalizations of the normal modes of linear
systems, for which the potential energy function is quadratic and
positive definite. When the potential energy V (x) _contains
terms higher than quadratic, the approximation of it by a linear
system is justified only when the total energy E of the system
is small.,. As E increases, terms of V(x) higher than quadratic
become important. It is natural to ask what become of the linear
normal modes.

In Chapter 2 we formulated the mathematical problem and
identified periodic solutions of the above mentioned system with
critical points of some convex functional on manifolds defined by
constant integrals of'thg potential energy of the system. We
showed that for a given total energy E the variational problem
had at least one periodic solution. Continuous deéendence of such
periodic solutions on the total energy E, however, was assumed.

In Chapter 3 the so called finite element method, in which
the time variable was discretized, was applied to obtain approximate
solutions for the class of nonlinear autonomous differential
equations mentioned above. We showed, upon assuming that such a
problem had an isolated solution for a given energy level Eo.
that the finite element equations, for small mesh size h, also

had a corresponding isolated solution. This was established by

113
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a contraction mapping argument by relating the Jacobian of the
discrete problem to that of the exact problem. Furthermore, if
the exact problem had an isolated branch of solution for some E

in a neighborhood of Eqe then, correspondingly, the finite element

solution at E, was also isolated and could be uniquely continued.

(o]
Also in Chapter 3 we showed that under certain conditions we could
continue a solution beyond a bifurcation point. A numerical
algorithm which was presented that had been used to obtain approxi-
mate solutions. Techniques for switching solution branches at a
bifurcation point by constructing several distinct tangent

vectors at such a point were also included in Chapter 3.

In Chapter 4 the numerical algorithm discussed in Chapter 3
was applied to some special class of problems where the potential
energy function contained quadratic terms plus higher even order
terms. We first considered a single degree of freedom nonlinear
system, with the special form of potential energy function men-
tioned above, for which exact solutions were known. The approxi-
mate finite element solutions obtained using the so called piece-
wise linear functions were compared with the exact ones so as to
assess the accuracy of the former. We also considered in Chapter
4 two degrees of freedom nonlinear systems and presented examples
in which bifurcated branches of solution existed. Finally, we
compared the finite element solutions with approximate solutions
obtained by a finite difference scheme.

In conclusion, isolated solutions are preserved by finite
element method and can be uniquely continued. Bifurcation point

need not be preserved by the finite element method. However, if
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a bifurcation point is preserved, then a solution can be con-
tinued past such a point, and bifurcated branches can also
be obtained numerically.

One question that may be raised at this point is whether
other discrete consistent schemes, for example, schemes that are
derived from the finite difference method, also preserve isolated
periodic solutions. Another direction of future research is to
develope more efficient numerical algorithms that avoid explicit
computations of the tangent vectors at bifurcation points along
the lines of work in [33, 34, 37].

Finally, we point out that the methods developed here can
perhaps be extended to forced vibration problems governed by
non-autonomous systems of ordinary differential equations with

periodic driving forces and possibly damping.
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